Confounding

What is confounding? Why we need it?
Advantage and Disadvantage.
How to reduce block size?
\& Types of Confounding.

- Examples.
- ANOVA TABLE

Concept of Confounding.

In a factorial experiment we have n factors each are at s levels. If the factors and level of the factors are increased, then total no. of treatment combinations will also increase which we call the effect of heterogeneity that is the variability among the treatment combination will increase and consequently the errors variance will increase.

Because of this result the estimate will be least precise estimate. So one is interested to remove the variability among the treatment combination. which is only possible if the size of the block will reduce to make homogeneity in the block.

This concept of reduoing the block size is call confounding.

Who has developed confounding theory?

- R.A. Fisher
- Yates

Definition

Confounding of factorial experiment is defined as reduction of block size in such a way that one block is divided into two or more blocks such that treatment comparison of that main or interaction effect is mixed up with block effect.

Main or Interaction effect which is mixed up with block effect are called Confounded effect and this experiment is called Confounding experiment.

Block
$n_{0} p_{0}$
$n_{1} p_{0}$
$n_{0} p_{1}$
$n_{1} p_{1}$

Block-2
$\mathrm{n}_{0} \mathrm{p}_{0}$
$n_{0} p_{1}$
$n_{0} p_{1}+n_{0} p_{0}$

- Block Effect :- $\left(n_{1} p_{1}+n_{1} p_{0}\right)-\left(n_{0} p_{1}+n_{0} p_{0}\right)$
- Treatment Effect.:-
=Main effect N
$=\left(\mathrm{n}_{1}-\mathrm{n}_{0}\right)\left(\mathrm{p}_{1}+\mathrm{p}_{0}\right)$
$=n_{1} p_{1}+n_{1} p_{0}-n_{0} p_{1}-n_{0} p_{0}$
$=\left(n_{1} p_{1}+n_{1} p_{0}\right)-\left(n_{0} p_{1}+n_{0} p_{0}\right)$

Thus,

Treatment comparison - Block effect $=0$ Here, We can say that main effect N is mixed up with block effect .

So N is confounded.

Example

A soccer coach wanted to improve the team's playing ability, so he had them run two miles a day. At the same time the players decided to take vitamins. In two weeks the team was playing noticeably better, but the coach and players did not know whether it was from the running or the vitamins.

Advantage

It reduce the block size and make homogeneity in block. And it reduce the heterogeneity of data.

Disadvantage

- In the confounding experiment the drawback is that, the main effect or interaction effect which are
confounded can not be estimated. And hence we loose all information of that confounded effect.

In confounding experiment, we loose

 all the information about effect which is confounded.So we should try to confound only those contrasts which have little or no importance.
therefore one must confound higher order interaction, so we can save main effects and two factor interaction.

Factorial Experiment	No. of Possible confounding	Possible Treatment Combinations.	
2^{2}	$2^{2-1}=3$	A, B, AB	
2^{3}	$2^{3-1}=7$	A, B, C, AB, AC	, BC, ABC
3^{2}	$3^{2-1}=8$	$\begin{aligned} & A, B, A B, \\ & A^{2} B \end{aligned}$	$A^{2}, B^{2}, A^{2} B^{2}, A B^{2}$
3^{3}	$3^{3-1}=26$	$\begin{aligned} & A, B, C, A B \\ & B C, A C, A B C \\ & , A^{2} B, B^{2} C \\ & A^{2} C, A^{2} B C \\ & A B^{2} C, A B C^{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}^{2}, \mathbf{B}^{2}, \mathbf{C}^{2}, \mathbf{A}^{2} \mathbf{B}^{2} \\ & \mathbf{B}^{2} \mathbf{C}^{2}, \mathbf{A}^{2} \mathbf{C}^{2}, \\ & \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C}^{2}, \mathbf{A B}^{2}, \mathbf{C C}^{2} \\ & \mathbf{A C}^{2}, \mathbf{A B}^{2} \mathbf{C}^{2} \\ & \mathbf{A}^{2} \mathbf{B C} \mathbf{C}^{2}, \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C} \end{aligned}$

How to confound?

Modular arithmetic is the value of the remainder after dividing the original number by the modulus (devisor).
Ex. $15 \bmod 5=0$ OR $15=0(\bmod 5)$

When two integers have the same remainder they are said to be congruent. Our interests will focus on sets of congruent integers.

Ex. $13 \bmod 3=1,10 \bmod 3=1$
Or $13=1(\bmod 3), 10=1(\bmod 3)$

2^{3} factorial experiment confounded in 2^{2} block size.

Block
$a_{b} b_{0} c_{0}$
$a_{1} b_{0} c_{0}$
$a_{b} b_{1} c_{0}$
$a_{1} b_{1} c_{0}$
$a_{b} b_{0} c_{1}$
$a_{1} b_{0} c_{1}$
$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{1}$

Replication-1	
B-1	$B-2$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
$A B$ confounded	

Coefficient of,

- $a+b=0(\bmod 2)$ in block 1
$\cdot a+b=1(\bmod 2)$ in block 2.

Replication-2	
$B-3$	$B-4$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{0}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{0} c_{1}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
$A C$ is confounded	

Coefficient of,
$\cdot a+c=0(\bmod 2)$ in block 3
$\cdot a+c=1(\bmod 2)$ in block 4.

Example:- 3^{2} Factorial Experiment confounded in 3^{1} block size

Replication -1		
B-1	B-2	B-3
$a_{0} b_{0}$	$a_{1} b_{0}$	$a_{2} b_{0}$
$a_{0} b_{1} b_{1}$	$a_{1} b_{1}$	$a_{2} b_{1}$
$a_{0} b_{2}$	$a_{1} b_{2}$	$a_{2} b_{2}$
A is confounded		

Replication-2		
B-1	B-2	B-3
$a_{0} b_{0}$	$a_{1} b_{1}$	$a_{2} b_{2}$
$a_{1} b_{0}$	$a_{2} b_{1}$	$a_{0} b_{2}$
$a_{2} b_{0}$	$a_{0} b_{1}$	$a_{1} b_{2}$
B is confounded		

Replication-3		
$B-1$	$B-2$	$B-3$
$a_{0} b_{0}$	$a_{0} b_{1}$	$a_{0} b_{2}$
$a_{1} b_{2}$	$a_{1} b_{0}$	$a_{2} b_{0}$
$a_{2} b_{1}$	$a_{2} b_{2}$	$a_{1} b_{1}$
$A B$ is confounded		

Replication-4

$B-1$	$B-2$	$B-3$
$a_{0} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{1}$
$a_{1} b_{1}$	$a_{0} b_{2}$	$a_{1} b_{2}$
$a_{2} b_{2}$	$a_{2} b_{1}$	$a_{2} b_{0}$

$A B^{2}$ is confounded
$A B^{2}$ confounding.
Coefficient of,

- $a+2 b=0(\bmod 3)$ in block 1
$\cdot a+2 b=1(\bmod 3)$ in block 2.
$\cdot a+2 b=2(\bmod 3)$ in block 3.

Types Of Confounding

> Total Confounding (complete confounding)
> Partial Confounding

- Balanced Confounding

Total Confounding

\% In a confounding factorial experiment if all the main effect or interaction effect are same in all the replication, then the experiment is called Total confounding or Complete confounding.
In complete confounding we could not estimate the value of confounded main or interaction effect.

Example:- 2^{3} Factorial Experiment

Replication-1	
$B-1$	$B-2$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
$A B$ is	
confounded	

Replication-2	
$B-3$	$B-4$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{1}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{1} b_{0} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$A B$ is	
confounded	

Replication-3

$B-5$	$B-6$
$A_{1} b_{1} c_{1}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{0}$	$a_{1} b_{0} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$A B$ is	
confounded	

Complete confounding of 2^{3} into 2^{2} block size with $A B C$ is confounded.

S.V.	d.f.	S.S.	M.S.S.	F_{c}
Block	b-1	$\Sigma \mathrm{Bj}{ }^{2} / \mathrm{k}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{b}}{ }^{2}$	$\mathrm{S}_{\mathrm{b}}{ }^{2} /(\mathrm{b}-1)=\sigma_{b}{ }^{2}$	$\sigma_{b}{ }^{2} / \sigma_{e}{ }^{2}$
Replication	r-1	$\Sigma R i^{2} / \mathbf{t}-\mathrm{c} . \mathrm{f}_{\mathrm{i}}=\mathrm{S}_{\mathrm{r}}{ }^{2}$	$S_{r}{ }^{2} /(\mathrm{r}-1)=\sigma_{r}{ }^{2}$	$\sigma_{\mathrm{r}}^{2} / \sigma_{\mathrm{e}}{ }^{2}$
ABC	1	$[A B C]^{2}$	$[A B C]^{2 / 1}=\sigma_{A B C}{ }^{2}$	$\sigma_{A B C}{ }^{2 / \sigma_{e}{ }^{2}}$
ABC*replication	$1^{*}(r-1)$	$\mathrm{S}_{\mathrm{b}}{ }^{2}-\mathrm{Sr}_{\mathrm{r}}^{2}-[\mathrm{ABC}]^{2}=\mathrm{S}_{\mathrm{p}}{ }^{2}$	$\mathrm{S}_{\mathrm{p}}^{2} / 1^{*}(r-1)=\sigma_{p}^{2}$	$\sigma_{p}{ }^{2 /} \sigma_{e}{ }^{2}$
Treatment	6	$\Sigma \mathrm{Ti}^{2} / \mathrm{r}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{t}}{ }^{2}$	$\mathrm{S}_{\mathrm{t}}^{2} / 6=\mathrm{o}_{\mathrm{t}}{ }^{2}$	$\sigma_{t}^{2} / \sigma_{e}{ }^{2}$
A	1	$[A]^{2}$	$[\mathrm{A}]^{2} / 1=\sigma_{A}{ }^{2}$	$\sigma_{A}^{2} / \sigma_{e}^{2}$
B	1	$[B]^{2}$	$[B]^{2 / 1}=\sigma_{B^{2}}$	$\sigma_{B}{ }^{2 / \sigma_{e}}{ }^{2}$
$A B$	1	$[A B]^{2}$	$[A B]^{2 / 1}=\sigma_{A B}{ }^{2}$	$\sigma_{A B}{ }^{2} / \sigma_{e}{ }^{2}$
C		$[C]^{2}$	$[C]^{2} / 1=\sigma_{C}{ }^{2}$	$\sigma_{c}{ }^{2} / \sigma_{e}^{2}$
AC	1	[AC] ${ }^{2}$	$[A C]^{2 / 1}=\sigma_{A C}{ }^{2}$	$\sigma_{A C}{ }^{2} / \sigma_{e}{ }^{2}$
BC	1	[BC] ${ }^{2}$	$[B C]^{2} / 1=\sigma_{B C}{ }^{2}$	$\sigma_{B C}{ }^{2} / \sigma_{e}^{2}$
Error	6(r-1)	By sub. $=\mathrm{S}_{\mathrm{e}}{ }^{2}$	$\mathrm{S}_{\mathrm{e}}{ }^{2} / 6(\mathrm{r}-1)=\sigma_{\mathrm{e}}{ }^{2}$	
Total	$2^{3} \mathrm{r}-1$	$\Sigma Y_{i j}{ }^{2}$-c.f.		

Complete confounding of 3^{2} into 3^{1} block size with $A B$ is confounded.

S.V.	d.f.	S.S.	M.S.S.	F_{c}
Block	b-1	$\Sigma B j^{2} / \mathrm{k}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{b}}{ }^{2}$	$\mathrm{S}_{\mathrm{b}}{ }^{2} /(\mathrm{b}-1)=\sigma_{\mathrm{b}}{ }^{2}$	$\sigma_{b}{ }^{2} / \sigma_{e}{ }^{2}$
Replication	r-1	$\sum R i^{2} / \mathrm{t}-\mathrm{c} . \mathrm{f}_{\mathrm{s}}=S_{r}^{2}$	$S_{r}^{2} /(\mathrm{r}-1)=\sigma_{r}^{2}$	$\sigma_{t}{ }^{2} / \sigma_{e}^{2}$
AB	2	$[A B]^{2}$	$[A B]^{2 / 2}=\sigma_{A B}{ }^{2}$.	$\sigma_{A B}{ }^{2 / \sigma_{e}^{2}}$
AB*replication	$2^{*}(r-1)$	$\begin{aligned} & S_{b}{ }^{2}-S_{r}^{2} \\ & {[A B C]^{2}=S_{p}{ }^{2}} \end{aligned}$	$\mathrm{S}_{\mathrm{p}}^{2 / 2} 2^{*}(r-1)=\sigma_{p}^{2}$	$\sigma_{p}{ }^{2 / \sigma_{e}{ }^{2}}$
Treatment	6	$\Sigma \mathrm{Ti}^{2} / \mathrm{r}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{t}}{ }^{2}$	$\mathrm{S}_{\mathrm{t}}{ }^{2} / 6=\sigma_{\mathrm{t}}{ }^{2}$	$\sigma_{t}^{2} / \sigma_{e}^{2}$
A	2	[A] ${ }^{2}$	$[A]^{2} / 2=\sigma_{A}{ }^{2}$	$\sigma_{A}{ }^{2 / \sigma_{e}{ }^{2}}$
B	2	$[B]^{2}$	$[\mathrm{B}]^{2} / 2=\sigma_{\mathrm{B}}{ }^{2}$	$\sigma_{B}^{2 /} \sigma_{e}^{2}$
$A B^{2}$	2	$\left[\mathrm{AB}^{2}\right]^{2}$	$\left[A B^{2}\right]^{2 / 2}=\sigma_{\left(A B^{2}\right)^{2}}$	
Error	6(r-1)	By sub. $=\mathrm{S}_{\mathrm{e}}{ }^{2}$	$S_{e}{ }^{2 / 6}(r-1)=\sigma_{e}{ }^{2}$	
Total	$3^{2} r-1$	$\Sigma Y_{i j}{ }^{2}-$ c.f.		

Partial Confounding

A confounded factorial experiment is called partial confounding if different main effects and interaction effects are confounded in different replications.

Example:- $\quad 2^{3}$ Factorial Experiment

Replication-1	
$B-1$	$B-2$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
$A B$ is	
confounded	

Replication-2	
$B-3$	$B-4$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{0}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{0} c_{1}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
$A C$ is	
confounded	

Replication-3

$B-5$	$B-6$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{1}$	$a_{0} b_{1} c_{0}$
$a_{1} b_{0} c_{1}$	$A_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{1} c_{1}$
$A B C$ is	
confounded	

Example:- 3^{2} Factorial Experiment

Replication-1		
B-1	B-2	B-3
$a_{0} b_{0}$	$a^{\text {a }}$, ${ }_{0}$	$a_{2} b_{0}$
$a_{0} b_{1}$	a, b_{1}	$a_{2} b_{1}$
$a_{0} b_{2}$	$a_{1} b_{2}$	$\mathrm{a}_{2} \mathrm{~b}_{2}$
A is confounded		

Replication-4		
B-1	B-2	B-3
$a_{0} b_{0}$	a, b_{1}	$\mathrm{a}_{2} \mathrm{~b}_{2}$
$\mathrm{a}_{0} \mathrm{~b}_{2}$	$a^{\text {a }} \mathrm{b}_{0}$	$\mathrm{a}_{2} \mathrm{~b}_{1}$
$\mathrm{a}_{0} \mathrm{~b}_{1}$	$\mathrm{a}_{1} \mathrm{~b}_{2}$	$\mathrm{a}_{2} \mathrm{~b}_{0}$
A is confounded		

Replication-2		
B-1	B-2	B-3
a_{1}, b_{0}	$a_{0} b_{0}$	$\mathrm{a}_{2} \mathrm{~b}_{0}$
$a_{1} b_{1}$	$a_{0} b_{1}$	$\mathrm{a}_{2} \mathrm{~b}$
$a_{1} b_{2}$	$a_{0} b_{2}$	$\mathrm{a}_{2} \mathrm{~b}_{2}$
A is confounded		

Replication-3		
$B-1$	$B-2$	$B-3$
$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$
$a_{2} b_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$
$a_{2} b_{2}$	$a_{1} b_{2}$	$a_{0} b_{2}$
A is confounded		

Advantage

In partial confounding the advantage is that we do not loose the entire information on that confounded main effect or interaction effect.

* Main effect or interaction effect which is confounded in one replication is not confounded in another replication. So we can estimate fraction of information of that main or interaction effect from those replication in which they are not confounded.

Partial confounding of 2^{3} into 2^{2} block size. With $A B, A C, B C, A B C$ confounded in r replication.

S.V.	d.f.	S.S.	M.S.S.	F_{c}
Block	b-1	$\Sigma B j^{2} / \mathbf{k}-$ c.f. $=\mathbf{S b}^{2}$	$S_{b}{ }^{2} /(\mathrm{b}-1)=\sigma_{\mathrm{b}}{ }^{2}$	$\sigma_{\mathrm{b}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
Replication	r-1	ERi2/t-c.f. $=\mathrm{S}_{\mathrm{r}}{ }^{2}$	$S_{r}^{2} /(r-1)=\sigma_{r}^{2}$	$\sigma_{r}^{2} / \sigma_{e}{ }^{2}$
Block within replication	$\begin{aligned} & (b-1)-(r-1) \\ & =b-r \end{aligned}$	$\mathrm{S}_{\mathrm{b}}{ }^{2}-\mathrm{S}_{\mathrm{r}}^{2}=\mathrm{S}_{\mathrm{p}}^{2}$	$\mathrm{S}^{2}{ }^{2}(\mathrm{~b}-\mathrm{r})=\mathrm{O}_{\mathrm{p}}{ }^{2}$	$\sigma_{p}^{2} / \sigma_{\mathrm{e}}{ }^{2}$
Treatment	7	$\Sigma \mathrm{Ti}^{2} / \mathrm{r}$ - c.f. $=\mathrm{S}_{\mathrm{t}}{ }^{2}$	$\mathrm{S}_{\mathrm{t}}{ }^{2} / 6=\sigma_{\mathrm{t}}{ }^{2}$	$\sigma_{\mathrm{t}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
A	1	$[\mathrm{A}]^{2}$	$[\mathrm{A}]^{2 / 1}=\sigma_{\mathrm{A}}{ }^{2}$	$\sigma_{A}^{2} / \sigma_{e}{ }^{2}$
B	1	$[\mathrm{B}]^{2}$	$[B]^{2 / 1}=\sigma_{B}^{2}$	$\sigma_{B}^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AB'	1	$\left[A B A^{\prime}\right]^{2}$	$[A B]^{2} / 1=\sigma_{A B}{ }^{2}$	$\mathrm{\sigma}_{\mathrm{AB}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
C	1	[C] ${ }^{2}$	$[C]^{2 / 1}=\sigma_{C}{ }^{2}$	$\sigma_{\mathrm{c}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AC'	1	[AC'] ${ }^{2}$	$[A C]^{2 / 1}=\sigma_{A C} C^{2}$	$\sigma_{A C}{ }^{2} / \sigma_{e}{ }^{2}$
BC'	1	$\left[B^{\prime}{ }^{\prime}\right]^{2}$	$[\mathrm{BC}]^{2 / 1}=\mathrm{o}_{\mathrm{BC}}{ }^{2}$	$\sigma_{B C}{ }^{2 /} \sigma_{e}{ }^{2}$
ABC'	1	[ABC'] ${ }^{2}$	$[A B C]^{2} / 1=\sigma_{A B C}{ }^{2}$	$\sigma_{\text {ABC }}{ }^{2} / \sigma_{e}{ }^{2}$
Error	8r-b-7	By sub. $=\mathrm{S}_{\mathrm{e}}{ }^{2}$	$\mathrm{S}_{\mathrm{e}}{ }^{2 / 6}(\mathrm{r}-1)=\sigma_{\mathrm{e}}{ }^{2}$	
Total	$2^{3} \mathrm{r}-1$	$\boldsymbol{\Sigma} \mathrm{Yij}^{2}$-c.f.		

Partial confounding of 3^{2} into 3^{1} block size with $A B\left(2\right.$ times), $A B^{2}(2$ times) is confounded. In r replication.

S.V.	d.f.	S.S.	M.S.S.	F_{c}
Block	b-1	$\Sigma B j^{2} / \mathbf{k}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{b}}{ }^{2}$	$\mathrm{Sb}^{2} /(\mathrm{b}-1)=\mathrm{\sigma}^{2}{ }^{2}$	$\sigma_{b}{ }^{2} / \sigma_{e}{ }^{2}$
Replication	r-1	$\Sigma R i^{2} / \mathrm{t}-\mathrm{c} . \mathrm{f}=\mathrm{S}_{\mathrm{r}}{ }^{2}$	$S_{r}^{2} /(r-1)=\sigma_{r}{ }^{2}$	$\sigma_{r}{ }^{2} / \sigma_{e}^{2}$
Block within replication	$\begin{aligned} & (b-1)-(r-1) \\ & =b-r \end{aligned}$	$\mathrm{Sb}^{2}-\mathrm{S}_{\mathrm{r}}^{2}=\mathrm{S}_{\mathrm{p}}^{2}$	$S_{p}^{2} /(b-r)=\sigma_{p}^{2}$	$\sigma_{p}{ }^{2} / \sigma_{e}^{2}$
Treatment	8	$\Sigma \mathrm{Ti}^{2} / \mathrm{r}-\mathrm{c} . \mathrm{f} .=\mathrm{S}_{\mathrm{t}}{ }^{2}$	$\mathrm{S}_{\mathrm{t}}^{2} / 6=\sigma_{\mathrm{t}}{ }^{2}$	$\sigma_{t}^{2} / \sigma_{e}^{2}$
A	2	[A] ${ }^{2}$	$[A]^{2} / 2=\sigma_{A}{ }^{2}$	$\sigma_{A}{ }^{2} / \sigma_{e}{ }^{2}$
B	2	[B] ${ }^{2}$	$[B]^{2 / 2}=\sigma_{B}^{2}$	$\sigma_{B}{ }^{2} / \sigma_{e}^{2}$
AB	2	$\left[A B^{\prime}\right]^{2}$	$[A B]^{2} / 2=\sigma_{A B}{ }^{2}$	$\sigma_{A B}{ }^{2} / \sigma_{e}{ }^{2}$
AB^{2}	2	$\left[\mathrm{AB}^{2}\right]^{2}$	$\left[A B^{2}\right]^{2} / 2=\sigma{ }_{\left(A B^{2}\right)^{2}}$	
Error	9r-b-8	By sub. $=\mathrm{S}_{\mathrm{e}}{ }^{2}$	$S_{e}{ }^{2 / 6}(\mathrm{r}-1)=\sigma_{\mathrm{e}}{ }^{2}$	
Total	$3^{2} \mathrm{r}$-1	$\Sigma \mathrm{Yij}^{2}$-c.f.		

- Note:-
we can estimate the value of confounded main or interaction effect as below.

Ex.
Suppose $A B$ is confounded in r replication. Then it is not confounded in ($r-2$) replications.

Information on $A B$ can be estimated with $2 / r$. s.s. of $A B=S_{A B}{ }^{2} \approx 2 / r$

Balanced Confounding

When all the effect of same order are confounded with equal no. of times, the confounding is said to be balanced confounding. or balanced partial confounding.

In the effects of certain order are confounded an unequal no. of times in the replications, this system of confounding is known as unbalanced partial confounding.

Advantage

In balanced confounding we can estimate the confounded interaction with same amount of information
So it is best confounding.

Disadvantage

It required large no. of replication as the no. of factor and level of factor increases. So experiment becomes costly and we may not recommended balanced confounding.

Example:- $\quad 2^{3}$ Factorial Experiment

Replication-1	
$B-1$	$B-2$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
$A B$ is	
confounded	

Replication-2	
$B-3$	$B-4$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{0}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{0} c_{1}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
$A C$ is	
confounded	

Replication-3	
B-5	$B-6$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{1}$	$a_{0} b_{1} c_{0}$
$a_{1} b_{0} c_{0}$	$a_{1} b_{0} c_{1}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
BC is confounded	

* It is a balanced partial confounding.
- Because AB, AC, BC have same order 1 and also they are equal no. of time replicated.

Example:- 2^{3} Factorial Experiment

Replication-1	
B-1	$B-2$
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{0} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
AB is	
confounded	

Replication-2	
B-3	$B-4$
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{0}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{0} c_{1}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
$A C$ is	
confounded	

Replication-3	
B-5	B-6
$a_{0} b_{0} c_{0}$	$a_{0} b_{0} c_{1}$
$a_{0} b_{1} c_{1}$	$a_{0} b_{1} c_{0}$
$a_{1} b_{0} c_{0}$	$a_{1} b_{0} c_{1}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{1} c_{0}$
BC is confounded	

Replication-4	
B-1	B-2
$a_{0} b_{0} c_{0}$	$a_{0} b_{1} c_{0}$
$a_{0} b_{0} c_{1}$	$a_{0} b_{1} c_{1}$
$a_{1} b_{1} c_{0}$	$a_{1} b_{0} c_{0}$
$a_{1} b_{1} c_{1}$	$a_{1} b_{0} c_{1}$
AB is confounded	

It is a unbalanced partial confounding.

* Because $A B, A C, B C$ have same order 1 but they are not replicated equal no. of times.

Example:- $\quad 3^{2}$ Factorial Experiment

Replication -1		
B-1	B-2	$B-3$
$a_{0} b_{0}$	$a_{1} b_{0}$	$a_{2} b_{0}$
$a_{0} b_{1}$	$a_{1} b_{1}$	$a_{2} b_{1}$
$a_{0} b_{2}$	$a_{1} b_{2}$	$a_{2} b_{2}$
A is confounded		

Replication-2		
B-1	B-2	B-3
$a_{0} b_{0}$	$a_{1} b_{1}$	$a_{2} b_{2}$
$a_{1} b_{0}$	$a_{2} b_{1}$	$a_{0} b_{2}$
$a_{2} b_{0}$	$a_{0} b_{1}$	$a_{1} b_{2}$
B is confounded		

Replication-3		
$B-1$	$B-2$	$B-3$
$a_{0} b_{0}$	$a_{0} b_{1}$	$a_{0} b_{2}$
$a_{1} b_{2}$	$a_{1} b_{0}$	$a_{2} b_{0}$
$a_{2} b_{1}$	$a_{2} b_{2}$	$a_{1} b_{1}$
$A B$ is confounded		

It is a Partial confounding but not balanced confounding. Because A and B have 0 order but $A B$ have 1 order.
: So it is a unbalanced partial confounding.

Balanced confounding of 2^{3} into 2^{2} block size. With $A B, A C, B C$ confounded in r replication.

S.V.	d.f.	S.S.	M.S.S.	F_{c}
Block	b-1	$\Sigma B j^{2} / \mathbf{k}-$ c.f. $=\mathbf{S b}_{\text {b }}{ }^{2}$	$\mathrm{Sb}^{2} /(\mathrm{b}-1)=\sigma_{\mathrm{b}}{ }^{2}$	$\sigma_{\mathrm{b}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
Replication	r-1	ERi2/t-c.f. $=\mathrm{S}_{\mathrm{r}}{ }^{2}$	$S_{r}^{2} /(r-1)=\sigma_{r}^{2}$	$\sigma_{r}^{2} / \sigma_{e}{ }^{2}$
Block within replication	$\begin{aligned} & (b-1)-(r-1) \\ & =b-r \end{aligned}$	$\mathrm{S}_{\mathrm{b}}{ }^{2}-\mathrm{S}_{\mathrm{r}}^{2}=\mathrm{S}_{\mathrm{p}}^{2}$	$\mathrm{S}^{2}{ }^{2}(\mathrm{~b}-\mathrm{r})=\mathrm{O}_{\mathrm{p}}{ }^{2}$	$\sigma_{p}^{2} / \sigma_{\mathrm{e}}{ }^{2}$
Treatment	7	$\Sigma \mathrm{Ti}^{2} / \mathrm{r}$ - c.f. $=\mathrm{S}_{\mathrm{t}}{ }^{2}$	$\mathrm{S}_{\mathrm{t}}{ }^{2} / 6=\sigma_{\mathrm{t}}{ }^{2}$	$\sigma_{\mathrm{t}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
A	1	$[\mathrm{A}]^{2}$	$[\mathrm{A}]^{2 / 1}=\sigma_{\mathrm{A}}{ }^{2}$	$\sigma_{A}^{2} / \sigma_{e}{ }^{2}$
B	1	$[\mathrm{B}]^{2}$	$[B]^{2 / 1}=\sigma_{B}^{2}$	$\sigma_{B}^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AB'	1	$\left[A B A^{\prime}\right]^{2}$	$[A B]^{2} / 1=\sigma_{A B}{ }^{2}$	$\mathrm{\sigma}_{\mathrm{AB}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
C	1	[C] ${ }^{2}$	$[C]^{2 / 1}=\sigma_{C}{ }^{2}$	$\sigma_{\mathrm{c}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AC'	1	[AC'] ${ }^{2}$	$[A C]^{2 / 1}=\sigma_{A C} C^{2}$	$\sigma_{A C}{ }^{2} / \sigma_{e}{ }^{2}$
BC'	1		$[\mathrm{BC}]^{2 / 1}=\mathrm{o}_{\mathrm{BC}}{ }^{2}$	$\sigma_{B C}{ }^{2 /} \sigma_{e}{ }^{2}$
ABC	1	[ABC] ${ }^{2}$	$[A B C]^{2} / 1=\sigma_{A B C}{ }^{2}$	$\sigma_{\text {ABC }}{ }^{2} / \sigma_{e}{ }^{2}$
Error	8r-b-7	By sub. $=\mathrm{S}_{\mathrm{e}}{ }^{2}$	$\mathrm{S}_{\mathrm{e}}{ }^{2 / 6}(\mathrm{r}-1)=\sigma_{\mathrm{e}}{ }^{2}$	
Total	$2^{3} \mathrm{r}-1$	$\boldsymbol{\Sigma} \mathrm{Yij}^{2}$-c.f.		

