

Factorial Experiment:

Definition:

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are n factors at $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$ levels, the combination of $\mathrm{s}_{1}{ }^{\mathrm{x} 1}, \mathrm{~s}_{2}{ }^{\mathrm{x} 2}, \ldots \mathrm{~s}_{\mathrm{n}}{ }^{\mathrm{xn}}$ called factorial experiment, where this combinations are called treatment combinations.

Factorial experiment are of two types namely,

1) Symmetrical factorial experiment $\left(2^{x *} 2^{y}=2^{x+y}\right)$
2) Asymmetrical factorial experiment $\left(2^{x} * 3^{y}\right)$

2^{n} factorial experiment:

Definition:

If we have n factors and each are at 2 levels, the treatment combinations in a block randomly, then the experiment is called 2^{n} symmetrical factorial experiment. 2^{2} factorial exper an:
The factors are two namely A and B, each are at two levels namely 0 and 1 , so the four possible treatment combinations are,
$\mathrm{a}_{0} \mathrm{~b}_{0}$
1
A
B
$a_{0} b_{1}$
b
0
1
0 1
$a_{1} b_{0}$
a
$a_{1} b_{1}$
ab

Main effect:

Main effect is defined as average effect of all possible treatment combination at 2 level formed in 2 groups,such that level of 1 factor at each group is same, while level of other factors are different.
4 treatments are,

$a_{1} b_{1}$	$a_{0} b_{1}$
$a_{1} b_{0}$	$a_{0} b_{0}$

$$
a_{1} b_{1}+a_{1} b_{0} \quad a_{0} b_{1}+a_{0} b_{0}
$$

$$
\left[a_{1} b_{1}+a_{1} b_{0}\right] / 2-\left[a_{0} b_{1}+a_{0} b_{0}\right] / 2
$$

2
$\left[a_{1} b_{1}+a_{0} b_{1}\right] / 2-\left[a_{1} b_{0}+a_{0} b_{0}\right] / 2$
$B=$

eraction effect:

The interaction effect is defined as average of the average of the average effect of all possible treatment combination in 2^{n} factorial experiment. Such that level of one factor in each group is same while level of other factors are different.

$$
\left(a_{1} b_{1}-a_{1} b_{0}\right) / 2+\left(a_{0} b_{0}-a_{0} b_{1}\right) / 2
$$

2

$$
\left(a_{1} b_{1}-a_{1} b_{0}\right) / 2-\left(a_{0} b_{1}-a_{0} b_{0}\right) / 2
$$

2

Other defin Main effect:

Main effect is defined as contrast of all possible treatment combinations at two level formed in two groups, such that level of one factor in each group is same, while level of other factors are different.

Interaction effect:

Interaction effect is defined as contrast of the contrast of all possible treatment combination in 2 factorial experiment, such that level of one factor in each group is same, while level of other factors are different.

There are three methods to estimate Main effect and Interaction effect:

combinations
contrasts

	A	B	$A B$
$a_{0} b_{0}$	-	-	+
$a_{0} b_{1}$	-	+	-
$a_{1} b_{0}$	+	-	-
$a_{1} b_{1}$	+	+	+
$A=-a_{0} b_{0}-a_{0} b_{1}+a_{1} b_{0}+a_{1} b_{1}=\left(a_{1} b_{1}+a_{1} b_{0}\right)-\left(a_{0} b_{1}+a_{0} b_{0}\right)$			
$B=-a_{0} b_{0}+a_{0} b_{1}-a_{1} b_{0}+a_{1} b_{1}=\left(a_{0} b_{1}+a_{1} b_{1}\right)-\left(a_{0} b_{0}+a_{1} b_{1}\right)$			
$A B=a_{0} b_{0}-a_{0} b_{1}-a_{1} b_{0}+a_{1} b_{1}=\left(a_{1} b_{1}-a_{0} b_{1}\right)-\left(a_{1} b_{0}-a_{0} b_{0}\right)$			

2) Fisher \& Yate's method:

$$
\begin{aligned}
& A=(a-1)(b+1)=a b-b+a-1 \\
& O R
\end{aligned}
$$

$$
A=\left(a_{1}-a_{0}\right)\left(b_{1}+b_{0}\right)=a_{1} b_{1}+a_{1} b_{0}-a_{0} b_{1}-a_{0} b_{0}
$$

$$
=\left(a_{1} b_{1}+a_{1} b_{0}\right)-\left(a_{0} b_{1}+a_{0} b_{0}\right)
$$

$$
B=\left(b_{1}-b_{0}\right)\left(a_{1}+a_{0}\right)=a_{1} b_{1}+a_{0} b_{1}-a_{1} b_{0}-a_{0} b_{0}
$$

$$
=\left(a_{1} b_{1}+a_{0} b_{1}\right)-\left(a_{1} b_{0}+a_{0} b_{0}\right)
$$

$$
A B=\left(a_{1}-a_{0}\right)\left(b_{1}-b_{0}\right)=a_{1} b_{1}-a_{1} b_{0}-a_{0} b_{1}+a_{0} b_{0}
$$

$$
=\left(a_{1} b_{1}-a_{0} b_{1}\right)-\left(a_{1} b_{0}-a_{0} b_{0}\right)
$$

3) Ghosh method:

Hadmard matrix of size m, where $m=2,4,8, \ldots$

i.e. $m=2^{n}$

Take $n=2$;

Then

$$
H_{4}=\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}
$$

Delete the first row of Hadmard matrix and write the remaining matrix of $(m-1)$ * m and call H .

$$
H=\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}
$$

Now the treatment combination from right to left,

	$a_{1} b_{1}$	$a_{0} b_{1}$	$a_{1} b_{0}$	$a_{0} b_{0}$
A	1	-1	1	-1
B	1	1	-1	-1
AB	1	-1	-1	1

$$
\begin{aligned}
& A=a_{1} b_{1}-a_{0} b_{1}+a 1 b 0-a_{0} b_{0}=\left(a_{1} b_{1}+a_{1} b_{0}\right)-\left(a_{0} b_{1}+a_{0} b_{0}\right) \\
& B=a_{1} b_{1}+a_{0} b_{1}-a_{1} b_{0}-a_{0} b_{0}=\left(a_{1} b_{1}+a_{0} b_{1}\right)-\left(\left(a_{1} b_{0}+a_{0} b_{0}\right)\right. \\
& A B=a_{1} b_{1}-a_{0} b_{1}-a_{1} b_{0}+a_{0} b_{0}=\left(a_{1} b_{1}-a_{0} b_{1}\right)-\left(a_{1} b_{0}-a_{0} b_{0}\right)
\end{aligned}
$$

ANOVA TABLE OF 2^{2} FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Replication	r-1		QR	$\sigma^{2} \sigma^{2}$
Treatment combinatio n	$41=3$			
A	1	$[A]^{2} 4 \mathrm{r}-\mathrm{A} S$.	$[A] / 4 r-\sigma^{2}$	$\sigma_{A}^{2} \sigma_{e}^{2}$
B	1	$[B]^{2} / 4 r=B S . S$	$[\mathrm{B}]^{2} / 4 \mathrm{r}-\sigma_{\mathrm{B}}^{2}$	$\sigma_{B} \sigma^{2}$
AB	1	$[A B]^{2} / 4 r=A B S S$	$[A B]^{2} / 4 r-\sigma_{A B}^{2}$	$\begin{gathered} \sigma_{A B}^{2} \\ \sigma_{e}^{2} \end{gathered}$
Error	$3(r-1)$	$\text { By } \text { ESS Straction }=\mathrm{Se}^{2} \text { - }$	σ	
Total	$4(r 1)$	$\Sigma Y_{\mathrm{ij}}^{2}-\mathrm{CO}-$ TSS		

An agriculture experiment was conducted at Junagadh agriculture university to find the increase of groundnut of the application of 2 fertilizers of Nitrogen and Potash. Nitrogen was applied as $40 \mathrm{gm} /$ hector and $80 \mathrm{gm} / \mathrm{h}$, while Potash was applied at $50 \mathrm{gm} / \mathrm{h}$ and $100 \mathrm{gm} / \mathrm{h}$. The groundnut seeds were planted in such way that the distance between 2 plants in a row is same. This experiment is conducted in 3 replication. The collected observations of groundnut are shown below.

Rep-1	Rep-2	Rep-3
$\mathrm{a}_{0} \mathrm{~b}_{0}(60)$	$\mathrm{a}_{1} \mathrm{~b}_{1}(79)$	$\mathrm{a}_{0} \mathrm{~b}_{1}(72)$
$\mathrm{a}_{0} \mathrm{~b}_{1}(70)$	$\mathrm{a}_{0} \mathrm{~b}_{0}(66)$	$\mathrm{a}_{0} \mathrm{~b}_{0}(55)$
$\mathrm{a}_{1} \mathrm{~b}_{0}(75)$	$\mathrm{a}_{0} \mathrm{~b}_{1}(88)$	$\mathrm{a}_{1} \mathrm{~b}_{0}(69)$
$\mathrm{a}_{1} \mathrm{~b}_{1}(80)$	$\mathrm{a}_{1} \mathrm{~b}_{0}(100)$	$\mathrm{a}_{1} \mathrm{~b}_{1}(120)$

Analyse the data and give your comments.
H_{0} :The distance between two plants in a row is same.
Table:

	Rep-1	Rep-2	Rep-3	Total
$a_{0} b_{0}$	60	66	55	181
$a_{0} b_{1}$	70	88	72	230
$a_{1} b_{0}$	75	100	69	$T_{10}-244$
$a_{1} b_{1}$	80	79	120	$T_{11}=279$
	285	333	316	$G=934$

C.F. $=G^{2} / \mathrm{N}=(934)^{2} / 12=72696.33$

Total S.S $=\sum Y_{\mathrm{ij}}{ }^{2}-$ C.F. $=3539.67$
Repli.s.s. $=\sum R_{i}^{2} / t-$ C.F. $=296.17$
Now,
$\mathbf{A}=-T_{00}-T_{01}+T_{10}+T_{11}$

$$
=-181-230+244+279=112
$$

s.s. due to $A=[A]^{2} / 4 r=(112)^{2} / 12=1045.33$
$B=$

$$
=230+279-181-244=84
$$

s.s. due to $B=[B]^{2} / 4 r=(84)^{2} / 12=588$
$A B=T_{11}-T_{1}=-14$
s.s. due to $A B=[A B]^{2 / 4 r}=16.333$

S.V.	d.f.	s.s.	M.s.s.	F-ratio	F_{t}	
					5%	1%
Repli.	$3-1=2$	296.17	148.085	0.5574	5.14	10.92
Treat. combinatio n	$4-1=3$					
A	1	1045.33	1045.33	3.9351	5.99	13.74
B	1	588	588	2.2135	5.99	13.74
AB	1	16.333	16.333	0.0614	5.99	13.74
Error	6	1593.837	265.639			
Total	$12-1=11$	3539.67	321.788			

For repli.: Fc<Ft (for both level) => test is
insignificant \& we accept our H_{0}.
For main effect $\mathbf{A} \& \mathbf{B}$ and interaction effect $\mathbf{A B}$: $\mathbf{F c}<\mathbf{F t}$ (for both level) $=>$ test is insignificant \& we accept our H_{0}.

2^{3} Factorial Experiment:

Let A,B,C are three factors, each are at two levels namely 0 and 1 , so 2^{3} possible treatment combinations are,

$$
\begin{aligned}
& a_{0} b_{0} c_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c }
\end{aligned}
$$

$$
\begin{aligned}
& a_{0} b_{1} c_{0} \\
& a_{0} b_{1} c_{1} \\
& a_{1} b_{0} c_{0} \\
& a_{1} b_{0} c_{1} \\
& a_{1} b_{1} c_{0} \\
& a_{1} b_{1} c_{1}
\end{aligned}
$$

Main effects and Interaction contrasts in 2^{3} factorials:

Combin ations	Main effects and Interactions						
	A	B	C	AB	AC	BC	ABC
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	-	-	-	+	+	+	-
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{1}$	-	-	+	+	-	-	+
$\mathrm{a}_{0} \mathrm{~b}_{1} \mathrm{c}_{0}$	-	+	-	-	+	-	+
$\mathrm{a}_{0} \mathrm{~b}_{1} \mathrm{c}_{1}$	-	+	+	-	-	+	-
$\mathrm{a}_{1} \mathrm{~b}_{0} \mathrm{c}_{0}$	+	-	-	-	-	+	+
$\mathrm{a}_{1} \mathrm{~b}_{0} \mathrm{c}_{1}$	+	-	+	-	+	-	-
$\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{0}$	+	+	-	+	-	-	-
$\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	+	+	+	+	+	+	+

Here,

$$
\begin{aligned}
A & =-a_{0} b_{0} c_{0}-a_{0} b_{0} c_{1}-a_{0} b_{1} c_{0}-a_{0} b_{1} c_{1}+a_{1} b_{0} c_{0}+a_{1} b_{0} c_{1}+a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1} \\
& =\left(a_{1} b_{0} c_{0}+a_{1} b_{0} c_{1}+a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1}\right)-\left(a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}+a_{0} b_{1} c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
B & =-a_{0} b_{0} c_{0}-a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}+a_{0} b_{1} c_{1}-a_{1} b_{0} c_{0}-a_{1} b_{0} c_{1}+a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1} \\
& =\left(a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1}+a_{0} b_{1} c_{0}+a_{0} b_{1} c_{1}\right)-\left(a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}+a_{1} b_{0} c_{0}+a_{1} b_{0} c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
C & =-a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}-a_{0} b_{1} c_{0}+a_{0} b_{1} c_{1}-a_{1} b_{0} c_{0}+a_{1} b_{0} c_{1}-a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1} \\
& =\left(a_{1} b_{0} c_{1}+a_{1} b_{1} c_{1}+a_{0} b_{1} c_{1}+a_{0} b_{0} c_{1}\right)-\left(a_{0} b_{0} c_{0}+a_{0} b_{1} c_{0}+a_{1} b_{0} c_{0}+a_{1} b_{1} c_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
A B & =a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}-a_{0} b_{1} c_{0}-a_{0} b_{1} c_{1}-a_{1} b_{0} c_{0}-a_{1} b_{0} c_{1}+a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1} \\
& =\left(a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}+a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1}\right)-\left(a_{0} b_{1} c_{0}+a_{0} b_{1} c_{1}+a_{1} b_{0} c_{0}+a_{1} b_{0} c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
A B C & =-a_{0} b_{0} c_{0}+a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}-a_{0} b_{1} c_{1}+a_{1} b_{0} c_{0}-a_{1} b_{0} c_{1}-a_{1} b_{1} c_{0}+a_{1} b_{1} c_{1} \\
& =\left(a_{0} b_{0} c_{1}+a_{0} b_{1} c_{0}+a_{1} b_{0} c_{0}+a_{1} b_{1} c_{1}\right)-\left(a_{0} b_{0} c_{0}+a_{0} b_{1} c_{1}+a_{1} b_{0} c_{1}+a_{1} b_{1} c_{0}\right)
\end{aligned}
$$

s.v.	d.f.	s.s.	M.s.s.	F-ratio
Replication	r-1	$\frac{\sum \operatorname{Ri} 2}{\mathrm{ti}}-\text { C.F. }$	$\sigma_{R}{ }^{2}$	
Treatment combination	$2^{3}-1=7$			
A	1	$\left[\mathrm{A}^{12} / 2^{3} \mathrm{r}\right.$	$\sigma_{\mathrm{A}}{ }^{2}$	$\sigma_{\mathrm{A}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
B	1	$[B]^{2} / 2^{3} r$	$\sigma_{B}{ }^{2}$	$\sigma_{\mathrm{B}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AB	1	$[A B]^{2} / 2^{3} r$	$\sigma_{A B}{ }^{2}$	$\sigma_{A B}{ }^{2} / \sigma_{e}{ }^{2}$
C	1	$[C]^{2} / 2^{3} r$	$\sigma_{C}{ }^{2}$	$\sigma_{C}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
AC	1	[AC] ${ }^{2} / 2^{3} \mathrm{r}$	$\sigma_{\text {AC }}{ }^{2}$	$\sigma_{A C}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
BC	1	$[\mathrm{BC}]^{2 /} 2^{3} \mathrm{r}$	$\sigma_{B C}{ }^{2}$	$\sigma_{B C}{ }^{2} / \sigma_{e}{ }^{2}$
ABC	1	$[A B C]^{2} / 2^{3} r$	$\sigma_{A B C}{ }^{2}$	$\sigma_{\text {ABC }} /{ }^{2} \sigma_{\mathrm{e}}{ }^{2}$
Error	7(r-1)	By subtraction	$\sigma_{\mathrm{e}}{ }^{2}$	
Total	$2^{3} \mathrm{r}-1$	$\sum Y_{i j} 2$-C.F.		

3^{n} Factorial Experiment:

Definition:

If we have n factors and each are at 3 levels, then the treatment combinations in a block randomly then the experiment is called 3^{n} symmetrical factorial experiment.

* when factors are taken at 3 levels instead of 2 , the scope of the experiment increases.It becomes more informative. Further, when the levels of a factor are quantitative, the pattern of change of response with the increase of the level values of the factor can be studied in a better way. A study to investigate if the change is linear or quadratic is possible when the factors at 3 levels, though from this point of view the more the number of levels the better.

3^{2} Factorial Experiment:

Let there are two factors N and P, each are at 3 levels namely 0,1 , and 2 .

All possible combinations are,
$\mathrm{n}_{0} \mathrm{p}_{0}$
$n_{1} p_{0}$
$\mathrm{n}_{2} \mathrm{p}_{0}$
$\mathrm{n}_{0} \mathrm{p}_{1}$
$n_{1} p_{1}$
$\mathrm{n}_{2} \mathrm{p}_{1}$
$\mathrm{n}_{0} \mathrm{p}_{2}$
$n_{1} p_{2}$
$\mathrm{n}_{2} \mathrm{p}_{2}$

Method 1:

In 3^{2} factorial experiment, there are two types of Main effect namely,

1) Linear Main effect
2) Quadratic Main effect

The contrast $\mathrm{N}_{2}-\mathrm{N}_{0}$ gives the linear contrast among the three levels of N , if they are equispaced. It indicates a linear relation between the response and level values of N . The other contrast, $\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}$. This contrast indicates a quadratic relation between the levels and their responses.
Now,

$$
\begin{aligned}
\mathrm{N}_{\mathrm{L}} & =\mathrm{N}_{2}-\mathrm{N}_{0} \\
& =\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right) \\
\mathrm{N}_{\mathrm{Q}} & =N_{2}-2 N_{1}+N_{0} \\
& =\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-2\left(n_{1} p_{0}+n_{1} p_{1}+n_{1} p_{2}\right)+\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{L}= & P_{2}-P_{0}=\left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right) \\
P_{Q}= & P_{2}-2 P_{1}+P_{0} \\
= & \left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-2\left(p_{1} n_{0}+p_{1} n_{1}+p_{1} n_{2}\right)+\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right) \\
N_{L} P_{L}= & \left(N_{2}-N_{0}\right)\left(P_{2}-P_{0}\right) \\
= & {\left[\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right)\right] } \\
& {\left[\left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right)\right] } \\
N_{L} P_{Q}= & \left(N_{2}-N_{0}\right)\left(P_{2}-2 P_{1}+P_{0}\right) \\
= & {\left[\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right)\right] } \\
& {\left[\left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-2\left(p_{1} n_{0}+p_{1} n_{1}+p_{1} n_{2}\right)+\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right)\right] } \\
N_{Q} P_{L}= & \left(N_{2}-N_{1}+N_{0}\right)\left(P_{2}-P_{0}\right) \\
= & {\left[\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-2\left(n_{1} p_{0}+n_{1} p_{1}+n_{1} p_{2}\right)+\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right)\right] } \\
& {\left[\left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right)\right] } \\
N_{Q} P_{L}= & \left(N_{2}-N 1+N_{0}\right)\left(P_{2}-2 P_{1}+P_{0}\right) \\
= & {\left[\left(n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2}\right)-2\left(n_{1} p_{0}+n_{1} p_{1}+n_{1} p_{2}\right)+\left(n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2}\right)\right] } \\
& {\left[\left(p_{2} n_{0}+p_{2} n_{1}+p_{2} n_{2}\right)-\left(p_{1} n_{0}+p_{1} n_{1}+p_{1} n_{2}\right)+\left(p_{0} n_{0}+p_{0} n_{1}+p_{0} n_{2}\right)\right] }
\end{aligned}
$$

Now,
s.s. of $N_{L}=\left(N_{L}\right)^{2 / 6 r}$
s.s. of $N_{Q}=\left(N_{Q}\right)^{2} / 18 r$
s.s. of $P_{L}=\left(P_{L}\right)^{2 / 6 r}$
s.s. of $P_{Q}=\left(P_{Q}\right)^{2 / 18 r}$
s.s. of $N_{L} P_{L}=\left(N_{L} P_{L}\right)^{2 / 36 r}$ s.s. of $N_{L} P_{Q}=\left(N_{L} P_{Q}\right)^{2 / 108 r}$ s.s. of $N_{Q} P_{L}=\left(N_{Q} P_{L}\right)^{2 / 108 r}$ s.s. of $N_{Q} P_{Q}=\left(N_{Q} P_{Q}\right)^{2 / 324 r}$
s.s. of $N=$ s.s. of $N_{L}+$ s.s. of N_{Q}
s.s. of $P=s . s$. of $P_{L}+s . s$. of P_{Q}
s.s. of $N P=$ s.s. of $N_{L} P_{L}+$ s.s. of $N_{L} P_{Q}+$ s.s. of $N_{Q} P_{L}+$ s.s. of $N_{Q} P_{Q}$

Method-2 (Ghosh method) :
 $0->3,1->2,2->6$

Treatment combination	Replicatio n total	Col-1	Col-2	divi sor	$\text { s.s. }=\frac{(\text { col- } 2)^{2}}{\text { divisor }}$
00	R_{1}	$\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=A$	$A+B+C=G$	9 r	
01	R_{2}	$\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{R}_{6}=B$	$\mathrm{D}+\mathrm{E}+\mathrm{F}=\mathrm{P}$	6 r	$\mathrm{P}^{2} / 6 \mathrm{r}=\mathrm{s}$.s. of P_{L}
02	R_{3}	$\mathrm{R}_{7}+\mathrm{R}_{8}+\mathrm{R}_{9}=\mathrm{C}$	$\mathrm{G}+\mathrm{H}+\mathrm{l}=\mathrm{Q}$	18 r	$\mathrm{Q}^{2} / 18 \mathrm{r}=$ s.s. of P_{Q}
10	R_{4}	$\mathrm{R}_{3}-\mathrm{R}_{1}=\mathrm{D}$	$C-A=R$	6 r	$\mathrm{R}^{2} / 6 \mathrm{r}=\mathrm{s}$.s.of N_{L}
11	R_{5}	$\mathrm{R}_{6}-\mathrm{R}_{4}=\mathrm{E}$	F-D $=$ S	4 r	$\mathrm{S}^{2 / 4 r}=$ s.s. of $N_{L} P_{L}$
12	R_{6}	$\mathrm{R}_{9}-\mathrm{R}_{7}=\mathrm{F}$	$\mathrm{I}-\mathrm{G}=\mathrm{T}$	12 r	$\mathrm{T}^{2} / 12 \mathrm{r}=$ s.s.of $\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{Q}}$
20	R_{7}	$\mathrm{R}_{3}-2 \mathrm{R}_{2}+\mathrm{R}_{1}=\mathrm{G}$	$C-2 B+A=U$	18 r	$\mathrm{U}^{2} / 18 \mathrm{r}=\mathrm{s} . \mathrm{s}$. of N_{Q}
21	R_{8}	$\mathrm{R}_{6}-2 \mathrm{R}_{5}+\mathrm{R}_{4}=\mathrm{H}$	$\mathrm{F}-2 \mathrm{E}+\mathrm{D}=\mathrm{V}$	12r	$\mathrm{V}^{2} / 12 \mathrm{r}=$ s.s. of $\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}}$
22	R_{9}	$\mathrm{R}_{9}-2 \mathrm{R}_{8}+\mathrm{R}_{7}=1$	$\mathrm{I}-2 \mathrm{H}+\mathrm{G}=\mathrm{W}$	36r	$W^{2} / 36 \mathrm{r}=$ s.s. of $\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}}$

ANOVA TABLE OF 3^{2} FACTORIAL EXPERIMENT:

s.v.	d.f.	s.s.	M.s.s.(s.s./d.f.)	F-ratio
Replication	r-1	$\sum R_{i}^{2} / t-c . f$.	$\sigma_{R}{ }^{2}$	$\sigma_{R}{ }^{2} / \sigma_{e}{ }^{2}$
Treat.Combi.	$3^{2}-1=8$			
N	2	N_{L} s.s. $+\mathrm{N}_{\mathrm{Q}} \mathrm{s} . \mathrm{s}$	$\sigma_{N}{ }^{2}$	$\sigma_{N}{ }^{2} / \sigma_{e}{ }^{2}$
N_{L}	1	$\mathrm{N}_{\mathrm{L}} \mathrm{S} . \mathrm{S}$	$\sigma \mathrm{N}^{2}$	$\sigma \mathrm{N}_{\mathrm{L}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
N_{Q}	1	$\mathrm{N}_{\mathrm{Q}} \mathrm{s.S}$	$\sigma \mathrm{N}_{\mathrm{Q}}{ }^{2}$	$\sigma \mathrm{N}_{\mathrm{Q}} / \sigma_{\mathrm{e}}{ }^{2}$
P	2	P_{L} S.S $+P_{Q}$ S.s	$\sigma_{P}{ }^{2}$	$\sigma_{\mathrm{P}}{ }^{2 /} \sigma_{\mathrm{e}}{ }^{2}$
P_{L}	1	$\mathrm{P}_{\text {L }} \mathrm{s}$ S	$\sigma \mathrm{P}_{\mathrm{L}}{ }^{2}$	$\sigma \mathrm{P}_{\mathrm{L}}{ }^{2 /} \sigma_{\mathrm{e}}{ }^{2}$
P_{Q}	1	$\mathrm{P}_{\mathrm{Q}} \mathrm{s.s}$	$\sigma \mathrm{P}_{\mathrm{Q}}{ }^{2}$	$\sigma \mathrm{P}_{\mathrm{Q}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
NP	4	$\mathrm{N}_{L} \mathrm{P}_{\mathrm{L}} \mathrm{s} . \mathrm{s}+\ldots+\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}} \mathrm{s} . \mathrm{s}$	$\sigma_{N P}{ }^{2}$	$\sigma_{N P}{ }^{2 /} \sigma_{e}{ }^{2}$
$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}}$	1	$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\text {L }} \mathrm{s} . \mathrm{s}$	$\sigma \mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}}{ }^{2}$	$\sigma \mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}}{ }^{2} \sigma_{\mathrm{e}}{ }^{2}$
$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{Q}}$	1	$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{Q}}$ s.s	$\sigma N_{L} P_{Q}{ }^{2}$	$\begin{aligned} & \sigma N_{L} P_{Q}{ }^{2 /} \\ & \sigma_{\mathrm{e}}{ }^{2} \end{aligned}$
$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}}$	1	$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}} \mathrm{s.s}$	$\sigma \mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}}{ }^{2}$	$\sigma \mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}}$	1	$N_{Q} P_{Q}$ s.s	$\sigma N_{Q} P_{Q}{ }^{2}$	$\begin{array}{\|l\|} \hline \sigma \mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}}{ }^{2 /} \\ \sigma_{\mathrm{e}} \\ \hline \end{array}$
Error	8(r-1)	By subtraction	$\sigma_{e}{ }^{2}$	
Total	$3^{2} \mathrm{r}-1$	$\sum Y_{i i}{ }^{2}-$ c.f.		

Method-3:

		N			SUM
		0	1	2	
P	0	$\mathrm{n}_{0} p_{0}$	$\mathrm{n}_{1} \mathrm{p}_{0}$	$\mathrm{n}_{2} \mathrm{p}_{0}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0}+\mathrm{n}_{1} \mathrm{p}_{0}+\mathrm{n}_{2} \mathrm{p}_{0} \\ & ---\rightarrow \text { eq.(1) } \end{aligned}$
	1	$\mathrm{n}_{0} \mathrm{p}_{1}$	$\mathrm{n}_{1} \mathrm{p}_{1}$	$\mathrm{n}_{2} \mathrm{p}_{1}$	$\begin{aligned} & n_{0} p_{1}+n_{1} p_{1}+n_{2} p_{1} \\ & ---\rightarrow \text { eq.(2) } \end{aligned}$
	2	$\mathrm{n}_{0} \mathrm{p}_{2}$	$\mathrm{n}_{1} \mathrm{p}_{2}$	$\mathrm{n}_{2} \mathrm{p}_{2}$	$\begin{aligned} & n_{0} p_{1}+n_{1} p_{2}+n_{2} p_{2} \\ & ---\rightarrow \text { eq.(3) } \end{aligned}$
SUM		$\begin{aligned} & n_{0} p_{0}+n_{0} p_{1}+n_{0} p_{2} \\ & ----\operatorname{eq} .(4) \end{aligned}$	$\begin{aligned} & n_{1} p_{0}+n_{1} p_{1}+n_{1} p_{2} \\ & ---\rightarrow \text { eq. } 5 \text { (} \end{aligned}$	$\begin{aligned} & n_{2} p_{0}+n_{2} p_{1}+n_{2} p_{2} \\ & ---- \text { eq. } 6 \text { an } \end{aligned}$	Grand Total

S.S. of $P=[\text { eq. (1) }]^{2}+[$ eq. (2) $\left.)\right]^{2}+[\text { eq.(3) }]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$ $3 r$
s.S. of $N=[\text { eq.(4) }]^{2}+\left[\right.$ eq.(5)] ${ }^{2}+[\text { eq. (6) }]^{2}-$ c.f.

Cell s.s. due to NP $=\left[n_{0} p_{0}^{2}+n_{1} p_{0}^{2}+\ldots+n_{2} p_{2}^{2}\right] / r-c . f$. s.s. of $N P=$ cell s.s. due to $N P-$ s.s. of $N-$ s.s. of P ANOVA TABLE OF 3^{2} FACTORIAL EXPERIMENT:

s.v.	d.f.	s.s.	M.s.s.	F-ratio
Repli.	r-1	$\frac{\sum \mathrm{Ri} 2}{\mathrm{ti}}-\text { C.F. }$	$\sigma_{R}{ }^{2}$	
Treatment combination	$3^{2}-1=8$			
N	2	N s.s.	$\sigma_{N}{ }^{2}$	$\sigma_{N} / /_{\text {e }}{ }^{2}$
P	2	Ps.s.	$\sigma_{P}{ }^{2}$	$\sigma_{\mathrm{p}}{ }^{2} \sigma_{\text {e }}{ }^{2}$
NP	4	NP s.s.	$\sigma_{\text {NP }}{ }^{2}$	$\sigma_{\text {NP }} / 2 / \sigma_{e}{ }^{2}$
Error	8(r-1)	Es.s.	$\sigma_{e}{ }^{2}$	
total	$9 \mathrm{r}-1$	T s.s.		

Example:

N and P were considered sugarcane in Saurashtra region.Nitrogen are considered at 3 level namely $30 \mathrm{gm} / \mathrm{h}, 80 \mathrm{gm} / \mathrm{h}, 120 \mathrm{gm} / \mathrm{h}$. Similarly phospharas was taken at 3 different level namely $60 \mathrm{gm} / \mathrm{h}, 100 \mathrm{gm} / \mathrm{h}$ and $150 \mathrm{gm} / \mathrm{h}$. The experiment is conducted in 3 replications. The collected data is shown below:

Repli.-1	Repli.-2	Repli.-3
$\mathrm{n}_{0} \mathrm{p}_{0}(40)$	$\mathrm{n}_{1} \mathrm{p}_{0}(67)$	$\mathrm{n}_{2} \mathrm{p}_{2}(76)$
$\mathrm{n}_{0} \mathrm{p}_{1}(60)$	$\mathrm{n}_{1} \mathrm{p}_{1}(86)$	$\mathrm{n}_{2} \mathrm{p}_{0}(89)$
$\mathrm{n}_{0} \mathrm{p}_{2}(65)$	$\mathrm{n}_{1} \mathrm{p}_{2}(94)$	$\mathrm{n}_{0} \mathrm{p}_{0}(44)$
$\mathrm{n}_{1} \mathrm{p}_{0}(80)$	$\mathrm{n}_{0} \mathrm{p}_{1}(55)$	$\mathrm{n}_{1} \mathrm{p}_{1}(99)$
$\mathrm{n}_{1} \mathrm{p}_{1}(85)$	$\mathrm{n}_{0} \mathrm{p}_{2}(48)$	$\mathrm{n}_{1} \mathrm{p}_{2}(105)$
$\mathrm{n}_{1} \mathrm{p}_{2}(90)$	$\mathrm{n}_{0} \mathrm{p}_{0}(42)$	$\mathrm{n}_{0} \mathrm{p}_{1}(49)$
$\mathrm{n}_{2} \mathrm{p}_{0}(70)$	$\mathrm{n}_{2} \mathrm{p}_{1}(78)$	$\mathrm{n}_{0} \mathrm{p}_{2}(50)$
$\mathrm{n}_{2} \mathrm{p}_{1}(72)$	$\mathrm{n}_{2} \mathrm{p}_{2}(85)$	$\mathrm{n}_{1} \mathrm{p}_{0}(106)$
$\mathrm{n}_{2} \mathrm{p}_{2}(84)$	$\mathrm{n}_{2} \mathrm{p}_{0}(60)$	$\mathrm{n}_{2} \mathrm{p}_{1}(87)$

Analyse the data and give your comments.

H_{0} : The experiment is conducted in 3 replications.

	Replications			Total
	R 1		R 2	

C. $-G / 2 / N=(1966) 2 / 27=143153.9259$

		N			SUM
		0	1	2	
P	0	$\mathrm{n}_{0} \mathrm{P}_{0}-126$	$n_{1} \mathrm{P}_{0}-253$	$n_{2} \mathrm{P}_{0}-219$	$\begin{aligned} n \\ =598 \end{aligned}$
	1	$n_{0} P_{1}=164$	$n \mathrm{p}-270$	$n_{2} p_{1}-237$	$\begin{aligned} & n p_{1}+n_{1} p_{1}+n_{2} p_{1} \\ & -671 \end{aligned}$
	2	$n_{0} \mathrm{D}_{2}-163$	$n_{1} p_{2}=289$	$n_{2} \mathrm{p}_{2}=245$	$n_{0}+n_{1} p_{2}+n_{2}$
SUM		$\begin{aligned} & n 0 \mathrm{p}_{0}+\mathrm{n}_{0} \mathrm{p}_{1} \mathrm{n}_{0} \mathrm{P}_{2} \\ & =453 \end{aligned}$		$\begin{array}{r} \mathrm{n}_{0}+\mathrm{n}_{2} \mathrm{p}_{1}+\mathrm{n}_{2} \mathrm{p}_{2} \end{array}$	1966

s. \quad of P - $\quad(598)^{2}+(671)^{2}+(697)^{2} 1$, c.

$$
\text { s.s. of } \begin{aligned}
P & =144005.5556-143153.9259 \\
& =585.4074
\end{aligned}
$$

s.s. of $N=\frac{(453)^{2}+(812)^{2}+(701)^{2}}{3^{*} 3}-143153.9259$
$=7507.6296$
Cell s.s. due to NP $=\frac{(126)^{2}+\ldots+(245)^{2}}{3}-143153.9259$
$=(453926 / 3)-143153.9259$
= 8154.740767
s.s. of NP $=$ cell s.s. of $N P-$ s.s. of $N-$ s.s. of P
$=8154.740767-7507.6296-585.4074$
$=61.703767$

s.v.	d.f.	s.s.	M.s.s.	F-ratio	F_{t}	
					5%	1%
Repli	$3-1=2$	464.5185	232.2592	2.6452	3.63	6.23
Treat.comb	$3^{2}-1=8$					
N		2	7507.629	3753.814	42.7537	3.63
P	2	585.4074	292.7037	3.3337	3.63	6.23
NP	4	61.7037	15.4259	0.1756	3.01	4.77
Error	16	1404.814	87.8009			
total	$27-1=26$	10024.074				

For repli.: $\mathbf{F c}<\mathbf{F t}($ for both level $) \Rightarrow$ test is insignificant \& we accept our H_{0}.
For main effect $\mathrm{N}: \mathbf{F c}>\mathbf{F t}\left(\right.$ for both level) $\Rightarrow>$ test is significant \& we reject our H_{0}.
For main effect $\mathrm{P} ; \mathbf{F c}<\mathbf{F t}$ (for both level) $\Rightarrow>$ test is insignificant \& we accept our H_{0} For interaction effect NP; $\mathbf{F c}<\mathbf{F t}$ (for both level) $\Rightarrow>$ test is insignificant \& we accept our H_{0}

3^{3} Factorial Experiment:

Let there are three factors N and P and K, each are at 3 levels namely 0,1 , and 2 .
$\frac{\mathrm{N}}{0}$

All possible combinations are,

$n_{0} p_{0} k_{0}$	$n_{1} p_{0} k_{0}$	$n_{2} p_{0} k_{0}$
$n_{0} p_{0} k_{1}$	$n_{1} p_{0} k_{1}$	$n_{2} p_{0} k_{1}$
$n_{0} p_{0} k_{2}$	$n_{1} p_{0} k_{2}$	$n_{2} p_{0} k_{2}$
$n_{0} p_{1} k_{0}$	$n_{1} p_{1} k_{0}$	$n_{2} p_{1} k_{0}$
$n_{0} p_{1} k_{1}$	$n_{1} p_{1} k_{1}$	$n_{2} p_{1} k_{1}$
$n_{0} p_{1} k_{2}$	$n_{1} p_{1} k_{2}$	$n_{2} p_{1} k_{2}$
$n_{0} p_{2} k_{0}$	$n_{1} p_{2} k_{0}$	$n_{2} p_{2} k_{0}$
$n_{0} p_{2} k_{1}$	$n_{1} p_{2} k_{1}$	$n_{2} p_{2} k_{1}$
$n_{0} p_{2} k_{2}$	$n_{1} p_{2} k_{2}$	$n_{2} p_{2} k_{2}$

Method 1:

In 3^{2} factorial experiment, there are two types of Main effect namely,

1) Linear Main effect
2) Quadratic Main effect

The contrast $\mathrm{N}_{2}-\mathrm{N}_{0}$ gives the linear contrast among the three levels of N, if they are equispaced. It indicates a linear relation between the response and level values of N . The other contrast, $\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}$. This contrast indicates a quadratic relation between the levels and their responses.
Now,

$$
\begin{aligned}
\mathrm{N}_{\mathrm{L}}= & \mathrm{N}_{2}-\mathrm{N}_{0} \\
= & \left(n_{2} p_{0} k_{0}+n_{2} p_{0} k_{1}+n_{2} p_{0} k_{2}+n_{2} p_{1} k_{0}+n_{2} p_{1} k_{1}+n_{2} p_{1} k_{2}+n_{2} p_{2} k_{0}+n_{2} p_{2} k_{1}+n_{2} p_{2} k_{2}\right)- \\
& \left(n_{0} p_{0} k_{0}+n_{0} p_{0} k_{1}+n_{0} p_{0} k_{2}+n_{0} p_{1} k_{0}+n_{0} p_{1} k_{1}+n_{0} p_{1} k_{2}+n_{0} p_{2} k_{0}+n_{0} p_{2} k_{1}+n_{0} p_{2} k_{2}\right)
\end{aligned}
$$

$$
N_{Q}=N_{2}-2 N_{1}+N_{0}
$$

$=\left(n_{2} p_{0} \mathrm{k}_{0}+\mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{1}+\mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{2}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k}_{0}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k}_{1}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k}_{2}+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{0}+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{1}+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2}\right)^{-}$ $2\left(n_{1} p_{0} k_{0}+n_{1} p_{0} k_{1}+n_{1} p_{0} k_{2}+n_{1} p_{1} k_{0}+n_{1} p_{1} k_{1}+n_{1} p_{1} k_{2}+n_{1} p_{2} k_{0}+n_{1} p_{2} k_{1}+n_{1} p_{2} k_{2}\right)$ $+\left(n_{0} p_{0} k_{0}+n_{0} p_{0} k_{1}+n_{0} p_{0} k_{2}+n_{0} p_{1} k_{0}+n_{0} p_{1} k_{1}+n_{0} p_{1} k_{2}+n_{0} p_{2} k_{0}+n_{0} p_{2} k_{1}+n_{0} p_{2} k_{2}\right)$

$\mathrm{K}_{\mathrm{L}}=\mathrm{K}_{2}-\mathrm{K}_{0}$
$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}} \mathrm{K}_{\mathrm{L}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-\mathrm{K}_{0}\right)$
$N_{L} P_{L} K_{L}=\left(N_{2}-N_{0}\right)\left(P_{2}-P_{0}\right)\left(K_{2}-K_{0}\right)$
$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right)$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{Q}}=\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0} \\
& \mathrm{~K}_{\mathrm{Q}}=\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0} \\
& \mathrm{~N}_{\mathrm{Q}} \mathrm{~K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right) \\
& \mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right) \\
& \mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right) \\
& \mathrm{P}_{\mathrm{L}} \mathrm{~K}_{\mathrm{L}}=\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-\mathrm{K}_{0}\right) \\
& \mathrm{P}_{\mathrm{L}} \mathrm{~K}_{\mathrm{Q}}=\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right)
\end{aligned}
$$

$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{L}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{N}_{0}\right)$
$\left.\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{Q}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right)\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right) \quad \mathrm{P}_{\mathrm{Q}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{N}_{0}\right)$
$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right) \quad \mathrm{N}_{\mathrm{Q}} \mathrm{K}_{\mathrm{L}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{K}_{2}-\mathrm{K}_{0}\right)$
$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}} \mathrm{K}_{\mathrm{L}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-\mathrm{K}_{0}\right) \quad \mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)$
$\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-2 \mathrm{~N}_{1}+\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{N}_{0}\right) \mathrm{N}_{\mathrm{L}} \mathrm{K}_{\mathrm{L}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{K}_{2}-\mathrm{K}_{0}\right)$
$\mathrm{N}_{\mathrm{L}} \mathrm{P}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{P}_{2}-2 \mathrm{P}_{1}+\mathrm{P}_{0}\right)$
$\mathrm{N}_{\mathrm{L}} \mathrm{K}_{\mathrm{Q}}=\left(\mathrm{N}_{2}-\mathrm{N}_{0}\right)\left(\mathrm{K}_{2}-2 \mathrm{~K}_{1}+\mathrm{K}_{0}\right)$

Now,

- s.s. of $N_{L}=\left(N_{L}\right)^{2} / 18 r$
- s.s. of $N_{Q}=\left(N_{Q}\right)^{2 / 54 r}$
- s.s. of $P_{L}=\left(P_{L}\right)^{2} / 18 r$
- s.s. of $P_{Q}=\left(P_{Q}\right)^{2 / 54 r}$
- s.s. of $K_{L}=\left(K_{L}\right)^{2} / 18 r$
- s.s. of $K_{Q}=\left(K_{Q}\right)^{2 / 54 r}$
- s.s. of $N_{L} P_{L}=\left(N_{L} P_{L}\right)^{2} / 324 r$
- s.s. of $N_{L} P_{Q}=\left(N_{L} P_{Q}\right)^{2} / 972 r$
- s.s. of $N_{Q} P_{L}=\left(N_{Q} P_{L}\right)^{2} / 972 r$
- s.s. of $N_{Q} P_{Q}=\left(N_{Q} P_{Q}\right)^{2} / 2916 r$
- s.s. of $P_{L} K_{L}=\left(P_{L} K_{L}\right)^{2 / 324 r}$
- s.s. of $P_{L} K_{Q}=\left(P_{L} K_{Q}\right)^{2} / 972 r$
- s.s. of $P_{Q} K_{L}=\left(P_{Q} K_{L}\right)^{2 / 972 r}$
- s.s. of $P_{Q} K_{Q}=\left(P_{Q} K_{Q}\right)^{2 / 2916 r}$
- s.s. of $\mathrm{N}_{\mathrm{L}} \mathrm{K}_{\mathrm{L}}=\left(\mathrm{N}_{\mathrm{L}} \mathrm{K}_{\mathrm{L}}\right)^{2 / 324 r}$
- s.s. of $N_{L} K_{Q}=\left(N_{L} K_{Q}\right)^{2} / 972 r$
- s.s. of $N_{Q} K_{L}=\left(N_{Q} K_{L}\right)^{2 / 972 r}$
s.s. of $N_{Q} K_{Q}=\left(N_{Q} K_{Q}\right)^{2} / 2916 r$
- s.s. of $N_{L} P_{L} K_{L}=\left(N_{L} P_{L} K_{L}\right)^{2 / 5832 r}$
- s.s. of $N_{L} P_{L} K_{Q}=\left(N_{L} P_{L} K_{Q}\right)^{2 / 17496 r}$
- s.s. of $N_{L} P_{Q} K_{L}=\left(N_{L} P_{Q} K_{L}\right)^{2 / 17496 r}$
- s.s. of $N_{L} P_{Q} K_{Q}=\left(N_{L} P_{Q} K_{Q}\right)^{2 / 52488 r}$
- s.s. of $N_{Q} P_{L} K_{L}=\left(N_{Q} P_{L} K_{L}\right)^{2 / 17496 r}$
- s.s. of $N_{Q} P_{L} K_{Q}=\left(N_{Q} P_{L} K_{Q}\right)^{2 / 52488 r}$
- s.s. of $N_{Q} P_{Q} K_{L}=\left(N_{Q} P_{Q} K_{L}\right)^{2 / 52488 r}$
- s.s. of $\mathrm{N}_{\mathrm{Q}} \mathrm{P}_{\mathrm{Q}} \mathrm{K}_{\mathrm{Q}}=$ $\left(N_{Q} P_{Q} K_{Q}\right)^{2 / 157464 r}$

Method-3:

		N			SUM
		0	1	2	
	P	012	012	012	
0		$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{0}+\mathrm{n}_{0} \mathrm{p}_{1} \mathrm{k} \\ & \mathrm{o}^{+}+\mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{0} \end{aligned}$	$\begin{aligned} & n_{1} p_{0} k_{0}+n_{1} p_{1} k \\ & 0^{+}+n_{1} p_{2} k_{0} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{0}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k} \\ & \mathrm{o}^{+}+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{0}+\ldots+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{0} \\ & ----\rightarrow \text { eq.(1) } \end{aligned}$
1		$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{1}+\mathrm{n}_{0} \mathrm{p}_{1} \mathrm{k} \\ & 1+\mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{1} \end{aligned}$	$\begin{aligned} & n_{1} p_{0} k_{1}+n_{1} p_{1} k \\ & 1+n_{1} p_{2} k_{1} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{1}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k} \\ & 1+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{1}+\ldots \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{1} \\ & ----\rightarrow \text { eq.(2) } \end{aligned}$
2		$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{2}+\mathrm{n}_{0} \mathrm{p}_{1} \mathrm{k} \\ & 2^{2}+\mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{2} \end{aligned}$	$\begin{aligned} & n_{1} p_{0} k_{2}+n_{1} p_{1} k \\ & 2_{2}+n_{1} p_{2} k_{2} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{2} \mathrm{p}_{\mathrm{p}} \mathrm{k}_{2}+\mathrm{n}_{2} \mathrm{p}_{1} \mathrm{k} \\ & \mathrm{z}_{2}+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2} \end{aligned}$	$\begin{array}{\|l\|} \hline n_{0} p_{0} k_{2}+\ldots n_{2} p_{2} k_{2} \\ ----\rightarrow \text { eq.(3) } \\ \hline \end{array}$
		$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{0}+\ldots+ \\ & \mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{2} \\ & ----{ }^{-} \text {eq.(4) } \\ & \hline \end{aligned}$	$\begin{aligned} & n_{1} p_{0} k_{0}+\ldots+ \\ & n_{1} p_{2} k_{2} \\ & ----\rightarrow \text { eq.(5) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{0}+\ldots+ \\ \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2} \\ ----\rightarrow \text { eq.(6) } \\ \hline \end{array} \\ & \hline \end{aligned}$	Grand total

s.s. of $K=[\text { eq.(1) }]^{2}+[\text { eq. (2) }]^{2}+[\text { eq.(3) }]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$ 9r
s.s. of $\mathrm{N}=[\text { eq. }(4)]^{2}+[\text { eq. }(5)]^{2}+[\text { eq.(6) }]^{2}-$ c.f. ; Where c.f. $=\mathrm{G}^{2} / \mathrm{N}$ 9r
cell s.s. due to $N K=\left\{\left[n_{0} p_{0} k_{0}+n_{0} p_{1} k_{0}+n_{0} p_{2} k_{0}\right]^{2}+\ldots+\left[n_{2} p_{0} k_{2}+n_{2} p_{1} k_{2}+\right.\right.$ $\left.\left.n_{2} p_{2} k_{2}\right]^{2}\right\} / 3 r-c$.f.
s.s. of $N K=$ cell s.s. - Ns.s. $-K s . s$.

s.s. of $P=[\text { eq. }(7)]^{2}+[\text { eq. }(8)]^{2}+[\text { eq. }(9)]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$

9r

s.s. of $N=[\text { eq. }(10)]^{2}+[\text { eq.(11) }]^{2}+[\text { eq.(12) }]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$

9r

cell s.s. due to $N P=\left\{\left[n_{0} p_{0} k_{0}+n_{0} p_{0} k_{1}+n_{0} p_{0} k_{2}\right]^{2}+\ldots+\left[n_{2} p_{2} k_{0}+n_{2} p_{2} k_{1}+n_{2} p_{2} k_{2}\right]^{2}\right\} / 3 r-c . f$.
s.s. of NP = cell s.s. - Ns.s. - Ps.s.

			P			SUM
			0	1	2	
		N	012	012	012	
K	0		$\begin{aligned} & n_{0} p_{0} k_{0}+n_{1} p_{0} k_{0}+ \\ & n_{2} p_{0} k_{0} \end{aligned}$	$\begin{aligned} & n_{0} p_{1} k_{0}+n_{1} p_{1} k_{0}+ \\ & n_{2} p_{1} k_{0} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{0}+\mathrm{n}_{1} \mathrm{p}_{2} \mathrm{k}_{0}+ \\ & \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{0}+\ldots+\mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{0} \\ & ----\rightarrow \text { eq.(13) } \end{aligned}$
	1		$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} k_{1}+\mathrm{n}_{1} \mathrm{p}_{0} \mathrm{k}_{1}+ \\ & \mathrm{n}_{2} \mathrm{p}_{0} \mathrm{k}_{1} \end{aligned}$	$\begin{aligned} & n_{0} p_{1} k_{1}+n_{1} p_{1} k_{1}+ \\ & n_{2} p_{1} k_{1} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{1}+\mathrm{n}_{1} \mathrm{p}_{2} \mathrm{k}_{1}+ \\ & \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{1}+\ldots \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{1} \\ & ----\mathrm{eq} .(14) \end{aligned}$
	2		$\begin{aligned} & n_{0} p_{0} k_{2}+n_{1} p_{0} k_{2}+ \\ & n_{2} p_{0} k_{2} \end{aligned}$	$\begin{aligned} & n_{0} p_{1} k_{2}+n_{1} p_{1} k_{2}+ \\ & n_{2} p_{1} k_{2} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{2}+\mathrm{n}_{1} \mathrm{p}_{2} \mathrm{k}_{2}+ \\ & \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{0} \mathrm{k}_{2}+\ldots \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2} \\ & ---->\mathrm{eq} .(15) \end{aligned}$
			$\begin{aligned} & n_{0} p_{0} k_{0}+\ldots+ \\ & n_{2} p_{0} k_{2} \\ & ----\rightarrow \text { eq.(16) } \end{aligned}$	$\begin{aligned} & n_{0} p_{1} k_{0}+\ldots+ \\ & n_{2} p_{1} k_{2} \\ & ----- \text { eq.(17) } \end{aligned}$	$\begin{aligned} & \mathrm{n}_{0} \mathrm{p}_{2} \mathrm{k}_{0}+\ldots+ \\ & \mathrm{n}_{2} \mathrm{p}_{2} \mathrm{k}_{2} \\ & ----\rightarrow \text { eq.(18) } \end{aligned}$	Grand total

s.s. of $K=[\text { eq.(13) }]^{2}+[\text { eq. }(14)]^{2}+[\text { eq. (15) }]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$ $9 r$
s.s. of $P=[\text { eq.(16) }]^{2}+[\text { eq.(17) }]^{2}+[\text { eq.(18) }]^{2}-$ c.f. ; Where c.f. $=G^{2} / N$ $9 r$
cell s.s. due to $P K=\left\{\left[n_{0} p_{0} k_{0}+n_{1} p_{0} k_{0}+n_{2} p_{0} k_{0}\right]^{2}+\ldots+\left[n_{0} p_{2} k_{2}+n_{1} p_{2} k_{2}+n_{2} p_{2} k_{2}\right]^{2}\right\} / 3 r-$ c.f.
s.s. of $P K=$ cell s.s. $-P s . s .-K s . s$.

ANOVA TABLE OF 3^{3} FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Repli.	r-1	$\sum \mathrm{R}_{\mathrm{i}}^{2 / t}-\mathrm{C} . \mathrm{F}$.	$\sigma_{\mathrm{R}}{ }^{2}$	
Treat.combi.	$3^{3}-1=26$			
N	2	N s.s.	$\sigma_{N}{ }^{2}$	$\sigma_{N}{ }^{2 / \sigma_{e}}{ }^{2}$
P	2	P s.s.	$\sigma_{P}{ }^{2}$	$\sigma_{\mathrm{P}}{ }^{2 /} \sigma_{\mathrm{e}}{ }^{2}$
NP	4	NP s.s.	$\sigma_{N P}{ }^{2}$	$\sigma_{N P}{ }^{2 /} \sigma_{\mathrm{e}}{ }^{2}$
K	2	K s.s.	$\sigma_{K}{ }^{2}$	$\sigma_{K}{ }^{2} / \sigma_{e}{ }^{2}$
NK	4	NK s.s.	$\sigma_{N K}{ }^{2}$	$\sigma_{N K}{ }^{2} / \sigma_{\mathrm{e}}{ }^{2}$
PK	4	PK s.s.	$\sigma_{\text {PK }}{ }^{2}$	$\sigma_{P K}{ }^{2} / \sigma_{e}{ }^{2}$
NPK	8	NPK s.s.	$\sigma_{\text {NPK }}{ }^{2}$	$\sigma_{\text {NPK }}{ }^{2 / \sigma_{e}}{ }^{2}$
Error	26(r-1)	Es.s.	$\sigma_{e}{ }^{2}$	
total	$3^{3} \mathrm{r}-1$	$\sum Y_{i j}{ }^{2}$		

Importance of Factorial Experiment:

1) ficiency of factorial experiment is 2) Givvan informafion
2) The resuls of factoriall expe facto of factors and
optimum
Limits: large then the no. of possible treatment cor sinations is very laroe \Rightarrow the variance σ^{2} is inc ease $=>$ efficiency is crease.

