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vii

 This book was written as a supplemental text for use with introductory or intermedi-
ate statistics books. The content of each chapter is appropriate for any undergradu-
ate or graduate level statistics course. The chapters are ordered along the lines of 
many popular statistics books so it should be easy to supplement the chapter content 
and exercises with your statistics book and lecture materials. The content of each 
chapter was written to enrich a students’ understanding of statistics using R simula-
tion programs. The chapter exercises reinforce an understanding of the statistical 
concepts presented in the chapters. 

 Computational skills are kept to a minimum in the book by including R script pro-
grams that can be run for the exercises in the chapters. Students are not required to 
master the writing of R script programs, but explanations of how the programs work 
and program output are included in each chapter. R is a statistical package with an 
extensive library of functions that offers  fl exibility in writing customized statistical 
routines. The R script commands are run in the R Studio software which is a graphical 
user interface for Windows. The R Studio software makes accessing R programs, 
viewing output from the exercises, and graph displays easier for the student. 

   Organization of the Text 

 The  fi rst chapter of the book covers fundamentals of R. This includes installation of 
R and R Studio, accessing R packages and libraries of functions. The chapter also 
covers how to access manuals and technical documentation, as well as, basic R 
commands used in the R script programs in the chapters. This chapter is important 
for the instructor to master so that the software can be installed and the R script 
programs run. The R software is free permitting students to install the software and 
run the R script programs for the chapter exercises. 

 The second chapter offers a rich insight into how probability has shaped statistics 
in the behavioral sciences. This chapter begins with an understanding of  fi nite and 
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in fi nite probability. Key probability concepts related to joint, addition, multiplica-
tion, and conditional probability are covered with associated exercises. Finally, the 
all important combination and permutation concepts help to understand the seven 
fundamental rules of probability theory which impact statistics. 

 Chapter   3     covers statistical theory as it relates to taking random samples from a 
population. The R script program is run to demonstrate sampling error. Basically, 
sampling error is expected to be reduced as size of the random sample increases. 
Another important concept is the generation of random numbers. Random numbers 
should not repeat or be correlated when sampling without replacement. 

 Chapter   4     covers histograms and ogives, population distributions, and stem and 
leaf graphs. The frequency distribution of cumulative percents is an ogive, repre-
sented by a characteristic S-shaped curve. In contrast, a data distribution can be 
unimodal or bimodal, increasing or decreasing in value. A stem and leaf graph fur-
ther helps to visualize the data distribution, middle value and range or spread of the 
data. Graphical display of data is reinforced by the chapter exercises. 

 Chapter   5     covers measures of central tendency and dispersion. The concept of 
mean and median are presented in the chapter exercises, as well as the concept of 
dispersion or variance. Sample size effects are then presented to better understand 
how small versus large samples impact central tendency and dispersion. The 
Tchebysheff Inequality Theorem is presented to introduce the idea of capturing 
scores within certain standard deviations of the frequency distribution of data, espe-
cially when it is not normally distributed. The normal distribution is presented next 
followed by the Central Limit Theorem, which provides an understanding that sam-
pling distributions will be normally distributed regardless of the shape of the popu-
lation from which the random sample was drawn. 

 Chapter   6     covers an understanding of statistical distributions. Binomial distribu-
tions formed from the probability or frequency of dichotomous data are covered. 
The normal distribution is discussed both as a mathematical formula and as proba-
bility under the normal distribution. The shape and properties of the chi-square 
distribution, t-distribution, and F-distribution are also presented. Some basic tests of 
variance are introduced in the chapter exercises. 

 Chapter   7     discusses hypothesis testing by expressing the notion that “ A statistic 
is to a sample as a parameter is to a population ”. The concept of a sampling distri-
bution is explained as a function of sample size. Con fi dence intervals are introduced 
for different probability areas of the sampling distribution that capture the popula-
tion parameter. The R program demonstrates the con fi dence interval around the 
sample statistic is computed by using the standard error of the statistic. The statisti-
cal hypothesis with null and alternative expressions for percents, ranks, means, and 
correlation are introduced. The basic idea of testing whether a sample statistic falls 
outside the null area of probability is demonstrated in the R program. Finally TYPE 
I and TYPE II error are discussed and illustrated in the chapter exercises using R 
programs. 

 Chapters   8    –  13     cover the statistics taught in an elementary to intermediate statis-
tics course. The statistics covered are chi-square, z, t, F, correlation, and regression. 
The respective chapters discuss hypothesis testing steps using these statistics. The R 

http://dx.doi.org/10.1007/978-1-4614-6227-9_3
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programs further calculate the statistics and related output for interpretation of 
results. These chapters form the core content of the book whereas the earlier chap-
ters lay the foundation and groundwork for understanding the statistics. A real 
bene fi t of using the R programs for these statistics is that students have free access 
at home and school. An instructor can also use the included R functions for the 
statistics in class thereby greatly reducing any programming or computational time 
by students. 

 Chapter   14     is included to present the concept that research should be replicated 
to validate  fi ndings. In the absence of being able to replicate a research study, the 
idea of cross validation, jackknife, and bootstrap are commonly used methods. 
These methods are important to understand and use when conducting research. The 
R programs make these efforts easy to conduct. Students gain further insight in 
Chap.   15     where a synthesis of research  fi ndings help to understand overall what 
research results indicate on a speci fi c topic. It further illustrates how the statistics 
covered in the book can be converted to a common scale so that effect size measures 
can be calculated, which permits the quantitative synthesis of statistics reported in 
research studies. The chapter concludes by pointing out that statistical signi fi cance 
testing, i.e.,  p  < 0.05, is not necessarily suf fi cient evidence of the practical impor-
tance of research results. It highlights the importance of reporting the sample statis-
tic, signi fi cance level, con fi dence interval, and effect size. Reporting of these values 
extends the students’ thinking beyond signi fi cance testing.  

   R Programs 

 The chapters contain one or more R programs that produce computer output for the 
chapter exercises. The R script programs enhance the basic understanding and con-
cepts in the chapters. The R programs in each chapter are labeled for easy 
identi fi cation. A bene fi t of using the R programs is that the R software is free for 
home or school use. After mastering the concepts in the book, the R software can be 
used for data analysis and graphics using pull-down menus. The use of R functions 
becomes a simple cut-n-paste activity, supplying the required information in the 
argument statements. 

 There are several Internet web sites that offer information, resources, and assis-
tance with R, R programs, and examples. These can be located by entering “R soft-
ware” in the search engines accessible from any Internet browser software. The 
main Internet URL (Uniform Resource Locator) address for R is:   http://www.r-
project.org    . A second URL is:   http://lib.stat.cmu.edu/R/CRAN    . There are also many 
websites offering R information, statistics, and graphing, for example, Quick-R at 
  http://www.statmethods.net    .

Tuscaloosa, AL, USA Randall Schumacker
 Sara Tomek   
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   Install R    

 R is a free open-shareware software that can run on Unix, Windows, or Mac OS X 
computer operating systems. The R software can be downloaded from the 
Comprehensive R Archive Network (CRAN) which is located at:    http://cran.
r-project.org/     . There are several sites or servers around the world where the soft-
ware can be downloaded, which is accessed at:    http://cran.r-project.org/mirrors.
html      .  The R version for Windows will be used in the book, so if using Linux or Mac 
OS X operating systems follow the instructions on the CRAN website. 

 After entering the URL:    http://cran.r-project.org /     you should see the following 
screen. 

    Chapter 1   
 R Fundamentals                 

 Download and Install R 

 Precompiled binary distributions of the base system and contributed  packages, 
 Windows and Mac  users most likely want one of these versions of R:

   Download R for Linux ( •  http://cran.r-project.org/bin/linux/    )  
  Download R for MacOS X ( •  http://cran.r-project.org/bin/macosx/    )  
  Download R for Windows ( •  http://cran.r-project.org/bin/windows/    )    

  After clicking on the “ Download R for Windows ”, the following screen should 
appear where you will click on “ base ” to go to the next screen for further 
instructions. 

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/windows/
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  After clicking on “ base ”, the following screen should appear to download the 
Windows installer executable  fi le, e.g. R-2.15.1-win.exe (The version of R avail-
able for download will change periodically as updates become available, this is 
version 2.15.1 for Windows). 

 R for Windows 

 Subdirectories:  

 base 
(  http://cran.r-project.org/bin/windows/
base/    ) 

 Binaries for base distribution (man-
aged by Duncan Murdoch). This is 
what you want if you  install R for 
the  fi rst time  (  http://cran.r-project.
org/bin/windows/base/    ) 

 contrib 
(  http://cran.r-project.org/bin/windows/
contrib/    ) 

 Binaries of contributed packages 
(managed by Uwe Ligges) 

 You may also want to read the R FAQ (  http://cran.r-project.org/doc/FAQ/R-
FAQ.html    ) and R for Windows FAQ (  http://cran.r-project.org/bin/windows/
base/rw-FAQ.html    ). 

  Run the executable  fi le by double-clicking on the  fi le name (R-2.15.1-win.exe) 
once it has been downloaded to install, which will open the R for Windows setup 
wizard. 

 R-2.15.1 for Windows (32/64 bit) 

 Download R 2.15.1 for Windows (  http://cran.r-project.org/bin/windows/base/
R-2.13.1-win.exe    ) (47 megabytes, 32/64 bit)

   Installation and other instructions ( •  http://cran.r-project.org/bin/windows/
base/README.R-2.13.1    )  
  New features in this version: Windows speci fi c ( •  http://cran.r-project.org/
bin/windows/base/CHANGES.R-2.13.1.html    ), all platforms (  http://cran.r-
project.org/bin/windows/base/NEWS.R-2.13.1.html    ).    

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/contrib/
http://cran.r-project.org/bin/windows/contrib/
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/bin/windows/base/rw-FAQ.html
http://cran.r-project.org/bin/windows/base/rw-FAQ.html
http://cran.r-project.org/bin/windows/base/R-2.13.1-win.exe
http://cran.r-project.org/bin/windows/base/R-2.13.1-win.exe
http://cran.r-project.org/bin/windows/base/README.R-2.13.1
http://cran.r-project.org/bin/windows/base/README.R-2.13.1
http://cran.r-project.org/bin/windows/base/CHANGES.R-2.13.1.html
http://cran.r-project.org/bin/windows/base/CHANGES.R-2.13.1.html
http://cran.r-project.org/bin/windows/base/NEWS.R-2.13.1.html
http://cran.r-project.org/bin/windows/base/NEWS.R-2.13.1.html


3Install R Studio

  NOTE:  The Download R 2.xx.x for Windows version will have changed to newer 
versions, so simply download the latest version offered.  

   Install R Studio 

 The R Studio interface, which is installed after installing the R software, provides 
an easy to use GUI windows interface (Graphical User Interface), download from: 
   http://www.rstudio.org/      (Must have R2.13.1 or higher version on PC, Linux, or 
Mac OS X 10.5 before download and install of this software). The following desk-
top icon will appear after installation.

          

 The R Studio window provides the usual R console. It also provides a workspace/
history window with load/save/import data set features. Another window provides 
easy access to  fi les and a list of packages available. The Plots tab also shows a cre-
ated plot and permits easy Export to a GIF image, PDF  fi le, or copy to the clipboard 
feature to insert into a Word document.

        

http://www.rstudio.org/
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   Getting Help 

 The R software contains additional manuals, references, and material accessed by 
issuing the following command in the RGui window once R is installed: 

 >  help.start() 

        



5Load R Packages

   Load R Packages 

 Once R is installed and the RGui window appears, you can load R packages with 
routines or programs that are not in the “ base ” package. Simply click on “ Packages ” 
in the main menu of the RGui window, and then make your selection, e.g., “ Load 
packages ”.
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 A dialog box will appear which lists the base package along with an alphabetical 
list of other packages. I selected “ stats”  from the list and clicked OK. This makes 
available all of the routines or commands in the “ stats ” package. Alternatively, prior 
to entering R commands in the R Console window, you can load the package from 
a library with the command: 

  > library(stats) 

       

 To obtain information about the R “stats” package issue the following command 
in the R Console: 

 >  help(stats)  
 or 
 >  library(help= “ stats”)  

 which will provide a list of the functions or routines in the “ stats ” package. An 
index of the statistical functions available in the  “stats”  package will appear in a 
separate dialog box.



7Running R Programs

        

   Running R Programs 

 To run R programs in the book, you will Click on  File , then select  Open script  from 
the main menu in the RGui window. For example, locate and select  chap01_Begin.r  
script  fi le, which then opens in a separate R Editor window.

   # Begin Chapter 1   

   # Basic R commands

      x = 5  
  y = 4  
  z = x + y  
  z   

   age = c(25,30,40,55)  
  age    
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 Next, click on  Edit  in the pull down menu and select  run all , to execute all of the 
command lines in the program. The Editor Window will show: 

  > # Begin Chapter 1  
  >  
  > # Basic R commands  
  >  
  > x = 5  
  > y = 4  
  > z = x + y  
  > z  
  [1] 9  
  >  
  > age = c(25,30,40,55)  
  > age  
  [1] 25 30 40 55  

  NOTE: The R programs included with this book may end up with different 
results each time a random sample is selected. Use set.seed(13579) prior to run-
ning the R programs to obtain the same random sample, which will provide the 
same example results.  

  NOTE: Commands in R code can be found using either the = or the <-  notation. 
Either will work and they can be used interchangeably, for example, x = 5 or 
x <- 5 assigns the value 5 to x.   

   Accessing Data and R Script Programs 

 The  getwd()  and  setwd()  commands identify the current working directory and sets 
a new working directory, respectively. For example, 

 > getwd() 
  [1] “C”/Users/Name”  

 > setwd (“C:/Users/Documents”) 

 The R command,  read.table , with the argument,   fi le=  fi le.choose() , can help to 
locate and open a data  fi le. 

 > read.table( fi le= fi le.choose()) 

 The   fi le.choose()  option is by far the best way, rather than guess where data  fi les 
are located, but does require personal action unlike specifying  fi le location directly 
in an R program. An example will help to illustrate these R functions for locating 
and inputting a data  fi le types (ASCII, “sample.txt”). 
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 > getwd() 
  [1] “C”/Users/Name”  

 > setwd (“C:/Users/Documents”) 
 > read.table ( fi le = “sample.txt”, header=TRUE) 

  # Alternative 
 read.table( fi le=“C:/Users/Documents/ s a m p l e .
txt”,header=TRUE)  

  # Alternative read.table( fi le= fi le.choose())  

  student score  
  1 1 16  
  2 2 14  
  3 3 24  
  4 4 23  
  5 5 25  
  6 6 22  

 The  R Studio  program has the added bene fi t over RGui (R graphical user 
 interface) by including a display window of the computer directory. This makes 
 fi nding R script programs and data  fi les much easier.  

   Summary 

 The R script programs in the book have sets of bundled R commands in an R func-
tion which provides a chapter name followed by the R program name to execute all 
of the simulation operations. The following function,  results , has the set of opera-
tions between the brackets, { and }. Issuing the function name,  results()  executes 
the operations in the function. For example, 

 > results = function() 
 { 
 x = {1:5} 
 y = {5:9} 

 output = matrix(1:2) 
 output = c(mean(x),mean(y)) 
 names(output) = c(“xmean”,“ymean”) 

 output 
 } 
 > results () 

  xmean  ymean  
    3 7   
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   ** WARNING ** 

 When running R programs, the workspace keeps track of variable names, functions, 
data vectors, etc. If you run several programs, one after the other, eventually R will 
crash or the results will be unstable or incorrect.

    1.    Use  ls()  to view active variables.  
    2.    Use  rm()  to remove active variables or programs, especially if making changes 

to code.     

 It is always best to run a single R program at a time. It is good programming 
technique to use  detach()  function to clear out previous values created by R syntax 
or close, then reopen RGui to run another R program.  

   R Fundamentals Exercises 

     1.    What command would you use to obtain R manuals and reference material?  
    2.    What command would you use to obtain information about the {stats} 

package?  
    3.    What R commands would yield  z  as the sum of  x  = 5 and  y  = 6?  
    4.    What R command would yield  test  as a data vector with values 10, 20,30,40,50?  
    5.    What R command lists all active variables in the work environment?      

   True or False Questions 

 R Basics  

 T  F  a. R software can only be run on an IBM PC   . 
 T  F  b. R software has extensive manuals, references, and documentation 

material available for the user. 
 T  F  c. The setwd() command identi fi es the current working directory. 
 T  F  d. R software can analyze data similar to other statistical packages. 
 T  F  e. The rm() command removes variables from the working directory. 
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   Finite and In fi nite Probability    

 One’s ability to determine the probability of an event is based upon whether the 
event occurs in a  fi nite or in fi nite population. In a   fi nite population , the number of 
objects or events is known. An exact  probability  or fraction can be determined. For 
example, given a population of 1,000 cars with 500 Ford, 200 Chevrolet, 200 
Chrysler, and 100 Oldsmobile, the probability of selecting a Ford is one-half or 50% 
(500/1,000). The probability of selecting a Chevrolet is one- fi fth or 20% (200/1,000), 
the probability of selecting a Chrysler is one- fi fth or 20% (200/1,000), and the prob-
ability of selecting an Oldsmobile is one-tenth or 10% (100/1,000). The individual 
probabilities add up to 100%. 

 In an  in fi nite population , the numbers of objects or events are so numerous that 
exact probabilities are dif fi cult to determine. One approach to determine the prob-
ability of an event occurring in an in fi nite population is to use the relative frequency 
de fi nition of probability. Using this approach, trials are repeated a large number of 
times, N. The number of times the event occurs is counted, and the probability of the 
event is approximated by P(A)  »  n(A)/N in which n(A) is the number of times event 
A occurred out of N trials. 

 For example, the probability of obtaining heads when a coin is tossed could be 
determined by tossing the coin 500 times, counting the number of heads, 
n(heads) = 241, and computing P(heads)  »  241/500 = 0.482. The probability of  getting 
heads in the population is therefore approximately 48%. The probability of  not  get-
ting heads is 52%, since the two events must sum to 100%. We know from experi-
ence that the probability of obtaining heads when a coin is tossed should be 
approximately 50% or one-half, given an unbiased coin (a coin that is not weighted 
or not a trick coin). 

    Chapter 2   
 Probability                 
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 An important point needs to be emphasized. In order for an approximation to be 
reasonable (representative), the relative frequency of the event (e.g., heads) must 
begin to stabilize and approach some  fi xed number as the number of trials increases. 
If this does not occur, then very different approximations would be assigned to the 
same event as the number of trials increases. Typically, more trials (coin tosses) are 
required to potentially achieve the 50% probability of obtaining heads. Experience 
in the real world has shown that the relative frequency of obtaining heads when 
coins are tossed stabilizes or better approximates the expected probability of 50%, 
as the number of trials increases. 

 This approximation phenomenon (stabilization or representativeness) occurs in 
the relative frequencies of other events too. There is no actual proof of this because 
of the nature of an in fi nite population, but experience does support it. Using the rela-
tive frequency de fi nition, the approximation, which the relative frequencies provide, 
is regarded as our best estimate of the actual probability of the event. 

 In this chapter, you will have an opportunity to observe the stabilization of the 
relative frequencies. You will be able to choose the probability of the event and 
the R program will simulate the number of trials. As the number of trials increase, 
the new results are pooled with the earlier ones, and the relative frequency of the 
event is computed and plotted on a graph. The  fi rst program example starts with a 
sample size of 100 and increases the sample size in increments of 100 up to 1,000. 

 In the real world we observe that as the number of trials increases the relative 
frequency of an event approaches a  fi xed value. The probability of an event can be 
de fi ned as the  fi xed value approximated by the relative frequencies of the event as 
the number of trials increase. The relative frequency de fi nition of probability 
assumes that the relative frequencies stabilize as the number of trials increase. 
Although the relative frequencies get closer to a  fi xed value as the number of trials 
increase, it is possible for a certain number of trials to produce a relative frequency 
that is not closer to the approximated  fi xed value. An event with a probability close 
to 0.1 or 0.9 will have relative frequencies that stabilize faster than an event with 
probability close to 0.50.  

   PROBABILITY R Program 

 The PROBABILITY program simulates  fl ipping a coin a different number of 
times for different samples, and observing the different frequencies across sample 
sizes. The population probability is set in the variable  Probability  and the 
 SampleSizes  are created using the  seq  function, instead of specifying each 
value within a  c  function (which would be 10 numbers in this case). The  seq  func-
tion creates a vector of values from 100 to 1,000 with intervals of 100. Next, the 
 SampleFreqs  object is set to  NULL  so that it may be constructed into a vector by 
appending values using the  c  function. A  for  loop iterates through all values within 
the  SampleSizes  vector, assigning each value in turn to the  SampleSize  variable. 
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The  SampleFreqs  vector is then increased by appending the sum of the samples of 
size  SampleSize  taken from the population of 0 and 1. This results in 0 having a 
probability of (1 −  Probability ) and 1 having a probability of  Probability , which is 
divided by  SampleSize  to get the relative frequency. The  SampleFreqs  vector now 
contains the relative frequencies of heads in each sample size. These relative fre-
quencies are plotted with a line graph using the generic  plot  function.  SampleSize  
is used for the data on the x-axis and  SampleFreqs  for the data on the y-axis. 
 Type  = “l” (a lower case L) is for line graph and the  ylim  keyword sets the upper 
and lower limits of values for the y-axis. 

 Using the full range of possible values for the y-axis (0 to 1) resulted in dif fi culty 
distinguishing differences in the graphs because of the small variation of the values 
compared to the overall scale. Since values rarely fall 0.10 above or 0.10 below the 
population probability, the y-axis limits were set to  Probability  −0.10 and  Probability  
+0.10. The x-axis label, y-axis label, and main title are all set by use of keywords. 

 The values from the graph are constructed into a matrix for output. The matrix 
starts out as a  NULL  object that is built using  rbind  (row bind). A row of values is 
added to the matrix for each iteration of the  for  loop, appending the relative fre-
quency of the given sample, the population probability, and the error of estimation 
for each sample (relative frequency—population probability). After the matrix is 
constructed and the  for  loop is ended, the  dimnames  function is used to assign 
dimension names to the constructed matrix. The  paste  function is again utilized to 
create a vector of labels for the rows of the matrix resulting in “sample size = 100”, 
etc. The  print  function is used to output the matrix in order to make the rows and 
columns printed. The Error is the difference between the sample percent and the 
true population percent. 

  NOTE: As noted in Chap.     1      , use set.seed(13579) prior to running the R 
 programs to get identical results presented below.  

   PROBABILITY R Program Output 

     Sample % Population % Error  
  sample size = 100 0. 52 0.500 0.02  
  sample size = 200 0.535 0.500 0.035  
  sample size = 300 0. 53 0.500 0.03  
  sample size = 400 0.492 0.500 -0.008  
  sample size = 500 0.486 0.500 -0.014  
  sample size = 600 0.508 0.500 0.008  
  sample size = 700 0.501 0.500 0.001  
  sample size = 800 0. 49 0.500 -0.01  
  sample size = 900 0.501 0.500 0.001  
  sample size = 1000 0.499 0.500 -0.001 

http://dx.doi.org/10.1007/978-1-4614-6227-9_1
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   Finite and In fi nite Exercises 

     1.    Run PROBABILITY for sample sizes of 50 in increments of 50 up to 1,000, i.e., 
SampleSizes <- seq(50,1000,50). This is a simulation of  fl ipping an unbiased, 
balanced coin and recording the relative frequency of obtaining heads, which has 
an expected probability of p = 0.50.

   a.    Complete the graph of relative frequencies for sample sizes of n = 50, in incre-
ments of 50, up to 1,000, for  p  = 0.50.
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   b.    Complete the table below. Does the Error (difference between the sample 
percent and the population percent of 0.50) ever become less than 0.01? 
______________ 
 If so, for what sample sizes? _________________________________________ 

 Table of sample and population percents for coin toss  

 SAMPLE %  POPULATION %  ERROR 

 SAMPLE SIZE = 50  0.500 
 SAMPLE SIZE = 100  0.500 
 SAMPLE SIZE = 150  0.500 
 SAMPLE SIZE = 200  0.500 
 SAMPLE SIZE = 250  0.500 
 SAMPLE SIZE = 300  0.500 
 SAMPLE SIZE = 350  0.500 
 SAMPLE SIZE = 400  0.500 
 SAMPLE SIZE = 450  0.500 
 SAMPLE SIZE = 500  0.500 
 SAMPLE SIZE = 550  0.500 
 SAMPLE SIZE = 600  0.500 
 SAMPLE SIZE = 650  0.500 
 SAMPLE SIZE = 700  0.500 
 SAMPLE SIZE = 750  0.500 
 SAMPLE SIZE = 800  0.500 
 SAMPLE SIZE = 850  0.500 
 SAMPLE SIZE = 900  0.500 
 SAMPLE SIZE = 950  0.500 
 SAMPLE SIZE = 1000  0.500 

    2.    Run PROBABILITY for sample sizes of 50 in increments of 50 up to 1,000, i.e., 
SampleSizes <- seq(50,1000,50). This time change the population percent to 
25%, i.e., Probability <- 0.25. You are simulating the  fl ipping of a biased, unbal-
anced coin.

   a.    Complete the graph of relative frequencies for sample sizes of n = 50, in incre-
ments of 50, up to 1,000, for  p  = 0.25.
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 Proportion

.35

.30

.25

.20

.15

200 400 600 800 1000 

          

   b.    Complete the table below. Does the absolute difference between the sample 
percent and the population percent of 0.250 ever become less than 0.01? 
_________ 
 If so, for what sample sizes? _______________________________________ 

 Table of sample and population percents for coin toss  

 SAMPLE %  POPULATION %  ERROR 

 SAMPLE SIZE = 50  0.250 
 SAMPLE SIZE = 100  0.250 
 SAMPLE SIZE = 150  0.250 
 SAMPLE SIZE = 200  0.250 
 SAMPLE SIZE = 250  0.250 
 SAMPLE SIZE = 300  0.250 
 SAMPLE SIZE = 350  0.250 
 SAMPLE SIZE = 400  0.250 
 SAMPLE SIZE = 450  0.250 
 SAMPLE SIZE = 500  0.250 
 SAMPLE SIZE = 550  0.250 
 SAMPLE SIZE = 600  0.250 
 SAMPLE SIZE = 650  0.250 
 SAMPLE SIZE = 700  0.250 
 SAMPLE SIZE = 750  0.250 
 SAMPLE SIZE = 800  0.250 
 SAMPLE SIZE = 850  0.250 
 SAMPLE SIZE = 900  0.250 
 SAMPLE SIZE = 950  0.250 
 SAMPLE SIZE = 1000  0.250 

   c.    In what way is this graph for  p  = 0.25 different from the  fi rst graph for 
 p  = 0.50? 
 ______________________________________________________________ 

 ______________________________________________________________      

    3.    Run PROBABILITY again for sample sizes of 50, in increments of 50, up to 
1,000, but this time for  p  = 0.10 and  p  = 0.90. Draw the graphs below.
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   a.    In what way are these graphs different from the graphs for a probability 
of 0.50? 

 ______________________________________________________________ 

 ______________________________________________________________ 

 ______________________________________________________________  

   b.    What is the implication of this difference when you approximate a very small 
or a very large probability? 

 ______________________________________________________________ 

 ______________________________________________________________ 

 ______________________________________________________________  

   c.    Run PROBABILITY for  p  = 0.20, 0.30, 0.40, 0.60, 0.70, and 0.80. Describe 
the graphs in comparison with those for probabilities of 0.10, 0.90, and 0.50. 

 ______________________________________________________________ 

 ______________________________________________________________ 

 ______________________________________________________________         
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   Joint Probability 

 The theoretical probability for the joint occurrence of two independent events is 
re fl ected in the relative frequency of their joint occurrence. There is a multiplication 
and addition law of probability for two independent or mutually exclusive events. 
The theoretical probability for the union of two events is re fl ected in the relative 
frequency of the occurrence of either event. 

 If an unbiased coin is  fl ipped two times, the possible outcomes form a sample 
space, S. The sample space S = {HH, HT, TH, TT}, in which H stands for a head and 
T for a tail, with the pair of letters indicating the order of the outcomes. Therefore, 
with two separate  fl ips of a coin, four possible outcomes can occur: two heads,  fi rst 
a head then a tail,  fi rst a tail then a head, or two tails. The sample space that contains 
the number of heads in the two  fl ips is S = {0, 1, 2}. If an unbiased coin is  fl ipped 
twice, a large number of times, the outcomes can be used to compute the  frequencies. 
The frequencies can be used to approximate the joint probabilities of the outcomes 
in the sample space. 

 Probabilities can also be assigned to the outcomes by using a theoretical approach. 
Since a head and a tail are equally likely to occur on a single  fl ip of an unbiased 
coin, the theoretical approach uses a de fi nition of probability that is applicable to 
equally likely events. The probability of a head, P(H), is 1/2 because a head is one 
of the two equally likely outcomes. The probability of a tail, P(T), is 1/2, since a 
tail represents the other equally likely outcome. Since the two  fl ips of the coin are 
 independent, the multiplication law of probability for independent events can be 
used to  fi nd the joint probability for the pairs in the sample space. For example, 
the  probability of  fl ipping an unbiased coin and getting heads both times is: 
P(HH) = (1/2)*(1/2) = 1/4. The probability of getting a head and then a tail would 
be: P(HT) = (1/2)*(1/2) = 1/4, with the other pairs in the sample space determined in 
the same manner. 

 If the coin is  biased , meaning that P(H) is some value other than 0.50, for exam-
ple 0.60, then P(T) = 1 − P(H) = 1 − 0.60 = 0.40. The independence of the coin  fl ips 
can be used to  fi nd the  joint probability  for the pair. For example, P(HT) = P(H)*P
(T) = (0.60)*(0.40) = 0.24. 

 If the sample space being used is S = {0, 1, 2}, with the integers representing the 
number of heads, then the frequency of 0 is the frequency of TT; the frequency of 1 
is the frequency of HT plus the frequency of TH; and the frequency of 2 is the fre-
quency of HH. The theoretical probabilities for S can also be obtained by using the 
addition law of probability for mutually exclusive events. For example, 
P(1) = P(HT) + P(TH). 

 The multiplication and addition laws of probability for independent events 
re fl ects the properties of frequencies. If two events A and B are independent, 
then P(A and B) = P(A)*P(B). If two events A and B are mutually exclusive, 
then P(A and B) = P(A) + P(B). 
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   JOINT PROBABILITY R Program 

 The JOINT R program speci fi es the probability of tossing a head P(H), and the 
number of repetitions of the two coin  fl ips. The program will simulate tossing 
the coin, compute the frequencies and the probabilities. The frequencies approxi-
mate the probabilities. This supports the conclusion that the theoretical laws used to 
compute the probabilities give results similar to the frequency of data obtained in 
practice. Each time the program is run, the frequencies will be different because 
random  fl ips of the coin are simulated. 

 The program simulates tossing two (or more) coins  N  number of times. The pro-
gram begins by initializing the probability of obtaining a head, the number of coins 
to be tossed, and the number of times to toss each coin. A vector of heads (1) or 
tails (0) values is created, and then grouped into a  matrix  with the number of col-
umns equal to the number of coins (column 1 = coin 1, etc.) and the number of rows 
equal to the number of times each coin is tossed. Next, a vector is initialized and 
then  fi lled using a  for  loop with the sum of the number of heads in each round of 
tosses. A complex nested function allows for any number of coins to be tossed. 

 Vectors for the event labels (HH, HT, TH, TT), the event probabilities, and the 
number of heads present in each event are initialized with the appropriate values. 
The outer loop represents the range of possible events given the number of coins. 
The number of possible events is 2^ numCoins , which is read 2 to the power of 
  numCoins . The loop range is set to 0 for 2^ numCoins -1. A temporary holding vari-
able is set to the current value of the outer loop counter,  i,  and then the inner loop 
begins, which represents each coin tossed in a given round taken in reverse order. 

 In order to make each event unique, a binary coding system is used whereby the 
event’s value ( i ) is broken down into binary values for each toss of a coin in the 
group. An event value of zero for two coins would mean tails–tails (or 0-0). An event 
value of one, for two coin tosses, would mean heads–tails (or 1-0). The  fi rst coin 
tossed has a value of either 0 or 1. The second coin tossed a value of either 0 or 2. 
The third coin tossed (if there were a third coin) would have a value of 0 or 4. The 
 nth  toss would have a value of 0 or 2^(n − 1), i.e., 2^ numCoins -1. In this manner, all 
the unique events (from 0 to 2^ numCoins -1) are broken down into whether the  fi rst 
and/or second (and/or third and/or fourth, etc) coins are heads or tails for that event. 
Labels are created with ordered letters representing what the binary coding repre-
sents internally. The label “HH” for an event of head–head is more readily under-
stood than an event code of 3. 

 The number of total heads for each event is recorded. The vector containing the 
heads count is factored for all possible values and then counted by means of a  table  
function to determine the total number of events resulting in 0 heads, 1 head, 2 
heads, and so forth, depending upon the number of coin tosses. The total number of 
events is then used in calculating the probabilities in the  for  loop. 

 The  for  loop calculates the probabilities for each number of heads by the order of 
the event. If the probability of getting a head is 0.60, then the probability of getting 
two tails (or no heads) on the  fi rst toss is (1)(0.40)(0.40) = 0.16. This implies that 
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there is only one way to get two tails (1), times the probability of tails (0.40), times 
the probability of tails (0.40). The probability of getting one head and one tail is 
(2)(0.60)(0.40) = 0.48. There are two different ways (head–tail or tail–head) you 
could get the pair of heads and tails (2), times probability of heads (0.60), times prob-
ability of tails (0.40). The loop variable,  i,  represents the number of heads and 
 numEvents [ i +1] represents the number of events in the event space for that number 
of heads. The probability of a head ( pH ) is taken to the power of the number of heads 
obtained ( i ) and any coins that aren’t heads must be tails ( numCoins  −  i ), so the prob-
ability of a tail (1 −  pH ) is taken to the power of that value. For an event that involves 
 fl ipping a coin two times, the loop will go from 0 to 2 and the  numEvents  vector will 
contain 1, 2, 1 (one event with no heads, two events with one head, and one event 
with two heads). The probability of heads can be set to any value between 0 and 1. 

 A second loop codes all of the rounds of tosses into a binary coding scheme in 
order to count the number in each group. The results are now put into matrices in 
order to print. The  table  and  factor  functions are invaluable in sorting categorical 
data for summarizing and reporting. The  fi rst matrix contains: (1) row labels with 
the possible number of heads that could be obtained (0 to  numCoins ); (2) the fre-
quency of each round of  fl ips that obtained that number of heads divided by the total 
number of rounds (giving the frequency); and (3) the theoretical probability of 
obtaining that many heads. The second matrix contains: (1) row labels with the 
event labels (HH, TH, HT, TT); (2) the frequency of each event obtained during all 
rounds; and (3) the theoretical probability of obtaining each event. The last two 
lines of the program prints out the matrices. The number of coins selected should 
not exceed 5 and sample sizes larger than 5,000 will require more time for the 
 program to run. 

 Given these values: 

 pH <- 0.5 
 numCoins <- 2 
 N <- 100 

    Sample % Population %       

  0 Heads 0.28 0.25  
  1 Heads 0.54 0.50  
  2 Heads 0.18 0.25       

    Sample % Population %       

  TT 0.28 0.25  
  HT 0.33 0.25  
  TH 0.21 0.25  
  HH 0.18 0.25  



21JOINT PROBABILITY Exercises

 Given these values: 

 pH <- 0.5 
 numCoins <- 3 
 N <- 100 

    Sample % Population %       

  0 Heads 0.17 0.125  
  1 Heads 0.42 0.375  
  2 Heads 0.35 0.375  
  3 Heads 0.06 0.125       

    Sample % Population %       

  TTT 0.17 0.125  
  HTT 0.19 0.125  
  THT 0.11 0.125  
  HHT 0.13 0.125  
  TTH 0.12 0.125  
  HTH 0.11 0.125  
  THH 0.11 0.125  
  HHH 0.06 0.125     

   JOINT PROBABILITY Exercises 

     1.    Run JOINT program with pH = 0.50 and  numCoins  = 2 for the following sample 
sizes: 100, 1000, and 5,000. Complete the table.

 RELATIVE FREQUENCY 

 EVENT  N = 100  N = 1,000  N = 5,000  PROBABILITY (P) 

 TT  _________  _________  _________  _______________ 
 HT  _________  _________  _________  _______________ 
 TH  _________  _________  _________  _______________ 
 HH  _________  _________  _________  _______________ 
 HEADS  _________  _________  _________  _______________ 
 0  _________  _________  _________  _______________ 
 1  _________  _________  _________  _______________ 
 2  _________  _________  _________  _______________ 
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   a.    Compare the relative frequency of TT, HT, TH, and HH with the probability 
of these events. Do the relative frequencies provide a reasonable approxima-
tion to the probabilities? 

 Yes______ No ______  

   b.    For which sample size does the relative frequency give the best 
approximation? 

 N = 100 _______ N = 1,000 _______ N = 5,000 __________  

   c.    Under HEADS, a value of 1 gives the joint probability for HT and TH. 

 P(1) = P(HT) + P(TH) by the addition law. Compute P(1) for each sample size. 
 N = 100 _________ N = 1,000 ________ N = 5,000 _________  

   d.    Show that the same is true for the frequency. 

 F(1) = F(HT) + F(TH) by the addition law. Compute F(1) for each sample size. 

 Note: F = P*N 

 N = 100 ________ N = 1,000 _________ N = 5,000 _________       

    2.    From the previous table for N = 100, compute the ERROR by subtracting the 
probability from the proportion. 

 Note: ERROR = SAMPLE % − POPULATION %. Keep the +/− sign for each error.

   a.    Is the ERROR under HEADS for a value of 1 related to the errors for HT 
and TH? 

 YES ______ NO _____  

   b.    What is the sum of the ERRORS for the four events? ______________          

 EVENT  SAMPLE %  POPULATION %  ERROR 

 TT  _________  _______________  _________ 
 HT  _________  _______________  _________ 
 TH  _________  _______________  _________ 
 HH  _________  _______________  _________ 
 HEADS  _________  _______________  _________ 
 0  _________  _______________  _________ 
 1  _________  _______________  _________ 
 2  _________  _______________  _________ 
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   Addition Law of Probability 

 We will use the computer to simulate the rolling of two dice to compare the relative 
frequencies of the sums of the numbers on the two dice with corresponding theoreti-
cal probabilities. This will show how the theoretical probabilities for the sums are 
computed. 

 We will use the addition law of probability to  fi nd the probability of an even sum 
and the law of complements to  fi nd the probability of an odd sum. 

  Probability  can help determine the odds of events occurring in practice. For 
example, a deck of cards contains 52 cards. A deck of cards has four suits (Hearts, 
Diamonds, Spades, and Clubs). Therefore each suit has 13 cards (4 × 13 = 52). The 
probability of selecting any Heart from a deck of cards would be 13/52 = 0.25. This 
would be the same probability for selecting any Diamond, Spade, or Club, assuming 
selection with replacement of the card each time. Similarly, there are four Kings 
(one in each suit). The probability of selecting a King out of a deck of cards would 
be 4/52 = 0.076923. 

 The sample space for the sum of the numbers on the two dice can be conceptual-
ized as follows:  

 FIRST DIE 

 SECOND DIE 

 +  1  2  3  4  5  6 

 1  2  3  4  5  6  7 
 2  3  4  5  6  7  8 
 3  4  5  6  7  8  9 
 4  5  6  7  8  9  10 
 5  6  7  8  9  10  11 
 6  7  8  9  10  11  12 

 If the dice are unbiased, all of the 36 outcomes are equally likely. The probability 
of any sum, S, can be calculated theoretically by the formula: P(S) = (Number of 
ways S can occur)/36. For example, P(7) = 6/36 = 1/6 (a number 7 occurs in the 
diagonal six times). 

 The theory of probability relates to possible outcomes of events occurring in a 
sample space. The relative frequencies for the different sums are not readily appar-
ent. Our earlier approach assumed that all events were equally likely. In the dice 
example, we discover that the sums have 36 outcomes, which are equally likely 
outcomes, but certain sums occur more frequently (e.g., sum = 6). The theory of 
probability helps us to understand the frequency of outcomes and apply this in 
practice. 

 The theoretical probabilities for the sums of the numbers on two dice agree well 
with what happens in practice. The theoretical probabilities for the sums can be 
found by listing all of the outcomes in a two-way table and using the “equally 
likely” de fi nition of probability; for the sum S, P(S) = (Number of ways S can 
occur)/36. The relative frequencies of the sums get very close to the theoretical 
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probabilities given large sample sizes. The probability of an odd sum can be found 
from the probability of an even sum by using the  law of complements : 
P(ODD) = 1 − P(EVEN). 

   ADDITION R Program 

 The ADDITION R program simulates the tossing of two dice. It records the number 
of times that each of the possible sums of the two dice occurs, and then changes 
these counts into relative frequencies. The relative frequencies of each sum for each 
sample size, along with the theoretical probability, are printed. Since the computa-
tion of the theoretical probabilities depends on the “equally likely” de fi nition of 
probability, the exercises illustrate how the de fi nition of probability is reasonable 
and does re fl ect practice. The different events are examined simultaneously, but are 
independent. 

 The program starts with a vector of sample sizes and then creates a vector of 
probabilities that correspond to the chances of obtaining a 2 through 12 from rolling 
two dice. The  DiceFreq  object is set to  NULL  so that it may be used to build a 
matrix within the main processing loop. The loop iterates through the values in 
 SampleSizes  and obtains a random sample of values from 1 to 6 of size  SampleSize  
for  Die1  and then repeats the process for  Die2 . The two vectors of simulated rolls 
are summed together to obtain a vector for the total of both dice. [Note: the same 
vector could have been obtained by removing the  Die1  and  Die2  variables and just 
typing  DiceSum  <-  sample (2:12, size = SampleSize , replace =T), but that hides the 
fact that we have two independent events and destroys the chance to analyze speci fi c 
dice combinations.] The relative frequency of each outcome (2 through 12) is 
appended to the  DiceFreq  matrix for each different sample size as the loop contin-
ues through the values of the  SampleSizes  vector. Finally, the  outputMatrix  is built 
from the  DiceFreq  matrix,  cbind  is used in the  Probs  vector to yield a matrix with 
relative frequencies for each value outcome of the dice, for each sample size, along 
with the theoretical probabilities of obtaining each value outcome. The  print  func-
tion is used to output the information. Run the ADDITION program using various 
sample sizes to see how closely you can approximate the theoretical probabilities.  

   ADDITION Program Output 

    N= 100 N= 500 N= 1000 N= 5000 Prob.  
   2 0.04 0.034 0.036 0.0290 0.0278  
   3 0.06 0.064 0.068 0.0580 0.0556  
   4 0.08 0.072 0.078 0.0798 0.0833  
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   5 0.13 0.112 0.092 0.1082 0.1111  
   6 0.08 0.142 0.130 0.1462 0.1389  
   7 0.12 0.188 0.172 0.1622 0.1667  
   8 0.13 0.116 0.145 0.1450 0.1389  
   9 0.14 0.114 0.127 0.1162 0.1111  
  10 0.15 0.088 0.085 0.0790 0.0833  
  11 0.04 0.042 0.049 0.0538 0.0556  
  12 0.03 0.028 0.018 0.0226 0.0278     

   ADDITION Law Exercises 

     1.    Run ADDITION for the sample sizes indicated below. Complete the table.

   a.    Check that the probabilities listed correspond to values in the sequence 1/36, 
2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, and 1/36 (sum = 1 within 
rounding).  

   b.    Which sample size provides the best estimate of the probabilities? 
____________       

    2.    The addition law for mutually exclusive events states that the sum of relative 
frequencies for  even  numbers should be about 50% and the sum of relative fre-
quencies for  odd  numbers should be about 50%.

   a.    For N = 7,200 above, add the relative frequency for all even sums (2, 4, 6, 8, 
10, 12) and the relative frequency for all odd sums (1, 3, 5, 7, 9, 11). Enter the 
two relative frequencies in the table below.  

 RELATIVE FREQUENCY 

 SUM  N = 360  N = 1,200  N = 7,200  PROBABILITY 

 2  _________  _________  _________  ____________ 
 3  _________  _________  _________  ____________ 
 4  _________  _________  _________  ____________ 
 5  _________  _________  _________  ____________ 
 6  _________  _________  _________  ____________ 
 7  _________  _________  _________  ____________ 
 8  _________  _________  _________  ____________ 
 9  _________  _________  _________  ____________ 
 10  _________  _________  _________  ____________ 
 11  _________  _________  _________  ____________ 
 12  _________  _________  _________  ____________ 
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  SUM    FREQUENCY    PROBABILITY  
 EVEN  0.50 
 ODD  0.50 

   b.    Why do you expect these frequencies to be around 50%? 
 _____________________________________________________________
______________________________________________________________      

    3.    Using the sum of frequencies for all  even  numbers and all  odd  numbers, answer 
the following questions.

   a.    How can the probability of all  odd  numbers be obtained from the probability 
of all  even  numbers? 

 _____________________________________________________________
______________________________________________________________  

   b.    What is the name of this probability law? 

 ______________________________________________________________         

   Multiplication Law of Probability 

 One of the basic properties of  probability  is the multiplication law for independent 
events. For example, if two dice are tossed and the events A, B, and C occur as 
follows:

   A: An odd number on the  fi rst die  
  B: An odd number on the second die  
  C: An odd number on both dice   

then the  multiplication law  for independent events states that: P(Event C) = P(Event 
A) × P(Event B). 

 This multiplication law of probability re fl ects the properties of relative frequency 
in practice. If two dice are tossed a large number of times, the relative frequencies 
of events A, B, and C should approximate the probabilities of these events. Also, the 
product of the relative frequency of A times the relative frequency of B should 
approximate the relative frequency of C. This can be stated as: RelativeFrequency 
(Event C)  »  RelativeFrequency(Event A) × RelativeFrequency(Event B). The multi-
plication law for independent events states that if two events A and B are independent, 
then P(A and B) = P(A) × P(B). The multiplication law for independent events is 
modeled on the behavior of relative frequency. For relative frequency, 
RelativeFrequency(A and B) is approximately RelativeFrequency(A) × Relative
Frequency(B). As sample size increases, RelativeFrequency(A and B) tends to be 
closer to RelativeFrequency(A) × RelativeFrequency(B). 
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   MULTIPLICATON R Program 

 The MULTIPLICATION R program simulates the tossing of two dice and records 
the frequency of an odd number on the  fi rst die, an odd number on the second die, 
and an odd number on both of the dice. The frequencies are then changed to relative 
frequencies, and the results are rounded to three decimal places. The program inputs 
the number of times the two dice are tossed. The program illustrates a comparison 
between relative frequency and the multiplication law for the probability of inde-
pendent events. Since sample size can be changed, the effect of sample size on the 
relative frequency as it relates to the multiplication law can be observed. 

 The program is a modi fi cation of the ADDITION R program. The program 
re fl ects how the probability of both dice ending up odd relates to the probability of 
either of the dice being odd. It begins with a vector of sample sizes, creates a  NULL  
object to become a matrix, builds a processing loop to iterate through the values of 
 SampleSizes , and simulates the rolling of two dice. The next two lines calculate the 
relative frequency of odds in the  fi rst die and the relative frequency of odds in the 
second die. It does this using a modulo operator ( %% ). The modulo operator per-
forms an integer division and returns only the remainder portion. This means that 
13 %% 5 would equal 3, because 13 divided by 5 equals 2 with remainder 3. 
Performing a modulo operation with a 2 on each die result would give values of 0 
for even numbers and 1 for odd numbers. The odd numbers are counted up using the 
 sum  function and then divided by the sample size to get the relative frequency of 
odds in the sample. Next, the modulo 2 result for both dice are added together, so if 
both were odd then the result would be 2, otherwise it would be 0 or 1. The integer 
number is divided by 2 ( %/% ), which only returns a whole number. This would 
result in 0 for values of 0 or 1, because 2 doesn’t go into either of those numbers 
evenly, but would be 1 for a value of 2. In this way, the rolls in which both dice come 
up odd are added together and divided by the sample size to give the relative fre-
quency of both being odd in the sample. These three values are  rbind ed into  output-
Matrix  along with the difference of the relative frequency of both being odd and the 
product of the relative frequencies of each being odd. After the loop is completed, 
dimension names are assigned to the rows and columns of the matrix and it is printed 
using the  print(matrix)  function. Different sample sizes can be input to see the 
effect sample size has on the relative frequencies and to observe what sample sizes 
are required to reduce the error to a minimum.  

   MULTIPLICATION Program Output 

 Given the following sample sizes: SampleSizes <- c(100,500,1000) 

    1st Odd 2nd Odd Both Odd F1*F2 Error  
  N= 100 0.480  0.460 0.210 0.221 -0.011  
  N= 500 0.504 0.516 0.260 0.260 0.000  
  N= 1000 0.513 0.510 0.259 0.262 -0.003  
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 Given the following sample sizes: SampleSizes <- c(1000,2000,3000) 

     1st Odd 2nd Odd Both Odd F1*F2 Error  
  N= 1000 0.491 0.502 0.251 0.246 0.005  
  N= 2000 0.486 0.493 0.230 0.240 -0.009  
  N= 3000 0.486 0.495 0.241 0.241 0.000     

   Multiplication Law Exercises 

     1.    Run MULTIPLICATION for samples sizes 100, 500, and 1,000. 
 Record the results below.

   a.    What is the theoretical probability that the  fi rst die will be 
odd?________________  

   b.    What is the theoretical probability that the second die will be 
odd?______________  

   c.    What is the theoretical probability that both dice are odd?_________________  

   d.    What law of probability are you using to  fi nd the probability that both are 
odd? __________________________________________________________  

   e.    What effect does sample size have on the sample approximations? ________
_______________________________________________________________ 

 ______________________________________________________________  

   f.    Compute the error in this approximation by: ERROR = BOTH 
ODD − (F1 × F2) 

 Do all of the differences have the same sign? 
 YES ________ NO __________  

   g.    Does sample size have an effect on the amount of error? 

 YES ________ NO___________       

    2.    Run MULTIPLICATION for samples sizes 1,000, 2,000, and 3,000. 
 Record the results below.

     RELATIVE FREQUENCY  

 SAMPLE SIZE  FIRST ODD  SECOND ODD  BOTH ODD  RF1*RF2  ERROR 

 N = 100 

 N = 500 

 N = 1,000 
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   a.    For N = 3,000, what is the relative frequency that the  fi rst die will be odd? 
____________  

   b.    For N = 3,000, what is the relative frequency that the second die will be odd? 
__________  

   c.    For N = 3,000, verify that F1*F2 is correct. 
 ____________________________________  

   d.    Why is the relative frequency of BOTH ODD different from your answer in 
2c? _____________________________________________________________  

   e.    Do all of the error terms have the same sign? 

 YES ________ NO __________  

   f.    Does sample size have an effect on the amount of error? 

 YES ________ NO___________          

   Conditional Probability 

 A child has a toy train that requires six “C” batteries to run. The child has acciden-
tally mixed four good batteries with two bad batteries. If we were to randomly select 
two of the six batteries without replacement, the odds of getting a bad battery are 
conditionally determined. Let’s assume that the  fi rst battery chosen is bad (Event A) 
and the second battery chosen is good (Event B). The two selections of the two bat-
teries are dependent events. The probability of event B has two different values 
depending upon whether or not event A occurs. If event A occurs, then there are 
four good batteries among the remaining  fi ve batteries, and the probability of event 
B is 4/5. If a battery is chosen and event A does not occur, then there are only three 
good batteries remaining among the  fi ve batteries, and the probability of B is 3/5. 

 In probability terms this can be represented by: P(B|A) = 4/5 and P(B|not-A) = 3/5. 
These terms are read, “the probability of B given A” and “the probability of B given 
not-A”, respectively. Probabilities of this type are called  conditional probabilities  
because the probability of B is conditional upon the occurrence or nonoccurrence of 
A. Conditional probabilities are related to joint probabilities and marginal probabil-
ities. This relationship can be illustrated by the following example. Consider a sam-
ple space that contains all pairs of batteries selected from the six batteries without 
replacement. The X’s in the table below indicate the 30 possible outcomes.  

     RELATIVE FREQUENCY  

 SAMPLE SIZE  FIRST ODD  SECOND ODD  BOTH ODD  RF1*RF2  ERROR 
 N = 1,000 
 N = 2,000 
 N = 3,000 
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 SECOND BATTERY 

 FIRST BATTERY 

 DEAD1  DEAD2  GOOD1  GOOD2  GOOD3  GOOD4 

 DEAD1   X    X    X    X    X  
 DEAD2   X    X    X    X    X  
 GOOD1   X    X    X    X    X  
 GOOD2   X    X    X    X    X  
 GOOD3   X    X    X    X    X  
 GOOD4   X    X    X    X    X  

 Since these 30 outcomes are equally likely, the  joint probabilities , P(A and B), 
can be summarized in the following table.  

 JOINT PROBABILITIES SECOND BATTERY 

 DEAD  GOOD  MARGINAL
PROBABILITY 

 FIRST BATTERY  DEAD  2/30  8/30  10/30 

 GOOD  8/30  12/30  20/30 

 MARGINAL 
PROBABILITY 

 10/30  20/30  30/30 
 (Total) 

 The row totals are the  marginal probabilities  for the  fi rst battery:

   P(First is dead) = 10/30  
  P(First is good) = 20/30.    

 The column totals are the  marginal probabilities  for the second battery:

   P(Second is dead) = 10/30  
  P(Second is good) = 20/30.    

 Conditional probabilities are related to these joint probabilities and marginal 
probabilities by the following formula:

   P(B|A) = P(B and A)/P(A).    

 If event A results in a bad battery and event B results in a good battery, then

      P(B|A) = P(Second is good | First is dead)
   = P(Second is good and First is dead) / P(First is dead)  
  = (4/15)/(5/15)  
  = 4/5.       

 These conditional probabilities are theoretical probabilities assigned to the events 
by making use of the de fi nition of probability for  equally likely events  (it is assumed 
that each of the batteries and each of the pairs are equally likely to be chosen). If 
these conditional probabilities are reasonable, they should re fl ect what happens in 
practice. Consequently, given a large number of replications in which two batteries 
are selected from a group of six batteries (in which two of the batteries are dead), 
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the relative frequencies for the conditional events should approximate the  theoretical 
conditional probabilities. 

 The conditional probability of B given A is the joint probability of A and B 
divided by the marginal probability of A, if P(A)  ¹  0. The conditional probability 
agrees with the behavior of relative frequency for conditional events. For large sam-
ple sizes, the relative frequency of a conditional event is a good approximation of 
the conditional probability. 

   CONDITIONAL R Program 

 The CONDITIONAL R program simulates random selection without replacement 
of two batteries from a group of six in which two of the batteries are dead. The 
number of replications can be speci fi ed in the program. The relative frequencies 
from a small number of replications will not provide good approximations of the 
probabilities. A large number of replications should provide relative frequencies 
that will be very close to the theoretical probabilities. The program will permit you 
to observe that the theoretical rules of probability for conditional events do in fact 
re fl ect practice. The theoretical probabilities are important in statistics because they 
provide reasonable rules to adopt for analyzing what happens in the real world. 

 The CONDITIONAL R program determines the probability of conditional events 
by selecting two batteries from a group of batteries with a certain number of good 
batteries and a certain number of bad batteries. The total number of batteries is 
assigned, followed by the number of bad batteries and the number of times the two 
selections should be replicated. The number of good batteries is determined by sub-
traction of the number of bad batteries from the total number of batteries. The prob-
abilities of the possible event outcomes are then determined and assigned to the 
variables:  pGG ,  pBB ,  pGB , and  pBG . 

 The total number of batteries is de fi ned so that sampling can occur from a  fi nite 
population. The  rep  function creates  numGood  (number of 0s) and the  c  function 
concatenates those with  numBad  (number of 1s) to complete the population of bat-
teries. The receiving objects  FirstBattery  and  SecondBattery  are set to  NULL  before 
the main processing loop begins. The loop takes a sample of two batteries WITHOUT 
replacement, since these are conditional events. The two batteries are then added to 
their respective vectors. They are also added to an  eventList  vector using the same 
type of binary encoding scheme presented in earlier chapters. The encoding is much 
simpler since the number of picks is  fi xed at two. 

 After the processing loop is  fi nished, output matrices are created. The  eventTable  vec-
tor is built from the  eventList  vector factored for all the possible coded event values from 
0 to 3. Two vectors of values are then created and put into the matrices for even column 
spacing in the output. The  fi rst vector is moved into a 4 by 4 matrix for display with no 
 dimnames  set, since the column and row headers were included within the vector. The 
same thing is done with the second vector, only it is printed out using  print(matrix) 
command , since it doesn’t have multiple column or row headers. The program permits 
different numbers of total and bad batteries, as well as different sample sizes.  
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   CONDITIONAL R Program Output 

 Given the following values: 

 numBatteries <- 6 
 numBad <- 2 
 SampleSize <- 1000 
     Second Battery  
     Bad Good  

  First Bad 0.061 0.242  
  Battery Good 0.277 0.42       

  No. Bad Rel Freq Probability  
  0 0.42 0.4  
  1 0.519 0.534  
  2 0.061 0.067  

 Given the following values: 

 numBatteries <- 6 
 numBad <- 2 
 SampleSize <- 5000 

    Second Battery  
    Bad Good  

  First Bad 0.071 0.272  
  Battery Good 0.271 0.386       

  No. Bad Rel Freq Probability  
  0 0.386 0.4  
  1 0.543 0.534  
  2 0.071 0.067     

   CONDITIONAL Probability Exercises 

     1.    Run CONDITIONAL for N = 1,000 with 6 total batteries and 2 bad batteries.

   a.    Enter the probabilities of the joint events and the marginal probabilities in the 
table.  

 Second battery  Marginal Probability 
 Bad  Good 

 First Battery  Bad 
 Good 

 Marginal Probability  (Total) 
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   b.    Do the marginal probabilities indicate that approximately 1/3 (0.33) of the 
batteries are bad and 2/3 (0.67) of the batteries are good? 

 YES _________ NO __________  

   c.    Do the marginal probabilities sum to 1.0? 

 YES _________ NO __________      

    2.    From the CONDITIONAL program with N = 1,000, enter the relative frequen-
cies of 0, 1, and 2 bad batteries.

   a.    Compute the error and record it in the table. 

 ERROR = REL FREQ − PROBABILITY  

    No. BAD  REL FREQ  PROBABILITY  ERROR 

 0 
 1 
 2 

   b.    Some of the errors should be positive and others negative. 

 Do the errors sum to zero (0)? YES ________ NO ________  

   c.    Do the relative frequencies sum to 1.0? YES ________ NO ________  
   d.    Do the probabilities sum to 1.0? YES ________ NO ________      

    3.    Run CONDITIONAL for N = 5,000 with 6 total batteries and 2 bad batteries.

   a.    Enter the probabilities of the joint events and the marginal probabilities in the 
table.  

    Second Battery  Marginal probability 
 Bad  Good 

 First Battery  Bad 
 Good 

 Marginal probability  (Total) 

   b.    Do the marginal probabilities indicate that approximately 1/3 (0.33) of the 
batteries are bad and 2/3 (0.67) of the batteries are good? 

 YES _________ NO __________  

   c.    Do the marginal probabilities sum to 1.0? 

 YES _________ NO __________      

    4.    From the CONDITIONAL program with N = 5,000, enter the relative frequen-
cies of 0, 1, and 2 bad batteries.

   a.    Compute the error and record it in the table. 

 ERROR = REL FREQ − PROBABILITY  
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    No. BAD  REL FREQ  PROBABILITY  ERROR 

 0 

 1 

 2 

   b.    Some of the errors should be positive and others negative. 

 Do the errors sum to zero (0)? YES ________ NO ________  

   c.    Do the relative frequencies sum to 1.0? YES ________ NO ________  

   d.    Do the probabilities sum to 1.0? YES ________ NO ________         

   Combinations and Permutations 

 Probability theory helps us to determine characteristics of a population from a ran-
dom sample. A  random sample  is chosen so that every object, event, or individual 
in the population has an equal chance of being selected. The probability that the 
object, event, or individual will be selected is based upon the relative frequency of 
occurrence of the object, event, or individual in the population. For example, if a 
population consisted of 1,000 individuals with 700 men and 300 women, then the 
probability of selecting a male is 700/1,000 or 0.70. The probability of selecting a 
woman is 300/1,000 or 0.30. The important idea is that the selection of the indi-
vidual is a chance event. 

 Probability theory operates under seven fundamental rules. These seven rules 
can be succinctly stated as:

    1.    The probability of a single event occurring in a set of equally likely events is one 
divided by the number of events, i.e., P (single event) = 1/N. For example, a sin-
gle marble from a set of 100 marbles has a 1/100 chance of being selected.  

    2.    If there is more than one event in a group, then the probability of selecting an 
event from the group is equal to the group frequency divided by the number of 
events, i.e., P(Group|single event) = group frequency/N. For example, a set of 
100 marbles contains 20 red, 50 green, 20 yellow, and 10 black. The probability 
of picking a black marble is 10/100 or 1/10.  

    3.    The probability of an event ranges between 0 and 1, i.e., there are no negative 
probabilities and no probabilities greater than one. Probability ranges between 0 
and 1 in equally likely chance events, i.e., 0  £  P (event)  £  1.  

    4.    The sum of the probabilities in a population equal one, i.e., the sum of all fre-
quencies of occurrence equals 1.0, i.e.,  S (Probabilities) = 1.  

    5.    The probability of an event occurring plus the probability of an event  not  occur-
ring is equal to one. If the probability of selecting a black marble is 1/10, then the 
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probability of  not  selecting a black marble is 9/10, i.e., P + Q = 1 where P = prob-
ability of occurrence and Q = 1 − P.  

    6.    The probability that any one event from a set of mutually exclusive events will 
occur is the sum of the probabilities (addition rule of probability). The probabil-
ity of selecting a black marble (10/100)  or  a yellow marble (20/100) is the sum 
of their individual probabilities (30/100 or 3/10), i.e., P(B or Y) = P(B) + P(Y).  

    7.    The probability that a combination of independent events will occur is the 
product of their separate probabilities (multiplication rule of probability). 
Assuming sampling with replacement, the probability that a yellow marble will 
be selected the  fi rst time (2/10) and the probability that a yellow marble will be 
selected the second time (2/10) combine by multiplication to produce the prob-
ability of getting a yellow marble on both selections (2/10 × 2/10 = 4/100 or 
0.04), i.e., P(Y and Y) = P(Y)*P(Y).     

 Factorial notation is useful for designating probability when samples are taken 
 without  replacement. For example, a corporate executive of fi cer (CEO) must rank 
the top  fi ve department managers according to their sales productivity. After rank-
ing the  fi rst manager, only four managers are remaining to choose from. After rank-
ing the second manager, only three managers remain, and so forth, until only one 
manager remains. If the CEO selects managers at random, then the probability of 
any particular manager order is: 1/5*1/4*1/3*1/2*1/1, or 1/120. 

 The probability is based upon the total number of possible ways the  fi ve manag-
ers could be ranked by the CEO. This is based upon the number of managers in the 
company available to select from, which changes each time. Consequently, the 
product yields the total number of choices available: 5*4*3*2*1 = 120. This product 
is referred to as  factoring  and uses  factorial notation  to re fl ect the product multi-
plication, i.e., n!. The factorial notation, 3! (read 3-factorial), would imply, 3*2*1, 
or 6, which indicates the number of different ways three things could be ordered. 
Imagine a restaurant that serves hamburgers with the following toppings: pickle, 
onion, and tomato. How many different ways could you order these ingredients on 
top of your hamburger? 

  Permutations  involve selecting objects, events, or individuals from a group and 
then determining the number of different ways they can be ordered. The number of 
permutations (different ways you can order something) is designated as  n  objects 
taken  x  at a time, or:

     

n!
P(n,x)

(n x)!
=

−      

 For example, if a teacher needed to select three students from a group of  fi ve and 
order them according to mathematics ability, the number of  permutations  (or differ-
ent ways three out of  fi ve students could be selected and ranked) would be:
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n! 5! 5* 4*3* 2*1
P(n,x) 60

(n x)! (5 3)! 2*1
= = = =

− −      

 Probability can also be based upon the number of  combinations  possible when 
choosing a certain number of objects, events, or individuals from a group. The order-
ing of observations (permutations) is not important when determining the number of 
combinations. For example, a teacher must only choose the three best students with 
mathematics ability from a group of  fi ve (no ordering occurs). The number of pos-
sible combinations of three students out of a group of  fi ve is designated as:

     

n! 5!
P(n,x) or 10

x!(n x)! 3!(5 3)!
= =

− −      

 The number of possible combinations can be illustrated by determining the num-
ber of students in a classroom that have their birthday on the same day. This classic 
example can be used in a class to determine the probability that two students have 
the same birthday. The probability of two students having a common birthday, given 
 fi ve students in a class, can be estimated as follows (assuming 365 days per year and 
equally likely chance):

     

365 364 363 362 361
P(2 5) 1 * * * * 0.027

365 365 365 365 365
= − =

     

 The numerator decreases by one because as each student’s birthday is selected, 
there is one less day available. 

 The probability of at least two students out of  fi ve  not  having the same birthday 
is 1 − P (see probability rule 5). The probability of  no  students having a birthday in 
common for a class of  fi ve students is computed as:

     

365 364 363 362 361
P(No2 5) * * * * 0.973

365 365 365 365 365
= =

     

 Therefore, the probability of at least two students having the same birthday is the 
complement of  no  students having the same birthday, or P (2|5) = 1 − 0.973 = 0.027. 
The formula clearly indicates that this probability would increase quickly as the 
number of objects, events, or individuals in the group increases. 

 The seven rules of probability apply to everyday occurrences. The number of 
possible outcomes of independent events is designated as a factorial (n!). 
Permutations refer to the number of possible ways to order things when selected 
from a group ( n  objects,  x  order). 

 Combinations refer to the number of possible sub-groups of a given size from a 
larger group ( n  objects,  x  size). The birthday problem is a classic example of how to 
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determine whether two individuals in a group of size N have the same birthdays. The 
relative frequencies produced by a simulation of the birthday problem are good approx-
imations of the actual probabilities. The  accuracy  of the relative frequencies as 
 approximations of the actual probabilities in the birthday problem is not affected by the 
size of the group of people, rather by increasing the number of repetitions in the 
program. 

 Combination and Permutation R Program 
 The Combination and Permutation R program simulates an example for N indi-

viduals by using a random number generator and checking for a common birthday. 
The relative frequency of at least one common birthday is reported. This relative 
frequency approximates the probability of occurrence in a group of N individuals. 
The size of the group and the number of replications can be changed. 

 The program simulates selecting groups of people of various sizes over a given 
number of replications in order to compute estimates of probabilities. The sizes of 
the groups of people are assigned to the vector  numPeople . The  replicationSize  vari-
able represents the number of times that the selection of random birthdays will 
occur for each group size. In the initial program settings, the probability of  fi ve 
birthdays in common is chosen, and duplication or non-duplication reported for 250 
replications. The  numPeople  vector then indicates that 10 birthdays will be chosen 
at a time for the 250 replications. This is repeated for 20 and 50 birthdays. The 
sampling and replications can be time-consuming for a computer, so it would be 
wise  not  to select 10,000 replications for a  numPeople  vector of from 1 to 100, 
unless you are willing to wait. 

 The  repeatVector  object is simply a vector containing the number of times there 
was a common birthday for a given group size. The outer processing loop iterates 
through the values of group sizes and the inner processing loop de fi nes each 
 replication for the given group size. Within this inner loop, a random sample is 
taken from the range of values from 1 to 365 with replacement and a sample size of 
 numPeople [ i ]. The vector created is run through the  table  function to group the 
sample points that fell on the same day, and if the  max  of that table is greater than 
1, then it means there was at least one birthday in common. If this occurs, then the 
corresponding value in the vector for the number of replications containing repeated 
values is increased by one. Because this takes place within the inner-processing 
loop, it continues for all replications of all group sizes. 

 Once the simulation in the loops is concluded, the counts within the  repeatVector  
are changed into relative frequencies by dividing the  repeatVector  by the replication 
size. This creates a new vector of values that contains the relative frequencies of 
replications with birthday duplications. Theoretical probabilities are computed 
using a small processing loop that iterates through the group sizes and creates a vec-
tor of probabilities of duplication for each group size. The single line of code within 
the loop represents the mathematical notation, 1 − (365/365)*(364/365)*(363/365)
…((366 − group size)/365). 
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 A  list  object is created to hold the dimension labels for the output matrix. The 
output matrix is built by concatenating the relative frequency vector, the theoretical 
probability vector, and the difference between the relative frequency vector and the 
theoretical probability vector, giving an error vector. The  dimnames  keyword is 
given the value of the  list  object that was created making the line easier to read. 
The matrix is output using  print(matrix)command.  Values are reported within 
three  decimal places using the  nsmall  keyword of the  format  function. 

 Combination and Permutation Program Output 

 Given these values: 

 numPeople <- c(5,10,20,50) 
 replicationSize <- 250 

    Rel. Freq. Common Birthday Error  
  N= 5 0.032 0.027 0.005  
  N= 10 0.104 0.117 -0.013  
  N= 20 0.428 0.411 0.017  
  N= 50 0.988 0.970 0.018  

 Given these values: 

 numPeople <- c(5,10,20,50) 
 replicationSize <- 500 

    Rel. Freq. Common Birthday Error  
  N= 5 0.040 0.027 0.013  
  N= 10 0.118 0.117 0.001  
  N= 20 0.418 0.411 0.007  
  N= 50 0.970 0.970 0.000    

   Combination and Permutation Exercises 

     1.    Run BIRTHDAY for the following sample sizes and complete the table.

 GROUP SIZE  REL. FREQ. 
 COMMON 
BIRTHDAY  ERROR 

 N = 5  _____________  ____________  _______ 
 N = 10  _____________  ____________  _______ 
 N = 15  _____________  ____________  _______ 
 N = 20  _____________  ____________  _______ 
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   a.    As the size of the group increases, does the probability of a common birthday 

increase? 

 YES __________ NO __________  

   b.    As the size of the group increases, do the relative frequencies more closely 
approximate the common birthday probabilities? Hint: Does error decrease? 

 YES __________ NO __________       

    2.    Run BIRTHDAY again for the same sample sizes. Complete the table.

   a.    Are the common birthday probabilities the same? 

 YES __________ NO __________  

   b.    Are the relative frequencies close to the common birthday probabilities? 

 YES __________ NO __________       

    3.    Run BIRTHDAY again using sample sizes listed below with 500 replications. 
Complete the table.

   a.    As the size of the group increases, does the probability of a common birthday 
increase? 

 YES __________ NO __________  

   b.    As the size of the group increases, do the relative frequencies more closely 
approximate the common birthday probabilities? Hint: Does error decrease? 

 YES __________ NO __________           

 GROUP SIZE  REL. FREQ. 
 COMMON 
BIRTHDAY  ERROR 

 N = 5  _____________  ____________  _______ 
 N = 10  _____________  ____________  _______ 
 N = 15  _____________  ____________  _______ 
 N = 20  _____________  ____________  _______ 

 GROUP SIZE  REL. FREQ. 
 COMMON 
BIRTHDAY  ERROR 

 N = 10  _____________  ____________  _______ 
 N = 20  _____________  ____________  _______ 
 N = 30  _____________  ____________  _______ 
 N = 40  _____________  ____________  _______ 
 N = 50  _____________  ____________  _______ 
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   True or False Questions 

   Finite and In fi nite Probability    

 T  F  a. As additional trials are conducted, the relative frequency of heads 
is always closer to 0.5 than for any previous smaller sample size. 

 T  F  b. As sample size increases, the relative frequency of an event 
approaches a  fi xed value. 

 T  F  c. The relative frequency of an event with probability of 0.65 
stabilizes faster than an event with probability of 0.10. 

 T  F  d. In understanding probability, it is assumed that the relative 
frequencies approach a  fi xed number as the sample size increases 
because this corresponds to our experience of the real world. 

 T  F  e. The relative frequency of an event in one hundred trials is the 
probability of the event. 

   Joint Probability    

 T  F  a. The addition and multiplication laws of probability are reasonable 
because these properties are true for frequencies. 

 T  F  b. If two events are independent, the addition law is used to  fi nd their 
joint probability. 

 T  F  c. The sum of the probabilities for all of the events in a sample space 
is 1. 

 T  F  d. P(1) = P(HT) + P(TH) because HT and TH are independent events. 
 T  F  e. F(HT)  »  P(H)*P(T) because H and T are independent events. 

   Addition Law of Probability    

 T  F  a. Probabilities would be the same if the dice were biased. 
 T  F  b. Since there are 12 distinct sums and 6 of them are even, the 

probability of an even sum is 6/12. 
 T  F  c. The stabilizing property of relative frequencies is true for a group 

of outcomes as well as for a single outcome. 
 T  F  d. Large numbers of repetitions will provide good estimates of 

probabilities. 
 T  F  e. Each time the program is run for N = 1,200, the relative frequen-

cies will be the same. 
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   Multiplication Law of Probability    

 T  F  a. If two events are independent, then the probability of both events 
occurring is the product of their probabilities. 

 T  F  b. If two events are independent, then the relative frequency of both 
events occurring is the product of their relative frequencies. 

 T  F  c. In general, relative frequencies obtained from small samples give the 
best approximations of probabilities. 

 T  F  d. If two biased dice were tossed, then the events FIRST ODD and 
SECOND ODD are not independent. 

 T  F  e. The events FIRST ODD and BOTH ODD are mutually exclusive 
events. 

   Conditional Probability    

 T  F  a. If two batteries are selected with replacement from a group of six 
batteries, in which two of the batteries are bad, the FIRST BAD and 
the SECOND GOOD are dependent events. 

 T  F  b. P(A and B) = P(A) × P(B|A) 
 T  F  c. If the probability of event A is not affected by whether or not event 

B occurs, then A and B are independent events. 
 T  F  d. P(A), the marginal probability for event A, is equal to the sum of the 

joint probabilities of A and all other events that can occur with A. 
 T  F  e. If two events A and B are independent, then P(B|A) = P(B). 

   Combination and Permutation    

 T  F  a. As the size of the group increases, the probability decreases that two 
people have the same birthday. 

 T  F  b. The probability of  no  common birthday is the complement of the 
probability of having a common birthday. 

 T  F  c. If a group consists of only two people, the probability that they have 
the same birthday is 1/365. 

 T  F  d. In a group of 50 people, there will  always  be at least two people 
with the same birthday. 

 T  F  e. The error in the relative frequency as an approximation of the 
probability is reduced for large groups of people. 
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   Sample Versus Population    

 The  fi eld of statistics uses numerical information obtained from samples to draw 
inferences about populations. A  population  is a well-de fi ned set of individuals, 
events, or objects. A  sample  is a selection of individuals, events, or objects taken 
from a well-de fi ned population. A sample is generally taken from a population with 
each individual, event, or object being independent and having an equally likely 
chance of selection. The sample average is an example of a random sample estimate 
of a population value, i.e., population mean. Population characteristics or   parameters  
are inferred from sample estimates, which are called statistics. Examples of popula-
tion parameters are population proportion, population mean, and population corre-
lation. For example, a student wants to estimate the proportion of teachers in the 
state who are in favor of year-round school. The student might make the estimate on 
the basis of information received from a random sample of 500 teachers in the 
population comprised of all teachers in the state. In another example, a biologist 
wants to estimate the proportion of tree seeds that will germinate. The biologist 
plants 1,000 tree seeds and uses the germination rate to establish the rate for all 
seeds. In marketing research, the proportion of 1,000 randomly sampled consumers 
who buy one product rather than another helps advertising executives determine 
product appeal. 

 Because a sample is only a part of the population, how can the sample estimate 
accurately re fl ect the population characteristic? There is an expectation that the 
sample estimate will be close to the population value if the sample is representa-
tive of the population. The difference between the sample estimate and the popu-
lation value is called  sample error . In a random sample, all objects have an equal 
chance of being selected from the population. If the sample is reasonably large, 
this equally likely chance of any individual, event, or object being selected makes 
it likely that the random sample will represent the population well. Most statistics 
are based upon this concept of random sampling from a well-de fi ned population. 
 Sampling error , or the error in using a sample estimate as a population estimate, 

    Chapter 3   
 Statistical Theory                 
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does occur. In future chapters, you will learn that several random sample  estimates 
can be averaged to better approximate a population value, although sampling 
error is still present. 

 The Gallop Poll, for example, uses a random sample of 1,500 people nationwide 
to estimate the presidential election outcome within +/− 2% error of estimation. 
This chapter will help you understand random sampling and how the sampling error 
of estimation is determined, i.e., difference between the sample statistic and the 
population parameter. The computer will be used to generate random samples of 
data. The difference between a known population value and a random sample value 
can be observed. Different samples may lead to different sample estimates of popu-
lation parameters, so most estimates from samples contain some error of estimation 
or sampling error. Basically, a random sample is part of a population. Random sam-
ples are used to draw inferences about population parameters or characteristics. 
Different random samples lead to different sample estimates. The estimate from a 
sample is usually not equal to the population value. If a large sample is taken, the 
standard error is smaller. 

   STATISTICS R Program 

 The STATISTICS R program simulates the sampling of data from a population. You 
are to determine what proportion of a certain large population of people favor stricter 
penalties. A random number generator will determine the responses of the people in the 
sample. A random number generator uses an initial start number to begin data selection, 
and then uses the computer to generate other numbers at random. You will use the 
results of these simulated random samples to draw conclusions about the population. 

 The number of runs will be speci fi ed by the user. Each time you run the program, 
the true population proportion will be different. Consequently, each time you will be 
simulating a sample data set from a different population. The different random sam-
ples will be chosen during each computer run. The random samples have various 
sample sizes determined by the user (i.e., 5, 20, 135, 535, and 1,280, for 5 samples). 
Using these results, you will be able to observe the effect of sample size on the 
accuracy of estimation. 

 The STATISTICS program uses a pseudo-random number generator to select a 
random number between 0 and 1 for the true proportion. Next, random samples of 
only 0 or 1 are drawn from the  fi nite population (not values between 0 and 1). The 
probability of a 0 is (1—the population proportion) and the probability of a 1 is the 
same as the population proportion. Random samples of various sizes are taken and 
the sample proportion and estimation errors are calculated. 

 The size of the samples varies by the list of sample sizes in the variable  SampleSizes . 
The “ <−”  operator is an assignment operator that places the vector of values 
(10,100,500,1000,1500) into the variable  SampleSizes . The  c  before the parentheses 
means to concatenate these values into a single vector.  NumSamples  is assigned the 
 length  of the  SampleSizes  vector, which is equivalent to the number of individual 
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sample sizes.  PopProp  is the true proportion in the population and is obtained by 
taking one random number from a uniform population that is between the values of 
0 and 1. The  runif  command means to take a value from a  r andom  unif orm popula-
tion and the number values (1,0,1) correspond to the number of values to be obtained 
(1), the bottom of the range of values (0), and the top of the range of values (1). There 
are several other commands within R that allow for sampling from other distribu-
tions, such as normal ( rnorm ), binomial ( rbinom ), and exponential ( rexp ). 

 The most complex parts of the program pertain to creating and using matrices, 
which will be covered in later chapters. The line which begins with  TrialData   < - 
matrix  is setting the size of the matrix and associating labels with the values that 
will be written to it. The  for  statement begins the processing loop. The  for  com-
mand assigns to the variable  SampleSize  successive values listed in the  SampleSizes  
vector. The parentheses are used to mark the beginning and end of the loop encap-
sulated by this  for  command. The  fi rst line within the processing loop creates a 
vector of values for the  fi rst sample and assigns it to the temporary variable 
 SampleData . The  sample  command is a way to sample from a  fi nite population, in 
this case either 0 or 1, but it can also be very useful for taking a subsample of larger 
samples. The 0:1 denotes the range of  integer  values between 0:1, which only 
includes 0 and 1, but the same notation could be used to create a vector of integer 
values from 1 to 10 (1:10). The  prob  keyword sets the probability of getting each 
value, with 0 having a probability of 1 minus the population proportion (1- PopProp ) 
and 1 having a probability of the population proportion. The  size =   SampleSize  
assures that this sample is the same size as the one corresponding to the loop itera-
tion, and  replace = T  means to replace values that have been chosen from the popu-
lation, so this is sampling WITH replacement. If taking a subsample of a larger 
population, you can request sampling WITHOUT replacement ( replace = F ). 

 The next line sums all the zeros and ones from the sample to get the total number 
of people who were in favor, and then divides that value by the sample size to get the 
sample proportion. The next to the last line within the processing loop assigns values 
to one vector within the matrix built earlier in the program for outputting the data. 
The  i   < -   i   +  1 line increments the counter used to keep track of the place within the 
matrix. The last line of the program produces a printout of the matrix. The  values in 
the  SampleSizes  vector can be changed to simulate small or large sample sizes.  

   STATISTICS Program Output 

 Given these values: SampleSizes < - c(10,100,500,1000,1500) 

   Size No.in Favor Sample Prop. True Prop. Est. Error  
  Sample 1 10 6 0.600 0.677 0.077  
  Sample 2 100 59 0.590 0.677 0.087  
  Sample 3 500 331 0.662 0.677 0.015  
  Sample 4 1000 670 0.670 0.677 0.007  
  Sample 5 1500 1037 0.691 0.677 -0.014  
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 Given these values: SampleSizes < - c(20,200,1000,2000,3000) 

   Size No.in Favor Sample Prop. True Prop. Est. Error  
  Sample 1 20 1 0.050 0.098 0.048  
  Sample 2 200 18 0.090 0.098 0.008  
  Sample 3 1000 110 0.110 0.098 -0.012  
  Sample 4 2000 194 0.097 0.098 0.001  
  Sample 5 3000 303 0.101 0.098 -0.003    

   Statistics Exercises 

     1.    Run STATISTICS once to obtain the results of people who are in favor of stricter 
penalties for criminals using the four sample sizes below. Enter the results here.  

 SAMPLE  SAMPLE SIZE  NO. IN FAVOR  SAMPLE PROPORTION 
 A  5  ______________  ____________________ 
 B  20  ______________  ____________________ 
 C  135  ______________  ____________________ 
 D  1280  ______________  ____________________ 

    a.     Verify that the sample proportions are correct by using long division or a cal-
culator. To  fi nd the sample proportion from the number in favor and the  sample 
size, use the formula:    

 SAMPLE PROPORTION = (NO. IN FAVOR) ÷ (SAMPLE SIZE) 
 SAMPLE  COMPUTATION 
 A  ________________________________________ 
 B  ________________________________________ 
 C  ________________________________________ 
 D  ________________________________________ 

    b.     Is the estimate of the population proportion the same for each of the 
samples? 

  Yes__ No __  
    c.    Why do you think the sample proportions change? 

 _________________________________________________________  

    d.    What is the true population proportion? ________.      

    2.    The sample proportion (EST) is an estimate of the true population proportion (P). 
There are errors in the sample estimates.

    a.    Calculate the error for each sample: 

 ERROR = EST - P 
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 Some of the errors may be positive or negative (Record the +/− sign with the 
error).  

 SAMPLE PROPORTION 
 SAMPLE  SAMPLE SIZE  SAMPLE  TRUE  ERROR 
 A  5  ______  ______  __________ 
 B  20  ______  ______  __________ 
 C  135  ______  ______  __________ 
 D  1,280  ______  ______  __________ 

    b.    Which of the four samples gave the best estimate? _____________      

    3.    Run the STATISTICS program 4 more times. Each time, compute the errors in 
the estimates (P will be different for each program run).  

 RUN 1  RUN 2 
 SAMPLE  SIZE  SAMPLE  ERROR  SAMPLE  SIZE  SAMPLE  ERROR 
 A  5  ______  ________  A  5  ______  _______ 
 B  20  ______  ________  B  20  ______  _______ 
 C  135  ______  ________  C  135  ______  _______ 
 D  1,280  ______  ________  D  1,280  ______  _______ 

 TRUE P  ______  TRUE P  ______ 

 RUN 3  RUN 4 
 SAMPLE  SIZE  SAMPLE  ERROR  SAMPLE  SIZE  SAMPLE  ERROR 
 A  5  ______  _________  A  5  ______  ________ 
 B  20  ______  _________  B  20  ______  ________ 
 C  135  ______  _________  C  135  ______  ________ 
 D  1,280  ______  _________  D  1,280  ______  ________ 

 TRUE P  ______  TRUE P  ______ 

    a.     For the four program runs, what was the largest and smallest amount of error 
for each sample size? (Disregard the plus or minus sign.)  

 SAMPLE  SIZE  LARGEST ERROR  SMALLEST ERROR 
 A  5  ________________  __________________ 
 B  20  ________________  __________________ 
 C  135  ________________  __________________ 
 D  1,280  ________________  __________________ 

    b.     Was the sample proportion from a smaller sample ever a better estimate of the 
population proportion than the sample proportion from a larger sample? 
Yes____ No ____.  

    c.    If yes, for which runs (1, 2, 3 or 4) were the errors smaller? 
 RUN(S) WITH SMALLER SAMPLE ERRORS SMALLER ____________  

    d.     Why is it possible for a smaller sample to occasionally give a better estimate 
than a larger sample? ___________________________________________      
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    4.    Use the previous exercises to draw a conclusion about the effect of sample size 
on the estimate of the population proportion. 

 ________________________________________________________________

________________________________________________________________  

    5.    A newspaper survey indicates that 62% of the people in a certain state favor a bill 
to allow retail stores to be open on Sunday. Given the examples you just 
 completed, what additional information would help you interpret this report? 

 ________________________________________________________________

________________________________________________________________      

   Generating Random Numbers 

  Random numbers  are used in statistics to investigate the characteristics of differ-
ent population distributions. We will only be studying the characteristics of the nor-
mal distribution. This is because many of the variables that we measure are normally 
distributed. The statistics we use to test hypotheses about population characteristics 
based on random samples are created based on certain assumptions and characteris-
tics of the normal distribution. Other population distributions exist (wiebull, hyper-
geometric, poisson, and elliptical), but we will not be studying their characteristics 
and associated statistics in the chapter exercises. 

 Early tables of random numbers helped gamblers to understand their odds of win-
ning. In some instances, exact probabilities or odds of certain outcomes were gener-
ated from cards and dice. Today, high-speed computers using computer software 
with a numerical procedure (algorithm) can produce tables of random numbers. The 
 fi rst mainframe computer, a UNIVAC, produced a set of one million random num-
bers, which was published in a book by the Rand McNally Corporation. Personal 
desktop computers today run software that can generate random numbers. 

 Although many computers have software (mathematical algorithms) to generate 
random numbers, the software algorithms are not all the same and do not produce 
the same set of random numbers. Basically, a set of computer-generated numbers is 
not truly random, so they are called “ pseudo random numbers.”  They are called 
“pseudo random numbers” because the numbers tend to repeat themselves after 
awhile (repeatedness), correlate with other numbers generated (correlatedness), and 
don’t produce a normal distribution (normality). Consequently, when using a  ran-
dom number generator , it is important to report the type of computer used, type of 
random number generator software (algorithm), start value (start number), repeat-
edness (when numbers repeat themselves in the algorithm), correlatedness (when 
numbers begin to correlate in a sequence), and normality (whether or not a normal 
distribution was produced). 

 A true random set of numbers has no pattern, and if graphed, would appear 
as scattered data points across the graph. Because true random numbers have no 
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pattern, the next number generated would not be predicted and would appear with 
approximately the same frequency as any other number. The concept is simple, but 
often requires visual con fi rmation (graph) or other statistical test of randomness 
and/or normality. Software programs often include statistical tests for testing the 
randomness and normality of computer-generated random sample data. Because all 
random number generators are not the same, acceptable properties for these random 
numbers should include:

    1.    Approximate, equal proportions of odd and even numbers should occur.  
    2.    Each number between 0 and 9 is generated approximately one-tenth of the 

time.  
    3.    For the  fi ve consecutive sets of generated number combinations, the percentages 

should be approximately equal to the theoretical probabilities.     

 Basically, a sequence of random numbers is not truly random (unique). 
A sequence of random numbers is typically unpredictable, but a long sequence of 
random numbers will tend to repeat, correlate, and not appear normal. Our expecta-
tion is that about half of the generated numbers are odd and half are even. The fre-
quency of occurrence for any random integer between 0 and 9 is approximately 
one-tenth of the time. A set of randomly generated numbers can be tested for ran-
domness and normality. 

   RANDOM R Program 

 The RANDOM R program tests the randomness of numbers from a pseudo-random 
number generator. The majority of the program code classi fi es combinations of 
numbers and formats the output. The creation of sample data and the calculation of 
the relative frequencies of odd and even digits, and each individual digit, are all 
contained within the  fi rst few lines of the program. Random numbers are sampled 
from the integer values 0 through 9; the relative frequency of the odd numbers is 
determined using the modulus (or remainder function) in combination with the  sum  
function and dividing by the sample size. The relative frequency of the even num-
bers is determined in the same manner, only using all values that were not deter-
mined to be odd ( SampleSize  –  sum ( SampleData  %% 2)). The relative frequency of 
each digit is determined by the familiar  factor  and  table  combination, and then all 
raw data are put into groups of  fi ve numbers. 

 The main processing loop of the program is used primarily to classify the groups 
of numbers based on various combinations of repeat values. It iterates from 1 to the 
number of rows in the  GroupedData  matrix, which is the  fi rst dimension ( dim ) of 
that matrix. The  fi rst line within the matrix concatenates the values within the cur-
rent row with no space separation between them ( sep =””). Next, a double use of the 
 table  and  factor  function combination yields the various amounts of repeat values 
within the sample group. The loop begins from the inside and works out. First, the 
number of times that each number (0 to 9) comes up within the group is tallied, then 
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the outer pair of  factor  and  table  functions count how many of each number of 
repeats (three of a kind, four of a kind, etc.) are in the group. The next few lines of 
code use the information contained within the vector just created to classify the dif-
ferent combinations of repeats into unique event values. The event values are fairly 
arbitrary in this program, unlike earlier programs that used the binary coding 
scheme, and could really be anything as long as they were matched up with the 
appropriate labels when they were output. Finally, the last line within the processing 
loop adds the raw group of numbers to an output vector. 

 The vectors are factored and tabled to determine how many of each unique event 
occurred within the sample. The next line builds an output matrix from the relative 
frequencies that were determined at the beginning of the program, along with their 
theoretical probabilities, which have been typed directly into the program instead of 
being calculated. After this, dimension names are assigned for a matrix, a matrix of 
the event relative frequencies is built, and dimension names are subsequently 
assigned to that matrix. Finally, the output begins with the groups of numbers from 
the sample being printed with the  cat  function using the keyword   fi ll  to assure that 
lines greater than 80 characters will be wrapped to the next line. Then the two output 
matrices are printed using the  print  function with a  fi xed number of decimal places. 
The  scienti fi c  keyword was used in the second case because there was a problem 
with some values being represented in scienti fi c notation due to the fact that the 
default is to print anything with its lead digit more than four places from the decimal 
in scienti fi c notation. This change increased output to six places. The program 
allows you to adjust the sample size until you  fi nd one that closely approximates the 
theoretical probabilities.  

   RANDOM Program Output 

  Number groups:  
  10599 28741 09557 90688 76598 92111 43300 08120 81585 46583 90134 49783  

    Relative Frequency Probability  
  Odd 0.53 0.50  
  Even 0.47 0.50  
  0 0.13 0.10  
  1 0.13 0.10  
  2 0.05 0.10  
  3 0.08 0.10  
  4 0.08 0.10  
  5 0.12 0.10  
  6 0.05 0.10  
  7 0.07 0.10  
  8 0.15 0.10  
  9 0.13 0.10  

    Relative Frequency Probability  
  No duplicates 0.4167 0.3024  
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  One pair 0.3333 0.5040  
  One triple 0.0833 0.0720  
  Two pairs 0.1667 0.1080  
  Pair & triple 0.0000 0.0090  
  Four alike 0.0000 0.0045  
  All alike 0.0000 0.0001    

   Random Exercises 

     1.    Run RANDOM for N = 60. Record the twelve groups of  fi ve numbers (5 * 12 = 60 
numbers) in the blanks below.  

 Numbers:  __________  __________  __________  __________ 
 __________  __________  __________  __________ 
 __________  __________  __________  __________ 

 Complete the table below.  

 RELATIVE FREQUENCY  PROBABILITY 

 ODD  ___________________________  ___________ 
 EVEN  ___________________________  ___________ 
 0  ___________________________  ___________ 
 1  ___________________________  ___________ 
 2  ___________________________  ___________ 
 3  ___________________________  ___________ 
 4  ___________________________  ___________ 
 5  ___________________________  ___________ 
 6  ___________________________  ___________ 
 7  ___________________________  ___________ 
 8  ___________________________  ___________ 
 9  ___________________________  ___________ 

    a.    Check that the relative frequencies are correct for the 60 numbers.  
    b.     What is the largest absolute difference between the relative frequencies and 

the probabilities? __________________  
    c.     How is the relative frequency for ODD related to the relative frequencies for 

the ten digits (0–9)?_______________________________________________      



52 3 Statistical Theory

    2.    Complete the following table from the run of RANDOM for N = 60.  

 RELATIVE FREQUENCY  PROBABILITY 

 NONE  ___________________  ___________ 
 ONE PAIR  ___________________  ___________ 
 ONE TRIPLE  ___________________  ___________ 
 TWO PAIRS  ___________________  ___________ 
 PAIR & TRIPLE  ___________________  ___________ 
 FOUR ALIKE  ___________________  ___________ 
 ALL ALIKE  ___________________  ___________ 

    a.     Look at the twelve groups of  fi ve numbers recorded in Exercise 1. Have the 
duplicates been counted correctly and the relative frequencies computed 
correctly? 

 RELATIVE FREQUENCY = FREQUENCY/(NUMBER OF GROUPS OF 5)  

    b.    How is the probability of ALL ALIKE calculated?

  _____________________________________________________________ 

 _____________________________________________________________  

    c.     Find the sum of the relative frequencies. ____________________________ 
Why does the sum have this value? ________________________________ 

 _____________________________________________________________      

    3.    Run RANDOM for N = 200.

    a.     What is the maximum absolute value of the differences between the relative 
frequencies and their respective probabilities?___________________________  

    b.     What is the maximum absolute difference between the relative frequencies 
of the duplicates and their respective probabilities? ____________________      

    4.    Run RANDOM for N = 500.

    a.     What is the maximum absolute value of the differences between the relative 
frequencies and their respective probabilities? ________________________  

    b.     What is the maximum absolute difference between the relative frequencies 
of the duplicates and their respective probabilities? ____________________      

    5.    On the basis of the runs for N = 200 and N = 500, are you satis fi ed with the 
 performance of the random number generator? ___________________________ 
Why, or why not? _________________________________________________ 
 ________________________________________________________________
________________________________________________________________      
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   True and False Questions 

   Sample versus Population    

 T  F  a. A sample is part of a population. 
 T  F  b. The sample proportion always equals the population proportion. 
 T  F  c. The larger the sample size the more likely it is that a sample 

proportion will be close to the population proportion. 
 T  F  d. Each time a different random sample is taken from the same 

population the sample proportion could be different. 
 T  F  e. The sample proportion from a large sample is always a better 

estimate of the population proportion. 

   Generating Random Numbers    

 T  F  a. It is easy to recognize a set of random numbers. 
 T  F  b. In any set of truly random numbers, exactly half are even. 
 T  F  c. If  fi ve of a kind appears consecutively once in a sequence of 

10,000 numbers, this is evidence that the numbers may not be 
random. 

 T  F  d. In a group of  fi ve random numbers, it is more probable that a 
pair will be found, than  fi nding all of the numbers to be 
different. 

 T  F  e. About seven times out of one hundred in a group of  fi ve random 
digits, a triple will appear. 
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   Histograms and Ogives    

 A  histogram  is a graph of a frequency distribution of numerical data for different 
categories of events, individuals, or objects. A  frequency distribution  indicates 
the individual number of events, individuals, or objects in the separate categories. 
Most people easily understand histograms because they resemble bar graphs often 
seen in newspapers and magazines. An  ogive  is a graph of a cumulative frequency 
distribution of numerical data from the histogram. A  cumulative frequency 
 distribution  indicates the successive addition of the number of events, individu-
als, or objects in the different categories of the histogram, which always sums to 
100. An ogive graph displays numerical data in an S-shaped curve with increasing 
numbers or percentages that eventually reach 100%. Because cumulative  frequency 
distributions are rarely used in newspapers and magazines, most people never see 
them. Frequency data from a histogram, however, can easily be displayed in a 
cumulative frequency ogive. 

 This chapter will provide you with an understanding of the histogram and its 
corresponding ogive. You will gain this experience quickly without the work 
involved in data entry and hand computation. You will be able to view the histogram 
and cumulative frequency distributions for different sample data sets. Histograms 
and ogives have different shapes and vary depending on frequency. An ogive always 
increases from 0% to 100% for cumulative frequencies. The shape of a histogram 
determines the shape of its related ogive. A uniform histogram is  fl at; its ogive is a 
straight line sloping upward. An increasing histogram has higher frequencies for 
successive categories; its ogive is concave and looks like part of a parabola. 

 A decreasing histogram has lower frequencies for successive categories; its ogive 
is convex and looks like part of a parabola. A uni-modal histogram contains a single 
mound; its ogive is S-shaped. A bi-modal histogram contains two mounds; its ogive 
can be either reverse S-shaped or double S-shaped depending upon the data distri-
bution. A right-skewed histogram has a mound on the left and a long tail on the 
right; its ogive is S-shaped with a large concave portion. 

    Chapter 4   
 Frequency Distributions                 
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 A left-skewed histogram has a mound on the right and a long tail on the left; its 
ogive is S-shaped with a large convex portion. 

   FREQUENCY R Program 

 The FREQUENCY R program can be used to display the histogram frequency dis-
tributions and ogive cumulative frequency distributions. To simplify the graphical 
display and provide similar comparisons between the types of histograms, all histo-
grams in the program will have ten categories. The data for each category are not 
listed; rather the categories are numbered 1 to 10. You will be asked to enter the 
frequency for each of the ten categories and the frequencies must be integers greater 
than zero. The program will print a table listing the frequencies you speci fi ed, 
the relative frequencies, and the less-than-or-equal cumulative relative frequencies. 
The program prints a histogram and a corresponding ogive, which is output in a 
separate window (GSD2). 

 The part of the program that can be changed is a list of values relating to a score 
distribution observed in a given classroom. The length of this list does not matter; it 
is never speci fi cally referenced in the program. The  Class  object is given a value for 
a vector of numbers using the  c  function that was introduced in Chapter   1    . Each 
number within the vector is divided by the sum of all values within the vector. In the 
FREQUENCY program, the  fi rst processing loop is replaced by the simple 
 sum(  Class  ) , which gets a total for all of the values, and this result is then divided 
into each of the values within the vector by simply typing  Class  /sum(  Class  ) . No 
additional step is necessary. 

 The next program line follows the same logic, only the cumulative sum ( cum-
sum ) of the vector is determined at each point and these values are divided by the 
overall sum of the values to give a vector of values labeled C umRelFreq . Scaling of 
the histogram height is performed next so that the histogram bars are not too small 
compared to the vertical scaling of the graph. The “if then else” clause is used to 
provide vertical scaling that will be either one tenth greater than the highest relative 
frequency, or 1 if the value is .95 or above. The  round  function is implemented to 
insure that the maximum value is set to an even tenth ( digits = 1 ). The  barplot  func-
tion is used to draw the histogram of the relative frequencies with the  RelFreq  vec-
tor as the speci fi ed target. The  plot  function is used to draw the ogive of the 
cumulative relative frequencies with  CumRelFreq  as the target. The 
 par(mfrow = c(2,1))  command line permits both graphs to be printed, otherwise 
only the last graph (ogive) will be shown. 

 The last part of the FREQUENCY program builds a matrix of the class score 
distribution along with the associated relative frequencies and cumulative relative 
frequencies. The line beginning  TableData   < - matrix  prepares the matrix and ini-
tializes all values within it to 0 and makes the dimensions of the matrix to be 
 length(  Class  )  rows and 3 columns. The  dimnames  keyword sets the labels for the 
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dimensions and will be used in later chapters with other vectors. The  for  loop 
 iterates from 1 to the number of values within  Class  and assigns each row within the 
 TableData  matrix to the respective  Class  vector value, relative frequency, and cumu-
lative relative frequency, rounding each frequency to three decimal places. You will 
see some error in the cumulative numbers due to the rounding of the cumulative 
values. The  fi nal line of the program simply prints out the  TableData  matrix. 

 You can change the values within the  Class  vector to obtain different shaped 
histograms and corresponding ogives. The original vector of 10 values breaks the 
score distribution into 10 intervals, but this can be changed to create histograms 
with greater resolution. You could comment out both lines of “  if  ” and “ else ” state-
ments that scale the histogram by pre fi xing them with “  #  ” signs to see the effect of 
not scaling it properly to  fi t the plot; replace these statements with the  PlotHeight   < -1  
statement by removing the # sign in front of it. Some rounding error does occur in 
the program when summing the relative frequencies to obtain the cumulative rela-
tive frequencies.  

   FREQUENCY Program Output 

    Freq. Relative Freq. Cum Rel Freq.  
  Class 1 50 0.182 0.182  
  Class 2 45 0.164 0.345  
  Class 3 40 0.145 0.491  
  Class 4 35 0.127 0.618  
  Class 5 30 0.109 0.727  
  Class 6 25 0.091 0.818  
  Class 7 20 0.073 0.891  
  Class 8 15 0.055 0.945  
  Class 9 10 0.036 0.982  
  Class 10 5 0.018 1.000 
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   Histogram and Ogive Exercises 

     1.    Run FREQUENCY program six times (a to f). Enter the frequencies listed for 
each type of histogram in the Class array statement. For each run, complete the 
frequency table and draw sketches of the histogram and corresponding ogive.

   a.    A uniform histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  5  _________  _________ 
 2  5  _________  _________ 
 3  5  _________  _________ 
 4  5  _________  _________ 
 5  5  _________  _________ 
 6  5  _________  _________ 
 7  5  _________  _________ 
 8  5  _________  _________ 
 9  5  _________  _________ 

 10  5  _________  _________ 

   b.    An increasing histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  10  _________  _________ 
 2  12  _________  _________ 
 3  14  _________  _________ 
 4  16  _________  _________ 
 5  18  _________  _________ 
 6  20  _________  _________ 
 7  22  _________  _________ 
 8  24  _________  _________ 
 9  26  _________  _________ 

 10  28  _________  _________ 
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0.25 1.0

0.20 0.8

0.15 0.6

0.10 0.4

0.05 0.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

OgiveHistogram

          

   c.    A decreasing histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  50  _________  _________ 
 2  45  _________  _________ 
 3  40  _________  _________ 
 4  35  _________  _________ 
 5  30  _________  _________ 
 6  25  _________  _________ 
 7  20  _________  _________ 
 8  15  _________  _________ 
 9  10  _________  _________ 

 10  5  _________  _________ 

  0.25 1.0

0.20 0.8

0.15 0.6

0.10 0.4

0.05 0.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

OgiveHistogram
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   d.    A unimodal histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  2  _________  _________ 
 2  3  _________  _________ 
 3  4  _________  _________ 
 4  5  _________  _________ 
 5  6  _________  _________ 
 6  6  _________  _________ 
 7  5  _________  _________ 
 8  4  _________  _________ 
 9  3  _________  _________ 

 10  2  _________  _________ 

   
0.25 1.0

0.20 0.8

0.15 0.6

0.10 0.4

0.05 0.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

OgiveHistogram

          

   e.    A bimodal histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  6  _________  _________ 
 2  5  _________  _________ 
 3  4  _________  _________ 
 4  3  _________  _________ 
 5  2  _________  _________ 
 6  2  _________  _________ 
 7  3  _________  _________ 
 8  4  _________  _________ 
 9  5  _________  _________ 

 10  6  _________  _________ 
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  0.25 1.0
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   f.    A right-skewed histogram  

 CLASS  FREQ  REL FREQ  CUM REL FREQ 

 1  5  _________  _________ 
 2  10  _________  _________ 
 3  25  _________  _________ 
 4  20  _________  _________ 
 5  15  _________  _________ 
 6  10  _________  _________ 
 7  5  _________  _________ 
 8  4  _________  _________ 
 9  3  _________  _________ 

 10  2  _________  _________ 

  1.0

0.8

0.6

0.4

0.2

0.25

0.20

0.15

0.10

0.05

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

OgiveHistogram
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    2.    Describe the ogives for each of the following histograms.      

 HISTOGRAM  OGIVE 

 a. Uniform  ________________________________________________ 
 b. Increasing  ________________________________________________ 
 c. Decreasing  ________________________________________________ 
 d. Unimodal  ________________________________________________ 
 e. Bimodal  ________________________________________________ 
 f. Skewed right  ________________________________________________ 

   Population Distributions 

 The heights of adult men form a normal frequency distribution, i.e., a symmetrical 
distribution with one mode ( unimodal ). A similar population is formed by the 
heights of adult women. The  mode  is the score that occurs most often in a frequency 
distribution of data. However, because on the average women are shorter than men, 
the mean of the population of women’s heights is less than the mean height of men. 
The  mean  is the score that indicates the average of all the scores in a frequency 
distribution. Imagine that a random sample of adults is chosen and the height of 
each person is determined. The sample consists of both men and women. In what 
way will the sample re fl ect the fact that it was drawn from a combination of two 
different populations? 

 In this chapter, you will learn about the shape of a histogram from a sample when 
the sample is drawn from a combination of two populations. The two populations in 
this chapter will be unimodal and symmetrical, i.e., normally distributed. To keep 
the chapter examples simple, the  fi rst population will always have a mean of 4. 
The second population mean can be changed. These mean values are also the modes 
of the data distributions. A histogram shows the frequency distribution of sample 
values. For large samples taken randomly from a normal population, the shape of 
the histogram is approximately normal. If a sample is taken from a combination of 
two populations, for which the means are far apart, the histogram of the sample will 
be  bimodal  (two modes). If the means of the two populations are close together, 
then the sample will be  unimodal  (one mode). In this case, the two populations are 
considered to be a single population. Large samples of data from a normal popula-
tion yield a unimodal frequency distribution. The histogram is useful for summariz-
ing data, that is, a bimodal sample could indicate that the sample is from two 
different populations and that the distance between the centers of two populations is 
related to the shape of the histogram of a sample selected from the combined 
populations. 
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   COMBINATION R Program 

 The  fi rst time you run the COMBINATION R program, the second population will 
have a mean of 9. If you run the program again, you can select a different mean 
value for the second population. By changing the distance between the two popula-
tion means, you can observe the effect of this distance on the shape of the histogram 
from a sample drawn from two combined populations. Each time you run the pro-
gram, 500 randomly selected observations will be sampled, 250 from each of the 
populations. The program will print out a relative frequency table and a histogram 
for the sample. 

 The program combines the ease of random sampling with the ease of graphing. 
The program creates two normally distributed random samples centered at different 
means, with one mean  fi xed at 4 and the other mean different. The sample sizes can 
also be changed. The  fi rst population data are created from a normal distribution 
( rnorm ) with a size of  SampleSize  [1], a mean of 4, and a standard deviation of 1. 
The values within this vector are rounded to two decimal places. The  round  func-
tion is placed within the  invisible  function so that the vector will not be printed 
while rounding. The second population data are created in the same manner with the 
mean at the value of the  CenterTwo  variable, a size of  SampleSize  [2], and is also 
rounded to two decimal places. The two populations are combined into a single 
population using the  c  function and are treated as a single vector. 

 In order to create the relative frequency breakdown for various intervals within 
the combined population, it is necessary to use the  cut  function combined with the 
 factor  and  table  functions. The  cut  function breaks data into categories at given 
breakpoints, in this case at intervals of 0.5 from 0 to the largest value within the 
bimodal distribution of  CombinedPopulation . The  factor  function takes the results 
of the  cut  function and assures that unused intervals are still included in the  fi nal 
results by choosing  levels  from 1 to twice the largest value within  CombinedPopulation  
(this is because the intervals are only 0.5). These factors are then summarized by the 
 table  function with the number of points in each interval placed into the vector 
 FreqPop . The next two lines create the labels for the intervals held in the  FreqPop  
vector, with the  fi rst line being the value of the start of each interval and the second 
line being the value of the end of each interval. The  nsmall  keyword assures that at 
least one decimal place is preserved, even for whole numbers, to make the output 
easier to view. 

 The  FreqPop  vector is placed next into a  matrix  object to make it easier to dis-
play the results. The  FreqPop  vector is the input value, there are  length ( FreqPop ) 
rows, and only 1 column. The dimension names are set to the interval start and 
interval end labels for the rows and “Rel Freq” for the single column. The  paste  
function is handy when combining strings and vectors of values into a vector of 
labels. The next line with  FreqPopTable  by itself prints out the matrix. An alterna-
tive approach would be to use  print ( FreqPopTable ), but since there were no other 
parameters in the  print  function needed for this display, it wasn’t necessary. 
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 Most of the program code creates and displays the matrix of relative frequencies. 
The  hist  function creates a histogram of any vector of values with relatively few 
keywords which is displayed in a separate output window (GSD2).  CombinedPopulation  
is the target of the histogram. Default values ( , ) are speci fi ed for the y-axis and label 
size. The  main  keyword speci fi es the title to put at the top of the histogram. It is 
easier to notice differences in the two distributions using a histogram.  

   COMBINATION Program Output   

   Rel Freq  
  0.0 - 0.5 0  
  0.5 - 1.0 1  
  1.0 - 1.5 0  
  1.5 - 2.0 4  
  2.0 - 2.5 9  
  2.5 - 3.0 21  
  3.0 - 3.5 36  
  3.5 - 4.0 46  
  4.0 - 4.5 53  
  4.5 - 5.0 47  
  5.0 - 5.5 20  
  5.5 - 6.0 8  
  6.0 - 6.5 5  
  6.5 - 7.0 4  
  7.0 - 7.5 13  
  7.5 - 8.0 25  
  8.0 - 8.5 44  
  8.5 - 9.0 48  
  9.0 - 9.5 37  
  9.5 - 10.0 37  
  10.0 - 10.5 24  
  10.5 - 11.0 12  
  11.0 - 11.5 6  
  11.5 - 12.0 0 
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   COMBINATION Exercises 

     1.    Run the COMBINATION program. A frequency table is printed for the  combined 
populations. The  fi rst population will always be centered at 4. The second popu-
lation will initially be centered at 9. The histogram is printed in a separate output 
window.

   a.    Describe the shape of the distribution using the relative frequencies. _______
_________________________________________________________  

   b.    Describe the shape of the distribution using the histogram. ______________
__________________________________________________  

   c.    Are relative frequencies or histograms better in understanding the distribution 
of data? _______________________________________________________      

   2.    Run the COMBINATION program again. A frequency table is printed for the 
combined populations. The  fi rst population will always be centered at 4. Set the 
second population mean at 12. A histogram is printed in a separate output 
window.

   a.    Describe the shape of the distribution using the relative frequencies. _______
___________________________________________________________  
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   b.    Describe the shape of the distribution using the histogram. ______________
________________________________________________  

   c.    Are relative frequencies or histograms better in understanding the distribution 
of data? _______________________________________________________      

    3.    Run the COMBINATION program to  fi nd the smallest distance between the two 
means in which a bimodal distribution is still apparent (the second mean doesn’t 
need to be a whole number, i.e., 8.5 and 5.75). If the means of the two popula-
tions are close together, then it is appropriate to consider that the two populations 
are similar.

   a.    What is the smallest distance between the means for which a bimodal distri-
bution is still apparent? __________.  

   b.    Statistical analyses are generally valid only for data that are randomly sam-
pled from a symmetrical unimodal population distribution. What can you do 
to verify that a certain sample of data was randomly selected from a sym-
metrical unimodal (normal) population? _____________________________
_____________________________________________________________
________________________________________________         

   Stem and Leaf Graph 

 Graphical displays are often used to summarize data and usually help to uncover 
special characteristics of the data set. Histograms and  stem-and-leaf  plots are 
examples of graphical displays of data. The stem-and-leaf plots are particularly 
helpful in visualizing the  median  or middle value in data, the  range  or spread of 
data (distance between the lowest and highest data values), and  quartiles  (the  fi rst 
quartile is a score that separates the bottom 25% of the data in a frequency distribu-
tion from the other data and the third quartile is a score that separates the top 25% 
of the data in a frequency distribution from the other data). The  inter-quartile 
range  is the distance between the  fi rst and third quartile scores. It measures the 
range of scores in the middle 50% of the frequency distribution. 

 In graphing data, a decision must be made about how the data are grouped on the 
x-axis. A few large groups may obscure information and too many small groups 
may make summarization meaningless. This chapter addresses the problem of the 
number of groups in the context of stem-and-leaf plots (similar results are also true 
for histograms). 

 Consider the following data set of weights (in pounds) for UPS parcel post 
packages:  

 1.2  3.6  2.7  1.6  2.4 
 3.5  3.1  1.9  2.9  2.4 
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 One stem-and-leaf plot for this data set is the following:
 

1 |  269
Stem:

Leaves:

ones

tenths

2 | 4479
3 | 156

Weights of Packages
(lbs.)

         

 The numbers to the left of the vertical line form the  stem . In the stem, the  numbers 
represent the digit in the ones place. The numbers to the right of the line are the 
 leaves . They represent the digit in the tenths place. Thus “1 | 269” represents the 
numbers 1.2, 1.6, and 1.9. There are only three groups in this stem-and-leaf plot, 
i.e., only one for each digit in the stem. 

 A  fi ner subdivision could have been used in the stem-and-leaf plot. For 
example,

 
1 | 2
1 | 69
2 | 44
2 | 79
3 | 1
3 | 56

Stem:
Leaves:

ones
tenths

         

 Here the  fi rst occurrence of 1 in the stem is used for data values from 1.0 to 1.4, 
and the second occurrence of 1 is used for 1.5 to 1.9. A similar approach is used for 
the other digits in the stem. There are six groups in this plot. Other units can be used 
for the stem and the leaves. A stem-and-leaf plot of adult heights in inches could 
have a stem in tens and leaves in ones. A plot of family incomes might have a stem 
in ten thousands and leaves in thousands. 

 The stem-and-leaf plots is a type of histogram where the median value in a stem-
and-leaf plot can be viewed. The number of groups on a stem has an effect on the 
shape of the stem-and-leaf plot. The choice of a stem can also make the stem-and-
leaf plot either unimodal or bimodal. 

 For some data sets, a change in the stem causes very little change in the shape of 
the stem-and-leaf plot. 

   STEM-LEAF R Program 

 In the STEM-LEAF R program the data sets will be student grades, which range 
between 0 and 100 inclusive. Two data sets of 50 student grades each are included 
in the program. The program will print two versions of a stem-and-leaf plot for each 
set of student grades. One plot has 11 groups and 6 groups, while the other plot has 
15 groups and 8 groups. You will be asked to examine the two different stem and 
leaf plots to decide if reducing the number of groups gives a better distribution of 
scores that display for the median or middle value. 
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 The program assigns two large vectors of scores to  Grades1  and  Grades2 . The 
scores are designed in a manner to demonstrate the importance of proper node 
assignment in stem-and-leaf plots and should  not  be modi fi ed. The stem-and-leaf 
plot is a simple command,  stem . The variable,  LeafSpread , is used as an argument 
in the command to determine the spacing of leaves. 

 The output and spacing is put between the script commands by use of the  cat  
command with “\n\n” as the argument. The  cat  command simply prints characters 
to the standard output and the “\n” special sequence equates to a new line. The next 
line outputs the stem-and-leaf plot.  

   STEM-LEAF Program Output 

   First Data Set  
   [1]0  15 23 27 30 31 35 37 41 44 45 47 50 55 58 59 61 61 64  
   [20]64 66 68 69 70 71 71 72 72 73 74 74 85 85 85 87 88 88 88  
  [39]88 90 91 92 92 92 94 94 96 98 99 100  

  Median  =  71  

  11 Groups - First Data Set  

  The decimal point is 1 digit(s) to the right of the |  

   0 | 0  
   1 | 5  
   2 | 37  
   3 | 0157  
   4 | 1457  
   5 | 0589  
   6 | 1144689  
   7 | 01122344  
   8 | 55578888  
   9 | 0122244689  
   10 | 0  

  6 Groups - First Data Set  

  The decimal point is 1 digit(s) to the right of the |  

   0 | 05  
   2 | 370157  
   4 | 14570589  
   6 | 114468901122344  
   8 | 555788880122244689  
   10 | 0  
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  NOTE: 11 Groups shows a better display of middle split for data at 
median = 71.  

  Second Data Set  
   [1] 30 31 36 38 42 44 45 47 50 53 53 54 56 58 58 59 61 62 63  
   [20] 64 65 66 67 69 70 71 72 74 75 76 77 77 80 80 83 83 85 87  
   [39]88 89 91 92 93 94 95 97 97 99 100 100  

  Median  =  70.5  

  15 Groups - Second Data Set  

  The decimal point is 1 digit(s) to the right of the |  
   3 | 01  
   3 | 68  
   4 | 24  
   4 | 57  
   5 | 0334  
   5 | 6889  
   6 | 1234  
   6 | 5679  
   7 | 0124  
   7 | 5677  
   8 | 0033  
   8 | 5789  
   9 | 1234  
   9 | 5779  
   10 | 00  

  8 Groups - Second Data Set  

  The decimal point is 1 digit(s) to the right of the |  

   3 | 0168  
   4 | 2457  
   5 | 03346889  
   6 | 12345679  
   7 | 01245677  
   8 | 00335789  
   9 | 12345779  
   10 | 00  

  NOTE: 8 Groups shows a better display of middle split for data at 
median = 70.5.     
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   STEM-LEAF Exercises 

     1.    Run STEM-LEAF program for GRADES1 with 11 groups and copy the stem-
and-leaf plot here.

 PLOT  GRADES1

0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |

10 |

Stem:

Leaves: ones
tens

        

   a.    In what way does the stem-and-leaf plot resemble a histogram? __________
_____________________________________________________________
______________________________________________________________  

   b.    Describe the shape. Is it symmetric, right skewed, left skewed, unimodal, or 
bimodal? _______________________________________________________  

   c.    The median is the middle score when an odd number of student grades are 
arranged in order. The median is the average of the two middle scores when 
an even number of student grades is arranged in order. What is the median 
student grade? __________________________________________________  

   d.    What is the range of scores (distance between lowest and highest score)? 
____________________________________________________________      

    2.    Run STEM-LEAF program for GRADES1 using 22 groups and copy the stem-
leaf plot here.

 PLOT  GRADES1

0 |
0 |  
1 |  

Stem:

Leaves: ones
tens

        

 1

2

2

3

3

4
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4

5

5

6

6

7

7

8

8

9

9

10

10 

   a.    Describe the shape of the student grades in this plot. ___________________
_________________________________________________  

   b.    What is the median grade? ________________________________________
______  

   c.    What is the range? _______________________________________________      

    3.    Are there any characteristic differences in the two plots of GRADES1? 
________________________________________________________________
________________________________________________________________
________________________________________________________________  

    4.    Run the STEM-LEAF program for GRADES2 using 11 and 22 groups and enter 
the plots below.
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PLOT GRADES2   PLOT GRADES2

 0       0
1     0
2     1
3     1
4     2
5     2
6     3
7     3
8     4
9     4

10              5
     5
     6
     6
     7
     7
     8
     8
     9
     9
     10
     10 

   a.    Is one of the stems more informative for the set of grades? ___________________ 
Why, or why not? ________________________________________________  

   b.    Compare the results. What does this illustrate about the effect of the number 
of stems (groups) in a stem-and-leaf plot? ____________________________
______________________________________          

   True or False Questions 

   Histograms and Ogives    

 T  F  a. The cumulative relative frequencies in a less-than-or-equal ogive are 
never decreasing. 

 T  F  b. Some ogives are straight lines. 
 T  F  c. An S-shaped ogive indicates a uniform histogram. 
 T  F  d. The sum of the relative frequencies in a histogram is always one. 
 T  F  e. A parabolic ogive can indicate an increasing histogram. 
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   Population Distributions    

 T  F  a. The greater the distance between the means of two populations, the 
more pronounced the bimodal shape of the histogram. 

 T  F  b. If the means of two populations are close, then the histogram from the 
combined populations will have a single peak (unimodal) in the middle. 

 T  F  c. If a sample is taken from a combination of two populations which have 
means that are far apart, then the sample histogram will be bimodal. 

 T  F  d. As the means of two different populations get closer, the bimodal shape 
of the histogram is unchanged. 

 T  F  e. Large random samples from normal distributions have unimodal shaped 
histograms. 

   Stem and Leaf Graphs    

 T  F  a. The fewer the number of stems (groups) in a stem-and-leaf plot, the 
more informative the plot will be. 

 T  F  b. The number of stems in the plot does not affect the median value. 
 T  F  c. Skewness is usually apparent even if the number of stems is changed. 
 T  F  d. If a stem-and leaf plot is unimodal for one data set grouping, it will 

be unimodal when a  fi ner subdivision of groups is used. 
 T  F  e. If a stem-and-leaf plot is rotated 90° counterclockwise, the plot is 

similar to a histogram. 
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   Central Tendency 

    In the previous chapter, unimodal and bimodal score distributions were  demonstrated. 
In addition to the mode or most frequent score in a sample of data, the mean and 
median are also considered measures of central tendency.  Central tendency  is where 
most scores occur in the middle of a symmetrical distribution and then spread out. 
The mode, mean, and median values will all be identical in a normal distribution. 

 This chapter examines the effect upon means and medians when data values are 
transformed and/or extreme data values are added to a data set. The  mean  score is 
the arithmetic average of numbers in a data set. The mean is computed by taking the 
sum of the numbers and dividing by the total. The  median  score is the middle score 
found by arranging a set of numbers from the smallest to the largest (or from the 
largest to the smallest). If the data set contains an odd number of values, the median 
is the middle value in the ordered data set. If there is an even number of data values, 
the median is the average of the two middle values in the ordered data set. The 
median value is the score that divides the distribution into two equal halves. 

 Sample data are sometimes modi fi ed or transformed to permit comparisons and 
aid in the interpretation of sample estimates. For example, if the length of cars in 
inches was changed to meters, one could multiply 0.0254 times the car length to 
yield meters. What effect does this multiplication have on the mean value represent-
ing length of cars? What if an instructor decides to adjust a set of test grades for an 
exceptionally long test by adding ten points to each student’s score? What effect 
does this addition have on the mean score? If the price of the most expensive house 
in a neighborhood increases, what happens to the median value of the houses in that 
neighborhood? What happens to the average value of houses in that neighborhood? 
These basic effects can be seen because: 

    Chapter 5   
 Central Tendency and Dispersion                 
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 If a constant is added to all the values in a data set:

   The mean of the modi fi ed data is the mean of the initial data set plus the constant.  • 
  The median of the modi fi ed data set is the median of the initial data set plus the • 
constant.    

 If all of the values in a data set are multiplied by a constant:

   The mean of the modi fi ed data set is the mean of the initial data set times the • 
constant.  
  The median of the modi fi ed data set is the median of the initial data set times the • 
constant.    

 If the largest value in a data set is replaced by a smaller value, then the mean of 
the modi fi ed data set is smaller than the mean of the initial data set, but the median 
is unchanged. Extreme values affect the mean, but do not affect the median. If the 
mean of a data set is subtracted from each of the data values, then the mean of the 
modi fi ed data set is 0. The mean and median of the initial data set can be recovered 
from the mean and median of the modi fi ed data set by adding the negative of the 
added constant or by dividing by the number that was used as a multiplier. 

   MEAN-MEDIAN R Program 

 In the MEAN-MEDIAN R program, you will enter an initial data set. The initial 
data set will have six numbers and the numbers must be entered in order from small-
est to largest. This initial data will then be transformed in three different ways: 
(1) add a constant to each data value; (2) multiply each data value by a constant; or 
(3) replace the largest data value by a smaller data value. The program will print the 
initial data set with its mean and median followed by the mean and median from the 
modi fi ed data sets. The effect of these data modi fi cations on the mean and median 
can then be observed.  

   MEAN-MEDIAN Program Output 

  Initial Data Set  
   2 4 5 9 15 19  
   Mean = 9 Median  =  7  

  Added 10 to the Initial data  
   Added Value Data  
   Mean = 19 Median  =  17  

  Multiplied 5 to the Initial data  
   Multiplied Value Data  
   Mean = 45 Median  =  35  
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  Replaced Largest Value 19 in the Initial data with 1  
   Replaced Value Data  
   Mean = 6 Median  =  4.5    

   MEAN-MEDIAN Exercises 

     1.       To run MEAN-MEDIAN program, the initial data set (2, 4, 5, 9, 15, 19) is 
speci fi ed. 
 Use the following data transformations and record the results.  

 INITIAL DATA  MEAN  MEDIAN 

 ADD 
 3  ______  ______ 

 −2  ______  ______ 
 10  ______  ______ 
 5  ______  ______ 

 MULTIPLY BY 
 2  ______  ______ 

 −10  ______  ______ 
 0.5  ______  ______ 

 REPLACE LAST VALUE WITH 
 1  ______  ______ 
 5  ______  ______ 

 10  ______  ______ 

    2.    Complete the following statements:

    a.    If a constant number is added to each of the data values in a set, then the mean 
of the modi fi ed data is equal to the initial mean _______________________ 
and the median of the modi fi ed data set is equal to the initial median
_____________________________________________________________ 

 _____________________________________________________________.  

    b.    If each data value in a set is multiplied by a constant number, then the mean 
of the modi fi ed data is equal to the initial mean _______________________ 
and the median of the modi fi ed data is equal to the initial median _________ 
 _____________________________________________________________.  

    c.    If the largest value in a data set is replaced by a smaller value, the mean of the 
modi fi ed data is ________________________________________________ 
 ______________________________________________________________ 

 and the median of the modi fi ed data set is ____________________________ 
 ________________________________________________________________.      
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    3.    Run MEAN-MEDIAN and enter the data set: 2, 4, 6, 9, 12, 15.

    a.    Modify the data by adding +5 to each value. Record the results.

   INITIAL DATA _________________________________________________  

  MEAN ____________________ MEDIAN ____________________  

  MODIFIED DATA (+5)__________________________________________  

  MEAN ______________________ MEDIAN __________________     

    b.    Run MEAN-MEDIAN with the data set: 7, 9, 11, 14, 17, 20. 

 Modify the data by subtracting –5 from each data value. Record the results.

   INITIAL DATA ___________________________________________________  

  MEAN _____________________ MEDIAN __________________  

  MODIFIED DATA (−5)__________________________________________  

  MEAN ____________________ MEDIAN ___________________     

    c.    Show how to obtain the mean of the initial data set from the mean of the 
modi fi ed data set. 
 ________________________________________________________________

________________________________________________________________  

    d.    Show how to obtain the median of the initial data set from the median of the 
modi fi ed data set. 
 ________________________________________________________________

________________________________________________________________      

    4.    Run MEAN-MEDIAN using the data set: 2, 4, 6, 9, 12, 15.

    a.    Modify the data by multiplying each value by +4. Record the results.

   INITIA L DATA __________________________________________________  

  MEAN ______________________ MEDIAN __________________________  

  MODIFIED DATA (4×)____________________________________________  

  MEAN _____________________ MEDIAN ___________________________     

    b.    Run MEAN-MEDIAN using the data set: 8, 16, 24, 36, 48, 60. Modify the 
data set by multiplying each value by 0.25 (dividing by 4). Record the 
results.

   INITIAL DATA ___________________________________________________  
  MEAN _____________________ MEDIAN ___________________  

  MODIFIED DATA (0.25×) _________________________________________  
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  MEAN _____________________ MEDIAN __________________     

    c.    Show how to obtain the mean of the initial data set from the mean of the 
modi fi ed data set. _______________________________________________ 

 _________________________________________________________________      

    5.    The average and median daily temperature for six days in a northern city was 76° F. 
Daily temperature readings can be changed to a Celsius scale by the formula: 
C = (F − 32)(5/9); that is, a value of −32 must be added to each data value, and 
then the results must be multiplied by 5/9.

    a.    If the six daily temperatures were 73°, 78°, 81°, 74°, 71°, and 79° on the 
Fahrenheit scale, use MEAN-MEDIAN program to change to the Celsius 
scale. (Don’t forget to order the data as you enter it, add a –32, and then mul-
tiply the values using a decimal format: 5/9 = 0.5556).  

    b.    What is the average temperature of the city in Celsius? _________________  
    c.    What is the median temperature in Celsius? __________________________         

   Dispersion 

 Dispersion refers to how spread out scores are around the mean. The sample  range  
is the difference between the largest and smallest data value. The sample  variance  
is the average squared deviation of the data values from their sample mean. The sam-
ple  standard deviation  is the square root of the sample variance. The formula for 
the sample variance is:

     

2(data value mean data value)
Variance

number of data values

SS

n

−
= =
∑

     

 The numerator (top of equation) indicates that the mean of all the data values is 
subtracted from each data value, squared, and summed. The summing of the squared 
values is denoted by the symbol,  S . This is referred to as the sum of squared devia-
tions from the mean or simply  sum of squared deviations  (SS). The sum of squared 
deviations (SS) divided by the number of data values is referred to as the variance. 

 The standard deviation is the square root of the variance. The formula for the 
standard deviation is:

     

SS
Standard Deviation

n
=

     

 The standard deviation provides a measure in standard units of how far the data 
values fall from the sample mean. For example, in a  normal distribution , 68% of 
the data values fall approximately one standard deviation (1 SD) on either side of 
the mean, 95% of the data values fall approximately two standard deviations (2 SD) 
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on either side of the mean, and 99% of the data values fall approximately three 
standard deviations (3 SD) on either side of the mean. 

 Basically, we should  fi nd that if a constant is added to all the values in a data set, 
the variance, standard deviation, and range are unchanged. If all of the values in a 
data set are multiplied by a constant: The variance of the modi fi ed data set is the 
variance of the initial data set times the constant squared. The standard deviation of 
the modi fi ed data set is the standard deviation of the initial data set times the con-
stant. The range of the modi fi ed data set is the range of the initial data set times the 
constant. If the last value in a data set is replaced by a smaller value, then the vari-
ance, standard deviation, and the range are all decreased. If the last value in a data 
set is replaced by a larger value, then the variance, standard deviation, and the range 
are all increased. If the standard deviation of a data set is divided into each of the 
data values, then the standard deviation of the modi fi ed data set is 1. 

 The variance of the initial data set can be obtained from the variance of the 
modi fi ed data set by dividing the variance by the constant squared that was used as 
the multiplier. The standard deviation and range of the initial data set can be obtained 
from the standard deviation and range of the modi fi ed data set by dividing them by 
the constant that was used as the multiplier. 

   DISPERSION R Program 

 In the DISPERSION R program an initial data set is entered and modi fi ed in one of 
three ways: (1) adding a constant to each data value; (2) multiplying each data value 
by a constant; or (3) replacing the last value by a different number. The purpose is 
to observe the effect of these modi fi cations on three measures of dispersion: range, 
variance, and standard deviation. The  sd  function returns the standard deviation of 
the vector of data values, the  var  function computes the variance, and the  range  
function gives the minimum and maximum data value.  

   DISPERSION Program Output  

 Initial Data Set  
   2 4 5 9 15 19  
   Standard Deviation = 6.723095 Variance  =  45.2 Range  =  2 19  

  Added 10 to the Initial data  
   Added Value Data  
   Standard Deviation = 6.723095 Variance  =  45.2 Range  =  12 29  

  Multiplied 5 to the Initial data  
   Multiplied Value Data  
   Standard Deviation = 33.61547 Variance  =  1130 Range  =  10 95  

  Replaced Largest Value 19 in the Initial data with 1  
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   Replaced Value Data  
   Standard Deviation = 5.215362 Variance  =  27.2 Range  =  1 15     

   DISPERSION Exercises 

     1.    Run the DISPERSION program with the data set 2, 4, 5, 9, 15, 19. Use the data 
modi fi cations below and record the results.  

 INITIAL DATA  S.D.  VARIANCE  RANGE 

 ADD 
 3  ______  ______  ______ 

 −2  ______  ______  ______ 
 10  ______  ______  ______ 
 5  ______  ______  ______ 

 MULTIPLY BY 
 2  ______  ______  ______ 

 −10  ______  ______  ______ 
 0.5  ______  ______  ______ 

 REPLACE LAST VALUE WITH 
 1  ______  ______  ______ 
 5  ______  ______  ______ 

 10  ______  ______  ______ 

    2.    Complete the following statements:

    a.    If a constant is added to each data value, then the variance of the modi fi ed data 
is equal to _________, the standard deviation of the modi fi ed data set is equal 
to _________, and the range of the modi fi ed data set is equal to ________.  

    b.    If each data value is multiplied by a constant, then the variance of the modi fi ed 
data is equal to the initial variance ____________, the standard deviation of the 
modi fi ed data is equal to the initial standard deviation ____________, and the 
range of the modi fi ed data set is equal to the initial range _________________.  

    c.    If the last value in a data set is replaced by a smaller value, the variance of the 
modi fi ed data is ______________________________, the standard deviation 
of the modi fi ed data is __________, and the range of the modi fi ed data set is 
_________________.      

    3.    Run DISPERSION program again using your initial data set and modify it by 
dividing each data value by the standard deviation (multiply by the reciprocal). 
What is the standard deviation of the data? _______________________________. 

 Try it again with a new initial data set. Explain why this happens: ___________
_________________________________________________________________ 
 _________________________________________________________________ 
 _________________________________________________________________  
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    4.    Run DISPERSION program with the data set 2, 4, 6, 9, 12, 15.

    a.    Modify the data by adding +5 to each value. Record the results.

   INITIAL DATA __________________________________  

  S.D. _______VARIANCE _______ RANGE_______  

  MODIFIED DATA________________________________  

  S.D. ________VARIANCE________ RANGE_______     

    b.    Run MODIFICATION and enter the data set 7, 9, 11, 14, 17, 20. 

 Modify the data by adding –5 to each value. Record the results.

   INITIAL DATA __________________________________  

  S .D _______VARIANCE________ RANGE_________  

  MODIFIED DATA ________________________________  

  S.D.________VARIANCE________ RANGE________     

    c.    Show how to obtain the variance of the modi fi ed data set from the variance of 
the initial data set. 

 ______________________________________________________________  

    d.    Show how to obtain the standard deviation of the initial data set from the 
standard deviation of the modi fi ed data set. 

 ______________________________________________________________  

    e.    Show how to obtain the range of the initial data set values from the range of 
the modi fi ed data set values. 

 ______________________________________________________________      

    5.    The variance of the daily temperatures for six days in a northern city was 14°F, 
the standard deviation was 3.8°F, and the range was 10° F. The daily temperature 
readings can be changed to a Celsius scale by using the formula C = (F − 32) 
(5/9); that is, −32 must be added to each data value and the results multiplied by 
5/9 (0.5556).

    a.    What is the standard deviation of the temperature in degrees Celsius? ________  
    b.    What is the variance of the temperature for this city in Celsius? _____________  
    c.    What is the range of the temperature in degrees Celsius? __________________      

    6.    If the six daily temperatures were 73°, 78°, 81°, 74°, 71°, and 79° on the 
Fahrenheit scale, use the DISPERSION program to change them to the Celsius 
scale. (Don’t forget to order the data as you enter it and express values in decimal 
form: 5/9 = 0.5556).
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    a.    What is the standard deviation of the temperature in degrees Celsius? _______  
    b.    What is the variance of the temperature for this city in Celsius? ___________  
    c.    What is the range of the temperature in degrees Celsius? __________________         

   Sample Size Effects 

 The sample  range  is the difference between the highest and lowest score in a data 
distribution. The sample  variance  is the square of the sample  standard deviation . 
When the size of the sample increases, the range of data values will generally 
increase. The standard deviation with increasing sample sizes should divide the 
frequency distribution of data into six sections. You should be able to observe the 
effect of sample size on these measures of data dispersion when completing 
the chapter exercises. 

 As the sample size increases, the sample range usually increases because obser-
vations are chosen from the extreme data values in a population. As observations are 
added to a sample, the range of the sample cannot decrease. As observations are 
added to a sample, the standard deviation  fl uctuates in an unpredictable manner. 
A rough approximation of the standard deviation is the range divided by four; how-
ever, for a uniform population, this will produce an underestimate. Range divided 
by six better approximates the standard deviation of the normal distribution. 

   SAMPLE R Program 

 The SAMPLE R programs will create a uniform population of integers from 1 to 
1,000 based on sampling without replacement [Sampling with replacement assumes 
that data points are returned to the population from which they were drawn. Sampling 
without replacement assumes that data points are  not  returned to the population from 
which they were drawn.] The probability of selection is affected depending upon 
which sampling technique is used. Various sample sizes will need to be listed in the 
 Samplesizes  vector. Random sampling will be repeated with new observations for 
each sample size listed in the vector. A summary table will be printed with the results 
to allow you to draw conclusions about the effect of sample size on the range and 
standard deviation. The ratio of the range to the standard deviation will be printed so 
you can look for a relationship between these two measures of dispersion. 

 The program can be repeated as many times as needed since the sampling is 
random. Each time the program is run, the results, however, will be different. This 
will allow you to further test your understanding and conclusions about how various 
sample sizes affect the range and standard deviation. The  fi nal chapter exercise 
computes the error one would make when using a sample estimate of the standard 
deviation as the population value. This exercise is used to answer the question, 
“Does the sample standard deviation become a more accurate estimate of the popu-
lation standard deviation as the sample size increases?” 
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 Once the matrix has been de fi ned, the main processing loop begins. An iteration 
counter is used as the basis of the  for  loop to facilitate placement of values within 
the matrix. The  fi rst line of code within the loop creates the  fi rst sample of random 
integers between 1 and 1,000 from a uniform distribution. The next three lines  fi ll 
the columns of the matrix at the present row ( i ) with the range, standard deviation, 
and range divided by the standard deviation, respectively. The matrix notation [ i ,1] 
represents the  i th row and the  fi rst column. If you want to replace an entire row of 
values, type  outputMatrix [ i ,] < -, followed by the assignment of the vector. Leaving 
a dimension blank means that you are allowing all values along that dimension to be 
 fi lled with values, if enough are present in the vector being assigned to it. The 
 content of the matrix is printed after the end of the loop.  

   Sample Program Output 

   N Range Standard Dev. Range/SD  
   10 893 327.83 2.72  
   50 937 286.18 3.27  
   100 979 319.72 3.06  
   200 991 286.30 3.46  
   500 997 281.51 3.54  
   1000 997 288.87 3.45     

   SAMPLE Exercises 

     1.    Enter the following string of sample sizes in the  Samplesize  vector and run the 
SAMPLE program. Record the results below.  

 RANGE  STANDARD DEV.  RANGE/SD 
 20  ________________  ________________  ________________ 
 40  ________________  ________________  ________________ 
 60  ________________  ________________  ________________ 
 80  ________________  ________________  ________________ 

 100  ________________  ________________  ________________ 
 120  ________________  ________________  ________________ 
 140  ________________  ________________  ________________ 
 160  ________________  ________________  ________________ 
 180  ________________  ________________  ________________ 
 200  ________________  ________________  ________________ 
 220  ________________  ________________  ________________ 
 240  ________________  ________________  ________________ 
 260  ________________  ________________  ________________ 
 280  ________________  ________________  ________________ 
 300  ________________  ________________  ________________ 



85SAMPLE Exercises

    2.    Provide short answers to the following questions.

    a.    As observations are added to the sample, what happens to the sample range? 
_______________________________________________________________  

    b.    What accounts for the relationship between the sample size and the sample range? 
_______________________________________________________________  

    c.    Why is the sample range a less than perfect measure of the spread of the population? 
_______________________________________________________________  

    d.    As observations are added to the sample, what is the relationship between the 
sample size and the sample standard deviation? ________________________ 

 _______________________________________________________________      

    3.    Run the SAMPLE program again with the same sample sizes in the  Samplesize  
vector. Record the results below.  

 RANGE  STANDARD DEV.  RANGE/SD 
 20  ________________  ________________  ________________ 
 40  ________________  ________________  ________________ 
 60  ________________  ________________  ________________ 
 80  ________________  ________________  ________________ 

 100  ________________  ________________  ________________ 
 120  ________________  ________________  ________________ 
 140  ________________  ________________  ________________ 
 160  ________________  ________________  ________________ 
 180  ________________  ________________  ________________ 
 200  ________________  ________________  ________________ 
 220  ________________  ________________  ________________ 
 240  ________________  ________________  ________________ 
 260  ________________  ________________  ________________ 
 280  ________________  ________________  ________________ 
 300  ________________  ________________  ________________ 

    a.    Did anything different happen the second time? _______________________ 
 If so, what was different? ________________________________________ 

 _______________________________________________________________  

    b.    What is your  fi nal conclusion about the relationship between sample size 
and sample standard deviation? ____________________________________      

    4.    The last column above indicates the standard deviations for samples of data from 
a uniform distribution. The range of scores divided by 4 is a rough estimate of the 
standard deviation of a uniform distribution. Are the standard deviations less 
than 4 (underestimated) as expected? Yes ____ No ___  

    5.    What is a good estimate for the standard deviation of a normal population? 
_____________  

    6.    If the sample standard deviation is used as an estimate of the population standard 
deviation, compute the error of the estimate for each sample size in Exercise 1. 
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 Note: ERROR = ESTIMATE − 288.67. The population standard deviation was 
288.67. 

 Record the error of estimate for each sample size with its +/− signs in the 
 following table.  

 SAMPLE SIZE  ERROR 
 20  _______________ 
 40  _______________ 
 60  _______________ 
 80  _______________ 

 100  _______________ 
 120  _______________ 
 140  _______________ 
 160  _______________ 
 180  _______________ 
 200  _______________ 
 220  _______________ 
 240  _______________ 
 260  _______________ 
 280  _______________ 
 300  _______________ 

    a.    Does the sample standard deviation become a more accurate estimate of the 
population standard deviation as the sample size increases? 
 _______________________________         

   Tchebysheff Inequality Theorem 

 The sample  standard deviation  is a measure of the dispersion of the sample data 
around the sample mean. A small standard deviation indicates less dispersion of 
sample data. A larger standard deviation indicates more dispersion of sample data. 
This understanding is also true for the  range , which is the difference between the 
largest and smallest data value. However, the standard deviation provides more 
information about the data than the range. The standard deviation permits the for-
mation of intervals that indicate the proportion of the data within those intervals. 
For example, 68 % of the data fall within +/− one standard deviation from the mean, 
95 % of the data fall within +/− two standard deviations of the mean, and 99 % fall 
within +/− three standard deviations of the mean, in a  normal distribution . If 100 
students took a mathematics test with a mean of 75 and a standard deviation of 5, 
then 68 % of the scores would fall between a score of 70 and 80, assuming a normal 
distribution. In contrast, given the highest and lowest test scores, 90 and 50 respec-
tively, the range of 40 only indicates that there is a 40-point difference between the 
highest and lowest test score, i.e., 90 − 50 = 40. 
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 We generally assume our data is normally distributed; however, in some cases, 
the data distribution takes on a different shape. When this occurs, the  Tchebysheff 
Inequality Theorem  is helpful in determining the percentage of data between the 
intervals. For example, if the mean mathematics test score was 85, and the standard 
deviation was 5, then the Tchebysheff Inequality Theorem could be used to make a 
statement about the proportion of test scores that fall in various intervals around the 
mean, e.g., between the score interval 75 and 95,  regardless of the shape of the 
distribution . 

 The  Tchebysheff Inequality Theorem  was developed by a Russian mathemati-
cian as a proof that given a number  k , greater than or equal to 1, and a set of  n  data 
points, at least (1 − 1/ k  2 ) of the measurements will lie within  k  standard deviations of 
their mean. Tchebysheff’s theorem applies to  any  distribution of scores and could 
refer to either sample data or the population. To apply the Tchebysheff Inequality 
Theorem using a population distribution, an interval is constructed which measures 
 k s   on either side of the mean,   m  . When k = 1, however, 1 − 1/(1) 2  = 0, which indicates 
that 0 % of the data points lie in the constructed interval,  m  −  s  to  m  +  s , which is not 
helpful nor useful in explaining data dispersion. However, for values of  k  greater 
than 1, the theorem appears to be informative:  

  k    1 − 1/  k   2   (Percent)   Interval  
 1  0 (0 %)   m  +/− 1 s  
 2  3/4 (75 %)   m  +/− 2 s  
 3  8/9 (89 %)   m  +/− 3 s  

 An example will help to better illustrate the fraction of  n  data points that lie in a 
constructed interval using the Tchebysheff theorem. Given a set of test scores with 
a mean of 80 and a standard deviation of 5, the Tchebysheff theorem would indicate 
a constructed interval with lower and upper score limits computed as follows: 

 Lower limit = mean − k * standard deviation 
 Upper limit = mean + k * standard deviation 

 For k = 1, the lower limit would be 80 − 1*5 = 75 and the upper limit would be 
80 + 1*5 = 85. Obviously, for k = 1, no data points are implied between the score inter-
val, 75–85, which makes no sense. For k = 2, the lower limit would be 70 and the upper 
limit would be 90. The Tchebysheff Inequality Theorem implies that  at least  [1 − 1/ k  2 ] 
of the data values are within the score interval. Thus, for the constructed interval k = 2, 
70–90, at least [1 − 1/(2) 2 ] = 1 − 1/4 = 1 − 0.25 =  at least  75 % of the data points are 
between 70 and 90,  regardless of the shape of the data distribution . The Tchebysheff 
Inequality Theorem is very conservative, applying to  any  distribution of scores, and 
in most situations the number of data points exceeds that implied by 1 − 1/ k  2 . 

 The Tchebysheff Inequality Theorem is generally applied to populations and 
intervals formed around the population mean using  k  population standard devia-
tions, where  k  ranges from 1 to 4. In practice, however, one rarely knows the popula-
tion parameters (population means and standard deviations). In some instances, the 
population parameters are known or at least can be estimated. For example, 
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a  nationally normed test booklet would contain the population mean and standard 
deviation, typically called “test norms.” Researchers often use tests to measure traits 
and characteristics of subjects and publish test sample means and standard devia-
tions. In this instance, an average of the results from several published studies would 
yield a reasonable estimate of the population parameters. In  fi nite populations where 
every observation is known and recorded, the population parameters are readily 
obtainable using computer statistical packages to analyze the data. In a few instances, 
dividing the range of scores by six provides a reasonable estimate of the population 
standard deviation as an indicator of data dispersion. 

 Since the sample mean and standard deviation are estimates of the population 
parameters, the Tchebysheff Inequality Theorem can be used with sample data. We 
therefore can test whether or not the Tchebysheff Inequality Theorem is useful for 
describing data dispersion and compare it to the normal distribution percentages 
where approximately 1 s  = 68 %, 2 s  = 95 %, and 3 s  = 99 %. In the TCHEBYSHEFF 
program, samples will be selected from four different populations: uniform, normal, 
exponential, or bimodal. The four different distributions are functions within the R 
program; however, they can be created in other programming software by comput-
ing a value for X(i), which is a data vector, using the following equations and func-
tions (RND = round a number; COS = cosine of a number; SQR = square root of a 
   number; LOG = logarithm of a number): 

 Uniform: X(i)  = 1 + 9*RND 
 Normal: X(i)  = COS (6.2832*RND) * SQR(−2*LOG (RND)) 
 Exponential: X(i)  = −LOG (RND) 
 Bimodal: X(i)  = (2 + SQR (4 – (8* (1 – RND))))/2 

 If RND  ³  0.5 
 X(i)  = (2 − SQR (4 – (8*RND)))/2 

 The Tchebysheff Inequality Theorem provides a lower bound for the proportion 
of sample data within intervals around the mean of any distribution. The Tchebysheff 
Inequality Theorem is true for all samples regardless of the shape of the population 
distribution from which they were drawn. The Tchebysheff lower bound is often a 
conservative estimate of the true proportion in the population. We would use the 
standard deviation to obtain information about the proportion of the sample data 
that are within certain intervals of a normally distributed population. The population 
mean and standard deviation are estimated more accurately from large samples than 
from small samples. 

   TCHEBYSHEFF R Program 

 The program will require specifying the sample size and distType. The 
TCHEBYSHEFF program will select a random sample, compute the sample mean 
and standard deviation, and determine the percentage of the observations within 
1.5, 2, 2.5, and 3 standard deviations of the mean (Kvals). The lower bound for the 
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 percentage of data within the interval given by the Tchebysheff Inequality Theorem 
will also be printed to check whether the theorem is true for the sample data. 

 The program takes random samples from different shaped distributions. The 
“Uniform” selection chooses a random sample of  SampleSize  from a uniform distri-
bution that falls between the values of 1 and 10. “Normal” creates a random sample 
from a normal distribution with a mean of 0 and standard deviation of 1. “Exponential” 
creates a random sample from an exponential distribution with a mean of 1. Finally, 
“Bimodal” creates a random sample from a bimodal distribution (made up of an 
equal number of points chosen from two adjacent normal distributions). Whichever 
distribution type is input, the standard deviation and mean are obtained, and then the 
matrix is  fi lled with values representing the Tchebysheff intervals, the percent of 
observations in the sample falling within the interval, and the value of the Tchebysheff 
Lower Bound.  

   TCHEBYSHEFF Program Output 

  Uniform N  =  50 Sample Mean 5.17 Sample Std Dev 2.51  

   K Interval % Obs Tcheby  
   1.5 1.4 to 8.9 86 56  
   2.0 0.16 to 10 100 75  
   2.5 -1.1 to 11 100 84  
   3.0 -2.4 to 13 100 89  

  Normal N  =  50 Sample Mean 0.04 Sample Std Dev 0.97  

   K Interval % Obs Tcheby  
   1.5 -1.4 to 1.5 88 56  
   2.0 -1.9 to 2 98 75  
   2.5 -2.4 to 2.5 98 84  
   3.0 -2.9 to 3 100 89  

  Exponential N  =  50 Sample Mean 1.15 Sample Std Dev 1.14  

   K Interval % Obs Tcheby  
   1.5 -0.56 to 2.9 90 56  
   2.0 -1.1 to 3.4 92 75  
   2.5 -1.7 to 4 96 84  
   3.0 -2.3 to 4.6 100 89  

  Bimodal N  =  50 Sample Mean 0.92 Sample Std Dev 0.62  

   K Interval % Obs Tcheby  
   1.5 0 to 1.8 88 56  
   2.0 -0.31 to 2.1 96 75  
   2.5 -0.62 to 2.5 98 84  
   3.0 -0.93 to 2.8 100 89     
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   TCHEBYSHEFF Exercises 

     1.    Run TCHEBYSHEFF for the sample size =50 and distType = “Uniform” 
speci fi ed in the program. Then replace the distType for the other distribution 
   types.  

 UNIFORM N = 50  Sample Mean ________  Sample St. Dev. _________ 
 K  INTERVAL  % OBS. IN INT.  TCHEBY. LOWER BOUND 
 1.5  _______________________  _____________  ____________ 
 2.0  _______________________  _____________  ____________ 
 2.5  _______________________  _____________  ____________ 
 3.0  _______________________  _____________  ____________ 

 NORMAL N = 50  Sample Mean ________  Sample St. Dev. _________ 
 K  INTERVAL  % OBS. IN INT.  TCHEBY. LOWER BOUND 
 1.5  _______________________  _____________  ____________ 
 2.0  _______________________  _____________  ____________ 
 2.5  _______________________  _____________  ____________ 
 3.0  _______________________  _____________  ____________ 

 EXPONENTIAL N = 50  Sample Mean ________  Sample St. Dev. _________ 
 K  INTERVAL  % OBS. IN INT.  TCHEBY. LOWER BOUND 
 1.5  _______________________  _____________  ____________ 
 2.0  _______________________  _____________  ____________ 
 2.5  _______________________  _____________  ____________ 
 3.0  _______________________  _____________  ____________ 

 BIMODAL N = 50  Sample Mean ________  Sample St. Dev. _________ 
 K  INTERVAL  % OBS. IN INT.  TCHEBY. LOWER BOUND 
 1.5  _______________________  _____________  ____________ 
 2.0  _______________________  _____________  ____________ 
 2.5  _______________________  _____________  ____________ 
 3.0  _______________________  _____________  ____________ 

    2.    Are the Tchebysheff lower bound values always correct in the table? _________
___________________________________________________________  

    3.    The Tchebysheff lower bound is very conservative; it is often a lower bound far 
below the actual percentage of data in the interval. For which population is the 
Tchebysheff lower bound the least conservative? Run TCHEBYSHEFF several 
times with different sample sizes to verify your conclusion.
________________________________________________________________ 

 ________________________________________________________________  

    4.    The actual population means and standard deviations of the four populations 
are:
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 POP. MEAN  POP. ST. DEV. 
 UNIFORM  5.5  2.60 
 NORMAL  0  1 
 EXPONENTIAL  1  1 
 BIMODAL  1  0.707 

  The sample means and standard deviations computed in TCHEBYSHEFF can be 
used as estimates of these population parameter values. 

    a.    Run TCHEBYSHEFF to complete the following table. Recall that 

 ERROR = SAMPLE ESTIMATE − POPULATION    VALUE.  

 SAMPLE 
SIZE 

 SAMPLE 
MEAN 

 POP. 
MEAN 

 ERROR  SAMPLE 
ST. DEV. 

 POP ST. 
DEV. 

 ERROR 

 UNIFORM 
 20  ________  ________  ________  ________  ________  ________ 
 50  ________  ________  ________  ________  ________  ________ 

 100  ________  ________  ________  ________  ________  ________ 
 NORMAL 
 20  ________  ________  ________  ________  ________  ________ 
 50  ________  ________  ________  ________  ________  ________ 

 100  ________  ________  ________  ________  ________  ________ 
 EXPONENTIAL 

 20  ________  ________  ________  ________  ________  ________ 
 50  ________  ________  ________  ________  ________  ________ 

 100  ________  ________  ________  ________  ________  ________ 
 BIMODAL 

 20  ________  ________  ________  ________  ________  ________ 
 50  ________  ________  ________  ________  ________  ________ 

 100  ________  ________  ________  ________  ________  ________ 

    b.    Is there a relationship between the sample size and the absolute value of the 
error in the estimates of the mean? __________________________________ 

 ______________________________________________________________  

    c.    Is there a relationship between the sample size and the absolute value of the 
error in the estimates of the standard deviation? _______________________ 
 _____________________________________________________________         

   Normal Distribution 

 In a normal population, referred to as normal bell-shaped curve, the proportion of 
data within intervals around the mean is known. The proportion of sample data 
within  k  standard deviations around the mean for  k  = 1, 2, and 3 are as follows:  
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 INTERVAL  DATA PERCENT 
IN THE INTERVAL  LOWER LIMIT  UPPER LIMIT 

  m  − 1 s    m  + 1 s   68% 
  m  − 2 s    m  + 2 s   95% 
  m  − 3 s    m  + 3 s   99% 

 If a large random sample is selected from a normal population, these lower and 
upper intervals will approximate the percent of data within the intervals of a normal 
bell-shaped curve. The proportions of sample data should be good approximations 
if the population is approximately normal, symmetrical, and unimodal. If the popu-
lation is non-normal, the bell-shaped curve may not provide results close to these 
proportions of sample data. 

 The different population distribution functions in R permit the random sampling 
of data from different population distributions. The different population values can 
be adjusted and the population parameters for the different distributions are:  

 MEAN  STANDARD DEVIATION 

 UNIFORM  5.5  2.60 
 NORMAL  0  1 
 EXPONENTIAL  1  1 
 BIMODAL  1  0.707 

 The normal distribution gives an approximation of the proportion of a sample 
that is within one, two, and three standard deviations of the population mean if the 
sample is large and is chosen at random from a normal population. The percentages 
of data within one, two, and three standard deviations of the mean for a normal 
population are respectively 68%, 95%, and 99%. The program does not give good 
approximations for samples chosen from uniform, exponential, or bimodal popula-
tions nor good approximations for small samples. 

   BELL-SHAPED CURVE R Program 

 The BELL-SHAPED CURVE program will create large sample data sets chosen at 
random from the four population types: uniform, normal, exponential, and bimodal. 
The program will determine the proportion of the sample within the speci fi ed inter-
vals. The tabled output should allow you to check the accuracy of the percentages 
for large samples from the population distribution types, especially a normal 
 population. The proportions within the speci fi ed intervals for smaller samples can 
also be checked. 

 The BELL-SHAPED CURVE program is similar to the TCHEBYSHEFF 
program except  Kvals  is set to intervals using percentages which are speci fi ed 
as  Kvals < −c(68,95,99) ; which corresponds to 1, 2, or 3 standard deviations 
from the population mean, respectively. The sample size is initially set at 
 SampleSize < −50 .  



93Normal Distribution Exercises

   BELL-SHAPED CURVE Program Output 

  Uniform N  =  50 Sample Mean  =  5.38 Sample Std Dev  =  2.87  

    Interval % Observed % Predicted  
   K  =  1 2.5 to 8.2 54 68  
   K  =  2 -0.37 to 11 100 95  
   K  =  3 -3.2 to 14 100 99  

  Normal N  =  50 Sample Mean  =  -0.16 Sample Std Dev  =  0.98  

    Interval % Observed % Predicted  
   K  =  1 -1.1 to 0.83 60 68  
   K  =  2 -2.1 to 1.8 98 95  
   K  =  3 -3.1 to 2.8 100 99  

  Exponential N  =  50 Sample Mean  =  1.01 Sample Std Dev  =  1.17  

    Interval % Observed % Predicted  
   K  =  1 -0.16 to 2.2 88 68  
   K  =  2 -1.3 to 3.3 92 95  
   K  =  3 -2.5 to 4.5 98 99  

  Bimodal N  =  50 Sample Mean  =  1.05 Sample Std Dev  =  0.69  

    Interval % Observed % Predicted  
   K  =  1 0.36 to 1.8 60 68  
   K  =  2 -0.33 to 2.4 98 95  
   K  =  3 -1 to 3.1 100 99     

   Normal Distribution Exercises 

     1.    Run BELL-SHAPED CURVE for a sample size of 250, and complete the 
 following tables. Note: ERROR = % OBSERVED − % PREDICTED.

    a.    Compute the lower and the upper limits of the interval for the uniform popula-
tion with  k  = 3, using the following formula:

   LOWER LIMIT = MEAN − K*STANDARD DEVIATION = _____________  

  UPPER LIMIT = MEAN + K*STANDARD DEVIATION = ______________     

    b.    Which population produced a sample that is approximated best by the Normal 
Bell-Shaped Curve? _____________________________________________  

    c.    Run BELL-SHAPED CURVE program again for sample size 500 to test your 
conclusions. Comment on the results. 

 ______________________________________________________________      
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 UNIFORM: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 NORMAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 EXPONENTIAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 BIMODAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 

    2.    Run BELL-SHAPED CURVE program again for a sample size of 1,000 and 
complete the tables.          

 UNIFORM: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 NORMAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 EXPONENTIAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
 BIMODAL: N =  Sample Mean =  Sample Std Dev = 
  k   INTERVAL  % OBSERVED  % PREDICTED  ERROR 
 1  __________  ____________  68  ________ 
 2  __________  ____________  95  ________ 
 3  __________  ____________  99  ________ 
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   a.    Compare the results for the samples of size 1,000 with the results for samples 
of size 250. For which sample size (250 or 1,000) were the approximations 
best for the normal population? _________________________  

   b.  Was there more error in the nonnormal populations (uniform, exponential, or 
bimodal)? Yes _______ No ________

    3.    The uniform, exponential, and the bimodal populations all have shapes that are 
very different from the normal population.

    a.    In what way is the uniform population different from the normal population? 

______________________________________________________________  

    b.    In what way is the exponential population different from the normal 
population? 

 _________________________________________________________________  

    c.    In what way is the bimodal population different from the normal 
population? 

 ______________________________________________________________  

    d.    Which population type had the most error? 

 ______________________________________________________________      

    4.    Run BELL-SHAPED CURVE program for a sample size of n = 20 for all four 
populations.

    a.    Enter the percent of data for each value of  k  in the table.  

  k   UNIFORM  NORMAL  EXPONENTIAL  BIMODAL 

 1  _________  _________  _____________  _________ 
 2  _________  _________  _____________  _________ 
 3  _________  _________  _____________  _________ 

    b.    Comment on the accuracy of the Normal Bell-Shaped Curve for small 
samples. 
 Hint: Is the Normal Bell-Shaped Curve still better than the others? 

 ______________________________________________________________         

   Central Limit Theorem 

 In some instances, the normal distribution may not be the type of distribution we 
obtain from sample data when studying research variables and/or the population 
data may not be normally distributed on which we base our statistics. The normal 
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probability distribution however is still useful because of the Central Limit Theorem. 
The Central Limit Theorem states that as sample size increases a sampling distribu-
tion of a statistic will become normally distributed even if the population data is not 
normally distributed. The sampling distribution of the mean of any nonnormal pop-
ulation is approximately normal, given the Central Limit Theorem, but a larger 
sample size might be needed depending upon the extent to which the population 
deviates from normality. 

 Typically, a smaller sample size can be randomly drawn from a  homogeneous  
population, whereas a larger sample size needs to be randomly drawn from a  hetero-
geneous  population, to obtain an unbiased sample estimate of the population param-
eter. If the population data are normally distributed, then the sampling distribution 
of the mean is normally distributed; otherwise larger samples of size N are required 
to approximate a normal sampling distribution. The sampling distribution of the 
mean is a probability distribution created by the frequency distribution of sample 
means drawn from a population. The sampling distribution, as a frequency distribu-
tion, is used to study the relationship between sample statistics and corresponding 
population parameters. 

 The Central Limit Theorem is useful in statistics because it proves that sampling 
distributions will be normally distributed regardless of the shape of the population 
from which the random sample was drawn. For example, a physician is studying the 
life expectancy of adults after being diagnosed with cancer. She is going to do a 
statistical analysis on the data concerning age at death and needs a theoretical prob-
ability distribution to model the adult ages. Since most of the adults lived to an 
advanced age due to new cancer treatments, she realizes that the population of ages 
is skewed to the left (see Figure below).

 

Frequency

20
Age at Death

100

         

 The physician doesn’t know whether a mathematical function would best describe 
this population distribution, but would like to test mean differences in age at death 
between normal adults and adults with cancer. Fortunately, she can use a sampling 
distribution of sample means, which doesn’t require exact knowledge of the popula-
tion distribution to test her hypothesis. The Central Limit Theorem, which is based 
on the sampling distribution of statistics, permits the use of the normal distribution 
for conducting statistical tests. 

 Sampling distributions of the mean from non-normal populations approach a 
normal distribution as the sample size increases, which is the de fi nition of the 
Central Limit Theorem. The frequency distribution of sample mean based on sam-
ples of size N randomly drawn from a population is called the sampling distribution 
of the mean. The sampling distribution of the mean is a normally distributed 
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 probability distribution. The mean of the sampling distribution of the mean is equal 
to the mean of the population being sampled. The variance of the sampling distribu-
tion of the mean is equal to the variance of the population being sampled divided by 
the sample size N. Sampling distributions of the mean from normal populations are 
normally distributed. 

   CENTRAL R Program 

 The CENTRAL program will graph the sampling distribution of the mean for sam-
ples of a given size N. The random samples will be taken from one of four different 
population types: uniform, normal, exponential, or bimodal. The frequency distri-
bution of the sample means can be based on an in fi nite number of samples, but the 
initial value in the program is set at 250 samples. The sampling distributions of the 
mean approaches a normal distribution, as sample size increases. Because of this, 
you will be able to observe how the underlying population distribution type does not 
affect the normality of the sampling distribution of the mean. The program output 
shows that the sampling distribution is normally distributed even when data comes 
from many different types of population distributions. 

 The program begins by initializing the user-de fi ned variables, including selec-
tion of the underlying distribution type from which samples are drawn. The main 
loop iterates for the number of desired replications, creating a sample of the appro-
priate size from the appropriate distribution. The parameters for the samples are set 
so that most of the sampling distributions of the mean should fall between 0 and 2 
for ease of comparison. After each sample is selected, the mean is calculated and 
added to the vector of sample means. The entire sample is added to a vector that 
contains all the raw data from every sample, thereby creating a very large, single 
sample. When replications are  fi nished, an output vector is created to display the 
mean and variance for the population distribution and sampling distribution of the 
mean. Two histograms are graphed, one for the sampling distribution and one for 
the population distribution.  

   CENTRAL Program Output  

    Inputvalues  
  Sample Size 50  
  Number Replications 250  
  Distribution Type Uniform  

  Sampling Distribution Mean  =  1.00107 Variance  =  0.00731183  
  Uniform Distribution Mean  =  0.9468208 Variance 0.3919674 



98 5 Central Tendency and Dispersion

          

     Inputvalues  
  Sample Size 50  
  Number Replications 250  
  Distribution Type Normal  

  Sampling Distribution Mean  =  0.9975896 Variance  =  0.002228887  
  Normal Distribution Mean  =  1.010424 Variance 0.1147131 
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     Inputvalues  
  Sample Size 50  
  Number Replications 250  
  Distribution Type Exponential  

  Sampling Distribution Mean  =  1.013069 Variance  =  0.02057427  
  Exponential Distribution Mean  =  1.132056 Variance 0.8740562 
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     Inputvalues  
  Sample Size 50  
  Number Replications 250  
  Distribution Type Bimodal  

  Sampling Distribution Mean  =  0.9995466 Variance  =  0.01314928  
  Bimodal Distribution Mean  =  1.243848 Variance 1.757248 
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   Central Limit Theorem Exercises 

     1.    Run CENTRAL for sample size N = 5 for each of the four population types. Enter 
the tabled output of results below. Print the sampling distribution and population 
distribution graphs for each of the population distribution types.  

 UNIFORM 
 POPULATION  THEORETICAL  SAMPLING DISTRIBUTION 

 MEAN  _____________  _____________  _____________ 

 VARIANCE  _____________  _____________  _____________ 

 NORMAL 

 POPULATION  THEORETICAL  SAMPLING DISTRIBUTION 
 MEAN  _____________  _____________  _____________ 

 VARIANCE  _________ ____  _____________  _____________ 
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 EXPONENTIAL 

 POPULATION  THEORETICAL  SAMPLING DISTRIBUTION 

 MEAN  _____________  _____________  _____________ 

 VARIANCE  _____________  _____________  _____________ 

 BIMODAL 

 POPULATION  THEORETICAL  SAMPLING DISTRIBUTION 

 MEAN  _____________  _____________  ____________ 

 VARIANCE  _____________  _____________  ____________ 

    a.    Which of the sampling distributions are the most like a normal distribution?

_____________________________________________________________  

    b.    Which sampling distribution is most different from a normal distribution?

_____________________________________________________________  

    c.    Are the sampling distributions approximately normal regardless of the shape 
of the underlying population? YES _____ NO _______      

    2.    Run the CENTRAL program for samples of size N = 30 for each population type. 
   Draw a rough graph of each sampling distribution of the mean.  

 ___________________________  ______________________________ 
 UNIFORM  NORMAL 

 ___________________________  ______________________________ 
 EXPONENTIAL  BIMODAL 

    a.    Are the sampling distributions for sample size N = 5 and N = 30 different? 

 YES _______ NO ________  

    b.    Are the population means and sampling distribution means the same for sam-
ples of size N = 30? Note: ERROR = THEORETICAL − SAMPLING.  

 ERROR 
 Uniform  YES  _______  NO  ________  _______ 
 Normal  YES  _______  NO  ________  _______ 
 Exponential  YES  _______  NO  ________  _______ 
 Bimodal  YES  _______  NO  ________  _______ 
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    c.    Are the population variances and sampling distribution variances the same for 
samples of size N = 30? Note: ERROR = THEORETICAL − SAMPLING.  

 ERROR 

 Uniform  YES  _______  NO  ________  _______ 
 Normal  YES  _______  NO  ________  _______ 
 Exponential  YES  _______  NO  ________  _______ 
 Bimodal  YES  _______  NO  ________  _______ 

    3.    Run the CENTRAL program again, but this time select a sample size of 100. 
 Answer the following questions.

    a.    Is a sample size of 100 suf fi ciently large to produce a sampling distribution of 
the mean that is approximately normal regardless of the population type? 

 YES _______ NO ________  

    b.    Is the mean of each population type related to the mean of the sampling 
 distribution of the mean? 

 YES _______ NO ________  

    c.    Is the variance of each population type related to the variance of the sampling 
distribution of the mean? 

 YES _______ NO ________  

    d.    Would the means and variances for a single sample be equal to the mean and 
variance of each population type? 

 YES _______ NO ________          

   True or False Questions 

   Central Tendency    

 T  F  a. Changing the largest value in a data set to a value four times as 
large does not effect the median. 

 T  F  b. If the mean of a data set is subtracted from every value of the data 
set, the mean of the modi fi ed data is equal to the mean of the 
initial data set. 

 T  F  c. Multiplying each value in a data set by ½ causes the median of the 
modi fi ed data to be twice as large as the median of the initial data. 

 T  F  d. A data set is modi fi ed by adding a constant to each value; the 
mean of the initial data set can be found by subtracting the 
constant from the mean of the modi fi ed data set. 

 T  F  e. A data set is modi fi ed by multiplying all values by 5. The median 
is now 33.5. The median of the initial data set can be found by 
multiplying the new median by 0.2 



104 5 Central Tendency and Dispersion

   Dispersion    

 T  F  a. Changing the last value in a data set to a value four times as 
large always multiplies the range by four. 

 T  F  b. Adding  fi ve to every data value does not affect the standard 
deviation. 

 T  F  c. Multiplying each value in a data set by 1/3 causes the variance 
of the modi fi ed data to be 1/6 of the original variance. 

 T  F  d. If a data set is modi fi ed by adding a constant to each value; the 
range of the initial data set can be found by subtracting the 
constant from the range of the modi fi ed data set. 

 T  F  e. If a data set is modi fi ed by multiplying all values by 5 and the 
standard deviation is now 33.5; the standard deviation of the 
original data set can be found by multiplying the new standard 
deviation by 0.2. 

   Sample Size Effects    

 T  F  a. The sample range usually decreases as the sample size increases. 
 T  F  b. The sample standard deviation decreases as the sample size increases. 
 T  F  c. A rough approximation of the range is four times the variance. 
 T  F  d. The range of a small sample is usually less than the range of a 

larger sample from the same population. 
 T  F  e. The standard deviation of a uniform population is underesti-

mated if one-fourth of the range is used for the estimate. 

   Tchebysheff Inequality Theorem    

 T  F  a. The Tchebysheff Inequality Theorem gives the approximate 
percentage of observations within certain intervals of the 
population. 

 T  F  b. If k = 1, the Tchebysheff Inequality Theorem states that at least 
0% of the data are within one standard deviation of the mean. 

 T  F  c. The Tchebysheff Inequality Theorem is always true and does 
not depend on the shape of the population. 

 T  F  d. The error in the estimate of the standard deviation is usually 
larger for larger samples. 

 T  F  e. The Tchebysheff Inequality Theorem states that in a sample, 
at least 93.75 % of the data are within four standard deviations 
of the mean. 
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   Normal Distribution    

 T  F  a. The Normal Bell-Shaped Curve gives a lower limit for the 
percentage of the data set within certain intervals. 

 T  F  b. The Normal Bell-Shaped Curve is based on what is known 
about a normal population and assumes that the sample is large 
and unimodal. 

 T  F  c. The Normal Bell-Shaped Curve gives accurate estimates for an 
exponential population. 

 T  F  d. The Normal Bell-Shaped Curve gives good estimates for small 
data sets. 

 T  F  e. Although the Normal Bell-Shaped Curve gives a more precise 
statement than the TCHEBYSHEFF lower bound, the Normal 
Bell-Shaped Curve has the disadvantage that it does not apply to 
populations of all possible shapes. 

   Central Limit Theorem    

 T  F  a. If a population is normal, the sampling distribution of the mean 
will also be normal. 

 T  F  b. A frequency distribution of 100 sample means for samples of 
size N drawn from a population is called the sampling distribu-
tion of the mean. 

 T  F  c. The variance of sampling distribution of mean is equal to the 
variance of the underlying population divided by the sample size. 

 T  F  d. The mean of a sampling distribution of mean is not normally 
distributed if the underlying population is not normally 
distributed. 

 T  F  e. A sampling distribution of mean is a probability distribution. 
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   Binomial    

 We have learned that probability and sampling play a role in statistics. In this chapter 
we show that probability (frequency) distributions exist for different types of statis-
tics; i.e. the  binomial distribution  (frequency distribution of dichotomous data) 
and  normal distribution  (frequency distribution of continuous data). 

 Many variables in education, psychology, and business are dichotomous. 
Examples of dichotomous variables are: boy versus girl; correct versus incorrect 
answers; delinquent versus non-delinquent; young versus old; part-time versus full-
time worker. These variables re fl ect mutually exclusive and exhaustive categories 
(i.e., an individual, object, or event can only occur in one or the other category, but 
not both). Populations that are divided into two exclusive categories are called 
 dichotomous populations , which can be represented by the binomial probability 
distribution. The derivation of the binomial probability is similar to the combination 
probability derived in Chap.   2    . 

 The  binomial probability distribution  is computed by:

      
( )   x n xn

P x in n P Q
x

-æ ö÷ç ÷ç ÷÷çè ø
=

   

where the following values are used:

   n = size of random sample  
  x = number of events, objects, or individuals in  fi rst category  
  n − x = number of events, objects, or individuals in second category  
  P = probability of event, object, or individual occurring in the  fi rst category  
  Q = probability of event, object, or individual occurring in the second category, 
(1 − P).    

 Since the  binomial distribution  is a theoretical probability distribution based 
upon objects, events, or individuals belonging in one of only two groups, the values 
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for P and Q probabilities associated with group membership must have some basis 
for selection. An example will illustrate how to use the formula and interpret the 
resulting binomial distribution. 

 Students are given  fi ve true–false items. The items are scored correct or incorrect 
with the probability of a correct guess equal to one-half. What is the probability that 
a student will get four or more true–false items correct? For this example,  n  = 5, P 
and Q are both .50 (one-half based on guessing the item correct), and  x  ranges from 
0 (all wrong) to 5 (all correct) to produce the binomial probability combinations. 
The calculation of all binomial probability combinations is not necessary to solve 
the problem, but tabled for illustration and interpretation.  

 x  n 
 x 

 P x   Q n−x   Probability 

 5  1  .5 5   .5 0   1/32   =   .03 
 4  5  .5 4   .5 1   5/32   =   .16 
 3  10  .5 3   .5 2   10/32 =   .31 
 2  10  .5 2   .5 3   10/32 =   .31 
 1  5  .5 1   .5 4   5/32   =   .16 
 0  1  .5 0   .5 5   1/32   =   .03 

 32/32 = 1.00 

 Using the addition rule, the probability of a student getting four or more items 
correct is: .16 + .03 = .19. The answer is based on the sum of the probabilities for 
getting four items correct plus  fi ve items correct. 

 The combination formula yields an individual “coef fi cient” for taking  x  events, 
objects, or individuals from a group size  n . Notice that these individual coef fi cients 
sum to the total number of possible combinations and are symmetrical across the 
binomial distribution. The binomial distribution is symmetrical because P = Q = .50. 
When P does not equal Q, the binomial distribution will not be symmetrical. 
Determining the number of possible combinations and multiplying it times P and 
then Q will yield the theoretical probability for a certain outcome. The individual 
outcome probabilities add to 1.0. 

 A binomial distribution can be used to compare sample probabilities to theoreti-
cal probabilities if:

   a.    There are only two outcomes, e.g., success or failure.  
   b.    The process is repeated a  fi xed number of times.  
   c.    The replications are independent of each other.  
   d.    The probability of success in a group is a  fi xed value, P.  
   e.    The number of successes, x, in group size n, is of interest.     

 A binomial distribution based on dichotomous data approximates a normal dis-
tribution based on continuous data when the sample size is large and P = .50. 
Consequently, the mean of a binomial distribution is equal to n*P with variance 
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equal to n*P*Q. A standardized score ( z - score ), which forms the basis for the 
 normal distribution, can be computed from dichotomous data as follows:

      

x nP
z

nPQ

-
=

   

where:

   x  =  score  
  nP  =  mean  
  nPQ  =  variance.    

 A frequency distribution of standard scores (z-scores) has a mean of zero and a 
standard deviation of one. The z-scores typically range in value from −3.0 to +3.0 
in a symmetrical distribution. A graph of the binomial distribution, given P = Q and 
a large sample size, will be symmetrical and appear normally distributed. 

 Knowledge of the binomial distribution is helpful in conducting research and 
useful in practice. Binomial distributions are skewed except for those with a prob-
ability of success equal to .50. If P > .50, the binomial distribution is skewed left; if 
P < .50, the binomial distribution is skewed right. The mean of a binomial distribu-
tion is n*P and the variance is n*P*Q. The binomial distribution given by P(x in n) 
uses the combination formula, multiplication and addition rules of probability. The 
binomial distribution can be used to compare sample probabilities to expected theo-
retical probabilities. For P = .50 and large sample sizes, the binomial distribution 
approximates the normal distribution. 

   BINOMIAL R Program 

 The BINOMIAL program simulates binomial probability outcomes. The number of 
replications, number of trials, and probability value are input to observe various 
binomial probability outcomes. Trying different values should allow you to observe 
the properties of the binomial distribution. The program can be replicated any num-
ber of times, but extreme values are not necessary to observe the shape of the distri-
bution. The relative frequencies of  x  successes will be used to obtain the approximations 
of the binomial probabilities. The theoretical probabilities, mean and variance of the 
relative frequency distribution, and error will be computed and printed. 

 The program must specify  numReplications  to indicate the number of replica-
tions,  numTrials  to indicate the number of respondents (or sampling points) per 
replication, and  Probability  to indicate the probability of success (or population 
proportion). The initial values are set at 5 respondents (sample size or number of 
trials), 500 replications, and a population proportion of .50. The program starts by 
de fi ning these values and then creates a random sample from the binomial distribu-
tion of size  numReplications  with  numTrials  sampling points per replication and a 
probability of success,  Probability .  



110 6 Statistical Distributions

   BINOMIAL Program Output 

 Given the following values:    

  Number of Trials  =  5  
  Number of Replications  =  500  
  Probability  =  0.5       

  Mean number of successes  =  2.58  
  Mean expected number of successes  =  2.5       

  Sample variance  =  1.314  
  Expected variance  =  1.25       

    Rel. Freq.  Probability Error  
  Successes  =  0 0.024  0.031  -0.007  
  Successes  =  1 0.170  0.156   0.014  
  Successes  =  2 0.264  0.312  -0.048  
  Successes  =  3 0.322  0.312   0.010  
  Successes  =  4 0.184  0.156   0.028  
  Successes  =  5 0.036  0.031   0.005    

   BINOMIAL Exercises 

     1.    Run BINOMIAL for n = 5,  P  = . 50 , and 500 replications. Enter the results below   .  

    a.    What is the maximum absolute value of the errors?__________________  
   b.     Use the P (x in n) formula for the binomial distribution to prove P(3 in 5) is correct. 

______________________________________________________________  
   c.    What is the mean number of successes in the simulation?__________________  
   d.    What is the mean expected number of successes?__________________  
   e.    What is the sample variance?__________________  

 NO. SUCCESSES N  REL FREQ.  PROBABILITY P  ERROR 

 0  ______________  ______________  ______________ 
 1  ______________  ______________  ______________ 
 2  ______________  ______________  ______________ 
 3  ______________  ______________  ______________ 
 4  ______________  ______________  ______________ 
 5  ______________  ______________  ______________ 
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   f.    What is the expected variance?__________________  
   g.    Use the probabilities to calculate the expected mean and variance. 

Mean = _________ Variance = __________      

    2.    Run BINOMIAL for n = 5, P = . 30 , and 500 replications. Enter the results below.     

    a.    What is the maximum absolute value of the errors?_________________  
   b.     Use the P (x in n) formula for the binomial distribution to prove P(3 in 5) is correct. 

________________________________________________________________  
   c.    What is the mean number of successes in the simulation?_________________  
   d.    What is the mean expected number of successes?_________________  
   e.    What is the sample variance?_________________  
   f.    What is the expected variance?_________________  

   g.    Use the probabilities to calculate the expected mean and variance. 
     Mean = _________Variance = __________      

    3.    Run BINOMIAL for n = 5,  P  = . 70 , and 500 replications. Enter the results below.     
    a.    What is the maximum absolute value of the errors? _________________  
   b.     Use the P (x in n) formula for the binomial distribution to prove P(3 in 5) is correct. 

_________________________________________________________________  
   c.    What is the mean number of successes in the simulation? _________________  
   d.    What is the mean expected number of successes? _________________  
   e.    What is the sample variance? _________________  
   f.    What is the expected variance? _________________  
   g.    Use the probabilities to calculate the expected mean and variance. 

  __________________________________________________________________________________________________  

  __________________________________________________________________________________________________          

 NO. SUCCESSES N  REL FREQ.  PROBABILITY P  ERROR 

 0 
 1 
 2 
 3 
 4 
 5 

 NO. SUCCESSES N  REL FREQ.  PROBABILITY P  ERROR 

 0 
 1 
 2 
 3 
 4 
 5 
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   Normal Distribution 

 In the seventeenth and eighteenth centuries, two mathematicians were asked by 
gamblers to help them improve their chances of winning at cards and dice. The two 
mathematicians, who  fi rst studied this area of probability, were James Bernoulli 
and Abraham DeMoivre. James Bernoulli developed the formula for combinations 
and permutations, and their binomial expansions, which lead to the binomial dis-
tribution. Abraham DeMoivre coined the phrase  law of errors  from observing 
events such as archery matches. The basic idea was that negative errors occurred 
about as often as positive errors. DeMoivre used this understanding to derive an 
equation for an  error curve . DeMoivre in 1733 was credited with developing the 
mathematical equation for the  normal curve . In the nineteenth century, Carl 
Fredrick Gauss (1777–1855), working in the  fi eld of astronomy further developed 
the concept of a mathematical bell-shaped curve and probability. Today, his picture 
and mathematical equation for the normal curve appear on the deutsche mark cur-
rency of Germany. 

 The normal distribution or normal curve is a mathematical equation for random 
chance errors. The frequency distribution of many continuous random variables 
used in research closely approximates the normal distribution. Consequently, the 
normal distribution is a useful mathematical model in which to study variable rela-
tionships in the physical and social sciences. 

 The mathematical equation for the normal distribution indicates a normal density 
that is an exponential function of a quadratic form. The normal curve equation 
de fi nes an in fi nite number of curves, depending upon the values of the mean and 
standard deviation. The normal curve equation is de fi ned as:

      

2 2( ) /21

2
xY e m s

s p
- -=

   

where:

   Y = height of the curve at a given score  
  X = score at a given height  
   m  = mean of the X variable  
   s  = standard deviation of X variable  
   p  = constant equal to 3.1416 (pi)  
   e  = constant equal to 2.7183 (base of natural logarithm)    

 When a set of X scores are transformed to have a mean of zero (0) and a standard 
deviation of one (1), which are called standard scores or z-scores, the mathematical 
equation is reduced to:

      

2 /21

2
zY e

p
-=

    

 This equation using standard scores is referred to as the  standard normal 
curve  with z-score values that range primarily from −3 to +3 and correspond to 
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the ordinates of Y (density or height of the curve). A z score is calculated as: 
(X − mean)/standard deviation. The tabled values indicate the z-score values 
between −3 and +3 corresponding to each y-ordinate value. A graph of these 
values yields a normal distribution or bell-shaped curve. 

 Table of z-score and y-ordinate values

 z-score  y-ordinates 

 −3.0  .004 
 −2.5  .018 
 −2.0  .054 
 −1.5  .130 
 −1.0  .242 
 −0.5  .352 

 0.0  .399 
 +0.5  .352 
 +1.0  .242 
 +1.5  .130 
 +2.0  .054 
 +2.5  .018 
 +3.0  .004 

 

Maximum ->
(.3989)

−3 +30
z-scores

         

 The standard normal distribution has a mean of 0, and a standard deviation of 1. 
The standard normal distribution is bell-shaped and symmetrical. The probabil-
ity area under the standard normal curve is 1.0 corresponding to 100 % of the 
area under the curve. The density function is reasonably complex enough that the 
usual method of  fi nding the probability area between two speci fi ed values 
requires using integral calculus to calculate the probabilities. The standard nor-
mal table of z-values in the appendix of textbooks has been derived by this 
method of integral calculus. Basically, the normal distribution is an exponential 
function forming a symmetrical curve, with in fl ection points at −1 and 1. The 
bell-shaped curve approaches but never touches the X-axis. The normal distribu-
tion has an in fi nite number of different curves based upon the values of the mean 
and standard deviation. The normal distribution curve using z-scores is called the 
standard normal curve. The probabilities of the bell-shaped curve are based on 
the normal distribution.  
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   NORMAL R Program 

 The NORMAL R program approximates standard normal probabilities. Initial values 
are set for 1,000 random numbers between the z-score intervals −3 and 3 to corre-
spond to +/−3 standard deviations around the true P value. The  DensityHeight  is 
 fi xed at .3989 corresponding to the normal distribution. The normal curve height is 
calculated as 1/SQRT(2*3.1416) = 0.3989. 

 The  NumPoints ,  IntervalMin , and  IntervalMax  variables are user inputted val-
ues.  DensityHeight  has a single value since the density function corresponds to a 
single distribution with z-score values between −3 and +3. These represent the area 
under the curve for values at the lower end of the interval and the upper end of the 
interval. These two extra variables are needed because if the lower end of the inter-
val is negative (left of the mean) and the upper end is zero or positive (right of the 
mean), then the two probabilities are added together to get the total probability. If 
both are positive, then the lower is subtracted from the upper to leave only the area 
between the two. If both are negative, then the upper (which would be the smaller 
absolute difference from the mean) is subtracted from the lower. 

 The approximation of probabilities in the program are carried out by specify-
ing an interval (A < -- > B) and determining the probability, P (A < Z < B). Each 
approximation is made on the basis of 1,000 random points with an interval 
A < -- >B corresponding to +/−3 and a maximum height of 0.3989. The theoretical 
probabilities are computed and printed. In order to avoid entering a standard nor-
mal probability table into the program, an approximation is used. It was given by 
Stephen E. Derenzo in “Approximations for Hand Calculators using Small Integer 
Coef fi cients,”  Mathematics of Computation ,  31 , 1977, pp. 214–225. For A  ³  0, the 
approximation is:

      

1 ((83A 351)A 562)A
P(Z A) 1

2 703 165A
exp

é ù+ +ê ú< = - -
ê ú+ë û    

in which 1/2 exp [ x ] means 1/2 e x . This approximation has an error of no more than 
0.001 for sample sizes of 10,000 or more.  

   NORMAL Program Output 

  Sample size  =  1000 Interval width  =  6       

  Interval Sample P True P Error  
  -3 <  Z < 3 0.986 0.997 -0.011    
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   NORMAL Distribution Exercises 

     1.    Run the NORMAL program and complete the following table ( NumPoints < - 
1000).  Draw small graphs in the last column and shade the area that represents 
the probability.     

 Z INTERVAL  APPROXIMATIONS  TRUE PROBABILITY  GRAPH 

 0 < Z < 1  _________________  ___________________  _________ 
 −1 < Z < 1  _________________  ___________________  _________ 
 0 < Z < 2  _________________  ___________________  _________ 
 −2 < Z < 2  _________________  ___________________  _________ 
 0 < Z < 3  _________________  ___________________  _________ 
 −3 < Z < 3  _________________  ___________________  _________ 
 1.54 < Z < 2.67  _________________  ___________________  _________ 
 −0.45 < Z < 1.15  _________________  ___________________  _________ 

    2.    Run the NORMAL program again with  NumPoints  < - 10000  for the 
Z intervals.     

 Z INTERVAL  APPROXIMATIONS  TRUE PROBABILITY  GRAPH 

 0 < Z < 1  _________________  ___________________  _________ 
 −1 < Z < 1  _________________  ___________________  _________ 
 0 < Z < 2  _________________  ___________________  _________ 
 −2 < Z < 2  _________________  ___________________  _________ 
 0 < Z < 3  _________________  ___________________  _________ 
 −3 < Z < 3  _________________  ___________________  _________ 
 1.54 < Z < 2.67  _________________  ___________________  _________ 
 −0.45 < Z < 1.15  _________________  ___________________  _________ 

   a.     Does  NumPoints  < - 1000  or  NumPoints  < - 10000  give better 
approximations? 
 ______________________________________________________________  

   b.     In general will larger sample sizes more closely approximate the normal dis-
tribution P value? 
 YES ________ NO _________       

    3.    Compare the IntervalWidth (−3 < Z < +3) and DensityHeight of .3989 to the 
IntervalWidth (−4 < Z < +4) and DensityHeight of .3989 in the NORMAL pro-
gram using  NumPoints  < - 1000 .     
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 Z INTERVAL  APPROXIMATIONS 
 TRUE 
PROBABILITY  DENSITY HEIGHT 

 −3 < Z < +3  ______________  ______________  .3989 

 −4 < Z < +4  ______________  ______________  .3989 

   a.    Will the approximations be different? 

 YES ________ NO ________  

   b.    Will the approximations become more similar as sample size increases? 

 YES ________ NO ________         

   Chi-Square Distribution 

 The chi-square distribution, like the other distributions, is a function of sample size. 
There are an in fi nite number of chi-square curves based on sample size. In fact, as 
sample size increases, the chi-square distribution becomes symmetrical and bell-
shaped (normal), but with a mean equal to the degrees of freedom (df) and mode 
equal to df − 2. 

 The degrees of freedom are related to sample size, because it takes on a value of 
N − 1. The degree of freedom concept relates to the number of values or parameters 
free to vary. If a set of  fi ve numbers are given, e.g., 5 4 3 2 1, and the sum of the 
numbers is known, i.e.,  S X = 15, then knowledge of four numbers implies that the 
 fi fth number is not free to vary. For example, four out of  fi ve numbers are 10, 15, 
25, and 45 with  S X = 100. Since the four numbers sum to 95, the  fi fth number must 
be 5 in order for the sum of the  fi ve numbers to equal 100. This same principle 
applies to a set of numbers and the mean. 

 Karl Pearson  fi rst derived the chi-square distribution as a frequency distribution 
of squared  z - score  values. The chi-square statistic was computed as:

      

2

2 iX M
c

s
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with df = N − 1. A z-score was calculated as z = [(X − Mean)/Standard Deviation]; 
where X = a raw score, M = the sample mean, and  s  = population standard deviation. 
The  z - score  transformed a raw score into a standard score based on standard 
 deviation units. The population standard deviation ( s ) is indicated in the formula, 
however, a sample standard deviation estimate was generally used because the pop-
ulation value was not typically known. 

 Chi-square is related to the variance of a sample. If we squared both the numera-
tor and denominator in the previous formula, we would get:
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 The numerator of the formula can be expressed as sample variance because 
 S (X − M) 2  represents the sum of squared deviations, denoted as SS, so the sample 
variance in the numerator can be written as: S 2  = SS/N − 1. With a little math, 
SS = (N − 1)S 2 . Consequently, if samples of size N with variances, S 2 , are computed 
from a normal distribution with variance of  s  2 , the  c  2  statistic could be written as:

      

2
2

2
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=
   

with N − 1 degrees of freedom. The chi-square statistic is therefore useful in testing 
whether a sample variance differs signi fi cantly from a population variance because 
it forms a ratio of sample variance to population variance. Since the chi-square dis-
tribution re fl ects this ratio of variances, all chi-square values are positive and range 
continuously from zero to positive in fi nity. 

 The chi-square statistic,  c  2  = (N − 1) S 2 / s  2 , computed by taking random samples 
from a normal population, produces a different chi-square distribution for each 
degree of freedom (N − 1). The chi-square distribution has a mean equal to the 
degrees of freedom (df) and a mode equal to df − 2. The chi-square distribution 
becomes symmetrical and bell-shaped as sample size increases. The variance of the 
chi-square distribution is two times the degree of freedom (2*df).  

   CHISQUARE R Program 

 The CHISQUARE R program can produce an unlimited number of chi-square dis-
tributions, one for each degree of freedom. For small degrees of freedom, the chi-
square distribution should be skewed right. As the degrees of freedom increases, 
that is, sample size increases, the mode of the chi-square distribution moves to the 
right. The chi-square values should be positive and range continuously from zero to 
positive in fi nity. The program permits selection of different sample sizes from a 
normal distribution. The program will initially select 250 samples of the desired 
size. Each time, the chi-square statistic will be calculated. The 250 sample chi-
square values are graphed to show the chi-square sampling distribution. The chi-
square statistics will be recorded in a relative frequency table. A table is printed with 
the relative frequencies within each interval. The relative frequencies are graphed 
using the  barplot function  (histogram) to graphically display the chi-square sam-
pling distribution. The group interval and frequency, along with the title and scal-
ing, are set to the default for the Y and X-axis. Finally, the modal chi-square value 
and the range of the chi-square values are printed.  
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   CHISQUARE Program Output 

    Pop. Mean  =  0  
    Pop. SD  =  1  
    Sample Size  =  6  
    N Replications  =  250       

    Interval Rel Freq  
    ( 0.0, 1.0) 0.052  
    ( 1.0, 2.0) 0.072  
    ( 2.0, 3.0) 0.148  
    ( 3.0, 4.0) 0.152  
    ( 4.0, 5.0) 0.156  
    ( 5.0, 6.0) 0.104  
    ( 6.0, 7.0) 0.104  
    ( 7.0, 8.0) 0.084  
    ( 8.0, 9.0) 0.044  
    ( 9.0,10.0) 0.012  
    (10.0,11.0) 0.032  
    (11.0,12.0) 0.016  
    (12.0,13.0) 0.000  
    (13.0,14.0) 0.016  
    (14.0,15.0) 0.004  
    (15.0,16.0) 0.000  
    (16.0,17.0) 0.000  
    (17.0,18.0) 0.000  
    (18.0,19.0) 0.000  
    (19.0,20.0) 0.000            

   Modal Group  =  5 Range of chi-square values  =  21.1 
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   CHISQUARE Exercises 

     1.    Run the CHISQUARE program for each sample size and degrees of freedom 
listed below; use a population mean of 0, standard deviation of 1, and 250 repli-
cations. Graph the shape of the distributions and list the modal group. The modal 
group is the group with the highest relative frequency.
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| | | | | | |
2

N=2, MODAL GROUP_____ N=3, MODAL GROUP_____ 

N=4, MODAL GROUP_____ N=5, MODAL GROUP_____ 

N=6, MODAL GROUP_____ N=7, MODAL GROUP_____ 

||
1816  14 10 12864

| | | | | | |
2

||
1816  14 10 12864

| | | | | | |
2

||
1816  14 10 12864

| | | | | | |
2

||
1816  14 10 12864

| | | | | | |
2

||
1816  14 10 12864

| | | | | | |
2

| |
1816  14 10 12864

        

   a.     Does the shape of the chi-square distribution change as sample size increases? 
YES ______ NO ________  

   b.     List the modal group values from the graphs in the table. The mode of the 
theoretical chi-square distribution is (DF − 2) when DF > 2. List the theoretical 
chi-square mode for each sample size. (ERROR = MODAL GROUP − TRUE 
MODE)  

  N   DF  MODAL GROUP  TRUE MODE  ERROR 

 2  1  _____________  Not Applicable  _______ 
 3  2  _____________  Not Applicable  _______ 
 4  3  _____________  ____________  _______ 
 5  4  _____________  ____________  _______ 
 6  5  _____________  ____________  _______ 
 7  6  _____________  ____________  _______ 



121CHISQUARE Exercises

    2.    Run the CHISQUARE program again for the following sample sizes, but use a 
population mean of 10, standard deviation of 4, and 250 replications. Graph the 
shape of the distributions and list the range of the chi-square values. The range is 
the maximum minus the minimum chi-square value.

 

| | | | | | | | |

N=5,  RANGE_____ N=10,  RANGE_____

18161412108642

| | | | | | | | |
18161412108642

| | | | | | | | |

N=15,  RANGE_____ N=20,  RANGE_____

18161412108642

| | | | | | | | |
18161412108642

| | | | | | | | |

N=25,  RANGE_____ N=30,  RANGE_____

18161412108642

| | | | | | | | |
18161412108642

        

                     a.     Compare these graphs with those in Exercise 1. What differences do you see?

_____________________________________________________________

______________________________________________________________  

   b.     The variance of the theoretical chi-square distribution is two times the degrees 
of freedom (2*df). List the theoretical chi-square variance and standard devi-
ation. Divide the range of the chi-square values by four (Range/4) to approxi-
mate the standard deviation of the simulated chi-square distribution. 
(ERROR = APPROXIMATE STANDARD DEVIATION − THEORETICAL 
STANDARD DEVIATION)  

 N   s  2    s   Range/4  ERROR 

 5  _____  _________  _______________  ________ 
 10  _____  _________  _______________  ________ 
 15  _____  _________  _______________  ________ 
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 N   s  2    s   Range/4  ERROR 

 20  _____  _________  _______________  ________ 
 25  _____  _________  _______________  ________ 
 30  _____  _________  _______________  ________ 

   c.     Does the theoretical standard deviation compare to the estimated standard 
deviation? 
 YES ________ NO _______         

   t-Distribution 

 The early history of statistics involved probability and inference using large samples 
and the normal distribution. The standard normal curve provided a probability dis-
tribution that was bell-shaped for large samples, but was peaked for small samples, 
which resulted in larger probability areas in the tails of the distribution. At the turn 
of the century, a chemist named William S. Gossett, who was employed at a brew-
ery in Dublin, Ireland, discovered the inadequacy of the normal curve for small 
samples. Gossett was concerned with the quality control of the brewing process and 
took small samples to test the beer, but didn’t obtain a normal bell-shaped curve 
when his results were graphed. 

 William Gossett empirically established sampling distributions for smaller sam-
ples of various sizes using body measurements of 3,000 British criminals. He started 
with an approximate normal distribution, drew large samples and small samples, to 
compare the resulting sampling distributions. He quickly discovered that probabil-
ity distributions for small samples differed markedly from the normal distribution. 
William Gossett wrote a mathematical expression for these small sample distribu-
tions, and in 1908 he published the results under the pen name, “Student.” The 
Student’s t-distribution was a major breakthrough in the  fi eld of statistics. 

 The standard normal distribution is bell-shaped, symmetrical, and has a mean of 
zero and standard deviation of one. The t-distribution is uni-modal, symmetrical, 
and has a mean of zero, but not a standard deviation of one. The standard deviation 
of the t-distribution varies, so when small sample sizes are randomly drawn and 
graphed, the t-distribution is more peaked (leptokurtic). The probability areas in the 
tails of the t-distribution are consequently higher than those found in the standard 
normal distribution. For example, the probability area = .046 in the standard normal 
distribution at two standard deviations from the mean, but the probability area = .140 
in the t-distribution at two standard deviations for a sample size of four. This indi-
cates a greater probability of error using smaller samples. As sample sizes become 
larger, the t-distribution and standard normal distribution take on the same bell-
shaped curve. In fact, the t-values and the z-score values become identical around 
sample sizes of 10,000, which is within .001 error of approximation as indicated in 
the previous chapter. Researchers today often use the t-distribution for both small 
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sample and large sample estimation because it becomes identical to the normal dis-
tribution as sample size increases. 

 In many disciplines, such as education, psychology, and business, variable values 
are normally distributed. Achievement tests, psychological tests, the height or 
weight of individuals, and the time to complete a task are examples of variables 
commonly used in these disciplines. In many instances, the population mean and 
standard deviation for these variables are not known, but rather estimated from 
sample data. This forms the basis for making an inference about the population 
 parameters (e.g., mean and standard deviation) from the sample statistics (sample 
mean and standard deviation). Given small random samples, the t-distribution 
would better estimate the probability under the frequency distribution curve. Given 
large random samples, both the standard normal distribution and t-distribution 
would both yield similar probabilities under the frequency distribution curve. 

 If the population standard deviation is known, the z-score can be computed as:

      /

X
z

n

m

s

-
=

    

 Otherwise, the sample standard deviation is used to compute a t-value:

      /

X
t

S n

m-
=

    

 The sample standard deviation,  S , as an estimate of the population standard 
 deviation,  s , is typically in error, thus the sample means are not distributed as a 
standard normal distribution, but rather a t-distribution. When sample sizes are 
larger, the sample standard deviation estimate becomes similar to the population 
standard deviation. Consequently, the shape of the t-distribution is similar to 
the standard normal distribution. This points out why the estimate of the population 
standard deviation is critical in the  fi eld of statistics. Many researchers attempt to 
estimate better the unknown population standard deviation by one of the following 
methods:

    1.    Use test publisher norms when available ( m ,  s )  
    2.    Take an average value from several research studies using the same variable  
    3.    Take large samples of data for better representation  
    4.    Divide the range of sample data by six (see Chap.   5    )     

 The t-distribution is symmetrical, unimodal, and has a mean of zero. The 
t-distribution has a greater probability area in its tails than the standard normal dis-
tribution due to sample estimation of the population standard deviation. The shape 
of the t-distribution is not affected by the mean and variance of the population from 
which random sampling occurs. As the sample size increases, the t-distribution 
becomes similar to the standard normal distribution.  

http://dx.doi.org/10.1007/978-1-4614-6227-9_5
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   t-DISTRIBUTION R Program 

 The t-DISTRIBUTION program creates a z distribution of z values and a t distribu-
tion of t-values. The program speci fi es a population mean and standard deviation, 
sample size, and the number of replications (samples to be taken), which are  initially 
set but can be changed. The program then selects a random sample of that size, 
computes the sample mean and sample standard deviation, and then the z- and 
t- statistics. This process will be repeated 250 times. The 250 z- and t-statistics, 
which arise from these simulations, will be tabulated and printed in a frequency 
table. By comparing the frequency tables for t and z, you will be able to observe the 
higher probability in the heavier tails of the t-distribution. By varying the sample 
size, you will be able to observe how the shape of the t-distribution changes and 
becomes more normally distributed as the sample size increases.  

   t-DISTRIBUTION Program Output 

   Pop. Mean  =  50 Pop. SD  =  15  
   Sample Size  =  30  
   N Replications  =  250       

    Interval Freq t Freq z  
    (-4.0,-3.5) 0.000 0.000  
    (-3.5,-3.0) 0.000 0.000  
    (-3.0,-2.5) 0.004 0.004  
    (-2.5,-2.0) 0.020 0.008  
    (-2.0,-1.5) 0.024 0.032  
    (-1.5,-1.0) 0.076 0.080  
    (-1.0,-0.5) 0.196 0.180  
    (-0.5, 0.0) 0.192 0.208  
    ( 0.0, 0.5) 0.184 0.200  
    ( 0.5, 1.0) 0.140 0.124  
    ( 1.0, 1.5) 0.072 0.068  
    ( 1.5, 2.0) 0.060 0.080  
    ( 2.0, 2.5) 0.016 0.008  
    ( 2.5, 3.0) 0.012 0.000  
    ( 3.0, 3.5) 0.004 0.008  
    ( 3.5, 4.0) 0.000 0.000 
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   t-DISTRIBUTION Exercises 

     1.    Run t-DISTRIBUTION for population mean of 0 and a standard deviation of 1. 
Use a sample size of 5 and perform 1,000 replications ( popMean  < - 0, pop-
StdDev  < - 1, sampleSize  < - 5, replicationSize  < - 1000).  
Record the results below.  

  INTERVAL    FREQ t    FREQ z  

 (−4.0, −3.5)  ________  ________ 
 (−3.5, −3.0)  ________  ________ 
 (−3.0, −2.5)  ________  ________ 
 (−2.5, −2.0)  ________  ________ 
 (−2.0, −1.5)  ________  ________ 
 (−1.5, −1.0)  ________  ________ 
 (−1.0, −0.5)  ________  ________ 
 (−0.5, 0.0)  ________  ________ 
 ( 0.0, 0.5)  ________  ________ 
 ( 0.5, 1.0)  ________  ________ 
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  INTERVAL    FREQ t    FREQ z  

 ( 1.0, 1.5)  ________  ________ 
 ( 1.5, 2.0)  ________  ________ 
 ( 2.0, 2.5)  ________  ________ 
 ( 2.5, 3.0)  ________  ________ 
 ( 3.0, 3.5)  ________  ________ 
 ( 3.5, 4.0)  ________  ________ 

   a.     Does the t-statistic distribution have higher frequencies in the tails of the dis-
tribution than the z-statistic distribution? YES _______ NO _______  

   b.     Graph the z-statistic distribution with a  solid line  and the t-statistic  distribution 
with a  dashed line . Are the two distributions the same? YES ___________ 
NO _______

               

    2.    Run t-DISTRIBUTION again for population mean of 0 and a standard deviation 
of 1. Use a sample size of 100 and perform 1,000 replications ( popMean  < - 
0, popStdDev  < - 1, sampleSize  < - 100, replicationSize  
< - 1000).  Record the results below.  

  INTERVAL    FREQ t    FREQ z  

 (−4.0, −3.5)  ________  ________ 
 (−3.5, −3.0)  ________  ________ 
 (−3.0, −2.5)  ________  ________ 
 (−2.5, −2.0)  ________  ________ 
 (−2.0, −1.5)  ________  ________ 
 (−1.5, −1.0)  ________  ________ 
 (−1.0, −0.5)  ________  ________ 
 (−0.5, 0.0)  ________  ________ 
 ( 0.0, 0.5)  ________  ________ 
 ( 0.5, 1.0)  ________  ________ 
 ( 1.0, 1.5)  ________  ________ 
 ( 1.5, 2.0)  ________  ________ 
 ( 2.0, 2.5)  ________  ________ 
 ( 2.5, 3.0)  ________  ________ 
 ( 3.0, 3.5)  ________  ________ 
 ( 3.5, 4.0)  ________  ________ 
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   a.     Does the t-statistic distribution have higher frequencies in the tails of the 
 distribution than the z-statistic distribution? YES _______ NO _______  

   b.     Graph the z-statistic distribution with a  solid line  and the t-statistic distribu-
tion with a  dashed line . Are the two distributions the same? YES _______ 
NO ______  

   c.     As sample size increased from n = 5 to n = 100, did the t-statistic distribution 
more closely approximate a normal distribution? YES ________ NO ______

               

    3.    Run t DISTRIBUTION again for population mean of 0 and a standard deviation 
of 15. Use a sample size of 5 and perform 1,000 replications ( popMean  < - 0, 
popStdDev  < - 15, sampleSize  < - 5, replicationSize  < - 
1000).  Record the results below.  

  INTERVAL    FREQ t    FREQ z  

 (−4.0, −3.5)  ________  ________ 
 (−3.5, −3.0)  ________  ________ 
 (−3.0, −2.5)  ________  ________ 
 (−2.5, −2.0)  ________  ________ 
 (−2.0, −1.5)  ________  ________ 
 (−1.5, −1.0)  ________  ________ 
 (−1.0, −0.5)  ________  ________ 
 (−0.5, 0.0)  ________  ________ 
 ( 0.0, 0.5)  ________  ________ 
 ( 0.5, 1.0)  ________  ________ 
 ( 1.0, 1.5)  ________  ________ 
 ( 1.5, 2.0)  ________  ________ 
 ( 2.0, 2.5)  ________  ________ 
 ( 2.5, 3.0)  ________  ________ 
 ( 3.0, 3.5)  ________  ________ 
 ( 3.5, 4.0)  ________  ________ 

    a.     Does the t-statistic distribution have higher frequencies in the tails of the 
 distribution than the z-statistic distribution? YES _______ NO _______  
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   b.     Graph the z-statistic distribution with a  solid line  and the t-statistic  distribution 
with a  dashed line . Are the two distributions the same? YES _______ 
NO _______  

   c.     Is the t-statistic distribution affected by the population standard deviation 
value? YES _______ NO _______  

   d.     Is the t-statistic distribution affected by the population mean value? 
YES _______ NO _______

                  

   F-Distribution 

 Sir Ronald Fisher was interested in extending our knowledge of testing mean differ-
ences to an analysis of the variability of scores, i.e., variance. He was speci fi cally 
interested in comparing the variance of two random samples of data. For example, 
if a random sample of data was drawn from one population and a second random 
sample of data was drawn from a second population, the two sample variances could 
be compared as an  F - ratio : F = S 2  

1
 /S 2  

2 .
  The F-ratio is equal to one if the variances of 

the two random samples are the same. The F-distribution in the appendix reveals 
this for F-values with df = ∞, ∞ in the numerator and denominator. The F-ratio could 
be less than one, depending upon which sample variances were in the numerator and 
denominator, but F-values less than one are not considered, so we always place the 
larger sample variance in the numerator. 

 If several random samples of data were drawn from each population and the 
F-ratio computed on the variances for each pair of samples, a sampling distribution 
of the F’s would create the F-distribution. Sir Ronald Fisher determined that like the 
t- distribution and chi-square distribution, the F-distribution was a function of sam-
ple size; speci fi cally the sizes of the two random samples. Consequently, a family of 
F-curves can be formed based on the degrees of freedom in the numerator and 
denominator. An  F - curve  is positively skewed with F-ratio values ranging from 
zero to in fi nity (∞). If the degrees of freedom for both samples are large, then the 
F-distribution approaches symmetry (bell-shaped). 
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 Example F-curves for certain degree of freedom pairs can be illustrated as:
 Frequency

1.0

.8

.6

.4

.2

0

0 ∞

F-values 

df = 2 ,12

df = 12 , 2

43.532.521.51.5

         

 Because there are two degrees of freedom associated with an F-ratio, F-tables were 
constructed to list the F-values expected by chance with the degrees of freedom for the 
numerator across the top (column values) and the degrees of freedom for the denomi-
nator along the side (row values). The corresponding intersection of a column and row 
degrees of freedom would indicate the tabled F-value. If the computed F-value is 
greater than the tabled F-value, we conclude that the two sample variances are statisti-
cally different at a speci fi ed level of probability, e.g., .05 level of signi fi cance. 

   Relationship of F-Distribution to Chi-Square Distribution and t-Distribution 

 In previous chapters, distributions were graphed based on various sample sizes. 
We learned that with large sample sizes, sample estimates were closer to population 
values (z-values) and the sampling distributions (frequency distributions) were 
more normally distributed. Similarly, the chi-square and t-distributions are also a 
function of sample size. In fact, as sample size increases, the t, z, and chi-square 
sampling distributions became symmetrical and bell-shaped (normal). The sam-
pling distributions of the F-ratio operate similar to the t, z, and chi-square family of 
curves based on sample size. 

 The t-distribution with degrees of freedom equal to in fi nity is the normal distri-
bution. Consequently, t-values become equal to z-values when sample sizes are 
large (n > 10,000 to in fi nity). Check this by referring to the last row of the tabled 
t-values in the Appendix where you will  fi nd that the t-values are the same as the 
z-values in the normal distribution table. For example, t = 1.96 is equal to z = 1.96 at 
the .05 level of signi fi cance. The normal distribution can be considered a special 
case of the t-distribution, because as sample size increases, the t-distribution 
becomes the normal distribution, i.e., t-values = z-values. 



130 6 Statistical Distributions

 The F-distribution, with  one  degree of freedom in the numerator and the same 
degree of freedom in the denominator as the t-test, is equal to the square of the 
t-distribution value. To check this, refer to the  fi rst column of the tabled F-values 
(df 

1
  = 1) in the Appendix where you will  fi nd that the F-values are the square of the 

t-values in the t-test table (df 
2
  = degrees of freedom for t-test). For example, if 

F = 3.84, then t = 1.96 for df 
1
  = 1 and df 

2
  = ∞. In fact, since t 2  = z 2  = F for one degree of 

freedom given large samples, the t-distribution and normal distribution are special 
cases of the F-distribution. 

 The F-distribution values, with degrees of freedom in the denominator equal to 
in fi nity, can be multiplied by the F-value numerator degrees of freedom to compute 
a chi-square value. To check this, refer to the last row of the tabled F-values in the 
Appendix where you will  fi nd that the F-values multiplied by the corresponding 
numerator degrees of freedom (df 

1
 ) equals the chi-square value in the chi-square 

distribution table. For example, F = 2.21 for df 
1
  = 5 and df 

2
  = ∞, therefore, chi-

square = 11.05 with 5 degrees of freedom, i.e., 5*2.21 = 11.05! Consequently, the 
chi-square distribution is also a special case of the F-distribution.  

   Test of Difference Between Two Independent Variances 

 The sampling distribution of the F-ratio of two variances cannot be approximated 
by the normal, t, or chi-square sampling distributions because sample sizes seldom 
approach in fi nity, and unlike the normal and t-distributions, F sampling distribu-
tions range from zero to in fi nity rather than from negative in fi nity to positive in fi nity. 
Consequently, the F-distribution, named after Sir Ronald A. Fisher, is used to test 
whether two independent sample variances are the same or different. 

 If the variances from two randomly drawn samples are equal, then the F-ratio 
equals one (largest sample variance over the smallest sample variance), otherwise it 
increases positively to in fi nity. The ratio of the two sample variances is expressed as 
F = S 2  

1
 /S 2  

2
 , with a numerator and denominator degrees of freedom. For example, the 

distance  twenty suburban  housewives traveled to the grocery store varied by 2 miles 
and the distance  ten rural  housewives traveled to the grocery store varied by 
10 miles. We want to test if the suburban and rural mileage variance is equal: 
F = 10/2 = 5.0 with df 

1
  = 9 and df 

2
  = 19 (Note: degrees of freedom are one less than 

the respective sample sizes). We compare this computed F-ratio to the tabled F-value 
in the Appendix for a given level of signi fi cance, e.g., .01 level of signi fi cance. We 
 fi nd the 9 degrees of freedom (df 

1
 ) across the top of the F-table and the 19 degrees 

of freedom (df 
2
 ) along the side of the table. The intersection of the column and row 

indicates an F-value equal to 3.52. Since F = 5.0 is greater than tabled F = 3.52, we 
conclude that the  rural  housewives vary more in their mileage to the grocery store 
than  suburban  housewives. Another way of saying this is that the sample variances 
are not homogeneous (equal) across the two groups. 

 Since we conducted this test for only the larger variance in the numerator of the 
F-ratio, we must make a correction to the level of signi fi cance. This is accomplished 
for any tabled F-value by simply doubling the level of signi fi cance, e.g., .01 to .02 
level of signi fi cance. Therefore, F = 5.0 is statistically different from the tabled 
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F = 3.52 at the .02 level of signi fi cance (even though we looked up the F value in the 
.01 level of signi fi cance table).  

   Test of Difference Between Several Independent Variances 

 H.O. Hartley extended the F-ratio test to the situation in which three or more sample 
variances were present, which was aptly named the  Hartley F - max test . A separate 
F-max distribution table was therefore created (see Appendix). The Hartley F-max 
test is limited to using equal sample sizes and sample data randomly drawn from a 
normal population. However, Henry Winkler in 1967 at Ohio University compared 
the Hartley F-max, Bartlett, Cochran, and Levene’s tests for equal variances in his 
master’s thesis and concluded that the Hartley F-max test was the most robust (best 
choice) when sample sizes were equal. 

 Extending our previous example, the distance  twenty - one suburban  housewives 
traveled to the grocery store varied by 2 miles, the distance  twenty - one rural  house-
wives traveled to the grocery store varied by 10 miles, and the distance  twenty - one 
urban  housewives traveled to the grocery store varied by 5 miles. The Hartley F-max 
test is computed for the following example as follows:

   Step 1: Calculate the sample variances.

   Urban S 2  = 5  
  Suburban S 2  = 2  
  Rural S 2  = 10     

  Step 2: Calculate F-max test by placing largest variance over smallest variance.

   F-max = 10/2 = 5.0     

  Step 3: Determine the two separate degrees of freedom for the F-max Table.

   k = number of sample variances (column values in table)  
  k = 3  
  df = sample size − 1 (row values in the table)  
  df = 21 − 1 = 20     

  Step 4: Compare computed F-max to tabled F-max values.

   F-max = 5.0 is greater than tabled F-max = 2.95 for 3 and 20 degrees of freedom 
at the .05 level of signi fi cance. We conclude that the sample variances are  not  
homogeneous (not the same) across the three groups.       

 In summary, we  fi nd that the F-distribution is a family of frequency curves based 
upon sample size. The normal (z), t, and chi-square distributions are special cases of 
the F-distribution. The F-ratio can test whether two independent sample variances 
are homogeneous. The F-max can test whether three or more independent sample 
variances are homogeneous. The F-distribution is positively skewed for different 
numerator and denominator degrees of freedom. As sample sizes increase, the shape 
of the F-distribution becomes symmetrical.   
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   F-DISTRIBUTION R Programs 

 The  F - Curve  program simulates F-distributions for given degrees of freedom. 
It begins by de fi ning the degrees of freedom for the numerator (df1) and denomina-
tor (df2) of an F-ratio. Next, the number of replications for the simulation is de fi ned 
and the random F-values for that number of replications is taken from an 
F-distribution with the given degrees of freedom. These F-values are plotted in a 
histogram to show a representation of the F-curve. The F-curve will vary depending 
upon the degrees of freedom entered in the program. 

 The  F - Ratio  program inputs the group sizes and variances of two groups, as well 
as, the alpha level for the signi fi cance test. Next the F-ratio is calculated and placed 
into a display string along with a representation of the actual ratio as a fraction. 
Then the critical F is determined using the  qf  function, based on the alpha level and 
degrees of freedom. If the F-ratio is greater than the critical F then the decision is 
set to “reject,” otherwise it stays at “accept.” Finally, the display string for the 
F-ratio, the critical F-value, and the decision are placed into a matrix, labels are 
applied, and the matrix is displayed.  

   F-Curve Program Output 
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   F-Ratio Program Output 

   Sample 1: Size  =  20 Variance  =  10  
   Sample 2: Size  =  20 Variance  =  10  
   alpha  =  0.01       

   F ratio Tabled F Decision  
   10/10  =  1 3.03 accept    

   F-DISTRIBUTION Exercises 

     1.    Run the  F - Curve  program for each pair of degrees of freedom listed below based 
on 100 replications. Graph the F-curves on the chart. Note: The two samples are 
randomly drawn from a normal population, sample variances calculated, and the 
F-ratio computed.  

  Sample 1    Sample 2  

 df 
1
   df 

2
  

 Run 1:  5  15 
 Run 2:  15  15 
 Run 3:  15  5 

   
Frequency

0 ∞

F-values

         

    a.     Does the shape of the F-curve change based on the numerator and  denominator 
degrees of freedom? YES ______ NO ______  

   b.    Are the F-values always positive? YES ______ NO ______  
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   c.    Why are some of the F-values below 1.0? 
 _____________________________________________________ 

 ________________________________________________________      

    2.    Run the  F - Ratio  program for the following pairs of sample variances listed 
below. List the F-ratio, Tabled F-value, and Decision at the .01 level of 
signi fi cance. The  Decision  indicates whether the sample variances are 
homogeneous.  

  Sample 1    Sample 2    F-ratio    Tabled F    Decision  

 Run 1  n = 20  n = 20  _________  _________  _________ 
 S 2  = 10  S 2  = 10 

 Run 2  n = 20  n = 20  _________  _________  _________ 
 S 2  = 10  S 2  = 100 

 Run 3  n = 40  n = 20  _________  _________  _________ 
 S 2  = 100  S 2  = 10 

 Run 4  n = 20  n = 40  _________  _________  _________ 
 S 2  = 10  S 2  = 100 

 Run 5  n = 20  n = 40  _________  _________  _________ 
 S 2  = 100  S 2  = 10 

    a.     Does the sample size affect the accept or reject decision? YES ______ 
NO ______  

   b.     Can you estimate the sample variance ratio that would yield an F-value, which 
would lead to a reject decision? YES ______ NO ______  

   c.     Explain how you determined that the ratio of sample variances led to a reject 
decision. 
 ____________________________________________________________ 

 ____________________________________________________________ 

 ____________________________________________________________      

    3.    For the following list of sample variances, compute the F-max test. Find the 
Tabled F-max value at the .01 level of signi fi cance. Decide whether sample vari-
ances are homogeneous. Sample size is n = 31 fr each sample.  

  Sample 1    Sample 2    Sample 3    F-max    Tabled F    Decision  

 a.  S 2  = 10  S 2  = 10  S 2  = 10  _____  ______  __________ 
 b.  S 2  = 10  S 2  = 100  S 2  = 100  _____  ______  __________ 
 c.  S 2  = 40  S 2  = 10  S 2  = 20  _____  ______  __________ 
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   True or False Questions 

   Binomial Distribution    

 T  F  a. All binomial distributions are symmetrical. 
 T  F  b. If n = 10 and P = .50, then 50 % of the time x = 5. 
 T  F  c. The binomial distribution approximates the normal distribution 

when sample size is large and P = .50. 
 T  F  d. If a binomial process consists of n trials, then the number 

of successes, x, will range from 0 to n. 
 T  F  e. A binomial distribution is created based on dichotomous variables. 
 T  F  f. As sample size increases for P = .50, the mean of the binomial 

distribution (nP) more closely approximates the population mean. 
 T  F  g. As the number of replications increase the absolute value of the 

error decreases. 
 T  F  h. If P < .50, the binomial distribution is skewed right. 
 T  F  i. If P > .50, the binomial distribution is skewed left. 

   Normal Distribution    

 T  F  a. The standard normal distribution is a skewed distribution. 
 T  F  b. The value of the standard normal density Y at point Z is the 

probability that the random variable has a value equal to Z. 
 T  F  c. The standard normal distribution has a mean of 0, and standard 

deviation of 1. 
 T  F  d. The probability area under the standard normal curve can be 

approximated in the interval − 4 to + 4. 
 T  F  e. The Monte Carlo approximations of the standard normal probabili-

ties are close to the integral calculus exact theoretical probabilities. 
 T  F  f. As sample size increases, the probabilities more closely approxi-

mate a standard normal distribution. 
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   Chi-Square Distribution    

 T  F  a. The chi-square distribution is independent of the mean and variance 
of the normal distribution. 

 T  F  b. As the degrees of freedom increases, the variance of the chi-square 
distribution decreases. 

 T  F  c. The location of the mode in a chi-square distribution moves to the 
left as sample size increases. 

 T  F  d. For small degrees of freedom, the chi-square distribution is skewed 
right. 

 T  F  e. Some chi-square values are negative. 

   t-Distribution    

 T  F  a. The shape of the t-distribution depends on the standard deviation 
of the population distribution. 

 T  F  b. The smaller the sample size, the larger the probability area in the 
tails of the t-distribution. 

 T  F  c. The population mean value has  no  effect on the shape of the 
t-distribution. 

 T  F  d. The t-distribution is symmetrical, unimodal, and mean of zero. 
 T  F  e. For large sample sizes, the t-distribution is the same as the 

standard normal distribution. 
 T  F  f. The z-statistic distribution will always be normally distributed. 

   F-Distribution    

 T  F  a. The normal(z), t, and chi-square distributions are special cases of 
the F-distribution. 

 T  F  b. As sample size increases for both samples, the F-curve becomes 
symmetrical. 

 T  F  c. The F-ratio tests whether two sample variances are homogeneous. 
 T  F  d. The word “homogeneous” implies that sample variances are 

different. 
 T  F  e. The F-distribution ranges from zero to in fi nity. 
 T  F  f. The Hartley F-max test requires equal sample sizes in groups. 
 T  F  g. The F Ratio program could be used to compute a Hartley F-max 

test. 
 T  F  h. Sample size affects the F-ratio test of equal variances. 
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   Sampling Distribution 

    We ask many questions during our daily activity. When we conduct research we call 
these daily questions, research questions. Research questions then hypothesize that 
certain things have occurred or will occur from experimentation. For example, we 
might ask, Do more men or women frequent the public library? From this question 
comes a hypothesis: The percentage of women is higher than the percentage of men 
who frequent the public library. What we need is some way of determining if the 
percent difference between women and men, or the probability of occurrence, is 
beyond what would be expected by chance. 

 We investigate or research variables of interest by obtaining the data and forming 
a sampling distribution. There are many different sampling distributions, each provid-
ing an estimate of its corresponding population parameter. We therefore infer that our 
sample data will provide an estimate of the population. The sampling distributions 
provided the basis for creating different types of statistical tests, where hypotheses 
about the probability of occurrence could be tested. A sampling distribution is a fre-
quency distribution of a statistic created by taking repeated samples of a given size 
from a population. Consequently, we can create sampling distributions of the mean, 
variance, standard deviation, range, or median, as well as many other sample statis-
tics, with each providing a sample estimate of a corresponding population parameter. 

 The statement, “ A statistic is to a sample as a parameter is to a population ,” is a 
very important concept in statistics. This basic statement re fl ects the idea behind 
taking a random sample from a population, computing a statistic, and using that 
sample statistic as an estimate of the population parameter. Obviously, if the popula-
tion parameter were known, e.g., mean or standard deviation, then we would not 
need to take a sample of data and estimate the population parameter. 

 All sample statistics have sampling distributions with the variance of the sam-
pling distribution indicating the error in the sample statistic, i.e., the error in esti-
mating the population parameter. When the error is small, the statistic will vary less 
from sample to sample, thus providing us an assurance of a better estimate of the 

    Chapter 7   
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population parameter. In previous chapters, examples were provided to demonstrate 
that larger sample sizes yielded smaller error or variance in the sampling distribu-
tion, i.e., yielded a more reliable or ef fi cient statistical estimate of the population 
parameter. For example, the mean and median are both sample statistics that esti-
mate the central tendency in population data, but the mean is the more consistent 
estimator of the population mean because the sampling distribution of the mean has 
a smaller variance than the sampling distribution of the median. The variance of the 
sampling distribution of the mean is called the  standard error of the mean . It is 
designated as:

      n

σ

   

and is estimated in a sample as:

      
X

S
S

n
=

    

 The sampling distribution of a statistic is a function of sample size. In the formula, 
it is easy to see that as sample size  n  becomes larger, the denominator in the formula 
becomes larger and the standard error of the statistic becomes smaller; hence the 
frequency distribution of the statistic or sampling distribution has less variance. This 
indicates that a more precise sample estimate of the population parameter or value is 
achieved. This concept of standard error of a sampling distribution applies to any 
sample statistic that is used to estimate a corresponding population parameter. 

 An important concern in using sample statistics as estimators of population 
parameters is whether the estimates possess certain properties. Sir Ronald Fisher in 
the early twentieth century was the  fi rst to describe the properties of estimators. The 
four desirable properties of estimators are (1)  unbiased ; (2)  ef fi cient ; (3)  consistent ; 
and (4)  suf fi cient . If the mean of the sampling distribution of the statistic equals the 
corresponding population parameter, the statistic is  unbiased ; otherwise it is a biased 
estimator. If the sampling distributions of two statistics have the same mean, then 
the statistic with the smaller variance in its sampling distribution is more  ef fi cient  
(more precise or less variable) while the other statistic is a less ef fi cient estimator. 
A statistic is a  consistent  estimator of the population parameter if the statistic gets 
closer to the actual population parameter as sample size increases. A  suf fi cient  
statistic is one that can’t be improved upon using other aspects of the sample data. 
If several sample statistics compete as an estimate of the population parameter, e.g., 
mean, median, and mode, the sample statistic that is unbiased, ef fi cient, and consis-
tent is a  suf fi cient  sample statistic estimate, while the other sample statistics are less 
suf fi cient. We are therefore interested in sample estimates of population parameters 
that are unbiased, ef fi cient, consistent, and suf fi cient. 

 The sample mean (statistic) is an unbiased, ef fi cient, suf fi cient, and consistent 
estimator of the population mean (parameter). Sample statistics however don’t 
always possess these four properties. For example, the sample standard deviation is 
a biased, but consistent estimator of the population standard deviation. The sample 
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standard deviation therefore more closely approximates the population standard 
deviation as sample size increases, i.e., it is a consistent estimate. 

 The sampling distributions of sample standard deviations are generated given 
varying sample sizes. The sample standard deviation is computed as:

      ∑ 2( ) / ( 1)S X Mean N= − −     

 The frequency distribution of sample standard deviations computed from repeat-
edly drawing samples from a population generates the sampling distributions of the 
sample standard deviations. A comparison of the mean of the sampling distribution 
of sample standard deviations to the population standard deviation will help us to 
determine if the sample standard deviation is a consistent estimator of the popula-
tion standard deviation. This basic approach can be used to determine whether any 
sample statistic is a consistent estimator of a corresponding population parameter. 
Characteristics common to the sampling distributions based on different sample 
sizes are the most descriptive information we can obtain about theoretical pop-
ulation distributions. A statistic that estimates a parameter is unbiased when the 
average value of the sampling distribution is equal to the parameter being estimated. 
The sample standard deviation is an unbiased estimator of the population standard 
deviation if the mean of the standard deviation sampling distribution is equal to the 
population standard deviation. In this chapter, you will learn to make a judgment 
about whether or not the sample standard deviation is a biased or an unbiased 
estimator of the population standard deviation. 

 Many different sampling distributions can be generated with the mean of the 
sampling distribution being an estimator of the population parameter. For each sam-
pling distribution of a statistic, the variance of the sampling distribution indicates 
how precise the statistic is as an estimator. The variance of a sampling distribution 
of a statistic becomes smaller as sample size increases, i.e., the standard error of the 
statistic. The sampling distribution of sample standard deviations is a frequency 
distribution of sample standard deviations computed from samples of a given size 
taken from a population. The variance of the sampling distribution of sample stan-
dard deviations decreases with increased sample size; thus the sample standard 
deviation is a consistent estimator. The mean of the sampling distribution of 
sample standard deviations is less than the population standard deviation; thus the 
sample standard deviation is a biased estimator of the population standard deviation. 
The error in the sample standard deviation as an estimate of the population standard 
deviation decreases with increased sample size. 

   DEVIATION R Program 

 The DEVIATION R program produces the sampling distribution of the sample stan-
dard deviation. The program initially speci fi es a sample size of n = 5 and then 250 
replications are chosen at random from a uniform distribution between 0 and 100. 
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The sample standard deviation is calculated for each sample and a histogram is 
printed for these 250 standard deviations. The program generates a single sampling 
distribution for a given sample size. A different sampling distribution exists for every 
sample of size N. Consequently, you will need to run the program several times, each 
time with a different sample size, in order to determine whether the mean of the 
sampling distribution more closely approximates the population parameter. 

 The main processing loop iterates from one to the number of desired replications. 
For each replication, a sample of size,  SampleSize , is drawn from a uniform popula-
tion ranging from 0 to 100. The standard deviation of each sample is calculated and 
added to the distribution of standard deviations in the vector. After the completion of 
the loop, the mean of the distribution of sampling standard deviations is calculated. 
The mean, the sample size, and the true population standard deviation are placed 
into the  HistTitle  variable. Finally, a histogram of the distribution of sampling 
 standard deviations ranging from 0 to 100 is graphed with these values printed.  

   DEVIATION Program Output 
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     Deviation Exercises 

     1.    List the four desirable properties of a sample estimate (statistic) for a population 
parameter.

   a.    ______________  
   b.    ______________  
   c.    ______________  
   d.    ______________      

    2.    Compare the standard error of the mean from the following two sampling 
distributions. 

 Note: The standard error of the mean is calculated as:      
X

S
S

n
=    

 Which sample has the smaller error? ________________________________ 

 Sample 1: S = 20, N = 100 _____  Sample 2: S = 10, N = 100 ______  

    3.    Run DEVIATION for the two sample sizes below and draw the histograms.

 

N  =  100N  =  2

80604020 80604020          

 Sampling S.D. Mean ___________ Sampling S.D. Mean ____________ 

 Population S.D. _______________ Population S.D. ________________

   a.    Are the two graphs the same or different? Same ________ Different _______ 

 Why? _________________________________________________________  

   b.    Which sample size has a Sampling S.D. Mean closer to the Population S.D.? 
____________      

    4.    Run the DEVIATION program for the sample sizes listed below. Record the 
Sampling Distribution S.D. Mean and ERROR for each sample size. 
 Note: ERROR = SAMPLING S.D. MEAN − POPULATION S.D.  

  N    SAMPLING S.D. Mean    POPULATION S.D .   ERROR     

 5  _________________  28.58  ____________ 
 10  _________________  28.58  ____________ 
 15  _________________  28.58  ____________ 
 20  _________________  28.58  ____________ 
 25  _________________  28.58  ____________ 
 30  _________________  28.58  ____________ 
 35  _________________  28.58  ____________ 
 40  _________________  28.58  ____________ 
 45  _________________  28.58  ____________ 
 50  _________________  28.58  ____________ 
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    a.    Does the SAMPLING S.D. MEAN consistently overestimate the 
POPULATION S.D.? YES _______ NO _______  

   b.    Does the variance of the sampling distribution decrease with increased sample 
size? YES _______ NO _______  

   c.    The mean of the sampling distribution doesn’t get any closer to the popula-
tion standard deviation. What do the signs of the differences lead you to think 
about the direction of the bias when the sample standard deviation is used as 
an estimator of the population standard deviation?

______________________________________________________________
_________________________________________________________         ___ 

   Con fi dence Intervals 

 Con fi dence intervals can be computed for many different population parameters by 
using the standard error of the statistic and the con fi dence level. A  standard error 
of a statistic  is computed for each type of sample statistic, e.g., standard error of the 
mean. The variance of a sampling distribution indicates the amount of error in esti-
mating the population parameter. Smaller sampling variance re fl ects less error in 
estimating the population parameter. The standard error of a statistic is computed as 
the standard deviation of the sampling distribution divided by the square root of the 
sample size. Consequently, as sample size increases, the standard error of the statis-
tic decreases. A  con fi dence interval  is computed using the sample statistic and the 
standard error of the statistic (standard deviation of the statistic in the sampling 
distribution). The con fi dence interval around the sample statistic is a range of values 
that should contain the population parameter. A  con fi dence level  is used which 
de fi nes how con fi dent we are that the interval around the sample statistic contains 
the parameter being estimated. The con fi dence interval is determined by picking an 
area in the tail of the sampling distribution in which the value of the statistic is 
improbable. Recall that a sampling distribution is a frequency distribution; therefore 
we could pick a 5% probability area, leaving 95% of the sample statistics in the 
frequency distribution as plausible estimates of the population parameter. 

 The con fi dence interval around the sample statistic is computed by using the 
standard error of the statistic. The  con fi dence interval  indicates the precision of the 
sample statistic as an estimate of the population parameter. The con fi dence interval 
around the sample statistic is said to include the population parameter with a certain 
level of con fi dence. It should be common practice to report con fi dence intervals for 
various population parameters such as proportions, means, or correlations. The 
con fi dence interval contains a high and low score, above and below the sample sta-
tistic, in which we feel con fi dent that the interval contains the population parameter. 
 Con fi dence levels  are used to determine the con fi dence interval width. Commonly 
used con fi dence levels are 90%, 95%, or 99%. These con fi dence levels for 
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 sample data are indicated by a critical t-value of 1.65 (10% probability area), 1.96 
(5%  probability area), and 2.58 (1% probability area), respectively, which are given 
in Table 2 (Distribution of t for Given Probability Levels). 

 The 95% con fi dence interval for the population mean is computed as:

      1.96( / )X S n±    

where S = sample standard deviation and n = sample size. The value of 1.96 corre-
sponds to the t-value that contains 5% of the sample means in the tail of the sam-
pling distribution that are improbable. This implies that 5 times out of 100 
replications, a con fi dence interval for a sample mean may not contain the popula-
tion mean. In contrast, 95 times out of 100, the con fi dence interval around the sam-
ple mean will contain the population mean. Stated differently, 5% of the time the 
sample mean will not be a good estimate of the population mean, or conversely, 
95% of the time we are con fi dent that the sample mean will be a good estimate of 
the population mean. 

 If the sample mean was 50, sample standard deviation 10, the sample size 100, 
and we wanted to be 90% con fi dent that the con fi dence interval captured the popu-
lation mean, then the con fi dence interval around the sample mean would range 
between 51.65 and 48.35. This range of values is computed as:

      

.90

.90

10
( ) 50 1.65( ) 50 1.65

100
(51.65,48.35)

S
CI X t

n
CI

= ± = ± = ±

=     

 If we replicated our sampling ten times, we would expect the population mean to 
fall in the range of values approximately 90% of the time (9 times out of 10 the 
con fi dence intervals would contain the population mean). 

 The 95% con fi dence interval using the population standard deviation would be 
computed as:

      1.96( / )X Nσ±     

 If the population standard deviation is known, one would use the population 
standard deviation with a z-value for the con fi dence interval. If the population stan-
dard deviation is  not  known, one would use a sample standard deviation estimate 
with a critical t-value for the con fi dence interval. 

 A con fi dence interval re fl ects a range of values (high, low) around the sample 
mean for different levels of con fi dence, e.g., 90%, 95%, and 99%. A con fi dence 
interval indicates the precision of a sample statistic as an estimate of a population 
parameter. If a con fi dence interval has a 95% level of con fi dence, this indicates that 
approximately 95 out of 100 con fi dence intervals around the sample statistic will 
contain the population parameter. If the con fi dence level remains the same, but the 
sample size increases, then the width of the con fi dence interval decreases, indicat-
ing a more precise estimate of the population parameter. 
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   CONFIDENCE R Program 

 The CONFIDENCE program will simulate random samples and compute the 
con fi dence intervals around the sample mean (the process is the same for other 
population parameters because it would be based on the sampling distribution of the 
statistic). A population with a normal distribution ( m  = 50 and  s  = 10) will be sam-
pled. You can enter different sample sizes and con fi dence levels to see the effect 
they have on estimating the con fi dence interval. The program uses the population 
standard deviation rather than the sample standard deviation in the con fi dence inter-
val formula because it is known. The sampling distribution of the mean will be 
based on 20 replications. For each sample mean, the 95% con fi dence interval around 
the mean will be computed and the program will check to see whether or not the 
population mean of 50 is contained in the con fi dence interval. Due to sampling 
error, one may not achieve the exact percent of con fi dence intervals that contain the 
population mean as indicated by the con fi dence level, i.e., 95%. 

 The program creates con fi dence intervals around repeated samples taken from a 
population and tests to see whether they contain the population mean. The sample 
size, population mean, population standard deviation, number of replications and 
size of the con fi dence interval can be changed in the program. The con fi dence inter-
val size is speci fi ed as a z-value. Samples are simulated for the number of desired 
replications. The mean of each sample as well as the con fi dence intervals are calcu-
lated according to the formula given in the chapter. There is a count of the number 
of times the population mean is captured by the con fi dence interval for the sample. 
This is expressed as a percentage based on all the replications at the end of the pro-
gram, both as a ratio and percent. Individual sample information is output, including 
the sample means and con fi dence intervals, which capture the population mean.  

   CONFIDENCE Program Output 

 Pop. Mean = 50 Pop. SD = 10 
  Sample Size = 100 N Replications = 20 

  Con fi dence Intervals for Z value = 1.96  
  Con fi dence Intervals that Contain Population Mean = 18 / 20 = 90 %  

  Sample Mean CI (high - low) Pop. Mean Within CI  
  48.16 50.12 - 46.2 50 Yes  
  49.58 51.54 - 47.62 50 Yes  
  49.42 51.38 - 47.6 50 Yes  
  49.92 51.88 - 47.96 50 Yes  
  50.58 52.54 - 48.62 50 Yes  
  52.78 54.74 - 50.82 50 No  
  49.34 51.3 - 47.38 50 Yes  
  50.44 52.4 - 48.48 50 Yes  
  50.09 52.05 - 48.13 50 Yes  
  49.62 51.58 - 47.66 50 Yes  
  49.7 51.66 - 47.74 50 Yes  
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  51.05 53.01 - 49.09 50 Yes  
  50.59 52.55 - 48.63 50 Yes  
  49.85 51.81 - 47.89 50 Yes  
  51.29 53.25 - 49.33 50 Yes  
  50.47 52.43 - 48.51 50 Yes  
  47.2 49.16 - 45.24 50 No  
  50.73 52.69 - 48.77 50 Yes  
  50.04 52 - 48.08 50 Yes  
  49.7 51.66 - 47.74 50 Yes    

   Con fi dence Interval Exercises 

     1.    Run the CONFIDENCE program for ten (10) replications with a con fi dence 
level of 90% (z = 1.65); keep the population mean of 50, standard deviation of 10, 
and sample sizes of 100.

   a.     How many of the con fi dence intervals contained the population mean? 
__________________  

   b.     What percentage did you expect to contain the population mean? 
__________________  

   c.     If you increased the number of replications, would you more closely approxi-
mate the con fi dence level percent? Hint: Run CONFIDENCE and change the 
number of replications to observe what happens. YES _______ NO 
_________________  

   d.     Why does increasing the number of replications not guarantee a more 
close approximation to the con fi dence level percent? ______________
_________________      

    2.    Run the CONFIDENCE program for  fi fty (50) replications with a con fi dence 
level of 90% (z = 1.65); keep the population mean of 50, standard deviation of 10, 
and sample sizes of 100.

   a.     Do all the con fi dence intervals have the same width? YES ________ NO 
_________________  

   b.     What is the width of the con fi dence interval? _________________________  
   c.     Compute the con fi dence interval width using the population standard devia-

tion and the sample size formula in the chapter. _______________________

      1.65( / )X Nσ±      

   d.    Does the formula give the same con fi dence interval width as the CONFIDENCE 
program? Note: (1.65 * 2 = 3.30; using the probability area in both tails of 
the sampling distribution). YES ________ NO ________      

    3.    Run the CONFIDENCE program for each of the sample sizes listed below. Keep 
the population mean of 50, standard deviation of 10, and set the number of rep-
lications to 10 for a 1.96 con fi dence level (95%). Record the high and low values 
for the con fi dence intervals and calculate the width of the con fi dence interval. 



146 7 Hypothesis Testing

Note: You can obtain the con fi dence interval width by subtracting the low value 
from the high value in the outputted table.  

 Con fi dence Interval for Z value = 1.96    
  Sample Size    CI (High-Low)    CI Width  
  10  ____________  _______ 
 144  ____________  _______ 
 256  ____________  _______ 
 625  ____________  _______ 

    a.    As sample size increases, does the con fi dence interval width that contains the 
population mean become smaller? YES ______ NO ______  

   b.     If the con fi dence interval width becomes smaller as sample size 
increases, does this imply a more accurate estimate of the population mean? 
YES ______ NO ______      

    4.    Run the CONFIDENCE program for each of the con fi dence levels listed below. 
Keep the population mean of 50, standard deviation of 10, sample size of 100, 
and set the number of replications to 100. Record the CI high and low values and 
the percent of con fi dence intervals that contained the population mean.  

 Con fi dence Level     CI (High-Low)  Percent 
 90  ____________  _______ 
 95  ____________  _______ 
 99  ____________  _______ 

    a.    Does the con fi dence interval become wider as the con fi dence level increases 
from 90% to 99%? YES _______ NO _______  

   b.    If the con fi dence interval becomes wider, does this imply that we are more 
con fi dent to have captured a range of values that contains the population 
mean. YES _______ NO _______          

   Statistical Hypothesis 

 The scienti fi c community investigates phenomena in the world. The areas for 
scienti fi c inquiry are many and have led to the creation of numerous academic dis-
ciplines, e.g., botany, biology, education, psychology, business, music, and so forth. 
The  fi rst step in any academic discipline that conducts scienti fi c investigation is to 
ask a research question. Research questions can be expressed in many different 
ways. For example, “In the upcoming election, who will be elected President of the 
United States?” or “Which is better, margarine or butter, in lowering cholesterol?” 
The next important step is to design a study, then gather data and test the research 
question. This requires converting the research question into a statistical hypothesis. 
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There are many different kinds of statistical hypotheses depending upon the level of 
measurement (nominal, ordinal, interval, or ratio) and type of research design used 
in the study. A statistical hypothesis is the cornerstone to testing the two possible 
outcomes, which are always stated in terms of population parameters, given the 
kind of data collected (percents, ranks, means, or correlation coef fi cients). The two 
possible outcomes of a statistical hypothesis are stated in a null (H 

O
 : no difference) 

and alternative (H 
A
 : difference exists) format using symbols for the population 

parameter. The alternative statistical hypothesis is stated to re fl ect the outcome 
expected in the research question. This involves either a directional (greater than) or 
non-directional (difference exists) expression. The null hypothesis is the corre-
sponding opposite expected outcome of less than/equal or no difference, respec-
tively. A research question and statistical hypothesis for each type of data is listed.  

  Research question       Data    Statistical hypothesis  
 Is the percent of people drinking beer in Texas 

greater than the national average? 
 Percents  H 

O
 : P 

Texas
   £  P 

National
  

 H 
A
 : P 

Texas
  > P 

National
  

 Is there a difference in the ranking of persons on 
two different diets for weight gain? 

 Ranks  H 
O
 : R 

Diet A
  = R 

Diet B
  

 H 
A
 : R 

Diet A
   ¹  R 

Diet B
  

 Does my 5th grade class on average score higher 
than the national average in math? 

 Means  H 
O
 :  m  

Class
   £   m  

National
  

 H 
A
 :  m  

Class
  >  m  

National
  

 Is the relationship between music ability and 
self-esteem in my sample of students different 
than the population? 

 Correlation  H 
O
 :  r  

Sample
  =  r  

Population
  

 H 
A
 :  r  

Sample
   ¹   r  

Population
  

 Two kinds of errors are associated with our decision to retain or reject the null 
hypothesis based on the outcome of the statistical test (TYPE I error and TYPE II 
error). The TYPE I error is speci fi ed by selecting a level of signi fi cance (probability 
area) such that if the sample statistic falls in this probability area, then we reject the 
null hypothesis in favor of our alternative hypothesis. The TYPE II error corre-
sponds to the probability of retaining the null hypothesis when it is false. When we 
state the statistical hypothesis as “greater than,” we designate only one-tail of the 
sampling distribution of the statistic because of the directional nature of the research 
question. When we state the statistical hypothesis as a “difference exists,” we designate 
both tails of the sampling distribution of the statistic because of the non-directional 
nature of the research question. Consequently, the probability area corresponds to 
different “tabled statistics.” 

 Once the probability area is determined for the statistical hypothesis, we can select 
a tabled statistical value to set our region of rejection. The tabled statistical values 
were generated using probability theory and created from the sampling distribution of 
the statistic for different sample sizes (degrees of freedom) and levels of signi fi cance. 
Only the more popular levels of signi fi cance (.05, .01, and sometimes .001) are 
included in the tables due to page length consideration. Consequently, it is common 
for researchers to select a region of rejection and test statistical hypotheses based on 
the .05, .01, or .001 levels of signi fi cance. The relationship between the level of 
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signi fi cance and probability area for the region of rejection (vertical hash marks) can 
be depicted as follows: 

 Non-directional (two-tailed) Research Question: 

 
α / 2 α / 2

         

 Directional (one-tail) Research Question:
 α          

 An example research question and corresponding statistical hypothesis will help 
to illustrate the relationship between the non-direction and/or direction of the ques-
tion, level of signi fi cance, and region of rejection. The research question, “Is the 
SAT population mean in Texas greater than the SAT population mean for the U.S.,” 
is converted into a null and alternative statistical hypothesis:

      ≤μ μO Texas U.S.H :    

      μ μA Texas U.S.H : >     

 This is a directional research question, hence the alternative statistical hypothesis 
indicates a greater than expression, while the null statistical hypothesis indicates less 
than or equal to for the population parameters. We test our hypothesis by random 
sampling of 100 students in Texas, compute the sample mean, and conduct a statistical 
test at the .05 level of signi fi cance. Once we have selected a sample size and level of 
signi fi cance for the study, a tabled statistical value can be selected. Under the normal 
probability curve in Table 1, a z-value of 1.64 corresponds to a probability value 
(p-value) that indicates an area approximately equal to .05 (probability area beyond  z ). 
This z-value is used to set the region of rejection for testing our statistical hypothesis: 
R 

.05
  =  z  > 1.64. When we conduct a z-test for the difference between the means, a com-

puted z-value greater than 1.64 will imply that the population mean in Texas is greater 
than the population mean in the U.S. In other words, the computed z-value falls in the 
probability area of the sampling distribution of the statistic that we have designated to 
be a highly improbable outcome. The probability area for the null hypothesis and the 
alternative hypothesis is therefore depicted along with the tabled z-value and level of 
signi fi cance for a directional research question as follows:

  Retain HO 

α (Accept HA)

z =1.64 
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 Given our selection of the .05 level of signi fi cance, only 5% of the time would 
we expect a mean difference to exceed  z  = 1.64 if the null hypothesis is true, i.e., the 
population means are equal. Consequently, if the mean difference is large enough 
and we compute a z-value greater than 1.64, we are 95% con fi dent in our decision 
to reject the null hypothesis in favor of the alternative hypothesis. 

 Assume we computed a Texas SAT mean of 530 for the 100 randomly sampled 
students and the U.S. SAT mean was 500 with a population standard deviation of 
100. A one-sample z-test to determine the statistical signi fi cance of this mean dif-
ference is computed as:

      

530 500 30
3.0

10/ 100 / 100

X
z

N

μ

σ

− −
= = = =

    

 Since the computed  z  = 3.0 is greater than  z  = 1.64, and therefore falls in the region 
of rejection, we reject the null hypothesis of no difference in favor of the alternative 
hypothesis that the population SAT mean in Texas is greater than the population 
SAT mean in the U.S. We are 95% con fi dent in our decision, but also know that 5% 
of the time our decision might be wrong (TYPE I error). We would answer the 
research question by stating that the population SAT mean in Texas is statistically 
signi fi cantly higher than the population SAT mean in the U.S. 

 This example used a z-test because the population standard deviation for the SAT 
was known. In many research studies, the population standard deviation is unknown, 
so we would use a t-test. The t-test formula that uses the  sample standard deviation  
in place of the population standard deviation is:

      /

X
t

S N

μ−
=

    

 Research questions involving a test of differences in population means are com-
monplace in several academic disciplines. An engineer needs to know the average 
weight of vehicles that can safely travel across a bridge. A psychologist needs to 
test whether a group of clients have an average cognitive ability greater than the 
national average. A sociologist needs to determine the average family size for dif-
ferent ethnic groups. The auditor of a large oil company wants to know the average 
amount of error in the bills prepared for customers. A doctor studying the possible 
reduction in blood pressure caused by a new medicine is concerned about the aver-
age reduction in blood pressure for patients. These and many other research ques-
tions re fl ect a need for a statistical procedure to test whether population means are 
statistically different. 

 Tests of statistical hypotheses do not provide exact outcomes. Instead, the 
tests are based on data-gathering evidence to reach a conclusion with some 
degree of uncertainty. In other words, it is possible to reject the null hypothesis 
when in fact the null hypothesis is true. We preset the probability of making this 
kind of error (TYPE I error) when selecting the level of signi fi cance and corre-
sponding tabled statistic, which is based on the sampling distribution of the statistic. 
We have already learned that increasing sample size, using a directional hypothesis, 
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willingness to detect a larger difference, and the level of signi fi cance are factors 
that in fl uence whether the statistical test is powerful enough to detect a differ-
ence when in fact one exists. 

 In testing whether the population SAT mean in Texas was signi fi cantly different 
from the population SAT mean in the U.S., knowledge of the population standard 
deviation and sample size played a role. A larger random sample of students would 
dramatically reduce the standard error in the formula, which would result in a larger 
computed z-value, e.g.,  z  = 30 if N = 10,000. A smaller sample size would result in a 
smaller z-value. If the population standard deviation is  not  known, a sample stan-
dard deviation as an estimate might produce a very different result. 

 In hypothesis testing, the null hypothesis is retained as true unless the research 
 fi ndings are beyond chance probability (unlikely to have occurred by chance). 
A TYPE I error occurs when a true null hypothesis is rejected erroneously, usually 
due to an atypical research outcome. The region of rejection is speci fi ed by the 
level of signi fi cance ( a ), which indicates the probability of making a TYPE I error. 
If the z-value falls in the region of rejection probability area, then the null hypoth-
esis is rejected in favor of the alternative hypothesis. For different values of alpha 
(levels of signi fi cance) and sample size, the region of rejection will be indicated by 
a tabled statistic from the sampling distribution of the statistic (Appendix). A TYPE 
II error occurs when a false null hypothesis is retained erroneously, usually due to 
insuf fi cient data. 

   HYPOTHESIS TEST R Program 

 The HYPOTHESIS TEST program allows you to specify the true population mean 
and then test various null and alternative hypotheses. In the program output, you 
will be able to observe either z-tests or t-tests for several statistical hypotheses 
depending upon whether the population standard deviation (z-test) or sample stan-
dard deviation (t-test) is used. The program will select a random sample of size N 
from the true population, compute the sample mean and variance, compute the 
appropriate test statistic, the p-value, and indicate the decision outcome. Since you 
specify the true population mean, you will know whether or not the decision to 
reject the null hypothesis is correct. If the population standard deviation is used (set 
varUse = 0, the default), the z-statistic is reported. If the sample standard deviation 
is used (set varUse = 1), the t-statistic is reported. 

 The program uses the  pValue  function in R to determine the probability in the 
tails for either the z-test or t-test after all the user-de fi ned variables are initialized. 
Based on the direction of the statistical hypothesis for the z-test or t-test, probability 
values are determined using the  pnorm  function, which returns the probability 
value for a mean difference with a given standard deviation. If the sample mean 
is less than the null hypothesis mean, then  pnorm  is reported; if the sample mean is 
greater than the null hypothesis mean, then  1 - pnorm  is reported. This use of the 
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 pnorm  function results in only the probability area for one-tail of either the normal- 
or t-distribution. For a two-tailed test, the probability area (alpha) is divided evenly 
between the two ends of the distributions. The program speci fi es the probability 
area for one- and two-tailed tests by selecting a value for the  tails  variable. The 
program default is p < .05, therefore if the computed p-value is less than .05, 
the decision is reject the null. If the p-value is greater than .05, the decision is retain 
the null. The number of statistical tests computed and printed is based upon the 
value for  numSamples .  

   HYPOTHESIS TEST Program Output 

  z Statistic  

  Pop. Mean  =  10.5 Pop. Variance  =  2 Null Mean  =  10  
  Sample Size  =  36 Alpha  =  0.05 Number of Samples 10  

  Variance type  =  0 (0  =  population; 1  =  sample)  
  Hypothesis direction  =  1 (0  <  Null, 1  >  Null, 2  =  two-tailed)  

  Sample Mean Pop. SD z-statistic Decision p-value  
  10.251 1.414 1.064 RETAIN NULL 0.144  
  10.855 1.414 3.626 REJECT NULL 0.001  
  10.521 1.414 2.209 REJECT NULL 0.014  
  10.262 1.414 1.113 RETAIN NULL 0.133  
  10.265 1.414 1.126 RETAIN NULL 0.131  
  10.65 1.414 2.756 REJECT NULL 0.003  
  10.704 1.414 2.985 REJECT NULL 0.002  
  10.719 1.414 3.049 REJECT NULL 0.002  
  10.629 1.414 2.668 REJECT NULL 0.004  
  10.653 1.414 2.771 REJECT NULL 0.003  

  t statistic  

  Pop. Mean  =  10.5 Pop. Variance  =  2 Null Mean  =  10  
  Sample Size  =  36 Alpha  =  0.05 Number of Samples 10  

  Variance type  =  1 (0  =  population; 1  =  sample)  
  Hypothesis direction  =  1 (0  <  Null, 1  >  Null, 2  =  two-tailed)  

  Sample Mean Sample SD t-statistic Decision p-value  
  10.429 1.226 2.097 REJECT NULL 0.018  
  10.678 1.561 2.607 REJECT NULL 0.005  
  10.784 1.568 2.998 REJECT NULL 0.002  
  10.681 1.469 2.783 REJECT NULL 0.003  
  10.47 1.446 1.95 REJECT NULL 0.026  
  10.036 1.423 0.151 RETAIN NULL 0.441  
  10.021 1.817 0.07 RETAIN NULL 0.473  
  9.919 0.933 -0.521 RETAIN NULL 0.699  
  10.338 1.416 1.433 RETAIN NULL 0.076  
  10.309 1.301 1.423 RETAIN NULL 0.078    
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   Hypothesis Testing Exercises 

     1.    Run the HYPOTHESIS TEST program with the following initial values which 
de fi nes a one-tail test and uses the population variance: 

  popMean <- 10  
  popVar <- 2  
  nullMean <- 10  
  tails <- 1  
  sampleSize <- 36  
  alpha <- .05  
  varUse <- 0  
  numSamples <- 10   

 Sample  Sample Mean  z-statistic  Decision  p-value 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 

 10 

    a.    Are the z-statistics correct in the table (Use the formula below to verify)? 

YES ________ NO ________      X
z

/ N

μ

σ

−
=     

   b.    Compare each p-value to  a  = 0.05. If p  ³  0.05, then the decision should be 
to RETAIN the null hypothesis. If p < .05, then the decision should be to 
REJECT the null hypothesis. Do all of the decisions correspond to the p-values? 
YES ________ NO ________  

   c.    Since the null hypothesis is actually true, any REJECT NULL decisions are 
errors. This is a TYPE I error. The probability of a TYPE I error is equal to  a . 
How many REJECT NULL decisions were there? What percent is this? 
___________      

    2.    Run HYPOTHESIS TEST program again using all of the same values, except 
increase the number of samples to 40 (numSamples < - 40).

   a.    What is the percent of TYPE I errors in the 40 simulations? _________  
   b.    What do you expect this TYPE I error percent to be? _________      

    3.    Run HYPOTHESIS TEST program again, except change alpha to .10 
(alpha < −.10).

   a.    How many times was the null hypothesis rejected? _________  
   b.    What do you expect this percent to be? _________      
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    4.    Run HYPOTHESIS TEST program again, except increase the sample size to 100 
(sampleSize < −100).

   a.    How many times is the null hypothesis rejected? _________  
   b.    Does sample size have an effect on the percent of TYPE I errors? _________      

    5.    Run HYPOTHESIS TEST program again, except use the sample variance 
(varUse < −1). In most cases the proportion of rejections will be much higher 
because the sample standard deviation is not as good an estimator as the true 
population standard deviation.

   a.    What is the percent of rejections? _________  
   b.    Does the percent of rejections approximate  a ? YES _____NO ______      

    6.    Run the HYPOTHESIS TEST program in which the null hypothesis is false (The 
population mean is actually greater than the null mean). Run the program  fi ve 
times using a different sample size each time. Use the following settings: 

  popMean <- 10.5  
  popVar <- 2  
  nullMean <- 10  
  tails <- 1  
  sampleSize <- 36 (Use different sample sizes: 25, 16, 8, 2)  
  alpha <- .05  
  varUse <- 0  
  numSamples <- 20  

 Record the number of times the null hypothesis was retained or rejected for each 
run. Compute the percentage of null hypotheses that were retained. This is the 
probability of a TYPE II error.  

 Sample Size  Number Rejected  Number Retained  Percent Retained 

 36 
 25 
 16 
  8 
  2 

    a.    Which sample size had the greatest probability of a TYPE II error? 

 36 ____ 25 ____ 16 ____ 8 _____ 2 _____  
   b.     What effect does sample size have on the probability of a TYPE II error? 

 Hint: A TYPE II error is when you retain a false null hypothesis. ___________      

    7.    Run the HYPOTHESIS TEST program again in which the null hypothesis is 
false. Use alpha < - .10. Run the program  fi ve times using the same sample sizes 
as before. The program settings should be: 

  popMean <- 10.5  
  popVar <- 2  
  nullMean <- 10  
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  tails <- 1  
  sampleSize < - 36 (Use different sample sizes: 25, 16, 8, 2)  
  alpha <- .10  
  varUse <- 0  
  numSamples <- 20   

 Sample Size  Number Rejected  Number Retained  Percent Retained 

 36 
 25 
 16 
  8 
  2 

    a.    Which sample size had the greatest percent retained (probability of a TYPE II 
error)? 36 ____ 25 ____ 16 ____ 8 _____ 2 _____  

   b.    Did an increase in alpha from .05 to .10  decrease  the percent retained (prob-
ability of a TYPE II error)? YES _______ NO _______  

   c.    Did an increase in alpha from .05 to .10  increase  the percent rejected (prob-
ability of a TYPE I error)? YES _______ NO _______      

    8.    Run the HYPOTHESIS program again, except this time use a two-tailed test. 
Run the program  fi ve times using the same sample sizes as before. The program 
settings should be: 

  popMean < - 10.5  
  popVar < - 2  
  nullMean < - 10  
  tails < - 2  
  sampleSize < - 36 (Use different sample sizes: 25, 16, 8, 2)  
  alpha < - .10  
  varUse < - 0  
  numSamples < - 20   

 Sample Size  Number Rejected  Number Retained  Percent Retained 

 36 
 25 
 16 
  8 
  2 

    a.    Does a two-tailed test, in comparison to the previous one-tail test, result in 
more Null Hypotheses being retained? YES ______ NO ______  

   b.    Does sample size affect the results? YES ______ NO ______          

   TYPE I Error 

 Science, as a way of understanding the world around us, has for centuries encom-
passed the classi fi cation, ordering, and measuring of plants, characteristics of the 
earth, animals, and humans. Humans by their very nature have attempted to  understand, 
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explain, and predict phenomena in the world around them. When individuals, objects, 
or events are described as a well-de fi ned, in fi nite population, random sampling and 
probability statistics can play a role in drawing conclusions about the population. The 
problem in Science is essentially one of drawing conclusions about the characteristics 
of in fi nitely large populations. 

 The use of a random sample to compute a statistic as an estimate of a correspond-
ing population parameter involves some degree of uncertainty. For example, the 
sample mean doesn’t always fall close to the population parameter (sampling error) 
and therefore isn’t always accurate in the estimation of the population parameter. 
However, we can use the number of times the sample mean falls in an area under the 
sampling distribution to indicate a degree of con fi dence. Recall, the areas were des-
ignated as 68%, 95% or even 99%. These areas are called the con fi dence level 
(probability of occurrence). The number of times the sample mean falls outside 
these areas (con fi dence interval) we refer to the result as committing a TYPE I Error 
(probability of non-occurrence). The  TYPE I Error  therefore indicates the amount 
of uncertainty or probability of error, especially when making a decision about a 
population parameter. We generally make a decision about a population parameter 
in the context of a research question. 

 The research question could be whether or not to use a new experimental drug 
for the treatment of a disease. In other words, how con fi dent are we that the drug 
will work. It could also be whether or not to spend money on an innovative math 
program for High School students. How con fi dent are we that the innovative math 
program will be better than the traditional math program? In business, the research 
question of interest could be whether or not to implement a new strategic plan. We 
conduct research, formally or informally, to answer these types of questions. In 
simple terms, we ask a question, gather data, and then answer the question. This is 
the essence of the research process. However, in making our decision to release a 
drug for public use or spend thousands of dollars on an innovative math program, 
we can never be 100% certain it will work. 

 The research process involves the formulation of a question that can be tested, 
the collection of relevant data, the analysis and presentation of the data, and the 
answering of the question. This formal research process embodies the use of the 
following scienti fi c principles:

    a.    Statement of the Research Hypothesis  
    b.    Selection of Sample Size and Sample Statistic  
    c.    Selection of Con fi dence Level and Region of Rejection  
    d.    Collection and Analysis of Data  
    e.    Statistical test and Interpretation of Findings     

 In conducting research using random samples from a population, our research 
hypothesis is related to the probability of whether an event occurs or not. The prob-
ability of an event occurring and the probability of an event not occurring are equal 
to 100% (see Chap.   2    ). As researchers, we accept some level of probability or uncer-
tainty as to whether an event occurs or not. Our statistical test and interpretation of 
 fi ndings are linked to the TYPE I Error in our decision? 

http://dx.doi.org/10.1007/978-1-4614-6227-9_2
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 The statement of the research hypothesis expresses the outcomes expected in the 
research question. The outcomes are expressed as a Null Hypothesis and an 
Alternative Hypothesis. The  Null Hypothesis  is a statement of no difference 
between the sample mean and population parameter, or in general terms between a 
sample statistic and a population parameter. The  Alternative Hypothesis  is a state-
ment that a difference exists between the sample mean and population parameter, 
typically based upon some intervention, treatment, or manipulation of participants, 
objects, or events. For example, the Null Hypothesis would state  no difference  in the 
average mathematics test scores of students in a traditional math program versus an 
innovative math program. The Alternative Hypothesis would state that the average 
mathematics test score of students in the innovative math program is greater ( statis-
tically different ) than the average mathematics test score of students in the tradi-
tional math program. 

 The sample size and sample statistic chosen to make a comparison between the 
sample mean and population mean is determined next in the research process. The 
sample size is an important consideration because as sample size increases the sam-
ple statistic more closely approximates the population parameter. The sample statis-
tic is computed by taking the difference between the sample mean and the population 
mean, or between two sample means, divided by the standard error of the mean dif-
ference, which is based on the sampling distribution of the statistic. We will learn 
more about conducting these types of statistical tests in later chapters. 

 The con fi dence level and region of rejection are now established which set the 
amount of uncertainty we are willing to accept for the two possible outcomes of the 
research question, i.e., null versus alternative. If we want to be 95% con fi dent in our 
decision that the innovative math program produced higher average mathematics 
test scores, then we must also have a 5% level of uncertainty (TYPE I Error) in our 
decision. This probability of making a mistake (uncertainty) is called the  level of 
signi fi cance  and denoted by the symbol,  a . It is the chance we take of rejecting the 
Null Hypothesis statement when it is true and erroneously accepting the Alternative 
Hypothesis statement. If we  reject  the Null Hypothesis statement when it is true, 
and  accept  the Alternative Hypothesis statement, we commit a  TYPE I Error . If 
we  retain  the Null Hypothesis statement when it is false, thus  don ’ t accept  the 
Alternative Hypothesis statement, we commit a  TYPE II Error , which will be 
discussed in the next section. In either instance, we do so with a level of con fi dence 
and a level of error in our decision. 

 The region of rejection refers to the selection of a statistical value from the sam-
pling distribution that is at the cut-off point for the beginning of the probability area 
in which we would reject the null hypothesis in favor of the alternative hypothesis. 
Statistical values for varying sample sizes and different types of sampling distribu-
tions for the 90%, 95%, and 99% con fi dence levels can be found in the appendix of 
most statistics books. We refer to these statistical values as the “tabled statistic.” If 
the sample statistic computed from the sample data falls in the 5% area, correspond-
ing to a 95% con fi dence level, then we reject the Null Hypothesis and accept the 
Alternative Hypothesis. We make this decision knowing that 5% of the time it might 
not be the correct decision; which is the TYPE I Error. 
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 The research process would now involve randomly sampling students and 
 randomly assigning them to either a traditional math program or an innovative math 
program. After a semester of study, each group would take the same mathematics 
test. The sample means and standard deviations for each group would be computed. 
A statistical test would determine if the means were statistically different for our 
level of con fi dence and corresponding level of signi fi cance. In this instance, an 
independent t-test would be computed which will be presented in a later chapter 
(see Chap.   10    ). 

 The  fi nal step in the research process is a comparison of the “tabled statistic” (based 
on the level of signi fi cance and region of rejection) and the sample statistic computed 
from the sample data. If the sample statistic is greater than the tabled statistic, a deci-
sion is made to reject the Null Hypothesis and accept the Alternative Hypothesis. If 
the sample statistic does not exceed the tabled statistic, then a decision is made to 
retain the Null Hypothesis and reject the Alternative Hypothesis. Our interpretation of 
the  fi ndings of the research process is based on this decision to reject or accept the 
research question, which relates to the two possible outcomes of the study. 

 TYPE I Error is the probability of rejecting a Null Hypothesis statement, which 
is true, and erroneously accepting an Alternative Hypothesis. TYPE I Error prob-
ability is the same as the level of signi fi cance denoted by the symbol,  a . As the 
level of con fi dence is increased, TYPE I Error is decreased, and the width of 
the con fi dence interval increases. As the sample size is increased, the width of the 
con fi dence interval is decreased. The sample mean is always in the con fi dence 
interval. The population mean is sometimes outside of the con fi dence interval; 
the percentage of the intervals that contain the population mean is the con fi dence 
level, while the percentage of the intervals that don’t contain the population mean 
is the TYPE I error probability. 

   TYPE I ERROR R Program 

 The TYPE I ERROR program shows the relationship between the con fi dence level 
and the width of the con fi dence interval, but in the context of TYPE I Error. In addi-
tion, you can use different sample sizes to observe the effect of sample size on the 
width of the con fi dence interval, the con fi dence level, and the TYPE I Error. The 
program is initially set with a population mean of 50 and a standard deviation of 10. 
The TYPE I ERROR program computes and graph the 90%, 95%, and 99% 
con fi dence intervals which correspond to the 10%, 5%, and 1% levels of uncertainty 
(levels of signi fi cance). Since the population standard deviation is known, z-values 
rather than t-values are used to compute the intervals. The tabled z-values that cor-
respond to the levels of signi fi cance are 1.65, 1.96, and 2.58, respectively, for 90%, 
95%, and 99% con fi dence levels. The program prints the location of the sample 
mean so that you can compare it with the true population mean of 50. The vertical 
lines, starting with the two inside lines, indicate the 90%, 95%, and 99% con fi dence 
intervals, respectively.  

http://dx.doi.org/10.1007/978-1-4614-6227-9_10
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   TYPE I ERROR Program Output 

  Pop. Mean  =  50 Pop. SD  =  10  

  Sample Size  =  10 N Replications  =  100  

  Con fi dence Level Percent Error Con fi dence Interval  Interval 
Width  

  90% 10% 54.6 - 44.2 10.4  
  95% 4% 55.6 - 43.2 12.4  
  99% 3% 57.6 - 41.3 16.3 

            

   TYPE I Error Exercises 

     1.    Run the TYPE I ERROR program for a sample size of 100; keep the other values 
the same. Record the con fi dence interval, interval width and TYPE I Error.  

 Con fi dence Level     Con fi dence Interval  Interval Width  TYPE I Error 

 90%  _______________  ___________  _________ 
 95%  _______________  ___________  _________ 
 99%  _______________  ___________  _________ 
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    a.    Does the Interval Width become larger as the Con fi dence Level increases 
from 90% to 99%? YES ______ NO ______  

   b.    Does the TYPE I Error become smaller as the Con fi dence Level increases 
from 90% to 99%? YES ______ NO ______  

   c.    Which con fi dence level has the greatest probability of  not  containing the pop-
ulation mean? 90% _____ 95% _____ 99% _____  

   d.    Were the TYPE I Error percents the same as the Expected Error percents?  

 TYPE I Error     Expected Error  Con fi dence Level 

 __________  10%  90% 
 __________  5%  95% 
 __________  1%  99% 

    2.    Run the TYPE I ERROR Program for the sample sizes listed below. Record the 
Con fi dence Interval Width and TYPE I Error for each sample size and con fi dence 
level.
   90% Con fi dence Level   

 Sample Size     Interval Width  TYPE I Error 

   10  ___________  __________ 
  100  ___________  __________ 
  500  ___________  __________ 
 1000  ___________  __________ 

  95% Con fi dence Level  

 Sample Size     Interval Width  TYPE I Error 

   10  ___________  __________ 
  100  ___________  __________ 
  500  ___________  __________ 
 1000  ___________  __________ 

  99% Con fi dence Level  

 Sample Size     Interval Width  TYPE I Error 
   10  ___________  __________ 
  100  ___________  __________ 
  500  ___________  __________ 
 1000  ___________  __________ 

    a.    Does the con fi dence interval width become smaller as sample size increases 
for 90%, 95%, and 99% con fi dence levels. YES ______ NO ______  

   b.    In comparing the results for large versus small sample sizes across the three 
con fi dence levels, do the TYPE I errors become closer to the level of 
con fi dence as the sample size increases? YES ______ NO ______  

   c.    Is it possible for the sample mean to be outside of the con fi dence interval? 
YES ______ NO ______          
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   TYPE II Error 

 The research process begins with the formulation of a research question. The 
research question is then stated in a form that can be tested which is called a sta-
tistical hypothesis. The two possible outcomes of the statistical hypothesis are 
termed a  null hypothesis  and an  alternative hypothesis . The null hypothesis is 
stated as “no difference” between population parameters and indicates, “to be 
nulli fi ed.” The alternative hypothesis re fl ects the outcome expected by the research 
question. Consequently, the alternative hypothesis can be stated in either a direc-
tional or non-directional format. A  directional  hypothesis states that one popula-
tion parameter is greater than the other population parameter. A  non - directional  
hypothesis states that the two population parameters “are different,” but doesn’t 
specify which is greater than the other population parameter. In the previous 
chapter we assumed a non-directional hypothesis because we used the probability 
area in both tails (both sides) of the normal bell-shaped probability curve. It is 
also important to point out that statistical hypotheses are stated in the form of 
population parameters. 

 An example of both the non-directional and directional statistical hypotheses 
will help to visualize how they are presented using population parameters. The  non -
 directional  hypothesis in both Null Hypothesis (H 

O
 ) and Alternative Hypothesis 

(H 
A
 ) form, stating that Company A and Company B have the same average sales, 

would be indicated as:

      :O CompanyA CompanyBH μ μ=    

      
:A CompanyA CompanyBH μ μ≠

    

 The Null Hypothesis indicates that the population means for the two companies 
are equal. The Alternative Hypothesis indicates that the population means for the 
two companies are different. 

 The  directional  hypothesis in both Null Hypothesis (H 
O
 ) and Alternative 

Hypothesis (H 
A
 ) form, stating that Company A had greater average sales than 

Company B, would be indicated as:

      ≤:O CompanyA CompanyBH μ μ    

      
:A CompanyA CompanyBH μ μ>

    

 The Null Hypothesis indicates that the population mean for Company A is less 
than or equal to the population mean for Company B. The Alternative Hypothesis 
indicates that the population mean for Company A is greater than the population 
mean for Company B, thereby only testing a speci fi c directional difference in the 
population means of the companies. 

 The probabilities related to the two possible outcomes, Null Hypothesis and 
Alternative Hypothesis, are given the name TYPE I error and TYPE II error. 
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A  TYPE I error  is when the null hypothesis is rejected, but in fact it is true. This 
means that you gathered evidence (data) and concluded that the evidence was strong 
enough to accept an alternative hypothesis, but did so erroneously. A  TYPE II 
error  is when the null hypothesis is accepted, but in fact it is false. This means that 
you gathered evidence (data) and concluded that the evidence wasn’t strong enough 
to reject the null hypothesis, so you retained the null hypothesis, but did so errone-
ously. Not rejecting the null hypothesis was due to a lack of suf fi cient evidence 
(data). Neither decision, to reject or retain the null hypothesis, is 100% certain; 
therefore we make our decision with some amount of uncertainty. Whether the 
TYPE I error or TYPE II error is more important depends on the research situation 
and the type of decision made. An example will help to clarify the TYPE I and 
TYPE II errors and possible outcomes. 

 A corporation is going to use data from a sample of people to test a research 
question of whether or not a new product design will increase the average sales 
above that of the current product design. Using the current product design, the com-
pany sold an average of 85 cars. The company, in planning the study, realizes that 
two types of error are possible in the study. If the new product design is used, the 
average sales of the product may not be greater than 85 cars; but, the analysis could 
incorrectly lead to the conclusion that the average sales were higher, a TYPE I error. 
If the new product design was used and the average sales did exceed 85 cars, but the 
statistical analysis failed to indicate a statistically signi fi cant increase, then a TYPE II 
error will occur. 

 When planning this study, the company can control the probability of a TYPE I 
error by setting the level of signi fi cance ( a ) to a stringent probability level. For 
example, setting the level of signi fi cance to .05 implies that 95 times out of 100 
replications of the study, a correct decision would be made, and 5 times out of 100 
an incorrect decision would be made. Setting the level of signi fi cance to .01 implies 
that 99 times out of 100 a correct decision would be made, and only 1 time out of 
100 an incorrect decision would be made. These probabilities for a correct decision 
and an incorrect decision are applicable only when the Null Hypothesis is true. 
Therefore, we set the TYPE I error to a probability level that instills con fi dence in 
our decision to reject the null hypothesis (no difference) and accept an alternative 
hypothesis (difference exists). A TYPE II error requires a further concern for many 
other factors in the study. The probability of a TYPE II error depends on the level of 
signi fi cance (B), the direction or non-direction of the research question, the sample 
size, the population variance, and the difference between the population parameters 
we want to be able to detect (effect size). These concerns determine how powerful 
our test will be to detect a difference when it actually exists in the population(s) we 
study. In planning the study, the company needs to be concerned about both TYPE I 
and TYPE II errors, as well as the consequences of the decision made based on the 
outcome of the decision. 
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 In testing hypotheses, four possible outcomes exist with regard to the decision 
made. They are:

 Actual Population Condition

Null Hypothesis is True Null Hypothesis is False

Reject Null
Hypothesis

Decision

Retain Null
Hypothesis

TYPE I ERROR
(Probability = α)

CORRECT DECISION
(Probability = 1 - β)

CORRECT DECISION
(Probability = 1 - α)

TYPE II ERROR
(Probability = β)

 

  

                    The probability of making a TYPE I error in the Null Hypothesis is denoted by 
the symbol alpha,  a , and referred to as the level of signi fi cance, with the probability 
of a correct decision 1 −  a . The probability of making a TYPE II error in the 
Alternative Hypothesis is denoted by the symbol Beta,  b , with the power of the test 
given by 1 −  b ; the probability of making a correct decision. The relationship 
between TYPE I error and TYPE II error is typically graphed using vertical hash 
marks to denote the area for the region of rejection. The two graphs below indicate 
the probability areas for the four decision outcomes.

 Distribution under Null Hypothesis Distribution under Alternative Hypothesis

α / 2

β α / 2 

1 - α 1 - β

         

 The probability in the tails of the distributions can change because the null and 
alternative hypotheses can be stated in directional or non-directional forms. In this 
example, the hypotheses are in a non-directional form, i.e., Is there a statistically 
signi fi cant mean difference between boys and girls on the mathematics test? If the 
level of signi fi cance is .05, then one-half or .025 would be the probability area in 
the tails of the distribution. If we chose only the one tail (p = .025), then the alterna-
tive research question would be stated as directional, e.g., Will the girls on average 
score higher than the boys in mathematics achievement? The statistical tables in the 
appendix adjust for the directional versus non-directional nature when selecting a 
“tabled statistic” value. 

 The basic concern in selecting a TYPE II error is the value for power, which is 
1 −  b .  Power  is the probability of  not  committing the error. In conducting research 
in education, psychology, business, and other disciplines, we are concerned about 
the power of our statistical test to detect a difference in the population parameters. 
A graph of the power values against different population parameter values will 
result in  power curves  for different levels of signi fi cance and sample size. The 
resulting power curves provide an adequate determination of the power of a test for 
all alternative values of the population parameter. 
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 The concerns in research for having an adequate sample size, the nature of TYPE 
I and TYPE II errors, power of a test, and selection of alternative values for the 
population parameters, called effect size, form the basis of hypothesis testing. The 
hypothesis testing theory, known as the  Neyman - Pearson  hypothesis-testing theory, 
formulates the relationship between these concerns. In practice, we might select 
power equal to .80, use a .05 level of signi fi cance, and a directional hypothesis to 
test our statistical hypothesis. The  effect size  or magnitude of difference between 
the population parameters also affects the power of the test. If a small difference 
must be detected, then the sample size, level of signi fi cance, and power must be 
increased. We also generally know that the power of a test increases as sample size 
increases, and the power of a test increases as the level of signi fi cance is decreased, 
i.e., .01 to .05. Basically, all of these values are inter-related such that increasing or 
decreasing one affects the others. There are software programs available on the 
Internet that help in selecting sample size or power for different statistical tests, 
given values for the other criteria, e.g. GPower 3.1. 

 A TYPE II error implies that a null hypothesis has been accepted, but is false. 
The probability of a TYPE II error is denoted by the symbol B. The probability of a 
TYPE II error decreases as  a  increases (e.g., .01 to .05), N increases, the population 
variance decreases, and the effect size is larger (true mean is farther from the hypoth-
esized mean in the direction of the alternative hypothesis). When a TYPE II error 
decreases, power increases. Power is the probability of rejecting a null hypothesis 
that is false. When the null hypothesis is false, power is equal to 1 −  B . When the null 
hypothesis is true, power is equal to  a . 

   TYPE II ERROR R Program 

 The probability of a TYPE II error is affected by four criteria (alpha [ a ], sample size, 
population variance, and effect size) speci fi ed in the  TYPE II ERROR  program. The 
program inputs these values and determines whether or not to reject the null hypoth-
esis. The program is initially repeated 100 times. The relative frequency of occurrence 
with which a false null hypothesis is retained is an approximation of the probability of 
a TYPE II error, B. The power of the test is calculated as 1 minus this relative fre-
quency. Power is equal to 1 − B when the null hypothesis is false. The theoretical val-
ues for the probability of retaining the null hypothesis and power are also given. If the 
true mean is equal to the mean in the null hypothesis, then the probability of retaining 
the null hypothesis is equal to 1 −  a . In this case, power is equal to  a , the level of 
signi fi cance. The hypothesis testing in the program is directional to determine whether 
the mean of a population with a normal distribution is greater than a speci fi ed value, 
therefore, the level of signi fi cance is in one tail of the distribution. 

 In the program, samples are drawn for a given number of replications instead of for 
a single sample. A  p - value function  determines the probability area based on a direc-
tional one-tail test. The number of times the null hypothesis is rejected based on the 
p-value is summed. This sum is used along with the total number of replications to 
 calculate the estimated probability of retaining the null hypothesis and estimated power. 
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Next, the critical value for the test is determined by using a new function called  qnorm , 
which takes a probability, mean and variance and returns the number of  standard 
 deviations above or below the mean. This is multiplied by the standard  deviation and 
added to the mean to obtain the raw score value that equates to a cutoff point for the 
region of rejection in the tail of the distribution. This cut-off value is used to obtain the 
true probability of retaining the null hypothesis and true power for the given number of 
replications. Two separate tables are output, one table for the null mean difference, 
population mean difference, population variance, sample size, and alpha; and one table 
for the estimated probability of retaining the null mean difference, estimated power, 
true probability of retaining the null mean difference, and true power.  

   TYPE II ERROR Program Output 

  Null Mean  =  0 Pop. Mean  =  0 Pop. Variance  =  1  

  Sample Size  =  5 Alpha  =  0.05 N Replications  =  100  
  Hypothesis Direction  =  1 (0  =  one-tailed  <  Null, 1  =  one-tailed  >  Null  

  Table 1. Means, Variance, Sample Size, and Alpha  
  Null Diff. Pop Diff. Pop Variance Sample Size Alpha  
   0 0 1 5 0.05  

  Table 2. Estimated Null Mean Diff. % and Power with True Null % 
and Power  
  Retain Null % Power Estimate True Null % True Power  
  0.980 0.020 0.950 0.050    

   TYPE II Error Exercises 

     1.    Run the TYPE II ERROR program for the values indicated in the following table 
for 100 replications.  

 Null 
Mean 

 Population 
Mean 

 Population 
Variance 

 Sample 
Size  Alpha 

 Retain 
Null % 

 Power 
Estimate 

 True 
Null % 

 True 
Power 

 0  0.0  1.0  10  .05 
 0  1.0  1.0  10  .10 
 0  1.0  1.0  10  .05 
 0  1.0  1.0  10  .025 
 0  1.0  1.0  10  .01 
 0  1.2  1.0  10  .05 
 0  1.5  1.0  10  .05 
 0  2.0  1.0  10  .05 
 0  1.0  1.5  10  .05 
 0  1.0  2.0  10  .05 
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    a.    In the  fi rst run, the Null Mean equals the Population Mean (Null Hypothesis is 
true), so does the True Power equal Alpha? YES ________ NO _________.  

   b.    In runs 2−5, alpha decreases from .10 to .01 with other factors held the same, 
so does B increase (Retain Null %)? YES ________ NO _________.  

   c.    In runs 2−5, alpha decreases from .10 to .01 with other factors held the same, so 
does Power decrease (Power Estimate)? YES ________ NO _________.  

   d.    Does B (Accept Null %) and 1 − B (Power Estimate) equal 100%? YES 
________ NO _________.  

   e.    In runs 6–8, the Population Mean is increasingly different from the Null 
Mean; that is, the population mean is getting farther away from the null mean 
in the direction of the alternative hypothesis (effect size). So with other fac-
tors held constant, does power increase? YES ________ NO _________.  

   f.    In runs 9–10, the Population Variance is increased, so does Power decrease? 
YES ________ NO _________.  

   g.    Try to summarize the relationships between alpha, B (Retain Null %), 1 - B 
(Power Estimate), and effect size in examples  a  to  f  above. ______________
__________________________________________________________      

    2.    Run TYPE II ERROR program with the following sample sizes: 10, 20, 30, and 
40. Keep the other values the same in the program: 

  nullMean  < - 0  
  popMean  < - 1  
  popVar  < - 1  
  sampleSize  < - 10  
  alpha  < - .05  
  tails  < - 1  
  numReplications  < - 100 

   a.    As sample size increases with the other factors held constant, does B approach 
zero? YES ______ NO _______  

   b.    As the sample size increases with the other factors held constant, does Power 
increase? YES ______ NO _______  

   c.    What is the region of rejection for the directional hypothesis, or where 
the null hypothesis will be rejected, when n = 10? Note: Tabled 
Statistic = Mean + ( z  * Standard error of the statistic). ________________
______________________________________      

    3.    Run TYPE II ERROR again using the following factors: 

  nullMean  < - 0  
  popMean  < - -1  
  popVar  < - 1  
  sampleSize  < - 4  
  alpha  < - .05  
  tails  < - 1  
  numReplications < - 100 
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   a.    What is the true probability of retaining the null hypothesis? __________  
   b.    What is the true power? ___________  
   c.    Why do you get these values for true probability and power? Hint: You are 

conducting a directional hypothesis, which only uses the probability area in 
one tail of the normal curve. ______________________________________
________________________          

   True or False Questions 

   Sampling Distributions    

 T     F  a. The sampling distribution of sample standard deviations is 
symmetrical for N = 2. 

 T  F  b. As sample size increases, the error in the sample standard devia-
tion as an estimator of the population standard deviation decreases. 

 T  F  c. The sample standard deviation is an unbiased, ef fi cient, consistent, 
and suf fi cient estimator of the population standard deviation. 

 T  F  d. The sample standard deviation tends to overestimate the popula-
tion standard deviation. 

 T  F  e. On the average, the sample standard deviation is equal to the 
population standard deviation. 

 T  F  f. A consistent estimator is one that more closely approximates the 
population parameter as sample size increases. 

   Con fi dence Interval    

 T     F  a. A 95% con fi dence interval computed from sample data contains 
the population parameter approximately 95% of the time. 

 T  F  b. A con fi dence interval indicates the precision of a statistic to 
estimate the population parameter. 

 T  F  c. As sample size increases, the con fi dence interval width becomes 
narrower. 

 T  F  d. A 95% con fi dence interval implies that 95 times out of 100 the 
con fi dence interval  will not  contain the population parameter. 

 T  F  e. It is possible that a 95% con fi dence interval will not contain the 
population parameter. 

 T  F  f. As the con fi dence level increases from 90% to 99%, the width of 
the con fi dence interval becomes smaller. 
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   Statistical Hypothesis    

 T     F  a. If the null hypothesis is false, it will be rejected approximately  a  
percent of the time. 

 T  F  b. If the null hypothesis is false, it can still be retained. 
 T  F  c. The sample standard deviation may be used in place of the popula-

tion standard deviation in the z-test if the sample size is small. 
 T  F  d. The probability of a TYPE II error increases if  a  is decreased. 
 T  F  e. If the p-value is greater than  a , then the null hypothesis is rejected. 
 T  F  f. The region of rejection is denoted by a tabled statistical value for a 

given sample size and level of signi fi cance. 
 T  F  g. A directional hypothesis speci fi es the probability area for rejection 

of the null hypothesis in both tails of the normal distribution. 
 T  F  h. Different kinds of statistical hypotheses are tested depending on the 

level of measurement of data. 
 T  F  i. The level of signi fi cance (alpha) determines the probability area for 

the region of rejection. 

   TYPE I Error    

 T     F  a. The sum of the Con fi dence Level and TYPE I error probability 
equals 100%. 

 T  F  b. If the con fi dence level increases, the TYPE I error decreases. 
 T  F  c. As sample size increases, the con fi dence interval width decreases. 
 T  F  d. A TYPE I error is the probability of rejecting the Null Hypothesis 

when it is true and falsely accepting the Alternative Hypothesis. 
 T  F  e. The sample mean is always inside the con fi dence interval. 
 T  F  f. The population mean sometimes falls outside of the con fi dence 

interval. 
 T  F  g. With all other factors remaining constant, a 90% con fi dence 

interval would be narrower than a 99% con fi dence interval 
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   TYPE II Error    

 T     F  a. As  a  increases, the power of the test increases. 
 T  F  b. Larger sample sizes will yield more powerful tests. 
 T  F  c. B is the probability of rejecting a true null hypothesis. 
 T  F  d. Small effect sizes are dif fi cult to detect. 
 T  F  e. B decreases for larger sample sizes. 
 T  F  f. As sample size increases, power increases. 
 T  F  g. An acceptable value for power is .80. 
 T  F  h. Power is the probability of rejecting a null hypothesis that is false. 
 T  F  i. A TYPE I error refers to rejecting the null hypothesis when it is true. 
 T  F  j. A TYPE II error refers to retaining the null hypothesis when it is false. 
 T  F  k. Effect size refers to the difference between TYPE I and TYPE II errors. 
 T  F  l. A non-directional hypothesis indicates no difference between 

population parameters. 
 T  F  m. A directional hypothesis indicates that one population parameter is 

greater than the other population parameter. 
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 Previous chapters have presented information on sampling distributions, Central 
Limit Theorem, con fi dence intervals, TYPE I error, TYPE II error, and hypothesis 
testing. This information is useful in understanding how sample statistics are used 
to test differences between population parameters. The statistical tests presented in 
this and subsequent chapters depend upon the level of measurement and type of 
research design. 

 A popular statistic for testing research questions involving categorical data is the 
chi-square test statistic. The chi-square statistic was developed by Karl Pearson to 
test whether two categorical variables were independent of each other. A typical 
research question involving two categorical variables can be stated as, “Is drinking 
alcoholic beverages independent of smoking cigarettes?” A researcher would gather 
data on both variables in a “yes-no” format, then cross tabulate the data. The cross-
tabulation of the data for this research question would look like the following:  

 Do you drink alcoholic beverages?    
 Do you smoke cigarettes?  Yes  No 

 Yes 
 No 

 Individuals would be asked both questions and their separate responses recorded. 
The cross-tabulation of the data would permit an indication of the number 
of  people who  did  smoke cigarettes and  did  drink alcoholic beverages, the num-
ber of people who  did  smoke cigarettes and  did not  drink alcoholic beverages, the 
number of people who  did not  smoke cigarettes and  did  drink alcoholic beverages, 
and the number of people who  did not  smoke cigarettes and  did not  drink alcohol. 
Consequently, four possible outcomes are represented by the cross-tabulation of the 
yes/no responses to the two questions. 

    Chapter 8   
 Chi-Square Test                 
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 The  chi-square statistic  is computed by taking the sum of the observed  frequency 
minus the expected frequency squared divided by the expected frequency in each of 
the four cells. The chi-square formula is expressed as:
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 Multiplying the respective row and column sums and dividing by the total 
number of individuals yields the expected frequencies in each of the four cells. 
The calculation of the difference between what is observed and what is expected by 
chance alone forms the basis for the test of independence between two categorical 
variables. The  expected cell frequencies  are based on the two categorical variables 
being independent. An example will help to illustrate how to calculate the expected 
frequencies and the chi-square statistic. 

 A school district is interested in having parents pass a bond referendum to build 
a new high school. The superintendent decides to conduct a preliminary poll of the 
voters to see if they might favor passing the bond. The superintendent is also 
concerned about whether men and women would vote differently on the bond 
 referendum. Consequently, 200 parents (100 men and 100 women) in the district 
were randomly selected and telephoned to collect the data. Each parent was asked 
their gender and whether they favor or oppose a bond to build a new high school. 
The responses are cross-tabulated below.  

 Gender  Favor  Oppose  Total 
 Men  40 (60)  60 (40)  100 
 Women  80 (60)  20 (40)  100 
 Totals  120  80  200 

 The observed values indicate 40 out of 100 (40%) men and 80 out of 100 (80%) 
women are in favor of the bond, while 60 out of 100 (60%) men and 20 out of 100 
(20%) women are opposed to the bond. If the null hypothesis is true (no difference 
in the percent between men and women in favor of the bond), then we would expect 
the percentages to be the same for both men and women, i.e., of the 120 observed in 
favor, one-half or 60 individuals would be expected in each gender cell. The expected 
cell frequencies are what would be expected if gender and voting were independent. 
The most convenient way to calculate the expected cell values is to multiply the 
corresponding row and column sums and divide by the total sample size. For 
men, the  fi rst expected cell value is: (100 × 120)/200 = 60. The other expected cell 
value is: (100 × 80)/200 = 40. For women, the  fi rst expected cell value is: 
(100 × 120)/200 = 60. The other expected cell value is: (100 × 80)/200 = 40. The 
expected cell values are in parentheses in the table. The expected cell values should 
always add up to the total for each row and/or column, respectively. 

 The chi-square statistic compares the corresponding observed and expected val-
ues in the cells of the table under the assumption that the categorical variables are 
independent, i.e., the null hypothesis is true. If the row and the column variables 
are independent, then the proportion observed in each cell should be similar to the 
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proportion expected in each cell. Is the difference between what we observed and 
expected in the four cells statistically different or due to random chance (expected 
values)? A decision about the null hypothesis is made on the basis of the chi-square 
statistic, which is computed as follows:

      

2 2 2 2
2 (40 60) (60 40) (80 60) (20 40)

60 40 60 40
χ
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2 (6.67 10 6.67 10) 33.34χ = + + + =∑     

 The computed chi-square value is compared to a tabled chi-square value in the 
appendix for a given degree of freedom. The degrees of freedom are always deter-
mined by the number of rows minus one (r − 1) times the number of columns minus 
one (c − 1). This can be expressed as: df = (r − 1)(c − 1). Since there are two rows and 
two columns, the degree of freedom is: df = (2 − 1)(2 − 1) = 1. The tabled chi-square 
value for df = 1 and a .05 level of signi fi cance is 3.84. Since the computed chi-square 
value of 33.34 is greater than the tabled chi-square value of 3.84, we reject the null 
hypothesis in favor of the alternative hypothesis that men and women differ in the 
percent favoring a bond for building a new school. 

 The chi-square value is computed over all the cells and therefore a signi fi cant 
chi-square doesn’t specify which cells may have contributed to the signi fi cance of 
the overall chi-square value. Our interpretation of the overall chi-square result is 
greatly enhanced by realizing that each cell value is itself a chi-square value! 
Consequently, we can interpret each cell value individually and compare it to the 
tabled chi-square value of 3.84 with df = 1. Since each cell value is greater than 3.84 
(6.67, 10, 6.67, and 10), we would conclude that each cross-tabulated cell 
signi fi cantly contributed to the overall chi-square. Also, each expected cell fre-
quency should be greater than  fi ve to meet the assumption for computing the chi-
square statistic. 

 Another helpful approach to interpreting chi-square results is to take each indi-
vidual chi-square value (cell value) as a percent of the overall chi-square value. This 
provides a variance accounted for interpretation. In our example, 6.67/33.34 = 20%, 
10/33.34 = 30%, 6.67/33.34 = 20%, and 10/33.34 = 30%. The sum of these cell 
percents must always equal 100%. Our interpretation would then be based on which 
cell or cells contributed the most to the overall chi-square. 

 The chi-square statistic will be small if there are small differences between 
the observed and the expected values, and it will be large if there large differences. 
The chi-square statistic for a two-by-two table is distributed as a theoretical 
chi-square sampling distribution with 1 degree of freedom. Therefore, the theoreti-
cal chi-square distribution can be used to determine the region of rejection for the 
null hypothesis. The region of rejection includes any chi-square statistic greater 
than the 1- a  percentile of the theoretical chi-square distribution with degree of 
freedom = (r − 1)(c − 1). Consequently, the chi-square test of independence can be 
 performed on tables of any dimension, i.e., varying numbers of rows and columns 
for categorical variables. 
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 The chi-square statistic for two-by-two tables only are discussed. You will determine 
if the row and column values are independent or dependent. If the rows and columns 
are independent, you will be able to observe the variability in the observed val-
ues that occur because of random sampling. A TYPE I error will occur when the 
rows and columns are independent, i.e., the null hypothesis will be rejected when it 
is true. If the rows and columns are dependent, you will be able to observe TYPE II 
errors, i.e., the null hypothesis is retained. As in previous programs, the probability 
of a TYPE II error will depend on how much the true situation differs from the null 
hypothesis. If the rows and columns are almost independent, then the probability of 
a TYPE II error will be high. 

 A chi-square statistic can be used to test research questions involving cross-
tabulated categorical variables. An overall chi-square statistic is computed by sum-
ming the individual cell values (chi-squares) in a cross-tabulated table. The degrees 
of freedom for a cross-tabulated table are row minus one times column minus one, 
i.e., df = (r − 1)(c − 1). The chi-square test of independence can be used for any num-
ber of rows and columns, as long as the expected cell frequency is greater than  fi ve. 
A chi-square test of independence is used to determine whether or not the rows and 
columns are independent (null hypothesis). If the null hypothesis is true, it is still 
possible that the chi-square test could lead to a rejection of the null hypothesis 
(TYPE I error). If the null hypothesis is false, it is still possible that the chi-square 
test could lead to retaining the null hypothesis (TYPE II error). The ratio of each 
cell value to the overall chi-square value provides a variance accounted for interpre-
tation of how much each cell contributed to the overall chi-square value. The chi-
square table of expected values in the Appendix permits testing whether the 
computed chi-square value occurs beyond a chance level of probability. 

   CROSSTAB R Program 

 The CROSSTAB program inputs four percents for the true population and the 
 sample size. The program will then select a random sample of size N for this popu-
lation. The percents will be printed in a table along with the observed and expected 
values. A chi-square statistic will be computed and printed along with the degrees 
of freedom and probability value. You will make a decision about whether to retain 
or reject the null hypothesis based on the probability value being p < .05. A second 
example uses large percent differences between the observed and expected values to 
better understand the magnitude of the chi-square value. You may want to examine 
each individual cell chi-square value for signi fi cance and hand calculate the percent 
contribution to the overall chi-square value. 

 The CROSSTAB program uses matrices to represent cross-tabulated categorical 
variable tables. The program  fi rst de fi nes the true proportions within each cell (the 
numbers are arranged by the  fi rst row followed by the second row) and then the 
sample size. Next, random data are generated from a discrete population of data from 
1 to 4, simulating categorization into a cell of the table. The vector of data is factored 
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and tabled in order to get counts for each outcome and then placed into a matrix. The 
table of expected values is built from the sample data by taking the sum of the values 
for column 1 and dividing it by the sample size to determine the proportion of total 
outcomes that fall within the  fi rst column, then multiplying it by the total number of 
responses for row 1. This gives the expected value for cell (1,1). The process is 
repeated for the other three cells and the results are  fi tted into a matrix and rounded 
to three digits. Three matrices are then printed: True Population Proportions, 
Observed Proportions, and Expected Proportions. Finally, the function  chisq.test  is 
performed on the  testMatrix  object in order to do the actual chi-square test. The chi-
square value, degrees of freedom, and p-value are printed by default. The  chisq.test  
function uses the Yates correction, which uses real limits around numbers, for example, 
real limits of 5 is 4.5–5.5.  

   CROSSTAB Program Output 

   Example 1 

  Cell Probabilities  =  0.1 0.15 0.3 0.45  
  Sample Size  =  100       

  Population Proportions  
   X Y  
  A 0.10 0.15  
  B 0.30 0.45  

  Observed Proportions  
   X Y  
  A 0.10 0.17  
  B 0.25 0.48  

  Expected Proportions  
   X Y  
  A 0.094 0.176  
  B 0.255 0.475  

  Pearson chi-square test with Yates’ continuity correction  
  Chi-square = 6e-04 df = 1 p-value = 0.98116   

    Example 2  

  Cell Probabilities  =  0.7 0.1 0.1 0.1  
  Sample Size  =  100       

  Population Proportions  
   X Y  
  A 0.70 0.10  
  B 0.10 0.10  
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  Observed Proportions  
   X Y  
  A 0.7 0.1  
  B 0.1 0.1  

       Expected Proportions  
   X Y  
  A 0.64 0.16  
  B 0.16 0.04  

  Pearson chi-square test with Yates’ continuity correction  
  Chi-square  =  11.8164 df = 1 p-value = 0.00059    

   Chi-Square Exercises 

     1.    Run CROSSTAB using the Population proportions below with a sample size of 
100 using .05 level of signi fi cance. 
 Population Proportions  

 .50  .20 
 .10  .20 

 Observed Proportions  

 Expected Proportions  

   a.    Are the expected values in the cells computed correctly? YES____ NO____  
   b.    Is the chi-square statistic computed correctly? YES____ NO____  
   c.    What is the chi-square value? _____________  
   d.    What is the statistical decision? Retain Null ____ Reject Null____  
   e.    Does the decision agree with the true percent? YES____ NO____  
   f.      What percent of the time would you expect the null hypothesis to be rejected 

by mistake? _________  
   g.    What is the name of this type of error? ______________________      

    2.    Run CROSSTAB using the Population proportions below with a sample size of 
100 using a .01 level of signi fi cance. 
 Population Proportions  

 .16  .32 
 .28  .24 

 Observed Proportions  

 Expected Proportions  
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   a.    Are the expected values in the cells computed correctly? YES____ NO____  
   b.    Is the chi-square statistic computed correctly? YES____ NO____  
   c.    What is the chi-square value? ______________  
   d.    What is the statistical decision? Retain Null ____ Reject Null_____  
   e.    Does the decision agree with the true percent? YES____ NO____  
   f.      What percent of the time would you expect the null hypothesis to be rejected 

by mistake? _________  
   g.    What is the name of this type of error? ______________________          

   True or False Questions 

   Chi-Square    

 T     F  a. A chi-square statistic is used with ordinal data. 
 T  F  b. The null hypothesis in the chi-square test corresponds to no 

difference in the row and column categories. 
 T  F  c. The chi-square statistic will be large if there is a large difference 

between the observed and the expected values in the cells. 
 T  F  d. If the true population has independent rows and column, then a 

TYPE I error may occur. 
 T  F  e. The chi-square statistic can be negative. 
 T  F  f. The overall chi-square value indicates which cells contributed to a 

statistically signi fi cant  fi nding. 
 T  F  g. The tabled chi-square value is 3.84 with one degree of freedom 

at the .05 level of signi fi cance. 
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 Many research questions involve testing differences between two population 
proportions (percentages). For example, Is there a signi fi cant difference between 
the proportion of girls and boys who smoke cigarettes in high school?, Is there a 
signi fi cant difference in the proportion of foreign and domestic automobile sales?, 
or Is there a signi fi cant difference in the proportion of girls and boys passing the 
Iowa Test of Basic Skills? These research questions involve testing the differences 
in population proportions between two independent groups. Other types of research 
questions can involve differences in population proportions between related or 
dependent groups. For example, Is there a signi fi cant difference in the proportion of 
adults smoking cigarettes before and after attending a stop smoking clinic?, Is there 
a signi fi cant difference in the proportion of foreign automobiles sold in the U.S. 
between years 1999 and 2000?, or Is there a signi fi cant difference in the proportion 
of girls passing the Iowa Test of Basic Skills between the years 1980 and 1990? 
Research questions involving differences in independent and dependent population 
proportions can be tested using a  z-test  statistic. Unfortunately, these types of tests 
are not available in most statistical packages, and therefore you will need to use a 
calculator or spreadsheet program to conduct the test. 

   Independent Samples    

 A practical example using the hypothesis testing approach will help to illustrate the 
z-test for differences in proportions between two independent groups. The research 
question for our example will be: Do a greater proportion of high school students in the 
population smoke cigarettes in urban rather than rural cities? This is a directional 
research question. A step-by-step outline will be followed to test this research question. 

  Step 1.  State the directional research question in a statistical hypothesis format.

   H 
O
 : P 

1
   £  P 

2
  (or P 

1
  − P 

2
   £  0)  

  H 
A
 : P 

1
  > P 

2
  (or P 

1
  − P 

2
  > 0)    
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   Step 2.  Determine the criteria for rejecting the null hypothesis and accepting the 
alternative hypothesis. 

 Given  a  = 0.01, we select the corresponding z value from Table A1 (see Appendix) 
which is the closest to 1% of the area under the normal curve. If our computed z-test 
statistic is greater than this tabled z-value, we would reject the null hypothesis in 
favor of the alternative hypothesis. This establishes our region of rejection, R, or the 
probability area under the normal curve where differences in sample proportions are 
unlikely to occur by random chance.

   R: z > 2.33     

       Notice that the “H” stands for hypothesis with the subscripts “0” for the null 
statistical hypothesis and “A” for the alternative statistical hypothesis. The 
alternative statistical hypothesis is stated to re fl ect the research question. In 
this example, the alternative statistical hypothesis indicates the directional 
nature of the research question. Also, P 

1
  is the population proportion of high 

school students who smoke in an urban city and P 
2
  is the population propor-

tion of high school students who smoke cigarettes in a rural city. 

   Notice that in Table A1 (see Appendix), the  fi rst column indicates z = 2.3 with 
the other column indicating the 3 in the hundredths decimal place. Also, notice 
that the percentage = 0.4901 is the closest to 49%, which leaves 1% area under 
the normal curve. In Table A1, only one-half of the normal curve is repre-
sented, so 50% is automatically added to the 49% to get 99%, which re fl ects 
the one-tail probability for the directional alternative statistical hypothesis. 

  Step 3.  Collect the sample data and compute the z-test statistic. 
 A random sample of 20% of all high school students from both an urban and 

a rural city was selected. In the urban city, 20,000 high school students were 
sampled with 25% smoking cigarettes (n 

1
  = 5,000). In the rural city, 1,000 high 

school students were sampled with 15% smoking cigarettes (n 
2
  = 150). The pro-

portions were:

   P 
1
  = 0.25 (25% of the boys in the sample of high school students smoke cigarettes)  

  P 
2
  = 0.15 (15% of the girls in the sample of high school students smoke cigarettes)    

 The standard deviation of the sampling distribution of the differences in inde-
pendent sample proportions is called the standard error of the difference between 
independent sample proportions. This value is needed to compute the z-test statistic. 
The formula is:
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1 2P P

pq
S

N− =
   

where: 
 p = (n 

1
  + n 

2
  / N) = (5,000 + 150 / 21,000) = 0.245 

 q = 1 − p = 1 − 0.245 = 0.755 
 n 

1
  = number in  fi rst sample = 5,000 

 n 
2
  = number in second sample = 150 

 N = total sample size taken = (20,000 + 1,000) = 21,000

      
1 2

0.245(0.755)
0.003

21000P PS − = =
    

 The z-test can now be computed as:

      1 2

1 2 0.25 0.15 0.10
33.33

0.003 0.003P P

P P
z

S −

− −
= = = =

    

      We have learned from previous chapters that to test a statistical hypothesis, 
we need to know the sampling distribution of the statistic. The sampling dis-
tribution of the difference between two independent proportions is normally 
distributed when sample sizes are greater than  fi ve. Thus, we can use the nor-
mal distribution z statistic to test our statistical hypothesis. 

   Step 4.  Compute the con fi dence interval around the z-test statistic. 
 A con fi dence interval is computed by using the percent difference between the 

two independent groups (P 
1
  − P 

2
  = 0.10), the tabled z-value corresponding to a given 

alpha level for a two-tailed region of region (z = 2.58), and the standard deviation of 
the sampling distribution or standard error of the test statistic (S 

P1 − P2
  = 0.003).

   CI 
99

  = 0.10 +/− (2.58)(0.003)  
  CI 

99
  = 0.10 +/− (0.008)  

  CI 
99

  = (0.092, 0.108)    

       Notice that the tabled z-value selected for determining the con fi dence interval 
around the computed z-test statistic is not the same because the con fi dence 
interval is based on a two-tailed interpretation. The alternative statistical 
hypothesis was one-tail because of the directional nature of the research 
question. 
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   Step 5.  Interpret the z-test statistic results. 
 Our interpretation is based upon a test of the null hypothesis and a 99% 

con fi dence interval around the computed z-test statistic. Since the computed 
z = 33.33 is greater than the tabled z-value, z = 2.33 at the 0.01 level of signi fi cance, 
we reject the null statistical hypothesis in favor of the alternative statistical hypoth-
esis. The probability that the observed difference in the sample proportions of 10% 
would have occurred by chance is less than 0.01. We can therefore conclude that 
the urban city had a greater percentage of high school students smoking cigarettes 
than the rural city. The TYPE I error was set at 0.01, so we can be fairly con fi dent 
in our interpretation. 

 The con fi dence interval was computed as 0.092 to 0.108, indicating that we can 
be 99% con fi dent that this interval contains the difference between the population 
proportions from which the samples were taken. Moreover, the narrowness of the 
con fi dence interval gives us some idea of how much the difference in independent 
sample proportions might vary from random sample to random sample. Consequently, 
we can feel fairly con fi dent that a 9% (0.092) to 11% (0.108) difference would exist 
between urban and rural city high school students smoking cigarettes upon repeated 
sampling of the population.  

   Dependent Samples 

 The null hypothesis that there is no difference between two population proportions 
can also be tested for dependent samples using the z-test statistic. The research 
design would involve obtaining percentages from the same sample or group twice. 
The research design would therefore have paired observations. Some examples of 
when this occurs would be:

    1.    Test differences in proportions of agreement in a group before and after a discus-
sion of the death penalty.  

    2.    Test differences in percent passing for students who take two similar tests.  
    3.    Test differences in the proportion of employees who support a retirement plan 

and the proportion that support a company daycare.     

 The research design involves studying the impact of diversity training on the 
proportion of company employees who would favor hiring foreign workers. Before 
and after diversity training, employees were asked whether or not they were in favor 
of the company hiring foreign workers. The research question could be stated as: 
Are the proportions of company employees who favor hiring foreign workers the 
same before and after diversity training? This is a non-directional research question. 
A step-by-step approach to hypothesis testing will be used. 

  Step 1.  State the non-directional research question in a statistical hypothesis format.

   H 
O
 : P 

1
  = P 

2
  (or P 

1
  − P 

2
  = 0)  

  H 
A
 : P 

1
   ¹  P 

2
  (or P 

1
  − P 

2
   ¹  0)    
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   Step 2 . Determine the criteria for rejecting the null hypothesis and accepting the 
alternative hypothesis. 

 Given  a  = 0.05, we select the corresponding z-value from Table A1 which is the 
closest to 5% of the area under the normal curve (2.5% in each tail of the normal 
curve). If our computed z-test statistic is greater than this tabled z-value, we would 
reject the null hypothesis and accept the alternative hypothesis. This establishes our 
region of rejection, R, or the probability areas under the normal curve where differ-
ences in sample proportions are unlikely to occur by random chance.

   R: z ± 1.96     

       Notice in this example that we are interested in testing the null hypothesis of 
no difference between the population proportions against the non-directional 
alternative hypothesis, which indicates that the proportions are different. 
The alternative statistical hypothesis is stated to re fl ect the non-directional 
research question. Also, P 

1
  is the proportion of employees in favor before diversity 

training and P 
2
  is the proportion of employees in favor after diversity training. 

      Notice that in Table A1 (see Appendix), the  fi rst column indicates z = 1.9 with 
the other column indicating the 6 in the hundredths decimal place. Also, notice 
that the percentage = 0.4750 indicates 0.025 probability area under the normal 
curve in only one tail. In Table A1, only one-half of the normal curve is rep-
resented, but 0.025 in both tails of the normal curve would equal 5%. If we 
add 0.4750 + 0.4750, it would equal 0.95 or 95%, which indicates the remain-
ing percent under the normal curve. The region of rejection indicates two 
z-values, + 1.96 and −1.96, for rejecting the null hypothesis, which re fl ects 
testing a non-directional research question. 

  Step 3.  Collect the sample data and compute the z-test statistic. 
 A random sample of 100 employees from a high-tech company were interviewed 

before and after a diversity training session and asked whether or not they favored 
the company hiring foreign workers. Their sample responses were as    follows:  

 After Diversity Training 

 Before Diversity Training  No  Yes 
 Yes  10 (0.10)  20 (0.20)  30 (0.30) 
 No  50 (0.50)  20 (0.20)  70 (0.70) 

 60 (0.60)  40 (0.40)  100 Total 
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 The sample data indicated the following proportions:

   P 
1
  = proportion in favor before diversity training = 0.30 or 30%  

  P 
2
  = proportion in favor after diversity training = 0.40 or 40%    

       Notice the order of the data entry in the cells of this table. This was done so 
that certain cells indicate disagreement or dissimilar responses before and 
after diversity training. 

  The standard deviation of the sampling distribution of the differences in depen-
dent sample proportions is called the standard error of the difference between dependent 
sample proportions. This value is needed to compute the z-test statistic. The formula is:

      
1 2

11 22
P P

p p
S

N−

+
=

   

where: 
 p 

11
  = percent change from before to after training (yes → no) = 0.10 

 p 
12

  = percent change from before to after training (no → yes) = 0.20 
 N = total sample size = 100

      
1 2

0.10 0.20
0.055

100P PS −

+
= =

    

 The z-test can now be computed as:

      1 2

1 2 0.30 0.40 0.10
1.82

0.055 0.055P P

P P
z

S −

− − −
= = = =−

    

      We have learned from previous chapters that to test a statistical hypothesis, 
we need to know the sampling distribution of the statistic. The sampling 
distribution of the difference between two dependent proportions is normally 
distributed when the sum of the sample sizes in the diagonal cells are greater 
than ten. Thus, we can use the normal distribution z-statistic to test our statis-
tical hypothesis. 

   Step 4.  Compute the con fi dence interval around the z-test statistic. 
 A con fi dence interval is computed by using the percent difference between the 

two independent groups (P 
1
  − P 

2
  = 0.10), the tabled z-value corresponding to a given 

alpha level for a two-tailed region of region (z = ±1.96), and the standard deviation 
of the sampling distribution or standard error of the test statistic (S 

P1 − P2
  = 0.055).
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   CI 
99

  = 0.10 ± (1.96)(0.055)  
  CI 

99
  = 0.10 ± (0.108)  

  CI 
99

  = (−0.008, 0.208)    

       Notice that the tabled z-value selected for determining the con fi dence interval 
around the computed z-test statistic is the same because the con fi dence inter-
val is also based on a two-tailed interpretation. Also, the null hypothesized 
parameter of zero (no difference in proportions) is contained in the con fi dence 
interval, which is consistent with not rejecting the null hypothesis. 

   Step 5 . Interpret the z-test statistic results. 
 Our interpretation is once again based upon a test of the null hypothesis, but 

this time using a 95% con fi dence interval around the computed z-test statistic 
because of the non-directional nature of the research question. Since the com-
puted z = −1.82 is less than the tabled z-value, z = −1.96 at the 0.05 level of 
signi fi cance, we retain the null statistical hypothesis. The probability that the 
observed difference in the sample proportions of 10% would have occurred by 
chance is greater than 0.05. We therefore cannot conclude that the percent of com-
pany employees in favor of hiring foreign workers was different before and after 
diversity training. The TYPE I error was set at 0.05, so we can be fairly con fi dent 
in our interpretation. 

 The con fi dence interval was computed from − 0.008 to 0.208, indicating that 
we can be 95% con fi dent that this interval contains the null hypothesis parameter 
of zero difference between the population proportions from which the sample 
was taken. Moreover, the spread in the con fi dence interval gives us some idea of 
how much the difference in the dependent sample proportions might vary from 
random sample to random sample. Consequently, we should be sensitive to a 
research design factor that may have impacted the statistical test, which is the 
duration and intensity of the diversity training. Obviously a 1-h training session 
involving watching a short slide presentation might have less of an impact on 
employees than a 6-week training session involving role modeling with foreign 
workers on the job. 

 A z-test statistic can be used to answer research questions concerning differ-
ences in proportions between independent samples or groups, as well as, differ-
ences in proportions between dependent samples or groups. A statistically 
signi fi cant difference in proportions indicates that, beyond a random chance 
level, two groups differ in their proportions. A con fi dence interval around the 
z-test statistic indicates the amount of difference in the group proportions one 
can expect upon repeated sampling. The con fi dence interval captures the null 
hypothesis parameter of zero when proportions are not statistically signi fi cantly 
different. 
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   ZTEST R Programs 

 The ZTEST-IND program inputs a critical z-value based on the alpha level and 
directional nature of the test. Next,  size1  and  size2  are set to the respective sample 
sizes and  num1  and  num2  are set to the number of positive cases in each sample. 
After this, the proportion of positive cases for each sample are computed as well as the 
overall  p  and  q , which represent the overall proportion of positive cases and negative 
cases, respectively. Next, the standard error of the difference( s ) is computed as well 
as the z-statistic. The individual proportions of positive cases, the critical z-value, 
and the standard error of the difference are then used to calculate the con fi dence 
interval around the proportion differences and all relevant values are printed. 

 The ZTEST-DEP program inputs a critical z-value, but then assigns numbers to 
the variables  num11 ,  num12 ,  num21 , and  num22 , where  num11  and  num22  repre-
sent changes from one outcome to the other and  num12  and  num21  represent cases 
where the outcome was the same. The total number of outcomes are calculated by 
adding the cells and then the proportion of changes of both types ( num11  and 
 num22 ) are calculated. The proportion of cases with a positive outcome from each 
group or occasion are calculated next. The standard error of the difference is deter-
mined using the proportion of changed outcomes and the total number of outcomes. 
The z-statistic is determined from the difference in positive outcomes between the 
two groups or occasions divided by the standard error of the difference. Finally, the 
upper and lower bounds of a con fi dence interval around the difference in dependent 
proportions is calculated and all relevant values are output.  

   ZTEST-IND Program Output 

  Sample1  =  20000 Sample2  =  1000  
  N1  =  5000 N2  =  150       

  Z critical  =  1.96       

  Difference in proportions  =  0.1  
  Standard Error of Diff  =  0.003       

  z Statistic  =  33.3333  
  Con fi dence Intervals  =  ( 0.0941 , 0.1059 )   

   ZTEST-DEP Program Output 

  Z Critical value  =  1.96       

  First %  =  0.1 Second %  =  0.2  
  Difference in proportions  =  -0.1       

  z Statistic  =  -1.8248  
  Standard Error of Diff  =  0.0548       

  Con fi dence Interval = ( -0.0074 , 0.2074 )    



185z Exercises

   z Exercises 

     1.    Run ZTEST-IND for the independent sample proportions in the following 
example. 
 The research question is: Do Democrats and Republicans differ in their percent 
agreement on handgun control? Test the research question at the 0.01 level of 
signi fi cance. The following sample data was collected:

   Democrats: 50,000 with 24,000 (0.48) or 48% in favor of handgun control  
  Republicans: 50,000 with 12,000 (0.24) or 24% in favor of handgun control

   a.     What is the percent difference between the two independent groups?_______  
   b.     What is the standard error of the difference between the independent 

percents?  _______________  
   c.    What is the z-test statistic value?__________  
   d.    What are the con fi dence interval values? ( _____ , ______ )  
   e.    What decision is made based on the z-test and con fi dence interval? 

 Retain Null ____ Reject Null____  
   f.     What percent of the time would you expect the null hypothesis to be rejected 

by mistake?   
   g.    What is the name of this type of error? ______________________         

    2.    Run ZTEST-DEP for the dependent sample proportions in the following 
example. 
 The research question, Is the proportion of students passing the  fi rst exam 
the same as the proportion of students passing the second exam?, will be tested 
at the 0.05 level of signi fi cance. The following sample data was collected ( fi ll in 
the missing information):  

  Pass Second Exam 

 Pass First Exam  No  Yes 
 Yes  20 ( )  50 ( )  ___ ( ) 
 No  15 ( )  15 ( )  ___ ( ) 

 __ ( )  __ ( )  100 

   a.    What is the percent passing difference between the exams? ____  
   b.    What is the standard error of the difference between the dependent percents?  
   c.    What is the z-test statistic value? __________  
   d.    What are the con fi dence interval values? ( _____ , ______ )  
   e.    What decision is made based on the z-test and con fi dence interval? 

 Retain Null ____ Reject Null____  
   f.     What percent of the time would you expect the null hypothesis to be rejected 

by mistake? _________  
   g.    What is the name of this type of error? ______________________          
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   True or False Questions 

   z-Test    

 T  F  a. A z-test statistic is used  only  with independent sample percents. 
 T  F  b. The null hypothesis in the z-test corresponds to no difference in the 

proportions of either independent or dependent proportions. 
 T  F  c. The z-test statistic will be large if there are large differences between 

the sample proportions relative to the standard error. 
 T  F  d. A Type I error may occur when using the  z  test statistic. 
 T  F  e. The z-test statistic can be negative or positive in value. 
 T  F  f. The z-test statistic can  only  be used with directional hypothesis 

testing. 
 T  F  g. The tabled z-value used in forming the con fi dence interval around 

the z-test statistic is always based upon two tails under the normal 
curve. 
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 Sampling distributions are frequency distributions of a statistic, which are generated 
to make an inference between the sample statistic and its corresponding population 
parameter. The average (mean) statistical value in the sampling distribution is the 
expected value of the population parameter. The variance of the sampling distribu-
tion is used to calculate the standard error of the statistic. The standard error of the 
statistic is a function of sample size and is used to calculate con fi dence intervals 
around the sample statistic, which provides the basis for testing statistical hypothe-
ses and determining the interval in which the population parameter falls. 

 The distribution theory that led to a solution of the problem of estimating the 
population mean,  m , when the population variance was unknown,  s  2 , was due to 
William S. Gossett, a chemist, who in 1908 wrote under the pseudonym of “Student.” 
William S. Gossett, who worked for a brewery, in Dublin, Ireland determined that 
when the sample size was large, the sampling distribution of the z-statistic was nor-
mal; however, when the sample size was small, the sampling distribution was lepto-
kurtic or peaked. He referred to this slightly non-normal distribution as the 
t-distribution. W. S. Gossett further discovered that as he increased the sample sizes, 
the sampling distribution became normal, and therefore the t-values equaled the 
z-values. W. S. Gossett signed his pivotal work, “Student,” and today small sample 
tests of mean differences are referred to as the “student t-test,” or simply the t-test. 
Sir Ronald Fisher, using the early work of “Student,” extended his ideas into mod-
ern day analysis of variance techniques, which is discussed in the next chapter. 

   One Sample t-Test    

 The sampling distribution of the mean can be used to determine the expected value 
of the population mean and variance when they are unknown. The Central Limit 
Theorem supports this assumption because as sample size increases, the sampling 
distribution of the mean becomes a normal distribution with the mean =  m , and 
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 variance =  s  2 /N. Knowledge of this permits one to test whether the sample mean is 
statistically different from a population mean. The test is called a  one-sample t-test , 
which is computed by:

     

2 /

X X
t

S NS

N

m m- -
= =

   

 Suppose a class of 25 students was given instruction using a new, enriched 
mathematics curriculum and then took a nationally standardized math achievement 
test. If the new, enriched mathematics curriculum leads to better learning in the 
population, then this sample of 25 students should perform better on the math 
achievement test than students in the larger population who learned mathematics 
under the traditional mathematics curriculum. Assume the 25 students had a mean 
math achievement test score of 110 with a standard deviation of 15. The mean math 
achievement test score for students in the population taking the traditional math 
curriculum was 100. What is the probability that a random sample of this size 
would have a sample mean of 110 or higher? This research question can be tested 
using a one-sample t-test. The one-sample t-test is computed as:

     

2

110 100 10 10
3.33

322515
2525
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 If we were to examine the probability area in the tails of the normal distribution 
for a z-value of 3.33, we would  fi nd a probability area equal to 0.0004 
(0.4996 + 0.0004 = 0.5000). However, since the probability area in the tails of the 
normal distribution are not the same as the t-distribution, given small sample sizes, 
we need to examine the probability area in the tails of the t-distribution  not  the nor-
mal distribution. We therefore use the t-table in the appendix (Table A1), where we 
 fi nd the degrees of freedom,  df , (df = n−1 = 24) and a probability area depending 
upon a directional (one-tail) or non-directional (two-tailed) test. For  df  = 24 and 
 p  = 0.0005 (one-tail test), we  fi nd a tabled t-value equal to 3.745. Since the com-
puted  t  = 3.33 is less than the tabled  t  = 3.745, we retain the null hypothesis. We 
would conclude that there is no difference in the mean math achievement test scores 
at the  p  = 0.0005 level of statistical signi fi cance. Because the t-distribution is lepto-
kurtic or peaked for small samples, the probabilities in the tails of the t-distribution 
are greater than the probabilities in the normal distribution. When W. S. Gossett 
discovered this, he made an adjustment for small sample sizes by entering larger 
tabled t-values from the sampling distribution of the t-values. By adjusting the 
t- values, he compensated for the greater probability area under the sampling distri-
butions. If you examine the last row in the t-table in the appendix, you will  fi nd 
t-values that are equal to the z-values under the normal distribution because when 
sample sizes are large  t  =  z . In practice, we use the t-test rather than the z-test for 
testing means because it applies to both small and large samples.  
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   Independent t-Test 

 The sampling distribution of the difference between the means of two independent 
samples provides the basis for the testing of a mean difference hypothesis between two 
groups. Taking a random sample from one population, a second random sample from 
another population, and then computing the difference in the means, provides the basis 
for the sampling distribution. The process is repeated several times and the mean dif-
ferences are graphed in a frequency distribution. Under the assumption of no difference 
between the means (null hypothesis), the mean of this sampling distribution is zero. 

 A typical research situation in which one would use the independent t-test might 
involve one group of employees receiving sales training and the second group of 
employees  not  receiving any sales training. The number of sales for each group is 
recorded and averaged. The null hypothesis would be stated as, “The average sales 
for the two groups are equal.” An alternative hypothesis would be stated as, “The 
group receiving the sales training will on average have higher sales than the group 
that did not receiving any sales training.” If the sample data for the two groups were 
recorded as (1) Sales Training: mean = 50, standard deviation = 10, n = 100, and (2) 
No Sales Training: mean = 40, standard deviation = 10, n = 100; the independent 
t-test would be computed as:

     1 2
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 The numerator of the independent t-test formula computes the difference between 
the means of the two independent groups. The denominator of the independent t-test 
formula computes the standard error of the statistic (standard deviation of the sam-
pling distribution), which is computed as:
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 This equation uses information from both samples to estimate a common popula-
tion variance, which is referred to as “pooling the variances” or “averaging” the 
sample variances. The square root of this “pooled variance” estimate is the standard 
error of the statistic (or sampling distribution of the statistic). 

 The independent t-test for the mean difference between the two groups would be 
computed as follows:

     

50 40
7.09

1.41
t

-
= =

   

 Referring to the table of t-values in the appendix, we  fi nd that the computed 
t-value = 7.09 exceeds the tabled t-value of 3.291, for df = 198 (df = ∞) and p = 0.0005 
(one-tailed test). This is considered a statistically signi fi cant  fi nding because a mean 
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difference this large is beyond a chance occurrence. We would conclude that the 
group who received sales training on average had higher sales than the group that 
received no sales training. This result is an important  fi nding if the company is 
spending a substantial amount of money on its employees for sales training and 
wished to know if the sales training was effective in increasing sales.  

   Dependent t-Test 

 Drawing one random sample, taking two measures on each person, subtracting 
these two related measures, and graphing the difference generates the sampling dis-
tribution of the difference between the means of two related samples. The expected 
average difference between the related measures is zero under the null hypothesis. 
The  dependent t-test  is sometimes referred to as the paired t-test or correlated t-test 
because it uses two sets of scores on the same individuals. 

 A typical research situation that uses the dependent t-test involves a repeated 
measure design with one group. For example, a psychologist is studying the effects 
of a certain motion picture upon attitudes toward violence. The psychologist hypoth-
esizes that viewing the motion picture will cause the students’ attitudes to be more 
violent. A random sample of ten students is given an attitude toward violence inven-
tory before viewing the motion picture. Next, the ten students view the motion 
picture, which contains graphic violence portrayed as acceptable behavior. The ten 
students are then given the attitude toward violence inventory after viewing the 
motion picture. The average attitude toward violence score for the students before 
viewing the motion picture was 67.5, but after viewing the motion picture was 73. 
There are ten pairs of scores, so ten score differences are squared and summed to 
calculate the sum of square differences. The standard error of the dependent t-test is 
the square root of the sum of squared differences divided by N (N−1). 

 The dependent t-test to investigate whether the students’ attitudes toward 
violence changed after viewing the motion picture would be computed as:

     D

D
t

S
=

   

 The numerator in the formula is the average difference between the post- and 
pre-mean scores on the attitude toward violence inventory, which is 73−67.5 = 5.5. 
The denominator is calculated as:

     

Σ 2( )

( 1)D

D D
S

N N

-
=

-     
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 The dependent t-test is calculated as: t = 5.5/2.63 = 2.09. This value is  compared 
to a tabled t-value for df = 9 and p = 0.01 (probability value), which is t = 2.82. 
Since the computed t = 2.09 does not exceed the tabled t = 2.82, we retain the null 
hypothesis. We conclude that watching the motion picture did not change stu-
dents’ attitudes toward violence. 

 Notice in calculating the dependent t-test that the sum of the differences between 
the pre- and post-test scores took into account whether the difference was positive 
or negative. Also notice that a computation formula makes the calculation of the 
sum of squares for the difference scores much easier to calculate. The importance of 
the standard error of the sampling distribution in determining whether the sample 
statistic is signi fi cant should be apparent. 

 The sampling distribution of a statistic is important in making inferences about the 
corresponding population parameter. The standard error of the sampling distribution 
of a statistic is important in testing whether the sample statistic is statistically different 
from the population parameter. The t-distribution is not normally distributed for small 
sample sizes. The t-values in the t-distribution become equal to z-values in the normal 
distribution when sample sizes are in fi nitely large. Different sampling distributions 
are created for different statistical tests. The one-sample t-test is useful for testing 
whether a sample mean from a population is statistically different from the population 
mean. The two sample independent t-test is useful for testing whether the means of 
two independent groups are identical. The single sample dependent t-test is useful for 
testing whether the means before and after some intervention in a single group are 
statistically different. A table of t-values has been created for various sample sizes 
(degrees of freedom) and probability areas under the t-distribution. 

    The repeated measure sample data are given below   

 Student  Pre  Post  D  D 2  

 1  70  75  +5  25 
 2  60  70  +10  100 
 3  85  80  −5  25 
 4  50  65  +15  225 
 5  65  75  +10  100 
 6  80  70  −10  100 
 7  90  95  +5  25 
 8  70  80  +10  100 
 9  40  55  +15  225 
 10  65  65  0  0 
 Calculations:       

1D 67.5=          
2D 73.0=          Σ D 55=          Σ 2D 925=    

  There are ten pairs of student scores 

 
NOTE: 

     
( )Σ Σ Σ 22 2 2(D D) D D / N 925 (55) /10 622.5- = - = - =

   

 

S 
D
  = 2.63 and 

     

D 5.5=
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   STUDENT R Program 

 The STUDENT program shows the versatility of the t-test function in R by  utilizing 
it for a one sample t-test, a two sample independent t-test, and a dependent t-test. 
This is accomplished by changing parameters in the  t-test  function. The greatest 
complexity occurs in determining the values for the user-de fi ned variables based 
on the type of test. How the different variables used for each test is described in the 
program. Once these variables are de fi ned, two samples are drawn (only the sec-
ond sample is actually used for the one sample t-test) from normal distributions 
with the prescribed means and standard deviations. Next, the type of test desired 
determines which block of code is used to perform the test and produce the output. 
For the one sample t-test, only  sampleTwo  is passed to the function along with a 
 mu  equal to  meanOne . The results of the t-test are saved to the  tResults  object for 
later use and output appropriate to the one sample test is appended to the  output-
Text  vector. For the two sample independent t-test, both samples are passed along 
with the  paired  keyword set to false. Again, appropriate output is created for this 
test. Finally, the dependent t-test looks exactly like the independent t-test except 
 paired  is set to true. All tests have the keyword  alternative  set to  two.sided  
because the alternate hypothesis in all cases is for a difference in either direction, 
instead of a directional hypothesis. After the speci fi c test functions are performed, 
the output from the t-test that is common to all test types is extracted from the 
 tResults  object by use of  $statistics  and  $p.value  components. Once these values 
are appended to the output, the output vector is formatted into a matrix and the 
matrix is printed.  

   STUDENT Program Output 

  One Sample t-test  

  One sample t-test Sample size =  20  
  Sample Mean =  53.52 Sample Std Dev =  10.13  
  Population Mean =  50 Population Std Dev =  10  
  t-test =  1.55 p-value =  0.137       

  Independent t-test       

  Two sample independent t-test Sample size =  20  
  Sample One Mean =  49.42 Sample One Std Dev =  10.33  
  Sample Two Mean =  47.9 Sample Two Std Dev =  13.44  
  t-test =  0.4 p-value =  0.691       

  Dependent t-test       

  Dependent t-test Number of paired scores= 20  
  Pre Mean= 48.83 Post Mean= 50.16  
  Sum of Differences= 26.68 Sum Squared Diff = 2557.61  
  t-test= 0.52 p-value= 0.611    
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   t Exercises 

    1.    Run the STUDENT program for a one-sample t-test. Record the values in the 
table. 
 Use the following values:

    sampleSize <- 30   
   meanOne <- 50   (In one-sample t-test equals population mean.)   
   stdDevOne <- 20 (In one-sample t-test equals population s.d.)   
   meanTwo <- 60   
   stdDevTwo <- 10   
   testType <- 1    

 One-sample t-test  Sample size = 

 Sample Mean =  Sample SD = 

 Population Mean =  Population SD = 

 t-test =  p-value = 

   a.    Is the sample mean statistically different from the population mean? 
 YES _____ NO _____  

   b.    Was the one-sample t-test calculated correctly? YES _____ NO _____  
   c.      Would you obtain the same one-sample t-test using the sample standard devia-

tion as the population standard deviation? YES _____ NO _____  
   d.    Interpret the results of the one-sample t-test. What would you conclude? 

 ____________________________________________________________ 
 ____________________________________________________________      

   2.    Run the STUDENT program for the two sample independent t-test. Record the 
values in the table. Use the following settings:

    sampleSize <- 30   
   meanOne <- 50   
   stdDevOne <- 20   
   meanTwo <- 60   
   stdDevTwo <- 10   
   testType <- 2    

 Two sample independent t-test  Sample size = 

 Sample One Mean =  Sample One SD = 

 Sample Two Mean =  Sample Two SD = 

 t-test =  p-value = 

   a.    Are the two sample means statistically different? YES _____ NO _____  
   b.      Was the two sample independent t-test calculated correctly? YES _____ 

NO _____  
   c.      Would you obtain different results if you ran the STUDENT program a 

second time? 
 YES _____ NO _____ 
 Why? ________________________________________________________  
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   d.      Interpret the results of the two sample independent t-test. What would you 
conclude? 
 _____________________________________________________________ 

 _____________________________________________________________      

   3.    Run the STUDENT program for the dependent t-test. Record the values in the 
table below. Use the following settings:

    sampleSize <- 30   
   meanOne <- 50   
   stdDevOne <- 20   
   meanTwo <- 60   
   stdDevTwo <- 10   
   testType <- 3    

 Dependent t-test  Number of paired scores = 

 Pre Mean =  Post Mean = 

 Sum of differences =  Sum Diff Squared = 

 t-test =  p-value = 

   a.    Was the group statistically different from pre to post? YES _____ NO _____  
   b.    Was the dependent t-test calculated correctly? YES _____ NO _____  
   c.      Would you obtain different results if you ran the STUDENT program a 

second time? 
 YES _____ NO _____ 
 Why? ________________________________________________________  

   d.    Interpret the results of the dependent t-test. What would you conclude? 
 _____________________________________________________________ 
 _____________________________________________________________          

   True or False Questions 

   t-Test    

 T  F  a. The sampling distribution of a statistic is useful for making an 
inference about the population parameter. 

 T  F  b. The standard error of a statistic provides the basis for testing 
hypotheses. 

 T  F  c. The t-distribution is normally distributed. 

 T  F  d. The one-sample t-test may or may not be signi fi cant depending upon 
which probability value is selected from the t-table. 
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 T  F  e. The t-values and z-values become equal as sample size increases. 

 T  F  f. A z-test is preferred over the t-test for hypothesis testing. 

 T  F  g. The independent t-test is used to test whether two independent sample 
means are statistically different. 

 T  F  h. The dependent t-test is used to test whether two groups differ after 
receiving some type of intervention. 
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   Analysis of Variance    

 Sir Ronald Fisher, upon discovering the work of W. S. Gossett (developed a test of 
mean differences between two groups, “student t-test,” or simply the t-test), extended 
it into his idea for an analysis of variance (ANOVA) technique. The analysis of vari-
ance technique was based on the idea that variance could be used to indicate whether 
sample means differed. For example, if three groups had the same average math 
score, then the variance (standard deviation) of the means would be zero, implying 
that the sample means do not vary (differ). As the sample means become more dif-
ferent, the variance increases. When sample means are similar in value they are 
called  homogeneous , when they become more different in value they are called 
 heterogeneous . 

 The basic idea of variance indicating sample mean differences can be understood 
using the following two sets of mean scores, which indicate similar grand means but 
different variances:  

  Population    SET A    SET B  

 Sample Mean 1  4  3 
 Sample Mean 2  4  4 
 Sample Mean 3   4    5  
 Grand Mean  4  4 
 Variance  0  1 

 The sample means are all the same in SET A; hence the variance is zero. The 
sample means are different in SET B; hence the variance is greater than zero. As 
sample means become different in value, the variance will become larger. 

 Fisher determined that the variance of sample means around a common mean 
(grand mean) could be calculated by determining the sum of squared deviations 
(SS 

B
 ) of the sample means around the grand mean divided by the degrees of free-

dom (number of groups minus one). Fisher called this average variance a  mean 
square between groups ; therefore MS 

B
  = SS 

B
 /df 

B
 . The variance of scores within a 
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group can be calculated by determining the sum of squared deviations (SS 
W

 ) of the 
scores around the group mean divided by the degrees of freedom (number of scores 
in a group minus one). Fisher determined that the sum of squares for each group 
could be averaged across three or more groups. He called this average variance a 
 mean square within groups ; therefore MS 

W
  = SS 

W
 /df 

W
 . 

 Fisher developed a test, named the F-test after himself, to indicate a ratio of the 
variance of sample means around the grand mean to the variance of scores around 
each sample mean. The F-test was computed as F = MS 

B
  / MS 

W
 . The F-test has an 

expected value of one (based on sampling error only being present); however, in 
practice, if all sample means are identical, the variance of sample means around the 
grand mean (MS 

B
 ) would be zero, and F = 0. In some situations, more variance exists 

within the groups (MS 
W

 ) than between the groups (MS 
B
 ), which result in F values 

being greater than zero, but less than one (0 < F < 1). Obviously, these are not the 
expected results when testing for group mean differences, rather we expect the 
F-test (ratio) to yield larger positive values as group means become more different. 
F summary tables, which give expected F-values for various combinations of 
degrees of freedom between groups (df 

B
 ) and degrees of freedom within groups 

(df 
W

 ), are in the Appendix. These F tables are used to determine if the F-value you 
calculate from sample data is larger than expected by chance. If your F value is 
larger than the tabled value, the group means are signi fi cantly different. 

 Two basic examples will be presented to illustrate how analysis of variance is an 
extension of both the independent t-test (two mutually exclusive groups) and the 
dependent t-test (same subjects measured twice).  

   One-Way Analysis of Variance 

 The  one - way analysis of variance  extends the independent t-test comparison of 
two group means to three or more group means. For example, the sales at three dif-
ferent clothing stores are compared to determine if they are signi fi cantly different. 
The number of customers for each clothing store was:  

  Sales    Store  

 30  1 
 30  1 
 40  1 
 40  1 
 25  2 
 20  2 
 25  2 
 30  2 
 15  3 
 20  3 
 25  3 
 20  3 
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 The summary statistics for each store were:  

  Store 1    Store 2    Store 3   Grand Mean (Total Sales) 

 Sum  140.00  100.00  80.00  320.00 
 Mean  35.00  25.00  20.00  26.67 
 SD  5.77  4.08  4.08  7.79 

 The number of sales on average for Store 1 is higher than Store 2; likewise Store 
2 had more sales on average than Store 3. The analysis of variance procedure can 
test (F-test) whether the mean differences in customers between the stores are sta-
tistically signi fi cant. To calculate the F-test, we must  fi rst compute the variance of 
the sample means around the grand mean using the following steps (Note: n 

i
  = num-

ber of weeks and j = number of stores):

    1.    SS 
B
  = n 

i
  (Store Mean − Grand Mean) 2  

 SS 
B
  = 4(35 − 26.67) 2  + 4(25 − 26.67) 2  + 4(20 − 26.67) 2  

 SS 
B
  = 466.67  

    2.    df 
B
  = (j − 1) = (3 − 1) = 2  

    3.    MS 
B
  = SS 

B
 /df 

B
  = (466.67/2) = 233.33     

 The sum of squares between the stores (SS 
B
 ) indicates the sum of the deviation 

from the grand mean (common mean for all the sample means) which is squared and 
weighted (multiplied by the sample size) for each store (Step 1 above). The degree 
of freedom is simply the number of stores minus one (Step 2 above). The mean 
square between the stores, which is used in the F-test to indicate mean differences 
in the stores, is the average sum of squares between the groups (Step 3 above). 

 Next, we must compute the variance of the number of customers around each 
store mean using the following steps (Note: j = number of stores):

    1.    SS 
W

  =  S j [(Number of Customers − Store Mean) 2 ] 
 SS 

W
  = [(30 − 35) 2  + (30 − 35) 2  + (40 − 35) 2  + (40 − 35) 2  + 
     (25 − 25) 2  + (20 − 25) 2  + (25 − 25) 2  + (30 − 25) 2  + 
 (15 − 20) 2  + (20 − 20) 2  + (25 − 20) 2  + (20 − 20) 2 ] 

 SS 
W

  = 200.00  
    2.    df 

W
  = (sample size − j) = (12 − 3) = 9  

    3.    MS 
W

  = SS 
W

 /df 
W

  = 22.22     

 The sum of squares within the stores (SS 
W

 ) indicates the sum of the customer 
number deviation from the store mean which is squared (Step 1 above). The degrees 
of freedom equals the total sample size minus the number of stores (Step 2 above). 
The mean square within the stores, which is used in the F-test to indicate the vari-
ance of within the stores, is the average sum of squares within the groups (Step 3 
above). This “averaging” of the sum of squares within the stores is sometimes 
referred to as “pooling” the sum of squares within the groups, i.e., stores. 

 The  F - test  (ratio) can now be calculated as F = MS 
B
 /MS 

W
  = 233.33/22.22 = 10.50. 

This F-test indicates the  ratio  of the variance between the stores over the variance 
within the stores. If the store means are more different (vary more between stores) 
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than the scores vary within the stores, the F-test ratio would be greater than an 
F-value expected by chance. We therefore compare the computed F = 10.50 to a 
tabled F-value in the Appendix for df 

B
  = 2 and df 

W
  = 9 at the .05 chance level (5% 

chance our comparison might not yield a correct decision). The computed F = 10.50 
is greater than the tabled F = 4.26 (value expected by chance), which indicates that 
the average number of customers per store are signi fi cantly different. 

 The results of all these calculations can be neatly organized in an ANOVA Summary 
Table. The ANOVA Summary Table indicates that both of the sums of squared devia-
tions can be added together yielding a total sum of squared deviations for all scores 
(SS 

T
  = SS 

B
  + SS 

W
 ). Likewise, the degrees of freedom from both calculations can be 

added together yielding the sample size minus one (df 
T
  = N − 1). The SS 

T
  divided by 

df 
T
  yields the total customer variance, which has been “partitioned” into the variance 

between groups and the variance within groups. The total number of customer vari-
ance is therefore computed as SS 

T
 /df 

T
  = 666.67 / 11 = 60.61. The total number of cus-

tomer standard deviation is simply the square root of this variance, which is equal to 
7.79 (see summary statistics above). This reveals to us that the sum of squares total 
divided by the sample size minus one is actually the variance of all the scores. The 
square root of this variance is the standard deviation of all the scores. The key point 
is that the analysis of variance procedure “partitions” the variance of  all  the scores. 

 ANOVA Summary Table  

 Source  Sum of Squares (SS)  Degrees of Freedom (df)  Mean Square (MS)  F 

 Between Groups  466.67  2  233.33  10.50 
 Within Groups  200.00  9  22.22 
 Total  666.67  11 

   Multiple Comparison Tests 

 The F-test doesn’t reveal  which  store means are different, only that the store means 
are different. Consequently, a multiple comparison test is needed to determine 
which store means are different. There are many different types of multiple com-
parison tests depending upon whether the group sizes are equal or unequal, whether 
all group means are compared (pairwise) or combinations of group means are com-
pared (complex contrasts), and whether group mean differences are speci fi ed in 
advance (a priori planned comparison) or after the statistical test (posterior com-
parison). We will only focus on one type of multiple comparison test called a  post-
hoc  test named after Henry Scheffe. Post-hoc tests are named “post hoc” because 
they are calculated after the ANOVA F-test indicates that the group means are 
signi fi cantly different. The Scheffe post-hoc test can be used in most situations 
because it is  not  limited to equal sample sizes and pairwise comparisons of group 
means, and maintains the same probability as that used for determining the 
signi fi cance of  F  (Tabled  F  = 4.26 at 5% chance level). The Scheffe post-hoc test 
uses the common variance term (pooled variance) from all the groups in the denom-
inator of the formula based on MS 

W
  in the ANOVA Summary Table. 
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 Given three stores, three Scheffe post-hoc tests can be computed using the 
following formulas.

   Store 1 vs. Store 2  

  Scheffe = (Store 1 Mean − Store 2 Mean) 2 /MS 
W

  (1/n 
1
  + 1/n 

2
 ) (j − 1) 

 Scheffe = (35 − 25) 2 /22.22 (1/4 + 1/4) (3 − 1) 
 Scheffe = (100)/22.22 (1/2) (2) 
 Scheffe = 4.50   

   Store 1 vs. Store 3  

  Scheffe = (Store 1 Mean − Store 3 Mean) 2 /MS 
W

  (1/n 
1
  + 1/n 

3
 ) (j − 1) 

 Scheffe = (35 − 20) 2 /22.22 (1/4 + 1/4) (3 − 1) 
 Scheffe = (225)/22.22 (1/2) (2) 
 Scheffe = 10.13   

   Store 2 vs. Store 3  

  Scheffe = (Store 2 Mean − Store 3 Mean)/MS 
W

  (1/n 
2
  + 1/n 

3
 ) (j − 1) 

 Scheffe = (25 − 20) 2 /22.22 (1/4 + 1/4) (3 − 1) 
 Scheffe = (25)/22.22 (1/2) (2) 
 Scheffe = 1.13    

 The Scheffe post-hoc test results can be summarized in a Scheffe Post-Hoc Summary 
Table. Comparing the Scheffe results to the Tabled  F  = 4.26 reveals that Store 1 had on 
average the most customers which was signi fi cantly higher than both Store 2 and Store 3. 
Store 2 and Store 3 average number of customers did not differ signi fi cantly. 

 Scheffe post-hoc summary table  

 Store 

 Store  1  2  3 

 1 
 2  4.50 a  
 3  10.13 a   1.13 

   a Scheffe exceeds Tabled  F  = 4.26 at the 
.05 chance level     

   Repeated Measures Analysis of Variance 

 The repeated measures analysis of variance technique extends the dependent t-test 
to three or more groups. The dependent t-test is appropriate in research settings 
where you only measure the same subjects twice and test whether scores change, 
i.e., increase or decrease in a hypothesized direction. In the case of repeated mea-
sures ANOVA, subjects are measured on three or more occasions (typically over 
time or different experimental conditions) with the same idea of testing whether 
scores change in a hypothesized direction. An example will illustrate the repeated 
measures ANOVA technique. 
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 The average number of children per family (X) in four regions was measured 
over a 3-year period by a researcher to test whether birth rate was increasing, 
decreasing, or remaining the same. The following data were collected:  

  Region  

 Average number of children per family (X) 

  1995    1996    1997    Total  

 Northern State  2  5  5  12 
 Southern State  2  7  5  14 
 Eastern State  3  2  6  11 
 Western State   1    2    4    7  
 n  4  4  4  N = 12 
 Sum  8  16  20  T = 44 
 Mean  2  4  5 

 The repeated measure ANOVA “partitions” the total sum of squared deviations 
around the grand mean into three component variances: REGION, YEAR, and 
remaining ERROR variance. The steps needed to calculate each are as follows:

   TOTAL Sum of Squares  

  SS 
TOTAL

  =  S [(X) 2 ] − [(T) 2 /N]  
  SS 

TOTAL
  =  S [(2 2 ) + (2) 2  + (3) 2  + (1) 2  + (4) 2 ] − [(44) 2 /12]  

  SS 
TOTAL

  = 202 − 161.33 = 40.67   

   REGION Sum of Squares  

  SS 
REGION

  =  S [(Total) 2 /j] − [(T) 2 /N]  
  SS 

REGION
  =  S [(12) 2 /3] + [(14) 2 /3] + [(11) 2 /3] + [(7) 2 /3] − [(44) 2 /12]  

  SS 
REGION

  =  S [48 + 65.33 + 40.33 + 16.33] − [161.33]  
  SS 

REGION
  = 169.99 − 161.33 = 8.66   

   YEAR Sum of Squares  

  SS 
YEAR

  =  S [(Sum) 2 /n] − [(T) 2 /N]  
  SS 

YEAR
  =  S [(8) 2 /4] + [(16) 2 /4] + [(20) 2 /4] − [(44) 2 /12]  

  SS 
YEAR

  =  S [16 + 64 + 100] − 161.33  
  SS 

YEAR
  = 180 − 161.33 = 18.67   

   ERROR Sum of Squares  

  SS 
E
  = SS 

TOTAL
  − SS 

REGION
  − SS 

YEAR
   

  SS 
E
  = 40.67 − 8.66 − 18.67  

  SS 
E
  = 13.34    

 These results can be neatly summarized in the table below: 
 Repeated measures ANOVA Summary Table  

 Source  Sum of Squares (SS)  Degrees of Freedom (df)  Mean Square (MS)  F 

 Region  8.66  3  2.89 
 Year  18.67  2  9.33  4.20 
 Error  13.34  6  2.22 
 Total  40.67  11 
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 The F-test in this repeated measures design is  only  calculated for the variable 
that is measured over time. In this case, the F-test is a test of whether the average 
birth rate is different over the 3 years. We would compare the computed F = 4.20 
to a tabled F in the Appendix with df = 2, 6 at the .05 level of signi fi cance; which 
is F = 5.14. Since the computed F = 4.20 is not greater than the tabled F = 5.14, we 
conclude that the average birth rate across the 3 years does not differ. We do 
notice that the average birth rate increased from 2 per family to 4 per family from 
1995 to 1996, but to only 5 per family in 1997. The mean birth rate increased 
across the years, but not enough to warrant a beyond chance statistically signi fi cant 
conclusion. 

 The one-way analysis of variance procedure is an extension of the independent 
t-test for testing the differences in three or more sample means. The repeated mea-
sures analysis of variance procedure is an extension of the dependent t-test for test-
ing the differences in three or more sample means over time. The sum of squared 
deviations of sample means around the grand mean is called the sum of squares 
between groups. The sum of squared deviations of sample scores around each sam-
ple mean is called the sum of squares within. The sum of squares total is equal to the 
sum of squares between groups plus the sum of squares within groups. The total 
variance of all scores is partitioned into the sum of squares between groups and the 
sum of squares within groups. The degrees of freedom for the sum of squares 
between groups are the number of groups minus one. The degrees of freedom for 
the sum of squares within groups are the total sample size minus the number of 
groups. The F-test is computed as a ratio of the mean square between over the mean 
square within. Analysis of Variance Summary Tables neatly organize the between 
group, within group, and total sum of squared deviation scores, degrees of freedom, 
mean of the squared deviation scores, and F-test. A Scheffe post-hoc test determines 
which sample means are different between groups after conducting an analysis of 
variance procedure.  

   Analysis of Variance R Programs 

   ONEWAY Program 

 The  ONEWAY  program begins by de fi ning the data for three groups. Each set of 
group data is then summarized and put into a matrix as the group size, group mean, 
and standard deviation of the group. Labels are assigned to the matrix to indicate the 
groups and the summary statistic headings. The grand mean for all of the groups is 
calculated and the individual group means and sample sizes are tabulated. Next, the 
sum of squares between groups (SSB), mean squares between groups (MSB), sum 
of squares within groups (SSW), degrees of freedom within groups (df 

W
 ), and mean 

squares within groups (MSW) are calculated. These numbers are used to determine 
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the total sum of squares (SST) and the total degrees of freedom (df 
T
 ). The F-ratio 

is calculated by dividing the mean squares between by the mean squares within. 
The probability associated with the F-ratio is determined using the  pf function  and 
the degrees of freedom. The summary statistics for the groups are output followed 
by the ONEWAY ANOVA summary table. 

 The  SCHEFFE  program inputs the MS error, df numerator, and df denominator 
from the Analysis of Variance Summary table. Next, it creates a  sales  and  store  
vector which are combined into a data frame named  data . Group summary statis-
tics are calculated and the one way analysis of variance computed. The tabled 
 critical F-value is computed followed by the three Scheffe paired contrasts. The 
data, group summary statistics, analysis of variance summary table, tabled (criti-
cal) F, and the Scheffe F’s are then printed. If the Scheffe F is greater than the criti-
cal F, then the pair of group means are statistically different at the .05 level of 
signi fi cance. 

 The  REPEATED  program de fi nes the data for four individuals on four succes-
sive years. The summary information for years is calculated for the number of 
samples for the year, the sum of values for the year, and the mean value for the 
year. The total number of values for all individuals (N) is calculated along with the 
total sum of values (TotSum). Finally, the calculations of the sum of squares, 
degrees of freedom, and mean squares for individual, year, total, and error compo-
nents are computed. The sum of squares total (SST) and total degrees of freedom 
(df 

T
 ) are then calculated, but the sum of squares for the individuals (SSI) takes a 

few iterations through the data to create the intermediate variable IndSqrDev in 
order to complete the calculation. The degrees of freedom for the individual (df 

I
 ) 

and mean squares for the individual (MSI) are then calculated. The year compo-
nent is determined similar to the individual component by creating the intermedi-
ate variable YearSqrDev. Finally, the sum of squares error (SSE), degrees of 
freedom error (df 

E
 ), and mean squares error (MSE) are calculated. The F-ratio is 

then calculated with the associated probability value. The summary statistics are 
output for the four years followed by the REPEATED MEASURES analysis of 
variance summary table.  

   ONEWAY Program Output 

      Group A Group B Group C  
  Sample Size 4.00 4.00 4.00  
  Sample Mean 35.00 25.00 20.00  
  Std Dev 5.77 4.08 4.08       

  Oneway Analysis of Variance Table       

  Source SS df MS F  p  
  Between 466.67 2 233.33 10.5  0.004  
  Within 200 9 22.22  
  Total 666.67 11   
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   Scheffe Program Output 

   sales store  

   1 30 1  
   2 30 1  
   3 40 1  
   4 40 1  
   5 25 2  
   6 20 2  
   7 25 2  
   8 30 2  
   9 15 3  
   10 20 3  
  11 25 3  
  12 20 3       

  Group Means  =  35 25 20  
  Group SD  =  5.77 4.08 4.08  
  Sample Size  =  4 4 4            

  One-way Analysis of Variance Summary Table       

    Df Sum Sq Mean Sq F value Pr(>F)  
  store  2 466.7 233.33 10.5 0.00444 **  
  Residuals   9 200.0 22.22  
  ---  
  Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1       

  Critical F for Scheffe Comparision  =  4.26       

  Scheffe Post Hoc Comparisons       

  Store 1 vs. Store 2  =  4.5  
  Store 1 vs. Store 3  =  10.13  
  Store 2 vs. Store 3  =  1.13   

   REPEATED Program Output 

   Year 1 Year 2 Year 3 Year 4  
  Samp Size 4.0 4.00 4.00 4.0  
  Samp Sum 30.0 31.00 55.00 70.0  
  Samp Mean 7.5 7.75 13.75 17.5       

  N  =  16 , T  =  186       

  Repeated Measures Analysis of Variance Table       

  Source SS df MS F p  
  Individual 25.25 3 8.42  
  Year 284.25 3 94.75 13.27 0.001  
  Error 64.25 9 7.14  
  Total 373.75 15    
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   F Exercises 

     1.    Run the ONEWAY program for comparing differences in the means of three 
groups.  

  Group A    Group B    Group C  

 10  16  18 
 12  9  14 
 20  7  12 
 16  14  26 

 Record the sample size, sample mean and sample standard deviation for each 
group.  

 A  B  C 

 Sample Sizes  ______  ______  ______ 
 Sample Means  ______  ______  ______ 
 Standard Deviations  ______  ______  ______ 

 Place the sum of squares deviation results in the ANOVA Summary Table. Test 
whether the computed F is statistically different from the tabled F at the .05 level 
of signi fi cance. 
 ANOVA Summary Table  

 Source  SS  df  MS  F 

 Between 
 Within 
 Total 

 What do you conclude?
________________________________________________________________  

    2.    Run the Scheffe program for comparison of paired group means.

   a.    Critical F = _________________  
   b.    Scheffe F—Group A vs. Group B = ___________ 

 Scheffe F—Group A vs. Group C = ___________ 
 Scheffe F—Group B vs. Group C = ___________  

   c.     What would you conclude?
______________________________________________________________ 

 ______________________________________________________________      

    3.    Run the REPEATED program for comparing repeated measures across 4 ye   ars.  

 Year 1  Year 2  Year 3  Year 4 

 8  9  10  12 
 7  6  14  18 
 9  6  15  22 
 6  10  16  18 

 n  ______  ______  ______  ______  N =  ______ 
 Sum  ______  ______  ______  ______  T=  ______ 
 Mean  ______  ______  ______  ______ 
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 Record the sample size (n), sum, and sample mean above. Also, record the total 
number of scores (N), and total sum of scores (T). Place the sum of squares devia-
tion results in the ANOVA Summary Table. Test whether the computed F is statisti-
cally different from the tabled F at the .05 level of signi fi cance. 

 Repeated measures ANOVA Summary Table  

 Source  Sum of Squares (SS)  Degrees of Freedom (df)  Mean Square (MS)  F 

 Individual 
 Year 
 Error 
 Total 

  What do you conclude?
_______________________________________________________________
______________  __________________________________________________      

   True or False Questions 

   F Test    

 T  F  a. The one-way analysis of variance and the repeated measures 
analysis of variance are the same procedure. 

 T  F  b. The analysis of variance procedure “partitions” the total variance 
of the scores. 

 T  F  c. The one-way ANOVA procedure uses an F-test to determine if 
three or more group means are signi fi cantly different. 

 T  F  d. The Scheffe post-hoc test determines speci fi cally which group 
means are statistically different. 

 T  F  e. The sum of squares between groups in the one-way ANOVA 
procedure is computed by summing the squared deviations of each 
score from the sample means. 

 T  F  f. The sum of squares total (SS 
T
 ) divided by the degree of freedom 

(df 
T
 ) is the variance of all the scores. 

 T  F  g. The repeated measures analysis of variance procedure conducts an 
F-test of whether sample means increase over time. 

 T  F  h. The Scheffe post hoc test should  not  be used with unequal sample 
sizes. 
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   Pearson Correlation 

 Sir Francis Galton in Great Britain was interested in studying individual differences 
based on the work of his cousin, Charles Darwin. In 1869, Sir Francis Galton dem-
onstrated that the mathematics scores of students at Cambridge University and the 
admissions exam scores at the Royal Military College were normally distributed. In 
1889, Francis Galton published an essay suggesting the idea for examining how two 
traits varied together (covaried). This effort resulted in the  fi rst use of the term 
“regression.” Karl Pearson in 1898, based on the suggestions made by Sir Francis 
Galton, investigated the development of a statistical formula that would capture the 
relationship between two variables. 

 The idea was to determine the degree to which two things went together, i.e., 
how two things varied together. The concept was simple enough in principle, take 
measurements on two variables, order the measurements of the two variables, and 
determine if one set of measurements increased along with the second set of mea-
surements. In some cases, maybe the measurements of one variable decreased while 
the other increased. The basic assumption Karl Pearson made was that the measure-
ments needed to be linear or continuous. He quickly determined that how two things 
covaried divided by how they individually varied would yield a statistic that was 
bounded by +1 and −1, depending on the relationship of the two measurements. The 
conceptual formula he developed, which took into account the covariance between 
two variables divided by the variance of the two variables, was de fi ned as:

      

Covariance XY

(Var X)(Var Y)
r =

    

 In 1927, after L. L. Thurstone developed the concept of a standard score (z-score) 
as the deviation of a raw score from the mean, divided by the standard deviation, the 
correlation formula was further de fi ned as the average product of standard scores:

    Chapter 12   
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Σ x yz z
r

N
=

    

 An example of the relationship between two continuous variables will better 
illustrate how the bivariate (two variable) correlated relationship is established. 
A typical research question for a group of students can be stated as “Is there a 
signi fi cant relationship between the amount of time spent studying and exam scores?” 
The data for these two continuous variables, ordered by time spent studying, is listed 
below.  

 Time spent  Exam Score 

 1 h  75 
 1 h  80 
 2 h  75 
 3 h  90 
 3 h  85 
 4 h  95 
 4 h  85 
 5 h  90 
 5 h  95 
 6 h  90 

 A computational version of the correlation formula makes the calculation easier 
and uses the following summary values:

   SX = 34  
  SX 2  = 142  
  SY = 860  
  SY 2  = 56800  
  SXY = 3015    

 The computational correlation coef fi cient formula is:

      x y

SP
r

SS SS
=

    

 The expression, SP, is de fi ned as the sum of cross products for X and Y. The expres-
sion, SS 

x
 , is the sum of squares X, and the expression Ss 

y
  is the sum of squares Y. 

 These values are computed for each expression in the correlation coef fi cient 
 formula as:  

      ∑ ∑∑ ( )( )X Y
SP XY

N
= -

         (34)(860)
3015 91

10
= - =

   

      ∑∑
2

2 ( )
X

X
SS X

N
= -

         2(34)
142 26.40

10
= - =

   

      ∑∑
2

2 ( )
Y

Y
SS Y

N
= -

         2(860)
56800 490

10
= - =
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 These values are substituted in the Pearson correlation coef fi cient:

     x y

SP
r

SS SS
=

       

91
.80

26.4(490)
= =+

   

 The value of r = +.80 indicates a positive relationship between the two variables 
implying that as the amount of study time increases, exam scores increase. The cor-
relation coef fi cient also indicates the magnitude of the relationship since the r-value 
is approaching +1.0, which would indicate a perfect relationship.  

   Interpretation of Pearson Correlation 

 The correlation coef fi cient can be interpreted in several different ways. First we 
can test it for signi fi cance using tabled correlation values for different sample 
sizes (degrees of freedom). Second, we can square the correlation coef fi cient to 
obtain a variance accounted for interpretation. Third, we can graph the relation-
ship between the data points in a scatter plot to visually see the trend of the 
relationship. 

 To test the signi fi cance of the correlation coef fi cient, we use our standard hypoth-
esis testing approach: 

 Step 1: State the Null and Alternative Hypothesis using Population Parameters.
   H 

0
 :  r  = 0 (no correlation)  

  H 
A
 :  r   ¹  0 (correlation exists)    

 Step 2: Choose the appropriate statistic and state the sample size obtained.
   Pearson correlation coef fi cient for continuous variables  
  Sample Size, N = 10    

 Step 3: State the level of signi fi cance, direction of alternative hypothesis, and region 
of rejection.

   Level of Signi fi cance ( a ) = .05  
  Alternative Hypothesis: Non-directional (Two-tailed test)  
  For N = 10, df = N − 1 = 9  
  R: r ta

bled
  > .602    

 Step 4: Collect Data and Calculate Sample Correlation Statistic.
   Continuous Variables: Time spent studying and exam scores  
  N = 10 pairs of data  
  r = .80    

 Step 5: Test statistical Hypothesis, make decision, and interpret results.
   Since the computed r = .80 is greater than the tabled r of .602 at the .05 level of 
signi fi cance for a two-tailed test, reject the null hypothesis and accept the alter-
native hypothesis. There is a statistically signi fi cant relationship between the 
amount of time spent studying and exam scores.    
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 The second approach to interpreting the Pearson correlation coef fi cient is to 
square the sample correlation value. The r 2  value is (.80) 2  = .64. This implies that 
64% of the variability in exam scores can be explained by knowledge of how much 
time a student spent studying. This also implies that 36% of the variability in the 
exam scores is due to other variable relationships or unexplained variance. The 
average number of hours spent studying was 3.4 h with a standard deviation of 1.71. 
The average exam score was 86 with a standard deviation of 7.38. The interpreta-
tion is linked to the variance of the exam scores, hence (7.38) 2  = 54.46. We would 
state that 64% of 54.46 is explained variability and 36% of 54.46 is unexplained 
variability given knowledge of how much time a student spent studying. We can 
also depict this relationship using a  Venn  or  Ballentine  diagram.

 

64% 36%

Exam Scores (Y)
(S2Y= 54.46)

Study Time (X)

         

 The third approach to interpreting the correlation coef fi cient obtained from sam-
ple data is to graph the data points of the two variables. The scatter plot is used for 
this purpose. We draw a Y-axis for the exam scores and an X-axis for the amount of 
time spent studying. We label and scale these two axes to provide a grid such that 
the pairs of data points can be graphed. A visual look at the “trend” of the pairs of 
data points helps in interpreting whether the positive direction of the correlation 
coef fi cient exists. Scatter plots can display an upward trend (positive relationship), 
downward trend (negative relationship), or a curvilinear trend (one-half positive 
and the other half negative). If a curvilinear relationship exists, one-half cancels the 
other half out, so the correlation coef fi cient would be zero and the interpretation of 
the correlation coef fi cient meaningless. This is why Karl Pearson made the assump-
tion of linear data. A scatter plot of the data points visually reveals the positive 
upward trend expected from r = +.80.
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 The Pearson correlation coef fi cient in determining whether or not there is a  linear 
relationship between two continuous variables provides both a measure of the 
strength of the relationship, as well as, the direction of the relationship. In our exam-
ple, the number of hours a student spent studying was related positively to the exam 
score. The strength of the relationship was indicated by a value close to 1.0 and the 
direction of the relationship by the positive sign. We are also able to explain the 
variability in the exam scores by squaring the correlation coef fi cient. In other words, 
why didn’t all the students get the same score, because some students studied more! 
This can be presented in a diagram and depicted as a percent of the variance of the 
exam scores that can be explained. A scatter plot is the best visual aid to understand-
ing the trend in the pairs of scores in regards to both magnitude and direction. 

 Karl Pearson’s correlation coef fi cient was one of the most important discoveries 
in the  fi eld of statistics because numerous other statistical techniques, such as mul-
tiple regression, path analysis, factor analysis, cluster analysis, discriminant analy-
sis, canonical correlation, and structural equation modeling, are based on this 
coef fi cient and interpretative understanding. Over one hundred years later, the 
examination of variable relationships is the singular most important analysis con-
ducted in education, psychology, business, medicine, and numerous other disci-
plines. The correlation approach assumes that both the X and the Y variables are 
random, and have a distribution known as the bivariate normal distribution. In the 
bivariate normal distribution, for any given X value the Y values have a normal 
distribution in which the mean and the standard deviation depend on the value of X 
and the strength of the relationship between X and Y. The strength of the relation-
ship between X and Y is measured by a population parameter  r  (pronounced “rho”), 
which can range between −1 and 1 inclusive. If  r  = 0, there is either no relationship 
between X and Y, or a curvilinear relationship which the Pearson correlation 
coef fi cient doesn’t detect. If  r  = 1, there is a perfect  positive  linear relationship 
between the two variables, and if  r  = −1, there is a perfect  negative  linear  relationship 
between the variables. A value of  r  close to zero indicates a weak relationship 
(assuming linear data), and a value close to either +1 or −1 indicates a strong rela-
tionship. Consequently, r = −.90 is a stronger relationship than r = +.50 for the same 
sample size. Because the Pearson correlation values form an ordinal scale, we do 
not directly compare the distances between two correlation values. For example, if 
a correlation of r = +.50 was obtained in one sample and a correlation of r = +.60 
obtained in a second sample, you  would not  indicate that the second correlation was 
.10 higher than the  fi rst because the correlation is an ordinal scale! 

 In this chapter, the Pearson correlation coef fi cient will be calculated using the 
bivariate normal distribution. Other correlation coef fi cients have been developed 
since 1898 to establish the relationship between nominal and ordinal data, but are not 
presented in this chapter, i.e., phi-coef fi cient (nominal data), Spearman-coef fi cient 
(ordinal data). R has functions for these correlation coef fi cients making individual 
calculations straightforward. 

 In a bivariate normal distribution, both X and Y are random variables. The 
Pearson correlation coef fi cient indicates the linear relationship between two con-
tinuous variables. The Pearson correlation coef fi cient indicates both the magnitude 
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and direction of the relationship between two linear continuous variables. A Pearson 
correlation coef fi cient of r = 0 indicates no linear relationship between two vari-
ables. The correlation coef fi cient can be interpreted in three ways: test of 
signi fi cance, variance accounted for, and a diagram of trend in the paired data 
points. The sample correlation coef fi cient, r, is an estimate of the population cor-
relation coef fi cient rho. If rho = 0, then the sample data points will have a random 
scatter plot, and the least squares line will be horizontal. As rho approaches +1 or 
−1, the sample data points are closer to a straight line, either upward for positive 
correlations, or downward for negative correlations. If rho = +1 or −1, then the 
sample points will lie directly in a line. 

   CORRELATION R Program 

 The CORRELATION program speci fi es the value of rho (correlation) in the popula-
tion. The program then selects variable X at random from a normal distribution with 
mean of 10 and standard deviation of 3. Next, a random variable Y is selected from 
the normal distribution that is determined by the random X variable, given rho 
selected and the mean and standard deviation of Y, which are 5 and 1, respectively. 
A scatter plot is drawn for the pairs of X and Y scores. By varying rho in the 
CORRELATION program, you can observe the different scatter plots of data points 
that arise when rho has different values in the population. The  cor  function is used 
to compute the sample Pearson correlation, which is placed into a label to be used 
later along with a label for the  rho  value. The limits of the X and Y axes are set 
before plotting the pairs of data points so that no plotted points fall outside the axes. 
Finally, the sample data points are plotted in a scatter plot with the labels for the 
sample correlation and  rho . The last program line prints out the sample 
correlation.  

   CORRELATION Program Output 

   Population rho  =  0.6  
   Sample Size  =  20  
   Pearson r  =  0.44
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   Correlation Exercises    

     1.       Run CORRELATION program for the following values of rho and sample size. 
 Record the Pearson correlation coef fi cient. 

      

rho  = + .5

Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20        
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rho  = − .5

Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20        

     

rho  =  0.0

Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20        

     a.    For rho = +.5, is there an upward trend to the points? YES _____ NO _____  
     b.     For rho = −.5, is there a downward trend to the points? YES _____ 

NO _____  
     c.     For rho = 0.0, does there appear to be no upward or downward trend to the 

points?   YES _____ NO _____      

    2.    Run CORRELATION program for the following values of rho. Record the cor-
relation coef fi cient, r. Plot the data values and draw a line over the points on the 
graph. 
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rho = +1.0

Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20        

     

rho = −1.0

Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20         

    

rho = 0
Sample Size = 20

Pearson r = ______

0

2

4

6

8

0 5 10 15 20        
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     a.    Describe the scatter plot for the data points when rho = 1. 
 _____________________________________________________________ 
 _____________________________________________________________  

     b.    Describe the scatter plot for the data points when rho = −1. 
 _____________________________________________________________ 
 _____________________________________________________________  

     c.    Describe the scatter plot for the data points when rho = 0. 
 _____________________________________________________________ 
 _____________________________________________________________      

    3.    Input sample size = 100, then run Correlation program for rho = .6 to compute 
Pearson r.
   rho = .4, sample size = 20, Pearson r = .42  
  rho = .4, sample size = 100, Pearson r = ______  
  Does sample size effect Pearson r? Yes______ No ______         

   True or False Questions 

   Pearson Correlation    

 T  F  a.  The Pearson correlation coef fi cient indicates the relationship 
between two linear continuous variables. 

 T  F  b. A correlation of r = .60 is greater than a correlation of r = −.80. 
 T  F  c.  A correlation of r = 0 implies no relationship between two variables. 
 T  F  d.  If rho is −.5, the scatter plot of data points will indicate an upward 

trend. 
 T  F  e.  If r = .80, then 64% of the variability in one variable is explained by 

knowledge of the other variable. 
 T  F  f. If rho = 0, then r = 0. 
 T  F  g. Rho is a parameter, and r is a statistic. 
 T  F  h. Data points will fall on a straight line when r = 1.0. 
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 In the late 1950s and early 1960s, the mathematics related to solving a set of 
simultaneous linear equations was introduced to the  fi eld of statistics. In 1961, 
Franklin A. Graybill published a de fi nitive text on the subject,  An Introduction to 
Linear Statistical Models , which piqued the curiosity of several scholars. A few 
years later in 1963, Robert A. Bottenberg and Joe H. Ward, Jr., who worked in the 
Aerospace Medical Division at Lackland Air Force Base in Houston, Texas, devel-
oped the linear regression technique using basic algebra and the Pearson correlation 
coef fi cient. Norman R. Draper and Harry Smith, Jr. in 1966 published one of the 
 fi rst books on the topic,  Applied Regression Analysis . In 1967, under a funded proj-
ect by the U.S. Department of Health, Education, and Welfare, W. L. Bashaw and 
Warren G. Findley invited several scholars to the University of Georgia for a sym-
posium on the general linear model approach to the analysis of experimental data 
in educational research. The  fi ve invited speakers were: Franklin A. Graybill, Joe 
H. Ward, Jr., Ben J. Winer, Rolf E. Bargmann, and R. Darrell Bock. Dr. Graybill 
 presented the theory behind statistics, Dr. Ward presented the regression models, 
Dr. Winer discussed the relationship between the general linear regression model 
and the analysis of variance, Dr. Bargmann presented applied examples which 
involved interaction and random effects, and Dr. Bock critiqued the concerns of the 
others and discussed computer programs that would compute the general linear 
model and analysis of variance. Since the 1960s, numerous textbooks and articles 
in professional journals have painstakingly demonstrated that the linear regression 
technique, presented by Bottenberg and Ward, is the same as the analysis of vari-
ance. In recent years, multiple regression techniques have proven to be more versa-
tile than analysis of variance in handling nominal and ordinal data, interaction 
effects, and non-linear effects. 

 The linear regression equation developed by Bottenberg and Ward was expressed 
as: Y = a + bX + e. The Y variable represented a continuous measure, which was 
referred to as the dependent variable. The X variable represented a continuous mea-
sure, which was called an independent variable, but later referred to as a predictor 
variable. The value  a  was termed the “intercept” and represented the value on the 
Y-axis where the least squares line crossed. The  b  value was a “weight,” later 
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referred to as a regression weight or coef fi cient. The value of  e  was referred to as 
prediction error, which is calculated as the difference between the Y variable and 
the predicted Y value (Yhat) from the linear regression equation, given values for 
the intercept and regression weight. An example will illustrate the logic behind the 
linear regression equation. 

   Regression Equation 

    Given the following data pairs on the amount of recyclable aluminum in ounces (Y) 
and the number of aluminum cans (X), a linear regression equation can be created: 
Y = a + bX + e.  

  Recyclable Aluminum  (Y)   Number of Aluminum Cans  (X) 

 1  2 
 2  4 
 3  6 
 4  8 
 5  10 
 6  12 
 7  14 

 The regression intercept ( a ) indicates the point on the Y-axis where the least 
squares line crosses in the scatter plot. The “rise” and “run” or regression weight 
( b ) determines the rate of change, which can be seen by the slope of the least squares 
line in the scatter plot. It is important to understand that a linear regression equation 
only refers to the range of values for the pairs of Y and X scores. Given the linear 
regression equation: Y = a + bX + e, the intercept and regression weight (slope) for 
the data can be calculated as:

      
Y

X

S
XY Sb r=

   

      a Y bX= −     

 The correlation coef fi cient for these data is r = +1.0, the mean of Y = 4 and the 
mean of X = 8. The standard deviation of Y values is 2, and the standard deviation 
of X values is 4. Placing these values in the intercept and regression weight formula 
results in:  a  = 2 − (2/4) 4 = 0 and  b  = 1 (2/4) = .5, with a linear regression equation: 
Y = 0 + (1/2) X. Since the intercept is zero, the equation is simply Y = .5X. An inspec-
tion of the data reveals that 2 aluminum cans yields 1 ounce of recyclable alumi-
num, 4 aluminum cans yields 2 ounces of recyclable aluminum, and so forth because 
one-half the number of aluminum cans equals the number of ounces. A scatter plot 
of these data would indicate the “rise” and “run” of this relationship with the least 
squares line intersecting the Y-axis at a = 0. Notice that there is no error in the pre-
diction since every Y value is perfectly predicted by knowledge of X, i.e., 
 e  = Y−Yhat = 0. Perfect relationships like this don’t often occur with real data!  
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   Regression Line and Errors of Prediction 

 A more realistic example will help to demonstrate the linear regression equation, 
least squares line, and error of prediction. The data for twenty student math achieve-
ment scores (Y) and days absent during the week from school (X) are summarized 
below.  

 Student  X  Y  X 2   Y 2   XY 

 1  2  90  4  8100  180 
 2  4  70  16  4900  280 
 3  3  80  9  6400  240 
 4  5  60  25  3600  300 
 5  1  95  1  9025  95 
 6  2  80  4  6400  160 
 7  5  50  25  2500  250 
 8  3  45  9  2025  135 
 9  2  75  4  5625  150 
 10  4  65  16  4225  260 
 11  5  45  25  2025  225 
 12  1  80  1  6400  80 
 13  4  80  16  6400  320 
 14  5  60  25  3600  300 
 15  1  85  1  7225  85 
 16  0  90  0  8100  0 
 17  5  50  25  2500  250 
 18  3  70  9  4900  210 
 19  4  40  16  1600  160 
 20  0  95  0  9025  0 
  S   59  1405  231  104575  3680 

 The summary statistics for these data can be hand calculated as follows:

      

Σ X
X

SS59 56.95
2.95 S 1.73

20 N 1 19

X
X

N
= = = = = =

−    

      

Σ Y
Y

SS1405 5873.75
70.25 S 17.58

20 N 1 19

Y
Y

N
= = = = = =

−     

 Recall from the previous chapter that the sum of products and sum of squares X 
and sum of squares Y were used in computing the correlation coef fi cient:

      

( )( )Σ Σ
Σ

X Y (59)(1405)
SP XY 3680 464.75

N 20
= − = − =−

   

      

( )Σ
Σ

2 2
2

X

X (59)
SS X 231 56.95

N 20
= − = − =
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( )Σ
Σ

2 2
2

Y

Y (1405)
SS Y 104575 5873.75

N 20
= − = − =

   

      x Y

SP 464.75
r .804

SS SS 56.95(5873.75)

−
= = =−

    

 The intercept ( a ) and slope ( b ) in the linear regression equation can now be 
computed as:

      70.25 [( 8.16)(2.95)] 70.25 24.07 94.32a Y bX= − = − − = + =    

      

Y
XY

17.58
r .804 8.16

S 1.73X

S
b

⎛ ⎞⎟⎜= =− =−⎟⎜ ⎟⎟⎜⎝ ⎠     

 These values will closely approximate (within rounding error) those output by a 
computer program. The prediction of Y given knowledge of X is then possible using 
the intercept and slope values in the following linear regression equation:

      
ˆ 94.32 8.16Y X= +−     

 To determine the predicted Y values (Yhat) we would substitute each value of X 
into the linear regression equation. The resulting Y, Yhat, and errors of prediction 
are given below.  

 Y  Yhat  e(Y−Yhat) 

 90  78.00  12.00 
 70  61.68  8.32 
 80  69.84  10.16 
 60  53.52  6.48 
 95  86.16  8.84 
 80  78.00  2.00 
 50  53.52  −3.52 
 45  69.84  −24.84 
 75  78.00  −3.00 
 65  61.68  3.32 
 45  53.52  −8.52 
 80  86.16  −6.16 
 80  61.68  18.32 
 60  53.52  6.48 
 85  86.16  −1.16 
 90  94.32  −4.32 
 50  53.52  −3.52 
 70  69.84  .16 
 40  61.68  −21.68 
 95  94.32  .68 
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 In this data example, the correlation coef fi cient is negative (r = −.80), which 
 indicates that as days absent during the week increases (X), the math achievement 
scores decrease. This relationship would be depicted as a downward trend in the 
data points on a scatter plot. Also notice that the data points go together (covary) in 
a negative or inverse direction as indicated by the negative sign for the sum of prod-
ucts in the numerator of the correlation coef fi cient formula. We square the correla-
tion coef fi cient value to obtain a variance accounted for interpretation, i.e., when 
r = −.80, r 2  = .64. Knowledge of the number of days absent accounts for 64% of the 
variance in the math achievement scores. 

 The errors of prediction also serve to identify the accuracy of the regression 
equation. Notice that some of the errors are positive and some of the errors are nega-
tive, consequently the sum (and mean) of the errors should be zero. We expect the 
Y scores to be normally distributed around Yhat for each value of X so that the vari-
ability of these errors indicate the standard deviation of the Y scores around Yhat 
for each value of X. The standard deviation of the Y scores around Yhat is called a 
standard error of estimate. It is computed as:

      

Σ 2

Y.X

2081.08
10.75

2 18
S

n

e
= = =

−     

 Another approach using the standard deviation of Y, the correlation coef fi cient, 
and sample size is computed as:

      
2 2

Y.X Y 1 r 1 / 2 17.58 1 ( .804) 20 1 / 20 2 10.75S S n n= − − − = − − − − =     

 A graph of the Y score distribution around each individual X score will help to 
better understand the interpretation of the standard error of estimate and the concept 
of homoscedasticity (equal variance of Y scores around Yhat for each X score along 
the line of least squares). For each value of X, there is a distribution of Y scores 
around each Yhat value.

        The error of prediction for the  fi rst student is computed as follows: 

 Step 1

   Yhat = a + bX  
  Yhat = 94.32 + (−8.16 * 2) = 78    

 Step 2

   e = Y−Yhat  
  e = 90 − 78 = 12    

 Check on linear equation:

   Y = a + bX + e  
  90 = 94.32 + (−16.32) + 12.00     
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a = 94.32

Math Achievement

Scores (Y)

X1 X2 X3 ……etc.

Days Absent (X)

Y= 94.32+ (−8.16)Xˆ

Ŷ

         

 The S 
Y.X

  = 10.75 is the standard deviation of the Y scores around the predicted 
Yhat score for each X score. This standard deviation is assumed to be the same for 
each distribution of Y scores along the least squares line, i.e., homoscedasticity of 
variance along the least squares line. The predicted Yhat is the mean of the distribu-
tion of Y scores for each value of X. The standard error of estimate is therefore 
calculated as the square root of the sum of the squared differences between Y and 
Yhat, i.e., (Y − Yhat) 2 , divided by N − 2. Since it is assumed that different values of 
Y vary in a normal distribution around Yhat, the assumption of equal variance in Y 
across the least squares line is important because you want an accurate mean 
squared error!  

   Standard Scores 

 In some instances the Y and X scores are converted to z-scores or standard scores to 
place them both on the same measurement scale. This permits an equivalent “rise” 
to “run” interpretation of the z-values. The standard scores (z - scores), as they are 
sometimes called, can be converted back to their respective raw score. The z-score 
formula subtracts the mean from each score and divides by the standard deviation. 
The formula you may recall is:

      

X X
z

S

−
=
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 As a result of placing Y and X scores on the z-score scale, the intercept ( a ) and 
slope ( b ) in the linear regression equation are simpli fi ed because the mean values 
for X and Y are zero and standard deviations for X and Y are one:

      a Y bX (0) b(0) 0= − = − =    

      

Y
XY

1
r .804 .804

S 1X

S
b

⎛ ⎞⎟⎜= =− =−⎟⎜ ⎟⎟⎜⎝ ⎠     

 Because the mean and standard deviation of z-scores are zero (0) and one (1), 
respectively, the least squares line would pass through the origin (Y = 0 and X = 0) 
of the scatter plot with the Y and X axes labeled in z-score units. Notice that the 
correlation coef fi cient captures the slope of the least squares line. The regression 
equation in z-score form is written as: Z 

Y
  =  b  Z 

X
 , with  b  = −.804, the Pearson correla-

tion coef fi cient. 
 The use of linear regression in applied research is very popular. For example, 

admission into graduate school is based on the prediction of grade point average 
using the Graduate Record Exam (GRE) score. Colleges and Universities predict 
budgets and enrollment from 1 year to the next based on previous attendance data. 
The Pearson correlation coef fi cient played an important role in making these pre-
dictions possible. A statistically signi fi cant correlation between Y and X will gener-
ally indicate a good prediction is possible because the difference between the 
observed Y values and the predicted Yhat values are kept to a minimum. The least 
squares line is  fi tted to the data to indicate the prediction trend. The least squares 
line is a unique regression line, which minimizes the sum of the squared differences 
between the observed Y’s and the predicted Y’s, thus keeping prediction error to a 
minimum by the selection of values for the intercept ( a ) and slope ( b ). In the regres-
sion formula using z-scores, we see the unique role that the Pearson correlation 
coef fi cient plays. 

 The  a  in the regression equation is the intercept of the least squares line. The  b  
coef fi cient in the regression equation is the slope of the least squares line. The inter-
cept in the regression equation is called the Y-intercept; the point at which the least 
squares line crosses the Y-axis. In the linear regression equation, X is the indepen-
dent variable and Y the dependent variable. The linear regression equation using 
z-scores for X and Y, has a slope equal to the Pearson correlation coef fi cient. The 
intercept and slope of the least squares line from sample data are estimates of the 
population intercept and slope. The purpose of linear regression is to predict Y from 
knowledge of X using a least squares criterion to select an intercept and slope that 
will minimize the difference between Y and Yhat. 

   REGRESSION R Program 

 A true population linear regression equation is speci fi ed based on the amount of 
 overtime worked (X) and bonus points received (Y). The true population linear 
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 regression equation can be expressed as: Y = 3 + .25X + e. This equation indicates 
that if there are no overtime hours worked (X = 0), the number of bonus points is 3.0, 
plus some random error ( e ) that is due to chance, which can be either positive or nega-
tive. The bonus points are increased by .25 for each hour of overtime worked. It is 
assumed that for each X, the Y values are normally distributed around predicted Y, 
their mean on the line Y = 3 + .25X, and that these normal distributions of Y values 
around their individual predicted Y have the same variance. The data will be selected 
at random from a normal population. The scatter plot of X and Y data points is pro-
duced by the  plot  function and the least squares regression line is drawn using the  lines  
function each time you run the program. The linear regression equation is listed at the 
top of the scatter plot. The program uses the least squares  ls fi t  function in R to calculate 
the intercept and slope of the regression equation. The program prints the intercept and 
slope of the true regression equation in the population and the regression equation 
based on the sample data. The pairs of X and Y values are printed for reference. The 
correlation coef fi cient is printed to reference the slope for a regression equation using 
standard scores for Y and X, which is Beta or the standardized regression coef fi cient.  

   REGRESSION Program Output 

  Scatterplot Data Points       

   (3.51,3.56) (3.16,2.79) (9.29,4.08) (1.13,2.36) (3.69,5.9)  
   (7.69,5.37) (1.08,4.43) (1.32,3.61) (3.32,2.93) (6.64,4.6)  
   (6.65,3.64) (5.8,3.77)  (6.24,4.65) (3.95,4.28) (6.64,3.99)  
   (2.23,3.15) (9.4,5.96)  (5.46,4.33) (6.47,3.21) (9.26,6.86)            

   True regression line is: y = 3 + 0.25x  
   Least squares  fi t line is: y = 2.88 + 0.25x  
   r = 0.59 (slope using standard scores for X and Y)
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   REGRESSION Exercises 

     1.    Run REGRESSION and enter the 20 pairs of observations in the following 
spaces   .  

 __________  __________  __________  __________  __________ 
 __________  __________  __________  __________  __________ 
 __________  __________  __________  __________  __________ 
 __________  __________  __________  __________  __________ 

     a.     What is the equation for the true population least squares line? ___________  
     b.     What is the equation of the sample least squares line? __________________  
     c.     What is the slope of the equation if using z-scores? (Correlation 

coef fi cient)__________  
     d.    Print the scatter plot produced by the REGRESSION program.      

    2.    Run REGRESSION program  fi ve more times, and record the sample regression 
equations. 

   TRUE REGRESSION EQUATION: Y = 3 + .25X  

 SAMPLE EQUATION  Run 1 _________________________________________ 

 Run 2 _________________________________________ 

 Run 3 _________________________________________ 

 Run 4 _________________________________________ 

 Run 5 _________________________________________ 

     a.    What is the slope of the true regression equation? ______________  
     b.    What is the Y-intercept of the true regression equation? ______________  
     c.     Calculate the error in the estimates of the sample slopes and intercepts for the 

 fi ve runs. 
   Enter the values in the table below. (Error = Sample Estimate − True Population 

Value)  

 ERROR IN SLOPE  ERROR IN INTERCEPT 

 RUN 1  ____________________________  ____________________________ 

 RUN 2  ____________________________  ____________________________ 

 RUN 3  ____________________________  ____________________________ 

 RUN 4  ____________________________  ____________________________ 

 RUN 5  ____________________________  ____________________________ 
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     d.     Are the errors in the slopes in the same direction (positive versus negative)? 
 YES _____ NO _____  

     e.     Are the errors in the Y-intercepts in the same direction (positive versus 
 negative)?   

YES _____ NO _____      

    3.    Run the REGRESSION program and determine for a given value of X (overtime 
hours worked), what is the bonus received (Y)? Use the following values:

    bTrue <- .50   
   aTrue <- 10   
   sampleSize <- 100    

     a.     If X = 4,  fi nd the bonus (predicted Y) using the true population regression 
equation. 
 _____________________________________________________________  

     b.    If X = 4,  fi nd the bonus (predicted Y) using the sample equation. 

 _____________________________________________________________          

   True or False Questions 

   Linear Regression    

 T  F  a.  If the equation of a least squares line is Y = 4 − .5X, then the slope 
of the line is 4. 

 T  F  b.  Prediction of Y given knowledge of X is the purpose of linear 
regression analysis. 

 T  F  c.  The slope of the linear regression equation in z-score form is the 
Pearson correlation coef fi cient. 

 T  F  d.  A regression equation from sample data will usually differ from the 
true population regression equation. 

 T  F  e.  Y values are normally distributed around their Yhat means on the 
least squares line and the Y distributions have the same variance. 
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 We have covered statistical theory, probability, sampling distributions, statistical 
distributions, hypothesis testing, and various statistical tests based on the level of 
measurement and type of research design. Research for many decades involved car-
rying out a single study, i.e., collection of a single random sample of data from the 
population. Researchers today are becoming more concerned with replicating their 
research results. However, time and resources often do not permit conducting a 
research study again. Researchers instead have created techniques that provide some 
level of replicating their  fi ndings. 

 Every day we ask ourselves important questions. It could be as simple as what 
route to take to a new job. In the process of answering the question, we gather infor-
mation or data. This could include asking co-workers, driving different routes, and 
examining an area roadmap. Once we feel that suf fi cient information has been col-
lected, we answer the question for ourselves and often share the answer with others. 
Trying the route to work we selected validates our  fi ndings or conclusion. The pro-
cess of asking a question, gathering data, answering the question, and validating the 
conclusion is the key to the research process. 

 Once we have asked an important question, gathered data, and answered the 
question, others may ask whether the same results would occur if the process were 
repeated. In other words, could the research  fi ndings be replicated? In order to 
repeat the same process, we must  fi rst document the methods and procedures used 
in the original research. Then, another person can replicate the research process and 
report their  fi ndings. If the research  fi ndings are valid and consistent, then others 
should report  fi ndings similar to the original research. 

 In numerous academic disciplines, research  fi ndings are reported along with the 
methods and procedures used in the study. Unfortunately, not many research studies 
are replicated. This is due primarily to the time, money, and resources needed to 
replicate research studies. Instead, other approaches have been developed which 
don’t require conducting the study again. These methods include cross-validation, 
jackknife, and bootstrap. 

    Chapter 14   
 Replication of Results                 
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   Cross Validation 

    The cross-validation approach involves taking a random sample of data from a 
 population. Typically we would compute a sample statistic for the sample data of 
size N where the sample statistic is our estimator of the population parameter. In the 
 cross-validation  approach, the original sample data are randomly split into two 
equal halves. A sample statistic is computed using one half of the sample data and 
applied to the other half of the sample data. If the sample statistics for the two ran-
domly split data halves are similar, we assume the research  fi ndings would be repli-
cable. Otherwise, the  fi ndings are not consistent and probably could not be replicated. 
A large random sample is generally needed to provide two randomly split data halves 
that are of suf fi cient sample size so as not to affect the sample statistics. For exam-
ple, a sample of size N = 1000 randomly drawn from a population would be ran-
domly split into equal halves; each cross-validation sample size would be N = 500. 

 The essence of the cross-validation technique is the computing of a sample statis-
tic on the  fi rst set of sample data and applying it to the second set of sample data. This 
technique is different from other approaches in statistics. We are not comparing sam-
ple means from two random samples of data drawn from different populations and 
testing whether the means are similar or dissimilar (independent t-test for mean dif-
ferences). We are not testing two sample proportions to determine if they are similar 
or dissimilar (z-test for differences in proportions). We are not comparing a sample 
mean to a population mean (one sample t-test). It should be noted that if the original 
sample statistic was not a good estimator of the population parameter, the cross-
validation results would not improve the estimation of the population parameter. 

 Replicating research results involves conducting another study using the same 
methods and procedures. When unable to replicate another study, researchers apply 
the cross-validation approach to a single sample of data randomly drawn from the 
population. The cross-validation approach involves randomly splitting a random 
sample into two equal halves, then computing a sample statistic on one sub-sample 
and applying it to the other sub-sample. The cross-validation approach is not the 
same as other statistical tests, which randomly sample from a population and test 
sample estimates of the population parameter. The cross-validation approach does 
not improve the sample statistic as an estimate of the population parameter. A com-
parison of two regression equations from two equal halves of sample data will indi-
cate the stability of the intercept and regression weight. 

   CROSS VALIDATION Programs 

 The cross validation programs take a random sample from a population. The sample 
data will be randomly split into two equal halves of size, N/2. The  linear regression  
equation, Y = a + bX + e, will be computed using the  fi rst one-half sample. The 
regression equation will then be applied to the second one-half sample. The regres-
sion weights and R-square values will be compared. A smaller R-squared value in 
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the second one-half sample is expected because the regression equation coef fi cients 
were selected in the  fi rst one-half sample data to minimize the sum of squared errors 
(least squares criterion). The lower R-squared value in the second data set is referred 
to as the  shrinkage  of the R-squared value. The R-squared value in the second one-
half data set will not always be lower than the R-squared value in the  fi rst one-half 
data set. The second cross validation program yields results to determine the amount 
of expected shrinkage in the second one-half sample regression statistics. 

 The  fi rst program,  CROSSVALIDATION1  uses a traditional method of cross vali-
dation whereby a regression equation is created on one randomly chosen half of a sam-
ple and applied to the data in the second half to compare stability of regression weights 
and check for R-squared shrinkage. The second program,  CROSSVALIDATION2 , 
creates separate independent regression equations on each randomly split half and 
compares the regression weights and R-squared values. Both programs begin by 
assigning values for the intercept and slope of the true population regression equa-
tion, the sample size, and the number of replications. A replication in the program 
refers to the splitting of the sample size into random halves and applying the par-
ticular method of cross validation. For each replication, a full sample is split into 
two new random halves, so the same full sample from the population is used for all 
replications within the same run of the program. 

 The regression coef fi cients are computed using the  ls fi t  function and the results 
assigned to the  sampleReg  object. The  ls.print  function is used to output the regres-
sion summary statistics and permits selection of speci fi c results, for example, the 
R-squared value for the full sample is assigned to  sampleR2  and the regression 
weight is assigned to b Sample . The other half of the sample is assigned to vectors to 
be analyzed using the vector notation of [− halfPoints ], which means all points that 
were not in the  fi rst vector of random values. The predicted Y-values are then deter-
mined from the X-values of the second half using the slope and intercept determined 
by the regression of the  fi rst half of the sample, the sum of squared errors for the 
regression, the total sum of squared error Y-values and the predicted Y-values. The 
regression weight and R-squared value for the full sample is displayed using the  cat  
function and the output results given by the  print  function. The second program is 
identical to the  fi rst, except that the second half of the sample data is analyzed sepa-
rately with the  ls fi t  function. The output of the second program therefore includes 
separate regression results for both samples of data for comparison.  

   CROSS VALIDATION Program Output 

   CROSSVALIDATION1   

 Population  

  Regression equation: Y = 3 + 0.25  
  Sample Size  =  1000  
  N Replications  =  5  
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  Full Sample  

  Regression equation: Y = 2.93 + 0.262  
  R-Squared  =  0.3123       

   Sample A Sample A Sample B  
   Reg Weight R-Squared R-Squared  
  Replication 1 0.271 0.3476 0.324  
  Replication 2 0.288 0.3615 0.399  
  Replication 3 0.255 0.3041 0.289  
  Replication 4 0.279 0.338 0.373  
  Replication 5 0.265 0.3124 0.331   

   CROSSVALIDATION2  

 Population  

  Regression equation: Y = 3 + 0.25 (X)  
  Sample Size  =  1000  
  N Replications  =  5  

  Sample  

  Regression equation: Y  =  3.086 + 0.241 (X)  
  R-Squared  =  0.2735  

   Sample A Sample A Sample B Sample B  
   Reg Weight R-Squared Reg Weight R-Squared  
  Replication 1 0.243 0.2775 0.24 0.2725  
  Replication 2 0.238 0.2726 0.243 0.2742  
  Replication 3 0.264 0.3172 0.218 0.2318  
  Replication 4 0.247 0.2745 0.234 0.2724  
  Replication 5 0.253 0.2717 0.229 0.2767     

   Cross Validation Exercises 

     1.    Run the CROSSVALIDATION1 program 5 times for an original sample size of 
500. Record the regression weight and the two R-square values for  each  sample 
of size N = 250. Record the regression weight and R-square value for the original 
sample.

     a.    Original Sample (N = 500): Regression Weight ________
R-Square _________.  
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     b.      

 Sample A (N = 250)     Sample B (N = 250) 
 Regression weight  R-Square  R-Square 

 1.  ______________  _______  _______ 

 2.  ______________  _______  _______ 

 3.  ______________  _______  _______ 

 4.  ______________  _______  _______ 

 5.  ______________  _______  _______ 

     c.     The regression equation computed for sample A is applied to sample B. Are the 
R-squared values similar in sample A and sample B for the  fi ve replications? 

  YES ______NO ______.      

    2.    Run the CROSSVALIDATION1 program with 5 replications and a sample size 
of 1,000.

     a.     Compare the regression equation results for the original samples of N = 500 
and N = 1000. Record the SAMPLE regression weights and R-square values. 
 N = 500 Regression Weight________________ R-square _________ 
 N = 1000 Regression Weight________________ R-square _________  

     b.    Does sample size affect the R-square value? YES ______NO ______.  
     c.     Which sample size would give better estimates of R-square and the regression 

weight? 
 N = 500 ________ N = 1000 ________      

    3.    Run the CROSSVALIDATION2 program with 5 replications using an original 
sample size of 500. Record the regression weights and R-square values for  each  
sample of size N = 250. Record the regression weight and R-square value for the 
original sample.

     a.    Sample (N = 500): Regression Weight ________ R-Square _________.  
     b.      

 Sample A (N = 250)  Sample B (N = 250)    
 Regression Weight  R-Square  Regression Weight  R-Square 

 1.  ______________  _______  _______________  _______ 

 2.  ______________  _______  _______________  _______ 

 3.  ______________  _______  _______________  _______ 

 4.  ______________  _______  _______________  _______ 

 5.  ______________  _______  _______________  _______ 
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     c.     The regression equations for sample A and sample B are computed indepen-
dently. Are the R-squared values similar in sample A and sample B for the 
 fi ve replications? 

 YES ______NO ______.      

    4.    Run the CROSSVALIDATION2 program with 5 replications having an original 
sample size of 1,000.

     a.     Compare the regression equation results for the original samples of N = 500 
and N = 1000. Record the SAMPLE regression weights and R-square values. 
 N = 500 Regression Weight________________ R-square _________ 
 N = 1000 Regression Weight________________ R-square _________  

     b.    Does sample size affect the R-square value? YES ______NO ______.  
     c.     Which sample size would give better estimates of R-square and the regression 

weight?   N = 500 ________ N = 1000 ________          

   Jackknife 

 The jackknife procedure involves the use of a single random sample of data drawn 
from a population of data. Recall that the sample statistic is an estimate of the popu-
lation parameter. We also learned in previous chapters that how good the sample 
statistic is as an estimate of the population parameter depends on the sample size. 
The jackknife procedure is concerned with whether the sample statistic as an 
 estimate of the population parameter is affected by any single data value. For exam-
ple, we know that the sample mean is affected by extreme data values, which is 
indicated by the standard deviation of the sample data. 

 The jackknife approach uses a single sample of data, computes the original sam-
ple statistic (e.g., sample mean), and then computes the sample statistic for each 
sample of size N − 1. Basically, each sample mean after the original sample mean 
would be computed based on the omission of one data point. The jackknife approach 
is therefore useful in determining whether an in fl uential data point exists that dra-
matically changes the sample statistic. The jackknife procedure can be applied to 
any sample statistic based on a random sample drawn from a population. The jack-
knife method computes a jackknife mean based on the exclusion of a different data 
point each time. The number of jackknife replications therefore typically equals the 
original sample size so that the in fl uence of each data point on the sample statistic 
can be determined. 

 An example might help to better understand the jackknife procedure. A random 
sample of 10 numbers is drawn from a population. The numbers are 2, 4, 9, 12, 8, 7, 
15, 11, 3, and 14. The sum of the numbers is 85. The mean is calculated as 85 
divided by 10, which equals 8.5. This sample mean is an estimate of the population 
mean. The jackknife procedure calculates 10 additional sample means based on 
N = 9, but each time with a different data value omitted. To compute each jackknife 
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mean, the data value omitted is subtracted from the sum of 85 and this new sum is 
divided by N = 9 to yield the jackknife mean. The jackknife procedure for these data 
values is outlined below.  

 Sample Size  Mean  Values Used  Value Omitted    

 10  8.5  2, 4, 9, 12, 8, 7, 15, 11, 3, 14  None 
 9  9.2  4, 9, 12, 8, 7, 15, 11, 3, 14  2 
 9  9.0  2, 9, 12, 8, 7, 15, 11, 3, 14  4 
 9  8.4  2, 4, 12, 8, 7, 15, 11, 3, 14  9 
 9  8.1  2, 4, 9, 8, 7, 15, 11, 3, 14  12 
 9  8.5  2, 4, 9, 12, 7, 15, 11, 3, 14  8 
 9  8.6  2, 4, 9, 12, 8, 15, 11, 3, 14  7 
 9  7.7  2, 4, 9, 12, 8, 7, 11, 3, 14  15 
 9  8.2  2, 4, 9, 12, 8, 7, 15, 3, 14  11 
 9  9.1  2, 4, 9, 12, 8, 7, 15, 11, 14  3 
 9  7.8  2, 4, 9, 12, 8, 7, 15, 11, 3  14 

 The jackknife sample means ranged from 7.7 to 9.2 with the original sample 
mean of 8.5. The omission of a low data value in fl ated (increased) the sample mean 
as an estimate of the population mean. The omission of a high data value de fl ated 
(lowered) the sample mean as an estimate of the population mean. Both of these 
outcomes are expected and help us to understand the nature of how extreme data 
values (outliers) affect the sample statistic as an estimate of a population 
parameter. 

 Another example of the jackknife procedure will highlight the detection of an 
in fl uential (outlier) data value. Once again, we randomly sample 10 data values 
from a population. The sum of the numbers is 158 with an original sample mean of 
15.8. The results are summarized below. The jackknife means in this second exam-
ple ranged from 9.2 to 17.2 with an original sample mean of 15.8. Notice that the 
original sample mean of 15.8 is less than every other jackknife mean, except the one 
with an omitted in fl uential data value, i.e., 75. The results indicate how the removal 
of an in fl uential data value can increase or decrease the sample statistic value.  

 Sample Size  Mean  Values Used  Value Omitted    

 10  15.8  75, 4, 9, 12, 8, 7, 15, 11, 3, 14  None 
 9  9.2  4, 9, 12, 8, 7, 15, 11, 3, 14  75 
 9  17.1  75, 9, 12, 8, 7, 15, 11, 3, 14  4 
 9  16.5  75, 4, 12, 8, 7, 15, 11, 3, 14  9 
 9  16.2  75, 4, 9, 8, 7, 15, 11, 3, 14  12 
 9  16.6  75, 4, 9, 12, 7, 15, 11, 3, 14  8 
 9  16.7  75, 4, 9, 12, 8, 15, 11, 3, 14  7 
 9  15.9  75, 4, 9, 12, 8, 7, 11, 3, 14  15 
 9  16.3  75, 4, 9, 12, 8, 7, 15, 3, 14  11 
 9  17.2  75, 4, 9, 12, 8, 7, 15, 11, 14  3 
 9  16.0  75, 4, 9, 12, 8, 7, 15, 11, 3  14 
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 An important comparison can be made between the  fi rst and second example. In 
the  fi rst example, the original sample mean of 8.5 fell between all jackknife means, 
which ranged from 7.7 to 9.2. In the second example, the jackknife means were all 
greater than the original sample mean, with the exception of the one in fl uential data 
value. If we examine the jackknife means for each omitted data value, it points out 
the presence of an in fl uential data value (outlier or extreme value). 

 The descriptive information for the jackknife means in both examples also clearly 
indicates the presence of in fl uential data in the second example. The jackknife 
means were treated as new data such that the average is the  mean  of the jackknife 
means. The standard deviation, variance, and 95% con fi dence interval indicate more 
data dispersion in the second example. This dispersion is interpreted as less accu-
racy, more variability, and greater difference between the original sample mean and 
the jackknife means. The descriptive information is:  

 Descriptive Information  First Example  Second Example    

 Sample Size  N = 10  N = 10 
 Range  7.7–9.2  9.2–17.2 
 Mean  8.46  15.77 
 Standard Deviation  .52  2.35 
 Variance  .27  5.52 
 95% Con fi dence Interval  (7.44, 9.48)  (11.16, 20.38) 

 The jackknife procedure uses the original random sample drawn from a popula-
tion to estimate additional sample means based on N − 1 sample data points. The 
jackknife procedure is useful for identifying in fl uential, extreme, or outlier data 
values in a random sample of data. The jackknife method can be used with any 
sample statistic that is computed from a random sample of data drawn from a well-
de fi ned population. The jackknife approach helps to validate whether a sample of 
data provides a good sample statistic as an estimator of the population parameter. 
The number of jackknife means is equal to the sample size for the purposes of 
detecting an in fl uential data value. The con fi dence interval around a set of jackknife 
means will be smaller when in fl uential data values are not present. 

   JACKKNIFE R Program 

 The JACKKNIFE program utilizes the jackknife function in the R library bootstrap. 
Therefore the program must  fi rst issue the command: library(bootstrap). 
The  jackknife function then permits an easy method for calculating the mean and 
 percentiles after jackkni fi ng the samples. The calculations could be done manually 
instead of using the jackknife function, but the function makes it easier to compute 
for large samples. The jackknife function is given the vector of data values to be 
jackknifed. The mean and standard deviation for the entire sample are printed out, 
followed by the summary of the jackknife results.  
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   JACKKNIFE Program Output 

  Data Values  =  10 20 30 40 50 60 70 80 90 100  

  Original mean  =  55 Original standard deviation  =  30.28  

  Sample Size Jackknife Mean Values Used Value Omitted  

  9 60 20,30,40,50,60,70,80,90,100 10  

  9 58.89 10,30,40,50,60,70,80,90,100 20  

  9 57.78 10,20,40,50,60,70,80,90,100 30  

  9 56.67 10,20,30,50,60,70,80,90,100 40  

  9 55.56 10,20,30,40,60,70,80,90,100 50  

  9 54.44 10,20,30,40,50,70,80,90,100 60  

  9 53.33 10,20,30,40,50,60,80,90,100 70  

  9 52.22 10,20,30,40,50,60,70,90,100 80  

  9 51.11 10,20,30,40,50,60,70,80,100 90  

  9 50 10,20,30,40,50,60,70,80,90 100    

   Jackknife Exercises 

     1.    Run the JACKKNIFE program with the following 10 data values as a random 
Sample A:   data < − c(1,2,3,4,5,6,7,8,9,10). Print the Graph.

     a.    Record the Original mean and standard deviation. 
 Original Mean = _____________ Original Standard Deviation = _____________  

     b.    Record the following information for the N − 1 data sets.  

 Jackknife    

 Run  Sample Size  Mean  Value Omitted 

 1  9 
 2  9 
 3  9 
 4  9 
 5  9 
 6  9 
 7  9 
 8  9 
 9  9 

 10  9 

     c.     Calculate the Standard Error of the Mean using Original sample standard 
deviation and the number of replications, N = 10.      /SE S N=    = 
__________ = ___________.  
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     d.     Calculate the 95% Con fi dence Interval using the Original sample mean and 
standard deviation.      95% 1.96( )CI X S=    = (_______, _______)  

     e.     List the Range of Jackknife Means. Highest Mean ________ Lowest Mean 
________  

     f.     How many Jackknife means are higher than the Original Sample mean? 
________      

    2.    Run the JACKKNIFE program with the following 10 data values as a random 
Sample B:   data <- c(1,2,3,4,5,6,7,8,9,100). Print the Graph.

     a.    Record the Original sample mean and standard deviation. 
 Original Mean = ______________ Original Standard Deviation = 
______________  

     b.    Record the following information for the N − 1 data sets  

 Jackknife    

 Run  Sample Size  Mean  Value Omitted 

 1  9 
 2  9 
 3  9 
 4  9 
 5  9 
 6  9 
 7  9 
 8  9 
 9  9 
 10  9 

    c.    Calculate the Standard Error of the Mean using Original sample standard 
 deviation and the number of replications, N = 10. 
   /SE S N=    = __________ = ___________.  

    d.    Calculate the 95% Con fi dence Interval using the Original sample mean and 
standard deviation.    95% 1.96( )CI X S=     = (_______, _______)  

    e.    List the Range of Jackknife Means. Highest Mean ________ Lowest Mean 
________  

    f.    How many Jackknife means are higher than the Original Sample mean? 
________      

    3.    List the Original sample means and standard deviations, SE, 95% CI, and range 
of Jackknife means for Sample A and Sample B above   .  

 Sample 
Mean  Sample SD  SE  95%CI  Jackknife Range    

 Sample A  _______  ______  _______  (_____, ______)  High: _____ Low: ______ 
 Sample B  _______  ______  _______  (_____, ______)  High: _____ Low: ______ 
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    a.    Does Sample A or Sample B have a higher sample mean? 
 Sample A ________ Sample B _________  

    b.    Does Sample A or Sample B have a larger standard deviation? 
 Sample A ________ Sample B _________  

    c.    Does Sample A or Sample B have a larger Standard Error of the Mean? 
 Sample A ________ Sample B _________  

    d.    Does Sample A or Sample B have a wider 95% Con fi dence Interval? 
 Sample A ________ Sample B _________  

    e.    Does Sample A or Sample B have more Jackknife Means higher than the 
Original sample mean? 
 Sample A ________ Sample B _________  

    f.    Which sample has a more accurate sample mean estimator of the population 
mean? 
 Sample A _____ Sample B ______  

    g.    Summarize  a  to  e  above in regard to their indicating in fl uential data points. 

 ______________________________________________________________ 

 ______________________________________________________________ 

 ______________________________________________________________          

   Bootstrap 

 The bootstrap method differs from the traditional parametric approach to inferential 
statistics because it uses  sampling with replacement  to create the sampling distribu-
tion of a statistic. The bootstrap method doesn’t take a random sample from a 
 population in the same way as that used in our previous inferential statistics. The 
bootstrap method is useful for reproducing the sampling distribution of any statistic, 
e.g., the median or regression weight. The basic idea is that conclusions are made 
about a population parameter from a random sample of data, but in which a sam-
pling distribution of the statistic is generated based on sampling with replacement. 
The factors that in fl uence the shape of the sampling distribution are therefore impor-
tant because it is the bootstrap estimate from the sampling distribution that allows 
us to make an inference to the population. 

 The bootstrap procedure uses a random sample of data as a substitute for the 
population data. The randomly sampled data acts as a “pseudo” population from 
which the bootstrap method repeatedly samples the data. The repeated sampling of 
data is done with replacement of each data point after selection. The resampling 
technique therefore samples from the “pseudo” population using the same set of 
data values each time. Since each data value is replaced before taking the next ran-
dom selection, it is possible to have the same data value selected more than once and 
used in the calculation of the  fi nal sample statistic. The probabilities in the earlier 
chapters of the book were based on randomly sampling  without  replacement where 
each individual, object, or event had an equally likely chance of being selected. 
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The bootstrap method uses probabilities based upon randomly sampling  with  
replacement where each individual, object, or event has an equally likely chance of 
being selected each time a data value is randomly drawn. 

 The bootstrap procedure involves the following steps:

   Step 1: A random sample of data for a given sample size N is drawn from the popu-
lation with mean,  m , and standard deviation,  s .  

  Step 2: The random sample of data size N acts as a “pseudo” population with mean, 
 m *, and standard deviation,  s *.  

  Step 3: The bootstrap method takes  n  bootstrap samples of sample size N from the 
“pseudo” population, each time replacing the randomly sampled data point. For 
each sample of size N a sample statistic is computed.  

  Step 4: A frequency distribution of the  n  bootstrap sample statistics is graphed 
which represents the sampling distribution of the statistic. The mean of this sam-
pling distribution is the bootstrap estimate,  q *, which has a standard error of SE 

 q *
  

computed by:

    

* * 2( )

1
iSE

nq

q q-
=

-
å

     

  Step 5: The amount of bias in the original sample statistic as an estimate of the 
population parameter is calculated by subtracting:  m * −  q *. If the bootstrap estimate 
is similar to the corresponding “pseudo” population parameter, then no bias is pres-
ent. A small difference would still indicate that the original sample statistic is a good 
estimator of the population parameter.  
  Step 6: Calculate a con fi dence interval around the bootstrap estimate using the stan-
dard error of the bootstrap estimate and level of signi fi cance, Z. The con fi dence 
interval is computed by:

    *CI * Z(SE ).= � ��        

 The bootstrap method can be based on samples of size N that equal the original 
sample size N or are larger when it involves sampling data points with replacement. 
Most applications resample to produce sample sizes equal to the “pseudo” popula-
tion size. The bootstrap method can also be used to determine the amount of bias 
between any sample statistic and population parameter. It should be noted that the 
bootstrap method is only useful for determining the amount of bias in the sample 
statistic when the original sample is randomly drawn and representative of the 
 population. This makes sense because if the original sample data were not represen-
tative of the population, then creating the sampling distribution of this data would 
erroneously indicate population characteristics. 
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 An example will help to clarify how the bootstrap method is used to determine 
the amount of bias in the original sample statistic as an estimate of the population 
parameter. A random sample of 100 data points is drawn from the population. This 
random sample now becomes a “pseudo” population. The “pseudo” population has 
a mean,  m * = 50, and standard deviation,  s * = 20. The bootstrap procedure will ran-
domly sample data points with replacement from this “pseudo” population. The 
bootstrap sample size will be n = 10 and the number of bootstrap samples will be 
N = 5. The resulting data for each bootstrap sample is given below.  

 Sample  Bootstrap  Bootstrap  Bootstrap    

  Run    Size    Data    Mean    Standard Deviation  

 1  10  10, 30, 35, 40, 50, 80, 90, 75, 20, 60  49.0  26.75 
 2  10  15, 25, 75, 40, 55, 55, 95, 70, 30, 65  52.5  24.97 
 3  10  85, 45, 35, 25, 45, 60, 75, 80, 90, 15  55.5  26.40 
 4  10  20, 30, 45, 50, 55, 65, 10, 70, 85, 95  52.5  27.41 
 5  10  50, 50, 20, 45, 65, 75, 30, 80, 70, 30  51.5  20.69 

 The bootstrap estimate, based on the average of the sampling distribution of boot-
strap means is  q * = 52.2. The standard error of the bootstrap estimate, based on the 
square root of the sum of squares difference between each bootstrap sample mean 
and the bootstrap estimate, divided by the number of bootstrap samples minus one, 
is SE 

 q *
  = 2.33. To establish a 95% con fi dence interval, a Z = 1.96 value under the 

normal distribution is used. The 95% con fi dence interval is therefore computed as:

   95% CI 
 q 
  =  q * ± Z (SE 

 q *
 )  

  95% CI 
 q 
  = 52.2 ± 1.96 % 21.80 / 4)  

  95% CI 
 q 
  = 52.2 ± 1.96 (2.33)  

  95% CI 
 q 
  = 52.2 ± 4.57  

  95% CI 
 q 
  = (47.63, 56.77)    

 The amount of bias is indicated by,  m * −  q *, which is 50–52.2 = −2.2. On the 
average, the bootstrap means were 2.2 units higher than the “pseudo” population 
mean. The sign of the  bootstrap estimate  will be either positive or negative depend-
ing upon whether the bootstrap estimate is lower or higher than the “pseudo” popu-
lation parameter, respectively. Since the  bootstrap con fi dence interval  captures the 
“pseudo” population mean, we would conclude that the original sample mean is a 
good stable estimate of the population mean. 

 The bootstrap method uses a random sample of data as a “pseudo” population. 
The bootstrap procedure resamples the “pseudo” population with replacement. The 
bootstrap samples of data can contain some of the same data points. The bootstrap 
estimate is the average of the bootstrap sample statistics. The bootstrap standard 
deviation is based on the bootstrap data. The bootstrap con fi dence interval should 
capture the “pseudo” population parameter when the original sample statistic is a 
good estimate of the population parameter. The bootstrap method is used to deter-
mine the amount of bias between the “pseudo” population parameter and the boot-
strap estimate. Similar values indicate no bias. The bootstrap method can be used 
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with any sample statistic to help determine if the sample statistic is a good or stable 
estimator of the population parameter. The bootstrap method is not useful when the 
random sample of data is not representative of the population data. 

   BOOTSTRAP R Program 

 The BOOTSTRAP program uses the built-in  bootstrap  function from 
library(bootstrap). The program inputs the sample size and the number of bootstrap 
samples. A random sample of data from a normal distribution with a mean of 50 
and standard deviation of 10 is generated. The bootstrap function is then performed 
for the number of bootstrap samples when calculating the mean. The Observed 
mean corresponds to the mean of the sample from the population and the Bootstrap 
Mean corresponds to the mean of the bootstrap samples. The Bias is the difference 
between the Observed Mean and the Bootstrap Mean. The standard error of the 
bootstrap estimates is reported and used to create the 95% con fi dence interval 
around the Bootstrap Mean. 

 The Observed Mean falls within the 95% con fi dence interval when the sample 
data is considered representative of the population.  

   BOOTSTRAP Program Output 

   Sample Size  =  100  
   N Bootstraps  =  500  

   Observed Mean = 52.51114  
   Bootstrap Mean  =  50.95276  

   Bias  =  1.558382  
   SE  =  2.057323  

   95% CI  =  Bootstrap Mean +/- 1.96SE  
   95% CI  =  ( 48.89543 53.01008 )    

   Bootstrap Exercises 

     1.    Run the BOOTSTRAP program for a random sample of N = 200, then take 20 
bootstrap samples. The program settings should be: 

  sampleSize <- 200  
  numBootstraps <- 20 
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    a.    Record the Observed Mean, Bootstrap Mean, Bias, and Standard Error.
   Observed Mean _______  
  Bootstrap Mean _______  
  Bias __________  
  SE __________     

    b.    Calculate the 95% Con fi dence Interval around the Bootstrap Mean. 
 95%CI = Bootstrap Mean +/− 1.96 (SE) = (_______, _______)  

    c.    What does the bootstrap results indicate given the bias and con fi dence 
interval? 
 ______________________________________________________________ 

 _______________________________________________________________ 

 _______________________________________________________________      

    2.    Run the BOOTSTRAP program for a random sample of N = 1000, then take 40 
bootstrap samples. The program settings should be: 

  sampleSize <- 1000  
  numBootstraps <- 40 

    a.    Record the Observed Mean, Bootstrap Mean, Bias, and Standard Error.
   Observed Mean _______  
  Bootstrap Mean _______  
  Bias __________  
  SE __________     

    b.    Calculate the 95% Con fi dence Interval around the Bootstrap Mean. 

 95% CI = Bootstrap Mean +/− 1.96 (SE) = (_______, _______)  
    c.    What does the bootstrap indicate given the bias and con fi dence interval? 

 ______________________________________________________________ 

 ______________________________________________________________ 

 ______________________________________________________________  

    d.    Does the number of bootstrap samples provide a better bootstrap estimate? 
 YES ____ NO _____  

    e.    What would happen if the random sample of data from the population was not 
representative? 
 ______________________________________________________________          
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   True or False Questions 

   Cross Validation    

 T     F  a. Cross-validation techniques verify that the sample statistic is a 
good estimator of the population parameter. 

 T  F  b. Cross-validation techniques involve splitting a random sample 
from a population into two equal halves. 

 T  F  c. The cross-validation approach involves computing sample 
statistics using one sub-sample and applying them to the second 
sub-sample. 

 T  F  d. Cross-validation techniques require large sample sizes. 
 T  F  e. A replication of  fi ndings generally requires conducting another 

study using the methods and procedures of the original study. 

   Jackknife    

 T     F  a. The jackknife procedure is useful for detecting in fl uential data 
values. 

 T  F  b. A jackknife mean computed with an in fl uential data value does 
not fall within the con fi dence interval of the jackknife means. 

 T  F  c. The standard deviation of the jackknife means shows whether 
more variability is present, hence in fl uential data values. 

 T  F  d. The jackknife approach can be used with any sample statistic 
computed from random samples of data drawn from a population. 

 T  F  e. The jackknife procedure repeatedly samples the population data to 
determine if the sample mean is a good estimate of the population 
mean. 

 T  F  f. The number of jackknife means is typically equal to the original 
sample size for the purposes of detecting in fl uential data points. 
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   Bootstrap    

 T     F  a. The bootstrap method is used to determine if the sample statistic is 
a stable estimator of the population parameter. 

 T  F  b. The “Observed Mean” will always fall in the bootstrap con fi dence 
interval. 

 T  F  c. A random sample of data must be representative of the population 
before the bootstrap procedure is accurate. 

 T  F  d. The bootstrap procedure involves sampling data with replacement. 
 T  F  e. No bias between the “observed mean” and the bootstrap mean 

estimate indicates that the sample statistic is a good estimator of 
the population parameter. 

 T  F  f. The bootstrap method can be used with any sample statistic 
computed from a random sample of data. 

 T  F  g. The bootstrap procedure creates random samples of data where 
each data value is unique. 

 T  F  h. The resampling method draws random samples from the “pseudo” 
population using the same set of data values each time. 
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 Much of the research conducted in education, psychology, business, and other 
disciplines has involved single experiments or studies that rarely provide de fi nitive 
answers to research questions. We have learned that researchers seldom replicate 
their research studies and instead use cross-validation, jackknife, or bootstrap meth-
ods to estimate the stability and accuracy of a sample statistic as an estimate of a 
population parameter. The world around us is understood better when we discover 
underlying patterns, trends, and principles, which can result from an accumulation 
of knowledge gained from several studies on a topic of interest. Consequently, a 
review of the research literature is invaluable in summarizing and understanding the 
current state of knowledge about a topic. Rather than rely on subjective judgments 
or interpretations of the research literature, meta-analysis techniques provide a 
quantitative objective assessment of the study results. 

   Meta-Analysis 

 Meta-analysis is the application of statistical procedures to the empirical  fi ndings 
in research studies for the purpose of summarizing and concluding whether the 
 fi ndings in the studies overall were signi fi cant. The meta-analytic approach there-
fore provides a method to synthesize research  fi ndings from several individual 
studies. It makes sense that if several hundred studies had researched socioeco-
nomic status and achievement in school, that a summarization of the  fi ndings in 
these individual studies would aid our understanding of this relationship. From a 
scholarly point of view, we might ask, “After 20 years of studying the ef fi cacy of 
psychotherapy, what have we learned?” At some point in time, it becomes frugal to 
assess what we have learned from the research that was conducted. Further research 
in an area may be unproductive, unscienti fi c, or take a wrong direction, if we don’t 
stop from time to time and assess what we have learned. If we view science as an 
objective activity, then it becomes critical to establish an objective method to integrate 
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and synthesize similar research studies. Meta-analysis is therefore an objective 
analysis of the statistical analyses from several individual studies for the purpose 
of integrating and summarizing the  fi ndings. 

 Sir Ronald A. Fisher in 1932, Karl Pearson in 1933, and Egon S. Pearson in 
1938 all independently addressed the issue of statistically summarizing the results 
of research studies. In 1952, Mordecai H. Gordon, Edward H. Loveland, and 
Edward E. Cureton produced a chi-square table for use in combining the probabil-
ity values from independent research studies. In 1953, Lyle V. Jones and Donald 
W. Fiske further clari fi ed their approaches for testing the signi fi cance of results 
from a set of combined studies. They further demonstrated Fisher’s approach of 
taking a natural logarithm of a p-value to calculate a summary chi-square value. 
Gene Glass in 1976 is credited with using the term  meta-analysis  to describe the 
statistical analysis of a collection of analysis results from several individual stud-
ies. He provided guidelines for converting various statistics into a common met-
ric. Jacob Cohen in 1965 and again in 1977 provided measures of effect size for 
many common statistical tests. An effect size measure indexes the degree of 
departure from the null hypothesis in standard units. Examples of these various 
approaches to combining results from several research studies will be presented 
in this chapter. 

   A Comparison of Fisher and Gordon Chi-Square Approaches 

 The Fisher approach to combining p-values from several independent research stud-
ies was accomplished by using a natural logarithmic transformation of the p-value 
(The natural log or log base  e  is equal to 2.7182818). The sum of the log base  e  
values times −2 resulted in a chi-square value:  c  2  = −2  S  (log 

e
 p), with degrees of 

freedom equal to 2n, where n = the number of studies. The following example helps 
to illustrate Fisher’s approach and the tabled chi-square values provided by Gordon, 
Loveland, and Cureton.  

 Fisher  Gordon et al.    

 Research Study  p  log 
e
 p  Tabled  c  2  

 1  .05  −2.996  5.991 
 2  .01  −4.605  9.210 
 3  .04  −3.219  6.438 

 Total  −10.820  21.639 

 Fisher’s approach required multiplying −2 times the sum of the natural log 
values to calculate the chi-square value: −2 (−10.820) = 21.639! Gordon et al. 
produced a chi-square table with the chi-square values for various p-values, thus 
making the task easier!  
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   Converting Various Statistics to a Common Metric 

 Gene Glass discovered that various test statistics reported in the research literature 
could be converted to the Pearson Product Moment Correlation Coef fi cient or  r , 
e.g., the  t , chi-square, and  F -values. This provided a common metric to compare the 
various statistical values reported in research studies. The formula for transforming 
 r  to each statistic is presented below.

   t-test  

       2

2

t
r

t df
=

+

     

   F-test

         

error

F
r

F df
=

+

     

   Chi-square  

       2

r
n

χ
=

       

   Converting Various Statistics to Effect Size Measures 

 Jacob Cohen expanded Gene Glass’s idea to include a formula that would use an 
 effect size  measure ( d ) in the computation of the correlation statistic. The effect size 
formula is:

   Effect-Size  

       

2 4
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 The formula for transformation to an effect size measure  d  for each statistic is 
presented below.

   t-test  
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   r  
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   Comparison and Interpretation of Effect Size Measures 

 The concept behind an effect size measure,  d , was to determine the amount of depar-
ture from the null hypothesis in standard units. Consequently, an effect size measure 
in an experimental-control group study was determined by the following formula:

      

EXP CTRL

CTRL

Y Y
d

S

−
=

    

 If  d  = .50, then the experimental group scored one-half standard deviations higher 
than the control group. If the population standard deviation is known, it would be 
used instead of the control group sample standard deviation estimate. Another alter-
native was to use the pooled estimate of the standard deviation from both groups in 
the denominator. 

 Not all research studies however used an experimental-control group design, so 
the development of other effect size formulae were very important in being able to 
compare the results of various studies. A comparison of  r  and  d  effect size measures 
for a set of studies should help to better understand how the two methods are com-
puted and interpreted. A comparison of  r  and  d  is listed below for four studies, each 
with a different statistic reported.  

  Effect size measures     

 Study  Statistic  N  df  p (one-tail)  r  d 

 1  t = 2.70  42  40  .005  .3926  .8538 
 2  F = 4.24  27  1,25*  .025  .3808  .8236 
 3   c  2  = 3.84  100  1  .05  .1959  .3995 
 4  r = .492  22  20  .01  .4920  1.1302 

  * In the meta-analysis program only the degree of freedom error is input .  This is the second degree 
of freedom listed in the F ANOVA table     

 The calculations are straightforward using the formula for the  r  and  d  effect size 
measures. For example, given that  t  = 2.70, the  r  effect size is computed as:

      

2 2

2 2
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.1542 .3926

47.29(2.7) 40
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= = = = =
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 The  d  effect size is computed as:
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 The calculation of the  r  effect size measure for the chi-square value is 
straightforward; however, the resulting  r  effect size value should be used in the 
formula for computing the corresponding  d  effect size measure. Given chi-
square = 3.84 with a sample size of 100, the  r  effect size measure is .1959. This  r  
effect size value is used in the  d  effect size formula to obtain the value of .3995. 

 Since the various statistics from the different research studies are now on a 
common metric, they can be compared. Study 4 had the highest  r  effect size 
measure, followed by studies 1, 2, and 3, respectively. The corresponding  d  effect 
size measures also indicate the same order, but help our interpretation by indicat-
ing how much the dependent variable (Y) changed for unit change in the inde-
pendent variable (X). Notice this interpretation is directly related to the use of 
the correlation coef fi cient as an effect size measure. If we had used the experi-
mental-group effect size measure, our interpretation would be how much the 
experimental group increased on average over the control group with regard to 
the dependent variable. 

 The null hypothesis always implies that the effect size is zero. If the alternative 
hypothesis is accepted, then the effect size departs from zero and leads to a standardized 
interpretation. Jacob Cohen in 1977 offered basic guidelines for interpreting the 
magnitude of the  d  effect size measure (d = .2 = small, d = .5 = medium, and 
d = .8 = large) and  r  effect size measure (r = .10 = small, r = .30 = medium, 
r = .50 = large); however, any interpretation of an effect size measure is relative. 
Knowledge of the professional discipline and the distribution of effect size measures 
in similar research studies provide reference points for interpretation. Sometimes, 
no such distributions of effect size estimates exist, so no standard reference point 
is available. In this instance, the computation of effect size estimates in several 
hundred studies can provide the necessary distribution and reference point. 
Summary statistics in the stem and leaf procedure will facilitate the interpretation 
of the distribution of  d  and  r  effect size measures. Given the standard deviation 
unit interpretation, it is important to determine whether a one-half, one-third, or 
one-quarter standard deviation improvement is due to some type of intervention 
that implies a meaningful effect size for the interpretation of the research study 
outcome. 

 A basic approach in conducting a meta-analysis across several related research 
studies is to combine the results and determine if there was an  overall  signi fi cant 
effect. The use of p-values from research studies (see Fisher, Jones, and Fiske, and 
Gordon et al.) readily lends itself to a summary chi-square value. The chi-square 
value indicates the signi fi cance of the combined research study results. The meta-
analysis formula for combining the p-values from individual studies is  c  2  = −2  S  
(log 

e
 p). The combined chi-square value reported earlier was 21.6396. This chi-

square value is tested for signi fi cance using 2 n degrees of freedom (df = 6) to deter-
mine the overall effect across the different research studies. The tabled chi-square 
value at p < 0.01 for 6 degrees of freedom is 16.812. The combined chi-square of 
21.6396 exceeds this tabled value and therefore indicates an overall signi fi cant 
effect across the three research studies. In the case of using an  r  effect size measure, 
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the correlation coef fi cients converted from the various statistics are simply  averaged, 
using the formula:

      

Σ r
r

n
=

    

 In the previous example, the overall  r  effect size is:

      

Σ (.3926 .3808 .1959 .4920) 1.4613
.3653

4 4

r
r

n

+ + +
= = = =

    

 In the case of using a  d  effect size measure, the individual values are also 
averaged:

      

Σ (.8538 .8236 .3995 1.1302) 3.2071
.8018

4 4

d
d

n

+ + +
= = = =

     

   Sample Size Considerations in Meta-Analysis 

 An important concern in combining studies using meta-analytic techniques is the 
in fl uence that different sample sizes may have on the overall interpretation. Some 
studies may be based on small sample sizes whereas others may be based on larger 
sample sizes. Since the correlation coef fi cient is not a function of sample size, pro-
cedures were developed to take into account the different sample sizes from the 
research studies when averaging the  d  effect size estimates. L. Hedges, as well as, 
R. Rosenthal and D. Rubin separately developed a formula in 1982 for calculating 
an  unbiased estimate  of the average  d  effect size. The formula was:

      

Σ
Σ
wd

d
w

=
   

with  w  calculated as (N = total sample size):

      
2

2

8

N
w

d
=
+     

 The results of applying this unbiased, weighted approach to the previous exam-
ple are listed below:  

 Study  N  d  w    

 1  42  .8538  9.623 
 2  27  .8236  6.222 
 3  100  .3995  24.511 
 4  22  1.1302  4.743 
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 The calculation of the unbiased, weighted average effect estimate is:

      

Σ
Σ
(9.623)(.8538) (6.222)(.8236) (24.5111)(.3995) (4.743)(1.1302)

9.623 6.222 24.511 4.743
28.493

.6318
45.099

wd
d

w
=

+ + +
=

+ + +

= =
    

 The  unbiased  weighted average  d  effect size measure of .6318 is then compared 
to the  biased  weighted average  d  effect size measure of .8018 reported earlier. The 
amount of bias, or .8018 − .6318, is .17, which is due to the research studies having 
very different sample sizes. In practice, we would report the unbiased, weighted  d  
effect size. 

 Meta-analysis is an objective quantitative method for combining the results of 
several independent research studies. One approach to combining research  fi ndings 
uses the log of p-values. The overall signi fi cant effect using p-values is indicated by 
a chi-square value. The experimental-control group effect size estimate is deter-
mined by subtracting the two group means and dividing by the standard deviation of 
the control group. The effect size indicates the departure from the null hypothesis in 
standard units. Other approaches to combining research  fi ndings use  r  and  d  effect 
size estimates, which involve the transformation of several common statistics. 
The overall signi fi cant effect from several studies using transformed statistics is 
obtained by averaging either the  r  or  d  effect size measures. Meta-analysis compares 
the relative importance of  fi ndings in several research studies by interpreting effect 
size measures, which are on a common metric. The overall  d  effect size measure can 
be weighted by sample size to compute an unbiased, average  d  effect size measure.  

   META-ANALYSIS R Programs 

 The  Meta-Analysis  program enters the p-values for each research study. Next, the 
chi-square values are computed given the p-values. The Fisher ln(p) and the Gordon 
et.al. values are then printed. The overall chi-square, degrees of freedom, and 
p-value are printed. A statistically signi fi cant chi-square indicates that the combined 
studies overall had a signi fi cant effect. 

 The  Effect Size  program enters for each study the following information: sample 
size, degree of freedom, p-value, and statistic. Each study can have a different sta-
tistic. The different statistics are converted to r and d effect size values. Next, the 
sample weight value is computed and used to calculate the unbiased effect size 
measure and sample size bias. The entire set of inputted values along with the r, d, 
and w values are printed. The average r and d effect size measures for the set of 
studies is printed along with the unbiased effect size and sample size bias.  
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   Meta-Analysis Program Output 

  Fisher ln(p) versus Gordon et. al Chi-square  

  Study p Fisher ln(p) Gordon et al  
   1 0.05       -2.996 5.991  
   2 0.01       -4.605 9.210  
   3 0.04       -3.219 6.438  

  Chi-square = 21.64 df = 6 p = 0.00141   

   Effect Size Program Output 

  Effect Size r and d  

  Type    Statistic N df p r d w  
  t 2.7 42 40 0.005 0.393 0.855 9.621  
  F 4.24 27 25 0.025 0.381 0.824 6.222  
  Chisq 3.84 100 1 0.05 0.196 0.4 24.51  
  r 0.492 22 20 0.01 0.492 1.13 4.743  

  Effect size(r) = 0.366 Effect size(d) = 0.802  

  Unbiased effect size(d) = 0.632  

  Sample Size bias = 0.17  

  Note:    For F values,   only   use the degrees of freedom error or 
denominator     degree of freedom in the dialog box.    

   Meta-Analysis Exercises 

     1.    Run the Meta-Analysis program for the p-values from the research studies 
below. 
 Record the corresponding Fisher log base  e  values, total, and overall chi-square, 
df, and  p .  

 Research Study  p  Fisher log 
e
 p    

 1  .05 
 2  .001 
 3  .20 
 4  .01 
 5  .025 
Total   

 Chi-Square = ______, df = _______, p = _____
   a.      Compute the chi-square value (−2 times the sum of log 

e
 p values) with 2n 

degrees of freedom. Note: n = number of studies. 
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  c  2  = −2  S  (log 
e
 p): ________________ 

 df = 2n: _________  
   b.     Compare the chi-square above to the tabled chi-square value in Table A4 in 

Appendix (use .05 level of signi fi cance). What would you conclude? 
 _____________________________________________________________ 

 _____________________________________________________________ 

 _____________________________________________________________      

    2.    Run the Effect Size program to compute  r  and  d  effect size estimates for the 
statistical values reported in the research studies below. Record the values in the 
table.  

 Effect size measures    

 Study  Statistic  N  df  p (one-tail)  r  d 

 1  t = 2.617  122  120  .005 
 2  F = 4.000  62  60  .025 
 3   c  2  = 6.635  50  1  .01 
 4  r = .296  32  30  .05 

   a.    What is the overall average  r  effect size? ____________________________  
   b.    What is the overall average  d  effect size? ____________________________  
   c.    What would you conclude about the research  fi ndings from these results? 

 _____________________________________________________________ 

 _____________________________________________________________ 

 _____________________________________________________________      

    3.    Run the META-ANALYSIS program again using the p-values from Exercise 2. 
Record the chi-square value and degrees of freedom. Select a tabled chi-square 
value for p < .05.  

  c  2  = −2  S  (log 
e
 p): ___________  Tabled  c  2  = ____________    

 df = 2n: _________  df = 2n: ___________ 

   a.     What would you conclude about the research  fi ndings using the p-value 
approach? 

 _____________________________________________________________ 

 _____________________________________________________________  
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   b.      Compare the chi-square,  r , and  d  effect size results. What would you 
conclude? 

 _____________________________________________________________ 

 _____________________________________________________________      

    4.    Run the Effect Size program using the sample sizes from the research studies in 
Exercise 2. Record the  d  effect size measures computed in Exercise 2 and the 
weight values in the table below:  

 Study  N  d  w  wd 

 1  122 
 2  62 
 3  50 
 4  32 

  S w = ____   S wd = ____ 

   a.    Compute the unbiased, average  d  effect size using the formula:

    
Σ
Σ
wd

d
w

=     

 Unbiased Effect Size = ______________________  
   b.     Compare the bias effect size ( d ) in Exercise 2 with the unbiased effect size (   d   ) 

above. How much bias in the overall effect size is due to the research studies 
having different sample sizes? Note: Overall Bias = (Bias Effect Size − Unbiased 
Effect Size) =  d −     d   . 
 ______________________________________________________________ 

 ______________________________________________________________         

   Statistical Versus Practical Signi fi cance 

 Statistical tests for research questions involve tests of null hypotheses for different 
types of statistics. The statistical tests were the chi-square, z-test,  t -test, analysis of 
variance, correlation, and linear regression. The outcomes of the statistical tests 
were to either retain the null hypothesis or reject the null hypothesis in favor of an 
alternative hypothesis based on the signi fi cance of the statistic computed. TYPE I 
and TYPE II errors were illustrated to better understand the nature of falsely reject-
ing the null hypothesis or falsely retaining the null hypothesis at a given level of 
signi fi cance for the sample statistic. The level of signi fi cance or p-value that we 
choose, i.e., .05 or .01, to test our null hypothesis has come under scrutiny due to the 
nature of statistical signi fi cance testing. 

 Researchers have criticized signi fi cance testing because it can be manipulated to 
achieve the desired outcome, namely, a signi fi cant  fi nding. This can be illustrated 
by presenting different research outcomes based on only changing the p-value 
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selected for the research study. The research study involves  fi fth-grade boys and 
girls who took the Texas Assessment of Academic Skills (TAAS) test. The study 
was interested in testing whether  fi fth-grade boys on average scored statistically 
signi fi cantly higher than girls on the TAAS test (a directional or one-tailed test of 
the null hypothesis). The researcher took a random sample of 31  fi fth-grade boys 
and 31  fi fth-grade girls and gave them the TAAS test under standard administration 
conditions. An independent  t -test was selected to test for mean differences between 
the groups in the population at the .01 level of signi fi cance with 60 degrees of free-
dom (df = N − 2). The resultant sample values were:  

 Group  N  Mean  Standard deviation  t    

 Boys  31  85  10  1.968 
 Girls  31  80  10 

 The researcher computed the t-value as follows:

    

85 80 5
1.968

2.5430(100) 30(100) 1 1
31 31 2 31 31

t
−

= = =
⎛ ⎞+ ⎟⎜ + ⎟⎜ ⎟⎜⎝ ⎠+ −     

 The tabled t-value that was selected for determining the research study outcome 
(based on a directional, one-tailed test, with 60 degrees of freedom at the .01 level 
of signi fi cance) was t = 2.39. Since the computed t = 1.968 was not greater than the 
tabled t-value of 2.66 at the .01 level of signi fi cance, the researcher would  retain  the 
null hypothesis. However, if the researcher had selected a .05 level of signi fi cance, 
the tabled t-value would equal 1.67, and the researcher would  reject  the null hypoth-
esis in favor of the alternative hypothesis. The two possible outcomes in the research 
study are due solely to the different levels of signi fi cance a researcher could choose 
for the statistical test. This points out why signi fi cance testing has been criticized, 
namely the researcher can have statistically signi fi cant research  fi ndings by simply 
changing the p-value. 

 Researchers could also manipulate whether statistically signi fi cant results are 
obtained from a research study by using a  one-tailed test  rather than a  two-tailed 
test . In the previous example, a two-tailed test of signi fi cance would have resulted 
in a tabled t = 2.66 at the .01 level of signi fi cance or a tabled t = 2.00 at the .05 level 
of signi fi cance. If the researcher had chosen a two-tailed test rather than a one-tailed 
test, the null hypothesis would have been rejected at either level of signi fi cance or 
p-value. This illustrates how changing the directional nature of the hypothesis (one-
tailed versus two-tailed test) can result in statistically signi fi cant  fi ndings. 

 Researchers can also increase the  sample size , hence degrees of freedom, and 
achieve statistically signi fi cant research results. If we increase our sample sizes to 
100 boys and 100 girls, we enter the t-table with in fi nity degrees of freedom. The 
resultant tabled t-values, given a one-tailed test, would be 1.645 at a .05 level of 
signi fi cance or 2.326 at a .01 level of signi fi cance. An examination of the t-table 
further indicates that the tabled t-values are larger for smaller degrees of freedom 
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(smaller sample sizes). The bottom row indicates tabled t-values that are the same 
as corresponding z-values in the normal distribution given larger sample sizes. This 
illustrates how increasing the sample size (degrees of freedom greater than 120) can 
yield a lower tabled t-value for making comparisons to the computed t-value in 
determining whether the results are statistically signi fi cant. 

 When signi fi cance testing, the researcher obtains a sample statistic or “point 
estimate” of the population parameter. The researcher could compute  con fi dence 
intervals  around the sample statistic thereby providing an additional interpretation 
of the statistical results. The con fi dence interval width provides valuable informa-
tion about capturing the population parameter beyond the statistical signi fi cance of 
a “point estimate” of the population value. If the 95% con fi dence interval for a 
sample mean ranged from 2.50 to 3.00, then we could conclude with 95% con fi dence 
that the interval contained the population mean. Each time we take a random sample 
of data, the con fi dence interval would change. If we took all possible samples and 
computed their con fi dence intervals, then 95% of the intervals would contain the 
population mean and 5% would not; therefore, one should not report that the prob-
ability is .95 that the interval contains the population mean. Unfortunately, many 
researchers either do not report con fi dence intervals and/or misreport them. 

 Replication of research  fi ndings provide support for results obtained. These meth-
ods help to address the practical importance of the research study  fi ndings. The most 
meaningful technique would be to  replicate  the study and/or  extend the research  based 
on earlier  fi ndings. This provides the best evidence of research  fi ndings or outcomes. 
Researchers could also use their sample data from a single study and  cross-validate , 
 jackknife , or  bootstrap  the results. In some cases, a researcher might synthesis several 
 fi ndings from research studies by conducting a  meta-analysis . Most researchers how-
ever do not take the time to replicate their study, cross-validate, jackknife, bootstrap, 
or conduct a meta-analysis. These methods are well known, but not available in most 
mainstream statistical packages and therefore not readily available to researchers. 

 Another important consideration above and beyond the signi fi cance of a statisti-
cal test is the  effect size  or magnitude of difference reported. The interpretation of the 
effect size can directly indicate whether the statistically signi fi cant results are of any 
practical importance. An example will better illustrate the practical importance of 
research  fi ndings based on an effect size. The previous research study reported a  fi ve 
point average difference between boys and girls in the population on the TAAS test. 
Is this average  fi ve-point difference (approximately getting two test questions cor-
rect or incorrect) of practical importance? If we retain the null hypothesis of no dif-
ference in the population based on our statistical test of signi fi cance, then we conclude 
that  fi fth-grade boys and girls achieve about the same. Alternatively, if we reject the 
null hypothesis in favor of an alternative hypothesis based on our statistical test of 
signi fi cance, then we conclude that  fi fth-grade boys scored statistically signi fi cantly 
higher on average than the girls at a given level of signi fi cance. What are the conse-
quences of our decisions based on a statistical test of signi fi cance? If we retain the 
null hypothesis when it is really false, we make the error of not spending additional 
money for programs to better educate  fi fth-grade girls. If we reject the null  hypothesis 
when it is really true, we make the error of spending additional money on programs 
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that are not needed to better educate  fi fth-grade girls. The effect size helps our 
 practical understanding of the magnitude of the difference detected in a research 
study. The effect size however should be interpreted based upon a synthesis of 
 fi ndings in several other related studies. This comparison provides a frame of refer-
ence for interpreting whether the effect size value is small, medium, or large. The  r  
and  d  effect size measures for the computed t-value are computed as follows:

       

2

2

t
r

t df
=

+      

  and    

    

2t
d

df
=

       

 The researcher, to achieve signi fi cant  fi ndings, can manipulate the level of 
signi fi cance, directional nature of the test, and sample size in statistical signi fi cance 
testing. The con fi dence interval should be reported along with the statistic and 
p-value to aid in the interpretation of research  fi ndings. The effect size helps our 
practical understanding of the importance of our research results. Replication and/
or the extension of a research study are the most meaningful ways to validate 
 fi ndings in a research study. Cross validation, bootstrap, and jackknife methods 
provide additional information in explaining results from a single study. Results can 
be statistically signi fi cant but have little practical importance. 

 A few  fi nal words of wisdom can be given when faced with signi fi cance testing 
and issues related to the practical importance of research  fi ndings. In conducting 
basic applied research, one asks a question, analyzes data, and answers the research 
question. Beyond this task, we need to be reminded of several concerns. How do our 
research  fi ndings relate to the research  fi ndings in other related research studies? 
What is the educational importance of our  fi ndings? What implications do our 
research  fi ndings have on practice? What recommendations can we make that might 
affect or modify the underlying theory? What recommendations can we make that 
might enhance future research efforts?  

   PRACTICAL R Program 

 The PRACTICAL program computes an independent  t -test and outputs the associ-
ated values that a researcher should report. The program begins by setting the 
 sample size,  fi rst population mean and standard deviation and the second population 
mean and standard deviation. A random sample of data is then created for two 
 independent samples using the  rnorm  function. The sample means and standard 
deviations for the two samples are then input into the  t.test  function. The results of 
the independent  t -test are output along with the d and r effect size measures.  
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   PRACTICAL Program Output 

   Independent   t  -test Results  

    Two sample independent   t  -test Sample size  =  30  
    Sample One Mean  =  51.54 Sample One SD  =  10.42  
    Sample Two Mean  =  50.94 Sample Two SD  =  9.66  
    t  -test  =  0.23 df  =  58  
    p-value  =  0.816 95% Con fi dence Interval 
  =  -4.588 to 5.798  
    r Effect  =  0.031 d Effect  =  0.061    

   PRACTICAL Exercises 

     1.    Run the PRACTICAL program 10 times and record the results below.  

 t-value  p-value  95%CI  r effect size  d effect size    

 1)  ______  ______  ______  ______  ______ 
 2)  ______  ______  ______  ______  ______ 
 3)  ______  ______  ______  ______  ______ 
 4)  ______  ______  ______  ______  ______ 
 5)  ______  ______  ______  ______  ______ 
 6)  ______  ______  ______  ______  ______ 
 7)  ______  ______  ______  ______  ______ 
 8)  ______  ______  ______  ______  ______ 
 9)  ______  ______  ______  ______  ______ 
 10)  ______  ______  ______  ______  ______ 

   a.      What conclusions can be drawn about the statistical signi fi cance of the com-
puted t-values if the tabled t-value = 1.671 at the .05 level of signi fi cance for 
a one-tailed test? 

 ______________________________________________________________ 

 ______________________________________________________________  

   b.     How many p-values are less than the .05 level of signi fi cance? _____________  
   c.      What percent of the con fi dence intervals captured the population mean differ-

ence of zero?  ________________________  

   d.      What interpretation would you give for the  r  effect size measures for these 10 
replications? 

 ______________________________________________________________ 

 ______________________________________________________________  
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   e.      What interpretation would you give for the  d  effect size measures for these 10 
replications? 

 ______________________________________________________________ 

 ______________________________________________________________      

   True or False Questions 

   Meta-Analysis    

 T     F  a. Meta-analysis uses subjective techniques to combine research 
studies. 

 T  F  b. The p-value approach combines research  fi ndings using chi-
square values. 

 T  F  c. Various statistics are converted to a common metric so research 
 fi ndings across studies can be quantitatively compared. 

 T  F  d. The  r  effect size measure can be interpreted by using a standard 
reference scale. 

 T  F  e. The  d  effect size measure is interpreted relative to  fi ndings from 
a large body of research in an academic discipline. 

 T  F  f. When combining effect size measures, it is important to weight 
by sample size. 

 T  F  g. The p-value, log(p), and chi-square approach yield similar results. 
 T  F  h. Gene Glass is recognized as creating the term “Meta-Analysis”. 

   Statistical Versus Practical Signi fi cance    

 T     F  a. Signi fi cance testing is the  only  way to know if your  fi ndings are 
important. 

 T  F  b. Replication is the  least  meaningful way to determine the validity of 
your research  fi ndings. 

 T  F  c. Cross-validation, jackknife, and bootstrap methods provide important 
information about results when analyzing a single sample of data. 

 T  F  d. Research  fi ndings can be statistically signi fi cant, but have no 
practical importance to the  fi eld of study. 

 T  F  e. Increasing the sample size can  always  make a statistical test 
signi fi cant at a given level of signi fi cance. 

 T  F  f. The sample statistic, p-value, con fi dence interval, and effect size are 
recommended values that should be reported in a research study. 



263R. Schumacker and S. Tomek, Understanding Statistics Using R, 
DOI 10.1007/978-1-4614-6227-9, © Springer Science+Business Media New York 2013

  Alpha level    The level of statistical signi fi cance selected prior to a test for incorrectly 
rejecting a true null hypothesis, e.g., .05 alpha level of signi fi cance. (See Type 
I error)   

  Alternative hypothesis    A statistical hypothesis that indicates a difference in popu-
lation parameters. For example, the means of two populations are different, i.e., 
possible outcomes not stated in the null hypothesis   

  Analysis of variance    A technique that tests whether the dependent variable means 
of three or more mutually exclusive groups are statistically signi fi cantly different 
at a speci fi ed level of signi fi cance. The F-test is a ratio of MS Between Groups 
divided by MS Within Groups   

  Bell shaped curve    Describes a normal or symmetrical distribution of data in which 
intervals around the mean are known   

  Bimodal    A frequency distribution of data that has two modes, i.e., two scores that 
occur most frequently in a set of data   

  Binomial distribution    A probability distribution generated by taking (a + b) to the 
nth power. Used in a binomial test to determine whether the probability of two 
outcomes exceed the chance level of occurrence   

  Binomial test    A non-parametric test, which doesn’t depend on any population data 
characteristics and measures whether a distribution of scores results in a bino-
mial distribution (each outcome is equally likely). For example, if you tossed an 
unbiased coin 1,000 times it should land approximately 500 heads and 500 tails   

  Bootstrap    An approach that samples with replacement to generate a sampling dis-
tribution of a statistic that serves as the population distribution. The mean of the 
bootstrap sampling distribution or bootstrap estimate is used to determine the 
amount of bias in the random sample   

  Central limit theorem    A theorem that provides a mathematical basis for using the 
normal distribution, as a sampling distribution of a statistic for a given sample 
size, to test a statistical hypothesis. For example, the theorem states that a sam-
pling distribution of means for a given sample size is (1) normally distributed, (2) 
the sampling distribution mean is equal to the population mean, and (3) the sam-
pling distribution variance is equal to the variance divided by the sample size   

        Glossary of Terms 
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  Central tendency    A concept that implies most scores fall in the middle of a sym-
metrical distribution with the scores spreading out evenly toward both tails of the 
distribution   

  Chi-square distribution    A probability distribution or family of curves generated 
by the difference between observed and expected frequencies. The sampling dis-
tribution of chi-square values is used in both parametric and non-parametric tests 
of signi fi cance   

  Chi-square statistic    A non-parametric test that measures the difference between 
the observed frequencies and expected frequencies in two or more groups   

  Combinations    The number of ways in which different subsets of events or num-
bers can be selected   

  Conditional probability    The probability of an event B is based upon the occur-
rence or non-occurrence of event A   

  Con fi dence interval    A high and low value which forms an interval around the 
sample statistic that should contain the population parameter. The interval will 
be different depending upon the percentage used, i.e., 68, 95, or 99 %   

  Con fi dence level    A percentage that indicates how certain we are that the interval 
around the sample statistic contains the population parameter (see alpha level)   

  Correlation    A statistic that indicates the strength and direction of association be-
tween two sets of scores. The strength is indicated by a correlation value closer 
to 1.0 and the direction indicated by a ± sign. A positive correlation indicates 
that both variables increase in value across the range of scores while a negative 
correlation indicates that one set of scores increases as the other set of scores 
decreases   

  Cross-validation    An original sample of data is randomly split into two equal sam-
ples, then a sample statistic is computed using one sample of data and applied to 
the other sample of data   

  Cumulative frequency distribution    A frequency distribution of raw scores that 
indicates successive addition of the number of events, individuals, or objects up 
to the total number or 100 %   

  Degrees of freedom    The number of observations or groups minus the restrictions 
placed upon them. For example, if four out of  fi ve sample means are known, the 
one remaining unknown sample mean can be determined, hence df = 5 − 1 = 4   

  Dependent t-test    A statistical test of whether two sample means from the same 
subjects or group are signi fi cantly different. Also called a paired t-test or cor-
related t-test   

  Dichotomous population    A population of data that can be divided into two mutu-
ally exclusive categories   

  Directional hypothesis    A hypothesis that states one population parameter is great-
er than the other. The direction can be stated in a positive or negative direction, 
e.g., boys’ verbal scores will be lower on average than girls’ verbal scores. A 
one-tailed test because the region of rejection is only in one tail of the sampling 
distribution   

  Effect size    Conveys the magnitude of difference in standard units between the mean 
of the experimental group and the mean of the control group. Used in conjunction 
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with sample size, alpha level, and direction of the statistical hypothesis to select 
a value for power   

  Equally likely events    Events, individuals, or objects that have the same chance of 
being selected   

  Exponential function    A relationship between two sets of data points that does not 
have a constant rate of change for a random variable X, i.e., Y = 2 X    

  F-curve    A positively skewed frequency distribution of F values for speci fi c de-
grees of freedom   

  F-distribution    A probability distribution or family of curves that require two de-
grees of freedom. The normal, t, and chi-square distributions are special cases of 
the F-distribution   

  F-test    In Analysis of Variance, the test to determine if sample means are differ-
ent beyond chance expectation. The F-test is the ratio of MS Between Groups 
divided by the MS Within Groups   

  Factoring    A product of sequential numbers that indicate the total number of choic-
es possible (see factorial notation)   

  Factorial notation    Indicated as n!, i.e., 3! = 3 × 2 × 1 = 6   
  Finite distribution    A population of data where the number of individuals, objects, 

or events is known, hence exact probabilities of occurrence can be computed   
  Frequency distribution    A tabulation of data that indicates the number of times a 

score or value occurs   
  Hartley F-max test    A test of whether three or more sample variances are statisti-

cally different. The largest sample variance is divided by the smallest sample 
variance to form an F-ratio with degrees of freedom from the two sample sizes   

  Heterogeneity    Refers to a grouping of dissimilar individuals, objects, or events   
  Histogram    A bar chart that indicates the frequency of numbers on the  Y  axis and 

the mutually exclusive groups or categories on the X axis. (Also, see Pie Chart)   
  Homogeneity    Refers to a grouping of similar individuals, objects, or events   
  Independent t-test    A statistical test of whether two independent sample means are 

signi fi cantly different implying that the two population means are different   
  In fi nite population    A population of data where the number of individuals, objects, 

or events are too numerous to count, hence exact probabilities of occurrence 
cannot be computed   

  Intercept    The intercept is the point in a linear equation where the line of best  fi t 
crosses the Y-axis. The intercept is the predicted value of Y when the X variable 
equals zero. The value  a  in the linear regression equation:      Y a bX e.= + +      

  Interquartile range    A score that represents the distance between the  fi rst and third 
quartile. It indicates the range of scores in the middle 50 % of a frequency dis-
tribution   

  Jackknife    An approach that uses a single sample of data and computes sample 
statistics based on different n − 1 sample sizes   

  Joint probability    The probability of two events occurring that is determined by 
multiplying the independent probability of each event   
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  Kurtosis    A measure that indicates the  fl atness or peakedness of the frequency 
distribution of scores. Leptokurtic implies a peaked distribution, mesokurtic a 
bell-shaped normal distribution, and platykurtic a  fl attened distribution of scores   

  Law of complements    Given the probability of event A, P(A), the complement is 
1 − P(A), or the remaining probability since      [ ]P(A) 1--P(A) 1+ =      

  Leaves    The numbers to the right of the vertical line in a stem-and-leaf plot   
  Level of signi fi cance    The probability of making a Type I error (see alpha level)   
  Linear function    An angled straight line of data points that indicate a constant rate 

of change for a random variable, X, i.e., y = bX   
  Linear regression (equation)    A statistical technique designed to predict values 

of Y (dependent variable) from one or more X variables (independent predictor 
variables). The regression equation:      Y a bX e.= + +      

  Line of best  fi t    In linear regression, the line formed by the predicted Y values that 
pass through the scatterplot of X and Y values. The line indicates the best predic-
tion that minimizes the sum of squared errors of prediction   

  Mean    The arithmetic mean computed as the sum of a set of scores divided by the 
number of scores. Typically referred to as a measure of central tendency   

  Mean square    A variance estimate computed by dividing the sum of squares by the 
degrees of freedom   

  Median    The middle score in a distribution of odd-numbered scores or the mid-
point in an even-numbered set of scores. Typically referred to as a measure of 
central tendency   

  Meta-analysis    A statistical procedure that averages the effect sizes across several 
studies to determine the overall signi fi cance of a large number of research stud-
ies on the same topic   

  Mode    The most frequently occurring score in a set of scores. It is possible to have 
a single modal score (unimodal), two scores that occur the most (bimodal), or 
even three or more scores that occur the most. Typically referred to as a measure 
of central tendency   

  Monte Carlo    An approach that describes a statistical technique that simulates data 
and approximates probability density functions of population distributions to 
study the robustness and properties of statistical tests   

  MS between groups    The sum of the squared deviations of group means around the 
grand mean weighted (multiplied) by the sample size of each group and divided 
by the number of groups minus one. Indicates whether the group means are simi-
lar or different based on how much they vary   

  MS within groups    The sum of squared deviations of individual scores around each 
group mean divided by the number of scores in each group minus the number of 
groups. Indicates how much the scores vary within each group   

  Multiplication law    The independent probabilities of two events can be multiplied 
to obtain their probability of joint occurrence, i.e.,      P(J) P(A)* P(B)=      

  Non-directional hypothesis    A hypothesis that states two population parameters 
are different, rather than one population parameter is greater than the other. A 
two-tailed test because the region of rejection is in both tails of the sampling 
distribution   
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  Normal curve    A symmetric distribution of data based on a mathematical equation 
formulated by DeMoivre in 1733 and further developed by Carl Fredrick Gauss   

  Normal distribution    A frequency distribution of scores that when graphed pro-
duces a symmetrical, bell-shaped distribution with skewness and kurtosis of 
zero. Sometimes referred to as a mesokurtic distribution   

  Null hypothesis    A statistical hypothesis that indicates no difference in population 
parameters. For example, the means of two populations are equal.The null hy-
pothesis is either retained or rejected in favor of an alternative hypothesis   

  Ogive    A graph of the cumulative frequency distribution of data that has a charac-
teristic S-shaped curve   

  One-sample t-test    A statistical test of whether a sample mean is signi fi cantly dif-
ferent from a population mean   

  One-way analysis of variance    A statistical test that is an extension of the indepen-
dent t-test to test whether three or more independent sample means are statisti-
cally different implying that the population means are different   

  Outlier    An extreme or in fl uential score or data value that affects the sample statis-
tic, e.g., sample mean   

  Parameter(s)    Population values or characteristics that are estimated by sample 
statistics, e.g., population mean or population correlation   

  Parametric statistics    Parametric or inferential statistics are based upon being able 
to randomly draw a sample from a well de fi ned population, estimate the sample 
statistic, and make an inference about the population parameter. For example, the 
sample mean is an estimate of the population mean   

  Permutations    A technique used to determine the number of different ways indi-
viduals, objects, or events can be ordered   

  Pie chart    A circle with portions or parts of the circle indicated for each mutually 
exclusive group or category. (Also, see Histogram)   

  Population    A set of individuals or scores that are well de fi ned and share some 
characteristic in common. Typically, population data is randomly sampled and 
sample statistics computed to estimate the population values because the popula-
tion is typically too large to measure all the data. (See Parametric Statistics)   

  Power    The probability of rejecting the null hypothesis when it is false. The expres-
sion, 1 −  b , is used to indicate the level of power. Values of .80 are typically se-
lected for power; power is a function of sample size, alpha level, effect size, and 
directional nature of the statistical hypothesis (one-tailed or two-tailed test)   

  Probability    The ratio of the number of favorable outcomes to the total possible 
number of outcomes   

  Properties of estimators    Important characteristics we want sample statistics to 
possess as estimates of population parameters, i.e., unbiased, consistent, ef fi cient, 
and suf fi cient   

  Pseudo random numbers    Numerical values typically generated by a random 
number generator on a computer, but not truly independent or unbiased because 
they will eventually correlate and repeat   
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  Quartile    A score that divides a set of data into four equal divisions, i.e.,  fi rst quartile 
is a score that separates the bottom 25 % of the data in a frequency distribution 
from the other data values   

  Random assignment    The random process of assigning individuals, objects, or 
events to a group, i.e., random assignment of individuals to experimental and 
control groups   

  Random numbers    Independent, unbiased numerical values that have an equally 
likely chance of being selected   

  Random number generator    A mathematical algorithm in a software program that 
is run on a computer to generate pseudo random numbers   

  Random sample    A sample of data from a well-de fi ned population where every 
individual, object, or event has an equally likely chance of being selected   

  Random sampling    The process of selecting individuals, objects, or events from 
a well-de fi ned population in which all members have an equal and independent 
chance of being selected. Not the same as random assignment   

  Range    A score that indicates the distance between the highest and lowest data 
value in a set of data   

  Region of rejection    The area under a sampling distribution where sample statistics 
fall that is highly improbable if the null hypothesis is true   

  Regression weight    In regression analysis, the regression coef fi cient or slope of 
the line of best  fi t that passes through the predicted Y values. The value  b  in the 
linear regression equation:      Y a bX e= + +   . A weight computed by the least 
squares method of minimizing the sum of squared errors of prediction   

  Repeated measures ANOVA    A statistical procedure in which subjects are mea-
sured two or more times and the total variation of scores is partitioned into three 
components: (1) variation among subjects, (2) variation among occasions (time), 
and (3) residual variation   

  Sample    A random selection of individuals, objects, or events from a well-de fi ned 
population of data   

  Sample error    The difference between a sample statistic and the population pa-
rameter   

  Sampling error    The error in using a sample statistic as an estimate of a population 
parameter   

  Sampling distribution    A probability frequency distribution of a sample statistic 
formed for all possible random samples of a given sample size. Examples of sam-
pling distributions include: (1) sampling distribution of means, (2) t-distribution, 
(3) chi-square distribution, and (4) F-distribution   

  Sampling with replacement    Each randomly sampled data point is returned to the 
population before another data point is randomly sampled, therefore it is possible 
for a data point to be selected more than once   

  Sampling without replacement    Each randomly sampled data point is not returned 
to the population before another data point is randomly sampled, therefore each 
data point is uniquely drawn and can not be selected again   

  Scheffe post-hoc test    A type of post-hoc “t-test” for conducting multiple compari-
sons of group mean differences after an analysis of variance F-test   
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  Skewness    A measure of deviation from symmetry in a frequency distribution of 
scores. Negative skew indicates a distribution with more scores above the mean. 
Positive skew indicates a distribution with more scores below the mean   

  Slope    The amount of change in Y that corresponds to a change of one unit in X. 
(See Regression Weight)   

  Standard deviation    The square root of the average squared deviations of scores 
around the mean. A measure of how much the individual scores deviate from the 
mean   

  Standard errors of statistic    The standard deviation of the sampling distribution 
of the statistic that indicates the amount of error in estimating the population 
parameter   

  Standard score    A score computed by taking the deviation of the raw score from 
the group mean divided by the group standard deviation, i.e., z-score   

  Statistic    A sample value that estimates a population parameter   
  Stem and leaf    A graphical display that illustrates the shape of a distribution of 

scores   
  Sum of squared deviations    The deviations of each score from the group mean that 

is squared and then summed for all scores   
  Symmetric distribution    A sampling distribution or frequency distribution of 

scores that is the same on either side of the median value. The normal distribu-
tion is an example of a symmetric distribution   

  t-distribution    A probability distribution or family of t-curves for different degrees 
of freedom that is used to determine whether an obtained t value between two 
sample means is statistically signi fi cant at a speci fi ed alpha level   

  Tchebysheff inequality theorem    A theorem that indicates the percentage of data 
between intervals around the mean regardless of the shape of the frequency dis-
tribution of data   

  Type I error    The rejection of the null hypothesis of no difference in population 
parameters when it is true, i.e., the probability that a null hypothesis would be 
rejected in favor of an alternative hypothesis. The probability is set by selection 
of an alpha level (see Alpha level). If the alpha level is set at .05, then 5% of the 
time a true null hypothesis would be incorrectly rejected in favor of the alterna-
tive hypothesis. The symbol,  a , is used to refer to this type of error   

  Type II error    The retention of a null hypothesis of no difference in population 
parameters when it is false, i.e., the probability that we failed to reject the null 
hypothesis in favor of an alternative hypothesis. The symbol,  b , is used to refer 
to this type of error   

  Uniform distribution    A rectangular distribution of scores that are evenly distrib-
uted in the range of possible values   

  Unimodal distribution    A symmetrical distribution with a single mode   
  Variance    A positive value that measures how scores vary around a group mean. 

If all scores are the same, then the variance is zero. Calculated as the sum of 
squared deviations around the group mean divided by the number of scores   

  z-score    Sometimes called a standard score. A frequency distribution of raw scores 
that have been standardized to a mean of zero and a standard deviation of one. 
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A z score indicates the direction and degree to which a score deviates from the 
mean of a distribution of scores   

  z-test    A statistical test for the signi fi cant difference in independent or dependent 
population proportions         
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Appendix
   Statistical Tables           

   Table A1    Areas under the normal curve (z-scores)   
 Second decimal place in z 

  z   .00  .01  .02  .03  .04  .05  .06  .07  .08  .09 
 .0  .0000  .0040  .0080  .0120  .0160  .0199  .0239  .0279  .0319  .0359 
 .1  .0398  .0438  .0478  .0517  .0557  .0596  .0636  .0675  .0714  .0753 
 .2  .0793  .0832  .0871  .0910  .0948  .0987  .1026  .1064  .1103  .1141 
 .3  .1179  .1217  .1255  .1293  .1331  .1368  .1406  .1443  .1480  .1517 
 .4  .1554  .1591  .1628  .1664  .1700  .1736  .1772  .1808  .1844  .1879 
 .5  .1915  .1950  .1985  .2019  .2054  .2088  .2123  .2157  .2190  .2224 
 .6  .2257  .2291  .2324  .2357  .2389  .2422  .2454  .2486  .2517  .2549 
 .7  .2580  .2611  .2642  .2673  .2704  .2734  .2764  .2794  .2823  .2852 
 .8  .2881  .2910  .2939  .2967  .2995  .3023  .3051  .3078  .3106  .3133 
 .9  .3159  .3186  .3212  .3238  .3264  .3289  .3315  .3340  .3365  .3389 

 1.0  .3413  .3438  .3461  .3485  .3508  .3531  .3554  .3577  .3599  .3621 
 1.1  .3643  .3665  .3686  .3708  .3729  .3749  .3770  .3790  .3810  .3830 
 1.2  .3849  .3869  .3888  .3907  .3925  .3944  .3962  .3980  .3997  .4015 
 1.3  .4032  .4049  .4066  .4082  .4099  .4115  .4131  .4147  .4162  .4177 
 1.4  .4192  .4207  .4222  .4236  .4251  .4265  .4279  .4292  .4306  .4319 
 1.5  .4332  .4345  .4357  .4793  .4382  .4394  .4406  .4418  .4429  .4441 
 1.6  .4452  .4463  .4474  .4484  .4495  .4505  .4515  .4525  .4535  .4545 
 1.7  .4554  .4564  .4573  .4582  .4591  .4599  .4608  .4616  .4625  .4633 
 1.8  .4641  .4649  .4656  .4664  .4671  .4678  .4686  .4693  .4699  .4706 
 1.9  .4713  .4719  .4726  .4732  .4738  .4744  .4750  .4756  .4761  .4767 
 2.0  .4772  .4778  .4783  .4788  .4793  .4798  .4803  .4808  .4812  .4817 
 2.1  .4821  .4826  .4830  .4834  .4838  .4842  .4846  .4850  .4854  .4857 
 2.2  .4861  .4826  .4868  .4871  .4875  .4878  .4881  .4884  .4887  .4890 
 2.3  .4893  .4896  .4898  .4901  .4904  .4906  .4909  .4911  .4913  .4916 
 2.4  .4918  .4920  .4922  .4925  .4927  .4929  .4931  .4932  .4934  .4936 
 2.5  .4938  .4940  .4941  .4943  .4945  .4946  .4948  .4949  .4951  .4952 
 2.6  .4953  .4955  .4956  .4957  .4959  .4960  .4961  .4962  .4963  .4964 
 2.7  .4965  .4966  .4967  .4968  .4969  .4970  .4971  .4972  .4973  .4974 
 2.8  .4974  .4975  .4976  .4977  .4977  .4978  .4979  .4979  .4980  .4981 
 2.9  .4981  .4982  .4982  .4983  .4984  .4984  .4985  .4985  .4986  .4986 
 3.0  .4987  .4987  .4987  .4988  .4988  .4989  .4989  .4989  .4990  .4990 
 3.1  .4990  .4991  .4991  .4991  .4992  .4922  .4992  .4992  .4993  .4993 
 3.2  .4993  .4993  .4994  .4994  .4994  .4994  .4994  .4995  .4995  .4995 
 3.3  .4995  .4995  .4995  .4996  .4996  .4996  .4996  .4996  .4996  .4997 
 3.4  .4997  .4997  .4997  .4997  .4997  .4997  .4997  .4997  .4997  .4998 
 3.5  .4998 
 4.0  .49997 
 4.5  .499997 
 5.0  .4999997 
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   Table A2    Distribution of t for given probability levels   

  df  

 Level of signi fi cance for one-tailed test 

 .10   .05   .025  .01  .005  .0005 

 Level of signi fi cance for two-tailed test 

 .20  .10  .05  .02  .01  .001 

 1  3.078  6.314  12.706  31.821  63.657  636.619 
 2  1.886  2.920  4.303  6.965  9.925  31.598 
 3  1.638  2.353  3.182  4.541  5.841  12.941 
 4  1.533  2.132  2.776  3.747  4.604  8.610 
 5  1.476  2.015  2.571  3.365  4.032  6.859 
 6  1.440  1.943  2.447  3.143  3.707  5.959 
 7  1.415  1.895  2.365  2.998  3.499  5.405 
 8  1.397  1.860  2.306  2.896  3.355  5.041 
 9  1.383  1.833  2.262  2.821  3.250  4.781 

 10  1.372  1.812  2.228  2.764  3.169  4.587 
 11  1.363  1.796  2.201  2.718  3.106  4.437 
 12  1.356  1.782  2.179  2.681  3.055  4.318 
 13  1.350  1.771  2.160  2.650  3.012  4.221 
 14  1.345  1.761  2.145  2.624  2.977  4.140 
 15  1.341  1.753  2.131  2.602  2.947  4.073 
 16  1.337  1.746  2.120  2.583  2.921  4.015 
 17  1.333  1.740  2.110  2.567  2.898  3.965 
 18  1.330  1.734  2.101  2.552  2.878  3.992 
 19  1.328  1.729  2.093  2.539  2.861  3.883 
 20  1.325  1.725  2.086  2.528  2.845  3.850 
 21  1.323  1.721  2.080  2.518  2.831  3.819 
 22  1.321  1.717  2.074  2.508  2.819  3.792 
 23  1.319  1.714  2.069  2.500  2.807  3.767 
 24  1.318  1.711  2.064  2.492  2.797  3.745 
 25  1.316  1.708  2.060  2.485  2.787  3.725 
 26  1.315  1.706  2.056  2.479  2.779  3.707 
 27  1.314  1.703  2.052  2.473  2.771  3.690 
 28  1.313  1.701  2.048  2.467  2.763  3.674 
 29  1.311  1.699  2.045  2.462  2.756  3.659 
 30  1.310  1.697  2.042  2.457  2.750  3.646 
 40  1.303  1.684  2.021  2.423  2.704  3.551 
 60  1.296  1.671  2.000  2.390  2.660  3.460 

 120  1.289  1.658  1.980  2.358  2.617  3.373 
     ¥  1.282  1.645  1.960  2.326  2.576  3.291 
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   Table A3    Distribution of r for given probability levels   

  df  

 Level of signi fi cance for one-tailed test 

 .05  .025  .01  .005 

 Level of signi fi cance for two-tailed test 

 .10  .05  .02  .01 

 1  .988  .997  .9995  .9999 
 2  .900  .950  .980  .990 
 3  .805  .878  .934  .959 
 4  .729  .811  .882  .917 
 5  .669  .754  .833  .874 
 6  .622  .707  .789  .834 
 7  .582  .666  .750  .798 
 8  .540  .632  .716  .765 
 9  .521  .602  .685  .735 

 10  .497  .576  .658  .708 
 11  .576  .553  .634  .684 
 12  .458  .532  .612  .661 
 13  .441  .514  .592  .641 
 14 .426  .497  .574  .623 
 15  .412  .482  .558  .606 
 16  .400  .468  .542  .590 
 17  .389  .456  .528  .575 
 18  .378  .444  .516  .561 
 19  .369  .433  .503  .549 
 20  .360  .423  .492  .537 
 21  .352  .413  .482  .526 
 22  .344  .404  .472  .515 
 23  .337  .396  .462  .505 
 24  .330  .388  .453  .496 
 25  .323  .381  .445  .487 
 26  .317  .374  .437  .479 
 27  .311  .367  .430  .471 
 28  .306  .361  .423  .463 
 29  .301  .355  .416  .486 
 30  .296  .349  .409  .449 
 35  .275  .325  .381  .418 
 40  .257  .304  .358  .393 
 45  .243  .288  .338  .372 
 50  .231  .273  .322  .354 
 60  .211  .250  .295  .325 
 70  .195  .232  .274  .303 
 80  .183  .217  .256  .283 
 90  .173  .205  .242  .267 

 100  .164  .195  .230  .254 
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