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Preface to the Second Edition

Although Sir Arthur Conan Doyle is responsible for most of the quotes in this book,
perhaps the best description of the life of this book can be attributed to the Grateful
Dead sentiment, “What a long, strange trip it’s been.”

Plans for the second edition started about six years ago, and for a long time we
struggled with questions about what to add and what to delete. Thankfully, as time
passed, the answers became clearer as the flow of the discipline of statistics became
clearer. We see the trend moving away from elegant proofs of special cases to algo-
rithmic solutions of more complex and practical cases. This does not undermine the
importance of mathematics and rigor; indeed, we have found that these have become
more important. But the manner in which they are applied is changing.

For those familiar with the first edition, we can summarize the changes succinctly
as follows. Discussion of asymptotic methods has been greatly expanded into its own
chapter. There is more emphasis on computing and simulation (see Section 5.5 and
the computer algebra Appendix); coverage of the more applicable techniques has
been expanded or added (for example, bootstrapping, the EM algorithm, p-values,
logistic and robust regression); and there are many new Miscellanea and Exercises.
We have de-emphasized the more specialized theoretical topics, such as equivariance
and decision theory, and have restructured some material in Chapters 3-11 for clarity.

There are two things that we want to note. First, with respect to computer algebra
programs, although we believe that they are becoming increasingly valuable tools,
we did not want to force them on the instructor who does not share that belief.
Thus, the treatment is “unobtrusive” in that it appears only in an appendix, with
some hints throughout the book where it may be useful. Second, we have changed
the numbering system to one that facilitates finding things. Now theorems, lemmas,
examples, and definitions are numbered together; for example, Definition 7.2.4 is
followed by Example 7.2.5 and Theorem 10.1.3 precedes Example 10.1.4.

The first four chapters have received only minor changes. We reordered some ma-
terial (in particular, the inequalities and identities have been split), added some new
examples and exercises, and did some general updating. Chapter 5 has also been re-
ordered, with the convergence section being moved further back, and a new section on
generating random variables added. The previous coverage of invariance, which was
in Chapters 7-9 of the first edition, has been greatly reduced and incorporated into
Chapter 6, which otherwise has received only minor editing (mostly the addition of
new exercises). Chapter 7 has been expanded and updated, and includes a new section
on the EM algorithm. Chapter 8 has also received minor editing and updating, and
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“-'Ahas a new s,eeglm n p-values. In Chapter 9 we now put more emphasis on pivoting

(havmgfeahzedzthat “guaranteeing an interval” was merely “pivoting the cdf”). Also,
the miatermal that was in Chapter 10 of the first edition (decision theory) has been re-
duced, and small sections on loss function optimality of point estimation, hypothesis
testing, and interval estimation have been added to the appropriate chapters.

Chapter 10 is entirely new and attempts to lay out the fundamentals of large sample
inference, including the delta method, consistency and asymptotic normality, boot-
strapping, robust estimators, score tests, etc. Chapter 11 is classic oneway ANOVA
and linear regression (which was covered in two different chapters in the first edi-
tion). Unfortunately, coverage of randomized block designs has been eliminated for
space reasons. Chapter 12 covers regression with errors-in-variables and contains new
material on robust and logistic regression.

After teaching from the first edition for a number of years, we know (approximately)
what can be covered in a one-year course. From the second edition, it should be
possible to cover the following in one year:

Chapter 1: Sections 1-7 Chapter 6: Sections 1-3
Chapter 2: Sections 1-3 Chapter 7: Sections 1-3
Chapter 3: Sections 1-6 Chapter 8: Sections 1-3
Chapter 4: Sections 1-7 Chapter 9: Sections 1-3
Chapter 5: Sections 1-6 Chapter 10: Sections 1, 3, 4

Classes that begin the course with some probability background can cover more ma-
terial from the later chapters.

Finally, it is almost impossible to thank all of the people who have contributed in
some way to making the second edition a reality (and help us correct the mistakes in
the first edition). To all of our students, friends, and colleagues who took the time to
send us a note or an e-mail, we thank you. A number of people made key suggestions
that led to substantial changes in presentation. Sometimes these suggestions were just
short notes or comments, and some were longer reviews. Some were so long ago that
their authors may have forgotten, but we haven’t. So thanks to Arthur Cohen, Sir
David Cox, Steve Samuels, Rob Strawderman and Tom Wehrly. We also owe much to
Jay Beder, who has sent us numerous comments and suggestions over the years and
possibly knows the first edition better than we do, and to Michael Perlman and his
class, who are sending comments and corrections even as we write this.

This book has seen a number of editors. We thank Alex Kugashev, who in the
mid-1990s first suggested doing a second edition, and our editor, Carolyn Crockett,
who constantly encouraged us. Perhaps the one person (other than us) who is most
responsible for this book is our first editor, John Kimmel, who encouraged, published,
and marketed the first edition. Thanks, John.

George Casella
"Roger L. Berger



Preface to the First Edition

When someone discovers that you are writing a textbook, one (or both) of two ques-
tions will be asked. The first is “Why are you writing a book?” and the second is
“How is your book different from what’s out there?” The first question is fairly easy
to answer. You are writing a book because you are not entirely satisfied with the
available texts. The second question is harder to answer. The answer can’t be put
in a few sentences so, in order not to bore your audience (who may be asking the
question only out of politeness), you try to say something quick and witty. It usually
doesn’t work.

The purpose of this book is to build theoretical statistics (as different from mathe-
matical statistics) from the first principles of probability theory. Logical development,
proofs, ideas, themes, etc., evolve through statistical arguments. Thus, starting from
the basics of probability, we develop the theory of statistical inference using tech-
niques, definitions, and concepts that are statistical and are natural extensions and
consequences of previous concepts. When this endeavor was started, we were not sure
how well it would work. The final judgment of our success is, of course, left to the
reader.

The book is intended for first-year graduate students majoring in statistics or in
a field where a statistics concentration is desirable. The prerequisite is one year of
calculus. (Some familiarity with matrix manipulations would be useful, but is not
essential.) The book can be used for a two-semester, or three-quarter, introductory
course in statistics.

The first four chapters cover basics of probability theory and introduce many fun-
damentals that are later necessary. Chapters 5 and 6 are the first statistical chapters.
Chapter 5 is transitional (between probability and statistics) and can be the starting
point for a course in statistical theory for students with some probability background.
Chapter 6 is somewhat unique, detailing three statistical principles (sufficiency, like-
lihood, and invariance) and showing how these principles are important in modeling
data. Not all instructors will cover this chapter in detail, although we strongly recom-
mend spending some time here. In particular, the likelihood and invariance principles
are treated in detail. Along with the sufficiency principle, these principles, and the
thinking behind them, are fundamental to total statistical understanding.

Chapters 7-9 represent the central core of statistical inference, estimation (point
and interval) and hypothesis testing. A major feature of these chapters is the division
into methods of finding appropriate statistical techniques and methods of evaluating
these techniques. Finding and evaluating are of interest to both the theorist and the
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practitioner, but we feel that it is important to separate these endeavors. Different
concerns are important, and different rules are invoked. Of further interest may be
the sections of these chapters titled Other Considerations. Here, we indicate how the
rules of statistical inference may be relaxed (as is done every day) and still produce
meaningful inferences. Many of the techniques covered in these sections are ones that
are used in consulting and are helpful in analyzing and inferring from actual problems.

The final three chapters can be thought of as special topics, although we feel that
some familiarity with the material is important in anyone’s statistical education.
Chapter 10 is a thorough introduction to decision theory and contains the most mod-
ern material we could include. Chapter 11 deals with the analysis of variance (oneway
and randomized block), building the theory of the complete analysis from the more
simple theory of treatment contrasts. Our experience has been that experimenters are
most interested in inferences from contrasts, and using principles developed earlier,
most tests and intervals can be derived from contrasts. Finally, Chapter 12 treats
the theory of regression, dealing first with simple linear regression and then covering
regression with “errors in variables.” This latter topic is quite important, not only to
show its own usefulness and inherent difficulties, but also to illustrate the limitations
of inferences from ordinary regression.

As more concrete guidelines for basing a one-year course on this book, we offer the
following suggestions. There can be two distinct types of courses taught from this
book. One kind we might label “more mathematical,” being a course appropriate for
students majoring in statistics and having a solid mathematics background (at least
1% years of calculus, some matrix algebra, and perhaps a real analysis course). For
such students we recommend covering Chapters 1-9 in their entirety (which should
take approximately 22 weeks) and spend the remaining time customizing the course
with selected topics from Chapters 10-12. Once the first nine chapters are covered,
the material in each of the last three chapters is self-contained, and can be covered
in any order.

Another type of course is “more practical.” Such a course may also be a first course
for mathematically sophisticated students, but is aimed at students with one year of
calculus who may not be majoring in statistics. It stresses the more practical uses of
statistical theory, being more concerned with understanding basic statistical concepts
and deriving reasonable statistical procedures for a variety of situations, and less
concerned with formal optimality investigations. Such a course will necessarily omit
a certain amount of material, but the following list of sections can be covered in a
one-year course:

Chapter Sections

1 All

2.1,2.2, 2.3

3.1,3.2

41,4.2,4.3, 45

5.1,5.2, 53.1,5.4

6.1.1, 6.2.1
7.1,7.2.1,7.2.2,7.2.3,7.3.1, 7.3.3, 7.4
8.1,8.2.1,8.23, 824, 83.1, 8.3.2, 8.4

00 O U b W N
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9 9.1, 9.2.1, 9.2.2, 9.2.4, 9.3.1, 94
11 11.1, 11.2
12 12.1, 12.2

If time permits, there can be some discussion (with little emphasis on details) of the
material in Sections 4.4, 5.5, and 6.1.2, 6.1.3, 6.1.4. The material in Sections 11.3 and
12.3 may also be considered.

The exercises have been gathered from many sources and are quite plentiful. We
feel that, perhaps, the only way to master this material is through practice, and thus
we have included much opportunity to do so. The exercises are as varied as we could
make them, and many of them illustrate points that are either new or complementary
to the material in the text. Some exercises are even taken from research papers. (It
makes you feel old when you can include exercises based on papers that were new
research during your own student days!) Although the exercises are not subdivided
like the chapters, their ordering roughly follows that of the chapter. (Subdivisions
often give too many hints.) Furthermore, the exercises become (again, roughly) more
challenging as their numbers become higher.

As this is an introductory book with a relatively broad scope, the topics are not
covered in great depth. However, we felt some obligation to guide the reader one
step further in the topics that may be of interest. Thus, we have included many
references, pointing to the path to deeper understanding of any particular topic. (The
Encyclopedia of Statistical Sciences, edited by Kotz, Johnson, and Read, provides a
fine introduction to many topics.)

To write this book, we have drawn on both our past teachings and current work. We
have also drawn on many people, to whom we are extremely grateful. We thank our
colleagues at Cornell, North Carolina State, and Purdue—in particular, Jim Berger,
Larry Brown, Sir David Cox, Ziding Feng, Janet Johnson, Leon Gleser, Costas Goutis,
Dave Lansky, George McCabe, Chuck McCulloch, Myra Samuels, Steve Schwager,
and Shayle Searle, who have given their time and expertise in reading parts of this
manuscript, offered assistance, and taken part in many conversations leading to con-
structive suggestions. We also thank Shanti Gupta for his hospitality, and the li-
brary at Purdue, which was essential. We are grateful for the detailed reading and
helpful suggestions of Shayle Searle and of our reviewers, both anonymous and non-
anonymous (Jim Albert, Dan Coster, and Tom Wehrly). We also thank David Moore
and George McCabe for allowing us to use their tables, and Steve Hirdt for supplying
us with data. Since this book was written by two people who, for most of the time,
were at least 600 miles apart, we lastly thank Bitnet for making this entire thing
possible.

George Casella
Roger L. Berger



“We have got to the deductions and the inferences,” said Lestrade, winking at me.
“I find it hard enough to tackle facts, Holmes, without flying away
after theories and fancies.”
Inspector Lestrade to Sherlock Holmes
The Boscombe Valley Mystery
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Chapter 1

Probability Theory

“You can, for example, never foretell what any one man will do, but you can

say with precision what an average number will be up to. Individuals vary, but
percentages remain constant. So says the statistician.”

Sherlock Holmes

The Sign of Four

The subject of probability theory is the foundation upon which all of statistics is
built, providing a means for modeling populations, experiments, or almost anything
else that could be considered a random phenomenon. Through these models, statisti-
cians are able to draw inferences about populations, inferences based on examination
of only a part of the whole.

The theory of probability has a long and rich history, dating back at least to the
seventeenth century when, at the request of their friend, the Chevalier de Meré, Pascal
and Fermat developed a mathematical formulation of gambling odds.

The aim of this chapter is not to give a thorough introduction to probability theory;
such an attempt would be foolhardy in so short a space. Rather, we attempt to outline
some of the basic ideas of probability theory that are fundamental to the study of
statistics.

Just as statistics builds upon the foundation of probability theory, probability the-
ory in turn builds upon set theory, which is where we begin.

1.1 Set Theory

One of the main objectives of a statistician is to draw conclusions about a population
of objects by conducting an experiment. The first step in this endeavor is to identify
the possible outcomes or, in statistical terminology, the sample space.

Definition 1.1.1 The set, S, of all possible outcomes of a particular experiment is
called the sample space for the experiment.

If the experiment consists of tossing a coin, the sample space contains two outcomes,
heads and tails; thus,

S ={H,T}.

If, on the other hand, the experiment consists of observing the reported SAT scores
of randomly selected students at a certain university, the sample space would be
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t rs between 200 and 800 that are multiples of ten—that
1s, {200 210, 220, ,/’ ., 780, 790, 800}. Finally, consider an experiment where the
obsMxm* re‘a.et time to a certa.ln stimulus. Here, the sample space would
conmsfbf‘lgi_ﬁoemﬁ numbers, that is, S = (0, c0).

We can classify sample spaces into two types according to the number of elements
they contain. Sample spaces can be either countable or uncountable; if the elements of
a sample space can be put into 1-1 correspondence with a subset of the integers, the
sample space is countable. Of course, if the sample space contains only a finite number
of elements, it is countable. Thus, the coin-toss and SAT score sample spaces are both
countable (in fact, finite), whereas the reaction time sample space is uncountable, since
the positive real numbers cannot be put into 1-1 correspondence with the integers.
If, however, we measured reaction time to the nearest second, then the sample space
would be (in seconds) S = {0,1,2,3,...}, which is then countable.

This distinction between countable and uncountable sample spaces is important
only in that it dictates the way in which probabilities can be assigned. For the most
part, this causes no problems, although the mathematical treatment of the situations
is different. On a philosophical level, it might be argued that there can only be count-
able sample spaces, since measurements cannot be made with infinite accuracy. (A
sample space consisting of, say, all ten-digit numbers is a countable sample space.)
While in practice this is true, probabilistic and statistical methods associated with
uncountable sample spaces are, in general, less cumbersome than those for countable
sample spaces, and provide a close approximation to the true (countable) situation.

Once the sample space has been defined, we are in a position to consider collections
of possible outcomes of an experiment.

Definition 1.1.2 An event is any collection of possible outcomes of an experiment,
that is, any subset of S (including S itself).

Let A be an event, a subset of S. We say the event A occurs if the outcome of the
experiment is in the set A. When speaking of probabilities, we generally speak of the
probability of an event, rather than a set. But we may use the terms interchangeably.

We first need to define formally the following two relationships, which allow us to
order and equate sets:

ACB&zeA=>z€EB, (containment)
A=B& ACBand BC A (equality)

Given any two events (or sets) A and B, we have the following elementary set
operations:

Union: The union of A and B, written AU B, is the set of elements that belong to
either A or B or both:

AUB={z:z€ Aorz € B}.

Intersection: The intersection of A and B, written AN B, is the set of elements that
belong to both A and B:

ANB={z:z€ Aand z € B}.
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Complementation: The complement of A, written A°, is the set of all elements
that are not in A:

A= {z:z ¢ A}.

Example 1.1.3 (Event operations) Consider the experiment of selecting a card
at random from a standard deck and noting its suit: clubs (C), diamonds (D), hearts
(H), or spades (S). The sample space is

S={C,D,H,S},
and some possible events are
A={C,D} and B={D,H,S}.
From these events we can form
AUB={C,D,H,S}, AnB={D}, and A°={H,S}.

Furthermore, notice that AU B = S (the event S) and (AU B)© = (), where 0 denotes
the empty set (the set consisting of no elements). I

The elementary set operations can be combined, somewhat akin to the way addition
and multiplication can be combined. As long as we are careful, we can treat sets as if
they were numbers. We can now state the following useful properties of set operations.

Theorem 1.1.4 For any three events, A, B, and C, defined on a sample space S,
a. Commutativity AUB=BUA,

ANB=BnNA;

b. Associativity AU(BUC)=(AuB)UC,
AN(BNC)=(ANB)NC;

c. Distributive Laws AN{BUC)=(ANB)U(ANC),
AU(BNC)=(AUB)N(AUC);

d. DeMorgan’s Laws (AU B) = A°N B¢,
(AN B)® = A°U B-.

Proof: The proof of much of this theorem is left as Exercise 1.3. Also, Exercises 1.9
and 1.10 generalize the theorem. To illustrate the technique, however, we will prove
the Distributive Law:

AN(BUC)=(ANB)U(ANC).

(You might be familiar with the use of Venn diagrams to “prove” theorems in set
theory. We caution that although Venn diagrams are sometimes helpful in visualizing
a situation, they do not constitute a formal proof.) To prove that two sets are equal,
it must be demonstrated that each set contains the other. Formally, then

AN(BUC)={zeS:z€ Aand z € (BUC)};
(AnNB)U(ANC)={z€S:ze(ANnB)orz € (ANC)}.
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We first show that AN(BUC) C (ANB)U(ANC).Let z € (AN(BUC)). By the
definition of intersection, it must be that z € (BUC), that is, eitherz € Bor z € C.
Since z also must be in A, we have that either z € (AN B) or z € (AN C); therefore,

z€((ANB)U(ANC)),

and the containment is established.

Now assume z € ((ANB)U(ANC)). This implies that z € (ANB) or z € (ANC).
If z € (AN B), then z is in both A and B. Since z € B,z € (BUC) and thus
z € (AN(BUQC)). If, on the other hand, z € (ANC), the argument is similar, and we
again conclude that z € (AN(BUC)). Thus, we have established (AN B)U(ANC) C
AN (BUCQ), showing containment in the other direction and, hence, proving the
Distributive Law. O

The operations of union and intersection can be extended to infinite collections of
sets as well. If A;, Ay, Az, ... is a collection of sets, all defined on a sample space S,
then

[o o]
UAi: {z € S: z € A, for some i},

i=1

[JAi={zeS:z € Aforalli}.
i=1
For example, let S = (0,1] and define A; = [(1/%), 1]. Then

G A= lj[(l/i), 1] = {ze€(0,1]:z €[(1/i),1] for some i}
1=1 i=1
={z€ (0,1} = (0,1}

ﬁ A= ﬁ[(l/z’), 1] = {ze(01:ze[(1/i),1] for all i}

i=1
={ze(0,1]:z€[L,1]} = {1}. (the point 1)

It is also possible to define unions and intersections over uncountable collections of
sets. If I is an index set (a set of elements to be used as indices), then

UA,,:{a:eS:xeAaforsomea},
ael’

ﬂAaz{xES:meAaforalla}.
aeTl

If, for example, we take I' = {all positive real numbers} and A, = (0,a], then
UqserAe = (0,00) is an uncountable union. While uncountable unions and intersec-
tions do not play a major role in statistics, they sometimes provide a useful mechanism
for obtaining an answer (see Section 8.2.3).

Finally, we discuss the idea of a partition of the sample space.
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Deflnition 1.1.5 Two events A and B are disjoint (or mutually ezclusive) if ANB =
0. The events A,, A, ... are pairwise disjoint (or mutually exclusive) if A; N A; =0

for all ¢ # j.

Disjoint sets are sets with no points in common. If we draw a Venn diagram for
two disjoint sets, the sets do not overlap. The collection

A;=i,i+1), i=0,1,2,...,
consists of pairwise disjoint sets. Note further that U2, A; = [0, 00).

" Definition 1.1.6  If A, As,... are pairwise disjoint and U2, A; = S, then the
collection A;, A,,... forms a partition of S.

The sets A; = [i,i+ 1) form a partition of [0,00). In general, partitions are very
useful, allowing us to divide the sample space into small, nonoverlapping pieces.

1.2 Basics of Probability Theory

When an experiment is performed, the realization of the experiment is an outcome in
the sample space. If the experiment is performed a number of times, different outcomes
may occur each time or some outcomes may repeat. This “frequency of occurrence” of
an outcome can be thought of as a probability. More probable outcomes occur more
frequently. If the outcomes of an experiment can be described probabilistically, we
are on our way to analyzing the experiment statistically.

In this section we describe some of the basics of probability theory. We do not define
probabilities in terms of frequencies but instead take the mathematically simpler
axiomatic approach. As will be seen, the axiomatic approach is not concerned with
the interpretations of probabilities, but is concerned only that the probabilities are
defined by a function satisfying the axioms. Interpretations of the probabilities are
quite another matter. The “frequency of occurrence” of an event is one example of a
particular interpretation of probability. Another possible interpretation is a subjective
one, where rather than thinking of probability as frequency, we can think of it as a
belief in the chance of an event occurring.

1.2.1 Aziomatic Foundations

For each event A in the sample space S we want to associate with A a number
between zero and one that will be called the probability of A, denoted by P(A). It
would seem natural to define the domain of P (the set where the arguments of the
function P(-) are defined) as all subsets of S; that is, for each A C S we define P(A)
as the probability that A occurs. Unfortunately, matters are not that simple. There
are some technical difficulties to overcome. We will not dwell on these technicalities;
although they are of importance, they are usually of more interest to probabilists
than to statisticians. However, a firm understanding of statistics requires at least a
passing familiarity with the following.
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Definition 1.2.1 A collection of subsets of S is called a sigma algebra (or Borel
field), denoted by B, if it satisfies the following three properties:

a. ) € B (the empty set is an element of B).
b. If A € B, then A° € B (B is closed under complementation).
c. If A1, Ay, ... € B, then U2, A; € B (B is closed under countable unions).

The empty set @ is a subset of any set. Thus, @ C S. Property (a) states that this
subset is always in a sigma algebra. Since S = (°, properties (a) and (b) imply that
S is always in B also. In addition, from DeMorgan’s Laws it follows that B is closed
under countable intersections. If A;, A, ... € B, then A§, A§,... € B by property (b),
and therefore U2, AS € B. However, using DeMorgan’s Law (as in Exercise 1.9), we
have

. () ~fia
=1 i=1

Thus, again by property (b), N2, A; € B.

Associated with sample space S we can have many different sigma algebras. For
example, the collection of the two sets {0, S} is a sigma algebra, usually called the
trivial sigma algebra. The only sigma algebra we will be concerned with is the smallest
one that contains all of the open sets in a given sample space S.

Example 1.2.2 (Sigma algebra—I) If S is finite or countable, then these techni-
calities really do not arise, for we define for a given sample space S,

B = {all subsets of S, including S itself}.

If S has n elements, there are 2" sets in B (see Exercise 1.14). For example, if § =
{1,2,3}, then B is the following collection of 23 = 8 sets:

{1} {12} {1,2,3}
2} (1,3} 0
{3} {2,3} I

In general, if S is uncountable, it is not an easy task to describe B. However, B is
chosen to contain any set of interest.

Example 1.2.3 (Sigma algebra—II) Let S = (—oc,00), the real line. Then B is
chosen to contain all sets of the form

(a,b], (a,b], (a,b), and |[a,b)

for all real numbers a and b. Also, from the properties of B, it follows that B con-
tains all sets that can be formed by taking (possibly countably infinite) unions and
intersections of sets of the above varieties. I
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We are now in a position to define a probability function.

Definition 1.2.4 Given a sample space S and an associated sigma algebra B, a
probability function is a function P with domain B that satisfies

1. P(A) >0 forall A€ B.
2. P(S) = 1.
3. If A}, Ay, ... € B are pairwise disjoint, then P(UR,4;) = > "2 P(A;).

The three properties given in Definition 1.2.4 are usually referred to as the Axioms
of Probability (or the Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of
probability theory). Any function P that satisfies the Axioms of Probability is called
a probability function. The axiomatic definition makes no attempt to tell what partic-
ular function P to choose; it merely requires P to satisfy the axjoms. For any sample
space many different probability functions can be defined. Which one(s) reflects what
is likely to be observed in a particular experiment is still to be discussed.

Example 1.2.5 (Defining probabilities—I) Consider the simple experiment of
tossing a fair coin, so S = {H, T}. By a “fair” coin we mean a balanced coin that is
equally as likely to land heads up as tails up, and hence the reasonable probability
function is the one that assigns equal probabilities to heads and tails, that is,

(12.2) P({H}) = P({T}).

Note that (1.2.2) does not follow from the Axioms of Probability but rather is out-
side of the axioms. We have used a symmetry interpretation of probability (or just
intuition) to impose the requirement that heads and tails be equally probable. Since
S = {H} U {T}, we have, from Axiom 1, P({H} U {T}) = 1. Also, {H} and {T} are
disjoint, so P({H} U {T}) = P({H}) + P({T}) and

(1.2.3) P({H}) + P{T}) = 1.

Simultaneously solving (1.2.2) and (1.2.3) shows that P({H}) = P({T}) = 1.

Since (1.2.2) is based on our knowledge of the particular experiment, not the axioms,
any nonnegative values for P({H}) and P({T}) that satisfy (1.2.3) define a legitimate
probability function. For example, we might choose P({H}) = § and P({T}) = $. ||

We need general methods of defining probability functions that we know will always
satisfy Kolmogorov’s Axioms. We do not want to have to check the Axioms for each
new probability function, like we did in Example 1.2.5. The following gives a common
method of defining a legitimate probability function.

: Theorem 1.2.6 Let S = {s1,...,8,} be a finite set. Let B be any sigma algebra of
- subsets of S. Let py,...,pn be nonnegative numbers that sum to 1. For any A € B,
~ define P(A) by

P(A)= Z Di.

{i:s:€A}
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(The sum over an empty set is defined to be 0.) Then P is a probability function on
B. This remains true if S = {81, 82,...} is a countable set.

Proof: We will give the proof for finite S. For any A € B, P(A) = ¥ (;.5,e4) P 2 0,
because every p; > 0. Thus, Axiom 1 is true. Now,

n

P(S) = Z PiZZP¢=1-

{i:s;€8} i=1

Thus, Axiom 2 is true. Let Aj,..., Ax denote pairwise disjoint events. (B contains
only a finite number of sets, so we need consider only finite disjoint unions.) Then,

P(QA,-)= 3 pj=i > Pj=gP(Ai)-

{j:s;€Ur_ A} i=1 {j:s;€A;}

i=1

The first and third equalities are true by the definition of P(A). The disjointedness of
the A;s ensures that the second equality is true, because the same p;s appear exactly
once on each side of the equality. Thus, Axiom 3 is true and Kolmogorov’s Axioms
are satisfied. O

The physical reality of the experiment might dictate the probability assignment, as
the next example illustrates.

Example 1.2.7 (Defining probabilities—II) The game of darts is played by
throwing a dart at a board and receiving a score corresponding to the number assigned
to the region in which the dart lands. For a novice player, it seems reasonable to
assume that the probability of the dart hitting a particular region is proportional to
the area of the region. Thus, a bigger region has a higher probability of being hit.

Referring to Figure 1.2.1, we see that the dart board has radius r and the distance
between rings is r/5. If we make the assumption that the board is always hit (see
Exercise 1.7 for a variation on this), then we have

Area of region i
Area of dart board °

P (scoring i points) =

For example

P (scoring 1 point) = g 5

wzl—(é>2-

It is easy to derive the general formula, and we find that

(6 —1)*— (5-1)
52 '

independent of 7 and r. The sum of the areas of the disjoint regions equals the area of

the dart board. Thus, the probabilities that have been assigned to the five outcomes
sum to 1, and, by Theorem 1.2.6, this is a probability function (see Exercise 1.8). ||

P (scoring ¢ points) = i=1,...,5,
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wml & lw|no| -

Figure 1.2.1. Dart board for Example 1.2.7

Before we leave the axiomatic development of probability, there is one further point
to consider. Axiom 3 of Definition 1.2.4, which is commonly known as the Axiom of
Countable Additivity, is not universally accepted among statisticians. Indeed, it can
be argued that axioms should be simple, self-evident statements. Comparing Axiom 3
to the other axioms, which are simple and self-evident, may lead us to doubt whether
it is reasonable to assume the truth of Axiom 3.

The Axiom of Countable Additivity is rejected by a school of statisticians led
by deFinetti (1972), who chooses to replace this axiom with the Axiom of Finite
Additivity.

Aziom of Finite Additivity: If A € B and B € B are disjoint, then
P(AUB) = P(A) + P(B).

While this axiom may not be entirely self-evident, it is certainly simpler than the
Axiom of Countable Additivity (and is implied by it — see Exercise 1.12).

Assuming only finite additivity, while perhaps more plausible, can lead to unex-
Pected complications in statistical theory — complications that, at this level, do not
necessarily enhance understanding of the subject. We therefore proceed under the
assumption that the Axiom of Countable Additivity holds.

1.2.2 The Calculus of Probabilities

-From the Axioms of Probability we can build up many properties of the probability
- function, properties that are quite helpful in the calculation of more complicated
Probabilities. Some of these manipulations will be discussed in detail in this section;
others will be left as exercises.

We start with some (fairly self-evident) properties of the probability function when
applied to a single event.
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Theorem 1.2.8 If P is a probability function and A is any set in B, then
a. P(0) =0, where 0 is the empty set;

b. P(A)<1;

c. P(A%) =1-P(A).

Proof: It is easiest to prove (c) first. The sets A and A° form a partition of the
sample space, that is, S = A U A°. Therefore,

(1.2.4) P(AUASY=P(S)=1
by the second axiom. Also, A and A° are disjoint, so by the third axiom,
(1.2.5) P(AU A®) = P(A) + P(A®).

Combining (1.2.4) and (1.2.5) gives (c).

Since P(A®) > 0, (b) is immediately implied by (c). To prove (a), we use a similar
argument on S= S U 0. (Recall that both S and @ are always in B.) Since S and 0
are disjoint, we have

1= P(S)=P(SuU0) = P(S) + P(D),
and thus P(@) =0. O

Theorem 1.2.8 contains properties that are so basic that they also have the fla-
vor of axioms, although we have formally proved them using only the original three
Kolmogorov Axioms. The next theorem, which is similar in spirit to Theorem 1.2.8,
contains statements that are not so self-evident.

Theorem 1.2.9 If P is a probability function and A and B are any sets in B, then
a. P(Bn A®%) = P(B) — P(AN B);

b. P(AU B) = P(A) + P(B) — P(AN B);

c. If AC B, then P(A) < P(B).

Proof: To establish (a) note that for any sets A and B we have
B={BNA}U{BnN A},

and therefore

(1.2.6) P(B)=P({BnA}U{BnNA%}) = P(BN A) + P(Bn A°),

where the last equality in (1.2.6) follows from the fact that BN A and B N A° are

disjoint. Rearranging (1.2.6) gives (a).

To establish (b), we use the identity

(1.2.7) AUB=AU{BnN A%}
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A Venn diagram will show why (1.2.7) holds, although a formal proof is not difficult
(see Exercise 1.2). Using (1.2.7) and the fact that A and BN A€ are disjoint (since A
and A° are), we have

(128)  P(AUB)= P(A)+ P(BN A%) = P(A) + P(B) — P(AN B)

from (a).
If A C B, then AN B = A. Therefore, using (a) we have

0 < P(BN A®) = P(B) — P(A),
establishing (c). 0

Formula (b) of Theorem 1.2.9 gives a useful inequality for the probability of an
intersection. Since P(A U B) < 1, we have from (1.2.8), after some rearranging,

(1.2.9) P(ANB) > P(A)+ P(B) - 1.

This inequality is a special case of what is known as Bonferroni’s Inequality (Miller
1981 is a good reference). Bonferroni’s Inequality allows us to bound the probability of
a simultaneous event (the intersection) in terms of the probabilities of the individual
events.

Example 1.2.10 (Bonferroni’s Inequality) Bonferroni’s Inequality is partic-
ularly useful when it is difficult (or even impossible) to calculate the intersection
probability, but some idea of the size of this probability is desired. Suppose A and
B are two events and each has probability .95. Then the probability that both will
occur is bounded below by

P(ANB) > P(A)+P(B)—1= .95+ .95 -1 = .90.

Note that unless the probabilities of the individual events are sufficiently large, the
Bonferroni bound is a useless (but correct!) negative number. I

We close this section with a theorem that gives some useful results for dealing with
a collection of sets.
Theorem 1.2.11 If P is a probability function, then
a. P(A) =32, P(ANC;) for any partition Cy,Cs, .. .;
b. P(UR A;) < 32, P(A;) for any sets Ay, A, ... . (Boole’s Inequality)

Proof: Since C1,Cy,... form a partition, we have that C; N C; = 0 for all i # j, and
§ = U, C;. Hence,

A=ANS=AnN (GC,,) = D(AﬂCi),

i=1 =1
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where the last equality follows from the Distributive Law (Theorem 1.1.4). We there-
fore have

P(A)=P (G(A N C,-)) .

Now, since the C; are disjoint, the sets ANC; are also disjoint, and from the properties
of a probability function we have

P (W(Anci)) =iP(AnCi)s
1

i=1

1=

establishing (a).
To establish (b) we first construct a disjoint collection A}, A3, ..., with the property
that U2, A7 = U2, A;. We define A} by

i—1
AT = A, Al= A\ (UA,-) , i=23,...,
j=1

where the notation A\ B denotes the part of A that does not intersect with B. In more
familiar symbols, A\ B = AN B°. It should be easy to see that U2, A7 = U2, A4;, and
we therefore have

P (G Ai) =P (GA;) =iP(A;),
i=1 i=1 =1

where the last equality follows since the A} are disjoint. To see this, wé write

i—1 k—1
A;NAL = {Ai\ (U Aj) } N {Ak\ (U Aj) } (definition of A})
i—1 ¢ k—1 ¢
= {Am (U A,-) }n {A,, a (U Aj) } (definition of “\”)

i1 k—1
= {A,' N ﬂ Aj} n {A;c r n A;} (DeMorgan’s Laws)

Now if i > k, the first intersection above will be contained in the set Af, which will
have an empty intersection with Ax. If £ > 4, the argument is similar. Further, by
construction A} C A;, so P(A}) < P(4;) and we have

ZP(A:)sZP(Ao,

establishing (b). O
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There is a similarity bgtween Boole’s Inequality and Bonferroni’s Inequality. In
fact, they are essentially the same thing. We could have used Boole’s Inequality to
derive (1.2.9). If we apply Boole’s Inequality to A, we have

P (OA:) <3 P4,

i=1

and using the facts that UAS = (NA4;)° and P(AS) = 1 — P(A;), we obtain

1-P (ﬁ Az) S n— iP(A,,)
i=1 =1

This becomes, on rearranging terms,

i=1

i=1

which is a more general version of the Bonferroni Inequality of (1.2.9).

1.2.8 Counting

The elementary process of counting can become quite sophisticated when placed in
the hands of a statistician. Most often, methods of counting are used in order to
construct probability assignments on finite sample spaces, although they can be used
to answer other questions also.

Example 1.2.12 (Lottery—I) For a number of years the New York state lottery
operated according to the following scheme. From the numbers 1, 2, ..., 44, a person
may pick any six for her ticket. The winning number is then decided by randomly
selecting six numbers from the forty-four. To be able to calculate the probability of
winning we first must count how many different groups of six numbers can be chosen
from the forty-four. I

Example 1.2.13 (Tournament) In a single-elimination tournament, such as the
U.S. Open tennis tournament, players advance only if they win (in contrast to double-
elimination or round-robin tournaments). If we have 16 entrants, we might be inter-
ested in the number of paths a particular player can take to victory, where a path is
taken to mean a sequence of opponents. I

Counting problems, in general, sound complicated, and often we must do our count-
ing subject to many restrictions. The way to solve such problems is to break them
down into a series of simple tasks that are easy to count, and employ known rules
of combining tasks. The following theorem is a first step in such a process and is
sometimes known as the Fundamental Theorem of Counting.

Theorem 1.2.14 If a job consists of k separate tasks, the ith of which can be done
inn; ways, i =1,...,k, then the entire job can be done in ny X ng X - -+ X ng ways.
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Proof: It suffices to prove the theorem for k = 2 (see Exercise 1.15). The proof is
just a matter of careful counting. The first task can be done in n; ways, and for each
of these ways we have n, choices for the second task. Thus, we can do the job in

~

(1xn2)+(1xn2)+---+(1xn2)=n1xnz

oy

ni terms

ways, establishing the theorem for k& = 2. O

Example 1.2.15 (Lottery—II) Although the Fundamental Theorem of Counting
is a reasonable place to start, in applications there are usually more aspects of a
problem to consider. For example, in the New York state lottery the first number
can be chosen in 44 ways, and the second number in 43 ways, making a total of
44 x 43 = 1,892 ways of choosing the first two numbers. However, if a person is
allowed to choose the same number twice, then the first two numbers can be chosen
in 44 x 44 = 1,936 ways. I

The distinction being made in Example 1.2.15 is between counting with replacement
and counting without replacement. There is a second crucial element in any counting
problem, whether or not the ordering of the tasks is important. To illustrate with the
lottery example, suppose the winning numbers are selected in the order 12, 37, 35, 9,
13, 22. Does a person who selected 9, 12, 13, 22, 35, 37 qualify as a winner? In other
words, does the order in which the task is performed actually matter? Taking all of
these considerations into account, we can construct a 2 x 2 table of possibilities:

Possible methods of counting

Without With
replacement replacement

Ordered
Unordered

Before we begin to count, the following definition gives us some extremely helpful
notation.

Definition 1.2.16 For a positive integer n, n! (read n factorial) is the product of
all of the positive integers less than or equal to n. That is,

aAl=nxn-1)xn—-2)x---x3x2x1.
Furthermore, we define 0! = 1.

Let us now consider counting all of the possible lottery tickets under each of these
four cases.

1. Ordered, without replacement From the Fundamental Theorem of Counting, the
first number can be selected in 44 ways, the second in 43 ways, etc. So there are

!
44 x 43 x 42 x 41 x40 x 39 = % = 5,082,517,440

possible tickets.



Section 1.2 BASICS OF PROBABILITY THEORY 15

2. Ordered, with replacement Since each number can now be selected in 44 ways
(because the chosen number is replaced), there are

44 x 44 x 44 x 44 x 44 x 44 = 44°% = 7,256,313,856

possible tickets.

3. Unordered, without replacement We know the number of possible tickets when the
ordering must be accounted for, so what we must do is divide out the redundant
orderings. Again from the Fundamental Theorem, six numbers can be arranged in
6 x5 x4 x3x2x1 ways, so the total number of unordered tickets is

44 x 43 x 42 x 41 x40 x 39 44!
6x5x4x3x2x1 6138
This form of counting plays a central role in much of statistics—so much, in fact,
that it has earned its own notation.

= 7,059,052.

Definition 1.2.17 For nonnegative integers n and r, where n > r, we define the
symbol (7), read n choose r, as
ny _ n!
('r) T rln=r)l

In our lottery example, the number of possible tickets (unordered, without replace-
ment) is (4:). These numbers are also referred to as binomial coefficients, for reasons

- that will become clear in Chapter 3.

‘
K
!

4. Unordered, with replacement This is the most difficult case to count. You might
first guess that the answer is 448 /(6 x 5 x 4 x 3 x 2 x 1), but this is not correct (it
is too small).

To count in this case, it is easiest to think of placing 6 markers on the 44 numbers.
In fact, we can think of the 44 numbers defining bins in which we can place the six
markers, M, as shown, for example, in this figure.

[ M | | MM | M| [ - [ M | M| | |
1 2 3 4 5 ... 41 42 43 44

The number of possible tickets is then equal to the number of ways that we can
put the 6 markers into the 44 bins. But this can be further reduced by noting that
all we need to keep track of is the arrangement of the markers and the walls of the
bins. Note further that the two outermost walls play no part. Thus, we have to
count all of the arrangements of 43 walls (44 bins yield 45 walls, but we disregard
the two end walls) and 6 markers. We therefore have 43 + 6 = 49 objects, which
can be arranged in 49! ways. However, to eliminate the redundant orderings we
must divide by both 6! and 43!, so the total number of arrangements is

49!
6! 43!
Although all of the preceding derivations were done in terms of an example, it

should be easy to see that they hold in general. For completeness, we can summarize
these situations in Table 1.2.1.

= 13,983,816.
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Table 1.2.1. Number of possible arrangements of size r from n objects

Without With
replacement  replacement
n! -
Ordered zrr)' n
Unordered (n) (n+ " 1)
r r

1.2.4 Enumerating Outcomes

The counting techniques of the previous section are useful when the sample space
S is a finite set and all the outcomes in S are equally likely. Then probabilities of
events can be calculated by simply counting the number of outcomes in the event. To
see this, suppose that S = {s;,...,sn} is a finite sample space. Saying that all the
outcomes are equally likely means that P({s;}) = 1/N for every outcome s;. Then,
using Axiom 3 from Definition 1.2.4, we have, for any event A,

_ # of elements in A

1
P(A) = Z P({s:}) = Z N~ # of elementsin S

8;€EA 83;€EA

For large sample spaces, the counting techniques might be used to calculate both
the numerator and denominator of this expression.

Example 1.2.18 (Poker) Consider choosing a five-card poker hand from a stan-
dard deck of 52 playing cards. Obviously, we are sampling without replacement from
the deck. But to specify the possible outcomes (possible hands), we must decide
whether we think of the hand as being dealt sequentially (ordered) or all at once
(unordered). If we wish to calculate probabilities for events that depend on the or-
der, such as the probability of an ace in the first two cards, then we must use the
ordered outcomes. But if our events do not depend on the order, we can use the
unordered outcomes. For this example we use the unordered outcomes, so the sample
space consists of all the five-card hands that can be chosen from the 52-card deck.
There are (5°) = 2,598,960 possible hands. If the deck is well shuffled and the cards
are randomly dealt, it is reasonable to assign probability 1/2,598,960 to each possible
hand.

We now calculate some probabilities by counting outcomes in events. What is the
probability of having four aces? How many different hands are there with four aces? If
we specify that four of the cards are aces, then there are 48 different ways of specifying
the fifth card. Thus,

4
P(four aces) = WSSQGB’

less than 1 chance in 50,000. Only slightly more complicated counting, using Theorem
1.2.14, allows us to calculate the probability of having four of a kind. There are 13
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ways to specify which denomination there will be four of. After we specify these four
cards, there are 48 ways of specifying the fifth. Thus, the total number of hands with
four of a kind is (13)(48) and

. (13)(48) 624
P(four of a kind) = 2,598,060 _ 2,598,960

To calculate the probability of exactly one pair (not two pairs, no three of a kind,
etc.) we combine some of the counting techniques. The number of hands with exactly
one pair is

(1.2.11) 13 (‘21) (132) 43 = 1,098,240.

Expression (1.2.11) comes from Theorem 1.2.14 because
13 = # of ways to specify the denomination for the pair,

4
( 2) = # of ways to specify the two cards from that denomination,

12 .
( 3 ) = # of ways of specifying the other three denominations,

4% = # of ways of specifying the other three cards from those denominations.

Thus,

1,098,240

P(exactly one pair) = 2,598,960 !

When sampling without replacement, as in Example 1.2.18, if we want to calculate
the probability of an event that does not depend on the order, we can use either
the ordered or unordered sample space. Each outcome in the unordered sample space
corresponds to r! outcomes in the ordered sample space. So, when counting outcomes
in the ordered sample space, we use a factor of r! in both the numerator and denom-
inator that will cancel to give the same probability as if we counted in the unordered
sample space.

The situation is different if we sample with replacement. Each outcome in the
unordered sample space corresponds to some outcomes in the ordered sample space,
but the number of outcomes differs.

Example 1.2.19 (Sampling with replacement) Consider sampling r = 2 items
from n = 3 items, with replacement. The outcomes in the ordered and unordered
sample spaces are these.

Unordered {1,1} {2,2} {3,3} {1,2} {1,3} {2,3}
Ordered  (1,1) (2,2) (3,3) (1,2),(2,1) (1,3),(3,1) (2,3),(3,2)
Probability 1/9  1/9  1/9 2/9 2/9 2/9
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The probabilities come from considering the nine outcomes in the ordered sample
space to be equally likely. This corresponds to the common interpretation of “sampling
with replacement”; namely, one of the three items is chosen, each with probability 1/3;
the item is noted and replaced; the items are mixed and again one of the three items
is chosen, each with probability 1/3. It is seen that the six outcomes in the unordered
sample space are not equally likely under this kind of sampling. The formula for the
number of outcomes in the unordered sample space is useful for enumerating the
outcomes, but ordered outcomes must be counted to correctly calculate probabilities.

|

Some authors argue that it is appropriate to assign equal probabilities to the un-
ordered outcomes when “randomly distributing r indistinguishable balls into n dis-
tinguishable urns.” That is, an urn is chosen at random and a ball placed in it, and
this is repeated r times. The order in which the balls are placed is not recorded so,
in the end, an outcome such as {1,3} means one ball is in urn 1 and one ball is in
urn 3.

But here is the problem with this interpretation. Suppose two people observe this
process, and Observer 1 records the order in which the balls are placed but Observer 2
does not. Observer 1 will assign probability 2/9 to the event {1,3}. Observer 2,
who is observing exactly the same process, should also assign probability 2/9 to this
event. But if the six unordered outcomes are written on identical pieces of paper and
one is randomly chosen to determine the placement of the balls, then the unordered
outcomes each have probability 1/6. So Observer 2 will assign probability 1/6 to the
event {1,3}.

The confusion arises because the phrase “with replacement” will typically be inter-
preted with the sequential kind of sampling we described above, leading to assigning
a probability 2/9 to the event {1,3}. This is the correct way to proceed, as proba-
bilities should be determined by the sampling mechanism, not whether the balls are
distinguishable or indistinguishable.

Example 1.2.20 (Calculating an average) As an illustration of the distinguish-
able/indistinguishable approach, suppose that we are going to calculate all possible
averages of four numbers selected from

2,4,9,12

where we draw the numbers with replacement. For example, possible draws are
{2,4,4,9} with average 4.75 and {4,4,9,9} with average 6.5. If we are only inter-
ested in the average of the sampled numbers, the ordering is unimportant, and thus
the total number of distinct samples is obtained by counting according to unordered,
with-replacement sampling.

The total number of distinct samples is ( . But now, to calculate the proba-
bility distribution of the sampled averages, we must count the different ways that a
particular average can occur.

. The value 4.75 can occur only if the sample contains one 2, two 4s, and one 9.
The number of possible samples that have this configuration is given in the following
table:

n+:—l)
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Probability
A2 -

06—

2 4 6 g 10 12
Average

Figure 1.2.2. Histogram of averages of samples with replacement from the four numbers
{2,4,4,9}

Unordered Ordered
2’4’ 419)7 2’4)9 (27 9,4’4)’(4’ 2’ 479))
{2’4’ 4’ g} (47 21 g) 4)7 (4141 23 ) (4 4 g 2)3 (479’ 27 4)7
(4,9,4,2),(9,2,4,4),(9,4,2,4),(9,4,4,2)

The total number of ordered samples is n"™ = 4% = 256, so the probability of drawing
the unordered sample {2,4,4,9} is 12/256. Compare this to the probability that we
would have obtained if we regarded the unordered samples as equally likely — we would
have assigned probability 1/("7~") =1/(}) = 1/35 to {2,4,4,9} and to every other
unordered sample.

To count the number of ordered samples that would result in {2, 4, 4,9}, we argue
as follows. We need to enumerate the possible orders of the four numbers {2, 4, 4,9},
8o we are essentially using counting method 1 of Section 1.2.3. We can order the
sample in 4 X 3 x 2 X 1 = 24 ways. But there is a bit of double counting here, since we
cannot count distinct arrangements of the two 4s. For example, the 24 ways would
count {9,4,2,4} twice (which would be OK if the 4s were different). To correct this,
we divide by 2! (there are 2! ways to arrange the two 4s) and obtain 24/2 = 12 ordered
samples. In general, if there are k places and we have m different numbers repeated

k1,ka, ..., k., times, then the number of ordered samples is . This type

k!
of counting is related to the multinomial distribution, which we will see in Section
4.6. Figure 1.2.2 is a histogram of the probability distribution of the sample averages,
reflecting the multinomial counting of the samples.

There is also one further refinement that is reflected in Figure 1.2.2. It is possible
that two different unordered samples will result in the same mean. For example, the
unordered samples {4,4, 12,12} and {2,9,9, 12} both result in an average value of 8.
The first sample has probability 3/128 and the second has probability 3/64, giving the
value 8 a probability of 9/128 = .07. See Example A.0.1 in Appendix A for details on
constructing such a histogram. The calculation that we have done in this example is
an elementary version of a very important statistical technique known as the bootstrap
(Efron and Tibshirani 1993). We will return to the bootstrap in Section 10.1.4. ||



20 PROBABILITY THREORY Section 1.3
1.3 Conditional Probability and Independence

All of the probabilities that we have dealt with thus far have been unconditional
probabilities. A sample space was defined and all probabilities were calculated with
respect to that sample space. In many instances, however, we are in a position to
update the sample space based on new information. In such cases, we want to be able
to update probability calculations or to calculate conditional probabilities.

Example 1.3.1 (Four aces) Four cards are dealt from the top of a well-shuffled
deck. What is the probability that they are the four aces? We can calculate this
probability by the methods of the previous section. The number of distinct groups of

four cards is
52
=2 .
( 4 ) 70,725

Only one of these groups consists of the four aces and every group is equally likely,
so the probability of being dealt all four aces is 1/270,725.

We can also calculate this probability by an “updating” argument, as follows. The
probability that the first card is an ace is 4/52. Given that the first card is an ace,
the probability that the second card is an ace is 3/51 (there are 3 aces and 51 cards
left). Continuing this argument, we get the desired probability as

4.3,2,1_ 1
52 51 50 49 270,725 I

In our second method of solving the problem, we updated the sample space after
each draw of a card; we calculated conditional probabilities.

Definition 1.3.2 If A and B are events in S, and P(B) > 0, then the conditional
probability of A given B, written P(A|B), is

P(ANB)
(1.3.1) P(A|B) = (5]

Note that what happens in the conditional probability calculation is that B becomes
the sample space: P(B|B) = 1. The intuition is that our original sample space, S,
has been updated to B. All further occurrences are then calibrated with respect to
their relation to B. In particular, note what happens to conditional probabilities of
disjoint sets. Suppose A and B are disjoint, so P(AN B) = 0. It then follows that
P(A|B) = P(B|A) = 0.

Example 1.3.8 (Continuation of Example 1.3.1) Although the probability of
getting all four aces is quite small, let us see how the conditional probabilities change
given that some aces have already been drawn. Four cards will again be dealt from a
well-shuffled deck, and we now calculate

P(4 aces in 4 cards | aces in ¢ cards), i=1,2,3.
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The event {4 aces in 4 cards} is a subset of the event {i aces in i cards}. Thus, from
the definition of conditional probability, (1.3.1), we know that
P(4 aces in 4 cards | aces in ¢ cards)
_ P({4 aces in 4 cards} N {i aces in 7 cards})
- P(i aces in i cards)

_ P(4 aces in 4 cards)
"~ P(i aces in i cards) -

The numerator has already been calculated, and the denominator can be calculated
with a similar argument. The number of distinct groups of ¢ cards is (°?), and

()
(%)

P(i aces in { cards) =

Therefore, the conditional probability is given by

() (a—-dua8 1

(542)1(?) B (62 —i)! B (542_—1}')‘

For i = 1, 2, and 3, the conditional probabilities are .00005, .00082, and .02041,
respectively. I

P(4 aces in 4 cards|{ aces in ¢ cards) =

For any B for which P(B) > 0, it is straightforward to verify that the probability
function P(-|B) satisfies Kolmogorov's Axioms (see Exercise 1.35). You may suspect
that requiring P(B) > 0 is redundant. Who would want to condition on an event of
- probability 07 Interestingly, sometimes this is a particularly useful way of thinking of
things. However, we will defer these considerations until Chapter 4.

Conditional probabilities can be particularly slippery entities and sometimes require
careful thought. Consider the following often-told tale.

Example 1.3.4 (Three prisoners) Three prisoners, A, B, and C, are on death
row. The governor decides to pardon one of the three and chooses at random the
prisoner to pardon. He informs the warden of his choice but requests that the name
be kept secret for a few days.

The next day, A tries to get the warden to tell him who had been pardoned. The
warden refuses. A then asks which of B or C will be executed. The warden thinks for

a while, then tells A that B is to be executed.

Warden’s reasoning: Each prisoner has a % chance of being pardoned. Clearly,

either B or C must be executed, so I have given A no information about whether
A will be pardoned.

A’s reasoning: Given that B will be executed, then either A or C will be pardoned.
My chance of being pardoned has risen to 3.

It should be clear that the warden’s reasoning is correct, but let us see why. Let
A, B, and C denote the events that A, B, or C is pardoned, respectively. We know
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that P(A) = P(B) = P(C) = . Let W denote the event that the warden says B will
die. Using (1.3.1), A can update his probability of being pardoned to

P(AW) = i;j(%v—).

What is happening can be summarized in this table:

Prisoner pardoned Warden tells A

A B dies } each with equal
A C dies probability
B C dies

C B dies

Using this table, we can calculate

P(W) = P(warden says B dies)
= P(warden says B dies and A pardoned)

+ P(warden says B dies and C pardoned)

+ P(warden says B dies and B pardoned)
1 1 1

Thus, using the warden’s reasoning, we have

P(AnW

P(AW) = -————(P(W) )
(13.2) _ P(warden says B dies and A pardoned) _ 1/6 _ 1
e N P(warden says B dies) o123

However, A falsely interprets the event W as equal to the event B° and calculates

o P(ANBY) 1/3 1
PAIB) = g ~35 7

We see that conditional probabilities can be quite slippery and require careful
interpretation. For some other variations of this problem, see Exercise 1.37. I

Re-expressing (1.3.1) gives a useful form for calculating intersection probabilities,
(1.3.3) P(AN B) = P(A|B)P(B),

which is essentially the formula that was used in Example 1.3.1. We can take advan-
tage of the symmetry of (1.3.3) and also write

(1.3.4) P(AN B) = P(B|A)P(A).
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When faced with seemingly difficult calculations, we can break up our calculations
according to (1.3.3) or (1.3.4), whichever is easier. Furthermore, we can equate the
right-hand sides of these equations to obtain (after rearrangement)

P(4)

(1.3.5) P(AIB) = P(BIA) 555

which gives us a formula for “turning around” conditional probabilities. Equation
(1.3.5) is often called Bayes’ Rule for its discoverer, Sir Thomas Bayes (although see
Stigler 1983).

Bayes’ Rule has a more general form than (1.3.5), one that applies to partitions of
a sample space. We therefore take the following as the definition of Bayes’ Rule.

Theorem 1.3.5 (Bayes’ Rule) Let A;, As,... be a partition of the sample space,
and let B be any set. Then, for eachi=1,2,...,

P(B|A;)P(A;)

P(A|B) = S, P(BJAj)P(4;)

Example 1.3.6 (Coding) When coded messages are sent, there are sometimes
errors in transmission. In particular, Morse code uses “dots” and “dashes,” which are
known to occur in the proportion of 3:4. This means that for any given symbol,

P(dot sent) = g and P(dash sent) = ;

Suppose there is interference on the transmission line, and with probability % a dot
is mistakenly received as a dash, and vice versa. If we receive a dot, can we be sure
that a dot was sent? Using Bayes’ Rule, we can write

P(dot sent | dot received) = P(dot received | dot sent)%%.

Now, from the information given, we know that P(dot sent) = % and P(dot received|
dot sent) = %. Furthermore, we can also write

P(dot received) = P(dot received N dot sent) + P(dot received N dash sent)

= P(dot received | dot sent)P(dot sent)

+ P(dot received | dash sent) P(dash sent)

_T, 31,4 B
877 877 56

Combining these results, we have that the probability of correctly receiving a dot is

. _(7/8) x (3/7) 21
P(dot sent | dot received) = 5556 25 I
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In some cases it may happen that the occurrence of a particular event, B, has no
effect on the probability of another event, A. Symbolically, we are saying that

(1.3.6) P(A|B) = P(A).
If this holds, then by Bayes’ Rule (1.3.5) and using (1.3.6) we have

(1.3.7) P(B|A) = P(A|B)’;—% = P(A)% = P(B),

so the occurrence of A has no effect on B. Moreover, since P(B|A)P(A) = P(ANB),
it then follows that

P(AN B)= P(A)P(B),
which we take as the definition of statistical independence.
Definition 1.3.7 Two events, A and B, are statistically independent if
(1.3.8) P(AN B) = P(A)P(B).

Note that independence could have been equivalently defined by either (1.3.6) or
(1.3.7) (as long as either P(A) > 0 or P(B) > 0). The advantage of (1.3.8) is that
it treats the events symmetrically and will be easier to generalize to more than two
events.

Many gambling games provide models of independent events. The spins of a roulette
wheel and the tosses of a pair of dice are both series of independent events.

Example 1.3.8 (Chevalier de Meré) The gambler introduced at the start of the
chapter, the Chevalier de Meré, was particularly interested in the event that he could
throw at least 1 six in 4 rolls of a die. We have

P(at least 1 six in 4 rolls) = 1 — P(no six in 4 rolls)

4
=1- HP(no six on roll %),

=1

where the last equality follows by independence of the rolls. On any roll, the proba-
bility of not rolling a six is %, §0

4
P(at least 1 six in 4 rolls) =1 — (g) =.518. I

Independence of A and B implies independence of the complements also. In fact,
we have the following theorem.
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Theorem 1.3.9 If A and B are independent events, then the following pairs are
also independent:

a. A and B¢,

b. A® and B,

c. A® and BC.

Proof: We will prove only (a), leaving the rest as Exercise 1.40. To prove (a) we
must show that P(AN B¢) = P(A)P(B°). From Theorem 1.2.9a we have

P(ANnB®) = P(A)—P(ANB)
= P(A)— P(A)P(B) (A and B are independent)
= P(A)(1- P(B))
= P(A)P(B°). ]

Independence of more than two events can be defined in a manner similar to (1.3.8),
but we must be careful. For example, we might think that we could say A, B, and C
are independent if P(AN BN C) = P(A)P(B)P(C). However, this is not the correct
condition.

Example 1.3.10 (Tossing two dice) Let an experiment consist of tossing two
dice. For this experiment the sample space is

S={(1,1),1,2),...,(1,6),(2,1),...,(2,6),...,(6,1),...,(6,6)};

that is, S consists of the 36 ordered pairs formed from the numbers 1 to 6. Define the
following events:

A = {doubles appear} = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},
B = {the sum is between 7 and 10},
C = {the sum is 2 or 7 or 8}.

The probabilities can be calculated by counting among the 36 possible outcomes. We
have

P(A) = % P(B) = % and  P(C) = %
Furthermore,
P(ANBNC) = P(the sum is 8, composed of double 4s)

1

T 36

RSV
6 2 3

= P(A)P(B)P(C)
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However,
P(BNC) = P(sum equals 7 or 8) = — ;é P(B)P(C).

Similarly, it can be shown that P(AnN B) # P(A)P(B); therefore, the requirement
P(ANBNC) = P(A)P(B)P(C) is not a strong enough condition to guarantee
pairwise independence. I

A second attempt at a general definition of independence, in light of the previ-
ous example, might be to define A, B, and C to be independent if all the pa.lrs are
independent. Alas, this condition also fails.

Example 1.3.11 (Letters) Let the sample space S consist of the 3! permutations
of the letters a, b, and c along with the three triples of each letter. Thus,

aaa bbb ccc
S =< abc bca cba
acb bac cab
Furthermore, let each element of S have probability -51;. Define
A; = {ith place in the triple is occupied by a}.
It is then easy to count that
1
P(A‘l):ga Z=1,2,3,
and
P(Al nAz) = P(Al ﬂA3) = P(A2 ﬂA3) = =
so the A;s are pairwise independent. But
1
P(A1N A2 N A3) = 5 # P(A1)P(A2)P(43),
so the A;s do not satisfy the probability requirement. i
The preceding two examples show that simultaneous (or mutual) independence of
a collection of events requires an extremely strong definition. The following definition
works.

Definition 1.3.12 A collection of events Aj,..., A, are mutually independent if
for any subcollection A4, ,..., 4;,, we have

k k
N4 | =][P(4
i=1 i=1
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Example 1.3.13 (Three coin tosses—I) Consider the experiment of tossing a
coin three times. A sample point for this experiment must indicate the result of each
toss. For example, HHT could indicate that two heads and then a tail were observed.
The sample space for this experiment has eight points, namely,

{HHH,HHT,HTH, THH, TTH, THT,HTT, TTT}.
Let H;, i =1,2,3, denote the event that the ith toss is a head. For example,
(1.3.9) H, = {HHH,HHT,HTH, HTT}.

If we assign probability % to each sample point, then using enumerations such as
(1.3.9), we see that P(H;) = P(H,) = P(H3) = 1. This says that the coin is fair and
- has an equal probability of landing heads or tails on each toss.
Under this probability model, the events H;, Hy, and Hj are also mutually inde-
pendent. To verify this we note that

1 1 11
To verify the condition in Definition 1.3.12, we also must check each pair. For example,
2 11

The equality is also true for the other two pairs. Thus, H;, Hs, and Hj3 are mutually
independent. That is, the occurrence of a head on any toss has no effect on any of
the other tosses.

It can be verified that the assignment of probability % to each sample point is the
only probability model that has P(H;) = P(H,) = P(H3) = 1 and Hy, H,, and Hj
mutually independent. I

1.4 Random Variables

In many experiments it is easier to deal with a summary variable than with the
original probability structure. For example, in an opinion poll, we might decide to
ask 50 people whether they agree or disagree with a certain issue. If we record a “1”
for agree and “0” for disagree, the sample space for this experiment has 230 elements,
each an ordered string of 1s and Os of length 50. We should be able to reduce this to
a reasonable size! It may be that the only quantity of interest is the number of people
who agree (equivalently, disagree) out of 50 and, if we define a variable X = number
of 1s recorded out of 50, we have captured the essence of the problem. Note that the
sample space for X is the set of integers {0,1,2,...,50} and is much easier to deal
with than the original sample space.

In defining the quantity X, we have defined a mapping (a function) from the original
sample space to a new sample space, usually a set of real numbers. In general, we
have the following definition.

Definition 1.4.1 A random variable is a function from a sample space S into the
real numbers.
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Example 1.4.2 (Random variables) In some experiments random variables are
implicitly used; some examples are these.

Ezamples of random variables

Experiment Random variable
Toss two dice X = sum of the numbers
Toss a coin 25 times X = number of heads in 25 tosses

Apply different amounts of
fertilizer to corn plants X = yield/acre I

In defining a random variable, we have also defined a new sample space (the range
of the random variable). We must now check formally that our probability function,
which is defined on the original sample space, can be used for the random variable.

Suppose we have a sample space

S={s1,-..,8n}

with a probability function P and we define a random variable X with range X =
{z1,...,Zm}. We can define a probability function Px on X in the following way. We
will observe X = z; if and only if the outcome of the random experiment is an s; € §
such that X (s;) = z;. Thus,

(1.4.1) Px(X = .’L‘,‘) = P({Sj €S: X(sj) = .’1:,'}) .

Note that the left-hand side of (1.4.1), the function Py, is an induced probability
function on X, defined in terms of the original function P. Equation (1.4.1) formally
defines a probability function, Py, for the random variable X. Of course, we have
to verify that Py satisfies the Kolmogorov Axioms, but that is not a very difficult
job (see Exercise 1.45). Because of the equivalence in (1.4.1), we will simply write
P(X = z;) rather than Px (X = z;).

A note on notation: Random variables will always be denoted with uppercase letters
and the realized values of the variable (or its range) will be denoted by the corre-
sponding lowercase letters. Thus, the random variable X can take the value z.

Example 1.4.3 (Three coin tosses—II) Consider again the experiment of tossing
a fair coin three times from Example 1.3.13. Define the random variable X to be the
number of heads obtained in the three tosses. A complete enumeration of the value
of X for each point in the sample space is

s HHH HHT HTH THH TTH THT HTT TTT
X(s) 3 2 2 2 1 1 1 0

The range for the random variable X is X = {0,1,2,3}. Assuming that all eight
points in S have probability %, by simply counting in the above display we see that
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the induced probability function on X is given by

T 0o 1 2 3
P(X=2) 3 § 1 4

For example, Px (X = 1) = P({HTT, THT, TTH}) = 3. I

Example 1.4.4 (Distribution of a random variable) It may be possible to
determine Py even if a complete listing, as in Example 1.4.3, is not possible. Let S
be the 2% strings of 50 Os and 1s, X = number of 1s, and X = {0, 1,2,...,50}, as
mentioned at the beginning of this section. Suppose that each of the 2% strings is
equally likely. The probability that X = 27 can be obtained by counting all of the
strings with 27 1s in the original sample space. Since each string is equally likely, it
follows that

# strings with 27 1s (33)
X = = - .
Px( 27) # strings 250

In general, for any i € X,

(%)
Py(X =i)= 2’T. I

The previous illustrations had both a finite S and finite X, and the definition of
Px was straightforward. Such is also the case if X is countable. If X is uncountable,
we define the induced probability function, Px, in a manner similar to (1.4.1). For
any set A C X,

(1.4.2) Px(X e A)=P({seS:X(s) € A}).
This does define a legitimate probability function for which the Kolmogorov Axioms
can be verified. (To be precise, we use (1.4.2) to define probabilities only for a cer-

tain sigma algebra of subsets of X'. But we will not concern ourselves with these
technicalities.)

1.5 Distribution Functions

With every random variable X, we associate a function called the cumulative distri-
bution function of X.

Definition 1.5.1 The cumulative distribution function or cdf of a random variable
X, denoted by Fx(z), is defined by

Fx(z)=Px(X <z), forallz.
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Figure 1.5.1. Cdf of Ezample 1.5.2

Example 1.5.2 (Tossing three coins) Consider the experiment of tossing three
fair coins, and let X = number of heads observed. The cdf of X is

0 f-oco<z<0
§ fo<z<1
(1.5.1) Fx(z)=¢% if1<z<?2
T if2<z<3
1 if3<z<o0.

The step function Fx(z) is graphed in Figure 1.5.1. There are several points to note
from Figure 1.5.1. Fx is defined for all values of z, not just those in X = {0,1,2,3}.
Thus, for example,

Fx(2.5) = P(X <2.5) = P(X = 0,1,0r 2) = g

Note that Fx has jumps at the values of z; € X and the size of the jump at z; is
equal to P(X = z;). Also, Fx(z) = 0 for £ < 0 since X cannot be negative, and
Fx(z) =1 for £ > 3 since z is certain to be less than or equal to such a value. I

As is apparent from Figure 1.5.1, Fx can be discontinuous, with jumps at certain
values of z. By the way in which Fx is defined, however, at the jump points Fx takes
the value at the top of the jump. (Note the different inequalities in (1.5.1).) This is
known as right-continuity—the function is continuous when a point is approached
from the right. The property of right-continuity is a consequence of the definition of
the cdf. In contrast, if we had defined Fx(z) = Px(X < z) (note strict inequality),
Fx would then be left-continuous. The size of the jump at any point z is equal to
P(X =z).

Every cdf satisfies certain properties, some .of which are obvious when we think of
the definition of Fx(z) in terms of probabilities.
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Theorem 1.5.3 The function F(z) is a cdf if and only if the following three con-
ditions hold:

a. lim; , o F(z) =0 and lim,_, F(z) = 1.
b. F(z) is a nondecreasing function of .
c. F(z) is right-continuous; that is, for every number o, lim, |z, F(z) = F(zo).

Outline of proof: To prove necessity, the three properties can be verified by writing
F in terms of the probability function (see Exercise 1.48). To prove sufficiency, that
if a function F satisfies the three conditions of the theorem then it is a cdf for some
random variable, is much harder. It must be established that there exists a sample
. space S, a probability function P on S, and a random variable X defined on S such
that F is the cdf of X. O

Example 1.5.4 (Tossing for a head) Suppc;se we do an experiment that consists
of tossing a coin until a head appears. Let p = probability of a head on ary given toss,
and define a random variable X = number of tosses required to get a head. Then, for
anyz =12, ...,

(1.5.2) P(X =z)=(1-p)*p,

since we must get z — 1 tails followed by a head for the event to occur and all trials
are independent. From (1.5.2) we calculate, for any positive integer z,

(1.5.3) P(X<z)= ip(x =i)= i(l _p)lp.
i=1 i=1
- The partial sum of the geometric series is
(1.5.4) zﬂ:tk—l 1=
= 1-¢’ ’

a fact that can be established by induction (see Exercise 1.50). Applying (1.5.4) to
our probability, we find that the cdf of the random variable X is
Fx(z)=P(X <z)
1-(1-p)*
_1-U-p
1-(1-p)
=1-(1-p)%, z=12,....
The cdf Fx(z) is flat between the nonnegative integers, as in Example 1.5.2.

It is easy to show that if 0 < p < 1, then Fx(z) satisfies the conditions of Theorem
1.5.3. First,

lim Fx(z)=0
z——00
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Figure 1.5.2. Geometric cdf, p= .3

since Fx(z) = 0 for all z < 0, and

lim Fx(z) = lim 1—-(1-p)° =1,

I—00 I—00
where z goes through only integer values when this limit is taken. To verify property
(b), we simply note that the sum in (1.5.3) contains more positive terms as z increases.

Finally, to verify (c), note that, for any z, Fx(z + ¢) = Fx(z) if € > 0 is sufficiently
small. Hence, '

lim Fx (z + €) = Fx(z),
€l0
so Fx(z) is right-continuous. Fx(z) is the cdf of a distribution called the geometric

distribution (after the series) and is pictured in Figure 1.5.2. I

Example 1.5.5 (Continuous edf) An example of a continuous cdf is the function

1
1+e3’

(1.5.5) Fx(z) =

which satisfies the conditions of Theorem 1.5.3. For example,

lim Fx(z)=0 since lim e™®

r——00 T——00

= 00
and

lim Fx(z)=1 since lim e™® =0.
T—0 T—00

Differentiating Fx (z) gives
d e "

T)=——7>
(1+e~%)

0,
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showing that Fiy(z) is increasing. Fx is not only right-continuous, but also continuous.
This is a special case of the logistic distribution. I

Example 1.5.6 (Cdf with jumps) If Fx is not a continuous function of z, it is
possible for it to be a mixture of continuous pieces and jumps. For example, if we
modify Fx(z) of (1.5.5) to be, for some ¢,1 > € > 0,

1—¢

Tre? ify<o0
14e? "Y=D

then Fy(y) is the cdf of a random variable Y (see Exercise 1.47). The function Fy
has a jump of height € at y = 0 and otherwise is continuous. This model might
be appropriate if we were observing the reading from a gauge, a reading that could
(theoretically) be anywhere between —oo and oo. This particular gauge, however,
sometimes sticks at 0. We could then model our observations with Fy, where € is the
probability that the gauge sticks. I

Whether a cdf is continuous or has jumps corresponds to the associated random
variable being continuous or not. In fact, the association is such that it is convenient
to define continuous random variables in this way.

Definition 1.5.7 A random variable X is continuous if Fx(z) is a continuous
function of z. A random variable X is discrete if Fx(z) is a step function of z.

We close this section with a theorem formally stating that Fx completely deter-
mines the probability distribution of a random variable X. This is true if P(X € A) is
defined only for events A in B, the smallest sigma algebra containing all the intervals
of real numbers of the form (a, b), [a,b), (a,b], and [a,b]. If probabilities are defined
for a larger class of events, it is possible for two random variables to have the same
distribution function but not the same probability for every event (see Chung 1974,
page 27). In this book, as in most statistical applications, we are concerned only with
events that are intervals, countable unions or intersections of intervals, etc. So we do
not consider such pathological cases. We first need the notion of two random variables
being identically distributed.

Definition 1.5.8 The random variables X and Y are identically distributed if, for
every set A € B!, P(X € A) = P(Y € A).

Note that two random variables that are identically distributed are not necessarily
equal. That is, Definition 1.5.8 does not say that X =Y.

Example 1.5.9 (Identically distributed random variables) Consider the ex-
periment of tossing a fair coin three times as in Example 1.4.3. Define the random
variables X and Y by

X = number of heads observed and Y = number of tails observed.
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The distribution of X is given in Example 1.4.3, and it is easily verified that the
distribution of Y is exactly the same. That is, for each k = 0,1, 2, 3, we have P(X =
k) = P(Y = k). So X and Y are identically distributed. However, for no sample
points do we have X(s) = Y (s). II

Theorem 1.5.10 The following two statements are equivalent:

a. The random variables X and Y are identically distributed.
b. Fx(z) = Fy(z) for every z.

Proof: To show equivalence we must show that each statement implies the other.
We first show that (a) = (b).

Because X and Y are identically distributed, for any set A € B!, P(X € A) =
P(Y € A). In particular, for every z, the set (—oo,z] is in B!, and

Fx(z) = P(X € (—o0,z]) = P(Y € (—00,z]) = Fy(x).

The converse implication, that (b) = (a), is much more difficult to prove. The
above argument showed that if the X and Y probabilities agreed on all sets, then
they agreed on intervals. We now must prove the opposite; that is, if the X and Y
probabilities agree on all intervals, then they agree on all sets. To show this requires
heavy use of sigma algebras; we will not go into these details here. Suffice it to say that
it is necessary to prove only that the two probability functions agree on all intervals
(Chung 1974, Section 2.2). O

1.6 Density and Mass Functions

Associated with a random variable X and its cdf Fix is another function, called either
the probability density function (pdf) or probability mass function {(pmf). The terms
pdf and pmf refer, respectively, to the continuous and discrete cases. Both pdfs and
pmfs are concerned with “point probabilities” of random variables.

Definition 1.6.1 The probability mass function (pmf) of a discrete random variable
X is given by

fx(x)=P(X =z) forallz

Example 1.6.2 (Geometric probabilities) For the geometric distribution of
Example 1.5.4, we have the pmf

fx(z)=P(X =2) = { (1-p)* 'p forz=1,2,...
0 otherwise.
Recall that P(X = z) or, equivalently, fx(z) is the size of the jump in the cdf at z. We
can use the pmf to calculate probabilities. Since we can now measure the probability
of a single point, we need only sum over all of the points in the appropriate event.
Hence, for positive integers a and b, with a < b, we have

b

b
Pla<X<b) =Y fx(k)=Y (1-p""p.

=a k=a
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. As a special case of this we get

o

(1.6.1) P(X <b)=)_ fx(k) = Fx(b). [

k=1

A widely accepted convention, which we will adopt, is to use an uppercase letter
for the cdf and the corresponding lowercase letter for the pmf or pdf.

We must be a little more careful in our definition of a pdf in the continuous case.
If we naively try to calculate P(X = z) for a continuous random variable, we get the
following. Since {X =z} C {z — e < X < z} for any € > 0, we have from Theorem
1.2.9(c) that

PX=z)<Plz—e< X <z)=Fx(z)—Fx(x—¢)
for any ¢ > 0. Therefore,

0<PX=2x)< lelﬁ)l [Fx(z) — Fx(z—¢)] =0
by the continuity of Fx. However, if we understand the purpose of the pdf, its defi-
nition will become clear.
From Example 1.6.2, we see that a pmf gives us “point probabilities.” In the discrete
case, we can sum over values of the pmf to get the cdf (as in (1.6.1)). The analogous
procedure in the continuous case is to substitute integrals for sums, and we get

P(X <z)=Fx(z)= [z Fx(t) dt.

Using the Fundamental Theorem of Calculus, if fx(z) is continuous, we have the
further relationship
d

(1.6.2) EFX(I) = fx(z).

Note that the analogy with the discrete case is almost exact. We “add up” the “point
probabilities” fx(z) to obtain interval probabilities.

Definition 1.6.3 The probability density function or pdf, fx(z), of a continuous
random variable X is the function that satisfies

(1.6.3) Fx(z) = /I fx(t)dt for all z.

A note on notation: The expression “X has a distribution given by Fx (z)” is abbrevi-
ated symbolically by “X ~ Fx(z),” where we read the symbol “~” as “is distributed
as.” We can similarly write X ~ fx(z) or, if X and Y have the same distribution,
X~Y.

In the continuous case we can be somewhat cavalier about the specification of
interval probabilities. Since P(X = z) = 0 if X is a continuous random variable,

Pla<X <b)=Pla<X<b=Pla<X<b=Pa<X<bh).
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e’
A= T

P(asXsb)=§b fodx
a

=F,@®) - K (a)

Figure 1.6.1. Area under logistic curve

It should be clear that the pdf (or pmf) contains the same information as the cdf.
This being the case, we can use either one to solve problems and should try to choose
the simpler one.

Example 1.6.4 (Logistic probabilities) For the logistic distribution of Example
1.5.5 we have

1
X(Ct) - 1+e_z
and, hence,
d e *
z)=—Fx(z)= ———.
fx(@) = - Fx(z) (15 eo)?

The area under the curve fx(z) gives us interval probabilities (see Figure 1.6.1):‘ '
Pla< X <b) = Fx(b)—Fx(a)

= /_Zofx(:z)da:—/_;fx(fﬂ)d:z

: h
- / fx () dz. I

There are really only two requirements for a pdf (or pmf), both of which are im-
mediate consequences of the definition.

Theorem 1.6.5 A function fx(z) is a pdf (or pmf) of a random variable X if and
only if

a. fx(z) >0 for all z.

b. ¥ fx(x)=1 (pmf) or [ fx(z)dz =1 (pdf).
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Proof: If fx(z) is a pdf (or pmf), then the two properties are immediate from the
definitions. In particular, for a pdf, using (1.6.3) and Theorem 1.5.3, we have that

1= 2:li,nolo Fx(z) = /°° Fx(t)dt.

The converse implication is equally easy to prove. Once we have fx(z), we can define
Fx(z) and appeal to Theorem 1.5.3. 3

From a purely mathematical viewpoint, any nonnegative function with a finite
positive integral (or sum) can be turned into a pdf or pmf. For example, if h(z) is
any nonnegative function that is positive on a set A, 0 elsewhere, and

/ h(z)dz = K < 00
{z€A}

for some constant K > 0, then the function fx(z) = h(z)/K is a pdf of a random
variable X taking values in A.

. Actually, the relationship (1.6.3) does not always hold because Fx(x) may be
continuous but not differentiable. In fact, there exist continuous random variables
for which the integral relationship does not exist for any fx(z). These cases are
rather pathological and we will ignore them. Thus, in this text, we will assume that
(1.6.3) holds for any continuous random variable. In more advanced texts (for exam-
“ple, Billingsley 1995, Section 31) a random variable is called absolutely continuous if
(1.6.3) holds.

1.7 Exercises

1.1 For each of the following experiments, describe the sample space.

(a) Toss a coin four times.

(b} Count the number of insect-damaged leaves on a plant.

(¢) Measure the lifetime (in hours) of a particular brand of light bulb.
(d) Record the weights of 10-day-old rats.

(e) Observe the proportion of defectives in a shipment of electronic components.
1.2 Verify the following identities.

(a) AA\AB=A\(ANB)=ANB°

(b) B=(BNA)U(BN A%

(¢} B\A=BnA®

(dy AUB= AU (BN A"
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1.3

1.4

1.5

1.6

1.7

1.8

T .
PROBABILITY THEORY Section 1.7

Finish the proof of Theorem 1.1.4. For any events A, B, and C defined on a sample
space S, show that

(a) AUB=BUAand ANB=BNA. (commutativity)
(b) AU(BUC) = (AUB)UC and AN(BNC)=(ANB)NC. (associativity)
(c) (AUB)®= A°NB° and (AN B)° = A°U B". (DeMorgan’s Laws)

For events A and B, find formulas for the probabilities of the following events in terms
of the quantities P(A), P(B), and P(AN B).

(a) either A or B or both
(b) either A or B but not both
(c) at least one of A or B
(d) at most one of A or B

Approximately one-third of all human twins are identical (one-egg) and two-thirds are
fraternal (two-egg) twins. Identical twins are necessarily the same sex, with male and
female being equally likely. Among fraternal twins, approximately one-fourth are both
female, one-fourth are both male, and half are one male and one female. Finally, among
all U.S. births, approximately 1 in 90 is a twin birth. Define the following events:

A = {a U.S. birth results in twin females}
B = {a U.S. birth results in identical twins}
C = {a U.S. birth results in twins}

(a) State, in words, the event ANBNC.

(b) Find P(ANBNC). -

Two pennies, one with P(head) = u and one with P(head) = w, are to be tossed
together independently. Define

po = P(0 heads occur),
p1 = P(1 head occurs),
p2 = P(2 heads occur).

Can u and w be chosen such that po = p1 = p2? Prove your answer.

Refer to the dart game of Example 1.2.7. Suppose we do not assume that the proba-
bility of hitting the dart board is 1, but rather is proportional to the area of the dart
board. Assume that the dart board is mounted on a wall that is hit with probability
1, and the wall has area A. ’

(a) Using the fact that the probability of hitting a region is proportional to area,
construct a probability function for P(scoring ¢ points), i = 0,...,5. (No points
are scored if the dart board is not hit.)

(b) Show that the conditional probability distribution P(scoring ¢ points|board is hit)
is exactly the probability distribution of Example 1.2.7.

Again refer to the game of darts explained in Example 1.2.7.

(a) Derive the general formula for the probability of scoring i points.

(b) Show that P(scoring i points) is a decreasing function of i, that is, as the points
increase, the probability of scoring them decreases.

(c) Show that P(scoring i points) is a probability function according to the Kol-
mogorov Axioms.
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1.9

1.10

1.11

1.12

Prove the general version of DeMorgan’s Laws. Let {Aqa: a € T'} be a (possibly un-
countable) collection of sets. Prove that

(a) (UaAa)® = NaAG. (b) (Nada)® = UaAG.

Formulate and prove a version of DeMorgan’s Laws that applies to a finite collection
of sets A1,...,An.

Let S be a sample space.

(a) Show that the collection B = {0, S} is a sigma algebra.

(b) Let B = {all subsets of S, including S itself}. Show that B is a sigma algebra.
(c) Show that the intersection of two sigma algebras is a sigma algebra.

It was noted in Section 1.2.1 that statisticians who follow the deFinetti school do not
accept the Axiom of Countable Additivity, instead adhering to the Axiom of Finite
Additivity.

(a) Show that the Axiom of Countable Additivity implies Finite Additivity.

" (b) Although, by itself, the Axiom of Finite Additivity does not imply Countable

1.13
1.14

1.15

1.16

1.17

1.18

1.19

1.20

Additivity, suppose we supplement it with the following. Let A3 D A2 D --- D
An D - be an infinite sequence of nested sets whose limit is the empty set, which
we denote by A, | 0. Consider the following:

Axiom of Continuity: If A, | @, then P(A,) — 0.

Prove that the Axiom of Continuity and the Axiom of Finite Additivity imply
Countable Additivity.

If P(A) = ; and P(B®) = , can A and B be disjoint? Explain.
Suppose that a sample space S has n elements. Prove that the number of subsets that
can be formed from the elements of S is 2™.

Finish the proof of Theorem 1.2.14. Use the result established for k = 2 as the basis
of an induction argument.

How many different sets of initials can be formed if every person has one surname and
(a) exactly two given names? (b) either one or two given names?
(b) either one or two or three given names?
(Answers: (a) 262 (b) 26° + 262 (c) 26* + 26° + 262)
In the game of dominoes, each piece is marked with two numbers. The pieces are
symmetrical so that the number pair is not ordered (so, for example, (2,6) = (6,2)).
How many different pieces can be formed using the numbers 1,2,...,n?
(Answer: n(n + 1)/2)
If n balls are placed at random into n cells, find the probability that exactly one cell
remains empty.
(Answer: (;‘)n!/n")
If a multivariate function has continuous partial derivatives, the order in .which the
derivatives are calculated does not matter. Thus, for example, the function f(z,y) of
two variables has equal third partials

63 3

BTayf(x’ y) = Wf(l‘, Y)-

(a) How many fourth partial derivatives does a function of three variables have?

(b) Prove that a function of n variables has ("*7™!) rth partial derivatives.

My telephone rings 12 times each week, the calls being randomly distributed among
the 7 days. What is the probability that I get at least one call each day?

(Answer: .2285)
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1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29
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A closet contains n pairs of shoes. If 2r shoes are chosen at random (2r < n), what is

the probability that there will be no matching pair in the sample?

(Answer: (;;) 2% G’:))

(a) In a draft lottery containing the 366 days of the year (including February 29),
what is the probability that the first 180 days drawn (without replacement) are
evenly distributed among the 12 months?

(b) What is the probability that the first 30 days drawn contain none from September?

(Answers: (a) .167 x 1078 (b) (%"?)/ %‘?))

Two people each toss a fair coin n times. Find the probability that they will toss the

same number of heads.

(Answer: (5)" (%))

Two players, A and B, alternately and independently flip a coin and the first player

to obtain a head wins. Assume player A flips first.

(a) If the coin is fair, what is the probability that A wins?
(b) Suppose that P(head) = p, not necessarily ;. What is the probability that A

wins?
(c) Show that for all p,0 < p < 1, P(A wins) > % (Hint: Try to write P(A wins)
in terms of the events E, Ea, ..., where E; = {head first appears on ith toss}.)

(Answers: (a) 2/3 (b) —1_—(1{—‘,)-;)

The Smiths have two children. At least one of them is a boy. What is the probability
that both children are boys? (See Gardner 1961 for a complete discussion of this
problem.)

A fair die is cast until a 6 appears. What is the probability that it must be cast more
than five times?

Verify the following identities for n > 2.

(2) Z;::o(_‘l): (1:) =0 (b) Y%,k (:) =n2""
n n
(0 Th(-D*k (%) =0
A way of approximating large factorials is through the use of Stirling’s Formula:
n! & V2t D
a complete derivation of which is difficult. Instead, prove the easier fact,

. n! _
T}er:o A (/g = a constant.
(Hint: Feller 1968 proceeds by using the monotonicity of the logarithm to establish
that

k k41
/ log:cd:z:<logk</ logzdz, k=1,...,n,
k—1 k

and hence

n n.+1
/ log zdz < logn! < / log z dz.
0 1

Now compare logn! to the average of the two integrals. See Exercise 5.35 for another

derivation.)

(a) For the situation of Example 1.2.20, enumerate the ordered samples that make up
the unordered samples {4, 4, 12,12} and {2,9,9,12}.

(b) Enumerate the ordered samples that make up the unordered samples {4, 4, 12,12}
and {2,9,9,12}.
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1.30

1.31

1.32

1.33

1.34

1.35

1.36

(c) Suppose that we had a collection of six numbers, {1,2,7,8, 14,20}. What is the
probability of drawing, with replacement, the unordered sample {2, 7,7, 8, 14, 14}?

(d) Verify that an unordered samp'le of size k, from m different numbers repeated

ki,kz,...,km times, has K ordered components, where k1 + k2 +---+
! kilkal - km!
km = k.

(e) Use the result of the previous part to establish the identity

Z k! _(k+m-—-1
kilkal - km! k ’

ki1,k2,....km:k1+ka+-+hkm=k

For the collection of six numbers, {1,2,7,8, 14,20}, draw a histogram of the distribu-
tion of all possible sample averages calculated from samples drawn with replacement.
For the situation of Example 1.2.20, the average of the original set of numbers
{2,4,9,12} is 2, which has the highest probability.

(a) Prove that, in general, if we sample with replacement from the set {z1,z2,...,Zn},
the outcome with average (z1+z2+- - -+Zn)/n is the most likely, having probability

n!
nh’

(b) Use Stirling’s Formula (Exercise 1.28) to show that n!/n" =~ v/2n7/e™ (Hall 1992,
Appendix I).

(c) Show that the probability that a particular z; is missing from an outcome is
(1-3)"—>elasn— oo '

An employer is about to hire one new employee from a group of N candidates, whose

future potential can be rated on a scale from 1 to N. The employer proceeds according

to the following rules:

(a) Each candidate is seen in succession (in random order) and a decision is made
whether to hire the candidate.

(b) Having rejected m—1 candidates (m > 1), the employer can hire the mth candidate
only if the mth candidate is better than the previous m — 1.

Suppose a candidate is hired on the ith trial. What is the probability that the best
candidate was hired?

Suppose that 5% of men and .25% of women are color-blind. A person is chosen at
random and that person is color-blind. What is the probability that the person is
male? (Assume males and females to be in equal numbers.)

Two litters of a particular rodent species have been born, one with two brown-haired
and one gray-haired (litter 1), and the other with three brown-haired and two gray-
haired (litter 2). We select a litter at random and then select an offspring at random
from the selected litter.

(a) What is the probability that the animal chosen is brown-haired? )
(b) Given that a brown-haired offspring was selected, what is the probability that the
sampling was from litter 1?

Prove that if P(-) is a legitimate probability function and B is a set with P(B) > 0,
then P(:|B) also satisfies Kolmogorov’s Axioms.

If the probability of hitting a target is é, and ten shots are fired independently, what
is the probability of the target being hit at least twice? What is the conditional prob-
ability that the target is hit at least twice, given that it is hit at least once?
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1.38

1.39

1.40
1.41
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Here we look at some variations of Example 1.3.4.

(a) In the warden's calculation of Example 1.3.4 it was assumed that if A were to be
pardoned, then with equal probability the warden would tell A that either B or C
would die. However, this need not be the case. The warden can assign probabilities
« and 1 — « to these events, as shown here:

Prisoner pardoned Warden tells A

A B dies with probability =y

A C dies with probability 1 — «
B C dies

C B dies

Calculate P(A|W) as a function of ~. For what values of v is P(A|W) less than,
equal to, or greater than 3?

(b) Suppose again that v = 3, as in the example. After the warden tells A that B
will die, A thinks for a while and realizes that his original calculation was false.
However, A then gets a bright idea. A asks the warden if he can swap fates with C.
The warden, thinking that no information has been passed, agrees to this. Prove
that A’s reasoning is now correct and that his probability of survival has jumped
to %!

A similar, but somewhat more complicated, problem, the “Monte Hall problem” is

discussed by Selvin (1975). The problem in this guise gained a fair amount of noto-

riety when it appeared in a Sunday magazine (vos Savant 1990) along with a correct
answer but with questionable explanation. The ensuing debate was even reported on
the front page of the Sunday New York Times (Tierney 1991). A complete and some-
what amusing treatment is given by Morgan et al. (1991) [see also the response by vos

Savant 1991]. Chun (1999) pretty much exhausts the problem with a very thorough

analysis.

Prove each of the following statements. (Assume that any conditioning event has pos-

itive probability.)

(a) If P(B) =1, then P(A|B) = P(A) for any A.

(b) If A C B, then P(B|A) =1 and P(A|B) = P(A)/P(B).

(c) If A and B are mutually exclusive, then

P(A)

P(A|[AUB)= ————-—.

(Al ) P(A) + P(B)
(d) P(ANBNC) = P(A|BnC)P(B|C)P(C).
A pair of events A and B cannot be simultaneously mutually exclusive and independent.
Prove that if P(A) > 0 and P(B) > 0, then:
(a) If A and B are mutually exclusive, they cannot be independent.
(b) If A and B are independent, they cannot be mutually exclusive.
Finish the proof of Theorem 1.3.9 by proving parts (b) and (c).
As in Example 1.3.6, consider telegraph signals “dot” and “dash” sent in the proportion

3:4, where erratic transmissions cause a dot to become a dash with probability i— and
a dash to become a dot with probability 3.

(a) If a dash is received, what is the probability that a dash has been sent?
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1.44

1.45

1.46

1.47

1.48

(b) Assuming independence between signals, if the message dot-dot was received,
what is the probability distribution of the four possible messages that could have
been sent?

The inclusion-exclusion identity of Miscellanea 1.8.1 gets it name from the fact that
it is proved by the method of inclusion and exclusion (Feller 1968, Section IV.1). Here
we go into the details. The probability P(Uj-;A;) is the sum of the probabilities of
all the sample points that are contained in. at least one of the A;s. The method of
inclusion and exclusion is a recipe for counting these points.

(a) Let Ex denote the set of all sample points that are contained in exactly k of the
events Ay, Az, ..., An. Show that P(UJ_ 1 A;) =) - | P(E;).

(b) If E: is not empty, show that P(E1) = > " | P(A:) .

(c) Without loss of generality, assume that Ej is contained in A, Aa,..., Ax. Show
that P(Ex) appears k times in the sum Py, (;) times in the sum P;, (;) times in

the sum Pj, etc.
k k k
() ()= ()
(See Exercise 1.27.)

(d) Show that
(e) Show that parts (a) — (c) imply Y " | P(E:) = P — P, = - - - & P, establishing
the inclusion-exclusion identity.

For the inclusion-exclusion identity of Miscellanea 1.8.1:

(a) Derive both Boole’s and Bonferroni’s Inequality from the inclusion-exclusion iden-
tity.

(b) Show that the P; satisfy P; > P; if ¢ > j and that the sequence of bounds in
Miscellanea 1.8.1 improves as the number of terms increases.

(c) Typically as the number of terms in the bound increases, the bound becomes more
useful. However, Schwager (1984) cautions that there are some cases where there
is not much improvement, in particular if the A;s are highly correlated. Examine
what happens to the sequence of bounds in the extreme case when A; = A for
every 1. (See Worsley 1982 and the correspondence of Worsley 1985 and Schwager
1985.)

Standardized tests provide an interesting application of probability theory. Suppose
first that a test consists of 20 multiple-choice questions, each with 4 possible answers.
If the student guesses on each question, then the taking of the exam can be modeled
as a sequence of 20 independent events. Find the probability that the student gets at
least 10 questions correct, given that he is guessing.

Show that the induced probability function defined in (1.4.1) defines a legitimate
probability function in that it satisfies the Kolmogorov Axioms. )
Seven balls are distributed randomly into seven cells. Let X; = the number of cells
containing exactly 7 balls. What is the probability distribution of X3? (That is, find
P(X3 = z) for every possible z.)

Prove that the following functions are cdfs.

(8) 3+ ttan~'(z), z € (—00,0) (b) (1+e™*)™", z € (—00,00)
(c) e* 7, z € (—o0,00) (d) 1—e%, z € (0,00)
(e) the function defined in (1.5.6)

Prove the necessity part of Theorem 1.5.3.
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A cdf Fx is stochastically greater than a cdf Fy if Fx(t) < Fy(t) for all t and Fx (t) <
Fy (t) for some t. Prove that if X ~ Fx and Y ~ Fy, then

P(X>t)>P(Y >t) foreveryt
and
P(X >t)>P(Y >t) forsomet,

that is, X tends to be bigger than Y.

Verify formula (1.5.4), the formula for the partial sum of the geometric series.

An appliance store receives a shipment of 30 microwave ovens, 5 of which are (unknown
to the manager) defective. The store manager selects 4 ovens at random, without
replacement, and tests to see if they are defective. Let X = number of defectives
found. Calculate the pmf and cdf of X and plot the cdf.

Let X be a continuous random variable with pdf f(z) and cdf F(z). For a fixed number
zo, define the function

o(z) = {(J;(z)/[l — F(zo)] z 220

Iz < Ixg.

Prove that g(z) is a pdf. (Assume that F(zo) < 1.)
A certain river floods every year. Suppose that the low-water mark is set at 1 and the
high-water mark Y has distribution function

1<y<oo.

1
Fy(y)=P(Y <y)=1- e

(a) Verify that Fy(y) is a cdf.

(b) Find fy(y), the pdf of Y.

(c) If the low-water mark is reset at 0 and we use a unit of measurement that is % of
that given previously, the high-water mark becomes Z = 10(Y — 1). Find Fz(2).

For each of the following, determine the value of ¢ that makes f(z) a pdf.

(a) f(z)=csinz,0< z < 7/2 (b) f(z)=ce ®!, —o0 <z <

An electronic device has lifetime denoted by T. The device has value V = 5 if it fails

before time t = 3; otherwise, it has value V = 2T'. Find the cdf of V, if T has pdf

_ 1 —yas
fr(t) = 15¢ , t>0.

1.8.1 Bonferroni and Beyond

The Bonferroni bound of (1.2.10), or Boole’s Inequality (Theorem 1.2.11), provides
simple bounds on the probability of an intersection or union. These bounds can be
made more and more precise with the following expansion.

For sets A, As,...A,, we create a new set of nested intersections as follows. Let
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Py= Y P(AiNA)
1<i<j<n

n

Y. P(ANA;N Ay

1<i<j<k<n

Py

]

P,=P(A1NA;N---NA,).
Then the inclusion-ezclusion identity says that
P(A1UA2U~“UA,1) =P ~P+P3—Py+---£P,.

Moreover, the P; are ordered in that P; > P; if i < j, and we have the sequence of
upper and lower bounds

P > P(U?=1A,‘) P - P
P -P,+P;>PU_A) > PA-P,+P3—- P,

vV

See Exercises 1.42 and 1.43 for details.

These bounds become increasingly tighter as the number of terms increases, and
they provide a refinement of the original Bonferroni bounds. Applications of these
bounds include approximating probabilities of runs (Karlin and Ost 1988) and
multiple comparisons procedures (Naiman and Wynn 1992).



Chapter 2

Transformations and Expectations

“We want something more than mere theory and preaching now, though.”
Sherlock Holmes
A Study in Scarlet

Often, if we are able to model a phenomenon in terms of a random variable X
with cdf Fx(z), we will also be concerned with the behavior of functions of X. In
this chapter we study techniques that allow us to gain information about functions
of X that may be of interest, information that can range from very complete (the
distributions of these functions) to more vague (the average behavior).

2.1 Distributions of Functions of a Random Variable

If X is a random variable with cdf Fyx(z), then any function of X, say g(X), is
also a random variable. Often g(X) is of interest itself and we write Y = g(X) to
denote the new random variable g(X). Since Y is a function of X, we can describe
the probabilistic behavior of Y in terms of that of X. That is, for any set A,

P(Y € A) = P(9(X) € 4),

showing that the distribution of Y depends on the functions Fx and g. Depending
on the choice of g, it is sometimes possible to obtain a tractable expression for this
probability.

Formally, if we write y = g(z), the function g(z) defines a mapping from the original
sample space of X, X, to a new sample space, ), the sample space of the random
variable Y. That is,

glz): X - ).

We associate with g an inverse mapping, denoted by g~
subsets of ) to subsets of X, and is defined by

(2.1.1) g Y (A) ={z e X: g(z) € A}.

1 which is a mapping from

Note that the mapping g~! takes sets into sets; that is, g1 (A) is the set of points
in X that g(z) takes into the set A. It is possible for A to be a point set, say A = {y}.
Then

9 {y}) ={z € x: g(z) =y}.
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In this case we often write g~!(y) instead of g~!({y}). The quantity g~1(y) can still
be a set, however, if there is more than one x for which g(z) = y. If there is only one z
for which g(z) = y, then g~*(y) is the point set {z}, and we will write g~'(y) = z. If
the random variable Y is now defined by Y = g(X), we can write for any set A C ),

P(Y € A) = P(g(X) € A)
(2.1.2) = P({z € X: g(z) € A})
=P (X eg™'(4)).

This defines the probability distribution of Y. It is straightforward to show that this
probability distribution satisfies the Kolmogorov Axioms.

If X is a discrete random variable, then X is countable. The sample space for
Y =9g(X)isY = {y: y=g(z), z € X}, which is also a countable set. Thus, Y is also
a discrete random variable. From (2.1.2), the pmf for Y is

fF@)=P¥ =y)= Y PX=z)= ) fx(z), foryel,
z€g9~1(y) z€g~(y)

and fy(y) =0 for y ¢ ). In this case, finding the pmf of Y involves simply identifying
g~ }(y), for each y € ), and summing the appropriate probabilities.

Example 2.1.1 (Binomial transformation) A discrete random variable X has
a binomial distribution if its pmf is of the form

(2.1.3) fx(z)=P(X =z) = (:) PP(L—p)" %, z=0,1,...,n,

where n is a positive integer and 0 < p < 1. Values such as n and p that can
be set to different values, producing different probability distributions, are called
parameters. Consider the random variable Y = g(X), where g(z) = n — z; that is,
Y=n—-X.Here X = {0,1,...,n} and Y = {y:y=g(z), z € X} = {0,1,...,n}.
For any y € Y, n—z =g(z) = y if and only if £ = n — y. Thus, g~!(y) is the single
point £ = n — y, and

) = Y fx@

z€g1(y)
= fx(n-1y)
- ( n ) p* (1 — p)r )

n—y
n Definition 1.2.17
= 1-p)¥p™v. . .
() a-»rs (imptes (3= )

Thus, we see that Y also has a binomial distribution, but with parameters n and
1—-0p l

If X and Y are continuous random variables, then in some cases it is possible to
find simple formulas for the cdf and pdf of Y in terms of the cdf and pdf of X and
the function g. In the remainder of this section, we consider some of these cases.
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sin(x)

1

0 x
x, Xy s Xy Xa 2x

Figure 2.1.1. Graph of the transformation y = sin®(x) of Example 2.1.2

The cdf of Y = g(X) is

Fy(y)=P

(2.1.4)

Y
P(g(X ) y)
P({z € X: g(z) <y})

/ fx () dz.
{zeX: g(z )<y}

Sometimes there may be difficulty in identifying {z € X: g(z) < y} and carrying out
the integration of fx(z) over this region, as the next example shows.

Example 2.1.2 (Uniform transformation) Suppose X has a uniform distribu-
tion on the interval (0, 27), that is,

_[1/@2n) 0<z<2rm
fx (@) { 0 otherwise.

Consider Y = sin?(X). Then (see Figure 2.1.1)
(2.1.5) P(YSZI)ZP(Xle)-i—P(Z:QSXS$3)+P(X21:4).

From the symmetry of the function sin?(z) and the fact that X has a uniform distri-
bution, we have

PX<z1)=PX >z4) and Pzs < X <1x3)=2P(z2 < X <),
50
(2.1.6) PY<y)=2P(X <x1)+2P(z2 < X < 1),
where z, and z5 are the two solutions to

sin®(z) = ¥, 0<z<m.
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Thus, even though this example dealt with a seemingly simple situation, the resulting
expression for the cdf of Y was not simple. I

When transformations are made, it is important to keep track of the sample spaces
of the random variables; otherwise, much confusion can arise. When the transforma-
tion is from X to Y = g(X), it is most convenient to use

(2.1.7) X ={=z: fx(z) >0} and Y= {y: y=g(z) for some z € X}.

The pdf of the random variable X is positive only on the set X and is 0 elsewhere.
Such a set is called the support set of a distribution or, more informally, the support
of a distribution. This terminology can also apply to a pmf or, in general, to any
nonnegative function.

It is easiest to deal with functions g(z) that are monotone, that is, those that satisfy
either

u > v = g(u) > g(v) (increasing) or u <wv= g(u)> g(v) (decreasing).

If the transformation z — g¢(z) is monotone, then it is one-to-one and onto from
X — ). That is, each z goes to only one y and each y comes from at most one z
(one-to-one). Also, for Y defined as in (2.1.7), for each y € Y there is an z € X such
that g(z) = y (onto). Thus, the transformation g uniquely pairs zs and ys. If g is
“monotone, then g~! is single-valued; that is, g~!(y) = z if and only if y = g(z). If g
is increasing, this implies that

{zeX: g(z)<y}={zeXx: g7 (g9(2)) <g™'(¥)}
(2.1.8) ={zeX: z<g7'(y)}

If g is decreasing, this implies that

{zeX: glz)<y}={zeXx: g7 (g(z)) 297" ()}
(2.1.9) ={zeX: z>g7'(y)}.

(A graph will illustrate why the inequality reverses in the decreasing case.) If g(z) is
an increasing function, then using (2.1.4), we can write

P 3 do = 9 (W) o= Fu (a1
vo=[ @i [ x@e=rx(w),

If g(z) is decreasing, we have
Fe)= [ fx@)do=1-Fx (47)).
97 '(v)

The continuity of X is used to obtain the second equality. We summarize these results
in the following theorem.
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Theorem 2.1.3 Let X have cdf Fx(z), let Y = g(X), and let X and ) be defined

as in (2.1.7).

a. If g is an increasing function on X, Fy (y) = Fx (971 (y)) fory € V.

b. Ifg is a decreasing function on X and X is a continuous random variable, Fy (y) =
1 - Fx (g7(y)) fory € ).

Example 2.1.4 (Uniform-exponential relationship—I) Suppose X ~ fx(z) =
1if 0 < z < 1 and 0 otherwise, the uniform(0,1) distribution. It is straightforward
to check that Fx(z) = z, 0 < £ < 1. We now make the transformation Y = g(X) =
—log X . Since

d d -1
e = —(— = —_— f
! g(z) d.’L‘( log z) o <0, or 0<z<l,

g(z) is a decreasing function. As X ranges between 0 and 1, — log = ranges between 0
and oo, that is, ) = (0,00). For y > 0, y = —log z implies z = e™¥, so g™ !(y) = e~ V.
Therefore, for y > 0, :

Fy(y)=1-Fx (g7 (¥)) =1—-Fx(e¥)=1-e¥. (Fx(z)=1)

Of course, Fy(y) = 0 for y < 0. Note that it was necessary only to verify that
g(z) = —logz is monotone on (0,1), the support of X. I

If the pdf of Y is continuous, it can be obtained by differentiating the cdf. The
resulting expression is given in the following theorem.

Theorem 2.1.5 Let X have pdf fx(z) and let Y = g(X), where g is a monotone
function. Let X and Y be defined by (2.1.7). Suppose that fx(z) is continuous on X
and that g~1(y) has a continuous derivative on Y. Then the pdf of Y is given by

d
-1 -1
— - c
(2.1.10) frly) = {fx(g (y))‘dyg (y)‘ yey
0 otherwise.
Proof: From Theorem 2.1.3 we have, by the chain rule,
fx (g_l(y))ig_l(y) if g is increasing
) = <Fy(y) = W
Y\¥y) = dy Y\y) =

d _ e . .
—fx(g‘l(y))@g Y(y) if g is decreasing,

which can be expressed concisely as (2.1.10). |

Example 2.1.6 (Inverted gamma pdf) Let fx(z) be the gamma pdf

1 n-1,-z/8
= 0z«
f(x) (n___ ]-)!,an € y T m)
where ( is a positive constant and n is a positive integer. Suppose we want to find the
pdf of g(X) = 1/X. Note that here the support sets X and ) are both the interval
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(0,00). If we let y = g(z), then g™'(y) = 1/y and £g~'(y) = —1/3*. Applying the
above theorem, for y € (0, 00), we get

Fr@) = fx (07'@)) |§’59-1<y))

n—1
-1 (l) /60w L
(n—1)18" \y Y

n+1l
S - <l) e-1/00),
(n—1)!18" \y

a special case of a pdf known as the inverted gemma pdf. I

In many applications, the function g may be neither increasing nor decreasing;
hence the above results will not apply. However, it is often the case that g will be
monotone over certain intervals and that allows us to get an expression for Y = g(X).
(If g is not monotone over certain intervals, then we are in deep trouble.)

Example 2.1.7 (Square transformation) Suppose X is a continuous random
variable. For y > 0, the cdf of Y = X? is

Fy(y) = P(Y <y) = P(X? <y) = P(—/F < X < V3).

Because z is continuous, we can drop the equality from the left endpoint and obtain

Fy(y)=P(—vVy< X < V)
=P(X<y)-P(X<~yy) = Fx(V¥)- Fx(—/%)-

The pdf of Y can now be obtained from the cdf by differentiation:

@) = LF()

o'
= 2 Fx(Vi) =~ Fx(~VF)

1 1
N Ix(Vy) + NG fx(=vy),

where we use the chain rule to differentiate Fx(,/y) and Fx(—,/y). Therefore, the
pdf is

(2.1.11) fr(y) = \/—(fx V) + fx(=9)).

Notice that the pdf of Y in (2.1.11) is expressed as the sum of two pieces, pieces
that represent the intervals where g(z) = z? is monotone. In general, this will be the
case. I
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Theorem 2.1.8 Let X have pdf fx(z), let Y = g(X), and define the sample
space X as in (2.1.7). Suppose there ezists a partition, Ao, A1, . .., Ak, of X such that
P(X € Ao) = 0 and fx(z) is continuous on each A;. Further, suppose there erist
functions g1(z),...,gx(x), defined on Ai, ..., Ak, respectively, satisfying

1. 9(z) = gi(z), for z € A,

ii. gi(z) is monotone on A;,
iii. the setY = {y: y = gi(z) for some z € A;} is the same for eachi=1,...,k,
and
iv. g; 1(y) has a continuous derivative on Y, for eachi =1,... k.

Then

Y fx (971 (w) ‘d—dg;gfl(y)¢ yey

0 otherwise.

fr(y) =

The important point in Theorem 2.1.8 is that X can be divided into sets A1,..., Ak
such that g(z) is monotone on each A;. We can ignore the “exceptional set” Ap since
P(X € Ap) = 0.1t is a technical device that is used, for example, to handle endpoints
of intervals. It is important to note that each g;(z) is a one-to-one transformation
from A; onto ) . Furthermore, g; !(y) is a one-to-one function from ) onto A; such
that, for.y € Y, g7 (y) gives the unique = = g; *(y) € A; for which g;(z) = y. (See
Exercise 2.7 for an extension.)

Example 2.1.9 (Normal-chi squared relatlonshlp) Let X have the standard
normal distribution,

2
e~ /2, —00 < T < 00.

fx(z) = \/%

Consider Y = X2. The function g(z) = z? is monotone on (—o0,0) and on (0, 00).
The set YV = (0, 00). Applying Theorem 2.1.8, we take

Ao = {0} ;
A =(-0,0), gi(®)=2%  g'(¥)=-V¥
A2 = (0,00), 92(1) = $2’ ( ) \/?7

The pdf of Y is

1 2
— _— o~ (=vW)?/2|_ —(\/') /2
R v e v
1 1
—_— —y/2’ O<y <o
\/27r NG y

The pdf of Y is one that we will often encounter, that of a chi squared random variable
with 1 degree of freedom. I
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Figure 2.1.2. (a) F(z) strictly increasing; (b) F(z) nondecreasing

We close this section with a special and very useful transformation.

Theorem 2.1.10 (Probability integral transformation) Let X have continuous
cdf Fx(z) and define the random variable Y as Y = Fx(X). Then Y is uniformly
distributed on (0,1), that is, P(Y <y)=9,0<y< 1.

Before we prove this theorem, we will digress for a moment and look at F;l, the
inverse of the cdf Fx, in some detail. If Fx is strictly increasing, then F;l is well
defined by

(2.1.12) Fi'lyy=z & Fx(z)=y.

However, if Fix is constant on some interval, then F ! is not well defined by (2.1.12),
as Figure 2.1.2 illustrates. Any z satisfying z; < « < z satisfies Fx(z) = y.
This problem is avoided by defining Fi'(y) for 0 < y <1 by

(2.1.13) Fx'(y) = inf {z: Fx(z) 2y},

a definition that agrees with (2.1.12) when Fy is nonconstant and provides an Fy'
that is single-valued even when Fx is not strictly increasing. Using this definition, in
Figure 2.1.2b, we have F;l(y) = z;. At the endpoints of the range of y, F;l(y) can
also be defined. Fx'(1) = oo if Fx(z) < 1 for all z and, for any Fx, Fg'(0) = —oo.

Proof of Theorem 2.1.10: For Y = Fx(X) we have, for 0 < y < 1,

P(Y<y) = P(Fx(X)<y)
= P(Fx'[Fx(X)| < Fx'(y)) (Fx' is increasing)
= P(X <Fx'(y)) (see paragraph below)
= Fx(Fx'(y)) (definition of Fx)

= y. (continuity of Fix)
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At the endpoints we have P(Y < y) =1fory > 1and P(Y < y) =0 for y <0,
showing that Y has a uniform distribution.
The reasoning behind the equality

P (Fx'(Fx(X)) < Fx'(y)) = P(X < Fx'(v))

is somewhat subtle and deserves additional attention. If F'x is strictly increasing, then
it is true that Ff; Y(Fx(z)) = z. (Refer to Figure 2.1.2a.) However, if Fx is flat, it
may be that F*(Fx(z)) # z. Suppose Fy is as in Figure 2.1.2b and let z € [z1, z3].
Then Fyx'(Fx(z)) = z; for any z in this interval. Even in this case, though, the
probability equality holds, since P(X < z) = P(X < z;) for any z € [z1,z7]. The
flat cdf denotes a region of 0 probability (P(z; < X < z) = Fx(z) — Fx(z1) = 0).

One application of Theorem 2.1.10 is in the generation of random samples from a
particular distribution. If it is required to generate an observation X from a population
with cdf Fx, we need only generate a uniform random number V, between 0 and 1,
and solve for z in the equation Fx(z) = u. (For many distributions there are other
methods of generating observations that take less computer time, but this method is
still useful because of its general applicability.)

2.2 Expected Values

The expected value, or expectation, of a random variable is merely its average value,
where we speak of “average” value as one that is weighted according to the probability
distribution. The expected value of a distribution can be thought of as a measure of
center, as we think of averages as being middle values. By weighting the values of
the random variable according to the probability distribution, we hope to obtain a
number that summarizes a typical or expected value of an observation of the random
variable.

Definition 2.2.1 The expected value or mean of a random variable g(X), denoted
by Eg(X), is
[T 9(2) fx (z) dz if X is continuous

Eg(X)= { Ezex 9(z) fx(2) = Cpex g(z)P(X =z) if X is discrete,

provided that the integral or sum exists. If E|g(X)| = oo, we say that E g(X) does
not exist. (Ross 1988 refers to this as the “law of the unconscious statistician.” We
do not find this amusing.)

Example 2.2.2 (Exponential mean) Suppose X has an ezponential (A) distri-
bution, that is, it has pdf given by

fx(a:)=—/1\—e_“’/'\, 0<z<oo, A>0.
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Then E X is given by

® 7
EX = / Zze ®/* dr
o A

o0 oo
= - e"’/'\lo +/ e */Xdr  (integration by parts)
0

/ e dz = A I
0

Example 2.2.3 (Binomial mean) If X has a binomial distribution, its pmf is
given by

N

P(X=x)=(2)p’(l—p)""’, z=0,1,...,n,

where n is a positive integer, 0 < p < 1, and for every fixed pair n and p the pmf
sums to 1. The expected value of a binomial random variable is given by

EX = Xn: z (:) pPP(l-p)" % = Xn: z (;’) p*(1—p)~~*®
z=0 1

=

z—-1

EX = Xn:n (::i)p’(l -p)*?

(the z = 0 term is 0). Using the identity  (7) =n (""1), we have

= n (n B 1) A —p)" W) (substitute y = z — 1)

y=0 y
n—1 n—1
= np)_ ( )p”(l —p)" Y
y=0 y
= np,

since the last summation must be 1, being the sum over all possible values of a
binomial(n — 1, p) pmf. l

Example 2.2.4 (Cauchy mean) A classic example of a random variable whose
expected value does not exist is a Cauchy random variable, that is, one with pdf

11
T l4z2?’

fx(z)

—00 < x < 00.

It is straightforward to check that ffooo fx(z)dz =1, but E|X| = co. Write

®lzl 1 2/°° T
E = —_ —_ — _ .
1] /_M1+x2dx A
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For any positive number M,

Mz log(l+a?) M log(1 + M2)
/0 1+22 2 0 2 '
Thus,
2 M 2 1
= lim = — _dz== lim 1 2y =
E|X]| Il}l—r»nooﬂ/(; 1+ z2 de T Mo og(1 + M") = oo

and E X does not exist. I

The process of taking expectations is a linear operation, which means that the
expectation of a linear function of X can be easily evaluated by noting that for any
constants a and b,

(2.2.1) E(aX +b) =aEX +b.
For example, if X is binomial(n, p), so that E X = np, then
E(X-np)=EX —np=np—np=0.

The expectation operator, in fact, has many properties that can help ease calcu-
lational effort. Most of these properties follow from the properties of the integral or
sum, and are summarized in the following theorem.

Theorem 2.2.5 Let X be a random variable and let a, b, and ¢ be constants. Then
for any functions g1 (z) and g2(z) whose expectations exist,

a. Efag) (X) + bga(X) +¢) = aE g1(X) + bE go(X) + c.

b. If gi(z) > 0 for all z, then E g;(X) > 0.

c. If gi(z) > ga(x) for all z, then E g1(X) > E ga(X).

d. Ifa<gi(z) <b forallz, thena < Egy(X) <b.

Proof: We will give details for only the continuous case, the discrete case being
similar. By definition,

E(ag1(X) + bg2(X) + ¢)

-/ ” (ag1(z) + bga(a) + ¢) () dz

oo

- [ ap@ix@an+ [ bp@ix@de+ [ cfx(@)da

—oo -
by the additivity of the integral. Since a, b, and ¢ are constants, they factor out of
their respective integrals and we have

E(ag1(X) + bg2(X) + ¢)

= f " (@) fx(z) do+b [ a@n@dte [ " fx(@)dz

= aEg1(X) + bE g2(z) + ¢,

establishing (a). The other three properties are proved in a similar manner. g
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Example 2.2.6 (Minimizing distance) The expected value of a random variable
has another property, one that we can think of as relating to the interpretation of
E X as a good guess at a value of X.

Suppose we measure the distance between a random variable X and a constant b by
(X —b)2. The closer bis to X, the smaller this quantity is. We can now determine the
value of b that minimizes E(X — b)? and, hence, will provide us with a good predictor
of X. (Note that it does no good to look for a value of b that minimizes (X — b)?,
since the answer would depend on X, making it a useless predictor of X.)

We could proceed with the minimization of E(X — b)? by using calculus, but there
is a simpler method. (See Exercise 2.19 for a calculus-based proof.) Using the belief
that there is something special about E X, we write

2 _ 2 add £E X, which
E(X -b? = E(X-EX+EX-b) ( changos nothing )

= E(X-EX)+(EX-b)? (group terms)
= E(X-EX)?+(EX-b)>+2E(X-EX)EX -b)),
where we have expanded the square. Now, note that
E(X-EX)EX-b)=(EX-H)EX -EX) =0,

since (E X — b) is constant and comes out of the expectation, and E(X — EX) =
EX — EX =0. This means that

(2.2.2) E(X -b)?=E(X-EX)>+(EX -b)%.

We have no control over the first term on the right-hand side of (2.2.2), and the
second term, which is always greater than or equal to 0, can be made equal to 0 by
choosing b = E X . Hence,

(2.2.3) min B(X ~ b)? =E(X —EX)2
See Exercise 2.18 for a similar result about the median. |

When evaluating expectations of nonlinear functions of X, we can proceed in one
of two ways. From the definition of E g(X), we could directly calculate

oo
(224) Bg(X)~ [ g(@)fx(z) ds
But we could also find the pdf fy(y) of Y = g(X) and we would have
o o]
(2.2.5) BoCx) =EY = [ v
—00

Example 2.2.7 (Uniform-exponential relationship—II) Let X have a uniform(0, 1)
distribution, that is, the pdf of X is given by

fx(z) = {

1 if0<z<1
0 otherwise,
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and define a new random variable g(X) = —log X. Then
1
Eg(X) =E(—1log X) 2/ —logzdz = z —zlogz|y = 1.
0

But we also saw in Example 2.1.4 that Y = —log X has cdf 1 — e~ ¥ and, hence, pdf
friy) = %(1 —e¥)=¢e7Y 0 <y < oo, which is a special case of the exponential
pdf with A = 1. Thus, by Example 2.2.2, EY = 1. I

2.3 Moments and Moment Generating Functions

The various moments of a distribution are an important class of expectations.
Definition 2.3.1 For each integer n, the nth moment of X (or Fx(x)), ur,, is
pn =EX™
The nth central moment of X, pn, is
pn = E(X — p)",
where u = pu) =EX.

Aside from the mean, E X, of a random variable, perhaps the most important
moment is the second central moment, more commonly known as the variance.

Definition 2.3.2 The variance of a random variable X is its second central moment,
Var X = E(X — E X)2. The positive square root of Var X is the standard deviation
of X.

The variance gives a measure of the degree of spread of a distribution around its
mean. We saw earlier in Example 2.2.6 that the quantity E(X — b)? is minimized by
choosing b = E X. Now we consider the absolute size of this minimum. The inter-
pretation attached to the variance is that larger values mean X is more variable. At
the extreme, if Var X = E(X — E X)? = 0, then X is equal to E X with probability
1, and there is no variation in X. The standard deviation has the same qualitative
interpretation: Small values mean X is very likely to be close to E X, and large val-
ues mean X is very variable. The standard deviation is easier to interpret in that
the measurement unit on the standard deviation is the same as that for the original
variable X. The measurement unit on the variance is the square of the original unit.

Example 2.3.3 (Exponential variance) Let X have the exponential()\) distri-
bution, defined in Example 2.2.2. There we calculated EX = )\, and we can now
calculate the variance by

00
Var X =E(X - ))? = / (z - A)zie_z/’\ dz
0

oo 1
=/ (x? —2xA+,\2)Xe-z/* dz.
0



B i

60 TRANSFORMATIONS AND EXPECTATIONS . Bection 2.3

0 1 2 k]

Figure 2.3.1. Ezponential densities for A\=1,1, %

To complete the integration, we can integrate each of the terms separately, using
integration by parts on the terms involving z and z2. Upon doing this, we find that
Var X = A2 I

We see that the variance of an exponential distribution is directly related to the
parameter A. Figure 2.3.1 shows several exponential distributions corresponding to
different values of A. Notice how the distribution is more concentrated about its mean
for smaller values of A\. The behavior of the variance of an exponential, as a function
of ), is a special case of the variance behavior summarized in the following theorem.

Theorem 2.3.4 If X is a random variable with finite variance, then for any con-
stants a and b,

Var(aX + b) = a® Var X.

Proof: From the definition, we have

Var(aX +b) = E((aX +b)—E(aX +b))’
= E(aX - aEX)?2 (E(aX + b) = aE X + b)
= a’E(X -EX)?
= a*Var X. a

It is sometimes easier to use an alternative formula for the variance, given by
(2.3.1) Var X =E X% — (EX)?,

which is easily established by noting
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Var X =E(X —-EX)? = E[X?-2XEX +(EX)?
=EX?-2EX)%+ (EX)?
=EX? - (EX)?

where we use the fact that E(XE X) = (E X)(E X) = (E X)?, since E X is a constant.
‘We now illustrate some moment calculations with a discrete distribution.

Example 2.3.5 (Binomial variance) Let X ~ binomial(n, p), that is,
_ _ n T(1 _ L \N—T _
P(X—x)—(x)p(l )", z=01,...,n.

We have previously seen that E X = np. To calculate Var X we first calculate E X2.
We have

(2.3.2) EX?= iﬁ (;‘) p*(1—p)" 2.
=0

In order to sum this series, we must first manipulate the binomial coefficient in a
manner similar to that used for EX (Example 2.2.3). We write

(2.3.3) z? (:) =x#(!n—x)! =zn (:: 1) .

The summand in (2.3.2) corresponding to £ = 0 is 0, and using (2.3.3), we have
E X? Y *(1-p)™®
n) z (m : 1) p*(1—p)

n—1
-1
(n v )py"“l(l — p)ni-v (setting y = z — 1)

Il
3
]
<
+
=

n—1 n—1
n—1 1 n-1 —1-
= any( ] )p"(l—p)" ' ”+an( ) )py(l—p)" v,

y=0 y=0

Now it is easy to see that the first sum is equal to (n — 1)p (since it is the mean of a
binomial(n — 1,p)), while the second sum is equal to 1. Hence,

(2.3.4) EX? =n(n - 1)p* 4 np.
Using (2.3.1), we have

Var X = n(n —1)p* + np — (np)* = —np® + np = np (1 - p). [

Calculation of higher moments proceeds in an analogous manner, but usually the
mathematical manipulations become quite involved. In applications, moments of or-
der 3 or 4 are sometimes of interest, but there is usually little statistical reason for
examining higher moments than these.
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We now introduce a new function that is associated with a probability distribution,
the moment generating function (mgf). As its name suggests, the mgf can be used
to generate moments. In practice, it is easier in many cases to calculate moments
directly than to use the mgf. However, the main use of the mgf is not to generate
moments, but to help in characterizing a distribution. This property can lead to some
extremely powerful results when used properly.

Definition 2.3.6 Let X be a random variable with cdf Fx. The moment generating
function (mgf) of X (or Fx), denoted by Mx(t), is

Mx(t) = Ee'x,

provided that the expectation exists for ¢ in some neighborhood of 0. That is, there
is an h > 0 such that, for all t in —h < t < h, EetX exists. If the expectation does
not exist in a neighborhood of 0, we say that the moment generating function does
not exist.

More explicitly, we can write the mgf of X as

Mx(t) = / e fx(z)dz  if X is continuous,

— 00

or

Mx(t) = Z e P(X = z) if X is discrete.
T

It is very easy to see how the mgf generates moments. We summarize the result in
the following theorem.

Theorem 2.3.7 If X has mgf Mx(t), then
EX" = M{)(0),
where we define

n ar
M (0) = = Mx(2)

That is, the nth moment is equal to the nth derivative of Mx(t) evaluated at t = 0.

t=0

Proof: Assuming that we can differentiate under the integral sign (see the next
section), we have

d __d_ * tr
EMX(t)—dt ./;we fx(:l?)dx

- (4) s

= /oo (ze'™) fx () dzx

—00

=E XetX.



Section 2.3 MOMENTS AND MOMENT GENERATING FUNCTIONS 63

Thus,

=EXeX|,_,=EX.

d
Et-Mx(t) o

" Proceeding in an analogous manner, we can establish that

ﬂ'Mx(t)

- X -
o = EX"e™|_, = EX™ 0

t=0

Example 2.3.8 (Gamma mgf) In Example 2.1.6 we encountered a special case
of the gamma pdf,

1
()8

where I'(a) denotes the gamma function, some of whose properties are given in Section
3.3. The mgf is given by

z% e B 0<z <00, a>0, B >0,

f@) =7

1 tz a~1_,—z/8
— (s d
Mx(t)~—1"(a)ﬂ"/0 e r* e T
1 a-1,—(}-t)z
3. - -tz g
(2.3.5) @) /0 z>le z
_ 1 a—1 —z/(—'s—gv_ )
= —F(a)ﬁa /0. % e 1 dz.

We now recognize the integrand in (2.3.5) as the kernel of another gamma pdf.
(The kernel of a function is the main part of the function, the part that remains
when constants are disregarded.) Using the fact that, for any positive constants a
and b,

f@) == (al)bax“"le_’/b

is a pdf, we have that

* 1 1—z/b
a-lg-2/b gy = 1
'4 I‘(a)baz e n

and, hence,

o o}
(2.3.6) / 2% le=*/* dz = T'(a)b®.
0

Applying (2.3.6) to (2.3.5), we have

Mx(t) = ol (@ (1 —ﬁﬂt)a - (1_—1@> i<y
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If t > 1/, then the quantity (1/8) —¢, in the integrand of (2.3.5), is nonpositive and
the integral in (2.3.6) is infinite. Thus, the mgf of the gamma distribution exists only
if t <1/8. (In Section 3.3 we will explore the gamma function in more detail.)

The mean of the gamma distribution is given by

d af
X(t) t=0 (1 - lBt)a+1 t=0

dt
Other moments can be calculated in a similar manner. I

= af.

Example 2.3.9 (Binomial mgf) For a second illustration of calculating a moment
generating function, we consider a discrete distribution, the binomial distribution. The
binomial(n, p} pmf is given in (2.1.3). So

Mx(t) = ie" (Z) p*A-p)" " = }i (:) (pe')*(1 - p)" .

z=0 z=0

The binomial formula (see Theorem 3.2.2) gives

(2.3.7) }E_: (Z) uFUT = (u + v)"

z=0

Hence, letting u = pet and v = 1 — p, we have

My (t) = [pe* + (1 - p)I". |

As previously mentioned, the major usefulness of the moment generating function is
not in its ability to generate moments. Rather, its usefulness stems from the fact that,
in many cases, the moment generating function can characterize a distribution. There
are, however, some technical difficulties associated with using moments to characterize
a distribution, which we will now investigate.

If the mgf exists, it characterizes an infinite set of moments. The natural question is
whether characterizing the infinite set of moments uniquely determines a distribution
function. The answer to this question, unfortunately, is no. Characterizing the set of
moments is not enough to determine a distribution uniquely because there may be
two distinct random variables having the same moments.

Example 2.3.10 (Nonunique moments) Consider the two pdfs given by

hiz) = -—\/21_me—<losw)’/2, 0<z <o,
fa(z) = fi(z)[Ll + sin(2x log )], 0<z<o0.

(The pdf f, is a special case of a lognormal pdf.)
It can be shown that if X; ~ fi(z), then

EXI=¢/? r=0,1,...,
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1.2

1o}

O / 283

2 fi)

0 2 4

Figure 2.3.2. Two pdfs with the same moments: fi(z) = 721—"—:e_(1°")2/2 and fa(z) =
fi(z)[1 + sin(27 log z)]

go X has all of its moments. Now suppose that Xs ~ fa(z). We have
00
EX] = / z" f1(z)[1 + sin(2n log )] dz
0
00
=EXT+ / z" fi(z) sin(2n log z) dx.
0

However, the transformation y = logz — r shows that this last integral is that of
an odd function over (—oo,00) and hence is equal to 0 for r = 0,1,.... Thus, even
though X; and X, have distinct pdfs, they have the same moments for all r. The two
pdfs are pictured in Figure 2.3.2.

See Exercise 2.35 for details and also Exercises 2.34, 2.36, and 2.37 for more about
mgfs and distributions. I

The problem of uniqueness of moments does not occur if the random variables
have bounded support. If that is the case, then the infinite sequence of moments
does uniquely determine the distribution (see, for example, Billingsley 1995, Section
30). Furthermore, if the mgf exists in a neighborhood of 0, then the distribution is
uniquely determined, no matter what its support. Thus, existence of all moments is
not equivalent to existence of the moment generating function. The following theorem
shows how a distribution can be characterized.

Theorem 2.3.11 Let Fx(x) and Fy(y) be two cdfs all of whose moments exist.

a. If X and Y have bounded support, then Fx(u) = Fy(u) for all u if and only if
EX"=EY" for all integersr =10,1,2,... .

b. If the moment generating functions exist and Mx(t) = My (t) for all t in some
neighborhood of 0, then Fx(u) = Fy(u) for all u.
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In the next theorem, which deals with a sequence of mgfs that converges, we do
not treat the bounded support case separately. Note that the uniqueness assump-
tion is automatically satisfied if the limiting mgf exists in a neighborhood of 0 (see
Miscellanea 2.6.1).

Theorem 2.3.12 (Convergence of mgfs)  Suppose {X;,i1=1,2,...} is a se-
quence of random variables, each with mgf M, (t). FPurthermore, suppose that

Hm My, (t) = Mx(t), for all t in a neighborhood of 0,
1—00

and Mx (t) is an mgf. Then there is a unique cdf Fx whose moments are determined
by Mx(t) and, for all z where Fx(z) is continuous, we have

lim Fx, (z) = Fx(z).
1—00
That s, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

The proofs of Theorems 2.3.11 and 2.3.12 rely on the theory of Laplace transforms.
(The classic reference is Widder 1946, but Laplace transforms also get a comprehen-
sive treatment by Feller 1971.) The defining equation for Mx (t), that is,

[ o]
(2.3.8) Mx(t) = / et f () dz,

-0
defines a Laplace transform (Mx (t) is the Laplace transform of fx(z)). A key fact
about Laplace transforms is their uniqueness. If (2.3.8) is valid for all ¢ such that
|t| < h, where h is some positive number, then given Mx (t) there is only one function
fx(z) that satisfies (2.3.8). Given this fact, the two previous theorems are quite
reasonable. While rigorous proofs of these theorems are not beyond the scope of this
book, the proofs are technical in nature and provide no real understanding. We omit
them.

The possible nonuniqueness of the moment sequence is an annoyance. If we show
that a sequence of moments converges, we will not be able to conclude formally that
the random variables converge. To do so, we would have to verify the uniqueness of
the moment sequence, a generally horrible job (see Miscellanea 2.6.1). However, if
the sequence of mgfs converges in a neighborhood of 0, then the random variables
converge. Thus, we can consider the convergence of mgfs as a sufficient, but not
necessary, condition for the sequence of random variables to converge.

Example 2.3.13 (Poisson approximation) One approximation that is usually
taught in elementary statistics courses is that binomial probabilities (see Example
2.3.5) can be approximated by Poisson probabilities, which are generally easier to
calculate. The binomial distribution is characterized by two quantities, denoted by n
and p. It is taught that the Poisson approximation is valid “when n is large and np
is small,” and rules of thumb are sometimes given.

The Poisson(\) pmf is given by

e~ A \E
!

, rz=0,1,2,...,
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where ) is a positive constant. The approximation states that if X ~ binomial(n, p)
and Y ~ Poisson()), with A = np, then

(2.3.9) P(X=z)= P(Y=1z)

for large n and small np. We now show that the mgfs converge, lending credence to
this approximation. Recall that

(2.3.10) Mx(t) = [pe' + (1 - p)]™.
For the Poisson()\) distribution, we can calculate (see Exercise 2.33)
My (t) = eXe =D,

and if we define p = A/n, then Mx(t) —» My(t) as n — oo. The validity of the
approximation in (2.3.9) will then follow from Theorem 2.3.12.

We first must digress a bit and mention an important limit result, one that has wide
applicability in statistics. The proof of this lemma may be found in many standard
calculus texts.

Lemma 2.3.14 Let a1,az,... be a sequence of numbers converging to a, that is,
limy, o0 an = a. Then

. an\"* .,
lim (1 + ——) = e%.
n—oo n

Returning to the example, we have

n

1 n 1
M) =lpet +(1 =9 = |14 (e - 0en)| = [14 Lt - a]
because A = np. Now set a, = a = (et — 1)), and apply Lemma 2.3.14 to get

m My (t) = X1 = My (),

n—oo

the moment generating function of the Poisson.

The Poisson approximation can be quite good even for moderate p and n. In Figure
2.3.3 we show a binomial mass function along with its Poisson approximation, with
A = np. The approximation appears to be satisfactory. I

We close this section with a useful result concerning mgfs.

Theorem 2.3.15  For any constants a and b, the mgf of the random variable aX +b
18 given by

Mox 4 5(t) = e Mx (at).
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Figure 2.3.3. Poisson (dotted line) approzimation to the binomial (solid line), n =15,p=.3

Proof: By definition,

Moot = B(soX)
= E (e(“x )te“) (properties of exponentials)
= e"E (e(“t)x ) (% is constant)
= e"Mx(at), (definition of mgf)

proving the theorem. O

2.4 Differentiating Under an Integral Sign

In the previous section we encountered an instance in which we desired to interchange
the order of integration and differentiation. This situation is encountered frequently in
theoretical statistics. The purpose of this section is to characterize conditions under
which this operation is legitimate. We will also discuss interchanging the order of
differentiation and summation.

Many of these conditions can be established using standard theorems from calculus
and detailed proofs can be found in most calculus textbooks. Thus, detailed proofs
will not be presented here.

We first want to establish the method of calculating

d b(6)
dd Jae)
where —0o < a(6),b(6) < oo for all 6. The rule for differentiating (2.4.1) is called

Leibnitz’s Rule and is an application of the Fundamental Theorem of Calculus and
the chain rule.

(2.4.1) f(z,6) dz,
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Theorem 2.4.1 (Leibnitz’s Rule) If f(z,0), a(0), and b(f) are differentiable with
respect to 6, then
d b(8)
df J,

d d b0 o
a0 e = 10(0,0) 500) ~ 16000 @ + [ 5 5(2.0)ds

Notice that if a(#) and b(6) are constant, we have a special case of Leibnitz’s Rule:

de/f(a:@da:——/ 39 f(z,6)d

Thus, in general, if we have the integral of a differentiable function over a finite range,
differentiation of the integral poses no problem. If the range of integration is infinite,
however, problems can arise.

Note that the interchange of derivative and integral in the above equation equates
a partial derivative with an ordinary derivative. Formally, this must be the case since
the left-hand side is a function of only 8, while the integrand on the right-hand side
is a function of both 6 and z.

The question of whether interchanging the order of differentiation and integration
is justified is really a question of whether limits and integration can be interchanged,
since a derivative is a special kind of limit. Recall that if f(z, 6) is differentiable, then

0 f(x,9+5)—f($,9)
55 /(@0 = im ; ’
§0 we have
* o [T [ fx,0406) - f(z,0)]
69f(z,0)dx—[m}% - | dz,
while

)

Therefore, if we can justify the interchanging of the order of limits and integration,
differentiation under the integral sign will be justified. Treatment of this problem
in full generality will, unfortunately, necessitate the use of measure theory, a topic
that will not be covered in this book. However, the statements and conclusions of
some important results can be given. The following theorems are all corollaries of
Lebesgue’s Dominated Convergence Theorem (see, for example, Rudin 1976).

d % T * -f($,0+6)—f($,9)-
@/_mf(xﬁ)da:—}l_r%/;m_ dz.

Theorem 2.4.2 Suppose the function h(z,y) is continuous at yo for each z, and
there ezxists a function g(z) satisfying
i |h(z, y)| < g(z) for all z and y,
ii. f z)dz < 00.
Th,en
lim / h(z,y) dz=/ lim h(z,y)dz

YU J_ oo Yo
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The key condition in this theorem is the existence of & dominating function g(z),
with a finite integral, which ensures that the integrals cannot be too badly behaved.
We can now apply this theorem to the case we are considering by identifying h(z,y)
with the difference (f(z,0 + 6) — f(z,8))/é.

Theorem 2.4.3 Suppose f(z,0) is differentiable at 8 = 6, that is,

g £@.00+6) — £(,60)
§—0 1)

= 5510 B

exists for every x, and there erists a function g(x,8p) and a constant 6 > 0 such that

; (f($,90+5)—f(1‘,90)
’ é

< g(z,6q), for all z and |6| < bo,

i, [ g(z,60)dz < oo.
Then

(2.4.2) %/—w f(z,0)dz

*10
- = /_m [% f(z,6) a=90] dz.

Condition (i) is similar to what is known as a Lipschitz condition, a condition
that imposes smoothness on a function. Here, condition (i) is effectively bounding
the variability in the first derivative; other smoothness constraints might bound this
variability by a constant (instead of a function g), or place a bound on the variability
of the second derivative of f.

The conclusion of Theorem 2.4.3 is a little cumbersome, but it is important to realize
that although we seem to be treating 6 as a variable, the statement of the theorem
is for one value of 8. That is, for each value 8y for which f(z,8) is differentiable at
0o and satisfies conditions (i) and (ii), the order of integration and differentiation can
be interchanged. Often the distinction between 8 and 6 is not stressed and (2.4.2) is
written

d [* Sl
(2.4.3) 4 /_ f@ode= [ fe0ds

Typically, f(z,0) is differentiable at all 8, not at just one value 6p. In this case,
condition (i) of Theorem 2.4.3 can be replaced by another condition that often proves
easier to verify. By an application of the mean value theorem, it follows that, for fixed
z and 6y, and 6] < &,

f(z,60+6) - f(x,60) _ 8
6 860

z,0)

6=0p+6*(z)

for some number §*(z), where |6*(z)| < 8. Therefore, condition (i) will be satisfied
if we find a g(z, ) that satisfies condition (ii) and
(2.4.4)

;% f(z,0) <g(z,0)  for all & such that |’ — | < 6.

8=06'
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Note that in (2.4.4) §; is implicitly a function of 4, as is the case in Theorem 2.4.3.
This is permitted since the theorem is applied to each value of @ individually. From
(2.4.4) we get the following corollary.

Corollary 2.4.4 Suppose f(z,0) is differentiable in 0 and there ezists a function
g(z,0) such that (2.4.4) is satisfied and 2 g(z,0)de < oo. Then (2.4.8) holds.

Notice that both condition (i) of Theorem 2.4.3 and (2.4.4) impose a uniformity
requirement on the functions to be bounded; some type of uniformity is generally
needed before derivatives and integrals can be interchanged.

Example 2.4.5 (Interchanging integration and differentiation-I) Let X
have the exponential(\) pdf given by f(z) = (1/A)e~%/*, 0 < z < oo, and suppose
we want to calculate

d d 0 1
n _ n{ > —-z/A
(2.4.5) i EX Y /0 T (/\> e dz

for integer n > 0. If we could move the differentiation inside the integral, we would

have
d—dXEX” = Ooo 66—/\:1:" (%) e /M dx
(2.4.6) = /0 ” f\—z (; ~1) e dz
= 7\13 EX"H — ;EX".

To justify the interchange of integration and differentiation, we bound the derivative
of z"(1/A)e=/*. Now

ﬁ zne—z/\
o A

For some constant §, satisfying 0 < 6y < A, take

z’rle—I/(z\-f-&)) T
gz, A) = AT (/\—60 +1) .

- 2oy < PR (210 (since §>0)

We then have

2 zne—z/A
o A

Since the exponential distribution has all of its moments, f:o g(z,A) dz < 0o as long
as A — §p > 0, so the interchange of integration and differentiation is justified. I

<g(z,A)  for all X such that |\ — | < 6.

A=N

The property illustrated for the exponential distribution holds for a large class of
densities, which will be dealt with in Section 3.4.
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Notice that (2.4.6) gives us a recursion relation for the moments of the exponential
distribution,

(2.4.7) EX™! = A\EX™ +,\2‘%‘EX",

making the calculation of the (n + 1)st moment relatively easy. This type of relation-
ship exists for other distributions. In particular, if X has a ng)rma.l distribution with
mean 4 and variance 1, so it has pdf f(z) = (1/v2m)e~==#)"/2 then

d
n+1 — Xﬂ. _ = Ex'n
EX uE %

We illustrate one more interchange of differentiation and integration, one involving
the moment generating function.

Example 2.4.6 (Interchanging integration and differentiation-II) Again
let X have a normal distribution with mean x4 and variance 1, and consider the mgf
of X,

1 © 2
Mx(t) = EetX = — eTe~ (=112 gz
V2T J—oo

In Section 2.3 it was stated that we can calculate moments by differentiation of Mx (t)
and differentiation under the integral sign was justified:
d d 0
— Mx(t)= —Ee*X =E
g Mx(t) = g Be 5t
We can apply the results of this section to justify the operations in (2.4.8). Notice
that when applying either Theorem 2.4.3 or Corollary 2.4.4 here, we identify ¢ with
the variable 8 in Theorem 2.4.3. The parameter u is treated as a constant.

From Corollary 2.4.4, we must find a function g(z,t), with finite integral, that
satisfies

(2.4.8) eX = E(XetX).

< g(z,t) for all ¢’ such that [t —t| < &.
t=t’

(2.4.9) %ewe—“-“)’ﬂ

Doing the obvious, we have

0 iz, —(z-w?/2
lat ee

= ’:z::a”e_(“°_“)2/2 < |:cle“°e_(’_“)2/2.
It is easiest to define our function g(z,t) separately for z > 0 and z < 0. We take

g(m ) = { | z]e(t=b0)ze=(z-w)?/2  if z <0

| z| et+Eo)ze—(=—w)?/2 if 5 > 0.

It is clear that this function satisfies (2.4.9); it remains to check that its integral is
finite.
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For z > 0 we have
9(z,t) = pe— (" 2z (utt+bo)+u)/2
We now complete the square in the exponent; that is, we write
z? — 2x(pu+t+ ) + u?

= —2z(u+t+6)+ (u+t+80)2 — (u+t+8)° + u?

=(z—(u+t+60)) +p°— (n+t+6&)°
and so, for £ > 0,

9(z, t) = pe B (WHt80)]/2—(u’~(u+t+60)"1/2,

Since the last exponential factor in this expression does not depend on z, f0°° g(z,t) dz
ig essentially calculating the mean of a normal distribution with mean u+t+8q, except
that the integration is only over [0, 00). However, it follows that the integral is finite

because the normal distribution has a finite mean (to be shown in Chapter 3). A
similar development for x < 0 shows that

g(z,t) = |z|e B~ (wHt—E0)l* /2= [u* ~(ut+t=60)*]/2

and so [ B o 9(2, ) dx < 00. Therefore, we have found an integrable function satisfying
(2.4.9) and the operation in (2.4.8) is justified. I

We now turn to the question of when it is possible to interchange differentiation
and summation, an operation that plays an important role in discrete distributions.
Of course, we are concerned only with infinite sums, since a derivative can always be
taken inside a finite sum.

Example 2.4.7 (Interchanging summation and differentiation) Let X bea
discrete random variable with the geometric distribution

PX=z2)=01-6)* =z=01,..., 0<8<1.
We have that 3 - ,6(1 — ) = 1 and, provided that the operations are justified,

d = z — d x
@;)0(1_0) _;@0(1—0)

M

[(1—-6)* — fz(1 - 6)>"]

L]
!
o

. 1 = -
=§§=:09(1—0) —m;oze(l—e).

Since Yo 5 0(1 — 6)® =1 for all 0 < 8 < 1, its derivative is 0. So we have

(2.4.10) %ieu—o)z - ﬁixo(l—‘”’ =0.
z=0

z=0
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Now the first sum in (2.4.10) is equal to 1 and the second sum is E X; hence (2.4.10)
becomes

1
1-6

EX =0,

D =

or
1-6
EX—-0—.

We have, in essence, summed the series }_>2, z6(1 — 6)* by differentiating. I

Justification for taking the derivative inside the summation is more straightforward
than the integration case. The following theorem provides the details.

Theorem 2.4.8  Suppose that the series Z‘::O h(6,z) converges for all 8 in an
interval (a,b) of real numbers and

i. £h(6,z) is continuous in 8 for each z,

i Yooy g’%h(e, z) converges uniformly on every closed bounded subinterval of (a,b).
Then

d & e,
(2.4.11) % ;)h(e, ) = ;) 55 16:2).

The condition of uniform convergence is the key one to verify in order to establish
that the differentiation can be taken inside the summation. Recall that a series con-
verges uniformly if its sequence of partial sums converges uniformly, a fact that we
use in the following example.

Example 2.4.9 (Continuation of Example 2.4.7) To apply Theorem 2.4.8 we
identify

h(6,z) =6(1-6)°
and

S h(B,2) = (1~ 0)" — a1~ 6",

and verify that > oo ; 3% h(8, z) converges uniformly. Define S, (6) by

n

Sa(0) = [(1-6)" —6z(1—6)=""].

=0

The convergence will be uniform on [¢,d] C (0,1) if, given € > 0, we can find an N
such that

n> N = [Sn(6) — Se(8)| <€ for all € [c,d].
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Recall the partial sum of the geometric series (1.5.3). If y # 1, then we can write

n
> vt =

k=0

n+l

Applying this, we have

1— (1) !

2(1 —0)" = .

n n 6
_ :t—l: _ Y _ o
Zox(l 0) 9 5510

z=0
d < .
=—9@Z(1—0)
z=0
__01 1-(1-6)H
T de [

Here we (justifiably) pull the derivative through the finite sum. Calculating this
derivative gives

igx(l _ 9)::—1 _ (1 - (1 - 0)n+1) ; (n + 1)9(1 _ o)n,

and, hence,

S.(0) = 1-(1 ;0)n+1 (- (1—g)n+) ; (n+1)6(1 - 6)"

= (n+1)(1—6)".

It is clear that, for 0 < 8 < 1, S = lim,—00 Sn(#) = 0. Since S, (8) is continuous,
the convergence is uniform on any closed bounded interval. Therefore, the series of
derivatives converges uniformly and the interchange of differentiation and summation
is justified. 7 I

We close this section with a theorem that is similar to Theorem 2.4.8, but treats
the case of interchanging the order of summation and integration.

Theorem 2.4.10 Suppose the series Y oo 4 h(6, z) converges uniformly on [a,b] and
that, for each z, h(0,z) is a continuous functzon of . Then

b o0 00 b
/ > h8.z)do = / (6, z)do
a z=0 z=0va
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2.5 Exercises

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
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In each of the following find the pdf of Y. Show that the pdf integrates to 1.
(a) Y = X3 and fx(z) =42z°(1-2z),0<z <1

(b) Y=4X +3and fx(z)=7e" ", 0<z < o0

(¢) Y =X%and fx(z) =30z3(1-z)%,0<z <1

(See Example A.0.2 in Appendix A.)

In each of the following find the pdf of Y.

() Y=X%and fx(z)=1,0<z<1

(b) Y = —log X and X has pdf

1)! L
_ (n 'f;l’::: ) z"(1-z)™, 0<z <1 m,n positive integers

fx(z)
(c) Y =eX and X has pdf
fx(z) = % xe—(’/")zlz, 0< z <00, o a positive constant

Suppose X has the geometric pmf fx(z) = % (%)‘r ,z =0,1,2,.... Determine the
probability distribution of Y = X/(X + 1). Note that here both X and Y are discrete
random variables. To specify the probability distribution of Y, specify its pmf.

Let XA be a fixed positive constant, and define the function f(z) by f(z) = %/\e"'\’c if

z > 0and f(z) = 32’ if z < 0.

(a) Verify that f(z) is a pdf.

(b) If X is a random variable with pdf given by f(z), find P(X < t) for all ¢. Evaluate
all integrals.

(¢) Find P(|X] < t) for all t. Evaluate all integrals.

Use Theorem 2.1.8 to find the pdf of Y in Example 2.1.2. Show that the same answer
is obtained by differentiating the cdf given in (2.1.6).

In each of the following find the pdf of Y and show that the pdf integrates to 1.
(a) fx(z)=1e ¥, —co<z<o00; ¥ =|X

®) fx(@)=3(=+1)? —-1<z<l; Y=1-X?

(€ fx(@)=23(@z+1)?-1<z<]; Y=1-X?ifX<0andY =1-Xif X >0
Let X have pdf fx(z) = 2(z+1), -1<z<2.

(a) Find the pdf of Y = X2. Note that Theorem 2.1.8 is not directly applicable in
this problem.

(b) Show that Theorem 2.1.8 remains valid if the sets Ag, Ai,..., Ax contain X, and
apply the extension to solve part (a) using Ao = @, A1 = (—2,0), and A2 = (0, 2).

In each of the following show that the given function is a cdf and find Fig'(y).

0 if z<0
(2) Fx(z)_{l—e" ifz>0
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2.9

2.10

2.11

2.12

e*/2 ifz<O
(b) Fx(z) =< 1/2 fo<z<1
1—(e%/2) ifl1<z

_Je*/a ifz<0
() Fx(z)= { 1—(e%/4) ifz>0
Note that, in part (c), Fx(z) is discontinuous but (2.1.13) is still the appropriate
definition of Fi'(y).
If the random variable X has pdf

f(z)={z;21 l1<z<3

0 otherwise,

find a monotone function u(z) such that the random variable Y = u(X) has a
uniform(0, 1) distribution.

In Theorem 2.1.10 the probability integral transform was proved, relating the uniform
cdf to any continuous cdf. In this exercise we investigate the relationship between
discrete random variables and uniform random variables. Let X be a discrete random
variable with cdf Fx (z) and define the random variable Y as Y = Fx(X).

(a) Prove that Y is stochastically greater than a uniform(0, 1); that is, if U ~ uniform
(0,1), then

PY>y)>PU>y)=1-y, forally, O0<y<l,
PY>y)>PU>y)=1-y, forsomey, 0<y<l

(Recall that stochastically greater was defined in Exercise 1.49.)

(b) Equivalently, show that the cdf of Y satisfies Fy(y) < y for all 0 < y < 1 and
Fy(y) < y for some 0 < y < 1. (Hint: Let zo be a jump point of Fx, and
define yo = Fx(zo). Show that P(Y < yo) = yo. Now establish the inequality by
considering y = yo + €. Pictures of the cdfs will help.)

Let X have the standard normal pdf, fx(z) = (1/\/27r)e_”2/2.

(a) Find EX? directly, and then by using the pdf of Y = X? from Example 2.1.7 and
calculating EY.
(b) Find the pdf of Y = |X|, and find its mean and variance.

A random right triangle can be constructed in the following manner. Let X be a random
angle whose distribution is uniform on (0,7 /2). For each X, construct a triangle as
pictured below. Here, Y = height of the random triangle. For a fixed constant d, find
the distribution of Y and EY'.

.y
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2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

-
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Consider a sequence of independent coin flips, each of which has probability p of being

heads. Define a random variable X as the length of the run (of either heads or tails)

started by the first trial. (For example, X = 3 if either TTTH or HHHT is observed.)

Find the distribution of X, and find E X.

(a) Let X be a continuous, nonnegative random variable [f(z) = 0 for z < 0]. Show
that

EX = /‘00 1 - Fx(z)]dz,
o .

where Fx(z) is the cdf of X.
(b) Let X be a discrete random variable whose range is the nonnegative integers. Show
that

oo
Z l—Fx

where Fx (k) = P(X < k). Compare this with part (a).
Betteley (1977) provides an interesting addition law for expectations. Let X and Y be
any two random variables and define

XAY =min(X,Y) and X VY =max(X,Y).
Analogous to the probability law P(AU B) = P(A) + P(B) — P(A N B), show that
E(XVY)=EX+EY —-E(XAY).

(Hint: Establish that X +Y = (X VY) + (X AY).)

Use the result of Exercise 2.14 to find the mean duration of certain telephone calls,
where we assume that the duration, T, of a particular call can be described probabilis-
tically by P(T > t) = ae”* + (1 —a)e ¢, where a, ), and u are constants, 0 < a < 1,
A>0,u>0.

A median of a distribution is a value m such that P(X <m) > 3 and P(X > m) > > 3.
(If X is continuous, m satisfies f f(z)dz = f * f(z)dz = }.) Find the median of
the following distributions.

(a) f(z)=3z% O<z<l1 (b) f(z) = m, -0 < T <

Show that if X is a continuous random variable, then
minE |X —a| =E|X —m|,
a

where m is the median of X (see Exercise 2.17).
Prove that

iE(X—a)'*’ =0eEX=a
da
by differentiating the integral. Verify, using calculus, that a = E X is indeed a mini-
mum. List the assumptions about Fx and fx that are needed.
A couple decides to continue to have children until a daughter is born. What is the
expected number of children of this couple? (Hint: See Example 1.5.4.)
Prove the “two-way” rule for expectations, equation (2.2.5), which says Eg(X) =EY,
where Y = g(X). Assume that g(z) is a monotone function.
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2.22

2.23

.2.24

2.25

2.26

2.27

2.28

Let X have the pdf

__4 2,278t

f(I) - ﬂaﬁz [
(a) Verify that f(z) is a pdf. (b) Find EX and Var X.
Let X have the pdf

0<z<oo, B>0.

@) = %(1 +1), -l<z<l

(a) Find the pdf of Y = X2, (b) Find EY and Var Y.
Compute E X and Var X for each of the following probability distributions.

(8) fx(@)=az*,0<z<1,a>0

(b) fx(@)=2,2=1,2,...,n,n> 0 an integer

(¢) fx(z)= %(z— D2 0<z<?2

Suppose the pdf fx(z) of a random variable X is an even function. (fx(z) is an even

function if fx(z) = fx(—z) for every z.) Show that

(a) X and —X are identically distributed.

(b) Mx(t) is symmetric about 0.

Let f(z) be a pdf and let a be a number such that, for all ¢ > 0, f(a +¢€) = f(a —¢€).

Such a pdf is said to be symmetric about the point a.

(a) Give three examples of symmetric pdfs.

(b) Show that if X ~ f(z), symmetric, then the median of X (see Exercise 2.17) is
the number a.

(c) Show that if X ~ f(z), symmetric, and E X exists, then EX = a.

(d) Show that f(x) =e™%, z > 0, is not a symmetric pdf.

(e) Show that for the pdf in part (d), the median is less than the mean.

Let f(z) be a pdf, and let a be a number such that if a > z > y, then f(a) > f(z) >

f(y), and if a < z < y, then f(a) > f(z) > f(y). Such a pdf is called unimodal with

a mode equal to a.

(2) Give an example of a unimodal pdf for which the mode is unique.

(b) Give an example of a unimodal pdf for which the mode is not unique.

(c) Show that if f(z) is both symmetric (see Exercise 2.26) and unimodal, then the
point of symmetry is a mode.

(d) Consider the pdf f(z) = e™*, z > 0. Show that this pdf is unimodal. What is its
mode?

Let pn denote the nth central moment of a random variable X. Two quantities of

interest, in addition to the mean and variance, are

3 4
aa:_l-t_ and a4=E5.
2

(u2)372

The value a3 is called the skewness and ay is called the kurtosis. The skewness measures
the lack of symmetry in the pdf (see Exercise 2.26). The kurtosis, although harder to
interpret, measures the peakedness or flatness of the pdf.
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(a) Show that if a pdf is symmetric about a point a, then a3 = 0.

(b) Calculate a3 for f(x) =e™*, £ > 0, a pdf that is skewed to the right.

2.29

2.30

231

2.32

2.33

(c) Calculate a4 for each of the following pdfs and comment on the peakedness of

each.
1 —z2/2
f(I)=—2 e , —oo<z<oo
V&T
f(z):%, -l<z<1
1 Izl
f(z):ie , —00<z< o0

Ruppert (1987) uses influence functions (see Miscellanea 10.6.4) to explore further the
meaning of kurtosis, and Groeneveld (1991) uses them to explore skewness; see also
Balanda and MacGillivray (1988) for more on the interpretation of aa.

To calculate moments of discrete distributions, it is often easier to work with the
factorial moments (see Miscellanea 2.6.2).

(a) Calculate the factorial moment E[X (X — 1)] for the binomial and Poisson distri-

butions. .
(b) Use the results of part (a) to calculate the variances of the binomial and Poisson

distributions.
(c) A particularly nasty discrete distribution is the beta-binomial, with pmf

n\ (e+b—1
Ply=y)=aly +a)((”T)+€,+%l)),
y+a

where n, a, and b are integers, and y = 0,1,2,...,n. Use factorial moments to
calculate the variance of the beta-binomial. (See Exercise 4.34 for another approach
to this calculation.)

Find the moment generating function corresponding to

(a) f(z):%, O<z<ec

(b) f(z):%%—, 0<z<e
(c) f(z)=7136""_°‘|/‘3, —o<r<oo, -—-ow<a<oo, >0

(d) P(X =2z)= (r+§_1)p"(1—p)’, z=0,1,..., 0<p<1r>0aninteger.

Does a distribution exist for which Mx(t) = t/(1 — t),|t| < 17 If yes, find it. If no,
prove it.

Let Mx(t) be the moment generating function of X, and define S(t) = log(Mx (t)).
Show that

d2

d
ES(t) o =EX and aee

S() = Var X.
t=0

In each of the following cases verify the expression given for the moment generating
function, and in each case use the mgf to calculate E X and Var X.
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2.34

2.35

2.36

(8) P(X =z)= <222 Mx(t)=e"D, z=0,1,...; A>0
(b) P(X=.’L‘)=p(1-—p)z, Mx(t)=1—__(—12_—pm, I=0,1,., 0<p<1
2 /(202
(c) fx(z):i%‘;_ﬂ;(;), Mx(t) = ert+o'/2 _oo <z < 00; —00 < < 00, 0> 0

A distribution cannot be uniquely determined by a finite collection of moments, as this
example from Romano and Siegel (1986) shows. Let X have the normal distribution,
that is, X has pdf

1 .2
fx(@)=—=e*"% —oco<z<oo.

Var

Define a discrete random variable Y by
1 2
Y = = Y =-—- = — Y = = =,
P(y =v3)=P( V3)=¢ P(Y=0=3
Show that
EX"=EY" forr=1,2,3,4,5.

(Romano and Siegel point out that for any finite n there exists a discrete, and hence
nonnormal, random variable whose first n moments are equal to those of X.)
Fill in the gaps in Example 2.3.10.

(a) Show that if X; ~ fi(z), then
EX{:erQ/z, r=0,1,....

So fi(z) has all of its moments, and all of the moments are finite.
(b) Now show that

/ z" f1(z) sin(2w logz) dz = 0
0

for all positive integers r, so EX{ = E X3 for all r. (Romano and Siegel 1986
discuss an extreme version of this example, where an entire class of distinct pdfs
have the same moments. Also, Berg 1988 has shown that this moment behavior
can arise with simpler transforms of the normal distribution such as X3.)

The lognormal distribution, on which Example 2.3.10 is based, has an interesting prop-
erty. If we have the pdf
f(z) = ——e 082’2 g <z <o
Vorz ’ - '

then Exercise 2.35 shows that all moments exist and are finite. However, this dis-
tribution does not have a moment generating function, that is,

oo tx
Mx(t) = / £ Ues=)*/2 gy
0 2z

does not exist. Prove this.

2.37 Referring to the situation described in Miscellanea 2.6.3:

(a) Plot the pdfs f; and f, to illustrate their difference.
(b) Plot the cumulant generating functions K; and K> to illustrate their similarity.
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(c) Calculate the moment generating functions of the pdfs fi1 and fa. Are they simila
or different?
(d) How do the pdfs f1 and fa relate to the pdfs described in Example 2.3.107

2.38 Let X have the negative binomial distribution with pmf

f@=(

where 0 < p < 1 and 7 > 0 is an integer.

(a) Calculate the mgf of X.

(b) Define a new random variable by Y = 2pX. Show that, as p | 0, the mgf of Y
converges to that of a chi squared random variable with 2r degrees of freedom by
showing that

r+z-1

T )pr(l_p)z’ 2}:0,1,2,...,

. 1 \" 1
im0 = (1=5) »  M<y
2.39 In each of the following cases calculate the indicated derivatives, justifying all opera-
tions.
(a) j‘; f: e~ Mdt (b) de fo°° e~ Mdt
d 1 d [oo 1
2.40 Prove

1-p
t"TETI( - ) dt.

g (:) P-p)" " =(n-2) (:) /0

(Hint: Integrate by parts or differentiate both sides with respect to p.)

2.6 Miscellanea

2.6.1 Uniqueness of Moment Sequences

A distribution is not necessarily determined by its moments. But if Yoo | u"r* /k!

has a positive radius of convergence, where X ~ Fy and EX"™ = u, then the

moment sequence is unique, and hence the distribution is uniquely determined

(Billingsley 1995, Section 30). Convergence of this sum also implies that the moment-
generating function exists in an interval, and hence the moment-generating function

determines the distribution

A sufficient condition for the moment sequence to be unique is Carleman’s Con-
dition (Chung 1974). If X ~ Fx and we denote E X" = pu!, then the moment
sequence is unique if

o 1
= +00.
; ()17

This condition is, in general, not easy to verify.
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Feller (1971) hes a very complete development of Laplace transforms, of which mgfs
are a special case. In particular, Feller shows (similar to Billingsley) that whenever

!
= r!

converges on an interval —ty < t < fg, tp > 0, the distribution Fy is uniquely
determined. Thus, when the mgf exists, the moment sequence determines the dis-
tribution F'x uniquely.

It should be clear that using the mgf to determine the distribution is a difficult
task. A better method is through the use of characteristic functions, which are
explained below. Although characteristic functions simplify the characterization of
a distribution, they necessitate understanding complex analysis. You win some and
you lose some.

2.6.2 Other Generating Functions

In addition to the moment generating function, there are a number of other gen-
erating functions available. In most cases, the characteristic function is the most
useful of these. Except for rare circumstances, the other generating functions are
less useful, but there are situations where they can ease calculations.

Cumulant generating function For a random variable X, the cumulant generating
function is the function log[Mx(¢)]. This function can be used to generate the
cumulants of X, which are defined (rather circuitously) as the coefficients in the
Taylor series of the cumulant generating function (see Exercise 2.32).

Factorial moment generating function The factorial moment-generating function

of X is defined as EtX, if the expectation exists. The name comes from the fact

that this function satisfies
T .

—EtX

= —E{X(X -1)- (X —r+1)},

t=1

where the right-hand side is a factorial moment. If X is a discrete random variable,
then we can write

EtX =) ¢*P(X =z),
T

and the factorial moment generating function is called the probability-generating
function, since the coefficients of the power series give the probabilities. That is,
to obtain the probability that X = k, calculate

= P(X = k).

t=1
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Characteristic function Perhaps the most useful of all of these types of functions
is the characteristic function. The characteristic function of X is defined by

¢x(t) = EeX,

where i is the complex number /=1, so the above expectation requires complex
integration. The characteristic function does much more than the mgf does. When
the moments of Fx exist, ¢ x can be used to generate them, much like an mgf. The
characteristic function always exists and it completely determines the distribution.
That is, every cdf has a unique characteristic function. So we can state a theorem
like Theorem 2.3.11, for example, but without qualification.

Theorem 2.6.1 (Convergence of characteristic functions) Suppose X,
k=1,2,..., is a sequence of random variables, each with characteristic function
ox, (t). Furthermore, suppose that

klim ox,(t) = dx(t), for allt in a neighborhood of 0,
— 0

and ¢x (t) is a characteristic function. Then, for all X where Fx(z) is continuous,

lim Fy, (z) = Fx(z).
k—oo

A full treatment of generating functions is given by Feller (1968). Characteristic
functions can be found in almost any advanced probability text; see Billingsley
(1995) or Resnick (1999).

2.6.3 Does the Moment Generating Function Characterize a Distribution?

In an article with the above title, McCullagh (1994) looks at a pair of densities
similar to those in Example 2.3.10 but having mgfs

fi=n(0,1) and fo = fi(z) [1 + %sin(27r:r)]
with cumulant generating functions
Ki(t)=t*/2 and Kj(t) = K;(t) + log [l + —;—e‘z”z sin(21rt)] .

He notes that although the densities are visibly dissimilar, the cgfs are virtually
identical, with maximum difference less than 1.34 x 1079 over the entire range
(less than the size of one pixel). So the answer to the question posed in the title
is “yes for mathematical purposes but a resounding no for numerical purposes.”
In constrast, Waller (1995) illustrates that although the mgfs fail to numerically
distinguish the distributions, the characteristic functions do a fine job. (Waller et
al. 1995 and Lucefio 1997 further investigate the usefulness of the characteristic
function in numerically obtaining the cdfs.) See Exercise 2.37 for details.



Chapter 3

Common Families of Distributions

“How do all these unusuals strike you, Watson?”
“Their cumulative effect is certainly considerable, and yet each of them is quite

possible in itself.”
Sherlock Holmes and Dr. Watson
The Adventure of the Abbey Grange

3.1 Introduction

Statistical distributions are used to model populations; as such, we usually deal with
a family of distributions rather than a single distribution. This family is indexed
by one or more parameters, which allow us to vary certain characteristics of the
distribution while staying with one functional form. For example, we may specify that
the normal distribution is a reasonable choice to model a particular population, but
we cannot precisely specify the mean. Then, we deal with a parametric family, normal
distributions with mean pu, where p is an unspecified parameter, —oo < p < oo.

In this chapter we catalog many of the more common statistical distributions,
some of which we have previously encountered. For each distribution we will give
its mean and variance and many other useful or descriptive measures that may aid
understanding. We will also indicate some typical applications of these distributions
and some interesting and useful interrelationships. Some of these facts are summarized
in tables at the end of the book. This chapter is by no means comprehensive in its
coverage of statistical distributions. That task has been accomplished by Johnson and
Kotz (1969-1972) in their multiple-volume work Distributions in Statistics and in the
updated volumes by Johnson, Kotz, and Balakrishnan (1994, 1995) and Johnson,
Kotz, and Kemp (1992).

3.2 Discrete Distributions

A random variable X is said to have a discrete distribution if the range of X, the
sample space, is countable. In most situations, the random variable has integer-valued
outcomes.
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Discrete Uniform Distribution

A random variable X has a discrete uniform (1, N) distribution if
1
]—V_’
where N is a specified integer. This distribution puts equal mass on each of the
outcomes 1,2,...,N.

(3.2.1) P(X = z|N) = z=1,2,...,N,

A note on notation: When we are dealing with parametric distributions, as will almost
always be the case, the distribution is dependent on values of the parameters. In
order to emphasize this fact and to keep track of the parameters, we write them
in the pmf preceded by a “|” (given). This convention will also be used with cdfs,
pdfs, expectations, and other places where it might be necessary to keep track of the
parameters. When there is no possibility of confusion, the parameters may be omitted
in order not to clutter up notation too much.

To calculate the mean and variance of X, recall the identities (provable by induc-
tion)

k k

. kk+1 k(k+1)(2k+1
;Z ( Z ( )( )

We then have

N N
1 N+1
EX = zP(X =z|N) = r— = —
2P

and

N
1 (N+1)(2N+1)
2 __ 2 -
X“ = Zz ‘ﬁ = 6 3
z=1
and so
Var X = EX? — (EX)?

_(N+EN+1) <N+1>2

6 2

(N4 -1)
RUEDLED]

This distribution can be generalized so that the sample space is any range of inte-
gers, No, Ng + 1,..., Ny, with pmf P(X = z|Np, N1) = 1/(N; — Ng + 1).
Hypergeometric Distribution

The hypergeometric distribution has many applications in finite population sampling
and is best understood through the classic example of the urn model.
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Suppose we have a large urn filled with N balls that are identical in every way
except that M are red and N — M are green. We reach in, blindfolded, and select
K balls at random (the K balls are taken all at once, a case of sampling without
replacement). What is the probability that exactly z of the balls are red?

The total number of samples of size K that can be drawn from the N balls is (%),

as was discussed in Section 1.2.3. It is required that z of the balls be red, and this

can be accomplished in (ﬁl N-M

with K —z green balls. Thus, if we let X denote the number of red balls in a sample
of size K, then X has a hypergeometric distribution given by

) ways, leaving ( ) ways of filling out the sample

N-M
(%) (5=%)
(3.2.2) P(X:le,M,K)zT, z=0,1,... ,K.
(%)
Note that there is, implicit in (3.2.2), an additional assumption on the range of X.

Binomial coefficients of the form (7) have been defined only if n > r, and so the
range of X is additionally restricted by the pair of inequalities

M>z and N-M>K -z,
which can be combined as
M-(N-K)<z<M.

In many cases K is small compared to M and N, so the range 0 < z < K will be
contained in the above range and, hence, will be appropriate. The formula for the
hypergeometric probability function is usually quite difficult to deal with. In fact, it
is not even trivial to verify that

SN OIC=
= R

The hypergeometric distribution illustrates the fact that, statistically, dealing with
finite populations (finite N) is a difficult task.
The mean of the hypergeometric distribution is given by

= (00 & (0
N )P TN )

To evaluate this expression, we use the identities (already encountered in Section 2.3)
()= (05
T r—1
N\ N//N-1
K/ K\K-1)'

(summand is 0 at z = 0)
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and obtain

M-1\ (N—-M M-1Y) (N-M
KM(::—I)(K—:) KMK z—l)(K—-z)
EX =) = :
N {N-1 N N-1
z=1 K (K—1> z=1 (K—l)
We now can recognize the second sum above as the sum of the probabilities for another
hypergeometric distribution based on parameter values N — 1, M — 1, and K — 1.
This can be seen clearly by defining y = £ — 1 and writing

() () g () ()
= () > (¥21)

K-1
=) PY=yN-1,M-1,K-1)=1,
y=0

where Y is a hypergeometric random variable with parameters N — 1, M — 1, and
K — 1. Therefore, for the hypergeometric distribution,

KM
EX = T

A similar, but more lengthy, calculation will establish that
KM ((N—-M)N-K)
N N(N -1)
Note the manipulations used here to calculate EX. The sum was transformed to an-

other hypergeometric distribution with different parameter values and, by recognizing
this fact, we were able to sum the series.

Var X =

Example 3.2.1 (Acceptance sampling) The hypergeometric distribution has
application in acceptance sampling, as this example will illustrate. Suppose a retailer
buys goods in lots and each item can be either acceptable or defective. Let

N = # of items in a lot,
M

# of defectives in a lot.

Then we can calculate the probability that a sample of size K contains z defectives.
To be specific, suppose that a lot of 25 machine parts is delivered, where a part is
considered acceptable only if it passes tolerance. We sample 10 parts and find that
none are defective (all are within tolerance). What is the probability of this event if
there are 6 defectives in the lot of 257 Applying the hypergeometric distribution with
N =25,M =6, K = 10, we have

(o) (1o
P(X =0)= Sy - 028,
10
showing that our observed event is quite unlikely if there are 6 (or more!) defectives

in the lot. I
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_ Binomial Distribution

" The binomial distribution, one of the more useful discrete distributions, is based on
the idea of a Bernoulli trial. A Bernoulli trial (named for James Bernoulli, one of
the founding fathers of probability theory) is an experiment with two, and only two,
possible outcomes. A random variable X has a Bernoulli(p) distribution if

0<p<1

- (3.2.3) X = { 1 with probability p

0 with probability 1 — p,

" The value X = 1 is often termed a “success” and p is referred to as the success
probability. The value X = 0 is termed a “failure.” The mean and variance of a
Bernoulli{p) random variable are easily seen to be

EX =1p+0(1-p)=p,
Var X = (1-p)%p+ (0 — p)%(1 — p) = p(1 - p).

Many experiments can be modeled as a sequence of Bernoulli trials, the simplest
being the repeated tossing of a coin; p = probability of a head, X = 1 if the coin
shows heads. Other examples include gambling games (for example, in roulette let
X =1 if red occurs, so p = probability of red), election polls (X = 1 if candidate A
gets a vote), and incidence of a disease (p = probability that a random person gets
infected).

If n identical Bernoulli trials are performed, define the events

A; ={X =1 on the ith trial}, i=1,2,...,n.

If we assume that the events Ai,..., A, are a collection of independent events (as is
the case in coin tossing), it is then easy to derive the distribution of the total number
of successes in n trials. Define a random variable Y by

Y = total number of successes in n trials.

The event {Y = y} will occur only if, out of the events Aj,..., A,, exactly y of
them occur, and necessarily n —y of them do not occur. One particular outcome (one
particular ordering of occurrences and nonoccurrences) of the n Bernoulli trials might
be AN AyNA§N---NA,_1 N AS. This has probability of occurrence

P(Ai1NANA§N---NA,_ 1 NAL) =pp(1 —p)----+p(1 —p)
=p¥(1—-p)"7Y,

where we have used the independence of the A;s in this calculation. Notice that the
calculation is not dependent on which set of y A;s occurs, only that some set of y
occurs. Furthermore, the event {Y = y} will occur no matter which set of y A;s
occurs. Putting this all together, we see that a particular sequence of n trials with

exactly y successes has probability p¥(1 — p)»~¥ of occurring. Since there are (;‘
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such sequences (the number of orderings of i 1s and n — y 0s), we have
n
P(Y =y|n,p) = (y) pPL-p)*Y, y=0,1,2,...,n,

and Y is called a binomial(n, p) random variable.

The random variable Y can be alternatively, and equivalently, defined in the follow-
ing way: In a sequence of n identical, independent Bernoulli trials, each with success
probability p, define the random variables X, ..., X, by

X, = 1 with probability p
*7 10  with probability 1 — p.

The random variable

has the binomial(n, p) distribution.
The fact that E;=o P(Y = y) =1 follows from the following general theorem.

Theorem 3.2.2 (Binomial Theorem) For any real numbers z and y and integer
n>0,

n

(324 @ =3 (")

Proof: Write

(z+y)"=(z+y)z+y)---- (z+y),

and consider how the right-hand side would be calculated. From each factor (z + y) we
choose either an z or y, and multiply together the n choices. For each ¢t =0, 1,...,n,
the number of such terms in which z appears exactly i times is (7). Therefore, this
term is of the form (7) z'y"~* and the result follows. a

If we take £ = p and y = 1 — p in (3.2.4), we get
n n . .
1=p+a-p) = (})ra-n",
i=0

and we see that each term in the sum is a binomial probability. As another special
case, take £ = y = 1 in Theorem 3.2.2 and get the identity

=3 (3).

1=l
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The mean and variance of the binomial distribution have already been derived in
Examples 2.2.3 and 2.3.5, so we will not repeat the derivations here. For completeness,
we state them. If X ~ binomial(n, p), then

EX =np, VarX =np(l - p).
The mgf of the binomial distribution was calculated in Example 2.3.9. It is
Mx(t) = [pe' + (1 - p)]".

Example 3.2.3 (Dice probabilities)  Suppose we are interested in finding the
probability of obtaining at least one 6 in four rolls of a fair die. This experiment can be
modeled as a sequence of four Bernoulli trials with success probability p = 3 = P(die
shows 6). Define the random variable X by

X = total number of 6s in four rolls.

Then X ~ binomial(4, 3) and

P(at least one 6) = P(X >0) =1— P(X =0)
-6 6
4
-+ (3)

= .518.
Now we consider another game; throw a pair of dice 24 times and ask for the

probability of at least one double 6. This, again, can be modeled by the binomial
distribution with success probability p, where

1
= P(roll a doubl = —.
P (roll a double 6) 36

So, if ¥ = number of double 6s in 24 rolls, Y ~ binomial(24, 3) and
P(at least one double 6) = P(Y > 0)
—1-P(Y =0)

i 24 _1— 0 § 24
o 0 36 36
24
=1_(3§)

36
= .491.

This is the calculation originally done in the eighteenth century by Pascal at the
request of the gambler de Meré, who thought both events had the same probability.
(He began to believe he was wrong when he started losing money on the second bet.)
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Poisson Distribution

The Poisson distribution is a widely applied discrete distribution and can serve as a
model for a number of different types of experiments. For example, if we are modeling
a phenomenon in which we are waiting for an occurrence (such as waiting for a bus,
waiting for customers to arrive in a bank), the number of occurrences in a given
time interval can sometimes be modeled by the Poisson distribution. One of the basic
assumptions on which the Poisson distribution is built is that, for small time intervals,
the probability of an arrival is proportional to the length of waiting time. This makes
it a reasonable model for situations like those indicated above. For example, it makes
sense to assume that the longer we wait, the more likely it is that a customer will
enter the bank. See the Miscellanea section for a more formal treatment of this.

Another area of application is in spatial distributions, where, for example, the Pois-
son may be used to model the distribution of bomb hits in an area or the distribution
of fish in a lake.

The Poisson distribution has a single parameter ), sometimes called the intensity
parameter. A random variable X, taking values in the nonnegative integers, has a
Poisson()) distribution if
—AAz

(3.2.5) P(X =z[x) =<

et r=0,1,....

To see that Y>> ) P(X = z|\) = 1, recall the Taylor series expansion of eV,
v\ L
o= L
=0
Thus,
.o} [e o) Ax
Z P(X =z|)) = Z - = e~ et = 1.
z=0 z=0 z

The mean of X is easily seen to be

=Xy = (substitute y =z — 1)
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A similar calculation will show that
Var X = A,

and so the parameter A is both the mean and the variance of the Poisson distribution.
The mgf can also be obtained by a straightforward calculation, again following from
the Taylor series of e¥. We have

Mx(t) — eA(e'_l)‘
(See Exercise 2.33 and Example 2.3.13.)

Example 3.2.4 (Waiting time) As an example of a waiting-for-occurrence ap-
plication, consider & telephone operator who, on the average, handles five calls every
3 minutes. What is the probability that there will be no calls in the next minute? At
least two calls?

If we let X = number of calls in a minute, then X has a Poisson distribution with
EX=\= g So

P(no calls in the next minute) = P(X = 0)

_ 0
_eE)
0!
=53 = .189;

P(at least two calls in the next minute) = P(X > 2)
=1-P(X=0)-P(X=1)

— 1
e (3)

1
= .496. I

=1-.189 —

Calculation of Poisson probabilities can be done rapidly by noting the following
~ Tecursion relation:

(3.2.6) P(X=z)=%P(X=x—1), 2=1,2,....

This relation is easily proved by writing out the pmf of the Poisson. Similar relations
hold for other discrete distributions. For example, if Y ~ binomial(n, p), then

—y+1) »p
(3.2.7 P(Y =y)= ""Y P(Y =y-1).
) )= PR )

The recursion relations (3.2.6) and (3.2.7) can be used to establish the Poisson
approximation to the binomial, which we have already seen in Section 2.3, where the
approximation was justified using mgfs. Set A = np and, if p is small, we can write

n—y+l p _np—ply—1) A

~
~

Y 1-p y—py Yy
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since, for small p, the terms p(y — 1) and py can be ignored. Therefore, to this level
of approximation, (3.2.7) becomes

(3.2.8) PlY=y)= gP(Y =y—1),

which is the Poisson recursion relation. To complete the approximation, we need only
establish that P(X = 0) = P(Y = 0), since all other probabilities will follow from
(3.2.8). Now

P(Y=0)=(1-p"= (1_%2)n: (1_5>"

n

upon setting np = ). Recall from Section 2.3 that for fixed A, limp_oo(1 — (A/n))" =

e, so for large n we have the approximation

P(Y =0) = (1—%)n%e”\=P(X=O),

completing the Poisson approximation to the binomial.

The approximation is valid when n is large and p is small, which is exactly when
it is most useful, freeing us from calculation of binomial coefficients and powers for
large n.

Example 3.2.5 (Poisson approximation) A typesetter, on the average, makes
one error in every 500 words typeset. A typical page contains 300 words. What is the
probability that there will be no more than two errors in five pages? )

If we assume that setting a word is a Bernoulli trial with success probability p = 3(1)—0
(notice that we are labeling an error as a “success”) and that the trials are indepen-
dent, then X = number of errors in five pages (1500 words) is binomial(1500, ﬁ).
Thus

P(no more than two errors) = P(X < 2)
B i 1500 —1_ T ﬁ’_ 1500—zx
=\ 500/ \ 500
= .4230,

which is a fairly cumbersome calculation. If we use the Poisson approximation with

A = 1500(gh5) = 3, we have

2
P(X<2)~e3 (1 +3+ %) = .4232. [
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: Negative Binomial Distribution

The binomial distribution counts the number of successes in a fixed number of Bernoulli
trials. Suppose that, instead, we count the number of Bernoulli trials required to get
s fixed number of successes. This latter formulation leads to the negative binomial
distribution.

In a sequence of independent Bernoulli(p) trials, let the random variable X denote
the trial at which the rth success occurs, where r is a fixed integer. Then

-1
329 PX=slp) = (77])FU-p" s re e,

r

and we say that X has a negative binomial(r, p) distribution.

The derivation of (3.2.9) follows quickly from the binomial distribution. The event
{X = z} can occur only if there are exactly » — 1 successes in the first z — 1 trials,
and a success on the zth trial. The probability of 7 — 1 successes in z — 1 trials is the
binomial probability (::i) p"~1(1 — p)®~7, and with probability p there is a success
on the zth trial. Multiplying these probabilities gives (3.2.9).

The negative binomial distribution is sometimes defined in terms of the random
variable Y = number of failures before the rth success. This formulation is statistically
equivalent to the one given above in terms of X = trial at which the rth success occurs,
since Y = X — r. Using the relationship between Y and X, the alternative form of
the negative binomial distribution is

r+y—1

y )pr(]__p)y’ y:0,1,~--~

(3.2.10) PY=y)= (
Unless otherwise noted, when we refer to the negative binomial(r, p) distribution we
will use this pmf.

The negative binomial distribution gets its name from the relationship

r+y—-1\ _ -\ _(_ (=r)(=r = 1)(—=r —=2)e-+-s(—r—y+1)
( y )—(1w(y) Y e ne-2 @

which is, in fact, the defining equation for binomial coefficients with negative integers
(see Feller 1968 for a complete treatment). Substituting into (3.2.10) yields

-T

P =) =10 (

)ra-am,
which bears a striking resemblance to the binomial distribution.

The fact that Z;’c’:o P(Y = y) = 1isnot easy to verify but follows from an extension
of the Binomial Theorem, an extension that includes negative exponents. We will not
pursue this further here. An excellent exposition on binomial coefficients can be found
in Feller (1968).

The mean and variance of Y can be calculated using techniques similar to those
used for the binomial distribution:
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ey =55 ("1 ) ra -
y=0
[ o]
(T + y— 1)' r
= p"(1-p)
= - Di(r-1)!
oo
r+y—1Y\ ,
= ("I raa
y—1
y=1

Now write z = y — 1, and the sum becomes

EY = ir (T + z) p (1 —p)=+!

2=0 z
_ (1-p) = r+1)+2z-1\ , ., > summand is negative
=7 D zz_(:) z Pr-p) binomial pmf
_,1=-p
p

Since the sum is over all values of a negative binomial(r + 1, p) distribution, it equals
1. A similar calculation will show

1-—-
VarY = ip—zi).
There is an interesting, and sometimes useful, reparameterization of the negative
binomial distribution in terms of its mean. If we define the parameter u = r(1—p)/p,
then EY = u and a little algebra will show that

1
VarY = + ;uz.

The variance is a quadratic function of the mean. This relationship can be useful in
both data analysis and theoretical considerations (Morris 1982).

The negative binomial family of distributions includes the Poisson distribution as
a limiting case. If 7 — oo and p — 1 such that (1 —p) - A,0 < A < 00, then

EY:M—»A,
p

Vary = TL=B)
p
which agree with the Poisson mean and variance. To demonstrate that the negative
binomial(r, p) — Poisson(\), we can show that all of the probabilities converge. The
fact that the mgfs converge leads us to expect this (see Exercise 3.15).

Example 3.2.6 (Inverse binomial sampling) A technique known as inverse
binomial sampling is useful in sampling biological populations. If the proportion of
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individuals possessing a certain characteristic is p and we sample until we see r such
individuals, then the number of individuals sampled is a negative binomial random
variable.

For example, suppose that in a population of fruit flies we are interested in the
proportion having vestigial wings and decide to sample until we have found 100 such
flies. The probability that we will have to examine at least N flies is (using (3.2.9))

—~ (z—1 _
P2 =3 (P! ) pa-pe
=N
N-1 r—1
=1 Z ( % )pIOO(l _ p)z—lool
=100

For given p and N, we can evaluate this expression to determine how many fruit
flies we are likely to look at. (Although the evaluation is cumbersome, the use of a
recursion relation will speed things up.) I

Example 3.2.6 shows that the negative binomial distribution can, like the Poisson,
be used to model phenomena in which we are waiting for an occurrence. In the negative
binomial case we are waiting for a specified number of successes.

Geometric Distribution

The geometric distribution is the simplest of the waiting time distributions and is a
special case of the negative binomial distribution. If we set » =1 in (3.2.9) we have

P(X =zlp) =p(1-p)*!, z=1,2,...,

which defines the pmf of a geometric random variable X with success probability p.
X can be interpreted as the trial at which the first success occurs, so we are “waiting
for a success.” The fact that 3 oo ; P(X = z) = 1 follows from properties of the
geometric series. For any number a with |a| < 1,

which we have already encountered in Example 1.5.4.
The mean and variance of X can be calculated by using the negative binomial
formulas and by writing X =Y + 1 to obtain

1-p
p? ’

EX=EY+1=% and VarX =

The geometric distribution has an interesting property, known as the “memoryless”
Property. For integers s > t, it is the case that

(3.2.11) P(X >3 X>t)=P(X >s—t)
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that is, the geometric distribution “forgets” what has occurred. The probability of
getting an additional s — ¢ failures, having already observed ¢ failures, is the same as
the probability of observing s — ¢t failures at the start of the sequence. In other words,
the probability of getting a run of failures depends only on the length of the run, not
on its position.

To establish (3.2.11), we first note that for any integer n,

P(X > n) = P(no successes in n trials)
(3.2.12) =(1-p)",
and hence
P(X >sand X >t)
P(X >1t)
_ P(X >3)
T P(X>1)
=(1-p*"
=P(X >s—1).

P(X >s8X >t)=

Example 3.2.7 (Failure times) The geometric distribution is sometimes used to
model “lifetimes” or “time until failure” of components. For example, if the probability
is .001 that a light bulb will fail on any given day, then the probability that it will
last at least 30 days is

o0
P(X >30)= ) .001(1~.001)*"" = (.999)* = .970. |l
=31

The memoryless property of the geometric distribution describes a very special
“lack of aging” property. It indicates that the geometric distribution is not applicable
to modeling lifetimes for which the probability of failure is expected to increase with
time. There are other distributions used to model various types of aging; see, for
example, Barlow and Proschan (1975).

3.3 Continuous Distributions

In this section we will discuss some of the more common families of continuous distri-
butions, those with well-known names. The distributions mentioned here by no means
constitute all of the distributions used in statistics. Indeed, as was seen in Section
1.6, any nonnegative, integrable function can be transformed into a pdf.

Uniform Distribution

The continuous uniform distribution is defined by spreading mass uniformly over an
interval [a, b]. Its pdf is given by

1.
(3.3.1) f(za,b) = { o fecld

0 otherwise.
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It is easy to check that [’ f(z)dz = 1. We also have

b
T b+a
EX:/ b_adx— 5

b+a. 2
b —
Var X = / dx = ( 12a) .

Gamma Distribution

The gamma family of distributions is a flexible family of distributions on [0, 00) and
can be derived by the construction discussed in Section 1.6. If & is a positive constant,

the integral
o0
[eieta
0

is finite. If a is a positive integer, the integral can be expressed in closed form; oth-
erwise, it cannot. In either case its value defines the gamma function,

(33.2) I'(a) = / ta=le=t gt
0
The gamma function satisfies many useful relationships, in particular,
(3.3.3) INa+1) =al(a), a>0,

'which can be verified through integration by parts. Combining (3.3.3) with the easily
verified fact that I'(1) = 1, we have for any integer n > 0,

(3.3.4) I'(n)=(n-1).

(Another useful special case, which will be seen in (3.3.15), is that I'(3) = /7.)
Expressions (3.3.3) and (3.3.4) give recursion relations that ease the problems of

calculating values of the gamma, function. The recursion relation allows us to calculate

any value of the gamma function from knowing only the values of I'(c), 0 < ¢ < 1.
Since the integrand in (3.3.2) is positive, it immediately follows that

$o— 1 —t
I(a) ’
is a pdf. The full gamma family, however, has two parameters and can be derived by

changing variables to get the pdf of the random variable X = 8T in (3.3.5), where 3
18 a positive constant. Upon doing this, we get the gamma(a, B) family,

(3.3.5) f@) =

0<t<oo,

1
3.3.6 T = e/ pg<z< a >0, > 0.
The parameter a is known as the shape parameter, since it most influences the peaked-
ness of the distribution, while the parameter 3 is called the scale parameter, since
Most of its influence is on the spread of the distribution.
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The mean of the gamma(a, 3) distribution is

1 oo
3.3.7 EX = ———— / zz® e /P dz.
(337 T(@)8" Jo
To evaluate (3.3.7), notice that the integrand is the kernel of a gamma(a + 1, 3) pdf.
From (3.3.6) we know that, for any a, 8 > 0,

(3.3.8) / z*Ye */8 dx = I'(a)B°,
0

so we have

1 oo
— a,—z/B
EX —F(a)ﬁ“ /0 %€ dz
— _1_ a+1
= Ta)pa INa+1)8

= L \P (from (3.3.3))

= af.

Note that to evaluate EX we have again used the technique of recognizing the
integral as the kernel of another pdf. (We have already used this technique to calculate
the gamma mgf in Example 2.3.8 and, in a discrete case, to do binomial calculations
in Examples 2.2.3 and 2.3.5.)

The variance of the gamma(a, 8) distribution is calculated in a manner analogous
to that used for the mean. In particular, in calculating EX? we deal with the kernel
of a gamma(a + 2, 3) distribution. The result is

Var X = af.

In Example 2.3.8 we calculated the mgf of a gamma(a, 8) distribution. It is given
by

My = (1), i<l

X = 1— ,@ ¢ y ﬂ
Example 3.3.1 (Gamma-Poisson relationship) There is an interesting rela-
tionship between the gamma and Poisson distributions. If X is a gamma(a, 3) random
variable, where « is an integer, then for any z,

(3.3.9) P(X<z)=PY > a),

where Y ~ Poisson(z/8). Equation (3.3.9) can be established by successive integra-
tions by parts, as follows. Since a is an integer, we write I'(a) = (a — 1)! to get

1 T a1 -
P(Xs:r):m/(; pa—lo=t/B gy

1

BRCEE [‘ta_lﬁe_wl; +/0 (a — 1)t*2Be /A dt] ,
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where we use the integration by parts substitution u = t*~1, dv = e~t/# dt. Contin-
uing our evaluation, we have

_ -1 a—1,-z/8 _'—1_/: a—2,~t/8
»P(XSx)—-———(a_l)!ﬂa_l:c e +(a—2)!ﬂ°‘—1 A t* " “e dt

1 T a2t/
=WA t Ct/ dt—P(Y:a—l),

where Y ~ Poisson(z/3). Continuing in this manner, we can establish (3.3.9). (See
Exercise 3.19.) I

There are a number of important special cases of the gamma distribution. If we set
a = p/2, where p is an integer, and § = 2, then the gamma pdf becomes

(3.3.10) (p/D-1g=2/2 (< 2 < oo,

1
flzlp) = T(p/2) 272"
which is the chi squared pdf with p degrees of freedom. The mean, variance, and mgf
of the chi squared distribution can all be calculated by using the previously derived
gamma formulas.

The chi squared distribution plays an important role in statistical inference, es-
pecially when sampling from a normal distribution. This topic will be dealt with in
detail in Chapter 5.

Another important special case of the gamma distribution is obtained when we set
a = 1. We then have

(3.3.11) f(z|B) = %eﬂ/ﬁ, 0<z < oo,

the exponential pdf with scale parameter (3. Its mean and variance were calculated in
Examples 2.2.2 and 2.3.3.

The exponential distribution can be used to model lifetimes, analogous to the use
of the geometric distribution in the discrete case. In fact, the exponential distribution
shares the “memoryless” property of the geometric. If X ~ exponential(3), that is,
with pdf given by (3.3.11), then for s > ¢t > 0,

P(X >sX >t)=P(X >s-1),
since

P(X >s,X >t
P(X >t)

= —1;8(( i ':)) (since s > t)

[ %e_'/ﬁ dz

P(X>s|X>t)=

L

T ge /P dz

e_"’/ﬁ
= et/
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= e_(’_t)/ B
=P(X >s—1t).

Another distribution related to both the exponential and the gamma families is
the Weibull distribution. If X ~ exponential(3), then Y = X1/7 has a Weibull(y, 8)
distribution,

(33.12)  fy(ylv,B) = %y"le‘“’/", 0<y<oo, v>0, B>0.

Clearly, we could have started with the Weibull and then derived the exponential
as a special case (v = 1). This is a matter of taste. The Weibull distribution plays
an extremely important role in the analysis of failure time data (see Kalbfleisch and
Prentice 1980 for a comprehensive treatment of this topic). The Weibull, in particular,
is very useful for modeling hazard functions (see Exercises 3.25 and 3.26).

Normal Distribution

The normal distribution (sometimes called the Gaussian distribution) plays a central
role in a large body of statistics. There are three main reasons for this. First, the
normal distribution and distributions associated with it are very tractable analytically
(although this may not seem so at first glance). Second, the normal distribution
has the familiar bell shape, whose symmetry makes it an appealing choice for many
population models. Although there are many other distributions that are also bell-
shaped, most do not possess the analytic tractability of the normal. Third, there is
the Central Limit Theorem (see Chapter 5 for details), which shows that, under mild
conditions, the normal distribution can be used to approximate a large variety of
distributions in large samples.

The normal distribution has two parameters, usually denoted by u and 2, which
are its mean and variance. The pdf of the normal distribution with mean p and
variance o2 (usually denoted by n(u, 0?)) is given by

(3.3.13) f(zlp,0?) = e‘(““)z/(z"z), —00 < Z < 00.

2ro

. If X ~ n(u,0?), then the random variable Z = (X —pu)/o has a n(0, 1) distribution,
also known as the standard normal. This is easily established by writing

P(zgz)=P<X‘“gz)_

g

=P(X < zo0+p)

+
- / T i 20?) gy
210 J -0

1 - ( : z- #)
= — e dt, substitute t = ——
Var /_oo o4

showing that P(Z < z2) is the standard normal cdf.
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It therefore follows that all normal probabilities can be calculated in terms of the
standard normal. Furthermore, calculations of expected values can be simplified by
carrying out the details in the n(0, 1) case, then transforming the result to the n(x, o?)
case. For example, if Z ~ n(0,1),

EZ = /1 _/°° ze= %120y = —Le‘zz/"" ” =0
27 J—0o Var oo ’

and so, if X ~ n(u,o?), it follows from Theorem 2.2.5 that
EX =E(u+0Z)=p+0EZ = p.

Similarly, we have that Var Z = 1 and, from Theorem 2.3.4, Var X = ¢2.
We have not yet established that (3.3.13) integrates to 1 over the whole real line.
By applying the standardizing transformation, we need only to show that

1 o0 2
F/ C_z /2d2= 1.
T J—o00

Notice that the integrand above is symmetric around 0, implying that the integral
over (—oo,0) is equal to the integral over (0,00). Thus, we reduce the problem to
showing

[» o)
(3.3.14) / e /2y = V2T _ \/E
A 2 2

The function e~*"/2 does not have an antiderivative that can be written explicitly
in terms of elementary functions (that is, in closed form), so we cannot perform the
integration directly. In fact, this is an example of an integration that either you know
how to do or else you can spend a very long time going nowhere. Since both sides of
* (3.3.14) are positive, the equality will hold if we establish that the squares are equal.
Square the integral in (3.3.14) to obtain

®© 2 2 % 2 o0 2
(/ e *? /zdz) =</ et /2dt> (/ e /2du)
0 0 0
00 o o}
:/ / e~ (E+u)/2 g .
o Jo

The integration variables are just dummy variables, so changing their names is al-
lowed. Now, we convert to polar coordinates. Define

t=7rcos@ and wu=rsiné.

Then t2 + u2 = 2 and dt du = r df dr and the limits of integration become 0 < r <
00, 0 < 6 < w/2 (the upper limit on @ is 7/2 because ¢t and u are restricted to be
positive). We now have
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/2
/oo /oo e~ +v")/2 gt o, /oo /w re~"/2 46 dr
o Jo o Jo
T o0

— 2 —1'2/2
2/0. re dr

=r [—e_’2/2|8°]

TS

which establishes (3.3.14).

This integral is closely related to the gamma function; in fact, by making the
substitution w = 32z? in (3.3.14), we see that this integral is essentially I'(3). If we
are careful to get the constants correct, we will see that (3.3.14) implies

(3.3.15) r (%) = / w™Y2e Ydw = /7.
0

The normal distribution is somewhat special in the sense that its two parameters,
u (the mean) and o2 (the variance), provide us with complete information about the
exact shape and location of the distribution. This property, that the distribution is
determined by u and o2, is not unique to the normal pdf, but is shared by a family
of pdfs called location-scale families, to be discussed in Section 3.5.

Straightforward calculus shows that the normal pdf (3.3.13) has its maximum at
z = u and inflection points (where the curve changes from concave to convex) at
u £ o. Furthermore, the probability content within 1, 2, or 3 standard deviations of
the mean is

P(IX — 4| < 0) = P(1Z] < 1) = .6826,
P(IX - p| < 20) = P(|2] < 2) = 9544,
P(X — 4 < 30) = P(12| < 3) = 9974,

where X ~ n(u,02?),Z ~ n(0,1), and the numerical values can be obtained from
many computer packages or from tables. Often, the two-digit values reported are .68,
.95, and .99, respectively. Although these do not represent the rounded values, they
are the values commonly used. Figure 3.3.1 shows the normal pdf along with these
key features.

Among the many uses of the normal distribution, an important one is its use as an
approximation to other distributions (which is partially justified by the Central Limit
Theorem). For example, if X ~ binomial(n, p), then EX = np and Var X = np(1-p),
and under suitable conditions, the distribution of X can be approximated by that of a
normal random variable with mean u = np and variance 2 = np(1—p). The “suitable
conditions” are that n should be large and p should not be extreme (near 0 or 1). We
want n large so that there are enough (discrete) values of X to make an approximation
by a continuous distribution reasonable, and p should be “in the middle” so the
binomial is nearly symmetric, as is the normal. As with most approximations there
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Figure 3.3.1. Standard normal density

are no absolute rules, and each application should be checked to decide whether the
approximation is good enough for its intended use. A conservative rule to follow is
that the approximation will be good if min(np, n(1 —p)) > 5.

Example 3.3.2 (Normal approximation) Let X ~ binomial(25,.6). We can
approximate X with a normal random variable, Y, with mean y = 25(.6) = 15 and

* standard deviation o = ((25)(.6)(.4))1/2 = 2.45. Thus

P(X<13)~P(Y <13)=P (z < 132;515) = P(Z < —.82) = .206,
~ while the exact binomial calculation gives
13 /o5
< — 6)%(4 25—z __ .
P(X <13) ;(z)(s)( ) 267,

showing that the normal approximation is good, but not terrific. The approximation
can be greatly improved, however, by a “continuity correction.” To see how this works,
look at Figure 3.3.2, which shows the binomial(25,.6) pmf and the n(15,(2.45)?)
pdf. We have drawn the binomial pmf using bars of width 1, with height equal to
the probability. Thus, the areas of the bars give the binomial probabilities. In the
approximation, notice how the area of the approximating normal is smaller than the
binomial area (the normal area is everything to the left of the line at 13, whereas
the binomial area includes the entire bar at 13 up to 13.5). The continuity correction
adds this area back by adding % to the cutoff point. So instead of approximating
P(X < 13), we approximate the equivalent expression (because of the discreteness),
P(X <13.5) and obtain

P(X <13) = P(X < 135) ~ P(Y < 13.5) = P(Z < —.61) = .271,

a much better approximation. In general, the normal approximation with the continu-
ity correction is far superior to the approximation without the continuity correction.



108 COMMON FAMILIES OF DISTRIBUTIONS Section 3.3
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Figure 3.3.2. Normal(15, (2.45)%) approzimation to the binomial(25, .6)

We also make the correction on the lower end. If X ~ binomial(n,p) and ¥ ~
n(np,np(1 — p)), then we approximate

P(X<z)=P(Y <z+1/2),
PX>z)~PY 2z—1/2). I

Beta Distribution

The beta family of distributions is a continuous family on (0,1) indexed by two
parameters. The beta(, 8) pdf is

L
B(a, B)

where B(a, 3) denotes the beta function,

B(a,B) = /01 711 — z)P 1 da.

The beta function is related to the gamma function through the following identity:

I'(a)L'(B)
Na+8)

Equation (3.3.17) is very useful in dealing with the beta function, allowing us to take
advantage of the properties of the gamma function. In fact, we will never deal directly
with the beta function, but rather will use (3.3.17) for all of our evaluations.

The beta distribution is one of the few common “named” distributions that give
probability 1 to a finite interval, here taken to be (0,1). As such, the beta is often used
to model proportions, which naturally lie between 0 and 1. We will see illustrations
of this in Chapter 4.

Calculation of moments of the beta distribution is quite easy, due to the particular
form of the pdf. For n > —a we have

(3.3.16) f(z|e,B) = 11 -z)*71, 0<z<l1l, a>0, B8>0,

(3.3.17) B(a,B) =

1
EX™ = ——B(olz ﬂ)/ z"z* (1 —a:)ﬁ'ldz
) 0

1
- B(a,8)

1
/ (et =1(1 — )P 14z,
0
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Figure 3.3.3. Beta densities

We now recognize the integrand as the kernel of a beta(a + n, 8) pdf; hence,

Bla+n,8) T(a+n)'(a+pB)

(33.18) BX = "B Tlat A+ na)

Using (3.3.3) and (3.3.18) with n = 1 and n = 2, we calculate the mean and variance
of the beta(a, 8) distribution as

a af
X = o and VarX = et A at B+T)

As the parameters a and [ vary, the beta distribution takes on many shapes, as
shown in Figure 3.3.3. The pdf can be strictly increasing (o > 1, 8 = 1), strictly
decreasing (o« = 1, 8 > 1), U-shaped (@ < 1, 8 < 1), or unimodal (e > 1, 8 > 1). The
case a = f3 yields a pdf symmetric about § with mean % (necessarily) and variance
(4(2a+1))~t. The pdf becomes more concentrated as « increases, but stays symmet-
ric, as shown in Figure 3.3.4. Finally, if &« = 8 = 1, the beta distribution reduces to
the uniform(0, 1), showing that the uniform can be considered to be a member of the
beta family. The beta distribution is also related, through a transformation, to the
F distribution, a distribution that plays an extremely important role in statistical
analysis (see Section 5.3).

Cauchy Distribution

The Cauchy distribution is a symmetric, bell-shaped distribution on (—o0, 00) with
pdf

1 1

(3.3.19) f(z|6) = —ﬂ—_ma

—oo <z <00, —00<0l<oo.

(See Exercise 3.39 for a more general version of the Cauchy pdf.) To the eye, the
Cauchy does not appear very different from the normal distribution. However, there
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Figure 3.3.4. Symmetric beta densities

is a very great difference, indeed. As we have already seen in Chapter 2, the mean of
the Cauchy distribution does not exist; that is,

_ (71 _
(3.3.20) E|X]| = /_0o e L

It is easy to see that (3.3.19) defines a proper pdf for all §. Recall that éit arctan(t) =
(1+t2)~1; hence,

/00 ! = d —la.rct n(:z:—9)|°° =1
oo T 1+ (z—6)2 =g e —oo

since arctan(+oo) = +m/2.

Since E|X| = oo, it follows that no moments of the Cauchy distribution exist or,
in other words, all absolute moments equal co. In particular, the mgf does not exist.

The parameter 6 in (3.3.19) does measure the center of the distribution; it is the
median. If X has a Cauchy distribution with parameter 6, then from Exercise 3.37
it follows that P(X > 6) = 3, showing that 6 is the median of the distribution.
Figure 3.3.5 shows a Cauchy(0) distribution together with a n(0, 1), where we see the
similarity in shape but the much thicker tails of the Cauchy.

The Cauchy distribution plays a special role in the theory of statistics. It repre-
sents an extreme case against which conjectures can be tested. But do not make the
mistake of considering the Cauchy distribution to be only a pathological case, for it
has a way of turning up when you least expect it. For example, it is common practice
for experimenters to calculate ratios of observations, that is, ratios of random vari-
ables. (In measures of growth, it is common to combine weight and height into one
measurement weight-for-height, that is, weight /height.) A surprising fact is that the
ratio of two standard normals has a Cauchy distribution (see Example 4.3.6). Taking
ratios can lead to ill-behaved distributions.
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Normal

Figure 3.3.5. Standard normal density and Cauchy density

Lognormal Distribution

If X is a random variable whose logarithm is normally distributed (that is, log X ~
n(y,0?)), then X has a lognormal distribution. The pdf of X can be obtained by
straightforward transformation of the normal pdf using Theorem 2.1.5, yielding

(3.3.21)

1
—e_(1°“_“)2/(2"2), 0<z<oo, —-oo<pu<oo, o>0,

@l o?) = ==

for the lognormal pdf. The moments of X can be calculated directly using (3.3.21),
or by exploiting the relationship to the normal and writing

EX = Ee'8¥
= EeY (Y =log X ~ n(y,0?))

= ent(e?/2),

The last equality is obtained by recognizing the mgf of the normal distribution (set
t =1, see Exercise 2.33). We can use a similar technique to calculate EX? and get

Var X = e2(u+o?) _ g2uto®

The lognormal distribution is similar in appearance to the gamma distribution, as
Figure 3.3.6 shows. The distribution is very popular in modeling applications when
the variable of interest is skewed to the right. For example, incomes are necessarily
skewed to the right, and modeling with a lognormal allows the use of normal-theory
statistics on log(income), a very convenient circumstance.

Double Ezponential Distribution

The double ezponential distribution is formed by reflecting the exponential distribution
around its mean. The pdf is given by

(3.3.22) f(zlp,0) = Zie""“l/”, —0<z<00, —-00<pu<oo, o>0.
o
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Figure 3.3.6. (a) Some lognormal densities; (b) some gamma densities

The double exponential provides a symmetric distribution with “fat” tails (much
fatter than the normal) but still retains all of its moments. It is straightforward to
calculate

EX=p and VarX =202

The double exponential distribution is not bell-shaped. In fact, it has a peak (or
more formally, a point of nondifferentiability) at 2 = p. When we deal with this
distribution analytically, it is important to remember this point. The absolute value
signs can also be troublesome when performing integrations, and it is best to divide
the integral into regions around z = u:
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00
EX = / ie—lz—#l/a dz
—oo 20
m

" Bt e [T Eememite gy
(3.3.23) 25¢ z + 55¢ z
—00

u

Notice that we can remove the absolute value signs over the two regions of integration.
(This strategy is useful, in general, in dealing with integrals containing absolute values;
divide up the region of integration so the absolute value signs can be removed.)
Evaluation of (3.3.23) can be completed by performing integration by parts on each
integral.

There are many other continuous distributions that have uses in different statis-
tical applications, many of which will appear throughout the rest of the book. The
comprehensive work by Johnson and co-authors, mentioned at the beginning of this
chapter, is a valuable reference for most useful statistical distributions.

3.4 Exponential Families

A family of pdfs or pmfs is called an ezponential family if it can be expressed as

k
(3.4.1) f(x|8) = h{z)c(8) exp (Z wi(O)ti(z)) .

Here h(z) > 0 and t;(z), . .., tx(z) are real-valued functions of the observation z (they
cannot depend on 8), and ¢(8) > 0 and w;(8),. .., wx(8) are real-valued functions of
the possibly vector-valued parameter 8 (they cannot depend on ). Many common
families introduced in the previous section are exponential families. These include the
continuous families—normal, gamma, and beta, and the discrete families—binomial,
Poisson, and negative binomial.

To verify that a family of pdfs or pmfs is an exponential family, we must identify the
functions h(z),c(0), wi(0), and t;(z) and show that the family has the form (3.4.1).
The next example illustrates this.

Example 3.4.1 (Binomial exponential family) Let n be a positive integer and
consider the binomial(n, p) family with 0 < p < 1. Then the pmf for this family, for
z=0,...,nand 0<p<1,is

3

falp) = (") -p=

)-pr (l%p)
= (z) (1-p)"exp (10g (1—%}) z> :

]

3

(3.4.2) = (

8

3
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Define

(n) z=0,...,n
h = T —(1—p)n
(®) {0 otherwise, e(p)=(1-p)", 0<p<l,

w1 (p) = log (lp%p) , 0<p<l, and ¢#(z)==x.
Then we have

(3.4.3) f(zlp) = h(z)c(p) explw:(p)ti(z)],

which is of the form (3.4.1) with k¥ = 1. In particular, note that hA(z) > 0 only if
z2=0,...,n and ¢(p) is defined only if 0 < p < 1. This is important, as (3.4.3) must
match (3.4.2) for all values of z and is an exponential family only if 0 < p < 1 (so the
functions of the parameter are only defined here). Also, the parameter values p = 0
and 1 are sometimes included in the binomial model, but we have not included them
here because the set of z values for which f(z|p) > 0 is different for p = 0 and 1 than
for other p values. I

The specific form of (3.4.1) results in exponential families having many nice math-
ematical properties. But more important for a statistical model, the form of (3.4.1)
results in many nice statistical properties. We next illustrate a calculational shortcut
for moments of an exponential family.

Theorem 3.4.2 If X is a random variable with pdf or pmf of the form (8.4.1),
then

k
(344) E (m 3@2"%,-(){)) = 3‘3 log c(6):

k. owi(8)

, 9? 0%wi(6
(3.4.5) Var (m 96, ti(X))— 80210gc (Z 302 ti( )

Although these equations may look formidable, when applied to specific cases they
can work out quite nicely. Their advantage is that we can replace integration or
summation by differentiation, which is often more straightforward.

Example 3.4.3 (Binomial mean and variance) From Example 3.4.1 we have

d d P 1
d—pwl(l’) = Elog 1—p

p p(l-p)
d d —-n
Bl == -p) =
ap 8 c(p) dpnlog(l p)=1T .

and thus from Theorem 3.4.2 we have

() - 15
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and a bit of rearrangement yields E(X) = np. The variance identity works in a similar
manner. I

The proof of Theorem 3.4.2 is a calculus excursion and is relegated to Exercise 3.31.
See also Exercise 3.32 for a special case.
We now look at another example and some other features of exponential families.

Example 3.4.4 (Normal exponential family) Let f(z|u,0?) be the n(u,o?)
family of pdfs, where 8 = (u,0), —00 < u < 00, o > 0. Then

1 (z — p)?
2y _ N S ol
f(l‘l,u,O' ) - \/%0' €xp ( 20_2
(3.4.6)
1 u? 22  ur
= 7 .Uexp (_F) exp (—F + 52 )
Define
h(z) =1 for all z;
(6) = c(u, 0) = ——— ex B <<, 030,
c = Cl4, - ma_ €Xp 20_2 ’ U y O ’
1 . K :
wl(#,0)= Fa o > 0; ’U)2(,LL,0')=?, o>0;
ti(z) = —-2%/2; and ty(z)=1.
Then

f(z|u,0%) = h(z)c(u, o) explw: (1, 0)t1(z) + wap, 0)ta(z)),

which is the form (3.4.1) with k = 2. Note again that the parameter functions are
defined only over the range of the parameter. I

In general, the set of z values for which f(z|8) > 0 cannot depend on @ in an
exponential family. The entire definition of the pdf or pmf must be incorporated into
the form (3.4.1). This is most easily accomplished by incorporating the range of z
into the expression for f(z|@) through the use of an indicator function.

Definition 3.4.5 The indicator function of a set A, most often denoted by 14(z),
is the function

we={o 154

An alternative notation is I(z € A).
Thus, the normal pdf of Example 3.4.4 would be written

f(z|u,0®) = h(z)e(u, o) explwi (i, o)t1(2) + wo(k, 0)t2(2)] [ —co,00) ()-
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Since the indicator function is a function of only z, it can be incorporated into the
function h(z), showing that this pdf is of the form (3.4.1).

From (3.4.1), since the factor exp(:) is always positive, it can be seen that for
any @ € ©, that is, for any @ for which ¢(8) > 0, {z: f(z|@) > 0} = {z: h(z) >
0} and this set does not depend on 6. So, for example, the set of pdfs given by
f(z|6) =0 texp(l — (z/0)),0 < § < T < oo, is not an exponential family even
though we can write 6~ exp(1 — (z/6)) = h(z)c(8) exp(w(6)t(z)), where h(z) = e!,
c(8) = 07, w(d) = 671, and t(z) = —z. Writing the pdf with indicator functions
makes this very clear. We have

z

f(z|0) =0 lexp (1 - (0)) Ijg,00) ().

The indicator function cannot be incorporated into any of the functions of (3.4.1) since
it is not a function of z alone, not a function of # alone, and cannot be expressed as
an exponential. Thus, this is not an exponential family.

An exponential family is sometimes reparameterized as

k
(3.4.7) f(zIn) = h(z)c™(n) exp (E mti(x)) :
i=1

Here the h(z) and t;(z) functions are the same as in the original parameteriza-
tion (3.4.1). The set H = {n = (M1, mk): [ h(z) exp (2;;1 niti(x)) dz < oo}

is called the natural parameter space for the family. (The integral is replaced by a
sum over the values of z for which A(z) > 0 if X is discrete.) For the values of
-1
n € H, we must have c*(n) = [ffomh(:z:) exp (Zle n,-t,-(x)) d:z:] to ensure that
the pdf integrates to 1. Since the original f(z|@) in (3.4.1) is a pdf or pmf, the set
{n = (w1(8),...,wx(0)): @ € O} must be a subset of the natural parameter space.
But there may be other values of # € H also. The natural parameterization and the
natural parameter space have many useful mathematical properties. For example, H
is convex.

Example 3.4.6 (Continuation of Example 3.4.4) To determine the natural
parameter space for the normal family of distributions, replace w;(u, o) with n; in
(3.4.6) to obtain

v ub nz?
3.4. =Y —12 _nZ .
(3.4.8) f(zlm,n2) N G A 5 T2z

The integral will be finite if and only if the coefficient on z* is negative. This means
71 must be positive. If 7 > 0, the integral will be finite regardless of the value
of ny. Thus the natural parameter space is {(n1,72) : ;1 > 0,—00 < 72 < oo}.
Identifying (3.4.8) with (3.4.6), we see that 3 = u/0? and g1 = 1/02. Although
natural parameters provide a convenient mathematical formulation, they sometimes
lack simple interpretations like the mean and variance. I

2
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In the representation (3.4.1) it is often the case that the dimension of the vector
8 is equal to k, the number of terms in the sum in the exponent. This need not be
so, and it is possible for the dimension of the vector 8 to be equal to d < k. Such an
exponential family is called a curved exponential family.

Definition 3.4.7 A curved exponential family is a family of densities of the form
(3.4.1) for which the dimension of the vector @ is equal to d < k. If d = k, the family
is a full exponential family. (See also Miscellanea 3.8.3.)

Example 3.4.8 (A curved exponential family) The normal family of Example
3.4.4 is a full exponential family. However, if we assume that 02 = p?, the family
becomes curved. (Such a model might be used in the analysis of variance; see Exercises
11.1 and 11.2.) We then have

1 (@ —u)
fal) = = exo (-E54)

= ! exp( l)exp( z* +a:>
V2w pu? 2 0% )
For the normal family the full exponential family would have parameter space

(u,02%) = R x (0, 00), while the parameter space of the curved family (u,0?) = (i, u?)
is a parabola. I

(3.4.9)

Curved exponential families are useful in many ways. The next example illustrates
a simple use.

Example 3.4.9 (Normal approximations) In Chapter 5 we will see that if
X1,...,Xn is a sample from a Poisson(\) population, then the distribution of X =
¥, X;/n is approximately

X ~n(A\A/n),

a curved exponential family.

The n(\, A\/n) approximation is justified by the Central Limit Theorem (Theorem
5.5.14). In fact, we might realize that most such CLT approximations will result in
a curved normal family. We have seen the normal binomial approximation (Example
3.3.2): If X,..., X, are iid Bernoulli(p), then

X ~n(p,p(1 —p)/n),
approximately. For another illustration, see Example 5.5.16. I

Although the fact that the parameter space is a lower-dimensional space has some
influence on the properties of the family, we will see that curved families still enjoy
many of the properties of full families. In particular, Theorem 3.4.2 applies to curved
exponential families. Moreover, full and curved exponential families have other sta-
tistical properties, which will be discussed throughout the remainder of the text. For
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example, suppose we have a large number of data values from a population that has
a pdf or pmf of the form (3.4.1). Then only k numbers (k = number of terms in the
sum in (3.4.1)) that can be calculated from the data summarize all the information
about @ that is in the data. This “data reduction” property is treated in more detail
in Chapter 6 (Theorem 6.2.10), where we discuss sufficient statistics.

For more of an introduction to exponential families, see Lehmann (1986, Section 2.7)
or Lehmann and Casella (1998, Section 1.5 and Note 1.10.6). A thorough introduction,
at a somewhat more advanced level, is given in the classic monograph by Brown
(1986).

3.5 Location and Scale Families

In Sections 3.3 and 3.4, we discussed several common families of continuous distribu-
tions. In this section we discuss three techniques for constructing families of distri-
butions. The resulting families have ready physical interpretations that make them
useful for modeling as well as convenient mathematical properties.

The three types of families are called location families, scale families, and location—
scale families. Each of the families is constructed by specifying a single pdf, say f(z),
called the standard pdf for the family. Then all other pdfs in the family are generated
by transforming the standard pdf in a prescribed way. We start with a simple theorem
about pdfs.

Theorem 3.5.1 Let f(z) be any pdf and let u and o > 0 be any given constants.
Then the function

o

g(zlu,0) = %f (z — “)

is a pdf.

Proof: To verify that the transformation has produced a legitimate pdf, we need to
check that (1/0)f((z — u)/0o), as a function of z, is a pdf for every value of y and o
we might substitute into the formula. That is, we must check that (1/0)f((x — u)/o)
is nonnegative and integrates to 1. Since f(z) is a pdf, f(z) > 0 for all values of z.
So, (1/0)f((z — u)/e) > 0 for all values of z, 4, and 0. Next we note that

T lp(zzp _ [ . -
/;00 af ( o > dz = /_oof(y)dy (substltute y= _0_)
=1,

(since f(y) is a pdf)

as was to be verified. O
We now turn to the first of our constructions, that of location families.

Definition 3.5.2 Let f(z) be any pdf. Then the family of pdfs f(z — u), indexed
by the parameter u, —0o0 < u < 00, is called the location family with standard pdf
f(z) and p is called the location parameter for the family.
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Figure 3.5.1. Two members of the same location family: means at 0 and 2

To see the effect of introducing the location parameter u, consider Figure 3.5.1. At
z=u, fle—p) = f(0);at z=pu+1, f(x— u) = f(1); and, in general, at z = p + a,
flx — p) = f(a). Of course, f(z — u) for u == 0 is just f(z). Thus the location
parameter u simply shifts the pdf f(z) so that the shape of the graph is unchanged
but the point on the graph that was above £ = 0 for f(z) is above z = p for f(z — p).
It is clear from Figure 3.5.1 that the area under the graph of f(z) between z = —1
and z = 2 is the same as the area under the graph of f(z — u) between z = p — 1 and
z = p+ 2. Thus if X is a random variable with pdf f(z — 1), we can write

P(-1< X <2(0)=P(p-1<X < p+2ju),

where the random variable X has pdf f(z — 0) = f(z) on the left of the equality and
pdf f(z — u) on the right.
Several of the families introduced in Section 3.3 are, or have as subfamilies, location
families. For example, if o > 0 is a specified, known number and we define
1

f(z)= o) e—zn/(Zan), —00 <z <00,
To

then the location family with standard pdf f(z) is the set of normal distributions
with unknown mean u and known variance 0. To see this, check that replacing =
by z — p in the above formula yields pdfs of the form defined in (3.3.13). Similarly,
the Cauchy family and the double exponential family, with ¢ a specified value and
4 a parameter, are examples of location families. But the point of Definition 3.5.2 is
that we can start with any pdf f(z) and generate a family of pdfs by introducing a
location parameter.

If X is a random variable with pdf f(z—u), then X may be represented as X = Z+
i, where Z is a random variable with pdf f(z). This representation is a consequence
of Theorem 3.5.6 (with ¢ = 1), which will be proved later. Consideration of this
representation indicates when a location family might be an appropriate model for
an observed variable X. We will describe two such situations.

First, suppose an experiment is designed to measure some physical constant u, say
the temperature of a solution. But there is some measurement error involved in the
observation. So the actual observed value X is Z + u, where Z is the measurement
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error. X will be greater than u if Z > O for this observation and less than p if
Z < 0. The distribution of the random measurement error might be well known from
previous experience in using this measuring device to measure other solutions. If this
distribution has pdf f(z), then the pdf of the observed value X is f(z — p).

As another example, suppose the distribution of reaction times of drivers on a
coordination test is known from previous experimentation. Denote the reaction time
for a randomly chosen driver by the random variable Z. Let the pdf of Z describing the
known distribution be f(z). Now, consider “applying a treatment” to the population.
For example, consider what would happen if everyone drank three glasses of beer. We
might assume that everyone’s reaction time would change by some unknown amount
u. (This very simple model, in which everyone's reaction time changes by the same
amount 4, is probably not the best model. For example, it is known that the effect
of alcohol is weight-dependent, so heavier people are likely to be less affected by the
beers.) Being open-minded scientists, we might even allow the possibility that x < 0,
that is, that the reaction times decrease. Then, if we observe the reaction time of a
randomly selected driver after “treatment,” the reaction time would be X = Z + 4
and the family of possible distributions for X would be given by f(z — u).

If the set of z for which f(z) > 0 is not the whole real line, then the set of z for
which f(z — u) > 0 will depend on p. Example 3.5.3 illustrates this.

Example 3.5.3 (Exponential location family) Let f(z) = e *, z > 0, and
f(x) =0, z < 0. To form a location family we replace z with z — 1 to obtain

e~z >0

s ={5 " TTh20
_ e_(z'"#) x> u
— 10 z < U

Graphs of f(z|u) for various values of yx are shown in Figure 3.5.2. As in Figure 3.5.1,
the graph has been shifted. Now the positive part of the graph starts at u rather than
at 0. If X measures time, then u might be restricted to be nonnegative so that X
will be positive with probability 1 for every value of y. In this type of model, where
i denotes a bound on the range of X, u is sometimes called a threshold parameter. ||

0o 1 2 3 4 5 6 17 8 9 10

Figure 3.5.2. Exponential location densities
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-6 -4 -2 0 2 4 6

Figure 3.5.3. Members of the same scale family

'

The other two types of families to be discussed in this section are scale families and
location-scale families.

Definition 3.5.4 Let f(z) be any pdf. Then for any ¢ > 0, the family of pdfs
(1/0)f(z/o), indexed by the parameter o, is called the scale family with standard pdf
f(z) and o is called the scale parameter of the family.

The effect of introducing the scale parameter o is either to stretch (¢ > 1) or to
contract (o < 1) the graph of f(z) while still maintaining the same basic shape of
the graph. This is illustrated in Figure 3.5.3. Most often when scale parameters: are
used, f(z) is either symmetric about O or positive only for z > 0. In these cases the
stretching is either symmetric about O or only in the positive direction. But, in the
definition, any pdf may be used as the standard.

Several of the families introduced in Section 3.3 either are scale families or have
scale families as subfamilies. These are the gamma family if « is a fixed value and
0 is the scale parameter, the normal family if 4 = 0 and o is the scale parameter,
the exponential family, and the double exponential family if 4 = 0 and o is the scale
parameter. In each case the standard pdf is the pdf obtained by setting the scale
parameter equal to 1. Then all other members of the family can be shown to be of
the form in Definition 3.5.4.

Definition 3.5.5 Let f(z) be any pdf. Then for any pu, —0o < u < 00, and any
o > 0, the family of pdfs (1/0) f((z — u)/0), indexed by the parameter (u, o), is called
the location—scale family with standard pdf f(z); u is called the location parameter
and o is called the scale parameter.

The effect of introducing both the location and scale parameters is to stretch (o > 1)
or contract (o < 1) the graph with the scale parameter and then shift the graph so that
the point that was above 0 is now above u. Figure 3.5.4 illustrates this transformation
of f(z). The normal and double exponential families are examples of location—scale
families. Exercise 3.39 presents the Cauchy as a location—scale family.
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3 —4 2 0 2 4 6

Figure 3.5.4. Members of the same location—scale family

The following theorem relates the transformation of the pdf f(z) that defines a
location—scale family to the transformation of a random variable Z with pdf f(z). As
mentioned earlier in the discussion of location families, the representation in terms
of Z is a useful mathematical tool and can help us understand when a location—scale
family might be appropriate in a modeling context. Setting o = 1 in Theorem 3.5.6
yields a result for location (only) families, and setting u = 0 yields a result for scale
(only) families.

Theorem 3.5.6 Let f(-)} be any pdf. Let u be any real number, and let o be any
positive real number. Then X is a random variable with pdf (1/c)f((z — p)/0) if and
only if there exists a random variable Z with pdf f(z) and X =o0Z + p.
Proof: To prove the “if” part, define g(z) = 0z+pu. Then X = g(2Z), g is a monotone
function, g~'(z) = (z — p)/o, and |(d/dz)g~!(z)| = 1/0. Thus by Theorem 2.1.5,
the pdf of X is
T -— 1
S(2);
ol o

To prove the “only if” part, define g(z) = (z — u)/o and let Z = g(X). Theorem
2.1.5 again applies: g7 1(2) = 0z + 4, I(d/dz)g_l(z)‘ = o, and the pdf of Z is

fx(@) = f2(97' (=) | & 'l(r)

) = (™) | o) = (A=) o - )

Also,

X —
oZ+p=ag(X)+u=a( Uﬂ)—f-u:X. a
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An important fact to extract from Theorem 3.5.6 is that the random variable
Z = (X — p)/o has pdf

fale)=1f (";0) - /().

That is, the distribution of Z is that member of the location—scale family correspond-
ing to u = 0,0 = 1. This was already proved for the special case of the normal family
in Section 3.3.

Often, calculations can be carried out for the “standard” random variable Z with
pdf f(z) and then the corresponding result for the random variable X with pdf
(1/0)f((z — u)/o) can be easily derived. An example is given in the following, which
is a generalization of a computation done in Section 3.3 for the normal family.

Theorem 3.5.7 Let Z be a random variable with pdf f(z). Suppose EZ and Var Z
ezist. If X is a random variable with pdf (1/0)f((z — u)/0), then

EX =cEZ+u and VarX =o2%VarZ.
In particular, if EZ =0 and Var Z = 1, then EX = p and Var X = o2.

Proof: By Theorem 3.5.6, there is a random variable Z* with pdf f(2) and X =
0Z*+ p. So EX =0EZ* + 4= 0EZ + uu and Var X = 0%Var Z* = ¢*Var Z. O

For any location-scale family with a finite mean and variance, the standard pdf f(z)
can be chosen in such a way that EZ = 0 and Var Z = 1. (The proof that this choice
can be made is left as Exercise 3.40.) This results in the convenient interpretation
of 1 and o2 as the mean and variance of X, respectively. This is the case for the
usual definition of the normal family as given in Section 3.3. However, this is not the
choice for the usual definition of the double exponential family as given in Section
3.3. There, Var Z = 2.

Probabilities for any member of a location—scale family may be computed in terms
of the standard variable Z because '

P(XSx):P<X_“gx‘“>=P(ng_“>.

(22 (2 o

Thus, if P(Z < z) is tabulated or easily calculable for the standard variable Z, then
probabilities for X may be obtained. Calculations of normal probabilities using the
standard normal table are examples of this.

3.6 Inequalities and Identities

Statistical theory is literally brimming with inequalities and identities—so many that
entire books are devoted to the topic. The major work by Marshall and Olkin (1979)
contains many inequalities using the concept of majorization. The older work by
Hardy, Littlewood, and Polya (1952) is a compendium of classic inequalities. In this
section and in Section 4.7 we will mix some old and some new, giving some idea of the
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types of results that exist. This section is devoted to those identities and inequalities
that arise from probabilistic concerns, while those in Section 4.7 rely more on basic
properties of numbers and functions.

3.6.1 Probability Inequalities

The most famous, and perhaps most useful, probability inequality is Chebychev’s
Inequality. Its usefulness comes from its wide applicability. As with many important
results, its proof is almost trivial.

Theorem 3.6.1 (Chebychev’s Inequality) Let X be a random variable and let
g(z) be a nonnegative function. Then, for any r > 0,

Eg(X
P(o(x) 2r) < PEK),
Proof:
Bg(X) = [ ge)fx(e)de
—00
2 / 9(z) fx(z) dz (g is nonnegative)
{z:9(z) 27}
>r / fx(z)dz
{z:9(z)2r}
=rP(g(X) 2r). (definition)
Rearranging now produces the desired inequality. O

Example 3.6.2 (Illustrating Chebychev) The most widespread use of Cheby-
chev’s Inequality involves means and variances. Let g(z) = (z—pu)2/0?, where u = EX
and o2 = Var X. For convenience write 7 = ¢t2. Then

(X—p? o\ 1.(X-p® 1
P(—af—zt SET s g

Doing some obvious algebra, we get the inequality
1
P(X —pl 2t0) < 5
and its companion
1
P(IX -yl <to) 21~ 5,

which gives a universal bound on the deviation | X — y| in terms of o. For example,
taking t = 2, we get

1

so there is at least a 75% chance that a random variable will be within 2o of its mean
(no matter what the distribution of X). I
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While Chebychev’s Inequality is widely applicable, it is necessarily conservative.
(See, for example, Exercise 3.46 and Miscellanea 3.8.2.) In particular, we can often
get tighter bounds for some specific distributions.

Example 3.6.3 (A normal probability inequality) If Z is standard normal,
then

2 —t2/2
(3.6.1) P(|Z|2t)5\/;et , forallt>D0.

Compare this with Chebychev’s Inequality. For t = 2, Chebychev gives P(|Z| > t) <
.25 but /(2/7)e2/2 = .054, a vast improvement.
To prove (3.6.1), write

1 [o ]
P(Z > t) = EZ 6—12/2 dr

< 1 o z 222 g, since z/t > 1
“VorJ, ot forz >t
1 e—t2/2
Vor t

and use the fact that P(|Z| > t) = 2P(Z > t). A lower bound on P(|Z| > t) can be
established in a similar way (see Exercise 3.47). I

Many other probability inequalities exist, and almost all of them are similar in
spirit to Chebychev’s. For example, we will see (Exercise 3.45) that

P(X >a) < e *Mx(t),

but, of course, this inequality requires the existence of the mgf. Other inequalities,
tighter than Chebychev but requiring more assumptions, exist (as detailed in Miscel-
lanea 3.8.2).

3.6.2 Identities

In this section we present a sampling of various identities that can be useful not only
in establishing theorems but also in easing numerical calculations. An entire class of
identities can be thought of as “recursion relations,” a few of which we have already
seen. Recall that if X is Poisson(\), then

A
(36.2) (X =2+1) = = P(X =2),
allowing us to calculate Poisson probabilities recursively starting from P(X = 0) =
e~ *. Relations like (3.6.2) exist for almost all discrete distributions (see Exercise 3.48).
Sometimes they exist in a slightly different form for continuous distributions.
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Theorem 3.6.4 Let X, g denote a gamma(a, 8) random variable with pdf f(z|a, 8),
where a >1. Then for any constants a and b,

(3.6.3) P(a< Xap <b)=0(f(ala,B) - f(ble, B)) + Pla < Xa-1,8 < b).

Proof: By definition,
1 —
Pla< Xop<b)= a-lg=z
(a < Xap <b) F(a)ﬁa/ix e dz
b
—m"_lﬁe—zm]z +/ (a— 1)x°_2ﬂe“/ﬁ da:] ,
a

1
~ T(a)p™

where we have done an integration by parts with u = z® ! and dv = e %/f dz.
Continuing, we have

(a—1) /b -2 _—z/B
P = — — 7 a T .
(0 < Xap < 1) = B(f(ale, 8) = f(blow ) + paszaty | 272/ da
Using the fact that I'(a) = (a — 1)I'(a — 1), we see that the last term is Pla <
Xa—l,ﬁ < b) : |

If a is an integer, repeated use of (3.6.3) will eventually lead to an integral that
can be evaluated analytically (when a = 1, the exponential distribution). Thus, we
can easily compute these gamma probabilities.

There is an entire class of identities that rely on integration by parts. The first
of these is attributed to Charles Stein, who used it in his work on estimation of
multivariate normal means (Stein 1973, 1981).

Lemma 3.6.5 (Stein’s Lemma) Let X ~ n(6,0?), and let g be a differentiable
function satisfying E|g'(X)| < oo. Then

E[g(X)(X - 6)] = 0?E¢/(X).
Proof: The left-hand side is

Bl (X -0 = —— [ " 4(@) (@ — 0)e= =070 g

270 J—oo

Use integration by parts with u = g(z) and dv = (z — 8)e~(==9?/20” gz to get

1 oo
Elg(X)(X - 6)] = = [—azg(x)e—u—o)’/(za%Iiooo + o2 / g (z)e= =)/ (2% dx].
—00

The condition on g’ is enough to ensure that the first term is 0 and what remains on
the right-hand side is c?Eg’(X). |
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Example 3.6.6 (Higher-order normal moments) Stein’s Lemma makes calcu-
lation of higher-order moments quite easy. For example, if X ~ n(6,52), then

EX3=EX*X—-0+6)
= EX?*(X —6) + 6EX?
= 20°EX + §EX? (9(z) = 2%, ¢'(z) = 2)
= 2020 4+ 0(c? + 6%)
= 300? + 6°. I

Similar integration-by-parts identities exist for many distributions (see Exercise
3.49 and Hudson 1978). One can also get useful identities by exploiting properties of
a particular distribution, as the next theorem shows.

Theorem 3.6.7  Let xf, denote a chi squared random variable with p degrees of
freedom. For any function h(z),

(3.6.4) Eh(x2) = pE (h (>g;2:+2)>
Xp+2

provided the ezpectations exist.

Proof: The phrase “provided the expectations exist” is a lazy way of avoiding spec-
ification of conditions on h. In general, reasonable functions will satisfy (3.6.4). We
have

00
Eh(X%) = /0 h(z)zP/ D12/ 4y

1
(/227

_ 1 Z (M) (wr2)/2)-1,-2/2
_F(P/2)2”/2/0 (z )”‘ e

where we have multiplied the integrand by z/z. Now write

T (g) oo _ T((p+2)/2)204D72

y

p
so we have
_ p C (M) _(pr2)/2)-1,-2/2
B8 =t ), () e
h 2
=pE ((_X;’i’z_)) . 0O
Xp+2

Some moment calculations are very easy with (3.6.4). For example, the mean of a
2 .
X3 is

2

X

Ex2 = pE ( Z“) = pE(1) = p,
Xp+2
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and the second moment is

2 2
Xp+2
E(x;)® = pE ((—‘;tl) = PE (x342) = plp + 2).
Xp+2
So VarxZ = p(p + 2) — p* = 2p.
We close our section on identities with some discrete analogs of the previous identi-
ties. A general version of the two identities in Theorem 3.6.8 is due to Hwang (1982).

Theorem 3.6.8 (Hwang) Let g(z) be a function with —oo < Eg(X) < oo and
~o00 < g(—1) < oc. Then:

a. If X ~ Poisson()\),
(3.6.5) E(g(X))=E(Xg(X —1)).

b. If X ~ negative binomial(r, p),

X

(3.6.6) E(1-p)g(X))=E ('r_+—x——_1

g(X - 1)) .

Proof: We will prove part (a), saving part (b) for Exercise 3.50. We have

> e

E(Ag(X)) =) Ag(a)

x!

Now transform the summation index, writing y = £ + 1. As z goes from 0 to oo, ¥
goes from 1 to oco. Thus

= e~
E(g(X) =) vgly-1)—
- ¥
y=1
ad e\
= Zyg(y —1) " (added term is 0)
=0 '
=E(Xg(X -1)),
since this last sum is a Poisson()) expectation. O

Hwang (1982) used his identity in a manner similar to Stein, proving results about
multivariate estimators. The identity has other applications, in particular in moment
calculations.
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Example 3.6.9 (Higher-order Poisson moments) For X ~ Poisson()), take
g(z) = z? and use (3.6.5):

E(AX?) =E (X(X - 1)?) =E(X®-2X? + X).

Therefore, the third moment of a Poisson(\) is

EX® = AdEX? +2EX? - EX
=AM+ 2% 4200+ 2% -2

(3.6.6):

=X 43024+
For the negative binomial, the mean can be calculated by taking g(z) = r + z in
E(1-p)r+ X)) =E(—2%(r+X-1)) =EX
P TU\r+X -1 T

so, rearranging, we get

or

EX)(1-p)-1)=-r(1-p)

EX:M,
D

Other moments can be calculated similarly. I

3.7 Exercises

3.1

3.2

3.3

Find expressions for EX and Var X if X is a random variable with the general discrete
uniform(No, N ) distribution that puts equal probability on each of the values No, No+
1,...,Ni. Here No < N; and both are integers.

A manufacturer receives a lot of 100 parts from a vendor. The lot will be unacceptable if
more than five of the parts are defective. The manufacturer is going to select randomly
K parts from the lot for inspection and the lot will be accepted if no defective parts
are found in the sample.

(a) How large does K have to be to ensure that the probability that the manufacturer
accepts an unacceptable lot is less than .10?

(b) Suppose the manufacturer decides to accept the lot if there is at most one defective
in the sample. How large does K have to be to ensure that the probability that
the manufacturer accepts an unacceptable lot is less than .10?

The flow of traffic at certain street corners can sometimes be modeled as a sequence
of Bernoulli trials by assuming that the probability of a car passing during any given
second is a constant p and that there is no interaction between the passing of cars at
different seconds. If we treat seconds as indivisible time units (trials), the Bernoulli
model applies. Suppose a pedestrian can cross the street only if no car is to pass during
the next 3 seconds. Find the probability that the pedestrian has to wait for exactly 4
seconds before starting to cross.
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A man with n keys wants to open his door and tries the keys at random. Exactly one
key will open the door. Find the mean number of trials if

(a) unsuccessful keys are not eliminated from further selections.
(b) unsuccessful keys are eliminated.

A standard drug is known to be effective in 80% of the cases in which it is used. A new -
drug is tested on 100 patients and found to be effective in 85 cases. Is the new drug
superior? (Hint: Evaluate the probability of observing 85 or more successes assuming
that the new and old drugs are equally effective.)

A large number of insects are expected to be attracted to a certain variety of rose plant,
A commercial insecticide is advertised as being 99% effective. Suppose 2,000 insects
infest a rose garden where the insecticide has been applied, and let X = number of
surviving insects.

(a) What probability distribution might provide a reasonable model for this experi-
ment?

(b) Write down, but do not evaluate, an expression for the probability that fewer than
100 insects survive, using the model in part (a).

(c) Evaluate an approximation to the probability in part (b).

Let the number of chocolate chips in a certain type of cookie have a Poisson distribu-
tion. We want the probability that a randomly chosen cookie has at least two chocolate
chips to be greater than .99. Find the smallest value of the mean of the distribution
that ensures this probability.

Two movie theaters compete for the business of 1,000 customers. Assume that each
customer chooses between the movie theaters independently and with “indifference.”
Let N denote the number of seats in each theater.

a) Using a binomial model, find an expression for N that will guarantee that the
g
probability of turning away a customer (because of a full house) is less than 1%.

(b) Use the normal approximation to get a numerical value for N.

Often, news stories that are reported as startling “one-in-a-million” coincidences are
actually, upon closer examination, not rare events and can even be expected to occur.
A few years ago an elementary school in New York state reported that its incoming
kindergarten class contained five sets of twins. This, of course, was reported throughout
the state, with a quote from the principal that this was a “statistical impossibility”.
Was it? Or was it an instance of what Diaconis and Mosteller (1989) call the “law of
truly large numbers”? Let’s do some calculations.

(a) The probability of a twin birth is approximately 1/90, and we can assume that
an elementary school will have approximately 60 children entering kindergarten
(three classes of 20 each). Explain how our “statistically impossible” event can be
thought of as the probability of 5 or more successes from a binomial(60,1/90). Is
this even rare enough to be newsworthy?

(b) Even if the probability in part (a) is rare enough to be newsworthy, consider that
this could have happened in any school in the county, and in any county in the
state, and it still would have been reported exactly the same. (The “law of truly
large numbers” is starting to come into play.) New York state has 62 counties, and
it is reasonable to assume that each county has five elementary schools. Does the
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8.10

8.11

event still qualify as a “statistical impossibility”, or is it becoming something that
could be expected to occur?

(c) If the probability in part (b) still seems small, consider further that this event
could have happened in any one of the 50 states, during any of the last 10 years,
and still would have received the same news coverage.

In addition to Diaconis and Mosteller (1989), see Hanley (1992) for more on coinci-
dences.

Shuster (1991) describes a number of probability calculations that he did for a court
case involving the sale of cocaine. A Florida police department seized 496 suspected
packets of cocaine, of which four were randomly selected and tested and found to
actually be cocaine. The police then chose two more packets at random and, posing
as drug dealers, sold the packets to the defendant. These last two packets were lost
before they could be tested to verify that they were, indeed, cocaine.

(a) If the original 496 packets were composed of N packets of cocaine and M = 496—N
noncocaine, show that the probability of selecting 4 cocaine packets and then 2
noncocaine packets, which i§ the probability that the defendant is innocent of

buying cocaine, is
N M
4 2
N+M N+M-4Y\
4 2
(b) Maximizing (in M and N) the probability in part (a) maximizes the defendant’s

“innocence probability”. Show that this probability is .022, attained at M = 165
and N = 331.

The hypergeometric distribution can be approximated by either the binomial or the
Poisson distribution. (Of course, it can be approximated by other distributions, but in
this exercise we will concentrate on only these two.) Let X have the hypergeometric
distribution

(%) (k%)
P(X =z|N,M,K) =2/ K2/ " r_01,.. K.

(%)
(a) Show that as N — oo, M — o0, and M/N — p,
K z K-z
P(X=1:|N,M,K)—+(z)p(1——p) . z=0,1,...,K.

(Stirling’s Formula from Exercise 1.23 may be helpful.)

(b) Use the fact that the binomial can be approximated by the Poisson to show that
if N - oo, M — 00, K — 00, M/N — 0, and KM/N — A, then

e—)\ x

z!

P(X =z|N,M,K) — z=0,1,....

(c) Verify the approximation in part (b) directly, without using the Poisson approxi-
mation to the binomial. (Lemma 2.3.14 is helpful.)



130

3.12

3.13

3.14

3.15

3.18

COMMON FAMILIESOP DISTRIBUTIONS Séction 3.7!

Suppose X has a binomial(n, p) distribution and let Y have a negative binomial(r, p)
distribution. Show that Fx(r — 1) =1— Fy(n —r).

A truncated discrete distribution is one in which a particular class cannot be observed
and is eliminated from the sample space. In particular, if X has range 0,1,2,... and
the 0 class cannot be observed (s is usually the case), the O-truncated random variable
Xt has pmf

P(X =1z)

P(XT=I)=-P(X—>0)',

z=12,....

Find the pmf, mean, and variance of the 0-truncated random variable starting from
(a) X ~ Poisson(X).

(b) X ~ negative binomial(r, p), as in (3.2.10).

Starting from the 0-truncated negative binomial (refer to Exercise 3.13), if we let r —

0, we get an interesting distribution, the logarithmic series distribution. A random
variable X has a logarithmic series distribution with parameter p if

—(1-p)*
PX=z)= ——— =1,2,... 1.
X =z)=—"0p " £=bZ., 0<p<

(a) Verify that this defines a legitimate probability function.

(b) Find the mean and variance of X. (The logarithmic series distribution has proved
useful in modeling species abundance. See Stuart and Ord 1987 for a more detailed
discussion of this distribution.)

In Section 3.2 it was claimed that the Poisson() distribution is the limit of the negative

binomial(r, p) distribution as r — 0o, p — 1, and 7(1 —p) — A. Show that under these

conditions the mgf of the negative binomial converges to that of the Poisson.

Verify these two identities regarding the gamma function that were given in the text:

" (a) T(a+1) =al(a)

3.17

3.18

3.19

(b) I(3) = v
Establish a formula similar to (3.3.18) for the gamma distribution. If X ~ gamma(a, 3),
then for any positive constant v,

v_BTv+a)
EX _ W.

There is an interesting relationship between negative binomial and gamma random
variables, which may sometimes provide a useful approximation. Let Y be a negative
binomial random variable with parameters r and p, where p is the success probability.
Show that as p — 0, the mgf of the random variable pY converges to that of a gamma
distribution with parameters » and 1.

Show that

*® L zve T
a-1 _—z
— dz = =1,2,3,....
/; I‘(a)z e z Z ma a 2,3,

y=0

(Hint: Use integration by parts.) Express this formula as a probabilistic relationship
between Poisson and gamma random variables.
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8.20

3.21

3.22

'8.23

3.24

3.25

Let the random variable X have the pdf

2 —z3/2
= , 0<z<o0.
(a) Find the mean and variance of X. (This distribution is sometimes called a folded
normal.)
(b) If X has the folded normal distribution, find the transformation g(X) = Y and
values of o and S so that Y ~ gamma(a, 8).

Write the integral that would define the mgf of the pdf

@)= i

Is the integral finite? (Do you expect it to be?)

For each of the following distributions, verify the formulas for EX and Var X given in

the text.

(a) Verify Var X if X has a Poisson()) distribution. (Hint: Compute EX (X — 1) =
EX? —EX.)

(b) Verify Var X if X has a negative binomial(r, p) distribution.

(c) Verify Var X if X has a gamma(a, 8) distribution.

(d) Verify EX and Var X if X has a beta(a, ) distribution.

(e) Verify EX and Var X if X has a double exponential(y, o) distribution.

The Pareto distribution, with parameters a and 3, has pdf

Ba®
f(a:):m, a<z<oo, a>0 B>0.

(a) Verify that f(z) is a pdf.
(b) Derive the mean and variance of this distribution.
(c) Prove that the variance does not exist if 8 < 2.

Many “named” distributions are special cases of the more common distributions al-
ready discussed. For each of the following named distributions derive the form of the
pdf, verify that it is a pdf, and calculate the mean and variance.

(a) If X ~ exponential(8), then Y = X/7 has the Weibull(y, 8) distribution, where
7 > 0 is a constant.

(b) If X ~ exponential(3), then Y = (2X/0)'/? has the Rayleigh distribution.

(c) If X ~ gamma(a,b), then Y = 1/X has the inverted gamma IG(a, b) distribution.
(This distribution is useful in Bayesian estimation of variances; see Exercise 7.23.)

(d) If X ~ gamma(3, B), then Y = (X/B8)/? has the Mazwell distribution.

(e) If X ~ exponential(1), then Y = a — ylog X has the Gumbel(a,~) distribution,
where —00 < a < 00 and vy > 0. (The Gumbel distribution is also known as the
eztreme value distribution.)

Suppose the random variable T is the length of life of an object (possibly the lifetime
of an electrical component or of a subject given a particular treatment). The hazard
function hr(t) associated with the random variable T is defined by

Pt<T<t+6T>1)
- .

hr(t) = limg_g
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Thus, we can interpret hr(t) as the raté of change of the probability that the object
survives a little past time ¢, given that the object survives to time t. Show that if T is
a continuous random variable, then

hr(t) = %}%t_) = —% log (1 — Fr(t)).

Verify that the following pdfs have the indicated hazard functions (see Exercise 3.25).
(a) If T ~ exponential(3), then hr(t) = 1/8.

(b) If T ~ Weibull(y, 3), then hr(t) = (v/8)t" 1.

(c) If T ~ logistic(u, 8), that is,

1
Fr(t) = 14 e—(t-w)/8"’

then hp(t) = (1/8)Fr(t).
For each of the following families, show whether all the pdfs in the family are unimodal
(see Exercise 2.27).
(a) uniform(a, b)
(b) gamma(a, 8)
(c) n(u,0%)
(d) beta(a,3)
Show that each of the following families is an exponential family.

{(a) normal family with either parameter yu or ¢ known

(b) gamma family with either parameter a or 8 known or both unknown
(c) beta family with either parameter a or g known or both unknown
(d) Poisson family

(e) negative binomial family with r known, 0 < p <1

3.29 For each family in Exercise 3.28, describe the natural parameter space.

3.30

Use the identities of Theorem 3.4.2 to

(a) calculate the variance of a binomial random variable.
(b) calculate the mean and variance of a beta(a, b) random variable.

3.31 In this exercise we will prove Theorem 3.4.2.

(a) Start from the equality

k
/ £(z16) = h(z)e(6) exp (E wi<0>t.-(z>) do=1,

i=1

differentiate both sides, and then rearrange terms to establish (3.4.4). (The fact
that - log g(z) = g'(z)/g(z) will be.helpful.)
(b) Differentiate the above equality a second time; then rearrange to establish (3.4.5).
2
(The fact that £=logg(z) = (9”(z)/9(z)) — (¢'(z)/9(z))? will be helpful.)
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8.32 (a) If an exponential family can be written in the form (3.4.7), show that the identities
of Theorem 3.4.2 simplify to

E(t;(X)) = —a% log c* (n),

82
Var(t; (X)) = o log c*(n).
J

(b) Use this identity to calculate the mean and variance of a gamma(a,b) random
variable.
8.33 For each of the following families:

(i) Verify that it is an exponential family.
(ii) Describe the curve on which the 8 parameter vector lies.
(iii) Sketch a graph of the curved parameter space.

(a) n(8,06)

(b) n(8,ab?), a known

(c) gamma(a,1/a)

(d) f(z|6) = Cexp (—(:c - 0)4), C a normalizing constant

8.34 In Example 3.4.9 we saw that normal approximations can result in curved exponential
families. For each of the following normal approximations:

(i) Describe the curve on which the @ parameter vector lies.

(ii) Sketch a graph of the curved parameter space.

(a) Poisson approximation: X ~ n(\,\/n)
(b) binomial approximation: X ~ n(p,p(1 — p)/n)
(c) negative binomial approximation: X ~ n(r(1 — p)/p, (1 — p)/np?)

8.35 (a) The normal family that approximates a Poisson can also be parameterized as
n(e’,e®), where —c0 < 8 < oco. Sketch a graph of the parameter space, and
compare with the approximation in Exercise 3.34(a).
(b) Suppose that X ~ gamma(a, 3) and we assume that EX = u. Sketch a graph of
the parameter space.
(c) Suppose that X; ~ gamma(ai, 8i), i = 1,2,...,n, and we assume that EX; = 4.
Describe the parameter space (ai,...,0n,B1,...,0n).
3.38 Consider the pdf f(z) = 83(2° — 2%),—1 < z < 1. Graph (1/0)f((z — 1)/o) for each
of the following on the same axes.
(8) u=0,0=1
by u=3,6=1
(c) u=3,0=2
3.37 Show that if f(z) is a pdf, symmetric about 0, then u is the median of the location-scale
pdf (1/0) f((z — u)/o), —00 < z < oo.
3.38 Let Z be a random variable with pdf f(z). Define zo to be a number that satisfies this
relationship:

a=P(Z > z) = /°° f(2)d=.



L))

3.39

3.40

3.41

3.42

3.43

3.44

3.45

COMMON FAMIEIBS 0% DISTRIBUTIONS Bection 3.7

Show that if X is a random variable with pdf (1/0)f((z — 1)/0) and o = 0za + 4,
then P(X > za) = a. (Thus if a table of 2, values were available, then values of z,
could be easily computed for any member of the location—scale family.)

Consider the Cauchy family defined in Section 3.3. This family can be extended to a
location—scale family yielding pdfs of the form

R N
om (1 + (’—;3)2)

The mean and variance do not exist for the Cauchy distribution. So the parameters
u and o? are not the mean and variance. But they do have important meaning. Show
that if X is a random variable with a Cauchy distribution with parameters x and o,
then:

(a) u is the median of the distribution of X, that is, P(X > u) = P(X < p) = 3.

(b) u+o and u— o are the quartiles of the distribution of X, that is, P(X > u+o0) =
P(X < p— o) = ;. (Hint: Prove this first for 4 = 0 and o = 1 and then use
Exercise 3.38.)

Let f(z) be any pdf with mean 4 and variance 2. Show how to create a location-scale
family based on f(z) such that the standard pdf of the family, say f*(z), has mean 0
and variance 1.
A family of cdfs {F(z|0),6 € ©} is stochastically increasing in 6 if 6, > 02 = F(x|61)
is stochastically greater than F(z|62). (See Exercise 1.49 for the definition of stochas-
tically greater.)

f(zlp,0) =

—00 < T < 00.

(a) Show that the n(u,o?) family is stochastically increasing in u for fixed o?.

(b) Show that the gamma(a, 3) family of (3.3.6) is stochastically increasing in 3 (scale
parameter) for fixed a (shape parameter).

Refer to Exercise 3.41 for the definition of a stochastically increasing family.

(a) Show that a location family is stochastically increasing in its location parameter.

(b) Show that a scale family is stochastically increasing in its scale parameter if the
sample space is [0, 00).

A family of cdfs {F(z|8},0 € 6} is stochastically decreasing in 0 if 6, > 02 = F(z|62)

is stochastically greater than F(z|6,). (See Exercises 3.41 and 3.42.)

(a) Prove that if X ~ Fx(z|0), where the sample space of X is (0,00) and Fx(z|8) is
stochastically increasing in 6, then Fy (y|6) is stochastically decreasing in 6, where
Y =1/X.

(b) Prove that if X ~ Fx(x|6), where Fx(z|0) is stochastically increasing in 6 and
6 > 0, then Fx(z|}) is stochastically decreasing in 6.

For any random variable X for which EX? and E|X| exist, show that P(|X| > b) does
not exceed either EX?2/b? or E|X|/b, where b is a positive constant. If f(z) = e~ for
z > 0, show that one bound is better when b = 3 and the other when b = /2. (Notice
Markov’s Inequality in Miscellanea 3.8.2.)

Let X be a random variable with moment-generating function Mx(t), —h <t < h.

(a) Prove that P(X >a) < e™%*Mx(t), 0 <t < h. (A proof similar to that used for
Chebychev’s Inequality will work.)
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(b) Similarly, prove that P(X < a) < e *Mx(t), —-h<t<O.
(c) A special case of part (a) is that P(X > 0) < Ee'X for all ¢ > 0 for which
the mgf is defined. What are general conditions on a function h(t,z) such that
P(X > 0) < Eh(t,X) for all ¢ > O for which Eh(t, X) exists? (In part (a),
h{t,z) =€**.)
8.46 Calculate P(|X — pux| > kox) for X ~ uniform(0,1) and X ~ exponential()), and
compare your answers to the bound from Chebychev’s Inequality.
8.47 If Z is a standard normal random variable, prove this companion to the inequality in

Example 3.6.3:
2t _ap
2ty 24/ — .
P(zl2 Y 2 \/;1 ye2°

'8.48 Derive recursion relations, similar to the one given in (3.6.2), for the binomial, negative
binomial, and hypergeometric distributions.

8.49 Prove the following analogs to Stein’s Lemma, assuming appropriate conditions on the
function g.

(a) If X ~ gamma(a, 8), then
E (9(X)(X — afB)) = BE (Xg'(X)) .
(b) If X ~ beta(a, 3), then

E [g(X) (ﬁ ~(a- 1)(1;—"))] =E((1-X)g'(X)).

3.50 Prove the identity for the negative binomial distribution given in Theorem 3.6.8, part

(b).

3.8 Miscellanea

8.8.1 The Poisson Postulates

The Poisson distribution can be derived from a set of basic assumptions, sometimes
called the Poisson postulates. These assumptions relate to the physical properties
of the process under consideration. While, generally speaking, the assumptions are
not very easy to verify, they do provide an experimenter with a set of guidelines
for considering whether the Poisson will provide a reasonable model. For a more
complete treatment of the Poisson postulates, see the classic text by Feller (1968)
or Barr and Zehna (1983).

Theorem 3.8.1 For eacht > 0, let N; be an integer-valued random variable with
the following properties. (Think of Ny as denoting the number of arrivals in the
time period from time 0 to time t.)

i) No=0 (start with no arrivals)
(arrivals in disjoint time)

i1) 8 <t = N, and N; — N, are independent. periods are independent
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iii) N, and Ny, — N, are identically distributed. ( number of arrivals depe"d’)

only on period length

L P(N;=1) _ arrival probability proportional
w) limg—o = (to period length, if length is small)
v) lime_o ﬂ&t?—l) =0 (no simultaneous arrivals)

If i-—v hold, then for any integer n,

that is, Ny ~ Poisson(At).

The postulates may also be interpreted as describing the behavior of objects spa-
tially (for example, movement of insects), giving the Poisson application in spatial
distributions.

3.8.2 Chebychev and Beyond

Ghosh and Meeden (1977) discuss the fact that Chebychev’s Inequality is very
conservative and is almost never attained. If we write X, for the mean of the
random variables X1, Xs, ..., X,, then Chebychev’s Inequality states

= 1
P(|Xn—p|2ko) < —.
(I pl > 0-) = k2

They prove the following theorem.

. Theorem 3.8.2 If0 < 0 < 00, then

a. If n =1, the inequality is attainable for k > 1 and unattainable for 0 < k < 1.
b. If n = 2, the inequality is attainable if and only if k = 1.
c. Ifn > 3, the inequality is not attainable.

Examples are given for the cases when the inequality is attained. Most of their
technical arguments are based on the following inequality, known as Markov’s
Inequality.

Lemma 3.8.3 (Markov’s Inequality) If P(Y > 0) =1 and P(Y =0) < 1,
then, for any r > 0,

P(YZT)SET

with equality if and only if P(Y =r)=p=1—-P(Y =0),0<p< 1.

Markov’s Inequality can then be applied to the quantity

(Xn — p)?

Y =
o2

to get the above results.
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One reason Chebychev’s Inequality is so loose is that it puts no restrictions on
the underlying distribution. With the additional restriction of unimodality, we can
get tighter bounds and the inequalities of Gauss and Vysochanskii-Petunin. (See
Pukelsheim 1994 for details and elementary calculus-based proofs of these inequal-

ities.)

Theorem 3.8.4 (Gauss Inequality) Let X ~ f, where f is unimodal with
mode v, and define 72 = E(X — v)?. Then

%;— for alle > \/4/37
P(X —v|>¢e) < .
1- 7 Jor alle < \/4/3T.
Although this is a tighter bound than Chebychev, the dependence on the mode

limits its usefulness. The extension of Vysochanskii-Petunin removes this limita-
tion.

Theorem 3.8.5 (Vysochanskil-Petunin Inequality) Let X ~ f, where f is
unimodal, and define £ = E(X — a)? for an arbitrary point o. Then

%s; for alle > /8/3¢
%g —3 foralle < /8/3¢.

Pukelsheim points out that taking @ = u = E(X) and ¢ = 30, where 0? = Var(X),
yields

P(lX—a|>E)S{

4
P(IX — u| > 30) < oz < .05,

the so-called three-sigma rule, that the probability is less than 5% that X is more
than three standard deviations from the mean of the population.

3.8.8 More on Exponential Families

Is the lognormal distribution in the exponential family? The density given in
(3.3.21) can be put into the form specified by (3.4.1). Hence, we have put the
lognormal into the exponential family.

According to Brown (1986, Section 1.1), to define an exponential family of distri-
butions we start with a nonnegative function v(z) and define the set A by

N={0:/Xeg”v(:z:)da:<oo}.

If we let A(8) = [, €°*v(z) dz, the set of probability densities defined by

F(z|6) = eozé’;;’), zEX, €N,
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is an exponential family. The moment-generating function of f(z|) is

At +6)

Mx(t) = /;vetxf(zlo) dr = W

and hence exists by construction. If the parameter space © is equal to the set A,
the exponential family is called full. Cases where © is a lower-dimensional subset
of NV give rise to curved exponential families.

Returning to the lognormal distribution, we know that it does not have an mgf, so
it can’t satisfy Brown’s definition of an exponential family. However, the lognor-
mal satisfies the expectation identities of Theorem 3.4.2 and enjoys the sufficiency
properties detailed in Section 6.2.1 (Theorem 6.2.10). For our purposes, these are
the major properties that we need and the main reasons for identifying a member
of the exponential family. More advanced properties, which we will not investigate
here, may need the existence of the mgf.



Chapter 4

Multiple Random Variables

“I confess that I have been blind as a mole, but it is better to learn wisdom late
than never to learn it at all.”

Sherlock Holmes

The Man with the Twisted Lip

‘4.1 Joint and Marginal Distributions

In previous chapters, we have discussed probability models and computation of prob-
ability for events involving only one random variable. These are called univariate
models. In this chapter, we discuss probability models that involve more than one
random variable—naturally enough, called multivariate models.

In an experimental situation, it would be very unusual to observe only the value of
one random variable. That is, it would be an unusual experiment in which the total
data collected consisted of just one numeric value. For example, consider an experi-
ment designed to gain information about some health characteristics of a population
of people. It would be a modest experiment indeed if the only datum collected was
the body weight of one person. Rather, the body weights of several people in the
population might be measured. These different weights would be observations on dif-
ferent random variables, one for each person measured. Multiple observations could
also arise because several physical characteristics were measured on each person. For
example, temperature, height, and blood pressure, in addition to weight, might be
measured. These observations on different characteristics could also be modeled as
observations on different random variables. Thus, we need to know how to describe
and use probability models that deal with more than one random variable at a time.
For the first several sections we will discuss mainly bivariate models, models involving
two random variables.

Recall that, in Definition 1.4.1, a (univariate) random variable was defined to be a
function from a sample space S into the real numbers. A random vector, consisting
of several random variables, is defined similarly.

Definition 4.1.1 An n-dimensional random vector is a function from a sample space
S into ™, n-dimensional Euclidean space.

Suppose, for example, that with each point in a sample space we associate an
ordered pair of numbers, that is, a point (z,y) € R2, where R2 denotes the plane. Then
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we have defined a two-dimensional (or bivariate) random vector (X, Y). Example 4.1.2
illustrates this.

Example 4.1.2 (Sample space for dice) Consider the experiment of tossing
two fair dice. The sample space for this experiment has 36 equally likely points and
was introduced in Example 1.3.10. For example, the sample point (3,3) denotes the
outcome in which both dice show a 3; the sample point (4,1) denotes the outcome in
which the first die shows a 4 and the second die a 1; etc. Now, with each of these 36
points associate two numbers, X and Y. Let

X = sum of the two dice and Y = |difference of the two dice].

For the sample point (3,3), X =3+3=6and Y = |3 — 3| = 0. For (4,1), X =5 and
Y = 3. These are also the values of X and Y for the sample point (1,4). For each of
the 36 sample points we could compute the values of X and Y. In this way we have
defined the bivariate random vector (X,Y).

Having defined a random vector (X, Y), we can now discuss probabilities of events
that are defined in terms of (X,Y). The probabilities of events defined in terms of
X and Y are just defined in terms of the probabilities of the corresponding events
in the sample space S. What is P(X =5 and Y = 3)? You can verify that the only
two sample points that yield X = 5 and Y = 3 are (4,1) and (1,4). Thus the event
“X =5and Y = 3" will occur if and only if the event {(4,1),(1,4)} occurs. Since
each of the 36 sample points in S is equally likely,

P ({(4,1),(1,4)}) = % - lis

Thus,

1

P(X=5andY =3)= T

Henceforth, we will write P(X = 5,Y = 3) for P(X = 5and Y = 3). Read the comma
as “and.” Similarly, P(X =6,Y =0) = 31—6 because the only sample point that yields
these values of X and Y is (3, 3). For more complicated events, the technique is the
same. For example, P(X = 7,Y < 4) = 3 = § because the only four sample points
that yield X =7 and Y < 4 are (4, 3), (3,4), (5,2), and (2,5). I

The random vector (X,Y) defined above is called a discrete random vector because
it has only a countable (in this case, finite) number of possible values. For a discrete
random vector, the function f(z,y) defined by f(z,y) = P(X = z,Y = y) can be
used to compute any probabilities of events defined in terms of (X,Y).

Definition 4.1.3 Let (X,Y) be a discrete bivariate random vector. Then the func-
tion f(z,y) from R2 into R defined by f(z,y) = P(X = z,Y = y) is called the
joint probability mass function or joint pmf of (X,Y). If it is necessary to stress the
fact that f is the joint pmf of the vector (X,Y’) rather than some other vector, the
notation fx,y(z,y) will be used.
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T
2 3 4 5 6 7 8 9 1011 12
oL L 1 1 L
36 36 36 36 36 36
S TS T S 1P
18 18 18 18 18
2 1 1 1 1
Y 18 i8 is 18
3 L L L
18 18 18
4 L L
18 ig
5 1
18

Table 4.1.1. Values of the joint pmf f(z,y)

The joint pmf of (X,Y) completely defines the probability distribution of the ran-
dom vector (X, Y), just as the pmf of a discrete univariate random variable completely
defines its distribution. For the (X,Y’) defined in Example 4.1.2 in terms of the roll of
a pair of dice, there are 21 possible values of (X,Y). The value of f(z,y) for each of
these 21 possible values is given in Table 4.1.1. Two of these values, f(5,3) = {5 and
f(6,0) = 31—6, were computed above and the rest are obtained by similar reasoning.
The joint pmf f(z,y) is defined for all (z,y) € R?, not just the 21 pairs in Table 4.1.1.
For any other (z,¥), f(z,y) =P(X =2z,Y =y)=0.

The joint pmf can be used to compute the probability of any event defined in terms
of (X,Y). Let A be any subset of 2. Then

P(X,Y)eA)= > fl(zv).

(z,y)EA

Since (X,Y) is discrete, f(z,y) is nonzero for at most a countable number of points
(z,y). Thus, the sum can be interpreted as a countable sum even if A contains an
uncountable number of points. For example, let A = {(z,y) : £ = 7 and y < 4}. This
is a half-infinite line in ®2. But from Table 4.1.1 we see that the only (z,y) € A for
which f(z,y) is nonzero are (z,y) = (7,1) and (z,y) = (7, 3). Thus,
P(X=7,Y <4)= P((X,Y) € A) = £(7,1) + f(7,3) = % + lia - %

This, of course, is the same value computed in Example 4.1.2 by considering the
definition of (X,Y’) and sample points in S. It is usually simpler to work with the
joint pmf than it is to work with the fundamental definition.

Expectations of functions of random vectors are computed just as with univariate
random variables. Let g(z,y) be a real-valued function defined for all possible values
(z,y) of the discrete random vector (X,Y). Then g(X,Y) is itself a random variable
and its expected value Eg(X,Y) is given by

Eg(X,Y)= Y g(.9)f(zy).

(z.y)eR?

Example 4.1.4 (Continuation of Example 4.1.2) For the (X,Y) whose joint
pmf is given in Table 4.1.1, what is the average value of XY'? Letting g(z,y) = zy, we
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compute EXY = Eg(X,Y) by computing zyf(z,y) for each of the 21 (z,y) points in
Table 4.1.1 and summing these 21 terms. Thus,
1

oot (8)(4)1—18 + (NG = 1B I

EXY = (2)(0)% + (4)(0) - 18 18°

36

The expectation operator continues to have the properties listed in Theorem 2.2.5
when the random variable X is replaced by the random vector (X,Y’). For example,
if g1(z,y) and g2(z, y) are two functions and a, b, and c are constants, then

E(agi(X,Y) + bg2(X,Y) + ¢) = aEg1(X,Y) + bEg2(X,Y) + ¢

These properties follow from the properties of sums exactly as in the univariate case
(see Exercise 4.2).

The joint pmf for any discrete bivariate random vector (X,Y) must have certain
properties. For any (z,y), f(z,y) > 0 since f(z,y) is a probability. Also, since (X,Y)
is certain to be in R?,

Y. f@y)=P(X,Y)e®) =1

(z,y)ER?

It turns out that any nonnegative function from ®2 into R that is nonzero for at most
a countable number of (z,y) pairs and sums to 1 is the joint pmf for some bivariate
discrete random vector (X,Y). Thus, by defining f(z,y), we can define a probability
model for (X,Y") without ever working with the fundamental sample space S.

Example 4.1.5 (Joint pmf for dice) Define f(z,y) by

)

f(1,0)=f(1,1) =
f(z,y) =0 for any other (z,y).

Wik =

Then f(z,y) is nonnegative and sums to 1, so f(z,y) is the joint pmf for some
bivariate random vector (X,Y). We can use f(z,y) to compute probabilities such as
P(X =Y) = f(0,0) + f(1,1) = 3. All this can be done without reference to the
sample space S. Indeed, there are many sample spaces and functions thereon that
lead to this joint pmf for (X,Y’). Here is one. Let S be the 36-point sample space for
the experiment of tossing two fair dice. Let X = 0 if the first die shows at most 2 and
X =1 if the first die shows more than 2. Let Y = 0 if the second die shows an odd
number and Y = 1 if the second die shows an even number. It is left as Exercise 4.3
to show that this definition leads to the above probability distribution for (X,Y). ||

Even if we are considering a probability model for a random vector (X,Y"), there
may be probabilities or expectations of interest that involve only one of the random
variables in the vector. We may wish to know P(X = 2), for instance. The variable X
is itself a random variable, in the sense of Chapter 1, and its probability distribution
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is described by its pmf, namely, fx(z) = P(X = z). (As mentioned earlier, we now
use the subscript to distinguish fx(z) from the joint pmf fxy(z,y).) We now call
fx(z) the marginal pmf of X to emphasize the fact that it is the pmf of X but in
the context of the probability model that gives the joint distribution of the vector
(X,Y). The marginal pmf of X or Y is easily calculated from the joint pmf of (X,Y’)
as Theorem 4.1.6 indicates.

Theorem 4.1.6 Let (X,Y) be a discrete bivariate random vector with joint pmf
fx,y(z,y). Then the marginal pmfs of X and Y, fx(z) = P(X = z) and fy(y) =
P(Y =y), are given by

fx(@) =) fxy(@y) and fry) =) fxy(zy).

yER ZER

Proof: We will prove the result for fx(z). The proof for fy(y) is similar. For any
zeR,let A, = {(z,y) : —00 < y < oc}. That is, A; is the line in the plane with
- first coordinate equal to z. Then, for any z € R,

fx(z) = P(X = x)
=P(X=1x-00<Y < o0) (P(—oo <Y <o00)=1)

= P((X,Y) € A,) (definition of A;)
= Z fxy(z,y)
(Iyy)EA-‘B
= ZfX,Y(I)y)' o
yER

Example 4.1.7 (Marginal pmf for dice) Using the result of Theorem 4.1.6, we
can compute the marginal distributions for X and Y from the joint distribution given
in Table 4.1.1. To compute the marginal pmf of Y, for each possible value of Y we
sum over the possible values of X. In this way we obtain

fr(0) = fx,y(2,0) + fx,y(4,0) + fx,y(6,0)

+fx,v(8,0) + fx,v(10,0) + fx,y(12,0)
1

5
Similarly, we obtain
FO=% =% B =% fr@)=5 06 =%

Notice that fy (0)+ fy (1) + fy (2) + fy (3) + fy (4) + fy(5) = 1, as it must, since these
are the only six possible values of Y. I

The marginal pmf of X or Y is the same as the pmf of X or Y defined in Chapter 1.
The marginal pmf of X or Y can be used to compute probabilities or expectations that
involve only X or Y. But to compute a probability or expectation that simultaneously
involves both X and Y, we must use the joint pmf of X and Y.



144 MULTIPLE RANDOM VARIABLES Section 4.1

Example 4.1.8 (Dice probabilities) Using the marginal pmf of Y computed in
Example 4.1.7, we can compute

P(Y <3) = fy(0) + fy(1) + fr (2) = :

ol

TR
18

D =

Also,

EY3=03fy(0) +--- +53fy(5) = 20Té I

The marginal distributions of X and Y, described by the marginal pmfs fx (z) and

fy(y), do not completely describe the joint distribution of X and Y. Indeed, there are

many different joint distributions that have the same marginal distributions. Thus, it

is hopeless to try to determine the joint pmf, fx v (z,y), from knowledge of only the
marginal pmfs, fx(z) and fy(y). The next example illustrates the point.

Example 4.1.9 (Same marginals, different joint pmf) Define a joint pmf by

f(0,0)=%, f(]- 0)—12, f( ) f(]- 1)_12,
f(z,y) =0 for all other values.

The marginal pmf of Y is fy-(0) = (0, 0)+f(1 0) = 3 and fy (1) = f(0, 1)+ f(1,1) =
3+ The marginal pmf of X is fx(0) = 2 and fx(1) = 2 . Now check that for the joint
pmf given in Example 4.1.5, which is obviously dlfferent from the one given here, the
marginal pmfs of both X and Y are exactly the same as the ones just computed.
Thus, we cannot determine what the joint pmf is if we know only the marginal pmfs.
The joint pmf tells us additional information about the distribution of (X, Y) that is
not found in the marginal distributions.

To this point we have discussed discrete bivariate random vectors. We can also
consider random vectors whose components are continuous random variables. The
probability distribution of a continuous random vector is usually described using a
density function, as in the univariate case.

Definition 4.1.10 A function f(z,y) from R? into R is called a joint probability
density function or joint pdf of the continuous bivariate random vector (X,Y) if, for
every A C R?,

P((X,Y) € A) //f(a: y) dz dy.

A joint pdf is used just like a univariate pdf except now the integrals are double
integrals over sets in the plane. The notation [ [, simply means that the limits of
integration are set so that the function is integrated over all (z,y) € A. Expectations
of functions of continuous random vectors are defined as in the discrete case with
integrals replacing sums and the pdf replacing the pmf. That is, if g(z,y) is a real-
valued function, then the ezpected value of g(X,Y) is defined to be

(4.1.2) 9(X,Y) / / 9(z,y) f(z,y) dz dy.
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It is important to realize that the joint pdf is defined for all (z,y) € R2. The pdf may
equal 0 on a large set A if P((X,Y) € A) = 0 but the pdf is defined for the points in

A
The marginal probability density functions of X and Y are also defined as in the

discrete case with integrals replacing sums. The marginal pdfs may be used to compute
probabilities or expectations that involve only X or Y. Specifically, the marginal pdfs
of X and Y are given by

fx(z) = /oo f(z,y)dy, —o0 <z <00,
(4.1.3) ’:
friy) = /_ fz.y)ds, —o0<y <.

Any function f(z,y) satisfying f(z,y) > 0 for all (z,y) € R2 and

1=/_:/:f(z,y)dzdy

is the joint pdf of some continuous bivariate random vector (X,Y). All of these
concepts regarding joint pdfs are illustrated in the following two examples.

Example 4.1.11 (Calculating joint probabilities—I) Define a joint pdf by

_[6zy? O<z<landO<y<1
flz,y) = {O otherwise.

(Henceforth, it will be understood that f(z,y) = 0 for (z,y) values not specifically
mentioned in the definition.) First, we might check that f(z,y) is indeed a joint pdf.
That f(z,y) > 0 for all (z,y) in the defined range is fairly obvious. To compute the
integral of f(z,y) over the whole plane, note that, since f(z,y) is 0 except on the
unit square, the integral over the plane is the same as the integral over the square.
Thus we have

0 poo 1 41 1
/ / f(a:,y)da:dy=/ / 6zy2dxdy:/ 3z2y2](1)dy
—00 J—00 o Jo 0
! 1
=/ 3yldy =4°, =1
0

Now, consider calculating a probability such as P(X +Y > 1). Letting A = {(z,y) :
T +y > 1}, we can re-express this as P((X,Y) € A). From Definition 4.1.10, to
calculate the probability we integrate the joint pdf over the set A. But the joint pdf
is 0 except on the unit square. So integrating over A is the same as integrating over
only that part of A which is in the unit square. The set A is a half-plane in the
northeast part of the plane, and the part of A in the unit square is the triangular
- Tegion bounded by the lines z = 1, y = 1, and z + y = 1. We can write
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A={(z,y):z+y>1,0<z<1,0<y <1}
= {(z,y)2>1-y,0<z<1,0<y<1}
= {(z,y) - y<a<l,0<y <1}
This gives us the limits of integration we need to calculate the probability. We have

. 1 g
P(X+Y2])=/ /f(x,y)dxdy:/ / 61:y2dxa’y=2.
A 0 J1—y 10

Using (4.1.3), we can calculate the marginal pdf of X or Y. For example, to calculate
fx(z), we note that for £ > 1 or z <0, f(x,y) = 0 for all values of y. Thus for z > 1
orxz <0,

fx(x) = /oo flz,y)dy = 0.

For 0 <z <1, f(z,y) is nonzero only if 0 <y < 1. Thus for 0 < z < 1,

o< 1 1
fe@ ~ [ Hewdy= [ oty 2me) 2
—00 Q

This marginal pdf of X can now be used to calculate probabilities involving only X.

For example,
3
1 3 < 5
- -] = 2 = —.
P<2<X<4> /% xdx 6 i

Example 4.1.12 (Calculating joint probabilities—II) As another example of a
joint pdf, let f(z,y) = e ¥, 0 < 2 < y < co. Although e ¥ does not depend on z,
f(z,y) certainly is a function of z since the sct where f(xz,y) is nonzero depends on
z. This is made more obvious by using an indicator function to write

f(xa Z/) = t37.yI{(u,«u):O(u<v<Do}(1'1 y)

To calculate P(X+Y > 1), we could integrate the joint pdf over the region that is the
intersection of the set A = {(z,y): z +y > 1} and the sct where f(z,y) is nonzero.
Graph these sets and notice that this region is an unbounded region (lighter shading
in Figure 4.1.1) with three sides given by the lines z = y,z +y = 1, and z = 0. To
integrate over this region we would have to break the region into at least two parts
in order to write the appropriate limits of integration.

The integration is easier over the intersection of the set B = {(z,y) : @ +y < 1}
and the set where f(z,y) is nonzero, the triangular region (darker shading in Figure
4.1.1) bounded by the lines x =y, z + y = 1, and z = 0. Thus

S
P(X+Y21):1fP(X+Y<l)=1“/2/ e Vdydx
0 T

%
=1 —/ (7% —e (7)) dg = 2e71/2 — 71,
0
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y

Figure 4.1.1. Regions for Fxample 4.1.12

This illustrates that it is almost always helpful to graph the sets of interest in deter-
mining the appropriate limits of intcgration for problems such as this. |

The joint probability distribution of (X,Y) can be completely described with the
joint cdf (cumulative distribution function) rather than with the joint pmf or joint
pdf. The joint cdf is the function F(z,y) defined by

F(z,y) =P(X <z,Y <y)

for all (z,y) € R2. The joint cdf is usually not very handy to use for a discrete
random vector. But for a continuous bivariate random vector we have the important
relationship, as in the univariate case,

F(x,y):/;/:f(s,t)dtds.

From the bivariate Fundamental Theorem of Calculus, this implics that

O?F(x,y)

(4.1.4) Soor

= f(z,y)
at continuity points of f(x,y). This relationship is useful in situations where an ex-

pression for F(z,y) can be found. The mixed partial derivative can be computed to
find the joint pdf.

4.2 Conditional Distributions and Independence

Oftentimes when two random variables, (X,Y’), are observed, the values of the two
variables are related. ¥For example, suppose that, in sampling from a human popu-
lation, X denotes a person’s height and Y denotes the same person’s weight. Surely
we would think it more likely that Y > 200 pounds if we were told that X = 73
inches than if we were told that X = 41 inches. Knowledge about the value of X
gives us some information about the value of Y even if it does not tell us the value of
Y exactly. Conditional probabilities regarding Y given knowledge of the X value can
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be computed using the joint distribution of (X,Y). Sometimes, however, knowledge
about X gives us no information about Y. We will discuss these topics concerning
conditional probabilities in this section.

If (X,Y) is a discrete random vector, then a conditional probability of the form
P(Y = y|X = z) is interpreted exactly as in Definition 1.3.2. For a countable (maybe’
finite) number of z values, P(X = z) > 0. For these values of z, P(Y = y|X = 1) is
simply P(X = z,Y = y)/P(X = z), according to the definition. The event {Y = y}
is the event A in the formula and the event {X = z} is the event B. For a fixed value
of z, P(Y = y|X = z) could be computed for all possible values of y. In this way the
probability of various values of y could be assessed given the knowledge that X = z-
was observed. This computation can be simplified by noting that in terms of the joint
and marginal pmfs of X and Y, the above probabilities are P(X = z,Y =y) = f(z,y)
and P(X = z) = fx(z). This leads to the following definition.

Definition 4.2.1 Let (X,Y) be a discrete bivariate random vector with joint pmf
f(z,y) and marginal pmfs fx (z) and fy (y). For any z such that P(X = z) = fx(z) >
0, the conditional pmf of Y given that X = z is the function of y denoted by f(yl|z)
and defined by

fmm=Pw=MX=m=§§g.

For any y such that P(Y = y) = fy(y) > 0, the conditional pmf of X given that
Y =y is the function of z denoted by f(z|y) and defined by .

fmw=Pw=ﬂY=w=%%§

Since we have called f(y|z) a pmf, we should verify that this function of y does
indeed define a pmf for a random variable. First, f(y|z) > 0 for every y since f(z,y) >
0 and fx(z) > 0. Second,

_ 2y f@y)  fx(z) _
;f(yhc) T fx(z) T fx(z) L

Thus, f(y|z) is indeed a pmf and can be used in the usual way to compute probabilities
involving Y given the knowledge that X = z occurred.

Example 4.2.2 (Calculating conditional probabilities) Define the joint pmf
of (X,Y) by

f(1,20)=F%, and f£(2,30) = -%.

We can use Definition 4.2.1 to compute the conditional pmf of Y given X for each of
the possible values of X, z = 0, 1, 2. First, the marginal pmf of X is
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fx(0) = £(0,10) + £(0,20) = =,

18
Fx(1) = £(1,10) + £(1,20) + 1(1,30) = 72,
fx(2)= 7(2,30) = .

For z =0, f(0,y) is positive only for y = 10 and y = 20. Thus f(y|0) is positive only
for y = 10 and y = 20, and

_f000 & 1
_ f(0,20) 1
F2000 = fx(©0) 2

That is, given the knowledge that X = 0, the conditional probability distribution
for Y is the discrete distribution that assigns probability % to each of the two points
y =10 and y = 20.

For z =1, f(y|1) is positive for y = 10, 20, and 30, and

3
i 3
F1011) = (30 = B = =
18
4
18 4
s =8 = =,

and for z = 2,

4
£(3012) = 4& = 1.
18

The latter result reflects a fact that is also apparent from the joint pmf. If we know
that X = 2, then we know that Y must be 30.

Other conditional probabilities can be computed using these conditional pmfs. For
example,

P(Y > 10X =1) = f(20[]1) + f(30/]1) = &
or ‘
P(Y > 10|X = 0) = f(20]0) = 3. I

If X and Y are continuous random variables, then P(X = z) = 0 for every value of
z. To compute a conditional probability such as P(Y > 200|X = 73), Definition 1.3.2
cannot be used since the denominator, P(X = 73), is 0. Yet in actuality a value of X
is observed. If, to the limit of our measurement, we see X = 73, this knowledge might
give us information about Y (as the height and weight example at the beginning of
this section indicated). It turns out that the appropriate way to define a conditional
probability distribution for ¥ given X = z, when X and Y are both continuous, is
analogous to the discrete case with pdfs replacing pmfs (see Miscellanea 4.9.3).
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Definition 4.2.3 Let (X,Y) be a continuous bivariate random vector with joint
pdf f(z,y) and marginal pdfs fx(z) and fy(y). For any z such that fx(z) > 0, the
conditional pdf of Y given that X = « is the function of y denoted by f(y|z) and
defined by

_f=y)

For any y such that fy(y) > 0, the conditional pdf of X given that Y = y is the
function of z denoted by f(z|y) and defined by

f(=z,9)
fr)

To verify that f(z|y) and f(y|z) are indeed pdfs, the same steps can be used as in
the earlier verification that Definition 4.2.1 had defined true pmfs with integrals now
replacing sums.

In addition to their usefulness for calculating probabilities, the conditional pdfs or
pmfs can also be used to calculate expected values. Just remember that f(y|z) as a
function of y is a pdf or pmf and use it in the same way that we have previously used
unconditional pdfs or pmfs. If g(Y) is a function of Y, then the conditional ezpected
value of g(Y) given that X = z is denoted by E(g(Y)|z) and is given by

flzly) =

Bo)le) = Lo)i6la) and Blo(¥)i) = [ switle)ay

in the discrete and continuous cases, respectively. The conditional expected value has
all of the properties of the usual expected value listed in Theorem 2.2.5. Moreover,
E(Y|X) provides the best guess at Y based on knowledge of X, extending the result
in Example 2.2.6. (See Exercise 4.13.)

Example 4.2.4 (Calculating conditional pdfs) As in Example 4.1.12, let the
continuous random vector (X,Y) have joint pdf f(z,y) = e ¥, 0 < z < y < oo.
Suppose we wish to compute the conditional pdf of Y given X = z. The marginal pdf
of X is computed as follows. If z <0, f(z,y) = 0 for all values of y, so fx(z) =0. If
z >0, f(z,y) > 0 only if y > z. Thus

fx@= [ Zf(x, = | " vy = e ®.

Thus, marginally, X has an exponential distribution. From Definition 4.2.3, the con-
ditional distribution of Y given X = z can be computed for any z > 0 (since these
are the values for which fx(z) > 0). For any such z,

-y
f(le) = (z Y _ 0 ity >,

fx(z) e~ %
and
flz,y) 0 .
f(ylz)—TX—(;)——e—_;—O, ify<z.



Bection 4.2 CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE 151

Thus, given X = z, Y has an exponential distribution, where z is the location pa-
rameter in the distribution of Y and 8 = 1 is the scale parameter. The conditional
distribution of Y is different for every value of z. It then follows that

EY|X =z) = / ye~ W dy =141,
z

The variance of the probability distribution described by f(y|z) is called the con-
ditional variance of Y given X = z. Using the notation Var(Y|z) for this, we have,
using the ordinary definition of variance,

Var(Y|z) = E(Y2|z) — (E(Y|z))°.

Applying this definition to our example, we obtain

oo oo 2
yle= W) dy — (/ ye~ =) dy) =1
z

In this case the conditional variance of Y given X = z is the same for all values
of z. In other situations, however, it may be different for different values of z. This
conditional variance might be compared to the unconditional variance of Y. The
marginal distribution of Y is gamma(2, 1), which has VarY = 2. Given the knowledge
that X = z, the variability in Y is considerably reduced. I

Var(Y|z) = /

x

A physical situation for which the model in Example 4.2.4 might be used is this.
Suppose we have two light bulbs. The lengths of time each will burn are random
variables denoted by X and Z. The lifelengths X and Z are independent and both
bave pdf e~*,z > 0. The first bulb will be turned on. As soon as it burns out, the
second bulb will be turned on. Now consider observing X, the time when the first
bulb burns out, and Y = X + Z, the time when the second bulb burns out. Given that
X = z is when the first burned out and the second is started, Y = Z + z. This is like
Example 3.5.3. The value z is acting as a location parameter, and the pdf of Y, in this
case the conditional pdf of Y given X =z, is f(y|z) = fz(y—2) = e~ =3 y > .

The conditional distribution of Y given X = z is possibly a different probability
distribution for each value of z. Thus we really have a family of probability distribu-
tions for Y, one for each z. When we wish to describe this entire family, we will use the
phrase “the distribution of Y'|X.” If, for example, X is a positive integer-valued ran-
dom variable and the conditional distribution of Y given X = z is binomial(z, p), then
we might say the distribution of Y'|.X is binomial(X, p) or write Y|X ~ binomial(X, p).
Whenever we use the symbol Y|X or have a random variable as the parameter of a
probability distribution, we are describing the family of conditional probability dis-
tributions. Joint pdfs or pmfs are sometimes defined by specifying the conditional
f(ylz) and the marginal fx(z). Then the definition yields f(z,y) = f(y|z)fx(z).
These types of models are discussed more in Section 4.4.

Notice also that E(g(Y)|z) is a function of z. That is, for each value of z, E(g(Y)|z)
is a real number obtained by computing the appropriate integral or sum. Thus,
E(g(Y)|X) is a random variable whose value depends on the value of X. If X = z,
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the value of the random variable E(g(Y)|X) is E(g(Y)|z). Thus, in Example 4.2.4,
we can write E(Y|X) =1+ X.

In all the previous examples, the conditional distribution of ¥ given X = z was
different for different values of z. In some situations, the knowledge that X = z does
not give us any more information about Y than what we already had. This important
relationship between X and Y is called independence. Just as with independent events
in Chapter 1, it is more convenient to define independence in a symmetric fashion
and then derive conditional properties like those we just mentioned. This we now do.

Definition 4.2.5 Let (X,Y) be a bivariate random vector with joint pdf or pmf
f(z,y) and marginal pdfs or pmfs fx(z) and fy(y). Then X and Y are called inde-
pendent random variables if, for every z € ® and y € R,

(4.2.1) f@y) = fx (@) fr ().
If X and Y are independent, the conditional pdf of Y given X = z is

_ [y

_ Ix(@)fr(y)
=@ (from (4.2.1))

= fy(y),

regardless of the value of z. Thus, for any A C R and z € R, P(Y € Al|z) =
Juflz)dy = [, fy(y)dy = P(Y € A). The knowledge that X = z gives us no
additional information about Y.

Definition 4.2.5 is used in two different ways. We might start with a joint pdf or
pmf and then check whether X and Y are independent. To do this we must verify
that (4.2.1) is true for every value of z and y. Or we might wish to define a model
in which X and Y are independent. Consideration of what X and Y represent might
indicate that knowledge that X = z should give us no information about Y. In this
case we could specify the marginal distributions of X and Y and then define the joint
distribution as the product given in (4.2.1).

(definition)

Example 4.2.6 (Checking independence-I) Consider the discrete bivariate ran-
dom vector (X,Y), with joint pmf given by

f(10,1) = £(20,1) = £(20,2) = 15,
£(10,2) = f(10,3) = &, and £(20,3) = 3.

The marginal pmfs are easily calculated to be

1 1 3

0 = 2 = - 1 = — [ —

fx(10)=fx(20) =5 end fy(1) =z, fr(2)= 15

The random variables X and Y are not independent because (4.2.1) is not true for
every z and y. For example,

700,3)= ¢ #

and fy(3) = %

5 = Ix(10)/43).

N =
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The relationship (4.2.1) must hold for every choice of £ and y if X and Y are to be
independent. Note that £(10,1) = 3% = 11 = fx(10)fy(1). That (4.2.1) holds for
some values of £ and y does not ensure that X and Y are independent. All values
must be checked. |

The verification that X and Y are independent by direct use of (4.2.1) would
require the knowledge of fx(z) and fy (y). The following lemma makes the verification
gomewhat easier.

Lemma 4.2.7 Let (X,Y) be a bivariate random vector with joint pdf or pmf f(x,y).
Then X and Y are independent random variables if and only if there exist functions
g(z) and h(y) such that, for everyx € R and y € R,

f(z,y) = g(x)h(y).

Proof: The “only if” part is proved by defining g(z) = fx(z) and h(y) = fy(y) and
using (4.2.1). To prove the “if” part for continuous random variables, suppose that
f(z,y) = g(z)h(y). Define

/oo g(z)dr =c and /_:h(y)dy=d,

—00

where the constants ¢ and d satisfy

(L) (o)
(4.2.2) / / y)dzdy
=/_m/_mf(z,y)dzdy
=1

Furthermore, the marginal pdfs are given by
(4.2.3)
fx@ = [ g@h)dy=g(@)d and frt)= [ ge)h)ds = h(y)e

—00

Thus, using (4.2.2) and (4.2.3), we have
f(z,y) = 9(2)h(y) = g(x)h(y)ed = fx (z)fr (),

showing that X and Y are independent. Replacing integrals with sums proves the
lemma for discrete random vectors. O

(f(z,y) is a joint pdf)

Example 4.2.8 (Checking independence—II) Consider the joint pdf f(z,y) =
*a: yle ¥=(/2) £ >0 and y > 0. If we define

r2e*/? >0 yle¥/384  y>0
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then f(z,y) = g(z)h(y) for all z € R and all y € R. By Lemma 4.2.7, we conclude that
X and Y are independent random variables. We do not have to compute margina]
pdfs. I

If X and Y are independent random variables, then from (4.2.1) it is clear that
f(z,y) > 0 on the set {(z,y) : = € A and y € B}, where A = {z : fx(z) > 0}
and B = {y : fy(y) > 0}. A set of this form is called a cross-product and is usually
denoted by A x B. Membership in a cross-product can be checked by considering the z
and y values separately. If f(z,y) is a joint pdf or pmf and the set where f(z,y) >0
is not a cross-product, then the random variables X and Y with joint pdf or pmf
f(z,y) are not independent. In Example 4.2.4, the set 0 < < y < 0o is not a cross-
product. To check membership in this set we must check that not only 0 < z < oo
and 0 < y < oo but also z < y. Thus the random variables in Example 4.2.4 are not
independent. Example 4.2.2 gives an example of a joint pmf that is positive on a set
that is not a cross-product.

Example 4.2.9 (Joint probability model) As an example of using independence
to define a joint probability model, consider this situation. A student from an ele-
mentary school in Kansas City is randomly selected and X = the number of living
parents of the student is recorded. Suppose the marginal distribution of X is

Fx(0)=.01, fx(1)=.09, and fx(2)=.90.

A retiree from Sun City is randomly selected and Y = the number of living parents
of the retiree is recorded. Suppose the marginal distribution of Y is :

fy(O) = 70, fy(l) = .25, and fy(2) = .05.

It seems reasonable to assume that these two random variables are independent.
Knowledge of the number of parents of the student tells us nothing about the number
of parents of the retiree. The only joint distribution of X and Y that reflects this
independence is the one defined by (4.2.1). Thus, for example,

£(0,0) = fx(0)fy(0) = .0070 and  £(0,1) = fx(0)fy (1) =.0025.
This joint distribution can be used to calculate quantities such as
P(X =Y) = f(0,0) + f(1, 1)+f(212)
= (.01)(.70) + (.09)(.25) + (.90)(.05) = .0745. I

Certain probabilities and expectations are easy to calculate if X and Y are inde-
pendent, as the next theorem indicates.

Theorem 4.2.10 Let X and Y be independent random variables.

a. ForanyACRand BC R, P(X € AY € B) = P(X € A)P(Y € B); that is,
the events {X € A} and {Y € B} are independent events.
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b. Let g(z) be a function only of z and h(y) be a function only of y. Then
E (9(X)h(Y)) = (Eg(X)) (ER(Y))-

Proof: For continuous random variables, part (b) is proved by noting that

E (g(X)h(Y)) = / ~ / " 9@)h) f(z,y) de dy

- / / ) fx (@) fy () do dy (by (42.1))

/_ h(y) fr () / o) fx(x) dzdy

~ ([ sorix@a) ([~ noastan)

= (Eg(X)) (ER(Y)) .

The result for discrete random variables is proved by replacing integrals by sums.
Part (a) can be proved by a series of steps similar to those above or by the following
argument. Let g(z) be the indicator function of the set A. Let h(y) be the indicator
function of the set B. Note that g(z)h(y) is the indicator function of the set C C R?
defined by C = {(z,y) : € A,y € B}. Also note that for an indicator function such
as g(z),Eg(X) = P(X € A). Thus using the expectation equality just proved, we
have

P(X € AY € B) = P((X,Y) € C) = E (g(X)h(Y))
= (Eg(X)) (Eh(Y)) = P(X € A)P(Y € B). O

Example 4.2.11 (Expectations of independent variables) Let X and Y be
independent exponential(1) random variables. From Theorem 4.2.10 we have

P(X>4Y <3)=P(X>4)P(Y <3)=e"4(1-e73).
Letting g(z) = z? and h(y) = y, we see that
E(X?Y) = (EX?) (EY) = (Var X + (EX)))EY = (1 + 1®)1 = 2. I

The following result concerning sums of independent random variables is a simple
consequence of Theorem 4.2.10.

Theorem 4.2.12 Let X and Y be independent random variables with moment gen-
erating functions Mx(t) and My(t). Then the moment generating function of the
random variable Z = X +Y is given by

Mz(t) = Mx(t)My(t).
Proof: Using the definition of the mgf and Theorem 4.2.10, we have
Mz(t) = EetZ = BetX*Y) = E(etXetY) = (BetX) (BetY ) = Mx (t)My (t). O
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Example 4.2:13 (Mgf of a sum of normal variables) Sometimes Theorem
4.2.12 can be used to easily derive the distribution of Z from knowledge of the distri-
bution of X and Y. For example, let X ~ n(u,o?) and Y ~ n(v,7%) be independent
normal random variables. From Exercise 2.33, the mgfs of X and Y are

Mx(t) = exp(ut +0%t?/2) and My (t) = exp(yt + 72t2/2).
Thus, from Theorem 4.2.12, the mgfof Z =X +Y is
Mz(t) = Mx(t)My(t) = exp ((u +¥)t + (a® + 7%)t%/2) .

This is the mgf of a normal random variable with mean ux + 7 and variance o2 + 72.
This result is important enough to be stated as a theorem. |

Theorem 4.2.14 Let X ~ n(u,0?%) andY ~ n(y,72) be independent normal random
variables. Then the random variable Z = X +Y has a n(u + vy, 0% + 72) distribution.

If f(z,y) is the joint pdf for the continuous random vector (X,Y), (4.2.1) may fail
to hold on a set A of (z,y) values for which [, [ dzdy = 0. In such a case X and Y
are still called independent random variables. This reflects the fact that two pdfs that
differ only on a set such as A define the same probability distribution for (X,Y). To
see this, suppose f(z,y) and f*(z,y) are two pdfs that are equal everywhere except
on a set A for which [, [ dzdy = 0. Let (X,Y) have pdf f(z,y), let (X*,Y*) have
pdf f*(z,y), and let B be any subset of 2. Then

P((X,Y) € B) = /B / f(z,y) dzdy

=/BMc/f(fc,y)drdy
= [ [rewddw

:/B/f'(z,y)dmdsz((X',Y') € B).

Thus (X,Y) and (X*,Y™*) have the same probability distribution. So, for example,
flz,y) =e ¥ = >0and y > 0, is a pdf for two independent exponential random
variables and satisfies (4.2.1). But, f*(z,y), which is equal to f(z,y) except that
f*(z,y) = 0if z = y, is also the pdf for two independent exponential random variables
even though (4.2.1) is not true on the set A = {(z,z) : > 0}.

4.3 Bivariate Transformations

In Section 2.1, methods of finding the distribution of a function of a random variable
were discussed. In this section we extend these ideas to the case of bivariate random
vectors.

Let (X,Y) be a bivariate random vector with a known probability distribution.
Now consider a new bivariate random vector (U, V) defined by U = g;(X,Y) and V =
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92(X,Y), where g (z, y) and g2(z, y) are some specified functions. If B is any subset of
R2, then (U, V) € Bifand only if (X,Y) € A, where A = {(z,y) : (q1(z,¥), 92(z, %)) €
B}. Thus P((U,V) € B) = P((X,Y) € A), and the probability distribution of (U, V')
is completely determined by the probability distribution of (X,Y).

If (X,Y) is a discrete bivariate random vector, then there is only a countable set
of values for which the joint pmf of (X,Y) is positive. Call this set .A. Define the
set B = {(u,v) : u = gi(z,y) and v = go(2,y) for some (z,y) € A}. Then B is the
countable set of possible values for the discrete random vector (U, V). And if, for any
(u,v) € B, Ay, is defined to be {(z,y) € A: g1(z,y) = v and g2(z,y) = v}, then the
joint pmf of (U, V), fuv(u,v), can be computed from the joint pmf of (X,Y’) by

(431) fU‘V(’U.,V) =P(U=u’V=v)=P((X’Y) e/411.1))‘—‘ Z fX,Y(xay)’

(z,¥) €Ay

Example 4.3.1 (Distribution of the sum of Poisson variables) Let X and
Y be independent Poisson random variables with parameters 8 and A, respectively.
Thus the joint pmf of (X,Y) is

f%e=0 \ve—>
z! y!

The set A is {(z,y) : 2 = 0,1,2,... and y = 0,1,2,...}. Now define U = X +Y
and V = Y. That is, g1(z,y) = z + y and g2(z,y) = y. We will describe the set
B, the set of possible (u,v) values. The possible values for v are the nonnegative
integers. The variable v = y and thus has the same set of possible values. For a
given value of v,u = z + y = z + v must be an integer greater than or equal to v
since z is a nonnegative integer. The set of all possible (u,v) values is thus given by
B={(u,v):v=0,1,2,..;and u = v,v + 1,v+ 2,...}. For any (u,v) € B, the only
(z,y) value satisfying z +y = uwand y = v is £ = u — v and y = v. Thus, in this
example, A,, always consists of only the single point (u —v,v). From (4.3.1) we thus
obtain the joint pmf of (U, V) as

fxy(z,y) = , £=0,1,2,...,y=0,1,2,....

6—ve % e 1 =0,1,2,...,
fU,v(u,v)—fx,Y(u—v,v)——(u_v)!—v! D w—vwtlu+2. ...

In this example it is interesting to compute the marginal pmf of U. For any fixed
nonnegative integer u, fy,v(u,v) > 0 only for v = 0,1,...,u. This gives the set of v
values to sum over to obtain the marginal pmf of U. It is

u ou—ve—e Ave~A u gu—v \v

folwy =S LN ey O N o,

= (u—v)! ! — (u—v)! vl
This can be simplified by noting that, if we multiply and divide each term by u!, we
can use the Binomial Theorem to obtain

—(6+2) ¥ —(8+X)
€ u vuU—v € u
folw) = S— Z( )/\0 =S 0+ u=012,...

v=0 v

This is the pmf of a Poisson random variable with parameter 8 + A. This result is
significant enough to be stated as a theorem. [
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Theorem 4.3.2 If X ~ Poisson(8) and Y ~ Poisson()\) and X and Y are mdepem
dent, then X +Y ~ Poisson(f + ).

If (X,Y) is a continuous random vector with joint pdf fx y(z,¥), then the joint pdf
of (U, V) can be expressed in terms of fx y(z,y) ina manner analogous to (2.1.8). As,
before, A = {(z,y) : fx,v(z,y) > 0} and B = {(u,v) : u = g1(z,y) and v = ga(z,y)
for some (z,y) € A}. The joint pdf fy v (u,v) will be positive on the set B. For the
simplest version of this result we assume that the transformation u = g¢;(z,y) and
v = ga(z,y) defines a one-to-one transformation of A onto B. The transformation ig
onto because of the definition of B. We are assuming that for each (u,v) € B there ig
only one (z,y) € A such that (u,v) = (g9:1{z,y), 92(z,y)). For such a one-to-one, onto
transformation, we can solve the equations u = g;(z,y) and v = go(x,y) for z and y
in terms of u and v. We will denote this inverse transformation by z = h;(u,v) and
y = ha(u,v). The role played by a derivative in the univariate case is now played by
a quantity called the Jacobian of the transformation. This function of (u,v), denoted’
by J, is the determinant of a matriz of partial derivatives. It is defined by

dr Oz
|5 m|_tzoy_oyee
T |8y By| Budv Budv’

du B
where
0z _ Ohi(u,v) Oz _ Ohi(u,v) Oy _ Oha(u,v) and Oy _ 0ha(u,v)
ou  Bu ' B B ' Bu  Bu v Ov

We assume that J is not identically 0 on B. Then the joint pdf of (U, V) is 0 outside
the set B and on the set B is given by

(4.3.2) fU’V(’U,,’U) = fx’y(hl(u, U), h2 (’U,, ’U))|J|,

where |J| is the absolute value of J. When we use (4.3.2), it is sometimes just as
difficult to determine the set B and verify that the transformation is one-to-one as
it is to substitute into formula (4.3.2). Note these parts of the explanations in the
following examples.

Example 4.3.3 (Distribution of the product of beta variables) Let X ~
beta(a, 8) and Y ~ beta(a + §,~) be independent random variables. The joint pdf
of (X,Y) is

Fla+8) a1 pal(a+B+7) - _
z, = —_xa 1—zx & ArAT a1 1~ ~ 1’
0<z<l, O0<y<l
Consider the transformation U = XY and V = X. The set of possible values for V

is 0 < v < 1 since V = X. For a fixed value of V = v, U must be between 0 and v
since X =V = v and Y is between 0 and 1. Thus, this transformation maps the set
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A onto the set B = {(u,v) : 0 < u < v < 1}. For any (u,v) € B, the equations u = zy
and v = = can be uniquely solved for z = hy(u,v) = v and y = ha(u,v) = u/v. Note
that if considered as a transformation defined on all of 2, this transformation is not
- one-to-one. Any point (0,y) is mapped into the point (0, 0). But as a function defined
snly on A, it is a one-to-one transformation onto B. The Jacobian is given by

dr Oz 0 )

du v 1
J: = = ——,

ov o7y k|7

du Ov

Thus, from (4.3.2) we obtain the joint pdf as

Cla+B+7) 11 = )P (z_t)"ﬂ’—l (1 u)‘r—l 1
v

(4.3.3) fuv(u,v) = &I ) v

b

v

O<u<v<l

The marginal distribution of V' = X is, of course, a beta(e, 3) distribution. But the
distribution of U is also a beta distribution:

folu) = / " fow (s v)d
a+p a1 [t ru -1 u\7"1l /s u
=r1:((—a):@fp—(?)“ /u(r“)ﬁ (1-3)" ()

The expression (4.3.3) was used but some terms have been rearranged. Now make the
univariate change of variable y = (u/v —u)/(1 — u) so that dy = —u/[v2(1 — u)]dv to
obtain

o) = REEBED omiy ot [Mypmi(a -ty
0

RICACAD
- TR

To obtain the second identity we recognized the integrand as the kernel of a beta
pdf and used (3.3.17). Thus we see that the marginal distribution of U is beta(a, 8+).

I

Example 4.3.4 (Sum and difference of normal variables) Let X and Y be
independent, standard normal random variables. Consider the transformation U =
X+Y and V = X-Y. In the notation used above, U = ¢;(X,Y) where q1(z,y) = z+y
and V = go(X,Y) where g2(z,y) = = — y. The joint pdf of X and Y is, of course,
Ixy(z,y) = (27) L exp(—x2/2) exp(—y?/2), —00 < T < 00, —00 < y < 00. So the set
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A = R2. To determine the set B on which fu,v(u,v) is positive, we must determme
all the values that

(4.3.4) u=z+y and v=z—y

take on as (z,y) range over the set A = R2. But we can set u to be any number and
v to be any number and uniquely solve equations (4.3.4) for z and y to obtain

+v uU—v
5 and y= ha(u,v) = 5

This shows two things. For any (u,v) € R? there is an (z,y) € A (defined by (4.3.5))
such that ©w = z + y and v = £ — y. So B, the set of all possible (u,v) values, is #2,
Since the solution (4.3.5) is unique, this also shows that the transformation we have
considered is one-to-one. Only the (z,y) given in (4.3.5) will yield u = z + y and
v =z — y. From (4.3.5) the partial derivatives of z and y are easy to compute. We
obtain

(4.3.5) z=h(u,v) =

dxr Or 1 1
Oy Oy 1 1 2
ou dv| |2 2

Substituting the expressions (4.3.5) for z and y into fx,y(z,y) and using |J| = 3, we
obtain the joint pdf of (U, V) from (4.3.2) as

1
fuv(u,v) = fxy(hi(y,v), ha(u,v))|J| = _(("+v)/2) 12~ (u=)/2" /22

for —00o < u < 00 and —0 < v < 0. Multiplying out the squares in the exponen-
tials, we see that the terms involving uv cancel. Thus after some simplification and
rearrangement we obtain

fuv(u,v) = (ﬁe—uzﬂ) (ﬁe—zﬂ/z}) '

The joint pdf has factored into a function of u and a function of v. By Lemma
4.2.7, U and V are independent. From Theorem 4.2.14, the marginal distribution of
U = X+Y isn(0,2). Similarly, Theorem 4.2.12 could be used to find that the marginal
distribution of V is also n(0,2). This important fact, that sums and differences of
independent normal random variables are independent normal random variables, is
true regardless of the means of X and Y, so long as Var X = VarY. This result is
left as Exercise 4.27. Theorems 4.2.12 and 4.2.14 give us the marginal distributions
of U and V. But the more 1nvolved analysis here is required to determine that U and
V are independent. I

In Example 4.3.4, we found that U and V are independent random variables. There
is a much simpler, but very important, situation in which new variables U and V, de-
fined in terms of original variables X and Y, are independent. Theorem 4.3.5 describes
this.
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‘ Theorem 4.3.58 Let X andY be independent random variables. Let g(z) be a func-
tion only of  and h(y) be a function only of y. Then the random variables U = g(X)
and V = h(Y') are independent.

Proof: We will prove the theorem assuming U and V are continuous random vari-
ables. For any u € R and v € R, define

Ay,={x:9(x) <u} and B, ={y:h(y) <v}.
Then the joint cdf of (U, V) is

Fyv(u,v) = P{U <,V <v) (definition of cdf)
=P(X € A,,Y € B,) (definition of U and V)
= P(X € A,)P(Y € B,). (Theorem 4.2.10)
The joint pdf of (U, V) is
o? .
fuv(u,v) = auauFU"’(”’ v) (by (4.1.4))

- (E%P(X e Au)) (d%P(Y € Bv)) :

where, as the notation indicates, the first factor is a function only of u and the second
factor is a function only of v. Hence, by Lemma 4.2.7, U and V are independent. [

It may be that there is only one function, say U = g;(X,Y), of interest. In such
ceses, this method may still be used to find the distribution of U. If another convenient
function, V = go(X,Y), can be chosen so that the resulting transformation from
(X,Y) to (U, V) is one-to-one on A, then the joint pdf of (U, V') can be derived using
(4.3.2) and the marginal pdf of U can be obtained from the joint pdf. In the previous
example, perhaps we were interested only in U = XY. We could choose to define
V = X, recognizing that the resulting transformation is one-to-one on 4. Then we
would proceed as in the example to obtain the marginal pdf of U. But other choices,
such as V =Y, would work as well (see Exercise 4.23).

Of course, in many situations, the transformation of interest is not one-to-one.
Just as Theorem 2.1.8 generalized the univariate method to many-to-one functions,
the same can be done here. As before, A = {(z,y) : fx,v(z,y) > 0}. Suppose
Ao, Aj,. .., A; form a partition of A with these properties. The set Ag, which may
be empty, satisfies P((X,Y) € Ap) = 0. The transformation U = g¢;(X,Y) and
V = g5(X,Y) is a one-to-one transformation from A; onto B for each i = 1,2,...,k.
Then for each 4, the inverse functions from B to A; can be found. Denote the ith
inverse by z = hy;(u,v) and y = hg;(u,v). This ith inverse gives, for (u,v) € B, the
Unique (z,y) € A; such that (u,v) = (g91(z, ), 92(z,y)). Let J; denote the Jacobian
computed from the ith inverse. Then assuming that these Jacobians do not vanish
identically on B, we have the following representation of the joint pdf, fu v (u,v):

k
(4.3.6) fov@wv) =" fxy(has(u,v), hai(u, v)| .

i=1
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Example 4.3.6 (Distribution of the ratio of normal variables) Let X and
Y be independent n(0,1) random variables. Consider the transformation U = X/Y
and V = |Y|. (U and V can be defined to be any value, say (1,1), if Y = 0 since
P(Y = 0) = 0.) This transformation is not one-to-one since the points (z,y) and
(—z,—y) are both mapped into the same (u,v) point. But if we restrict consideration
to either positive or negative values of y, then the transformation is one-to-one. Ip
the above notation, let

Ar={(z,y):y>0}, Ar={(z,9):9<0}, and A= {(z,y):y=0}.

Ap, Ay, and A; form a partition of A = R2 and P((X,Y) € Ay) = P(Y =0) =0.:
For either A, or Ay, if (z,y) € A;, v = |y| > 0, and for a fixed value of v = [y,
u = z/y can be any real number since z can be any real number. Thus, B = {(u,v) :

v > 0} is the image of both A; and A, under the transformation. Furthermore, the .
inverse transformations from B to A; and B to A, are given by z = h;1(u,v) = uv,

y = ho1(u,v) = v, and = = hia(y,v) = —uv, y = haa(u,v) = —v. Note that the

first inverse gives positive values of y and the second gives negative values of y. The

Jacobians from the two inverses are J; = Jy = v. Using

1
fxy(z,y) = ge_xg/ze_”z/z,

from (4.3.6) we obtain
1 1
fuv(u,v) = Ee—(uv)2/23—v2/2 lv] + 5;6_’(_"")2/26_(_0)2/2 v

_ UV _(P+1p?)2
= —€ s
T

—oo<u<oo, 0<v<oo.

From this the marginal pdf of U can be computed to be

o0 v 2 2
fotu) = [~ 2oz gy
0 i

o0
-1 e~WHDz/2 g, 5 v?)  (change of variable)
2m Jy
_ 1 2 integrand is kernel of
2w (u41) exponential (3 = 2/(u? + 1)) pdf
1
= m, —00 < u < 00.

So we see that the ratio of two independent standard normal random variables is a
Cauchy random variable. (See Exercise 4.28 for more relationships between normal
and Cauchy random variables.) |

4.4 Hierarchical Models and Mixture Distributions

In the cases we have seen thus far, a random variable has a single distribution, possibly
depending on parameters. While, in general, a random variable can have only one
distribution, it is often easier to model a situation by thinking of things in a hierarchy.
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Example 4.4.1 (Binomial-Poisson hierarchy) Perhaps the most classic hierar-
chical model is the following. An insect lays a large number of eggs, each surviving
with probability p. On the average, how many eggs will survive?

The “large number” of eggs laid is a random variable, often taken to be Poisson()).
Furthermore, if we assume that each egg’s survival is independent, then we have
Bernoulli trials. Therefore, if we let X = number of survivors and ¥ = number of
eggs laid, we have

X|Y ~ binomial(Y, p),
Y ~ Poisson(\),

a hierarchical model. (Recall that we use notation such as X|Y ~ binomial(Y,p) to
' mean that the conditional distribution of X given Y = y is binomial(y, p).) |

The advantage of the hierarchy is that complicated processes may be modeled by
a sequence of relatively simple models placed in a hierarchy. Also, dealing with the
hierarchy is no more difficult than dealing with conditional and marginal distributions.

Example 4.4.2 (Continuation of Example 4.4.1) The random variable of in-
terest, X = number of survivors, has the distribution given by

r

P(Xza:)———iP(X:x,Y:y)
y=0

P(X =z|Y = y)P(Y = y) ( definition of )

conditional probability

>
y=0
[V .z _o) [e W conditional probability
;[(:c)p(l_p)y H y! ] ( isOify <z )

gsince X|Y = y is binomial(y,p) and Y is Poisson()). If we now simplify this last
expression, canceling what we can and multiplying by A*/\*, we get

! — )

g = (y—z)
_ Op)Te A R (1 - p)N
=T a X @ t=veo

t=0

_ (/\P)ze—xe(;[_p))‘ sum is a kernel for

x! a Poisson distribution

(/\p)r —Ap

80 X ~ Poisson(Ap). Thus, any marginal inference on X is with respect to a Pois-
son(Ap) distribution, with Y playing no part at all. Introducing Y in the hierarchy
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was mainly to aid our understanding of the model. There was an added bonus in
that the parameter of the distribution of X is the product of two parameters, each
relatively simple to understand.

The answer to the original question is now easy to compute:

EX = Jp,

50, on the average, Ap eggs will survive. If we were interested only in this mean and did
not need the distribution, we could have used properties of conditional expectations, -

Sometimes, calculations can be greatly simplified be using the following theorem. |
Recall from Section 4.2 that E(X|y) is a function of y and E(X|Y) is a random
variable whose value depends on the value of Y.

Theorem 4.4.3 If X and Y are any two random variables, then
(4.4.1) EX =E(E(X]|Y)),
provided that the ezpectations ezist.

Proof: Let f(z,y) denote the joint pdf of X and Y. By definition, we have

wan)  Ex= [ [aswpdsay= | [ [zl dx] Fr () dy,

where f(z|y) and fy (y) are the conditional pdf of X given Y = y and the marginal pdf
of Y, respectively. But now notice that the inner integral in (4.4.2) is the conditional
expectation E(X|y), and we have

EX = [ B(XIy)fy () dy = B (E(X|Y))
as desired. Replace integrals by sums to prove the discrete case. O

Note that equation (4.4.1) contains an abuse of notation, since we have used the
“E” to stand for different expectations in the same equation. The “E” in the left-
hand side of (4.4.1) is expectation with respect to the marginal distribution of X.
The first “E” in the right-hand side of (4.4.1) is expectation with respect to the
marginal distribution of Y', while the second one stands for expectation with respect
to the conditional distribution of X|Y. However, there is really no cause for confusion
because these interpretations are the only ones that the symbol “E” can take!

We can now easily compute the expected number of survivors in Example 4.4.1.
From Theorem 4.4.3 we have

EX = E (E(X]Y))
=E(pY) (since X|Y ~ binomial(Y,p))
=pA. (since Y ~ Poisson()))
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The term mizture distribution in the title of this section refers to a distribution
arising from a hierarchical structure. Although there is no standardized definition for
this term, we will use the following definition, which seems to be a popular one.

Definition 4.4.4 A random variable X is said to have a mizture distribution if the
distribution of X depends on a quantity that also has a distribution.

Thus, in Example 4.4.1 the Poisson(Ap) distribution is a mixture distribution since
it is the result of combining a binomial(Y, p) with Y ~ Poisson(A). In general, we can
say that hierarchical models lead to mixture distributions.

There is nothing to stop the hierarchy at two stages, but it should be easy to
see that any more complicated hierarchy can be treated as a two-stage hierarchy
theoretically. There may be advantages, however, in modeling a phenomenon as a
multistage hierarchy. It may be easier to understand.

Example 4.4.5 (Generalization of Example 4.4.1) Consider a generalization
of Example 4.4.1, where instead of one mother insect there are a large number of
mothers and one mother is chosen at random. We are still interested in knowing
the average number of survivors, but it is no longer clear that the number of eggs
laid follows the same Poisson distribution for each mother. The following three-stage
hierarchy may be more appropriate. Let X = number of survivors in a litter; then

X|Y ~ binomial(Y, p),
Y |A ~ Poisson(A),

A ~ exponential(3),

where the last stage of the hierarchy accounts for the variability across different
mothers.
The mean of X can easily be calculated as

EX = E(E(X|Y))

= E(pY) (as before)
= E(E(pY[A))

= E(pA)

= pB, (exponential expectation)

completing the calculation. I

In this example we have used a slightly different type of model than before in that
two of the random variables are discrete and one is continuous. Using these models
should present no problems. We can define a joint density, f(z,y,A); conditional
densities, f(z|y), f(z]y, A), etc.; and marginal densities, f(z), f(z,y), etc. as before.
Simply understand that, when probabilities or expectations are calculated, discrete
variables are summed and continuous variables are integrated.
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Note that this three-stage model can also be thought of as a two-stage hierarchy
by combining the last two stages. If Y|A ~ Poisson(A) and A ~ exponential(3), then

PY=y)=P(Y =y,0< A <)

- [ 1w nar
- [7 r6insoan
=/o [_;!AJﬁ_Wd*

=g [ eema (R )
- ﬁr(ﬁ 1) (ﬁ_—l)w

N (liﬁ) <1+1ﬁ—1>y'

This expression for the pmf of Y is the form (3.2.10) of the negative binomial pmf.
Therefore, our three-stage hierarchy in Example 4.4.5 is equivalent to the two-stage
hierarchy

X|Y ~ binomial(Y,p),
Y ~ negative binomial (p = 1_-1_ﬁ’ r= 1) .

However, in terms of understanding the model, the three-stage model is much easier
to understand!

A useful generalization is a Poisson-gamma mixture, which is a generalization of a
part of the previous model. If we have the hierarchy

Y|A ~ Poisson(A),
A ~ gamma(a, 3),

then the marginal distribution of Y is negative binomial (see Exercise 4.32). This
model for the negative binomial distribution shows that it can be considered to be
a “more variable” Poisson. Solomon (1983) explains these and other biological and
mathematical models that lead to the negative binomial distribution. (See Exercise
4.33.)

Aside from the advantage in aiding understanding, hierarchical models can often
make calculations easier. For example, a distribution that often occurs in statistics is
the noncentral chi squared distribution. With p degrees of freedom and noncentrality
parameter A, the pdf is given by

TP/2Hk—1g=z/2 \ke—A
(4.4.3) f(z|xp) = Zp(p/2+k 2p/2+k k1
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an extremely messy expression. Calculating EX, for example, looks like quite a chore.
However, if we examine the pdf closely, we see that this is a mixture distribution,
made up of central chi squared densities (like those given in (3.2.10)) and Poisson
distributions. That is, if we set up the hierarchy

X|K ~ X2k
K ~ Poisson(A),
then the marginal distribution of X is given by (4.4.3). Hence
EX = E(E(X|K))
=E(p+ 2K)
=p+2)

a relatively simple calculation. Var X can also be calculated in this way.
We close this section with one more hierarchical model and illustrate one more
conditional expectation calculation.

Example 4.4.6 (Beta-binomial hierarchy) One generalization of the binomial
distribution is to allow the success probability to vary according to a distribution. A
standard model for this situation is

X|P ~ binomial(P), i=1,...,n,
P ~ beta(a, 3).
By iterating the expectation, we calculate the mean of X as

«a

EX = E[E(X|P)] = BnP] = n——.

Calculating the variance of X is only slightly more involved. We can make use of
a formula for conditional variances, similar in spirit to the expected value identity of
Theorem 4.4.3.

Theorem 4.4.7 (Conditional variance identity) For any two random variables
X andY,

(4.4.4) Var X = E (Var(X|Y)) + Var (E(X|Y)),
provided that the expectations erist.
Proof: By definition, we have
Var X = E (X - EX]?) = E ([X - E(X|Y) + E(X|Y) — EX]?),

where in the last step we have added and subtracted E(X|Y). Expanding the square
in this last expectation now gives

VarX = E ([X - E(X|Y))*) + E (E(X|Y) - EX]?)
(4.4.5) +2E ([X - E(X|Y)|[E(X]Y) — EX]).



168 MULTIPLE RANDOM VARIABLES _ Section 4.4,

The last term in this expression is equal to 0, however, which can easily be seen by
iterating the expectation:

(4.4.6)
E([X - EX|YV)|[E(X]Y) - EX]) = E(E{[X - EX|V)|[E(X|Y) - EX]|Y}).
In the conditional distribution X|Y, X is the random variable. So in the expression
E{[X - E(X|V)][E(X|Y) - EX]]Y},
E(X |Y) and EX are constants. Thus,
E{[X - E(X|V)EX|Y) - EX]|Y} = (E(X]Y) — EX) (E{[X - E(X|Y)]|Y'})
= (E(X|Y) - EX) (E(X[Y) - E(X]Y))
= (E(X]Y) - EX) (0)
=0.

Thus, from (4.4.6), we have that E((X — E(X|Y))E(X|Y) — EX)) = E(0) = 0.
Referring back to equation (4.4.5), we see that

E (X - E(X|YV)]?*) =E(E{[X —-E(X|Y)]*|Y})
= E (Var(X|Y))
and
E ([E(X|Y) - EX]?) = Var (E(X|Y)),
establishing (4.4.4). O

Example 4.4.8 (Continuation of Example 4.4.6) To calculate the variance of
X, we have from (4.4.4),
Var X = Var (E(X|P)) + E (Var(X|P)).

Now E(X|P) = nP, and since P ~ beta(a, 3),

afB
(a+B)2 (a+B+1)
Also, since X|P is binomial(n, P), Var(X|P) = nP(1 — P). We then have
C(a+8)
I(a)L(B) Jo
Notice that the integrand is the kernel of another beta pdf (with parameters a + 1
and S+ 1) so

Var (E(X|P)) = Var(nP) = n?

E [Var(X|P)] = nE[P(1 - P)] = p(1-p)p* ' (1-p)’ dp.

_ Te+h) [Fle+])r (ﬂ+1)] af
E(Ve(XIP) = r S | et ) = "G T R BT
Adding together the two pieces and simplifying, we get

af(a+B+n) I

Var X = Bt +1)
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4.5 Covariance and Correlation

In earlier sections, we have discussed the absence or presence of a relationship be-
tween two random variables, independence or nonindependence. But if there is a
relationship, the relationship may be strong or weak. In this section we discuss two
pumerical measures of the strength of a relationship between two random variables,
the covariance and correlation.

To illustrate what we mean by the strength of a relationship between two random
variables, consider two different experiments. In the first, random variables X and Y
are measured, where X is the weight of a sample of water and Y is the volume of
the same sample of water. Clearly there is a strong relationship between X and Y. If
(X,Y) pairs are measured on several samples and the observed data pairs are plotted,
the data points should fall on a straight line because of the physical relationship
between X and Y. This will not be exactly the case because of measurement errors,
impurities in the water, etc. But with careful laboratory technique, the data points
will fall very nearly on a straight line. Now consider another experiment in which X
and Y are measured, where X is the body weight of a human and Y is the same
buman’s height. Clearly there is also a relationship between X and Y here but the
relationship is not nearly as strong. We would not expect a plot of (X,Y) pairs
measured on different people to form a straight line, although we might expect to
see an upward trend in the plot. The covariance and correlation are two measures
that quantify this difference in the strength of a relationship between two random
variables.

Throughout this section we will frequently be referring to the mean and variance
of X and the mean and variance of Y. For these we will use the notation EX = ux,
EY = puy, Var X = 0%, and VarY = ¢%. We will assume throughout that 0 < 0% <
0o and 0 < 0% < oo.

Definition 4.5.1 The covariance of X and Y is the number defined by
Cov(X,Y) = B((X - px)(¥ - py)).
Definition 4.5.2 The correlation of X and Y is the number defined by

_ Cov(X,Y)
T oxoy

PXY

The value pxy is also called the correlation coefficient.

If large values of X tend to be observed with large values of Y and small values of
X with small values of Y, then Cov(X,Y) will be positive. If X > ux, then Y > py
is likely to be true and the product (X — ux )(Y — py) will be positive. If X < ux,
then Y < py is likely to be true and the product (X — ux)(Y — py) will again be
positive. Thus Cov(X,Y) = E(X — ux)(Y — py) > 0. If large values of X tend to be
observed with small values of Y and small values of X with large values of Y, then
Cov(X,Y) will be negative because when X > ux, Y will tend to be less than uy
and vice versa, and hence (X — px)(Y — uy) will tend to be negative. Thus the sign
of Cov(X,Y) gives information regarding the relationship between X and Y.
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But Cov(X,Y) can be any number and a given value of Cov(X,Y), say Cov(X,Y) =
3, does not in itself give information about the strength of the relationship between
X and Y. On the other hand, the correlation is always between —1 and 1, with the
values —1 and 1 indicating a perfect linear relationship between X and Y. This ig
proved in Theorem 4.5.7.

Before investigating these properties of covariance and correlation, we will first
calculate these measures in a given example. This calculation will be simplified by
the following result.

Theorem 4.5.3 For any random vaeriables X and Y,
Cov(X,Y)=EXY — puxuy.
Proof: Cov(X,Y) =E(X — pux)(Y — py)
=B(XY - uxY — uy X + pxpy) (expanding the product)
=EXY — uxEY —uyvEX + pxpy  (px and py are constants)
=EXY —uxpy — pypx +pxpy
=EXY —uxpy. O

Example 4.5.4 (Correlation—I) Let the joint pdf of (X,Y) be f(z,y) =1, 0 <

z <1,z <y <z+1.See Figure 4.5.1. The marginal distribution of X is uniform(0, 1)
so pxy = 3 and 0% = 75. The marginal pdf of V' is fy(y) = v, 0 < y < 1, and

fr(y)=2—9,1 <y <2, with gy =1 and o = ;. We also have

1 z+1 ]1 41
EXY:/ / xydydac:/ —acyQ}I dr
0 z 0 2

Figure 4.5.1. (a) Region where f(z,y) > 0 for Ezample 4.5.4; (b) region where f(x,y) > 0
for Ezample 4.5.8
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Using Theorem 4.5.3, we have Cov(X,Y) = 3 — (3) (1) = §5. The correlation is

Cov(X,Y) 1/12 _ 1
PXY = T oxay V1/12,/1/6 V2

In the next three theorems we describe some of the fundamental properties of
covariance and correlation.

Theorem 4.5.5 If X and Y are independent random variables, then Cov(X,Y) =10
and pxy = 0.

Proof: Since X and Y are independent, from Theorem 4.2.10 we have EXY =
(EX)(EY). Thus

Cov(X,Y) = EXY — (EX)(EY) = (EX)(EY) — (EX)(EY) = 0

and

Cov(X,Y 0
pXY = X.Y) _ =0. U
oOxay ox0y

Thus, the values Cov(X,Y) = pxy = 0 in some sense indicate that there is no
relationship between X and Y. It is important to note, however, that Theorem 4.5.5
does not say that if Cov(X,Y) = 0, then X and Y are independent. For example, if
X ~ f(z — 8), symmetric around 0 with EX = €, and Y is the indicator function
Y =I(]X — 6] < 2), then X and Y are obviously not independent. However,

00 2

E(XY) = /

—0oC

xI(|Jz—0| < 2)f(xz—0)dx :/

2
(t+8)f(t)dt = 9/ f(t)dt = EXEY,
—2 -2
where we used the fact that, by symmetry, jfz tf(t)di = 0. So it is easy to find
uncorrelated, dependent random variables.

Covariance and correlation measure only a particular kind of linear relationship
that will be described further in Theorem 4.5.7. Also see Example 4.5.9, which dis-
cusses two random variables that have a strong relationship but whose covariance and
correlation are 0 because the relationship is not linear.

Covariance also plays an important role in understanding the variation in sums of
random variables, as the next theorem, a generalization of Theorem 2.3.4, indicates.
(See Exercise 4.44 for a finther generalization.)

Theorem 4.5.6 If X andY are any two random variables and a and b are any two
constants, then

Var(aX +bY) = a®Var X + b*Var Y + 2abCov(X, Y).
If X and Y are independent random variables, then

Var(aX +bY) = a?Var X + b*VarY.
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Proof: The mean of aX + bY is E(aX +bY) = aEX + bEY = auy + buy. Thus
Var(aX + bY) = E ((aX + bY) — (apx + buy))*
=E (a(X — px) + (Y — py))?
=E (@®(X — px)* +0*(Y — uy)? + 2ab(X — px)(Y — py))
=a’E(X — ux)? + P’E(Y — py)? + 2abE(X — ux)(Y — py)
=a?Var X + b*VarY + 2abCov(X,Y).

If X and Y are independent, then, from Theorem 4.5.5, Cov(X,Y) = 0 and the second
equality is immediate from the first. O

From Theorem 4.5.6 we see that if X and Y are positively correlated (Cov(X,Y)
> 0), then the variation in X + Y is greater than the sum of the variations in X
and Y. But if they are negatively correlated, then the variation in X +Y is less than
the sum. For negatively correlated random variables, large values of one tend to be
observed with small values of the other and in the sum these two extremes cancel.
The result, X + Y, tends not to have as many extreme values and hence has smaller
variance. By choosing a = 1 and b = —1 we get an expression for the variance of the
difference of two random variables, and similar arguments apply.

The nature of the linear relationship measured by covariance and correlation is
somewhat explained by the following theorem.

Theorem 4.5.7 For any random variables X and Y,

a. -1 <pxy <L

b. |oxy| = 1 if and only if there exist numbers a # 0 and b such that P(Y =
aX +b)=1.Ifpxy =1, thena >0, and if pxy = —1, then a <O0.

Proof: Consider the function h(t) defined by
h(t) = E((X = ux)t+ (Y — uy))’.
Expanding this expression, we obtain
h(t) = t*E(X — px)? + 2E(X — px)(Y — py) + E(Y — py)?
=t20% + 2tCov(X,Y) + 02.

This quadratic function of ¢ is greater than or equal to O for all values of ¢ since it is
the expected value of a nonnegative random variable. Thus, this quadratic function
can have at most one real root and thus must have a nonpositive discriminant. That
is,

(2Cov(X,Y))? — 40%0% <0.
This is equivalent to

—oxoy < Cov(X,Y) <oxoy.
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Dividing by oxoy yields
1< Cov(X,Y)
OxOoy

=pxy < 1.

Also, |pxy| = 1 if and only if the discriminant is equal to 0. That is, |pxy| =1 if and
only if h(t) has a single root. But since ((X — px)t + (Y — py))? > 0, the expected
value h(t) = E((X — ux)t + (Y — py))? = 0 if and only if

P([(X —px)t+(Y —py)? =0) = 1.
This is equivalent to
P((X —px)t+ (Y —py)=0) =1

This is P(Y = aX +b) = 1 with a = —¢ and b = pxt + py, where t is the root of
h(t). Using the quadratic formula, we see that this root is t = —Cov(X,Y)/0%. Thus
a = —t has the same sign as pxy, proving the final assertion. O

In Section 4.7 we will prove a theorem called the Cauchy-Schwarz Inequality. This
theorem has as a direct consequence that pxy is bounded between —1 and 1, and we
will see that, with this inequality, the preceding proof can be shortened.

If there is a line y = az + b, with a # 0, such that the values of (X, Y) have a high
probability of being near this line, then the correlation between X and Y will be near
1 or —1. But if no such line exists, the correlation will be near 0. This is an intuitive
notion of the linear relationship that is being measured by correlation. This idea will
be illustrated further in the next two examples.

Example 4.5.8 (Correlation—II) This example is similar to Example 4.5.4, but we
develop it differently to illustrate other model building and computational techniques.
Let X have a uniform(0,1) distribution and Z have a uniform(0, %) distribution.
Suppose X and Z are independent. Let Y = X + Z and consider the random vector
(X,Y). The joint distribution of (X,Y) can be derived from the joint distribution of

(X, Z) using the techniques of Section 4.3. The joint pdf of (X,Y) is

flz,y) =10, 0<z<1, :v<y<:c+1i0.
Rather than using the formal techniques of Section 4.3, we can justify this as follows.
Given X = z, Y = z + Z. The conditional distribution of Z given X = r is just
uniform(0, %) since X and Z are independent. Thus z serves as a location parameter
in the conditional distribution of ¥ given X = z, and this conditional distribution
is just uniform(z, z + 75). Multiplying this conditional pdf by the marginal pdf of X
(uniform(0, 1)) yields the joint pdf above. This representation of Y = X + Z makes
the computation of the covariance and correlation easy. The expected values of X
&ndYareEX=%-andEY=E(X+Z)=EX+EZ=%+%= %,giving

Cov(X,Y) = EXY — (EX)(EY)
=EX(X + Z) — (EX)(E(X + Z))
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=EX?+EXZ - (EX)? - (EX)(EZ)

w2 (o2 NN (T - independence of
— EX? - (I1X)? + (EX)(EZ) (hX)(hZ)( e >

=o% =

From Themem 4.5.6, the variance of Y is 0% = Var(X + Z) = Var X + Var Z =

1
5+ 1200 Thus

100
1 101°

|" wl“‘

PXY =
/L
12

This is much larger than the value of pyy = 1/v/2 obtained in Example 4.5.4. The
sets on which f(z,y) is positive for Example 1.5.4 and this example are illustrated in
Figure 4.5.1. (Recall that this set is called the support of a distribution.) In each case,
(X,Y) is a random point from the set. In both cases there is a linearly increasing
relationship between X and Y, but the relationship is much stronger in Figure 4.5.1b.
Another way to see this is by noting that in this example, the conditional distribution
of Y given X = z is uniform(z, z + %0) In Example 4.5.4, the conditional distribution
of Y given X = z is uniform(z,z + 1). The knowledge that X = z gives us much
more information about the value of Y in this model than in the one in Example
4.5.4. Hence the correlation is nearer to 1 in this example. I

The next example illustrates that there may be a strong relationship between X
and Y, but if the relationship is not linear, the correlation may be small.

Example 4.5.9 (Correlation—III) In this example, let X have a uniform(—1,1)
distribution and let Z have a uniform(0, f5) distribution. Let X and Z be independent.
Let Y = X2+ Z and consider the random vector (X,Y). As in Example 4.5.8,
given X = z, Y = 22 + Z and the conditional distribution of Y given X = z is
uniform(z?, 2% + %) The joint pdf of X and Y, the product of this conditional pdf
and the marginal pdf of X, is thus

1
flz,y) =5 -l<z<l, z?<y<az? +l—o

The set on which f(z,y) > 0 is illustrated in Figure 4.5.2. There is a strong rela-
tionship between X and Y, as indicated by the conditional distribution of Y given
X = z. But the relationship is not linear. The possible values of (X, Y’) cluster around
a parabola rather than a straight line. The correlation does not measure this non-
linear relationship. In fact, pxy = 0. Since X has a uniform(—1,1) distribution,
EX = EX?® =0, and since X and Z are independent, EXZ = (EX)(EZ). Thus,
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y

{

Figure 4.5.2. Reqon where f(z,y) > 0 for Ezomple {.5.9

Cov(X,Y) = E(X (X + 2)) — (EX)(E(X? ++ 2))
= BEX*+EXZ - 0E(X* + 2)
= 0+ (EX)(EZ) = 0(EZ) = 0,
and pxy = Cov(X,Y)/(oxoy) = 0. |

We close this section by introducing a very important bivariate distribution in
which the correlation coefficient arises naturally as a parameter.

Definition 4.5.10 Let —oc < ux < 00,—00 < py < 0, 0 < 0x, 0 < oy, and

—1 < p < 1 be five real numbers. The bivariate normal pdf with means px ond py,

variances 0% and 0%, and correlation p is the bivariate pdf given by

-1

flz,y) = (27TO')(JY 1 ﬁ?)

o2
()52 (52))

for —0o <z < 00 and —co < y < .

Although the formula for the bivariate normal pdf looks formidable, this bivariate
distribution is one of the most frequently used. (In fact, the derivation of the formula
need not be formidable at all. See Excrcise 4.46.)

The many nice properties of this distribution include these:

a. The marginal distribution of X is n{px,o%).
b. The marginal distribution of Y is n(uy, o).

¢. The correlation between X and Y is pxy = p.
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d. For any constants a and b, the distribution of aX + bY is n(aux + buy,a?0% +
b20% + 2abpoxoy).

We will leave the verification of properties (a), (b), and (d) as exercises (Exercise
4.45). Assuming (a) and (b) are true, we will prove (c). We have by definition

- [ L) () sev s

Make the change of variable

. (l‘—ﬂx) (y—ﬂy) and  fo (z—ux).
ox oy ox

Then ¢ = oxt + ux, y = (oys/t) + py, and the Jacobian of the transformation is
J = oxoy/t. With this change of variable, we obtain

oo o o}
XY =/ / sf (Uxt-i-ﬂx, z;,—s +#Y) ‘axtay( dsdt
—00 J-00
oo {o o]
=/ / s (27T0’x0y\/1 - p2)
-—00 —00

1 2 \2\\ oxoy
X exp (—2(1——-,92) (t —2ps+(z) )> m dsdt.

2
Noting that [t| = V2 and 2 —2ps+ (%)2 = (’—“tP—t—!) + (1 — p?)t2, we can rewrite
this as

e [~ () s () o]

The inner integral is ES, where S is a normal random variable with ES = pt? and
Var S = (1 — p?)t2. Thus the inner integral is pt2. Hence we have

=] 2 2
pt t )
= —exp|—— | dt.
PXY /— . p ( 2
But this integral is pET2, where T is a n(0, 1) random variable. Hence ET? = 1 and
XY = P-

-1
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All the conditional distributions of Y given X = z and of X given Y = y are also
normal distributions. Using the joint and marginal pdfs given above, it is straightfor-
ward to verify that the conditional distribution of Y given X =z is

n(uy + p(oy/ox)( — px),o% (1 - p°)).

As p converges to 1 or —1, the conditional variance o2 (1 —p?) converges to 0. Thus,
the conditional distribution of Y given X = z becomes more concentrated about the
point py +p(oy /ox)(x—px), and the joint probability distribution of (X, Y’) becomes
more concentrated about the line y = uy + p(oy /ox )(z — ux). This illustrates again
the point made earlier that a correlation near 1 or —1 means that there is a line
y = az + b about which the values of (X,Y) cluster with high probability.

Note one important fact: All of the normal marginal and conditional pdfs are de-
rived from the starting point of bivariate normality. The derivation does not go in the
opposite direction. That is, marginal normality does not imply joint normality. See
Exercise 4.47 for an illustration of this.

4.6 Multivariate Distributions

At the beginning of this chapter, we discussed observing more than two random
variables in an experiment. In the previous sections our discussions have concentrated
on a bivariate random vector (X, Y). In this section we discuss a multivariate random
vector (Xy,...,Xn). In the example at the beginning of this chapter, temperature,
height, weight, and blood pressure were observed on an individual. In this example,
n = 4 and the observed random vector is (X1, X2, X3, X4), where X is temperature,
X, is height, etc. The concepts from the earlier sections, including marginal and
conditional distributions, generalize from the bivariate to the multivariate setting.
We introduce some of these generalizations in this section.
A note on notation: We will use boldface letters to denote multiple variates. Thus,
we write X to denote the random variables X,..., X, and x to denote the sample
Tly.eo .y Ty

The random vector X = (Xi,...,X,) has a sample space that is a subset of R".
If (X;,...,Xn) is a discrete random vector (the sample space is countable), then the
Joint pmf of (X1,...,Xn) is the function defined by f(x) = f(z1,...,2n) = P(X1 =
T1,...,Xn = ,) for each (z1,...,2,) € R™. Then for any A C R",

(4.6.1) P(X e A) =) f(x).

xXEA

If (X;,...,X,) is a continuous random vector, the joint pdf of (X1,...,Xn) is a
function f(zi,...,zn) that satisfies

(4.6.2) P(XeA)=/--«/;f(x)dx=/-n/Af(xl,...,zn)d:rl---d:rn.

These integrals are n-fold integrals with limits of integration set so that the integration
is over all points x € A.
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Let g(x) = g(z1,...,Zn) be a real-valued function defined on the sample space of
X. Then g(X) is a random variable and the ezpected value of g(X) is

(463) Eg(X)= /m /_°° g0/ (x)dx and Eg(X)= 3" g(x)f(x)

xeER™

in the continuous and discrete cases, respectively. These and other definitions are
analogous to the bivariate definitions except that now the integrals or sums are over
the appropriate subset of ®" rather than ®2.

The marginal pdf or pmf of any subset of the coordinates of (X3,..., X,) can be
computed by integrating or summing the joint pdf or pmf over all possible values of
the other coordinates. Thus, for example, the marginal distribution of (X1,..., Xk),
the first k coordinates of (Xi,...,X,), is given by the pdf or pmf

(4.6.4) f(a:l,l..,a:k)=/ / f(z1,...,Zn)dTpy1 - - dp

or
(4.6.5) flzy,. . @) = S flzr.-za)

(Tk41yeerTn)ERP—K
for every (x1,...,zx) € R*. The conditional pdf or pmf of a subset of the coordinates
of (X1,...,Xy) given the values of the remaining coordinates is obtained by dividing

the joint pdf or pmf by the marginal pdf or pmf of the remaining coordinates. Thus,
for example, if f(z1,...,zx) > 0, the conditional pdf or pmf of (Xk41,..., Xn) given
X; =z1,..., X, = xi is the function of (zx41,...,Zn) defined by )

f(z1,.-.,zn)

flzy,...,zk)

These ideas are illustrated in the following example.

(4.6.6) f(:ck+1,‘..,:cn|x1,...,zk) =

Example 4.6.1 (Multivariate pdfs) Let n =4 and

3(22 + 22 + 23 + 22) 0<z;<1,i=1,2,3,4
_ F(z7 2 3 1 P ) y &y Iy
f(z1, 22,23, 74) { 0 otherwise.

This nonnegative function is the joint pdf of a random vector (X3, X2, X3, X4) and
it can be verified that

[o o} o0 [ o oo
/ / / / f(zl, x2,T3, 1‘4)d131 dzo dzzdzy
—00 v —00 J —00 v —00

1 1 1 1
3
=-/0 /0 /o /(; Z(xf_‘_x%_*-xg+x§)dxldx2dz3dz4
=1
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This joint pdf can be used to compute probabilities such as

1
P(X1< , X9 < = X4>2>

o R L S
= = (z? + 25 + 24 + 23) dz1 doadz3dzs.
y JoJo Jo 4

Note how the limits of integration restrict the integration to those values of (z1, 22, z3,
z4) that are in the event in question and for which f(z1,z2,z3,z4) > 0. Each of the
four terms, 3z2, 322, etc., can be integrated separately and the results summed. For

example,
3
/ / / / —:1:1 dzy drodzzdry = 256"

The other three integrals are 1072 o 6 . and 2L. Thus

256

1 1
X2<3X4>2> i-i— 7 3 A _ 1

P (Xl <3 256 T 1024 ' 64 T 256  1024°

2’

Using (4.6.4), we can obtain the marginal pdf of (X;,X2) by integrating out the
variables z3 and z4 to obtain

f(zlaz2) = / / f(xl,I2,$3,$4) d.’133 d$4

1 1
3 3 1

=/ / (224124 22 + 22) dzadry = (22 + 22) + =
A 1 2

. for 0 < z; < 1and 0 < z2 < 1. Any probability or expected value that involves only
. X3 and X, can be computed using this marginal pdf. For example,

[ 00
EX1X2 = / / xlng(.’l!]_, zg) dl‘l d.’l?z
—00 J —00

1 1
3 1
= / / T1T2 (Z(I§ +$g) + —2') d:l?]_ d$2
0 0
1 1
3 3 1
= A A (Z:c"l’xg + Zzlz% + E:rla;g) dz, dz,

—/1 33+ ln ) dm =S e 3 15
T \1672 T 8T T 2T T TR T 16

For any (z1,z2) with0 < z; <1 and 0 < 73 < 1, f(z1,22) > 0 and the conditional
pdf of (X3, X4) given X; = z; and X5 = 2, can be found using (4.6.6). For any such
(z1,22), f(z1,T2,23,74) > 0if 0 < 23 <1 and 0 < z4 < 1, and for these values of
(z3,z4), the conditional pdf is
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f(z1,z2, T3, 1‘4)
f(z1,z2)

3(z? + 2} + 23 + z2)
a3+ ad)+1

f(z3, za|Tr,22) =

_zit+ad+ad+a]
w?+2%+2

For example, the conditional pdf of (X3, X4) given X1 = % and X, = % is

2
_ @+ 3" +za+x4:3+gz§+%xz_

1 2)
1= T2=5 | = 2
3 3 37+ (2) +2 111

This can be used to compute

1
3 1 1 2 1 l/5 9, 9
P(Xg)z,X4<§)X1-—§,X2-—§)—/O. é (ﬁ+11$3+11 )dl‘3d:t4
t/s5 19
_ el 2
—A ( +704+ )d.’lt4

__5_+111+_3__203 |
T 88 ' 1408 ' 352  1408°

f (IS, T4

Before giving examples of computations with conditional and marginal distributions
for a discrete multivariate random vector, we will introduce an important family of
discrete multivariate distributions. This family generalizes the binomial family to the
situation in which each trial has n (rather than two) distinct possible outcomes.

Definition 4.6.2 Let n and m be positive integers and let py,...,p, be num-
bers satisfying 0 < p; < 1,7 =1,...,n, and } .. ,p; = 1. Then the random vec-
tor (Xi,...,Xn) has a multinomial distribution with m trials and cell probabilities
D1, .-, Pn if the joint pmf of (X;,...,X,) is
flz ) m! $lo...opin = ml ﬁ 2%
yoooy T _— — DT s " = ! -
1 n S g T
on the set of (z1,...,z,) such that each z; is a nonnegative integer and Z 1 Ti=m.

The multinomial distribution is a model for the following kind of experiment. The
experiment consists of m independent trials. Each trial results in one of n distinct
possible outcomes. The probability of the ith outcome is p; on every trial. And X;
is the count of the number of times the ith outcome occurred in the m trials. For
n = 2, this is just a binomial experiment in which each trial has n = 2 possible
outcomes and X; counts the number of “successes” and X, = m — X; counts the
number of “failures” in m trials. In a general multinomial experiment, there are n
different possible outcomes to count.
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Example 4.6.3 (Multivariate pmf) Consider tossing a six-sided die ten tlmes
Suppose the die is unbalanced so that the probability of observing a'l is 21, the
probablhty of observing a 2 is 21, and, in general, the probability of observing an
iis ,;—1 Now consider the random vector (Xj,...,Xg), where X; counts the num-
ber of times ¢ comes up in the ten tosses. Then (X;,...,Xs) has a multinomial
distribution with m = 10 trials, n = 6 possible outcomes, and cell probabilities
n = %,pg = %,...,ps = %. The formula in Definition 4.6.2 may be used to
calculate the probability of rolling four 6s, three 5s, two 4s, and one 3 to be

roosaso- ot 3) (3) (3) (4 ) (2)

= .0059. I

The factor m!/(zq!>---- zn!) is called a multinomial coefficient. It is the number
of ways that m objects can be divided into n groups with z; in the first group, z,
in the second group, ..., and z, in the nth group. A generalization of the Binomial

Theorem 3.2.2 is the Multinomial Theorem.

Theorem 4.6.4 (Multinomial Theorem) Let m and n be positive integers. Let A

be the set of vectors x = (z1,...,zn) such that each z; is a nonnegative integer and
}:?=1Ii =m. Then, for any real numbers p;,...,pn,
m!
(pr+-+pa)" = Y ——— PPl
xl' ----- zn.
x€A

Theorem 4.6.4 shows that a multinomial pmf sums to 1. The set A is the set of
points with positive probability in Definition 4.6.2. The sum of the pmf over all those
points is, by Theorem 4.6.4, (p; +---+pp)" =1" =

Now we consider some marginal and conditional distributions for the multinomial
model. Consider a single coordinate X;. If the occurrence of the ith outcome is labeled
a “success” and anything else is labeled a “failure,” then X; is the count of the
number of successes in m independent trials where the probability of a success is p;
on each trial. Thus X; should have a binomial(m, p;) distribution. To verify this the
marginal distribution of X; should be computed using (4.6.5). For example, consider
the marginal pmf of X,,. For a fixed value of z, € {0,1,...,n}, to compute the
marginal pmf f(x,), we must sum over all possible values of (z1,...,Zp—1). That is,
we must sum over all (z;,...,Z,-1) such that the z;s are all nonnegative integers
and y 1) 'z, = m — z,,. Denote this set by B. Then

m!
flza)= " 3. @) (ea)™
1: n*
(:Cl,..,,In_l)GB
_ Z m! z (m l‘n) (1—‘ )m Zn
- 1;1! ..... zn!pl pn (m xn)f(l_p )m Tn

(x1,--,Zn—1)EB
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m! z
= —————— n 1 -
Zal(m — 2 )" (1=pn)

oy moz)t m N (e )T
zyle ! \1~pp 1—pn '

(21,.“,1"_1)68

m—=zn

But using the facts that z; +:--+zp-1=m -z, and p1+-- -+ pp—1 =1 —p, and
Theorem 4.6.4, we see that the last summation is 1. Hence the marginal distribution
of X, is binomial(rn, p,). Similar arguments show that each of the other coordinates
is marginally binomially distributed. .

Given that X,, = z,,, there must have been m — z,, trials that resulted in one of the
first n — 1 outcomes. The vector (Xi,...,Xn—1) counts the number of these m — z,,
trials that are of each type. Thus it seems that given X,, = z,, (X1,..., Xn—1) might
have a multinomial distribution. This is true. From (4.6.6), the conditional pmf of
(X1,...,Xn-1) given X, =z, is

Zi,...,Tn
f(:z:l, ‘. .,:cn_lla:n) = i:.l—f-(x—n)———)
s (p)™ e (pn)™"
Eﬁi_z:ﬁ(pn)z"(l ~ Pn)™ %0
mmm) (m (e )™
Tyleeeee Tn-1! \1 —pn 1-pa )

This is the pmf of a multinomial distribution with m — x,, trials and cell probabilities
P1/(1 —=DPn)y. -, Pn=1/(1 — pn). In fact, the conditional distribution of any subset of
the coordinates of (X},...,X,) given the values of the rest of the coordinates is a
multinomial distribution.
We see from the conditional distributions that the coordinates of the vector (Xi,
.., Xy) are related. In particular, there must be some negative correlation. It turns
out that all of the pairwise covariances are negative and are given by (Exercise 4.39)

Cov(Xi, X;) = E[(X; — pi)(X; — pj)] = —mpip;.

Thus, the negative correlation is greater for variables with higher success probabilities.
This makes sense, as the variable total is constrained at m, so if one starts to get big,
the other tends not to.

Definition 4.6.5 Let X,,...,X, be random vectors with joint pdf or pmf
f(x1,...,%n). Let fx,(x;) denote the marginal pdf or pmf of X;. Then Xi,...,X,
are called mutually independent random vectors if, for every (x1,...,X,),

n

f(xla“-,xn) = fxl(x1)""‘fx,.(xn) = foi(xi)'

=1

If the X;s are all one-dimensional, then X,..., X, are called mutually independent
random variables.
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If Xy,..., X, are mutually independent, then knowledge about the values of some
coordinates gives us no information about the values of the other coordinates. Using
Definition 4.6.5, one can show that the conditional distribution of any subset of the
coordinates, given the values of the rest of the coordinates, is the same as the marginal
distribution of the subset. Mutual independence implies that any pair, say X; and
X, are pairwise independent. That is, the bivariate marginal pdf or pmf, f(z;,z;),
satisfies Definition 4.2.5. But mutual independence implies more than pairwise inde-
pendence. As in Example 1.3.11, it is possible to specify a probability distribution for
(X1,...,Xn) with the property that each pair, (X;, X;), is pairwise independent but
X1,..., X, are not mutually independent.

Mutually independent random variables have many nice properties. The proofs of
the following theorems are analogous to the proofs of their counterparts in Sections
4.2 and 4.3.

Theorem 4.6.6 (Generalization of Theorem 4.2.10) Let X1,...,X,, be mutu-

ally independent random wvariables. Let g1,...,9, be real-valued functions such that
gi(x;) is a function only of z;, i =1,...,n. Then
E(g1(X1) -+ +gn(Xn)) = (Eg1(X1))- - - - «(Egn(Xn)).

Theorem 4.6.7 (Generalization of Theorem 4.2.12) Let X1,...,X,, be mutu-
ally independent random variables with mgfs Mx, (t),...,Mx, (t). Let Z = X1 +---+
X.. Then the mgf of Z is ‘

In particular, if X1,...,X, all have the same distribution with mgf Mx (t), then
Mz(t) = (Mx(t))" .

Example 4.6.8 (Mgf of a sum of gamma variables) Suppose X3,...,X, are
mutually independent random variables, and the distribution of X; is gamma(a;, 3).
From Example 2.3.8, the mgf of a gamma(cq, 3) distribution is M(t) = (1 — 8t)~>.
Thus, if Z = X, +--- 4+ X, the mgf of Z is

Mz(t) = Mx, (t)---- My (t)=(1-Bt)"®..... (L= Bty = (1 — Bt)~(eat+an),

This is the mgf of a gamma(a; + -+ + ay, ) distribution. Thus, the sum of inde-
pendent gamma random variables that have a common scale parameter 3 also has a
gamma, distribution. [

A generalization of Theorem 4.6.7 is obtained if we consider a sum of linear functions
of independent random variables.

Corollary 4.6.9  Let X;,...,X, be mutually independent random variables with
mgfs Mx, (t),...,Mx, (t). Let a1,...,a, and b1,...,b, be fized constants. Let Z =
(@1 X1 +b1)+ -+ (anXn +b,). Then the mgf of Z is

Mz(t) = (e!FP) Mx, (agt)--- - -Mx, (ant).
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Proof: From the definition, the mgf of Z is

Mz(t) = Ee?
= EetE(ai Xi+bi)

_ (e‘(Eb"))E (et Xy, . ptan Xn) properties of exponentials
and expectations
= (e!®*))Mx, (agt)- -+ Mx, (ant), (Theorem 4.6.6)
as was to be shown. O

Undoubtedly, the most important application of Corollary 4.6.9 is to the case of
normal random variables. A linear combination of independent normal random vari-
ables is normally distributed.

Corollary 4.6.10 Let X,,..., X, be mutually independent random variables with
X~ n(p,-,o?). Let ay,...,an and by, ..., b, be fized constants. Then

n n n
Z = Z(aiXi +b;) ~n (Z(aiﬂi + b;), ZG?V?> :
1=1 i=1 =1

Proof: Recall that the mgf of a n(y,02) random variable is M(t) = estto’t’/2,
Substituting into the expression in Corollary 4.6.9 yields

Mz (t) — (et(Ebg))eulalt+afa¥t2/2 ..... eu"ant+a,2,a?‘t2/2

= e((Blaiui+bit+(Talof)t?/2)
the mgf of the indicated normal distribution. O

Theorem 4.6.11 (Generalization of Lemma 4.2.7) Let X,,...,X,, be random
vectors. Then Xi,...,X, are mutually independent random vectors if and only if
there exist functions g;(x;),7 = 1,...,n, such that the joint pdf or pmf of (X1,...,X,)
can be written as

f(xh"-’xn) zgl(xl) """ gn(xn)‘
Theorem 4.6.12 (Generalization of Theorem 4.3.5) Let X;,...,X, be inde-
pendent random vectors. Let g;(x;) be a function only of x;,i =1, ...,n. Then the
random variables U; = g;(X;),i = 1,...,n, are mutually independent.

We close this section by describing the generalization of a technique for finding the
distribution of a transformation of a random vector. We will present the generalization
of formula (4.3.6) that gives the pdf of the new random vector in terms of the pdf
of the original random vector. Note that to fully understand the remainder of this
section, some knowledge of matrix algebra is required. (See, for example, Searle 1982.)
In particular, we will need to compute the determinant of a matrix. This is the only
place in the book where such knowledge is required.
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Let (X3,...,X,) be a random vector with pdf fx(z1,...,2Zn). Let A = {x :fx(x) >
0}. Consider a new random vector (U, . ..,Un), defined by Uy = ¢ (X1,..., Xn),Us =
g2(X1,-- s Xn)s -, Un = gn(X1,. .., Xn). Suppose that A, Ay, ..., Ax form a parti-
tion of A with these properties. The set Ap, which may be empty, satisfies
P((X1,...,Xn) € Ag) = 0. The transformation (Uy,...,Us) = (91(X),...,gn(X))

is a one-to-one transformation from A; onto B for each ¢ = 1,2,...,k. Then for
each i, the inverse functions from B to A; can be found. Denote the ith inverse by
= hu(ul, .. .,un), Tg = hzi(ul, vy un), ey T = hm-(ul, cae un). This ith inverse

gives, for (u1,...,un) € B, the unique (z1,...,2,) € A; such that (u1,...,un) =
(91(Z1,- -+, Tn)y-- -1 Gn(Z1,...,Zn)). Let J; denote the Jacobian computed from the
ith inverse. That is,

om om | om| |Ohu(w) Ohu() | Ohuu

Ou; Ous Ou, oy Ouy Oun

bz 0z Bmy| |Ohu(w) Ohw(w) | Ohu(u)

Ji=|0ur Oug Oun |=| 8y Ouy Oun, |

bzn Oz Ooa| |Ohei(w) Ohw(w) . Ohmi(u)

Ouy; Oug Oun, ouy Oug Oun
the determinant of an n x n matrix. Assuming that these Jacobians do not vanish
identically on B, we have the following representation of the joint pdf, fuy(u1,-..,un),
for u € B:

k
46.7)  fulur,...,un) =Y fx(Pra(un, .- tn)s -y hns(un, - - un)) i,
i=1

Example 4.6.18 (Multivariate change of variables) Let (X, X5, X3, X,) have
joint pdf .

Ix(z1,22,23,24) = 24e T2 7F 7T ) <11 < T < T3 < T4 < 00.
Consider the transformation
Ur=X1, Up=Xo-X1, Us=X3—-X3, Us=X4— Xs.

This transformation maps the set A onto the set B = {u: 0 < u; < 00,7 =1,2,3,4}.
The transformation is one-to-one, so k = 1, and the inverse is

Xi=U,, Xo=U1+U;, Xz=U1+Uz+Us, Xy=U1+Us+Us+Us.

The Jacobian of the inverse is

[ Y G Wy
— e = O
— -0 O
= O oo
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Since the matrix is triangular, the determinant is equal to the product of the diagonal
elements. Thus, from (4.6.7) we obtain

fului,. .., ug) = 24e~ 1~ (itua)—(uituatus)—(urtuztustus)

— 246—411.1 —3uz—2u3—u4

on B. From this the marginal pdfs of Uy, Us,Us, and U, can be calculated. It turns
out that fy(u;) = (5 —1)e~ =% 0 < u;; that is, U; ~ exponential(1/(5 — )). From
Theorem 4.6.11 we see that U, Uz, Us, and U, are mutually independent random
variables. I

The model in Example 4.6.13 can arise in the following way. Suppose Y1, Ys, Y3, and
Y, are mutually independent random variables, each with an exponential(1) distribu-
tion. Define X; = min(Y3, Y2, Y3, Ys), X2 = second smallest value of (Y1,Ys,Ys, Yy),
X3 = second largest value of (Y1,Y5,Ys,Ys), and Xy = max(Y3,Y2,Ys,Ys). These
variables will be called order statistics in Section 5.5. There we will see that the joint
pdf of (X1, X2, X3, X4) is the pdf given in Example 4.6.13. Now the variables U,,
Us, and U, defined in the example are called the spacings between the order statis-
tics. The example showed that, for these exponential random variables (Y3,...,Y}),
the spacings between the order statistics are mutually independent and also have
exponential distributions.

4.7 Inequalities

In Section 3.6 we saw inequalities that were derived using probabilistic arguments. In
this section we will see inequalities that apply to probabilities and expectations but
are based on arguments that use properties of functions and numbers.

4.7.1 Numerical Inequalities

The inequalities in this subsection, although often stated in terms of expectations,
rely mainly on properties of numbers. In fact, they are all based on the following
simple lemma.

Lemma 4.7.1 Let a and b be any positive numbers, and let p and q be any positive
numbers (necessarily greater than 1) satisfying

(4.7.1) LN
p q
Then
1 1
(4.7.2) —a? +-b9>ab
Y4 q

with equality if and only if a? = b7.
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Proof: Fix b, and consider the function
1 1
a) = —-a? + =b% — ab.
9(a) > 7
To minimize g(a), differentiate and set equal to 0:
%9(0) =0=>a? 1-b=0=b=aP L.

A check of the second derivative will establish that this is indeed a minimum. The
value of the function at the minimum is

1 1, _ _ 1 1 (p — 1)g = p follows
2P S (qp-1NT _pap-1l —Zp .~ op_ap [\P q=p
pa + q (a ) aa pa + qa @ ( from (4.7.1) )
=0. (again from (4.7.1))
Hence the minimum is 0 and (4.7.2) is established. Since the minimum is unique

why?), equality holds only if aP~! = b, which is equivalent to a? = b9, again from
y &
(4.7.1). O

The first of our expectation inequalities, one of the most used and most important,
follows easily from the lemma.

Theorem 4.7.2 (Hoélder’s Inequality) Let X and Y be any two random variables,
and let p and q satisfy (4.7.1). Then

(4.7.3) [EXY| < E|XY]| < (E|X|P)/? (E|Y|9)7.

Proof: The first inequality follows from — |XY| < XY < [XY| and Theorem 2.2.5.
To prove the second inequality, define

XLy o Y]

T Expy ° BT

Applying Lemma 4.7.1, we get
LIXP ey
pEIXP " qEIYI" ™ (£ xP)? (ElY|)T

Now take expectations of both sides. The expectation of the left-hand side is 1, and
rearrangement gives (4.7.3). |

Perhaps the most famous special case of Holder’s Inequality is that for which p =
g = 2. This is called the Cauchy-Schwarz Inequality.

Theorem 4.7.3 (Cauchy—Schwarz Inequality) For any two random variables X
andY,

(4.7.4) [EXY| < E|XY]| < (E|X|)V2(E|Y |]2)V2.
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Example 4.7.4 (Covariance inequality) If X and Y have means ux and uy and
variances 0% and o2, respectively, we can apply the Cauchy-Schwarz Inequality to
get

1/2 1/2

E|(X — ux)(Y — py)| < {E(X — ux)*}"* {E(Y ~ py)?}
Squaring both sides and using statistical notation, we have
(Cov(X,Y))? < okol.

Recalling the definition of the correlation coefficient, p, we have proved that 0 <
p? < 1. Furthermore, the condition for equality in Lemma 4.7.1 still carries over, and
equality is attained here only if X — ux = ¢(Y — uy), for some constant c¢. That is,
the correlation is +1 if and only if X and Y are linearly related. Compare the ease
of this proof to the one used in Theorem 4.5.7, before we had the Cauchy-Schwarz
Inequality. I

Some other special cases of Holder’s Inequality are often useful. If we set Y =1 in
(4.7.3), we get

(4.7.5) E|IX| < {E(XIP)}?, 1<p<o.

For 1 < r < p, if we replace | X| by |X|™ in (4.7.5), we obtain
BIX|" < {B(IXP)}7.

Now write s = pr (note that s > r) and rearrange terms to get

(4.7.6) (BIXIY/ < (BIX)P}®, 1<r<s<oo,

which is known as Liapounov’s Inequality.
Our next named inequality is similar in spirit to Holder’s Inequality and, in fact,
follows from it.

Theorem 4.7.5 (Minkowski’s Inequality) Let X and Y be any two random vari-
ables. Then for 1 < p < oo,

(4.7.7) [EIX +YP)'/? < [BIXP]Y? + [E|Y[P]/2.
Proof: Write

EX+YP=E (|x +Y)IX + Y|”_1)
(4.73) <E(IXIX+YP) +E(IY]IX +YP),

where we have used the fact that | X + Y| < |X| + |Y| (the triangle inequality; see
Exercise 4.64). Now apply Holder’s Inequality to each expectation on the right-hand
side of (4.7.8) to get

E(X +Y[?) < [E(X[")]/?[E|X + Y|2®~1]/2

+ [E(YP)M? [E1X + Y[1¢~D]9,
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—1)\11/ .
where g satisfies 1/p+1/q = 1. Now divide through by [E(|X + y|9=1y] ?_ Noting

that g(p — 1) =p and 1 — 1/q = 1/p, we obtain (4.7.7). |

The preceding theorems also apply to numerical sums where there is no explicit
reference to an expectation. For example, for numbers a;, b;,i = 1,...,n, the inequal-
ity

n n 1/p n 1/q 1 1
(47’9) Z laibil < (Zaf> (Zbg) s ; + 'q‘ =1,
i=1 i=1 =1

is a version of Holder’s Inequality. To establish (4.7.9) we can formally set up an
expectation with respect to random variables taking values a1,...,a, and by,...,b,.
(This is done in Example 4.7.8.)

An important special case of (4.7.9) occurs when b; = 1,p = ¢ = 2. We then have

1 n 2 n
- (Zlai|> <Y al
i=1 i=1

4.7.2 Functional Inequalities

The inequalities in this section rely on properties of real-valued functions rather than
on any statistical properties. In many cases, however, they prove to be very useful.
One of the most useful is Jensen’s Inequality, which applies to convex functions.

Definition 4.7.6 A function g(z) is convezif g(Az+(1—N)y) < Ag(z)+ (1-N)g(y),
for all z and y, and 0 < A < 1. The function g(z) is concave if —g(z) is convex.

Informally, we can think of convex functions as functions that “hold water” —that
is, they are bowl-shaped (g(x) = z? is convex), while concave functions “spill water”
(9(z) = log z is concave). More formally, convex functions lie below lines connecting
any two points (see Figure 4.7.1). As X goes from 0 to 1, Ag(z;) + (1 — A)g(z2)

8(x)

Figure 4.7.1. Convez function and tangent lines at 1 and z2
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I(x)=a+bx

Figure 4.7.2. Graphical illustration of Jensen’s Inequality

defines a line connecting g(z1) and g(z3). This line lies above g(z) if g(z) is convex.
Furthermore, a convex function lies above all of its tangent lines (also shown in Figure
4.7.1), and that fact is the basis of Jensen’s Inequality.

Theorem 4.7.7 (Jensen’s Inequality) For any random variable X, if g(z) is a
convex function, then

Eg(X) > g(EX).

Equality holds if and only if, for every line a + bz that is tangent to g(z) atz = EX,
P(g(X)=a+bX)=1.

Proof: To establish the inequality, let I(z) be a tangent line to g(z) at the point
g(EX). (Recall that EX is a constant.) Write I(z) = a + bz for some a and b. The
situation is illustrated in Figure 4.7.2.

Now, by the convexity of g we have g(z) > a + bz. Since expectations preserve
inequalities,

Eg(X) > E(a + bX)

_ linearity of expectation,

=a+EX ( Theorem 2.2.5 )
= |(EX) (definition of I(z))
= g(EX), (1 is tangent at EX)

as was to be shown.
If g(z) is linear, equality follows from properties of expectations (Theorem 2.2.5).
For the “only if” part see Exercise 4.62. O

One immediate application of Jensen’s Inequality shows that EX2 > (EX)?2, since
g(z) = z? is convex. Also, if z is positive, then 1/z is convex; hence E(1/X) > 1/EX,
another useful application.

To check convexity of a twice differentiable function is quite easy. The function g(z)
is convex if g”’(x) > 0, for all z, and g(z) is concave if g”(z) < 0, for all z. Jensen’s
Inequality applies to concave functions as well. If g is concave, then Eg(X) < g(EX).



Section 4.7 INEQUALITIES 191

Example 4.7.8 (An inequality for means) Jensen’s Inequality can be used to
prove an inequality between three different kinds of means. If a,,.. ., an are positive
numbers, define

1 . .
apn = —=(a1 +az+--+an), (arithmetic mean)
n
ag = [a1a2+ -+ an]l/ ", (geometric mean)
1
an = T ] - (harmonic mean)
n (a; + az + + a_)

An inequality relating these means is
ag < ag < aa.

To apply Jensen’s Inequality, let X be a random variable with range a,,...,a, and
P(X =a;) =1/n,i=1,...,n. Since logz is a concave function, Jensen’s Inequality
shows that E(log X) < log(EX); hence,

n 1 n
logag = %Zlogai = E(log X) < log(EX) = log (; Zai) = log aa,
i=1

=1
so ag < as. Now again use the fact that log x is concave to get
1 1A 1 1 1
log — = =y — | =1 —-> log— ) =— .
og = log (n;m) ogEX _E(ogx) E(log X)

Since E(log X) = log ag, it then follows that log(1/ay) > log(1/ag), or ag > au- ||

The next inequality merely exploits the definition of covariance, but sometimes
proves to be useful. If X is a random variable with finite mean p and g(z) is a
nondecreasing function, then

E(g(X)(X —u)) 20,
since
E(g(X)(X — u))
=E (9(X)(X — )} (—o0,0)(X — 1)) + E (¢(X)(X — )] [0,00) (X — 1))
> E (g(u)(X — p)(—o0,0)(X — 1))

+E (g(u)(X — ) (0,000 (X — 1)) (since g is nondecreasing)
= g(WE(X — p)
=0.

A generalization of this argument can be used to establish the following inequality
(see Exercise 4.65).
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Theorem 4.7.9 (Covariance Inequality) Let X be any random variable and g(zx)
and h(z) any functions such that Eg(X), ER(X), and E(g(X)h(X)) ezist.

a. If g(z) is a nondecreasing function and h(zx) is a nonincreasing function, then
E (¢(X)h(X)) < (Eg(X)) (Er(X)).

b. If g(z) and h(x) are either both nondecreasing or both nonincreasing, then
E (g(X)h(X)) > (Eg(X)) (EA(X)).

The intuition behind the inequality is easy. In case (a) there is negative correlation
between g and h, while in case (b) there is positive correlation. The inequalities merely
reflect this fact. The usefulness of the Covariance Inequality is that it allows us to
bound an expectation without using higher-order moments.

4.8 Exercises

4.1 A random point (X,Y) is distributed uniformly on the square with vertices (1,1),
(1,-1), (-1,1), and (—1,—1). That is, the joint pdf is f(z,y) = § on the square.
Determine the probabilities of the following events.

(8) X2+Y%?<1
(b)y 2X-Y >0
(¢) | X+Y|<2

4.2 Prove the following properties of bivariate expectations (the bivariate analog to The-
orem 2.2.5). For random variables X and Y, functions ¢1(z,y) and g2(z,y), and con-
stants a, b, and c:

(2) E(ag:(X,Y) + bg2(X,Y) + ¢) = aE(g:1(X,Y)) + bE(g2(X,Y)) + c.
(b) If g1(z,y) > 0, then E(g:1(X,Y)) > 0.

(C) If g1(2:, y) > 92('7:! y)a then E(gl(X1 Y)) b E(g2(X’ Y))

(d) If a < gi(z,y) < b, then a < E(g1(X,Y)) <b.

4.3 Using Definition 4.1.1, show that the random vector (X,Y) defined at the end of
Example 4.1.5 has the pmf given in that example.

4.4 A pdf is defined by

_JC(z+2y) ifO0<y<landO<z<2
flay) = {0 otherwise.

(a) Find the value of C.
(b) Find the marginal distribution of X.
(c) Find the joint cdf of X and Y.
(d) Find the pdf of the random variable Z = 9/(X + 1)2.
4.5 (a) Find P(X > V) if X and Y are jointly distributed with pdf

flzy)=z+y, 0<z<l, 0<y<lL
(b) Find P(X? <Y < X) if X and Y are jointly distributed with pdf

flz,y)=2z, 0<z<1, 0<Ly<l
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

A and B agree to meet at a certain place between 1 PM and 2 PM. Suppose they

arrive at the meeting place independently and randomly during the hour. Find the

distribution of the length of time that A waits for B. (If B arrives before A, define A’s

waiting time as 0.)

A woman leaves for work between 8 AM and 8:30 AM and takes between 40 and 50

minutes to get there. Let the random variable X denote her time of departure, and

the random variable Y the travel time. Assuming that these variables are independent
and uniformly distributed, find the probability that the woman arrives at work before

9 AM.

Referring to Miscellanea 4.9.1.

(a) Show that P(X = m|M = m) = P(X = 2m|M = m) = 1/2, and verify the
expressions for P(M = z|X = z) and P(M = z/2|X = z).

(b) Verify that one should trade only if 7(x/2) < 2n(z), and if 7 is the exponential())
density, show that it is optimal to trade if z < 2log2/A.

(c) For the classical approach, show that P(Y = 2z|X =m) =1 and P(Y = z/2|X =
2m) = 1 and that your expected winning if you trade or keep your envelope is
E(Y)=3m/2.

Prove that if the joint cdf of X and Y satisfies

Fxy(z,y) = Fx(z)Fy (y),
then for any pair of intervals (a,b), and (c, d),
Pa<X<bec<Y<d)=Pla< X <b)P(c<Y <d).

The random pair (X,Y) has the distribution

D ¢
1 23
2 | 13§ %
Y 3 i 01
4|1 030

(a) Show that X and Y are dependent.
(b) Give a probability table for random variables U and V that have the same marginals
as X and Y but are indepéendent.

Let U = the number of trials needed to get the first head and V = the number of trials
needed to get two heads in repeated tosses of a fair coin. Are U and V independent
random variables?

If a stick is broken at random into three pieces, what is the probability that the pieces
can be put together in a triangle? (See Gardner 1961 for a complete discussion of this
problem.)

Let X and Y be random variables with finite means.

(a) Show that
minE (Y - g(X))* = E(Y - E(Y]X))*,
9(z
where g(zx) ranges over all functions. (E(Y|X) is sometimes called the regression

of Y on X, the “best” predictor of Y conditional on X.)
(b) Show that equation (2.2.4) can be derived as a special case of part (a).
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4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21
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Suppose X and Y are independent n(0, 1) random variables.
(a) Find P(X?+Y2 < 1).
(b) Find P(X? < 1), after verifying that X2 is distributed x2.

Let X ~ Poisson(8), Y ~ Poisson()), independent. It was shown in Theorem 4.3.2 that
the distribution of X + Y is Poisson(@ + X). Show that the distribution of X|X + Y is
binomial with success probability 8/(6 4+ A). What is the distribution of Y|X + Y?

Let X and Y be independent random variables with the same geometric distribution.

(a) Show that U and V are independent, where U and V are defined by
U=min(X,Y) and V=X-Y.

(b) Find the distribution of Z = X/(X +Y), where we define Z =0if X +Y = 0.
(c) Find the joint pdf of X and X +7Y.
Let X be an exponential(1) random variable, and define Y to be the integer part of
X +1, that is
Y=i+1 ifandonlyif i< X<i+1, i=0,12,....
(a) Find the distribution of Y. What well-known distribution does Y have?
(b) Find the conditional distribution of X — 4 given Y > 5.
Given that g(z) > 0 has the property that

/Omgmdz:l,

show that
»(y777)
flz,y) = —m——y—z—, z,y>0,
is a pdf.

(a) Let X; and X2 be independent n(0,1) random variables. Find the pdf of (X, —
X2)?/2.

(b) If X;,i = 1,2, are independent gamma(a;, 1) random variables, find the marginal
distributions of X1 /(X1 + X2) and X2/(X1 + X2).

X; and X7 are independent n(0, 0?) random variables.

(a) Find the joint distribution of Y1 and Y2, where

X1
v

(b) Show that Y; and Y> are independent, and interpret this result geometrically.

Yi=X+X? and Yz2=

A point is generated at random in the plane according to the following polar scheme. A
radius R is chosen, where the distribution of R? is x* with 2 degrees of freedom. Inde-
pendently, an angle 6 is chosen, where § ~ uniform(0, 27). Find the joint distribution
of X = Rcosf and Y = Rsin8. .
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4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

Let (X,Y) be a bivariate random vector with joint pdf f(z,y). Let U = aX + b and
V =cY +d, where a, b, ¢, and d are fixed constants with a > 0 and ¢ > 0. Show that
the joint pdf of (U, V) is

u—>b v——d)
a ' ¢ /°

fov(u,v) = if (

For X and Y as in Example 4.3.3, find the distribution of XY by making the trans-
formations given in (a) and (b) and integrating out V.

(a) U=XY, V=Y

(b) U=XY,V=X/Y

Let X and Y be independent random variables with X ~ gamma(r,1) and ¥ ~

gamma(s, 1). Show that Z; = X +Y and Z; = X/(X +Y) are independent, and find
the distribution of each. (Z; is gamma and Z; is beta.)

Use the techniques of Section 4.3 to derive the joint distribution of (X,Y) from the
joint distribution of (X, Z) in Examples 4.5.8 and 4.5.9.

X and Y are independent random variables with X ~ exponential()) and Y ~ expo-
nential(y). It is impossible to obtain direct observations of X and Y. Instead, we
observe the random variables Z and W, where

. 1 fZ=X
Z = min{X,Y} and W= {0 fZ=Y
(This is a situation that arises, in particular, in medical experiments. The X and Y
variables are censored.)
(a) Find the joint distribution of Z and W.
(b) Prove that Z and W are independent. (Hint: Show that P(Z < 2|W = 1) =
P(Z<2z2)fori=0o0rl.)

Let X ~ n(u,0?) and let Y ~ n(v,0?). Suppose X and Y are independent. Define
U=X+Yand V = X — Y. Show that U and V are independent normal random
variables. Find the distribution of each of them.

Let X and Y be independent standard normal random variables.

(a) Show that X/(X +Y) has a Cauchy distribution.

(b) Find the distribution of X/|Y|.

(c) Is the answer to part (b) surprising? Can you formulate a general theorem?

Jones (1999) looked at the distribution of functions of X and Y when X = Rcosf and

Y = Rsin#, where § ~ U(0,27) and R is a positive random variable. Here are two of

the many situations that he considered.

(a) Show that X/Y has a Cauchy distribution.

(b) Show that the distribution of (2XY)/v/ X2 4+ Y?2 is the same as the distribution
of X. Specialize this result to one about n(0, o?) random variables.

Suppose the distribution of Y, conditional on X = z, is n(z, z*) and that the marginal
distribution of X is uniform(0,1).

(a) Find EY, VarY, and Cov(X,Y).
(b) Prove that Y/X and X are independent.
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4.31 Suppose that the random variable Y has a binomial distribution with » trials and
success probability X, where n is a given constant and X is a uniform(0, 1) random
variable.

(2) Find EY and VarY.
(b) Find the joint distribution of X and Y.
(c) Find the marginal distribution of Y.

4.32 (a) For the hierarchical model
Y|A ~ Poisson(A) and A ~ gamma(a,f3)

find the marginal distribution, mean, and variance of Y. Show that the marginal
distribution of Y is a negative binomial if « is an integer.
(b) Show that the three-stage model

Y|N ~ binomial(N,p), N|A ~ Poisson(A), and A ~ gamma(a, )

leads to the same marginal (unconditional) distribution of Y.

4.33 (Alternative derivation of the negative binomial distribution) Solomon (1983) details
the following biological model. Suppose that each of a random number, N, of insects
lays X; eggs, where the X;s are independent, identically distributed random variables.
The total number of eggs laid is H = X; + - -+ + X~. What is the distribution of H?
It is common to assume that N is Poisson()). Furthermore, if we assume that each X;
has the logarithmic series distribution (see Exercise 3.14) with success probability p,
we have the hierarchical model

-1 (1-p)

HIN =Xyt Xy POG=0) = o rsss

N ~ Poisson(]).

Show that the marginal distribution of H is negative binomial(r,p), where r =
—X/log(p). (It is easiest to calculate and identify the mgf of H using Theorems 4.4.3
and 4.6.7. Stuart and Ord 1987, Section 5.21, also mention this derivation of the log-
arithmic series distribution. They refer to H as a randomly stopped sum.)
4.34 (a) For the hierarchy in Example 4.4.6, show that the marginal distribution of X is
given by the beta-binomial distribution,

v _(n\T{a+B) I'(z+a)(n—z4p)
P(X=2)= (z) INGIINEE)] MNa+B+n)

(b) A variation on the hierarchical model in part (a) is
X|P ~ negative binomial(r, P) and P ~ beta(a,3).

Find the marginal pmf of X and its mean and variance. (This distribution is the
beta-Pascal.)
4.35 (a) For the hierarchy in Example 4.4.6, show that the variance of X can be written

Var X = nEP(1 —EP) +n(n— 1) Var P.

(The first term reflects binomial variation with success probability EP, and the
second term is often called “extra-binomial” variation, showing how the hierarchi-
cal model has a variance that is larger than the binomial alone.)
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4.36

4.37

(b) For the hierarchy in Exercise 4.32, show that the variance of Y’ can be written
‘ 1
VarY = EA+ VarA =u+ Z/f,

where u = EA. Identify the “extra-Poisson” variation induced by the hierarchy.
One generalization of the Bernoulli trials hierarchy in Example 4.4.6 is to allow the suc-
cess probability to vary from trial to trial, keeping the trials independent. A standard
model for this situation is

Xi|P; ~ Bernoulli(P;), i=1,...,n,
P; ~ beta(a, 8).

This model might be appropriate, for example, if we are measuring the success of a
drug on n patients and, because the patients are different, we are reluctant to assume
that the success probabilities are constant. (This can be thought of as an empirical
Bayes model; see Miscellanea 7.5.6.)

A random variable of interest is Y = ) | X, the total number of successes.

(a) Show that EY = na/(a+ 8).

(b) Show that VarY = nafB/(a + B)?, and hence Y has the same mean and variance
as a binomial(n, ;_‘:‘_—ﬁ) random variable. What is the distribution of Y'?

(c) Suppose now that the model is

X,"Pi ~binomia.l(n,-,P;), 1= 1,...,’0,
P; ~ beta(a, 8).

Show that for Y = ¢ | X;, EY = 525577 n; and VarY = Y5 VarX;,
where

af(a+ B+ n)
(a+B8)2*(a+B+1)

A generalization of the hierarchy in Exercise 4.34 is described by D. G. Morrison
(1978), who gives a model for forced binary choices. A forced binary choice occurs
when a person is forced to choose between two alternatives, as in a taste test. It
may be that a person cannot actually discriminate between the two choices (can you
tell Coke from Pepsi?), but the setup of the experiment is such that a choice must be
made. Therefore, there is a confounding between discriminating correctly and guessing
correctly. Morrison modeled this by defining the following parameters:

VarX,' =1

p = probability that a person can actually discriminate,

¢ = probability that a person discriminates correctly.
Then

1
(1+p), :<ec<l,

1 1
= —_ 1__ —_ —
c p+2( ) 3 3

where (1 — p) is the probability that a person guesses correctly. We now run the

experiment and observe X1,..., X, ~ Bernoulli(c), so

P(EX; = k|c) = (:) F(1 = ok,
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However, it is probably the case that p is not constant from person to person, so p is
allowed to vary according to a beta distribution,

P ~ beta(a, b).
(a) Show that the distribution of £.X; is beta-binomial.

(b) Find the mean and variance of X.X;.

4.38 (The gamma as a mizture of exponentials) Gleser (1989) shows that, in certain cases,
the gamma distribution can be written as a scale mixture of exponentials, an identity
suggested by different analyses of the same data. Let f(z) be a gamma(r, \) pdf.

(a) Show that if » < 1, then f(z) can be written
1
f(z) =/ —e_”/"p,\(u) dv,
0 v
where

1 V-r—l

W)= ara o a0V S

(Hint: Make a change of variable from v to u, where u = z/v — /)
(b) Show that px(v) is a pdf, for r < 1, by showing that

'/:\p)‘(u) dv = 1.

(c) Show that the restriction » < 1 is necessary for the representation in part (a)
to be valid; that is, there is no such representation if » > 1. (Hint: Suppose
f(z) can be written f(z) = f:(e_’/”/u)q,\(u)du for some pdf gx(v). Show that
% log (f(z)) > 0 but £ log (fom(e"/"/v)q,\ (u)dv) < 0, a contradiction.)
4.39 Let (Xi,...,Xn) have a multinomial distribution with m trials and cell probabilities
D1,...,Pn (see Definition 4.6.2). Show that, for every 7 and j,

i
X; ~ binomial (m, p;)

and that Cov(X;, X;) = —mpip;.
4.40 A generalization of the beta distribution is the Dirichlet distribution. In its bivariate
version, (X,Y’) have pdf

f(x,y)=C:c“‘1yb_l(1—a:—y)c_l, 0<z<l 0<y<]l O<y<l-z<],

where a > 0, b > 0, and ¢ > 0 are constants.

— I(a+b+c
(a) Show that C = —_(-—Lr(a)]f‘(b)]?(c)'

(b) Show that, marginally, both X and Y are beta.
(c) Find the conditional distribution of Y| X = z, and show that.Y/(1—z) is beta(b, c).

(d) Show that E(XY) = rrpr%rarsrey» and find their covariance.
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4.41
4.42

4.43

4.44

4.45

4.46

Show that any random variable is uncorrelated with a constant.
Let X and Y be independent random variables with means px, uy and variances 0%,
0% . Find an expression for the correlation of XY and Y in terms of these means and

variances.

Let X1, X3, and X3 be uncorrelated random variables, each with mean u and variance
o2. Find, in terms of u and o2, Cov(X: + X2, X2 + X3) and Cov(X1 + X2, X1 — X2).
Prove the following generalization of Theorem 4.5.6: For any random vector

(X1,..., Xn),
Var (in) =) Var Xi+2 ) Cov(Xi,X;).
i=1 i=1 1<i<j<n

Show that if (X,Y) ~ bivariate normal(ux, uy, 0%, 0%, p), then the following are true.

(a) The marginal distribution of X is n(ux,o%) and the marginal distribution of Y
is n(ﬂyﬁ 0’?’)
(b) The conditional distribution of Y given X = z is

n(uy + plov [ox)(z = px), 0% (1 - p%)).
(c) For any constants a and b, the distribution of aX + bY is
n(apx + buy,d’ck + b’ol + 2abpoxoy).

(A derivation of the bivariate normal distribution) Let Z; and Z2 be independent
n(0, 1) random variables, and define new random variables X and Y by

X =axZ1+bxZ2+cx and Y =ayZi+byZs+cy,

where ax,bx, cx,ay,by, and cy are constants.
(a) Show that

EX =cx, VarX =ak+b%,
EY =cy, VarY:agz-l-bgr,
Cov(X,Y) =axay +bxby.

(b) If we define the constants ax,bx,cx,ay, by, and cy by

1_

bx=‘/TpUx, cx = ux,

1+ 1-—

ay = 2pdy, by = —4/ 2pa'y, cy = Uy,

where px, uy,0%,0%, and p are constants, —1 < p < 1, then show that
EX =px, VarX =03(,

EY = uy, VarY =o?,
pXY = p.

(c) Show that (X,Y) has the bivariate normal pdf with parameters ux, uy,o%, 0%,
and p.



200 MULTIPLE RANDOM VARIABLES Section 4.8

(d) If we start with bivariate normal pa.raméters X, LY, 0%,0%, and p, we can define
constants ax, bx,cx,ay,by, and cy as the solutions to the equations

2

px =cx, ox =a% + bk,
2

uy =cy, oy =dal +b%,

poxoy = axay + bxby.

Show that the solution given in part (b) is not unique by exhibiting another
solution to these equations. How many solutions are there?

4.47 (Marginal normality does not imply bivariate normality.) Let X and Y be indepen-
dent n(0,1) random variables, and define a new random variable Z by

S [X XY>0
“{-x ifXY <o,

(a) Show that Z has a normal distribution.

(b) Show that the joint distribution of Z and Y is not bivariate normal. (Hint: Show
that Z and Y always have the same sign.)

4.48 Gelman and Meng (1991) give an example of a bivariate family of distributions that
are not bivariate normal but have normal conditionals. Define the joint pdf of (X,Y’)
as

flz,y) o exp {—% [A:z:zy2 +2?+4y?* - 2Bzy - 2Cz — 2Dy] } ,

where A, B,C, D are constants.

a) Show that the distribution of X|Y = y is normal with mean 2%F€. and variance
Ay +1
A—yé—ﬁ. Derive a corresponding result for the distribution of Y|X = z.
b) A most interesting configurationis A =1,B = 0,C = D = 8. Show that this joint
( g config i
distribution is bimodal.

4.49 Behboodian (1990) illustrates how to construct bivariate random variables that are
uncorrelated but dependent. Suppose that fi, f2, g1, g2 are univariate densities with
means pi1, u2, £1, €2, respectively, and the bivariate random variable (X, Y) has density

(X,Y) ~afi(z)g1(y) + (1 — a) f2(z)g2(y),

where 0 < a < 1 is known.

(a) Show that the marginal distributions are given by fx(z) = afi(z) + (1 — a) f2(z)
and fy(z) = ag1(y) + (1 — a)g2(y)-

(b) Show that X and Y are independent if and only if [f1(z) — f2(z)][91 (y¥) —g2(y)] = 0.

(c) Show that Cov(X,Y) = a(1—a)[u1—p2)[€1—£2], and thus explain how to construct
dependent uncorrelated random variables.

(d) Letting fi, f2, 91,92 be binomial pmfs, give examples of combinations of parame-
ters that lead to independent (X,Y’) pairs, correlated (X,Y) pairs, and uncorre-
lated but dependent (X,Y’) pairs.
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4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

If (X,Y) has the bivariate normal pdf

f(z,y) = (1 _lpz)l/z €xp (2(1:1p2) (z* — 2pzy +y2)),

show that Corr(X,Y) = p and Corr(X 2 Y?) = p?. (Conditional expectations will
simplify calculations.)

Let X, Y, and Z be independent uniform(0, 1) random variables.

(a) Find P(X/Y <t) and P(XY < t). (Pictures will help.)

(b) Find P(XY/Z < t).

Bullets are fired at the origin of an (z,y) coordinate system, and the point hit, say
(X,Y), is a random variable. The variables X and Y are taken to be independent n(0, 1)
random variables. If two bullets are fired independently, what is the distribution of the
distance between them? )

Let A, B, and C be independent random variables, uniformly distributed on (0, 1).
What is the probability that Az?+ Bz +C has real roots? (Hint: If X ~ uniform(0, 1),
then — log X ~ exponential. The sum of two independent exponentials is gamma.)
Find the pdf of [T}, X;, where the X;s are independent uniform(0, 1) random variables.
(Hint: Try to calculate the cdf, and remember the relationship between uniforms and
exponentials.)

A parallel system is one that functions as long as at least one component of it functions.
A particular parallel system is composed of three independent components, each of
which has a lifelength with an exponential()) distribution. The lifetime of the system
is the maximum of the individual lifelengths. What is the distribution of the lifetime
of the system?

A large number, N = mk, of people are subject to a blood test. This can be adminis-
tered in two ways.

(i) Each person can be tested separately. In this case N tests are required.

(ii) The blood samples of k people can be pooled and analyzed together. If the test
is negative, this one test suffices for k people. If the test is positive, each of the k
persons must be tested separately, and, in all, k + 1 tests are required for the k
people.

Assume that the probability, p, that the test is positive is the same for all people and
that the test results for different people are statistically independent.

(a) What is the probability that the test for a pooled sample of k people will be
positive?

(b) Let X = number of blood tests necessary under plan (ii). Find EX.

(c) In terms of minimizing the expected number of blood tests to be performed on
the N people, which plan [(i) or (ii)] would be preferred if it is known that p is
close to 0? Justify your answer using the expression derived in part (b).

Refer to Miscellanea 4.9.2.
(a) Show that A, is the arithmetic mean, A_, is the harmonic mean, and Ay =

limr_,o A, is the geometric mean.

(b) The arithmetic-geometric-harmonic mean inequality will follow if it can be estab-
lished that A, is a nondecreasing function of r over the range —oo < r < oo.
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4.59

4.60

4.61
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(i) Verify that if log A, is nondecreasing in r, then it will follow that A, is non-
decreasing in r.

(ii) Show that
d 1 Jry =z loga; 12 .
E;lOgAr—;—z'{‘——fi‘xr—‘——lOg(;; z,-)}.

' i

iii) Define a; = zj .zj and write the quantity in braces as
- y

log(n) — Z ai log(1/as),

where Y a; = 1. Now prove that this quantity is nonnegative, establishing the
monotonicity of Ar and the arithmetic-geometric-harmonic mean inequality
as a special case.

The quantity Y. a;log(1/a.) is called entropy, sometimes considered an absolute mea-
sure of uncertainty (see Bernardo and Smith 1994, Section 2.7). The result of part (iii)
states that the maximum entropy is attained when all probabilities are the same (ran-
domness).

(Hint: To prove the inequality note that the a; are a probability distribution, and we

can write
1 1
Elog (E) = Zai log (Z) ,

and Jensen’s Inequality shows that Elog (1) < log (E1).)

For any two random variables X and Y with finite variances, prove that

(a) Cov(X,Y) = Cov(X,E(Y|X)).

(b) X and Y — E(Y|X) are uncorrelated.

(¢) Var(Y — E(Y|X)) = E(Var(Y|X)).

For any three random variables X, Y, and Z with finite variances, prove (in the sprit
of Theorem 4.4.7) the covariance identity

Cov(X,Y) = E(Cov(X, Y|2)) + Cov(E(X|2),E(Y|2)),

where Cov(X,Y|Z) is the covariance of X and Y under the pdf f(z, y|2).

Referring to Miscellanea 4.9.3, find the conditional distribution of Y given that Y = X

for each of the three interpretations given for the condition Y = X.

DeGroot (1986) gives the following example of the Borel Paradox (Miscellanea 4.9.3):

Suppose that X; and X, are iid exponential(1) random variables, and define Z =

(X2 — 1)/ X1. The probability-zero sets {Z = 0} and {X2 = 1} seem to be giving us

the same information but lead to different conditional distributions.

(a) Find the distribution of X1|Z = 0, and compare it to the distribution of X;[X> =
1.

(b) For small € > 0 and z1 > 0,z2 > 0, consider the sets

B; = {(z1,22) : —e < Za— 1

- <e} and By={(x1,22):1—-€<z2<1l+¢€}
1

Draw these sets and support the argument that B, is informative about X; but
Bz is not.
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(c) Calculate P(X; < z|B1) and P(X: < z|B), and show that their limits (as ¢ — 0)
agree with part (a).
(Communicated by L. Mark Berliner, Ohio State University.)

4.62 Finish the proof of the equality in Jensen’s Inequality (Theorem 4.7.7). Let g(z) be a
convex function. Suppose a+ bz is a line tangent to g(z) at z = E X, and g(z) > a+bz
except at z = EX. Then Eg(X) > g(E X) unless P(X =EX) = 1.

4.63 A random variable X is defined by Z = log X, where EZ = 0. Is EX greater than, less
than, or equal to 17

4.84 This exercise involves a well-known inequality known as the triangle inequality (a
special case of Minkowski’s Inequality).

(a) Prove (without using Minkowski’s Inequality) that for any numbers a and b
la + 6| < |a| + |b].

(b) Use part (a) to establish that for any random variables X and Y with finite
expectations,

E|X +Y| < E|X|+E|Y|.

4.85 Prove the Covariance Inequality by generalizing the argument given in the text imme-
diately preceding the inequality. :

4.9 Miscellanea

4.9.1 The Exchange Paradoz

The “Ezxchange Paradoz” (Christensen and Utts 1992) has generated a lengthy
dialog among statisticians. The problem (or the paradox) goes as follows:

A swami puts m dollars in one envelope and 2m dollars in another. You and
your opponent each get one of the envelopes (at random). You open your
envelope and find z dollars, and then the swami asks you if you want to
trade envelopes. You reason that if you switch, you will get either /2 or 2z
dollars, each with probability 1/2. This makes the expected value of a switch
equal to (1/2)(z/2) + (1/2)(2z) = 5z/4, which is greater than the z dollars
that you hold in your hand. So you offer to trade.

The paradox is that your opponent has done the same calculation. How can
the trade be advantageous for both of you?

(i) Christensen and Utts say, “The conclusion that trading envelopes is always
optimal is based on the assumption that there is no information obtained by
observing the contents of the envelope,” and they offer the following resolution.

Let M ~ m(m) be the pdf for the amount of money placed in the first envelope,
and let X be the amount of money in your envelope. Then P(X = m|M =
m) = P(X = 2m|M = m) = 1/2, and hence

m(z/2)

_ o m(x)
PUM ==X =2) = o3 2@
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It then follows that the expected winning from a trade is

w(z) m(z/2) =z
@+ 1@/ T @) + (22 2’
and thus you should trade only if m(z/2) < 27(z). If 7 is the exponential())
density, it is optimal to trade if z < 2log2/A.

(ii) A more classical approach does not assume that there is a pdf on the amount
of money placed in the first envelope. Christensen and Utts also offer an ex-
planation here, noting that the paradox occurs if one incorrectly assumes that
P(Y = y|X = z) = 1/2 for all values of X and Y, where X is the amount
in your envelope and Y is the amount in your opponent’s envelope. They ar-
gue that the correct conditional distributions are P(Y = 2z|X = m) = 1 and
P(Y = z/2|X = 2m) = 1 and that your expected winning if you trade is
E(Y) = 3m/2, which is the same as your expected winning if you keep your
envelope.

This paradox is often accompanied with arguments for or against the Bayesian
methodology of inference (see Chapter 7), but these arguments are somewhat tan-
gential to the underlying probability calculations. For comments, criticisms, and
other analyses see the letters to the editor from Binder (1993), Ridgeway (1993)
(which contains a solution by Marilyn vos Savant), Ross (1994), and Blachman
(1996) and the accompanying responses from Christensen and Utts.

4.9.2 More on the Arithmetic-Geometric-Harmonic Mean Inequality

The arithmetic-geometric-harmonic mean inequality is a special case of a general
result about power means, which are defined by

for z; > 0. Shier (1988) shows that A, is a nondecreasing function of r; that is,
A <Aqifr<r’or

1 n 1/r 1 n 1/r’
[; ;xf:l < |:; ;:cfjl for r < 7.

It should be clear that A, is the arithmetic mean and A_, is the harmonic mean.
What is less clear, but true, is that Ay = lim,_,g A, is the geometric mean. Thus,
the arithmetic-geometric-harmonic mean inequality follows as a special case of the
power mean inequality (see Exercise 4.57).

4.9.8 The Borel Paradozx
Throughout this chapter, for continuous random variables X and Y, we have been
writing expressions such as E(Y|X = z) and P(Y < y|X = z). Thus far, we have
not gotten into trouble. However, we might have.
Formally, the conditioning in a conditional expectation is done with respect to a
sub sigma-algebra (Definition 1.2.1), and the conditional expectation E(Y|G) is



Section 4.9 MISCELLANEA 205

defined as a random variable whose integral, over any set in the sub sigma-algebra
G, agrees with that of X. This is quite an advanced concept in probability theory
(see Billingsley 1995, Section 34).

Since the conditional expectation is only defined in terms of its integral, it may
not be unique even if the conditioning is well-defined. However, when we condition
on sets of probability 0 (such as {X = z}), conditioning may not be well defined,
so different conditional expectations are more likely to appear. To see how this
could affect us, it is easiest to look at conditional distributions, which amounts to
calculating E[I(Y < y)|X = z].

Proschan and Presnell (1998) tell the story of a statistics exam that had the ques-
tion “If X and Y are independent standard normals, what is the conditional dis-
tribution of Y given that ¥ = X7” Different students interpreted the condition
Y = X in the following ways:

(1) Z, =0, where Z, =Y — X
(2) Z2 =1, where Z, =Y/X;
(3) Z3 =1, where Z3 = I(Y = X).

Each condition is a correct interpretation of the condition ¥ = X, and each leads
to a different conditional distribution (see Exercise 4.60).

This is the Borel Paradox and arises because different (correct) interpretations of
the probability 0 conditioning sets result in different conditional expectations. How
can we avoid the paradox? One way is to avoid conditioning on sets of probability
0. That is, compute only E(Y|X € B), where B is a set with P(X € B) > 0.
So to compute something like E(Y|X = z), take a sequence B, | z, and define
E(Y|X =z) = lim,— E(Y|X € B,;). We now avoid the paradox, as the different
answers for E(Y|X = z) will arise from different sequences, so there should be no
surprises (Exercise 4.61).






Chapter 5

Properties of a Random Sample

“I'm afraid that I rather give myself away when I ea:plam ” said he. “Results
without causes are much more impressive.’

Sherlock Holmes

The Stock-Broker’s Clerk

5.1 Basic Concepts of Random Samples

Often, the data collected in an experiment consist of several observations on a variable
of interest. We discussed examples of this at the beginning of Chapter 4. In this
chapter, we present a model for data collection that is often used to describe this
situation, a model referred to as random sampling. The following definition explains
mathematically what is meant by the random sampling method of data collection.

Definition 5.1.1 The random variables X1,..., X, are called a random sample of
size n from the population f(z) if X,,..., X, are mutually independent random vari-
ables and the marginal pdf or pmf of each X; is the same function f(z). Alternatively,
X1,...,X, are called independent and identically distributed random variables with
pdf or pmf f(z). This is commonly abbreviated to iid random variables.

The random sampling model describes a type of experimental situation in which
the variable of interest has a probability distribution described by f(z). If only one
observation X is made on this variable, then probabilities regarding X can be cal-
culated using f(z). In most experiments there are n > 1 (a fixed, positive integer)
repeated observations made on the variable, the first observation is X, the second is
X, and so on. Under the random sampling model each X; is an observation on the
same variable and each X; has a marginal distribution given by f(z). Furthermore,
the observations are taken in such a way that the value of one observation has no
effect on or relationship with any of the other observations; that is, Xi,...,X,, are
mutually independent. (See Exercise 5.4 for a generalization of independence.)

From Definition 4.6.5, the joint pdf or pmf of X,,..., X, is given by

(5.1.1) f(@1ys20) = f(@) f(@a) - f(2a) = [ ] f(2i)-
=1

This joint pdf or pmf can be used to calculate probabilities involving the sample.
Since Xj,..., X, are identically distributed, all the marginal densities f(z) are the
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same function. In particular, if the population pdf or pmf is a member of a parametric
family, say one of those introduced in Chapter 3, with pdf or pmf given by f(z|6),
then the joint pdf or pmf is

(5.1.2) f(@1y ., 2al0) = [ £(ail0),

i=1

where the same parameter value 8 is used in each of the terms in the product. If, in a
statistical setting, we assume that the population we are observing is a member of a
specified parametric family but the true parameter value is unknown, then a random
sample from this population has a joint pdf or pmf of the above form with the value of
# unknown. By considering different possible values of §, we can study how a random
sample would behave for different populations.

Example 5.1.2 (Sample pdf-exponential) Let X;,..., X, be a random sample
from an exponential(3) population. Specifically, X3, ..., X, might correspond to the
times until failure (measured in years) for n identical circuit boards that are put on
test and used until they fail. The joint pdf of the sample is

1 —@ittan)/s

flz1,...,zq|B) = Hf(zilﬂ) = H%e—n/ﬁ = o
i=1 i=1

This pdf can be used to answer questions about the sample. For example, what is
the probability that all the boards last more than 2 years? We can compute

P(X;>2,...,X,>2)
oo oo n 1
=/ / H—e‘z‘/ﬁdzl--'d:cn
2 2 i:l’B

o0 oo N
1
= e"z/ﬁ/ / I | Be""'/ﬁ dzy--- dz, (integrate out z;)
2 2 s

(integrate out the remaining z;s successively)
— ( 6—2/ B8 )n

— e—2'n/6_

If 3, the average lifelength of a circuit board, is large relative to n, we see that this
probability is near 1.

The previous calculation illustrates how the pdf of a random sample defined by
(5.1.1) or, more specifically, by (5.1.2) can be used to calculate probabilities about
the sample. Realize that the independent and identically distributed property of a
random sample can also be used directly in such calculations. For example, the above
calculation can be done like this:
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P(X1>2,...,Xn>2)

= P(X; >2)---P(X,, >2) (independence)
= [P(X1>2)]" (identical distributions)
= (e ¥/B)n (exponential calculation)
— e 2n/8, I

The random sampling model in Definition 5.1.1 is sometimes called sampling from
an infinite population. Think of obtaining the values of X}, ..., X,, sequentially. First,
the experiment is performed and X; = z; is observed. Then, the experiment is re-
peated and X, = z2 is observed. The assumption of independence in random sampling
implies that the probability distribution for X is unaffected by the fact that X; = z,
was observed first. “Removing” z; from the infinite population does not change the
population, so X, = z9 is still a random observation from the same population.

When sampling is from a finite population, Definition 5.1.1 may or may not be
relevant depending on how the data collection is done. A finite population is a finite set
of numbers, {z1,...,zx}. A sample Xj,..., X, is to be drawn from this population.
Four ways of drawing this sample are described in Section 1.2.3. We will discuss the
first two.

Suppose a value is chosen from the population in such a way that each of the N
values is equally likely (probability = 1/N) to be chosen. (Think of drawing num-
bers from a hat.) This value is recorded as X; = z;. Then the process is repeated.
Again, each of the N values is equally likely to be chosen. The second value chosen is
recorded as X, = z2. (If the same number is chosen, then z; = zs.) This process of
drawing from the N values is repeated n times, yielding the sample X,,..., X,. This
kind of sampling is called with replacement because the value chosen at any stage is
“replaced” in the population and is available for choice again at the next stage. For
this kind of sampling, the conditions of Definition 5.1.1 are met. Each X is a discrete
random variable that takes on each of the values z1,...,zx with equal probability.
The random variables X3,..., X, are independent because the process of choosing
any X; is the same, regardless of the values that are chosen for any of the other
variables. (This type of sampling is used in the bootstrap—see Section 10.1.4.)

A second method for drawing a random sample from a finite population is called
sampling without replacement. Sampling without replacement is done as follows. A
value is chosen from {z;,...,zx} in such a way that each of the NV values has prob-
ability 1/N of being chosen. This value is recorded as X; = z;. Now a second value
is chosen from the remaining N — 1 values. Each of the N — 1 values has probability
1/(N — 1) of being chosen. The second chosen value is recorded as X; = z3. Choice
of the remaining values continues in this way, yielding the sample X;,...,X,. But
once a value is chosen, it is unavailable for choice at any later stage.

A sample drawn from a finite population without replacement does not satisfy all
the conditions of Definition 5.1.1. The random variables X, ..., X, are not mutually
independent. To see this, let z and y be distinct elements of {z1,...,zn}. Then
P(X, = y|X; = y) = 0, since the value y cannot be chosen at the second stage
if it was already chosen at the first. However, P(X, = y|X; = z) =1/(N — 1). The
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probability distribution for X, depends on the value of X that is observed and, hence,
X, and X5 are not independent. However, it is interesting to note that Xi,..., X,
are identically distributed. That is, the marginal distribution of X; is the same for
each ¢ = 1,...,n. For X; it is clear that the marginal distribution is P(X; = z) =
1/N for each z € {z1,...,zn5}. To compute the marginal distribution for X5, use
Theorem 1.2.11(a) and the definition of conditional probability to write

N
P(X;=1z)= ZP(XQ =z| X, = z;)P(X) = z;).

i=1

For one value of the index, say k, z = zx and P(X,; = z|X; = z) = 0. For all other
i # k P(X; = 2|X, = ©;) = 1/(N — 1). Thus,

1 1 1
(5.1.3) P(X,=z)=(N-1) (——N —3 N) =5
Similar arguments can be used to show that each of the X;s has the same marginal
distribution.

Sampling without replacement from a finite population is sometimes called simple
random sampling. It is important to realize that this is not the same sampling situa-
tion as that described in Definition 5.1.1. However, if the population size N is large
compared to the sample size n, X3, ..., X, are nearly independent and some approxi-
mate probability calculations can be made assuming they are independent. By saying
they are “nearly independent” we simply mean that the conditional distribution of
X; given X1,...,X;_1 is not too different from the marginal distribution of X;. For
example, the conditional distribution of X5 given X is

1
P(Xy=z1|X;=21)=0 and P(X2=a:|X1:a:1)=—N—_T for z # z;.

This is not too different from the marginal distribution of X, given in (5.1.3) if
N is large. The nonzero probabilities in the conditional distribution of X; given
Xi,...,X;_1 are 1/(N — i+ 1), which are close to 1/N if i < n is small compared
with N.

Example 5.1.3 (Finite population model) As an example of an approximate
calculation using independence, suppose {1,...,1000} is the finite population, so
N = 1000. A sample of size n = 10 is drawn without replacement. What is the prob-
ability that all ten sample values are greater than 200? If X, ..., X9 were mutually
independent we would have

P(X; > 200,...,X10 > 200) = P(X; > 200)- - - - -P(X10 > 200)

800 \*°
1.4 == =. .
(5.1.4) ( 1000) 107374
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To calculate this probability exactly, let Y be a random variable that counts the
number of items in the sample that are greater than 200. Then Y has a hypergeometric
(N = 1000, M = 800, K = 10) distribution. So

P(X; > 200,...,X19 > 200) = P(Y = 10)
800 200
_\ 10 0
- 1000
10

= .106164.

Thus, (5.1.4) is a reasonable approximation to the true value. I

Throughout the remainder of the book, we will use Definition 5.1.1 as our definition
of a random sample from a population.

5.2 Sums of Random Variables from a Random Sample

When a sample X1,...,X, is drawn, some summary of the values is usually com-
puted. Any well-defined summary may be expressed mathematically as a function
T(z1,...,Zn) whose domain includes the sample space of the random vector (X1,...,
Xp). The function T may be real-valued or vector-valued; thus the summary is a ran-
dom variable (or vector), Y = T(X1,...,X,). This definition of a random variable as
a function of others was treated in detail in Chapter 4, and the techniques in Chapter
4 can be used to describe the distribution of Y in terms of the distribution of the
population from which the sample was obtained. Since the random sample X1,..., X,
has a simple probabilistic structure (because the X;s are independent and identically
distributed), the distribution of Y is particularly tractable. Because this distribution
is usually derived from the distribution of the variables in the random sample, it is
called the sampling distribution of Y. This distinguishes the probability distribution
of Y from the distribution of the population, that is, the marginal distribution of
each X;. In this section, we will discuss some properties of sampling distributions,

especially for functions T'(z1,...,2,) defined by sums of random variables.

Definition 5.2.1 Let X4,...,X, be a random sample of size n from a population
and let T(z1,...,Z,) be a real-valued or vector-valued function whose domain in-
cludes the sample space of (X1,...,Xp). Then the random variable or random vector

Y =T(Xy,...,X,) is called a statistic. The probability distribution of a statistic Y’
is called the sampling distribution of Y.

The definition of a statistic is very broad, with the only restriction being that a
statistic cannot be a function of a parameter. The sample summary given by a statistic
can include many types of information. For example, it may give the smallest or largest
value in the sample, the average sample value, or a measure of the variability in the
sample observations. Three statistics that are often used and provide good summaries
of the sample are now defined.
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Definition 5.2.2 The sample mean is the arithmetic average of the values in a
random sample. It is usually denoted by

X+ X, 1
X=— "~ =2 X,.
. 52X

The sample standard deviation is the statistic defined by § = v/ §2.

As is commonly done, we have suppressed the functional notation in the above
definitions of these statistics. That is, we have written S rather than S(X;,...,X,).
The dependence of the statistic on the sample is understood. As before, we will denote
observed values of statistics with lowercase letters. So Z, s, and s denote observed
values of X, §2, and S.

The sample mean is certainly familiar to all. The sample variance and standard
deviation are measures of variability in the sample that are related to the population
variance and standard deviation in ways that we shall see below. We begin by deriving
some properties of the sample mean and variance. In particular, the relationship for
the sample variance given in Theorem 5.2.4 is related to (2.3.1), a similar relationship
for the population variance.

Theorem 5.2.4 Let z1,...,2, be any numbers and Z = (z; + -+ - + z)/n. Then

a. ming Yo, (z; —a)? =Y (z: — £)?,
b. (n’ - 1)32 = E?:l(xi - 3_:)2 = z:l=1 z? - n‘iz'

Proof: To prove part (a), add and subtract Z to get

Z(xi —a)? = Z(zi —Z+1—a)?
= zn:(m -z)2 4+ 2211:(9:,« —Z)E—a)+ Xn:(i —a)?
= " (z; — %)%+ Xn:(:i —a)2 (cross term is 0)

It is now clear that the right-hand side is minimized at a = Z. (Notice the similarity
to Example 2.2.6 and Exercise 4.13.)
To prove part (b), take a = 0 in the above. O

The expression in Theorem 5.2.4(b) is useful both computationally and theoretically
because it allows us to express s2 in terms of sums that are easy to handle.

We will begin our study of sampling distributions by considering the expected
values of some statistics. The following result is quite useful.
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Lemma 5.2.5 Let Xq,...,X. be a random sample from a population and let g(z)
be a function such that Eg(X;) and Var g(X,) exist. Then

(5.2.1) E (Zg(Xi)) = n (Eg(X1))
i=1

and

(5.2.2) Var (zn: g(X,-)) =n (Var g(X1)).
i=1

" Proof: To prove (5.2.1), note that

E (Zg(xi)) = ZEQ(Xi) =n(Eg(X1)).
i=1

i=1

Since the X;s are identically distributed, the second equality is true because Eg(X;) is
the same for all i. Note that the independence of X;,..., X, is not needed for (5.2.1)
to hold. Indeed, (5.2.1) is true for any collection of n identically distributed random
variables.

, To prove (5.2.2), note that

Var (Z Q(Xi)) =E [Z 9(X;)—E (Z g(Xi))} (definition of variance)
i=1 i=1

i=1

2
n

_ N . expectation property and

=E [; (9(Xi) Eg(Xz))} : ( rearrangement of terms

In this last expression there are n? terms. First, there are n terms (g(X;) — Eg(X,»))z,
1=1,...,n, and for each, we have

E (g(X;) — Eg(X;))? = Var g(X;) (definition of variance)

= Var g(X1). (identically distributed)

The remaining n(n — 1) terms are all of the form (g(X;) — Eg(X:)) (9(X;) — Eg(X;)),
with 7 # j. For each term,

E [(9(X:) — Eg(X:)) (9(X;) — Eg(X;))] = Cov (9(X:), 9(X;)) ( covariance

—0 independence
o Theorem 4.5.5

definition of)

Thus, we obtain equation (5.2.2). O

Theorem 5.2.6 Let X,,...,X, be a random sample from a population with mean
1 and variance 0% < oc. Then
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a. EX =4,

2

b. Var X = 0—,
n

c. ES?2 = o2,

Proof: To prove (a), let g(X;) = X;/n, so Eg(X;) = u/n. Then, by Lemma 5.2.5,

_ 1 1 i 1
= = ;| = =E X; | = —nEX; = pu.
EX E(n§X> - (Z ) nn 1=p4p

i=1

Similarly for (b), we have
Var X = Var liX —lVa.r Sn_:X~ —inVa,rX ___a_i
h n Yl n? = Y] n? 17
For the sample variance, using Theorem 5.2.4, we have
1 = o
2 _ E 2 _ 2
ES (n — [g X2 —nX

1 2 ¥ 2
1
—7 (nREX? — nEX?)

- n(o®+pu?) —n 9_2_‘_“2 =o?
n—1 n ’

establishing part (c) and proving the theorem. 2

The relationships (a) and (¢) in Theorem 5.2.6, relationships between a statistic
and a population parameter, are examples of unbiased statistics. These are discussed
in Chapter 7. The statistic X is an unbiased estimator of u, and S? is an unbiased
estimator of o2, The use of n— 1 in the definition of 52 may have seemed unintuitive.
Now we see that, with this definition, ES? = ¢2. If 52 were defined as the usual
average of the squared deviations with n rather than n — 1 in the denominator, then
ES? would be 2=152 and $? would not be an unbiased estimator of 2.

We now discuss in more detail the sampling distribution of X. The methods from
Sections 4.3 and 4.6 can be used to derive this sampling distribution from the pop-
ulation distribution. But because of the special probabilistic structure of a random
sample (iid random variables), the resulting sampling distribution of X is simply
expressed.

First we note some simple relationships. Since X = 1(X;+---+Xp), if f(y) is the
pdf of Y = (X; +--- + X,,), then fg (z) = nf(nz) is the pdf of X (see Exercise 5.5).
Thus, a result about the pdf of Y is easily transformed into a result about the pdf of
X. A similar relationship holds for mgfs:

Mgy (t) = EetX = EetXi++Xn)/n _ Be®/mY _ po(4/m),

Since Xj,...,Xn, are identically distributed, Mx,(t) is the same function for each i.
Thus, by Theorem 4.6.7, we have the following.
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Theorem 5.2.7 Let X,,...,X, be a random sample from a population with mgf
Mx(t). Then the mgf of the sample mean is

Mg (t) = [Mx (t/n)]".

Of course, Theorem 5.2.7 is useful only if the expression for Mg (t) is a familiar mgf.
Cases when this is true are somewhat limited, but the following example illustrates
that, when this method works, it provides a very slick derivation of the sampling
distribution of X.

Example 5.2.8 (Distribution of the mean) Let X7,..., X, be a random sample
from a n(u, 0?) population. Then the mgf of the sample mean is

Mg (t) = [exp (ﬂ% + 22(2/_71)2)]7»

e (L + YY) o (- L),

Thus, X has a n(u, 02 /n) distribution.

Another simple example is given by a gamma(a, 8) random sample (see Exam-
ple 4.6.8). Here, we can also easily derive the distribution of the sample mean. The
mgf of the sample mean is

My (t) = [(mﬂm)a]n = (r-m)m’

which we recognize as the mgf of a gamma(na, 3/n), the distribution of X. I

If Theorem 5.2.7 is not applicable, because either the resulting mgf of X is unrec-
ognizable or the population mgf does not exist, then the transformation method of
Sections 4.3 and 4.6 might be used to find the pdf of Y = (X; +---+ X,,) and X. In
such cases, the following convolution formule is useful.

Theorem 5.2.9 If X andY are independent continuous random variables with pdfs
fx(z) and fy(y), then the pdf of Z=X +Y s

(5.2.3) fz(z) = /_oo Fx(w)fy(z —w)dw.

Proof: Let W = X. The Jacobian of the transformation from (X,Y) to (Z,W) is 1.
So using (4.3.2), we obtain the joint pdf of (Z, W) as

fzw(z,w) = fxy(w,z2 —w) = fx(w)fr(z — w).
Integrating out w, we obtain the marginal pdf of Z as given in (5.2.3). O

The limits of integration in (5.2.3) might be modified if fx or fy or both are
positive for only some values. For example, if fx and fy are positive for only positive
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values, then the limits of integration are O and z because the integrand is 0 for values
of w outside this range. Equations similar to the convolution formula of (5.2.3) can
be derived for operations other than summing; for example, formulas for differences,
products, and quotients are also obtainable (see Exercise 5.6).

Example 5.2.10 (Sum of Cauchy random variables) As an example of a situa-
tion where the mgf technique fails, consider sampling from a Cauchy distribution. We
will eventually derive the distribution of Z, the mean of Zi,..., Z,, iid Cauchy(0,1)
observations. We start, however, with the distribution of the sum of two independent
Cauchy random variables and apply formula (5.2.3).

Let U and V be independent Cauchy random variables, U ~ Cauchy(0,0) and
V ~ Cauchy(0, 7); that is,

1 1 f(v)—l 1 —00 < U < 00,
7o 1+ (u/o)?’ VW T T 1+ (v —00 < v < 00.

fulu) =
Based on formula (5.2.3), the pdf of Z = U + V is given by

> 1 1 _1_ 1
o 0 1+ (w/0)? 77 14 ((z — w)/7)2

dw, —00< z< 00.

(5.2.4) f2(z) = /

This integral is somewhat involved but can be solved by a partial fraction decompo-
sition and some careful antidifferentiation (see Exercise 5.7). The result is

1 1

(c+ 1)1+ (2/(c +7))2° —00 < z < 00.

(5.2.5) f2(2) = -

Thus, the sum of two independent Cauchy random variables is again a Cauchy, with
the scale parameters adding. It therefore follows that if Z,, ..., Z, are iid Cauchy(0, 1)
random variables, then Y Z; is Cauchy(0,n) and also Z is Cauchy(0, 1)! The sample
mean has the same distribution as the individual observations. (See Example A.0.5
in Appendix A for a computer algebra version of this calculation.) I

If we are sampling from a location—scale family or if we are sampling from certain
types of exponential families, the sampling distribution of sums of random variables,
and in particular of X, is easy to derive. We will close this section by discussing these
two situations.

We first treat the location—scale case discussed in Section 3.5. Suppose Xi,..., X,
is a random sample from (1/o) f((x—u)/o), a member of a location-scale family. Then
the distribution of X has a simple relationship to the distribution of Z, the sample
mean from a random sample from the standard pdf f(z). To see the nature of this
relationship, note that from Theorem 3.5.6 there exist random variables Z,,..., Z,
such that X; = 0Z; + p and the pdf of each Z; is f(z). Furthermore, we see that
Z\,...,Zy, are mutually independent. Thus Z,..., Z, is a random sample from f(z).
The sample means X and Z are related by

n

n n
X:%ZXi—_*%Z(UZi"“#):%(UZZH"”#) =07+ p.

i=1 =1 i=1
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Thus, again applying Theorem 3.5.6, we find that if g(z) is the pdf of Z, then
(1/0)g((x — p)/o) is the pdf of X. It may be easier to work first with Z1,...,2Z,
and f(z) to find the pdf g(z) of Z. If this is done, the parameters u and o do not have
to be dealt with, which may make the computations less messy. Then we immediately
know that the pdf of X is (1/0)g{((z — u)/0).

In Example 5.2.10, we found that if Z;,...,Z, is a random sample from a
Cauchy(0,1) distribution, then Z also has a Cauchy(0, 1) distribution. Now we can
conclude that if X,..., X, is a random sample from a Cauchy(y,o) distribution,
then X also has a Cauchy(u,o) distribution. It is important to note that the disper-
sion in the distribution of X, as measured by o, is the same, regardless of the sample
size n. This is in sharp contrast to the more common situation in Theorem 5.2.6 (the
population has finite variance), where Var X = 02/n decreases as the sample size
increases.

When sampling is from an exponential family, some sums from a random sample
have sampling distributions that are easy to derive. The statistics T7,..., T} in the
next theorem are important summary statistics, as will be seen in Section 6.2.

" Theorem 5.2.11 Suppose X1, ..., X, is a random sample from a pdf or pmf f(z|6),
where

k
£(16) = h(@)e(6) exp (Z w, (e>t,»(x))

is a member of an exponential family. Define statistics Ty, ..., Ty by
n
Ti(X1,.. ., Xn) = D _t(X;), i=1,...,k.
j=1

If the set {(w1(0),wa2(6),...,wk(6)),0 € O} contains an open subset of R, then the
distribution of (T1,...,Tk) is an exponential family of the form

k
(5.2.6) fr(uyy ... uk8) = H(uy, ..., ux)[c(0)] exp (E wi(ﬂ)ui) :
i=1

The open set condition eliminates a density such as the n(6,8?) and, in general,
eliminates curved exponential families from Theorem 5.2.11. Note that in the pdf
or pmf of (T1,...,T%), the functions c(8) and w;(#) are the same as in the original
family although the function H(u,,...,ux) is, of course, different from h(z). We will
not prove this theorem but will only illustrate the result in a simple case.

Example 5.2.12 (Sum of Bernoulli random variables) Suppose X;,...,
is arandom sample from a Bernoulli(p) distribution. From Example 3.4.1 (withn =1
we see that a Bernoulli(p) distribution is an exponential family with k = 1, ¢(p)
(1 —p),wi(p) = log(p/(1 — p)), and t1(z) = z. Thus, in the previous theorem, T =
T (X1,...,Xn) = X1+ + X,. From the definition of the binomial distribution in
Section 3.2, we know that 77 has a binomial(n, p) distribution. From Example 3.4.1
we also see that a binomial(n, p) distribution is an exponential family with the same
wi(p) and ¢(p) = (1 — p)™. Thus expression (5.2.6) is verified for this example. I

3

~—

Il
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5.3 Sampling from the Normal Distribution

This section deals with the properties of sample quantities drawn from a normal
population still one of the most widely used statistical models. Sampling from a
normal population leads to many uscful properties of sample statistics and also to
many well-known sampling distributions.

5.3.1 Properties of the Samplc Mean and Variancc

We have already seen how to calculate the means and variances of X and $2 in
general. Now, under the additional assumption of normality, we can derive their full
distributions, and more. The properties of X and S? are summarized in the following
theorem.

Theorem 5.3.1 Lct Xi,..., X, be a random sample from a n(p,a?) distribution,
and lct X = (1/n)S7 1 Xi and S* =[1/(n— 1)]>" ,(X; — X)?. Then

a. X and S? are independent randomn variables.
b. X hos an(u,o*/n) distribution,

c. (n—1)5%/02 has a chi squared distribution with n — 1 degrees of freedom.

Proof: First note that, from Section 3.5 on location scale families, we can assume,
without loss of generality, that ¢+ = 0 and ¢ = 1. (Also see the discussion preceding
Theorem 5.2.11.) Furthermore, part (b) has already been established in Example 5.2.8,
leaving us to prove parts (a) and (c).

To prove part (a) we will apply Theorem 4.6.12, and show that X and S® are
functions of independent random vectors. Note that we can write S? as a function of
n - 1 deviations as follows:

7

5’2 = 1 2(4 i j&/)2

n—1 4
t=1
1 , N w2
— (()xl—X) -r;(x,, X))
l n 2 n N
= _X" —X -+ )(' —,- ? . n Srln(\e
n_1 ;( i )} ;( i X) (Zil(‘xi — 3() =0
Thus, S? can be written as a function only of (Xy — X,..., X, — X). We will now

show that these random variables are independent of X. The joint pdf of the sample
X1,...,X, is given by

1 —__—
f('Jlly o >$'1) N (27(_)”/26' /2R i —00 < xy < Q.
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Make the transformation
Y1 =X

Y2 = T2 — I,

Yn = Tpn ~ T, ‘
This is a linear transformation with a Jacobian equal to 1/n. We have

f(l/h e )‘.UTI)
- 4(%’;'”/2 (1D SLov)? (AT ) g <y < 0o

2

1/2 .
{ n ~/[Er Wi BT oy ¥ < 00.

(27r)(-71—1)/2(
Since the joint pdf of Yy,..., Y, factors, it follows from Theorem 4.6.11 that Y] is

independent of Y5,....Y, and, hence, from Theorem 4.6.12 that X is independent
of 52. O

To finish the proof of the theorem we must now derive the distribution of 52. Before
doing so, however, we digress a little and discuss the chi squared distribution, whose
propertics play an important part in the derivation of the pdf of S2. Recall from
Section 3.3 that the chi squared pdf is a special case of the gamma pdf and is given
by

flx) = L e gcpcn
T(p/2)2v/2" ’ ’
where p is called the degrecs of freedom. We now summarize some pertinent facts
about the chi squarcd distribution.

Lemma 5.3.2 (Facts about chi squared random variables) We use the nota-

tion ,xf, to denote a chi squared random variable with p degrees of freedom.

a. If Z is a n(0,1) random variable, then Z* ~ x?; that is, the square of o standard
normal random variable is o chi squared random variable.

b. If Xi1,..., X, are independent and X; ~ \%L, then X1+ -+ X,, ~ \21 it
that is, mdependent chi squared variables add to a chi squarcd variable, and the
degrees of freedom also add.

Proof: We have encountered these facts already. Part (a) was established in Exam-
ple 2.1.7. Part (b) is a special case of Example 4.6.8, which has to do with sumns of
independent ganima random variables. Since a xf, random variable is a gamma(p/2, 2),
application of the example gives part (b). O

Proof of Theorem 5.3.1(c): We will employ an induction argument to establish
the distribution of S?, using the notation X, and SE to denote the sample mean
and variance based on the first & ubservations. (Note that the actual ordering of the
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obrerve ions is immaterinl - we are jusi considering them tn be ordered to facilitate
the proof.) It i siraizlitforward to cstablish (see Excrcize 5.15) that

7

(5.3.1) (n - 1)S? - (n-2)8% | - (n—"l-) (X, X )2

Now consider 7.+ 2. Defining 0 S7 := 0, we have from (5.3.1) that

Since the disiribution of (Xs -~ X ;) V2 i= n(0,1), part (a) of Lemma 5.3.2 shows thai
S35 ~ 3. Proceeding with the inducrion, we assume that for n = b, (k--1)Sf ~ \}_ )
Lor n =k + 1 we have from (5.3.1)

(5.3.2) kSp o, (k- 1S (Z%) (X — Xp)”

According o the induction hvaLhosm (k--1)S; ~ % ;. If we can establish thai
(/e =1))(X) 1~ X)) -~ \]~ independent of S7. it w11 follow from part (b) of
Lemma 5.3.2 that kS7 .| ~ x;. and the theorem w1] be proved.

The independence of (X; 1 - Xp)? and S again follows from Theorem 4.6.12.
The vector (X 1,_5&;) is independent of S“ and so is any function of the veetor.
Furthermore, X3 - - - X, is a normal 1a11dom variable with mean 0 and variance

E--1
Var (X, — Ap) = 5

and therefore (k/(k - 1))(Xp 1 — X;)% ~ 1}, and the theorem is established. O

The independence of X and S? can be established in a manner different from that
used in the proof of Theorem 5.3.1. Rather than show that the joint pdf factors, we
can use the following lemuna, which ties together independence and correlation for
normal samples.

Lemma 5.3.3 Let X, ~ n( j =1,...,n, indepcndent. For constants a;; ond
br; (j:l.._.,n;ir—l K .o...m), where k-—-m 7 on, define
3
Li=) 05X, i=1. .k
;-1

Vo= byX;, r=1,...,m

a. The random variables U and Vi, are indipendent if and only if Cov(U;, V) = 0.
Furthcrmore, Cov(U; V) = ZT | a,,b,JUJ
b. The random vectors (Uy, ..., Uy) and (Vi ... . Vy,) are 7'77,(fppe’nﬂe77t if and only if

{7 15 indcpendent of Vi for all poirs i, (i =1, . k;r = 1,...,m).

Proof: It is sufficient to prove the lemma for 4; = 0 and ¢? == 1, since the general
statement of the lemima then follows quicklv. Furthermore, the implication {rom in-
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dependence to 0 covariance is immediate (Theorem 4.5.5) and the expression for the
covariance is easily verified (Exercise 5.14). Note also that Corollary 4.6.10 shows that
U; and V, are normally distributed.

Thus, we are left with proving that if the constants satisfy the above restriction
(equivalently, the covariance is 0), then we have independence under normality. We
prove the lemma only for n = 2, since the proof for general n is similar but necessitates
a detailed n-variate transformation.

To prove part (a) start with the joint pdf of X; and X5,

1 22
leu\'Q(Il-IQ) = '9_8-(1/2)(11_‘_""‘), =00 Ly, T < DO,
s

Make the transformation (we can suppress the double subscript in the n = 2 case)

U = ai1r1 + axxo, v =byxy + byxa,
o)
bou — ast av — byu
T = —— Ty = —————,
(leg - blﬁ,-_‘g’ alb'.Z - b1a2
with Jacobian
(9T1 011
J = ou  Ov | 1
dra  Dxo a1z — bya,
ou  Ov

Thus, the pdf of I and V is

byu—ay  a1v—biu \ .
u, = fx " ) ‘Jl
fov(u,v) = fx x. <a1b2—b1a2 arby —biax ) '

1 -1 r
N E &P { 2(@11)2 - b1a2)2 L

—00 < u, 1 < 20. Expanding the squares in the exponent, we can write

(bgu — CLQU)Z + (alv - blu)z] } |J\ ,

(bau — a2v)? + (a1v — bru)® = (b2 + b3)u? + (a2 + a2)r? — 2(ayby + asbs)ur.

The assumption on the constants shows that the cross-term is identically 0. Hence, the
pdf factors so, by Lemma 1.2.7, U and V are independent and part (a) is established.

A similar type of argument will work for part (b), the details of which we will
not go into. If the appropriate transformation is made, the joint pdf of the vectors
(Uy,...,U) and (V4,...,V,,) can be obtained. By an application of Theorem 4.6.11,
the vectors are independent if the joint pdf factors. From the form of the normal pdf,
this will happen if and only if U; is independent of V, for all pairs i, 7 (i = 1,...,k;r =
1,...,m). |

This lemma shows that, if we start with independent normal random variables,
covariance and independence arc equivalent for linear functions of these random vari-
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ables. Thus, we can check independence for normal variables by merely checking the
covariance term, a much simpler calculation. There is nothing magic about this; it
just follows from the form of the normal pdf. Furthermore, part (b) allows us to in-
fer overall independence of normal vectors by just checking pairwise independence, o
" property that does not hold for general random variables.
We can use Lemma 5.3.3 to provide an alternative proof of the independence of X
and S? in normal sampline. Since we can write S? as a function of n -~ 1 deviations

(Xo — X,..., X, — X), we must show that these random variables are uncorrelated
with X. The normality assumption, together with Lemma 5.3.3, will then allow us to
conclude independence.

As an illustration of the application of Lemma 5.3.3, write
_ n 1
X = Z (E) Xi,
_ n ] 1
}&’J‘ - X = ; (éij - ;) AX’L',

where é;; = 1if i = j and é;; = 0 otherwise. It is then easv to show that

Cov(X.X, - X) = 3" (%) (6~ %) .

1=

showing that X and X; — X are independent (as long as the X,s have the same
variance).

5.3.2 The Derived Distributions: Student’s t and Snedecor’s F

The distributions derived in Section 5.3.1 are, in a sense, the first step in a statistical

analysis that assumes normality. In particular, in most practical cases the variance,

a?, is unknown. Thus, to get any idea of the variability of X (as an estimate of p), it

is necessary to estimate this variance. This topic was first addressed by W. S. Gosset

(who published under the pscudonym of Student) in the early 1900s. The landmark

work of Student resulted in Student’s t distribution or, more simply, the ¢ distribution.
If Xi,...,X, are a random sample from a n(u, o?), we know that the quantity

X—u
o/vn

is distributed as a n(0, 1) random variable. If we knew the value of o and we measured
X, then we could use (5.3.3) as a basis for inference about g, since g would then be
the only unknown quantity. Most of the time, however, o is unknown. Student did
the obvious thing—he looked at the distribution of

X —p
S/vn’

a quantity that could be used as a basis for inference about p when ¢ was unknown.

(5.3.3)

(5.3.4)
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The distribution of (5.3.4) is easy to derive, provided that we first notice a few
simplifying maneuvers. Multiply (5.3.4) by /0 and rearrange slightly to obtain

X—p_ (X =p/to/ym)
5/\/7_1 /52/02

The numerator of (5.3.5) is a n(0,1) random variable. and the denominator is

—
(s}
T
Nt

v'/\%—"l/(” — 1), independent of the numerator. Thus, the distribution of (5.3.4) can
I

be found by solving the simplified problem of finding the distribution of I'/\/V/p,
where U is n(0,1), V is xg, and U and V are independent. This gives us Student’s ¢
distribution.

Definition 5.3.4 Let Xj,...,X,, be a random sample from a n(x,o?) distribution.
The quantity (X — u)/(S/v/n) has Student’s t distribution with n — 1 degrees of free-
dom. Equivalently, a random variable 7' has Student’s ¢ distribution with p degrees
of freedom, and we write T ~ ¢, if it has pdf

5.3.6 1(t —r(pz_l) ! ! o <t <
(5.3.6) fr(t) = () pr2 L+ Bp) D x <t < 0.

Notice that if p = 1, then (5.3.6) becomes the pdf of the Cauchy distribution, which
occurs for samples of size 2. Once again the Cauchy distribution has appeared in an
ordinary situation.

The derivation of the t pdf is straightforward. If we start with {7 and V delined
above, it follows from (5.3.5) that the joint pdf of U and V is

1 B 1 " .
foviu,w) = DA P — s T R ”/2, —oC T u 0, 00l < .

(2m)1/? T (B)2r/2

(Recall that {7 and V are independent.) Now make the transformation

U
t= , w=7.

v/p

1/2

The Jacobian of the transformation is (w/p)!/?, and the marginal pdf of T is given

by

o /2
= 1 ! - ¢ ’(1/2)t2w/p'w(p/2) 1 w/2 v dw
BTG 27 Uy ;

1 1 W0 e, (( 1)/2)1
_ e PIWay dw.
0
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Recognize the integrand as the kernel of a gamma((p + 1)/2,2/(1 + t?/p)) pdf. We
therefore have

(p+1)/2

1 1

folt) = r(”“)[ 2 ] ,
(2m)1/2 T (B) 20/2pl/2 2 1+¢2/p

which is equal to (5.3.6).

Student’s ¢ has no mgf because it does not have moments of all orders. In fact, if
there are p degrees of freedom, then there are only p — 1 moments. Hence, a ¢, has
no mean, a tp has no variance, etc. It is easy to check (see Exercise 5.18) that if T}, is
a random variable with a t, distribution, then

ET, =0, ifp>1,

(5.3.7)

Var T, = ifp>2

p-2

Another important derived distribution is Snedecor’s F', whose derivation is quite
similar to that of Student’s ¢t. Its motivation, however, is somewhat different. The F
distribution, named in honor of Sir Ronald Fisher, arises naturally as the distribution
of a ratio of variances.

Example 5.3.5 (Variance ratio distribution) Let X;,..., X, be a random sam-
ple from a n(ux,o%) population, and let Yi,...,Y,, be a random sample from an
independent n(uy, 02 ) population. If we were interested in comparing the variability
of the populations, one quantity of interest would be the ratio 0% /o%. Information
about this ratio is contained in $%/S%, the ratio of sample variances. The F' distri-
bution allows us to compare these quantities by giving us a distribution of .

S%/SV _ Sklok
ok/oy  Sy/o}’

(5.3.8)

Examination of (5.3.8) shows us how the F distribution is derived. The ratios S% /0%
and 5% /0% are each scaled chi squared variates, and they are independent. I

Definition 5.3.6 Let X,,..., X, be arandom sample from a n{ux, a}) population,
and let Yi,...,Y;, be a random sample from an independent n(uy,o?) population.
The random variable F = (8% /0%)/(S%/0%) has Snedecor’s F distribution with
n —1 and m — 1 degrees of freedom. Equivalently, the random variable F' has the F
distribution with p and g degrees of freedom if it has pdf

(&) /p p/2 r(®/2)-1
(53.9)  fr(z)= W (a) T (p/qal e’ 0<z<00.

The F distribution can be derived in a more general setting than is done here.
A variance ratio may have an F' distribution even if the parent populations are not
normal. Kelker (1970) has shown that as long as the parent populations have a cer-
tain type of symmetry (spherical symmetry), then the variance ratio will have an F
distribution.
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The derivation of the F' pdf, starting from normal distributions, is similar to the
derivation of Student’s ¢. In fact, in one special case the F'is a transform of the ¢. (See
Theorem 5.3.8.) Similar to what we did for the ¢, we can reduce the task of deriving
the F pdf to that of finding the pdf of (U/p)/(V/q), where U and V are independent,
U~ x% and V ~ x2. (See Exercise 5.17.)

. Example 5.3.7 (Continuation of Example 5.3.5) To see how the F distribution
may be used for inference about the true ratio of population variances, consider the
following. The quantity (S%/0%)/ (5% /o%) has an F,_1,m—; distribution. (In general,
we use the notation F), 4 to denote an F' random variable with p and ¢ degrees of
freedom.) We can calculate

Xn— 1/ n-— 1 ) s
EF,_1m-1= by definition
et =B (S by )
=E (:"_ 11) (Xm:l) (independence)
n m-—1 . .
= (n ) ( o 3> (chi squared calculations)
_m-1
" m-—3

Note that this last expression is finite and positive only if m > 3. We have that

5% /o2 m-—1
E| XX =EF,_jm1=——
(512//0_12/) n—1,m-—1 m_3a

and, removing expectations, we have for reasonably large m,

S5%/5% m—1
c%/o2  m-—3

as we might expect. I

The F distribution has many interesting properties and is related to a number of
other distributions. We summarize some of these facts in the next theorem, whose
proof is left as an exercise. (See Exercises 5.17 and 5.18.)

Theorem 5.3.8

a. If X ~ Fpq, then 1/X ~ F,,; that is, the reciprocal of an F' random variable is
again an F' random variable.

b. If X ~tg, then X% ~ Fy ,.
C. If X ~ Fpq, then (p/q)X/(1+ (p/@)X) ~ beta(p/2,9/2).
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5.4 Order Statistics

Sample values such as the smallest, largest, or middle observation from a random
sample can provide additional summary information. For example, the highest flood
waters or the lowest winter temperature recorded during the last 50 years might be
useful data when planning for future emergencies. The median price of houses sold
during the previous month might be useful for estimating the cost of living. These
are all examples of order statistics.

Definition 5.4.1 The order statistics of a random sample X}, ..., X, are the sample
values placed in ascending order. They are denoted by X(;), ..., X(n).

The order statistics are random variables that satisfy X(;)y < -+ < X(5). In partic-
ular,

X(l) = @‘é‘nxi’

X(2) = second smallest X;,

Since they are random variables, we can discuss the probabilities that they take on
various values. To calculate these probabilities we need the pdfs or pmfs of the order
statistics. The formulas for the pdfs of the order statistics of a random sample from
a continuous population will be the main topic later in this section, but first, we will
mention some statistics that are easily defined in terms of the order statistics.

The sample range, R = X(n)— X(1), is the distance between the smallest and largest
observations. It is a measure of the dispersion in the sample and should reflect the
dispersion in the population.

The sample median, which we will denote by M, is a number such that approxi-
mately one-half of the observations are less than M and one-half are greater. In terms
of the order statistics, M is defined by

(5.4.1) M= {X<<n+1>/2) if n is odd
(Xnj2) + X(nj2+1)) /2 ifnis even.

The median is a measure of location that might be considered an alternative to the
sample mean. One advantage of the sample median over the sample mean is that it
is less affected by extreme observations. (See Section 10.2 for details.)

Although related, the mean and median usually measure different things. For exam-
ple, in recent baseball salary negotiations a major point of contention was the owners’
contributions to the players’ pension fund. The owners’ view could be paraphrased as,
“The average baseball player’s annual salary is $433,659 so, with that kind of money,
the current pension is adequate.” But the players’ view was, “Over half of the players
make less than $250,000 annually and, because of the short professional life of most
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players, need the security of a larger pension.” (These figures are for the 1988 season,
not the year of the dispute.) Both figures were correct, but the owners were discussing
the mean while the players were discussing the median. About a dozen players with
salaries over $2 million can raise the average salary to $433,659 while the majority of
the players make less than $250,000, including all rookies who make $62,500. When
discussing salaries, prices, or any variable with a few extreme values, the median gives
a better indication of “typical” values than the mean. Other statistics that can be
defined in terms of order statistics and are less sensitive to extreme values (such as
the a-trimmed mean discussed in Exercise 10.20) are discussed in texts such as Tukey
(1977).

For any number p between 0 and 1, the (100p)th sample percentile is the observation
such that approximately np of the observations are less than this observation and
n(l — p) of the observations are greater. The 50th sample percentile (p = .5) is
the sample median. For other values of p, we can more precisely define the sample
percentiles in terms of the order statistics in the following way.

Definition 5.4.2 The notation {b}, when appearing in a subscript, is defined to be
the number b rounded to the nearest integer in the usual way. More precisely, if 7 is
an integer and i — .5 < b < i+ .5, then {b} =1i.

The (100p)th sample percentile is X({np}) if 7 < p<.5and Xntr1-{n(1-p)}) if
o< p<l - 2% For example, if n = 12 and the 65th percentile is wanted, we note
that 12 x (1 -.65) =4.2 and 12+ 1 -4 = 9. Thus the 65th percentile is X(q). There
is a restriction on the range of p because the size of the sample limits the range of
sample percentiles.

The cases p < .5 and p > .5 are defined separately so that the sample percentiles
exhibit the following symmetry. If the (100p)th sample percentile is the ith smallest
observation, then the (100(1 — p))th sample percentile should be the ith largest obser-
vation and the above definition achieves this. For example, if n = 11, the 30th sample
percentile is X(3) and the 70th sample percentile is Xq.

In addition to the median, two other sample percentiles are commonly identified.
These are the lower quartile (25th percentile) and upper quartile (75th percentile). A
measure of dispersion that is sometimes used is the interquartile range, the distance
between the lower and upper quartiles.

Since the order statistics are functions of the sample, probabilities concerning order
statistics can be computed in terms of probabilities for the sample. If X;,..., X,
are iid discrete random variables, then the calculation of probabilities for the order
statistics is mainly a counting task. These formulas are derived in Theorem 5.4.3.
If X,,...,X, are a random sample from a continuous population, then convenient
expressions for the pdf of one or more order statistics are derived in Theorems 5.4.4
and 5.4.6. These can then be used to derive the distribution of functions of the order
statistics.

Theorem 5.4.3 Let X;,...,X, be a random sample from a discrete distribution
with pmf fx(z;) = pi, where 1 < o < --- are the possible values of X in ascending
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order. Define
Py=0
P =p
Py =pi1+p2

Pi=pi+p2+--+pi

Let X(1y, ..., X(n) denote the order statistics from the sample. Then

(5.4.2) P(X(j < ) = i () PEa =Py
k=

and

n
(54.3) P(Xj=z)=)_ (:) [PE(1 - P)™* — P¥ (1- P_y)""¥].
k=j

Proof: Fix ¢, and let Y be a random variable that counts the number of X;,..., X,
that are less than or equal to z;. For each of X1,..., Xy, call the event {X, < z;} a
“success” and {X; > z;} a “failure.” Then Y is the number of successes in n trials.
The probability of a success is the same value, namely P, = P(X; < z;), for each
trial, since X1,..., X, are identically distributed. The success or failure of the jth
trial is independent of the outcome of any other trial, since X; is independent of the
other X;s. Thus, Y ~ binomial(n, P;).

The event {X;) < z;} is equivalent to the event {Y > j}; that is, at least j of the
sample values are less than or equal to z;. Equation (5.4.2) expresses this binomial
probability,

P(X(j < @) = P(Y 2 ).
Equation (5.4.3) simply expresses the difference,
P(X(j ==i) = P(X(j) < @:) = P(X(5) < ia) -

The case ¢ = 1 is exceptional in that P(X(j) = xl) = P(X(j) < xl). The definition
of Py = 0 takes care of this exception in (5.4.3). ]

If X;,...,X, are a random sample from a continuous population, then the situation
is simplified slightly by the fact that the probability is 0 that any two X ;s are equal,
freeing us from worrying about ties. Thus P(X(1y < X(2) < -+» < X(n)) = 1 and the
sample space for (X(y),..., X(n)) is {(z1,...,2Zn) 1 T1 < T2 <+ < z,}. In Theorems
5.4.4 and 5.4.6 we derive the pdf for one and the joint pdf for two order statistics,
again using binomial arguments.
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Theorem 5.4.4 Let X(y),...,X(n) denote the order statistics of a random sample,
Xi,.-.1Xn, from a continuous population with cdf Fx(z) and pdf fx(z). Then the

pdf of X(j) s
(5.4.4) fx(j)(:L‘) (——T’?('-mfx(x)[}?x I)]J 1[1 - Fx :E)]n ‘7

Proof: We first find the cdf of X(;) and then differentiate it to obtain the pdf. As
in Theorem 5.4.3, let Y be a random variable that counts the number of X;,..., X,
less than or equal to z. Then, defining a “success” as the event {X; < z}, we see that
Y ~ binomial(n, Fx(z)). (Note that we can write P, = Fx(z;) in Theorem 5.4.3.
Also, although Xi,..., X, are continuous random variables, the counting variable Y
is discrete.) Thus,

n

Fx,(@)=P¥2j)=3" ( ) [Fx (2)]*[1 - Fx(z)]*~
k=3
and the pdf of X ;) is

Frp (@) = P, (@)
=3 () (k1Px@P 1= @ (o)
=
— (n— B)Fx(@)*[L - Fx(2)]"™* " fx(2)) (chain rule)
= (7) itx@Fx@P 1 - Pl

n

+ Y () HEx @ - Fx @) (@)

k=j+1
n—1 n k ) t
- Z (k) (n— k)[Fx(:L‘)]"[l - Fx(x)]n—k_lfx (@) ( _i: Oerm)
k=j
N ﬁl('n_w (x)[FX(:L‘)]J 1[1 — Fx (x)]n—j

change
(5.4.5) + Z ( ) (k+1)[Fx () [1 - Fx (@) % fx(z) (dummy)

k=j variable

*Z( ) (0= &) [Fx @] 1~ Fx(@)"™* fx(z).

k=
Noting that

(5.4.6) (kzl>(k+1)=m_-"’i_—l)!=(:)(n—k),
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we see that the last two sums in (5.4.5) cancel. Thus, the pdf fx () is given by the
expression in (5.4.4). a

Example 5.4.5 (Uniform order statistic pdf) Let Xi,...,X, be iid
uniform(0,1), so fx(z) = 1 for z € (0,1) and Fx(z) = z for z € (0,1). Using
(5.4.4), we see that the pdf of the jth order statistic is
n!
G= Dl =3
I'(n+1)

— i=1(1 — g)(n—d+1)-1
FGm—j+0° 0%

Ix(x) = 711 -z)» 7 forz €(0,1)

Thus, the jth order statistic from a uniform(0,1) sample has a beta(j,n — j + 1)
distribution. From this we can deduce that

jn—j+1)

BXt = n+12(n+2) |

T and Var X, =

The joint distribution of two or more order statistics can be used to derive the
distribution of some of the statistics mentioned at the beginning of this section. The
joint pdf of any two order statistics is given in the following theorem, whose proof is
left to Exercise 5.26.

Theorem 5.4.6 Let X(yy,...,X(n) denote the order statistics of a random sample,
Xi,...,Xp, from a continuous population with cdf Fx(z) and pdf fx(x). Then the
Joint pdf of X(;y and X(;),1<i<j<n,is

(BAT) Fxpxen (V) = g™ ;*»!_ ST Fx () fx (v)[Fx (w) "

x [Fx (v) = Fx(u) "' 7'[1 = Fx(v)]"™
for —co < u<v<oo.

The joint pdf of three or more order statistics could be derived using similar but
even more involved arguments. Perhaps the other most useful pdf is fx(l),.“, X(ny
(z1y...,2n), the joint pdf of all the order statistics, which is given by

[ nlfx(zy)----- fx(z) —0< T < < Ty <O
fX(l),---.X(n) (2151 2n) = {0 otherwise.
The n! naturally comes into this formula because, for any set of values x,,..., Ty,

there are n! equally likely assignments for these values to X1, ..., X,, that all yield the
same values for the order statistics. This joint pdf and the techniques from Chapter
4 can be used to derive marginal and conditional distributions and distributions of
other functions of the order statistics. (See Exercises 5.27 and 5.28.)

We now use the joint pdf (5.4.7) to derive the distribution of some of the functions
mentioned at the beginning of this section.
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Example 5.4.7 (Distribution of the midrange and range) Let X3,...,X, be
jiid uniform(0, a) and let X(3),...,X(n) denote the order statistics. The range was
earlier defined as R = X(,) — X(1). The midrange, a measure of location like the
sample median or the sample mean, is defined by V = (X(1) + X(n)) /2. We will derive
the joint pdf of R and V from the joint pdf of X1y and X ). From (5.4.7) we have

that

nin—1) fzn, z1\" 2
Fxay Xy (%1,2n) = Iz (7 - _Z)
n(n— Nz, —z1)" 2
™ )(a: 1) , 0<z <zq<a.

Solving for X(;y and X(,), we obtain X1y =V — R/2 and X(»y = V + R/2. The Ja-
cobian for this transformation is —1. The transformation from (X (1), X(n)) to (R, V)
maps {(21,25): 0 < z; < Z, < a} onto theset {(r,v):0< r <a,r/2<v<a-—r/2}.
To see this, note that obviously 0 < r < a and for a fixed value of r, v ranges from r /2
(corresponding to z; = 0,z, = 7) to a — 7/2 (corresponding to z; = a — r,z, = a).
Thus, the joint pdf of (R, V) is

n(n—1)r*=2

, 0<r<a, r/2<v<a-r/2
a'n,

fR,V (T, ’l)) =

The marginal pdf of R is thus

a—r/ _ n—
Falr) = / ‘n(n—r?

(5.4.8) /2 @
_ nn—-1)r""%(a—r)

an

, O<r<a.

If a = 1, we see that r has a beta(n — 1, 2) distribution. Or, for arbitrary a, it is easy
to deduce from (5.4.8) that R/a has a beta distribution. Note that the constant a is
a scale parameter.

The set where fgr,v(r,v) > 0 is shown in Figure 5.4.1, where we see that the range
of integration of r depends on whether v > a/2 or v < a/2. Thus, the marginal pdf
of V is given by

2v n—2 -1
- 2)"
fv(v) =/ n(n al)r dr = n(2v) , 0<wv<a/2
0

n an

and

, a/2<v<a.
a’n a'n

A=) p(p — 1)r= a— )1
fvlv) = /0 Mdr _ n2(a—v)"7

This pdf is symmetric about a/2 and has a peak at a/2. I
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Figure 5.4.1. Region on which frv(r,v) > 0 for Example 5.4.7

5.5 Convergence Concepts

This section treats the somewhat fanciful idea of allowing the sample size to approach
infinity and investigates the behavior of certain sample quantities as this happens.
Although the notion of an infinite sample size is a theoretical artifact, it can often
provide us with some useful approximations for the finite-sample case, since it usually
happens that expressions become simplified in the limit.

We are mainly concerned with three types of convergence, and we treat them in
varying amounts of detail. (A full treatment of convergence is given in Billingsley
1995 or Resnick 1999, for example.) In particular, we want to look at the behavior of

X, the mean of n observations, as n — oo.

5.5.1 Conuvergence in Probability

This type of convergence is one of the weaker types and, hence, is usually quite easy
to verify.

Definition 5.5.1 A sequence of random variables, X;, X, ..., converges in proba-
bility to a random variable X if, for every € > 0,

lim P(|X, — X|>¢€)=0 or,equivalently, lim P(|X,— X|<e¢) =1

The X, Xs,... in Definition 5.5.1 (and the other definitions in this section) are
typically not independent and identically distributed random variables, as in a random
sample. The distribution of X, changes as the subscript changes, and the convergence
concepts discussed in this section describe different ways in which the distribution of
X, converges to some limiting distribution as the subscript becomes large.

Frequently, statisticians are concerned with situations in which the limiting random
variable is a constant and the random variables in the sequence are sample means (of
some sort). The most famous result of this type is the following.

Theorem 5.5.2 (Weak Law of Large Numbers) Let X, X2,... be iid random
variables with EX; = p and Var X; = 02 < 0o. Define X, = (1/n) 3, Xi. Then,
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for every € > 0,
lim P(| X, —pul<e)=1;
n—oo
that is, X, converges in probability to .
Proof: The proof is quite simple, being a straightforward application of Chebychev’s
Inequality. We have, for every € > 0,
E(X, —pu)?  Var X4 o2

7 Y 2 2
P(\ X —ul 2 €) = P((Xn - ) 2 &) < =22 =

Hence, P(|X, —p| <€) =1-P(|Xn—p|>€) >1-0%/(n®) > 1,asn - 00. O

The Weak Law of Large Numbers (WLLN) quite elegantly states that, under gen-
eral conditions, the sample mean approaches the population mean as n — o0o. In fact,
there are more general versions of the WLLN, where we need assume only that the
mean is finite. However, the version stated in Theorem 5.5.2 is applicable in most
practical situations.

The property summarized by the WLLN, that a sequence of the “same” sample
quantity approaches a constant as n — oo, is known as consistency. We will examine
this property more closely in Chapter 7.

Example 5.5.3 (Consistency of S?) Suppose we have a sequence X1, Xa,... of
iid random variables with EX; = u and Var X; = 02 < oo. If we define

R .
2 _ o 2
S""n—1;(x1 X.)2,
can we prove a WLLN for $2? Using Chebychev’s Inequality, we have

B(S2— 0% Var &2
P(1$2 —o?| > g < An 20V Vor

and thus, a sufficient condition that S2 converges in probability to o2 is that Var S2 —
0 as n — oo. |

A natural extension of Definition 5.5.1 relates to functions of random variables.
That is, if the sequence X, Xs,... converges in probability to a random variable X or
to a constant a, can we make any conclusions about the sequence of random variables
h(X1),h(Xz2),... for some reasonably behaved function hA? This next theorem shows
that we can. (See Exercise 5.39 for a proof.)

Theorem 5.5.4 Suppose that X1, X3, ... converges in probability to a random vari-
able X and that h is a continuous function. Then h(X1), h(X2),... converges in prob-
ability to h(X).

Example 5.5.5 (Consistency of S) If S2 is a consistent estimator of o2, then
by Theorem 5.5.4, the sample standard deviation S, = \/32 = h(S2) is a consistent
estimator of 0. Note that S, is, in fact, a biased estimator of o (see Exercise 5.11),
but the bias disappears asymptotically. Il
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5.5.2 Almost Sure Convergence

A type of convergence that is stronger than convergence in probability is almost sure
convergence (sometimes confusingly known as convergence with probability ). This
type of convergence is similar to pointwise convergence of a sequence of functions,
except that the convergence need not occur on a set with probability 0 (hence the
“almost” sure).

Definition 5.5.6 A sequence of random variables, X, Xs,..., converges almost
surely to a random variable X if, for every € > 0,

P(lim | X, — X|<¢€)=1.
7n—00

Notice the similarity in the statements of Definitions 5.5.1 and 5.5.6. Although they
look similar, they are very different statements, with Definition 5.5.6 much stronger.
To understand almost sure convergence, we must recall the basic definition of a ran-
dom variable as given in Definition 1.4.1. A random variable is a real-valued function
defined on a sample space S. If a sample space S has elements denoted by s, then
Xn(s) and X (s) are all functions defined on S. Definition 5.5.6 states that X, con-
verges to X almost surely if the functions X,(s) converge to X(s) for all s € S
except perhaps for s € N, where N C § and P(N) = 0. Example 5.5.7 illustrates al-
most sure convergence. Example 5.5.8 illustrates the difference between convergence
in probability and almost sure convergence.

Example 5.5.7 (Almost sure convergence) Let the sample space S be the
closed interval [0,1] with the uniform probability distribution. Define random vari-
ables X,(s) = s + s™ and X(s) = s. For every s € [0,1), s" — 0 as n — oo and
Xn(8) = s = X(s). However, X,(1) = 2 for every n so X,(1) does not converge to
1 = X(1). But since the convergence occurs on the set [0,1) and P([0,1)) = 1, X,
converges to X almost surely. I

Example 5.5.8 (Convergence in probability, not almost surely) In this ex-
ample we describe a sequence that converges in probability, but not almost surely.
Again, let the sample space S be the closed interval [0,1] with the uniform probability
distribution. Define the sequence X1, Xo,... as follows:

X, (3) =8+ I[O,]_] (S), X2(3) =8+ I[O 1](8), Xg(s) =8+ I[l,l] (8),
Xa(s) =s+ I[O,%](s)a Xs(s)=s+ I[gi %]( 8), Xe(s) =s+ I[g,l](s),

etc. Let X (s) = s. It is straightforward to see that X, converges to X in probability.
As n — 00, P(| X, — X| > €) is equal to the probability of an interval of s values
whose length is going to 0. However, X, does not converge to X almost surely.
Indeed, there is no value of s € S for which X,(s) — s = X(s). For every s, the
value X, (s) alternates between the values s and s + 1 infinitely often. For example,
if s=32,X1(s) =13, X5(s) = 13, X3(s) = 3, X4(s) = 3, X5(s) = 13, Xe(s) = 2, etc.
No pointwise convergence occurs for this sequence.
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As might be guessed, convergence almost surely, being the stronger criterion, implies
convergence in probability. The converse is, of course, false, as Example 5.5.8 shows.
However, if a sequence converges in probability, it is possible to find a subsequence
that converges almost surely. (Resnick 1999, Section 6.3, has a thorough treatment of
the connections between the two types of convergence.)

Again, statisticians are often concerned with convergence to a constant. We now
gtate, without proof, the stronger analog of the WLLN, the Strong Law of Large
Numbers (SLLN). See Miscellanea 5.8.4 for an outline of a proof.

Theorem 5.5.9 (Strong Law of Large Numbers) Let Xy, Xa, ... be iid random
variables with EX; = p and Var X; = 0% < oo, and define X,, = (1/n) Y} 1, X;.
Then, for every e > 0,

P(lim | X, — u| <€) = 1;
n—oo
that is, X, converges almost surely to p.

For both the Weak and Strong Laws of Large Numbers we had the assumption
of a finite variance. Although such an assumption is true (and desirable) in most
applications, it is, in fact, a stronger assumption than is needed. Both the weak and
strong laws hold without this assumption. The only moment condition needed is that
E|X;| < oo (see Resnick 1999, Chapter 7, or Billingsley 1995, Section 22).

5.5.3 Convergence in Distribution

We have already encountered the idea of convergence in distribution in Chapter 2.
Remember the properties of moment generating functions (mgfs) and how their con-
vergence implies convergence in distribution (Theorem 2.3.12).

Definition 5.5.10 A sequence of random variables, X, X», ..., converges in distri-
bution to a random variable X if

lim Fx_(z) = Fx(z)

n—oo

at all points z where Fx(z) is continuous.

Example 5.5.11 (Maximum of uniforms) If X;, X,, ... are iid uniform(0, 1) and
X(n) = maxi<i<n Xj, let us examine if (and to where) X () converges in distribution.

As n — oo, we expect X () to get close to 1 and, as X () must necessarily be less
than 1, we have for any ¢ > 0,

P(|X(n) =1 2 €)= P(X(n) 2146)+ P(X(n) <1 —¢)
= 0+P(X(n) <1l-¢).

Next using the fact that we have an #d sample, we can write

P(X(n)_<.1“6)=P(Xis1—6,1::1’_,,7),):(1—5)",
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which goes to 0. So we have proved that X,y converges to 1 in probability. However,
if we take € = t/n, we then have

P(X(ny <1—t/n)=(1—t/n)" e,
which, upon rearranging, yields
Pn(l-Xm) <t) > 1-e%

that is, the random variable n(1— X)) converges in distribution to an exponential(1)
random variable. I

Note that although we talk of a sequence of random variables converging in dis-
tribution, it is really the cdfs that converge, not the random variables. In this very -
fundamental way convergence in distribution is quite different from convergence in
probability or convergence almost surely. However, it is implied by the other types of
convergence.

Theorem 5.5.12 If the sequence of random variables, X,, X5, ..., converges in prob-
ability to a random variable X, the sequence also converges in distribution to X .

See Exercise 5.40 for a proof. Note also that, from Section 5.5.2, convergence in
distribution is also implied by almost sure convergence.

In a special case, Theorem 5.5.12 has a converse that turns out to be useful. See
Example 10.1.13 for an illustration and Exercise 5.41 for a proof.

Theorem 5.5.13 The sequence of random variables, X, X2, ..., converges in prob-
ability to a constant u if and only if the sequence also converges in distribution to u.
That is, the statement

P(| Xy ~p|l >€)— 0 for everye >0

is equivalent to

0 fz<u
P(X"Sz)_}{l ifz > u.

The sample mean is one statistic whose large-sample behavior is quité important.
In particular, we want to investigate its limiting distribution. This is summarized in
one of the most startling theorems in statistics, the Central Limit Theorem (CLT).

Theorem 5.5.14 (Central Limit Theorem) Let X, X»,... be a sequence of iid
random variables whose mgfs erist in a neighborhood of 0 (that is, Mx, (t) exists for
|t| < h, for some positive h). Let EX; = u and Var X; = 02 > 0. (Both u and o? are
finite since the mgf exists.) Define Xn = (1/n) Y1, Xi. Let Gn(x) denote the cdf of
V(Xn — u)/o. Then, for any x, —o0 < T < 00,

lim Gn(z) =/ —l-e’”z/zdy;

n—oo — 00 271'

that is, v/n(Xn — p)/o has a limiting standard normal distribution.
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Before we prove this theorem (the proof is somewhat anticlimactic) we first look at
its implications. Starting from virtually no assumptions (other than independence and
finite variances), we end up with normality! The point here is that normality comes
from sums of “small” (finite variance), independent disturbances. The assumption of
finite variances is essentially necessary for convergence to normality. Although it can
be relaxed somewhat, it cannot be eliminated. (Recall Example 5.2.10, dealing with
the Cauchy distribution, where there is no convergence to normality.)

While we revel in the wonder of the CLT, it is also useful to reflect on its limi-
tations. Although it gives us a useful general approximation, we have no automatic
way of knowing how good the approximation is in general. In fact, the goodness of
the approximation is a function of the original distribution, and so must be checked
case by case. Furthermore, with the current availability of cheap, plentiful computing
power, the importance of approximations like the Central Limit Theorem is somewhat
lessened. However, despite its limitations, it is still a marvelous result.

Proof of Theorem 5.5.14: We will show that, for |t| < h, the mgf of \/n(X,—pu)/o
converges to et/ 2| the mgf of a n(0,1) random variable.

Define Y; = (X; — p)/o, and let My (t) denote the common mgf of the ¥;s, which
exists for |t| < oh and is given by Theorem 2.3.15. Since

\/H(Xn —

(5.5.1) fﬂ) - % Y,
i=1

we have, from-the properties of mgfs (see Theorems 2.3.15 and 4.6.7),

(5.5.2) M /a2 -y/e(t) = Mn_ v,/ /m(?)
t
= Msr v, (717) (Theorem 2.3.15)
= (My (\/Lﬁ)) . (Theorem 4.6.7)

We now expand My (t//n) in a Taylor series (power series) around 0. (See Defini-
tion 5.5.20.) We have

(5.5.3) ( ) Z t/ ‘/_),

where M. (k)( 0) = (d*/dt*¥) My(t)|,_,- Since the mgfs exist for [t| < h, the power
series expansion is valid if t < \/noh.

Using the facts that M,(,O) =1, M,(,,1 ) =0, and M,(,2 ) = 1 (by construction, the mean
and variance of Y are 0 and 1), we have

(5.5.4) My (%) _ 14 WY ‘/_)2 + Ry ( \;ﬁ) ,
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where Ry is the remainder term in the Taylor expansion,

Ry (\/_) ZM(k)(O) t/\/—

An application of Taylor’s Theorem (Theorem 5.5.21) shows that, for fixed ¢ # 0, we
have

lim Br(VR) _
w (t/vnE
Since t is fixed, we also have
. Ry(t/vn) _ .. t\ _
(5.5.5) nan;O NN ’}Ln;onRy )= 0,

and (5.5.5) is also true at t = 0 since Ry (0/y/n) = 0. Thus, for any fixed ¢, we can
write

(5.5.6)  lim (My (_\/%))" = lim [1 + (t/}z/!ﬁ)2 + Ry (%)r

-l d (G ()]

2
— /2

o~
[N

by an application of Lemma 2.3.14, where we set a, = (t2/2) + nRy(t/\/n). (Note
that (5.5.5) implies that a, — t2/2 as n — 00.) Since e*'/2 is the mgf of the n(0,1)
distribution, the theorem is proved. O

The Central Limit Theorem is valid in much more generality than is stated in
Theorem 5.5.14 (see Miscellanea 5.8.1). In particular, all of the assumptions about
mgfs are not needed—the use of characteristic functions (see Miscellanea 2.6.2) can
replace them. We state the next theorem without proof. It is a version of the Central
Limit Theorem that is general enough for almost all statistical purposes. Notice that
the only assumption on the parent distribution is that it has finite variance.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let
X1, Xa,... be a sequence of iid random vartables with EX; = u and 0 < Var X; =

02 < 0o. Define X, = (1/n) Y 1 Xi. Let Gn(z) denote the cdf of \/n(Xn — )/o.
Then, for any ¢, —00 < & < 00,

nlim Gn(z) = / eV /2 dy;

that is, /n(X, — u)/o has a limiting standard normal distribution.
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The proof is almost identical to that of Theorem 5.5.14, except that characteristic
,unctions are used instead of mgfs. Since the characteristic function of a distribution
always exists, it is not necessary to mention them in the assumptions of the theorem.
The proof is more delicate, however, since functions of complez variables must be
dealt with. Details can be found in Billingsley (1995, Section 27).

The Central Limit Theorem provides us with an all-purpose approximation (but
remember the warning about the goodness of the approximation). In practice, it can
always be used for a first, rough calculation.

Example 5.5.16 (Normal approximation to the negative binomial) Suppose

X1,..., X, are a random sample from a negative binomial(r, p) distribution. Recall
‘that
EX = "(lp_p), Var X — T(lp;p),

and the Central Limit Theorem tells us that

V(X —r(1 - p)/p)
r(1-p)/p?
is approximately n(0,1). The approximate probability calculations are much easier

than the exact calculations. For example, if r = 10, p = %, and n = 30, an exact
calculation would be

_332° 300+ 1Y) (1\* (1N® (5~ X is negative
- ~ z 2 2 binomial(nr, p)

= .8916,

which is a very difficult calculation. (Note that this calculation is difficult even with
the aid of a computer—the magnitudes of the factorials cause great difficulty. Try it
if you don’t believe it!) The CLT gives us the approximation

V30(X — 10) < v/30(11 — 10)
V20 T V20

~ P(Z < 1.2247) = .8888.

P(Xsll):P(

See Exercise 5.37 for some further refinement. I

An approximation tool that can be used in conjunction with the Central Limit
Theorem is known as Slutsky’s Theorem.

Theorem 5.5.17 (Slutsky’s Theorem) If X,, — X in distribution and Y, — a, ¢
constant, in probability, then
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a. Y, X, — aX in distribution.
b. X, +Y, - X + a in distribution.

The proof of Slutsky’s Theorem is omitted, since it relies on a characterization
of convergence in distribution that we have not discussed. A typical application is
illustrated by the following example.

Example 5.5.18 (Normal approximation with estimated vari