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Preface

There can be no question, my dear Watson, of the value of exercise
before breakfast.
Sherlock Holmes in “The Adventure of Black Peter”

The statistical analysis of multivariate data requires a variety of techniques
that are entirely different from the analysis of one-dimensional data. The study
of the joint distribution of many variables in high dimensions involves matrix
techniques that are not part of standard curricula. The same is true for trans-
formations and computer-intensive techniques, such as projection pursuit.

The purpose of this book is to provide a set of exercises and solutions to
help the student become familiar with the techniques necessary to analyze
high-dimensional data. It is our belief that learning to apply multivariate
statistics is like studying the elements of a criminological case. To become
proficient, students must not simply follow a standardized procedure, they
must compose with creativity the parts of the puzzle in order to see the big
picture. We therefore refer to Sherlock Holmes and Dr. Watson citations as
typical descriptors of the analysis.

Puerile as such an exercise may seem, it sharpens the faculties of
observation, and teaches one where to look and what to look for.
Sherlock Holmes in “Study in Scarlet”

Analytic creativity in applied statistics is interwoven with the ability to see
and change the involved software algorithms. These are provided for the stu-
dent via the links in the text. We recommend doing a small number of prob-
lems from this book a few times a week. And, it does not hurt to redo an
exercise, even one that was mastered long ago. We have implemented in these
links software quantlets from XploRe and R. With these quantlets the student
can reproduce the analysis on the spot.
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This exercise book is designed for the advanced undergraduate and first-year
graduate student as well as for the data analyst who would like to learn the
various statistical tools in a multivariate data analysis workshop.

The chapters of exercises follow the ones in Härdle & Simar (2003). The book is
divided into three main parts. The first part is devoted to graphical techniques
describing the distributions of the variables involved. The second part deals
with multivariate random variables and presents from a theoretical point of
view distributions, estimators, and tests for various practical situations. The
last part is on multivariate techniques and introduces the reader to the wide
selection of tools available for multivariate data analysis. All data sets are
downloadable at the authors’ Web pages. The source code for generating all
graphics and examples are available on the same Web site. Graphics in the
printed version of the book were produced using XploRe. Both XploRe and R
code of all exercises are also available on the authors’ Web pages. The names
of the respective programs are denoted by the symbol .

In Chapter 1 we discuss boxplots, graphics, outliers, Flury-Chernoff faces,
Andrews’ curves, parallel coordinate plots and density estimates. In Chapter 2
we dive into a level of abstraction to relearn the matrix algebra. Chapter 3
is concerned with covariance, dependence, and linear regression. This is fol-
lowed by the presentation of the ANOVA technique and its application to the
multiple linear model. In Chapter 4 multivariate distributions are introduced
and thereafter are specialized to the multinormal. The theory of estimation
and testing ends the discussion on multivariate random variables.

The third and last part of this book starts with a geometric decomposition of
data matrices. It is influenced by the French school of data analysis. This geo-
metric point of view is linked to principal component analysis in Chapter 9.
An important discussion on factor analysis follows with a variety of examples
from psychology and economics. The section on cluster analysis deals with
the various cluster techniques and leads naturally to the problem of discrimi-
nation analysis. The next chapter deals with the detection of correspondence
between factors. The joint structure of data sets is presented in the chapter
on canonical correlation analysis, and a practical study on prices and safety
features of automobiles is given. Next the important topic of multidimen-
sional scaling is introduced, followed by the tool of conjoint measurement
analysis. Conjoint measurement analysis is often used in psychology and mar-
keting to measure preference orderings for certain goods. The applications in
finance (Chapter 17) are numerous. We present here the CAPM model and
discuss efficient portfolio allocations. The book closes with a presentation on
highly interactive, computationally intensive, and advanced nonparametric
techniques.

A book of this kind would not have been possible without the help of many
friends, colleagues, and students. For many suggestions on how to formulate
the exercises we would like to thank Michal Benko, Szymon Borak, Ying
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Chen, Sigbert Klinke, and Marlene Müller. The following students have made
outstanding proposals and provided excellent solution tricks: Jan Adamčák,
David Albrecht, Lütfiye Arslan, Lipi Banerjee, Philipp Batz, Peder Egemen
Baykan, Susanne Böhme, Jan Budek, Thomas Diete, Daniel Drescher, Zeno
Enders, Jenny Frenzel, Thomas Giebe, LeMinh Ho, Lena Janys, Jasmin John,
Fabian Kittman, Lenka Komárková, Karel Komorád, Guido Krbetschek,
Yulia Maletskaya, Marco Marzetti, Dominik Michálek, Alena Myšičková,
Dana Novotny, Björn Ohl, Hana Pavlovičová, Stefanie Radder, Melanie
Reichelt, Lars Rohrschneider, Martin Rolle, Elina Sakovskaja, Juliane Scheffel,
Denis Schneider, Burcin Sezgen, Petr Stehĺık, Marius Steininger, Rong Sun,
Andreas Uthemann, Aleksandrs Vatagins, Manh Cuong Vu, Anja Weiß,
Claudia Wolff, Kang Xiaowei, Peng Yu, Uwe Ziegenhagen, and Volker
Ziemann. The following students of the computational statistics classes at
Charles University in Prague contributed to the R programming: Alena
Babiaková, Blanka Hamplová, Tomáš Hovorka, Dana Chromı́ková, Kristýna
Ivanková, Monika Jakubcová, Lucia Jarešová, Barbora Lebdušková, Tomáš
Marada, Michaela Maršálková, Jaroslav Pazdera, Jakub Pečánka, Jakub
Petrásek, Radka Picková, Kristýna Sionová, Ondřej Šedivý, Tereza Těšitelová,
and Ivana Žohová.

We acknowledge support of MSM 0021620839 and the teacher exchange pro-
gram in the framework of Erasmus/Sokrates.

We express our thanks to David Harville for providing us with the LaTeX
sources of the starting section on matrix terminology (Harville 2001). We
thank John Kimmel from Springer Verlag for continuous support and valuable
suggestions on the style of writing and the content covered.

Berlin and Prague, Wolfgang K. Härdle
April 2007 Zdeněk Hlávka
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Symbols and Notation

I can’t make bricks without clay.
Sherlock Holmes in “The Adventure of The Copper Beeches”

Basics

X,Y random variables or vectors
X1,X2, . . . , Xp random variables
X = (X1, . . . , Xp)� random vector
X ∼ · X has distribution ·
A,B matrices
Γ,∆ matrices
X ,Y data matrices
Σ covariance matrix
1n vector of ones (1, . . . , 1

︸ ︷︷ ︸

n-times

)�

0n vector of zeros (0, . . . , 0
︸ ︷︷ ︸

n-times

)�

Ip identity matrix
I(.) indicator function, for a set M is I = 1 on M ,

I = 0 otherwise
i

√
−1

⇒ implication
⇔ equivalence
≈ approximately equal
⊗ Kronecker product
iff if and only if, equivalence



2 Symbols and Notation

Characteristics of Distribution

f(x) pdf or density of X
f(x, y) joint density of X and Y
fX(x), fY (y) marginal densities of X and Y
fX1(x1), . . . , fXp

(xp) marginal densities of X1, . . . , Xp

f̂h(x) histogram or kernel estimator of f(x)
F (x) cdf or distribution function of X
F (x, y) joint distribution function of X and Y
FX(x), FY (y) marginal distribution functions of X and Y
FX1(x1), . . . , FXp

(xp) marginal distribution functions of X1, . . . , Xp

fY |X=x(y) conditional density of Y given X = x
ϕX(t) characteristic function of X
mk kth moment of X
κj cumulants or semi-invariants of X

Moments

EX,EY mean values of random variables or vectors X
and Y

E(Y |X = x) conditional expectation of random variable or
vector Y given X = x

µY |X conditional expectation of Y given X
Var(Y |X = x) conditional variance of Y given X = x
σ2

Y |X conditional variance of Y given X

σXY = Cov(X,Y ) covariance between random variables X and Y
σXX = Var(X) variance of random variable X

ρXY =
Cov(X,Y )

√

Var(X)Var(Y )
correlation between random variables X and Y

ΣXY = Cov(X,Y ) covariance between random vectors X and Y ,
i.e., Cov(X,Y ) = E(X − EX)(Y − EY )�

ΣXX = Var(X) covariance matrix of the random vector X

Samples

x, y observations of X and Y
x1, . . . , xn = {xi}n

i=1 sample of n observations of X
X = {xij}i=1,...,n;j=1,...,p (n × p) data matrix of observations of

X1, . . . , Xp or of X = (X1, . . . , Xp)T

x(1), . . . , x(n) the order statistic of x1, . . . , xn

H centering matrix, H = In − n−11n1�n
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Empirical Moments

x =
1
n

n
∑

i=1

xi average of X sampled by {xi}i=1,...,n

sXY =
1
n

n
∑

i=1

(xi − x)(yi − y) empirical covariance of random variables X
and Y sampled by {xi}i=1,...,n and
{yi}i=1,...,n

sXX =
1
n

n
∑

i=1

(xi − x)2 empirical variance of random variable X
sampled by {xi}i=1,...,n

rXY =
sXY√

sXXsY Y
empirical correlation of X and Y

S = {sXiXj
} empirical covariance matrix of X1, . . . , Xp or

of the random vector X = (X1, . . . , Xp)�

R = {rXiXj
} empirical correlation matrix of X1, . . . , Xp or

of the random vector X = (X1, . . . , Xp)�

Distributions

ϕ(x) density of the standard normal distribution
Φ(x) distribution function of the standard normal

distribution
N(0, 1) standard normal or Gaussian distribution
N(µ, σ2) normal distribution with mean µ and

variance σ2

Np(µ,Σ) p-dimensional normal distribution with
mean µ and covariance matrix Σ

L−→ convergence in distribution
P−→ convergence in probability

CLT Central Limit Theorem
χ2

p χ2 distribution with p degrees of freedom
χ2

1−α;p 1 − α quantile of the χ2 distribution with p
degrees of freedom

tn t-distribution with n degrees of freedom
t1−α/2;n 1 − α/2 quantile of the t-distribution with n

degrees of freedom
Fn,m F -distribution with n and m degrees of

freedom
F1−α;n,m 1 − α quantile of the F -distribution with n

and m degrees of freedom



4 Symbols and Notation

Mathematical Abbreviations

tr(A) trace of matrix A
diag(A) diagonal of matrix A
rank(A) rank of matrix A
det(A) or |A| determinant of matrix A
hull(x1, . . . , xk) convex hull of points {x1, . . . , xk}
span(x1, . . . , xk) linear space spanned by {x1, . . . , xk}



Some Terminology

I consider that a man’s brain originally is like a little empty attic,
and you have to stock it with such furniture as you choose. A fool
takes in all the lumber of every sort that he comes across, so that the
knowledge which might be useful to him gets crowded out, or at best
is jumbled up with a lot of other things so that he has a difficulty
in laying his hands upon it. Now the skilful workman is very careful
indeed as to what he takes into his brain-attic. He will have nothing
but the tools which may help him in doing his work, but of these he has
a large assortment, and all in the most perfect order. It is a mistake
to think that that little room has elastic walls and can distend to any
extent. Depend upon it there comes a time when for every addition
of knowledge you forget something that you knew before. It is of the
highest importance, therefore, not to have useless facts elbowing out
the useful ones.
Sherlock Holmes in “Study in Scarlet”

This section contains an overview of some terminology that is used throughout
the book. We thank David Harville, who kindly allowed us to use his TeX files
containing the definitions of terms concerning matrices and matrix algebra;
see Harville (2001). More detailed definitions and further explanations of the
statistical terms can be found, e.g., in Breiman (1973), Feller (1966), Härdle
& Simar (2003), Mardia, Kent & Bibby (1979), or Serfling (2002).

adjoint matrix The adjoint matrix of an n × n matrix A = {aij} is the
transpose of the cofactor matrix of A (or equivalently is the n×n matrix
whose ijth element is the cofactor of aji).

asymptotic normality A sequence X1,X2, . . . of random variables is asymp-
totically normal if there exist sequences of constants {µi}∞i=1 and {σi}∞i=1

such that σ−1
n (Xn − µn) L−→ N(0, 1). The asymptotic normality means
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that for sufficiently large n, the random variable Xn has approximately
N(µn, σ2

n) distribution.

bias Consider a random variable X that is parametrized by θ ∈ Θ. Suppose
that there is an estimator ̂θ of θ. The bias is defined as the systematic
difference between ̂θ and θ, E{̂θ−θ}. The estimator is unbiased if Êθ = θ.

characteristic function Consider a random vector X ∈ R
p with pdf f . The

characteristic function (cf) is defined for t ∈ R
p:

ϕX(t) − E[exp(it�X)] =
∫

exp(it�X)f(x)dx.

The cf fulfills ϕX(0) = 1, |ϕX(t)| ≤ 1. The pdf (density) f may be recov-
ered from the cf: f(x) = (2π)−p

∫

exp(−it�X)ϕX(t)dt.

characteristic polynomial (and equation) Corresponding to any n × n
matrix A is its characteristic polynomial, say p(.), defined (for −∞ < λ <
∞) by p(λ) = |A− λI|, and its characteristic equation p(λ) = 0 obtained
by setting its characteristic polynomial equal to 0; p(λ) is a polynomial in
λ of degree n and hence is of the form p(λ) = c0 + c1λ+ · · ·+ cn−1λ

n−1 +
cnλn, where the coefficients c0, c1, . . . , cn−1, cn depend on the elements of
A.

cofactor (and minor) The cofactor and minor of the ijth element, say aij ,
of an n×n matrix A are defined in terms of the (n−1)×(n−1) submatrix,
say Aij , of A obtained by striking out the ith row and jth column (i.e.,
the row and column containing aij): the minor of aij is |Aij |, and the
cofactor is the “signed” minor (−1)i+j |Aij |.

cofactor matrix The cofactor matrix (or matrix of cofactors) of an n × n
matrix A = {aij} is the n × n matrix whose ijth element is the cofactor
of aij .

conditional distribution Consider the joint distribution of two random
vectors X ∈ R

p and Y ∈ R
q with pdf f(x, y) : R

p+1 −→ R. The marginal
density of X is fX(x) =

∫

f(x, y)dy and similarly fY (y) =
∫

f(x, y)dx.
The conditional density of X given Y is fX|Y (x|y) = f(x, y)/fY (y). Sim-
ilarly, the conditional density of Y given X is fY |X(y|x) = f(x, y)/fX(x).

conditional moments Consider two random vectors X ∈ R
p and Y ∈ R

q

with joint pdf f(x, y). The conditional moments of Y given X are defined
as the moments of the conditional distribution.

contingency table Suppose that two random variables X and Y are ob-
served on discrete values. The two-entry frequency table that reports the
simultaneous occurrence of X and Y is called a contingency table.

critical value Suppose one needs to test a hypothesis H0 : θ = θ0. Consider
a test statistic T for which the distribution under the null hypothesis is



Some Terminology 7

given by Pθ0 . For a given significance level α, the critical value is cα such
that Pθ0(T > cα) = α. The critical value corresponds to the threshold
that a test statistic has to exceed in order to reject the null hypothesis.

cumulative distribution function (cdf) Let X be a p-dimensional ran-
dom vector. The cumulative distribution function (cdf) of X is defined by
F (x) = P (X ≤ x) = P (X1 ≤ x1,X2 ≤ x2, . . . , Xp ≤ xp).

derivative of a function of a matrix The derivative of a function f of an
m×n matrix X = {xij} of mn “independent” variables is the m×n matrix
whose ijth element is the partial derivative ∂f/∂xij of f with respect to
xij when f is regarded as a function of an mn-dimensional column vector
x formed from X by rearranging its elements; the derivative of a function
f of an n×n symmetric (but otherwise unrestricted) matrix of variables is
the n×n (symmetric) matrix whose ijth element is the partial derivative
∂f/∂xij or ∂f/∂xji of f with respect to xij or xji when f is regarded as
a function of an n(n+1)/2-dimensional column vector x formed from any
set of n(n + 1)/2 nonredundant elements of X .

determinant The determinant of an n × n matrix A = {aij} is (by
definition) the (scalar-valued) quantity

∑

(−1)|τ |a1τ(1) · · · anτ(n), where
τ(1), . . . , τ(n) is a permutation of the first n positive integers and the
summation is over all such permutations.

eigenvalues and eigenvectors An eigenvalue of an n × n matrix A is (by
definition) a scalar (real number), say λ, for which there exists an n × 1
vector, say x, such that Ax = λx, or equivalently such that (A−λI)x = 0;
any such vector x is referred to as an eigenvector (of A) and is said to
belong to (or correspond to) the eigenvalue λ. Eigenvalues (and eigenvec-
tors), as defined herein, are restricted to real numbers (and vectors of real
numbers).

eigenvalues (not necessarily distinct) The characteristic polynomial, say
p(.), of an n × n matrix A is expressible as

p(λ) = (−1)n(λ − d1)(λ − d2) · · · (λ − dm)q(λ) (−∞ < λ < ∞),

where d1, d2, . . . , dm are not-necessarily-distinct scalars and q(.) is a poly-
nomial (of degree n−m) that has no real roots; d1, d2, . . . , dm are referred
to as the not-necessarily-distinct eigenvalues of A or (at the possible
risk of confusion) simply as the eigenvalues of A. If the spectrum of A
has k members, say λ1, . . . , λk, with algebraic multiplicities of γ1, . . . , γk,
respectively, then m =

∑k
i=1 γi, and (for i = 1, . . . , k) γi of the m not-

necessarily-distinct eigenvalues equal λi .

empirical distribution function Assume that X1, . . . , Xn are iid observa-
tions of a p-dimensional random vector. The empirical distribution func-
tion (edf) is defined through Fn(x) = n−1

∑n
i=1 I(Xi ≤ x).



8 Some Terminology

empirical moments The moments of a random vector X are defined through
mk = E(Xk) =

∫

xkdF (x) =
∫

xkf(x)dx. Similarly, the empirical
moments are defined through the empirical distribution function Fn(x) =
n−1

∑n
i=1 I(Xi ≤ x). This leads to m̂k = n−1

∑n
i=1 Xk

i =
∫

xkdFn(x).

estimate An estimate is a function of the observations designed to approxi-
mate an unknown parameter value.

estimator An estimator is the prescription (on the basis of a random sample)
of how to approximate an unknown parameter.

expected (or mean) value For a random vector X with pdf f the mean
or expected value is E(X) =

∫

xf(x)dx.

gradient (or gradient matrix) The gradient of a vector f = (f1, . . . , fp)�

of functions, each of whose domain is a set in Rm×1, is the m × p matrix
[(Df1)�, . . . , (Dfp)�], whose jith element is Djfi. The gradient of f is the
transpose of the Jacobian matrix of f.

gradient vector The gradient vector of a function f , with domain in Rm×1,
is the m-dimensional column vector (Df)� whose jth element is the par-
tial derivative Djf of f .

Hessian matrix The Hessian matrix of a function f , with domain in Rm×1,
is the m×m matrix whose ijth element is the ijth partial derivative D2

ijf
of f .

idempotent matrix A (square) matrix A is idempotent if A2 = A.

Jacobian matrix The Jacobian matrix of a p-dimensional vector f = (f1,
. . . , fp)� of functions, each of whose domain is a set in Rm×1, is the
p × m matrix (D1f, . . . , Dmf) whose ijth element is Djfi; in the special
case where p = m, the determinant of this matrix is referred to as the
Jacobian (or Jacobian determinant) of f.

kernel density estimator The kernel density estimator ̂f of a pdf f , based
on a random sample X1,X2, . . . , Xn from f , is defined by

̂f(x) =
1

nh

n
∑

i=1

Kh

(

x − Xi

h

)

.

The properties of the estimator ̂f(x) depend on the choice of the kernel
function K(.) and the bandwidth h. The kernel density estimator can
be seen as a smoothed histogram; see also Härdle, Müller, Sperlich &
Werwatz (2004).

likelihood function Suppose that {xi}n
i=1 is an iid sample from a popula-

tion with pdf f(x; θ). The likelihood function is defined as the joint pdf
of the observations x1, . . . , xn considered as a function of the parame-
ter θ, i.e., L(x1, . . . , xn; θ) =

∏n
i=1 f(xi; θ). The log-likelihood function,
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�(x1, . . . , xn; θ) = log L(x1, . . . , xn; θ) =
∑n

i=1 log f(xi; θ), is often easier
to handle.

linear dependence or independence A nonempty (but finite) set of ma-
trices (of the same dimensions (n × p)), say A1,A2, . . . ,Ak, is (by defini-
tion) linearly dependent if there exist scalars x1, x2, . . . , xk, not all 0, such
that

∑k
i=1 xiAi = 0n0�p ; otherwise (if no such scalars exist), the set is lin-

early independent. By convention, the empty set is linearly independent.

marginal distribution For two random vectors X and Y with the joint
pdf f(x, y), the marginal pdfs are defined as fX(x) =

∫

f(x, y)dy and
fY (y) =

∫

f(x, y)dx.

marginal moments The marginal moments are the moments of the mar-
ginal distribution.

mean The mean is the first-order empirical moment x =
∫

xdFn(x) =
n−1

∑n
i=1 xi = m̂1.

mean squared error (MSE) Suppose that for a random vector C with a
distribution parametrized by θ ∈ Θ there exists an estimator ̂θ. The mean
squared error (MSE) is defined as EX(̂θ − θ)2.

median Suppose that X is a continuous random variable with pdf f(x).
The median x̃ lies in the center of the distribution. It is defined as
∫ �x
−∞ f(x)dx =

∫ +∞
�x f(x)dx − 0.5.

moments The moments of a random vector X with the distribution function
F (x) are defined through mk = E(Xk) =

∫

xkdF (x). For continuous
random vectors with pdf f(x), we have mk = E(Xk) =

∫

xkf(x)dx.

normal (or Gaussian) distribution A random vector X with the multi-
normal distribution N(µ,Σ) with the mean vector µ and the variance
matrix Σ is given by the pdf

fX(x) = |2πΣ|−1/2 exp
{

−1
2
(x − µ)�Σ−1(x − µ)

}

.

orthogonal complement The orthogonal complement of a subspace U of a
linear space V is the set comprising all matrices in V that are orthogonal
to U . Note that the orthogonal complement of U depends on V as well as
U (and also on the choice of inner product).

orthogonal matrix An (n×n) matrix A is orthogonal if A�A = AA� = In.

partitioned matrix A partitioned matrix, say

⎛

⎜

⎜

⎜

⎝

A11 A12 . . . A1c

A21 A22 . . . A2c

...
...

...
Ar1 Ar2 . . . Arc

⎞

⎟

⎟

⎟

⎠

, is a

matrix that has (for some positive integers r and c) been subdivided
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into rc submatrices Aij (i = 1, 2, . . . , r; j = 1, 2, . . . , c), called blocks,
by implicitly superimposing on the matrix r− 1 horizontal lines and c− 1
vertical lines (so that all of the blocks in the same “row” of blocks have
the same number of rows and all of those in the same “column” of blocks
have the same number of columns). In the special case where c = r, the
blocks A11,A22, . . . ,Arr are referred to as the diagonal blocks (and the
other blocks are referred to as the off-diagonal blocks).

probability density function (pdf) For a continuous random vector X
with cdf F , the probability density function (pdf) is defined as f(x) =
∂F (x)/∂x.

quantile For a random variable X with pdf f the α quantile qα is defined
through:

∫ qα

−∞ f(x)dx = α.

p-value The critical value cα gives the critical threshold of a test statistic T
for rejection of a null hypothesis H0 : θ = θ0. The probability Pθ0(T >
cα) = p defines that p-value. If the p-value is smaller than the significance
level α, the null hypothesis is rejected.

random variable and vector Random events occur in a probability space
with a certain even structure. A random variable is a function from this
probability space to R (or R

p for random vectors) also known as the state
space. The concept of a random variable (vector) allows one to elegantly
describe events that are happening in an abstract space.

scatterplot A scatterplot is a graphical presentation of the joint empirical
distribution of two random variables.

Schur complement In connection with a partitioned matrix A of the form

A =
(

T U
V W

)

or A =
(

W V
U T

)

, the matrix Q = W−VT −U is referred to

as the Schur complement of T in A relative to T − or (especially in a case
where Q is invariant to the choice of the generalized inverse T −) simply
as the Schur complement of T in A or (in the absence of any ambiguity)
even more simply as the Schur complement of T .

singular value decomposition (SVD) An m × n matrix A of rank r is
expressible as

A = P
(

D1 0
0 0

)

Q� = P1D1Q�
1 =

r
∑

i=1

sipiq
�
i =

k
∑

j=1

αjU j ,

where Q = (q1, . . . , qn) is an n × n orthogonal matrix and D1 = diag(s1,

. . . , sr) an r × r diagonal matrix such that Q�A�AQ =
(

D2
1 0

0 0

)

, where

s1, . . . , sr are (strictly) positive, where Q1 = (q1, . . . , qr), P1 = (p1, . . . ,
pr) = AQ1D−1

1 , and, for any m× (m−r) matrix P2 such that P�
1 P2 = 0,

P = (P1,P2), where α1, . . . , αk are the distinct values represented among
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s1, . . . , sr , and where (for j = 1, . . . , k) Uj =
∑

{i : si=αj} piq�i ; any of
these four representations may be referred to as the singular value decom-
position of A, and s1, . . . , sr are referred to as the singular values of A.
In fact, s1, . . . , sr are the positive square roots of the nonzero eigenvalues
of A�A (or equivalently AA�), q1, . . . , qn are eigenvectors of A�A, and
the columns of P are eigenvectors of AA�.

spectral decomposition A p × p symmetric matrix A is expressible as

A = ΓΛΓ� =
p
∑

i=1

λiγiγ
�
i

where λ1, . . . , λp are the not-necessarily-distinct eigenvalues of A, γ1, . . . ,
γp are orthonormal eigenvectors corresponding to λ1, . . . , λp, respectively,
Γ = (γ1, . . . , γp), D = diag(λ1, . . . , λp).

subspace A subspace of a linear space V is a subset of V that is itself a linear
space.

Taylor expansion The Taylor series of a function f(x) in a point a is the
power series

∑∞
n=0

f(n)(a)
n! (x−a)n. A truncated Taylor series is often used

to approximate the function f(x).
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Descriptive Techniques



1

Comparison of Batches

Like all other arts, the Science of Deduction and Analysis is one which
can only be acquired by long and patient study nor is life long enough
to allow any mortal to attain the highest possible perfection in it.
Before turning to those moral and mental aspects of the matter which
present the greatest difficulties, let the enquirer begin by mastering
more elementary problems.
Sherlock Holmes in “Study in Scarlet”

The aim of this chapter is to describe and discuss the basic graphical tech-
niques for a representation of a multidimensional data set. These descriptive
techniques are explained in detail in Härdle & Simar (2003).

The graphical representation of the data is very important for both the correct
analysis of the data and full understanding of the obtained results. The follow-
ing answers to some frequently asked questions provide a gentle introduction
to the topic.

We discuss the role and influence of outliers when displaying data in boxplots,
histograms, and kernel density estimates. Flury-Chernoff faces—a tool for
displaying up to 32 dimensional data—are presented together with parallel
coordinate plots. Finally, Andrews’ curves and draftman plots are applied to
data sets from various disciplines.

EXERCISE 1.1. Is the upper extreme always an outlier?

An outlier is defined as an observation which lies beyond the outside bars of
the boxplot, the outside bars being defined as:

FU + 1.5dF

FL − 1.5dF ,
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where FL and FU are the lower and upper fourths, respectively, and dF is the
interquartile range. The upper extreme is the maximum of the data set. These
two terms could be sometimes mixed up! As the minimum or maximum do
not have to lie outside the bars, they are not always the outliers.

Plotting the boxplot for the car data given in Table A.4 provides a nice
example SMSboxcar.

EXERCISE 1.2. Is it possible for the mean or the median to lie outside of the
fourths or even outside of the outside bars?

The median lies between the fourths per definition. The mean, on the contrary,
can lie even outside the bars because it is very sensitive with respect to the
presence of extreme outliers.

Thus, the answer is: NO for the median, but YES for the mean. It suffices
to have only one extremely high outlier as in the following sample: 1, 2, 2, 3,
4, 99. The corresponding depth values are 1, 2, 3, 3, 2, 1. The median depth is
(6 + 1)/2 = 3.5. The depth of F is (depth of median+1)/2 = 2.25. Here, the
median and the mean are:

x0.5 =
2 + 3

2
= 2.5,

x = 18.5.

The fourths are FL = 2, FU = 4. The outside bars therefore are 2−2×1.5 = −1
and 4+2× 1.5 = 7. The mean clearly falls outside the boxplot’s outside bars.

EXERCISE 1.3. Assume that the data are normally distributed N(0, 1). What
percentage of the data do you expect to lie outside the outside bars?

In order to solve this exercise, we have to make a simple calculation.

For sufficiently large sample size, we can expect that the characteristics of
the boxplots will be close to the theoretical values. Thus the mean and the
median are expected to lie very close to 0, the fourths FL and FU should be
lying close to standard normal quartiles z0.25 = −0.675 and z0.75 = 0.675.

The expected percentage of outliers is then calculated as the probability of
having an outlier. The upper bound for the outside bar is then

c = FU + 1.5dF = −(FL − 1.5dF ) ≈ 2.7,

where dF is the interquartile range. With Φ denoting the cumulative distribu-
tion function (cdf) of a random variable X with standard normal distribution
N(0, 1), we can write
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P (X /∈ [−c, c]) = 1 − P (X ∈ [−c, c])
= 1 − {Φ(c) − Φ(−c)}
= 2{1 − Φ(c)}
= 2{1 − Φ(2.7)}
= 2{1 − 0.9965)}
≈ 0.007

Thus, on average, 0.7 percent of the data will lie outside of the outside bars.

EXERCISE 1.4. What percentage of the data do you expect to lie outside the
outside bars if we assume that the data are normally distributed N(0, σ2) with
unknown variance σ2?

From the theory we know that σ changes the scale, i.e., for large sample
sizes the fourths FL and FU are now close to −0.675σ and 0.675σ. One could
therefore guess that the percentage of outliers stays the same as in Exercise 1.3
since the change of scale affects the outside bars and the observations in the
same way.

Our guess can be verified mathematically. Let X denote random variable
with distribution N(0, σ2). The expected percentage of outliers can now be
calculated for c = FU + 1.5dF = −(FL − 1.5dF ) ≈ 2.7σ as follows:

P (X /∈ [−c, c]) = 1 − P (X ∈ [−c, c])

= 1 − P

(

X

σ
∈
[

− c

σ
,
c

σ

]
)

= 1 −
{

Φ
( c

σ

)

− Φ
(

− c

σ

)}

= 2
{

1 − Φ
( c

σ

)}

= 2{1 − Φ(2.7)}
≈ 0.007.

Again, 0.7 percent of the data lie outside of the bars.

EXERCISE 1.5. How would the Five Number Summary of the 15 largest U.S.
cities differ from that of the 50 largest U.S. cities? How would the five-number
summary of 15 observations of N(0, 1)-distributed data differ from that of 50
observations from the same distribution?

In the Five Number Summary, we calculate the upper fourth or upper quartile
FU , the lower fourth (quartile) FL, the median and the extremes. The Five
Number Summary can be graphically represented by a boxplot.
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15 largest cities
Minimum 77355
25% Quartile 84650
Median 104091
75% Quartile 134319
Maximum 591004

All 50 cities
Minimum 1212
25% Quartile 36185
Median 56214
75% Quartile 83564
Maximum 591004

Taking 50 instead of 15 largest cities results in a decrease of all characteristics
in the five-number summary except for the upper extreme, which stays the
same (we assume that there are not too many cities of an equal size).

15 observations
Minimum −2.503
25% Quartile −1.265
Median −0.493
75% Quartile −0.239
Maximum 1.950

50 observations
Minimum −2.757
25% Quartile −1.001
Median −0.231
75% Quartile 0.209
Maximum 2.444

In the case of the normally distributed data, the obtained result depends on
the randomly generated samples. The median and the fourths should be, on
average, of the same magnitude in both samples and they should lie a bit
closer to the theoretical values Φ−1(0.25) = −0.6745 and Φ−1(0.75) = 0.6745
in the bigger sample.

We can expect that the extremes will lie further from the center of the distri-
bution in the bigger sample.

EXERCISE 1.6. Is it possible that all five numbers of the five-number sum-
mary could be equal? If so, under what conditions?

Yes, it is possible. This can happen only if the maximum is equal to the
minimum, i.e., if all observations are equal. Such a situation is in practice
rather unusual.

EXERCISE 1.7. Suppose we have 50 observations of X ∼ N(0, 1) and another
50 observations of Y ∼ N(2, 1). What would the 100 Flury-Chernoff faces
(Chernoff 1973, Flury & Riedwyl 1981) look like if X and Y define the face
line and the darkness of hair? Do you expect any similar faces? How many
faces look like observations of Y even though they are X observations?

One would expect many similar faces, because for each of these random vari-
ables 47.7% of the data lie between 0 and 2.

You can see the resulting Flury-Chernoff faces plotted on Figures 1.1 and 1.2.
The “population” in Figure 1.1 looks thinner and the faces in Figure 1.2 have
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Observations 1 to 50

Fig. 1.1. Flury-Chernoff faces of the 50 N(0, 1) distributed data. SMSfacenorm
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Observations 51 to 100

Fig. 1.2. Flury-Chernoff faces of the 50 N(2, 1) distributed data. SMSfacenorm
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Fig. 1.3. Histograms for the mileage of the U.S. (top left), Japanese (top right),
European (bottom left) and all (bottom right) cars. SMShiscar

darker hair. However, many faces could claim that they are coming from the
other sample without arousing any suspicion.

EXERCISE 1.8. Draw a histogram for the mileage variable of the car data
(Table A.4). Do the same for the three groups (U.S., Japan, Europe). Do you
obtain a similar conclusion as in the boxplots on Figure 1.3 in Härdle & Simar
(2003)?

The histogram is a density estimate which gives us a good impression of the
shape distribution of the data.

The interpretation of the histograms in Figure 1.3 doesn’t differ too much
from the interpretation of the boxplots as far as only the European and the
U.S. cars are concerned.

The distribution of mileage of Japanese cars appears to be multimodal—the
amount of cars which achieve a high fuel economy is considerable as well
as the amount of cars which achieve a very low fuel economy. In this case,
the median and the mean of the mileage of Japanese cars don’t represent the
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data properly since the mileage of most cars lies relatively far away from these
values.

EXERCISE 1.9. Use some bandwidth selection criterion to calculate the opti-
mally chosen bandwidth h for the diagonal variable of the bank notes. Would
it be better to have one bandwidth for the two groups?

The bandwidth h controls the amount of detail seen in the histogram. Too
large bandwidths might lead to loss of important information whereas a too
small bandwidth introduces a lot of random noise and artificial effects. A
reasonable balance between “too large” and “too small” is provided by band-
width selection methods. The Silverman’s rule of thumb—referring to the
normal distribution—is one of the simplest methods.

Using Silverman’s rule of thumb for Gaussian kernel, hopt = σ̂n−1/51.06,
the optimal bandwidth is 0.1885 for the genuine banknotes and 0.2352 for
the counterfeit ones. The optimal bandwidths are different and indeed, for
comparison of the two density estimates, it would be sensible to use the same
bandwidth.

Swiss bank notes
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Fig. 1.4. Boxplots and kernel densities estimates of the diagonals of genuine and
counterfeit bank notes.

SMSboxbank6 SMSdenbank

EXERCISE 1.10. In Figure 1.4, the densities overlap in the region of diagonal
≈ 140.4. We partially observe this also in the boxplots. Our aim is to separate
the two groups. Will we be able to do this effectively on the basis of this
diagonal variable alone?
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No, using the variable diagonal alone, the two groups cannot be effectively
separated since the densities overlap too much. However, the length of the
diagonal is a very good predictor of the genuineness of the banknote.

EXERCISE 1.11. Draw a parallel coordinates plot for the car data.

Parallel coordinates plots (PCP) are a handy graphical method for displaying
multidimensional data. The coordinates of the observations are drawn in a
system of parallel axes. Index j of the coordinate is mapped onto the horizontal
axis, and the (0, 1) normalized value xj is mapped onto the vertical axis. The
PCP of the car data set is drawn in Figure 1.5. Different line styles allow to
visualize the differences between groups and/or to find suspicious or outlying
observations. The styles scheme in Figure 1.5 shows that the European and
Japanese cars are quite similar. American cars, on the other hand, show much
larger values of the 7th up to 11th variable. The parallelism of the lines in
this region shows that there is a positive relationship between these variables.
Checking the variable names in Table A.4 reveals that these variables describe
the size of the car. Indeed, U.S. cars tend to be larger than European or
Japanese cars.

The large amount of intersecting lines between the first and the second axis
proposes a negative relationship between the first and the second variable,
price and mileage.

The disadvantage of PCP is that the type of relationship between two variables
can be seen clearly only on neighboring axes. Thus, we recommend that also
some other type of graphics, e.g. scatterplot matrix, complements the analysis.

EXERCISE 1.12. How would you identify discrete variables (variables with
only a limited number of possible outcomes) on a parallel coordinates plot?

Discrete variables on a parallel coordinates plot can be identified very easily
since for discrete variable all the lines join in a small number of knots.

Look for example at the last variable, X13 = company headquarters, on the
PCP for the car data in Figure 1.5.

EXERCISE 1.13. Is the height of the bars of a histogram equal to the relative
frequency with which observations fall into the respective bin?

The histogram is constructed by counting the number of observations in each
bin and then standardizing it to integrate to 1. The statement is therefore
true.

EXERCISE 1.14. Must the kernel density estimate always take on values only
between 0 and 1?
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Cars data

0.00

1.00

 1  2  3  4  5  6  7  8  9 10 11 12 13

Fig. 1.5. Parallel coordinates plot for the car data. The full line marks U.S. cars,
the dotted line marks Japanese cars and the dashed line marks European cars.

SMSpcpcar

False. The values of the density itself can lie anywhere between 0 and +∞.
Only the integral of the density has to be equal to one.

EXERCISE 1.15. Let the following data set represent the heights (in m) of 13
students taking a multivariate statistics course:

1.72, 1.83, 1.74, 1.79, 1.94, 1.81, 1.66, 1.60, 1.78, 1.77, 1.85, 1.70, 1.76.

1. Find the corresponding five-number summary.

2. Construct the boxplot.
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3. Draw a histogram for this data set.

Let us first sort the data set in ascending order:

1.60, 1.66, 1.70, 1.72, 1.74, 1.76, 1.77, 1.78, 1.79, 1.81, 1.83, 1.85, 1.94.

As the number of observations is n = 13, the depth of the median is (13 +
1)/2 = 7 and the median is equal to the 7th observation x(7) = 1.77. Next,

the depth of fourths is defined as [depth of median+1]
2 = 7+1

2 = 4 and the
fourths are FU = x(4) = 1.72 and FL = x(10) = 1.81. This leads the following
Five Number Summary:

Height
Minimum 1.60
25% Quartile 1.72
Median 1.77
75% Quartile 1.81
Maximum 1.94

In order to construct the boxplot, we have to compute the outside bars. The
F -spread is dF = FU −FL = 1.81−1.72 = 0.09 and the outside bars are equal
to FL − 1.5dF = 1.585 and FU + 1.5dF = 1.945. Apparently, there are no
outliers, so the boxplot consists only of the box itself, the mean and median
lines, and from the whiskers.

The histogram is plotted on Figure 1.6. The binwidth h = 5cm= 0.05m seems
to provide a nice picture here.

EXERCISE 1.16. Analyze data that contain unemployment rates of all German
federal states (Table A.16) using various descriptive techniques.

A good way to describe one-dimensional data is to construct a boxplot. In the
same way as in Exercise 1.15, we sort the data in ascending order,

5.8, 6.2, 7.7, 7.9, 8.7, 9.8, 9.8, 9.8, 10.4, 13.9, 15.1, 15.8, 16.8, 17.1, 17.3, 19.9,

and construct the boxplot. There are n = 16 federal states, the depth of the
median is therefore (16 + 1).2 = 8.5 and the depth of fourths is 4.5.

The median is equal to the average of the 8th and 9th smallest observation, i.e.,
M = 1

2

(

x(n
2 ) + x(n

2 +1)
)

= 10.1 and the lower and upper fourths (quartiles)

are FL = 1
2 (x(4) + x(5)) = 8.3, FU = 1

2 (x(12) + x(13)) = 16.3.

The outside bars are FU + 1.5dF = 28.3 and FL − 1.5dF = −3.7 and hence
we can conclude that there are no outliers. The whiskers end at 5.8 and 19.9,
the most extreme points that are not outliers.
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Histogram of student heights
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Fig. 1.6. Histogram of student heights. SMShisheights

The resulting boxplot for the complete data set is shown on the left hand side
of Figure 1.7. The mean is greater than the median, which implies that the
distribution of the data is not symmetric. Although 50% of the data are smaller
than 10.1, the mean is 12. This indicates that there are a few observations
that are much bigger than the median. Hence, it might be a good idea to
explore the structure of the data in more detail. The boxplots calculated only
for West and East Germany show a large discrepancy in unemployment rate
between these two regions. Moreover, some outliers appear when these two
subsets are plotted separately.

EXERCISE 1.17. Using the yearly population data in Table A.11, generate

1. a boxplot (choose one of variables),

2. an Andrews’ Curve (choose ten data points),

3. a scatterplot,

4. a histogram (choose one of the variables).
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Fig. 1.7. Boxplots for the unemployment data. SMSboxunemp

What do these graphs tell you about the data and their structure?

A boxplot can be generated in the same way as in the previous examples.
However, plotting a boxplot for time series data might mislead us since the
distribution changes every year and the upward trend observed in this data
makes the interpretation of the boxplot very difficult.

A histogram gives us a picture about how the distribution of the variable looks
like, including its characteristics such as skewness, heavy tails, etc. In contrast
to the boxplot it can also show multimodality. Similarly as the boxplot, a
histogram would not be a reasonable graphical display for this time series
data.

In general, for time series data in which we expect serial dependence, any plot
omitting the time information may be misleading.

Andrews’ curves are calculated as a linear combination of sine and cosine
curves with different frequencies, where the coefficients of the linear combina-
tion are the multivariate observations from our data set (Andrews 1972). Each
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Fig. 1.8. Andrews’ curves SMSandcurpopu and scatterplot of unemployment
against number of inhabitants SMSscapopu for population data.

multivariate observation is represented by one curve. Differences between var-
ious observations lead to curves with different shapes. In this way, Andrews’
curves allow to discover homogeneous subgroups of the multivariate data set
and to identify outliers.

Andrews’ curves for observations from years 1970–1979 are presented in Fig-
ure 1.8. Apparently, there are two periods. One period with higher (years
1975–1979) and the other period with lower (years 1970–1974) values.

A scatterplot is a two-dimensional graph in which each of two variables is put
on one axis and data points are drawn as single points (or other symbols).
The result for the analyzed data can be seen on Figure 1.8. From a scatter-
plot you can see whether there is a relationship between the two investigated
variables or not. For this data set, the scatterplot in Figure 1.8 provides a
very informative graphic. Plotted against the population (that increased over
time) one sees the sharp oil price shock recession.

EXERCISE 1.18. Make a draftman plot for the car data with the variables

X1 = price,

X2 = mileage,

X8 = weight,

X9 = length.

Move the brush into the region of heavy cars. What can you say about price,
mileage and length? Move the brush onto high fuel economy. What are the
differences among the Japanese, European and U.S. American cars?
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Fig. 1.9. Draftman plot and density contour plots for the car data. In scatterplots,
the squares mark U.S. cars, the triangles mark Japanese cars and the circles mark
European cars. SMSdrafcar

The so-called draftman plot is a matrix consisting of all pairwise scatterplots.
Clearly, the matrix is symmetric and hence we display also estimated density
contour plots in the upper right part of the scatterplot matrix in Figure 1.9.

The heaviest cars in Figure 1.9 are all American, and any of these cars is
characterized by high values of price, mileage, and length. Europeans and
Japanese prefer smaller, more economical cars.

EXERCISE 1.19. What is the form of a scatterplot of two independent normal
random variables X1 and X2?

The point cloud has circular shape and the density of observations is highest
in the center of the circle. This corresponds to the density of two-dimensional
normal distribution which is discussed in Härdle & Simar (2003, chapter 5).
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EXERCISE 1.20. Rotate a three-dimensional standard normal point cloud in
3D space. Does it “almost look the same from all sides”? Can you explain why
or why not?

Standard Normal point cloud

-1.27
0.02

1.31
2.60

3.89

-3.11
-1.79

-0.47
0.85

2.17

-2.00

-0.91

0.19

1.29

2.39

Fig. 1.10. A 3D scatterplot of the standard normal distributed data (300 observa-
tions). SMSscanorm3.

The standard normal point cloud in 3D space, see Figure 1.10, looks almost
the same from all sides, because it is a realization of random variables whose
variances are equal and whose covariances are zero.

The density of points corresponds to the density of a three-dimensional normal
distribution which has spherical shape. Looking at the sphere from any point
of view, the cloud of points always has a circular (spherical) shape.



Part II

Multivariate Random Variables
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A Short Excursion into Matrix Algebra

Dirty-looking rascals, but I suppose every one has some little immortal
spark concealed about him.
Sherlock Holmes in “The Sign of Four”

In statistics, data sets come in matrix form and the characteristics of the data
can be written in terms of matrix operations. Understanding matrix algebra
is crucial for investigating the properties of the observed data.

The importance of matrix algebra lies in a great simplification of many mathe-
matical formulas and derivations. The spectral decomposition is one of the
most commonly used tools in multivariate statistics because it allows a nice
representation of large dimensional matrices in terms of their eigenvalues and
eigenvectors.

Calculation of the determinant of partitioned matrices helps us in calculating
constrained maximum likelihood estimators and testing of hypothesis. Prop-
erties of projection matrices are useful in least squares regression analysis,
and iso-distance ellipsoids help us to understand covariance structures.

EXERCISE 2.1. Compute the determinant for a (3 × 3) matrix.

For a square matrix A, the determinant is defined as:

det(A) = |A| =
∑

(−1)|τ | a1τ(1) . . . apτ(p),

the summation is over all permutations τ of {1, 2, . . . , p}, and (−1)|τ | denotes
the sign of the permutation τ . For a three-dimensional matrix A3×3 = {aij},
the determinant of A becomes

|A| = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12.

In terms of the eigenvalues λ1, λ2, and λ3, the determinant can be written as
|A| = λ1λ2λ3.
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EXERCISE 2.2. Suppose that |A| = 0. Is it possible that all eigenvalues of A
are positive?

Given An×n, the eigenvalues λi, for i = 1, ..., n are the roots of the polynomial

|A − λI| = 0. (2.1)

If |A| = 0 then one of the solutions of (2.1) is λ = 0. Hence, if |A| = 0 then
there exists at least one eigenvalue such that λi = 0.

EXERCISE 2.3. Suppose that all eigenvalues of some (square) matrix A are
different from zero. Does the inverse A−1 of A exist?

The fact that all eigenvalues are different from zero implies that also the
determinant |A| =

∏

i λi �= 0 and the inverse matrix A−1 can be calculated
as A−1 = |A|−1C, where C is the so-called adjoint matrix of A, see the intro-
ductory section on terminology for more details.

EXERCISE 2.4. Write a program that calculates the spectral decomposition of
the matrix

A =

⎛

⎝

1 2 3
2 1 2
3 2 1

⎞

⎠ .

Check the properties of the spectral decomposition numerically, i.e., calculate
|A| as in Exercise 2.1 and check that it is equal to λ1λ2λ3.

We obtain the following matrix of eigenvectors

Γ = (γ1, γ3, γ3) =

⎛

⎝

0.3645 0.6059 -0.7071
-0.8569 0.5155 0.0000
0.3645 0.6059 0.7071

⎞

⎠

and the following eigenvalues

Λ =

⎛

⎝

-0.7016 0.0000 0.0000
0.0000 5.7016 0.0000
0.0000 0.0000 −2.0000

⎞

⎠ .

Now it can be easily verified that ΓΛΓ� = A, Γ�Γ = I, trA = λ1 +λ2 +λ3,
|A| = λ1λ2λ3, etc. SMSjordandec

EXERCISE 2.5. Prove that ∂a�x
∂x = a, ∂x�Ax

∂x = 2Ax, and ∂2x�Ax
∂x∂x� = ∂2Ax

∂x =
2A.
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Recall the gradient vector definition from the introductory section on termi-
nology. The kth element of the vector of partial derivatives ∂a�x

∂x is equal to
∂a�x
∂xk

= ak. It follows immediately that

∂a�x

∂x
= a.

Similarly, differentiating

∂x�Ax

∂x
=

∂(
∑p

i=1

∑p
j=1 aijxixj)
∂x

with respect to xk gives

∂(.)
∂xk

=
∂akkx2

k

∂xk
+

∂
∑

i�=k aikxixk

∂xk
+

∂
∑

j �=k akjxkxj

∂xk
= 2

p
∑

j=1

akjxj ,

which is just the kth element of vector 2Ax.

Using the above two properties, we have the following for the last formula

∂2x�Ax

∂x∂x� =
∂2Ax

∂x
= 2A.

EXERCISE 2.6. Show that a projection (idempotent) matrix has eigenvalues
only in the set {0, 1}.

A is a projection matrix if A = A2 = A�. Let λi be an eigenvalue of A and
γi its corresponding eigenvector:

Aγi = λiγi

A2γi = λiAγi

Aγi = λiAγi

Aγi = λ2
i γi

λiγi = λ2
i γi

λi = λ2
i .

It is obvious that λi = λ2
i only if λi is equal to 1 or 0.

EXERCISE 2.7. Draw some iso-distance ellipsoids {x ∈ R
p|(x − x0)�A(x −

x0) = d2} for the metric A = Σ−1, where Σ =
(

1 ρ
ρ 1

)

.

The eigenvalues of Σ are solutions to:
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∣

∣

∣

∣

1 − λ ρ
ρ 1 − λ

∣

∣

∣

∣
= 0.

Hence, λ1 = 1 + ρ and λ2 = 1 − ρ. Notice, that the eigenvalues of matrix A
are equal to λ−1

1 and λ−1
2 . The eigenvector corresponding to λ1 = 1 + ρ can

be computed from the system of linear equations:
(

1 ρ
ρ 1

)(

x1

x2

)

= (1 + ρ)
(

x1

x2

)

or
x1 + ρx2 = x1 + ρx1

ρx1 + x2 = x2 + ρx2

and thus x1 = x2. The first (standardized) eigenvector is

γ1 =
(

1
/√

2
1
/√

2

)

.

The second eigenvector (orthogonal to γ1) is

γ2 =
(

1
/√

2
−1
/√

2

)

.

The axes of the ellipsoid point in the directions provided by the eigenvectors.
The length of each axis is equal to d

√
λi.

Four ellipses for varying values of d and ρ are plotted in Figure 2.1.

EXERCISE 2.8. Find a formula for |A + aa�| and for (A + aa�)−1.

We define matrix B =
(

1 −a�

a A

)

and apply the formulas for determinant and

inverse of a partitioned matrix. The determinant of B can be written in two
ways as

|B| = |1||A + aa�| (2.2)
|B| = |A||1 + a�A−1a|. (2.3)

Comparing (2.2) and (2.3) implies that

|A + aa�| = |A||1 + a�A−1a|.

Next, using the formula for inverse of the partitioned matrix B, we obtain

(A + aa�)−1 = A−1 − A−1aa�A−1

1 + a�A−1a
.

This result will prove to be useful in the derivation of the variance efficient
portfolios discussed in Exercises 17.1 and 17.3.
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Fig. 2.1. Ellipses for varying ρ and d. SMSellipse

EXERCISE 2.9. Prove the binomial inverse theorem for two non-singular
matrices A(p× p) and B(p× p): (A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1.

Let us define C =
(

A Ip

−Ip B−1

)

. Considering the formula for the inverse of a

partitioned matrix, the submatrix C11 of C−1 can be obtained in two ways:

C11 = (A + IBI)−1

= (A + B)−1 (2.4)
C11 = A−1 + A−1I(B−1 − IA−1I)−1IA−1

= A−1 −A−1(A−1 + B−1)−1A−1. (2.5)

Comparing expressions (2.4) and (2.5) proves the binomial inverse theorem.
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Moving to Higher Dimensions

At first it was but a lurid spark upon the stone pavement. Then it
lengthened out until it became a yellow line, and then without any
warning or sound, a gash seemed to open and a hand appeared, . . .
“The Red-Headed League”

The basic tool used for investigating dependencies between the ith and jth
components of a random vector X is the covariance

σXiXj
= Cov(Xi,Xj) = E(XiXj) − (EXi)(EXj).

From a data set, the covariance between the ith and jth columns can be
estimated as

sXiXj
=

1
n

n
∑

k=1

(xik − xi)(xjk − xj).

The covariance tells us how one variable depends linearly on another variable.
The concept of covariance and correlation is therefore strongly tied to linear
statistical modeling. The significance of correlation is measured via Fisher’s
Z-transform, and the fit of regression lines is judged by the coefficient of de-
termination. The ANOVA variance decomposition helps us understand nested
linear models.

We discuss here linear models for a marketing example (the sales of classic
blue pullovers) and study theoretical properties of covariance and correlation.
The least squares method is revisited and analyzed with analytical tools.

Analysis of variance (ANOVA) can be seen as a special case of the linear
model with an appropriately selected design matrix. Similarly, the test of the
ANOVA hypothesis of the equality of mean effects in more treatment groups
can be seen as a special case of an F -test in the linear model formulation.
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Fig. 3.1. Scatterplot of variables X4 vs. X5 of the entire bank data set.
SMSscabank45

EXERCISE 3.1. The covariance sX4X5 between X4 and X5 for the entire bank
data set is positive. Given the definitions of X4 and X5, we would expect a
negative covariance. Using Figure 3.1 can you explain why sX4X5 is positive?

Variables X4 and X5 are defined as the distance of the inner frame to the lower
or upper border, respectively. In general, small deviations in the position of
the center picture would lead to negative dependencies between variables X4

and X5.

Surprisingly, the empirical covariance is equal to 0.16.

An explanation is shown in Figure 3.1. We observe in fact two clouds of points,
the counterfeit and the genuine banknotes. The relationship between X4 and
X5 is negative inside these groups. The calculation of the empirical covariance
ignores this information and it is confused by the relative position of these
two groups of observations.
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EXERCISE 3.2. Consider the two sub-clouds of counterfeit and genuine bank
notes in Figure 3.1 separately. Do you still expect sX4X5 (now calculated sep-
arately for each cloud) to be positive?

Considering the covariance of X4 and X5 for the full bank data set gives
a result which does not have any meaningful interpretation. As expected,
the covariances for the first hundred observations (−0.26) and for the second
hundred observations (−0.49) are negative.

EXERCISE 3.3. It is well known that for two normal random variables, zero
covariance implies independence. Why does this not apply to the following
situation: X ∼ N(0, 1), Cov(X,X2) = EX3 − EXEX2 = 0 − 0 = 0 but
obviously X2 is totally dependent on X?

It is easy to show that independence of two random variables implies zero
covariance:

Cov(X,Y ) = E(XY ) − EXEY
indep.

= EXEY − EXEY = 0.

The opposite is true only if X and Y are jointly normally distributed which can
be checked by calculating the joint density and the product of the marginals.

From above we see that, for standard normally distributed random variable
X, we have Cov(X,X2) = 0. In this example, zero covariance does not imply
independence since the random variable X2 is not normally distributed.

EXERCISE 3.4. Compute the covariance between the variables

X2 = miles per gallon,
X8 = weight

from the car data set (Table A.4). What sign do you expect the covariance to
have?

The empirical covariance is −3732. It is negative as expected since heavier
cars tend to consume more gasoline and this leads to lower mileage. The
negative covariance corresponds to a negative slope that could be observed in
a scatterplot.

It is very difficult to judge the strength of the dependency between weight
and mileage on the basis of the covariance. A more appropriate measure is
the correlation which is a scale independent version of the covariance.

Correlation lies always between −1 and 1. Values close to 1 or −1 indicate
strong positive or negative relationship, respectively. Correlation rX2X8 =
−0.823 between weight and mileage suggests rather strong negative relation-
ship. Using Fisher’s Z-transformation, we can prove the statistical significance
of rX2X8 , see Härdle & Simar (2003, example 3.5).
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EXERCISE 3.5. Compute the correlation matrix of the variables in “classic
blue” pullover data set (Table A.6). Comment on the sign of the correlations
and test the hypothesis

ρX1X2 = 0.

The correlation matrix is

R =

⎛

⎜

⎜

⎝

1.000 −0.168 0.867 0.633
−0.168 1.000 0.121 −0.464

0.867 0.121 1.000 0.308
0.633 −0.464 0.308 1.000

⎞

⎟

⎟

⎠
.

The correlation rX1X2 = −0.168 says that the relationship between sales and
prices is negative as predicted by the economic theory. On the other hand, we
observe positive correlation of sales with advertisement and presence of a sale
assistant which suggests that investments in advertisement and sale assistants
increase the sales.

Using the Fisher Z-transformation and standardizing the transformed value,
we obtain the value z = −0.4477 and hence we cannot reject the null hypoth-
esis H0 : ρ = 0 since this is a nonsignificant value.

Considering the small sample size, n = 10, we can improve the test using
Hotelling’s transformation

w∗ = w − 3w + tanh(w)
4(n − 1)

= −0.1504

which is also nonsignificant since −0.1504
√

n − 1 = −0.4513 < −1.96.

EXERCISE 3.6. Suppose you have observed a set of observations {xi}n
i=1 with

x = 0, sXX = 1 and n−1
∑n

i=1(xi −x)3 = 0. Define the variable yi = x2
i . Can

you immediately tell whether rXY �= 0?

Plugging yi = x2
i into the following formula for calculating the empirical

covariance

sXY =
1
n

n
∑

i=1

xiyi − xy

we obtain

sXY = sXX2 =
1
n

n
∑

i=1

x2
i xi − yx =

1
n

n
∑

i=1

x3
i =

1
n

n
∑

i=1

(x3
i − x) = 0.

We remark that this calculation holds for any finite value of sXX .
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EXERCISE 3.7. Find the values α̂ and ̂β that minimize the sum of squares
n
∑

i=1

(yi − α − βxi)2 (3.1)

The values α̂ and ̂β are actually estimates of an intercept and a slope, re-
spectively, of a regression line fitted to data {(xi, yi)}n

i=1 by the least squares
method. More formally, the estimators can be expressed as

(α̂, ̂β) = arg min
(α,β)

n
∑

i=1

(yi − α − βxi)2.

One has to understand that α̂ and ̂β are random variables since they can be
expressed as functions of random observations xi and yi. Random variables α̂
and ̂β are called estimators of the true unknown (fixed) parameters α and β.

The estimators can be obtained by differentiating the sum of squares (3.1)
with respect to α and β and by looking for a zero point of the derivative. We
obtain

∂
∑n

i=1(yi − α − βxi)2

∂α
= −2

n
∑

i=1

(yi − α − βxi) = 0, (3.2)

α = n−1
n
∑

i=1

yi − n−1β

n
∑

i=1

xi, (3.3)

and
∂
∑n

i=1(yi − α − βxi)2

∂β
= −2

n
∑

i=1

(yi − α − βxi)xi = 0. (3.4)

Substituting for α leads to

0 =
n
∑

i=1

yixi − n−1
n
∑

i=1

yi

n
∑

i=1

xi + n−1β

(

n
∑

i=1

xi

)2

− β

n
∑

i=1

x2
i .

Solving the above equation in β gives the following estimate

β =
n−1

∑n
i=1 yi

∑n
i=1 xi −

∑n
i=1 yixi

n−1 (
∑n

i=1 xi)
2 −

∑n
i=1 x2

i

=
∑n

i=1 yixi − n−1
∑n

i=1 yi

∑n
i=1 xi

∑n
i=1 x2

i − n−1 (
∑n

i=1 xi)
2

=
∑n

i=1 yixi − nyx
∑n

i=1 x2
i − nx2

=
sXY

sXX
.

Hence, the sum of squares is minimized for α = α̂ = y− ̂βx and β = ̂β = sXY

sXX
.
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EXERCISE 3.8. How many sales does the textile manager expect with a “clas-
sic blue” pullover price of x = 105?

The least squares estimates of the intercept and slope are

α̂ = 210.774 and ̂β = −0.364

and the estimated linear regression model can be written as

Sales = 210.774 − 0.364 × Price + ε.

Plugging in the pullover price 120 leads to expected sales equal to 210.774 −
0.364 × 120 = 167.094. This value can be interpreted also as the conditional
expected value of the random variable “sales” conditioned on the event {price
= 120}.

EXERCISE 3.9. What does a scatterplot of two random variables look like for
r2 = 1 and r2 = 0?

The coefficient of determination, r2 is defined as

r2 =
∑n

i=1(ŷi − y)2
∑n

i=1(yi − y)2
,

i.e., it is a ratio of the explained sum of squares and the total sum of squares.
The coefficient r2 is equal to one only if the numerator and denominator are
equal. Now, the decomposition of the total sum of squares

n
∑

i=1

(yi − y)2 =
n
∑

i=1

(yi − ŷi)2 +
n
∑

i=1

(ŷi − y)2 (3.5)

implies that this can happen only if the first term on the right hand side
of (3.5) is equal to zero, i.e., if yi = ŷi for all 1 ≤ i ≤ n. Hence, r2 = 1 if and
only if all yi’s plotted as a function of the corresponding xi’s are lying on a
straight line.

Similarly, we can see that r2 = 0 only if
∑n

i=1(ŷi − y)2 = 0. This can happen
only if all ŷi’s are equal to each other. In other words, this happens if we do
not observe any trend in the scatterplot of yi’s plotted against the xi’s.

Interestingly, observations lying on a straight horizontal line satisfy both of
the above conditions. Closer look at the definition of the coefficient of deter-
mination reveals that in this case, it is not defined.

EXERCISE 3.10. Prove the variance decomposition (3.5) and show that the
coefficient of determination is the square of the simple correlation between X
and Y .
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First, as

n
∑

i=1

(yi − y)2 =
n
∑

i=1

(yi − ŷi + ŷi − y)2

=
n
∑

i=1

(ŷi − y)2 +
n
∑

i=1

(yi − ŷi)2 + 2
n
∑

i=1

(ŷi − y)(yi − ŷi),

it is enough to show that the last term on the right hand side is equal to zero.
This follows immediately from the first order conditions (3.2) and (3.4) once
we rewrite the expression a bit:

n
∑

i=1

(ŷi − y)(yi − ŷi) =
n
∑

i=1

(â − y)(yi − â −̂bxi) +
n
∑

i=1

̂bxi(yi − â −̂bxi).

Note that it implies ŷ = y and
∑n

i=1 xi(yi − ŷi) = 0.

Next, we shall prove that r2 = r2
XY , i.e.,

n
∑

i=1

(ŷi − y)2

n
∑

i=1

(yi − y)2
=

(

n
∑

i=1

(yi − y)(xi − x)
)2

n
∑

i=1

(yi − y)2
n
∑

i=1

(xi − x)2
.

Using the conclusions reached above, this reduces to

1 =
{

n
∑

i=1

(ŷi − ŷ)(xi − x)}2

n
∑

i=1

(ŷi − ŷ)2
n
∑

i=1

(xi − x)2
= r2�Y X

.

This holds by definition since ŷi = α̂ + ̂βxi, i = 1 . . . , n, is a linear function
of xi.

EXERCISE 3.11. Make a boxplot for the residuals εi = yi − α̂ − ̂βxi for the
“classic blue” pullover data (Table A.6). If there are outliers, identify them
and run the linear regression again without them. Do you obtain a stronger
influence of price on sales?

The boxplot of the residuals εi is plotted in the right graphics in Figure 3.2.
The left graphics in Figure 3.2 shows the dependency of pullover sales on
the price, the regression with the outliers (dashed line) and the regression
without the outliers (full line). The two outliers are marked by red triangles.
Performing the regression without the outliers shows evidence for stronger
influence of price on sales.
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regression with outliers
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Fig. 3.2. Linear regression (dashed black line) and the corrected linear regression
without outliers (full blue line). The second graph shows a boxplot of the residuals.

SMSlinregpull

In this case, the influence of the outliers on the regression line does not seem
to be too large. Deleting only one of the outliers would lead to much different
results. Moreover, such an outlier might influence the regression line so that
it is not detectable using only the residuals.

EXERCISE 3.12. Under what circumstances would you obtain the same co-
efficients from the linear regression lines of Y on X and of X on Y ?

Let us recall the formulas derived in Exercise 3.7:

α̂ = y − ̂βx and ̂β =
sXY

sXX
.

From the formula for the slope of the regression line, ̂β, it follows that the
slopes are identical if the variances of X and Y are equal, sXX = sY Y , or if
the covariance between X and Y is equal to zero, sXY = 0.

If the slopes are equal then it is obvious from the formula for the intercept of
the regression line α̂ that the intercepts are equal if and only if the means of
X and Y are the same.

EXERCISE 3.13. Compute an approximate confidence interval for the corre-
lation coefficient ρX4X1 between the presence of the sales assistants (X4) and
the number of sold pullovers (X1). Hint: start from a confidence interval for
tanh−1(ρX4X1) and then apply the inverse transformation.
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The estimate of the correlation is rX4X1 = 0.633. In order to calculate the
approximate confidence interval, we can apply the Fisher’s Z-transformation

W = tanh−1(rX4X1) =
1
2

log
(

1 + rX4X1

1 − rX4X1

)

which has approximately a normal distribution with the expected value EW =
1
2 log{(1+ρX4X1)/(1−ρX4X1)} and the variance Var W = 1/(n−3), see Härdle
& Simar (2003, section 3.2).

Hence, with tanh(x) = (e2x − 1)/(e2x + 1):

1 − α ≈ P
(

|
√

n − 3{tanh−1(rX4X1) − tanh−1(ρX4X1)}| ≤ Φ−1(1 − α/2)
)

= P

{(

tanh−1(rX4X1) ±
Φ−1(1 − α/2)√

n − 3

)

� tanh−1(ρX4X1)
}

= P

{

tanh
(

tanh−1(rX4X1) ±
Φ−1(1 − α/2)√

n − 3

)

� ρX4X1

}

and we can say that the (random) interval
(

tanh
{

tanh−1(rX4X1) ±
Φ−1(1 − α/2)√

n − 3

})

covers the unknown value of the true correlation coefficient ρX4X1 with prob-
ability approximately 1 − α.

For our example, we choose α = 0.05 which implies that Φ−1(1 − α/2) =
1.96 and with rX4X1 = 0.633 and n = 10, we obtain the approximate 95%
confidence interval (0.0055, 0.9028).

EXERCISE 3.14. Using the exchange rate of 1 EUR = 106 JPY, compute the
empirical covariance between pullover sales and prices in Japanese Yen rather
than in Euros. Is there a significant difference? Why?

The covariance is sEUR
X1X2

= −80.02 in Euro and sJPY
X1X2

= −8482.14 in Japanese
Yen. The difference is caused entirely by the change of scale. The covariance
in Yen can be expressed from the covariance in Euro as

sJPY
X1X2

= sEUR
X1X2

× 106 = −80.02 × 106 = −8482.12.

The remaining small difference 0.02 is due to the rounding error.

Notice that the calculation would look differently for covariance between the
price (X2) and advertisement cost (X3) since

sJPY
X2X3

= sEUR
X1X2

× 1062.

Here, we change the scale of both variables by factor 106 and, hence, we have
to multiply the covariance by 1062.
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EXERCISE 3.15. Why does the correlation have the same sign as the covari-
ance?

The correlation is defined as

ρXY =
Cov(X,Y )

√

Var(X)Var(Y )

and the denominator
√

Var(X)Var(Y ) is a non-negative quantity. Hence, the
correlation is equal to the covariance multiplied by a positive constant. Notice
that the correlation is defined only if the variances of X and Y are greater
than 0.

EXERCISE 3.16. Show that rank(H) = tr(H) = n − 1, where H = In −
n−11n1�n is the so-called centering matrix.

The centering matrix H has dimension n × n. and its diagonal elements are
hii = n−1

n , i = 1, ..., n. Hence, tr(H) =
∑n

i=1 hii = nn−1
n = n − 1.

Notice that HH = (In − n−11n1�n )(In − n−11n1�n ) = In − 2n−11n1�n +
n−2n1n1�n = H. This means that the matrix H is idempotent which implies
that its eigenvalues, λi, i = 1, . . . , n can be only 0 or 1, see Exercise 2.6. The
rank of the centering matrix H is equal to the number of nonzero eigenvalues,
i.e., to the number of eigenvalues which are equal to 1. Now, using the fact
that the trace of a matrix is equal to the sum of its eigenvalues, we can write

rank(H) =
n
∑

i=1

λi = tr(H) = n − 1.

EXERCISE 3.17. Define X∗ = HXD−1/2, where X is a (n × p) matrix, H
is the centering matrix, and D−1/2 = diag(s−1/2

11 , . . . , s
−1/2
pp ). Show that X∗ is

the standardized data matrix, i.e., x∗ = 0p and SX∗ = RX , the correlation
matrix of X .

The vector of means, x∗, can be expressed as

x∗ = 1�nX∗/n

= 1�nHXD−1/2/n

= 1�n (In − n−11n1�n )XD−1/2/n

= (1�n − 1�n n−11n1�n )XD−1/2/n

= (1�n − 1�n )XD−1/2/n

= 0p.

Similarly, we have for the variance matrix, SX∗ , of X∗ that
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SX∗ = Var(HXD−1/2)
= Var(InXD−1/2) + Var(n−11n1�n )XD−1/2)
= D−1/2 Var(X )D−1/2)
= D−1/2SXD−1/2)
= RX .

Closer inspection of the above formulas reveals that multiplication from the
left by the centering matrix H subtracts the columns means whereas the
multiplication from the right by the matrix D−1/2 divides each column by the
estimated standard deviation.

EXERCISE 3.18. Compute for the pullover data (Table A.6) the regression of
X1 on X2,X3 and of X1 on X2,X4. Which one has the better coefficient of
determination?

Performing the calculation in any statistical software leads to coefficients of
determination r2

X2,X3
= 0.8275 and r2

X2,X4
= 0.4207. A better coefficient of

determination is achieved by the regression of sales (X1) on price and assistant
hours (X2 and X3).

From the following output for dependency on price and assistant hours, we see
that the parameter corresponding to assistant hours (X3), denoted by b[ 2,]
in the computer output, is highly significant.

A N O V A SS df MSS F-test P-value

_________________________________________________________________

Regression 8583.747 2 4291.874 16.799 0.0021

Residuals 1788.353 7 255.479

Total Variation 10372.100 9 1152.456

Multiple R = 0.90971

R^2 = 0.82758

Adjusted R^2 = 0.77832

Standard Error = 15.98371

PARAMETERS Beta SE StandB t-test P-value

________________________________________________________________

b[ 0,]= 176.6919 36.5078 0.0000 4.840 0.0019

b[ 1,]= -0.6013 0.3434 -0.2768 -1.751 0.1235

b[ 2,]= 0.5663 0.0994 0.9008 5.697 0.0007

SMSdeterpull

EXERCISE 3.19. Compare for the pullover data the coefficient of determina-
tion for the regression of X1 on X2, of X1 on X2,X3 (Exercise 3.18) and of
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X1 on X2,X3,X4. Observe that the coefficient of determination is increasing
with the number of predictor variables. Is this always the case?

The coefficients of determination for the models are: r2
X2

= 0.02808, r2
X2,X3

=
0.82758, and r2

X2,X3,X4
= 0.90671.

The coefficient of determination is defined as the ratio of the explained and
total variation. Including more variables in the model has not any effect on
the total variation (of the dependent variable) and can not decrease the ex-
plained variation. Hence, adding more variables cannot decrease the coefficient
of determination.

SMSdete2pull

EXERCISE 3.20. A company decides to compare the effect of three marketing
strategies

1. advertisement in local newspaper,

2. presence of sales assistant,

3. special presentation in shop windows,

on the sales of their portfolio in 30 shops. The 30 shops were divided into
3 groups of 10 shops. The sales using the strategies 1, 2, and 3 were y1 =
(9, 11, 10, 12, 7, 11, 12, 10, 11, 13)�, y2 = (10, 15, 11, 15, 15, 13, 7, 15, 13, 10)�,
and y3 = (18, 14, 17, 9, 14, 17, 16, 14, 17, 15)�, respectively. Define xi as the
index of the shop, i.e., xi = i, i = 1, 2, . . . , 30. Using this notation, the null
hypothesis corresponds to a constant regression line, EY = µ. What does the
alternative hypothesis involving a regression curve look like?

There are p = 3 factors and n = 30 observations in the data set. The company
wants to know whether all three marketing strategies have the same effect or
whether there is a difference. The null hypothesis is H0 : µ1 = µ2 = µ3 and
the alternative hypothesis is H1 : µl �= µl′ for some l and l′. The standard
approach to this problem is the analysis of variance (ANOVA) technique which
leads to an F -test.

In this exercise, we use an alternative and in fact equivalent approach based
on the regression model. The null hypothesis can be tested in a regression
model that has explanatory variables defined as z2i = I(xi ∈ (11, 20)) and
z3i = I(xi ∈ (21, 30)). These two variables now allow to describe the difference
in sales due to the marketing strategies.

The regression model can be written as
⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

110 010 010

110 110 010

110 010 110

⎞

⎠

⎛

⎝

β1

β2

β3

⎞

⎠+ ε.
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Here, the regression curve corresponding to the alternative hypothesis in the
ANOVA model looks like three horizontal lines, each of them corresponding
to one marketing strategy.

The F -test for testing the null hypothesis H0 : β2 = β3 = 0 corresponds to
the test of the null hypothesis that the effect of the three marketing strategies
is the same.

A N O V A SS df MSS F-test P-value

__________________________________________________________________

Regression 102.600 2 51.300 8.783 0.0012

Residuals 157.700 27 5.841

Total Variation 260.300 29 8.976

Multiple R = 0.62782

R^2 = 0.39416

Adjusted R^2 = 0.34928

Standard Error = 2.41676

PARAMETERS Beta SE StandB t-test P-value

_________________________________________________________________

b[ 0,]= 10.6000 0.7642 0.0000 13.870 0.0000

b[ 1,]= 1.8000 1.0808 0.2881 1.665 0.1074

b[ 2,]= 4.5000 1.0808 0.7202 4.164 0.0003

SMSanovapull

The above computer output shows that the value of the F -statistic for our
null hypothesis is 8.783, the corresponding p-value is smaller than 0.05. Thus,
on the usual confidence level 95%, the null hypothesis is rejected.

The computer output also contains the mean sales of all three marketing
strategies. The mean sales for the first marketing strategy were 10.6, for the
second strategy 10.6+1.8 = 12.4, and for the third strategy 10.6+4.5 = 15.1.

EXERCISE 3.21. Perform the test in Exercise 3.20 for the shop example with
a 0.99 significance level. Do you still reject the hypothesis of equal marketing
strategies?

From the p-value (0.0012), we can immediately tell that the null hypothesis
is rejected also on the 0.99 significance level.

EXERCISE 3.22. Consider the ANOVA problem again. Establish the con-
straint matrix A for testing H0 : µ1 = µ2 against H1 : µ1 �= µ2 and test
the hypothesis.

Using the constraint matrix A = (1,−1, 0)�, the null hypothesis H0 : µ1 = µ2

hypothesis can be expressed in the following form: H0 : A�µ = 0. Formally,
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the test can be performed by comparing the sum of squares under the null
and alternative hypothesis. Under the null hypothesis, the F -statistics

F =
{||y −X β̂H0 ||2 − ||y −X β̂H1 ||2}/r

||y −X β̂H1 ||2/(n − r)
(3.6)

has F -distribution with r and n − r degrees of freedom, where r denotes the
difference in the number of parameters of the null and alternative linear model.

In our testing problem, the F -statistics, 2.77, is smaller than the appropriate
critical value F0.95;1,27 = 4.21. The null hypothesis is not rejected at a 0.95
significance level and we can say that the difference between the effect of the
first and the second marketing strategy is not statistically significant.

EXERCISE 3.23. The linear model can be written as

Y = Xβ + ε, (3.7)

where X is of full rank and ε are the random errors. Show that the least
squares solution,

̂β = arg min
β

(Y −Xβ)�(Y −Xβ) = arg min
β

ε�ε, (3.8)

can be expressed as ̂β = (X�X )−1X�Y .

We define the function f(β) = (Y −Xβ)�(Y −Xβ), i.e.,

f(β) = Y �Y − 2β�X�Y + β�X�Xβ.

The minimum of f(β) can be found by searching for the zero of its derivative

∂f(β)
∂β

=
∂Y �Y − 2β�X�Y + β�X�Xβ

∂β
= −2X�Y + 2X�Xβ = 0.

It follows that the solution, ̂β, has to satisfy ̂β = (X�X )−1X�Y .

Let us now verify that we have found the minimum by calculating the second
derivative of the function f(β) in the point ̂β:

∂2f(β)
∂β∂β� =

∂(−2X�Y + 2X�Xβ)
∂β

= 2X�X .

The matrix X has full rank, therefore the matrix X�X is positive definite
and, hence, ̂β is indeed the location of the minimum of the residual square
function f(β).
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EXERCISE 3.24. Consider the linear model Y = Xβ + ε where the esti-
mator β̂ = arg min

β
ε�ε is subject to the linear constraint Âβ = a, where

A(q × p), (q ≤ p) is of rank q and a is of dimension (q × 1).

Show that

̂β = ̂βOLS − (X�X )−1A� {A(X�X )−1A�}−1
(

ÂβOLS − a
)

where ̂βOLS = (X�X )−1X�Y is the unconstrained (ordinary) least squares
estimator.

Similarly, as in the previous exercise, we define

f(β, λ) = (Y −Xβ)�(Y −Xβ) − λ�(Aβ − a),

where λ ∈ R
q and solve the system of equations:

∂f(β, λ)
∂β

= 0

∂f(β, λ)
∂λ

= 0.

Evaluating the derivatives, we obtain the system of equations:

∂f(β, λ)
∂β

= −2X�Y + 2X�X ̂β −A�̂λ = 0, (3.9)

∂f(β, λ)
∂λ

= −(Âβ − a) = 0.

Rearranging (3.9) with respect to ̂β leads to

̂β = (X�X )−1X�Y +
1
2
(X�X )−1A�̂λ, (3.10)

Âβ = ÂβOLS +
1
2
A(X�X )−1A�̂λ. (3.11)

Next, rearranging (3.11) with respect to ̂λ implies that

̂λ = 2
{

A(X�X )−1A�}−1
(

a −ÂβOLS
)

. (3.12)

Plugging (3.12) in (3.10) finally leads to the desired formula

̂β = ̂βOLS − (X�X )−1A� {A(X�X )−1A�}−1
(

ÂβOLS − a
)

.

EXERCISE 3.25. Compute the covariance matrix S = Cov(X ) where X de-
notes the matrix of observations on the counterfeit bank notes. Make a spectral
decomposition of S. Why are all of the eigenvalues positive?
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The covariance matrix of all 6 variables in the bank notes data set is

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.142 0.031 0.023 −0.103 −0.019 0.084
0.031 0.130 0.108 0.216 0.105 −0.209
0.023 0.108 0.163 0.284 0.130 −0.240

−0.103 0.216 0.284 2.087 0.165 −1.037
−0.019 0.105 0.130 0.165 0.645 −0.550

0.084 −0.209 −0.240 −1.037 −0.550 1.328

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues of V , (0.195, 0.085, 0.036, 3.000, 0.936, 0.243) are, indeed, all
positive.

In general, the eigenvalues of any variance matrix are always nonnegative. This
property can be demonstrated by realizing that, for arbitrary vector a, we have
for the linear combination Xa that its variance Var(Xa) = a� VarXa ≥ 0.
This implies that any variance matrix is positive semidefinite and, hence, it
cannot have any negative eigenvalues.

SMScovbank

EXERCISE 3.26. Compute the covariance of the counterfeit notes after they
are linearly transformed by the vector a = (1, 1, 1, 1, 1, 1)�.

The variance of the sum of all lengths for the counterfeit variables is Var(Xfa) =
1.7423.

As explained in Exercise 3.25, the relation Var(Xfa) = a� Var(Xf )a and
the nonnegativity of the variance imply the positive semidefiniteness of the
variance matrix Var Xf .

SMScovbank



4

Multivariate Distributions

Individuals vary, but percentages remain constant. So says the statis-
tician.
Sherlock Holmes in “The Sign of Four”

A random vector is a vector of random variables. A random vector X ∈ R
p

has a multivariate cumulative distribution function (cdf) and a multivariate
probability density function (pdf). They are defined as:

FX(x) = P (X ≤ x)
= P (X1 ≤ x1,X2 ≤ x2, . . . , Xp ≤ xp)

=

∞
∫

−∞

. . .

∞
∫

−∞

fX(x1, x2, . . . , xp)dx1dx2 . . . dxp,

and if the cdf FX(.) is differentiable, the pdf fX(.) is

fX(x) =
∂pF (x)

∂x1 . . . ∂xp
.

Important features that can be extracted from FX(.) and fX(.) are the mutual
dependencies of the elements of X, moments, and multivariate tail behavior.

In the multivariate context the first moment, the expected value, is a vector
EX of the same dimension p as X. The generalization of the one-dimensional
variance to the multivariate case leads to the (p × p) covariance matrix Σ =
Var(x) containing the covariances of all pairs of components of X.

Another important feature that needs to be considered is the behavior of
a random vector after it is (nonlinearly) transformed and the conditional
distribution given other elements of the random vector.

In this chapter, we discuss a variety of exercises on moment and dependence
calculations. We also study in depth the characteristics of the cdf and pdf of
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the transformed random vectors. In particular, we present the CLT of trans-
formed statistics and calculate several examples for conditional distributions.

EXERCISE 4.1. Assume that the random vector Y has the following normal
distribution: Y ∼ Np(0, I). Transform it to create X ∼ N(µ,Σ) with mean

µ = (3, 2)� and Σ =
(

1
−1.5

−1.5
4

)

. How would you implement the resulting
formula on a computer?

Let us consider the transformation

X = µ + Σ1/2Y.

We know that a linearly transformed normally distributed random vector is
again normally distributed. From the rules for the mean and variance matrix of
the linearly transformed random variable we know that EX = µ+Σ1/2EY =
µ and Var X = Σ1/2 Var Y (Σ1/2)� = Σ.

On a computer, the square root matrix Σ1/2 can be easily calculated from Σ
using spectral decomposition:

Σ1/2 =
(

−0.38 0.92
0.92 0.38

)(

4.62 0
0 0.38

)1/2(−0.38 0.92
0.92 0.38

)

=
(

0.84 −0.54
−0.54 1.95

)

.

One then applies the above formula that linearly transforms Y into X.

EXERCISE 4.2. Prove that if X ∼ Np(µ,Σ), then the variable U = (X −
µ)�Σ−1(X − µ) has a χ2

p distribution.

For a random vector X ∼ Np(µ,Σ) such that Σ > 0, the p-dimensional
random vector

(Y1, . . . , Yp)� = Y = Σ−1/2(X − µ)

has a multivariate normal distribution with mean vector EY = 0p and covari-
ance matrix Var(Y ) = Ip, see Härdle & Simar (2003, theorem 4.5).

The linear transformation Σ−1/2(X − µ) is called the Mahalanobis transfor-
mation.

Hence, the random variable

U = (X − µ)�Σ−1(X − µ) = Y �Y =
p
∑

i=1

Y 2
i

is a sum of squares of independent random variables with standard normal
distribution and therefore it has the χ2

p distribution.
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EXERCISE 4.3. Suppose that X has mean zero and covariance Σ =
(

1
0

0
2

)

. Let
Y = X1+X2. Write Y as a linear transformation, i.e., find the transformation
matrix A. Then compute Var(Y ).

Clearly,

Y = X1 + X2 = AX = (1, 1)
(

X1

X2

)

and Var(AX) = E{(AX − EAX)(AX − EAX)�} = A{E(X − EX)(X −
EX)�}A� = AVar(X)A�.

Hence,

Var(Y ) = AΣA� = (1, 1) Σ

(

1
1

)

= (1, 1)
(

1 0
0 2

)(

1
1

)

= 3

Another possibility is to write

Var(Y ) = Var (X1 + X2) = Var(X1) + 2Cov(X1,X2) + Var(X2) = 3.

EXERCISE 4.4. Calculate the mean and the variance of the estimator β̂ =
(X�X )−1X�Y in a linear model Y = Xβ + ε, Eε = 0n, Var(ε) = σ2In.

The estimate β̂ = (X�X )−1X�Y of the unknown parameter β in the linear
model has been derived in Exercise 3.23. It follows that

Eβ̂ = (X�X )−1X�EY = (X�X )−1X�(Xβ + Eε) = β

since we assume that Eε = 0n.

For the variance we have

Var β̂ = Var{(X�X )−1X�Y }
= (X�X )−1X� Var(Y )X (X�X )−1

= (X�X )−1X�σ2InX (X�X )−1

= σ2(X�X )−1,

where we used the assumption Var(Y ) = Var(ε) = σ2In.

EXERCISE 4.5. Compute the conditional moments E(X2 | x1) and E(X1 |
x2) for the two-dimensional pdf

f(x1, x2) =
{

1
2x1 + 3

2x2 0 ≤ x1, x2 ≤ 1
0 otherwise
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The marginal densities of X1 and X2, for 0 ≤ x1, x2 ≤ 1, are

fX1(x1) =
∫ 1

0

f(x1, x2)dx2 =
[

1
2
x1x2 +

3
4
x2

2

]1

0

=
1
2
x1 +

3
4

and

fX2(x2) =
∫ 1

0

f(x1, x2)dx1 =
[

1
4
x2

1 +
3
2
x1x2

]1

0

=
1
4

+
3
2
x2.

Now, the conditional expectations, for 0 ≤ x1, x2 ≤ 1, can be calculated as
follows

E(X2|X1 = x1) =
∫ 1

0

x2f(x2|x1)dx2

=
∫ 1

0

x2
f(x1, x2)
fX1(x1)

dx2

=
∫ 1

0

x2

( 1
2x1 + 3

2x2

1
2x1 + 3

4

)

dx2

=

[

x1x2
2

4 + x3
2
2

3
4 + x1

2

]1

0

=
x1 + 2
3 + 2x1

and

E(X1|X2 = x2) =
∫ 1

0

x1f(x1|x2)dx1

=
∫ 1

0

x1
f(x1, x2)
fX2(x2)

dx1

=
∫

x1

( 1
2x1 + 3

2x2

3
2x2 + 1

4

)

dx1

=

[

x3
1
6 + 3x2

1x2
4

1
4 + 3x2

2

]1

0

=
2 + 9x2

3 + 18x2
.

EXERCISE 4.6. Prove that EX2 = E{E(X2|X1)}, where E(X2|X1) is the
conditional expectation of X2 given X2.

Since E(X2|X1 = x1) is a function of x1, it is clear that E(X2|X1) is a random
vector (function of random vector X1).
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Assume that the random vector X = (X1,X2)� has the density f(x1, x2).
Then

E{E(X2|X1)} =
∫ {∫

x2f(x2|x1)dx2

}

f(x1)dx1

=
∫ {∫

x2
f(x2, x1)

f(x1)
dx2

}

f(x1)dx1 =
∫ ∫

x2f(x2, x1)dx2dx1

= EX2.

EXERCISE 4.7. Prove that

Var(X2) = E{Var(X2|X1)} + Var{E(X2|X1)}. (4.1)

Hint: Note that Var{E(X2|X1)} = E{E(X2|X1)E(X�
2 |X1)}−E(X2)E(X�

2 )
and that E{Var(X2|X1)} = E{E(X2X

�
2 |X1) − E(X2|X1)E(X�

2 |X1)}.

Let us start with the right-hand side of the relation (4.1):

E{Var(X2|X1)} + Var{E(X2|X1)}
= E{E(X2X

�
2 |X1) − E(X2|X1)E(X�

2 |X1)} + E{E(X2|X1)E(X�
2 |X1)}

−E(X2)E(X�
2 )

= E(X2X
�
2 ) − E(X2)E(X�

2 )
= Var(X2).

EXERCISE 4.8. Compute the pdf of the random vector Y = AX with A =
(

1 1
1 −1

)

for the random vector X with the pdf:

fX(x) = fX(x1, x2) =

{

1
2x1 + 3

2x2 0 ≤ x1, x2 ≤ 1
0 otherwise.

The pdf of Y is given by

fY (y) = abs(|J |)fX{u(y)},

where u(.) is the inverse transformation, i.e., X = u(Y ), and where J is the
Jacobian of u(.). In this case, X = u(Y ) = A−1Y = J Y .

We solve y1 = x1 + x2 and y2 = x1 − x2 for x1 and x2:

x1 = u1(y1, y2) = (y1 + y2)/2
x2 = u2(y1, y2) = (y1 − y2)/2

and it follows that the Jacobian of u(.) is
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J =

(

∂u1(y)
∂y1

∂u1(y)
∂y2

∂u2(y)
∂y1

∂u2(y)
∂y2

)

=
(

1
2

1
2

1
2 − 1

2

)

.

Next, |J | = − 1
2 and abs(|J |) = 1

2 and we obtain the density of the trans-
formed random vector Y ,

fY (y) =
1
2
fX{u(y)} =

1
2
fX

{(
1
2

1
2

1
2 − 1

2

)(

y1

y2

)}

=
1
2
fX

{

1
2
(y1 + y2),

1
2
(y1 − y2)

}

for 0 ≤ u1(y1, y2), u2(y1, y2) ≤ 1 and fY (y) = 0 otherwise.

Plugging in the pdf of X, we obtain

fY (y) =

{

1
2

[
1
2{

1
2 (y1 + y2)} + 3

2{
1
2 (y1 − y2)}

]

0 ≤ y1 ± y2 ≤ 2,

0 otherwise

and, using simple algebra to determine the region for which the pdf fY (y) is
greater than zero, we have finally

fY (y) =

{

1
2y1 − 1

4y2 0 ≤ y1 ≤ 2, |y2| ≤ 1 − |1 − y1|
0 otherwise.

EXERCISE 4.9. Show that the function

fY (y) =

{

1
2y1 − 1

4y2 0 ≤ y1 ≤ 2, |y2| ≤ 1 − |1 − y1|
0 otherwise

is a probability density function.

The area for which the above function is non-zero is plotted in Figure 4.1.

In order to verify that fY (y) is a two-dimensional pdf, we have to check that
it is nonnegative and that it integrates to 1.

It is easy to see that the function fY (y) is nonnegative inside the square
plotted in Figure 4.1 since y1 ≥ 0 and y1 ≥ y2 implies that y1/2 − y2/4 > 0.

It remains to verify that the function fY (y) integrates to one by calculating
the integral

∫

fY (y)dy

for which we easily obtain the following:
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Fig. 4.1. The support of the pdf fY (y1, y2) given in Exercise 4.9.

∫ ∫

fY (y1, y2)dy2, y1 =

1
∫

0

y1∫

−y1

fY (y)dy2dy1 +

2
∫

1

2−y1∫

y1−2

fY (y)dy2dy1

=

1
∫

0

y1∫

−y1

1
2
y1 −

1
4
y2dy2dy1 +

2
∫

1

2−y1∫

y1−2

1
2
y1 −

1
4
y2dy2dy1

=

1
∫

0

[

1
2
y1y2 −

1
8
y2
2

]y1

−y1

dy1 +

2
∫

1

[

1
2
y1y2 −

1
8
y2
2

]2−y1

y1−2

dy1

=

1
∫

0

y2
1dy1 +

2
∫

1

−y2
1 + 2y1dy1

=
[

1
3
y3
1

]1

0

+
[

−1
3
y3
1 + y2

1

]2

1

=
1
3

+
2
3

= 1.
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EXERCISE 4.10. Determine the distribution of the random vector Y = AX

with A =
(

1 1
1 −1

)

, where X = (X1,X2)� has two-dimensional standard nor-

mal distribution.

Show that the transformed random variables Y1 and Y2 are independent. Give
a geometrical interpretation of this result based on iso-distance curves.

The random vector Y has a two-dimensional normal distribution since it is
defined as a linear transformation of normally distributed random vector.

The normal distribution is fully determined by its mean and covariance matrix
for which we have

EY = EAX = AEX = A02 = 02

and

Var(Y ) = Var(AX) = AVar(X)A� = AI2A� = AA� =
(

2 0
0 2

)

.

Thus Y1 and Y2 are uncorrelated and, for jointly normal random variables,
zero covariance implies independence.

The density of the random vector X,

fX(x1, x2) =
1
2π

exp
{

1
2
(x1, x2)

(

x1

x2

)}

,

is obviously constant on circles with center in (0, 0)� since its value changes

only when the value of the quadratic form (x1, x2)
(

x1

x2

)

= x2
1 + x2

2 changes.

We remark that a circle with diameter r is defined as a set of points x =
(x1, x2)� ∈ R

2 satisfying the equation x2
1 + x2

2 = r2.

The density of the transformed random vector Y is also constant on the cir-
cles, but the distribution is more spread out. The transformation Y = AX
corresponds to the rotation and then multiplication by factor

√
2.

EXERCISE 4.11. Consider the Cauchy distribution which has no finite
moment, so that the CLT cannot be applied. Simulate the distribution of x
(for different n’s). What can you expect for n → ∞?
Hint: The Cauchy distribution can be simulated by the quotient of two inde-
pendent standard normally distributed random variables.

For the Cauchy distribution, the distribution of x is the same as the distrib-
ution of X1. Thus, the sample mean cannot be used for statistical inference.

In the simulations, you can observe that increasing the sample size doesn’t
improve the behavior of the sample mean as an estimator of the expected
value.
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EXERCISE 4.12. A European car company has tested a new model and reports
the consumption of gasoline (X1) and oil (X2). The expected consumption of
gasoline is 8 liters per 100 km (µ1) and the expected consumption of oil is 1
liter per 10.000 km (µ2). The measured consumption of gasoline is 8.1 liters
per 100 km (x1) and the measured consumption of oil is 1.1 liters per 10,000
km (x2). The asymptotic distribution of

√
n

{(

x1

x2

)

−
(

µ1

µ2

)}

is N

((

0
0

)

,

(

0.1 0.05
0.05 0.1

))

.

For the American market the basic measuring units are miles (1 mile ≈ 1.6
km) and gallons (1 gallon ≈ 3.8 liter). The consumptions of gasoline (Y1) and
oil (Y2) are usually reported in miles per gallon. Can you express y1 and y2 in
terms of x1 and x2? Recompute the asymptotic distribution for the American
market!

The transformation of “liters per 100 km” to “miles per gallon” is given by
the function

x liters per 100 km =1.6x/380 gallons per mile=380/(1.6x) miles per gallon.

Similarly, we transform the oil consumption

x liters per 10000 km = 38000/(1.6x) miles per gallon.

Thus, the transformation is given by the functions

f1(x) = 380/(1.6x)
f2(x) = 38000/(1.6x).

According to Härdle & Simar (2003, theorem 4.11), the asymptotic distribu-
tion is

√
n

{(

f1(x1)
f2(x2)

)

−
(

f1(µ1)
f2(µ2)

)}

∼ N

((

0
0

)

,D�
(

0.1 0.05
0.05 0.1

)

D
)

,

where

D =
(

∂fj

∂xi

)

(x)
∣

∣

∣

∣

x=µ

is the matrix of all partial derivatives.

In our example,

D =

(

− 380
1.6x2

1
0

0 − 38000
1.6x2

2

)∣

∣

∣

∣

∣

x=µ

.=

(

− 380
1.6x2

1
0

0 − 38000
1.6x2

2

)

.=
(

−3.62 0
0 −19628.10

)

.
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Hence, the variance of the transformed random variable Y is given by

ΣY = D�
(

0.1 0.05
0.05 0.1

)

D

=
(

−3.62 0
0 −19628.10

)(

0.1 0.05
0.05 0.1

)(

−3.62 0
0 −19628.10

)

=
(

1.31 3552.69
3552.69 38526230.96

)

.

The average fuel consumption, transformed to American units of measure-
ments is y1 = 29.32 miles per gallon and the transformed oil consumption is
y2 = 19628.10. The asymptotic distribution is

√
n

{(

y1

y2

)

−
(

f1(µ1)
f2(µ2)

)}

∼ N

((

0
0

)

,

(

1.31 3552.69
3552.69 38526230.96

))

.

EXERCISE 4.13. Consider the pdf fX(x1, x2) = e−(x1+x2), x1, x2 > 0 and let
U1 = X1 + X2 and U2 = X1 − X2. Compute f(u1, u2).

For linear transformation

U = AX =
(

1 1
1 −1

)

X,

the inverse transformation is X = A−1U , the Jacobian of the inverse transfor-
mation is J = A−1 and, hence, the density of the transformed random vector
is

fU (u) = abs(|A|−1)fX(A−1u).

We have

|A| = −2, A−1 = −1
2

(

−1 −1
−1 1

)

and it follows immediately that

fU (u) =
1
2
fX

{

1
2

(

1 1
1 −1

)(

u1

u2

)}

=
1
2

exp
[

−
{

1
2
(u1 + u2) +

1
2
(u1 − u2)

}]

=
1
2

exp(−u1).

The support of the distribution has to be investigated carefully. The density
of the random variable U1 is nonzero only for u1 > 0 since it is the sum of
two positive random variables. The limits on U2 are the following:
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U2 = X1 − X2 < X1 + X2 = U1,

U2 = −(X1 − X2) > −(X2 + X1) = −U1.

We conclude that the pdf of the transformed random vector U is

fU (u) =

{

1
2 exp(−u1) u1 > 0, u2 < |u1|,
0 otherwise.

EXERCISE 4.14. Consider the functions

f1(x1, x2) = 4x1x2 exp(−x2
1) x1, x2 > 0,

f2(x1, x2) = 1 0 < x1, x2 < 1 and x1 + x2 < 1
f3(x1, x2) = 1

2 exp(−x1) x1 > |x2|.

Check whether they are pdfs and then compute E(X), Var(X), E(X1|X2),
E(X2|X1), Var(X1|X2), and Var(X2|X1).

It is easy to see that the first function,

f1(x1, x2) = 4x1x2 exp{−x2
1}, x1, x2 > 0,

is not a probability density function. For any value of x1, we can choose x2

such that f1(x1, x2) is arbitrarily large on an infinite interval. Hence, it is clear
that

∫ +∞

0

∫ +∞

0

f1(x1, x2)dx2dx1 = +∞

and therefore the function f1(x1, x2) cannot be a pdf.

The second function,

f2(x1, x2) = 1, 0 < x1, x2 < 1 and x1 + x2 < 1,

is nonnegative and it obviously integrates to one. Hence, it is a probability
density function. Notice that the function is symmetric in x1 and x2, it follows
that EX1 = EX2 and Var X1 = Var X2.

For the expected value, we have

EX1 =
∫ 1

0

∫ 1−x1

0

x1dx2dx1

=
∫ 1

0

x1(1 − x1)dx1

=
[

1
2
x2

1 −
1
3
x3

1

]1

0

=
1
6
.
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We have already observed that EX1 = EX2 and, thus,

EX =
(

1
6
,
1
6

)�
.

The variances, Var X1 = Var X2, can be calculated as follows

Var X1 = EX2
1 − (EX2

1 )

=
∫ 1

0

∫ 1−x1

0

x2
1dx2dx1 −

1
36

=
∫ 1

0

x2
1(1 − x1)dx1 −

1
36

=
[

1
3
x3

1 −
1
4
x4

1

]1

0

− 1
36

=
1
12

− 1
36

=
1
18

.

The covariance, Cov(X1,X2) is equal to

Cov(X1,X2) = EX1X2 − EX1EX2

=
∫ 1

0

∫ 1−x1

0

x1x2dx2dx1 −
1
36

=
∫ 1

0

x1

[

x2
2

2

]1−x1

0

dx1 −
1
36

=
∫ 1

0

1
2
x1(1 − x1)2dx1 −

1
36

=
1
2

∫ 1

0

x1 − 2x2
1 + x3

1dx1 −
1
36

=
1
2

[

1
2
x1

1 −
2
3
x3

1 +
1
4
x4

1

]1

0

− 1
36

=
1
4
− 1

3
+

1
8
− 1

36

=
18 − 24 + 9 − 2

72

=
1
72

.

The covariance matrix is

Var(X) =
(

1
18

1
72

1
72

1
18

)

.
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The conditional expectations could be calculated by evaluating the appro-
priate integrals. However, in this case, the solution can be seen immedi-
ately. Clearly, the conditional distribution of X2 given X1 = x1 is uniform
on (0, 1 − x1). The expected value of uniform distribution is its center, i.e.,
E(X2|X1 = x1) = (1 − x1)/2. Due to the symmetry of the distribution, we
have also that E(X1|X2 = x2) = (1 − x2)/2.

The conditional variances are also variances of uniform distributions:

Var(X2|X1 = x1) = E(X2
2 |X1 = x1) − {E(X2|X1 = x1)}2

=
∫ 1−x1

0

x2
2

1 − x1
dx2 −

(

(1 − x1)
2

)2

=
1

1 − x1

[

1
3
x3

2

]1−x1

0

− (1 − x1)2

4

=
(1 − x1)2

3
− (1 − x1)2

4

=
(1 − x1)2

12
.

Due to the symmetry, we have also that

Var(X1|X2 = x2) =
(1 − x2)2

12
.

For the third function,

f3(x1, x2) =
1
2

exp{−x1} x1 > |x2|,

we again start by verifying that it is a pdf. We have
∫ +∞

0

∫ x1

−x1

f3(x1, x2)dx2dx1 =
∫ +∞

0

∫ x1

−x1

1
2

exp{−x1}dx2dx1

=
∫ +∞

0

x1 exp{−x1}dx1

= 1.

Here, it is helpful to notice that the value of f3(x1, x2) is, for any value of x1

symmetric around zero in x2 and that the value of the pdf does not depend
on x2.

Notice that the conditional expected value of X2 is finite since X2 has bounded
support for each value of X1. From the symmetry, it follows that E(X2|X1 =
x1) = 0, this in turn implies that EX2 = E{E(X2|X1)} = 0.

The fact that the value of the pdf does not depend on x2 implies that the
conditional distribution of X2 given X1 is uniform on the interval (−x1, x1).
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Looking at the above calculations for the variance of the uniform distribution,
we can immediately write:

Var(X2|X1 = x1) =
(2x1)2

12
=

x2
1

3
.

In order to calculate the moments of X1, we have to evaluate some integrals:

EX1 =
∫ +∞

0

∫ x1

−x1

1
2
x1 exp{−x1}dx2dx1

=
∫ +∞

0

x2
1 exp{−x1}dx1

= [x2
1 exp−x1]+∞

0 +
∫ +∞

0

2x1 exp{−x1}dx1

= [2x1 exp−x1]+∞
0 + 2

∫ +∞

0

exp{−x1}dx1

= 2[− exp{−x1}]+∞
0 = 2.

Hence, the vector of expected values is EX = (2, 0)�.

The variance of X1 can be calculated similarly as the expected value

Var X1 = EX2
1 − (EX1)2

=
∫ +∞

0

∫ x1

−x1

1
2
x2

1 exp{−x1}dx2dx1 − 4

=
∫ +∞

0

x3
1 exp{−x1}dx1 − 4

=
∫ +∞

0

3x2
1 exp{−x1}dx1 − 4

= 3EX1 − 4 = 2.

Now it is easy to calculate also the unconditional variance of X2 since

Var(X2) = E{Var(X2|X1)} + Var{E(X2|X1)} = E

(

X2
1

3

)

= 2.

Notice that the symmetry of the pdf in x2 implies that also the distribution
of the random variable X1X2 is symmetric around 0 and, hence, its expected
value EX1X2 = 0. It follows that

Cov(X1,X2) = EX1X2 − EX1EX2 = 0.

The variance matrix of the random vector X is Var X =
(

2 0
0 2

)

.
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It remains to investigate the conditional moments of X1 given X2 = x2. The
conditional density of X1 given X2 is

fX1|X2=x2(x1) =
f3(x1, x2)
fX2(x2)

=
exp(−x1)

∫ +∞
|x2| exp(−x1)dx1

=
exp(−x1)

[− exp(−x1)]+∞
|x2|

=
exp(−x1)
exp(−|x2|)

,

for x1 > |x2| and 0 otherwise.

The conditional expectation of X1 can be calculated as

E(X1|X2 = x2) =
∫ +∞

|x2|
x1fX1|X2=x2(x1)dx1

=
∫ +∞

|x2|
x1

exp(−x1)
exp(−|x2|)

dx1

=
1

exp(−|x2|)

∫ +∞

|x2|
x1 exp(−x1)dx1

=
1

exp(−|x2|)

{

[x1 exp(−x1)]+∞
|x2| +

∫ +∞

|x2|
exp(−x1)dx1

}

=
1

exp(−|x2|)
{|x2| exp(−|x2|) + exp(−|x2|)}

= |x2| + 1.

Finally, the conditional variance of X1 given X2 = x2 is

Var(X1|X2 = x2) = E(X2
1 |X2 = x2) − {E(X1|X2 = x2)}2

=
∫ +∞

|x2|
x2

1

exp(−x1)
exp(−|x2|)

dx1 − (|x2| + 1)2

=
1

exp(−|x2|)

∫ +∞

|x2|
x2

1 exp(−x1)dx1 − (|x2| + 1)2

=
1

exp(−|x2|)

{

[−x2
1 exp(−x1)]+∞

|x2| + 2
∫ +∞

|x2|
x1 exp(−x1)dx1

}

− (|x2| + 1)2

=
1

exp(−|x2|)
[

|x2|2 exp(−|x2|) + 2{|x2| exp(−|x2|)

+ exp(−|x2|)}] − (|x2| + 1)2

= |x2|2 + 2|x2| + 2 − (|x2| + 1)2

= 1.
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EXERCISE 4.15. Consider the pdf

f(x1, x2) =
3
4
x
− 1

2
1 , 0 < x1 < x2 < 1.

Compute P (X1 < 0.25), P (X2 < 0.25) and P (X2 < 0.25|X1 < 0.25).

The probabilities can be expressed as integrals of the pdf as follows

P (X1 < 0.25) =
∫ 0.25

0

∫ 1

x1

f(x1, x2)dx2dx1

=
∫ 0.25

0

∫ 1

x1

3
4
x
− 1

2
1 dx2dx1

=
3
4

∫ 0.25

0

x
− 1

2
1 [x2]1x1

dx1

=
3
4

∫ 0.25

0

x
− 1

2
1 (1 − x1)dx1

=
3
4

∫ 0.25

0

x
− 1

2
1 − x

1
2
1 dx1

=
3
4

[

2x
1
2
1 − 2

3
x

3
2
1

]0.25

0

=
3
4

(

1 − 1
12

)

=
33
48

.

Similarly,

P (X2 < 0.25) =
∫ 0.25

0

∫ x2

0

f(x1, x2)dx1dx2

=
∫ 0.25

0

∫ x2

0

3
4
x
− 1

2
1 dx1dx2

=
3
4

∫ 0.25

0

[

2x
1
2
1

]x2

0
dx2

=
∫ 0.25

0

3
2
x

1
2
2 dx2

=
[

x
3
2
2

]0.25

0
=

1
8
.

The conditional probability is defined as

P (X2 < 0.25|X1 < 0.25) =
P (X1 < 0.25,X2 < 0.25)

P (X1 < 0.25)
.

It remains to calculate the probability in the numerator. Noticing that P (X1 >
X2) = 0, we can write
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P (X2 < 0.25|X1 < 0.25) =
P (X1 < 0.25,X2 < 0.25)

P (X1 < 0.25)

=
P (X2 < 0.25)
P (X1 < 0.25)

=
6
33

.

EXERCISE 4.16. Consider the pdf

f(x1, x2) =
1
2π

, 0 < x1 < 2π, 0 < x2 < 1.

Let U1 = sin X1

√
−2 log X2 and U2 = cos X1

√
−2 log X2. Compute f(u1, u2).

Notice that

U2
1 + U2

2 = −2 log X2(sin2 X1 + cos2 X1) = −2 log X2

and
U1

U2
=

sin X1

cos X1
= tan X1.

Hence, the inverse transformation is

X1 = arctan
U1

U2
,

X2 = exp
{

−1
2
(U2

1 + U2
2 )
}

.

Here, it is important to notice that this is not one-to-one transformation! The
calculation has to be carried out very carefully.

In order to obtain a one-to-one transformation, we consider the conditional
pdfs

fX|X1∈(π/2,3π/2)(x1, x2) =
1
π

I{x1 ∈ (π/2, 3π/2)}

fX|X1 �∈(π/2,3π/2)(x1, x2) =
1
π

I{x1 �∈ (π/2, 3π/2)}

which allow us to rewrite the pdf f(.) as

f(x) =

{

1
2fX|X1∈(π/2,3π/2)(x) for x1 ∈ (π/2, 3π/2)
1
2fX|X1 �∈(π/2,3π/2)(x) for x1 �∈ (π/2, 3π/2)

since
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∫

x∈I

f(x)dx = P (X ∈ I)

= P{X ∈ I|X1 ∈ (π/2, 3π/2)}P{X1 ∈ (π/2, 3π/2)}
+ P{X ∈ I|X1 �∈ (π/2, 3π/2)}P{X1 �∈ (π/2, 3π/2)}

=
∫

x∈I

{

fX|X1∈(π/2,3π/2)(x)
1
2

+ fX|X1 �∈(π/2,3π/2)(x)
1
2

}

dx

=
∫

x∈I

1
2
{

fX|X1∈(π/2,3π/2)(x) + fX|X1 �∈(π/2,3π/2)(x)
}

dx.

We transform each of the conditional pdfs separately and then combine the
results into the pdf of the transformed random vector U . For the conditional
pdf fX|X1∈(π/2,3π/2), the Jacobian of the inverse transformation is given by

J =
( u2

u2
2+u2

1
− u1

u2
2+u2

1

−u1 exp
{

− 1
2 (u2

1 + u2
2)
}

−u2 exp
{

− 1
2 (u2

1 + u2
2)
}

)

.

Plugging into the formula for the pdf of the transformed random variable, we
obtain

fU |U2<0(u) = abs |J |fX|X1∈(π/2,3π/2)(f1(u), f2(u))

= abs
{(

u2
1

u2
2 + u2

1

+
u2

2

u2
2 + u2

1

)

exp
{

−1
2
(u2

1 + u2
2)
}}

1
π

=
1
π

exp
{

−1
2
(u2

1 + u2
2)
}

for u1 ∈ R, u2 < 0 and fU |U2<0(u) = 0 otherwise.

Similarly, it can be shown that

fU |U2>0(u) =
1
π

exp
{

−1
2
(u2

1 + u2
2)
}

for u1 ∈ R, u2 > 0 and fU |U2<0(u) = 0 otherwise.

Combining the conditional pdfs fU |U2>0(.) and fU |U2<0(.), we obtain the (mar-
ginal) pdf of the transformed two-dimensional random vector

fU (u) = fU |U2<0(u)P (U2 < 0) + fU |U2>0(u)P (U2 > 0)

=
1
2
{

fU |U2<0(u)I(u2 < 0) + fU |U2>0(u)I(u2 > 0)
}

=
1
2

[

1
π

exp
{

−1
2
(u2

1 + u2
2)
}

I(u2 < 0)

+
1
π

exp
{

−1
2
(u2

1 + u2
2)
}

I(u2 > 0)
]

=
1
2π

exp
{

−1
2
(u2

1 + u2
2)
}
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for u1, u2 ∈ R.

Notice that the pdf fU (.) defines a two-dimensional multinormal distribution
with zero mean and identity variance matrix. This transformation is at the
heart of the Box-Muller method to generate standard normal (pseudo) random
numbers.

EXERCISE 4.17. Consider f(x1, x2, x3) = k(x1 + x2x3); 0 < x1, x2, x3 < 1.

a) Determine k so that f is a valid pdf of (X1,X2,X3) = X.

b) Compute the (3 × 3) matrix ΣX .

c) Compute the (2 × 2) matrix of the conditional variance of (X2,X3) given
X1 = x1.

Ad a) We have to determine k for which

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3) dx1 dx2 dx3 = 1.

Evaluating the integral leads to:
∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3) dx1 dx2 dx3

=
∫ 1

0

∫ 1

0

∫ 1

0

k(x1 + x2x3) dx1 dx2 dx3

= k

∫ 1

0

∫ 1

0

[

1
2
x2

1 + x1x2x3

]1

0

dx2 dx3

= k

∫ 1

0

∫ 1

0

(

1
2

+ x2x3

)

dx2 dx3

= k

∫ 1

0

[

1
2
x2 +

1
2
x2

2x3

]1

0

dx3

= k

∫ 1

0

(

1
2

+
1
2
x3

)

dx3

= k

[

1
2
x3 +

1
4
x2

3

]1

0

=
3
4

k.

It follows that k = 4/3.

Ad b) For the expected values of Xi, i = 1, . . . , 3, we have that
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EX1 =
∫ 1

0

∫ 1

0

∫ 1

0

x1f(x1, x2, x3) dx1 dx2 dx3

=
4
3

∫ 1

0

∫ 1

0

∫ 1

0

(x2
1 + x1x2x3) dx1 dx2 dx3

=
11
18

EX2 =
4
3

∫ 1

0

∫ 1

0

∫ 1

0

(x1x2 + x2
2x3) dx1 dx2 dx3

=
5
9
.

The pdf is symmetric in x2 and x3, EX2 = EX3 and, hence,

EX =
(

11
18

,
5
9
,
5
9

)�
.

In order to compute the covariance matrix of the three-dimensional random
vector X, one has to compute the variances and covariances of its components:

Σ =

⎛

⎝

Var(X1) Cov(X1,X2) Cov(X1,X3)
Cov(X2,X1) Var(X2) Cov(X2,X3)
Cov(X3,X1) Cov(X3,X2) Var(X3)

⎞

⎠ .

We have

EX2
1 =

4
3

∫ 1

0

∫ 1

0

∫ 1

0

(x3
1 + x2

1x2x3) dx1 dx2 dx3

=
4
9
,

EX2
2 =

4
3

∫ 1

0

∫ 1

0

∫ 1

0

(x1x
2
2 + x3

2x3) dx1 dx2 dx3

=
7
18

,

EX2
3 = EX2

2 .

Now, we can compute the covariances using the formula Cov(X1,X2) =
EX1X2 − EX1EX2 as

Σ =

⎛

⎝

23
324 − 1

162 − 1
162

− 1
162

13
162

1
162

− 1
162

1
162

13
162

⎞

⎠ .

Ad c) The conditional density of (X2,X3)� given X1 = x1 can be expressed as
a ratio of the joint density of (X1,X2,X3)� and the marginal density of X1.
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The marginal density of X1 is

fX1(x1) =
∫ 1

0

∫ 1

0

f(x1, x2, x3)dx2dx3

=
∫ 1

0

∫ 1

0

4
3
(x1 + x2x3)dx2dx3

=
4
3

∫ 1

0

[

x1x2 +
1
2
x2

2x3

]1

0

dx3

=
4
3

∫ 1

0

x1 +
1
2
x3dx3

=
4
3

[

x1x3 +
1
4
x2

3

]1

0

=
4
3

(

x1 +
1
4

)

.

It follows that the conditional density of X2 and X3 is

f(x2, x3|x1) =
x1 + x2x3

x1 + 1
4

.

Let us now compute the conditional moments E(X2|X1 = x1) = E(X3|X1 =
x1), E(X2

2 |X1 = x1) = E(X2
3 |X1 = x1), and E(X2X3|X1 = x1).

E(X2|X1 = x1) =
1

x1 + 1
4

∫ 1

0

∫ 1

0

(x1x2 + x2
2x3) dx2 dx3

=
6x1 + 2
12x1 + 3

,

E(X2
2 |X1 = x1) =

1
x1 + 1

4

∫ 1

0

∫ 1

0

(x1x
2
2 + x3

2x3) dx2 dx3

=
8x1 + 3
24x1 + 6

.

Now we can compute the conditional variances of X2 and X3 :

Var(X2|X1 = x1) = E(X2
2 |X1 = x1) − [E(X2|X1 = x1)]

2

=
8x1 + 3

2(12x1 + 3)
− 36x2

1 + 24x1 + 4
(12x1 + 3)2

=
96x2

1 + 60x1 + 9
2(12x1 + 3)2

− 72x2
1 + 48x1 + 8

2(12x1 + 3)2

=
24x2

1 + 12x1 + 1
2(12x1 + 3)2

.

Next, we have to compute E(X2X3|X1 = x1):
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E(X2X3|X1 = x1) =
1

x1 + 1
4

∫ 1

0

∫ 1

0

(x1x2x3 + x2
2x

2
3) dx2 dx3

=
9x1 + 4
36x1 + 9

.

Now, the conditional covariance can be expressed as:

Cov(X2,X3|X1 = x1) = E(X2X3|X1 = x1) − E(X2|X1 = x1)E(X3|X1 = x1)

=
9x1 + 4

3(12x1 + 3)
− 36x2

1 + 24x1 + 4
(12x2

1 + 3)2

=
108x2

1 + 75x1 + 12
3(12x1 + 3)2

− 108x2
1 + 72x1 + 12

3(12x1 + 3)2

=
x1

(12x1 + 3)2
.

Summarizing the above results, the conditional covariance matrix is given by:

Var
((

X2

X3

)

|X1 = x1

)

=
1

2(12x1 + 3)2

(

24x2
1 + 12x1 + 1 2x1

2x1 24x2
1 + 12x1 + 1

)

EXERCISE 4.18. Let X ∼ N2

((

1
2

)

,

(

2 a
a 2

))

.

a) Represent the contour ellipses for a = 0; − 1
2 ; + 1

2 ; 1.

b) For a = 1
2 find the regions of X centered on µ which cover the area of the

true parameter with probability 0.90 and 0.95.

Ad a) The eigenvalues λ1, λ2 of the covariance matrix Σ are obtained as a
solution of the equation |Σ − λI2| = 0. The eigenvectors γ1, γ2 are solutions
of

Σγi = λiγi , i = 1, 2.

The contour ellipse has principal axes in the direction of γ1 and γ2 and it can
be represented as follows:

Ed =
{

x ∈ R
2 | (x − µ)�Σ−1(x − µ) = d2

}

.

The half-lengths of the axes of the ellipse Ed are dλ
1/2
i , where i = 1, 2.

i) For a = 0, we obtain

X ∼ N2

((

1
2

)

,

(

2 0
0 2

))

and we have
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∣

∣

∣

∣

2 − λ 0
0 2 − λ

∣

∣

∣

∣
= (2 − λ)2 = 0.

Hence,

λ1 = λ2 = 2,

γ1 = (1, 0)�,

γ2 = (0, 1)�

and

d2 = (x1 − 1, x2 − 2)
(

1
2 0
0 1

2

)(

x1 − 1
x2 − 2

)

=
(x1 − 1)2 + (x2 − 2)2

2
.

The contour ellipse is centered in (1, 2)�, its principal axes are in the direction
(1, 0)�, (0, 1)� and it can be represented as:

Ed =
{

x ∈ R
2 | (x1 − 1)2 + (x2 − 2)2

2
= d2

}

.

The half-lengths of both axes are equal to d
√

2.

ii) For a = −1/2, we have

X ∼ N2

((

1
2

)

,

(

2 − 1
2

− 1
2 2

))

and from the equation
∣

∣

∣

∣

2 − λ − 1
2

− 1
2 2 − λ

∣

∣

∣

∣
= (2 − λ)2 − 1

4
= 0.

it follows that λ1 = 5/2, λ2 = 3/2 and γ1 = 1√
2
(1,−1)�, γ2 = 1√

2
(1, 1)�.

d2 = (x1 − 1, x2 − 2)
(

8
15

2
15

2
15

8
15

)(

x1 − 1
x2 − 2

)

=
4
15

(2x2
1 + 2x2

2 − 6x1 − 9x2 + x1x2 + 12)

The contour ellipse is centered in (1, 2)�, its principal axes are in directions
of (1,−1)�, (1, 1)� and it can be represented as:

Ed =
{

x ∈ R
2 | 4

15
(2x2

1 + 2x2
2 − 6x1 − 9x2 + x1x2 + 12) = d2

}

.

The half-lengths of its axes are equal to d
√

5/2 and d
√

3/2.

iii) For a = 1/2, we have
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X ∼ N2

((

1
2

)

,

(

2 1
2

1
2 2

))

and from the equation
∣

∣

∣

∣

2 − λ 1
2

1
2 2 − λ

∣

∣

∣

∣
= (2 − λ)2 − 1

4
= 0

it follows that λ1 = 5
2 , λ2 = 3

2 and γ1 = 1√
2
(1, 1)�, γ2 = 1√

2
(1,−1)�.

d2 = (x1 − 1, x2 − 2)
(

8
15 − 2

15
− 2

15
8
15

)(

x1 − 1
x2 − 2

)

=
4
15

(2x2
1 + 2x2

2 − 2x1 − 7x2 − x1x2 + 8)

The contour ellipse is centered in (1, 2)�, its principal axes are in directions
of (1, 1)�, (1,−1)� and it can be represented as:

Ed =
{

x ∈ R
2 | 4

15
(2x2

1 + 2x2
2 − 2x1 − 7x2 − x1x2 + 8) = d2

}

.

The half-lengths of its axes are d
√

5/2 and d
√

3/2.

iv) For a = 1 we have

X ∼ N2

((

1
2

)

,

(

2 1
1 2

))

and from the equation
∣

∣

∣

∣

2 − λ 1
1 2 − λ

∣

∣

∣

∣
= (2 − λ)2 − 1 = 0

it follows that λ1 = 3, λ2 = 1 and γ1 = 1√
2
(1, 1)�, γ2 = 1√

2
(1,−1)�.

d2 = (x1 − 1, x2 − 2)
(

2
3 − 1

3
− 1

3
2
3

)(

x1 − 1
x2 − 2

)

=
2
3
(x2

1 + x2
2 − 3x2 − x1x2 + 3)

The contour ellipse is centered in (1, 2)�, its principal axes are in the direction
of (1, 1)�, (1,−1)� and the ellipse can be represented as:

Ed =
{

x ∈ R
2 | 2

3
(x2

1 + x2
2 − 3x2 − x1x2 + 3) = d2

}

.

The half-lengths of its axes are d
√

3 and d.

Ad b) We know that the random variable U = (X −µ)�Σ−1(X −µ) has a χ2
2

distribution. The definition of critical value says that P (U ≤ χ2
0.90;2) = 0.90

and P (U ≤ χ2
0.95;2) = 0.95. This implies that the wanted regions for X can

be written as
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{

x ∈ R
2 | 4

15
(2x2

1 + 2x2
2 − 2x1 − 7x2 − x1x2 + 8) ≤ χ2

0.90;2 = 4.61
}

covering realizations of X with probability 0.90 and
{

x ∈ R
2 | 4

15
(2x2

1 + 2x2
2 − 2x1 − 7x2 − x1x2 + 8) ≤ χ2

0.95;2 = 5.99
}

containing future realizations of X with probability 0.95. The regions are
ellipses corresponding to d2

0.90 = χ2
0.90;2 = 4.61 and d2

0.95 = χ2
0.95;2 = 5.99.

EXERCISE 4.19. Consider the pdf

f(x1, x2) =
1

8x2
exp

{

−
(

x1

2x2
+

x2

4

)}

, x1, x2 > 0.

Compute f(x2) and f(x1|x2). Also give the best (MSE) approximation of X1

by a function of X2. Compute the variance of the error of the approximation.

The marginal distribution of x2 can be calculated by “integrating out” x1

from the joint pdf f(x1, x2):

fX2(x2) =
∫ +∞

0

f(x1, x2)dx1

= −1
4

exp
{

−x2

4

}
∫ +∞

0

− 1
2x2

exp
{

− x1

2x2

}

dx1

= −1
4

exp
{

−x2

4

}[

exp
{

−x2

4

}]+∞

0

=
1
4

exp
{

−x2

4

}

,

for x2 > 0, in other words, the distribution of X2 is exponential with expected
value EX2 = 4.

The conditional distribution f(x1|x2) is calculated as a ratio of the joint pdf
f(x1, x2) and the marginal pdf fX2(x2):

fX1|X2=x2(x1) =
f(x1, x2)
fX2(x2)

=
1

2x2
exp

(

− x1

2x2

)

,

for x1, x2 > 0. Note that this is just the exponential distribution with expected
value 2x2.

The best approximation of X1 by X2, from the point of view of MSE, is the
conditional expectation E(X1,X2 = x2). We have already remarked that the
conditional expected value is E(X1|X2 = x2) = 2x2.
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The variance of the “error of approximation” is the variance of X1 around its
expected value, i.e., the conditional variance of X1 given X2 = x2. From the
properties of the exponential distribution, we can immediately say that it is
equal to Var(X1|X2 = x2) = 4x2

2.

EXERCISE 4.20. Prove Theorem 4.5 in Härdle & Simar (2003), i.e., that
the linear transformation of a p-variate normally distributed random variable
Y = AX + b (A is square and nonsingular) has again a p-variate normal
distribution.

The multinormal distribution has pdf

fX(x) = |2πΣ|−1/2 exp
{

−1
2
(x − µ)�Σ−1(x − µ)

}

.

For the linear transformation, Y = AX + b, the inverse transformation is
X = A−1Y − b, the Jacobian of the inverse transformation is J = A−1 and
the density of the transformed random vector is

fY (y) = abs(|A|−1)fX{A−1(y − b)}.

From the assumption, that A is square and nonsingular, we know that the
inverse matrix A−1 exists and we can write the pdf of the transformed random
vector as

fY (y)

= |2πΣ|−1/2 abs(|A|−1) exp
[

−1
2
{A−1(y − b) − µ}�Σ−1{A−1(y − b) − µ}

]

= |2πAΣA�|−1/2 exp
[

−1
2
{y − (b + Aµ)}�(A−1)�Σ−1A−1{y − (b + Aµ)}

]

= |2πAΣA�|−1/2 exp
[

−1
2
{y − (b + Aµ)}�

(

AΣA�)−1 {y − (b + Aµ)}
]

.

This is the probability density function of a p-variate multinormal distribution
with mean EY = Aµ + b and variance matrix Var(Y ) = AΣA� and we
conclude that

AX + b = Y ∼ Np(Aµ + b,AΣA�).
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Theory of the Multinormal

. . . while the individual man is an insoluble puzzle, in the aggregate
he becomes a mathematical certainty.
Sherlock Holmes in “The Sign of Four”

In the preceeding chapter we realized the importance of the multivariate
normal distribution, its geometry and connection with elliptic dependence
structures. The multivariate normal comes into play in many applications
and statistical tests. It is therefore important to know how this distribution
behaves when we apply conditioning or linear or nonlinear transformation.

It is also of interest to check whether partitioned random vectors are still
normally distributed and how the multinormal distribution is popping out
of theoretical concepts. It is stable under linear transforms, zero correla-
tion corresponds to independence, the marginals and all the conditionals
are also multivariate normal variates, etc. The mathematical properties of
the multinormal make analyses much simpler. We consider here best linear
approximations, partial correlation (expressed via partitioned matrices), and
conditioning on parts of a multinormal random vector.

In order to better explain the basic properties of the multivariate normal
distribution, we start by introducing several theorems.

Theorem 5.1 says that a subvector of a multivariate normal vector has again
multivariate normal distribution, and it shows how to calculate its orthogonal
(independent) complement.

THEOREM 5.1. Let X =
(
X1
X2

)

∼ Np(µ,Σ), X1 ∈ R
r, and X2 ∈ R

p−r. Define
X2.1 = X2 − Σ21Σ

−1
11 X1 from the partitioned covariance matrix

Σ =
(

Σ11 Σ12

Σ21 Σ22

)

.

Then



82 5 Theory of the Multinormal

X1 ∼ Nr(µ1, Σ11), (5.1)
X2.1 ∼ Np−r(µ2.1, Σ22.1) (5.2)

are independent with

µ2.1 = µ2 − Σ21Σ
−1
11 µ1, Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12. (5.3)

Theorem 5.2 says that linear transformation of a multivariate normal vector
also has multivariate normal distribution. The mean and the variance matrix
of the linearly transformed random vector actually follow from the results
presented in previous chapters.

THEOREM 5.2. If X ∼ Np(µ,Σ), A(q × p), c ∈ R
q, and rank(A) = q ≤ p,

then Y = AX + c is a q-variate normal, i.e.,

Y ∼ Nq(Aµ + c,AΣA�).

Theorem 5.3 gives the formula for conditional distribution, which is also multi-
variate normal.

THEOREM 5.3. The conditional distribution of X2 given X1 = x1 is normal
with mean µ2 + Σ21Σ

−1
11 (x1 − µ1) and covariance Σ22.1, i.e.,

(X2 | X1 = x1) ∼ Np−r(µ2 + Σ21Σ
−1
11 (x1 − µ1), Σ22.1). (5.4)

Using Theorem 5.1, we can say that the conditional distribution (X2 | X1 =
x1) and the random vector X1 are independent.

Apart from the multivariate normal distribution, we mention the Wishart
and the Hotelling distributions, which can be seen as generalizations of the
one-dimensional χ2 and t-distribution, respectively.

For a data matrix X (n × p), containing n independent observations of the
centered normal vector X ∼ Np(0, Σ), the estimated covariance matrix is
proportional to X�X . The distribution of the random matrix M(p × p) =
X�X =

∑n
i=1 xix

�
i is the so-called Wishart distribution Wp(Σ,n), which

proves to be very useful in the analysis of estimated covariance matrices.

Suppose that the random vector Y ∼ Np(0, I) is independent of the random
matrix M ∼ Wp(I, n). Then the random variable n Y �M−1Y has Hotelling
T 2 (p, n) distribution. The Hotelling T 2 (p, n) is closely related to the F -
distribution:

T 2(p, n) =
np

n − p + 1
Fp,n−p+1.
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EXERCISE 5.1. Consider X ∼ N2(µ,Σ) with µ = (2, 2)� and Σ =
(

1
0

0
1

)

and the matrices A =
(

1
1

)�
, B =

(

1
−1

)�
. Show that AX and BX are

independent.

Since X ∼ N2(µ,Σ) is multivariate normal, Theorem 5.2 implies that also
both AX and BX are normal. More precisely, AX ∼ N(Aµ,AΣA�) =
N(4, 2) and BX ∼ N(Bµ,BΣB�) = N(0, 2).

However, in order to show the independence, we have to study the joint dis-
tribution of (AX,BX)�. Theorem 5.2 implies that

(

AX
BX

)

=
(

A
B

)

X ∼ N2

((

4
0

)

,

(

2 0
0 2

))

With this diagonal structure of the covariance matrix, the joint pdf of
(AX,BX) can be factorized as follows:

f(x1, x2) =
1
4π

exp
{

−1
2
· (x1 − 4, x2)

(
1
2 0
0 1

2

)(

x1 − 4
x2

)}

=
1
4π

exp
{

− (x1 − 4)2 + x2
2

4

}

=
1

2
√

π
exp

{

− (x1 − 4)2

4

}

1
2
√

π
exp

{

−x2
2

4

}

= fAX(x1)fBX(x2),

i.e., as the product of the marginal densities of (AX and BX). This factor-
ization, following from the diagonal structure of the variance matrix of multi-
variate normal distribution, proves the independence of the random variables
AX and BX, see also Exercise 4.10.

EXERCISE 5.2. ProvethatifX1∼Nr(µ1, Σ11)and(X2|X1 =x1)∼Np−r(Ax1+
b,Ω) where Ω does not depend on x1, then X =

(
X1
X2

)

∼ Np(µ,Σ), where

µ =
(

µ1

Aµ1 + b

)

and Σ =
(

Σ11 Σ11A�

AΣ11 Ω + AΣ11A�

)

.

The conditional distribution of (X2|X1 = x1) can be written as X2 = Ax1 +
b + X3, where X3 ∼ N(0, Ω) is independent of X1. Hence, the marginal
distribution of the random vector X2 is the same as the distribution of AX1 +
b + X3. Now, according to Theorem 5.2, the random vector

X =
(

X1

X2

)

=
(

Ip 0p0�p
A Ip

)(

X1

X3

)

+
(

0
b

)
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has multivariate normal distribution.

It remains to calculate E(X) and VarX:

E(X2) = E{E(X2|X1)} = E{AX1 + b + X3}
= Aµ1 + b,

Var(X2) = E{Var(X2|X1)} + V ar{E(X2|X1)}
= E{Ω} + Var{AX1 + b}
= Ω + AΣ11A�,

Cov(X1,X2) = E{(X1 − EX1)(X2 − EX2)�} =
= E{(X1 − µ1)(AX1 + b −Aµ1 − b)�} =

= E{(X1 − µ1)(X1 − µ1)
�A�} = Σ11A�.

Since X1 ∼ Nr(µ1, Σ11), it follows that

X =
(

X1

X2

)

∼ Np

((

µ1

Aµ1 + b

)(

Σ11 Σ11A�

AΣ11 Ω + AΣ11A�

))

.

EXERCISE 5.3. Let X (n× p) be a data matrix from a Np(µ,Σ) distribution.
Show that nS = X�HX is distributed as Wp(Σ,n − 1).

In order to arrive at the Wishart distribution, we have to consider transfor-
mations of X that will allow us to write S in terms of independent centered
identically distributed multivariate normal observations.

The centering matrix H(n × n) is idempotent, see Exercise 3.16, and rank
(H) = tr(H) = n(1 − 1/n) = n − 1. Thus, the spectral decomposition of H
can be written as H = ΓIn−1Γ

�.

Define the data matrix Y = Γ�X = (γiXj)i=1,...,n−1;j=1,...,p = (yij)i;j , where
γi denotes the ith eigenvector of H and Xj is the jth column of matrix X .

We start by rewriting the spectral decomposition of the centering matrix:

H = ΓIn−1Γ
�

Γ�HΓ = In−1

Γ�(In − n−11n1�n )Γ = In−1

Γ�Γ − n−1Γ�1n1�n Γ = In−1

n−1Γ�1n1�n Γ = 0n−10�n−1.

The above equality means that Γ�1n = 0n−1 which in turn implies, for any
j = 1, . . . , p and i = 1, . . . , n − 1, that

Eyij = Eγ�
i Xj = γ�

i EXj = µjγ
�
i 1n = 0,
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i.e., the expected value of every element of matrix Y is zero.

Next, for any j, k = 1, . . . , p and i = 1, . . . , n − 1, we can write

Cov(yij , yik) = Cov(γ�
i Xj , γ

�
i Xk) = σjkγ�

i γi = σjk

and it follows that all rows of the random matrix Y have the same variance
matrix Σ. Furthermore, the rows of the matrix Y are independent since, for
any i, h = 1, . . . , n − 1, i �= h and j, k = 1, . . . , p, we have

Cov(yij , yhk) = Cov(γ�
i Xj , γ

�
h Xj) = σjkγ�

i γh = 0.

From Theorem 5.2 and from the normality of X it follows that the distribution
of Y is also multivariate normal.

Now we can write

nS = X�HX = X�ΓΓ�X = Y�Y,

where the n − 1 rows of the matrix Y are independent observations of multi-
variate normally distributed random vector Y ∼ Np(0, Σ). From the definition
of the Wishart distribution, it is now straightforward that nS ∼ Wp(Σ,n−1).

EXERCISE 5.4. Let

X ∼ N2

((

1
2

)

,

(

2 1
1 2

))

and

Y | X ∼ N2

((

X1

X1 + X2

)

,

(

1 0
0 1

))

.

a) Determine the distribution of Y2 | Y1.

b) Determine the distribution of W = X − Y .

We start by computing the joint distribution of the vector (X1,X2, Y1, Y2)�

from the marginal distribution of X and the conditional distribution Y |X.
Exercise 5.2, where

A =
(

1 0
1 1

)

, b =
(

0
0

)

, Ω =
(

1 0
0 1

)

,

provides the following result:

(

X
Y

)

∼ N4

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1
2
1
3

⎞

⎟

⎟

⎠
,

⎛

⎜

⎜

⎝

2 1 2 3
1 2 1 3
2 1 3 3
3 3 3 7

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠
.

In particular, the marginal distribution of Y is
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Y ∼ N2

((

1
3

)

,

(

3 3
3 7

))

.

Now we are ready to solve our problem.

a) The conditional distribution of Y2 given Y1 is normal

Y2 |Y1 = N(Y1 + 2, 4)

by Theorem 5.3.

b) It is clear that W can be written as a linear transformation W = X −Y =
B(X1,X2, Y1, Y2)�, where

B =
(

1 0 −1 0
0 1 0 −1

)

.

Using Theorem 5.2, we obtain

W ∼ N2

((

0
−1

)

,

(

1 0
0 3

))

.

EXERCISE 5.5. Consider

⎛

⎝

X
Y
Z

⎞

⎠ ∼ N3(µ,Σ). Compute µ and Σ knowing that

Y | Z ∼ N1(−Z, 1) (5.5)

µZ|Y = −1
3
− 1

3
Y (5.6)

X | Y,Z ∼ N1(2 + 2Y + 3Z, 1). (5.7)

Determine the conditional distributions of X | Y and of X | Y + Z.

Since we know the conditional distribution Y |Z ∼ N1(−Z, 1), we can apply
Theorem 5.3:

µY |Z = µY + σY Zσ−1
ZZ(Z − µZ) = −Z (5.8)

ΣY Y.Z = σY Y − σY Zσ−1
ZZσY Z = 1 (5.9)

By calculating the expected value and the variance of both sides of (5.8) we
get:

µY = −µZ

σY Z = σZZ .

The equation (5.9) now implies:
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σY Y = 1 + σY Z = 1 + σZZ .

Now we are ready to use (5.6). Theorem 5.3 allows to express the expected
value µZ|Y of the conditional distribution Z|Y as

µZ|Y = µZ + σZY σ−1
Y Y (Y − µY ) = −1

3
− 1

3
Y

Again, by calculating the expected value and the variance of both sides of the
above formula, we obtain:

−3µZ = 1 + µY

σZY =
1
3
σY Y .

For the expected values of Y and Z we now have the system of equations:

µY = −µZ

−3µZ = 1 + µY

so that µZ = − 1
2 and µY = 1

2 .

The equations for the covariances are:

σY Y = 1 + σY Z

σZY =
1
3
σY Y

σY Z = σZZ

and it is easy to calculate σY Y = 3
2 , σY Z = 1

2 and σZZ = 1
2 .

Thus, we have derived the distribution of the vector
(

Y

Z

)

∼ N2

(( 1
2

− 1
2

)

,

( 3
2 − 1

2

− 1
2

1
2

))

and, since we know that X|(Y,Z) ∼ N1(2 + 2Y + 3Z, 1), it is straightforward
to apply the result derived in Exercise 5.2 with Ω = 1, A = (2, 3), and b = 2.
We obtain ⎛

⎜

⎝

X

Y

Z

⎞

⎟

⎠ ∼ N3

⎛

⎜

⎝

⎛

⎜

⎝

3
2
1
2

− 1
2

⎞

⎟

⎠ ,

⎛

⎜

⎝

45
2

11
2

5
2

11
2

3
2

1
2

5
2

1
2

1
2

⎞

⎟

⎠

⎞

⎟

⎠ .

The distribution of X|Y can now be found easily by applying Theorem 5.3:

µX|Y = µX + σXY σ−1
Y Y (Y − µY ) =

3
2

+
11
2

2
3

(

Y − 1
2

)

=
11
3

Y +
10
3

σX|Y = σXX − σXY σ−1
Y Y σXY =

45
2

− 11
2

2
3

11
2

=
7
3
.
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Hence, the conditional distribution is X|Y ∼ N1( 11
3 Y + 10

3 , 7
3 ).

To determine the conditional distribution of X|Y + Z we have to determine
the joint distribution of X + Y :

µY +Z = µY + µZ =
1
2
− 1

2
= 0

σY +Z,Y +Z = σY Y + σZZ + 2σY Z =
3
2

+
1
2

+ 2
1
2

= 3

σX,Y +Z = σXY + σXZ =
11
2

+
5
2

= 8.

Now we can use Theorem 5.3 again and write

µX|Y +Z = µX + σX,Y +Zσ−1
Y +Z,Y +Z(Y + Z − µY +Z)

=
3
2

+
8
3
(Y + Z)

σX|Y +Z = σXX − σX,Y +Zσ−1
Y +Z,Y +ZσX,Y +Z =

45
2

− 64
3

=
7
6

so that X|(Y + Z) ∼ N1

(
8
3 (Y + Z) + 3

2 , 7
6

)

EXERCISE 5.6. Knowing that

Z ∼ N1(0, 1)
Y | Z ∼ N1(1 + Z, 1)

X | Y,Z ∼ N1(1 − Y, 1)

a) find the distribution of

⎛

⎝

X
Y
Z

⎞

⎠ and of Y | (X,Z).

b) find the distribution of
(

U
V

)

=
(

1 + Z
1 − Y

)

.

c) compute E(Y | U = 2).

a) The distribution of the random vector

⎛

⎝

X
Y
Z

⎞

⎠ can be derived easily by

applying the result derived in Exercise 5.2 repeatedly. In the first step, we
find the distribution of

(

Y
Z

)

∼ N2

((

1
0

)

,

(

2 1
1 1

))
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and, applying the same procedure with b = 1, A = (−1, 0), and Ω = 1, we

can combine the known distributions of
(

Y
Z

)

and X | (Y,Z) to obtain

⎛

⎝

X
Y
Z

⎞

⎠ ∼ N3

⎛

⎝

⎛

⎝

0
1
0

⎞

⎠ ,

⎛

⎝

3 −2 −1
−2 2 1
−1 1 1

⎞

⎠

⎞

⎠ .

The conditional distribution Y | (X,Z) can be derived using Theorem 5.3.
The moments of the resulting normal distribution are

µY |(X,Z) = 1 + (−2, 1)
(

3 −1
−1 1

)−1((
X
Z

)

−
(

0
0

))

= 1 + (−2, 1)
1
2

(

1 1
1 3

)(

X
Z

)

= 1 + (0, 1)
(

X
Z

)

= 1 + Z

and

σ2
Y |(X,Z) = 2 − (−2, 1)

(

3 −1
−1 1

)−1(−2
1

)

= 2 − (−2, 1)
1
2

(

1 1
1 3

)(

−2
1

)

= 2 − 3
2

=
1
2
.

Hence, we arrive to the conditional distribution Y | (X,Z) ∼ N1

(

1 + Z, 1
2

)

.

b) The distribution of
(

U
V

)

=
(

1 + Z
1 − Y

)

is obviously normal since it is a linear

transformation of normally distributed random vector, see Theorem 5.2. The
distribution of (U, V )� can be deduced by calculating the corresponding first
and second moments:

µU = E(1 + Z) = 1 + EZ = 1
µV = E(1 − Y ) = 0
σ2

U = σ2
Z = 1

σ2
V = σ2

Y = 2
σUV = −σZ,Y = −1

and it follows that the distribution of (U, V )� is
(

U
V

)

=
(

1 + Z
1 − Y

)

∼ N2

((

1
0

)

,

(

1 −1
−1 2

))

.
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c) The conditional distribution of (Y |U = 2) is the same as the conditional
distribution of (Y |Z + 1 = 2), i.e., (Y |Z = 1). We know that Y | Z ∼
N1(1 + Z, 1) and thus, the conditional distribution of (Y |U = 2) is

(Y |U = 2) ∼ N1(1 + 1, 1) = N1(2, 1).

EXERCISE 5.7. Suppose
(

X
Y

)

∼ N2(µ,Σ) with Σ positive definite. Is it pos-

sible that

a) µX|Y = 3Y 2,

b) σXX|Y = 2 + Y 2,

c) µX|Y = 3 − Y , and

d) σXX|Y = 5 ?

Using Theorem 5.3, we see that c) and d) are, in principle, possible (the
conditional mean is a linear function of the condition and the conditional
variance is constant).

Parts a) and b) are not possible since the resulting conditional means and
variances in Theorem 5.3 do not contain any quadratic term.

EXERCISE 5.8. Let X ∼ N3

⎛

⎝

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

11 −6 2
−6 10 −4

2 −4 6

⎞

⎠

⎞

⎠.

a) Find the best linear approximation of X3 by a linear function of X1 and X2

and compute the multiple correlation coefficient between X3 and (X1,X2).

b) Let Z1 = X2 − X3, Z2 = X2 + X3 and (Z3 | Z1, Z2) ∼ N1(Z1 + Z2, 10).

Compute the distribution of

⎛

⎝

Z1

Z2

Z3

⎞

⎠.

a) The best linear approximation of X3 by a linear function of X1 and X2 is
given by the conditional expected value calculated according to Theorem 5.3:
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µX3|(X1,X2) = 3 + (2,−4)
(

11 −6
−6 10

)−1(
X1 − 1
X2 − 2

)

= 3 + (2,−4)
1
74

(

10 6
6 11

)(

X1 − 1
X2 − 2

)

= 3 +
1
74

(−4, 32)
(

X1 − 1
X2 − 2

)

= 3 +
1
74

(−4, 32)
(

X1 − 1
X2 − 2

)

=
145
37

− 2
37

X1 −
16
37

X2,

The multiple correlation coefficient, ρ3.12, between X3 and (X1,X2) is defined
as the correlation between X3 and its best linear approximation based on X1

and X2, i.e.,

ρ2
3.12 =

Cov(X3,− 2
37X1 − 16

37X2)
√

Var(X3)Var(− 2
37X1 − 16

37X2)

= − Cov(X3,X1 + 8X2)
√

Var(X3)Var(X1 + 8X2)

= − Cov(X3,X1) + 8Cov(X3,X2)
√

Var(X3){Var(X1) + 64Var(X2) + 16Cov(X1,X2)}

= − 2 − 32
√

6(11 + 640 − 96)

=
1√
37

.= 0.1644.

b) The random vector
(

Z1

Z2

)

can be calculated as a linear transformation of

the random vector X as (

Z1

Z2

)

= AX + b,

where A =
(

0 1 −1
0 1 1

)

and b = 0. According to Theorem 5.2, the vector

(Z1, Z2)� is normally distributed with the expected value

µ12 = Aµ =
(

0 1 −1
0 1 1

)

⎛

⎝

1
2
3

⎞

⎠ =
(

−1
5

)

and the variance matrix

Σ12 = AΣA� =
(

0 1 −1
0 1 1

)

⎛

⎝

11 −6 2
−6 10 −4

2 −4 6

⎞

⎠

⎛

⎝

0 0
1 1

−1 1

⎞

⎠ =
(

24 4
4 8

)

.
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Since we know (Z3|Z1Z2) ∼ N(Z1 + Z2, 10), we can apply the result derived

in Exercise 5.2 with A =
(

1
1

)

, b = 0, and Ω = 10. Then

Z =

⎛

⎝

Z1

Z2

Z3

⎞

⎠ ∼ N3(µZ , ΣZ),

where

µZ =
(

µZ12

AµZ12 + b

)

=

⎛

⎝

−1
5
4

⎞

⎠

and

ΣZ =
(

Σ12 Σ12A�

AΣ12 Ω + AΣ12A�

)

=

⎛

⎝

24 4 28
4 8 12

28 12 50

⎞

⎠ .

EXERCISE 5.9. Let (X,Y,Z)� be a tri-variate normal r.v. with

Y | Z ∼ N1(2Z, 24)
Z | X ∼ N1(2X + 3, 14)

X ∼ N1(1, 4)
and ρXY = 0.5.

Find the distribution of (X,Y,Z)� and compute the partial correlation between
X and Y for fixed Z. Do you think it is reasonable to approximate X by a
linear function of Y and Z?

Using the known marginal distribution X ∼ N1(µX , σ2
X) ∼ N(1, 4) and the

conditional distribution Z|X ∼ N1(AX + b,Ω) ∼ N(2X + 3, 14), the method
explained in Exercise 5.2 leads to

(

X
Z

)

∼ N2

((

µX

AµX + b

)

,

(

σ2
X Aσ2

X

Aσ2
X Aσ2

XA + Ω

))

∼ N2

((

1
2 + 3

)

,

(

4 8
8 16 + 14

))

∼ N2

((

1
5

)

,

(

4 8
8 30

))

.

Clearly, the marginal distribution of the random variable Z is Z ∼ N(5, 30)
and the same rule can be used to determine the joint distribution of (Y,Z)�

from the conditional distribution Y |Z ∼ N(CZ + d, Φ) ∼ N(2Z, 24):
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(

Y
Z

)

∼ N2

((

CµZ + d
µZ

)

,

(

Cσ2
ZC + Φ Cσ2

Z

Cσ2
Z σ2

Z

))

∼ N2

((

10
5

)

,

(

120 + 24 60
60 30

))

∼ N2

((

10
5

)

,

(

144 60
60 30

))

Finally, the correlation ρXY of X and Y allows us to calculate the covariance
σXY of X and Y :

σXY = ρXY
√

σXXσY Y

=
1
2

√
4 · 144 = 12

and the joint distribution of the random vector (X,Y,Z)� is thus
⎛

⎝

X
Y
Z

⎞

⎠ ∼ N3

⎛

⎝

⎛

⎝

1
10
5

⎞

⎠ ,

⎛

⎝

4 12 8
12 144 60
8 60 30

⎞

⎠

⎞

⎠ .

The partial correlation coefficient, ρXY |Z , of X and Y for fixed Z can be
written in terms of simple correlation coefficients as

ρXY |Z =
ρXY − ρXZρY Z

√

(1 − ρ2
XZ)(1 − ρ2

Y Z)
.

Plugging in the appropriate elements of the covariance matrix, we obtain

ρXY |Z =

σXY√
σXXσY Y

− σXZσY Z√
σXXσY Y σ2

ZZ
√

(1 − σ2
XZ

σXXσZZ
)(1 − σ2

Y Z

σY Y σZZ
)

=
12√
4·144 − 8·60√

4·144·302
√

(1 − 82

4·30 )(1 − 602

144·30 )

=
1
2 − 2

3
√

( 56
120 )(1

6 )
= −

1
6

√

7
90

= −1
2

√

2
7

.= −0.2673.

The best linear approximation of X in terms of Y and Z is given by the
conditional expectation µX|Y Z which, using Theorem 5.3, can be calculated as
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µX|Y Z = µX + (12, 8)
(

144 60
60 30

)−1(
Y − µY

Z − µZ

)

= 1 + (12, 8)
1

720

(

30 −60
−60 144

)(

Y − 10
Z − 5

)

= 1 +
1

720
(−120, 432)

(

Y − 10
Z − 5

)

= 1 +
1

720
(−120, 432)

(

Y − 10
Z − 5

)

=
7
4
− 1

6
Y +

3
5
Z.

Such a linear approximation seems to make a good sense, the quality of the
linear approximation can be assessed via the multiple correlation coefficient:

ρX;(Y,Z) =
5σXY − 18σXZ

√

σXX(25σY Y + 324σZZ − 180σY Z)

=
60 − 144

√

4(3600 + 9720 − 10800)

=
−84

2
√

2520
= − 7√

70
= −

√

7
10

.= −0.8367

suggesting quite a strong relationship between X and (Y,Z)�.

EXERCISE 5.10. Let X ∼ N4

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1
2
3
4

⎞

⎟

⎟

⎠
,

⎛

⎜

⎜

⎝

4 1 2 4
1 4 2 1
2 2 16 1
4 1 1 9

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠
.

a) Give the best linear approximation of X2 as a function of (X1,X4) and
evaluate the quality of the approximation.

b) Give the best linear approximation of X2 as a function of (X1,X3,X4) and
compare your answer with part a).

a) The best linear approximation of X2 in terms of X1 and X4 is the condi-
tional expectation, µ2|14, given as:
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µ2|14 = µ2 +
(

σ21 σ24

)

(

σ11 σ14

σ14 σ44

)−1(
X1 − µ1

X4 − µ4

)

= 2 + (1, 1)
(

4 4
4 9

)−1(
X1 − 1
X4 − 4

)

= 2 + (1, 1)
1
20

(

9 −4
−4 4

)(

X1 − 1
X4 − 4

)

= 2 +
1
20

(5, 0)
(

X1 − 1
X4 − 4

)

=
7
4

+
1
4
X1.

b) To determine the best linear approximation of X2 as a function of
(X1,X2,X3), we use the same procedure so that

µ2|134 = µ2 +
(

σ21 σ23 σ24

)

⎛

⎝

σ11 σ13 σ14

σ31 σ33 σ34

σ41 σ43 σ44

⎞

⎠

−1⎛

⎝

X1 − µ1

X3 − µ3

X4 − µ4

⎞

⎠

= 2 + (1, 2, 1)

⎛

⎝

4 2 4
2 16 1
4 1 9

⎞

⎠

−1⎛

⎝

X1 − 1
X3 − 3
X4 − 4

⎞

⎠

= 2 + (1, 2, 1)
1

296

⎛

⎝

143 −14 −62
−14 20 4
−62 4 60

⎞

⎠

⎛

⎝

X1 − 1
X3 − 3
X4 − 4

⎞

⎠

= 2 +
1

296
(53, 30, 6)

⎛

⎝

X1 − 1
X3 − 3
X4 − 4

⎞

⎠

=
425
296

+
53
296

X1 +
15
148

X3 +
3

148
X4.

This exercise demonstrates that the variable X4, which was not important
for the prediction of X2 based on X1 and X4, can enter the formula for the
conditional expected value when another explanatory variable, X3, is added.
In multivariate analyses, such dependencies occur very often.

EXERCISE 5.11. Prove Theorem 5.2.

As in Theorem 5.2, let us assume that X ∼ Np(µ,Σ), A(q × p), c ∈ R
q and

rank(A) = q ≤ p. Our goal is to calculate the distribution of the random
vector Y = AX + c.

Recall that the pdf of X ∼ Np(µ,Σ) is
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fX(x) = |2πΣ|−1/2 exp
{

−1
2
(x − µ)�Σ−1(x − µ)

}

. (5.10)

We start by considering the linear transformation

Z =
(

A
B

)

X +
(

c

0p−q

)

= DX + e,

where B contains in its rows p − q arbitrary linearly independent vectors

orthogonal to the rows of the matrix A. Hence, the matrix D =
(

A
B

)

has full

rank and the density of Z can be expressed as:

fZ(z)
= abs |D|−1fX{D−1(z − e)}

= (|D|2)−1/2|2πΣ|−1/2 exp
{

−1
2
{D−1(z − e) − µ}�Σ−1{D−1(z − e) − µ}

}

= |2πDΣD|−1/2 exp
{

−1
2
(z − e −Dµ)�(D−1)�Σ−1D−1(z − e −Dµ)

}

= |2πDΣD|−1/2 exp
{

−1
2
{z − (Dµ + e)}�(DΣD�)−1{z − (Dµ + e)}

}

.

Notice that the above formula is exactly the density of the p-dimensional
normal distribution Np(Dµ + e,DΣD�).

More precisely, we can write that

Z ∼ Np(Dµ + e,DΣD�)

∼ Np

((

A
B

)

µ + e,

(

A
B

)

Σ(A�,B�)
)

∼ Np

((

Aµ + c
Bµ

)

,

(

AΣA� AΣB�

BΣA� BΣB�

))

Noticing that the first part of the random vector Z is exactly the random vector
Y and applying Theorem 5.1 we have that the distribution of Y =AX+c is
q-variate normal, i.e.,

Y ∼ Nq(Aµ + c,AΣA�).

EXERCISE 5.12. Let X =
(

X1

X2

)

∼ Np(µ,Σ), Σ =
(

Σ11 Σ12

Σ21 Σ22

)

. Prove that

Σ12 = 0 if and only if X1 is independent of X2.

We already know, from the previous chapters, that independence implies zero
covariance since, for X1 and X2 independent, we have
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Cov(X1,X2) = EX1EX2 − EX1X2 = EX1EX2 − EX1EX2 = 0.

It remains to show that, for normally distributed random vectors, zero covari-
ance implies independence.

Applying Theorem 5.1 with the given covariance matrix

Σ =
(

Σ11 0
0 Σ22

)

we obtain that X2.1 = X2 + 0Σ−1
11 µ1 = X2 and from Theorem 5.1 we imme-

diately have that X2 = X2.1 and X1 are independent.

EXERCISE 5.13. Show that if X ∼ Np(µ,Σ) and given some matrices A and
B, then AX and BX are independent if and only if AΣB� = 0.

Let us define the random vector

Z =
(

A
B

)

X =
(

AX
BX

)

.

Using the result of the previous Exercise 5.12, where X1 = AX and X2 = BX,
it is clear that the multivariate random vectors AX and BX are independent
if and only if their covariance matrix AΣB� is equal to zero.



6

Theory of Estimation

No, no; I never guess. It is a shocking habit—destructive to the logical
faculty.
Sherlock Holmes in “The Sign of Four”

The basic objective of statistics is to understand and model the underlying
processes that generate the data. This involves statistical inference, where we
extract information contained in a sample by applying a model. In general,
we assume an i.i.d. random sample {xi}n

i=1 from which we extract unknown
characteristics of its distribution. In parametric statistics these are condensed
in a p-variate vector θ characterizing the unknown properties of the popula-
tion pdf f(x, θ): this could be the mean, the covariance matrix, kurtosis, or
something else.

The aim is to estimate θ from the sample X through estimators θ̂ that are
functions of the sample: θ̂ = b(X ). When an estimator is proposed, we must
derive its sampling distribution to analyze its properties: are they related to
the unknown characteristic it is supposed to estimate?

Let the symbol X (n × p) denote the data matrix containing p-dimensional
observations, xi ∼ f(., θ), i = 1, . . . , n, in each row. The maximum likelihood
estimator (MLE) of θ is defined as

̂θ = arg max
θ

L(X ; θ) = arg max
θ

�(X ; θ),

where L(X ; θ) =
∏n

i=1 f(xi; θ) is the likelihood function, i.e., the joint density
of the observations xi ∼ f(., θ) considered as a function of θ and �(X ; θ) =
log L(X ; θ) is the log-likelihood function.

The score function s(X ; θ) is the derivative of the log-likelihood function w.r.t.
θ ∈ R

k

s(X ; θ) =
∂

∂θ
�(X ; θ) =

1
L(X ; θ)

∂

∂θ
L(X ; θ).
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The covariance matrix

Fn = E{s(X ; θ)s(X ; θ)�} = Var{s(X ; θ)} = −E

{

∂2

∂θ∂θ�
�(X ; θ)

}

is called the Fisher information matrix.

The importance of the Fisher information matrix is explained by the following
Cramer-Rao theorem, which gives the lower bound for the variance matrix for
any unbiased estimator of θ. An unbiased estimator with the variance equal
to F−1

n is called a minimum variance unbiased estimator.

THEOREM 6.1 (Cramer-Rao). If θ̂ = t = t(X ) is an unbiased estimator
for θ, then under regularity conditions

Var(t) ≥ F−1
n .

Another important result says that the MLE is asymptotically unbiased, effi-
cient (minimum variance), and normally distributed.

THEOREM 6.2. Suppose that the sample {xi}n
i=1 is i.i.d. If ̂θ is the MLE for

θ ∈ R
k then under some regularity conditions, as n → ∞:

√
n(̂θ − θ) L−→ Nk(0,F−1

1 ),

where F1 denotes the Fisher information for sample size n = 1.

Whenever we are not able to calculate the exact distribution of the MLE ̂θ,
Theorem 6.2 gives us a very useful and simple approximation.

In this chapter we present calculation of the Fisher information matrix for
several examples. We also discuss and calculate Cramer-Rao lower bounds for
these situations. We will illustrate the estimation for multivariate normal pdf
in detail and discuss constrained estimation.

EXERCISE 6.1. Consider a uniform distribution on the interval [0, θ]. What
is the MLE of θ? (Hint: the maximization here cannot be performed by means
of derivatives. Here the support of x depends on θ!)

The density of the uniform distribution on the interval [0, θ] is

f(x) =
{

1
θ if x ∈ [0, θ],
0 else.

Assuming that we have n independent and identically distributed (iid) random
variables, X1, . . . , Xn, from this distribution, the likelihood function
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L(X1, . . . , Xn; θ) =
{

θ−n if X1, . . . , Xn ∈ [0, θ],
0 else.

The maximum of the likelihood is achieved by choosing θ as small as possible
such that 0 ≤ X1, . . . , Xn ≤ θ. The maximum likelihood estimator,

θ̂ = arg max
θ

L(X1, . . . , Xn; θ),

can thus be written as θ̂ = maxi=1,...,n Xi.

EXERCISE 6.2. Consider an iid sample of size n from a bivariate population
with pdf f(x1, x2) = 1

θ1θ2
exp

{

−
(

x1
θ1

+ x2
θ2

)}

, x1, x2 > 0. Compute the MLE

of θ = (θ1, θ2)�. Find the Cramer-Rao lower bound. Is it possible to derive a
minimum variance unbiased estimator of θ?

The function f(.) is a probability density function (pdf) only if θ1, θ2 > 0.

Let X (n × 2) = (xij) denote the data matrix containing in its rows the n
independent bivariate observations from the given pdf.

The marginal densities can be calculated by integrating the bivariate pdf:

f1(x1) =
∫ +∞

0

f(x1, x2)dx2 =
1
θ1

exp(−x1/θ1),

f2(x2) =
∫ +∞

0

f(x1, x2)dx1 =
1
θ2

exp(−x2/θ2).

Notice that f(x1, x2) = f1(x1)f2(x2). Thus, the marginal distributions are
independent.

The expected values, µ1 and µ2, of the marginal distributions are

µ1 =
∫ +∞

0

x1
1
θ1

exp(−x1/θ1)dx1

=
[

x1e
− x1

θ1

]+∞

0
−
∫ +∞

0

exp(−x1/θ1)dx1

= − [θ1 exp(−x1/θ1)]
+∞
0 = θ1

and µ2 = θ2 since the marginal distributions are identical. Similarly, the
variances are

σ2
1 = E(X2) + µ2

1

=
∫ +∞

0

x2
1

1
θ1

exp(−x1/θ1)dx1 + µ2
1

= θ2
1
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and σ2
2 = θ2

2.

After writing down the log-likelihood function, �(X ; θ1, θ2), where the pdf f(.)
is thought of as a function of the (unknown) parameters θ1 and θ2,

�(X ; θ1, θ2) = log
n
∏

i=1

f(xi1, xi2; θ1, θ2)

= log
n
∏

i=1

1
θ1θ2

e
−
�

xi1
θ1

+
xi2
θ2

�

= n log
1
θ1

+ n log
1
θ2

−
n
∑

i=1

xi1

θ1
−

n
∑

i=1

xi2

θ2
,

the MLE of θ1 and θ2 are obtained by solving the system of equations

∂�(X ; θ1, θ2)
∂θ1

= − n

θ1
+

n
∑

i=1

xi1

θ2
1

= 0

and
∂�(X ; θ1, θ2)

∂θ2
= − n

θ2
+

n
∑

i=1

xi2

θ2
2

= 0.

It follows that the MLEs are the sample means ̂θ1 = x1 and ̂θ2 = x2.

The Cramer-Rao lower bound for the variance of any unbiased estimator for θ is
F−1

n , the inverse of the Fisher information matrix Fn =E{s(X ; θ)s(X ; θ)�}=
Var s(X ; θ), where s(X ; θ) = ∂

∂θ �(X ; θ) is the so-called score function.

In this exercise, the score function is

s(X ; θ) =

⎛

⎜

⎜

⎝

− n
θ1

+
n
∑

i=1

xi1
θ2
1

− n
θ2

+
n
∑

i=1

xi2
θ2
2

⎞

⎟

⎟

⎠

Since the observations are iid, the Fisher information matrix Fn = nF1 and
from the Fisher information matrix calculated as if n = 1,

F1 = Var

(

− 1
θ1

+ x11
θ2
1

− 1
θ2

+ x12
θ2
2

)

=

(

1
θ2
1

0
0 1

θ2
2

)

we easily obtain the Cramer-Rao lower bound:

F−1
n =

1
n
F−1

1 =
1
n

(

θ2
1 0
0 θ2

2

)

.

Calculating the expected values and variances of the maximum likelihood
estimators:
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E(̂θ1) = E
1
n

n
∑

i=1

xi1 = µ1,

E(̂θ2) = µ2,

Var(̂θ1) = Var
1
n

n
∑

i=1

xi1 =
1
n

Var xi1 =
1
n

θ2
1,

Var(̂θ2) =
1
n

θ2
2,

we can see that the estimators ̂θ1 and ̂θ2 achieve the Cramer-Rao lower bound
and, hence, ̂θ = (̂θ1, ̂θ2)� is the minimum variance unbiased estimator of the
parameter θ.

EXERCISE 6.3. Consider a sample {xi}n
i=1 from Np(θ, Ip), where θ ∈ R

p is
the mean vector parameter. Show that the MLE of θ is the minimum variance
estimator.

The log-likelihood is in this case

�(X ; θ) =
n
∑

i=1

log{f(xi; θ)}

= log (2π)−np/2 − 1
2

n
∑

i=1

(xi − θ)�(xi − θ)

= log (2π)−np/2 − 1
2

n
∑

i=1

{

(xi − x)�(xi − x) + (x − θ)�(x − θ)

+ 2(x − θ)�(xi − x)
}

= log (2π)−np/2 − 1
2

n
∑

i=1

(xi − x)�(xi − x) − n

2
(x − θ)�(x − θ)

The last term is the only part depending on θ and it is obviously maximized
for θ = x. Thus ̂θ = x is the MLE of θ for this family of pdfs f(x, θ).

It follows that the score function is

s(X ; θ) =
∂

∂θ
�(X ; θ)

= −n

2
∂

∂θ
(x − θ)�(x − θ)

= n (x − θ).

We obtain the Fisher information matrix as the variance of the score function:

Fn = Var{s(X ; θ)} = Var{n(x − θ)} = n2 Var x = n Ip
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and the Cramer-Rao lower bound for this case is

F−1
n =

1
n
Ip. (6.1)

We know that the mean and the variance of θ̂ = x are:

E x̄ = θ,

Var x̄ =
1
n
Ip.

Hence, the MLE estimator is unbiased and its variance attains the Cramer-Rao
lower bound, see (6.1). Thus it is the minimum variance unbiased estimator.

EXERCISE 6.4. We know from Exercise 6.3 that the MLE of parameter θ
based on observations from the multinormal distribution Np(θ, Ip) has the
Fisher information F1 = Ip. This leads to the asymptotic distribution

√
n(x − θ) L−→ Np(0, Ip),

see also Theorem 6.2. Can you derive an analogous result for the square x2?

One possibility is to consider x2 as a transformation of the statistics x. In this
way, with transformation f(x) = (x2

1, . . . , x
2
p), we immediately obtain that the

matrix of partial derivatives is

D =
(

∂fj

∂xi

)

(x)
∣

∣

∣

∣

x=θ

= diag(2θ1, . . . , 2θp)

and that the asymptotic distribution of the transformed asymptotically nor-
mal statistics is

√
n(x2 − θ2) L−→ Np(0,D�IpD) = Np(0, 4 diag(θ2

1, . . . , θ
2
p)).

Second possibility, in this situation more straightforward, is to denote by x · y
the componentwise product of vectors x and y and to write

√
n(x2 − θ2) = (x + θ) ·

√
n(x − θ)

L−→ 2θNp(0, Ip) = Np(0, 4θ2Ip)

since (x + θ) P−→ 2θ and
√

n(x − θ) ∼ Np(0, Ip).

EXERCISE 6.5. Consider an iid sample of size n from the bivariate population
with pdf

f(x1, x2) =
1

θ2
1θ2

1
x2

exp
{

−
(

x1

θ1x2
+

x2

θ1θ2

)}

, x1, x2 > 0.

Compute the MLE, ̂θ, of the unknown parameter θ = (θ1, θ2)�. Find the
Cramer-Rao lower bound and the asymptotic variance of ̂θ.
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The estimator ̂θ is the maximizer of the log-likelihood function

�(X ; θ1, θ2) = log
n
∏

i=1

f(xi1, xi2; θ1, θ2)

= log
n
∏

i=1

1
θ2
1θ2

1
xi2

e
−
�

xi1
θ1xi2

+
xi2

θ1θ2

�

= n log
1

θ2
1θ2

+
n
∑

i=1

log
1

xi2
−

n
∑

i=1

(

xi1

θ1xi2
+

xi2

θ1θ2

)

= −n(2 log θ1 + log θ2) −
n
∑

i=1

log xi2 −
n
∑

i=1

(

xi1

θ1xi2
+

xi2

θ1θ2

)

.

The MLE of θ can be found by solving the system of equations

∂�(X ; θ1, θ2)
∂θ1

= −2n

θ1
+

n
∑

i=1

(

xi1

θ2
1xi2

+
xi2

θ2
1θ2

)

= 0

and
∂�(X ; θ1, θ2)

∂θ2
= − n

θ2
+

n
∑

i=1

xi2

θ1θ2
2

= 0.

From the second equation it follows that x2 = θ1θ2. Plugging this into the
first equation leads to the MLE

̂θ1 =
1
n

n
∑

i=1

xi1

xi2
and ̂θ2 =

x2

̂θ1

=
nx2

∑n
i=1

xi1
xi2

.

From the score function,

s(X ; θ) =

⎛

⎜

⎜

⎝

− 2n
θ1

+
n
∑

i=1

(

xi1
θ2
1xi2

+ xi2
θ2
1θ2

)

− n
θ2

+
n
∑

i=1

xi2
θ1θ2

2

⎞

⎟

⎟

⎠
,

we can express the Fisher information matrix

Fn = nF1

= nVar

(

− 2
θ1

+
(

x11
θ2
1x12

+ x12
θ2
1θ2

)

− 1
θ2

+ x12
θ1θ2

2

)

,

where the variance matrix can be calculated from the moments similarly as
in Exercise 6.2:

Var
(

x11

x12

)

= E

(

x2
11

x2
12

)

−
{

E

(

x11

x12

)}2

= θ2
1 and Var(x12) = θ2

2θ
2
1.
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The covariance, Cov
(

x11
x12

, x12

)

= 0 because the given density can be decom-
posed into a product of two independent parts. We obtain

F1 =

(

2
θ2
1

1
θ1θ2

1
θ1θ2

1
θ2
2

)

,

which leads to the Cramer-Rao lower bound

F−1
n =

1
n
F−1

1 =
θ2
1θ

2
2

n

(

1
θ2
2

− 1
θ1θ2

− 1
θ1θ2

2
θ2
1

)

=
1
n

(

θ2
1 −θ1θ2

−θ1θ2 2θ2
2

)

.

From Theorem 6.2, we can finally say that the maximum likelihood estimator
̂θ is asymptotically multivariate normally distributed:

√
n(̂θ − θ) L−→ N2(02,F−1

1 ).

EXERCISE 6.6. Consider an iid sample {xi}n
i=1 from Np(µ,Σ0) where Σ0

is known. Compute the Cramer-Rao lower bound for µ. Can you derive a
minimum variance unbiased estimator for µ?

For the case of n iid observations, we know that the Fisher information matrix
Fn = nF1. Hence, we start by writing down the likelihood, the log-likelihood
and the score function for a “sample” containing only one observation x1 =
(x11, . . . , x1p):

L(x1;µ) =
1
∏

i=1

f(xi, µ) = |2πΣ0|−1/2 exp
{

−1
2
(x1 − µ)�Σ−1

0 (x1 − µ)
}

�(x1;µ) = log L(x1;µ) = −1
2

log |2πΣ0| −
1
2
(x1 − µ)�Σ−1

0 (x1 − µ)

s(x1;µ) =
∂

∂µ
�(x1;µ) = Σ−1

0 (x1 − µ).

Next, we calculate the Fisher information F1 as the variance matrix of the
score function:

F1 = VarΣ−1
0 (x1 − µ) = Σ−1

0 Var(x1)Σ−1
0 = Σ−1

0 Σ0Σ
−1
0 = Σ−1

0

with inverse F−1
1 = Σ0. We thus obtain the Cramer-Rao lower bound is

F−1
n = 1

nF
−1
1 = 1

nΣ0.

Remember that for the sample mean, xn, we have that E(xn) = µ and
Var(xn) = 1

nΣ0. In other words, the sample mean is an unbiased estimator
achieving the Cramer-Rao lower bound, i.e., the minimum variance unbiased
estimator. By maximizing the log-likelihood function, �(X ;µ), it can be shown
that it is also the MLE.
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EXERCISE 6.7. Let X ∼ Np(µ,Σ) where Σ is unknown but we know that
Σ = diag(σ11, σ22, . . . , σpp). From an iid sample of size n, find the MLE of µ
and of Σ.

Let σ denote the vector of the unknown parameters (σ11, σ22, . . . , σpp)�. The
likelihood and the log-likelihood, based on the data matrix X containing the
n observations x1, . . . , xn, are

L(X ;µ, σ) =
n
∏

i=1

f(xi;µ, σ)

=
n
∏

i=1

|2π diag(σ)|−1/2 exp
{

−1
2
(xi − µ)� diag(σ−1)(xi − µ)

}

=

⎛

⎝2π

p
∏

j=1

σjj

⎞

⎠

−n/2
n
∏

i=1

exp
{

−1
2
(xi − µ)� diag(σ−1)(xi − µ)

}

,

�(X ;µ, σ) = log L(X ;µ, σ)

= −n

2
log(2π) − n

2

p
∑

j=1

log σjj −
1
2

n
∑

i=1

(xi − µ)� diag(σ−1)(xi − µ).

In order to maximize this log-likelihood function, we first have to compute
the partial derivatives

∂

∂µ
�(X ;µ, σ) = diag(σ−1)

n
∑

i=1

(xi − µ)

∂

∂σ
�(X ;µ, σ) = −n

2
σ−1 − 1

2
∂

∂σ

n
∑

i=1

tr{(xi − µ)� diag(σ−1)(xi − µ)}

= −n

2
σ−1 − 1

2
∂

∂σ

n
∑

i=1

tr{(xi − µ)(xi − µ)� diag(σ−1)}

= −n

2
σ−1 +

1
2

n
∑

i=1

diag{(xi − µ)(xi − µ)�}σ−2.

Setting the partial derivatives equal to zero, we obtain the MLE

0 = diag(σ−1)
n
∑

i=1

(xi − µ̂)

nµ̂ =
n
∑

i=1

xi

µ̂ =
1
n

n
∑

i=1

xi
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and

0 = −n

2
σ̂−1 +

1
2

n
∑

i=1

diag{(xi − µ)(xi − µ)�}σ̂−2

nσ̂ =
n
∑

i=1

diag{(xi − µ)(xi − µ)�}

σ̂ = diag

{

1
n

n
∑

i=1

(xi − µ)(xi − µ)�
}

= diag(S)

where S is the empirical covariance matrix.

EXERCISE 6.8. Reconsider the setup of the previous exercise with the diag-
onal covariance matrix Σ = diag(σ) = diag(σ11, σ22, . . . , σpp). Derive the
Cramer-Rao lower bound for the parameter θ = (µ1, . . . , µp, σ11, . . . , σpp)�.

The score function s(X ;µ, σ) consists of the partial derivatives of the log-
likelihood that were derived in the previous Exercise 6.7:

∂

∂µ
�(X ;µ, σ) = diag(σ−1)

n
∑

i=1

(xi − µ)

∂

∂σ
�(X ;µ, σ) = −n

2
σ−1 +

1
2

n
∑

i=1

diag{(xi − µ)(xi − µ)�}σ−2.

In this exercise, we will calculate the Fisher information matrix as

Fn = −E

{

∂2

∂θ∂θ�
�(X ; θ)

}

= −E

(

∂2

∂µµ� �(X ;µ, σ) ∂2

∂µσ� �(X ;µ, σ)
∂2

∂σµ� �(X ;µ, σ) ∂2

∂σσ� �(X ;µ, σ)

)

.

We split the calculation into three steps by evaluating each of the four sub-
matrices separately, i.e.,

−E
∂2

∂µµ� �(X ;µ, σ) = −E
∂

∂µ� diag(σ−1)
n
∑

i=1

(xi − µ)

= −diag(σ−1)
n
∑

i=1

E
∂

∂µ� (xi − µ)

= −diag(σ−1)
n
∑

i=1

E diag−1p

= diag(nσ−1) = nΣ,
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−E
∂2

∂µσ� �(X ;µ, σ) = −E
∂

∂σ� diag(σ−1)
n
∑

i=1

(xi − µ)

= diag(σ−2)E
n
∑

i=1

(xi − µ)

= 0p0�p ,

−E
∂2

∂σσ� �(X ;µ, σ) = −E
∂

∂σ�

{

−n

2
σ−1

+
1
2

n
∑

i=1

diag{(xi − µ)(xi − µ)�}σ−2

}

= −n

2
diag(σ−2)

+ E

n
∑

i=1

diag{(xi − µ)(xi − µ)�}diag(σ−3)

= −n

2
diag(σ−2) + diag(σ−3)ndiag σ

=
n

2
diag(σ−2).

Due to its simple diagonal structure, we can now write directly the Cramer-
Rao lower bound for the parameter θ as the inverse of the derived Fisher
information matrix:

F−1
n =

(
1
n diagσ 0p0�p
0p0�p

2
n diag(σ2)

)

=
(

1
nΣ 0p0�p

0p0�p
2
nΣ2

)

.

EXERCISE 6.9. Prove that if s = s(X ; θ) is the score function and if θ̂ = t =
t(X , θ) is any function of X and θ, then under certain regularity conditions

E(st�) =
∂

∂θ
E(t�) − E

(

∂t�

∂θ

)

. (6.2)

Note that
s(X ; θ) =

∂

∂θ
�(X ; θ) =

1
L(X ; θ)

∂

∂θ
L(X ; θ).

Next, assuming that the regularity conditions allow us to permute the integral
and the derivative, we write
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∂

∂θ
E(t�) =

∂

∂θ

∫

t�(X ; θ)L(X ; θ)dX

=
∫ (

∂

∂θ
t�(X ; θ)L(X ; θ)

)

dX

=
∫ (

L(X ; θ)
∂t�

∂θ
+ t�

∂

∂θ
L(X ; θ)

)

dX

=
∫

L(X ; θ)
∂t�

∂θ
dX +

∫

t�L(X ; θ)s(X ; θ)dX

= E
(

∂t�(X ; θ)
∂θ

)

+ E(t�(X ; θ)s(X ; θ))

and rearranging terms proves the statement (6.2).

EXERCISE 6.10. Prove that the score function has zero expectation.

We start by writing down the expectation as an integral with respect to the
appropriate probability density function, the likelihood, of all observations:

E{s(X ; θ)} =
∫

s(X ; θ)L(X ; θ)dX .

Similarly as in the previous exercise, we assume that the regularity conditions
are such that we can exchange the integral and the derivative in the following
formulas:

E{s(X ; θ)} =
∫ {

1
L(X ; θ)

∂L(X ; θ)
∂θ

}

L(X ; θ)dX

=
∫

∂

∂θ
L(X ; θ)dX

=
∂

∂θ

∫

L(X ; θ)dX =
∂

∂θ
1p = 0p.
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Hypothesis Testing

Criminal cases are continually hinging upon that one point. A man is
suspected of a crime months perhaps after it has been committed. His
linen or clothes are examined, and brownish stains discovered upon
them. Are they blood stains, or mud stains, or rust stains, or fruit
stains, or what are they? That is a question which has puzzled many
an expert, and why? Because there was no reliable test. Now we have
the Sherlock Holmes’ test, and there will no longer be any difficulty.
Sherlock Holmes in “Study in Scarlet”

A first step in data modeling and understanding is the estimation of para-
meters in a supposed model. The second step—and very important statistical
work—is the inferential conclusion on a hypothesis of the involved parame-
ters. The construction of tests for different kinds of hypotheses is at the heart
of this chapter.

A likelihood ratio is the ratio of the likelihood calculated under the null, H0,
and the alternative, H1. The null hypothesis involves the supposed values of
the parameter, e.g., H0: µ = 0. The ratio of the two likelihoods measures
the closeness of the two hypotheses H0 and H1. By taking logarithms, the
likelihood ratio is transformed into a difference of log likelihoods. By Wilks’
theorem, two times this difference converges to a χ2 distribution. Large values
of this test statistic indicate a deviance from the null H0 and thus lead us to
reject the null hypothesis.

Formally, we will consider two hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1,

where θ is a parameter of the distribution of {xi}n
i=1, xi ∈ R

p.
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THEOREM 7.1 (Wilks’ Theorem). If Ω1 ⊂ R
q is a q-dimensional space

and if Ω0 ⊂ Ω1 is an r-dimensional subspace, then under regularity conditions:

∀ θ ∈ Ω0 : −2 log λ = 2(�∗1 − �∗0)
L−→ χ2

q−r as n → ∞,

where �∗j , j = 1, 2 are the maxima of the log-likelihood for each hypothesis.

We will learn how to apply Theorem 7.1 to construct likelihood ratio tests and
how to build confidence regions. We focus on the parameters of the multivari-
ate normal distribution, e.g., we study (simultaneous) confidence intervals for
linear combinations of the mean vector. The presented exercises and solutions
cover the questions of testing dice, comparing company outputs, and testing
the profiles of citrate concentrations in plasma. Other applications contain
the linear regression model for the bank notes data and prediction of the
vocabulary score for eighth graders.

EXERCISE 7.1. Suppose that X has pdf f(x; θ), θ ∈ R
k. Using Theorem 7.1,

construct an asymptotic rejection region of size α for testing, the hypothesis
H0 : θ = θ0 against alternative H1 : θ �= θ0.

Let �(X ; θ) =
∑n

i=1 log f(xi; θ) be the log-likelihood function and �∗j =
maxθ∈Ωj

�(X ; θ). We construct the log-likelihood test statistic:

−2 log λ = 2(�∗1 − �∗0)

for which the rejection region can be expressed as:

R = {X : −2 log λ > κ}

The critical value κ has to be determined so that, if H0 is true, P (−2 log λ >
κ) = α.

In line with Theorem 7.1 we know that under H0 the log-likelihood ratio test
statistic −2 log λ is asymptotically distributed as:

−2 log λ
L→ χ2

q−r as n → ∞,

where r = dimΩ0 and q = dimΩ1 denote the dimensions of the parameter
spaces under the null and the alternative hypothesis. Fixing the value of the
k-dimensional parameter θ reduces the dimension of the parameter space by
q − r = k and it follows that the asymptotic rejection region of H0 (vs. H1)
of size α is:

R = {X : −2 log λ > χ2
1−α;k}.

EXERCISE 7.2. Use Theorem 7.1 to derive a test for testing the hypothesis
that a dice is balanced, based on n tosses of that dice.
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The probability that the number 1 occurs x1-times, 2 occurs x2-times,. . . , and
6 occurs x6-times, is given by the multinomial distribution:

P (x1, . . . , x6) =
n!

x1! . . . x6!
px1
1 . . . px6

6 , (7.1)

where
∑6

i=1 xi = n and pi, i = 1, . . . , 6, is the probability of i in a single toss,
∑6

i=1 pi = 1.

The null hypothesis, the balanced dice, is H0 : p1 = · · · = p6 = 1
6 and we will

test it against the alternative hypothesis H1 : ∃i, j ∈ {1, . . . , 6} : pi �= pj .

Let X = (x1, . . . , x6)� denote the observed frequencies. The likelihood and
the log-likelihood functions are based on (7.1):

L(X; p1, . . . , p6) =
n!

x1! . . . x6!
px1
1 . . . px6

6 ,

�(X; p1, . . . , p6) = log n! −
6
∑

j=1

log xj ! +
6
∑

j=1

xj log pj

= log n! −
6
∑

j=1

log xj ! +
5
∑

j=1

xj log pj + x6 log

⎛

⎝1 −
5
∑

j=1

pj

⎞

⎠ .

Setting the derivative of the log-likelihood w.r.t. the unknown parameters
equal to zero, we obtain that xj/pj = x6/p6, j = 1, . . . , 5. This entails that
dim Ω1 = 5. From the condition

∑6
j=1 pj = 1 it follows that the MLE for each

of the unknown parameters is p̂j = xj/n, j = 1, . . . , 6 which implies that the
maximum of the log-likelihood under the alternative hypothesis is

�∗1 = log n! −
6
∑

j=1

log xj ! +
6
∑

j=1

xj log
(xj

n

)

.

Under the null hypothesis Ω0 = {(1/6, 1/6, . . . , 1/6)} with dim Ω0 = 0, the
maximum of the log-likelihood is, obviously,

�∗0 = log n! −
6
∑

j=1

log xj ! +
6
∑

j=1

xj log
(

1
6

)

.

Thus, we have for the likelihood ratio statistics:

−2 log λ = 2(�∗1 − �∗0) = 2

(

6
∑

i=1

xi log xi − n log n + n log 6

)

∼ χ2
5,

where the degrees of freedom of the asymptotic χ2 distribution were deter-
mined, according to Theorem 7.1, as dim Ω1 − dim Ω0 = 5 − 0.



114 7 Hypothesis Testing

The application of this result is straightforward: the observed frequencies
x1, . . . , x6 are used to calculate the value of the likelihood ratio test statistics
λ which is then compared to the appropriate quantile of the χ2

5 distribution:
if λ is too large, we reject the null hypothesis in favor of the alternative.

For example, if the observed frequencies are X = (10, 7, 8, 12, 13, 6)�, we
obtain the value of the likelihood ratio statistics −2 log λ = 4.23. This value
is smaller than the 95% critical value of the asymptotic χ2

5 distribution,
χ2

0.95;5 = 11.07, and we do not reject the null hypothesis. The null hypothesis
is not rejected since the observed values are consistent with a balanced dice.

EXERCISE 7.3. In Exercise 6.5, we have considered the pdf

f(x1, x2) =
1

θ2
1θ

2
2x2

e
−
�

x1
θ1x2

+
x2

θ1θ2

�
, for x1, x2 > 0.

Solve the problem of testing H0 : θ� = (θ01, θ02) from an iid sample xi =
(xi1, xi2)�, i = 1, . . . , n, for large number of observations n.

Both the log-likelihood function:

�(X ; θ1, θ2) = log
n
∏

i=1

f(xi1, xi2; θ1, θ2)

= −n(2 log θ1 + log θ2) −
n
∑

i=1

log xi2 −
n
∑

i=1

(

xi1

θ1xi2
+

xi2

θ1θ2

)

and the MLEs maximizing the likelihood under the alternative hypothesis:

̂θ1 =
1
n

n
∑

i=1

xi1

xi2
and ̂θ2 =

x2

̂θ1

=
nx2

∑n
i=1

xi1
xi2

are given in Exercise 6.5

The likelihood ratio test statistic can be derived as follows:

−2 log λ = 2(�∗1 − �∗0)

= 2{�(X ; ̂θ1, ̂θ2) − �(X ; θ01, θ02)}

= −2n(2 log ̂θ1 + log ̂θ2) − 2
n
∑

i=1

(

xi1

̂θ1xi2

+
xi2

̂θ1
̂θ2

)

+ 2n(2 log θ01 + log θ02) + 2
n
∑

i=1

(

xi1

θ01xi2
+

xi2

θ01θ02

)

= 2n

(

2 log
θ01

̂θ1

+ log
θ02

̂θ2

)

− 4n + 2
n
∑

i=1

(

xi1

θ01xi2
+

xi2

θ01θ02

)

.
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Note that dim Ω1 = 2 and dimΩ0 = 0. The likelihood ratio test statistic
has, under the null hypothesis, asymptotically χ2 distribution with 2− 0 = 2
degrees of freedom.

EXERCISE 7.4. Consider a N3(µ,Σ) distribution. Formulate the hypothesis
H0 : µ1 = µ2 = µ3 in terms of Aµ = a.

One possibility is to select matrix

A1 =
(

1 −1 0
0 1 −1

)

and vector a = (0, 0)�.

Then, the equation A1µ = a can be written as

A1

⎛

⎝

µ1

µ2

µ3

⎞

⎠ =
(

µ1 − µ2

µ2 − µ3

)

=
(

0
0

)

,

which implies conditions µ1 − µ2 = 0 and µ2 − µ3 = 0 from which we get
µ1 = µ2 = µ3 as desired.

Notice that the hypothesis H0 can be written in infinitely many ways, e.g.,
using matrices

A2 =
(

1 − 1
2 − 1

2
0 1 −1

)

or A3 =
(

1 −1 0
1 0 −1

)

.

EXERCISE 7.5. Simulate a normal sample with µ =
(
1
2

)

and Σ =
(

1
0.5

0.5
2

)

and test H0 : 2µ1 − µ2 = 0.2 first with Σ known and then with Σ unknown.
Compare the results.

In general, suppose that X1, . . . , Xn is an iid random sample from a Np(µ,Σ)
population and consider the hypothesis:

H0 : Aµ = a, Σ known versus H1 : no constraints,

where A(q × p), q ≤ p, has linearly independent rows. Under H0, we have
that:

n(Ax̄ − a)�(AΣA�)−1(Ax̄ − a) ∼ X 2
q , (7.2)

and we reject H0 if this test statistic is too large at the desired significance
level.

The test statistics (7.2) cannot be calculated if the variance matrix Σ is not
known. Replacing the unknown variance matrix Σ by its estimate S leads to
the test:
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(n − 1)(Ax − a)�(ASA�)−1(Ax − a) ∼ T 2(q, n − 1). (7.3)

The tests described in (7.2) and (7.3) can be applied in our situation with
a = 0.2 and A = (2,−1) since the null hypothesis H0 : 2µ1 − µ2 = 0.2 can be
written as

H0 : (2,−1)
(

µ1

µ2

)

= 0.2.

First, applying the test (7.2) with the known variance matrix and n = 100
simulations, we obtain the test statistics 0.8486. Comparing this value with
the appropriate critical value χ2

0.95;1 = 3.8415 of the χ2
1 distribution, we see

that the observed values are at level 95% not significantly different from the
assumed values. SMStestsim

Performing the test (7.3), where the variance matrix Σ is replaced by the
estimate S, we obtain the test statistics 0.9819 which is again smaller than
the 95% critical value of the Hotelling T 2 distribution, T 2(0.95; 1, 99) =
F0.95;1,99 = 3.9371.

Notice that the tests (7.2) and (7.3) with the known and unknown variance
matrix are very similar. The critical value for the test (7.3) is slightly larger
since it has to reflect also the uncertainty coming from the estimation of the
variance matrix. However, for large number of observations, both tests should
provide very similar results.

EXERCISE 7.6. Suppose that x1, . . . , xn is an iid random sample from a
Np(µ,Σ) population. Show that the maximum of the log-likelihood under
H0 : µ = µ0 with unknown variance matrix Σ is

�∗0 = �(X ;µ0,S + dd�), d = (x − µ0).

From the likelihood function for parameters Σ and µ:

L(X ;µ,Σ) = |2πΣ|−n/2 exp

{

−1
2

n
∑

i=1

(xi − µ)�Σ−1(xi − µ)

}

we obtain the log-likelihood

�(X ;µ,Σ) = −n

2
log |2πΣ| − 1

2

n
∑

i=1

(xi − µ)�Σ−1(xi − µ). (7.4)

Notice that, in the definition of the multinormal pdf given in Exercise 4.20,
we assume that the variance matrix Σ is positive definite.

Under the null hypothesis H0 : µ = µ0, we have to maximize (w.r.t. Σ) the
expression
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�0(X ;Σ)

= −n

2
log |2πΣ| − 1

2

n
∑

i=1

(xi − µ0)�Σ−1(xi − µ0)

= −np log 2π
2

− n

2
log |Σ| − 1

2

n
∑

i=1

{

trΣ−1(xi − µ0)(xi − µ0)�
}

= −np log 2π
2

− n

2
log |Σ| − 1

2

{

tr Σ−1
n
∑

i=1

(xi − µ0)(xi − µ0)�
}

. (7.5)

Let us now state two useful rules for matrix differentiation (Lütkepohl 1996,
Harville 1997):

∂ log |X |
∂X = (X�)−1 and

∂trX�A
∂X = A

which are in turn applied to express the derivative of the log-likelihood (7.5)
with respect to the unknown parameter Σ−1 as follows:

∂�0(X ;Σ)
∂(Σ−1)

=
n

2
Σ − 1

2

n
∑

i=1

(xi − µ0)(xi − µ0)�.

Setting the derivative equal to zero, we immediately obtain the MLE of the
unknown parameter Σ as:

̂Σ =
1
n

n
∑

i=1

(xi − µ0)(xi − µ0)�

=
1
n

n
∑

i=1

{

(xi − x)(xi − x)� + (x − µ0)(x̄ − µ0)� + 2(x − µ0)(xi − x)�
}

=
1
n

n
∑

i=1

(xi − x)(xi − x)� +
1
n

n
∑

i=1

(x − µ0)(x̄ − µ0)� + 0

=
1
n

n
∑

i=1

(xi − x)(xi − x)� + (x − µ0)(x − µ0)�

= S + dd�,

where S is the empirical covariance matrix and d = (x − µ0). It is clear that
the maximum of the log-likelihood under the null hypothesis is

�∗0 = max
Σ

�0(X ;Σ) = �0(X ; ̂Σ) = �(X ;µ0, ̂Σ) = �(X ;µ0,S + dd�).

EXERCISE 7.7. Suppose that X1, . . . , Xn is an iid random sample from a
Np(µ,Σ) population and consider the test of the hypothesis
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H0 : µ = µ0, Σ unknown versus H1 : no constraints.

Show that the likelihood ratio test statistic is equal to

−2 log λ = 2(�∗1 − �∗0) = n log(1 + d�S−1d), d = (x − µ0).

The maximum of the likelihood under the null hypothesis, �∗0, was already
derived in Exercise 7.6:

�∗0 = �(X ;µ0,S + dd�), d = (x − µ0).

In order to calculate the maximum of the likelihood under the alternative
hypothesis, we have to maximize (w.r.t. (µ,Σ)) the log-likelihood:

�(X ;µ,Σ) = −n

2
log |2πΣ| − 1

2

n
∑

i=1

(xi − µ)�Σ−1(xi − µ)

= −np log 2π
2

− n

2
log |Σ| − 1

2

{

trΣ−1
n
∑

i=1

(xi − µ)(xi − µ)�
}

.

Let us start by calculating the derivative of the likelihood w.r.t. the parameter
µ:

∂�(X ;Σ)
∂µ

= −1
2
Σ−1

n
∑

i=1

(xi − µ)

and we see the MLE µ̂ is equal to the sample mean x for any matrix Σ−1.

Let us now maximize the function �(X ;x,Σ) in terms of the parameter Σ.
Similarly as in Exercise 7.6, we express the derivative of the log-likelihood
�(X ;x,Σ) with respect to the unknown parameter Σ−1 as follows:

∂�(X ;Σ)
∂Σ−1

=
n

2
Σ − 1

2

n
∑

i=1

(xi − x)(xi − x)�.

Setting the derivative equal to zero, we immediately obtain that the MLE ̂Σ
is equal to the sample variance matrix

S =
1
n

n
∑

i=1

(xi − x)(xi − x)�

and the maximum of the log-likelihood under the alternative hypothesis is

�∗1 = �(X ;x,S).

Hence, using the rule for calculating the determinant derived in Exercise 2.8,
the likelihood ratio test statistic can be written as
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−2λ = 2(�∗1 − �∗0)
= 2{�(X ;x,S) − �(X ;µ0,S + dd�)}

= −n log |S| + n log |S + dd�| − tr

{

S−1
n
∑

i=1

(xi − x)(xi − x)�
}

+ tr

{

(S + dd�)−1
n
∑

i=1

(xi − µ0)(xi − µ0)
�

}

= n log{|S|(1 + d�S−1d)} − n log |S|
= n log(1 + d�S−1d).

EXERCISE 7.8. In the U.S. companies data set in Table A.17, test the equality
of means between the energy and manufacturing sectors taking the full vector
of observations X1 to X6. Derive simultaneous confidence intervals for the
differences.

Assume that we have a random sample consisting of Xi1 ∼ Np(µ1, Σ), i =
1, · · · , n1, and Xj2 ∼ Np(µ2, Σ), j = 1, · · · , n2. The test of the equality of the
means µ1 and µ2 can be formally written as

H0 : µ1 = µ2, versus H1 : no constraints.

Both samples provide the statistics xk and Sk, k = 1, 2. Let δ = µ1 − µ2 and
n = n1 + n2. We have

(x1 − x2) ∼ Np

(

δ,
n

n1n2
Σ

)

and n1S1 + n2S2 ∼ Wp(Σ,n1 + n2 − 2).

Let S=(n1 + n2)−1(n1S1 + n2S2) be the weighted mean of S1 and S2. This
leads to a test statistic with a Hotelling T 2-distribution:

n1n2(n − 2)
n2

{(x1 − x2) − δ}� S−1 {(x1 − x2) − δ} ∼ T 2(p, n − 2)

or

{(x1 − x2) − δ}� S−1 {(x1 − x2) − δ} ∼ pn2

(n − p − 1)n1n2
Fp,n−p−1.

This result can be used to test the null hypothesis of equality of two means,
H0 : δ = 0, or to construct a confidence region for δ ∈ R

p.

The rejection region of the test is given by:

n1n2(n − p − 1)
pn2

(x1 − x2)
� S−1 (x1 − x2) ≥ F1−α;p,n−p−1. (7.6)

A (1−α) confidence region for δ is given by the ellipsoid centered at (x1−x2)
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{δ − (x1 − x2)}� S−1 {δ − (x1 − x2)} ≤ pn2

(n − p − 1)(n1n2)
F1−α;p,n−p−1.

The simultaneous confidence intervals for all linear combinations a�δ of the
elements of δ are given by

a�δ ∈ a�(x1 − x2) ±
√

pn2

(n − p − 1)(n1n2)
F1−α;p,n−p−1a�Sa.

In particular, we have at the (1 − α) level, for j = 1, . . . , p,

δj ∈ (x1j − x2j) ±
√

pn2

(n − p − 1)(n1n2)
F1−α;p,n−p−1sjj . (7.7)

In the U.S. companies data set, we observe altogether 6 variables. We have
n1 = 15 observations from the energy sector and n2 = 10 observations from
the manufacturing sector.

The test statistic

n1n2(n − p − 1)
pn2

(x1 − x2)�S−1(x1 − x2) = 2.15

is smaller than the corresponding critical value F1−α;p,n−p−1 = F0.95;6,18 =
2.66 and, hence, we do not reject the null hypothesis.

Let us now derive the simultaneous confidence interval for the difference of
the means at level 1 − α = 95% by calculating the intervals

(x1j − x2j) ±
√

pn2

n1n2(n − p − 1)
F1−α;p,n−p−1sjj

for j = 1, . . . , p.

We only have to take the mean and the variances of the variables into account
since the covariances do not appear in the formula. At the 95% level we have
the confidence intervals:

−7639 ≤ δ1 ≤ 7193
−9613 ≤ δ2 ≤ 4924
−2924 ≤ δ3 ≤ 2103
−295 ≤ δ4 ≤ 530
−527 ≤ δ5 ≤ 791
−102 ≤ δ6 ≤ 20.

We remark that all above confidence intervals contain zero which corresponds
to not rejecting the null hypothesis. SMStestuscomp
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EXERCISE 7.9. Consider an iid sample of size n = 5 from a bivariate normal
distribution

X ∼ N2

(

µ,

(

3 ρ
ρ 1

))

where ρ is a known parameter. Suppose x� = (1, 0). For what value of ρ would
the hypothesis H0 : µ� = (0, 0) be rejected in favor of H1 : µ� �= (0, 0) (at
the 5% level)?

Since the variance matrix Σ is known, we can use the test statistic:

−2 log λ = n(x − µ0)�Σ−1(x − µ0)

which has, under the null hypothesis, exactly a χ2 distribution with p = 2
degrees of freedom.

Plugging in the observed values, we obtain

n(x − µ0)�Σ−1(x − µ0) = 5(1, 0)
(

3 ρ
ρ 1

)−1( 1
0

)

= 5(1, 0)
1

3 − ρ2

(

1 −ρ
−ρ 3

)(

1
0

)

=
5

3 − ρ2

and it follows that the null hypothesis is rejected if

5
3 − ρ2

> χ2
0.95;2 = 5.99,

i.e., if abs(ρ) >
√

3 − 5.99/5 = 1.471.

At the same time, abs(ρ) <
√

3 since the variance matrix must be positive
definite (and the covariance ρ = ±

√
3 if the correlation coefficient is equal to

±1).

Hence, the null hypothesis is rejected for covariances ρ such that

abs(ρ) ∈
(

3 − 5
χ2

0.95;2

,
√

3

)

= (1.471, 1.732).

EXERCISE 7.10. Consider X ∼ N3(µ,Σ). An iid sample of size n = 10
provides:

x = (1, 0, 2)� and S =

⎛

⎝

3 2 1
2 3 1
1 1 4

⎞

⎠ .
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a) Knowing that the eigenvalues of S are integers, describe a 95% confidence
region for µ.

b) Calculate the simultaneous confidence intervals for µ1, µ2 and µ3.

c) Can we assert that µ1 is an average of µ2 and µ3?

a) The test statistic (n−p)(µ−x)�S−1(µ−x) has Fp,n−p distribution. Com-
parison of the test statistic with the appropriate quantile of its distribution
yields the following confidence region, covering the unknown parameter µ with
probability 1 − α:

{

µ ∈ R
p; |(µ − x)�S−1(µ − x)| ≤ p

n − p
F1−a;p,n−p

}

.

In our case, we obtain
{

µ ∈ R
3|(µ − x)TS−1(µ − x) � 3

7
F0,95;3,7

}

(7.8)

Calculating the trace and the determinant of S:

|S| = 18 =
3
∏

j=1

λj and tr(S) = 3 + 3 + 4 = 10
3
∑

j=1

λj

and searching for positive integers satisfying these two equations yields easily
λ = (λ1.λ2, λ3)� = (6, 3, 1)�.

Next, we can calculate the eigenvectors γ1, γ2, γ3 by solving the three systems
of equations (S − λiI3) = 03, respectively:
⎛

⎝

−3 2 1
2 −3 1
1 1 −2

⎞

⎠ γ1 = 03,

⎛

⎝

0 2 1
2 0 1
1 1 1

⎞

⎠ γ2 = 03, and

⎛

⎝

2 2 1
2 2 1
1 1 3

⎞

⎠ γ3 = 03

and it is easy to verify that γ1 = (1, 1, 1)�/
√

3, γ2 = (1, 1,−2)�/
√

6, and
γ3 = (−1, 1, 0)�/

√
2.

The confidence region (7.8) can now be described in words as a 3-dimensional

ellipsoid with axes of lengths
√

3
7F0.95;3,7λi, i = 1, 2, 3, oriented in the direc-

tions of the eigenvectors γ1, γ2, and γ3, respectively.

b) Simultaneous confidence intervals for components of µ may be calculated
using the formula:

xj −
√

p

n − p
F1−α;p,n−psjj < µj < xj +

√

p

n − p
F1−α;p,n−psjj

In this particular case we have



7 Hypothesis Testing 123

xj −
√

3
7
F0.95;3,7sjj < µj < xj +

√

3
7
F0.95;3,7sjj .

It should be noticed that these intervals define a rectangle inscribing the
confidence ellipsoid (7.8) for µ given above. Calculations yield:

−1.364 < µ1 < 3.364
−2.364 < µ2 < 2.364
−0.729 < µ3 < 4.730.

c) The problem can be solved applying the test statistic:

(n − 1)(Ax − a)�(ASA�)−1(Ax − a) ∼ T 2(q, n − 1)

where A = (2,−1,−1). In this case, with the observed x = (1, 0, 2)�, the value
of the test statistic is zero and the null hypothesis H0 : µ1 = (µ2 + µ3)/2 (or
equivalently H0 : Aµ = 0) can not be rejected.

EXERCISE 7.11. Let X ∼ N2(µ,Σ) where Σ is known to be Σ =
(

2 −1
−1 2

)

.

We have an iid sample of size n = 6 providing x� =
(

1 1
2

)

. Solve the following
test problems (α = 0.05):

a) H0: µ =
(

2, 2
3

)�
H1: µ �=

(

2, 2
3

)�

b) H0: µ1 + µ2 = 7
2 H1: µ1 + µ2 �= 7

2

c) H0: µ1 − µ2 = 1
2 H1: µ1 − µ2 �= 1

2

d) H0: µ1 = 2 H1: µ1 �= 2

For each case, calculate the rejection region and comment on their size and
location.

a) For X ∼ Np(µ,Σ), the test statistic (X −µ0)�Σ−1(X −µ0) has under the
null hypothesis H0 : µ = µ0 exactly a χ2

p distribution.

The test is based on the known distribution of the sample mean, i.e.,

x ∼ N2

((

1
1
2

)

,
1
6

(

2 −1
−1 2

))

Since in our case the variance matrix Σ > 0 is known, we can calculate its
inverse

(

1
6
Σ

)−1

=
(

4 2
2 4

)

and obtain the value of the test statistic 4.78 which is smaller than the critical
value χ2

2(0.05) = 5.99. Hence, the null hypothesis can not be rejected at level
α = 0.05.



124 7 Hypothesis Testing

Here, the rejection region are all values greater than the critical value 5.99,
i.e., the interval (5.99,+∞).

b) We could use the test statistic (7.2) with A = (1, 1) but it is more straight-
forward to use the univariate normal distribution of the random variable

(1, 1)x ∼ N(µ1 + µ2, 2/6).

The test statistic (1, 1)x has, under the null hypothesis, a normal distribution
N(7/2, 2/6). We reject the null hypothesis since the value of the test statistic,
(

3
2 − 7

2

)√

6/2 = 3.4641 is smaller than the critical value of the standard
normal distribution Φ−1(0.025) = −1.96.

The rejection region is the union of the intervals (−∞,−1.96) ∪ (1.96,+∞).
We reject the null hypothesis if the observed and the hypothesized mean value
are far away from each other.

c) Since x1 − x2 = 1
2 , the value of the test statistic (7.2) is equal to zero and

we can not reject H0 at any level α ∈ (0, 1).

d) Again, we could use formula (7.2) with A = (1, 0). However, we can also
realize that the test concerns only the first component of the observed random
vector and, since the test statistic |1 − 2|

√

6/2 = 1.7321 is now lying between
the critical values Φ−1(0.025) = 1.96 and Φ−1(0.975) = 1.96, we do not reject
the null hypothesis at level α = 0.05.

The rejection region is (−∞,−1.96) ∪ (1.96,+∞).

EXERCISE 7.12. Repeat the Exercise 7.11 with Σ unknown and the empirical

covariance matrix S =
(

2 −1
−1 2

)

. Compare the results.

a) Tests concerning the mean vector of a multivariate normal distribution can
be based on the test statistic

(n − 1)(x − µ0)�S−1(x − µ0) ∼ T 2(p, n − 1),

or equivalently
(

n − p

p

)

(x − µ0)�S−1(x − µ0) ∼ Fp,n−p. (7.9)

In this case an exact rejection region may be defined as
(

n − p

p

)

(x − µ0)�S−1(x − µ0) > F1−α;p,n−p.

Alternatively, we could apply Theorem 7.1 which leads to the approximate
(asymptotically valid) rejection region:
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n log{1 + (x − µ0)�S−1(x − µ0)} > χ2
1−α;p.

However, it is preferable to use the exact approach.

It is interesting to see that the test statistic is quite similar to the test statistic
calculated in Exercise 7.11. The only differences are different norming constant
(n − p)/p instead of n and different critical values. Comparing the formula,
the value of the test statistic can be calculated as

n − p

pn
4.78 =

4
24

4.78

which is obviously smaller than the corresponding critical value F0.95;2,4 =
6.9443. As in Exercise 7.11, we do not reject the null hypothesis.

b) The standard univariate t-test, allowing for unknown variance matrix, is
actually using the same test statistic as given in Exercise 7.11. The only
difference is the critical value t0.975;5 = 2.5759. The test statistic, −3.4641, is
smaller than the critical value −2.5759 and, exactly as in Exercise 7.11, we
reject the null hypothesis.

Notice that the rejection region, (−∞,−2.5759) ∪ (2.5759,+∞) is smaller
than in Exercise 7.11 and we can say that it is more difficult to reject the null
hypothesis if the variance is not known.

c) Since x1 −x2 = 1
2 , the value of the test statistic will be again equal to zero

and we can not reject H0 at any level α ∈ (0, 1). This decision is identical to
our conclusion in Exercise 7.11.

d) The test statistic of the univariate t-test (1 − 2)
√

6/2 = 1.7321 is lying
between the corresponding critical values t0.025;5 = −2.5759 and t0.975;5 =
2.5759 which implies that we do not reject the null hypothesis at level α =
0.05.

EXERCISE 7.13. Test the hypothesis of the equality of the covariance matrices
on two simulated 4-dimensional samples of sizes n1 = 30 and n2 = 20.

Let Xih ∼ Np(µh, Σh), i = 1, . . . , nh, h = 1, 2, be independent random vec-
tors. The test problem of testing the equality of the covariance matrices can
be written as

H0 : Σ1 = Σ2 versus H1 : no constraints.

Both subsamples provide Sh, an estimator of Σh, with the Wishart distri-
bution nhSh ∼ Wp(Σh, nh − 1). Under the null hypothesis H0 : Σ1 = Σ2,
we have for the common covariance matrix that

∑2
h=1 nhSh ∼ Wp(Σ,n − 2),

where n =
∑2

h=1 nh.
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Let S = n1S1+n2S2
n be the weighted average of S1 and S2. The likelihood ratio

test leads to the test statistic

−2 log λ = n log | S | −
2
∑

h=1

nh log | Sh | (7.10)

which under H0 is approximately distributed as a χ2
m with m = 1

2 (2−1)p(p+1)
degrees of freedom.

We test the equality of the covariance matrices for the three data sets given
in Härdle & Simar (2003, Example 7.14) who simulated two independent
normal distributed samples with p = 4 dimensions and the sample sizes of
n1 = 30 and n2 = 20 leading to the asymptotic distribution of the test
statistics (7.10) with m = 1

2 (2 − 1)4(4 + 1) = 10 degrees of freedom.

a) With a common covariance matrix in both populations Σ1 = Σ2 = I4, we
obtain the following empirical covariance matrices:

S1 =

⎛

⎜

⎜

⎝

0.812 −0.229 −0.034 0.073
−0.229 1.001 0.010 −0.059
−0.034 0.010 1.078 −0.098

0.073 −0.059 −0.098 0.823

⎞

⎟

⎟

⎠

and

S2 =

⎛

⎜

⎜

⎝

0.559 −0.057 −0.271 0.306
−0.057 1.237 0.181 0.021
−0.271 0.181 1.159 −0.130

0.306 0.021 −0.130 0.683

⎞

⎟

⎟

⎠

The determinants are |S| = 0.594, |S1| = 0.668 and |S2| = 0.356 leading to
the likelihood ratio test statistic:

−2 log λ = 50 log(0.594) − 30 log(0.668) − 20 log(0.356) = 6.755

The value of the test statistic is smaller than the critical value χ2
0.95;10 = 18.307

and, hence, we do not reject the null hypothesis.

b) The second simulated samples have covariance matrices Σ1 = Σ2 = 16I4.
Now, the standard deviation is 4 times larger than in the previous case. The
sample covariance matrices from the second simulation are:

S1 =

⎛

⎜

⎜

⎝

21.907 1.415 −2.050 2.379
1.415 11.853 2.104 −1.864

−2.050 2.104 17.230 0.905
2.379 −1.864 0.905 9.037

⎞

⎟

⎟

⎠
,

S2 =

⎛

⎜

⎜

⎝

20.349 −9.463 0.958 −6.507
−9.463 15.502 −3.383 −2.551

0.958 −3.383 14.470 −0.323
−6.507 −2.551 −0.323 10.311

⎞

⎟

⎟

⎠
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and the value of the test statistic is:

−2 log λ = 50 log(40066) − 30 log(35507) − 20 log(16233) = 21.694.

Since the value of the test statistic is larger than the critical value of the
asymptotic distribution, χ2

0.95;10 = 18.307, we reject the null hypothesis.

c) The covariance matrix in the third case is similar to the second case Σ1 =
Σ2 = 16I4 but, additionally, the covariance between the first and the fourth
variable is σ14 = σ41 = −3.999. The corresponding correlation coefficient is
r41 = −0.9997.

The sample covariance matrices from the third simulation are:

S1 =

⎛

⎜

⎜

⎝

14.649 −0.024 1.248 −3.961
−0.024 15.825 0.746 4.301

1.248 0.746 9.446 1.241
−3.961 4.301 1.241 20.002

⎞

⎟

⎟

⎠

and

S2 =

⎛

⎜

⎜

⎝

14.035 −2.372 5.596 −1.601
−2.372 9.173 −2.027 −2.954

5.596 −2.027 9.021 −1.301
−1.601 −2.954 −1.301 9.593

⎞

⎟

⎟

⎠
.

The value of the test statistic is:

−2 log λ = 50 log(24511) − 30 log(37880) − 20 log(6602.3) = 13.175

The value of the likelihood ratio test statistic is now smaller than the critical
value, χ2

0.95;10 = 18.307, and we do not reject the null hypothesis. MVAtestcov

EXERCISE 7.14. Test the equality of the covariance matrices from the two
groups in the WAIS data set (Morrison 1990). The data set is given in
Table A.21.

The data set can be summarized by calculating the vectors of means,

x1 = (12.57, 9.57, 11.49, 7.97)� x2 = (8.75, 5.33, 8.50, 4.75)�,

and the empirical covariance matrices

S1 =

⎛

⎜

⎜

⎝

11.164 8.840 6.210 2.020
8.840 11.759 5.778 0.529
6.210 5.778 10.790 1.743
2.020 0.529 1.743 3.594

⎞

⎟

⎟

⎠
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S2 =

⎛

⎜

⎜

⎝

9.688 9.583 8.875 7.021
9.583 16.722 11.083 8.167
8.875 11.083 12.083 4.875
7.021 8.167 4.875 11.688

⎞

⎟

⎟

⎠

in both groups.

Let us assume that the first set of n1 = 37 observations comes from 4-
dimensional normal distribution N4(µ1, Σ1) and the second set of the remain-
ing n2 = 12 observations corresponds to N4(µ2, Σ2).

For testing the equality of the two covariance matrices, Σ1 = Σ2, we use
the test described in Exercise 7.13. Formally, the null and the alternative
hypotheses are:

H0 : Σ1 = Σ2 versus H1 : Σ1 �= Σ2.

In order to calculate the likelihood ratio test statistic (7.6), we have to define
the matrix S = (n1S1 + n2S2)/n, i.e., the weighted average of the observed
matrices. We get

S =
n1S1 + n2S2

n
=

37S1 + 12S2

49
=

⎛

⎜

⎜

⎝

10.803 9.022 6.863 3.245
9.022 12.974 7.077 2.399
6.863 7.077 11.107 2.510
3.245 2.399 2.510 5.576

⎞

⎟

⎟

⎠

and we easily obtain the test statistic:

−2 log λ = n log |S| −
2
∑

h=1

nh log |Sh|

= 49 log |S| − (37 log |S1| + 12 log |S2|) = 20.7.

This value of the test statistics leads to the rejection of the null hypothesis of
the equality of the two covariance matrices since it is larger than the critical
value χ2

0.95;10 = 18.307, where the degrees of freedom were determined for
k = 2 groups as m = 1

2 (k − 1)p(p + 1) = 1
2 (2 − 1)4(4 + 1) = 10.

SMStestcovwais

EXERCISE 7.15. Consider two independent iid samples, each of size 10, from
two bivariate normal populations. The results are summarized below:

x1 = (3, 1)�; x2 = (1, 1)�

S1 =
(

4 −1
−1 2

)

; S2 =
(

2 −2
−2 4

)

.

Provide a solution to the following tests:
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a) H0: µ1 = µ2 H1: µ1 �= µ2

b) H0: µ11 = µ21 H1: µ11 �= µ21

c) H0: µ12 = µ22 H1: µ12 �= µ22

Compare the solutions and comment.

a) Let us start by verifying the assumption of equality of the two covariance
matrices, i.e., the hypothesis:

H0 : Σ1 = Σ2 versus H1 : Σ1 �= Σ2.

This hypothesis can be tested using the approach described in Exercise 7.13
where we used the test statistic (for k = 2 groups):

−2 log λ = n log |S| −
2
∑

h=1

nh log |Sh|

which is under the null hypothesis H0 : Σ1 = Σ2 approximately χ2
m distri-

buted, where m = 1
2 (k − 1)p(p + 1) = 1

2 (2 − 1)2(2 + 1) = 3.

We calculate the average of the observed variance matrices

S =
(

3 −1.5
−1.5 3

)

and we get the value of the test statistic

−2 log λ = 20 log |S| − (10 log |S1| + 10 log |S2|) = 4.8688

which is smaller than the critical valueχ2
0.95;3 = 7.815. Hence, the value

of the test statistic is not significant, we do not reject the null hypothesis,
and the assumption of the equality of the variance matrices can be used in
testing the equality of the mean vectors.

Now, we can test the equality of the mean vectors:

H0 : µ1 = µ2 versus H1 : µ1 �= µ2.

The rejection region is given by

n1n2(n1 + n2 − p − 1)
p(n1 + n2)p

(x1 − x2)�S−1(x1 − x2) ≥ F1−α;p,n1+n2−p−1.

For α = 0.05 we get the test statistic 3.7778 ≥ F0.95;2,17 = 3.5915. Hence, the
null hypothesis H0 : µ1 = µ2 is rejected and we can say that the mean vectors
of the two populations are significantly different.

b) For the comparison of the two mean vectors first components we calcu-
late the 95% simultaneous confidence interval for the difference. We test the
hypothesis
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H0 : µ11 = µ21 versus H1 : µ11 �= µ21.

This test problem is only one-dimensional and it can be solved by calculating
the common two-sample t-test. The test statistic

x11 − x21
√

4
n1

+ 2
n2

=
2
√

6
10

= 2.5820

is greater than the corresponding critical value t0.95;18 = 2.1011 and hence we
reject the null hypothesis.

c) The comparison of the second component of the mean vectors can be also
based on the two-sample t-test. In this case, it is obvious that the value of the
test statistic is equal to zero (since x12 = x22 = 1) and the null hypothesis
can not be rejected.

In part a) we have rejected the null hypothesis that the two mean vectors are
equal. From the componentwise test performed in b) and c), we observe that
the reason for rejecting the equality of the two two-dimensional mean vectors
was due mainly to differences in the first component.

EXERCISE 7.16. Assume that X ∼ Np(µ,Σ) where Σ is unknown.

a) Derive the log-likelihood ratio test for testing the independence of the p
components, that is H0 : Σ is a diagonal matrix.

b) Assume that Σ is a diagonal matrix (all the variables are independent).
Can an asymptotic test for H0 : µ = µo against H1 : µ �= µo be derived?
How would this compare to p independent univariate t-tests on each µj?

c) Provide an easy derivation of an asymptotic test for testing the equality of
the p means. Compare this to the simple ANOVA procedure.

In order to derive the likelihood ratio test statistic, we have to calculate �∗0 and
�∗1, the maxima of the log-likelihood under the null and alternative hypothesis.
Using the results derived in Exercise 6.7, we can write

�∗0 = �{x,diag(S)} = −n

2
log |2π diag(S)| − n

2
tr
(

diag(S)−1S
)

and, from the solution of Exercise 7.7, we know that

�∗1 = �(x,S) = −n

2
log |2πS| − n

2
tr
(

S−1S
)

= −n

2
log |2πS| − n

2
p,

where diag(S) = diag (s11, . . . , spp) and d = (x − µ). Then
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−2 log λ = 2 (�∗1 − �∗0)
= −n

{

log |2πS| − log |2π diag(S)| + p − tr
(

diag(S)−1S
)}

= −n
{

log
∣

∣diag(S)−1
∣

∣ |S| + p − tr
(

diag(S)−1S
)}

= −n
{

log
∣

∣

∣diag(S)−1/2S diag(S)−1/2
∣

∣

∣+ p

− tr
(

diag(S)−1/2S diag(S)−1/2
)}

= −n (log |R| + p − trR)
= −n log |R| ,

where R = diag(S)−1/2S diag(S)−1/2 is the empirical correlation matrix.

According to Theorem 7.1, the test of the null hypothesis can be based on
the fact that the likelihood ratio test statistics −n log |R| has asymptotically
χ2

p(p−1)/2 distribution, where the number of degrees of freedom is the difference
in the number of parameters under the alternative and null hypothesis: p(p−
1)/2 = dim(Ω1) − dim(Ω0) = p(p + 1)/2 − p.

b) Again, using Theorem 7.1, the test can be derived by calculating the likeli-
hood ratio test statistics −2 log λ = −2 (�∗1 − �∗0) comparing the maximum of
the log-likelihood under the null and alternative hypothesis.

Under the null hypothesis H0 : µ = µ0, we maximize the log-likelihood
�(X ;µ0, Σ) under the assumption that the variance Σ is diagonal, i.e., the
unknown parameters are the diagonal elements of Σ, σ = diag(Σ). Similarly,
as in Exercise 6.7, the log-likelihood �(X ;µ0, σ) is

−n

2
log(2π) − n

2

p
∑

j=1

log σjj −
1
2

n
∑

i=1

(xi − µ0)� diag(σ−1)(xi − µ0).

Setting the partial derivative of the log-likelihood w.r.t. the vector of unknown
parameters σ = diag(Σ) equal to zero,

∂

∂σ
�(X ;µ0, σ) = −n

2
σ−1 − 1

2
∂

∂σ

n
∑

i=1

tr{(xi − µ0)� diag(σ−1)(xi − µ0)}

= −n

2
σ−1 +

1
2

n
∑

i=1

diag{(xi − µ0)(xi − µ0)�}σ−2.

we obtain the MLE

0 = −n

2
σ̂−1 +

1
2

n
∑

i=1

diag{(xi − µ0)(xi − µ0)�}σ̂−2

σ̂ = diag

{

1
n

n
∑

i=1

(xi − µ0)(xi − µ0)�
}

= diag(S + dd�),
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where S is the empirical covariance matrix and d = (x−µ0) as in Exercise 7.6.
Thus,

�∗0 = �(X ;µ0,diag(S + dd�).

The maximum of the log-likelihood under the alternative hypothesis has
already been derived in Exercise 6.7,

�∗1 = �(X ;x,diag S)

and we can calculate the likelihood ratio test statistic similarly as in Exer-
cise 7.7:

−2 log λ = 2 (�∗1 − �∗0)
= 2

{

�(X ;x,diag S) − �(X ;µ0,diag(S + dd�)
}

= −n log |diag(S)| + n log |diag(S + dd�)|

− tr

{

diag(S−1)
n
∑

i=1

(xi − x)(xi − x)�
}

+ tr

[

{diag(S + dd�)}−1
n
∑

i=1

(xi − µ0)(xi − µ0)
�

]

= n log
|diag(S + dd�)|

|diag(S)| = n log
p
∏

j=1

∑n
i=1(xij − µ0j)2

∑n
i=1(xij − xj)2

= n log
p
∏

j=1

∑n
i=1(xij − xj + xj − µ0j)2
∑n

i=1(xij − xj)2

= n

p
∑

j=1

log
nsjj + n(xj − µ0j)2

nsjj

= n

p
∑

j=1

log
{

1 +
(xj − µ0j)2

sjj

}

.

The derived test statistics has asymptotically a χ2 distribution with p degrees
of freedom.

Using a first order Taylor expansion of log(1 + x) ≈ x, the test statistics
−2 log λ may be approximated by the expression

p
∑

j=1

n
(xj − µ0j)2

sjj
=

p
∑

j=1

(

xj − µ0j

sjj/
√

n

)2

,

i.e., a sum of squared univariate one-sample t-test statistics calculated for
each dimension separately. Hence, the multivariate test is, in this case,
approximately equivalent to a combination of the p univariate t-tests.
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c) The hypothesis of the equality of the p means can be equivalently written
as H0 : Cµ = 0, where C is a contrast matrix

C((p − 1) × p) =

⎛

⎜

⎜

⎜

⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
...

0 · · · 0 1 −1

⎞

⎟

⎟

⎟

⎠

and a test could be based on the statistic

(n − 1)x�C�(C diagSC�)−1Cx ∼ T 2(p, n − 1)

or, equivalently,

n − p + 1
p − 1

x�C�(CSC�)−1Cx ∼ Fp−1,n−p+1. (7.11)

The analysis of variance (ANOVA) technique is, in this case, based on the
test statistic

{SS(reduced) − SS(full)}/{df(r) − df(f)}
SS(full)/df(f)

∼ Fdf(r)−df(f),df(f),

i.e.,
{

n
∑p

j=1

(

xj − x
)2
}

/(p − 1)
∑p

j=1

∑n
i=1

(

xij − x
)2

/(np − 1)
∼ Fp−1,np−1, (7.12)

where x = 1
p (x1 + · · · + xp).

A comparison of the test statistics and their asymptotic distributions in (7.11)
and (7.12) reveals that the tests behave differently. The main difference is that
the analysis of variance (7.12) assumes that the the variances σ11, . . . , σpp are
equal. Thus, (7.11) is, in principle, a modification of ANOVA for heteroscedas-
tic (unequal variances within groups) observations.

EXERCISE 7.17. The yields of wheat have been measured in 30 parcels that
have been randomly attributed to 3 lots prepared by one of 3 different fertilizers
A, B, and C. The data set is given in Table A.7.

Using Exercise 7.16,

a) test the independence between the 3 variables.

b) test whether µ = (2, 6, 4)� and compare this to the 3 univariate t-tests.

c) test whether µ1 = µ2 = µ3 using simple ANOVA and the χ2 approxima-
tion.
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a) We assume that the observations, x1, . . . , x30, have 3-dimensional normal
distribution N3(µ,Σ) where Σ is unknown. The null and alternative hypoth-
esis are:

H0 : Σ is diagonal vs. H1 : no constraints

The corresponding likelihood ratio test statistic, derived in Exercise 7.16,

−n log |R| = −n log

∣

∣

∣

∣

∣

∣

1.000 −0.400 0.152
−0.400 1.000 −0.027

0.152 −0.027 1.000

∣

∣

∣

∣

∣

∣

= −n log 0.819 = 1.987

is smaller than the corresponding critical value of the χ2
6 distribution χ2

6;0.95 =
12.592 at level α = 0.05. Hence, we do not reject the hypothesis that the
variance matrix is diagonal.

b) The corresponding test statistic:

(n − 1)(x − µ0)�S−1(x − µ0) ∼ T 2
p;n−1

follows under H0 a Hotelling T 2-distribution, with p = 3 and n−1 = 9 degrees
of freedom. From the data set, we calculate the mean vector

x =

⎛

⎝

3.2
6.7
2.2

⎞

⎠

and the inverse of the variance matrix S

S−1 =

⎛

⎝

0.776 0 0
0 0.407 0
0 0 0.937

⎞

⎠ .

The test statistic is

9(1.2, 0.7,−1.8)

⎛

⎝

0.776 0 0
0 0.407 0
0 0 0.937

⎞

⎠

⎛

⎝

1.2
0.7

−1.8

⎞

⎠ = 39.188

The critical value of the Hotelling T 2
3,9 distribution is

T 2
0.95;3,9 =

3 · 9
9 − 3 + 1

F0.95;3,9−3+1 = 16.76

and it follows that we reject the null hypothesis H0 : µ = (2, 6, 4)� since the
test statistic is larger than the critical value.

The three univariate tests for the single means are:
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H0 : µ1 = 2 vs. H1 : no constraints,
H0 : µ2 = 6 vs. H1 : no constraints,
H0 : µ3 = 4 vs. H1 : no constraints.

The test statistics

Ti =
√

n
x − µi

sii
, for i = 1, 2, 3,

follow a Student t-distribution with n − 1 = 9 degrees of freedom.

In our case, we obtain

T1 = 3.342, T2 = 1.413, and T3 = −5.511.

The null hypothesis is rejected if the absolute value of the test statistic is
larger than the critical value t0.975;9 = 2.263. The null hypothesis is rejected
for µ1 = 2 and µ3 = 4.

In practice, it is not a good idea to perform a series of univariate tests instead
of one overall multivariate. It is easy to see that the probability of finding false
positive result (rejecting valid null hypothesis) increases with the number of
performed univariate tests.

c) The ANOVA hypothesis is:

H0 : µ1 = µ2 = µ3 vs. H1 : no constraints.

The sums of squares for the ANOVA procedure are SS(full)=
∑3

l=1

∑10
k=1(xkl−

xl)2 = 43.30 and SS(reduced) =
∑3

l=1

∑10
k=1(xkl − x)2 = 154.97. The test

statistic

F =
{SS(reduced) − SS(full)}/(df(r) − df(f))

SS(full)/df(f)
= 34.816

follows a F -distribution with df(f) = n − 3 = 27 and df(r) = n − 1 = 29
degrees of freedom.

Since the test statistic 34.816 > F0.95;2,27 = 3.354, we reject the null hypoth-
esis of equality of the three means.

Without assuming the equality of the variances (homoscedasticity) the hypo-
thesis can be written as

H0 : Cµ = 02 versus H1 : no constraints

under the assumption that the variance matrix Σ is diagonal, where

C =
(

1 −1 0
1 0 −1

)

.
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The t-test statistic:

−2 log λ = n log
{

1 + (Cx − a)�(CSC�)−1(Cx)
}

follows under the null hypothesis H0 asymptotically a χ2-distribution. From
the observed data set, we obtain

Cx =
(

−3.5
1

)

and (ASA�)−1 =
(

0.329 −0.180
−0.180 0.523

)

.

The test statistic is

−2 log λ = 10 log
{

1 + (−3.5, 1)
(

0.329 −0.180
−0.180 0.523

)(

−3.5
1

)}

= 19.19

and we reject the null hypothesis at level α = 0.05 since the test statistic is
larger than the corresponding critical value χ2

0.95;2 = 5.99.

EXERCISE 7.18. Test the first sample (n1 = 30) simulated in parts b) and
c) of Exercise 7.13 to see if its covariance matrix is equal to Σ0 = 4I4 (the
sample covariance matrix to be tested is given by S1).

a) We have a random sample from a 4-dimensional normal distribution with
a sample size of 30 and the empirical covariance matrix:

S1 =

⎛

⎜

⎜

⎝

21.907 1.415 −2.050 2.379
1.415 11.853 2.104 −1.864

−2.050 2.104 17.230 0.905
2.379 −1.864 0.905 9.037

⎞

⎟

⎟

⎠

The test of the hypothesis

H0 : Σ = Σ0 versus H1 : no constraints

can be carried out by likelihood ratio test based on the test statistic

−2 log λ = 2(�∗1 − �∗0)
= 2{�(X ;x,S) − �(X ;x,Σ0)}
= n tr

(

Σ−1
0 S

)

− n log
∣

∣Σ−1
0 S

∣

∣− np

which has, under the null hypothesis, asymptotically χ2
m distribution with

m = p(p − 1)/2 degrees of freedom.

Plugging in the observed covariance matrix, we get −2 log λ = 264.8 >
χ2

0.95;10 = 18.31 and we reject the null hypothesis H0 : Σ = I4.

b) For the second observed covariance matrix,
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S1 =

⎛

⎜

⎜

⎝

14.649 −0.024 1.248 −3.961
−0.024 15.825 0.746 4.301

1.248 0.746 9.446 1.241
−3.961 4.301 1.241 20.002

⎞

⎟

⎟

⎠
,

we obtain the test statistic −2 log λ = 263.526 and, comparing it to the same
critical value χ2

0.95;10 = 18.31, we again see that the observed covariance
matrix is significantly different from I4.

EXERCISE 7.19. Consider the bank data set in Table A.2. For the counterfeit
bank notes, we want to know if the length of the diagonal (X6) can be predicted
by a linear model in X1 to X5. Estimate the linear model and test if the
coefficients are significantly different from zero.

We consider the linear regression model,

X6 = (1,X1, . . . , X5)β + ε,

where β = (β0, . . . , β5)� is the vector of the regression parameters and ε is
the random error distributed as N(0, σ2). The parameter estimates and the
related tests are summarized in the following computer output:

A N O V A SS df MSS F-test P-value
_________________________________________________________
Regression 9.920 5 1.984 8.927 0.0000
Residuals 20.890 94 0.222
Total Variation 30.810 99 0.311

Multiple R = 0.56743
R^2 = 0.32197
Adjusted R^2 = 0.28591
Standard Error = 0.47142

PARAMETERS Beta SE StandB t-test P-value
_________________________________________________________
b[ 0,]= 47.3454 34.9350 0.0000 1.355 0.1786
b[ 1,]= 0.3193 0.1483 0.2016 2.153 0.0339
b[ 2,]= -0.5068 0.2483 -0.2317 -2.041 0.0440
b[ 3,]= 0.6337 0.2021 0.3388 3.136 0.0023
b[ 4,]= 0.3325 0.0596 0.6747 5.576 0.0000
b[ 5,]= 0.3179 0.1039 0.3624 3.060 0.0029

SMSlinregbank2

The first part of the output concerns the test of the hypothesis
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H0 : β1 = β5 = 0 vs. H1 : βi �= 0 for some i = 1, . . . , 5.

The value of the F -statistics is 8.927 and the small p-value (< α = 0.05)
indicates that the null hypothesis is rejected. This proves that the response
variable X6 depends on the variables X1, . . . , X5.

The second part of the computer output contains information on the parame-
ter estimates ̂βi, i = 0, . . . , 5. The parameter β0 = b[ 0,] estimates the in-
tercept (absolute term). The remaining parameters βi = b[ i,], i = 1, . . . , 5
measure the influence of the variables Xi on the response variable X6, see
Chapter 3 for more details. Each row contains a result of the univariate t-test
of the hypothesis

H0 : βi = 0 vs. H1 : βi �= 0.

From the p-values given in the last column, we can see that all regression
coefficients are statistically significant on level α = 0.05.

EXERCISE 7.20. In the vocabulary data set (Bock 1975) given in Table A.20,
predict the vocabulary score of the children in eleventh grade from the results
in grades 8–10. Estimate a linear model and test its significance.

A N O V A SS df MSS F-test P-value
_________________________________________________________
Regression 166.150 3 55.383 47.386 0.0000
Residuals 70.126 60 1.169
Total Variation 236.276 63 3.750

Multiple R = 0.83857
R^2 = 0.70320
Adjusted R^2 = 0.68836
Standard Error = 1.08110

PARAMETERS Beta SE StandB t-test P-value
_________________________________________________________
b[ 0,]= 1.4579 0.3014 0.0000 4.838 0.0000
b[ 1,]= 0.1974 0.1595 0.1925 1.238 0.2206
b[ 2,]= 0.2265 0.1161 0.2439 1.952 0.0557
b[ 3,]= 0.4042 0.1313 0.4535 3.079 0.0031

SMSlinregvocab

Regression analysis reveals reasonably high coefficient of determination.
Hypothesis of independence (H0 : all parameters= 0) is rejected on level
α = 0.05 since the F -statistics is statistically significant (the p-value is smaller
than α = 0.05).



7 Hypothesis Testing 139

The vocabulary score from tenth grade (β3 =b[ 3,]) is statistically signifi-
cant for the forecast of performance in eleventh grade. The other two variables,
vocabulary scores from the eighth and ninth grade are not statistically signif-
icant at level α = 0.05. More formally, the test does not reject the hypothesis
that parameters β2 and β3 are equal to zero.

One might be tempted to simplify the model by excluding the insignificant
variables. However, excluding only the score in eighth grade leads to the fol-
lowing result which shows that the variable measuring the vocabulary score
in ninth grade has changed its significance.

A N O V A SS df MSS F-test P-value
__________________________________________________________
Regression 164.359 2 82.180 69.705 0.0000
Residuals 71.917 61 1.179
Total Variation 236.276 63 3.750

Multiple R = 0.83404
R^2 = 0.69562
Adjusted R^2 = 0.68564
Standard Error = 1.08580

PARAMETERS Beta SE StandB t-test P-value
__________________________________________________________
b[ 0,]= 1.2210 0.2338 0.0000 5.222 0.0000
b[ 1,]= 0.2866 0.1059 0.3086 2.707 0.0088
b[ 2,]= 0.5077 0.1016 0.5696 4.997 0.0000

SMSlinregvocab

Hence, the final model explains the vocabulary score in grade eleven using
vocabulary scores in the previous two grades.

EXERCISE 7.21. Assume that we have observations from two p-dimensional
normal populations, xi1 ∼ Np(µ1, Σ), i = 1, . . . , n1, and xi2 ∼ Np(µ2, Σ),
i = 1, . . . , n2. The mean vectors µ1 and µ2 are called profiles. An example of
two such 5-dimensional profiles is given in Figure 7.1. Propose tests of the
following hypotheses:

1. Are the profiles parallel?

2. If the profiles are parallel, are they at the same level?

3. If the profiles are parallel, are they also horizontal?
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Population profiles

1 2 3 4 5

Treatment

0
1

2
3

4
5

M
ea

n

Group1

Group2

Fig. 7.1. Example of population profiles SMSprofil

The above questions are easily translated into linear constraints on the means
and a test statistic can be obtained accordingly.

a) Let C be a (p − 1) × p contrast matrix defined as

C =

⎛

⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
0 · · · 0 1 −1

⎞

⎠ .

The hypothesis of parallel profiles is equivalent to

H
(1)
0 : Cµ1 − Cµ2 = C(µ1 − µ2) = 0p−1.

The test of parallel profiles can be based on:

C (x1 − x2) ∼ Np−1

(

C (µ1 − µ2) ,
n1 + n2

n1n2
CΣC�

)

.

Next, for the pooled covariance matrix S = (n1S1 + n2S2)/(n1 + n2) we have
the Wishart distribution:
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n1S1 + n2S2 ∼ Wp (Σ,n1 + n2 − 2)
C (n1S1 + n2S2) C� ∼ Wp−1

(

CΣC�, n1 + n2 − 2
)

.

Under the null hypothesis, we know that C (µ1 − µ2) = 0p−1 and it follows
that the statistic

(n1 + n2 − 2) {C (x1 − x2)}�
{

n1 + n2

n1n2
C (n1S1 + n2S2) C�

}−1

C (x1 − x2)

= (n1 + n2 − 2) {C (x1 − x2)}�
{

n1 + n2

n1n2
(n1 + n2) CSC�

}−1

C (x1 − x2)

=
(n1 + n2 − 2) n1n2

(n1 + n2)
2 {C (x1 − x2)}� {CSC}−1 C (x1 − x2)

has the Hotelling T 2 distribution T 2 (p − 1, n1 + n2 − 2) and the null hypoth-
esis of parallel profiles is rejected if

n1n2(n1 + n2 − p)
(n1 + n2)2(p − 1)

{C(x1 − x2)}�
(

CSC�)−1 C(x1 − x2) > F1−α;p−1,n1+n2−p.

(7.13)

b) Assuming that the two profiles are parallel, the null hypothesis of the
equality of the two levels can be formally written as

H
(2)
0 : 1�p (µ1 − µ2) = 0.

For 1�p (x1 − x2), as a linear function of normally distributed random vectors,
we have

1�p (x1 − x2) ∼ N1

(

1�p (µ1 − µ2),
n1 + n2

n1n2
1�p Σ1p

)

.

Since
1�p (n1S1 + n2S2) 1p ∼ W1

(

1�p {Σ1p, n1 + n2 − 2
)

,

we have that

(n1 + n2)1�p S1p ∼ W1(1�p Σ1p, n1 + n2 − 2),

where S is the pooled empirical variance matrix. The test of equality can be
based on the test statistic:

(n1 + n2 − 2) {1�p (x1 − x2)}�
{

n1+n2
n1n2

C (n1S1 + n2S2) C�
}−1

1�p (x1 − x2)

= n1n2(n1+n2−2)
(n1+n2)2

{1�
p (x1−x2)}2

1�
p S1p

∼ T 2(1, n1 + n2 − 2)

which leads directly the rejection region:

n1n2(n1 + n2 − 2)
(n1 + n2)2

{

1�p (x1 − x2)
}2

1�p S1p
> F1−α;1,n1+n2−2. (7.14)
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c) If it is accepted that the profiles are parallel, then we can exploit the
information contained in both groups to test if the two profiles also have zero
slope, i.e., the profiles are horizontal. The null hypothesis may be written as:

H
(3)
0 : C(µ1 + µ2) = 0.

The average profile x = (n1x1 + n2x2)/(n1 + n2) has a p-dimensional normal
distribution:

x ∼ Np

(

n1µ1 + n2µ2

n1 + n2
,

1
n1 + n2

Σ

)

.

Now the horizontal, H
(3)
0 : C(µ1+µ2) = 0p−1, and parallel, H

(1)
0 : C(µ1−µ2) =

0p−1, profiles imply that

C
(

n1µ1 + n2µ2

n1 + n2

)

=
C

n1 + n2
(n1µ1 + n2µ2)

=
C

2(n1 + n2)
{(n1 + n2)(µ1 + µ2) + (n1 − n2)(µ1 − µ2)}

= 0p−1.

So, under parallel and horizontal profiles we have

Cx ∼ Np−1

(

0p−1,
1

n1 + n2
CΣC�

)

.

and

C(n1 + n2)SC� = C (n1S1 + n2S2) C� ∼ Wp−1

(

CΣC�, n1 + n2 − 2
)

.

Again, we get under the null hypothesis that

(n1 + n2 − 2)(Cx)�(CSC�)−1Cx ∼ T 2 (p − 1, n1 + n2 − 2)

which leads to the rejection region:

n1 + n2 − p

p − 1
(Cx)�(CSC�)−1Cx > F1−α;p−1,n1+n2−p. (7.15)

EXERCISE 7.22. In Olkin & Veath (1980), the evolution of citrate concen-
trations in plasma is observed at three different times of day for two groups
of patients who follow different diet. (The patients were randomly attributed
to each group under a balanced design n1 = n2 = 5). The data set is given in
Table A.14.

Test if the profiles of the groups are parallel, if they are at the same level and
if they are horizontal.
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Profiles
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Fig. 7.2. Groups profiles of the evolution of citrate concentrations in plasma
observed at 3 different times of day. SMSprofplasma

The observed profiles are plotted in Figure 7.2. We apply the test statistics
derived in Exercise 7.21 to test the statistical significance of the difference
between the observed profiles.

a) The test for parallel profiles (7.13) leads to the test statistic:

n1n2(n1 + n2 − p)
(n1 + n2)2(p − 1)

(Cx)�(CSC�)−1Cx = 0.95

and we do not reject the null hypothesis since 0.95 < F1−α;p−1,n1+n2−p =
F0.95;2,7 = 4.74.

b) Let us now use (7.14) to test the equality of the profiles: The test statistic

n1n2(n1 + n1 − 2){1�p (x1 − x2)}2

(n1 + n2)21�p S1p
= 10.9

is larger than the critical value F1−α;1,n1+n2−2 = F0.95;1,8 = 5.32 and the
hypothesis of equal profiles is rejected.
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Hence, the profiles could be parallel but we already know that the level of
citrate concentrations in the two groups are significantly different.

c) Using the test statistic (7.15), we can assert whether the horizontality of
the observed profiles, i.e., decide whether the concentrations change during
the day. Considering the average profile x = n1x1+n2x2

n1+n2
, the test statistic is

n1 + n2 − p

p − 1
(Cx)�(CSC�)−1Cx = 0.30

and we do not reject the null hypothesis since it is smaller than the critical
value F1−α;p−1,n1+n2−p = F0.95;2,7 = 4.74. Thus, the observed profiles are not
significantly changing throughout the day. SMSprofplasma



Part III

Multivariate Techniques



8

Decomposition of Data Matrices by Factors

It is of the highest importance in the art of detection to be able to
recognize, out of a number of facts, which are incidental and which
vital. Otherwise your energy and attention must be dissipated instead
of being concentrated.
Sherlock Holmes in “The Reigate Puzzle”

In this chapter, we take a descriptive perspective and show how using a geo-
metrical approach can be a good way to reduce the dimension of a data matrix.
We derive the interesting projections with respect to a least-squares criterion.
The results will be low-dimensional graphical pictures of the data matrix. This
involves the decomposition of the data matrix into factors. These factors will
be sorted in decreasing order of importance. The approach is very general and
is the core idea of many multivariate techniques. We deliberately use the word
“factor” here as a tool or transformation for structural interpretation in an
exploratory analysis.

In practical studies, we apply this factorial technique to the Swiss bank notes,
the time budget data, and the French food data. We will see that these trans-
formations provide easier interpretations in lower-dimensional spaces. An im-
portant measure of resolution of information in a low-dimensional projected
space is the notion of inertia. We will calculate this inertia for several practical
examples.

Representation of the p-Dimensional Data Cloud

On one hand, the data set X can be understood as a cloud of n points in R
p.

The best representation of the p-dimensional data set in q < p dimensions
can be found by searching for directions uj ∈ R

p, j = 1, . . . , q, minimizing the
distance
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n
∑

i=1

‖xi − pxi
‖2, (8.1)

where
pj,xi

= x�
i

uj

‖uj‖
= x�

i uj (8.2)

are projections of observations xi into the jth direction uj . The best sub-
space is generated by u1, u2, . . . , uq, the orthonormal eigenvectors of X�X
associated with the corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λq.

The coordinates of the n individuals on the kth factorial axis, uk, are given by
the kth factorial variable zk = Xuk for k = 1, . . . , q. Each factorial variable
zk = (z1k, z2k, . . . , znk)� is a linear combination of the original variables whose
coefficients are given by the elements of the corresponding eigenvector uk, i.e.,
zik = x�

i uk.

In general, the scalar product y�y is called the inertia of y ∈ R
n w.r.t. the

origin. Note that λk = (Xuk)�(Xuk) = z�k zk. Thus, λk is the inertia of the
jth factorial variable w.r.t. the origin.

Representation of the n-Dimensional Data Cloud

On the other side, we can interpret the data set X as a cloud of p variables
observed in n-dimensional space R

n.

The best q-dimensional subspace is generated by the orthonormal eigenvectors
v1, v2, . . . , vq of XX� associated with the eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µq.

The coordinates of the p variables on the kth factorial axis are given by
the factorial variables wk = X�vk, k = 1, . . . , q. Each factorial variable wk =
(wk1, wk2, . . . , wkp)� is a linear combination of the original n-dimensional vec-
tors x[i] whose coefficients are given by the kth eigenvector, i.e., wki = x�

[i]vk.

Duality Relations

Both views at the data set are closely related. The precise description of this
relationship is given in the following theorem.

THEOREM 8.1. Let r be the rank of X . For k ≤ r, the eigenvalues λk of
X�X and XX� are the same and the eigenvectors (uk and vk, respectively)
are related by

uk =
1√
λk

X�vk and vk =
1√
λk

Xuk.
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Note that uk and vk provide the singular value decomposition (SVD) of X .
Letting U = (u1, u2, . . . , ur), V = (v1, v2, . . . , vr), and Λ = diag(λ1, . . . , λr),
we have

X = VΛ1/2U�.

EXERCISE 8.1. Prove Theorem 8.1.

Consider the eigenvector equations in the n-dimensional space, (XX�)vk =
µkvk, for k ≤ r, where r = rank(XX�) = rank(X ) ≤ min(p, n). Multiplying
by X�, we have

(X�X )(X�vk) = µk(X�vk)

so that each eigenvector vk of XX� corresponds to an eigenvector (X�vk)
of X�X associated with the same eigenvalue µk. This means that every non-
zero eigenvalue of XX� is also an eigenvalue of X�X . The corresponding
eigenvectors are related by uk = ckX�vk, where ck is some constant.

Now consider the eigenvector equations in the p-dimensional space, (X�X )uk =
λkuk, for k ≤ r. Multiplying by X , we have

(XX�)(Xuk) = λk(Xuk),

i.e., each eigenvector uk of X�X corresponds to an eigenvector Xuk of XX�

associated with the same eigenvalue λk = µk. Therefore, every non-zero eigen-
value of (X�X ) is an eigenvalue of XX�. The corresponding eigenvectors are
related by vk = dkXuk, where dk is some constant.

Now, since u�
k uk = v�

k vk = 1 we have

1 = u�
k uk = v�

k X c2
kX�vk = c2

kv�
k XX�vk = c2

kv�
k λkvk = c2

kλk

1 = v�
k vk = u�

k X�d2
kXuk = d2

ku�
k X�Xuk = d2

ku�
k λkuk = d2

kλk

and it follows that
ck = dk =

1√
λk

.

EXERCISE 8.2. Describe the relation between the projections of the individu-
als and the variables on the factorial axes.

Note that the projection of the p variables on the kth factorial axis vk is given
by

wk = X�vk =
1√
λk

X�Xuk =
√

λk uk.

Therefore, the projections on the factorial axis vk are rescaled eigenvectors of
X�X . Consequently, the eigenvectors vk do not have to be explicitly recom-
puted to get the projections wk.
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Similarly, we have also for the projections zk of the n observations on the kth
factorial axis uk that

zk = Xuk =
1√
λk

XX�vk =
√

λk vk.

EXERCISE 8.3. Let uk, k = 1, . . . , r be the first r eigenvectors of X�X .
Define zk = Xuk and prove that n−1Z�Z is the covariance of the centered
data matrix, where Z is the matrix formed by the columns zk, k = 1, . . . , r.

Let us write the spectral decomposition of the matrix X�X as X�X = UΛU�.
Then, we have Z = XU and we obtain:

n−1Z�Z = n−1U�X�XU = n−1U�UΛU�U = n−1Λ.

For the mean of Z we have

z� = 1�nZ = 1�nXU = x�U

and it follows that performing the factorial technique on a centered data set
X leads to a centered data set Z. The empirical covariance matrix SZ of the
centered data set Z can now be written as

SZ =
1
n
Z�Z =

1
n

Λ.

Observe that the marginal variances of Z are the eigenvalues of X�X and
that the vectors of Z are orthogonal.

EXERCISE 8.4. Apply the factorial technique to the French food data
(Table A.9) and relate the results to the SVD of the same data matrix.

The French food data set gives the food expenditures of various types of
French families (manual workers = MA, employees = EM, managers = CA)
with varying numbers of children (2, 3, 4 or 5 children).

We shall now represent food expenditures and households simultaneously us-
ing two factors. First, note that in this particular problem the origin has no
specific meaning (it represents a “zero” consumer). So it makes sense to com-
pare the consumption of any family to that of an “average family” rather than
to the origin. Therefore, the data is first centered (the origin is translated to
the center of gravity, x). Furthermore, since the dispersions of the 7 variables
are quite different each variable is standardized so that each has the same
weight in the analysis (mean 0 and variance 1). Finally, for convenience, we
divide each element in the matrix by

√
n =

√
12. (This will only change the

scaling of the plots in the graphical representation.)
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The data matrix to be analyzed is therefore:

X∗ =
1√
n
HXD−1/2,

where H is the centering matrix and D = diag(sXiXi
). Note that from stan-

dardizing by
√

n, it follows that X�
∗ X∗ = R where R is the correlation matrix

of the original data.

A standard way of evaluating the quality of the factorial representations in a
subspace of dimension q is given by the ratio

τq =
λ1 + λ2 + . . . + λq

λ1 + λ2 + . . . + λp
. (8.3)

The sum
∑q

j=1 λj is the sum of the inertia of the first q factorial variables
z1, z2, . . . , zq. The denominator in (8.3) is a measure of the total inertia of the
p variables because

p
∑

j=1

λj = tr(X∗
�X∗) =

p
∑

j=1

n
∑

i=1

x2
ij =

p
∑

j=1

x�
[j]x[j].

Therefore, the ratio τq (8.3) is usually interpreted as the percentage of the
inertia explained by the first q factors.

Calculating the eigenvalues λ = (4.33, 1.83, 0.63, 0.13, 0.06, 0.02, 0.00)� shows
that the directions of the first two eigenvectors play a dominant role (τ2 =
88%), whereas the other directions contribute less than 15% of inertia.
A two-dimensional plot should therefore suffice for interpreting this data set.

The representation of the n individuals on a plane is then obtained by plotting
z1 = X∗u1 versus z2 = X∗u2 (z3 = X∗u3 may eventually be added if a third
dimension is helpful). Using Theorem 8.1, representations for the p variables
can easily be obtained. These representations can be visualized in a scatterplot
of w1 =

√
λ1 u1 against w2 =

√
λ2u2.

In the first window of Figure 8.1 we see the representation of the p = 7
variables given by the first two factors. The plot shows the factorial variables
w1 and w2. We see that the points for meat, poultry, vegetables and fruits
are close to each other in the lower left of the graph. The expenditures for
bread and milk can be found in the upper left whereas wine stands alone in
the upper right. The first factor, w1, may be interpreted as the meat/fruit
factor of consumption, the second factor, w2, as the bread/wine component.

On the right-hand side of Figure 8.1, we show the factorial variables z1 and z2

from the fit of the n = 12 household types. Note that by the duality relations
of Theorem 8.1, the factorial variables zj are linear combinations of the factors
wk from the left window. The points displayed in the consumer window (graph
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Fig. 8.1. Representation of food expenditures and family types in two dimensions.
SMSdecofood

on the right) are plotted relative to an average consumer represented by the
origin. The manager families are located in the lower left corner of the graph
whereas the manual workers and employees tend to be in the upper right.
The factorial variables for CA5 (managers with five children) lie close to the
meat/fruit factor. Relative to the average consumer this household type is a
large consumer of meat/poultry and fruits/vegetables.

The SVD of the centered and standardized French food data set, X∗, is given
as

X∗ = ΓΛ∆�,

where

Γ =

⎛
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⎜
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0.63 0.02 0.22 0.61 0.10 −0.21 0.01

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

MA2
EM2
CA2
MA3
EM3
CA3
MA4
EM4
CA4
MA5
EM5
CA5

,



8 Decomposition of Data Matrices by Factors 153

∆ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.24 −0.62 0.01 −0.54 0.04 −0.51 −0.02
0.47 −0.10 0.06 −0.02 −0.81 0.30 0.16
0.45 0.21 −0.15 0.55 −0.07 −0.63 −0.20
0.46 0.14 −0.21 −0.05 0.41 0.09 0.74
0.44 0.20 −0.36 −0.32 0.22 0.35 −0.60
0.28 −0.52 0.44 0.45 0.34 0.33 −0.15

−0.21 −0.48 −0.78 0.31 −0.07 0.14 0.04

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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,

Λ = diag{(2.08, 1.35, 0.79, 0.36, 0.24, 0.14, 0.03)�}.

It is easy to see that the singular values are equal to the square roots of the
eigenvalues of the correlation matrix R of the original data.

The coordinates of the representation of the n points and p variables given
in Figure 8.1 are given by the first two columns of Γ and ∆ multiplied by
the corresponding singular values. The only difference might be an opposite
sign—since multiplication of any eigenvector by −1 leads to an equivalent
SVD.

EXERCISE 8.5. Recall the factorial analysis of the French food data of Exer-
cise 8.4 and compute τ3, τ4, . . ..

The eigenvalues of the correlation matrix, corresponding to the centered and
standardized data matrix X∗ are calculated in Exercise 8.4:

λ = (4.33, 1.83, 0.63, 0.13, 0.06, 0.02, 0.00)� .

It follows that

τ3 =
4.33 + 1.83 + 0.63

4.33 + 1.83 + 0.63 + 0.13 + 0.06 + 0.02 + 0.00
= 0.970

τ4 = 0.989
τ5 = 0.997
τ6 = τ7 = 1.000.

As we have seen in Exercise 8.4, each τq can be interpreted as the percentage
of the inertia explained by the first q factors. We see that 97% of the inertia is
explained by the first three factors. Recalling that τ1 = 0.619 and τ2 = 0.880,
we see that the third factor explains 9% of the inertia. The fourth and fifth
factor explain together less than 3% of the inertia.

EXERCISE 8.6. How do the eigenvalues and eigenvectors in Exercise 8.4
change if we take the prices in USD instead of in EUR? Does it make a
difference if some of the prices are in EUR and others in USD?

The eigenvalues and eigenvectors in Exercise 8.4 do not change because they
are calculated from the correlation matrix which does not change for different
units of measurement.
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If some prices are quoted in EUR and some in USD, the standardization of
the prices performed in Exercise 8.4 leads to the same result: the eigenvalues
and eigenvectors are unaffected by such a scale change.

To make an example, assume that the prices in the United States are:
XUS = 1.2XEUR. Then, the SVD of XEUR = ΓΛ∆� leads to a SVD of
XUS = Γ (1.2Λ)∆�, i.e., the matrix XUS has the same eigenvectors as XEUR.
The singular values of XUS are equal to the singular values of XEUR are mul-
tiplied by the exchange rate 1.2. The eigenvalues of X�

USXUS are equal to the
eigenvalues of X�

EURXEUR multiplied by the constant 1.22 = 1.44.

Hence, reporting all the prices in different currency affects only the eigenval-
ues. The proportions of explained inertia, defined as the ratio of the eigen-
values remain the same. The projections on the factorial axes (which are
proportional to the square root of the eigenvalue) will be multiplied by the
constant

√
1.44, i.e., by the exchange rate 1.2.

EXERCISE 8.7. Apply the factorial techniques to the Swiss bank notes
(Table A.2). Give an interpretation of the factorial variables.

We follow the same steps as in Exercise 8.4. Centering the data matrix bases
the decomposition of the data matrix on differences from “average banknote”.
Standardizing the data set makes the measurements of different lengths com-
parable, i.e., the importance of the different measurements does not depend
on the scale.

The vector of the eigenvalues is:

λ = (2.95, 1.28, 0.87, 0.45, 0.27, 0.19)�

and it leads immediately the following proportions of explained inertia:

τ = (0.49, 0.70, 0.85, 0.92, 0.97, 1.00)� .

The choice of the number of factorial variables can be based on various criteria.
A reasonable approach is to choose the factorial variables that explain “larger
than average” percentage of inertia. In this case, this rule leads to q = 2.
However, in this example the third factorial variable is still rather important
with 15% of the explained inertia and we choose q = 3 in order to demonstrate
the factorial analysis in three dimensions.

The three factorial variables are presented using the multivariate tools de-
scribed in Chapter 1. In Figures 8.2 and 8.3, we plot the projections onto
the factorial axes in a scatterplot matrix. In Figure 8.4, we plot the pro-
jections onto the 3 factorial axes in a 3D-scatterplot, running the program

SMSdecobank allows interactive rotation of the graphic. The genuine and
forged bank notes are denoted by letters ‘G’ and ‘F’, respectively.
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Fig. 8.2. Representation of the variables for Swiss bank notes in three dimensions.
SMSdecobank

The data set contains six variables of various distances: height and length
of the bank note, the length of the diagonal and also some measurements
concerning the position of the central picture on the bank note. For detailed
description see Table A.2.

In Figure 8.2, we observe the projections of the variables. The first factorial
variable, w1, measures the contrast between X6 (length of the diagonal) and
X2–X5 (distances related to the height of the bank notes). The second factorial
variable consists mainly of X1, the length of the bank note. The third factorial
variable could be interpreted as a contrast between X4 (distance of inner
frame to the lower border) and X5 (distance of inner frame to the upper
border). A possible explanation of the third factor could be that it measures
the position of the central picture on the bank note. Note that these three
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Fig. 8.3. Representation of the individuals for Swiss bank notes in a scatterplot
matrix. SMSdecobank

factorial variables explain almost 98% of the total inertia of the (centered and
standardized) data set.

In Figures 8.3 and 8.4, we show the projections of the individuals. It seems
that in both graphics, the separation of the forged and of the genuine bank
notes is quite good. However, the separation would be more apparent if we
would rotate the three-dimensional graphics displayed in Figure 8.4.

The factorial analysis of the Swiss bank notes provides interesting insights
into the structure of the data set. The 3-dimensional representation of the
data set keeps 97.8% of the inertia of the complete 6-dimensional data set
that would be very difficult to visualize.
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Fig. 8.4. Representation of swiss bank notes in 3-dimensional scatterplot.
SMSdecobank

EXERCISE 8.8. Apply the factorial techniques to the time budget data (Ta-
ble A.15) which gives the amount of time a person spent on ten activities over
100 days in 1976 (Volle 1985).

The following analysis is based on the centered data set as it seems to be more
natural to consider the differences from the average time spent on various ac-
tivities. However, the times spent on different activities are left on the original
scale: here, the scale is the same for all variables and this approach guaran-
tees that the analysis will concentrate on the activities that really occupy the
largest share of the time.

The vector of the eigenvalues is:

λ = (87046, 7085, 2623.7, 1503.4, 315.9, 156.6, 71.5, 42.6, 25.8, 0.0)� .



158 8 Decomposition of Data Matrices by Factors

The last eigenvalue has to be equal to zero since the time spend on all activities
has to sum to 24 hours/day and the data matrix thus cannot have full rank.

The proportions of the explained inertia:

τ = (0.8804, 0.9521, 0.9786, 0.9938, 0.9970, 0.9986, 0.9993, 0.9997, 1.00, 1.00)�

suggest that here it would suffice to use only one factorial variable. Notice the
large difference in scale: the first factorial variable explains 88% of total inertia
whereas the second factorial variable is approximately 10× less important.

activities
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W[,1]*E2
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W
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hous

kids

shop

perseat
slee

tele

leis

Fig. 8.5. Representation of the variables for the time budget data. SMSdecotime

In Figures 8.5 and 8.6, we present the two-dimensional projections, see the
description in Table A.15 for the names of the various activities used in Fig-
ure 8.5.
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Fig. 8.6. Representation of the individuals for the time budget data.
SMSdecotime

The factorial representation of the variables in Figure 8.5 shows that the first
factor, explaining 88% of the inertia, is just the contrast between the household
and professional activities. The second factorial variable, explaining 7% of the
inertia, is the contrast between leisure activities on one side and household
and professional activities on the other side. The fact that the other activities
lie close to the origin is partially caused by the fact that these activities either
do not vary a lot among the observed individuals or they take less time.
Notice that “kids” are lying in the direction of household activities and that
“transportation” lies in the direction of professional activities.

The four letter codes in Figure 8.6 indicate the sex (m: man, w: woman),
activity (a: active, n: nonactive, m: married, s: single) and country (us: U.S.,
we: West, yo: Yugoslavia, es: East). For example, “mmus” denotes married
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man in United States. The projections of the individuals in Figure 8.6 allow
us to judge the effects of the factorial variables on the individuals. We see
that all men are lying close to each other on the right hand side of the plot:
comparison with Figure 8.5 suggests that men at that year 1976 are more
involved in professional than in household activities. On the left hand side of
Figure 8.6 you will find married and nonactive women whereas single and ac-
tive women are located in the central region. It seems that married women are
involved mainly in household activities while single women balance between
the household and professional activities.

The second direction distinguishes between “professional and household”
and “leisure” activities. In the direction of “professional activities” you
will find active women (without U.S.) and married women from Eastern
countries and Yugoslavia. In the direction of “leisure” we can see mainly
singles and married and nonactive women in U.S.

The factorial analysis provides again interesting insights into the structure of
the data set. For the time budget data, two factorial variables explain 95% of
the inertia of the (centered but not standardized) data set.

EXERCISE 8.9. Assume that you wish to analyze a data matrix consisting of
p orthogonal, standardized, and centered columns. What is the percentage of
the inertia explained by the first factor? What is the percentage of the inertia
explained by the first q factors?

If the columns of the matrix X are orthogonal, centered and standardized,
then X�X = ndiag(1p) and the spectral decomposition can be written as

X�X = Ipndiag(1p)Ip.

Hence, all eigenvalues, λ1, . . . , λp, of X�X are equal to n. The total inertia
of such data set is equal to np and the proportion of inertia explained by the
first factorial variable is obviously

τ1 =
λ1

λ1 + · · · + λp
=

n

np
=

1
p
.

The proportion of inertia explained by the first q factors is

τq =
λ1 + · · · + λq

λ1 + · · · + λp
=

nq

np
=

q

p
.

EXERCISE 8.10. Reconsider the setup of the Exercise 8.9. What does the
eigenvector, corresponding to the first factor, look like.

Let us return to the spectral decomposition of the matrix X�X derived in
Exercise 8.9:



8 Decomposition of Data Matrices by Factors 161

X�X = nIp = ΓΛΓ� = Ipndiag(1p)Ip.

Since all eigenvalues are equal to n, we have that Λ = ndiag(1p) and it follows
that the matrix Γ has to satisfy the equation

nIp = X�X = Γn diag(1p)Γ� = nΓΓ�,

i.e., Γ can be chosen as any matrix satisfying the condition Γ�Γ = ΓΓ� =
Ip. Hence, the first eigenvector γ1 can be any vector with norm ‖γ1‖ = 1.
A reasonable choice would be γ1 = (1, 0, 0, . . . , 0)�.

EXERCISE 8.11. Suppose that the data matrix consists of two columns, x[1]

and x[2], and that x[2] = 2x[1]. What do the eigenvalues and eigenvectors of the
empirical correlation matrix R look like? How many eigenvalues are nonzero?

The correlation matrix is

R =
(

1 1
1 1

)

.

It has rank 1, one eigenvalue must therefore be zero. The eigenvalues can be
found by solving the equation

0 = |R − λI2| =
∣

∣

∣

∣

(

1 − λ 1
1 1 − λ

)∣

∣

∣

∣
= (1 − λ)2 − 1 = λ2 − 2λ = λ(λ − 2),

i.e., the eigenvalues are λ1 = 2 and λ2 = 0.

The corresponding eigenvectors can be found by solving the systems of equa-
tions (

1 1
1 1

)(

γ1i

γ2i

)

=
(

γ1i

γ2i

)

λi,

for i = 1, 2. For the first eigenvalue, λ1 = 2, we obtain that

γ11 + γ21 = 2γ11 = 2γ21.

Since the length of the eigenvector, (γ2
12 + γ2

21)
1/2, has to be equal to 1, we

obtain γ11 = γ21 and |γ11| = 1/
√

2.

For the second eigenvalue, λ2 = 0, we have

γ12 + γ22 = 0

which leads to conditions γ12 = −γ22 and |γ12| = 1/
√

2.

Notice that the sign of the eigenvectors is not determined uniquely.

From the derived eigenvalues and eigenvectors, we have the spectral decom-
position of the correlation matrix

R =
(

1 1
1 1

)

= ΓΛΓ� =
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)(

2 0
0 0

)(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)

.
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EXERCISE 8.12. What percentage of inertia is explained by the first factor
in Exercise 8.11?

In Exercise 8.11, the eigenvalues of the correlation matrix are λ1 = 2 and
λ2 = 0. Hence, the percentage of inertia explained by the first factor is

τ1 =
2
2

= 100%

and 1-dimensional representation explains all inertia contained in the data
set.
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Principal Component Analysis

I tried one or two explanations, but, indeed, I was completely puzzled
myself. Our friend’s title, his fortune, his age, his character, and his
appearance are all in his favour, and I know nothing against him,
unless it be the dark fate which runs in his family.
“The Hound of the Baskervilles”

This chapter addresses the issue of reducing the dimensionality of a multivariate
random variable by using linear combinations (the principal components). The
identified principal components are ordered in decreasing order of importance.
When applied in practice to a data matrix, the principal components will turn
out to be the factors of a transformed data matrix (the data will be centered
and eventually standardized).

For a random vector X with E(X) = µ and Var(X) = Σ = ΓΛΓ�, the
principal component (PC) transformation is defined as

Y = Γ�(X − µ). (9.1)

It will be demonstrated in Exercise 9.1 that the components of the random
vector Y have zero correlation. Furthermore, it can be shown that they are
also standardized linear combinations with the largest variance and that the
sum of their variances,

∑

Var Yi, is equal to the sum of the variances of
X1, . . . , Xp.

In practice, the PC transformation is calculated using the estimators x and
S instead of µ and Σ. If S = GLG� is the spectral decomposition of the
empirical covariance matrix S, the principal components are obtained by

Y = (X − 1nx�)G. (9.2)

Theorem 9.1 describes the relationship between the eigenvalues of Σ and the
eigenvalues of the empirical variance matrix S.
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THEOREM 9.1. Let Σ >0 with distinct eigenvalues and let U ∼m−1Wp(Σ,m)
with spectral decompositions Σ = ΓΛΓ� and U = GLG�. Then

√
m(� − λ) L−→ Np(0, 2Λ2),

where � = (�1, . . . , �p)� and λ = (λ1, . . . , λp)� are the diagonals of L and Λ.

The proof and the asymptotic distribution of G can be found, e.g., in Härdle
& Simar (2003, theorem 9.4).

The resulting PCA (principal component analysis) or NPCA (normalized
PCA) is presented in a variety of examples, including U.S. crime and health
data. A PCA is also performed for an OECD data set on variables of political
nature (life expectance, literacy, etc.).

EXERCISE 9.1. Calculate the expected value and the variance of the PC trans-
formation Y defined in (9.1). Interpret the results.

For the expected value, EY , we have

EY = EΓ�(X − µ) = Γ�E(X − µ) = Γ�(EX − µ) = 0p.

The variance matrix, Var(Y ), can be calculated as

Var(Y ) = Var{Γ�(X − µ)} = Γ�ΣΓ = Γ�ΓΛΓ�Γ = Λ.

Hence, the random vector Y is centered (its expected value is equal to zero)
and its variance matrix is diagonal.

The eigenvalues λ1, . . . , λp are variances of the principal components Y1, . . . , Yp.
Notice that

p
∑

i=1

Var(Xi) = trΣ = tr{ΓΛΓ�} = tr{Γ�ΓΛ} = tr Λ =
p
∑

i=1

λi =
p
∑

i=1

Var(Yi).

Hence, the variances of Xi are decomposed into the variances of Yi which are
given by the eigenvalues of Σ. The sum of variances of the first q principal
components,

∑q
i=1 λi, thus measures the variation of the random vector X

explained by Y1, . . . , Yq. The proportion of the explained variance,

ψq =
λ1 + · · · + λq

λ1 + · · · + λp
,

will be important for the interpretation of results of the practical analyses
presented in the following exercises.

EXERCISE 9.2. Calculate the correlation between X and its PC transforma-
tion Y .
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The covariance between the PC vector Y and the original vector X is:

Cov(X,Y ) = Cov{X,Γ�(X − µ)} = Cov(X,Y )Γ = ΣΓ = ΓΛΓ�Γ = ΓΛ.

The correlation, ρXiYj
, between variable Xi and the PC Yj is

ρXiYj
=

γijλj

(σXiXi
λj)1/2

= γij

(

λj

σXiXi

)1/2

.

The correlations describe the relations between the PCs and the original
variables. Note that

∑p
j=1 λjγ

2
ij = γ�

i Λγi is the (i, i)-element of the matrix
ΓΛΓ� = Σ, so that

p
∑

j=1

ρ2
XiYj

=

∑p
j=1 λjγ

2
ij

σXiXi

=
σXiXi

σXiXi

= 1.

Hence, the correlation ρ2
XiYj

may be seen as the proportion of variance of the
ith variable Xi explained by the jth principal component Yj .

Notice that the percentage of variance of Xi explained by the first q PCs
Y1, . . . , Yq is

∑q
j=1 ρ2

XiYj
< 1. The distance of the point with coordinates

(ρXiY1 , . . . , ρXiYq
) from the surface of the unit ball in q-dimensional space can

be used as a measure of the explained variance of Xi.

EXERCISE 9.3. Apply the PCA to the car marks data in Table A.5. Interpret
the first two PCs. Would it be necessary to look at the third PC?

The eigenvalues of the covariance matrix,

λ = (5.56, 1.15, 0.37, 0.10, 0.08, 0.05, 0.04, 0.02)�,

lead to the following proportions of the explained variance:

ψ = (0.76, 0.91, 0.96, 0.98, 0.99, 0.99, 1.00, 1.00)�.

Observing that the first two principal components explain more than 90% of
the variability of the data set, it does not seem necessary to include also the
third PC which explains only 5% of the variability. A graphical display of the
eigenvalues, the screeplot, is plotted in the lower right part in Figure 9.1.

The first two eigenvectors of the covariance matrix are

γ1 = (−0.22, 0.31, 0.44,−0.48, 0.33, 0.39, 0.42,−0.01)�

and
γ2 = (0.54, 0.28, 0.22, 0.30,−0.14,−0.16, 0.46, 0.49)�.

Hence, the first two principal components are defined as:
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Fig. 9.1. Scatterplots of the first three principal components and a screeplot of the
eigenvalues, car marks data set. SMSpcacarm

Y1 = −0.22 × econ + 0.31 × serv + 0.44 × value − 0.48 × price + 0.33 × desi
+ 0.39 × sport + 0.42 × safe − 0.01 × easy,

Y2 = 0.54 × econ + 0.28 × serv + 0.22 × value + 0.30 × price − 0.14 × desi
− 0.16 × sport + 0.46 × safe + 0.49 × easy.

Using the coefficients of the PCs for interpretation might be misleading
especially when the variables are observed on different scales. It is advis-
able to base the interpretations on the correlations of PCs with the original
variables which are plotted in Figure 9.2.

For the car marks data set both the coefficients of the PCs and their correla-
tions with the original variables in Figure 9.2 suggest that the first principal
components distinguishes the expensive and design cars from the cheap and
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Fig. 9.2. Correlations of the first two principal components with the original vari-
ables in the car marks data set. SMSpcacarm

less sporty vehicles. This interpretation is confirmed by the plot of the first
principal component, Y1, on Figure 9.1. On the right hand side, we observe
the not so cool brands such as Wartburg, Trabant, Lada or Fiat, whereas on
the left hand side, we see Jaguar, Ferrari, BMW, and Mercedes-Benz.

The second PC distinguishes economic cars that are easy to handle, such
as Volkswagen and Opel, from the cars that consume a lot of gas and their
handling is more problematic such as Ferrari, Wartburg, Jaguar, and Trabant.

Figure 9.2 shows that all of the original variables are very well explained by
the first two PCs since all points can be found very close to the unit circle,
see the explanation in Exercise 9.2.
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EXERCISE 9.4. Test the hypothesis that the proportion of variance explained
by the first two PCs in Exercise 9.3 is ψ = 0.85.

The variance explained by the first q PCs, ψq = (λ1 + · · · + λq)/
∑p

j=1 λj ,
is in practice estimated by ̂ψq = (�1 + · · · + �q)/

∑p
j=1 �j . From Theorem 9.1

we know the distribution of
√

n − 1(� − λ) and, since ̂ψq is a function of
asymptotically normally distributed random vector �, we obtain that

√
n − 1( ̂ψq − ψq)

L−→ N(0,D�VD)

where V = 2Λ2 from Theorem 9.1 and D = (d1, . . . , dp)� with

dj =
∂ψq

∂λj
=

⎧

⎪
⎨

⎪
⎩

1 − ψq

tr(Σ)
if 1 ≤ j ≤ q,

−ψq

tr(Σ)
if q + 1 ≤ j ≤ p.

.

It follows that √
n − 1( ̂ψq − ψq)

L−→ N(0, ω2),

where

ω2 = D�VD
=

2
{tr(Σ)}2

{

(1 − ψ)2(λ2
1 + · · · + λ2

q) + ψ2(λ2
q+1 + · · · + λ2

p)
}

=
2 tr(Σ2)
{tr(Σ)}2

(ψ2 − 2βψq + β)

and

β =
λ2

1 + · · · + λ2
q

λ2
1 + · · · + λ2

p

=
λ2

1 + · · · + λ2
q

tr(Σ2)
.

In practice, we work with an estimate ω̂2 based on the spectral decomposition
of the empirical covariance matrix.

In Exercise 9.3 we have calculated the eigenvalues:

λ = (5.56, 1.15, 0.37, 0.10, 0.08, 0.05, 0.04, 0.02)�

and the proportions of the explained variance:

ψ = (0.76, 0.91, 0.96, 0.98, 0.99, 0.99, 1.00, 1.00)�.

It follows that, for q = 2, we obtain β̂ = 0.99524 and ω̂2 = 0.0140. Under
the null hypothesis, H0 : ψ2 = 0.85, the test statistic

√
n − 1( ̂ψ2 − 0.85)/ω

has asymptotically standard normal distribution. In our case the value of the
test statistic, 2.4401, is in absolute value larger than the critical value of the
normal distribution Φ−1(0.975) = 1.96 and we reject the null hypothesis.

Hence, on confidence level α = 0.95, we have proved that the proportion of
variance explained by the first two principal components is larger than 85%.
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EXERCISE 9.5. Take the athletic records for 55 countries given in Table A.1
and apply the NPCA. Interpret your results.

The athletic records data set contains national records in 8 disciplines (100m,
200m, 400m, 800m, 1500m, 5km, 10km, and marathon) for n = 55 countries.
Clearly, the times and hence also the differences between countries will be
much larger for longer tracks. Hence, before running the PC analysis, the
dataset is normalized by dividing each variable by its estimated standard
deviation. The resulting analysis will be called Normalized PCA (NPCA).

In principle, the same results can be obtained by calculating the spectral
decomposition of the empirical correlation matrix of the original data set.
One only has to be very careful and keep in mind that the derived coefficients
of the PCs apply to the normalized variables. Combining these coefficients
with the original variables would lead to misleading results.

The eigenvalues and the proportions of explained variance are

λ = (6.04, 0.99, 0.60, 0.13, 0.10, 0.07, 0.05, 0.02)�

and
ψ = (0.75, 0.88, 0.95, 0.97, 0.98, 0.99, 1.00, 1.00)�.

Notice that the sum of all eigenvalues is equal to 8. This follows from the fact
that the variances of the standardized variables are equal to 1 and from the
relationship

∑p
i=1 λi = trS =

∑p
i=1 1 = p = 8.

Considering the above eigenvalues and proportions of explained variance, it
would be reasonable to investigate only 1 principal component, see also the
screeplot in Figure 9.3. A commonly accepted rule says that it suffices to keep
only PCs that explain larger than the average number of the total variance.
For NPCA, it is easy to see that larger than average proportion of variance is
explained by PCs with corresponding eigenvalue larger than 1.

However, the second eigenvalue λ2 = 0.99 is so close to 1 that we have decided
to discuss also the second PC. The coefficients of the linear combinations are
given by the eigenvectors

γ1 = (0.32, 0.16, 0.37, 0.38, 0.39, 0.39, 0.39, 0.37)�

and
γ2 = (0.39, 0.85, 0.03,−0.04,−0.13,−0.16,−0.17,−0.22)�.

In this exercise, it is very important to keep in mind the meaning of the
measurements. Larger values correspond here to longer, i.e., worse times. The
first PC is positively related to all original variables and it can be interpreted
as the arithmetic average of the records with slightly smaller weight of the
record on 200m track, see also the correlations in Figure 9.4. In Figure 9.3,
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Fig. 9.3. Scatterplots of the first three principal components and a screeplot of the
eigenvalues, athletic records data set. SMSnpcathletic

we can see that large values of this “average time” component are achieved
in Cook Islands, West Samoa, and Mauritius. On contrary, fastest times are
achieved in USA.

The second principal component is strongly positively related to 200m and
important positive component is also the 100m record whereas longer tracks
show mostly negative relationship. The second principal components separates
Mauritius and Netherlands which shows poor records in 200m.

In Figure 9.4, we see that two principal components explain very well all
original variables. Using only one PC would lead to much worse explanation
of the 200m records.
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Fig. 9.4. Correlations of the first two principal components with the original vari-
ables in the athletic records data set. SMSnpcathletic

EXERCISE 9.6. Apply a PCA to Σ =
(

1 ρ
ρ 1

)

, where 0 < ρ < 1. Now change

the scale of X1, i.e., consider the covariance of cX1 and X2, where c > 1.
How do the PC directions change with the screeplot?

The spectral decomposition of matrix Σ has already been investigated in
Exercise 2.7. Recall that we have

Σ = ΓΛΓ� =
1√
2

(

1 1
1 −1

)(

1 + ρ 0
0 1 − ρ

)

1√
2

(

1 1
1 −1

)

.

Since ρ > 0, the PCs are Y1 = (X1 + X2)/
√

2 and Y1 = (X1 − X2)/
√

2.

Multiplying X1 by constant c > 0 leads the covariance matrix:
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Var{(cX1,X2)�} = Σ(c) =
(

c2 cρ
cρ 1

)

.

The spectral decomposition of Σ(c) can be derived similarly as in Exercise 2.7.
The eigenvalues of Σ(c) are solutions to:

∣

∣

∣

∣

c2 − λ cρ
cρ 1 − λ

∣

∣

∣

∣
= 0.

Hence the eigenvalues are

λ1,2(c) =
1
2

(

c2 + 1 ±
√

(c2 − 1)2 + 4c2ρ2
)

.

The eigenvector corresponding to λ1 can be computed from the system of
linear equations:

(

c2 cρ
cρ 1

)(

x1

x2

)

= λ1

(

x1

x2

)

which implies that x1 = x2(λ1 − 1)/cρ and the first PC is pointing in the
direction (cX1)(λ1 − 1)/cρ + X2.

Next, observe that λ1 > 1 and the function λ1(c)/c is increasing in c. Hence,
x1 > x2 and, furthermore, the ratio of x1 and x2 is an increasing function of
c.

Summarizing the above results, we can say that as c increases, the first eigen-
value λ1 becomes larger and the rescaled random variable cX1 gains more
weight in the first principal component.

The choice of scale can have a great impact on the resulting principal compo-
nents. If the scales differ, it is recommended to perform the Normalized PCA
(NPCA), i.e., to standardize each variable by its standard deviation.

EXERCISE 9.7. Suppose that we have standardized some data using the
Mahalanobis transformation. Would it be reasonable to apply a PCA?

Standardizing any given data set X by the Mahalanobis transformation leads
to a data set Z = XS−1/2 with the covariance matrix

SZ = S−1/2SS−1/2 = Ip.

It immediately follows that all eigenvalues of SZ are equal to 1 and that the
principal components of Z have exactly the same variances as the original
variables. Hence, such analysis would be entirely useless.

Principal components analysis of Z leads always to this same uninteresting
result.
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EXERCISE 9.8. Apply a NPCA to the U.S. crime data set in Table A.18.
Interpret the results. Would it be necessary to look at the third PC? Can you
see any difference between the four regions?

The U.S. crime data set consists of the reported number of crimes in the 50
U.S. states in 1985. The crimes were classified according to 7 categories: mur-
der, rape, robbery, assault, burglary, larceny, and auto theft. The dataset also
contains identification of the region: Northeast, Midwest, South, and West.

The Normalized PCA means that, before running the analysis, all observed
variables are put on the same scale.

The eigenvalues of the correlation matrix are:

λ = (4.08, 1.43, 0.63, 0.34, 0.25, 0.14, 0.13)�

and we obtain the proportions of explained variance:

ψ = (0.58, 0.79, 0.88, 0.93, 0.96, 0.98, 1.00)�.

The data set is well described by the first two NPCs, each of the first two NPCs
describes larger than average amount of variance. The first two NPCs describe
together 79% of the total variability, see also the screeplot in Figure 9.5.
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Fig. 9.5. Scatterplot of the first two principal components and a screeplot of the
eigenvalues, U.S. crime data set. SMSnpcacrime

The first two eigenvectors are:

γ1 = (0.28, 0.42, 0.39, 0.39, 0.44, 0.36, 0.35)�,

γ2 = (−0.64,−0.12, 0.05,−0.46, 0.26, 0.40, 0.37)�.
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The first principal component combines the numbers of all crimes with
approximately constant (0.28–0.44) weights and we can interpret it as the
overall crime rate, see also the correlations in Figure 9.6. The second prin-
cipal component is negatively correlated with 1st and 4th variable (murder
and assault) and positively correlated with the 5th till 7th variable (burglary,
larceny, auto theft). The second NPC can be interpreted as “type of crime”
component.

US crime
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Fig. 9.6. Correlations of the first two principal components with the original vari-
ables in the U.S. crime data set. SMSnpcacrime

In Figure 9.5, we denote each of the four regions by a different plotting symbol.
It looks as if the symbol changes in the direction of the second, type of crime,
principal component. In the upper part of the graph, we see mainly circles,
squares, and crosses corresponding to the regions 1, 2, and 4. In the lower
part, we observe mainly triangles corresponding to the third South region.
Hence, it seems that in region 3 occur more murders and assaults and less
burglaries, larcenies and auto thefts than in the rest of USA.
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EXERCISE 9.9. RepeatExercise 9.8 using theU.S. health data set inTableA.19.

The U.S. health data set consists of reported number of deaths in the 50 U.S.
states classified according to 7 categories: accident, cardiovascular, cancer,
pulmonary, pneumonia flu, diabetes, and liver.

Here, we have decided to run the usual PC analysis. Normalizing the data
set would mean that, in certain sense, all causes of death would have the
same importance. Without normalization, we can expect that the variables
responsible for the largest number of deaths will play the most prominent role
in our analysis, see also Exercise 9.6 for theoretical justification.

The eigenvalues of the covariance matrix are:

λ = (8069.40, 189.22, 76.03, 25.21, 10.45, 5.76, 3.47)�

and the huge first eigenvalue stresses the importance of the first principal
component. Calculating the proportions of the explained variance,

ψ = (0.96, 0.99, 0.99, 1.00, 1.00, 1.00, 1.00)�,

we see that the first PC explains 96% of the total variability. The screeplot is
plotted in Figure 9.7.
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Fig. 9.7. Correlations of the first two principal components with the original vari-
ables and the screeplot for the U.S. health data set. SMSpcahealth

The first (most important) eigenvectors is:
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γ1 = (−0.06, 0.94, 0.34, 0.03, 0.02, 0.03, 0.01)�

and we see that the first PC reflects the most common causes of death: car-
diovascular diseases and, with smaller weight, cancer. The second eigenvector,

γ2 = (−0.34,−0.34, 0.86, 0.01,−0.11, 0.09, 0.11)�,

is strongly positively correlated with cancer and less strongly negatively cor-
related with cardiovascular and pulmonary diseases, see also Figure 9.7. The
first principal component explains satisfactorily only variables cardiovascular
and cancer.
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Fig. 9.8. Scatterplot of the first two principal components for U.S. health data set.
SMSpcahealth

In Figure 9.8, we show the values of the first two PCs for the 50 observed
U.S. states. Keeping in mind the meaning of the principal components, we
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should see the states with large number of deaths due to cardiovascular dis-
eases and cancer on the right hand side (Florida, New York, Pennsylvania).
From the point of view of the first PC, the best quality of life can be found
in Arkansas, Hawaii, New Mexico, Wyoming, and Colorado. The much less
important second PC suggests that cancer is more common cause of death in
Maryland than in South Dakota.

EXERCISE 9.10. Do a NPCA on the Geopol data set, Table A.10, which com-
pares 41 countries with respect to different aspects of their development. Why
or why not would a PCA be reasonable here?

The Geopol data set contains a comparison of 41 countries according to 10
political and economic parameters. We will perform the analysis without the
first variable, size of population. The variables to be analyzed, X2–X9 are:
gross internal product per habitant (giph), rate of increase of the population
(ripo), rate of urban population (rupo), rate of illiteracy (rlpo), rate of stu-
dents (rspo), expected lifetime (eltp), rate of nutritional needs realized (rnnr),
number of newspaper and magazines per 1000 habitants (nunh), and number
of televisions per 1000 inhabitants (nuth).

Clearly, these variables are measured on very different scales and, in order
to produce trustworthy results, the data set has to be normalized. In this
exercise, we have to perform NPCA.

The eigenvalues of the correlation matrix are:

λ = (5.94, 0.87, 0.70, 0.54, 0.43, 0.18, 0.15, 0.12, 0.08)�

and we obtain the percentages of explained variance:

ψ = (0.66, 0.76, 0.83, 0.89, 0.94, 0.96, 0.98, 0.99, 1.00)�.

The screeplot is plotted in Figure 9.9. It would suffice to keep only one NPC,
but we decide to keep the first three principal components although Y2 and
Y3 contribute only little to the total variability.

The coefficients of the first three normalized principal components are given
by the first three eigenvectors:

γ1 = (0.34,−0.34, 0.29,−0.36, 0.30, 0.37, 0.28, 0.33, 0.37)�,

γ2 = (0.41, 0.38, 0.23, 0.20, 0.16,−0.20,−0.61, 0.36, 0.19)�,

γ3 = (−0.18, 0.37, 0.34,−0.02, 0.66,−0.05, 0.14,−0.49, 0.06)�.

The correlations of Y1, . . . , Y3 with the original variables are plotted in
Figure 9.10.

From the correlations plotted in Figure 9.10, we can interpret the first PC as
the overall quality of life component: notice that it is positively related to the
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Fig. 9.9. Scatterplots of the first three principal components and a screeplot of the
eigenvalues, Geopol data set. SMSnpcageopol

all variables apart of rate of increase of the population and rate of illiteracy.
In Figure 9.9, we can see that large values of this component are achieved in
the former West Germany (BRD), Canada, and USA. Smallest values of this
component are observed in Kenya, Cameroon, Gabon, and India.

The second PC seems to point mainly in the direction opposite to the rnnr
(rate of nutritional needs realized). The third PC is positively correlated to the
rate of students and negatively correlated to the number of newspapers. From
Figure 9.9, we can see that already one PC is enough to explain substantial
part of the variability of all variables.



9 Principal Component Analysis 179
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Fig. 9.10. Correlations of the first three principal components with the original
variables in the Geopol data set. SMSnpcageopol

EXERCISE 9.11. Let U be an uniform random variable on [0, 1]. Let a =
(a1, a2, a3)� ∈ R

3 beavectorofconstants.Suppose thatX =(X1,X2,X3)�=aU .
What do you expect the NPCs of X to be?

Let us assume that ai �= 0, i = 1, 2, 3. Next, normalizing the random vector X
by subtracting its expected value and by dividing it by its standard deviation
leads to the normalized random vector

Z =
{

diag
(

a2σ2
U

)}−1/2
(X − EX) =

{

diag
(

a2σ2
U

)}−1/2
a(U − EU)

with the variance matrix
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Var(Z) =
{

diag
(

a2σ2
U

)}−1/2
Var(X)

{

diag
(

a2σ2
U

)}−1/2

=
{

diag
(

a2σ2
U

)}−1/2
aσ2

Ua� {diag
(

a2σ2
U

)}−1/2

=
(

aiaj

abs ai abs aj

)

i,j=1,2,3

= {sign(aiaj)}i,j=1,2,3 .

Clearly, the rank of the variance matrix Var(Z) is equal to 1 and it follows
that it has only one nonzero eigenvalue. Hence, the spectral decomposition
of Var(Z) leads to only one principal component explaining 100% of total
variability of Z.

The NPC can be written as

Y1 =
1√
3
{sign(a1)Z1 + sign(a2)Z2 + sign(a3)Z3}

=
1√
3
{sign(a1)a1U + sign(a2)a2U + sign(a3)a3U}

= U
abs(a1) + abs(a2) + abs(a3)√

3
,

i.e., the normalized principal components analysis of X = aU leads us back
to the one-dimensional random variable U .

EXERCISE 9.12. Let U1 and U2 be two independent uniform random variables
on [0, 1]. Suppose that X = (X1,X2,X3,X4)� where X1 = U1, X2 = U2,
X3 = U1 + U2 and X4 = U1 − U2. Compute the correlation matrix P of X.

How many PCs are of interest? Show that γ1 =
(

1√
2
, 1√

2
, 1, 0

)�
and γ2 =

(

1√
2
, −1√

2
, 0, 1

)�
are eigenvectors of P corresponding to the non trivial λ‘s.

Interpret the first two NPCs obtained.

For random variables U1 and U2 ∼ U [0, 1], we have EU1 = 1/2 and Var U1 =
Var U2 = 1/12. It follows that also Var X1 = Var X2 = 1/12.

For the variance of X3 = U1 + U2 and X4 = U1 − U2, we obtain

Var(X3) = Var(X4) = Var(U1) + Var(U2) =
1
6

since U1 and U2 are independent. The covariances can be calculated as

Cov(X1,X3) = Cov(U1, U1 + U2) = Var(U1) + Cov(U1, U2) =
1
12

and

Cov(X3,X4) = Cov(U1 + U2, U1 − U2) = Var(U1) − Var(U2) = 0.
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The remaining elements of the variance matrix can be calculated in the same
way leading to

Var(X) =
1
12

⎛

⎜

⎜

⎝

1 0 1 1
0 1 1 −1
1 1 2 0
1 −1 0 2

⎞

⎟

⎟

⎠
.

Dividing each row and each column by the square root of the corresponding
diagonal element gives the correlation matrix

P =

⎛

⎜

⎜

⎜

⎝

1 0 1√
2

1√
2

0 1 1√
2
− 1√

2
1√
2

1√
2

1 0
1√
2
− 1√

2
0 1

⎞

⎟

⎟

⎟

⎠

.

Now it is easy to verify that γ1 and γ2 are indeed eigenvectors of the correlation
matrix P since

Pγ1 =

⎛

⎜

⎜

⎜

⎝

1 0 1√
2

1√
2

0 1 1√
2
− 1√

2
1√
2

1√
2

1 0
1√
2
− 1√

2
0 1

⎞

⎟

⎟

⎟

⎠

.

⎛

⎜

⎜

⎝

1√
2

1√
2

1
0

⎞

⎟

⎟

⎠
=

⎛

⎜

⎜

⎝

√
2√
2

2
0

⎞

⎟

⎟

⎠
= 2γ1.

and, similarly, Pγ2 = 2γ2. This, by the way, implies that also P (γ2 + γ1) =
2(γ1+γ2) and hence, any linear combination of γ1 and γ2 is also an eigenvector
of P with the same eigenvalue.

Thus, we have the eigenvalues λ1 = λ2 = 2. The remaining two eigenvalues,
λ3 and λ4 are equal to 0 because the rank of the correlation matrix is equal
to 2.

The first two NPCs are not determined uniquely. Choosing the coefficients
as γ1 and γ2 and keeping in mind that these coefficients correspond to the
normalized variables we have:

Y1 =
1√
2
X1 +

1√
2
X2 +

X3√
2

=
√

2(U1 + U2)

Y2 =
1√
2
X1 −

1√
2
X2 +

X4√
2

=
√

2(U1 − U2).

The NPCs, Y1 and Y2, can be now interpreted respectively as the sum and
the difference of U1 and U2.

EXERCISE 9.13. Simulate a sample of size n = 50 for the r.v. X in Exercise
9.12 and analyze the results of a NPCA.

Performing the NPCA for the simulated data set, we obtain the eigenvalues:
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̂λ = (2.11, 1.89, 0.00, 0.00)�

and the proportions of the explained variance:

̂ψ = (0.53, 1.00, 1.00, 1.00)�.

These numbers correspond well to the theoretical values λ1 = λ2 = 2 derived
in Exercise 9.12. The remaining two eigenvalues are equal to zero because of
the linear dependencies in the data set. The screeplot is plotted in Figure 9.11
and we see that the first two NPCs explain each approximately 50% of the
variability whereas the other two NPCs do not explain anything.
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Fig. 9.11. Scatterplots of the first two principal components and a screeplot of the
eigenvalues, simulated data set. SMSnpcasimu

The first two eigenvectors are

γ̂1 = (0.32,−0.64,−0.26, 0.65)�

and
γ̂2 = (0.65, 0.28, 0.67, 0.23)�

and the resulting values for the 50 NPCs are plotted in Figure 9.11. Rewriting
the resulting NPCs in terms of the original variables and rounding the coeffi-
cients leads that the first NPC points approximately in the direction U1−2U2

and the second NPC in the direction 2U1 + U2. This result differs from the
eigenvectors γ1 and γ2 calculated in Exercise 9.12 because γ1 and γ2 are not
uniquely defined.

In Figure 9.12, we plot the correlation of the NPCs with the normalized vari-
ables X1, . . . , X4. The correlations correspond to the coefficients of the NPCs.
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Simulated data set

-1 -0.5 0 0.5 1
first PC

-1
-0

.5
0

0.
5

1

se
co

nd
 P

C
X1

X2

X3

X4

Fig. 9.12. Correlations of the first two principal components with the original
variables in the simulated data set. SMSnpcasimu

All of the original variables are perfectly explained by two NPCs because all
four points are lying on the unit circle.

The simulated data set changes with every simulation. One can observe that
the eigenvalues ̂λ do not vary a lot for different runs of the simulation. How-
ever, the eigenvectors can vary a lot due to the fact that they are not defined
uniquely.
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Factor Analysis

A certain selection and discretion must be used in producing a realistic
effect.
Sherlock Holmes in “A Case of Identity”

In factor analysis, we address the same problem of reducing the dimension of
a multivariate random variable, but we want to fix, from the start, the number
of factors. Each factor will then be interpreted as a latent characteristic of the
individuals revealed by the original variables.

From a statistical point of view, the essential purpose of factor analysis is
to describe, if possible, the covariance relationships among many variables in
terms of a few underlying, but unobservable, random quantities called factors.

The ultimate goal is to find underlying reasons that explain the data variation.
In achieving this goal we need to check the relation of the factors and original
variables and give them an interpretation in the framework of how the data
were generated.

Factor Analysis Model

The factor analysis model used in practice is:

X = QF + U + µ, (10.1)

where Q is a (p × k) matrix of the (nonrandom) loadings of the common
factors F (k × 1) and U is a (p× 1) matrix of the (random) specific factors. It
is assumed that the common factors F are uncorrelated random variables and
that the specific factors are uncorrelated and have zero covariance with the
common factors. More precisely, it is assumed that: EF = 0, Var(F ) = Ik,
EU = 0, Cov(Ui, Uj) = 0, i �= j, and Cov(F,U) = 0.
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The random vectors F and U are unobservable. Define Var(U) = Ψ =
diag(ψ11, . . . , ψpp); then the variance matrix of X can be written as Var(X) =
Σ = QQ� + Ψ , and we have for the ith component of the random vector X
that σXjXj

= Var(Xj) =
∑k


=1 q2
j
 + ψjj . The quantity h2

j =
∑k


=1 q2
j
 is

called the communality and ψjj the specific variance. The objective of fac-
tor analysis is to find a small number, k, of common factors leading to large
communalities and small specific variances.

Estimation of the Factor Model

In practice, we have to find estimates ̂Q of the loadings Q and estimates ̂Ψ of
the specific variances Ψ such that S = ̂Q ̂Q�+̂Ψ , where S denotes the empirical
covariance of X . The most commonly used methods are the following:

The maximum likelihood method is based on the assumption of normality.
The equations resulting from the maximization of the log-likelihood under
the assumption Σ = QQ� + Ψ are complicated and have to be solved by
iterative numerical algorithms.

The method of principal factors starts with a preliminary estimate of ̂h2
j

and the specific variances ̂ψjj = 1 − ̂hj . In the next step, the matrix
of loadings is estimated from the spectral decomposition of the reduced
covariance matrix S− ̂Ψ . This procedure can be iterated until convergence
is reached.

The principal component method starts by obtaining estimated loadings
̂Q from a spectral decomposition of the matrix S. The specific variances
are then estimated by the diagonal elements of the matrix S − ̂Q ̂Q�.

Rotation

Suppose that G is an orthogonal matrix. Then X in (10.1) can also be written
as X = (QG)(G�F ) + U + µ. This implies that the factors are not defined
uniquely because equivalent models with factors G�F and loadings QG are
valid for an arbitrary orthogonal matrix G. In practice, the choice of an appro-
priate rotation G of the loadings Q results in a matrix of loadings Q∗ = QG
that are easier to interpret.

A well-known algorithm for choosing a reasonable rotation of the factor load-
ings is given by the varimax rotation method proposed by Kaiser (1985). The
idea of this popular method is to find the angles that maximize the sum of the
variances of the squared loadings q∗ij within each column of Q∗. The varimax
criterion attempts to split the variables automatically into disjoint sets, each
associated with one factor.
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Strategy for Factor Analysis

1. Perform a principal component factor analysis, look for suspicious obser-
vations, try varimax rotation.

2. Perform maximum likelihood factor analysis, including varimax rotation.

3. Compare the factor analyses: do the loadings group in the same manner?

4. Repeat the previous steps for other numbers of common factors.

After the estimation and interpretation of factor loadings and communalities,
estimate the factor values. The estimated values of the factors are called the
factor scores and may be useful in the interpretation as well as in the diagnostic
analysis. To be more precise, the factor scores are estimates of the unobserved
k-dimensional random vectors F for each individual xi, i = 1, . . . , n. Johnson
& Wichern (1998) describe three methods that in practice yield very similar
results. The regression method (see Exercise 10.6) is also described in Härdle
& Simar (2003, section 10.3).

EXERCISE 10.1. Compute the orthogonal factor model for

Σ =

⎛

⎝

1.0 0.9 0.7
0.9 1.0 0.4
0.7 0.4 1.0

⎞

⎠ .

We have to find loadings Q and specific variances Ψ satisfying the decomposi-
tion Σ = QQ�+Ψ . The problem is difficult to solve due to the non-uniqueness
of the solutions. An acceptable technique is to impose some additional con-
straints such as: Q�Ψ−1Q is diagonal.

The factor analysis without any constraints has pk+k unknown parameters of
the matrix Q and the diagonal of Ψ . The diagonality of Q�Ψ−1Q introduces
1
2{k(k − 1)} constraints. Therefore, the degrees of freedom of a model with k
factors is d = 1

2 (p − k)2 − 1
2 (p + k).

If d < 0, then there are infinitely many solutions. If d = 0 the there is an
unique solution to the problem (except for rotation). In practice we usually
have that d > 0 and an exact solution does not exist. Evaluating the degrees
of freedom, d, is particularly important, because it already gives an idea of
the upper bound on the number of factors we can hope to identify in a factor
model.

If p = 3, we can identify at most k = 1 factor. This factor is then given
uniquely since d = 1

2 (3 − 1)2 − 1
2 (3 + 1) = 0. Implementing a simple iterative

procedure, i.e., the principal factor method described in the introduction, we
arrive to the following exact solution:
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Σ =

⎛

⎝

1.0 0.9 0.7
0.9 1.0 0.4
0.7 0.4 1.0

⎞

⎠

=

⎛

⎝

1.2549
0.7172
0.5578

⎞

⎠ (1.2549, 0.7172, 0.5578) +

⎛

⎝

−0.5748 0.0000 0.0000
0.0000 0.4857 0.0000
0.0000 0.0000 0.6889

⎞

⎠ .

The obvious disadvantage of this unique solution is that it cannot be inter-
preted as a factor analysis model since the specific variance ψ11 cannot be
negative.

Hence, the ability to find a unique solution of the orthogonal factor model
does not have to lead to the desired result. SMSfactsigma

EXERCISE 10.2. Using the bank data set in Table A.2, how many factors can
you find with the method of principal factors?

The number of variables is p = 6. For k = 3 factors, the orthogonal factor
model would have

d =
1
2
(p − k)2 − 1

2
(p + k) = 4.5 − 4.5 = 0

degrees of freedom, see Exercise 10.1. It follows that for 3 factors, we would
have an exact solution. Unfortunately, as we have seen in Exercise 10.1, the
unique exact solution does not have to be interpretable. In this situation, it
is advisable to work with at most k = 2 factors.

The empirical correlation analysis calculated from the given 6-dimensional
data set is:

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.0000 0.2313 0.1518 −0.1898 −0.0613 0.1943
0.2313 1.0000 0.7433 0.4138 0.3623 −0.5032
0.1518 0.7433 1.0000 0.4868 0.4007 −0.5165

−0.1898 0.4138 0.4868 1.0000 0.1419 −0.6230
−0.0613 0.3623 0.4007 0.1419 1.0000 −0.5940

0.1943 −0.5032 −0.5165 −0.6230 −0.5940 1.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The communalities h2
j , j = 1, . . . , 6, measure the part of variance of each

variable that can be assigned to the common factors. One possibility to define
a reasonable starting estimates is to set ̂h2

j = maxi�=j,i=1,...,6 |rXjXi
|. For the

Swiss bank notes, we obtain

̂h2 = (̂h2
1, . . . ,

̂h2
6)

� = (0.2313, 0.7433, 0.7433, 0.6230, 0.5940, 0.6230)�.

The estimates of the specific variances ψjj , j = 1, . . . , 6 are

̂ψ = ( ̂ψ11, . . . , ̂ψ66)� = (0.7687, 0.2567, 0.2567, 0.3770, 0.4060, 0.3770)�
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and the reduced correlation matrix R− ̂Ψ is

R− diag( ̂ψ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.2313 0.2313 0.1518 −0.1898 −0.0613 0.1943
0.2313 0.7433 0.7433 0.4138 0.3623 −0.5032
0.1518 0.7433 0.7433 0.4868 0.4007 −0.5165

−0.1898 0.4138 0.4868 0.6230 0.1419 −0.6230
−0.0613 0.3623 0.4007 0.1419 0.5940 −0.5940

0.1943 −0.5032 −0.5165 −0.6230 −0.5940 0.6230

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The vector of the eigenvalues of the reduced correlation matrix is:

λ = (2.6214, 0.7232, 0.4765, 0.0054,−0.0845,−0.1841)�.

At this step, some of the eigenvalues can be negative. The possibility that
the reduced correlation matrix does not have to be positive definite has to be
taken into account in the computer implementation of the factor analysis.

The matrix of eigenvectors of the reduced correlation matrix is:

Γ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.0011 −0.6225 0.0488 −0.1397 0.7663 0.0582
0.4832 −0.4510 −0.0727 −0.5783 −0.4575 −0.1185
0.5019 −0.3314 −0.1077 0.7670 −0.1328 0.1438
0.3974 0.3489 −0.6039 −0.0434 0.3510 −0.4802
0.3543 0.1661 0.7768 0.0604 0.1328 −0.4714

−0.4807 −0.3872 −0.1125 0.2285 −0.2123 −0.7135

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

With k = 2 factors, we obtain the factor loadings

̂Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.0011 −0.6225
0.4832 −0.4510
0.5019 −0.3314
0.3974 0.3489
0.3543 0.1661

−0.4807 −0.3872

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(√
2.6214 0

0
√

0.7232

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.0018 −0.5294
0.7824 −0.3835
0.8127 −0.2819
0.6435 0.2967
0.5736 0.1412

−0.7783 −0.3293

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If the variables are normalized, i.e., if the analysis is based on the correla-
tion matrix, the factor loadings Q are the correlations between the original
variables and the unobserved factors.

The final estimates of the two factor model, given in Table 10.1, were obtained
by several iterations of the described algorithm. It is interesting to notice that
the final estimates are rather different from the starting values.

The next step in the analysis is a rotation of the two factor loadings leading
to better interpretable results. In Figure 10.1 you can see both the original
factor loadings as given in Table 10.1 and the same factor loadings rotated
by the angle 5π/12 counterclockwise. The rotation, i.e., multiplication of the
factor loadings by the rotation matrix
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Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 ĥ2
j ψ̂jj = 1 − ĥ2

j

1 length −0.0046 −0.5427 0.2946 0.7054
2 height measured left 0.7888 −0.4107 0.7910 0.2090
3 height measured right 0.7996 −0.2982 0.7283 0.2717
4 lower frame distance 0.5929 0.1953 0.3896 0.6104
5 upper frame distance 0.5109 0.1068 0.2724 0.7276
6 length of the diagonal −0.8784 −0.4436 0.9683 0.0317

Table 10.1. Estimated factor loadings, communalities, and specific variances, PFM,
Swiss bank notes data set. SMSfactbank

Swiss bank notes
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Fig. 10.1. Rotation of the factor loadings in the Swiss bank notes data set. The
original and rotated factor loadings are on the left and right hand side, respectively.

SMSfactbank

G(θ) =
(

cos θ sin θ
− sin θ cos θ

)

,

where θ = 5π/12 changes only the factor loadings and their interpretation.
In Figure 10.1, we suggest rotation leading to one factor positively correlated
to X1, X2, and X4 whereas the second factor is strongly positively related to
X2, X3, X4, and X5 and strongly negatively related to X6.

Further insight into the factors might be achieved by estimating their values
for our observations. This part of the factor analysis will be demonstrated in
detail in Exercise 10.6.



10 Factor Analysis 191

EXERCISE 10.3. An example of an orthogonal matrix in two-dimensions is
the so-called rotation matrix

G(θ) =
(

cos θ sin θ
− sin θ cos θ

)

,

representing a clockwise rotation of the coordinate axes by the angle θ. Gene-
ralize the two-dimensional rotation matrix G(θ) to 3-dimensional space.

The two-dimensional rotation matrix G(θ) rotates two-dimensional coordi-
nates counterclockwise by angle θ with respect to the origin (0, 0)�, see
Figure 10.1 for an illustration.

In 3-dimensional space, we can fix three angles, θ1, θ2, and θ3 specifying three
two-dimensional rotations. In the first step, we can rotate the given three-
dimensional points in the first two coordinates and keep the third coordinate
fixed, this can be achieved by the rotation matrix:

G12(θ3) =

⎛

⎝

cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎞

⎠ .

Rotating the points only in the first coordinates can be described as a rotation
of the thee-dimensional cloud of points around the third axis by angle θ3.

The rotation in the first and third coordinate (around the second axis) is
achieved by:

G13(θ2) =

⎛

⎝

cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎞

⎠

and for the rotation in the second and third coordinate (around the first axis),
we have:

G23(θ1) =

⎛

⎝

1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎞

⎠ .

Arbitrary rotation in three-dimensional space can now be written as a com-
bination of the two-dimensional rotations G23(θ1), G13(θ2), and G12(θ3). We
define the general three-dimensional rotation matrix:

G123(θ1, θ2, θ3) = G23(θ1)G13(θ2)G12(θ3).

Similarly, the two-dimensional rotation matrices can be used to define a rota-
tion in n-dimensional space.

EXERCISE 10.4. Perform a factor analysis on the type of families in the
French food data set A.9. Rotate the resulting factors in a way which provides
a reasonable interpretation. Compare your result to the varimax method.
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The French food data set contains average expenditures on seven types of
food for different types of families (manual workers, employees, managers)
in France. The abbreviations MA, EM, and CA denote respectively manual
workers, employees, and managers. The number denotes the number of chil-
dren. In this exercise, we consider the dataset as consisting of 7 measurement
of the 12 type of family variables.

A first look at the data set reveals that the structure of expenditures strongly
depends on the type of food. Hence, before running the factor analysis, we
put all measurements on the same scale by standardizing the expenditures for
each type of food separately.

French food
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Fig. 10.2. Factor loadings for the French food data set after manual rotation of the
factor loading obtained by PFM method. SMSfactfood
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We choose k = 3 factors. The corresponding factor loadings were estimated
by the principal factors method. In order to obtain more interpretable results,
we have rotated the factor loadings in Figure 10.2. After the manual rotation
of the factor loadings, the first factor seems to be related to the number of
children. The second and the third factor are related to the type of family.
The main disadvantage of this approach are that a manual rotation of the
factor loadings is rather time consuming and that the final result might be
strongly influenced by prior beliefs of the data analyst.

French food (varimax)
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Fig. 10.3. Varimax rotation for French food data set. SMSfactfood

Hence, in practice, we recommend to use the varimax rotation which in this
case leads to very similar result, see Figure 10.3. A comparison of Figures 10.2
and 10.3 shows that the varimax methods find automatically a rotation which
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is very similar to the result obtain by manual rotation of factor loadings. The
main difference seems to be the order and the signs of the factors.

EXERCISE 10.5. Perform a factor analysis on the variables X4 to X10 in
the U.S. health data set in Table A.19. Would it make sense to use all of the
variables for the factor analysis?

From the discussion of the degrees of freedom of the factor analysis model in
Exercises 10.1 and 10.2 it follows that we can estimate at most k = 3 factors
in this 7-dimensional data set. The results of the factor analysis are given in
Table 10.2 and Figure 10.4. The factor analysis model was estimated by the
maximum likelihood method with varimax rotation.

Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1 accident −0.5628 0.0220 −0.1958 0.3556 0.6448
2 cardiovascular 0.7354 0.1782 0.5955 0.9271 0.0735
3 cancer 0.8381 −0.1166 0.5246 0.9913 0.0087
4 pulmonary 0.1709 −0.0682 0.5476 0.3337 0.6666
5 pneumonia flu 0.0098 0.4338 0.7631 0.7706 0.2252
6 diabetes 0.8046 −0.0488 0.0569 0.6531 0.3477
7 liver 0.1126 −0.8082 0.3321 0.7762 0.2173

Table 10.2. Estimated factor loadings after varimax rotation, communalities, and
specific variances, MLM, U.S. health data set. SMSfactushealth

Table 10.2 shows that the three factor model explains very well most of the
original variables. Only variables accident and pulmonary have lower commu-
nalities.

The plots of the factor loadings in Figure 10.4 suggests that the first factor
corresponds to causes of death related by cardiovascular problems, cancer,
and diabetes. The second factor seems to be positively related to pneumonia
flu and negatively related to liver. The third factor combines all causes of
death apart of accidents and diabetes. The discussion of the meaning of the
factors will be continued in Exercise 10.7, where we present the estimation of
the corresponding factor scores for each state.

Let us now investigate the question whether the three factors derived in this
exercise describe sufficiently the dependencies within the U.S. health data
set. This question can be answered by formal statistical test based on the
likelihood ratio approach that has been demonstrated in Chapter 7.

Assuming that ̂Q and ̂Ψ are the estimates obtained by the maximum likelihood
method, the likelihood ratio (LR) test statistic for the null hypothesis H0 :
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US health
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Fig. 10.4. Factor loadings for the U.S. health data set after varimax rotation.
SMSfactushealth

Σ = QQ� + Ψ can be derived as:

−2 log
(

maximized likelihood under H0

maximized likelihood

)

= n log

(

| ̂Q ̂Q� + ̂Ψ |
|S|

)

. (10.2)

Under the null hypothesis, the LR test statistic has asymptotically the
χ2

1
2{(p−k)2−p−k} distribution. Bartlett (1954) suggested a correction which im-

proves the above χ2 approximation by replacing n by n− 1− (2p + 4k + 5)/6
in (10.2). The LR test can be applied only if the degrees of freedom are posi-
tive, see also the discussion of the degrees of freedom in Exercise 10.1.

Let us now test the null hypothesis H0 : k = 3. The value of the LR test sta-
tistic with Bartlett correction is 3.66 and we cannot reject the null hypothesis
H0 : Σ = QQ� + Ψ since the observed value of the test statistic is smaller



196 10 Factor Analysis

than the critical value χ2
0.95;3 = 7.81. It seems that the factor analysis model

with k = 3 factors is appropriate for the U.S. health data set.

EXERCISE 10.6. Perform a factor analysis on the U.S. crime data set in
Table A.18 and estimate the factor scores.

The U.S. crime data set states the reported number of crimes in the 50 states
of the USA classified according to 7 categories. Hence, at most k = 3 factors
can be considered for the factor analysis.

The factor loadings presented in Table 10.3 and plotted in Figure 10.5 were
obtained by the maximum likelihood method and varimax rotation.

Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1 murder 0.4134 −0.7762 −0.0651 0.7777 0.2225
2 rape 0.7938 −0.2438 −0.0006 0.6895 0.3108
3 robbery 0.6148 −0.1866 0.4494 0.6147 0.3855
4 assault 0.6668 −0.6940 0.0368 0.9275 0.0723
5 burglary 0.8847 0.1073 0.2302 0.8472 0.1534
6 larceny 0.8753 0.3834 −0.0625 0.9172 0.0808
7 auto theft 0.6132 0.1435 0.5995 0.7561 0.2432

Table 10.3. Estimated factor loadings after varimax rotation, communalities, and
specific variances, MLM, U.S. crime data set. SMSfactuscrime

The LR test of the hypothesis that three factors are enough to described the
dependencies within the U.S. crime data set leads p-value 0.8257 and the null
hypothesis H0 : k = 3 cannot be rejected.

The first factor could be described as the overall criminality factor. The second
factor is positively related to larceny and negatively related to more violent
crimes such as murder and assault. The third factor is related mainly to
robbery and auto theft.

In order to describe the differences between different states, we have to esti-
mate the values of the factor scores for individual observations. The idea of
the commonly used regression method is based on the joint distribution of
(X − µ) and F . The joint covariance matrix of (X − µ) and F is:

Var
(

X − µ
F

)

=
(

QQ� + Ψ Q
Q� Ik

)

=
(

Σ Q
Q� Ik

)

. (10.3)

In practice, we replace the unknown Q, Σ and µ by corresponding estimators,
leading to the estimated individual factor scores:
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Fig. 10.5. Factor loadings for the U.S. crime data set after varimax rotation.
SMSfactuscrime

̂fi = ̂Q�S−1(xi − x).

The same rule can be followed when using R instead of S. Then (10.3) remains
valid when standardized variables, i.e., Z = D−1/2

Σ (X − µ), are considered if
DΣ = diag(σ11, . . . , σpp). In this case the factors are given by

̂fi = ̂Q�R−1(zi),

where zi = D−1/2
S (xi − x), ̂Q is the loading obtained with the matrix R, and

DS = diag(s11, . . . , spp).

The factor scores corresponding to the factor loadings given in Table 10.3
are plotted in Figure 10.6. The estimated factor scores for the first factor,
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first vs. second factor scores
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Fig. 10.6. Factor scores for the U.S. crime data set estimated by the regres-
sion method. Northeast (squares), Midwest (circles), South (triangles) and West
(crosses). SMSfactuscrime

overall criminality, seem to be largest in California, Arizona, and Florida.
The second factor suggests that murder and assault are common mainly in
North Carolina. The third factor, auto theft and robbery, reaches the highest
estimated factor scores in Massachusetts and New York.

EXERCISE 10.7. Estimate the factor scores for the U.S. health data set
analyzed in Exercise 10.5 and compare the estimated factor scores to the scores
obtained for the U.S. crime data set in Exercise 10.6.

The factor scores for the U.S. health data set, corresponding to the factor
loadings obtained in Exercise 10.5, are plotted in Figure 10.7.
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first vs. second factor scores
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Fig. 10.7. Factor scores for the U.S. health data set estimated by the regres-
sion method. Northeast (squares), Midwest (circles), South (triangles) and West
(crosses). SMSfactushealth

The first factor, corresponding to diabetes, cancer, and cardiovascular prob-
lems, leads to higher factor scores in Richmond, Delaware, and Pennsylvania.
On the other side, these causes of death are less common mainly in Arkansas,
Wyoming, Colorado, and Utah. This factor looks a bit like the third factor
obtained for the U.S. crime data set in Exercise 10.6.

The second health factor, strongly negatively related to liver and positively
related to pneumonia flu has highest values in South Dakota and Nebraska and
smallest values in Nevada, Florida, and California. The third health factor has
high values in South Dakota, New York, and Massachusetts and small values
in Utah, Hawaii, and Arkansas.
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Apart of the partial similarity of the first health and third crime factor, there
does not seem to be any other relation between the health and crime factors.
However, in both plots of the factor scores, we obtain similar factor scores for
states coming from the same region.

The factor analysis is not designed to investigate the similarities between two
sets of variables. Such comparisons ought to be carried out by the method of
canonical correlations described in Chapter 14.

EXERCISE 10.8. Analyze the vocabulary data given in Table A.20.

The vocabulary data set contains test scores of 64 pupils from the eighth
through eleventh grade levels. For each pupil we have one test score per grade
which leads to a 4-dimensional data set. Recalling the considerations presented
in Exercises 10.1 and 10.2, we see that in this exercise we can estimate only
one factor.

Performing the LR test (10.2) of the hypothesis H0 : k = 1, we obtain the
value of the LR test statistic 1.6101, which is smaller than the corresponding
critical value χ2

0.95;2 = 5.9915 (p-value 0.4470). Hence, one factor seems to be
appropriate for the factor analysis of this 4-dimensional data set.

Estimated factor Specific
loadings Communalities variances

q̂1 ĥ2
j ψ̂jj = 1 − ĥ2

j

1 Grade 8 0.9284 0.8620 0.1380
2 Grade 9 0.8611 0.7415 0.2585
3 Grade 10 0.9306 0.8659 0.1341
4 Grade 11 0.8618 0.7427 0.2573

Table 10.4. Estimated factor loadings, communalities, and specific variances, MLM,
vocabulary data set. SMSfactvocab

The results obtained by maximum likelihood method are summarized in
Table 10.4. The rotation on the one-dimensional factor loadings would not
have any meaning. The resulting factor can be interpreted as an overall
vocabulary score strongly positively related to the test score in all four grades.

The estimated one-dimensional factor scores are plotted in Figure 10.8 by
means of a dot-plot. The position of each observation on the horizontal axis
is given by the estimated factor score. The values on the vertical axis are
randomly chosen so that the plotted numbers are readable. The best values
were achieved in observations 36 and 38 whereas the 5th observation seems
to be extremely bad.
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Vocabulary: dot-plot of factor scores
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Fig. 10.8. Dot-plot of the one-dimensional factor scores for the vocabulary data set
estimated by the regression method. SMSfactvocab

EXERCISE 10.9. Analyze the athletic records data set in Table A.1. Can you
recognize any patterns if you sort the countries according to the estimates of
the factor scores?

The athletic records data set provides data on athletic records in 100m up to
a marathon for 55 countries.

Performing the estimation of the factor loadings by the maximum likelihood
method allows us to test the hypothesis H0 : k = 3 by means of the likelihood
ratio test statistic (10.2). In this exercise, we obtain the test statistic 7.5207
which is smaller than the critical value χ2

0.95;7 = 14.0671. The p-value of the
test is 0.3767. The hypothesis that 3 factors are enough to describe the athletic
records data set thus cannot be rejected.

The estimated factor loadings obtained by maximum likelihood method and
varimax rotation are given in Table 10.5 and plotted in Figure 10.9. The
communalities and specific variances show that three factors explain very well
all of the original variables up to the record in 200m.

The first factor is most strongly related to times achieved in 100 and 200m, the
second factor is positively related mainly to the records in longer distances.
The third factor has positive relationship to the records in middle distances
and 100m. It is important to keep in mind that high numbers here correspond
to worse times. Hence, the athletic nations should exhibit small values of the
factor scores.
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Estimated factor Specific
loadings Communalities variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1 100 m 0.7642 0.1803 0.6192 1.0000 0.0000
2 200 m 0.5734 0.0711 0.0474 0.3361 0.6642
3 400 m 0.4617 0.4869 0.6468 0.8686 0.1315
4 800 m 0.3442 0.6530 0.6060 0.9120 0.0878
5 1.5 km 0.3391 0.7655 0.4894 0.9404 0.0596
6 5 km 0.3771 0.8612 0.2842 0.9647 0.0354
7 10 km 0.4022 0.8636 0.2768 0.9842 0.0157
8 marathon 0.3231 0.8813 0.1843 0.9151 0.0850

Table 10.5. Estimated factor loadings after varimax rotation, communalities, and
specific variances, MLM, athletic records data set. SMSfacthletic

Rank 1 2 3

1 Italy Portugal GB
2 Colombia NZ Bermuda
3 USA Ireland DomRep
4 USSR Netherlands Thailand
5 Canada Kenya USA
6 Poland Norway FRG
...

...
...

...
50 Kenya Bermuda Colombia
51 PKorea Malaysia PNG
52 Netherlands Singapore WSamoa
53 Philippines DomRep Guatemala
54 Mauritius Thailand CostaRica
55 CookIs WSamoa CookIs

Table 10.6. Countries sorted according to the factor scores estimated for the ath-
letic records data set. SMSfacthletic

The factor scores estimatedby the regressionmethodare plotted inFigure 10.10.
Furthermore, Table 10.6 lists the best and the worst countries according to each
factor.

Keeping in mind the interpretation of the factors, we can say that Italy,
Colombia, USA, USSR, Canada, and Poland possess the best sprinters.
On long distances, the best countries are Portugal, New Zealand, Ireland,
Netherlands, and Kenya. The best times on 100m, 400m, and 800m are on
average achieved by Great Britain, Bermuda, Dominican Republic, Thailand,
and USA.



10 Factor Analysis 203

Athletic records
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Fig. 10.9. Factor loadings for the athletic records data set after varimax rotation.
SMSfacthletic

It is also interesting to notice that some of the countries which have very good
factor scores for third or second factor, have, at the same time, very bad first
or second factor scores. See, for example, Dominican Republic, Netherlands,
and Kenya.
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first vs. second factor scores

-1 0 1 2 3 4

f1

-1
0

1
2

3

f2

Argentina

AystraliaAustriaBelgium

Bermunda

Brazil

Burma

Canada
Chile
China

Colombia

CookIs

CostaRica
Czech

Denmark

DomRep

Finland

France
GDRFRGGB

Greece

GuatemalaHungary
India

Indonesia

Ireland

Israel
Italy

Japan

Kenya

Korea

PKorea

Luxemburg

Malaysia

Mauritius

Mexico

NetherlandsNZNorway

Png
Philippines

Poland

Portugal

Rumania

Singapore

Spain

Sweden
Switzerland

Tapei

Thailand

Turkey

USAUSSR

WSamoa

first vs. third factor scores

-1 0 1 2 3 4

f1

-1
0

1
2

f3

Argentina

Aystralia

Austria

Belgium

Bermunda
Brazil

Burma

Canada
Chile

China

Colombia

CookIs
CostaRica

Czech

Denmark

DomRep

Finland

France
GDR

FRGGB

Greece

Guatemala

Hungary India

Indonesia
IrelandIsrael

Italy

Japan

Kenya

Korea

PKorea

Luxemburg

Malaysia
Mauritius

Mexico

Netherlands

NZ

Norway

Png

Philippines
Poland

Portugal

Rumania
Singapore

Spain
SwedenSwitzerland

Tapei

Thailand

Turkey

USA

USSR

WSamoa

second vs. third factor scores

-1 0 1 2 3

f2

-1
0

1
2

f3

Argentina

Aystralia

Austria

Belgium

Bermunda
Brazil

Burma

Canada
Chile

China

Colombia

CookIs
CostaRica

Czech

Denmark

DomRep

Finland

France
GDR

FRGGB

Greece

Guatemala

HungaryIndia

Indonesia
IrelandIsrael

Italy

Japan

Kenya

Korea

PKorea

Luxemburg

Malaysia
Mauritius

Mexico

Netherlands

NZ

Norway

Png

Philippines
Poland

Portugal

Rumania
Singapore

Spain
SwedenSwitzerland

Tapei

Thailand

Turkey

USA

USSR

WSamoa

Fig. 10.10. Factor scores for the athletic records data set estimated by the regres-
sion method. SMSfacthletic
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Cluster Analysis

From a drop of water, a logician could infer the possibility of an Atl-
antic or a Niagara without having seen or heard of one or the other.
So all life is a great chain, the nature of which is known whenever we
are shown a single link of it.
Sherlock Holmes in “Study in Scarlet”

When considering groups of objects in a multivariate data set, two situations
can arise. Given a data set containing measurements on individuals, in some
cases we want to see if some natural groups or classes of individuals exist, and
in other cases, we want to classify the individuals according to a set of existing
groups. Cluster analysis develops tools and methods concerning the former
case, that is, given a data matrix containing multivariate measurements on a
large number of individuals (or objects), the objective is to build subgroups or
clusters of individuals. This is done by grouping individuals that are “similar”
according to some appropriate criterion.

Cluster analysis is applied in many fields, including the natural sciences, the
medical sciences, economics, and marketing. In marketing, for instance, it is
useful to build and describe the different segments of a market from a survey
of potential consumers. An insurance company, on the other hand, might be
interested in the distinction among classes of potential customers so that it
can derive optimal prices for its services. Other examples are provided in this
chapter.

In this chapter we will concentrate on the so-called agglomerative hierarchi-
cal algorithms. The clustering algorithms start by calculating the distances
between all pairs of observations, followed by stepwise agglomeration of close
observations into groups.
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Agglomerative Algorithm

1. Compute the distance matrix D = (dij)i,j=1,...,n.

2. Find two observations with the smallest distance and put them into one
cluster.

3. Compute the distance matrix between the n − 1 clusters.

4. Find two clusters with the smallest intercluster distance and join them.

5. Repeat step 4 until all observations are combined in one cluster.

The properties of the clustering algorithm are driven mainly by the choice of
distance.

Intercluster Distance

Assume that two observations or clusters, P and Q, are combined in a cluster
denoted by P ∪ Q. Let d(P,Q) denote the distance between clusters P and
Q and nP and nQ the number of observations belonging to clusters P and
Q, respectively. Some common methods for defining the distance between the
cluster P ∪ Q and some other cluster, say R, are:

Single linkage: d(P ∪ Q,R) = min{d(P,R), d(Q,R)}.
Complete linkage: d(P ∪ Q,R) = max{d(P,R), d(Q,R)}.
Average linkage: d(P ∪ Q,R) = {d(P,R) + d(Q,R)}/2.

Average linkage (weighted):

d(P ∪ Q,R) = {nP d(P,R) + nQd(Q,R)}/(nP + nQ).

Median: d2(P ∪ Q,R) = {d2(P,R) + d2(Q,R)}/2 − d2(P,Q)/4.

Centroid: d2(P ∪Q,R) is defined as the squared distance between R and the
weighted (coordinatewise) average of P and Q; see Exercise 11.1.

Ward method: the heterogeneity of group R is measured by the inertia
IR =

∑nR

i=1 d2(xi, xR) (Ward 1963). In each step, we join the groups P
and Q that give the smallest increase, ∆(P,Q), of the overall inertia; see
Exercises 11.2 and 11.3.

Dendrogram

The successive joining of observations to the clusters is finally plotted in the
so-called dendrogram. The construction of the dendrogram is explained in
detail in Exercise 11.4.
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EXERCISE 11.1. Prove that the centroid distance d2(R,P ∪ Q), defined as
the (squared) distance between R = (r1, . . . , rp)� and the weighted average
{nP (p1, . . . , pp)� +nQ(q1, . . . , qp)�}/(nP +nQ) of P and Q, can be calculated
as

nP

nP + nQ
d2(R,P ) +

nQ

nP + nQ
d2(R,Q) − nP nQ

(nP + nQ)2
d2(P,Q).

Let us calculate the Euclidean distance between the center (r1, . . . , rp)� of
the cluster R and the weighted “center of gravity” of clusters P and Q:

d2(P ∪ Q,R)

=
p
∑

i=1

{

ri −
pinP + qinQ

nQ + nP

}2

=
p
∑

i=1

[

r2
i − 2ri

pinP + qinQ

nQ + nP
+
{

pinP + qinQ

nQ + nP

}2
]

=
p
∑

i=1

[

nP

nP + nQ
(ri − pi)2 +

nQ

nP + nQ
(ri − qi)2 − nP nQ

(nP + nQ)2
(qi − pi)2

]

=
nP

nP + nQ
d2(R,P ) +

nQ

nP + nQ
d2(R,Q) − nP nQ

(nP + nQ)2
d2(P,Q).

Hence, the intercluster distance between R and P ∪Q can be calculated from
the distance between R, P , and Q. This property greatly simplifies the soft-
ware implementation of the clustering algorithm since all calculations can be
carried out using only the distance matrix between the n observations.

EXERCISE 11.2. Derive the formula for the increase of the inertia ∆(P,Q)
in the Ward method.

In the Ward method, the heterogeneity of group R is measured by the inertia
defined as:

IR =
nR
∑

i=1

d2(xi, xR),

where xR is the arithmetic average and nR the number of observations within
group R. If the usual Euclidean distance is used, then IR represents the sum
of the variances of the p components of xi inside group R, see Exercise 11.3.

The Ward algorithm joins the groups P and Q that give the smallest increase,
∆(P,Q), of the inertia. The common inertia of the new group P ∪ Q can be
written as:
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IP∪Q =
nP +nQ
∑

i=1

d2(xi − xP∪Q) =
nP +nQ
∑

i=1

p
∑

j=1

(xij − xP∪Q,j)2

=
p
∑

j=1

{

nP
∑

i=1

(xP,ij − xP∪Q,j)2 +
nQ
∑

i=1

(xQ,ij − xP∪Q,j)2
}

=
p
∑

j=1

{

nP
∑

i=1

(xP,ij − xP,j)2 + nP (xP,j − xP∪Q,j)2

+
nQ
∑

i=1

(xQ,ij − xQ,j)2 + nQ(xQ,j − xP∪Q,j)2
}

= IP + IQ +
p
∑

j=1

{

nP (xP,j − xP∪Q,j)2 + nQ(xQ,j − xP∪Q,j)2
}

Hence, the inertia of P ∪ Q can be split into the sum of IP and IQ and a
remainder term ∆(P,Q) for which we have:

∆(P,Q) =
p
∑

j=1

{

nP (xP,j − xP∪Q,j)2 + nQ(xQ,j − xP∪Q,j)2
}

=
p
∑

j=1

{

nP

(

nQxP,j − nQxQ,j

nP + nQ

)2

+ nQ

(

nP xP,j − nP xQ,j

nP + nQ

)2
}

=
nP nQ

nP + nQ

p
∑

j=1

(xP,j − xQ,j)
2 =

nP nQ

nP + nQ
d2(P,Q).

The change of inertia ∆(P,Q) resulting from the joining of the groups P
and Q can be considered as a distance of the clusters P and Q. In order to
implement the Ward method numerically, we have to derive a formula for the
intercluster distance between cluster R and the newly created cluster P ∪ Q.

Applying the result of Exercise 11.1, we can write:

∆(R,P ∪ Q) =
nR(nP + nQ)
nR + nP + nQ

d2 (R,P ∪ Q)

=
nR(nP + nQ)
nR + nP + nQ

{

nP

nP + nQ
d2(R,P ) +

nQ

nP + nQ
d2(R,Q)

− nP nQ

(nP + nQ)2
d2(P,Q)

}
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=
1

nR + nP + nQ

{

nRnP d2(R,P ) + nRnQ d2(R,Q)

− nRnP nQ

nP + nQ
d2(P,Q)

}

=
nR + nP

nR + nP + nQ
∆(R,P ) +

nR + nQ

nR + nP + nQ
∆(R,Q)

− nR

nR + nP + nQ
∆(P,Q).

The ability to express ∆(R,P ∪ Q) using the distances ∆(R,P ), ∆(R,Q),
and ∆(P,Q) greatly simplifies the computer implementation of the Ward alg-
orithm.

EXERCISE 11.3. Prove that in the Ward method, the inertia IR = nR tr(SR),
where SR denotes the empirical covariance matrix of the observations con-
tained in group R.

The inertia is defined as:

IR =
nR
∑

i=1

d2(xi, xR).

Assuming that d(xi, xR) is the usual Euclidean distance between the ith
observation xi = (xi1, . . . , xip)� and the sample mean within group R,
xR = (xR1, . . . , xRp)�, we have:

IR =
nR
∑

i=1

d2(xi, xR) =
nR
∑

i=1

p
∑

j=1

(xij − xRj)2

= nR

p
∑

j=1

1
nR

nR
∑

i=1

(xij − xRj)2 = nR

p
∑

j=1

sXjXj
= nR trSR.

EXERCISE 11.4. Explain the differences between various proximity measures
by means of the 8 points example given in Härdle & Simar (2003, exam-
ple 11.5).

The eight points from Example 11.5 in Härdle & Simar (2003) are plotted
in Figure 11.1. Selected distances between some of the points are marked by
lines. Different proximity measures assign different values to these interpoint
distances. It is clear that the choice of the proximity measure can influence
the behavior of the clustering algorithm.

In Figure 11.2, we plot the dendrograms obtained for the eight points example
using two different simple distances. In both dendrograms, we can see how
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Fig. 11.1. 8 points example using single linkage. SMSclus8pd
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Fig. 11.2. Single linkage using squared Euclidean and Euclidean distance.
SMSclus8pd
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the n points were consecutively joined into only one cluster. The intercluster
distances are given on the vertical axis. In both plots in Figure 11.2 we can
see that in the first step of the algorithm, the points 3 and 5 were combined.
Both the Euclidean and squared Euclidean distance between these points is
equal to 1, see also Figure 11.1.

The distance in the right plot of Figure 11.2 is equal to the square root of
the distance in the left plot. Thanks to the single linkage algorithm which
defines the intercluster distance as the distance between closest points, we
obtain exactly the same clustering in both plots. The only difference is the
change of scale on the vertical axis.

The last step in cluster analysis is the choice of a number of cluster. For
example, three clusters in the 8 points example can be obtained by cutting
the dendrogram given in Figure 11.2 at a specified level. In this case, we would
obtain clusters {1, 2}, {3, 4, 5}, and {6, 7, 8}.

EXERCISE 11.5. Repeat the 8 point example (Exercise 11.4) using the com-
plete linkage and the Ward algorithm. Explain the difference to single linkage.

The dendrograms obtained by complete linkage and Ward method are plotted
on the right hand side in Figures 11.3 and 11.4. The left plots contain the
original points with lines describing the successive joining of the clusters.
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Fig. 11.3. Ward algorithm. SMSclus8p

The lines plotted in Figure 11.4 demonstrate how the intercluster distances
are calculated in the complete linkage. For example, the line connecting points
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Fig. 11.4. Complete linkage. SMSclus8p

5 and 8 gives the distance between the clusters consisting of points {3,4,5}
and {6,7,8}. In the single linkage method used in Exercise 11.4, the distance
between these clusters would be given by the distance of the closest points,
i.e., by the distance of points 3 and 7.

Comparing the dendrograms in Figures 11.2–11.4, we see that, in this example,
the three clustering algorithms arrive to the same result. The only difference
lies in the scale on the vertical axis. Both the Ward algorithm in Figure 11.3
and the complete linkage in Figure 11.4 strongly suggest that the choice of
three clusters might be appropriate in this case. The intercluster distances
between the same three clusters are relatively smaller if single linkage is used.

In practice, the Ward algorithm usually provides the best interpretable results
since it tends to create “homogeneous” clusters. On the contrary, the single
linkage algorithm often finds chains of observations which do not have any
other clear structure.

EXERCISE 11.6. Perform a cluster analysis for 20 randomly selected Swiss
bank notes in Table A.2.

Recall that the data set contains 200 6-dimensional observations. The first
100 observations correspond to genuine and the other half to counterfeit bank
notes. Here, we use only a subsample of size 20 so that the resulting dendro-
gram in Figure 11.5 is still readable. On the left plot in Figure 11.5 we plot the
first two principal components for the data set. From Chapter 9 we know that
this is, in some sense, the best two-dimensional representation of the data set.
One can observe that the plot consists of two point clouds: on the left hand
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Fig. 11.5. Cluster analysis of 20 Swiss bank notes using Ward algorithm and squared
Euclidean distance. SMSclusbank

side, we have the genuine bank notes with numbers smaller than 100 and, on
the right hand side, we observe point cloud of the counterfeit bank notes. The
observation 161 is a bit separated from both these groups.

The dendrogram, resulting from the Ward algorithm using the squared Euclid-
ean distance, is plotted on the right hand side of Figure 11.5. If the dendro-
gram is cut to two clusters, we obtain exactly the genuine and counterfeit
bank notes. The outlying observation 161 was correctly put into the coun-
terfeit cluster but the dendrogram shows that the distance from the other
counterfeit bank notes is largest from all (counterfeit) observations.

The dendrograms obtained by the single and complete linkage clustering alg-
orithms are given in Exercise 11.7.

EXERCISE 11.7. Repeat the cluster analysis of the bank notes example in
Exercise 11.6 with single and complete linkage clustering algorithms.

The dendrograms for both the single and complete linkage are plotted in
Figures 11.6 and 11.7. The complete linkage plotted in Figure 11.6 provides
better result since it correctly puts the observation 161 into the counterfeit
group. However, comparing the complete linkage and the dendrogram obt-
ained by the Ward algorithm in Figure 11.5, the Ward distance seems to be
more appropriate in this case.

The single linkage dendrogram in Figure 11.7 shows the chain building ten-
dency of this method. The observations are usually added one by one and the
result of this method often consists of two clusters: one containing almost all
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Dendrogram for 20 Swiss bank notes, Complete linkage 
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Fig. 11.6. Cluster analysis of 20 Swiss bank notes using squared Euclidean distance
with complete linkage. SMSclusbank2

Dendrogram for 20 Swiss bank notes, Single linkage 
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observations and the other one or two outliers. This is exactly what happened
in Figure 11.7, where the outlying observation 161 was put into a cluster by
itself.

EXERCISE 11.8. Repeat the cluster analysis of the bank notes example in
Exercise 11.6 using the L1 distance.

The Euclidean distance is just a special case of the Lr-norms, r ≥ 1,

dij = ||xi − xj ||r =

{
p
∑

k=1

|xik − xjk|r
}1/r

, (11.1)

where xik denotes the value of the kth variable measured on the ith individual.

Apart of the usual Euclidean distance (L2-norm), the L1-norm is the most
popular member of this family. The L1 distance has very simple interpretation
since from (11.1) it is easy to see that the L1 distance is just the sum of the
absolute values of the differences observed in each variable. The L1 metric is
useful whenever we want to assign less weight to the outlying observations.

In the previous exercises, it appeared that the Ward method leads to nice
and interpretable results. Hence, we apply the Ward method with L1 distance
to obtain the dendrogram plotted in Figure 11.8. The same analysis with
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the squared Euclidean distance was carried out in Exercise 11.6. Instead of
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the squared Euclidean distance, we have now selected the L1 distance which
should assign less weight to outlying observations.

The overall shape of the dendrogram plotted in Figure 11.8 looks very similar
to the dendrogram given in Figure 11.5. Again, the bank notes are clearly
split into two groups. However, in Figure 11.5, the counterfeit observation 161
lies in one cluster with the genuine bank notes.

EXERCISE 11.9. Analyze the U.S. companies data set in Table A.17 using
the Ward algorithm and L1 distance.

The six dimensional data set contains the information on the assets, sales,
market value, profits, cash flow and number of employees of 79 U.S. companies.
The companies are classified according to their type: Communication, Energy,
Finance, Hi-Tech, Manufacturing, Medical, Other, Retail, and Transportation.

In Figure 11.9, we plot the first two principal components for a rescaled version
of the data set. The rescaling is in this case necessary since otherwise we
observe most of the points concentrated in the lower left corner with the
two largest companies (IBM and General Electric) dominating the plot. The
transformation was used only for plotting in Figures 11.9 and 11.11 and the
cluster analysis was performed using the L1 distances calculated from the
original data set.

The transformation which is used on all columns of the data set for plotting
is

f(x) = log[x − min(x) + {max(x) − min(x)}/200].

In this case, the choice of the transformation is quite arbitrary. The only
purpose is to plot the observations on a scale that allows us to distinguish
different companies in Figures 11.9 and 11.11.

Short inspection of the data set given in Table A.17 reveals that the units
of measurements for different variables are not comparable. For example, it
would not make much sense to assume that a unit change in the number of
employees has the same significance as a unit change in sales or market value.
Hence, the cluster analysis is performed on the standardized data set where
all variables were divided by their estimated standard deviation.

In Figure 11.10, we display the dendrogram obtained by running the Ward alg-
orithm on the L1 distances calculated from the standardized U.S. companies
data set. From the graphics, it looks reasonable to split the data set into 3 or
5 clusters. In Figure 11.10, we give also the first two letter of the type of the
company. It is interesting that in Figure 11.10, the same types of company
are often close to each other. See, for example, the large groups of financial
or energy companies. However, if we choose lower number of cluster, these
groups are mixed with other types of companies.
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Fig. 11.9. Plot of the first two principal components for the rescaled U.S. companies
data set. SMScluscomp

The resulting five clusters are plotted in Figure 11.11 where different plotting
symbols were used for each cluster. The type of each company is also specified
by the first two letters. Two hi-tech companies form a cluster by themselves:
IBM and General Electric. In the upper part of Figure 11.11, we can observe
a large group of retail companies. Unfortunately, the Ward algorithm puts
this group into two different clusters. The same could be said for the group of
financial companies visible in the lower left part of Figure 11.11.

The cluster analysis could be summarized in the following way: the clusters
seem to split the data set mainly in the direction of the first principal com-
ponent which seems to be related mainly to the size of the company. Hence,
the clustering algorithm does not recover the type of company which seems
to be better explained by the (less important) second principal component.

An improvement in clustering might be achieved also by transforming the
data set before calculating the distance matrix used in the clustering algo-
rithm. One possible transformation might be the logarithmic transformation
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Dendrogram for US companies, Ward algorithm

-40 -30 -20 -10 0

 

 

Co
En
En
Fi
Fi
Fi
Hi
Hi
Re
Re
Hi
Me
Ma
Ma
Re
Ma
Tr
Ma
Ot
Ma
Re
Co
En
En
En
Ot
Ot
Fi
Fi
Fi
Fi
Fi
Fi
Fi
Fi
Fi
Fi
Fi
Fi
En
Hi
Me
Fi
Ot
Fi
Me
Me
En
En
En
En
En
En
En
Hi
En
Ma
Hi
Re
Ot
Re
Ot
Tr
Ma
Ot
Tr
Ma
En
Tr
Tr
Ma
Ma
Tr
Re
Re
Re
Re
Hi
Hi

Fig. 11.10. Dendrogram for U.S. companies using Ward algorithm and L1 distance.
SMScluscomp



11 Cluster Analysis 219

Five Clusters for US Companies
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Fig. 11.11. Plot of the first two principal components for the rescaled U.S. compa-
nies data set with five clusters denoted by different symbols. SMScluscomp

used for plotting in Figures 11.9 and 11.11 or possibly another transformation
correcting for the effect of the size of the company.

EXERCISE 11.10. Analyze the U.S. crime data set in Table A.18 with the
Ward algorithm. Use the χ2-metric measuring differences between rows of a
contingency table and compare the results to the usual L2-norm on standard-
ized variables.

The U.S. crime data set contains the reported number of 7 types of crimes in
the 50 USA states. The entries in this data set can be interpreted as counts
and the data set as a (50 × 7) contingency table.

In a given contingency table, the ith row can be interpreted as the conditional
frequency distribution xik

xi•
, k = 1, . . . , p, where xi• =

∑p
j=1 xij . The distance

between the ith and jth row can be defined as a χ2 distance between the
respective frequency distributions:
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d2(i, j) =
p
∑

k=1

1
(

x•k

x••

)

(

xik

xi•
− xjk

xj•

)2

,

see, e.g., Härdle & Simar (2003, section 11.2).

χ2 Distance

The χ2 distances between the rows (observations) in the U.S. crime data
set are used to construct the distance matrix. The dendrogram plotted in
Figure 11.12 was obtained by the Ward method. Each observation displayed

Dendrogram for US crime, Ward algorithm
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in the dendrogram in Figure 11.12 is marked by the abbreviation of the state
and by the region number (1=Northeast, 2=Midwest, 3=South, 4=West).

The dendrogram suggests that it would be reasonable to split the data set
into 5 or 7 clusters. Let us try to consider 5 clusters and let us define cluster
one as ME, NH, VT, MV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK,
TX, and NM. Cluster 2 consists of CT, OH, IN, MN, NE, KS, DE, VA, CO,
AZ, NV, WA, OR, CA, AK, and HI, cluster 3 contains MA and RI, cluster
4 NY, NJ, PA, IL, MI, MO, and MD. Cluster 5 is WI, IA, ND, SD, MT,
ID, WY, UT. In Table 11.1, we give the average relative frequencies within
the five clusters. The information given in Table 11.1 allows us to describe

murder rape robbery assault burglary larceny auto theft

1 0.00 0.01 0.02 0.06 0.30 0.52 0.09
2 0.00 0.00 0.02 0.03 0.26 0.57 0.11
3 0.00 0.00 0.02 0.03 0.27 0.46 0.22
4 0.00 0.00 0.06 0.04 0.27 0.49 0.13
5 0.00 0.00 0.01 0.02 0.21 0.70 0.06

Table 11.1. The average relative frequencies for U.S. crimes within the 5 clusters
obtained with χ2 distance. SMScluscrimechi2

the differences between the clusters. It seems that larceny is very “popular”
mainly in cluster 5 consisting mainly of only from West and Midwest states
(region code 4). Auto theft is relatively more spread out in cluster 3 consisting
only from Massachusetts and Richmond. Cluster 4 (NY, NJ, . . . ) contains
more robberies. Cluster 1, consisting mainly of southern states (region code
3), slightly overrepresents rape and burglaries.

Euclidean Distance

The results of theWardalgorithmperformedon theEuclideandistancesbetween
standardized observations are summarized in Figure 11.13 and Table 11.2. Here,
we have chosen to consider four clusters.

The first cluster contains the states: ME, NH, VT, PA, WI, IA, ND, SD, NE,
MV, MT, ID, and WY. The second cluster is MA, RI, CT, NJ, OH, IN, MN,
KS, UT, WA, OR, and HI. The third cluster consists of VA, NC, SC, GA,
KY, TN, AL, MS, AR, and OK. The fourth cluster contains NY, IL, MI, MO,
DE, MD, FL, LA, TX, CO, NM, AZ, NV, CA, and AK. From the regional
point of view, it is interesting to notice that the third cluster contains only
southern states.

Table 11.2 allows us to describe the differences between clusters. Cluster 1
contains the states with low criminality since the average of the standardized
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Dendrogram for US crime, Ward algorithm
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Fig. 11.13. Cluster analysis of U.S. crime data set using Ward algorithm and
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murder rape robbery assault burglary larceny auto theft

1 −0.96 −0.91 −0.80 −1.03 −1.07 −0.70 −0.97
2 −0.72 −0.37 −0.06 −0.63 0.37 0.40 0.62
3 1.06 −0.14 −0.43 0.55 −0.40 −0.82 −0.66
4 0.70 1.18 1.03 1.03 0.91 0.83 0.78

Table 11.2. The averages of the standardized U.S. crime data set within the 3
clusters obtained with Euclidean distance. SMScluscrime
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number of all crimes is negative. On the other side, cluster 4 contains the states
with high criminality rate. Cluster 2 corresponds to states with a tendency
towards burglary, larceny, and auto theft. The souther cluster 3 has large rates
of murder and assault.

Comparison

We have seen that each distance leads to another view at the data set. The χ2

distance compares relative frequencies whereas the Euclidean distance com-
pares the absolute values of the number of each crime. The choice of the
method depends in practice mainly on the point of view of the investigator.

EXERCISE 11.11. Perform the cluster analysis of the U.S. health data set in
Table A.19.

The description of the U.S. health data set is given in Appendix A.19. Basi-
cally, it contains the number of deaths in 50 U.S. states classified according to
7 causes of death. We are interested in the numbers of deaths and hence we
have decided to perform the analysis using Euclidean analysis on the original
data set. The resulting dendrogram is plotted in Figure 11.14.

Cluster 1 contains ME, MA, RI, NY, NJ, PA, IA, MO, SD, NE, MV, FL, and
AR. Cluster 2 consists of VT, CT, OH, IN, IL, MI, WI, KS, DE, KY, TN, AL,
MS, and OK. Cluster 3 is NH, MN, ND, MD, VA, NC, SC, GA, LA, TX, MT,
ID, AZ, NV, WA, OR, and CA and the last cluster 4 consists of WY, CO,
NM, UT, AK, and HI. Cluster 4 contains only western states (region code 4).
The other three clusters are regionally less homogeneous.

acc card canc pul pneu diab liv

1 39.56 484.70 210.73 29.35 23.87 16.95 11.78
2 42.48 432.56 189.33 26.41 20.69 16.29 9.99
3 45.55 365.65 168.25 26.16 20.54 13.52 10.48
4 55.37 225.58 111.68 21.37 17.13 10.58 9.38

Table 11.3. The averages of the U.S. health data set within the 4 clusters.
SMSclushealth

The differences between clusters are summarized in Table 11.3. It seems that
most of the differences are due to the number of deaths due to cancer and
cardiovascular problems, i.e., to the most common causes of deaths.

In Figure 11.15, we plot the first two principal components. The observations
belonging to the four different clusters are plotted using different text size.
Obviously, the cluster separated the observations according to their position
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Dendrogram for US health, Ward algorithm
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Fig. 11.14. Cluster analysis of U.S. health data set using Ward algorithm and
Euclidean distance. SMSclushealth

on the horizontal axis of the plot, i.e., according to the value of the first
principal component, see also the principal component analysis in Exercise 9.9.
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Discriminant Analysis

. . . if a gentleman walks into my rooms smelling of iodoform, with a
black mark of nitrate of silver upon his right fore-finger, and a bulge on
the side of his top-hat to show where he has secreted his stethoscope, I
must be dull indeed, if I do not pronounce him to be an active member
of the medical profession.
Sherlock Holmes in “A Scandal in Bohemia”

Discriminant analysis is used in situations where the clusters are known a
priori. The aim of discriminant analysis is to classify an observation, or several
observations, into these known groups. For instance, in credit scoring, a bank
knows from past experience that there are good customers (who repay their
loan without any problems) and bad customers (who have had difficulties
repaying their loans). When a new customer asks for a loan, the bank has to
decide whether or not to give the loan. The information of the bank is given
in two data sets: multivariate observations on the two categories of customers
(including age, salary, marital status, the amount of the loan, and the like).

The discrimination rule has to classify the customer into one of the two exist-
ing groups, and the discriminant analysis should evaluate the risk of a possible
misclassification. Many other examples are described herein. We present ML
discrimination and Fisher’s linear discrimination function.

In the mathematical formulation of the problem, we try to allocate an obser-
vation to one of the populations Πj , j = 1, 2, ..., J . A discriminant rule is a
separation of the sample space (in general R

p) into disjoint sets Rj such that
if a new observation falls into the region Rj , it is identified as a member of
population Πj .

The quality of a discriminant rule can be judged on the basis of the error of
misclassification.
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If the probability density functions in the populations Πj are known, we may
easily derive a discriminant rule based on the maximum likelihood approach.

Maximum Likelihood Discriminant Rule

Let us assume that each population Πj , j = 1, . . . , J , can be described by a
probability density function (pdf) fj(x).

The maximum likelihood discriminant rule (ML rule) allocates the new
observation x to the population Πk, maximizing the likelihood Lk(x) =
fk(x) = maxi=1,...,J fi(x).

Formally, the sets Rj , j = 1, . . . , J , given by the ML discriminant rule are:

Rj = {x : fj(x) ≥ fi(x) for i = 1, . . . , J}.

In practice, the sets Rj are constructed from estimates of the unknown den-
sities. If the densities are assumed to have a known shape, i.e., normal distri-
bution, it suffices to estimate the unknown parameters; see Exercise 12.1.

Bayes Discriminant Rule

The quality of the ML discriminant rule may be improved if some prior infor-
mation about the probability of the populations is known. Let πj denote the
prior probability of class j. Note that

∑J
j=1 πj = 1.

The Bayes discriminant rule allocates x to the population Πk that gives the
largest value of πifi(x), πkfk(x) = maxi=1,...,J πifi(x). The Bayes discrimi-
nant rule can be formally defined by:

Rj = {x : πjfj(x) ≥ πifi(x) for i = 1, . . . , J}.

The Bayes rule is identical to the ML discriminant rule if πj = 1/J .

Fisher’s Linear Discrimination Function

The classical Fisher’s linear discriminant rule is based on the maximization
of the ratio of the between to the within variance of a projection a�x.

Suppose we have samples Xj , j = 1, . . . , J , from J populations. Let Y = Xa
and Yj = Xja denote linear combinations of observations. The within-group
sum of squares is given by

J
∑

j=1

Y�
j HjYj =

J
∑

j=1

a�X�
j HjXja = a�Wa, (12.1)
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where Hj denotes the (nj × nj) centering matrix. The between-group sum of
squares is

J
∑

j=1

nj(yj − y)2 =
J
∑

j=1

nj{a�(xj − x)}2 = a�Ba, (12.2)

where yj and xj denote the means of Yj and Xj and y and x denote the
sample means of Y and X .

Fisher noticed that the vector a that maximizes a�Ba/a�Wa is the eigenvec-
tor of W−1B that corresponds to the largest eigenvalue.

Finally, observation x is classified into group j, which is closest to the projected
a�x,

Rj = {x : |a�(x − x̄j)| ≤ |a�(x − x̄i)| for i = 1, . . . , J}.

EXERCISE 12.1. Derive the ML discriminant rule if Πj = Np(µj , Σ), j =
1, . . . , J . Discuss the special case J = 2.

Let us assume that the variance matrix Σ is positive definite. The likelihood
of observation x in each of the populations Πj , j = 1, . . . , J is

Lj(x) = fj(x) = |2πΣ|−1/2 exp
{

−1
2
(x − µj)�Σ−1(x − µj)

}

.

According to the ML rule, we allocate x to the population Πj with the largest
likelihood. Omitting the constant |2πΣ|−1/2 and taking logarithms, the max-
imization problem may be equivalently solved by minimizing

δ2(x, µj) = (x − µj)�Σ−1(x − µj)

= {Σ−1/2(x − µj)}�Σ−1/2(x − µj).

Clearly, δ2(x, µj) is the square of the Mahalanobis distance between x and µj ,
see also Exercise 9.7 for the discussion of the Mahalanobis transformation.

Hence, in case of normal distribution with common covariance matrix, the
ML rule allocates x to the closest group in the Mahalanobis sense.

For J = 2, the observation x is allocated to Π1 if

(x − µ1)�Σ−1(x − µ1) ≤ (x − µ2)�Σ−1(x − µ2).

Rearranging terms leads to

0 ≥ −2µ�
1 Σ−1x + 2µ�

2 Σ−1x + µ�
1 Σ−1µ1 − µ�

2 Σ−1µ2

0 ≥ 2(µ2 − µ1)�Σ−1x + (µ1 − µ2)�Σ−1(µ1 + µ2)

0 ≤ (µ1 − µ2)�Σ−1{x − 1
2
(µ1 + µ2)}

0 ≤ α�(x − µ),
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where α = Σ−1(µ1 − µ2) and µ = 1
2 (µ1 + µ2).

It follows that in case of two multinormal populations, the discriminant rule
can be written as:

R1 = {x : α�(x − µ) ≥ 0}.

EXERCISE 12.2. Apply the rule from Exercise 12.1 for J = 2 and p = 1 and
modify it for unequal variances.

For two univariate normally distributed populations Π1 = N(µ1, σ) and Π2 =
N(µ2, σ), the ML rule can be written as

R1 =
{

x : (µ1 − µ2)
(

x − µ1 + µ2

2

)

≥ 0
}

R1 =
{

x : sign(µ1 − µ2)
(

x − µ1 + µ2

2

)

≥ 0
}

R1 =
{

x : sign(µ1 − µ2)x ≥ sign(µ1 − µ2)
µ1 + µ2

2

}

.

Assuming that µ1 < µ2, we obtain

R1 =
{

x : x ≤ µ1 + µ2

2

}

,

i.e., we classify x to R1 if it is closer to µ1 than to µ2.

Assuming that the two normal populations have different variances, Π1 =
N(µ1, σ

2
1) and Π2 : N(µ2, σ

2
2), we allocate x to R1 if L1(x) > L2(x), where

the likelihood is:

Li(x) = (2πσ2
i )−1/2 exp

{

−1
2

(

x − µi

σi

)2
}

.

L1(x) ≥ L2(x) is equivalent to L1(x)/L2(x) ≥ 1 and we obtain

σ2

σ1
exp

{

−1
2

[
(

x − µ1

σ1

)2

−
(

x − µ2

σ2

)2
]}

≥ 1

log
σ2

σ1
− 1

2

[
(

x − µ1

σ1

)2

−
(

x − µ2

σ2

)2
]

≥ 0

1
2

[
(

x − µ1

σ1

)2

−
(

x − µ2

σ2

)2
]

≤ log
σ2

σ1

x2

(

1
σ2

1

− 1
σ2

2

)

− 2x

(

µ1

σ2
1

− µ2

σ2
2

)

+
(

µ2
1

σ2
1

− µ2
2

σ2
2

)

≤ 2 log
σ2

σ1
.

If σ1 = σ2, most of the terms in the above formula disappear and the result
simplifies to the discriminant rule obtained in Exercise 12.1.
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EXERCISE 12.3. Calculate the ML discrimination rule based on observations
of a one-dimensional variable with an exponential distribution.

The pdf of the exponential distribution Exp(λ) is:

f(x) = λ exp {−λx} for x > 0.

Comparing the likelihoods for two populations Π1 = Exp(λ1) and Π2 =
Exp(λ2), we allocate the observation x into population Π1 if

L1(x) ≥ L2(x)
L1(x)/L2(x) ≥ 1

λ1

λ2
exp {−x(λ1 − λ2)} ≥ 1

log
λ1

λ2
− x(λ1 − λ2) ≥ 0

x(λ1 − λ2) ≤ log
λ1

λ2
.

Assuming that λ1 < λ2, we obtain the discriminant rule:

R1 =
{

x : x ≥ log λ1 − log λ2

λ1 − λ2

}

.

The observation x is classified into population Π1 if it is greater than the
constant (log λ1 − log λ2)/(λ1 − λ2).

EXERCISE 12.4. Calculate the ML discrimination rule based on observations
of a two-dimensional random vector, where the first component has an expo-
nential distribution and the other has an alternative distribution. What is the
difference between the discrimination rule obtained in this exercise and the
Bayes discrimination rule?

Let us assume that the two populations, Π1 = {Exp(λ1), Alt(p1)}� and Π2 =
{Exp(λ2), Alt(p2)}�, are characterized by the exponential distribution with
parameter λj and the alternative distribution with parameter pj , j = 1, 2.
The corresponding likelihood can be written as:

Lj(x1, x2) = λj exp(−λjx1){pjx2 + (1 − pj)(1 − x2)}.

Since x2 has the alternative distribution, it can have only two possible out-
comes.

Assuming that x2 = 1, we allocate the observation (x1, x2)� to Π1 if
L1(x1, 1) ≥ L2(x1, 1), i.e.,
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L1(x1, 1)/L2(x1, 1) ≥ 1
λ1p1

λ2p2
exp {−x1(λ1 − λ2)} ≥ 1

log
λ1p1

λ2p2
− x1(λ1 − λ2) ≥ 0

x1(λ1 − λ2) ≤ log
λ1p1

λ2p2

Similarly, if x2 = 0, we allocate the observation (x1, x2)� to Π1 if

x1(λ1 − λ2) ≤ log
λ1(1 − p1)
λ2(1 − p2)

.

Combining both cases and assuming that λ1 < λ2, the discriminant rule R1

can be written as:
{(

x1

x2

)

: x1 ≥ λ1{x2p1 + (1 − x2)(1 − p1)} − λ2{x2p2 + (1 − x2)(1 − p2)}
λ1 − λ2

}

.

If the prior probabilities of Π1 = Exp(λ1) and Π2 = Exp(λ2) are π1 and
π2 = 1−π1, respectively, the Bayes rule can be derived by comparing πiLi(x),
i = 1, 2, exactly as in Exercise 12.3:

R1 =
{

x : x ≥ log π1λ1 − log π2λ2

λ1 − λ2

}

.

Now, it is easy to see that the conditional discriminant rule obtained for the
two dimensional random vector under the condition x2 = 1 is equivalent to the
Bayes discriminant rule for exponential distribution with π1 = p1/(p1 + p2).
Similarly, the conditional discriminant rule if x2 = 0 is a Bayes discriminant
rule with π1 = (1 − p1)/(2 − p1 − p2).

EXERCISE 12.5. Apply the Bayes rule to the car data in Table A.4 in order
to discriminate between U.S., Japanese, and European cars. Consider only the
variable milage (miles per gallon) and take the relative frequencies as prior
probabilities.

The three regions of origins in the data set are denoted by numbers 1, 2, and
3 standing for U.S., Japanese, and European cars, respectively. Based on the
74 observations given in Table A.4, we will construct a discriminant rule that
would allow us to classify a new (75th) car with unknown origin.

Let us start with the maximum likelihood discriminant rule. Usually, the ML
rule is based upon assumptions of normality. However, plots of the observed
milage suggest that the normality is violated. Hence, instead of mileage mea-
sured in miles per gallon, we analyze fuel efficiency measured in liters per
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100 kilometers. The averages in U.S., Japan, and Europe are: x1 = 12.5207,
x2 = 9.4577, x3 = 10.7712. On average, Japanese cars (group 2) are more fuel
efficient than European and U.S. cars.

The ML discriminant rule is calculated according to the description given in
Exercise 12.1. In Figure 12.1, we plot the three point clouds corresponding to

Fig. 12.1. Discrimination of the three regions according to “liters per 100km” with
the ML discriminant rule. SMSdisccar

the three regions and, as vertical lines, we show also the points that separate
the discriminant rules R1, R2, and R3. The lowest point cloud (squares) in
Figure 12.1 contains U.S. cars, the middle point (circles) cloud the Japanese,
and the top point cloud (triangles) the European cars. The correctly clas-
sified cars are denoted by empty symbols whereas the filled symbols denote
misclassified cars. The counts are given in Table 12.1.

R1: U.S. R2: JPN R3: EUR

Group 1 (U.S. ) 33 11 8
Group 2 (Japanese) 2 7 2
Group 3 (European) 3 5 3

Table 12.1. The true region of origins and the region suggested by the ML dis-
criminant rule based on fuel efficiency. The number of correct classifications for each
region is given on the diagonal of the table.

The apparent error rate (APER), defined as the percentage of misclassified
observations is (11 + 8 + 2 + 2 + 3 + 5)/79 = 41.89%. It seems that the

rule is not particularly good since we have less than 60% chance of correct
classification. Moreover, this estimate is based on the observations which were
used to construct the discriminant rule and it might be way too optimistic.
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Let us now consider the Bayes rule which is based on the comparison of the
likelihoods weighted by the prior probabilities of the groups. More formally,
we allocate the new observation x to the population Πj maximizing

πjLj(x) = πjfj(x) = πj |2πΣ|−1/2 exp
{

−1
2
(x − µj)�Σ−1(x − µj)

}

,

where πj , j = 1, . . . , J are the prior probabilities of the respective populations.

Similarly as in Exercise 12.1, this problem is equivalent to minimizing

δ2(x, µj , πj) = (x − µj)�Σ−1(x − µj) − log πj

= {Σ−1/2(x − µj)}�Σ−1/2(x − µj) − log πj .

For J = 2, the observation x is allocated to Π1 if

(x − µ1)�Σ−1(x − µ1) − log π1 ≤ (x − µ2)�Σ−1(x − µ2) − log π2.

Rearranging terms leads to

log π1 − log π2 ≥ −2µ�
1 Σ−1x + 2µ�

2 Σ−1x + µ�
1 Σ−1µ1 − µ�

2 Σ−1µ2

log π1 − log π2 ≥ 2(µ2 − µ1)�Σ−1x + (µ1 − µ2)�Σ−1(µ1 + µ2)

log π2 − log π1 ≤ (µ1 − µ2)�Σ−1{x − 1
2
(µ1 + µ2)}

log
π2

π1
≤ α�(x − µ),

where α = Σ−1(µ1 − µ2) and µ = 1
2 (µ1 + µ2). Hence, the Bayes discriminant

rule can be written as:

R1 =
{

x : α�(x − µ) ≥ log
π2

π1

}

.

In our car data example, we use the relative frequencies observed in the data
set, π1 = 0.7027, π2 = 0.1486, π3 = 0.1486, as the prior probabilities.

The resulting discriminant rule is graphically displayed in Figure 12.2. Notice
that with these weights, it is impossible to classify any new observation as a
European car.

The same results are given in Table 12.2. The apparent error rate is equal to
28.38%. Obviously, the Bayes discriminant rule leads to better results since it
give large weights to U.S. cars which constitute more than 60% of the entire
data set.

EXERCISE 12.6. Derive simple expressions for matrices W and B and the
Fisher discriminant rule in the setup of the Swiss bank notes data set given
in Table A.2.
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Fig. 12.2. Discrimination of the three regions according to “liters per 100km” using
the Bayes rule. SMSdiscbaycar

R1: U.S. R2: JPN R3: EUR

Group 1 (U.S.) 51 1 0
Group 2 (Japanese) 9 2 0
Group 3 (European) 10 1 0

Table 12.2. The true region of origins and the region suggested by the Bayes
discriminant rule based on fuel efficiency. The number of correct classifications for
each region is given on the diagonal of the table.

.

The Swiss bank notes data set, X , contains six measurements taken on 100
genuine and 100 counterfeit bank notes. Let us denote the measurements taken
on genuine and counterfeit by Xg and Xf , respectively. The corresponding
linear combinations are Y = Xa, Yg = Xga, and Yf = Xfa.

The within-group sum of squares (12.1) satisfies the relation

Y�
f HfYf + Y�

g HgYg = a�Wa,

where Hf and Hg denote the appropriate centering matrices of dimensions
nf = ng = 100. Observe that

a�Wa = a�(X�
f HfXf + X�

g HgXf )a

and, hence, the matrix W can be written as:

W = X�
f HfXf + X�

g HgXg = HfX�
f HfXf + HgX�

g HgXg

= nfSf + ngSg = 100(Sf + Sg),

where Sg and Sf denote the empirical covariances w.r.t. the genuine and
counterfeit bank notes.
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For the between-group sum of squares (12.2) we have

a�Ba = nf (yf − y)2 + ng(yg − y)2,

where y, yf , and yg denote respectively the sample means of Y, Yf , and Yg.
It follows that

a�Ba = a�{nf (xf − x)(xf − x)� + ng(xg − x)(xg − x)�}a,

where x, xf , and xg denote respectively the column vectors of sample means
of X , Xf , and Xg. Hence, we obtain

B = nf (xf − x)(xf − x)� + ng(xg − x)(xg − x)�

= 100{(xf − x)(xf − x)� + (xg − x)(xg − x)�}

= 100

{
(

xf − xf + xg

2

)(

xf − xf + xg

2

)�

+
(

xg − xf + xg

2

)(

xg − xf + xg

2

)�}

= 25(xf − xg)(xf − xg)�.

The vector a maximizing the ratio a�Ba/a�Wa can be calculated as the
eigenvector of W−1B corresponding to the largest eigenvalue, see Härdle &
Simar (2003, theorem 12.4).

For the Swiss bank notes, it is easy to see that the matrix W−1B can have at
most one nonzero eigenvalue since rankB ≤ 1. The nonzero eigenvalue λ1 can
be calculated as:

λ1 =
p
∑

j=1

λj = trW−1B = trW−125(xf − xg)(xf − xg)�

= 25 tr(xf − xg)�W−1(xf − xg) = 25(xf − xg)�W−1(xf − xg).

From the equation:

W−1BW−1(xf − xg) = 25(xf − xg)�W−1(xf − xg)W−1(xf − xg)

it follows that the eigenvector of W−1B corresponding to the largest eigenvalue
is a = W−1(xf −xg). Assuming that yf > yg, the corresponding discriminant
rule can be formally written as:

Rf = {x : (xf − xg)�W−1(x − x) ≥ 0}.

EXERCISE 12.7. Compute Fisher’s linear discrimination function for the 20
bank notes from Exercise 11.6. Apply it to the entire bank data set. How many
observations are misclassified?
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Applying the formulas derived in the previous Exercise 12.6 with nf =
ng = 10, using the randomly chosen observations with indices 7, 8, 16,
39, 71, 73, 89, 94, 94, 100, 110, 121, 129, 131, 149, 150, 154, 161, 163,
and 174, we obtain xg = (214.72, 129.79, 129.64, 8.00, 10.18, 141.48)�, xf =
(214.85, 130.13, 130.13, 10.33, 11.31, 139.53)�, and

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3.36 0.40 0.90 −3.32 −0.00 0.38
0.40 1.49 0.95 0.41 −0.52 0.91
0.90 0.95 1.91 2.43 −1.38 1.31

−3.32 0.41 2.43 18.02 −10.17 2.86
−0.00 −0.52 −1.38 −10.17 11.46 −2.39

0.38 0.91 1.31 2.86 −2.39 3.66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The eigenvector of W−1B corresponding to the largest eigenvalue can then be
calculated as

(xf − xg)�W−1 = (−1.56,−1.19, 1.38,−1.21,−0.88, 0.87)�.

The new observation x will be allocated as a counterfeit bank note if a�(x −
x) ≥ 0. Calculating the Fisher linear discriminant rule for all observations in
the Swiss bank notes data set, we obtain altogether six genuine bank notes
classified as counterfeit. None of the counterfeit bank notes is classified as
genuine. Hence, the estimated error rate is 6/200 = 3%. This estimate might
be too optimistic since some of the bank notes used for the construction were
used also for the evaluation of the rule.

EXERCISE 12.8. Derive a discriminant rule based on the ML method with
J = 2 minimizing the expected cost misclassification considering the prior
probability π1 = 1

3 and the expected cost of misclassification C(2|1) = 2C(1|2).

The expected cost of misclassification is given by ECM = C(2|1)p21π1 +
C(1|2)p12π2, where p21 is the probability of wrong classification of observation
coming from group 1 and p12 is the probability of wrong classification of
observation coming from group 2.

Assuming that the populations Π1 and Π2 are characterized by the probability
densities f1(.) and f2(.), we can derive the loss L(R1) as a function of the
discriminant rule R1:

L(R1) = C(2|1)π1p21 + C(1|2)π2p12

= C(2|1)π1

∫

R2

f1(x)dx + C(1|2)π2

∫

R1

f2(x)dx

= C(2|1)π1

∫

{1 − I(x ∈ R1)}f1(x)dx + C(1|2)π2

∫

I(x ∈ R1)f2(x)dx

= C(2|1)π1 +
∫

I(x ∈ R1){C(1|2)π2f2(x) − C(2|1)π1f1(x)}dx.
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The loss L(R1) is obviously minimized if R1 is chosen so that x ∈ R1 is equiv-
alent to C(1|2)π2f2(x)−C(2|1)π1f1(x) < 0. Hence, the optimal discriminant
rule is:

R1 = {x : C(1|2)π2f2(x) − C(2|1)π1f1(x) < 0}
= {x : C(2|1)π1f1(x) > C(1|2)π2f2(x)}

=
{

x :
f1(x)
f2(x)

>
C(1|2)π2

C(2|1)π1

}

.

Assuming that π1 = 1
3 and that the expected cost of misclassification C(2|1) =

2C(1|2) leads π2 = 1− π1 = 2/3 = 2π1 and the resulting discriminant rule is:

R1 =
{

x :
f1(x)
f2(x)

>
C(1|2)2π1

2C(1|2)π1

}

=
{

x :
f1(x)
f2(x)

> 1
}

= {x : f1(x) > f2(x)} ,

i.e., we obtain the ML discriminant rule. SMSdisfbank

EXERCISE 12.9. Explain the effect of changing π1 or C(1|2) on the relative
location of the region Rj , j = 1, 2 in Exercise 12.8.

In Exercise 12.8, we have derived the discriminant rule

R1 =
{

x :
f1(x)
f2(x)

>
C(1|2)π2

C(2|1)π1

}

.

Increasing the cost of misclassification C(1|2) would increase the constant in
the definition of R1 and, hence, it would make the region R1 smaller.

Increasing the prior probability π1 of the population Π1 would make the same
constant smaller and the region R1 would grow.

EXERCISE 12.10. Prove that Fisher’s linear discrimination function is iden-
tical to the ML rule for multivariate normal distributions with equal covariance
matrices (J = 2).

The ML rule in this situation has been derived in Exercise 12.1,

RML
1 = {x : α�(x − µ) ≥ 0},

where α = Σ−1(µ1 − µ2) and µ = 1
2 (µ1 + µ2).

Fisher’s linear discrimination rule derived for J = 2 in Exercise 12.6 is:

RF
1 = {x : (x1 − x1)�W−1(x − x) ≥ 0}.

In the same exercise, we have also shown that W = nS, where S denotes
the pooled covariance matrix and n the number of observations. Defining the
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empirical version of α as α̂ = (x1 − x2)�S−1, we can rewrite the Fisher’s
discriminant rule as:

RF
1 = {x : α̂�(x − x) ≥ 0}.

Comparing this expression with the ML discriminant rule, we see that Fisher’s
rule RF

1 may be interpreted as the empirical version (estimate) of the ML
discriminant rule RML

1 .

EXERCISE 12.11. Suppose that the observations come from three distinct
populations, Π1, Π2, and Π3, characterized by binomial distributions:

Π1 : X ∼ Bi(10, 0.2) with the prior probability π1 = 0.5;
Π2 : X ∼ Bi(10, 0.3) with the prior probability π2 = 0.3;
Π3 : X ∼ Bi(10, 0.5) with the prior probability π3 = 0.2.

Use the Bayes method to determine the discriminant rules R1, R2, and R3.

The corresponding Bayes discriminant rules Rj for j = 1, 2, 3 are defined as:

Rj = {x ∈ {0, 1, . . . , 9, 10} : πjfj(x) ≥ πifi(x) for i = 1, 2, 3} .

x f1(x) f2(x) f3(x) π1f1(x) π2f2(x) π3f3(x) πjfj(x) j

0 0.107374 0.028248 0.000977 0.053687 0.008474 0.000195 0.053687 1

1 0.268435 0.121061 0.009766 0.134218 0.036318 0.001953 0.134218 1

2 0.301990 0.233474 0.043945 0.150995 0.070042 0.008789 0.150995 1

3 0.201327 0.266828 0.117188 0.100663 0.080048 0.023438 0.100663 1

4 0.088080 0.200121 0.205078 0.044040 0.060036 0.041016 0.060036 2

5 0.026424 0.102919 0.246094 0.013212 0.030876 0.049219 0.049219 3

6 0.005505 0.036757 0.205078 0.002753 0.011027 0.041016 0.041016 3

7 0.000786 0.009002 0.117188 0.000393 0.002701 0.023438 0.023438 3

8 0.000074 0.001447 0.043945 0.000037 0.000434 0.008789 0.008789 3

9 0.000004 0.000138 0.009766 0.000002 0.000041 0.001953 0.001953 3

10 0.000000 0.000006 0.000977 0.000000 0.000002 0.000195 0.000195 3

Table 12.3. The values of the likelihood and Bayesian likelihood for three binomial
distributions.

The values of πifi(x), for i = 1, . . . , 3 and x = 0, . . . , 10 are given in Table 12.3
from which it directly follows that the discriminant rules are:

R1 = {0, 1, 2, 3},
R2 = {4},
R3 = {5, 6, 7, 8, 9, 10}.
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EXERCISE 12.12. Use the Fisher’s linear discrimination function on the
WAIS data set (Table A.21) and evaluate the results by re-substitution to
calculate the probabilities of misclassification.

The WAIS data set contains results of four subtests of the Wechsler Adult
Intelligence Scale for two categories of people. Group 2 contains 12 observa-
tions of those presenting a senile factor and group 1 contains 37 people serving
as a control.

Applying the formulas derived in Exercise 12.6 and proceeding as in Exer-
cise 12.7, we obtain the eigenvector

(x2 − x1)�W−1 = (−0.0006,−0.0044,−0.0002,−0.0095)�.

Calculating the Fisher’s discriminant rule from all observations leads to 4 mis-
classified observations in group 2 and 8 misclassified observations in group 1.

Hence, the apparent error rate (APER) is equal to (4 + 8)/49 = 24.49%. The
disadvantage of this measure of the quality of the discriminant rule is that it
is based on the same observations that were used to construct the rule.

In order to obtain a more appropriate estimate of the misclassification prob-
ability, we may proceed in the following way:

1. Calculate the discrimination rule from all but one observation.

2. Allocate the omitted observation according to the rule from step 1.

3. Repeat steps 1 and 2 for all observations and count the number of correct
and wrong classifications.

The estimate of the misclassification rate based on this procedure is called the
actual error rate (AER).

Running the algorithm for the WAIS data set, we misclassify 4 observations
in group 2 and 11 observations in group 1. The AER is (4+11)/49 = 30.61%.

Hence, if a new patient arrives, he will be correctly classified with probability
approximately 70%. SMSdisfwais
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Correspondence Analysis

The method was no doubt suggested to Clay’s ingenious mind by the
colour of his accomplice’s hair.
Sherlock Holmes in “The Red-Headed League”

Contingency tables contain information about the joint distribution of statis-
tical variables. For a large number of classes (for each variable) the resulting
n × p frequency matrix can be hard to interpret. Correspondence analysis is
a tool for developing simple indices that show us relations between row and
column categories.

These indices tell us, for example, which column categories have more weight
in a row category and vice versa. A typical example is the statistical analysis
of consumer preferences.

Suppose that one has recorded the frequencies of newspaper distribution
across regions. If the number of newspapers and regions is big, then one sits
in front of a huge n × p matrix with numbers from which we have to tell
which region prefers which newspaper. Correspondence analysis provides a
way out of this: reducing the dimensionality of the table via factors helps to
concentrate on the most important variables.

The basic idea is to extract the indices in a decreasing order of importance
so that the main information of the table can be summarized in spaces with
smaller dimensions. If only two factors (indices) are used, the results can be
shown in two-dimensional graphs. The dimension reduction techniques are
similar to the principal component method but, due to the different character
of the categorical data, we decompose a measure of dependency (χ2-statistic)
between the variables rather than the variance.

A contingency table X (n×p) consists of frequencies of joint occurrence of row
and column events—the entry xij in the table X is the number of observations
in a sample that simultaneously fall in the ith row category and the jth column
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category. The symbol xi• =
∑n

j=1 xij denotes the number of observations
falling into the ith row category. Similarly, x•j =

∑n
i=1 xij . The total number

of observations is x•• =
∑n

i=1 xi• =
∑n

j=1 x•j . For simplification, define the
matrices A (n × n) and B (p × p) as

A = diag(xi•) and B = diag(x•j). (13.1)

These matrices provide the marginal row frequencies a(n×1) = (x1•, . . . , xn•)�

and the marginal column frequencies b(p × 1)(x•1, . . . , x•p)�:

a = A1n and b = B1p. (13.2)

Eij is the estimated expected value in the (i, j)th category under the assump-
tion of independence, i.e.,

Eij =
xi• x•j

x••
. (13.3)

Technically speaking, the basic idea is to decompose the χ2-statistic of depen-
dence:

t =
n
∑

i=1

p
∑

j=1

(xij − Eij)2/Eij . (13.4)

Under the hypothesis of independence of the row and column categories, the
statistic t has a χ2

(n−1)(p−1) distribution.

The correspondence analysis is targeted toward the analysis of the contribu-
tions to the χ2-statistic (13.4):

cij = (xij − Eij)/E
1/2
ij , (13.5)

which may be viewed as a measure of the departure of the observed xij

from independence. The desired lower-dimensional decomposition is then
produced by the singular value decomposition (SVD) of the matrix C =
(cij)i=1,...,n;j=1,...,p. The exact expressions for the row and column factors (rk

and sk, respectively) are given in Exercise 13.2. Their mean and variance and
the relationship to the χ2-statistic (13.4) are investigated in Exercises 13.3
and 13.4.

Both the basic properties of the factors and some applications of correspon-
dence analysis are demonstrated in the following exercises.

EXERCISE 13.1. Show that the matrices A−1XB−1X� and B−1X�A−1X
have an eigenvalue equal to 1 and that the corresponding eigenvectors are
proportional to (1, . . . , 1)�.

It suffices to show that for A−1XB−1X�. The second equation follows by
exchanging rows and columns of the contingency table X . Eigenvalue λ and
eigenvector γ are solutions of the equation
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A−1XB−1X�γ = λγ (13.6)

and it remains to show that (13.6) is satisfied for λ = 1 and γ = (1, . . . , 1)� =
1n:
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Hence, (13.6) is satisfied for λ = 1 and γ = 1n and we have proven the
statement proposed in Exercise 13.1.

EXERCISE 13.2. Let δk and γk denote the kth eigenvectors of C�C and CC�,
respectively. Verify the relations:
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C
√

b = 0 and C�√a = 0, (13.7)

δ�k
√

b = 0 and γ�
k

√
a = 0, (13.8)

r�k a = 0 and s�k b = 0. (13.9)

Notice that the second part of all equations follows by applying the first part
to the contingency table X�.

The ith element of the vector C(n×p)

√
b(p×1) is

∑p
j=1

xij−Eij√
Eij

√
x•j , for i =

1, ..., n. Using simple algebra we write
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This proves the first part of (13.7). The second part follows from the symmetry
of the situation.

The symbol δ�k in relation (13.8) denotes the kth eigenvector of C�C and
γ�

k is the kth eigenvector of CC�. From the properties of SVD (Härdle &
Simar 2003, chapter 8) we know the relationship between δk and γk:

δk =
1√
λk

C�γk and γk =
1√
λk

Cδk. (13.10)

Applying the above proved formula (13.7) leads directly

δ�k
√

b =
1√
λk

γ�
k C

√
b =

1√
λk

γ�
k 0 = 0
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and
γ�

k

√
a =

1√
λk

δ�k C�√a =
1√
λk

δ�k 0 = 0.

The row coordinates rk and the column coordinates sk are defined as

rk = A− 1
2 Cδk

sk = B− 1
2 C�γk. (13.11)

Using this definition and (13.7) it follows that

r�k a = δ�k C�A− 1
2 a = δ�k C�√a = δ�k 0 = 0

and
s�k b = γ�

k CB− 1
2 b = γ�

k C
√

b = γ�
k 0 = 0.

The vectors of row and column coordinates, rk and sk, are the row and column
factors.

EXERCISE 13.3. Rewrite the χ2-statistic (13.4) in terms of the matrix C.
Describe the relationship of the χ2-statistic to the SVD of C.

The SVD of C yields C = ΓΛ∆� with Λ = diag(λ1/2
1 , . . . , λ

1/2
R ), where

λ1, . . . , λR are the nonzero eigenvalues of both C�C and CC� (Härdle &
Simar 2003, chapter 8).

Now, it is easy to see that

t =
n
∑

i=1

p
∑

j=1

(xij − Eij)2/Eij =
n
∑

i=1

p
∑

j=1

c2
ij = tr(CC�) =

R
∑

k=1

λk.

Hence, the SVD of the matrix C decomposes the χ2-statistic t. In Exercise 13.4,
we will show that also the variances of the row and column factors provide a
decomposition of the χ2-statistic.

EXERCISE 13.4. Calculate the means and variances of the row and column
factors rk and sk.

Using the relation (13.9), it is easy to see that the means (weighted by the
row and column marginal frequencies) are:

rk =
1

x••
r�k a = 0,

sk =
1

x••
s�k b = 0.

Hence, both row and column factors are centered.



246 13 Correspondence Analysis

For the variances of rk and sk we have the following:

Var(rk) =
1

x••

n
∑

i=1

xi•r
2
ki = r�k Ark/x•• = δ�k C�Cδk/x•• =

λk

x••
,

Var(sk) =
1

x••

p
∑

j=1

x•js
2
kj = s�k Bsk/x•• = γ�CC�γk/x•• =

λk

x••
.

Hence, the proportion of the variance explained by the kth factor is

Var(rk)/
R
∑

i=1

Var(rk) = λk/

R
∑

i=1

λi.

The variance of the kth row factor, Var(rk), can be further decomposed into
the absolute single row contributions defined as

Ca(i, rk) =
xi•r

2
ki

λk
, for i = 1, . . . , n, k = 1, . . . , R.

Similarly, the proportions

Ca(j, sk) =
x•js

2
kj

λk
, for j = 1, . . . , p, k = 1, . . . , R

are the absolute contributions of column j to the variance of the column factor
sk. These absolute contributions may help to interpret the row and column
factors obtained by the correspondence analysis.

EXERCISE 13.5. Do a correspondence analysis for the car marks data in
Table A.5. Explain how this data set can be considered as a contingency table.

The car marks data set consists of averaged marks. The numbers could be
seen as “number of points” corresponding to the quality of cars (the worse
the more points). In this way, the entries in the data set can be interpreted
as counts and the data set as a contingency table.

Correspondence analysis is based on SVD of matrix C. The eigenvalues tell
us the proportion of explained variance. From Table 13.1 we can see that the
first two eigenvalues account for 93% of the variance. Here, representation in
two dimensions is satisfactory.

Figure 13.1 shows the projections of the rows (the 23 types of cars) and
columns (the 8 features). The projections on the first 3 axis along with their
absolute contributions to the variance of the axis are given in Table 13.2 for
the cars and in Table 13.3 for features.
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nr. of factors eigenvalues cumulated percentage

1 31.0730 0.8133
2 4.5016 0.9311
3 1.1900 0.9623
4 0.0000 0.9623
5 0.5806 0.9775
6 0.1849 0.9823
7 0.3454 0.9914
8 0.3298 1.0000

Table 13.1. Eigenvalues and cumulated percentage of explained variance for the
car marks data.

Cars r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)

Audi −0.1862 0.0536 0.0114 0.0272 0.0156 0.0027
BMW −0.4385 0.0650 −0.0702 0.1374 0.0208 0.0919
Cit 0.1498 0.0267 0.0042 0.0205 0.0045 0.0004
Ferr −0.4400 −0.2143 0.0128 0.1663 0.2725 0.0037
Fiat 0.2356 0.0385 0.0781 0.0502 0.0092 0.1442
Ford 0.1161 −0.0470 0.0432 0.0105 0.0119 0.0380
Hyun 0.1421 −0.0182 0.0212 0.0153 0.0017 0.0089
Jagu −0.4657 −0.1493 −0.0029 0.1633 0.1159 0.0002
Lada 0.2162 −0.0192 −0.0319 0.0448 0.0024 0.0255
Mazd 0.0971 −0.0659 0.0671 0.0079 0.0250 0.0979
Merc −0.3406 0.1659 −0.0425 0.0806 0.1320 0.0327
Mit −0.0349 0.0072 0.0249 0.0010 0.0003 0.0127
Nis 0.1937 −0.0060 −0.0143 0.0308 0.0002 0.0044
OpCo 0.1045 0.0882 0.0108 0.0078 0.0392 0.0022
OpVe −0.1142 0.0463 0.0338 0.0093 0.0105 0.0212
Peug 0.0889 0.0072 −0.0012 0.0065 0.0003 0.0000
Rena 0.0532 −0.0062 0.0323 0.0022 0.0002 0.0215
Rov −0.1454 −0.0341 −0.0199 0.0171 0.0065 0.0083
Toy 0.0537 −0.0272 0.0545 0.0022 0.0040 0.0601
Tra 0.2918 −0.0501 −0.1061 0.0937 0.0191 0.3234
VwGo −0.2156 0.1833 −0.0043 0.0343 0.1708 0.0004
VwPa −0.0303 0.1441 0.0094 0.0007 0.1024 0.0016
War 0.2493 −0.0669 −0.0577 0.0702 0.0349 0.0981

Table 13.2. Coefficients and absolute contributions for the cars in car marks data.
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Feature s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

Econ. −0.2810 0.0023 −0.0821 0.1923 0.0000 0.4292
Service 0.1239 −0.0553 0.0271 0.0348 0.0478 0.0433
Value 0.2149 −0.0407 −0.0070 0.1077 0.0267 0.0030
Price −0.4254 0.0376 0.0582 0.4384 0.0236 0.2146
Design 0.1553 0.1024 0.0545 0.0571 0.1714 0.1836
Sport 0.1587 0.1436 −0.0431 0.0646 0.3653 0.1244
Safety 0.1722 −0.1121 −0.0046 0.0721 0.2110 0.0013
Easy −0.1263 −0.1040 0.0033 0.0329 0.1540 0.0006

Table 13.3. Coefficients and absolute contributions for features in car marks data.
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Fig. 13.1. Projections of rows and columns for car marks data. SMScorrcarm
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Figure 13.1 shows that price on the left side and value on the right side
are most strongly responsible for the variation on the first axis. The second
axis can be described as a contrast between sport and easy and safe. This
interpretation is confirmed in Table 13.3, where in the first column factor s1,
the difference between the coefficient of price (−0.42535) and value (0.21488)
is the largest, and in the second column factor s2, the difference between the
coefficient of sport (0.14364) and safety (−0.1121) is the largest. These two
axes are quite sensible since expensive cars (with high marks in price) tend
to depreciate faster (with low marks in value), and sport cars tend to be less
safe and less easily handled.

In Figure 13.1, Mitsubishi, Toyota, Renault and Peugeot are quite close to the
center, which means they are kind of average cars (with average marks in the
8 features). On the left we see the more expensive cars and on the right the
cheaper ones. Cars in the lower sector are more safe and easily handled than
those on the upper sector. Among all cars, Ferrari plays an important role
on each axis. On the first axis it is opposed to Trabant and Wartburg, which
are the cheapest (lowest marks in price). On the second axis it is opposed to
Volkswagen Golf and Mercedes. About half of the cars are concentrated in the
right part of the picture and not far from the origin, these the most common
types of cars. They typically have strong marks in service and value (located
very close to service and value), and a little far from economy which means
they are not very economical, and far from price which means that they are
cheap.

EXERCISE 13.6. Compute the χ2-statistic and test independence for the
French baccalauréat data.

The χ2-statistic of independence compares observed counts xij to their
estimated (under the hypothesis of independence) expected values Eij (13.3):

t =
n
∑

i=1

p
∑

j=1

(xij − Eij)2/Eij . (13.12)

Under the hypothesis of independence, t has the χ2
(n−1)(p−1) distribution.

For the French baccalauréat data, the test statistic is t = 6670.6 and the 0.95
quantile of the χ2-distribution χ2

(n−1)(p−1) = 199.24 SMSchi2bac. The test
statistic is larger then the critical value and we reject independence between
the row and column categories.

EXERCISE 13.7. Prove that C = A−1/2(X − E)B−1/2√x•• and E = ab�x−1
••

and verify:
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rk =
√

x••
λk

A−1X sk, (13.13)

sk =
√

x••
λk

B−1X�rk. (13.14)

Some properties of the row and column coordinates rk and sk and of the
matrix C were discussed already in Exercise 13.2. Using the definitions of A,
B, C, and Eij , we have
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The relation E = ab�x−1
•• is very easy to show since
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It follows from definition (13.11) of sk and from the relation (13.10) between
γk and δk that

sk = B−1/2C�γk =
√

λkB−1/2δk.

Next, using the definition (13.11) of rk and applying the above proved prop-
erties and (13.9), we have

rk = A−1/2Cδk =
√

x••A−1/2A−1/2(X − E)B−1/2δk

=
√

x••
λk

A−1(X − E)sk =
√

x••
λk

A−1

(

X sk − ab�sk

x••

)

=
√

x••
λk

A−1X sk.

The expression for sk follows exactly in the same way.

EXERCISE 13.8. Do the full correspondence analysis of the U.S. crime data
in Table A.18, and determine the absolute contributions for the first three
axes. How can you interpret the third axis? Try to identify the states with one
of the four regions to which it belongs. Do you think the four regions have a
different behavior with respect to crime?

The results of the correspondence analysis for the U.S. crime data are pre-
sented in Table 13.4 containing the projections and absolute contributions of
the rows (states) and in Table 13.5 which contains the corresponding projec-
tions and absolute contributions of the columns (crimes).

The third axis could be interpreted as contrast between robbery versus bur-
glary. The states with largest contributions to the 3rd axis are MA in contrast
to IL, MI, and MD.

The differences between different regions can be best assessed in a graphics.
Figure 13.2 shows the projections of all states and crimes where each region is
colored differently. The biggest differences are between states from Northeast
(squares) and South (triangles). The distributions of the crimes in Midwest
(triangles) and West (crosses) is very similar, the points are relatively close
to the origin.
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State r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)
ME −0.1188 −0.0382 0.1062 0.0059 0.0012 0.0151
NH −0.0639 0.0242 0.1573 0.0016 0.0005 0.0308
VT −0.0778 −0.1068 0.2051 0.0026 0.0098 0.0578
MA 0.3142 0.2536 0.2139 0.0840 0.1088 0.1240
RI 0.1334 0.2381 0.1228 0.0173 0.1093 0.0466
CT 0.0683 0.0849 0.1301 0.0037 0.0114 0.0427
NY 0.3812 −0.0012 −0.1769 0.1585 0.0000 0.1085
NJ 0.2003 0.1111 0.0149 0.0325 0.0199 0.0006
PA 0.2300 0.0569 −0.0004 0.0258 0.0031 0.0000
OH 0.0834 0.0941 −0.0465 0.0056 0.0143 0.0056
IN 0.0489 0.0816 0.0039 0.0018 0.0099 0.0000
IL 0.1756 0.0415 −0.1926 0.0265 0.0029 0.1014
MI 0.0991 −0.0506 −0.1442 0.0123 0.0064 0.0828
WI −0.2485 0.1085 −0.0626 0.0380 0.0144 0.0077
MN −0.0621 0.1099 −0.0253 0.0028 0.0175 0.0015
IA −0.2700 0.0779 −0.0680 0.0416 0.0069 0.0084
MO 0.1541 0.0076 −0.0255 0.0227 0.0001 0.0020
ND −0.3916 0.1048 −0.1064 0.0595 0.0085 0.0140
SD −0.2841 −0.0295 −0.0421 0.0377 0.0008 0.0026
NE −0.0718 0.0516 −0.0487 0.0030 0.0031 0.0044
KS −0.1629 0.0007 −0.0459 0.0220 0.0000 0.0056
DE 0.0392 0.0333 0.0305 0.0015 0.0021 0.0029
MD 0.1912 −0.0271 −0.2101 0.0386 0.0015 0.1483
VA −0.0642 −0.0259 −0.0442 0.0031 0.0010 0.0047
WV −0.0634 −0.1672 0.0255 0.0013 0.0174 0.0006
NC 0.0344 −0.3622 0.0569 0.0007 0.1567 0.0062
SC 0.0396 −0.1880 0.1168 0.0011 0.0491 0.0303
GA −0.0052 −0.0828 −0.0041 0.0000 0.0105 0.0000
FL 0.0080 −0.1259 −0.0194 0.0000 0.0381 0.0015
KY 0.1314 −0.0094 0.0744 0.0097 0.0000 0.0100
TN 0.2057 −0.1591 0.1108 0.0231 0.0274 0.0213
AL 0.1021 −0.2626 0.1161 0.0057 0.0750 0.0235
MS −0.0162 −0.3623 0.0515 0.0000 0.0772 0.0025
AR −0.0220 −0.2719 0.1117 0.0003 0.0811 0.0219
LA 0.1515 −0.1232 −0.0191 0.0173 0.0227 0.0009
OK −0.0427 −0.0422 0.0531 0.0012 0.0024 0.0061
TX 0.0313 −0.0667 −0.0004 0.0009 0.0082 0.0000
MT −0.2471 0.0595 −0.0339 0.0400 0.0046 0.0024
ID −0.3161 −0.0051 −0.0575 0.0717 0.0000 0.0075
WY −0.2884 0.0157 −0.0447 0.0562 0.0003 0.0043
CO −0.0183 0.0296 0.0164 0.0004 0.0021 0.0010
NM −0.0631 −0.0487 0.0493 0.0038 0.0045 0.0075
AZ −0.1042 −0.0097 −0.0091 0.0146 0.0003 0.0004
UT −0.2381 0.0833 −0.0466 0.0542 0.0132 0.0066
NV 0.0480 0.0278 0.0219 0.0030 0.0020 0.0020
WA −0.1148 −0.0005 0.0305 0.0146 0.0000 0.0033
OR −0.1266 −0.0141 −0.0127 0.0171 0.0004 0.0005
CA 0.0295 0.0095 0.0014 0.0013 0.0003 0.0000
AK 0.0057 0.0849 0.0210 0.0000 0.0124 0.0012
HI −0.1047 0.1307 0.0737 0.0131 0.0406 0.0207

Table 13.4. Coefficients and absolute contributions for regions according to
U.S. crimes. SMScorrcrime
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Crime s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

murder 0.1727 −0.4860 0.0643 0.0023 0.0366 0.0010
rape 0.0661 −0.1874 −0.0079 0.0008 0.0124 0.0000
robbery 0.5066 −0.0261 −0.4045 0.2961 0.0016 0.6009
assault 0.1807 −0.3933 0.0116 0.0503 0.4731 0.0007
burglary 0.0620 −0.0631 0.0830 0.0406 0.0837 0.2320
larceny −0.1199 0.0222 −0.0345 0.3176 0.0217 0.0835
auto theft 0.2644 0.2113 0.0785 0.2923 0.3710 0.0820

Table 13.5. Coefficients and absolute contributions for U.S. crimes.
SMScorrcrime

US crime data
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Fig. 13.2. Projection of rows (states) and columns (crimes) in U.S. crime
data. Northeast (square), Midwest (circle), South (triangle) and West (cross).
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EXERCISE 13.9. Repeat Exercise 13.8 with the U.S. health data in Table A.19.
Only analyze the columns indicating the number of deaths per state.

λj percentage of variance cumulated percentage

255.390 0.6046 0.6046
75.097 0.1778 0.7824
41.518 0.0983 0.8807
19.749 0.0468 0.9275
19.126 0.0453 0.9728
11.512 0.0273 1.0000
0.000 0.0000 1.0000

Table 13.6. Eigenvalues and explained proportion of variance for U.S. health Data.
SMScorrhealth

The eigenvalues and percentages of explained variance for all states are given
in Table 13.6. The first three factors explain 88% of the total variance. As
the third factor explains less than 10% of the dependency between the rows
and columns of the given contingency table, in the following analyses we will
concentrate mainly on the first two factors.

The plot in Figure 13.3 displays the projections of rows and columns. It sug-
gests that AK (Alaska) is very different from all other states (an outlier).
Repeating the analysis without Alaska—which is also geographically far away
from the other states—results in the plot in Figure 13.4. The differences bet-
ween the remaining 49 states are now more clear. The corresponding pro-
jection on the three axes and the absolute contributions are summarized in
Table 13.7 for the states and in Table 13.8 for causes of death.

Looking at the plot in Figure 13.4 (without Alaska) we could interpret the
first axis as an accident(+) factor with dominating states NV(+), NM(+) and
WY(+) versus RI(−). This first factor seems to be important in the West.
The second axis may be described as liver versus pneumonia flu factor. Large
values of the second factor are observed in the West (NM and NV) and in the
Northeast (RI). The majority of Midwest and Southern states have negative
values of the second factor.

From Table 13.8, we see that the third axis is the diabetes versus pulmonary
and pneumonia flu factor. The states with large value of this factor are lying
mainly in the South LA(+), DE(+), MS(+) in contrast to Western States
CO(−), OR(−), and AZ(−).

The regions have clearly different behavior with respect to causes of death.
We could even say that the axes of the graph divide the states into four groups
which correspond to the four U.S. regions. The biggest differences are observed
between Western and Midwestern states.
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State r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)
ME −0.0508 0.0365 −0.0321 0.0081 0.0143 0.0200
NH −0.0287 0.0302 −0.0115 0.0022 0.0084 0.0022
VT −0.0096 0.0091 −0.0409 0.0003 0.0008 0.0302
MA −0.0891 0.0201 −0.0342 0.0247 0.0043 0.0223
RI −0.1154 0.0803 0.0354 0.0427 0.0703 0.0247
CT −0.0634 0.0297 0.0009 0.0116 0.0087 0.0000
NY −0.1018 0.0113 −0.0233 0.0335 0.0014 0.0108
NJ −0.0984 0.0390 0.0098 0.0299 0.0159 0.0018
PA −0.1007 0.0131 0.0198 0.0336 0.0019 0.0080
OH −0.0791 0.0217 0.0136 0.0184 0.0047 0.0034
IN −0.0526 −0.0142 0.0146 0.0079 0.0019 0.0038
IL −0.0853 −0.0002 −0.0028 0.0213 0.0000 0.0001
MI −0.0602 0.0181 −0.0057 0.0100 0.0031 0.0006
WI −0.0840 −0.0237 0.0114 0.0203 0.0055 0.0023
MN −0.0396 −0.0317 −0.0211 0.0042 0.0091 0.0073
IA −0.0597 −0.0503 −0.0283 0.0113 0.0274 0.0156
MO −0.0439 −0.0179 −0.0147 0.0061 0.0035 0.0042
ND 0.0097 −0.0553 0.0358 0.0003 0.0281 0.0213
SD 0.0070 −0.1107 −0.0317 0.0002 0.1326 0.0196
NE −0.0414 −0.0701 −0.0423 0.0053 0.0516 0.0339
KS −0.0211 −0.0450 −0.0183 0.0013 0.0206 0.0061
DE −0.0405 0.0739 0.0668 0.0046 0.0525 0.0777
MD −0.0408 0.0710 0.0303 0.0043 0.0444 0.0147
VA −0.0181 0.0074 −0.0066 0.0008 0.0005 0.0007
WV −0.0293 −0.0298 0.0013 0.0028 0.0098 0.0000
NC 0.0096 −0.0212 0.0171 0.0002 0.0040 0.0048
SC 0.0300 −0.0355 0.0474 0.0023 0.0108 0.0348
GA 0.0450 −0.0255 0.0164 0.0051 0.0056 0.0042
FL −0.0388 0.0605 −0.0042 0.0052 0.0428 0.0004
KY 0.0040 −0.0191 0.0048 0.0000 0.0037 0.0004
TN −0.0109 −0.0322 −0.0009 0.0003 0.0100 0.0000
AL 0.0101 −0.0012 0.0441 0.0003 0.0000 0.0334
MS 0.0502 −0.0671 0.0641 0.0071 0.0430 0.0710
AR −0.0123 −0.0431 0.0132 0.0005 0.0201 0.0034
LA 0.0293 −0.0241 0.0938 0.0023 0.0052 0.1423
OK 0.0688 −0.0537 0.0268 0.0142 0.0293 0.0132
TX 0.0789 −0.0181 0.0374 0.0142 0.0025 0.0196
MT 0.1231 −0.0023 −0.0216 0.0407 0.0000 0.0077
ID 0.1303 −0.0223 −0.0297 0.0393 0.0039 0.0126
WY 0.3139 −0.0452 0.0095 0.1962 0.0138 0.0011
CO 0.1482 −0.0078 −0.0822 0.0449 0.0004 0.0848
NM 0.2959 0.1168 0.0364 0.1756 0.0930 0.0163
AZ 0.1107 0.0604 −0.0645 0.0301 0.0305 0.0629
UT 0.1280 −0.0434 0.0267 0.0273 0.0107 0.0073
NV 0.1778 0.1030 −0.0097 0.0733 0.0836 0.0013
WA 0.0346 0.0305 −0.0416 0.0030 0.0080 0.0269
OR 0.0198 0.0082 −0.0612 0.0011 0.0006 0.0620
CA 0.0278 0.0576 −0.0561 0.0020 0.0286 0.0491
HI 0.0744 0.0707 0.0298 0.0093 0.0284 0.0091

Table 13.7. Coefficients and absolute contributions for regions in U.S. health data
set. SMScorrhealth
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US health data
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Fig. 13.3. Projection of rows (states) and columns (causes of death) for U.S. health
data with Alaska. Northeast (square), Midwest (circle), South (triangle) and West
(cross). SMScorrhealth

Cause of death s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

accident 0.2990 −0.0333 0.0500 0.7453 0.0314 0.1283
cardiovascular −0.0372 −0.0274 0.0013 0.1072 0.1980 0.0008
cancer −0.0218 0.0520 0.0068 0.0165 0.3180 0.0099
pulmonary 0.1370 0.0456 −0.1070 0.0967 0.0364 0.3627
pneumonia flu 0.0708 −0.0711 −0.0953 0.0204 0.0700 0.2273
diabetes −0.0050 0.0899 0.1100 0.0000 0.0795 0.2153
liver 0.0826 0.1969 −0.0669 0.0138 0.2666 0.0557

Table 13.8. Coefficients and absolute contributions for causes of death in the
U.S. health data set. SMScorrhealth
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US health data
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Fig. 13.4. Projection of rows (states) and columns (causes of death) for U.S. health
data without Alaska. Northeast (square), Midwest (circle), South (triangle) and
West (cross). SMScorrhealth

EXERCISE 13.10. Consider a (n×n) contingency table being a diagonal mat-
rix X . What do you expect the factors rk, sk to be like?

If X is a diagonal matrix then both the column totals xi• and row totals
x•i for i = 1, . . . , n are equal to the diagonal elements xii. It follows that
X = A = B. Now, we can apply the relations (13.13) and (13.14) between rk

and sk from Exercise 13.7 and we obtain:

rk =
√

x••
λk

A−1X sk =
√

x••
λk

sk

and
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sk =
√

x••
λk

B−1X�rk =
√

x••
λk

rk.

Plugging the first formula into the other one leads that rk = sk and x••/λk =
1, i.e., λk = x•• for all k = 1, . . . , n.

In other words, for each k, the coordinates of the kth row correspond perfectly
to the coordinates of the kth column and correspondence analysis always
discovers the true structure if there is a perfect dependency between rows and
columns.

EXERCISE 13.11. Assume that after some reordering of the rows and the
columns, the contingency table has the following structure:

X =
J1 J2

I1 ∗ 0
I2 0 ∗

.

That is, the rows Ii only have weights in the columns Ji, for i = 1, 2. What
do you expect the graph of the first two factors to look like?

A contingency table with a structure given in Exercise 13.11 displays strong
negative dependency between rows I1 and columns J2 and between rows I2 and
columns J1. One can expect that such a strong relationship will be reflected
in the first factor. In the graph of the first two factors, the projections of the
rows I1 and projections of the columns J1 should lie close to each other and
their position on the x-axis should be opposite to the projections of the rows
I2 and columns J2.

As an illustration, we calculate the factors for a (2n × 2n) contingency table
X containing only ones in the blocks on the diagonal

X =
(

1n1�n 0n0�n
0n0�n 1n1�n

)

.

Clearly, Eij = n2/2n2 = 1/2 and

C =
1
2

(

1n1�n −1n1�n
−1n1�n 1n1�n

)

=
(

1n

−1n

)

1
2
(

1�n −1�n
)

.

Matrix C has only one nonzero eigenvalue and the representation in one dim-
ension describes all dependencies in the contingency table. The projections of
the first n rows coincide with the projections of the first n columns and have
opposite sign than the projections of the remaining rows and columns.

In practice, the output of correspondence analysis will depend on the data
contained in the given contingency table and it might differ a lot from our
expectations.
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EXERCISE 13.12. Redo Exercise 13.11 using the following contingency table:

X =

J1 J2 J3

I1 ∗ 0 0
I2 0 ∗ 0
I3 0 0 ∗

.

In a contingency table with the above structure, one could expect that the first
two factors will be driven by the block diagonal structure. Two factors should
suffice to display clearly the strong negative dependency between the different
blocks of the variables. In the graph of the first two factors, we should see three
groups of points, one corresponding to rows I1 and columns J1, second group
to rows I2 and columns J2 and third group to rows I3 and columns J3.

As in Exercise 13.11, we calculate the factors for an idealized (3n × 3n) con-
tingency table X containing ones in the (n × n) blocks on the diagonal

X =

⎛

⎝

1n1�n 0n0�n 0n0�n
0n0�n 1n1�n 0n0�n
0n0�n 0n0�n 1n1�n

⎞

⎠ .

Here, Eij = n2/3n2 = 1/3 and

C =
1
3

⎛

⎝

2(1n1�n ) −1n1�n −1n1�n
−1n1�n 2(1n1�n ) −1n1�n
−1n1�n −1n1�n 2(1n1�n )

⎞

⎠

=
1
3

⎛

⎝

1n 0n

−(1/2)1n (3/4)1/21n

−(1/2)1n −(3/4)1/21n

⎞

⎠

(

2 0
0 2

)(

1�n −(1/2)1�n −(1/2)1�n
0�n (3/4)1/21�n −(3/4)1/21�n

)

.

Matrix C has two nonzero eigenvalues and the representation in two dimen-
sions describes all dependencies in the contingency table. The projections of
the first n rows coincide with the projections of the first n columns, second n
rows have the same coordinates as the second n columns and the last n rows
overlap with the last n columns. Notice that the first factor explains the same
amount of dependency as the second factor. Also the distances between the
projections for all three groups are identical.

Again, the exact shape of the 2-dimensional graph will strongly depend on the
data and, depending on the structure inside the blocks lying on the diagonal,
it might lead to other results.

EXERCISE 13.13. Consider the French food data in Table A.9. Given that all
of the variables are measured in the same units (French Francs), explain how
this table can be considered as a contingency table. Perform a correspondence
analysis and compare the results to those obtained in the NPCA analysis in
Härdle & Simar (2003, chapter 9).
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The amount of money spent by a certain family on a certain kind of food can
be rephrased as, e.g., number of one-franc notes falling into that category.
Hence, we can say that the entries in the French food data set are counts and
the data set can be interpreted as a contingency table.

λj percentage of variance cumulated percentage

852.44 0.6606 0.6606
319.78 0.2478 0.9084
61.04 0.0473 0.9557
31.89 0.0247 0.9804
18.23 0.0141 0.9945
7.01 0.0055 1.0000
0.00 0.0000 1.0000

Table 13.9. Eigenvalues and cumulated percentage of explained variance for the
French food data. SMScorrfood

From Table 13.9, we can see that the first two eigenvalues account for 91%
of the variance. Representation in two dimensions will be satisfactory. Fig-
ure 13.5 plots the projections of the rows (12 types of families) and columns
(7 kinds of food). The projections on the first three axes along with their

Type of family r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)

MA2 −0.0977 −0.1443 0.0418 0.0420 0.2443 0.1072
EM2 0.0414 −0.0158 0.0319 0.0078 0.0030 0.0638
CA2 0.0756 −0.0909 −0.0093 0.0351 0.1355 0.0074
MA3 −0.1298 −0.0461 0.0151 0.0808 0.0272 0.0153
EM3 −0.0798 −0.0115 0.0312 0.0308 0.0017 0.0657
CA3 0.1580 −0.0464 −0.0336 0.1772 0.0408 0.1121
MA4 −0.1529 0.0240 −0.0265 0.1272 0.0084 0.0534
EM4 −0.0509 −0.0079 0.0143 0.0153 0.0010 0.0170
CA4 0.1680 −0.0175 −0.0300 0.1953 0.0056 0.0871
MA5 −0.1695 0.0298 −0.0404 0.1833 0.0151 0.1454
EM5 −0.0277 0.1215 −0.0206 0.0053 0.2731 0.0412
CA5 0.1091 0.1046 0.0493 0.0996 0.2442 0.2844

Table 13.10. Coefficients and absolute contributions for row factors of the French
food data. SMScorrfood

absolute contribution to the variance of the axes are given in Table 13.10 for
the families and in Table 13.11 for the food. The row labels describe the type
of family using the following code: MA denotes manual worker, EM denotes
employees, and CA denotes manager families. The number denotes the number
of children.
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Food category s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

bread −0.1862 0.0437 −0.0536 0.2179 0.0320 0.2525
vegetables 0.0077 0.0030 0.0638 0.0001 0.1251 0.0032
fruits 0.0352 0.1355 0.0074 0.1140 0.0030 0.2782
meat 0.0808 0.0272 0.0153 0.0355 0.0455 0.0297
poultry 0.1224 −0.0166 −0.0448 0.1694 0.0083 0.3173
milk −0.1875 0.1517 0.0369 0.1773 0.3095 0.0957
wine −0.2345 −0.1856 0.0179 0.2852 0.4766 0.0233

Table 13.11. Coefficients and absolute contributions for column factors of the
French food data. SMScorrfood

french food
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Fig. 13.5. Factorial decomposition of the French food data. SMScorrfood
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Figure 13.5 shows that wine on the left side and fruits and poultry on the right
side are most strongly responsible for the variation on the first axis. The second
axis describes an opposition between milk and wine. These interpretations are
confirmed in Table 13.11, where in the first column factor s1, the difference
between the coefficient of wine (−0.2345) and fruits (0.1267) is the largest,
and in the second column factor s2, the difference between the coefficient of
wine (−0.1856) and milk (0.1517) is the largest.

The relationship between the row and the column categories can be assessed
by looking at the position of the row and column projections in Figure 13.5.
On the x-axis, the employee families are lying close to the origin and seem to
have a general food structure consisting mainly of meat and vegetables. On
the left, we observe the poorer group consisting of manual workers close to
wine, bread, and milk. On the right we find the richer manager families which
are projected close to fruits and poultry.

The position of the projections on the y-axis corresponds to the number of
children in the family. The families with many children lie in the upper part
of the graph together with the projections of the column categories milk,
vegetables, and bread. The families with less children seem to be related to
the column category wine.

The results of the correspondence analysis are in a good agreement with the
results of the principal component analysis of the same data set in Härdle &
Simar (2003, example 9.6) although the method is based on a different look
at the data.
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Canonical Correlation Analysis

A glance at our friend here reveals the rounded head of the Celt, which
carries inside it the Celtic enthusiasm and power of attachment.
Dr. Mortimer in “The Hound of the Baskervilles”

The association between two sets of variables may be quantified by canonical
correlation analysis (CCA). Given a set of variables X ∈ R

q and another
set Y ∈ R

p, one asks for the linear combination a�X that “best matches” a
linear combination b�Y . The best match in CCA is defined through maximal
correlation. The task of CCA is therefore to find a ∈ R

q and b ∈ R
p so that

the correlation ρ(a, b) = ρa�X,b�Y is maximized. These best-matching linear
combinations a�X and b�Y are then called canonical correlation variables;
their correlation is the canonical correlation coefficient. The coefficients a and
b of the canonical correlation variables are the canonical vectors.

Let us assume that the two random vectors under investigation, X and Y ,
have the following covariance structure

Var
(

X

Y

)

=
(

ΣXX

ΣY X

ΣXY

ΣY Y

)

.

The algorithm of CCA consists of calculating the matrix

K = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y

and its SVD
K = ΓΛ∆�.

The diagonal elements of the matrix Λ are the canonical correlation coeffi-
cients. The canonical correlation vectors can be obtained as

ai = Σ
−1/2
XX γi,

bi = Σ
−1/2
Y Y δi,
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and the canonical correlation variables are

ηi = a�
i X,

ϕi = b�i Y.

It can be easily verified that

Var
(

η
ϕ

)

=
(

Ik Λ
Λ Ik

)

.

EXERCISE 14.1. Calculate the canonical variables for the complete car marks
data set. Interpret the coefficients.

As in Härdle & Simar (2003, example 14.1), we split the observed variables
into two logical subsets: X = (price, value)� and Y = (economy, service,
design, sportiness, safety, easy handling)�.

The empirical covariance matrix is

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.41 −1.11 0.78 −0.71 −0.90 −1.04 −0.95 0.18
−1.11 1.19 −0.42 0.82 0.77 0.90 1.12 0.11

0.78 −0.42 0.75 −0.23 −0.45 −0.42 −0.28 0.28
−0.71 0.82 −0.23 0.66 0.52 0.57 0.85 0.14
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⎟

⎟

⎠

.

In this case, the first random vector has only two components. Hence, we
can obtain only two pairs of canonical variables. The corresponding canonical
correlations are r1 = 0.98 and r2 = 0.89. The relationship between both pairs
of canonical variables seems to be quite strong.

The first pair of canonical vectors, corresponding to r1, is

a1 = (−0.33, 0.59)�,

b1 = (−0.43, 0.19, 0.00, 0.46, 0.22, 0.38)�,

and the second pair of canonical vectors

a2 = (1.602, 1.686)�,

b2 = (0.568, 0.544,−0.012,−0.096,−0.014, 0.915)�.

These coefficients lead to the canonical variables

η1 = −0.33x1 + 0.59x2,

ϕ1 = −0.43y1 + 0.19y2 + 0.46y4 + 0.22y5 + 0.38y6,
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and

η2 = 1.602x1 + 1.686x2,

ϕ2 = 0.568y1 + 0.544y2 − 0.012y3 − 0.096y4 − 0.014y5 + 0.915y6.

From the first canonical variables, we see that x1 (price) is positively related
to y1 (economy), and negatively related to the remaining characteristics of a
car (service, sportiness, safety and easy handling). The variable x2 (value)
is negatively related to y1 (economy), and positively related to the other
characteristics.

The canonical variable η1 can be interpreted as a value index of the car. On the
one side, we observe cars with good (low) price and bad (high) appreciation of
value such as Trabant and Wartburg and on the other side, we see cars with
high price and good (low) appreciation of value such as BMW, Jaguar, Ferrari
and Mercedes. Similarly, ϕ1 can be interpreted as a quality index consisting
of variables such as service and safety. The value and quality indeces are
highly correlated with the canonical correlation coefficient 0.98. We can see
this correlation in Figure 14.1.
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Fig. 14.1. Scatterplot of first canonical variables for the car marks data set.
SMScancarm1
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The second pair of canonical variables provides more insight into the relation-
ship between the two sets of variables. η2 has low values for cars with good
marks both in price and value, e.g., VW and Opel. On the right hand side,
we should see cars with bad marks in these two variables such as Ferrari and
Wartburg. The canonical variable ϕ2 consists mainly of variables economy
and service. The position of cars is displayed on Figure 14.2.
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Fig. 14.2. Second canonical variables for the car marks data set. SMScancarm2

EXERCISE 14.2. Perform the canonical correlation analysis for the follow-
ing subsets of variables: X corresponding to {price} and Y corresponding to
{economy, easy handling} from the car marks data in Table A.5.

The estimated covariance matrix S corresponding to the random vector (price,
economy, easy handling)� is

S =

⎛

⎝

1.412 0.778 0.181
0.778 0.746 0.284
0.181 0.284 0.318

⎞

⎠ .

The canonical vectors maximizing the correlation between linear combina-
tions of {price} and {economy, easy handling} are a = −0.84155 and b =
(−1.3378, 0.58526)�. The canonical variables are thus η = −0.84155×price
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and ϕ = −1.3378×economy+0.58526×easy handling. In this example, we ob-
tain only one pair of canonical variables. We observe that the price has nega-
tive influence on the canonical variable η which means that price is positively
related to economy and negatively related to easy handling. The canonical
correlation coefficient is r = 0.78718.

subset of car marks data
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Fig. 14.3. Scatterplot of the first pair of canonical variables for a subset of the car
marks data set. SMScancarm

From Figure 14.3, we can that see the relationship between the two canonical
variables is not so strong as in Exercise 14.1 where more variables from the
same data set are analyzed.

EXERCISE 14.3. Use the SVD of matrix K to show that the canonical vari-
ables η1 and η2 are not correlated.

Recall that the canonical vectors are defined as a�
i = Σ

− 1
2

XXγi, where γi are

eigenvectors of matrix KK� with K = Σ
− 1

2
XXΣXY Σ

− 1
2

Y Y .

To show that the correlation between the first two canonical variables ηi =
a�

i X, i = 1, 2 is equal to zero, it is sufficient to show that the covariance
between these random variables is zero:
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Cov(η1, η2) = Cov(γ�
1 Σ

− 1
2

XXX, γ�
2 Σ

− 1
2

XXX)

= γ�
1 Σ

− 1
2

XX Cov(X,X)Σ− 1
2

XXγ2

= γ�
1 Σ

− 1
2

XXΣXXΣ
− 1

2
XXγ2

= γ�
1 γ2

= 0

because the columns of the matrix Γ are orthogonal eigenvectors.

EXERCISE 14.4. Express the singular value decomposition of matrices K and
K� using eigenvalues and eigenvectors of matrices K�K and KK�, show that
the eigenvalues of KK� and K�K are identical and verify that the number of
nonzero eigenvalues is equal to rank(ΣXY ).

Using the singular value decomposition K = ΓΛ∆�, we obtain the decompo-
sitions

KK� = ΓΛ2Γ�,

K�K = ∆Λ2∆�,

where Λ is a diagonal matrix containing nonzero values on its diagonal. This
implies that the spectral decompositions of matrices KK� and K�K can be
written as

KK� =
(

Γ Γ2

)

(

Λ2 0k0�k
0k0�k 0k0�k

)(

Γ�

Γ�
2

)

and

K�K =
(

∆ ∆2

)

(

Λ2 0k0�k
0k0�k 0k0�k

)(

∆�

∆�
2

)

,

i.e., we see that the nonzero eigenvalues of the two matrices are identical.

We remark that the number of zero eigenvalues depends on the dimension
of matrix K. The number of nonzero eigenvalues of both KK� and K�K is
identical and it is equal to the dimension of the matrix Λ and hence also to

rank(K) = rank
(

Σ
− 1

2
XXΣXY Σ

− 1
2

Y Y

)

= rank(ΣXY )

because the matrices ΣXX and ΣY Y have full rank.

EXERCISE 14.5. What will be the result of CCA for Y = X?

We know that the variance matrix of the canonical variables is equal to

V ar

(

η
ϕ

)

=
(

Ik Λ
Λ Ik

)

.

Defining η = Σ
−1/2
XX X = Σ

−1/2
Y Y Y = ϕ leads to the desired correlation struc-

ture with all canonical correlation coefficients equal to one.
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EXERCISE 14.6. What will be the results of CCA for Y = 2X and for Y =
−X?

Similarly as in the previous Exercise 14.5, we define η = Σ
−1/2
XX X and ϕ =

Σ
−1/2
Y Y Y in order to obtain the perfect correlation structure

V ar

(

η
ϕ

)

=
(

Ik Ik

Ik Ik

)

.

EXERCISE 14.7. What results do you expect if you perform CCA for X and
Y such that ΣXY = 0p0�q ? What if ΣXY = Ip?

CCA for two uncorrelated sets of variables, with ΣXY = 0p0�q , would lead to
zero canonical correlation coefficients. The canonical variables would be the
Mahalanobis transformations of the original variables and, due to the zero
correlation, the assignment of the variables to the pairs could be arbitrary.

The assumption ΣXY = Ip means that both vectors have the same dimen-
sion. The canonical correlation coefficients and canonical variables cannot be
deduced only from this information, we would need to know also the variance
matrices of X and Y . We can say only that each component of X is positively
related to the same component of Y . Thus, we can expect that both canonical
variables η and ϕ will be calculated as weighted averages of the variables X
and Y , respectively, with all weights positive.
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Multidimensional Scaling

It was a nice question, for the Cape de Verds were about 500 miles to
the north of us, and the African coast about 700 miles to the east. On
the whole, as the wind was coming round to north, we thought that
Sierra Leone might be best, . . .
James Armitage in “The Adventure of the “Gloria Scott””

Multidimensional scaling (MDS) is a mathematical tool that uses proximities
between observations to produce their spatial representation. In contrast to
the techniques considered so far, MDS does not start from the raw multivariate
data matrix X , but from an (n× n) dissimilarity or distance matrix, D, with
the elements δij and dij , respectively. Hence, the underlying dimensionality
of the data under investigation is in general not known.

MDS is a data reduction technique because it is concerned with the problem
of finding a set of points in low dimension that represents the configuration
of data in high dimension.

The metric MDS solution may result in projections of data objects that con-
flict with the ranking of the original observations. The nonmetric MDS solves
this problem by iterating between a monotonizing algorithmic step and a least
squares projection step. The examples presented in this chapter are based on
reconstructing a map from a distance matrix and on marketing concerns such
as ranking the outfit of cars.

The Euclidean distance between the ith and jth points, dij , is defined as

d2
ij =

p
∑

k=1

(xik − xjk)2,

where p is the dimension of the observations. Multidimensional scaling aims
to find the original Euclidean coordinates from a given distance matrix D =
(dij)i,j=1,...,n.
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With aij defined as −d2
ij/2 and

ai• =
1
n

n
∑

j=1

aij , a•j =
1
n

n
∑

i=1

aij , and a•• =
1
n2

n
∑

i=1

n
∑

j=1

aij , (15.1)

we get
bij = aij − ai• − a•j + a••, (15.2)

where bij = x�
i xj . The inner product matrix B = (bij) can be expressed as

B = XX�, (15.3)

where X = (x1, . . . , xn)� is the (n × p) matrix of coordinates. The matrix B
is symmetric, positive semidefinite, and of rank p; hence it has p non-negative
eigenvalues and n − p zero eigenvalues and thus a spectral decomposition

B = ΓΛΓ�, (15.4)

which allows us to obtain the matrix of coordinates X containing the point
configuration in R

p as
X = ΓΛ

1
2 . (15.5)

Nonmetric Solution

The idea of a nonmetric MDS is to demand a less-rigid relationship between
the final configuration of the points and the distances. In nonmetric MDS,
it is assumed only that this relationship can be described by some monotone
function.

More formally, let us assume that we want to find a configuration of points
corresponding to a given dissimilarities δij . In nonmetric MDS, we attempt
to find a configuration of points in a lower-dimensional space such that their
Euclidean distances are f(δij), where f(.) is some increasing function.

The most common approach is the iterative Shepard-Kruskal algorithm. In the
first step, we calculate Euclidean distance dij from an initial configuration
of the points. In the second step, we calculate the so-called disparities ̂dij

such that they are a monotone function of the given dissimilarities δij and
the quality of the configuration of the points is measured by the STRESS
measure:

STRESS =

(∑

i<j(dij − ̂dij)2
∑

i<j d2
ij

)1/2

. (15.6)

In the third step, based on the differences between dij and ̂dij = ̂f(δij), we
define a new position of the points:
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xNEW
ik = xik +

α

n − 1

n
∑

j = 1
j �= i

(

1 − ̂dij/dij

)

(xjk − xik),

where α determines the step width of the iteration. In the fourth step, the
STRESS measure is used to decide whether the change as a result of the last
iteration is sufficiently small or if the iterative procedure has to be continued.

EXERCISE 15.1. Apply the MDS method to the Swiss bank note data. What
do you expect to see?

We apply MDS on the 200 × 200 matrix D of Euclidean distance between all
Swiss bank notes. We know that these distances are Euclidean. Therefore, we
try to reconstruct the original configuration of points using metric MDS.

Metric MDS
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Fig. 15.1. MDS for Swiss bank notes. SMSmdsbank

The results of metric MDS are displayed in Figure 15.1. One would expect
that our results would be very similar to the principal component analysis
(Härdle & Simar 2003, chapter 9).

The correlations of the projections with the original variables look indeed quite
similar. Contrary to our expectations, the scatterplot of the two-dimensional
projections look rather different. One can see that the separation of the two
point clouds is much better in the MDS method. The reason could be that
principal components are based only on an estimated of a covariance matrix
which is wrong if the data set consists of more subgroups. MDS is based only
on the distance matrix, it is based only on the distances between observations
and it does not assume any covariance structure.
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EXERCISE 15.2. Using (15.1), show that bij in (15.2) can be written in the
form (15.3).

In the following calculation, we shall use the relations aij = −d2
ij/2 and d2

ij =
x�

i xi + x�
j xj − 2x�

i xj and we assume that the observations are centered, i.e.,
∑

xi = 0p.

bij = aij − ai• − a•j + a••

= −1
2

{

d2
ij −

1
n

n
∑

k=1

d2
ik − 1

n

n
∑

k=1

d2
kj +

1
n2

n
∑

k=1

n
∑

l=1

d2
kl

}

= −1
2

{

x�
i xi + x�

j xj − 2x�
i xj −

1
n

n
∑

k=1

(x�
k xk + x�

j xj − 2x�
k xj)

− 1
n

n
∑

k=1

(x�
i xi + x�

k xk − 2x�
i xk) +

1
n2

n
∑

k=1

n
∑

l=1

(x�
k xk + x�

l xl − 2x�
k xl)

}

= −1
2

{

x�
i xi + x�

j xj − 2x�
i xj −

1
n

n
∑

k=1

x�
k xk − x�

j xj − x�
i xi −

1
n

n
∑

k=1

x�
k xk

+
2
n

n
∑

k=1

x�
k xk

}

= x�
i xj .

In matrix notation, we can write

B = (x�
i xj)i=1,...,n;j=1,...,n = XX�

and the matrix B is called the inner product matrix.

EXERCISE 15.3. Show that

1. bii = a•• − 2ai•; bij = aij − ai• − a•j + a••; i �= j,

2. B =
∑p

i=1 xix
�
i ,

3.
∑n

i=1 λi =
∑n

i=1 bii = 1
2n

∑n
i,j=1 d2

ij.

The first part of this question was verified in the previous exercise. The formula
for bii follows immediately by setting i = j in (15.2).

Also from the previous exercise, we know that B = XX�. Let us now inves-
tigate the matrix B elementwise.
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B = (x�
i xj)i=1,...,n;j=1,...,n

=

(
p
∑

k=1

xikxjk

)

i=1,...,n;j=1,...,n

=
p
∑

k=1

(xikxjk)i=1,...,n;j=1,...,n

=
p
∑

k=1

x[k]x
�
[k],

where x[k] denotes the kth column of the matrix X .

The sum of eigenvalues is equal to the trace of the matrix B,
p
∑

i=1

λi =
n
∑

i=1

bii

=
p
∑

i=1

(a•• − 2ai•)

= −1
2

p
∑

i=1

{

1
n2

∑

k

∑

l

d2
kl −

2
n

∑

k

d2
ik

}

= − 1
2n

∑

k

∑

l

d2
kl +

1
n

∑

i

∑

k

d2
ik

=
1
2n

∑

i

∑

j

d2
ij

EXERCISE 15.4. Redo a careful analysis of the car marks data based on the
following dissimilarity matrix:

j 1 2 3 4
i Nissan Kia BMW Audi
1 Nissan -
2 Kia 2 -
3 BMW 4 6 -
4 Audi 3 5 1 -

The dissimilarity matrix contains obviously only ranks of dissimilarity. Apply-
ing metric MDS would not be appropriate in this situation. Nonmetric MDS,
on the other hand, does not assume that the distance matrix is Euclidean. It
only assumes that the dissimilarities are monotone functions of the Euclid-
ean distances and it uses the iterative Shepard-Kruskal algorithm to find a
configuration of points in two dimensions that satisfy this monotonicity.
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Fig. 15.2. Nonmetric MDS for four cars. SMSnmdscarm

The outcome of the Shepard-Kruskal algorithm is given in Figure 15.2. It is
important that both axes have the same scale, different scales could lead to
wrong interpretations.

Audi and BMW are lying very close to each other in opposition to Kia. In
between, we find Nissan who seems to lie a bit closer to Kia than to Audi and
BMW.

EXERCISE 15.5. Apply the MDS method to the U.S. health data. Is the result
in accordance with the geographic location of the U.S. states?

The results of both the metric and nonmetric MDS are displayed in Figure 15.3.
The metric MDS on the left hand side is used as the first iteration for the
Shepard-Kruskal algorithm. The last iteration of the algorithm is displayed
on the right hand side of the graphics.

We can see that standardization leads to a more informative and a much
better scaled plot than the original data set.

Metric MDS applied on the original data set shows large difference between
Texas and all other states. Nonmetric MDS shifts the positions of the states
slightly and one can see California and New York emerging. These states,
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Fig. 15.3. Nonmetric MDS for the original, the 0–1 scaled, and the standardized
U.S. health data set. SMSnmdsushealth
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together with Arkansas, stand out also on the graphics based on the stan-
dardized data set.

We can also see some geographical East/West structure inside the big cloud
containing the majority of the states. Closer to New York, we see Eastern
states such as Florida or New Jersey. On the opposite side, closer to Arkansas,
we see Western states such as Utah, Idaho or Nevada. California and Texas
stand out of this structure and seem to be very different from the other states.

EXERCISE 15.6. Redo Exercise 15.5 with the U.S. crime data set (Table A.18).

US crime
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Fig. 15.4. Nonmetric MDS for U.S. crime data set. Northeast (squares), Midwest
(circles), South (triangles) and West (crosses). SMSnmdsuscrime
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Fig. 15.5. U.S. states. Source: U.S. Census Bureau.

The results of nonmetric MDS are displayed in Figure 15.4. We standardize
the data set by subtracting the sample mean and dividing by its standard
deviation.

Similarly as in the previous exercise, we see that New York, California, and
Arkansas stand somewhat aside. The other states seem to form a group of
similar and neighboring states. The four census regions are clearly separated
in the direction of the vertical axis. The West (denoted by crosses) lies in the
upper part of Figure 15.4. Northeastern states (squares) are located in the
lower part of the graphics. The South (triangles) seem to be more similar to
West whereas Midwest lies closer to Northeast.

EXERCISE 15.7. Perform the MDS analysis on the athletic records data in
Table A.1. Can you see which countries are “close to each other”?

Applying the nonmetric MDS in Figure 15.6, we see a cloud containing most
of the countries. At some distance we observe four outliers: Netherlands,
Mauritius, West Samoa and Cook Islands. Closer look at the original data
set reveals that West Samoa and Cook Islands are very bad in all disciplines
and that Mauritius and Netherlands are very bad in 200 meters.

It seems that the horizontal direction of the scatterplot corresponds to the
overall performance of each country with Cook Islands as the worst and the
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Athletic records
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Fig. 15.6. Nonmetric MDS for the the standardized athletic records data set.
SMSnmdsathletic

USA as the best country. Neighboring countries seem to be usually quite close
to each other.

EXERCISE 15.8. Repeat Exercise 15.7 without the outlying countries: Nether-
lands, West Samoa, Mauritius, and Cook Islands.

In Figure 15.7, we can see the structure of the athletic records more clearly.
The countries with the best athletic records, such as USA, Italy, USSR, and
GB are located on the left. The countries with worse national athletic records
can be found on the right hand side. These countries are also more spread out
since, for example, Dominican Republic is quite good in short distance while
Costa Rica performs well in marathon.
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Fig. 15.7. Nonmetric MDS for the the standardized athletic records data set with-
out the four most outlying countries. SMSnmdsathlesub

In this exercise, the removal of the outliers leads to a better graphical display
for the remaining countries.
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Conjoint Measurement Analysis

It only remains, therefore, to discover what is wanted by this German
who writes upon Bohemian paper, and prefers wearing mask to show-
ing his face.
Sherlock Holmes in “A Scandal in Bohemia”

Conjoint measurement analysis is a technique to investigate the utilities
attributes to certain factor levels. It is heavily used in marketing and in the
analysis of consumer preferences. The statistical core of conjoint measure-
ment analysis is ANOVA in a linear model with a specially constrained design
matrix X .

We observe the factors (elements of X ) and the preferences Y. The aim is
to estimate the part-worth that is the contribution of each factor level to its
preference.

In the metric solution, the distance between any two adjacent preference order-
ings corresponds to the same difference in utility, i.e., the utility gain between
products ranked 1st and 2nd is the same as the gain between say the 4th- and
5th-ranked product.

In the nonmetric solution, one adjusts the estimated utilities by the PAV
(pool-adjacent-violators) algorithm and iterates in order to minimize a stress
measure.

Design of Data Generation

A stimulus is defined as a combination of the factor levels of different compo-
nents.

The profile method investigates the utility of each stimulus, i.e., we need to ask
the tester for the utility of each combination of the components. For example,
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three components with four levels each would lead to 4 · 4 · 4 = 64 different
stimuli.

If the number of components and their levels is increasing, the number of
stimuli might soon become too large for a questionnaire. In such a situation, we
can investigate only selected subset of stimuli. One possibility is the two-factor
method, which considers only pairwise combinations of the components. For
three components with four levels, we would observe only 4 ·4+4 ·4+4 ·4 = 48
stimuli.

The utilities of stimuli are then decomposed into the part-worths of the factor
levels by the standard ANOVA procedure.

Estimation of Preferences

The estimation procedure is formulated here only for data collected by the
profile method. The necessary modifications for other data setups are straight-
forward.

The conjoint measurement problem for one individual may be rewritten as a
linear regression model:

Y = Xβ + ε

with X being a design matrix with dummy variables. If the profile method is

used, the row dimension of X is K =
J
∏

j=1

Lj (the number of stimuli) and the

column dimension D =
J
∑

j=1

Lj − J + 1.

In practice we have more than one person to answer the utility rank question
for the different factor levels. The design matrix is then obtained by stacking
the design matrix n times. Hence, for n persons we have a design matrix:

X ∗ = 1n ⊗X =

⎛

⎜

⎜

⎜

⎜

⎝

X
...
...
X

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

n − times

with dimensions (nK)(L − J) (where L =
J
∑

j=1

Lj ) and Y ∗ = (Y �
1 , ..., Y �

n )�.

The linear model can now be written as:

Y ∗ = X ∗β + ε∗. (16.1)

The solution to the least squares problem, leading to estimates of the vector
of the part-worths β, is in fact provided by the standard analysis of variance
(ANOVA) technique.
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Nonmetric Solution

Often, the utilities are not measured on a metric scale. In this situation,
we may use the monotone ANOVA (Kruskal 1965) based on a monotone
transformation Ẑ = f(Ŷ ) to the observed stimulus utilities Y.

The transformation Ẑk = f(Ŷk) of the fitted values Ŷk is introduced to guar-
antee monotonicity of preference orderings. The relationship is now monotone,
but model (16.1) may now be violated. Hence, as in (15.6) in Chapter 15, the
procedure is iterated until the STRESS measure

STRESS =

K
∑

k=1

(Ẑk − Ŷk)2

K
∑

k=1

(Ŷk − ¯̂
Y )2

is minimized over β and the monotone transformation f(.).

EXERCISE 16.1. Compute the part-worths for the following table of rankings

X2

1 2
1 1 2

X1 2 4 3
3 6 5

.

The given table contains the respondents rankings of the utilities of the stimuli
given by all six combinations of L1 = 3 levels of X1 and L2 = 2 levels of X2.

The design matrix X has K = L1L2 = 6 rows and D = L1 + L2 − 2 + 1 = 4
linearly independent columns. The design matrix is not unique and its choice
depends largely on the desired interpretation of the coefficients. It is possible
to increase the number of columns of X if we add linear constraints on the
parameters β of the linear model.

For example, we can parametrize the model by calculating the overall mean
utility, µ̂ = (1 + 2 + 4 + 3 + 6 + 5)/6 = 3.5. The part-worths of X1 can
be described by the parameter vector β1 = (β11, β12, β13)� satisfying the
constraint 1�3 β1 = β11 + β12 + β13 = 0. The part worths are given by β2 =
(β22, β22)� such that β22 + β22 = 0.

Formally, this linear model can be written in the matrix form:

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Y1

Y2

Y3

Y4

Y5

Y6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2
4
3
6
5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

µ
β1

β2

⎞

⎠+ ε = Xβ + ε,
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under two linear constraints 1�3 β1 = 0 and 1�2 β2. The estimation procedure
is demonstrated in Table 16.1, where we provide also the mean utilities px1•
and px2• for all levels of the factor X1 and X2, respectively.

X2

1st level 2nd level px1•
�β1l

1st level 1 2 1.5 −2
X1 2nd level 4 3 3.5 0

3rd level 6 5 5.5 2

p̄x2• 3.67 3.33 3.5
�β2l 0.17 −0.17

Table 16.1. Metric solution for the example.

The coefficients (part-worths) were calculated as the difference of the marginal
mean utility and the overall mean utility, ̂βji = pxji

− µ. The resulting part
worths,

̂β11 = −2 ̂β21 = 0.17
̂β12 = 0 ̂β22 = −0.17
̂β13 = 2

,

model the utility for each stimulus. For example, the estimated utility for the
stimulus given by 1st level of X1 and 2nd level of X2 is ̂Y2 = µ̂ + ̂β11 + ̂β22 =
3.5 − 2 − 0.17 = 1.33.

EXERCISE 16.2. Rewrite the design matrix X (K × (D + 2)) given in Exer-
cise 16.1 and the parameter vector β without the parameter for the overall
mean effect µ and without the additional constraints on the parameters, i.e.,
find a design matrix X ′(K × D) such that Xβ = X ′β′.

The design matrix X (6×6) proposed in Exercise 16.1 allowed to interpret the
model parameters as the overall mean utility µ and the part-worths βji as the
deviation from µ. As the design matrix is not uniquely given, we can choose it
to suit different interpretations. Often, some of the factor levels is considered
as a reference level and the model parameters are the constructed to describe
the differences with respect to the reference. This leads to the model:

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Y1

Y2

Y3

Y4

Y5

Y6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2
4
3
6
5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0
1 0 0 1
1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

β′
11

β′
12

β′
13

β′
22

⎞

⎟

⎟

⎠
+ ε = X ′β′ + ε,
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where the parameter β′
11 is the reference stimulus corresponding to the com-

bination of the 1st level of X1 and 1st level X2. The remaining parameters
then measure the part-worths with respect to the reference level.

The parameter estimates may be obtained similarly as in Exercise 16.1 from
the marginal mean utilities,

̂β11 = 1.67, ̂β12 = 2, ̂β13 = 4, ̂β22 = −0.34.

Hence, the utility of the second stimulus, given by 1st level of X1 and 2nd
level of X2 is ̂Y2 = β′

11 + β′
22 = 1.67 − 0.34 = 1.33, the same value as in

Exercise 16.1. For the utility of the last stimulus, given by 3rd level of X1 and
2nd level of X2 we would obtain ̂Y6 = β′

11 +β′
13 +β′

22 = 1.67+4−0.34 = 5.33.

EXERCISE 16.3. Is it possible that different rankings lead to identical part-
worths?

Yes, this can happen. It suffices to realize that the parameter estimates are
based only on the marginal mean utilities. Modifying the data set in a way
that does not change this means leads to the same results. An example is
given in Table 16.2.

X2

1st level 2nd level px1•
�β1l

1st level 2 1 1.5 −2
X1 2nd level 4 3 3.5 0

3rd level 5 6 5.5 2

p̄x2• 3.67 3.33 3.5
�β2l 0.17 −0.17

Table 16.2. Metric solution for the counterexample demonstrating the nonunique-
ness of the problem.

The resulting coefficients (part-worths), calculated as the difference of the
marginal mean utility and the overall mean utility,

̂β11 = −2 ̂β21 = 0.17
̂β12 = 0 ̂β22 = −0.17
̂β13 = 2

,

are identical to the coefficients obtained from different rankings in Exer-
cise 16.1.

EXERCISE 16.4. Compute the design matrix in the setup of Exercise 16.1 for
n = 3 persons ranking the same products with X1 and X2.
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As described in the introduction to this Chapter, the design matrix X ∗ is
obtained by stacking three identical individual design matrices X . Denoting
by Y the vector of the all nK = 18 rankings of the 6 stimuli by the 3 people,
we can write the model as:

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

µ
β1

β2

⎞

⎠+ ε =

⎛

⎝

X
X
X

⎞

⎠β + ε = X ∗β + ε,

where 1�3 β1 = 0 and 1�2 β2. The parameters µ, β, β1, and β2 have the same
interpretation and dimension as in Exercise 16.1.

EXERCISE 16.5. Compare the predicted and observed utilities for the example
analyzed in Exercise 16.1.

The observed and predicted rankings, denoted respectively by Yk and ̂Yk,
k = 1, . . . , 6 are given in Table 16.3.

Stimulus X1 X2 Yk Ŷk Yk − Ŷk (Yk − Ŷk)2

1 1 1 1 1.67 −0.67 0.44
2 1 2 2 1.33 0.67 0.44
3 2 1 4 3.67 0.33 0.11
4 2 2 3 3.33 −0.33 0.11
5 3 1 6 5.67 0.33 0.11
6 3 2 5 5.33 −0.33 0.11�

- - 21 21 0 1.33

Table 16.3. Deviations between model and data.
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We observe that largest deviations in Table 16.3 occur for the first level of X1.
However, we would need larger sample of respondents for meaningful analysis
of the part-worths.

EXERCISE 16.6. Compute the part-worths on the basis of the following tables
of rankings observed on n = 3 persons:

X2

1 1 2
X1 2 4 3

3 6 5

,

X2

1 3
X1 4 2

5 6

,

X2

3 1
X1 5 2

6 4

.

Theanalysis canbe carriedout similarlyas inExercise 16.1.WeobtainTable 16.4
summarizing the results.

X2

1st level 2nd level px1•
�β1l

1st level 1,1,3 2,3,1 1.83 −1.67
X1 2nd level 4,4,5 3,2,2 3.33 −0.17

3rd level 6,5,6 5,6,4 5.33 1.83

p̄x2• 3.89 3.11 3.5
�β2l 0.39 −0.39

Table 16.4. Metric solution for the example with n = 3.

For computer implementation of this procedure, it is better to use the parame-
trization in terms of parameters β′ described in Exercise 16.2. The correspond-
ing parameter estimates calculated by the appropriate statistical software are:

̂β′
1 = 2.22, ̂β′

2 = 1.50, ̂β′
3 = 3.50, ̂β′

4 = −0.78,

and it is easy to see that these values correspond exactly to the values calcu-
lated by hand in Table 16.4.

The main advantage of performing the analysis on a computer is that a reason-
able software implementations of the two-way ANOVA give us also statistical
tests of significance of the X1 and X2 factors.

The hypothesis H1
0 : “no effect of X1”, tested by the usual F -test, leads to p-

value 0.0001. The hypothesis H2
0 : “no effect of X2” leads, in the same way, the

p-value 0.1062. Hence, the effect of X1 on the product utilities is statistically
significant whereas the effect of X2 is not. SMSconjexmp
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EXERCISE 16.7. Suppose that in the car example a person has ranked cars
by the profile method on the following characteristics: X1=motor, X2=safety,
and X3=doors.

The preferences are given in the following tables:

X1 X2 X3 preference

1 1 1 1
1 1 2 3
1 1 3 2

1 2 1 5
1 2 2 4
1 2 3 6

,

X1 X2 X3 preference

2 1 1 7
2 1 2 8
2 1 3 9

2 2 1 10
2 2 2 12
2 2 3 11

,

X1 X2 X3 preference

3 1 1 13
3 1 2 15
3 1 3 14

3 2 1 16
3 2 2 17
3 2 3 18

.

Estimate and analyze the part-worths.

There are k = 18 observations corresponding to 3 levels of X1, 2 levels of X2,
and 3 levels of X3. Due to the profile method, we have observations for all
3 · 2 · 3 = 18 possible combinations (stimuli) of the factor levels.

X2

1st level 2nd level px1•
�β1l

1st level 1,3,2 5,4,6 3.5 −6
X1 2nd level 7,8,9 10,12,11 9.5 0

3rd level 13,15,14 16,17,18 15.5 6

px3•
�β3l

1st level 1,7,13 5,10,16 8.67 −0.83
X3 2nd level 3,8,15 4,12,17 9.83 0.33

3rd level 2,9,14 6,11,18 10.00 0.50

p̄x2• 8 11 9.5
�β2l −1.5 1.5

Table 16.5. Metric solution for the ranking of the cars.

The tests of significance of the factors can be carried out by the usual F -test.
For the significance of X1, X2, and X3, we respectively obtain p-values 0.0000,
0.2445, and 0.9060.

We conclude that factor X1, motor, has significant influence on the consumer
preferences. The part-worth of the remaining two factors under consideration,
safety (X2) and doors (X3), are not statistically significant. SMSconjcars
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Applications in Finance

“It is interesting, chemically, no doubt,” I answered, “but practically
—”
Dr. Watson in “Study in Scarlet”

Multivariate statistical analysis is frequently used in quantitative finance, risk
management, and portfolio optimization. A basic rule says that one should
diversify in order to spread financial risk. The question is how to assign weights
to the different portfolio positions. Here we analyze a so-called mean-variance
optimization that leads to weights that minimize risk given a budget con-
straint. Equivalently, we may optimize the weights of a portfolio for maximal
return given a bound on the risk structure. The discussion naturally leads to
links to the capital asset pricing model (CAPM).

Financial data sets are of multivariate nature because they contain infor-
mation about the joint development of assets, derivatives, important market
indicators, and the likes.

A typical investor question is how much he should invest in what type of asset.
Suppose that pij denotes the price of the jth asset in the ith time period. The
return from this asset is then xij = (pij − pi−1,j)/pij .

Let us assume that the random vector X of returns of selected p assets has p-
dimensional probability distribution X (µ,Σ). The return of a given portfolio
is the weighted sum of the individual returns:

Q = c�X,

where c denotes the proportions of the assets in the portfolio, c�1p = 1.
Each asset contributes with a weight cj , j = 1, . . . , p, to the portfolio. The
performance of the portfolio c�X is a function of both the stochastic random
vector X and the weights c = (c1, . . . , cp)�. The mean return of the portfolio
is defined as the expected value of Q = c�X, whereas the variance Var(Q) =
c�Σc measures the risk of the portfolio.
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Given a certain level of risk, an investor wants to know how much he should
invest in what asset. Put into mathematical terms this is equivalent to asking
how to choose the vector c of asset weights in order to optimize a certain
portfolio risk measure.

The first part of the exercises will analyze the minimization of Var(Q) = c�Σc
with respect to c. We then consider the relation to the CAPM model.

Efficient Portfolios

The variance efficient portfolio, defined as the portfolio with minimum risk
(measured by the variance), is derived in Theorem 17.1.

THEOREM 17.1. Assume that the returns X have multivariate distribution
(µ,Σ) and that Σ > 0.

The variance efficient portfolio weights are c = {1�p Σ−11p}−1Σ−11p.

Including in the portfolio a riskless asset with a fixed return and zero variance
allows one to derive a portfolio with a given mean return, EQ = µ, and
minimum variance. Such a portfolio is called the mean-variance efficient.

THEOREM 17.2. Assume that a riskless asset has constant return r and
that the remaining returns X = (X1, . . . , Xp)� have multivariate distribution
(µ,Σ), Σ > 0.

The weights of mean-variance efficient portfolio are

c = {µ�Σ−1(µ − r1p)}−1µΣ−1(µ − r1p)

for the risky assets X and cr = 1 − 1�p c for the riskless asset.

In practice, the variance matrix Σ is estimated from the past returns. However,
this approach assumes that the covariance structure is stable over time. In
practice, one can expect that this assumption might be broken; see Franke,
Härdle & Hafner (2004) for an overview of the commonly used modern
methods.

Capital Asset Pricing Model

The capital asset pricing model (CAPM) investigates the relation between a
mean-variance efficient portfolio and an asset uncorrelated with this portfolio.
This is typically a market index or the riskless interest rate. Starting from the
mean-variance efficient portfolio weights given in Theorem 17.2, we can arrive
at µ = r1p + Σc{c�Σc}−1(µ − r); see Härdle & Simar (2003, section 17.4).
Setting β = Σc{c�Σc}−1, we arrive at the well-known CAPM model:
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µ = r1p + β(µ − r),

where r is the return of the riskless asset or the index and µ is the expected
return of the market. The difference µ−r is the risk premium. The beta factors
β = (β1, . . . , βp)� are a measure of the relative performance (or sensitivity) of
the p assets with respect to the market risk. The econometric interpretation
of the CAPM model says that the expected return of any asset is a sum of
the return of the riskless asset plus the risk premium determined by the asset
beta factor (Franke et al. 2004).

We start with two exercises on matrix inversion. The inversion techniques are
used later in the construction of efficient portfolios.

EXERCISE 17.1. Derive the inverse of (1 − ρ)Ip + ρ1p1�p .

In Exercise 2.8, we have already shown that

(A + aa�)−1 = A−1 − A−1aa�A−1

1 + a�A−1a
.

Setting A = (1 − ρ)Ip and a = (sign ρ)
√

ρ1p, we easily obtain:

{(1 − ρ)Ip + ρ1p1�p }−1

= {(1 − ρ)Ip}−1 −
{(1 − ρ)Ip}−1ρ1p1�p {(1 − ρ)Ip}−1

1 + ρ1�p {(1 − ρ)Ip}−11p

=
Ip

1 − ρ
−

ρ1p1�p
(1 − ρ)2{1 + (1 − ρ)−1ρ1�p 1p}

=
Ip

1 − ρ
−

ρ1p1�p
(1 − ρ)(1 − ρ + ρp)

=
Ip

1 − ρ
−

ρ1p1�p
(1 − ρ){1 + ρ(p − 1)} .

Notice that the above derivation applies only if ρ �= 1.

EXERCISE 17.2. For which values of ρ is the matrix Q = (1 − ρ)Ip + ρ1p1�p
positive definite?

The eigenvalues are found by solving |Q− λIp| = 0. According to the expres-
sion |A + aa�| = |A||1 + a�A−1a| derived in Exercise 2.8, we can write:

|Σ − λIp| = |(1 − ρ − λ)Ip + ρ1p1�p |
= |(1 − ρ − λ)Ip||1 + ρ1�p {(1 − ρ − λ)Ip}−11p|
= (1 − ρ − λ)|1 + ρp(1 − ρ − λ)−1|.

Hence, the eigenvalues are λ = 1 − ρ and λ = 1 − ρ + ρp = 1 + ρ(p − 1).

The matrix Q is positive definite if and only if all its eigenvalues are positive.
This implies that Q > 0 if 1 − ρ > 0 and 1 + ρ(p − 1) > 0, i.e., ρ < 1 and
ρ > −(p − 1)−1.
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EXERCISE 17.3. Calculate the variance efficient portfolio of equally corre-
lated assets with equal variances.

According to Theorem 17.1, the assets have to be weighted by

c = {1�p Σ−11p}−1Σ−11p.

In our case, the variance matrix of the returns can be written as:

Σ = σ2Q = σ2

⎛

⎜

⎜

⎜

⎝

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞

⎟

⎟

⎟

⎠

,

where −(p − 1)−1 < ρ < 1 guarantees that the matrix Σ is positive definite,
see Exercise 17.2.

According to Exercise 17.1, the inverse is

Σ−1 = σ−2Q−1 =
Ip

σ2(1 − ρ)
−

ρ1p1�p
σ2(1 − ρ){1 + (p − 1)ρ}

and it follows that

Σ−11p =
1p

σ2(1 − ρ)
−

ρ1p1�p 1p

σ2(1 − ρ){1 + (p − 1)ρ}

=
[{1 + (p − 1)ρ} − ρp]1p

σ2(1 − ρ){1 + (p − 1)ρ} =
(1 − ρ)1p

σ2(1 − ρ){1 + (p − 1)ρ}

=
1p

σ2{1 + (p − 1)ρ}

which yields
1�p Σ−11�p =

p

σ2{1 + (p − 1)ρ} .

The weights of the variance efficient portfolio are thus

c = {1�p Σ−11p}−1Σ−11p =
1
p
1p,

i.e., all assets are equally weighted.

EXERCISE 17.4. Calculate the variance efficient portfolio of equally corre-
lated assets.

Let σ2
i > 0 be the variance of ith asset Xi, i = 1, . . . , p, and define D =

diag(σ2
1 , . . . , σ2

p). The variance matrix of X can be written as Σ = D1/2QD1/2,
where Q is the correlation matrix defined in Exercise 17.3.
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Obviously, the inverse of the variance matrix is Σ−1 = D−1/2Q−1D−1/2.
Expressing the inverse Q−1 as in Exercise 17.1, we have

Σ−11p = D−1/2Q−1D−1/21p

=
D−11p

1 − ρ
−

ρD−1/21p1�p D−1/21p

(1 − ρ){1 + (p − 1)ρ}

=

{

σ−2
i

1 − ρ
−

ρσ−1
i

∑p
j=1 σ−1

j

(1 − ρ){1 + (p − 1)ρ}

}

i=1,...,p

.

Hence, the weight of the ith asset in the variance efficient portfolio can be
expressed as:

ci =

⎧

⎪
⎨

⎪
⎩

p
∑

j=1

σ−2
j −

ρ
(
∑p

j=1 σ−1
j

)2

{1 + (p − 1)ρ}

⎫

⎪
⎬

⎪
⎭

−1
{

σ−2
i −

ρσ−1
i

∑p
j=1 σ−1

j

{1 + (p − 1)ρ}

}

.

EXERCISE 17.5. How does the result of Exercise 17.4 look like if ρ = 0.

Setting ρ = 0 in the variance efficient portfolio weights derived in Exercise 17.4
leads to

ci =
σ−2

i
∑p

j=1 σ−2
j

.

Hence, the weight of the ith asset in the variance efficient portfolio is decreas-
ing function of its variance. This results corresponds to Härdle & Simar (2003,
corollary 17.3).

EXERCISE 17.6. Derive the variance efficient portfolio for IBM, PanAm, and
the Digital Equipment company using the returns given in Table A.13.

The empirical covariance matrix is:

S =

⎛

⎝

0.0035 0.0017 0.0026
0.0017 0.0174 0.0035
0.0026 0.0035 0.0098

⎞

⎠ .

Using S as estimate of the unknown variance matrix Σ and applying Theo-
rem 17.1 leads the estimated variance efficient portfolio weights

c = (0.829, 0.092, 0.078)�.

The large majority should be invested in IBM which, as we see from the
empirical covariance matrix, has also the smallest variance.

In Figure 17.1, we compare the returns of the variance efficient and equally
weighted portfolio. Both plots are using the same scale and, as expected, the
variability of the variance efficient portfolio is obviously much smaller.
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Fig. 17.1. Returns of the equally weighted and variance efficient portfolio for IBM,
PanAm and DEC. SMSportfol

EXERCISE 17.7. The empirical covariance between the 120 returns of IBM
and PanAm in Exercise 17.6 is 0.0017. Test if the true covariance is zero.

The value sIBM,PanAm = 0.0017 seems to be quite small but we have to keep
in mind that it depends on the scale of measurement. In this case, it is better
to work with correlations which are scale independent and zero covariance is
equivalent to zero correlation.

The empirical correlation matrix of the variables analyzed in Exercise 17.6 is

R =

⎛

⎝

1.0000 0.2126 0.4441
0.2126 1.0000 0.2654
0.4441 0.2654 1.0000

⎞

⎠ .
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The empirical correlation of IBM and PanAm returns is rIBM,PanAm =
0.2126.

The significance of the correlation coefficient can be tested using Fisher’s
Z-transformation, see also Exercise 3.5. Under the null hypothesis, H0 :
ρIBM,PanAm = 0, the random variable

W =
1
2

log
(

1 + rIBM,PanAm

1 − rIBM,PanAm

)

has asymptotically normal distribution with expected value EW = 0 and
variance Var W = (n − 3)−1.

Comparing the value
√

n − 3
2

log
(

1 + rIBM,PanAm

1 − rIBM,PanAm

)

=
√

117
2

log
1.2126
0.7874

= 2.3352

to the appropriate quantile of the standard normal distribution, u0.975 = 1.96,
we reject the null hypothesis.

Hence, on probability level 1 − α = 95%, we conclude that the covariance
between IBM and PanAm returns is significantly positive.

EXERCISE 17.8. Explain why in both the equally and optimally weighted port-
folio plotted on Figure 17.1 in Exercise 17.6 have negative returns just before
the end of the series, regardless of whether they are optimally weighted or not!

In the NYSE returns data set given in Table A.13, we can clearly see that at
the end of the data set, all considered stocks have negative returns. In such
situation, it is clear that any positively weighted portfolio ends up in a loss.

The worst results can be seen in the third row from the end of the data set.
Since the data set contains monthly returns and it stops in December 1987,
the worst results are achieved in October 1987. Actually, the stock market
crash of October 19th 1987 was one of the largest market crashes in history.
On this so-called Black Monday, the Dow-Jones index lost 22.6% of its value
(Sobel 1988).

EXERCISE 17.9. Could some of the weights in Exercise 17.6 be negative?

The efficient portfolio weights, c = {1�p Σ−11p}−1Σ−11p, are given in The-
orem 17.1. Clearly, the denominator 1�p Σ−11p is always positive since the
variance matrix Σ is positive definite. Thus, the weight of the ith asset ci < 0
if and only if the ith element of the vector Σ−11p < 0.

Noticing that the vector Σ−11p contains the sums of row elements of the
matrix Σ−1, we just need to design a suitable positive definite matrix. For
example,
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Σ−1 =

⎛

⎝

1.0 −0.8 −0.4
−0.8 1.0 0.2
−0.4 0.2 1.0

⎞

⎠

is a positive definite matrix with negative row sums. The corresponding vari-
ance matrix of the asset returns would be:

Σ = (Σ−1)−1 =

⎛

⎝

3.3333 2.5000 0.8333
2.5000 2.9167 0.4167
0.8333 0.4167 1.2500

⎞

⎠ .

It is now easy to see that the variance efficient portfolio weights are indeed
c = (−0.2, 0.4, 0.8)� with c1 = −0.2 < 0.

Hence, we conclude that the variance efficient portfolio weights (see Theo-
rem 17.1 and Exercise 17.6) could be negative for certain covariance structure
of the asset returns.

EXERCISE 17.10. In the CAPM the β value tells us about the performance
of the portfolio relative to the riskless asset. Calculate the β value for each
single stock price series relative to the “riskless” asset IBM.

We have already seen in Exercise 17.6 that IBM returns have smallest variance.
Hence, it makes sense to use IBM as a replacement of the market index in
CAPM.

Let us denote the returns of the index (IBM) by ri, i = 1, . . . , n. The coefficient
βj corresponding to the jth asset returns xij , j = 1, . . . , p, can be estimated
using the following linear model:

xij = αi + βjri + εi,

where εi are iid random variables with zero mean and variance σ2. As shown in
Exercise 3.7, the estimates of βi by the least squares method can be calculated
as:

̂βi =
sXi,R

sRR
,

where sXi,R denotes the empirical covariance of the ith asset returns and the
market index and sR,R is the empirical variance of the market index.

The betas can now be calculated from the covariance matrix given in Exer-
cise 17.6:

̂β2 = 0.0017/0.0035 = 0.49,

̂β3 = 0.0026/0.0035 = 0.74.
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Fig. 17.2. Returns of PanAm and DEC plotted against IBM returns with the
corresponding regression lines. SMScapmnyse

The estimated regression lines are plotted in Figure 17.2. The larger sensitivity
of DEC is clearly visible.

The estimated betas suggest that both companies, PanAm (̂β2) and DEC (̂β3)
are both less sensitive to market changes than the “index” IBM.
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Highly Interactive, Computationally Intensive
Techniques

Then we have stopped all the holes. And now we must be silent and
wait.
Sherlock Holmes in “The Red-Headed League”

Modern statistics is impossible without computers. The introduction of modern
computers in the last quarter of the 20th century created the subdiscipline
“computational statistics.” This new science has subsequently initiated a
variety of new computer-aided techniques. Some of these techniques, such as
brushing of scatter plots, are highly interactive and computationally intensive.

Computer-aided techniques can help us to discover dependencies among the
variables without formal tools and are essential, especially when we consider
extremely high-dimensional data. For example, visual inspection and inter-
active conditioning via the brush helps us to discover lower-dimensional rela-
tions between variables. Computer-aided techniques are therefore at the heart
of multivariate statistical analysis.

In this chapter we first present simplicial depth, a generalization of the data
depth allowing straightforward definition of the multivariate median. Next,
projection pursuit is a semiparametric technique based on “interesting” one-
dimensional projection. A multivariate nonparametric regression model is
underlying sliced inverse regression, a technique that leads to a dimensionality
reduction of the space of the explanatory variables. The technique of support
vector machines (SVM) is motivated by nonlinear classification (discrimina-
tion problems). The last technique presented in this chapter, classification and
regression trees (CART), is a decision tree procedure developed by Breiman,
Friedman, Olshen & Stone (1984).
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Simplicial Depth

In p-dimensional space, the depth of a data point x is defined as the number
of convex hulls formed from all possible selections of p + 1 points covering x.
The multivariate median is defined as the point with the largest depth

xmed = arg max
i

#{k0, . . . , kp ∈ {1, . . . , n} : xi ∈ hull(xk0 , . . . , xkp
)}.

Unfortunately, with increasing dimension p and number of observations n, the
calculation of the multivariate median becomes very time-consuming.

Exploratory Projection Pursuit

The projection pursuit searches for interesting directions in a p-dimensional
data set by maximizing a chosen index. In Chapter 9, the method of principal
components is based on the maximization of variance. In Chapter 14, the
method of canonical correlations maximizes the correlation between linear
combinations of two subgroups of the observed variables.

Assume that the p-dimensional random vector X has zero mean, EX = 0p,
and unit variance Var(X) = Ip. Such a covariance structure can be achieved
by the Mahalanobis transformation. Let ̂fh,α denote the kernel density esti-
mator of the pdf of the projection α�X, where h denotes the kernel estimator
bandwidth. Friedman & Tukey (1974) proposed the index

IFT,h(α) = n−1
n
∑

i=1

f̂h,α(α�Xi),

leading to the maximization of
∫

f2(z)dz. An alternative index can be
based on the entropy measure

∫

f(z) log f(z)dz or on the Fisher informa-
tion

∫

{f ′(z)}2/f(z)dz. Jones & Sibson (1987) suggested approximating the
deviations from the normal density by

IJS(α) = {κ2
3(α

�X) + κ2
4(α

�X)/4}/12,

where κ3(α�X) = E{(α�X)3} and κ4(α�X) = E{(α�X)4}−3 are cumulants
of α�X. The maximization of these indices usually leads to the least-normal-
looking view of the data set.

Sliced Inverse Regression

Given a response variable Y and a (random) vector X ∈ R
p of explanatory

variables, the idea of sliced inverse regression (Duan & Li 1991) is to find a
smooth regression function that operates on a variable set of projections:



18 Highly Interactive, Computationally Intensive Techniques 303

Y = m(β�
1 X, . . . , β�

k X, ε),

where β1, . . . , βk are unknown projection vectors, k ≤ p is unknown, m :
R

k+1 → R is an unknown function, and ε is the random error with E (ε|X) =
0. The unknown βis are called effective dimension-reduction directions (EDR
directions). The span of EDR directions is denoted as an effective dimension
reduction space (EDR space).

The EDR space can be identified by considering the inverse regression (IR)
curve m1(y) = E(Z|Y = y) of the standardized variable Z = Σ−1/2(X−EX).
The SIR algorithm exploits the fact that the conditional expectation m1(y) is
moving in span(η1, . . . , ηk). The EDR directions ̂βi, i = 1, . . . , k are calculated
from the eigenvectors η̂i of Var{m1(y)}. The eigenvalues of Var{m1(y)} show
which of the EDR directions are important (Cook & Weisberg 1991, Li 1991,
Hall & Li 1993).

SIR Algorithm

1. Standardize x by calculating zi = ̂Σ−1/2(xi − x).

2. Divide the range of the response yi into S disjoint intervals (slices)
Hs, s = 1, . . . , S. The number of observations within slice Hs is ns =
∑n

i=1 IHs
(yi).

3. Compute the mean of zi over all slices, zs = n−1
s

∑n
i=1 ziIHs

(yi) as a
crude estimate of the IR curve m1(y).

4. Calculate the estimate for the conditional variance of the IR curve: ̂V =
n−1

∑S
s=1 nszsz

�
s .

5. Identify the eigenvalues λ̂i and eigenvectors η̂i of ̂V .

6. Put the standardized EDR directions η̂i back to the original scale: ̂βi =
̂Σ−1/2η̂i.

SIR II Algorithm

In some cases, the EDR directions are hard to find using the SIR algorithm.
The SIR II algorithm overcomes this difficulty by considering the conditional
variance Var(X|y) instead of the IR curve m1(y).

In practice, it is recommended to use SIR and SIR II jointly (Cook &
Weisberg 1991, Li 1991, Schott 1994) or to investigate higher-order condi-
tional moments. For further reading, see Kötter (1996).
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CART

CART is based on sequential splitting of the data space into a binary tree. At
each node, the split is determined by minimization of an impurity measure. For
regression trees this impurity measure is, e.g., the variance; for classification
trees, it is, e.g., the misclassification error. An example is the classification of
patients into low- and high-risk patients.

Is mimimum systolic blood pressure
over the initial 24 hours < 91?

Is age < 62.5?

Is sinus tachycardia present?

HIGH RISK LOW RISK

HIGH RISK

HIGH RISK

Left branches of the tree correspond to positive answers, right branches to
negative answers to questions like “Xj ≤ a.” Here Xj denotes one of the
many variables recorded for each patient and a is the threshold that has to
be computed by minimizing the (chosen) impurity measure at each node.

An important characteristic is that CART always splits one of the coordinate
axes, i.e., in only one variable. A simple classification into two groups that lie
above and below a diagonal of a square will be hard for CART. We study this
effect in the following exercises.

The splitting procedure is defined via the Gini, the twoing, or the least squares
criterion. The Gini method typically performs best. Industries using CART
include telecommunications, transportation, banking, financial services, health
care, and education.

Support Vector Machines

The theoretical basis of the SVM methodology is provided by the statistical
learning theory (Vapnik 2000). The basic idea of the SVM classification is to
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find a separating hyperplane x�w+b = 0 corresponding to the largest possible
margin between the points of different classes. The classification error ξi ≥ 0
of the ith observation is defined as the distance from the misclassified point
xi to the canonical hyperplane x�w + b = ±1 bounding its class:

x�
i w + b ≥ 1 − ξi in group 1, (18.1)

x�
i w + b ≤ −1 + ξi in group 2. (18.2)

Using this notation, the margin between the points of different classes, i.e., the
distance between the canonical hyperplanes, is equal to 2/‖w‖. The problem
of penalized margin maximization can now be formulated as a constrained
minimization of the expression:

1
2
‖w‖2 + c

(

n
∑

i=1

ξi

)ν

(18.3)

under constraints (18.1) and (18.2), where c and ν ≥ 1 are parameters con-
trolling the behavior of the algorithm.

Nonlinear classification is achieved by mapping the data into a high-dimensional
feature space and finding a linear separating hyperplane in this feature space.
This can be easily achieved by using a kernel function in the dual formulation
of the minimization problem (18.3). Throughout the rest of this chapter, we
will use the stationary Gaussian kernel with an anisotropic radial basis,

K(xi, xj) = exp{−(xi − xj)�r2Σ−1(xi − xj)/2},

where Σ is taken as the empirical variance matrix and r is a constant.

For more insight into the SVM methodology, we refer to Vapnik (2000).

EXERCISE 18.1. Construct a configuration of points in R
2 such that the point

with coordinates given by the univariate medians, (xmed,1, xmed,2)�, is not in
the center of the scatterplot.

In Figure 18.1, we plot an example with 11 points. Ten points are lying roughly
on the unit circle while the 11th point lies somewhere between them. The
depth of the 11 points is given at the location of each point in Figure 18.1.
Given point, say x, lying on the diameter of the circle should be covered only
by the triangles (convex hulls of p + 1 = 3 points) containing x. The number
of such triangles is clearly

(

10
2

)

=
10!
8!2!

=
90
2

= 45

and, in Figure 18.1, we observe that this is indeed the depth of the points
lying on the diameter of the circle.
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Simplicial depth

-1 -0.5 0 0.5 1

X

-1
-0

.5
0

0.
5

1

Y

  45

  53

  45

  45

  45
  65

  45

  45

  45

  45

  79

Fig. 18.1. The deepest point (star) and the coordinatewise median (triangle) of
the simulated data set. The numbers are giving the simplicial depth of the points.

SMSsimpdsimu

The deepest point, the multivariate median, is denoted by the star. The
triangle shows the location of the coordinatewise median. Clearly, the co-
ordinatewise median does not lie close to any observation.

EXERCISE 18.2. Calculate the Simplicial Depth for the Swiss bank notes data
set (Table A.2) and compare the results to the univariate medians. Calculate
the Simplicial Depth again for the genuine and counterfeit bank notes sepa-
rately.

The Swiss bank notes data set has altogether two hundred 6-dimensional
observations. In order to calculate the depth of each point, we should check if
each of these points lies inside a convex hull formed by every possible p+1 = 7

points. From 200 points, we can select 7 distinct points in altogether
(

200
7

)

=

2283896214600 ways. Clearly, the evaluation of this relatively small data set
might take a while even if some smart numerical algorithm is used.
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In order to demonstrate the concept of the Simplicial Depth, we calculate
the depth only on the 20 Swiss bank notes selected in Exercise 11.6, see also
Figure 11.5 for the numbers of the selected observations. To increase the speed
of calculation even further, we calculate the simplicial depth only in the 2-
dimensional space given by the first two principal components.

Simplicial depth of Swiss Bank Notes
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Fig. 18.2. The deepest points (big star) and the coordinatewise medians (big
triangle) of the first two PCs of the Swiss bank notes. Smaller symbols show the
deepest points and coordinatewise medians for genuine and counterfeit banknotes.
The numbers are giving the simplicial depth of the points. SMSsimpdbank

The simplicial depth of the selected 20 points is plotted in Figure 18.2. The

smallest possible data depth if given by
(

19
2

)

= 171. The largest possible

depth would be
(

20
3

)

= 1140 if some of the points would like in the convex

hull of all possible combinations of 3 points.

The deepest point, (1.05, 0.07)�, in Figure 18.2 is denoted by the big red star.
Smaller stars denote the deepest points calculated separately for the genuine
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and counterfeit bank notes. The large triangle denotes the coordinatewise
median, (−0.41,−0.01)�, of all observations—notice that it is lying quite far
from the deepest point and it even has opposite sign.

The coordinatewise medians calculated only for the 10 genuine and 10 coun-
terfeit bank notes are plotted as small triangles in Figure 18.2. The differences
between the deepest point and the coordinatewise median are clearly visible:
the deepest point is always one of the points given in the data set whereas
the coordinatewise median often lies quite far away even from the closest
observation.

EXERCISE 18.3. Apply the EPP technique on the Swiss bank notes data set
(Table A.2) and compare the results to the PC analysis and Fisher’s linear
discriminant rule.

The first step in projection pursuit is usually sphering and centering of the
data set by the Mahalanobis transformation. This transformation removes the
effect of location, scale, and correlation structure.

The search of the optimal projection is based on nonparametric density esti-
mators of the projections. In this exercise, we were using Quartic kernel with
bandwidth given by the Scott’s rule-of-thumb, h = 2.62n−1/5, see Härdle et al.
(2004). We were searching for projections maximizing the Friedman-Tukey
index.

In Figure 18.3, we plot the estimated densities minimizing (dashed line, upper
dotplot) and maximizing (solid line, lower dotplot) the Friedman-Tukey index
(the extremes were taken from 10000 randomly chosen projections). In the
dotplots of the resulting extreme one-dimensional projections, the genuine
and counterfeit bank notes are distinguished by different plotting symbols.

The most interesting Friedman-Tukey projection is given by the vector:

(0.9083,−0.2494,−0.0368, 0.2568,−0.2126, 0.0181)�,

i.e., the largest weight is assigned to the the first variable, the length of the
bank note. In the least interesting projection (dashed line in Figure 18.3),
it would be impossible to separate the genuine and counterfeit bank notes
although we see some outlying group of counterfeit bank notes on the right
hand side. In the lower dotplot, the separation between the counterfeit and
genuine bank notes seems to be much better. However, the best separation by
far is achieved by the Fisher’s linear discriminant rule plotted in Figure 18.4.

The Fisher’s LDA projection is given by the coefficients:

a = (−0.1229,−0.0307, 0.0009, 0.0057, 0.0020,−0.0078)�
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Fig. 18.3. The least (dashed line, upper dotplot) and the most informative (solid
line, lower dotplot) from 10000 randomly chosen directions. The Friedman-Tukey
index. SMSeppbank

and the projected points are displayed in the upper dotplot in Figure 18.4.
The corresponding kernel density estimate is given by the dashed line. The
clear separation of the two groups confirms the optimality of the Fisher’s
projection (note that the prior knowledge of the two groups was used in the
construction of this projection).

The principal components projection of the same (sphered and centered) data
set is given by the linear combination:

v = (0.6465, 0.3197, 0.0847,−0.5688,−0.1859, 0.3383)�

and the resulting one-dimensional projection is plotted as the solid line and
the lower dotplot in Figure 18.4. However, the Mahalanobis transformation
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Fisher’s LDA and PC projection
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Fig. 18.4. The Fisher’s LDA projection (dashed line, upper dotplot) first PC (solid
line, lower dotplot) for Swiss bank notes. SMSdisfbank2

used for sphering and centering of the data set “guarantees” that the PC
transformation has no chance of producing an interesting result, see Exe-
rcise 9.7.

Comparing the projections plotted in Figures 18.3 and 18.4, we can say the PC
projection and EPP lead to similar results and both assign the largest weight
to the first variable. The Fisher’s discriminant rule, using prior knowledge of
the group membership of the observations, shows the best possible separation
of genuine and counterfeit bank notes.

From the computational point of view, the PC and Fisher’s discriminant pro-
jections are very simple to implement. The implementation of the exploratory
projection pursuit is much more involved and it requires choices of additional
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parameters such as the kernel function or bandwidth. For large and high-
dimensional data sets, the computation might take very long, the numerical
algorithm does not have to find the global maximum and it even is not guar-
anteed that such a unique maximum exists.

EXERCISE 18.4. Apply the SIR technique to the U.S. companies data
(Table A.17) with Y = “market value” and X =“all other variables”. Which
EDR directions do you find?

The U.S. companies data set contains 6 variables measured on 79 U.S. com-
panies. Apart of the response variable, market value, the data set contains
information on assets, sales, profits, cash flow and number of employees. As
described in the introduction to this chapter, SIR attempts to find lower di-
mensional projections of the five explanatory variables with a strong (possibly
nonlinear) relationship to the market value.

This data set has been already investigated in Exercise 11.9 and, again, we use
the same logarithmic transformation. The scatterplot of the first two PCs of
the transformed data set was already given in the same exercise in Figure 11.9.
The transformed variables are centered and standardized so that the scales of
measurement of all variables become comparable; the standardization is not
crucial for SIR, but it simplifies the interpretation of the resulting coefficients.

Two companies, IBM and General Electric, have extremely large market value
and we removed them from the next analysis as outliers. Without these two
observations, the rest of the data set is more “spread out” in the scatterplots
in Figure 18.5.

After the removal of the two outliers, there are 77 observations left in the
data set. For the SIR, we have created 7 slices with 11 observations each. The
eigenvalues are ̂λ = (0.70, 0.19, 0.07, 0.03, 0.01) and it seems that only one
factor explains “larger than average” amount (1/5 = 0.20) of the conditional
variance of the IR curve. In Figure 18.5 we plot the corresponding screeplot
and scatterplots of the response, market value, against the first three resulting
projections of the five explanatory variables in Figure 18.5.

The scatterplot of the market value against the first factor, X ̂β1, shows strong
nonlinear relationship. The coefficients of the first factor are given by ̂β1 =
(0.35, 0.14, 0.19, 0.03, 0.91)�. Clearly, most of the factor is given by the 5th
explanatory variable, number of employees. Important role is played also by
the first variable, assets. Less important are the second and the third variable,
i.e., sales and profits.

The second factor, explaining 19% of the variance, is given by coefficients
̂β2 = (0.25, 0.55, 0.38,−0.05,−0.70)�. It could be described as “large sales,
profits, and assets with small number of employees” factor. The scatterplot in
Figure 18.5 does not seem to show any clear relationship between the market
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Fig. 18.5. SIR applied on the U.S. companies data set (without IBM and General
Electric). Screeplot and scatterplots of the first three indices against the response.

SMSsiruscomp

value and the second factor. However, 3-dimensional plot would reveal rather
complicated nonlinear dependency of the market value on the first two factors.
Unfortunately, for obvious reasons, a 3-dimensional plot cannot be printed in
a book.

We can conclude that the market value of a company is a nonlinear function
of a factor given mainly by number of employees and assets of the company.

EXERCISE 18.5. Simulate a data set with X ∼ N4(0, I4), Y = (X1 +3X2)2 +
(X3 −X4)4 + ε and ε ∼ N(0, 1) and use SIR and SIR II technique to find the
EDR directions.

We have simulated altogether 200 observations from the nonlinear regression
model. The true response variable depends on the explanatory variables non-
linearly through the linear combinations Xβ1 = X1+3X2 and Xβ2 = X3−X4,
where β1 = (1, 3, 0, 0)� and β2 = (0, 0, 3,−4)�.
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The screeplot and the scatterplots of the response Y against the estimated pro-
jections obtained by SIR algorithm are plotted in Figure 18.6. The screeplot,
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Fig. 18.6. SIR applied on the simulated data set. Screeplot and scatterplots of first
three indices against the response. SMSsirsimu

corresponding to eigenvalues ̂λ = (0.36, 0.26, 0.21, 0.17)� does not really show
any truly dominant direction. However, choosing the first two factors would
lead ̂β1 = (−0.16,−0.17, 0.76,−0.60)� and ̂β2 = (0.49, 0.81, 0.31, 0.07)�

which are not too far from the original β2 and β1.

In Härdle & Simar (2003, example 18.2) it is demonstrated that the SIR
algorithm does not work very well if the response variable is symmetric as
in this exercise. In such situations, the SIR II algorithm should be able to
provide more reliable results. The results of the SIR II algorithm, based on
conditional variance rather than on conditional expectations, are graphically
displayed in Figure 18.7.

Clearly, the factors of the SIR II algorithm plotted in Figure 18.7 are very
similar to the factors obtained by the SIR algorithm in Figure 18.6. The main
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Fig. 18.7. SIR II applied on the simulated data set. Screeplot and scatterplots of
first three indices against the response. SMSsir2simu

difference is in the screeplot which now more strongly suggests that two factors
are appropriate. The eigenvalues are ̂λ = (0.45, 0.34, 0.11, 0.09)� and the first
two factors here explain 79% of the variance.

The coefficients of the first two factors, ̂β1 = (−0.12,−0.16, 0.81,−0.55) and
̂β2 = (0.31, 0.93, 0.12,−0.15), are also very close to the true values of β2 and
β1.

The SIR II algorithm basically provides the same directions, but the result
can be seen more clearly. Better results from the SIR algorithms might be
expected for monotone relationships.

The dependency of the response on the first two factors is actually stronger
than it appears from the two-dimensional scatterplots in Figures 18.6 and 18.7.
Plotting the dependency of the response on the first two factors in three-
dimensional graphics shows very clear three-dimensional surface. In Fig-
ure 18.7, we can see only two side views of the “bowl”. However, with some
effort, it is not impossible to imagine how this surface actually looks like.
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EXERCISE 18.6. Apply the SIR and SIR II technique on the car data set in
Table A.4 with Y =“price”.

The 9 explanatory variables in the cars data set are: mileage, headroom, rear
seat clearance, trunk space, weight, length, turning diameter, displacement
and gear ratio. We have dropped the variables measuring repair record since
they were containing missing values. The variable “company headquarters” is
used to define the plotting symbols in the resulting graphics.

Before running the SIR algorithm, the explanatory variables were centered
and standardized.
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Fig. 18.8. SIR applied on the cars data set. Screeplot and scatterplots of first three
indices against the response. The plotting symbol denotes company headquarters
(circle=USA, cross=Europe, triangle=Japan). SMSsircars

The screeplot and the scatterplots of the response versus the first three indices
are plotted in Figure 18.8. Considering the number of explanatory variables
and the obtained eigenvalues,



316 18 Highly Interactive, Computationally Intensive Techniques

̂λ = (0.37, 0.25, 0.16, 0.11, 0.09, 0.01, 0.01, 0.00, 0.00)�,

we should keep three or four factors. The corresponding coefficients are:

̂β1 = (−0.10,−0.20, 0.12, 0.09, 0.83,−0.26,−0.37, 0.05, 0.18)�,

̂β2 = (−0.08,−0.06,−0.08, 0.17,−0.67, 0.67,−0.16, 0.14, 0.09)�,

̂β3 = (−0.16,−0.23, 0.16,−0.24,−0.61, 0.20, 0.56, 0.18, 0.28)�,

̂β4 = (−0.03, 0.20, 0.08,−0.25, 0.08,−0.10,−0.35, 0.64, 0.59)�.

The first factor seems to assign most of the weight to the variable “weight”.The
second factor is contrast between the length and the weight of the car.

In Figure 18.6, the increasing price as a function of weight is clearly visible in
the first scatterplot. The most expensive and heaviest cars come from USA
(circles) and Europe (crosses). The dependency of the price on the second
factor seems to be more complicated. Again, as in the previous exercises, the
first two factors have to be considered jointly and the best visualization would
be achieved by interactive (rotating) three-dimensional plot: in such graphical
device it can be clearly seen that the graph of the price plotted against the
first two factors can be described as three-dimensional “twisted tube”. In the
upper two scatterplots in Figure 18.6, this “twisted tube” can be seen only
from the front and the side view.

In Figure 18.9, we can see the results of the SIR II algorithm applied on the
same data set. The screeplot immediately suggests that the SIR II algorithm
is not appropriate for this data and that it does not find any interesting
directions. In the scatterplots, we do not see any clear relationship between
the response and the indices.

In this situation, better results are provided by the SIR algorithm which
discovers an interesting nonlinear relationship of the price of the car on its
weight and length.

EXERCISE 18.7. Generate four regions on the two-dimensional unit square
by sequentially cutting parallel to the coordinate axes. Generate 100 two-
dimensional Uniform random variables and label them according to their pres-
ence in the above regions. Apply the CART algorithm to find the regions bound
and to classify the observations.

The example has been generated by cutting first the unit square at x2 = 0.5
and then dividing each half at x1 = 0.75. The class assignment is displayed
graphically in the left plot in Figure 18.10, where the classes 1, 2, and 3 are
respectively denoted by triangles, squares, and diamonds.

The CART procedure finds the tree displayed in Figure 18.10. One sees that
CART almost perfectly reproduces the split points.
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Fig. 18.9. SIR II applied on the cars data set. Screeplot and scatterplots of first
three indices against the response. The plotting symbol denotes company headquar-
ters (circle=USA, cross=Europe, triangle=Japan). SMSsir2cars
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Fig. 18.10. Classification tree applied on the example data set. SMScartsq
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EXERCISE 18.8. Modify Exercise 18.7 by defining the regions as lying above
and below the main diagonal of the unit square. Make a CART analysis and
comment on the complexity of the tree.

The design of this example is not optimal for CART since the optimal split
does not lie along a coordinate axis. A simulated data set is plotted in Fig-
ure 18.11. The points lying above (group 1) and below (group 2) the diagonal
are denoted by triangles and circles, respectively.

diagonal data set
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5
1

Y

Fig. 18.11. The diagonal data set. The points from groups 1 (triangles) and 2
(circles) are separated by a single line, the diagonal, in the left plot. The horizontal
and vertical lines in the right plot are the thresholds obtained by CART algorithm.

SMScartdiag

The diagonal of the unit square is plotted in the left plot in Figure 18.11.
The thresholds obtained by the CART algorithm are plotted in the right plot
in Figure 18.11. Clearly, many thresholds are needed to split the simulated
data set across the diagonal. As a consequence, the CART algorithm produces
an oversized tree, plotted in Figure 18.12. One can see that the CART algo-
rithm tries to approximate the optimal diagonal split by a sequence of small
rectangles placed around the diagonal.

EXERCISE 18.9. Apply the SVM with different radial basis parameter r and
different capacity parameter c in order to separate two circular data sets. This
example is often called the Orange Peel exercise and involves two normal
distributions N(µ,Σi), i = 1, 2, with covariance matrices Σ1 = 2I2 and Σ2 =
0.5I2.
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Orange Peel: r=2.0, c=1.0 
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Fig. 18.13. The SVM applied to the orange peel data set with various choices of
parameters r and c. Upper left plot: r = 2, c = 1, upper right: r = 0.5, c = 1, lower
left: r = 2, c = 1000, lower right: r = 0.5, c = 1000. SMSsvmorange

In Figure 18.13, we plot four scatterplots containing the simulated two-
dimensional dataset. In each plot, the white line denotes the separating
hyperplane x�w + b = 0. The canonical hyperplanes, x�w + b = ±1, are
denoted by the black lines. The shading of the background is given by the
value of the function x�w + b in each point. Depending on the choice of the
radial and capacity parameters r and c, the SVM is very flexible.

The radial parameter r controls the smoothness of the local neighborhood in
the data space. One sees that the separating curves are more jagged for r = 0.5
than for r = 2. Compare the pictures in the left column of Figure 18.13 with
those in the right column.
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The capacity parameter c controls the amount of nonseparable observations
Letting c grow makes the SVM more sensitive to the classification error as
can be seen from 18.3. The SVM therefore yields smaller margins.

For the orange peel data involving two circular covariance structures, the
parameter constellation r = 2, c = 1 gives the best separability results.

EXERCISE 18.10. The noisy spiral data set consists of two intertwining spi-
rals that need to be separated by a nonlinear classification method. Apply the
SVM with different radial basis parameter r and capacity parameter c in order
to separate the two spiral datasets.
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Fig. 18.14. The SVM applied on the spiral data set with various choices of para-
meters r and c. Upper left plot: r = 2, c = 1, upper right: r = 1, c = 1, lower left:
r = 0.5, c = 1, lower right: r = 1, c = 1000. SMSsvmspiral
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The simulated data set, plotted in Figure 18.14, was generated by adding a
random noise, N2(02, I/100), to regularly spaced points lying on the spirals
E1 and E2:

E1 =
{(

(1 + x) sin(x)
(1 + x) cos(x)

)

, x ∈ (0, 3π)
}

,

E2 =
{(

(1 + x) sin(x + π)
(1 + x) cos(x + π)

)

, x ∈ (0, 3π)
}

.

The noisy spiral data is certainly hard to separate for only linear classification
method. For SVM, it is a matter of finding an appropriate (r, c) combination.
It can actually be found by cross validation (Vapnik 2000) but this involves
an enormous computational effort. Since the data have small variance around
the spiral, we can work with big capacity c entailing small margins.

The local sensitivity is controlled by r as can be seen from the upper row of
Figure 18.14. Lowering the sensitivity increases the correct classifications.

The best result is obtained for r = 1 and c = 1000, see the lower right corner
of Figure 18.14.

EXERCISE 18.11. Apply the SVM to separate the bankrupt from the surviving
(profitable) companies using the profitability and leverage ratios given in the
Bankruptcy data set in Table A.3.

Separating possibly bankrupt from profit making companies is an impor-
tant business and income source for investment banks. A good classification
method (Härdle, Moro & Schäfer 2005) is therefore vital also for the perfor-
mance of a bank.

Figure 18.15 shows the variation of r and c over the range r = 2, 0.5, 5 and c =
1, 1000. The capacity parameter c is seen to produce the best classifications for
c = 1. The radial parameter r = 2—see the upper left corner in Figure 18.15—
gives the best classification result.
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Fig. 18.15. The SVM technique applied on the Bankruptcy data set with various
choices of parameters r and c. SMSsvmbankrupt
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Data Sets

All data sets are available on the authors’ Web page.

A.1 Athletic Records Data

This data set provides data on athletic records for 55 countries.

Country 100m 200m 400m 800m 1500m 5000m 10000m Marathon
(s) (s) (s) (s) (min) (min) (min) (min)

Argentina 10.39 20.81 46.84 1.81 3.70 14.04 29.36 137.71
Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30
Austria 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90
Belgium 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95
Bermuda 10.28 20.58 45.91 1.80 3.75 14.68 30.55 146.61
Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13
Burma 10.64 21.52 48.30 1.80 3.85 14.45 30.28 139.95
Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15
Chile 10.34 20.80 46.20 1.79 3.71 13.61 29.30 134.03
China 10.51 21.04 47.30 1.81 3.73 13.90 29.13 133.53
Colombia 10.43 21.05 46.10 1.82 3.74 13.49 27.88 131.35
Cook Island 12.18 23.20 52.94 2.02 4.24 16.70 35.38 164.70
Costa Rica 10.94 21.90 48.66 1.87 3.84 14.03 28.81 136.58
Czech Rep 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32
Denmark 10.56 20.52 45.89 1.78 3.61 13.50 28.11 130.78
Dom Rep 10.14 20.65 46.80 1.82 3.82 14.91 31.45 154.12
Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87
France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.30
GDR 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92
FRG 10.16 20.37 44.50 1.73 3.53 13.21 27.61 132.23
GB 10.11 20.21 44.93 1.70 3.51 13.01 27.51 129.13

continues on next page −→
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Country 100m 200m 400m 800m 1500m 5000m 10000m Marathon

Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.60
Guatemala 10.98 21.82 48.40 1.89 3.80 14.16 30.11 139.33
Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58
India 10.60 21.42 45.73 1.76 3.73 13.77 28.81 131.98
Indonesia 10.59 21.49 47.80 1.84 3.92 14.73 30.79 148.83
Ireland 10.61 20.96 46.30 1.79 3.56 13.32 27.81 132.35
Israel 10.71 21.00 47.80 1.77 3.72 13.66 28.93 137.55
Italy 10.01 19.72 45.26 1.73 3.60 13.23 27.52 131.08
Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63
Kenya 10.46 20.66 44.92 1.73 3.55 13.10 27.80 129.75
Korea 10.34 20.89 46.90 1.79 3.77 13.96 29.23 136.25
P Korea 10.91 21.94 47.30 1.85 3.77 14.13 29.67 130.87
Luxemburg 10.35 20.77 47.40 1.82 3.67 13.64 29.08 141.27
Malaysia 10.40 20.92 46.30 1.82 3.80 14.64 31.01 154.10
Mauritius 11.19 33.45 47.70 1.88 3.83 15.06 31.77 152.23
Mexico 10.42 21.30 46.10 1.80 3.65 13.46 27.95 129.20
Netherlands 10.52 29.95 45.10 1.74 3.62 13.36 27.61 129.02
NZ 10.51 20.88 46.10 1.74 3.54 13.21 27.70 128.98
Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48
PNG 10.96 21.78 47.90 1.90 4.01 14.72 31.36 148.22
Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27
Poland 10.16 20.24 45.36 1.76 3.60 13.29 27.89 131.58
Portugal 10.53 21.17 46.70 1.79 3.62 13.13 27.38 128.65
Romania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.50
Singapore 10.38 21.28 47.40 1.88 3.89 15.11 31.32 157.77
Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57
Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63
Switzerland 10.37 20.45 45.78 1.78 3.55 13.22 27.91 131.20
Tapei 10.59 21.29 46.80 1.79 3.77 14.07 30.07 139.27
Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.90
Turkey 10.71 21.43 47.60 1.79 3.67 13.56 28.58 131.50
USA 9.93 19.75 43.86 1.73 3.53 13.20 27.43 128.22
USSR 10.07 20.00 44.60 1.75 3.59 13.20 27.53 130.55
W Samoa 10.82 21.86 49.00 2.02 4.24 16.28 34.71 161.83
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A.2 Bank Notes Data

Six variables measured on 100 genuine and 100 counterfeit old Swiss 1000-
franc bank notes. The data stem from Flury & Riedwyl (1988). The columns
correspond to the following 6 variables.

X1: length of the bank note
X2: height of the bank note, measured on the left
X3: height of the bank note, measured on the right
X4: distance of the inner frame to the lower border
X5: distance of the inner frame to the upper border
X6: length of the diagonal

Observations 1–100 are the genuine bank notes and the other 100 observations
are the counterfeit bank notes.

Length Height Height Inner Frame Inner Frame Diagonal
(left) (right) (lower) (upper)

214.8 131.0 131.1 9.0 9.7 141.0
214.6 129.7 129.7 8.1 9.5 141.7
214.8 129.7 129.7 8.7 9.6 142.2
214.8 129.7 129.6 7.5 10.4 142.0
215.0 129.6 129.7 10.4 7.7 141.8
215.7 130.8 130.5 9.0 10.1 141.4
215.5 129.5 129.7 7.9 9.6 141.6
214.5 129.6 129.2 7.2 10.7 141.7
214.9 129.4 129.7 8.2 11.0 141.9
215.2 130.4 130.3 9.2 10.0 140.7
215.3 130.4 130.3 7.9 11.7 141.8
215.1 129.5 129.6 7.7 10.5 142.2
215.2 130.8 129.6 7.9 10.8 141.4
214.7 129.7 129.7 7.7 10.9 141.7
215.1 129.9 129.7 7.7 10.8 141.8
214.5 129.8 129.8 9.3 8.5 141.6
214.6 129.9 130.1 8.2 9.8 141.7
215.0 129.9 129.7 9.0 9.0 141.9
215.2 129.6 129.6 7.4 11.5 141.5
214.7 130.2 129.9 8.6 10.0 141.9
215.0 129.9 129.3 8.4 10.0 141.4
215.6 130.5 130.0 8.1 10.3 141.6
215.3 130.6 130.0 8.4 10.8 141.5
215.7 130.2 130.0 8.7 10.0 141.6
215.1 129.7 129.9 7.4 10.8 141.1
215.3 130.4 130.4 8.0 11.0 142.3
215.5 130.2 130.1 8.9 9.8 142.4
215.1 130.3 130.3 9.8 9.5 141.9
215.1 130.0 130.0 7.4 10.5 141.8
214.8 129.7 129.3 8.3 9.0 142.0
215.2 130.1 129.8 7.9 10.7 141.8
214.8 129.7 129.7 8.6 9.1 142.3
215.0 130.0 129.6 7.7 10.5 140.7
215.6 130.4 130.1 8.4 10.3 141.0
215.9 130.4 130.0 8.9 10.6 141.4
214.6 130.2 130.2 9.4 9.7 141.8
215.5 130.3 130.0 8.4 9.7 141.8
215.3 129.9 129.4 7.9 10.0 142.0
215.3 130.3 130.1 8.5 9.3 142.1
213.9 130.3 129.0 8.1 9.7 141.3
214.4 129.8 129.2 8.9 9.4 142.3
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Length Height Height Inner Frame Inner Frame Diagonal
(left) (right) (lower) (upper)

214.8 130.1 129.6 8.8 9.9 140.9
214.9 129.6 129.4 9.3 9.0 141.7
214.9 130.4 129.7 9.0 9.8 140.9
214.8 129.4 129.1 8.2 10.2 141.0
214.3 129.5 129.4 8.3 10.2 141.8
214.8 129.9 129.7 8.3 10.2 141.5
214.8 129.9 129.7 7.3 10.9 142.0
214.6 129.7 129.8 7.9 10.3 141.1
214.5 129.0 129.6 7.8 9.8 142.0
214.6 129.8 129.4 7.2 10.0 141.3
215.3 130.6 130.0 9.5 9.7 141.1
214.5 130.1 130.0 7.8 10.9 140.9
215.4 130.2 130.2 7.6 10.9 141.6
214.5 129.4 129.5 7.9 10.0 141.4
215.2 129.7 129.4 9.2 9.4 142.0
215.7 130.0 129.4 9.2 10.4 141.2
215.0 129.6 129.4 8.8 9.0 141.1
215.1 130.1 129.9 7.9 11.0 141.3
215.1 130.0 129.8 8.2 10.3 141.4
215.1 129.6 129.3 8.3 9.9 141.6
215.3 129.7 129.4 7.5 10.5 141.5
215.4 129.8 129.4 8.0 10.6 141.5
214.5 130.0 129.5 8.0 10.8 141.4
215.0 130.0 129.8 8.6 10.6 141.5
215.2 130.6 130.0 8.8 10.6 140.8
214.6 129.5 129.2 7.7 10.3 141.3
214.8 129.7 129.3 9.1 9.5 141.5
215.1 129.6 129.8 8.6 9.8 141.8
214.9 130.2 130.2 8.0 11.2 139.6
213.8 129.8 129.5 8.4 11.1 140.9
215.2 129.9 129.5 8.2 10.3 141.4
215.0 129.6 130.2 8.7 10.0 141.2
214.4 129.9 129.6 7.5 10.5 141.8
215.2 129.9 129.7 7.2 10.6 142.1
214.1 129.6 129.3 7.6 10.7 141.7
214.9 129.9 130.1 8.8 10.0 141.2
214.6 129.8 129.4 7.4 10.6 141.0
215.2 130.5 129.8 7.9 10.9 140.9
214.6 129.9 129.4 7.9 10.0 141.8
215.1 129.7 129.7 8.6 10.3 140.6
214.9 129.8 129.6 7.5 10.3 141.0
215.2 129.7 129.1 9.0 9.7 141.9
215.2 130.1 129.9 7.9 10.8 141.3
215.4 130.7 130.2 9.0 11.1 141.2
215.1 129.9 129.6 8.9 10.2 141.5
215.2 129.9 129.7 8.7 9.5 141.6
215.0 129.6 129.2 8.4 10.2 142.1
214.9 130.3 129.9 7.4 11.2 141.5
215.0 129.9 129.7 8.0 10.5 142.0
214.7 129.7 129.3 8.6 9.6 141.6
215.4 130.0 129.9 8.5 9.7 141.4
214.9 129.4 129.5 8.2 9.9 141.5
214.5 129.5 129.3 7.4 10.7 141.5
214.7 129.6 129.5 8.3 10.0 142.0
215.6 129.9 129.9 9.0 9.5 141.7
215.0 130.4 130.3 9.1 10.2 141.1
214.4 129.7 129.5 8.0 10.3 141.2
215.1 130.0 129.8 9.1 10.2 141.5
214.7 130.0 129.4 7.8 10.0 141.2
214.4 130.1 130.3 9.7 11.7 139.8
214.9 130.5 130.2 11.0 11.5 139.5
214.9 130.3 130.1 8.7 11.7 140.2
215.0 130.4 130.6 9.9 10.9 140.3
214.7 130.2 130.3 11.8 10.9 139.7
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Length Height Height Inner Frame Inner Frame Diagonal
(left) (right) (lower) (upper)

215.0 130.2 130.2 10.6 10.7 139.9
215.3 130.3 130.1 9.3 12.1 140.2
214.8 130.1 130.4 9.8 11.5 139.9
215.0 130.2 129.9 10.0 11.9 139.4
215.2 130.6 130.8 10.4 11.2 140.3
215.2 130.4 130.3 8.0 11.5 139.2
215.1 130.5 130.3 10.6 11.5 140.1
215.4 130.7 131.1 9.7 11.8 140.6
214.9 130.4 129.9 11.4 11.0 139.9
215.1 130.3 130.0 10.6 10.8 139.7
215.5 130.4 130.0 8.2 11.2 139.2
214.7 130.6 130.1 11.8 10.5 139.8
214.7 130.4 130.1 12.1 10.4 139.9
214.8 130.5 130.2 11.0 11.0 140.0
214.4 130.2 129.9 10.1 12.0 139.2
214.8 130.3 130.4 10.1 12.1 139.6
215.1 130.6 130.3 12.3 10.2 139.6
215.3 130.8 131.1 11.6 10.6 140.2
215.1 130.7 130.4 10.5 11.2 139.7
214.7 130.5 130.5 9.9 10.3 140.1
214.9 130.0 130.3 10.2 11.4 139.6
215.0 130.4 130.4 9.4 11.6 140.2
215.5 130.7 130.3 10.2 11.8 140.0
215.1 130.2 130.2 10.1 11.3 140.3
214.5 130.2 130.6 9.8 12.1 139.9
214.3 130.2 130.0 10.7 10.5 139.8
214.5 130.2 129.8 12.3 11.2 139.2
214.9 130.5 130.2 10.6 11.5 139.9
214.6 130.2 130.4 10.5 11.8 139.7
214.2 130.0 130.2 11.0 11.2 139.5
214.8 130.1 130.1 11.9 11.1 139.5
214.6 129.8 130.2 10.7 11.1 139.4
214.9 130.7 130.3 9.3 11.2 138.3
214.6 130.4 130.4 11.3 10.8 139.8
214.5 130.5 130.2 11.8 10.2 139.6
214.8 130.2 130.3 10.0 11.9 139.3
214.7 130.0 129.4 10.2 11.0 139.2
214.6 130.2 130.4 11.2 10.7 139.9
215.0 130.5 130.4 10.6 11.1 139.9
214.5 129.8 129.8 11.4 10.0 139.3
214.9 130.6 130.4 11.9 10.5 139.8
215.0 130.5 130.4 11.4 10.7 139.9
215.3 130.6 130.3 9.3 11.3 138.1
214.7 130.2 130.1 10.7 11.0 139.4
214.9 129.9 130.0 9.9 12.3 139.4
214.9 130.3 129.9 11.9 10.6 139.8
214.6 129.9 129.7 11.9 10.1 139.0
214.6 129.7 129.3 10.4 11.0 139.3
214.5 130.1 130.1 12.1 10.3 139.4
214.5 130.3 130.0 11.0 11.5 139.5
215.1 130.0 130.3 11.6 10.5 139.7
214.2 129.7 129.6 10.3 11.4 139.5
214.4 130.1 130.0 11.3 10.7 139.2
214.8 130.4 130.6 12.5 10.0 139.3
214.6 130.6 130.1 8.1 12.1 137.9
215.6 130.1 129.7 7.4 12.2 138.4
214.9 130.5 130.1 9.9 10.2 138.1
214.6 130.1 130.0 11.5 10.6 139.5
214.7 130.1 130.2 11.6 10.9 139.1
214.3 130.3 130.0 11.4 10.5 139.8
215.1 130.3 130.6 10.3 12.0 139.7
216.3 130.7 130.4 10.0 10.1 138.8
215.6 130.4 130.1 9.6 11.2 138.6
214.8 129.9 129.8 9.6 12.0 139.6
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Length Height Height Inner Frame Inner Frame Diagonal
(left) (right) (lower) (upper)

214.9 130.0 129.9 11.4 10.9 139.7
213.9 130.7 130.5 8.7 11.5 137.8
214.2 130.6 130.4 12.0 10.2 139.6
214.8 130.5 130.3 11.8 10.5 139.4
214.8 129.6 130.0 10.4 11.6 139.2
214.8 130.1 130.0 11.4 10.5 139.6
214.9 130.4 130.2 11.9 10.7 139.0
214.3 130.1 130.1 11.6 10.5 139.7
214.5 130.4 130.0 9.9 12.0 139.6
214.8 130.5 130.3 10.2 12.1 139.1
214.5 130.2 130.4 8.2 11.8 137.8
215.0 130.4 130.1 11.4 10.7 139.1
214.8 130.6 130.6 8.0 11.4 138.7
215.0 130.5 130.1 11.0 11.4 139.3
214.6 130.5 130.4 10.1 11.4 139.3
214.7 130.2 130.1 10.7 11.1 139.5
214.7 130.4 130.0 11.5 10.7 139.4
214.5 130.4 130.0 8.0 12.2 138.5
214.8 130.0 129.7 11.4 10.6 139.2
214.8 129.9 130.2 9.6 11.9 139.4
214.6 130.3 130.2 12.7 9.1 139.2
215.1 130.2 129.8 10.2 12.0 139.4
215.4 130.5 130.6 8.8 11.0 138.6
214.7 130.3 130.2 10.8 11.1 139.2
215.0 130.5 130.3 9.6 11.0 138.5
214.9 130.3 130.5 11.6 10.6 139.8
215.0 130.4 130.3 9.9 12.1 139.6
215.1 130.3 129.9 10.3 11.5 139.7
214.8 130.3 130.4 10.6 11.1 140.0
214.7 130.7 130.8 11.2 11.2 139.4
214.3 129.9 129.9 10.2 11.5 139.6
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A.3 Bankruptcy Data

The data are the profitability, leverage, and bankruptcy indicators for 84
companies.

The data set contains information on 42 of the largest companies that filed for
protection against creditors under Chapter 11 of the U.S. Bankruptcy Code
in 2001–2002 after the stock market crash of 2000. The bankrupt companies
were matched with 42 surviving companies with the closest capitalizations
and the same US industry classification codes available through the Division
of Corporate Finance of the Securities and Exchange Commission (SEC 2004).

The information for each company was collected from the annual reports for
1998–1999 (SEC 2004), i.e., three years prior to the defaults of the bankrupt
companies. The following data set contains profitability and leverage ratios
calculated, respectively, as the ratio of net income (NI) and total assets (TA)
and the ratio of total liabilities (TL) and total assets (TA).

Profitability (NI/TA) Leverage (TL/TA) Bankruptcy
0.022806 0.7816 1

−0.063584 0.7325 1
−0.227860 1.2361 1

0.021364 0.7350 1
0.042058 0.6339 1
0.021662 0.8614 1
0.023952 0.6527 1
0.000005 0.7385 1
0.020702 0.8954 1

−0.006640 0.7009 1
0.021634 0.7338 1

−0.023206 0.8226 1
−0.263667 0.9085 1
−0.047161 0.9275 1
−0.098931 0.7617 1

0.140857 0.7802 1
−0.018031 0.6187 1

0.047647 0.5294 1
−0.267393 1.0289 1
−0.105816 0.6542 1
−0.013929 0.7181 1

0.001215 0.8653 1
−0.012698 1.0000 1
−0.021990 0.8811 1

0.039147 0.5987 1
−0.000300 0.9213 1
−0.071546 1.0254 1

0.004256 0.7058 1
−0.003599 0.4086 1
−0.029814 0.6017 1

0.030197 0.7866 1
−0.016912 0.9428 1

0.026682 0.5173 1
−0.052413 0.4983 1
−0.408583 0.6821 1
−0.015960 0.6915 1

0.022807 0.8348 1
0.055888 0.6986 1
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Profitability (NI/TA) Leverage (TL/TA) Bankruptcy
0.025634 1.0152 1

−0.599016 1.4633 1
0.044064 0.4001 1

−0.121531 0.8697 1
−0.000172 0.6131 −1
−0.156216 1.0584 −1

0.012473 0.6254 −1
0.081731 0.2701 −1
0.080826 0.5593 −1
0.033538 0.7468 −1
0.036645 0.5338 −1
0.052686 0.7101 −1
0.122404 0.2700 −1
0.068682 0.7182 −1
0.030576 0.6175 −1
0.094346 0.7293 −1
0.091535 0.4425 −1
0.058916 0.6997 −1
0.186226 0.7254 −1
0.072777 0.5797 −1
0.101209 0.4526 −1
0.015374 0.8504 −1
0.047247 0.5918 −1

−0.085583 0.5945 −1
0.033137 0.5160 −1
0.016055 1.1353 −1
0.008357 0.9068 −1
0.034960 0.7169 −1
0.046514 0.3473 −1

−0.084510 0.8422 −1
0.029492 0.8319 −1
0.045271 0.5813 −1
0.041463 0.3619 −1
0.030059 0.9479 −1
0.023445 0.6856 −1
0.046705 0.4164 −1
0.127897 0.3694 −1
0.050956 0.6073 −1
0.020425 0.5295 −1
0.035311 0.6796 −1
0.066434 0.5303 −1
0.066550 0.7194 −1
0.055333 0.8063 −1
0.015738 0.6294 −1

−0.034455 0.3446 −1
0.004824 0.5705 −1
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A.4 Car Data

The car data set (Chambers, Cleveland, Kleiner & Tukey 1983) consists of
13 variables measured for 74 car types. The abbreviations in the table are as
follows:

X1: P price
X2: M mileage (in miles per gallon)
X3: R78 repair record 1978 (rated on a 5-point scale: 5 best, 1 worst)
X4: R77 repair record 1977 (scale as before)
X5: H headroom (in inches)
X6: R rear seat clearance (in inches)
X7: Tr trunk space (in cubic feet)
X8: W weight (in pound)
X9: L length (in inches)
X10: T turning diameter (clearance required to make a U-turn, in feet)
X11: D displacement (in cubic inches)
X12: G gear ratio for high gear
X13: C company headquarters (1 United States, 2 Japan, 3 Europe)

Model P M R78 R77 H R Tr W L T D G C
AMC Concord 4099 22 3 2 2.5 27.5 11 2930 186 40 121 3.58 1
AMC Pacer 4749 17 3 1 3.0 25.5 11 3350 173 40 258 2.53 1
AMC Spirit 3799 22 – 3.0 18.5 12 2640 168 35 121 3.08 1
Audi 5000 9690 17 5 2 3.0 27.0 15 2830 189 37 131 3.20 1
Audi Fox 6295 23 3 3 2.5 28.0 11 2070 174 36 97 3.70 3
BMW 320i 9735 25 4 4 2.5 26.0 12 2650 177 34 121 3.64 3
Buick Century 4816 20 3 3 4.5 29.0 16 3250 196 40 196 2.93 1
Buick Electra 7827 15 4 4 4.0 31.5 20 4080 222 43 350 2.41 1
Buick Le Sabre 5788 18 3 4 4.0 30.5 21 3670 218 43 231 2.73 1
Buick Opel 4453 26 – 3.0 24.0 10 2230 170 34 304 2.87 1
Buick Regal 5189 20 3 3 2.0 28.5 16 3280 200 42 196 2.93 1
Buick Riviera 10372 16 3 4 3.5 30.0 17 3880 207 43 231 2.93 1
Buick Skylark 4082 19 3 3 3.5 27.0 13 3400 200 42 231 3.08 1
Cadillac Deville 11385 14 3 3 4.0 31.5 20 4330 221 44 425 2.28 1
Cadillac El Dorado 14500 14 2 2 3.5 30.0 16 3900 204 43 350 2.19 1
Cadillac Seville 15906 21 3 3 3.0 30.0 13 4290 204 45 350 2.24 1
Chevrolet Chevette 3299 29 3 3 2.5 26.0 9 2110 163 34 231 2.93 1
Chevrolet Impala 5705 16 4 4 4.0 29.5 20 3690 212 43 250 2.56 1
Chevrolet Malibu 4504 22 3 3 3.5 28.5 17 3180 193 41 200 2.73 1
Chevrolet Monte Carlo 5104 22 2 3 2.0 28.5 16 3220 200 41 200 2.73 1
Chevrolet Monza 3667 24 2 2 2.0 25.0 7 2750 179 40 151 2.73 1
Chevrolet Nova 3955 19 3 3 3.5 27.0 13 3430 197 43 250 2.56 1
Datsun 200-SX 6229 23 4 3 1.5 21.0 6 2370 170 35 119 3.89 2
Datsun 210 4589 35 5 5 2.0 23.5 8 2020 165 32 85 3.70 2
Datsun 510 5079 24 4 4 2.5 22.0 8 2280 170 34 119 3.54 2
Datsun 810 8129 21 4 4 2.5 27.0 8 2750 184 38 146 3.55 2
Dodge Colt 3984 30 5 4 2.0 24.0 8 2120 163 35 98 3.54 2
Dodge Diplomat 5010 18 2 2 4.0 29.0 17 3600 206 46 318 2.47 1
Dodge Magnum XE 5886 16 2 2 3.5 26.0 16 3870 216 48 318 2.71 1
Dodge St. Regis 6342 17 2 2 4.5 28.0 21 3740 220 46 225 2.94 1
Fiat Strada 4296 21 3 1 2.5 26.5 16 2130 161 36 105 3.37 3
Ford Fiesta 4389 28 4 – 1.5 26.0 9 1800 147 33 98 3.15 1
Ford Mustang 4187 21 3 3 2.0 23.0 10 2650 179 42 140 3.08 1
Honda Accord 5799 25 5 5 3.0 25.5 10 2240 172 36 107 3.05 2
Honda Civic 4499 28 4 4 2.5 23.5 5 1760 149 34 91 3.30 2
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Model P M R78 R77 H R Tr W L T D G C
Lincoln Continental 11497 12 3 4 3.5 30.5 22 4840 233 51 400 2.47 1
Lincoln Cont Mark V 13594 12 3 4 2.5 28.5 18 4720 230 48 400 2.47 1
Lincoln Versailles 13466 14 3 3 3.5 27.0 15 3830 201 41 302 2.47 1
Mazda GLC 3995 30 4 4 3.5 25.5 11 1980 154 33 86 3.73 1
Mercury Bobcat 3829 22 4 3 3.0 25.5 9 2580 169 39 140 2.73 1
Mercury Cougar 5379 14 4 3 3.5 29.5 16 4060 221 48 302 2.75 1
Mercury Cougar XR-7 6303 14 4 4 3.0 25.0 16 4130 217 45 302 2.75 1
Mercury Marquis 6165 15 3 2 3.5 30.5 23 3720 212 44 302 2.26 1
Mercury Monarch 4516 18 3 – 3.0 27.0 15 3370 198 41 250 2.43 1
Mercury Zephyr 3291 20 3 3 3.5 29.0 17 2830 195 43 140 3.08 1
Oldsmobile 98 8814 21 4 4 4.0 31.5 20 4060 220 43 350 2.41 1
Oldsmobile Cutlass 4733 19 3 3 4.5 28.0 16 3300 198 42 231 2.93 1
Oldsmobile Cutlass Supreme 5172 19 3 4 2.0 28.0 16 3310 198 42 231 2.93 1
Oldsmobile Delta 88 5890 18 4 4 4.0 29.0 20 3690 218 42 231 2.73 1
Oldsmobile Omega 4181 19 3 3 4.5 27.0 14 3370 200 43 231 3.08 1
Oldsmobile Starfire 4195 24 1 1 2.0 25.5 10 2720 180 40 151 2.73 1
Oldsmobile Tornado 10371 16 3 3 3.5 30.0 17 4030 206 43 350 2.41 1
Peugeot 604 SL 12990 14 – – 3.5 30.5 14 3420 192 38 163 3.58 3
Plymouth Arrow 4647 28 3 3 2.0 21.5 11 2360 170 37 156 3.05 1
Plymouth Champ 4425 34 5 4 2.5 23.0 11 1800 157 37 86 2.97 1
Plymouth Horizon 4482 25 3 – 4.0 25.0 17 2200 165 36 105 3.37 1
Plymouth Sapporo 6486 26 – – 1.5 22.0 8 2520 182 38 119 3.54 1
Plymouth Volare 4060 18 2 2 5.0 31.0 16 3330 201 44 225 3.23 1
Pontiac Catalina 5798 18 4 4 4.0 29.0 20 3700 214 42 231 2.73 1
Pontiac Firebird 4934 18 1 2 1.5 23.5 7 3470 198 42 231 3.08 1
Pontiac Grand Prix 5222 19 3 3 2.0 28.5 16 3210 201 45 231 2.93 1
Pontiac Le Mans 4723 19 3 3 3.5 28.0 17 3200 199 40 231 2.93 1
Pontiac Phoenix 4424 19 – – 3.5 27.0 13 3420 203 43 231 3.08 1
Pontiac Sunbird 4172 24 2 2 2.0 25.0 7 2690 179 41 151 2.73 1
Renault Le Car 3895 26 3 3 3.0 23.0 10 1830 142 34 79 3.72 3
Subaru 3798 35 5 4 2.5 25.5 11 2050 164 36 97 3.81 2
Toyota Celica 5899 18 5 5 2.5 22.0 14 2410 174 36 134 3.06 2
Toyota Corolla 3748 31 5 5 3.0 24.5 9 2200 165 35 97 3.21 2
Toyota Corona 5719 18 5 5 2.0 23.0 11 2670 175 36 134 3.05 2
VW Rabbit 4697 25 4 3 3.0 25.5 15 1930 155 35 89 3.78 3
VW Rabbit Diesel 5397 41 5 4 3.0 25.5 15 2040 155 35 90 3.78 3
VW Scirocco 6850 25 4 3 2.0 23.5 16 1990 156 36 97 3.78 3
VW Dasher 7140 23 4 3 2.5 37.5 12 2160 172 36 97 3.74 3
Volvo 260 11995 17 5 3 2.5 29.5 14 3170 193 37 163 2.98 3
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A.5 Car Marks

The data are averaged marks for 24 car types from a sample of 40 persons. The
marks range from 1 (very good) to 6 (very bad) like German school marks.
The variables are:

X1: A cconomy
X2: B service
X3: C nondepreciation of value
X4: D price, mark 1 for very cheap cars
X5: E design
X6: F sporty car
X7: G safety
X8: H easy handling

Type Model Economy Service Value Price Design Sport Safety Easy Handling
Audi 100 3.9 2.8 2.2 4.2 3.0 3.1 2.4 2.8
BMW 5 series 4.8 1.6 1.9 5.0 2.0 2.5 1.6 2.8
Citroen AX 3.0 3.8 3.8 2.7 4.0 4.4 4.0 2.6
Ferrari 5.3 2.9 2.2 5.9 1.7 1.1 3.3 4.3
Fiat Uno 2.1 3.9 4.0 2.6 4.5 4.4 4.4 2.2
Ford Fiesta 2.3 3.1 3.4 2.6 3.2 3.3 3.6 2.8
Hyundai 2.5 3.4 3.2 2.2 3.3 3.3 3.3 2.4
Jaguar 4.6 2.4 1.6 5.5 1.3 1.6 2.8 3.6
Lada Samara 3.2 3.9 4.3 2.0 4.3 4.5 4.7 2.9
Mazda 323 2.6 3.3 3.7 2.8 3.7 3.0 3.7 3.1
Mercedes 200 4.1 1.7 1.8 4.6 2.4 3.2 1.4 2.4
Mitsubishi Galant 3.2 2.9 3.2 3.5 3.1 3.1 2.9 2.6
Nissan Sunny 2.6 3.3 3.9 2.1 3.5 3.9 3.8 2.4
Opel Corsa 2.2 2.4 3.0 2.6 3.2 4.0 2.9 2.4
Opel Vectra 3.1 2.6 2.3 3.6 2.8 2.9 2.4 2.4
Peugeot 306 2.9 3.5 3.6 2.8 3.2 3.8 3.2 2.6
Renault 19 2.7 3.3 3.4 3.0 3.1 3.4 3.0 2.7
Rover 3.9 2.8 2.6 4.0 2.6 3.0 3.2 3.0
Toyota Corolla 2.5 2.9 3.4 3.0 3.2 3.1 3.2 2.8
Volvo 3.8 2.3 1.9 4.2 3.1 3.6 1.6 2.4
Trabant 601 3.6 4.7 5.5 1.5 4.1 5.8 5.9 3.1
VW Golf 2.4 2.1 2.0 2.6 3.2 3.1 3.1 1.6
VW Passat 3.1 2.2 2.1 3.2 3.5 3.5 2.8 1.8
Wartburg 1.3 3.7 4.7 5.5 1.7 4.8 5.2 5.5 4.0
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A.6 Classic Blue Pullover Data

This is a data set consisting of 10 measurements of 4 variables. A textile shop
manager is studying the sales of “classic blue” pullovers over 10 periods. He
uses three different marketing methods and hopes to understand his sales as
a fit of these variables using statistics. The variables measured are

X1: number of sold pullovers
X2: price (in EUR)
X3: advertisement costs in local newspapers (in EUR)
X4: presence of a sales assistant (in hours per period)

Sales Price Advert. Asst Hours

1 230 125 200 109

2 181 99 55 107

3 165 97 105 98

4 150 115 85 71

5 97 120 0 82

6 192 100 150 103

7 181 80 85 111

8 189 90 120 93

9 172 95 110 86

10 170 125 130 78
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A.7 Fertilizer Data

The yields of wheat have been measured in 30 parcels, which have been ran-
domly attributed to 3 lots prepared by one of 3 different fertilizers A, B, and
C.

X1: fertilizer A
X2: fertilizer B
X3: fertilizer C

Yield A Yield B Yield C

4 6 2

3 7 1

2 7 1

5 5 1

4 5 3

4 5 4

3 8 3

3 9 3

3 9 2

1 6 2
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A.8 French Baccalauréat Frequencies

The data consist of observations of 202100 French baccalauréats in 1976 and
give the frequencies for different sets of modalities classified into regions. For
a reference, see Bouroche & Saporta (1980). The variables (modalities) are:

X1: A philosophy letters
X2: B economics and social sciences
X3: C mathematics and physics
X4: D mathematics and natural sciences
X5: E mathematics and techniques
X6: F industrial techniques
X7: G economic techniques
X8: H computer techniques

Abbrev. Region A B C D E F G H total
ILDF Ile de France 9724 5650 8679 9432 839 3353 5355 83 43115
CHAM Champagne Ardennes 924 464 567 984 132 423 736 12 4242
PICA Picardie 1081 490 830 1222 118 410 743 13 4907
HNOR Haute Normandie 1135 587 686 904 83 629 813 13 4850
CENT Centre 1482 667 1020 1535 173 629 989 26 6521
BNOR Basse Normandie 1033 509 553 1063 100 433 742 13 4446
BOUR Bourgogne 1272 527 861 1116 219 769 1232 13 6009
NOPC Nord Pas de Calais 2549 1141 2164 2752 587 1660 1951 41 12845
LORR Lorraine 1828 681 1364 1741 302 1289 1683 15 8903
ALSA Alsace 1076 443 880 1121 145 917 1091 15 5688
FRAC Franche Comté 827 333 481 892 137 451 618 18 3757
PAYL Pays de la Loire 2213 809 1439 2623 269 990 1783 14 10140
BRET Bretagne 2158 1271 1633 2352 350 950 1509 22 10245
PCHA Poitou Charentes 1358 503 639 1377 164 495 959 10 5505
AQUI Aquitaine 2757 873 1466 2296 215 789 1459 17 9872
MIDI Midi Pyrénées 2493 1120 1494 2329 254 855 1565 28 10138
LIMO Limousin 551 297 386 663 67 334 378 12 2688
RHOA Rhônes Alpes 3951 2127 3218 4743 545 2072 3018 36 19710
AUVE Auvergne 1066 579 724 1239 126 476 649 12 4871
LARO Languedoc Roussillon 1844 816 1154 1839 156 469 993 16 7287
PROV Provence Alpes Côte d’Azur 3944 1645 2415 3616 343 1236 2404 22 15625
CORS Corse 327 31 85 178 9 27 79 0 736

total 45593 21563 32738 46017 5333 19656 30749 451 202100
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A.9 French Food Data

The data set consists of the average expenditures on food for several different
types of families in France (manual workers = MA, employees = EM, managers
= CA) with different numbers of children (2, 3, 4, or 5 family members). The
data are taken from Lebart, Morineau & Fénelon (1982).

Bread Vegetables Fruit Meat Poultry Milk Wine

1 MA2 332 428 354 1437 526 247 427

2 EM2 293 559 388 1527 567 239 258

3 CA2 372 767 562 1948 927 235 433

4 MA3 406 563 341 1507 544 324 407

5 EM3 386 608 396 1501 558 319 363

6 CA3 438 843 689 2345 1148 243 341

7 MA4 534 660 367 1620 638 414 407

8 EM4 460 699 484 1856 762 400 416

9 CA4 385 789 621 2366 1149 304 282

10 MA5 655 776 423 1848 759 495 486

11 EM5 584 995 548 2056 893 518 319

12 CA5 515 1097 887 2630 1167 561 284

x 446.7 737.8 505.0 1886.7 803.2 358.2 368.6

sXiXi 102.6 172.2 158.1 378.9 238.9 112.1 68.7
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A.10 Geopol Data

This data set contains a comparison of 41 countries according to 10 different
political and economic parameters:

X1: popu population
X2: giph gross internal product per habitant
X3: ripo rate of increase of the population
X4: rupo rate of urban population
X5: rlpo rate of illiteracy in the population
X6: rspo rate of students in the population
X7: eltp expected lifetime of people
X8: rnnr rate of nutritional needs realized
X9: nunh number of newspapers and magazines per 1000 habitants
X10: nuth number of television per 1000 habitants

AFS South Africa DAN Denmark MAR Morocco
ALG Algeria EGY Egypt MEX Mexico
BRD Germany ESP Spain NOR Norway
GBR Great Britain FRA France PER Peru
ARS Saudi Arabia GAB Gabon POL Poland
ARG Argentina GRE Greece POR Portugal
AUS Australia HOK Hong Kong SUE Sweden
AUT Austria HON Hungary SUI Switzerland
BEL Belgium IND India THA Thailand
CAM Cameroon IDO Indonesia URS USSR
CAN Canada ISR Israel USA USA
CHL Chile ITA Italy VEN Venezuela
CHN China JAP Japan YOU Yugoslavia
CUB Cuba KEN Kenya

popu giph ripo rupo rlpo rspo eltp rnnr nunh nuth

AFS 37 2492 2 58.9 44 1.08 60 120 48 98

ALG 24.6 1960 3 44.7 50.4 0.73 64 112 21 71

BRD 62 19610 0.4 86.4 2 2.72 72 145 585 759

GBR 57.02 14575 0.04 92.5 2.2 1.9 75 128 421 435

ARS 14.4 5980 2.7 77.3 48.9 0.91 63 125 34 269

ARG 32.4 2130 1.6 86.2 6.1 2.96 71 136 82 217

AUS 16.81 16830 1.4 85.5 5 2.5 76 125 252 484

AUT 7.61 16693 0 57.7 1.5 2.52 74 130 362 487

BEL 9.93 15243 0.2 96.9 3 2.56 74 150 219 320

continues on next page −→
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popu giph ripo rupo rlpo rspo eltp rnnr nunh nuth

CAM 11 1120 2.7 49.4 58.8 0.17 53 88 6 12

CAN 26.25 20780 0.9 76.4 1 6.89 77 129 321 586

CHL 12.95 1794 1.6 85.6 8.9 1.73 71 106 67 183

CHN 1119 426 1.1 21.4 34.5 0.16 69 111 36 24

CUB 10.5 1050 0.8 74.9 3.8 2.38 75 135 129 203

DAN 5.13 20570 0.4 86.4 1.5 2.38 75 131 359 526

EGY 52.52 665 2.5 48.8 61.8 1.67 59 132 39 84

ESP 39.24 9650 0.4 78.4 4.2 2.55 77 137 75 380

FRA 56.1 16905 0.4 74.1 2 2.63 76 130 193 399

GAB 1.1 3000 4 45.7 60 0.36 52 107 14 23

GRE 10 5370 0.3 62.6 9.5 1.89 76 147 102 175

HOK 5.75 10900 0 100 22.7 1.34 77 121 521 247

HON 10.6 2330 −0.1 60.3 1.1 0.93 70 135 273 404

IND 810 317 1.9 28 59.2 0.55 57 100 28 7

IDO 179 454 2 28.8 32.7 0.55 60 116 21 41

ISR 4.47 9800 1.4 91.6 8.2 2.62 75 118 253 276

ITA 57.55 15025 0.1 68.6 3.5 2.25 75 139 105 419

JAP 123.2 22825 0.6 77 3 2.1 78 122 566 589

KEN 23.88 400 3.8 23.6 69 0.11 58 92 13 6

MAR 24.51 800 2.2 48.5 78.6 0.86 61 118 12 55

MEX 84.3 2096 2.5 72.6 17 1.55 68 120 124 124

NOR 4.2 22060 0.3 74.4 2 2.74 77 124 551 350

PER 21.75 1899 2.1 70.2 18.1 2.04 61 93 31 85

POL 38 1740 0.9 63.2 1.2 1.3 71 134 184 263

POR 10.5 4304 0.6 33.3 20.6 1.99 74 128 70 160

SUE 8.47 22455 0.1 84 1.5 2.21 77 113 526 395

SUI 6.7 26025 0.5 59.6 1 1.87 77 128 504 408

THA 55.45 1130 1.9 22.6 12 1.59 65 105 46 104

URS 289 6020 0.8 67.5 2 1.76 69 133 474 319

USA 247.5 20765 1 74 0.5 5.01 75 138 259 812

VEN 19.2 3220 2.5 90 15.3 2.6 69 102 164 147

YOU 23.67 2599 0.7 50.2 10.4 1.44 72 139 100 179
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A.11 German Annual Population Data

The data set shows yearly average population rates for the old federal states
in Germany (given in 1000 inhabitants).

Year Inhabitants Unemployed
1960 55433 271
1961 56158 181
1962 56837 155
1963 57389 186
1964 57971 169
1965 58619 147
1966 59148 161
1967 59268 459
1968 59500 323
1969 60067 179
1970 60651 149
1971 61302 185
1972 61672 246
1973 61976 273
1974 62054 582
1975 61829 1074
1976 61531 1060
1977 61400 1030
1978 61327 993
1979 61359 876
1980 61566 889
1981 61682 1272
1982 61638 1833
1983 61423 2258
1984 61175 2266
1985 61024 2304
1986 61066 2228
1987 61077 2229
1988 61449 2242
1989 62063 2038
1990 63254 1883
1991 64074 1689
1992 64865 1808
1993 65535 2270
1994 65858 2556
1995 66156 2565
1996 66444 2796
1997 66648 3021
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A.12 Journals Data

This is a data set that was created from a survey completed in the 1980’s
in Belgium questioning people’s reading habits. They were asked where they
live (10 regions comprising 7 provinces and 3 regions around Brussels) and
what kind of newspaper they read on a regular basis. The 15 possible answers
belong to 3 classes: Flemish newspapers (first letter v), French newspapers
(first letter f ) and both languages (first letter b).y

X1: WaBr Walloon Brabant
X2: Brar Brussels area
X3: Antw Antwerp
X4: FlBr Flemish Brabant
X5: OcFl Occidental Flanders
X6: OrFl Oriental Flanders
X7: Hain Hainaut
X8: Lièg Liège
X9: Limb Limburg
X10: Luxe Luxembourg

WaBr Brar Antw FlBr OcFl OrFl Hain Lièg Limb Luxe
va 1.8 7.8 9.1 3.0 4.3 3.9 0.1 0.3 3.3 0.0
vb 0.1 3.4 17.8 1.0 0.7 4.1 0.0 0.0 0.2 0.0
vc 0.1 9.4 4.6 7.7 4.4 5.8 1.6 0.1 1.4 0.0
vd 0.5 15.6 6.1 12.0 10.5 10.2 0.7 0.3 5.4 0.0
ve 0.1 5.2 3.3 4.8 1.6 1.4 0.1 0.0 3.5 0.0
ff 5.6 13.7 3.1 2.4 0.5 1.7 1.9 2.3 0.2 0.2
fg 4.1 16.5 1.9 1.0 1.0 0.9 2.4 3.2 0.1 0.3
fh 8.3 29.5 1.8 7.3 0.8 0.4 5.1 3.2 0.2 0.3
fi 0.9 7.8 0.2 2.6 0.1 0.1 5.6 3.8 0.1 0.8
bj 6.1 18.2 10.8 4.1 4.5 5.3 2.0 2.6 3.4 0.2
bk 8.3 35.4 6.2 11.0 5.0 6.1 5.5 3.3 1.5 0.3
bl 4.4 9.9 6.7 3.4 1.1 3.9 2.1 1.5 2.1 0.0
vm 0.3 11.6 14.2 4.7 5.1 7.9 0.3 0.5 3.0 0.0
fn 5.1 21.0 1.3 3.4 0.2 0.2 2.3 4.4 0.0 0.4
f0 2.2 9.8 0.1 0.3 0.0 0.7 2.3 3.0 0.3 1.0
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A.13 NYSE Returns Data

This data set consists of returns of seven stocks traded on the New York Stock
Exchange (Berndt 1990). The monthly returns of IBM, PanAm, Delta Air-
lines, Consolidated Edison, Gerber, Texaco, and Digital Equipment Company
are stated from January 1978 to December 1987.

IBM PanAm Delta Edison Gerber Texaco DEC

−0.029 0.025 −0.028 −0.079 −0.048 −0.054 −0.100
−0.043 −0.073 −0.033 −0.003 0.160 −0.010 −0.063
−0.063 0.184 0.070 0.022 −0.036 0.015 0.010

0.130 0.089 0.150 −0.005 0.004 0.000 0.165
−0.018 0.082 −0.031 −0.014 0.046 −0.029 0.038
−0.004 0.019 0.023 0.034 0.028 −0.025 −0.021

0.092 0.204 0.185 0.011 −0.012 0.042 0.107
0.049 0.031 −0.021 0.024 −0.079 0.000 −0.017

−0.051 0.075 −0.081 0.048 0.104 0.010 −0.037
−0.046 −0.250 −0.153 −0.067 −0.138 −0.066 −0.077

0.031 0.000 0.055 0.035 0.078 0.055 0.064
0.108 −0.019 −0.023 0.005 −0.086 0.000 0.117
0.034 0.019 −0.054 0.076 0.042 0.037 −0.012

−0.017 −0.130 −0.060 −0.011 −0.023 −0.010 −0.066
0.052 0.043 0.098 0.000 0.065 0.068 0.088

−0.004 0.020 −0.056 −0.057 −0.088 0.059 0.005
−0.022 −0.060 0.063 0.032 −0.023 −0.040 −0.028
−0.035 0.000 −0.006 0.066 0.095 0.083 0.059
−0.049 0.319 0.075 0.015 −0.096 0.032 0.009

0.016 −0.065 0.021 −0.021 0.148 0.041 0.140
−0.032 −0.034 −0.026 0.000 −0.009 0.030 −0.027
−0.079 −0.089 −0.147 −0.049 −0.090 −0.053 −0.010

0.060 −0.098 0.063 0.109 −0.014 0.067 0.095
−0.013 0.043 0.020 0.005 −0.036 −0.029 0.018

0.066 −0.042 0.022 −0.039 0.048 0.229 0.058
−0.062 −0.109 −0.093 −0.061 −0.004 0.161 0.034
−0.122 −0.195 −0.031 0.006 −0.237 −0.179 −0.182
−0.016 0.000 −0.018 0.140 0.027 0.082 0.047

0.025 0.121 0.144 0.043 0.233 0.007 0.016
0.061 −0.027 0.010 0.040 0.011 0.032 0.021
0.111 0.278 0.283 −0.027 0.005 0.003 0.183
0.017 −0.043 −0.056 −0.005 −0.008 0.031 0.081

−0.021 −0.091 −0.053 −0.010 0.066 −0.037 0.045
0.039 −0.025 0.046 −0.021 0.026 0.087 −0.028
0.035 0.026 0.220 −0.035 0.023 0.399 0.056

−0.004 −0.150 0.040 0.131 0.070 −0.109 0.035
−0.052 0.118 0.112 −0.015 0.056 −0.145 −0.089

0.011 −0.079 0.031 −0.021 −0.020 −0.012 0.006

continues on next page −→
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IBM PanAm Delta Edison Gerber Texaco DEC

−0.029 0.143 0.024 0.151 0.023 −0.063 0.075
−0.060 0.025 0.062 0.061 0.031 −0.003 0.075

0.017 0.122 0.105 0.017 0.008 −0.055 0.107
−0.015 −0.196 −0.114 0.022 0.066 0.025 −0.112
−0.030 −0.216 −0.094 0.026 0.021 0.045 −0.014
−0.002 −0.069 −0.072 0.021 0.031 0.003 −0.065
−0.018 −0.111 −0.013 −0.013 0.000 −0.093 −0.019
−0.048 0.000 −0.072 0.112 −0.012 0.008 0.102

0.075 0.167 −0.032 0.038 0.011 0.065 −0.065
0.044 −0.214 −0.062 −0.008 −0.077 −0.047 −0.060
0.119 0.091 0.056 0.042 −0.004 −0.045 0.027

−0.014 −0.042 0.145 0.036 −0.111 −0.004 −0.049
−0.034 0.087 0.038 0.022 0.136 −0.029 −0.104

0.075 0.160 −0.025 0.050 0.044 −0.008 0.054
−0.029 0.000 0.042 0.016 0.043 0.034 −0.056
−0.014 −0.103 0.106 −0.024 −0.033 −0.017 −0.073

0.082 0.077 −0.118 −0.032 0.019 −0.060 −0.055
0.087 −0.036 0.055 0.133 0.130 0.056 0.273
0.041 −0.259 −0.139 0.039 0.209 0.027 −0.061
0.089 0.350 0.171 −0.050 −0.009 0.056 0.133
0.094 0.074 0.289 −0.011 −0.072 0.012 0.175
0.113 0.000 0.093 0.123 0.015 0.029 −0.052
0.027 0.103 0.040 −0.012 0.015 0.036 0.225
0.010 0.406 0.027 0.060 0.024 0.008 −0.010
0.028 −0.067 −0.016 0.048 0.084 0.039 0.034
0.150 0.024 −0.043 0.045 0.119 0.098 −0.060

−0.041 0.186 −0.045 −0.012 0.016 −0.038 −0.052
0.081 0.275 0.012 0.000 0.114 0.018 0.075
0.001 −0.015 −0.259 0.017 −0.007 0.036 −0.142
0.001 −0.047 0.080 −0.023 0.062 0.059 0.007
0.062 −0.066 0.041 0.087 0.049 −0.037 −0.005

−0.001 0.035 0.039 0.101 0.000 −0.014 −0.364
−0.066 0.119 0.120 −0.025 0.077 0.011 0.065

0.039 −0.015 −0.028 0.005 0.063 0.021 0.034
−0.065 0.031 −0.013 0.005 0.065 0.108 0.208
−0.026 −0.179 −0.117 −0.069 −0.091 0.151 −0.024

0.034 −0.018 0.065 0.055 −0.003 −0.122 0.057
−0.002 −0.185 −0.085 0.031 −0.025 0.022 0.053
−0.044 −0.045 −0.070 0.021 −0.087 −0.105 −0.071
−0.019 −0.024 −0.012 0.020 0.105 −0.046 −0.043

0.047 −0.024 0.045 0.054 −0.112 −0.044 −0.009
0.127 0.000 0.040 0.029 0.018 0.140 0.159
0.004 0.000 0.008 0.051 0.165 0.045 −0.025
0.012 −0.050 0.161 0.019 −0.160 −0.080 0.093

−0.023 −0.026 −0.026 0.004 0.094 0.007 0.006
0.011 0.000 0.156 0.084 −0.005 0.000 0.070
0.108 −0.027 −0.010 −0.021 0.091 0.044 0.084

continues on next page −→
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IBM PanAm Delta Edison Gerber Texaco DEC

−0.009 −0.028 0.087 0.034 0.006 0.022 −0.067
−0.052 0.086 −0.003 0.057 0.130 0.014 −0.071
−0.004 0.053 −0.123 0.019 −0.037 0.111 −0.050

0.025 0.350 0.179 0.098 0.234 −0.065 0.057
−0.038 0.056 0.021 0.046 −0.031 0.031 −0.101

0.062 0.000 0.008 −0.084 −0.036 −0.030 0.080
−0.028 0.088 −0.066 0.043 0.025 0.021 0.032
−0.022 −0.065 −0.112 −0.032 −0.048 −0.007 0.036

0.048 0.069 −0.083 0.066 0.097 0.099 0.040
0.085 0.016 0.020 0.032 0.137 −0.175 0.073
0.113 −0.016 0.030 0.082 0.063 −0.077 0.095

−0.026 0.129 0.122 0.022 −0.088 −0.038 0.162
0.003 −0.029 −0.055 0.048 0.034 0.071 0.093
0.004 −0.074 0.076 0.021 0.174 −0.004 −0.063
0.031 −0.206 0.059 −0.006 0.113 0.050 0.119

−0.018 0.060 −0.043 0.042 −0.040 0.069 0.037
−0.039 −0.094 −0.070 0.017 −0.038 −0.042 −0.063
−0.096 −0.063 0.018 0.125 −0.105 −0.036 0.066

0.055 0.022 0.018 0.061 0.111 0.135 0.105
−0.031 −0.065 0.026 −0.139 0.037 0.026 −0.110
−0.081 0.023 0.134 0.045 −0.069 0.043 0.103

0.037 0.023 −0.018 0.070 −0.020 −0.028 0.048
−0.056 −0.244 −0.010 −0.046 −0.060 0.047 0.008

0.073 0.353 0.161 0.040 0.057 0.049 0.385
0.092 −0.152 0.133 −0.067 0.019 −0.080 0.056
0.076 −0.103 −0.129 −0.050 0.040 0.103 0.061
0.067 0.114 −0.121 0.020 −0.063 −0.094 0.055
0.006 0.000 0.151 −0.012 0.138 0.114 −0.082
0.016 0.103 0.014 0.059 0.005 0.073 0.041

−0.009 0.000 0.043 −0.039 0.232 0.142 0.000
0.053 −0.093 −0.037 0.043 −0.113 −0.076 0.157

−0.105 −0.051 −0.067 −0.006 −0.061 −0.053 0.001
−0.187 −0.270 −0.260 −0.017 −0.288 −0.194 −0.281
−0.087 0.185 −0.137 −0.012 −0.085 −0.031 −0.127

0.043 −0.313 0.121 −0.006 0.070 0.178 0.134
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A.14 Plasma Data

In Olkin & Veath (1980), the evolution of citrate concentration in the plasma
is observed at 3 different times of day for two groups of patients. Each group
follows a different diet.

X1: 8 am

X2: 11am

X3: 3 pm

Group (8 am) (11 am) (3 pm)

125 137 121

144 173 147

I 105 119 125

151 149 128

137 139 109

93 121 107

116 135 106

II 109 83 100

89 95 83

116 128 100



348 A Data Sets

A.15 Time Budget Data

In Volle (1985), we can find data on 28 individuals identified according to
gender, country where they live, professional activity, and matrimonial status,
which indicates the amount of time each person spent on 10 categories of
activities over 100 days (100·24h = 2400 hours total in each row) in 1976.

X1: prof : professional activity
X2: tran : transportation linked to professional activity
X3: hous : household occupation
X4: kids : occupation linked to children
X5: shop : shopping
X6: pers : time spent for personal care
X7: eat : eating
X8: slee : sleeping
X9: tele : watching television
X10: leis : other leisure activities

maus: active men in the United States
waus: active women in the United States
wnus: nonactive women in the United States
mmus: married men in United States
wmus: married women in United States
msus: single men in United States
wsus: single women in United States
mawe: active men from Western countries
wawe: active women from Western countries
wnwe: nonactive women from Western countries
mmwe: married men from Western countries
wmwe: married women from Western countries
mswe: single men from Western countries
wswe: single women from Western countries
mayo: active men from Yugoslavia
wayo: active women from Yugoslavia
wnyo: nonactive women from Yugoslavia
mmyo: married men from Yugoslavia
wmyo: married women from Yugoslavia
msyo: single men from Yugoslavia
wsyo: single women from Yugoslavia
maes: active men from Eastern countries
waes: active women from Eastern countries
wnes: nonactive women from Eastern countries
mmes: married men from Eastern countries
wmes: married women from Eastern countries
mses: single men from Eastern countries
wses: single women from Eastern countries
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prof tran hous kids shop pers eat slee tele leis

maus 610 140 60 10 120 95 115 760 175 315

waus 475 90 250 30 140 120 100 775 115 305

wnus 10 0 495 110 170 110 130 785 160 430

mmus 615 140 65 10 115 90 115 765 180 305

wmus 179 29 421 87 161 112 119 776 143 373

msus 585 115 50 0 150 105 100 760 150 385

wsus 482 94 196 18 141 130 96 775 132 336

mawe 653 100 95 7 57 85 150 808 115 330

wawe 511 70 307 30 80 95 142 816 87 262

wnwe 20 7 568 87 112 90 180 843 125 368

mmwe 656 97 97 10 52 85 152 808 122 321

wmwe 168 22 528 69 102 83 174 824 119 311

mswe 643 105 72 0 62 77 140 813 100 388

wswe 429 34 262 14 92 97 147 849 84 392

mayo 650 140 120 15 85 90 105 760 70 365

wayo 560 105 375 45 90 90 95 745 60 235

wnyo 10 10 710 55 145 85 130 815 60 380

mmyo 650 145 112 15 85 90 105 760 80 358

wmyo 260 52 576 59 116 85 117 775 65 295

msyo 615 125 95 0 115 90 85 760 40 475

wsyo 433 89 318 23 112 96 102 774 45 408

maea 650 142 122 22 76 94 100 764 96 334

waea 578 106 338 42 106 94 92 752 64 228

wnea 24 8 594 72 158 92 128 840 86 398

mmea 652 133 134 22 68 94 102 763 122 310

wmea 436 79 433 60 119 90 107 772 73 231

msea 627 148 68 0 88 92 86 770 58 463

wsea 434 86 297 21 129 102 94 799 58 380
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A.16 Unemployment Data

This data set provides unemployment rates in all federal states of Germany
in September 1999.

No. Federal State Unemployment Rate
1 Schleswig-Holstein 8.7
2 Hamburg 9.8
3 Mecklenburg-Vorpommern 17.3
4 Niedersachsen 9.8
5 Bremen 13.9
6 Nordrhein-Westfalen 9.8
7 Hessen 7.9
8 Rheinland-Pfalz 7.7
9 Saarland 10.4

10 Baden-Württemberg 6.2
11 Bayern 5.8
12 Berlin 15.8
13 Brandenburg 17.1
14 Sachsen-Anhalt 19.9
15 Thüringen 15.1
16 Sachsen 16.8
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A.17 U.S. Companies Data

The data set consists of measurements for 79 U.S. companies. The abbrevia-
tions are as follows:

X1: A assets (USD)
X2: S sales (USD)
X3: MV market value (USD)
X4: P profits (USD)
X5: CF cash flow (USD)
X6: E employees

Company A S MV P CF E Sector
Bell Atlantic 19788 9084 10636 1092.9 2576.8 79.4 Communication
Continental Telecom 5074 2557 1892 239.9 578.3 21.9 Communication
American Electric Power 13621 4848 4572 485.0 898.9 23.4 Energy
Brooklyn Union Gas 1117 1038 478 59.7 91.7 3.8 Energy
Central Illinois Publ. Serv. 1633 701 679 74.3 135.9 2.8 Energy
Cleveland Electric Illum. 5651 1254 2002 310.7 407.9 6.2 Energy
Columbia Gas System 5835 4053 1601 −93.8 173.8 10.8 Energy
Florida Progress 3494 1653 1442 160.9 320.3 6.4 Energy
Idaho Power 1654 451 779 84.8 130.4 1.6 Energy
Kansas Power & Light 1679 1354 687 93.8 154.6 4.6 Energy
Mesa Petroleum 1257 355 181 167.5 304.0 0.6 Energy
Montana Power 1743 597 717 121.6 172.4 3.5 Energy
People’s Energy 1440 1617 639 81.7 126.4 3.5 Energy
Phillips Petroleum 14045 15636 2754 418.0 1462.0 27.3 Energy
Publ. Serv. Coop New Mexico 3010 749 1120 146.3 209.2 3.4 Energy
San Diego Gas & Electric 3086 1739 1507 202.7 335.2 4.9 Energy
Valero Energy 1995 2662 341 34.7 100.7 2.3 Energy
American Savings Bank FSB 3614 367 90 14.1 24.6 1.1 Finance
Bank South 2788 271 304 23.5 28.9 2.1 Finance
H&R Block 327 542 959 54.1 72.5 2.8 Finance
California First Bank 5401 550 376 25.6 37.5 4.1 Finance
Cigna 44736 16197 4653 −732.5 −651.9 48.5 Finance
Dreyfus 401 176 1084 55.6 57.0 0.7 Finance
First American 4789 453 367 40.2 51.4 3.0 Finance
First Empire State 2548 264 181 22.2 26.2 2.1 Finance
First Tennessee National Bank 5249 527 346 37.8 56.2 4.1 Finance
Marine Corp 3720 356 211 26.6 34.8 2.4 Finance
Mellon Bank 33406 3222 1413 201.7 246.7 15.8 Finance
National City Bank 12505 1302 702 108.4 131.4 9.0 Finance
Norstar Bancorp 8998 882 988 93.0 119.0 7.4 Finance
Norwest Bank 21419 2516 930 107.6 164.7 15.6 Finance
Southeast Banking 11052 1097 606 64.9 97.6 7.0 Finance
Sovran Financial 9672 1037 829 92.6 118.2 8.2 Finance
United Financial Group 4989 518 53 −3.1 −0.3 0.8 Finance
Apple Computer 1022 1754 1370 72.0 119.5 4.8 Hi-Tech
Digital Equipment 6914 7029 7957 400.6 754.7 87.3 Hi-Tech
EG&G 430 1155 1045 55.7 70.8 22.5 Hi-Tech
General Electric 26432 28285 33172 2336.0 3562.0 304.0 Hi-Tech
Hewlett-Packard 5769 6571 9462 482.0 792.0 83.0 Hi-Tech
IBM 52634 50056 95697 6555.0 9874.0 400.2 Hi-Tech
NCR 3940 4317 3940 315.2 566.3 62.0 Hi-Tech
Telex 478 672 866 67.1 101.6 5.4 Hi-Tech
Armstrong World Industries 1093 1679 1070 100.9 164.5 20.8 Manufacturing
CBI Industries 1128 1516 430 −47.0 26.7 13.2 Manufacturing
Fruehauf 1804 2564 483 70.5 164.9 26.6 Manufacturing
Halliburton 4662 4781 2988 28.7 371.5 66.2 Manufacturing
LTV 6307 8199 598 −771.5 −524.3 57.5 Manufacturing

continues on next page −→
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Company A S MV P CF E Sector
Owens-Corning Fiberglas 2366 3305 1117 131.2 256.5 25.2 Manufacturing
PPG Industries 4084 4346 3023 302.7 521.7 37.5 Manufacturing
Textron 10348 5721 1915 223.6 322.5 49.5 Manufacturing
Turner 752 2149 101 11.1 15.2 2.6 Manufacturing
United Technologies 10528 14992 5377 312.7 710.7 184.8 Manufacturing
Commun. Psychiatric Centers 278 205 853 44.8 50.5 3.8 Medical
Hospital Corp of America 6259 4152 3090 283.7 524.5 62.0 Medical
AH Robins 707 706 275 61.4 77.8 6.1 Medical
Shared Medical Systems 252 312 883 41.7 60.6 3.3 Medical
Air Products 2687 1870 1890 145.7 352.2 18.2 Other
Allied Signal 13271 9115 8190 −279.0 83.0 143.8 Other
Bally Manufacturing 1529 1295 444 25.6 137.0 19.4 Other
Crown Cork & Seal 866 1487 944 71.7 115.4 12.6 Other
Ex-Cell-0 799 1140 633 57.6 89.2 15.4 Other
Liz Claiborne 223 557 1040 60.6 63.7 1.9 Other
Warner Communications 2286 2235 2306 195.3 219.0 8.0 Other
Dayton-Hudson 4418 8793 4459 283.6 456.5 128.0 Retail
Dillard Department Stores 862 160l 1093 66.9 106.8 16.0 Retail
Giant Food 623 2247 797 57.0 93.8 18.6 Retail
Great A&P Tea 1608 6615 829 56.1 134.0 65.0 Retail
Kroger 4178 17124 2091 180.8 390.4 164.6 Retail
May Department Stores 3442 5080 2673 235.4 361.5 77.3 Retail
Stop & Shop Cos 1112 3689 542 30.3 96.9 43.5 Retail
Supermarkets General 1104 5123 910 63.7 133.3 48.5 Retail
Wickes Cos 2957 2806 457 40.6 93.5 50.0 Retail
FW Woolworth 2535 5958 1921 177.0 288.0 118.1 Retail
AMR 6425 6131 2448 345.8 682.5 49.5 Transportation
IU International 999 1878 393 −173.5 −108.1 23.3 Transportation
PanAm 2448 3484 1036 48.8 257.1 25.4 Transportation
Republic Airlines 1286 1734 361 69.2 145.7 14.3 Transportation
TWA 2769 3725 663 −208.4 12.4 29.1 Transportation
Western AirLines 952 1307 309 35.4 92.8 10.3 Transportation
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A.18 U.S. Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for
one year (1985) the reported number of crimes in the 50 states of the United
States classified according to 7 categories (X3–X9):

X1: land area (land)
X2: population 1985 (popu 1985)
X3: murder (murd)
X4: rape
X5: robbery (robb)
X6: assault (assa)
X7: burglary (burg)
X8: larcery (larc)
X9: auto theft (auto)
X10: U.S. states region number (reg)
X11: U.S. states division number (div)

Division Numbers Region Numbers
New England 1 Northeast 1
Mid-Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

State land popu 1985 murd rape robb assa burg larc auto reg div

ME 33265 1164 1.5 7.0 12.6 62 562 1055 146 1 1
NH 9279 998 2.0 6 12.1 36 566 929 172 1 1
VT 9614 535 1.3 10.3 7.6 55 731 969 124 1 1
MA 8284 5822 3.5 12.0 99.5 88 1134 1531 878 1 1
RI 1212 968 3.2 3.6 78.3 120 1019 2186 859 1 1
CT 5018 3174 3.5 9.1 70.4 87 1084 1751 484 1 1
NY 49108 17783 7.9 15.5 443.3 209 1414 2025 682 1 2
NJ 7787 7562 5.7 12.9 169.4 90 1041 1689 557 1 2
PA 45308 11853 5.3 11.3 106.0 90 594 11 340 1 2
OH 41330 10744 6.6 16.0 145.9 116 854 1944 493 2 3
IN 36185 5499 4.8 17.9 107.5 95 860 1791 429 2 3
IL 56345 11535 9.6 20.4 251.1 187 765 2028 518 2 3
MI 58527 9088 9.4 27.1 346.6 193 1571 2897 464 2 3
WI 56153 4775 2.0 6.7 33.1 44 539 1860 218 2 3
MN 84402 4193 2.0 9.7 89.1 51 802 1902 346 2 4
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State land popu 1985 murd rape robb assa burg larc auto reg div

IA 56275 2884 1.9 6.2 28.6 48 507 1743 175 2 4
MO 69697 5029 10.7 27.4 2.8 167 1187 2074 538 2 4
ND 70703 685 0.5 6.2 6.5 21 286 1295 91 2 4
SD 77116 708 3.8 11.1 17.1 60 471 1396 94 2 4
NE 77355 1606 3.0 9.3 57.3 115 505 1572 292 2 4
KS 82277 2450 4.8 14.5 75.1 108 882 2302 257 2 4
DE 2044 622 7.7 18.6 105.5 196 1056 2320 559 3 5
MD 10460 4392 9.2 23.9 338.6 253 1051 2417 548 3 5
VA 40767 5706 8.4 15.4 92.0 143 806 1980 297 3 5
WV 24231 1936 6.2 6.7 27.3 84 389 774 92 3 5
NC 52669 6255 11.8 12.9 53.0 293 766 1338 169 3 5
SC 31113 3347 14.6 18.1 60.1 193 1025 1509 256 3 5
GA 58910 5976 15.3 10.1 95.8 177 9 1869 309 3 5
FL 58664 11366 12.7 22.2 186.1 277 1562 2861 397 3 5
KY 40409 3726 11.1 13.7 72.8 123 704 1212 346 3 6
TN 42144 4762 8.8 15.5 82.0 169 807 1025 289 3 6
AL 51705 4021 11.7 18.5 50.3 215 763 1125 223 3 6
MS 47689 2613 11.5 8.9 19.0 140 351 694 78 3 6
AR 53187 2359 10.1 17.1 45.6 150 885 1211 109 3 7
LA 47751 4481 11.7 23.1 140.8 238 890 1628 385 3 7
OK 69956 3301 5.9 15.6 54.9 127 841 1661 280 3 7
TX 266807 16370 11.6 21.0 134.1 195 1151 2183 394 3 7
MT 147046 826 3.2 10.5 22.3 75 594 1956 222 4 8
ID 83564 15 4.6 12.3 20.5 86 674 2214 144 4 8
WY 97809 509 5.7 12.3 22.0 73 646 2049 165 4 8
CO 104091 3231 6.2 36.0 129.1 185 1381 2992 588 4 8
NM 121593 1450 9.4 21.7 66.1 196 1142 2408 392 4 8
AZ 1140 3187 9.5 27.0 120.2 214 1493 3550 501 4 8
UT 84899 1645 3.4 10.9 53.1 70 915 2833 316 4 8
NV 110561 936 8.8 19.6 188.4 182 1661 3044 661 4 8
WA 68138 4409 3.5 18.0 93.5 106 1441 2853 362 4 9
OR 97073 2687 4.6 18.0 102.5 132 1273 2825 333 4 9
CA 158706 26365 6.9 35.1 206.9 226 1753 3422 689 4 9
AK 5914 521 12.2 26.1 71.8 168 790 2183 551 4 9
HI 6471 1054 3.6 11.8 63.3 43 1456 3106 581 4 9
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A.19 U.S. Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for
one year (1985) the reported number of deaths in the 50 states of the U.S.
classified according to 7 categories:

X1: land area (land)
X2: population 1985 (popu)
X3: accident (acc)
X4: cardiovascular (card)
X5: cancer (canc)
X6: pulmonary (pul)
X7: pneumonia flu (pneu)
X8: diabetes (diab)
X9: liver (liv)
X10: doctors (doc)
X11: hospitals (hosp)
X12: U.S. states region number (reg)
X13: U.S. states division number (div)

Division Numbers Region Numbers
New England 1 Northeast 1
Mid-Atlantic 2 Midwest 2
E N Central 3 South 3
W N Central 4 West 4
S Atlantic 5
E S Central 6
W S Central 7
Mountain 8
Pacific 9

State land popu 1985 acc card canc pul pneu diab liv doc hosp reg div

ME 33265 1164 37.7 466.2 213.8 33.6 21.1 15.6 14.5 1773 47 1 1
NH 9279 998 35.9 395.9 182.2 29.6 20.1 17.6 10.4 1612 34 1 1
VT 9614 535 41.3 433.1 188.1 33.1 24.0 15.6 13.1 1154 19 1 1
MA 8284 5822 31.1 460.6 219.0 24.9 29.7 16.0 13.0 16442 177 1 1
RI 1212 968 28.6 474.1 231.5 27.4 17.7 26.2 13.4 2020 21 1 1
CT 5018 3174 35.3 423.8 205.1 23.2 22.4 15.4 11.7 8076 65 1 1
NY 49108 17783 31.5 499.5 209.9 23.9 26.0 17.1 17.7 49304 338 1 2
NJ 7787 7562 32.2 464.7 216.3 23.3 19.9 17.3 14.2 15120 131 1 2
PA 45308 11853 34.9 508.7 223.6 27.0 20.1 20.4 12.0 23695 307 1 2
OH 41330 10744 33.2 443.1 198.8 27.4 18.0 18.9 10.2 18518 236 2 3
IN 36185 5499 37.7 435.7 184.6 27.2 18.6 17.2 8.4 7339 133 2 3
IL 56345 11535 32.9 449.6 193.2 22.9 21.3 15.3 12.5 22173 279 2 3
MI 58527 9088 34.3 420.9 182.3 24.2 18.7 14.8 13.7 15212 231 2 3
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State land popu 1985 acc card canc pul pneu diab liv doc hosp reg div

WI 56153 4775 33.8 444.3 189.4 22.5 21.2 15.7 8.7 7899 163 2 3
MN 84402 4193 35.7 398.3 174.0 23.4 25.6 13.5 8.1 8098 181 2 4
IA 56275 2884 38.6 490.1 199.1 31.2 28.3 16.6 7.9 3842 140 2 4
MO 69697 5029 42.2 475.9 211.1 29.8 25.7 15.3 9.6 8422 169 2 4
ND 70703 685 48.2 401.0 173.7 18.2 25.9 14.9 7.4 936 58 2 4
SD 77116 708 53.0 495.2 182.1 30.7 32.4 12.8 7.2 833 68 2 4
NE 77355 1606 40.8 479.6 187.4 31.6 28.3 13.5 7.8 2394 110 2 4
KS 82277 2450 42.9 455.9 183.9 32.3 24.9 16.9 7.8 3801 165 2 4
DE 2044 622 38.8 404.5 202.8 25.3 16.0 25.0 10.5 1046 14 3 5
MD 10460 4392 35.2 366.7 195.0 23.4 15.8 16.1 9.6 11961 85 3 5
VA 40767 5706 37.4 365.3 174.4 22.4 20.3 11.4 9.2 9749 135 3 5
MV 24231 1936 46.7 502.7 199.6 35.2 20.1 18.4 10.0 2813 75 3 5
NC 52669 6255 45.4 392.6 169.2 22.6 19.8 13.1 10.2 9355 159 3 5
SC 31113 3347 47.8 374.4 156.9 19.6 19.2 14.8 9.0 4355 89 3 5
GA 58910 5976 48.2 371.4 157.9 22.6 20.5 13.2 10.4 8256 191 3 5
FL 58664 11366 46.0 501.8 244.0 34.0 18.3 16.1 17.2 18836 254 3 5
KY 40409 3726 48.8 442.5 194.7 29.8 22.9 15.9 9.1 5189 120 3 6
TN 42144 4762 45.0 427.2 185.6 27.0 20.8 12.0 8.3 7572 162 3 6
AL 51705 4021 48.9 411.5 185.8 25.5 16.8 16.1 9.1 5157 146 3 6
MS 47689 2613 59.3 422.3 173.9 21.7 19.5 14.0 7.1 2883 118 3 6
AR 53187 2359 51.0 482.0 202.1 29.0 22.7 15.0 8.7 2952 97 3 7
LA 47751 4481 52.3 390.9 168.1 18.6 15.8 17.8 8.3 7061 158 3 7
OK 69956 3301 62.5 441.4 182.4 27.6 24.5 15.3 9.6 4128 143 3 7
TX 266807 16370 48.9 327.9 146.5 20.7 17.4 12.1 8.7 23481 562 3 7
MT 147046 826 59.0 372.2 170.7 33.4 25.1 14.4 11.1 1058 67 4 8
ID 83564 15.0 51.5 324.8 140.4 29.9 22.3 12.4 9.2 1079 52 4 8
WY 97809 509 67.6 264.2 112.2 27.7 18.5 9.2 9.2 606 31 4 8
CO 104091 3231 44.7 280.2 125.1 29.9 22.8 9.6 9.5 5899 98 4 8
NM 121593 1450 62.3 235.6 137.2 28.7 17.8 17.5 13.1 2127 56 4 8
AZ 1140 3187 48.3 331.5 165.6 36.3 21.2 12.6 13.1 5137 79 4 8
UT 84899 1645 39.3 242.0 93.7 17.6 14.5 11.1 7.3 2563 44 4 8
NV 110561 936 57.3 299.5 162.3 32.3 13.7 11.1 15.4 1272 26 4 8
WA 68138 4409 41.4 358.1 171.0 31.1 21.2 13.0 10.9 7768 122 4 9
OR 97073 2687 41.6 387.8 179.4 33.8 23.1 11.2 10.4 4904 83 4 9
CA 158706 26365 40.3 357.8 173.0 26.9 22.2 10.7 16.7 57225 581 4 9
AK 5914 521 85.8 114.6 76.1 8.3 12.4 3.4 11.0 545 26 4 9
HI 6471 1054 32.5 216.9 125.8 16.0 16.8 12.7 6.2 1953 26 4 9
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A.20 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in
Bock (1975). Data are drawn from test results on file in the Records Office of
the Laboratory School of the University of Chicago. They consist of scores,
obtained from a cohort of pupils from the 8th through 11th grade levels, on
alternative forms of the vocabulary section of the Coorperative Reading Test.
It provides the following scaled scores shown for the sample of 64 subjects
(the origin and units are fixed arbitrarily).

Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean

1 1.75 2.60 3.76 3.68 2.95
2 0.90 2.47 2.44 3.43 2.31
3 0.80 0.93 0.40 2.27 1.10
4 2.42 4.15 4.56 4.21 3.83
5 −1.31 −1.31 −0.66 −2.22 −1.38
6 −1.56 1.67 0.18 2.33 0.66
7 1.09 1.50 0.52 2.33 1.36
8 −1.92 1.03 0.50 3.04 0.66
9 −1.61 0.29 0.73 3.24 0.66

10 2.47 3.64 2.87 5.38 3.59
11 −0.95 0.41 0.21 1.82 0.37
12 1.66 2.74 2.40 2.17 2.24
13 2.07 4.92 4.46 4.71 4.04
14 3.30 6.10 7.19 7.46 6.02
15 2.75 2.53 4.28 5.93 3.87
16 2.25 3.38 5.79 4.40 3.96
17 2.08 1.74 4.12 3.62 2.89
18 0.14 0.01 1.48 2.78 1.10
19 0.13 3.19 0.60 3.14 1.77
20 2.19 2.65 3.27 2.73 2.71
21 −0.64 −1.31 −0.37 4.09 0.44
22 2.02 3.45 5.32 6.01 4.20
23 2.05 1.80 3.91 2.49 2.56
24 1.48 0.47 3.63 3.88 2.37
25 1.97 2.54 3.26 5.62 3.35
26 1.35 4.63 3.54 5.24 3.69
27 −0.56 −0.36 1.14 1.34 0.39
28 0.26 0.08 1.17 2.15 0.92
29 1.22 1.41 4.66 2.62 2.47
30 −1.43 0.80 −0.03 1.04 0.09
31 −1.17 1.66 2.11 1.42 1.00
32 1.68 1.71 4.07 3.30 2.69
33 −0.47 0.93 1.30 0.76 0.63
34 2.18 6.42 4.64 4.82 4.51
35 4.21 7.08 6.00 5.65 5.73
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Subjects Grade 8 Grade 9 Grade 10 Grade 11 Mean

36 8.26 9.55 10.24 10.58 9.66
37 1.24 4.90 2.42 2.54 2.78
38 5.94 6.56 9.36 7.72 7.40
39 0.87 3.36 2.58 1.73 2.14
40 −0.09 2.29 3.08 3.35 2.15
41 3.24 4.78 3.52 4.84 4.10
42 1.03 2.10 3.88 2.81 2.45
43 3.58 4.67 3.83 5.19 4.32
44 1.41 1.75 3.70 3.77 2.66
45 −0.65 −0.11 2.40 3.53 1.29
46 1.52 3.04 2.74 2.63 2.48
47 0.57 2.71 1.90 2.41 1.90
48 2.18 2.96 4.78 3.34 3.32
49 1.10 2.65 1.72 2.96 2.11
50 0.15 2.69 2.69 3.50 2.26
51 −1.27 1.26 0.71 2.68 0.85
52 2.81 5.19 6.33 5.93 5.06
53 2.62 3.54 4.86 5.80 4.21
54 0.11 2.25 1.56 3.92 1.96
55 0.61 1.14 1.35 0.53 0.91
56 −2.19 −0.42 1.54 1.16 0.02
57 1.55 2.42 1.11 2.18 1.82
58 0.04 0.50 2.60 2.61 1.42
59 3.10 2.00 3.92 3.91 3.24
60 −0.29 2.62 1.60 1.86 1.45
61 2.28 3.39 4.91 3.89 3.62
62 2.57 5.78 5.12 4.98 4.61
63 −2.19 0.71 1.56 2.31 0.60
64 −0.04 2.44 1.79 2.64 1.71

Mean 1.14 2.54 2.99 3.47 2.53
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A.21 WAIS Data

Morrison (1990) compares the results of 4 subtests of the Wechsler Adult
Intelligence Scale (WAIS) for 2 categories of people. In group 1 are n1 = 37
people who do not present a senile factor; in group 2 are those (n2 = 12)
presenting a senile factor.

WAIS subtests:
X1: information
X2: similarities
X3: arithmetic
X4: picture completion

Group I
Subject Information Similarities Arithmetic Picture Completion

1 7 5 9 8
2 8 8 5 6
3 16 18 11 9
4 8 3 7 9
5 6 3 13 9
6 11 8 10 10
7 12 7 9 8
8 8 11 9 3
9 14 12 11 4

10 13 13 13 6
11 13 9 9 9
12 13 10 15 7
13 14 11 12 8
14 15 11 11 10
15 13 10 15 9
16 10 5 8 6
17 10 3 7 7
18 17 13 13 7
19 10 6 10 7
20 10 10 15 8
21 14 7 11 5
22 16 11 12 11
23 10 7 14 6
24 10 10 9 6
25 10 7 10 10
26 7 6 5 9
27 15 12 10 6
28 17 15 15 8
29 16 13 16 9
30 13 10 17 8
31 13 10 17 10
32 19 12 16 10
33 19 15 17 11
34 13 10 7 8
35 15 11 12 8
36 16 9 11 11
37 14 13 14 9
Mean 12.57 9.57 11.49 7.97
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Group II
Subject Information Similarities Arithmetic Picture Completion

1 9 5 10 8
2 10 0 6 2
3 8 9 11 1
4 13 7 14 9
5 4 0 4 0
6 4 0 6 0
7 11 9 9 8
8 5 3 3 6
9 9 7 8 6

10 7 2 6 4
11 12 10 14 3
12 13 12 11 10
Mean 8.75 5.33 8.50 4.75
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Franke, J., Härdle, W. & Hafner, C. (2004), Statistics of Financial Markets: An
Introduction, Springer, Berlin.

Friedman, J. H. & Tukey, J. W. (1974), ‘A projection pursuit algorithm for
exploratory data analysis’, IEEE Transactions on Computers C 23, 881–890.



362 References

Hall, P. & Li, K.-C. (1993), ‘On almost linearity of low dimensional projections from
high dimensional data’, Annals of Statistics 21(2), 867–889.
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Index

actual error rate, 240
adjoint matrix, 5, 34
AER, see actual error rate
agglomerative algorithm, 206
analysis of variance, see ANOVA
Andrews’ curves, 15, 27
ANOVA, 130, 133, 135, 283, 284
APER, see apparent error rate
apparent error rate, 233, 240
asymptotic normality, 5
average linkage, 206

balanced dice, 113
bandwidth, 22
Bartlett correction, 195
Bayes discrimination, 228, 232, 234
beta factor, 293
between variance, 228
between-group sum of squares, 229, 234
bias, 6
binomial distribution, 239
binomial inverse theorem, 37
boxplot, 15–17, 45

canonical correlation
analysis, 263, 266, 268, 269
coefficient, 263
variables, 263, 264, 267
vectors, 263

canonical hyperplane, 305, 320
capital asset pricing model, 291, 292
CAPM, see capital asset pricing model
CART, 301, 304

Gini criterion, 304

least squares criterion, 304

twoing criterion, 304

Cauchy distribution, 62

CCA, see canonical correlation

cdf, 2, 7, 10, 55

empirical, 7

joint, 2

marginal, 2

centering matrix, 2, 48, 84

central limit theorem, see CLT

centroid distance, 207

centroid linkage, 206

characteristic function, 2

characteristic polynomial, 6

Chernoff faces, see Flury-Chernoff faces

χ2 distribution, 3

quantile, 3

χ2 distance, 219, 220

χ2 statistic, 241, 242, 249

classification and regression tree, see
CART

classification tree, see CART

CLT, 3, 56, 62

cluster analysis, 205

average linkage, 206

centroid linkage, 206

complete linkage, 206, 213

median linkage, 206

single linkage, 206, 211, 213

Ward method, 206, 207, 209, 211, 216

coefficient of determination, 44, 49, 50

cofactor, 6

column coordinates, 245
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column factor, 245
contributions to variance, 246

column frequency, 241
common factors, 185
communality, 186
complete linkage, 206, 213
computational statistics, 301
conditional distribution, 6, 57, 68, 70,

79, 82, 83, 85, 86, 88, 90
conditional expectation, 2, 58, 65, 67,

69, 79, 88, 90, 93, 94
conditional moments, 6, 57
conditional pdf, 69, 72
conditional probability, 70
conditional variance, 2, 59, 65, 69, 90
confidence region, 122
conjoint measurement analysis, 283

nonmetric solution, 285
consumer preferences, 283
contingency table, 6, 219, 241, 246,

257–259
contour ellipse, 76
contrast matrix, 133, 140
convergence

in distribution, 3
in probability, 3

convex hull, 4
correlation, 2, 41, 44, 46, 48, 90, 92, 263

empirical, 3
multiple, 94
partial, 93

correlation matrix, 42, 48, 161
empirical, 3

correspondence analysis, 241, 242,
257–259

explained variance, 246
cost of misclassification, 237
covariance, 2, 40, 41, 47, 48, 54, 66, 96,

97, 150
empirical, 3

covariance matrix, 2, 48, 53, 55, 66, 82,
163

diagonal, 108
empirical, 3
partitioned, 81, 96

Cramer-Rao lower bound, 101, 104, 106,
108

Cramer-Rao theorem, 100
credit scoring, 227

critical value, 6, 112
cumulants, 2
cumulative distribution function, see

cdf

data cloud, 147, 148
data depth, 301
data matrix, 2

standardized, 48
dendrogram, 206
density, see pdf
derivative, 7
descriptive techniques, 15
design matrix, 283, 286
determinant, 4, 7, 33, 34, 36
diagonal, 4
discriminant analysis, 227
discriminant rule, 227
discrimination

Fisher’s, see Fisher’s LDA
ML, see ML discrimination

disparity, 272
dissimilarity, 272
distance matrix, 206, 271
distribution, 1

χ2, 3
conditional, 6, 57
exponential, 79
F -, 3
Gaussian, 9
marginal, 9, 58
multinormal, 9
normal, 3, 9
t-, 3

distribution function, see cdf
empirical, 7

draftman plot, 15, 28
duality, 148

edf, see empirical distribution function
EDR, see effective dimension reduction
effective dimension reduction

direction, 303, 311, 312
space, 303

efficient portfolio, 292
eigenvalue, 7, 34, 53, 148, 161, 163, 172,

229, 242, 245, 268
eigenvector, 7, 148, 161, 172, 229, 242,

243, 268
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ellipsoid, 35
empirical distribution function, 7
empirical moments, 7
entropy, 302
error of misclassification, 227
estimate, 8
estimator, 8

minimum variance unbiased, 106
Euclidean distance, 207, 215, 221, 271,

272
expected value, 8, 55

conditional, 2
exploratory projection pursuit, 302, 308
exponential distribution, 79

factor, 147, 162, 283
factor analysis, 186

estimation, 186
factor scores, 187
rotation, 186
strategy, 187
testing, 195
varimax rotation, 186

factor loadings, 185
factor scores, 187

estimation, 196
factorial axis, 149
factorial representation, 151
factorial technique, 147
factorial variable, 148, 151, 152
F -distribution, 3

quantile, 3
feature space, 305
Fisher information, 100, 302
Fisher information matrix, 100, 106,

108
Fisher’s LDA, 227, 228, 236, 238, 240,

308
Fisher’s Z-transformation, 41, 47
five number summary, 17, 18
Flury-Chernoff faces, 15, 18
Friedman-Tukey index, 302, 308

Gaussian distribution, 3, 9
Gini criterion, 304
gradient, 8
gradient vector, 35
graphical techniques, 15

Hessian matrix, 8
heteroscedasticity, 133
hierarchical clustering, 205
histogram, 15, 21, 23
horizontal profiles, 139, 142
Hotelling distribution, 82, 115, 119, 133
hypothesis testing, 111

idempotent matrix, 8, 35, 84
impurity measure, 304
independence, 41, 96, 97, 242, 249
indicator, 1
inertia, 147, 148, 151, 153, 160, 162,

206, 207, 209
intercluster distance, 206
inverse, 36
inverse matrix, 34
iso-distance curve, 62

Jacobian, 8, 59, 72, 80
joint distribution, 85, 88
Jones-Sibson index, 302

kernel density estimator, 15, 22, 23,
302, 308

Kronecker product, 1

L1-distance, 215, 216
L2-distance, 219
least squares, 43, 52

constrained, 53
least squares criterion, 304
likelihood, 8
likelihood function, 99
likelihood ratio, 111
likelihood ratio test, 112
linear approximation, 93, 94
linear constraint, 53, 140
linear dependence, 9
linear discrimination analysis, see

Fisher’s LDA
linear hypothesis, 133
linear model, 52, 53, 57, 137, 138, 283,

285
linear regression, 137, 138
linear space, 4
linear transformation, 57, 62, 64, 80, 82,

88–90, 92, 96
liters per 100 km, 63
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log-likelihood, 8
log-likelihood function, 99, 112, 116
Lr-distance, 215

Mahalanobis distance, 229
Mahalanobis transformation, 56, 172,

229, 302, 308
marginal distribution, 9, 58, 79, 85
marginal moments, 9
marginal pdf, 72
marketing, 283
matrix

adjoint, 5, 34
centering, 2, 48, 84
cofactor, 6
contrast, 140
correlation, 42, 48
covariance, 2, 48, 53, 55, 66, 82

diagonal, 108
determinant of, 4
diagonal of, 4
distance, 271
Fisher information, 100, 106, 108
gradient, 8
Hessian, 8
idempotent, 8, 35, 84
inverse, 34
Jacobian, 8
orthogonal, 9, 191
partitioned, 9, 36, 37
projection, 35
rank of, 4
rotation, 191
scatterplot, 15, 28
trace, 4
variance, 54

maximum likelihood estimator, 99, 100,
104, 107

MDS, see multidimensional scaling
mean, 2, 8, 9
mean squared error, see MSE
mean-variance efficient portfolio, 292
mean-variance optimization, 291
median, 9, 305, 306

multivariate, 301
median linkage, 206
miles per gallon, 63
minimum variance unbiased estimator,

106

minor, see cofactor
misclassification rate, 240
ML discrimination, 227–229, 231, 232,

237, 238
MLE, see maximum likelihood

estimator
moments, 2, 9

empirical, 7
marginal, 9

MSE, 9, 79
multidimensional scaling, 271

metric, 271, 273
nonmetric, 271, 272, 275

multinomial distribution, 113
multinormal distribution, 9
multivariate normal distribution, 81

nonlinear transformation, 63, 71, 104
normal distribution, 3, 9
normalized principal component, 172,

179–181
NPCA, see principal component

observation, 2
order statistic, 2
orthogonal complement, 9
orthogonal factor model, 187
orthogonal matrix, 9
outlier, 15, 45

parallel coordinate plot, 23
parallel profiles, 139, 140, 142
part-worth, 283, 285, 287, 289, 290
partitioned covariance matrix, 81
partitioned matrix, 9, 36, 37
PAV algorithm, see pool-adjacent-

violators algorithm
PC, see principal component
pdf, 2, 55, 60

conditional, 2, 72
joint, 2
marginal, 2, 72

pool-adjacent-violators algorithm, 283
population, 227
portfolio optimization, 291
preference, 283, 284
principal component, 163, 171, 172, 223,

241, 259, 307
correlation, 164



Index 367

expected value, 164
explained variance, 168
normalized, 172, 179–181, 259
screeplot, 165
testing, 168
variance, 164

principal component analysis, 164
principal factors, 186–188
prior probability, 228
probability density, see pdf
probability of misclassification, 240
profile analysis, 139, 142
profile method, 284, 290
projection, 149

Fisher’s LDA, 228
projection matrix, 35
projection pursuit, 301, 302, 308
projection vector, 303
proximity, 209
p-value, 10

quantile, 10
quantitative finance, 291

random sample, 99
random variable, 1, 10
random vector, 1, 10, 55
rank, 4
regression line, 43, 45, 46, 49
regression tree, see CART
rejection region, 112
risk management, 291
rotation matrix, 191
row coordinates, 245
row factor, 245

contributions to variance, 246
row frequency, 241

sample, 2
scatterplot, 10, 29, 40, 41, 44

3D, 29
scatterplot matrix, 15, 28
Schur complement, 10
score function, 99, 106, 108–110
screeplot, 165, 171
semi-invariants, 2
separating hyperplane, 305, 320
Shepard-Kruskal algorithm, 272, 275
simplicial depth, 301, 302, 306

single linkage, 206, 211, 213
singular value decomposition, 10, 149,

242, 245, 263, 267, 268
SIR, see sliced inverse regression
sliced inverse regression, 301, 302, 311,

312
SIR II, 303, 312

specific factors, 185
specific variance, 186
spectral decomposition, 11, 34, 53, 56,

84, 150, 161, 163, 171, 272
spiral, 322
standardization, 48
statistical learning theory, 304
stimulus, 283
STRESS, 272, 285
subspace, 11
sum of squares, 43, 44
support vector machine, see SVM
SVD, see singular value decomposition
SVM, 304

Taylor expansion, 11, 132
t-distribution, 3

quantile, 3
test

covariance matrix, 125, 127, 136
equality of means, 119
expected value, 125
independence, 130, 133
linear model, 137
mean vector, 121–123, 128, 130, 133
number of factors, 195
principal component, 168
two-sample, 130

theorem
binomial inverse, 37
central limit, see CLT
Cramer-Rao, 100
Wilks’, 112

trace, 4, 48
transformation of statistics, 63, 104
two-factor method, 284
twoing criterion, 304

unbiased estimator, 100
uniform distribution, 67, 100, 179, 180
utility, 288
utility attribute, 283
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variance, 2, 66
conditional, 2, 59
empirical, 3

variance efficient portfolio, 292
variance matrix, 54
varimax rotation, 186
vector

gradient, 8, 35

Ward method, 206, 207, 209, 211, 216
Wilks’ theorem, 112
Wishart distribution, 82, 84, 140
within variance, 228
within-group sum of squares, 228, 234
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