Theory
 of
 BLOCK DESIGN

Dr. D. K. Ghosh

Department of Statistics Saurashtra University RAJKOT

COMPLETE BLOCK DESIGN

If each of the blocks of a design contains
each of the v treatments then such design
is called complete block design .

Ex:- | 1 | 2 | 3 |
| :--- | :--- | :--- |
| 2 | 3 | 1 |\quad here $v=3, b=2, k=3$

Here $v=k$ where $v=$ number of treatments

INCOMPLETE BLOCK DESIGN

 If any one block of a design does not containall the treatments then design becomes incomplete
block design .That is $\mathrm{k}<\mathrm{v}$.

Example:- (i) v $=3, \mathrm{~b}=2, \mathrm{k}=2$ and
(ii) $\mathrm{v}=3, \mathrm{~b}=3, \mathrm{k}=2$

Binary design and non Binary design

 A connected design is said to be binary if theincidence matrix N is defined as

$$
N=\left(n_{i j}\right)_{v \times b}= \begin{cases}0 & ; \text { if } i^{\text {th }} \text { treat ment } \\ & \text { doesnot occur in } j^{\text {th }} \text { block. } . \\ 1 & ; \text { if } i^{\text {th }} \text { treat ment } \\ \text { occur in } j^{\text {th }} \text { block } .\end{cases}
$$

otherwise non binary design

Randomized Block Design

A block design is said to be randomized block
design if v treatments are arranged in b
block such that each block contains
each treatments once and each treatment
is replicated in $\mathrm{r}(=\mathrm{b})$ blocks

Example :- Randomized block design with $\mathrm{v}=4$ and $\mathrm{b}=3$

1234
$2413 \quad ; \mathrm{v}=4, \mathrm{~b}=3, \mathrm{r}=3, \mathrm{k}=4$ 3412

$$
N=\begin{array}{c|ccc}
& 1 & 2 & 3 \\
\hline 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 \\
4 & 1 & 1 & 1
\end{array}
$$

RBD is a complete block design .

* Incomplete block design .

Example :- $\mathrm{v}=4, \mathrm{~b}=6, \mathrm{r}=3, \mathrm{k}=2$.

1	2		1	2	3	4	5	6
1	3	1	1	1	1	0	0	0
1	4	$\mathrm{~N}=2$	1	0	0	1	1	0
2	3	3	0	1	0	1	0	1
2	4	4	0	0	1	0	1	1

This is a Binary block design.

Non Binary

$$
\begin{array}{ccccccccc}
1 & 2 & 3 & v & b & 1 & 2 & 3 & 4 \\
1 & 2 & 4 & 1 & & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 & 1 & 0 & 0 & 0
\end{array}
$$

Properties of Block Design

(1) Connectedness
 (2) Balancedness and
 (3) Orthogonality.

Connectedness :- A block design is said to be connected if all the elementary treatment contrasts are estimable

Theorem: A block design is said to be connectedness iff $\operatorname{Rank}(C)=v-1$
Proof: Necessary: Let a block design is connected Consider a set of ($\mathrm{v}-1$) linearly independent Treatment contrast ($\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{j}}$) if $i \neq j=1,2,3 \ldots v$.Let the contrast be denoted by $\mathrm{l}_{\mathrm{j}} \mathrm{t}$ where $\mathrm{j}=1,2,3 \ldots \ldots \mathrm{v}-1$ i.e. contrasts are $l_{1}^{\prime} t, l_{2}^{\prime} t, l_{3}^{\prime} t, \ldots \ldots \ldots . . l_{v-i}^{\prime} t$ where $\mathrm{T}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{v}}\right)$, obviously the vector $1_{1}, l_{2}, \ldots l_{\mathrm{v}-1}$ from the basis of a vector space of dimension $\mathrm{v}-1$. Now $\mathrm{l}_{\mathrm{j}} \mathrm{tt}(\mathrm{t}=1,2,3, \ldots, \mathrm{v}-1)$
is estimable iff it belong to the column space of the matrix of the design then $R(C)=R\left(C, 1_{j}\right)$ (1)

Therefore it is proved that from (1), the dimension of column space of C-matrix must be same as that of vector space spanned by the vector is ($\mathrm{j}=1,2,3 \ldots \mathrm{v}-1$)
It follows that ($\mathrm{v}-1$)=Rank (C)

Now, C is a matrix of order $\circledast \quad v$ and $E_{1 v} C=0$

$$
\begin{equation*}
\therefore R(C) \leq v-1 \tag{3}
\end{equation*}
$$

From (2) and (3)
It can be proved that $R(C)=v-1$
Let $\underline{l}^{\prime} \underline{C}\left(E_{1 v} l=0\right)$ be one the treatment contrast,
Now it is clear that
$\mathrm{R}(C, l) \geq R(C)=v-1$
But (C, l) is the matrix of order $v \times(v+1)$
$\therefore R(C) \leq v$
Also $\mathrm{E}_{1 \mathrm{v}}(\mathrm{C}, \mathrm{l})=0\left(\mathrm{E}_{1 \mathrm{v}} \mathrm{C}=0, \mathrm{E}_{1 \mathrm{v}} \mathrm{l}=0\right)$
$\therefore R(C, l) \leq v-1=R(C)$
(6)

From (5) and (6) it follows that
$R(C)=R(C, 1)=v-1$.
$\mathrm{C}=R^{\delta}-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$ is called information matrix
$=\operatorname{diag}\left(r_{1}, r_{2}, r_{3}, \ldots, r_{v}\right)-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$
Properties of C-Matrix : As a matrix
1.Each row and each column sum is zero i.e. $C_{v v} E_{v 1}=0=E_{1 v} C_{v v}$

1 It is Doubly centroid matrix
2 Diagonal elements of C- Matrix are always non negative

3 Off diagonal element of C-Matrix are negative or zero
(4) C-Matrix is expressed as :

$$
C=\theta\left(I_{v}-\frac{1}{v} E_{v v}\right)
$$

where

θ is nonzero eigen value of C-Matrix with Multiply v-1, E_{vv} is a Matrix of unit . Also C matrix can be expressed as

$$
C=R^{\delta}-N k^{-1} N^{\prime}
$$

(5) C-Matrix is a positive semi definite matrix

Treatment i associated with block j

$$
\begin{array}{rccc}
B l 1 & A & B & C \\
2 & A & C & D \\
3 & A & D & E \\
4 & A & E & F \\
5 & A & F & G \\
B l 6 & A & B & G
\end{array}
$$

Treatment

Theorem : In a connected design the diagonal elements of the C-Matrix are all positive . Proof :- Since $R(C)=v-1$ and $\sigma^{2} C$ is the dispersion Matrix of Q . C is positive semi definite as all the given roots of C-Matrix except one are positive hence none of the diagonal elements of C-Matrix can be negative. Let if possible the $i^{\text {th }}$ diagonal element of C be zero. Consider the vector whose $\mathrm{i}^{\text {th }}$ element, is ρ its only non zero element equal to 1 then $\quad=0$

Implying that ρ is also a characteristic vector

 corresponding to zero. Since ρ and $E_{1 v}$ are independent and both are characteristic vector corresponds to the zero root of C . The rank of C is at most $\mathrm{v}-2$ and the design is disconnected to the contrary to the hypothesis. Hence none of diagonal elements of C-Matrix are negative or zero.Theorem: In a connected design the co-factors of all elements of C have the same positive value. Proof: Let $\mathrm{C}=\mathrm{C}_{\mathrm{ij}}$ and let C_{ij} be the co-factor of C_{ij} Let $\mathrm{C}^{*}=\mathrm{C}_{\mathrm{ij}}$ It is well known that $\mathrm{CC}^{*}=D_{v v}$ Since the design is connected so a non zero scalar multiple of E_{iv} is a characteristic vector corresponding to the zero root. Hence each column of C^{*} contains identical element and become C^{*} as symmetrical and the diagonal elements of C-Matrix are all positive Hence it is a positive scalar multiple of $\mathrm{E}_{\mathrm{v}-1}$ so the co-factor of all elements of C are positive .

Definition 1 (Balanced):

A connected design is said to be balance if all the treatment contrast are estimated with same variances
2. A design is said to be balance if all the treatment contrast are having same precision.
3. A design is said to be balance if all the
diagonal elements of C matrix are same and off diagonal elements are also another constan
4. Balance Design:A design is said to be balance design if C-Matrix is written as

$$
C=\theta\left[I_{v}-\frac{1}{v} E_{v v}\right] \text { where }
$$

θ is non zero eivenroot of C-Matrix with multiplicity ($\mathrm{v}-1$). Iv is an identity matrix of order v and $E_{v v}$ is a matrix of order v and all elements are unique.

Orthogonal :-
An I BD is said to be orthogonal if $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})$ $=0$, where $P=\underline{B}-N^{\prime} R^{-1} \underline{T}$ and $Q=\underline{T}-N^{\prime} K^{-1} \underline{B}$ An IBD is said to be orthogonal if the incidence matrix of IBD is expressed as $N=\frac{r k^{1}}{n}$ n
THEOREM: An IBD is said to be orthogonal iff $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$ when $N=\frac{r k^{1}}{n}$

Let N be an incidence matrix of a BIBD ,

$$
N=D_{1} D_{2} \Rightarrow N^{\prime}=D_{2} D_{1} \quad R=D_{1} D_{1},
$$

let

$$
k=D_{2} D_{2}, T=D_{1} y, B=D_{2} y
$$

Now $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=\operatorname{Cov}\left[T-N K^{-1} B, B-N^{\prime} R^{-1} T\right]$

$$
=\operatorname{Cov}\left[\left(T-N K^{-1} B\right)\left(B-N^{\prime} R^{-1} T\right)^{\prime}\right]
$$

$$
=\operatorname{Cov}\left[\left(D_{1} y-D_{1} D_{2}^{\prime} K^{-1} D_{2} y\right)\left(D_{2} y-D_{2} D_{1}^{\prime} R^{-1} D_{1} y\right)^{\prime}\right]
$$

$$
=\operatorname{Cov}\left[\left(D_{1}-D_{1} D_{2}^{\prime} K^{-1} D_{2}\right) y y^{\prime}\left(D_{2}-D_{2} D_{1}^{\prime} R^{-1} D_{1}\right)^{\prime}\right]
$$

$$
\begin{aligned}
& =\left(D_{1}-D_{1} D_{2}^{\prime} K^{-1} D_{2}\right)\left(D_{2}-D_{2} D_{1}^{\prime} R^{-1} D_{1}\right)^{\prime} \sigma^{2} \\
& {\left[D_{1} D_{2}^{\prime}-D_{1} D_{1}^{\prime} R^{-1} D_{1} D_{2}^{\prime}-D_{1} D_{2}^{\prime} K^{-1} D_{2} D_{2}^{\prime}+\right.} \\
& \left.D_{1} D_{2}^{\prime} K^{-1} D_{2} D_{1}^{\prime} R^{-1} D_{1} D_{2}^{\prime}\right] \sigma^{2} \\
& =\left[N-R R^{-1} N-N K^{-1} K+N K^{-1} N^{\prime} R^{-1} N\right] \sigma^{2} \\
& =\left[N-N-N+N K^{-1} N^{\prime} R^{-1} N\right] \sigma^{2} \\
& \left.\therefore \operatorname{Cov}(Q, P)=N K^{-1} N^{\prime} R^{-1} N-N\right] \sigma^{2}
\end{aligned}
$$

Necessary: $\mathrm{N}=\mathrm{rk}^{\prime} / \mathrm{n}$ is given and then we have to prove that $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$
$\therefore \operatorname{Cov}(Q, P)=\left[\frac{r k^{\prime}}{n} K^{-1} \frac{k r^{\prime}}{n} R^{-1} N\right]-N$
$=\mathrm{n}^{-2}\left[r k^{\prime} K^{-1} k r^{\prime} R N\right]-N$
$=\mathrm{n}^{-2}\left[r E_{i b} k E_{i v} N\right]-N$
$=\mathrm{n}^{-2}\left[r\left(E_{i b} k\right) E_{i v} N\right]-N=\mathrm{n}^{-2}\left[n r E_{i v} N\right]-N$
$=\mathrm{n}^{-2}[n n N]-N=\mathrm{N}-\mathrm{N}=0 \quad \operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$

Necessary: $\mathrm{N}=\mathrm{rk}^{\prime} / \mathrm{n}$ is given and then we have to prove that $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$
$\therefore \operatorname{Cov}(Q, P)=\left[\frac{r k^{\prime}}{n} K^{-1} \frac{k r^{\prime}}{n} R^{-1} N\right]-N$
$=\mathrm{n}^{-2}\left[r k^{\prime} K^{-1} k r^{\prime} R N\right]-N$
$=\mathrm{n}^{-2}\left[r E_{i b} k E_{i v} N\right]-N$
$=\mathrm{n}^{-2}\left[r\left(E_{i b} k\right) E_{i v} N\right]-N=\mathrm{n}^{-2}\left[n r E_{i v} N\right]-N$
$=\mathrm{n}^{-2}[n n N]-N=\mathrm{N}-\mathrm{N}=0 \quad \operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$

Sufficient:-It is given that $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0$, now we have to prove that $\mathrm{N}=\mathrm{rk}^{\prime} / \mathrm{n}$.
$\therefore \operatorname{Cov}(Q, P)=\left[N K^{-1} N^{\prime} R^{-1} N-N\right] \sigma^{2}=0$

$$
N K^{-1} N^{\prime} R^{-1} N-N=(R-C) R^{-1} N-N
$$

$$
=R R^{-1} N-C R^{-1} N-N\left\{\begin{array}{l}
C=R-N K^{-1} N^{\prime} \\
R-C=N K^{-1} N^{\prime}
\end{array}\right.
$$

$$
=N-C K^{\wedge} N-N=-C K^{\wedge} N
$$

Since $\operatorname{Cov}(\mathrm{Q}, \mathrm{P})=0 \quad \therefore \mathrm{CR}^{-1} \mathrm{~N}=0$ Let $\mathrm{R}^{-1} \mathrm{~N}=\mathrm{A}$ it follows (Assume connected) that column of A say $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{b}$ are proportional to $\mathrm{i}\left(\right.$ Recall that $\mathrm{E}_{\mathrm{vi}}=0$) i.e. $a_{i}=\alpha_{i} E_{v i}$ for $i=1,2,3, \ldots . . b$ where α_{i} are some scalars.This implies that $A=R^{-1} N=E_{v i} \alpha^{\prime}$

$$
\text { where } \quad \alpha^{\prime}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{b}\right)
$$

It is now easy to show that $\alpha^{\prime}=\mathrm{K}^{\prime}$ n so it prove that $\mathrm{N}=\frac{r k^{\prime}}{n}$
n
$\frac{\text { BALANCED INCOMPLETE BLOCK }}{\text { DESIGN: }}$

Definition:-
BIBD is an incomplete block design where v treatments are arranged in b blocks having k plots in each block ($\mathrm{k}<\mathrm{v}$) such that
(1) Each treatment is replicated in r blocks and
(2) A pair of treatments occurs together in λ blocks.
$2 \begin{array}{llll}2 & 2 & 5\end{array}$
$\begin{array}{llll}3 & 3 & 4 & 6\end{array}$

4	4	5	7

$5 \quad 5 \quad 6 \quad 1$
$6 \quad 6 \quad 7 \quad 2$

7	7	1	3

In this Design $v=7, b=7, r=3, k=3$ and $\lambda=1$ - Parameters of BIBD: BIBD has five parameters v, b, r, k, λ.

- Parametric relation :-
(i) $\quad \mathrm{vr}=\mathrm{bk}(\mathrm{ii}) \lambda(\mathrm{v}-1)=\mathrm{r}(\mathrm{k}-1)$ and
(iii) $\mathrm{b} \geq \mathrm{v}$ (Fisher`s inequality)
- Prove that: vr = bk

Let us consider a BIBD with parameters v, b, r, k and λ.Let N be its incidence matrix . Since BIBD is a binary and hence

$\mathrm{N}=\left(\mathrm{n}_{\mathrm{ij}}\right)=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
 In a BIBD $\quad \mathrm{r}_{1}=\mathrm{r}_{2}=\ldots=\mathrm{r}_{\mathrm{v}}=\mathrm{r}$
 $\therefore \mathrm{E}_{1 \mathrm{v}} \mathrm{N}=\mathrm{kE}_{1 \mathrm{~b}}$
 $\mathrm{NE}_{\mathrm{b} 1}=\mathrm{rE} \mathrm{E}_{\mathrm{v} 1}$
 Now, $E_{1 v} N E_{b 1}=\left(E_{1 v} N\right) E_{b 1}$
 $=k E_{1 b} E_{b 1}=k b$
 (1)
 $E_{1 v} \mathrm{NE}_{\mathrm{b} 1}=\mathrm{E}_{1 \mathrm{v}}\left(\mathrm{NE}_{\mathrm{b} 1}\right)$
 $=\mathrm{E}_{1 \mathrm{v}} \mathrm{rE} \mathrm{E}_{\mathrm{v} 1}=\mathrm{rv}$
 (2)
 From (1) and (2), vr = bk

Alternative proof:
One block contains k treatments and we have b such blocks, so total no. of units will be bk.
Again one treatment is replicated r times and we have such v treatments and hence
total number of units will be vr , $\mathrm{so} \mathrm{vr}=\mathrm{bk}$

$\left[\begin{array}{lllllll} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right]_{7 \times 7}$	$\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}\right]_{7 \times 1}$	$=\left[\begin{array}{l}3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3\end{array}\right]$	$=3$	
\downarrow	\downarrow			
N	$E_{b 1}$			

$\therefore \mathrm{NE}_{\mathrm{b} 1}=\mathrm{rE}_{\mathrm{v} 1}$
1 Prove that : $\lambda(\mathrm{v}-1)=\mathrm{r}(\mathrm{k}-1)$
$N N^{\prime} E_{v 1}=N\left(E_{1 v} N\right)^{\prime}$
$=N\left(k E_{1 b}\right)^{\prime} \quad\left\{\because E_{1 v} N=k E_{1 b}\right.$
$=k^{\prime} N E_{b 1}=k r E_{v 1} \quad\left(\because N E_{b 1}=r E_{v 1}\right)$
$N N^{\prime}=\left[\begin{array}{cccc}n_{11} & n_{12} & \ldots & n_{1 b} \\ n_{21} & n_{22} & \ldots & n_{2 b} \\ \ldots & \ldots & \ldots & \ldots \\ n_{v 1} & n_{v 2} & \ldots & n_{v b}\end{array}\right]\left[\begin{array}{cccc}n_{11} & n_{21} & \ldots & n_{v 1} \\ n_{12} & n_{22} & \ldots & n_{v 2} \\ \ldots & \ldots & \ldots & \ldots \\ n_{1 b} & n_{2 b} & \ldots & n_{v b}\end{array}\right]$

$$
\left[\begin{array}{ccc}
n_{11}^{2}+n_{12}^{2}+\ldots+n_{1 b}^{2} & n_{11} n_{21}+n_{12} n_{22}+\ldots+n_{1 b} n_{2 b} & n_{11} n_{v i}+n_{12} n_{v 2}+\ldots+n_{11} n_{v i} \\
n_{21} n_{11}+n_{22} n_{12}+\ldots+n_{2 b} n_{1 b} & n_{21} n_{21}+n_{22}^{2}+\ldots+n_{2 b}^{2} & n_{21} n_{v 1}+\ldots+n_{2 b} n_{v b} \\
\ldots & \ldots & \ldots \\
n_{v i} n_{11}+n_{v 2} n_{12}+\ldots+n_{v b} n_{1 b} & n_{v 1} n_{21}+n_{v 2} n_{22}+\ldots+n_{v b} n_{2 b} & n_{v 1}^{2}+n_{v 2}^{2}+\ldots+n_{v b}^{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\sum_{j=1}^{b} n_{1 j}^{2} & \sum_{j=1}^{b} n_{1 j} n_{2 j} & \sum_{j=1}^{b} n_{1 j} n_{v j} \\
\sum_{j=1}^{b} n_{2 j} n_{1 j} & \sum_{j=1}^{b} n_{2 j}^{2} & \sum_{j=1}^{b} n_{2 j} n_{v j} \\
\sum_{j=1}^{b} n_{v j} n_{1 j} & \sum_{j=1}^{b} n_{v j} n_{2 j} & \sum_{j=1}^{b} n_{v j}^{2}
\end{array}\right]
$$

In a binary design $\sum_{j=1}^{b} n_{i j}^{2}=r$ and
$\sum_{j=1}^{b} n_{i j} n_{m j}=\lambda$
for all $i \neq j, m \neq i$
$\therefore N N^{\prime}=\left[\begin{array}{cccc}r & \lambda & \cdots & \lambda \\ \lambda & r & \cdots & \lambda \\ \cdots & \cdots & \cdots & \cdots \\ \lambda & \lambda & & r\end{array}\right]_{v \times v}$

$$
\left[\begin{array}{cccc}
r & 0 & \cdots & 0 \\
0 & r & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & r
\end{array}\right]+\left[\begin{array}{cccc}
0 & \lambda & \cdots & \lambda \\
\lambda & 0 & \cdots & \lambda \\
\cdots & \cdots & \cdots & \cdots \\
\lambda & \lambda & \cdots & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{cccc}
r & 0 & \cdots & 0 \\
0 & r & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & r
\end{array}\right]+\left[\begin{array}{cccc}
\lambda & \lambda & \cdots & \lambda \\
\lambda & \lambda & \cdots & \lambda \\
\cdots & \cdots & \cdots & \cdots \\
\lambda & \lambda & \cdots & \lambda
\end{array}\right]- \\
& {\left[\begin{array}{cccc}
\lambda & 0 & \cdots & 0 \\
0 & \lambda & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda
\end{array}\right]}
\end{aligned}
$$

$\therefore \mathrm{NN}^{\prime}=\mathrm{rI}_{\mathrm{v}}+\lambda \mathrm{E}_{\mathrm{vv}}-\lambda \mathrm{I}_{\mathrm{v}}$
where Iv is a matrix of order v and E_{vv} is a matrix with all elements unit
$\therefore N^{\prime}=(r-\lambda) I_{v}+\lambda E_{v v}$
$N^{\prime}{ }^{\prime} E_{v 1}=\left[(r-\lambda) I_{v}+\lambda E_{v v}\right] E_{v 1}$

$$
=(r-\lambda) \mathrm{E}_{\mathrm{v} 1}+\lambda \mathrm{v} \mathrm{E}_{\mathrm{v} 1}
$$

$$
\begin{equation*}
=[(\mathrm{r}-\lambda)+\lambda \mathrm{v}] \mathrm{E}_{\mathrm{v} 1} \tag{2}
\end{equation*}
$$

compairing (1) and (2)
$[(r-\lambda)+\lambda v] E_{v 1}=k r E_{v 1}$
$\mathrm{r}+\lambda \mathrm{v}-\lambda=\mathrm{kr}$

$$
\mathrm{r}+\lambda(\mathrm{v}-1)=\mathrm{kr}
$$

$$
-\mathrm{r}+\mathrm{kr}=\lambda(\mathrm{v}-1)
$$

$$
1 \quad \lambda(\mathrm{v}-1)=\mathrm{r}(\mathrm{k}-1)
$$

*FISHER`S INEQUALITY *

PROVE THAT : b $\geq \mathrm{v}$
We know that $\quad \therefore N N^{\prime}=\left[\begin{array}{cccc}r & \lambda & \cdots & \lambda \\ \lambda & r & \cdots & \lambda \\ \cdots & \cdots & \cdots & \cdots \\ \lambda & \lambda & \cdots & r\end{array}\right]_{v \times v}$
In a matrix if all off diagonal elements are zero then $|\mathrm{M}|=$ product of all diagonal elements.
Adding all columns in first column we get
$N N^{\prime}=\left[\begin{array}{cccc}r+\lambda+\lambda+\ldots .+\lambda & \lambda & \cdots & \lambda \\ \lambda+r+\lambda+\ldots+\lambda & r & \ldots & \lambda \\ \ldots & \cdots & \cdots & \cdots \\ \lambda+\lambda+r+\ldots+r & \lambda & \cdots & r\end{array}\right]_{v \times v}$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
r+\lambda(v-1) & \lambda & \cdots & \lambda \\
r+\lambda(v-1) & r & \cdots & \lambda \\
\cdots & \cdots & \cdots & \cdots \\
r+\lambda(v-1) & \lambda & \cdots & r
\end{array}\right]= \\
& r+\lambda(v-1)\left[\begin{array}{cccc}
1 & \lambda & \cdots & \lambda \\
1 & r & \cdots & \lambda \\
\vdots & \vdots & \cdots & \cdots \\
1 & \lambda & \cdots & r
\end{array}\right]
\end{aligned}
$$

$$
=[r+\lambda(v-1)]\left[\begin{array}{cccc}
1 & \theta & \cdots & \theta \\
\theta & r-\lambda & \cdots & \theta \\
\vdots & r-\lambda & \cdots & \theta \\
\theta & \theta & \cdots & r-\lambda
\end{array}\right]
$$

Now, $\left|N N^{\prime}\right|=[r+\lambda(v-1)](r-\lambda)^{v-1}$ In a BIBD $\mathrm{r}>\lambda$.
$\therefore\left|N N^{\prime}\right| \neq 0$, so $\mathrm{NN}{ }^{\prime}$ is non singular matrix having dimension vxv \therefore Rank $\left(N N^{\prime}\right)=v$

Now Rank $\left(N N^{\prime}\right) \leq \operatorname{Rank}(N)$

 But here N is a matrix of vxb $\therefore \operatorname{Rank}(\mathrm{N})=\min (\mathrm{v}, \mathrm{b})$ If Rank $(\mathrm{N})=\mathrm{v}$ then $\operatorname{Rank}\left(\mathrm{NN}^{\prime}\right) \leq \mathrm{v}$ This shows $b \geq v$
1 BOSE INEQUALITY *

 THEORAM: For any BIBD $\leftrightarrows \quad v+r-k$. Proof: Let us consider a BIBD with parameters $\mathrm{v}, \mathrm{b}, \mathrm{r}, \mathrm{k}$ and λ. Then we know that $\mathrm{vr}=\mathrm{bk}$ We also know that in a BIBD,$\leq k \quad v$, i.e., $\mathrm{v}-\mathrm{k} \geq 0$ similarly $\Varangle \mathrm{k}$, i.e., ($\mathrm{r}-\mathrm{k}$) 0\Rightarrow ($\mathrm{v}-\mathrm{k}$) (r-kł 0
$\mathrm{vr}-\mathrm{kr}-\mathrm{vk}+\mathrm{k}^{\ell} \quad 0 \quad\{\because v r=b k$
$\therefore \mathrm{bk}-\mathrm{kr}-\mathrm{vk}+\mathrm{k}^{马}$
0
$\mathrm{k}(\mathrm{b}-\mathrm{r}-\mathrm{v}+\mathrm{k} \boldsymbol{f} \quad 0$

$$
\begin{aligned}
& k \neq 0 \text { so }(b-r-v+k) \\
& \therefore b \geq v+r-k
\end{aligned}
$$

Theorem: Show that a BIBD is connected
if $R(C)=v-1$

Proof: Consider a BIBD with parameters
$\mathrm{v}, \mathrm{b}, \mathrm{r}, \mathrm{k}$ and λ. Now the information matrix C
for a BIBD is given by $\mathrm{C}=r \mathrm{I}_{\mathrm{v}}-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$
N is the incidence matrix of BIBD, N^{\prime} is the
transpose of N .

We know $C=r I_{v}-\frac{N N^{\prime}}{k}$ because $\mathrm{r}_{1}=\mathrm{r}_{2} \ldots=\mathrm{r}_{\mathrm{v}}$

$$
=r I_{v}-\frac{\left[(r-\lambda) I_{v}+\lambda E_{v v}\right]}{k}
$$

$$
=\left[r-\frac{(r-\lambda)}{k}\right] I_{v}-\frac{\lambda}{k} E_{v v}
$$

$$
=\left[\frac{r k-r+\lambda}{k}\right] I_{v}-\frac{\lambda}{k} E_{v v}
$$

$$
\begin{aligned}
= & {\left[\frac{r(k-1)+\lambda}{k}\right] I_{v}-\frac{\lambda}{k} E_{v v} } \\
& =\left[\frac{\lambda(v-1)+\lambda}{k}\right] I_{v}-\frac{\lambda}{k} E_{v v} \\
& =\frac{\lambda v}{k} I_{v}-\frac{\lambda}{k} E_{v v}=\frac{\lambda}{k}\left[v I_{v}-E_{v v}\right] \\
= & \frac{\lambda v}{k}\left[I_{v}-\frac{E_{v v}}{v}\right]
\end{aligned}
$$

$\operatorname{Now}\left[I_{v}-\frac{E_{v v}}{v}\right]^{2}=\left[I_{v}-\frac{E_{v v}}{v}\right]\left[I_{v}-\frac{E_{v v}}{v}\right]$

$$
\begin{aligned}
& =I_{v}-\frac{E_{v v}}{v}-\frac{E_{v v}}{v}+\frac{E_{v v}}{v} \frac{E_{v v}}{v} \\
& =I_{v}-\frac{2}{v} E_{v v}+\frac{1}{v^{2}} v E_{v v} \\
= & I_{v}-\frac{2}{v} E_{v v}+\frac{E_{v v}}{v}=I_{v}-\frac{E_{v v}}{v}
\end{aligned}
$$

$$
\therefore\left[I_{v}-\frac{E_{v v}}{v}\right]^{2}=I_{v}-\frac{E_{v v}}{v}
$$

This shows that $\left(I_{v}-\frac{E_{v v}}{v}\right)$ an idempotent matrix .

Rank of any idempotent matrix $=$ trace of a matrix $=$ sum of the diagonal elements
$C=\frac{\lambda v}{k}\left[I_{v}-\frac{E_{v v}}{v}\right]$

$$
\begin{aligned}
& \operatorname{Rank} C=\operatorname{Rank}\left[I_{v}-\frac{E_{v v}}{v}\right] \\
& =R\left(I_{v}\right)-\frac{1}{v} R\left(E_{v v}\right)=v-\frac{1}{v} v
\end{aligned}
$$

$\operatorname{Rank}(\mathrm{C})=\mathrm{v}-1$

Remarks: BIBD is balanced if

$$
C=\frac{\lambda v}{k}\left[I_{v}-\frac{1}{v} E_{v v}\right]
$$

$$
\begin{equation*}
=\theta\left[I_{v}-\frac{E_{v v}}{v}\right] \tag{2}
\end{equation*}
$$

Where θ is eigen value of C matrix of design
d with multiplicity ($\mathrm{v}-1$). Here C-Matrix is
singular matrix and hence one eiven value is
zero and remaining ($v-1$) eigen value are $\frac{\lambda v}{k}$.

(Symmetrical Balanced Incomplete Block Design

A BIBD with parameters v, b, r, k, λ is called SBIBD if $v=b$. The Incidence matrix of SBIBD is always square matrix $\left(\mathrm{N}=\mathrm{N}^{\prime}\right)$.Incidence matrix $\mathrm{N}_{\mathrm{vxb}}=\mathrm{N}_{\mathrm{vxv}}$ and hence it is a square matrix.

Theorem: For any symmetrical BIBD, (r- λ) must
be a perfect square for even v .
Proof: Let us consider a BIBD with parameters
$\mathrm{v}, \mathrm{b}, \mathrm{r}, \mathrm{k}, \lambda$. Let N be its incidence matrix and
N^{\prime} is its transpose. We know that
$N^{\prime}=[r+\lambda(v-1)](r-\lambda)^{v-1}$

$$
\begin{aligned}
& =[\mathrm{r}+\mathrm{r}(\mathrm{k}-1)](\mathrm{r}-\lambda)^{\mathrm{v}-1} \quad\{\lambda(\mathrm{v}-1)=\mathrm{r}(\mathrm{k}-1) \\
& =(\mathrm{r}+\mathrm{rk}-\mathrm{r})(\mathrm{r}-\lambda)^{\mathrm{v}-1}=(\mathrm{rk})(\mathrm{r}-\lambda)^{\mathrm{v}-1}=(\mathrm{rr})(\mathrm{r}-\lambda)^{\mathrm{v}-1} \\
& \left|\mathrm{NN}^{\prime}\right|=\left(\mathrm{r}^{2}\right)(\mathrm{r}-\lambda)^{\mathrm{v}-1} \\
& |\mathrm{~N}|\left|\mathrm{N}^{\prime}\right|=\mathrm{r}^{2}(\mathrm{r}-\lambda)^{\mathrm{v}-1} \\
& |\mathrm{~N}||\mathrm{N}|=\mathrm{r}^{2}(\mathrm{r}-\lambda)^{\mathrm{v}-1}\left\{\mathrm{~N}=\mathrm{N}^{\prime}\right. \text { for symmetrical } \\
& |\mathrm{N}|^{2}=\mathrm{r}^{2}(\mathrm{r}-\lambda)^{\mathrm{v}-1}
\end{aligned}
$$

$\therefore|\mathrm{N}|=\mathrm{r}(\mathrm{r}-\lambda)^{\frac{v-1}{2}}$

This shows that for any even values of $v,(r-\lambda)$
must be a perfect square.
Resolvable BIBD
A BIBD is said to be resolvable, if b blocks are
arranged in r groups such that each group
contain one and only one treatment. Each
group will contain b/r blocks. Any two
treatments common between two blocks
of the same group are constant while any
two treatments common between two block

of the different groups are another constant.

$$
\text { Example: 1. } v=4, b=6, r=3, k=2, \lambda=1
$$

$$
\text { Design plan } \begin{array}{ll}
1 & 2 \\
& 1
\end{array} 3
$$

Here $\mathrm{b}=6, \mathrm{r}=3, \therefore \mathrm{~b} / \mathrm{r}=6 / 3=2$ blocks

$$
\begin{aligned}
& \begin{array}{ccccccc}
1 & 2 & 1 & 3 & 1 & 4 & \rightarrow \text { Block } \\
3 & 4 & 2 & 4 & 2 & 3 & \rightarrow \text { Block } \\
\mathrm{v}=4 & \mathrm{r}=3 & \mathrm{k}=2 \\
\alpha \\
\alpha & \text { Resolvable BIBD }
\end{array}, l
\end{aligned}
$$

A resolvable BIBD is said to α - Resolvable

Example-1 is a 1-Resolvable BIBD also.
Affine Resolvable BIBD:
A Resolvable BIBD is said to be Affine Resolvable BIBD if number of treatment common between
any two blocks of same group is constant similarly
any two block of different group are another constant

α-Affine Resolvable BIBD

An Affine resolvable BIBD is said to α-Affine
Resolvable BIBD if in each group each treatment occur α times.

Show that: A design with parameters $v=4, b=6$, $\mathrm{r}=3, \mathrm{k}=2, \lambda=1$ is Balanced, connected or orthogonal
$\left[\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]_{4 \times 6} \quad N^{\prime}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]_{6 \times 4}$
now $\quad N N^{\prime}=\left[\begin{array}{llll}3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3\end{array}\right]_{4 \times 4}$
$\mathrm{C}=\operatorname{diag}(\mathrm{r})-\mathrm{NK}^{-1} \mathrm{~N}$
diag. r) $N N^{\prime} \quad\left\{\therefore \mathrm{k}_{1}=\mathrm{k}_{2}=\ldots=\mathrm{k}_{\mathrm{v}}\right)$
$=\operatorname{diag} .(r)-\frac{N-}{k}$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]-\frac{N N^{\prime}}{k} \\
& =\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]-\left[\begin{array}{llll}
3 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 3 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 3 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 & 3 / 2
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{rrrr}
3 / 2 & -1 / 2 & -1 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2 & -1 / 2 & -1 / 2 \\
-1 / 2 & -1 / 2 & 3 / 2 & -1 / 2 \\
-1 / 2 & -1 / 2 & -1 / 2 & 3 / 2
\end{array}\right]
$$

Since all the diagonal elements are constant
and again all the off diagonal elements are
another constant. So design is Balance
$C=\theta\left[I_{v}-\frac{1}{v} E_{v v}\right]$
$=\theta\left[\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]-\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] / 4\right]$
$=\theta\left[\begin{array}{cccc}3 / 4 & -1 / 4 & -1 / 4 & -1 / 4 \\ -1 / 4 & 3 / 4 & -1 / 4 & -1 / 4 \\ -1 / 4 & -1 / 4 & 3 / 4 & -1 / 4 \\ -1 / 4 & -1 / 4 & -1 / 4 & 3 / 4\end{array}\right]$

From (1) and (2) we get $\theta=2$

\therefore Eigen value $=2$ with multiply $(v-1)=3$,
so design is Balance.

$$
\begin{gathered}
\Rightarrow \quad \mathrm{E}_{1 \mathrm{v}} \mathrm{C}=0 \quad \therefore|\mathrm{C}|=0 \\
\mathrm{CE}_{1 \mathrm{v}}=0
\end{gathered}
$$

C is a singular matrix so $\operatorname{Rank}(C)=v-1=3$
\therefore design is connected.

Here $r=3 \quad k=2$
$\mathrm{r}=\left(\begin{array}{llll}3 & 3 & 3 & 3\end{array}\right)^{\prime} \quad \mathrm{k}=\left(\begin{array}{lllll}2 & 2 & 2 & 2 & 2\end{array}\right)^{\prime}$,

$$
\mathrm{rk}^{\prime}=(3.3 .3 .3)_{1 \times 4}\left[\begin{array}{l}
2 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]_{6 \times 1}
$$

$=\left(\begin{array}{llllll}6 & 6 & 6 & 6 & 6 & 6 \\ 6 & 6 & 6 & 6 & 6 & 6 \\ 6 & 6 & 6 & 6 & 6 & 6 \\ 6 & 6 & 6 & 6 & 6 & 6\end{array}\right)$
$\mathrm{n}=\mathrm{vr}=4 * 3=12$
$=\left[\begin{array}{llllll}1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 & 1 / 2\end{array}\right]$
$\therefore N \neq \frac{r k^{\prime}}{n}$
\therefore Design is not an orthogonal .

All the Incomplete Block design are
non-orthogonal.
Consider a Randomized block Design with
4 treatments and 3 blocks.

$$
\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
2 & 1 & 3 & 4
\end{array}
$$

so Incidence matrix of Randomized block
design is $N=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$r=\left(\begin{array}{llll}3 & 3 & 3 & 3\end{array}\right)^{\prime} \quad k=\left(\begin{array}{ll}4 & 4\end{array}\right)^{\prime}$
$\mathrm{rk}^{\prime}=\left(\begin{array}{l}3 \\ 3 \\ 3 \\ 3\end{array}\right)_{4 \times 1}(444)_{1 \times 3}=\left[\begin{array}{ccc}12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 & 12\end{array}\right]$
now $\quad n=v r=4 \times 3=12$.

$$
\therefore \frac{r k^{\prime}}{n}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=N
$$

\therefore this design is orthogonal.
Conclusion: All the RBD are orthogonal Design.
Consider a Latin Square Design

$$
v=3, b=3, r=3, k=3 .
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

Incidence matrix $\quad \mathrm{N}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

Now r = (3.3.3),
$\mathrm{k}^{\prime}=(3.3 .3)$

$$
\mathrm{rk}^{\prime}=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)\left(\begin{array}{lll}
3 & 3 & 3
\end{array}\right)=\left[\begin{array}{ccc}
9 & 9 & 9 \\
9 & 9 & 9 \\
9 & 9 & 9
\end{array}\right]
$$

Now $\mathrm{n}=\mathrm{vr}=3 \mathrm{x} 3=9$
$\therefore \frac{r k^{\prime}}{n}=\left[\begin{array}{lll}9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9\end{array}\right] / 9$

$$
\begin{aligned}
& \frac{r k^{\prime}}{n}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=N \\
& N=\frac{r k^{\prime}}{n}
\end{aligned}
$$

\therefore The design is orthogonal .

Remarks: L.S.D. is an orthogonal design.

All the Complete Block Designs are

Orthogonal Designs. All the Incomplete
Block Designs are Non orthogonal Designs.
Analysis of Intrablock BIB design.
From the analysis of one way block design
we know that the reduced normal equation
for estimating treatment effect τ is given by
$\mathrm{Q}=\mathrm{C} \underline{\tau} \quad$ where $\mathrm{Q}=\underline{\mathrm{T}}-\mathrm{NK}^{-1} \mathrm{~B}$
$\mathrm{C}=\operatorname{diag}(\mathrm{r})-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$,
where N is the incidence matrix of block design
T is vector of treatment total and B is vector
of block total.In case of BIBD we have
parameters $\mathrm{v}, \mathrm{b}, \mathrm{r}, \mathrm{k}, \lambda$
$\mathrm{r}_{1}=\mathrm{r}_{2}=\ldots .=\mathrm{r}_{\mathrm{v}} \quad, \mathrm{k}_{1}=\mathrm{k}_{2}=\ldots \ldots . .=\mathrm{k}_{\mathrm{b}}$
$\mathrm{C}=\operatorname{diag}(\mathrm{r}, \mathrm{r}, \ldots ., \mathrm{r})-\mathrm{NK}^{-1} \mathrm{~N}^{\prime}$

$$
=\left[\begin{array}{ccccc}
r & 0 & 0 & \cdots & 0 \\
0 & r & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & r
\end{array}\right]-\frac{N N^{\prime}}{k}
$$

$$
\therefore \mathrm{C}=\mathrm{rI}_{\mathrm{v}}-\frac{\mathrm{NN}^{\prime}}{\mathrm{k}}\left\{\mathrm{NN}^{\prime}=(\mathrm{r}-\lambda) \mathrm{Iv}+\lambda \mathrm{E}_{\mathrm{vv}}\right.
$$

$$
=r-\left[(r-\lambda) I_{v}+\lambda E_{v v}\right] / k
$$

$$
=\left[r-\frac{(r-\lambda)}{k}\right] I_{v}-\frac{\lambda E_{v v}}{k}
$$

$$
\begin{aligned}
& =\left[\frac{(r k-r+\lambda)}{k}\right] I_{v}-\frac{\lambda E_{v v}}{k} \\
& =\left[\frac{r(k-1)+\lambda)}{k}\right] I_{v}-\frac{\lambda E_{v v}}{k} \\
& =\left[\frac{\lambda(v-1)+\lambda)}{k}\right] I_{v}-\frac{\lambda E_{v v}}{k} \\
& \therefore \mathrm{C}=\frac{\lambda \mathrm{v}}{\mathrm{k}} \mathrm{I}_{\mathrm{v}}-\frac{\lambda \mathrm{E}_{\mathrm{vv}}}{\mathrm{k}}
\end{aligned}
$$

$$
\text { now } \mathrm{Q}=\mathrm{Cl}
$$

$$
\begin{aligned}
& =\left[\frac{\lambda v}{k} I_{v}-\frac{\lambda E_{v v}}{k}\right] \underline{\tau} \\
& =\frac{\lambda v \underline{\tau}}{k} I_{v}-\frac{\lambda E_{v v} \underline{\tau}}{k} \text { since } \mathrm{E}_{\mathrm{vv}} \tau=0
\end{aligned}
$$

$$
\text { so } \mathrm{Q}=\frac{\lambda v \tau}{k}
$$

$$
\therefore \underline{\tau}=\frac{k}{\lambda v} \underline{Q}
$$

Now S.S. due to treatment $=$

$\mathrm{Q}=\mathrm{T}-\mathrm{NK}^{-1} \mathrm{~B}=T-\frac{N B}{k}$
where Q is the vector of adjusted treatment total

Variance of Treatment contrasts:

For a BIBD $\quad \hat{\tau}=\frac{k}{\lambda v} Q \Rightarrow \hat{\tau}_{i}=\frac{k}{\lambda v} Q$

$$
\begin{aligned}
& \hat{\tau}_{1}=\frac{\mathrm{k}}{\lambda v} \mathrm{Q}_{1}, \hat{\tau}_{2}=\frac{\mathrm{k}}{\lambda v} \mathrm{Q}_{2}, \ldots, \hat{\tau}_{\mathrm{j}}=\frac{\mathrm{k}}{\lambda v} \mathrm{Q}_{\mathrm{j}} \\
& \text { now } \quad \mathrm{V}\left(\hat{\tau}_{\mathrm{i}}-\hat{\tau}_{\mathrm{j}}\right)=\mathrm{V}\left(\frac{\mathrm{k}}{\lambda v} \mathrm{Q}_{\mathrm{i}}-\frac{\mathrm{k}}{\lambda v} \mathrm{Q}_{\mathrm{j}}\right) \\
& =\left(\frac{k}{\lambda v}+\frac{k}{\lambda v}\right) \sigma^{2}=\frac{2 k}{\lambda v} \sigma^{2}
\end{aligned}
$$

Efficiency factor of BIBD
Let E be the efficiency factor of BIBD

$$
\mathrm{E}=\frac{v\left(\hat{\tau}_{i}-\hat{\tau}_{j}\right) R B D}{v\left(\hat{\tau}_{i}-\hat{\tau}_{j}\right) B I B D}
$$

$$
=\left(\frac{1}{r}+\frac{1}{r}\right) \sigma^{2} / \frac{2 k}{\lambda v} \sigma^{2}=\frac{2}{r} / \frac{2 k}{\lambda v}=\frac{\lambda v}{r k}
$$

.Example: $\mathrm{v}=4, \mathrm{~b}=6, \mathrm{r}=3, \mathrm{k}=2, \lambda=1$

$$
E=\frac{r v}{r k}=\frac{4}{3 \times 2}=\frac{2}{3}<1
$$

Construction of BIBD

METHOD :1
BIBD with a series $v, b=v C_{2}, r=v-1, k=2, \lambda=1$. Step 1: Take v treatments write down all possible combination of v treatments taking two treatments together .
Step 2: Here there will be vC_{2} combinations. Two treatments are taken together and is kept in one block so these vC_{2} treatment combinations are kept in vC_{2} books. Each block contains 2 treatments and each treatment is replicated r times and finally a pair of treatment occurs together in λ block

Example: $v=7, b={ }_{7} \mathrm{C}_{2}=21, \mathrm{r}=7-1=6, \mathrm{k}=2, \lambda=1$. Treatments are $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}$
Combination: $\quad t_{1} t_{2} \quad t_{2} t_{3} \quad t_{3} t_{4} \quad t_{4} t_{5} \quad t_{5} t_{6} t_{6} t_{7}$
$\begin{array}{lllll}t_{1} t_{3} & t_{2} t_{4} & t_{3} t_{5} & t_{4} t_{6} & t_{5} t_{7}\end{array}$ $\begin{array}{llll}\mathrm{t}_{1} \mathrm{t}_{4} & \mathrm{t}_{2} \mathrm{t}_{5} & \mathrm{t}_{3} \mathrm{t}_{6} & \mathrm{t}_{4} \mathrm{t}_{7}\end{array}$
$\mathrm{t}_{1} \mathrm{t}_{5} \quad \mathrm{t}_{2} \mathrm{t}_{6} \quad \mathrm{t}_{3} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{6} \quad \mathrm{t}_{2} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{7}$
Here each treatments are replicated 6 times
$\therefore r=6$, and $k=2$
Each pair of treatment occurs only one time.
$\therefore v=7, b=21, r=6, k=2, \lambda=1$.

METHOD 2:
$\mathrm{v}, \mathrm{b}={ }^{\mathrm{v}} \mathrm{C}_{\mathrm{k}}, r=\binom{v-1}{k-1}, \quad \lambda=\binom{v-2}{k-2}$ for any k.
Step 1: Take v treatments write down all possible combination of v treatment taking k treatments together.
Step 2: Since there will be vC_{k} combinations when k treatments are taken together. Keep these combinations in vC_{k} blocks such that each blocks will contain k treatments. In these way each
treatment is replicated $\binom{v-1}{k-1}$ times and a pair
of treatment occur together in λ block.
Example : $\mathrm{v}=7, \mathrm{k}=4 \mathrm{~b}={ }_{7} \mathrm{C}_{4}=35, \mathrm{r}={ }_{6} \mathrm{C}_{3}=20$, $\lambda={ }_{5} \mathrm{C}_{2}=10$.
Treatments are $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}$

$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{5}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{5}$	$\mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{6}$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{5}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{6}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{6}$	$\mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{6}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{7}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{7}$	$\mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{6} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{7}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{5} \mathrm{t}_{6}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{5} \mathrm{t}_{6}$	$\mathrm{t}_{3} \mathrm{t}_{5} \mathrm{t}_{6} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{5}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{5} \mathrm{t}_{7}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{5} \mathrm{t}_{7}$	$\mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{6} \mathrm{t}_{7}$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{6}$	$\mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{6} \mathrm{t}_{7}$	$\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{6} \mathrm{t}_{7}$	
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{7}$	$\mathrm{t}_{1} \mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{6}$	$\mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{6}$	
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{5} \mathrm{t}_{6}$	$t_{1} t_{4} t_{5} t_{7}$	$\mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{5} \mathrm{t}_{7}$	
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{5} \mathrm{t}_{7}$	$\mathrm{t}_{1} \mathrm{t}_{4} \mathrm{t}_{6} \mathrm{t}_{7}$	$\mathrm{t}_{2} \mathrm{t}_{4} \mathrm{t}_{6} \mathrm{t}_{7}$	
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{6} \mathrm{t}_{7}$	$\mathrm{t}_{1} \mathrm{t}_{5} \mathrm{t}_{6} \mathrm{t}_{7}$	$\mathrm{t}_{2} \mathrm{t}_{5} \mathrm{t}_{6} \mathrm{~F}^{2}$	

Here each pair occur 10 times $\therefore \lambda=10$ Method 3: USING LATIN SQUARE DESIGN Step 1: Consider a Latin square design of size S which is having S rows and S column .
Step 2: Delete a column from Latin square design. Step 3 : Consider row as a block of BIBD and Latin letters as a treatments. This way we get a BIBD with parameters :
$v=S, b=S, r=S-1, k=S-1$, and $\lambda=S-2$.

Example 1:- Construct a LSD of size 5

$$
\begin{array}{rrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2 & \Rightarrow & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 \\
5 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3
\end{array}
$$

Here $v=5, b=5, r=5-1=4, k=5-1=4, \& \lambda=5-2=3$.

Example 2:- \quad Size - 4

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array} \Rightarrow \begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 1 \\
4 & 1 & 2 \\
1 & 2 & 3
\end{array}
$$

Here $v=4, b=4, r=3, k=3, \& \lambda=2$.

Method - 4. Using Hadamard Matrix :A matrix H_{n} of order n is said to be Hadamard Matrix if $H_{n} \quad H_{n}{ }^{\prime}=n I_{n}=H_{n}{ }^{\prime} H_{n}$
First Hadamard Matrix is $\mathrm{H}_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
Now $\mathrm{H}_{2} \mathrm{H}_{2}$
$\Rightarrow\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right]=2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=2 I_{n}$
Now $H_{4}=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right]$

Method 4: Using Hadamarad Matrix $\{-1$ as +1 , \& 1 as 0$\}$
Step1: Consider a Hadamard Matrix of order (size) n Step 2: Delete first row and first column of Hadamard Matrix H_{n}.
Step 3: change -1 as +1 \& 1 as 0 . Step 4: Consider the remaining row and column of Hadamard Matrix as the Incidence Matrix N . Step 5: This Incidence matrix is the Incidence matrix of a BIBD with parameters.
$\mathrm{v}=\mathrm{n}-1, \mathrm{~b}=\mathrm{n}-1, \mathrm{r}=\mathrm{n} / 2, \mathrm{k}=\mathrm{n} / 2, \& \lambda=\mathrm{n} / 4$
$\begin{aligned} \text { Example: } H_{4} & =\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right] \Rightarrow \begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \\ -1 & \text { as }+1 & \& \\ 1 & \text { as } 0 .\end{array}\end{aligned}$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]=N$ which is Incidence
Matrix of a BIBD $\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 1 & 2\end{array}\right]$

Parameters of this BIBD are $\mathrm{v}=3(\mathrm{n}-1)=$ $(4-1)=3 . b=3, r=n / 2=4 / 2=2, k=n / 2=$ $4 / 2=2, \lambda=n / 4=4 / 4=1$.

Example :-

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

-1as 1 \& 1 as 0.
$\left[\begin{array}{ccccccc}-1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right] \Rightarrow$
$\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right] \Rightarrow$
= N (Incidence matrix)

$$
=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
2 & 3 & 6 & 7 \\
1 & 2 & 5 & 6 \\
4 & 5 & 6 & 7 \\
1 & 3 & 4 & 6 \\
2 & 3 & 4 & 5 \\
1 & 2 & 4 & 7
\end{array}\right]
$$

Here : treatment $v=7\{1,2,3,4,5,6,7\}$ $\mathrm{b}=\mathrm{n}-1=8-1=7, \mathrm{r}=\mathrm{n} / 2=8 / 2=4$, $\mathrm{k}=\mathrm{n} / 2=8 / 2=4, \lambda=\mathrm{n} / 4=8 / 4=2$.

METHOD 5:
Using Hadamard Matrix \{-1as 0 and 1 as1\} Step: All the step are same as Method 4 only -1 as 0 and 1 as 1 .
Parameters: $\mathrm{v}=\mathrm{b}=\mathrm{n}-1, \mathrm{r}=\mathrm{k}=\frac{n}{4}-1, \lambda=\frac{n}{4}-1$.
Example :- delete first row and first column.

$$
H_{8} \Rightarrow\left[\begin{array}{ccccccc}
-1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & -1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

These two Methods Gives always Symmetrical BIBD.
-1 as 0 and 1as 1
$\left[\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right]=N$ Incidence matrix

$$
\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 4 & 5 \\
3 & 4 & 7 \\
1 & 2 & 3 \\
2 & 5 & 7 \\
1 & 6 & 7 \\
3 & 5 & 6
\end{array}\right] \quad \begin{gathered}
\text { Here, } \\
v=7 \\
b=7 \\
k=\frac{n}{2}-1=4-1=3 \\
\lambda=\frac{n}{4}-1=2-1=1
\end{gathered}
$$

METHOD: 6. BIBD with series ,
$v=4 \lambda+3, b=4 \lambda+3, r=2 \lambda+1=k$ and λ, where $4 \lambda+3$ is a prime number.
Step 1:- Let $4 \lambda+3$ is a prime number for any $\lambda>0$. First of all find out the primitive elements of $\mathrm{GF}(4 \lambda+3) \quad\{\mathrm{GF}=$ Galois Field $\}$. The elements of GF $(4 \lambda+3)$ are $0,1,2,3, \ldots, 4 \lambda+3-1$ ($=4 \lambda+2$) .
Step 2 :- Find the primitive element α for GF $(4 \lambda+3)$. That is, if $\alpha^{(4 \lambda+3)}-1=1$ with reduced mode $(4 \lambda+3)$ then α is primitive
element .Next write all the element as the power of primitive elements. Consider either even power of primitive element α or odd power of primitive element with reduce mode $4 \lambda+3$ and keep them in block .
Denote this block as a key block. Develop this key block with reduced mod $v=4 \lambda+3$. This way we get BIBD with parameter $v=4 \lambda+3=b, r=2 \lambda+1=k, \lambda$ Example: $\lambda=1, v=4(1)+3=7, b=7, r=2(1)+1=3$, $\mathrm{k}=3$.
$\therefore \mathrm{v}(=7)$ is a prime number.

Element of GF(7) are $0,1,2,3,4,5,6$. | 2^{0} | 2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | $\underline{1}$ | | | |

$\therefore 2^{6} \neq 1$ so 2 is not the primitive element of GF(7).
$3^{0} \quad 3^{1} \quad 3$
3
3^{3}
3^{4}
3^{5}
3^{6}
$1 \quad 3 \quad 2 \quad 27 \quad(6 \times 3) \quad(4 \times 3) \quad(5 \times 3)$
$\begin{array}{llll}6 & 18 & 12 & 15\end{array}$
4
5
1

Here $3^{6}=1$ with reduced $\bmod 7$, so 3 is primitive element of GF(7).

Key by block $\quad 3^{1} \quad 3^{3} \quad 3^{5}$
b1
3
6
5
b2
4
7
6
b3
5
1 7 b4
6
2
1 b5
7
3
2
b6 b7
2
5
4

Even no.

$$
\begin{array}{ccc}
3^{2} & 3^{4} & 3^{6} \\
\hline 2 & 4 & 1 \\
3 & 5 & 2 \\
4 & 6 & 3 \\
5 & 7 & 4 \\
6 & 1 & 5 \\
7 & 2 & 6 \\
1 & 3 & 7
\end{array}
$$

Here, $v=7, b=7, r=3, k=3, \lambda=1$.

Example: $\lambda=2$, gives $v=4(2)+3=11=b$.,

$$
\mathrm{r}=2(2)+1=5, \mathrm{k}=5 \text {, }
$$

Here $v=11$ is a prime number and elements of $\mathrm{GF}(11)$ are $0,1,2,3,4,5,6,7,8,9,10$
$2^{0} \quad 2^{1} \quad 2^{2} \quad 2^{3} \quad 2^{4} \quad 2^{5} \quad 2^{6} \quad 2^{7} \quad 2^{8} \quad 2^{9} \quad 2^{10}$

1	2	4	8	16		20	18	14		12
			5	10	9	7	3	6	1	

$\therefore 2^{11-1}=2^{10}=1$, so 2 is primitive element of GF (11)

2^{1}	2^{3}	2^{5}	2^{7}	2^{9}	
1	2	8	10	7	6
2	3	9	11	8	7
3	4	10	1	9	8
4	5	11	2	10	9
5	6	1	3	11	10
6	7	2	4	1	11
7	8	3	5	2	1
8	9	4	6	3	2
9	10	5	7	4	3
10	11	6	8	5	4
11	1	7	9	6	5

here $, \mathrm{v}=11, \mathrm{~b}=11, \mathrm{r}=5, \mathrm{k}=5, \lambda=2$.
METHOD: 7. Complementary Designs: Step 1:- Complementary Design can be obtain from the existing BIBD with parameters $\mathrm{v}, \mathrm{b}, \mathrm{r}$, k and λ.Take a block and see, which treatments it contain, next write down those treatments which are absent in that block and keep them in another block. These way write down treatments from all blocks. This will give a BIBD with parameter $\mathrm{v}=\mathrm{v}_{1}, \mathrm{~b}=\mathrm{b}_{1}, \mathrm{r}=\mathrm{b}-\mathrm{r}_{1}, \mathrm{k}=\mathrm{v}-\mathrm{k}_{1}$,
$\lambda=b_{1}-{ }_{2} r_{1}+\lambda_{1}$
METHOD: 8. Using Block Section
Step 1:- Consider a BIBD with parameters $\mathrm{v}_{1}, \mathrm{~b}_{1}$, $\mathrm{r}_{1}, \mathrm{k}_{1}$, and λ_{1}
Step 2: Delete any one block from this BIBD Step 3: So the remaining blocks are now b-1 Step 4: Take one block and see which treatment are present in this block. Now select those treatments from that block which are absent in deleted block and then keep these treatments in another block .
Step 5- Continue step 4 for remaining blocks Step 6: Since k_{1} treatments are deleted from v_{1}
so the treatments for new design will be $\left(\mathrm{v}_{1}-\mathrm{k}_{1}\right)$. Next code it as $1,2, \ldots \ldots, \mathrm{v}_{1}-\mathrm{k}$ Step 7: Each block will contain $(\mathrm{k}-\lambda)$ treatment so the new BIBD exist with parameter $\mathrm{v}=\mathrm{v}_{1}-\mathrm{k}_{1}$ $\mathrm{b}=\mathrm{b}_{1}-1, \mathrm{k}=\mathrm{k}_{1}-\lambda, \mathrm{r}=\mathrm{r}_{1}, \lambda=\lambda_{1}$
Example :- $\mathrm{v}=\mathrm{b}=11, \mathrm{r}=\mathrm{k}=5, \lambda=2$.
$\begin{array}{llll}2 & 8 & 10 & 7\end{array}$
$\begin{array}{lll}2 & 8 & 10\end{array}$
$\begin{array}{lllll}3 & 9 & 11 & 8 & 7\end{array}$
$\begin{array}{lll}3 & 11 & 8\end{array}$

4	10	1	9	8

$\begin{array}{lllll}5 & 11 & 2 & 10 & 9\end{array}$
$\begin{array}{lllll}6 & 1 & 3 & 11 & 10\end{array}$
$\begin{array}{lll}11 & 2 & 10\end{array}$
$\begin{array}{lll}4 & 10 & 8\end{array}$
$\begin{array}{lll}3 & 11 & 10\end{array}$
$\begin{array}{llllll}7 & 2 & 4 & 1 & 11 & \Rightarrow\end{array}$
2411
$\begin{array}{lllll}8 & 3 & 5 & 2 & 1\end{array}$
832
$\begin{array}{lllll}9 & 4 & 6 & 3 & 2\end{array}$
$\begin{array}{lllll}10 & 5 & 7 & 4 & 3\end{array}$
432
$10 \quad 4 \quad 3$
$\begin{array}{lllll}11 & 6 & 8 & 5 & 4\end{array}$
$\begin{array}{lllll}1 & 7 & 9 & 6 & 5\end{array}$
1184
$2 \rightarrow 18 \rightarrow 4$
$3 \rightarrow 210 \rightarrow 5$
$4 \rightarrow 311 \rightarrow 6$
treatment $=6$
here, treatments $=\mathrm{v}-\mathrm{k}=11-5=6$, block $\mathrm{b}^{\prime}=\{\mathrm{b}-1\}=10, \mathrm{r}^{\prime}=\mathrm{r}=5, \mathrm{k}^{\prime}=\mathrm{k}-\lambda=5-2=3$, $\lambda^{\prime}=\lambda=2$. The resulting BIBD is

$$
\begin{array}{lllll}
1 & 4 & 5 & \rightarrow & \mathrm{~b}_{1} \\
2 & 6 & 4 & & \mathrm{~b}_{2} \\
3 & 5 & 4 & & \mathrm{~b}_{3} \\
6 & 1 & 5 & & \mathrm{~b}_{4} \\
2 & 6 & 5 & & \mathrm{~b}_{5} \\
1 & 2 & 6 & & \mathrm{~b}_{6} \\
4 & 2 & 1 & \mathrm{~b}_{7} \\
3 & 2 & 1 & \mathrm{~b}_{8} \\
5 & 3 & 2 & \mathrm{~b}_{9} \\
6 & 4 & 3 & \mathrm{~b}_{10}
\end{array}
$$

METHOD: 9. Block Intersection Step 1: Consider a BIBD with parameters v_{1}, $\mathrm{b}_{1}, \mathrm{r}_{1}, \mathrm{k}_{1}$ and λ_{1}. Step 2: Delete any one block from this BIBD Step 3: So the remaining blocks are $b_{1}-1$ Step 4: Take one block and see which treatments are present in the deleted block. Now select those treatments from this block which are present in deleted block and then keep these treatments in another block .
Step 5: Continue step 4 for remaining block . Step 6: Since k_{1} treatments remain, so for new

BIBD $\mathrm{v}=\mathrm{k}_{1}$. Now recode the treatment as

 $1,2,3, . . \mathrm{k}_{1}$Step 7: Each block will contain λ_{1} treatment Step 8: So the new BIBD exist with parameters $\mathrm{v}=\mathrm{k}_{1}, \mathrm{~b}=\mathrm{b}_{1}-1, \mathrm{r}=\mathrm{r}_{1}-1, \mathrm{k}=\lambda, \lambda=\lambda_{1}-1$.

Here $v=k_{1}=5, r=r_{1}-1=4, b=b_{1}-1=10$, $\mathrm{k}=\lambda_{1}=2, \quad \lambda=\lambda_{1}-1=2-1=1$
METHOD:10 Projective Geometry ($\mathrm{PG}(\mathrm{N}, \mathrm{s})$). Bose (1936) uses the projective geometry to construct the BIBD . Further with the help of Galois Field $\operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$, one can construct a finite projective geometry of N dimension in the following manner:
Let $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ be the ordered set of $(\mathrm{N}+1)$ elements where $x_{i}, i=1,2 \ldots N \quad \operatorname{GF}\left(p^{n}\right) \quad$ (1)
and are not simultaneously zero, will be called a point of $\mathrm{PG}\left(\mathrm{N}, \mathrm{p}^{\mathrm{n}}\right)$ where $\mathrm{s}=\mathrm{p}^{\mathrm{n}}$ equation (1) is also called ordinate of points.
Next corresponding to $\mathrm{x}=\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . \mathrm{x}_{\mathrm{N}}$, we may have another set $y_{0}, y_{1}, \ldots y_{N}$. Now it can be easily solved that no. of points in $\mathrm{PG}\left(\mathrm{N}, \mathrm{p}^{\mathrm{n}}\right)$ is exactly
$s^{\mathrm{N}}+\mathrm{s}^{\mathrm{N}-1}+\mathrm{s}^{\mathrm{N}-2}+\ldots+1=\frac{\mathrm{s}^{\mathrm{N}+1}-1}{\mathrm{~s}-1}$
All the points which satisfy the set of (N-m)
homogeneous linear equation given by :

$$
\begin{aligned}
& a_{10} x_{0}+a_{11} x_{1}+\ldots \ldots \ldots \ldots+a_{1 N} x_{N}=0 \\
& a_{20} x_{0}+a_{21} x_{1}+\ldots \ldots \ldots \ldots+a_{2 N} x_{N}=0
\end{aligned}
$$

$\mathrm{a}_{(\mathrm{N}-\mathrm{M}) 0} \mathrm{X}_{0}+\mathrm{a}_{(\mathrm{N}-\mathrm{M}) 1} \mathrm{X}_{1}+\ldots+\mathrm{a}_{(\mathrm{N}-\mathrm{M}) \mathrm{N}} \mathrm{X}_{\mathrm{N}}=0$
may be set for ($\mathrm{N}-\mathrm{m}$) dimensional sub space \& briefly m-flats in $\mathrm{PG}\left(\mathrm{N}, \mathrm{p}^{\mathrm{n}}\right)$. Equation (3) may be said to represent this flats. However any other set of ($\mathrm{N}-\mathrm{m}$) independent equation which can be
obtained by linear combination of the equation (3) will have the same set of solution and will represent the same m-flats. We call one flats a line and 2 flats a plan, the number of m flats in $\mathrm{PG}\left(\mathrm{N}, \mathrm{p}^{\mathrm{m}}\right)$ is given by
$\phi(N, m, s)=\frac{\left(s^{N+1}-1\right)\left(s^{N}-1\right) \ldots\left(s^{N-m+1}-1\right)}{\left(s^{m+1}-1\right)\left(s^{m}-1\right) \ldots(s-1)}$
To every point $\mathrm{PG}\left(\mathrm{N}, \mathrm{p}^{\mathrm{n}}\right)$,
let they correspond a variety to every m -flat. Let the correspond to a block containing of these variety whose correspond point occur in the m -flat, Points $=\phi(\mathrm{N}, \mathrm{m}, \mathrm{s})$

Parameters of BIBD
$v=$ no. of treatment
$b=$ no. of blocks.
points of PG

$$
\begin{aligned}
& \frac{\left(s^{N+1}-1\right)}{(s-1)} \operatorname{cr} \phi(N, o, s) \\
& \phi(N, m, s)
\end{aligned}
$$

$r=$ no. of times each

$$
\phi((N-1), m-1, s)
$$ treatment is repeated

$\mathrm{k}=$ block size.

$$
\phi(N, o, s)=\frac{\left(s^{m+1}-1\right)}{(s-1)}
$$

$$
\phi(N-2, m-2, s)
$$

Step1: Consider the parameters of a BIBD. Step 2: Using the points of $\mathrm{PG}(\mathrm{N}, \mathrm{s})$ and PG(m,s), find out the value of N,m, s. Further
find $\mathrm{v}=\frac{s^{N+1}-1}{s-1}$ and $\mathrm{k}=\frac{\mathrm{s}^{\mathrm{m}+1}-1}{\mathrm{~s}-1}$ for
particular value of s.
Step 3: Consider ($\mathrm{N}+1$) co-ordinate in $\mathrm{PG}(\mathrm{N}, \mathrm{s}$.$) .$ Step 4: Develop $\mathrm{s}^{\mathrm{N}+1}$ possible combinations using $\mathrm{s}=\{1,2, \ldots, \mathrm{~s}-1\}$
Step 5: Code each possible combination as a treatment
Step 6: Now consider the Homogeneous equations
$a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{N} x_{N}$ (1) \quad where $a_{i} \in G F(s)$. $\mathrm{x}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{x}_{\mathrm{N}}$ are $\mathrm{N}+1$ co-ordinate in points of GF(s).
Step 7: If any combination satisfy (1) then keep such combination in a block. This way we can get all the b blocks.
Hence we get a BIBD with parameters
$\mathrm{v}=\frac{s^{N+1}-1}{s-1}, \quad \mathrm{~b}=\phi(N, m, s)$
$\mathrm{r}=\begin{gathered}\phi(N-1, m-1, s) \quad, \mathrm{k}=\phi(N, o, s)=\frac{\left(s^{m+1}-1\right)}{(s-1)} \\ \phi(N-2, m-2, s)\end{gathered}$

This method gives symmetric BIBD.
Example:

$$
\begin{aligned}
& \mathrm{v}=15, \mathrm{~b}=15, \mathrm{r}=7, \mathrm{k}=7, \lambda=3 . \\
& \mathrm{v}=\frac{s^{N+1}-1}{s-1} \Rightarrow 15=\frac{s^{N+1}-1}{s-1}
\end{aligned}
$$

$$
\text { Considers }=2, \text { so } 15=\frac{2^{N+1}-1}{2-1} \Rightarrow 15=2^{N+1}-1
$$

$$
\Rightarrow 16=2^{N+1}-1 \Rightarrow N=3
$$

$$
\therefore \mathrm{k}=\frac{s^{m+1}-1}{s-1} \quad \text { or } \quad 7=\frac{2^{m+1}-1}{2-1}
$$

$$
{ }_{7}=2^{m+1}-1 \Rightarrow 8=2^{m+1} \Rightarrow m=2
$$

our points are $\operatorname{PG}(3,2) \& P G(2,2)$ number of co-ordinates $=\mathrm{N}+1=3+1=4$ $s=$ level of co-ordinate $=2$ i.e. $\{0,1\}$
$\therefore 2^{4}$ possible combinations are to be developed Homogeneous equations are given by

$$
\mathrm{x}_{\mathrm{i}}=0(\mathrm{i}=0,1,2,3)
$$

$$
=4
$$

$x_{i}+x_{j}=0 \quad i \neq j=0,1,2,3$
$=6$

$\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}}+\mathrm{x}_{\mathrm{k}}=0 \quad \mathrm{i} \neq \mathrm{j} \neq \mathrm{k}=0,1,2,3=4$
$=1$ ${ }_{4} \mathrm{C}_{3}$
$x_{0}+x_{1}+x_{2}+x_{3}=0$
${ }_{4} \mathrm{C}_{4}$
Total
$=15$ block
$\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3}\end{array}$
$\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & t_{1} & x_{0}=0 & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7}\end{array}$ $\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & t_{2} & x_{1}=0 & t_{1} & t_{2} & t_{3} & t_{8} & t_{9} & t_{10} & t_{11}\end{array}$ $\begin{array}{lllllllllllll}0 & 0 & 1 & 1 & t_{3} & x_{2}=0 & t_{1} & t_{4} & t_{5} & t_{8} & t_{9} & t_{12} & t_{13}\end{array}$ $\begin{array}{llllllllllll}0 & 1 & 0 & 0 & t_{4} & x_{3}=0\end{array} \quad \begin{array}{llllll}t_{2} & t_{4} & t_{6} & t_{8} & t_{10} & t_{12}\end{array} t_{14}$ $\begin{array}{lllllllllllll}0 & 1 & 0 & 1 & t_{5} & x_{0}+x_{1}=0 & t_{1} & t_{2} & t_{3} & t_{12} & t_{13} & t_{14} & t_{15}\end{array}$ $\begin{array}{lllll}0 & 1 & 1 & 0 & t_{6}\end{array}$ $\begin{array}{lllll}0 & 1 & 1 & 1 & t_{7}\end{array}$ $\begin{array}{lllll}1 & 0 & 0 & 0 & t_{8}\end{array}$ $\begin{array}{lllll}1 & 0 & 0 & 1 & t_{9}\end{array}$ $\begin{array}{lllll}1 & 0 & 1 & 0 & t_{10}\end{array}$ $x_{0}+x_{2}=0 \quad t_{1} \quad t_{4} \quad t_{5} \quad t_{10} \quad t_{11} \quad t_{14} \quad t_{15}$ $x_{0}+x_{3}=0 \quad t_{2} \quad t_{4} \quad t_{6} \quad t_{9} \quad t_{11} \quad t_{13} \quad t_{15}$ $x_{1}+x_{2}=0 \quad t_{1} \quad t_{6} \quad t_{7} \quad t_{8} \quad t_{9} \quad t_{14} \quad t_{15}$ $x_{1}+x_{3}=0 \quad t_{2} \quad t_{5} \quad t_{7} \quad t_{8} \quad t_{10} \quad t_{13} \quad t_{15}$ $x_{2}+x_{3}=0 \quad t_{3} \quad t_{4} \quad t_{7} \quad t_{8} \quad t_{11} \quad t_{12} \quad t_{15}$ $\begin{array}{lllllllllllll}1 & 0 & 1 & 1 & t_{11} & x_{0}+x_{1}+x_{2}=0 & t_{1} & t_{6} & t_{7} & t_{10} & t_{11} & t_{12} & t_{13}\end{array}$ $1 \begin{array}{lllllllllllll}1 & 1 & 0 & 0 & t_{12} & x_{0}+x_{1}+x_{3}=0 & t_{2} & t_{5} & t_{7} & t_{9} & t_{11} & t_{12} & t_{14}\end{array}$ $\begin{array}{lllllllllllll}1 & 1 & 0 & 1 & t_{13} & x_{0}+x_{2}+x_{3}=0 & t_{3} & t_{4} & t_{7} & t_{9} & t_{10} & t_{13} & t_{14}\end{array}$ $\begin{array}{lllllllllllll}1 & 1 & 1 & 0 & t_{14} & x_{1}+x_{2}+x_{3}=0 & t_{3} & t_{5} & t_{6} & t_{8} & t_{11} & t_{13} & t_{14}\end{array}$ $\begin{array}{lllllllllllll}1 & 1 & 1 & 1 & t_{15} & x_{0}+x_{1}+x_{2}+x_{3}=0 & t_{3} & t_{5} & t_{6} & t_{9} & t_{10} & t_{12} & t_{15}\end{array}$

This is BIBD with parameters $v=15, b=15$, $\mathrm{r}=7, \mathrm{k}=7, \lambda=3$.
Example: Construct a BIBD using PG (N, s) where $\mathrm{N}=2, \mathrm{~s}=2, \mathrm{~m}=1$.
In a BIBD $v=\frac{s^{N+1}-1}{s-1}=2^{2+1}-1=8-1=7$ $\mathrm{k}=\frac{s^{m+1}-1}{s-1}=\frac{2^{1+1}-1}{1}=4-1=3$
$\mathrm{b}=\phi(N, m, s)=\frac{\left(s^{N+1}-1\right)\left(s^{N}-1\right) \ldots \ldots\left(s^{N-m+1}-1\right)}{\left(s^{m+1}-1\right)\left(s^{m}-1\right) \ldots \ldots \ldots(s-1)}$

$$
\begin{aligned}
& \phi(2,1,2)=\frac{\left(2^{2+1}-1\right)\left(2^{2}-1\right)}{\left(2^{1+1}-1\right)\left(2^{1}-1\right)}=\frac{7 \times 3}{3}=7 \\
& \mathrm{r}=\phi(N-1, m-1, s)=\phi(1,0,2) \\
& =\frac{s^{1+1}-1}{s-1}=\frac{2^{2}-1}{2-1}=3 \quad \therefore r=3 \\
& \lambda=\phi(N-2, m-2, s)=\phi(0,-1,2) \therefore \lambda=1 \\
& \quad\{\text { because of } \mathrm{m}=1\} \\
& \therefore \text { Parameters of BIBD are } \mathrm{v}=7, \mathrm{~b}=7, \\
& \mathrm{r}=3, \mathrm{k}=3, \lambda=1 .
\end{aligned}
$$

$\mathrm{r}=3, \mathrm{k}=3, \lambda=1$.

Since $N=2$, so the no. of treatment $(2+1)=3$
. (i.e. $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}$)
$s=$ level of treatment $=2$, i.e. $\{0,1\}$, so possible number of total points $=2^{3}(=8)$ which are following.
$\begin{array}{lll}x_{0} & x_{1} & x_{2}\end{array}$

0	0	1	t_{1}	$x_{0}=0$	$(\bmod 2)$	t_{1}	t_{2}	t_{3}
0	1	0	t_{2}	$x_{1}=0$	$(\bmod 2)$	t_{1}	t_{4}	t_{5}
0	1	1	t_{3}	$x_{2}=0$	$(\bmod 2)$	t_{2}	t_{4}	t_{6}
1	0	0	t_{4}	$x_{0}+x_{1}=0$	$\prime \prime$	t_{1}	t_{6}	t_{7}
1	0	1	t_{5}	$x_{0}+x_{2}=0$	$\prime \prime$	t_{2}	t_{5}	t_{7}
1	1	0	t_{6}	$x_{1}+x_{2}=0$	$\prime \prime$	t_{3}	t_{4}	t_{7}
1	1	1	t_{7}	$x_{0}+x_{1}+x_{2}=0$	$\prime \prime$	t_{3}	t_{5}	t_{6}

$$
\begin{array}{lll}
\mathrm{x}_{\mathrm{i}}=0, & \mathrm{i}=0,1,2 & =3 \\
\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}}=0 \quad & \mathrm{i} \neq \mathrm{j}=0,1,2 & =3 \\
\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}=0 & & =1 \\
\text { Total } \quad \mathrm{r} & =7 \text { block } \\
\text { This is a BIBD with parameters } \mathrm{v}=7, \mathrm{~b}=7, \\
\mathrm{r}=3, \mathrm{k}=3, \lambda=1 .
\end{array}
$$

