AGORAL TRANSMENT

Factorial Experiment: Definition:

- Let $x_1, x_2, ..., x_n$ are n factors at $s_1, s_2, ..., s_n$ levels, the combination of $s_1^{x_1}, s_2^{x_2}, ..., s_n^{x_n}$ called factorial experiment, where this combinations are called treatment combinations.
- Factorial experiment are of two types namely,
- Symmetrical factorial experiment (2^x*2^y=2^{x+y})
 Asymmetrical factorial experiment (2^x*3^y)

2ⁿ factorial experiment: *Definition:*

If we have n factors and each are at 2 levels, the treatment combinations in a block randomly, then the experiment is called 2ⁿ symmetrical factorial experiment.

2² factorial experiment:

The factors are two namely A and B, each are at two levels namely 0 and 1, so the four possible treatment combinations are,

a_0b_0	1	Α		В	
a ₀ b ₁	b	0	1	0	1
a ₁ b ₀	а				
a ₁ b ₁	ab				

Main effect:

Main effect is defined as average effect of all possible treatment combination at 2 level formed in 2 groups, such that level of 1 factor at each group is same, while level of other factors are different.

4 treatments are,

a₁b₁	a ₀ b ₁
a ₁ b ₀	a ₀ b ₀
$a_1b_1 + a_1b_0$	$a_0b_1+a_0b_0$

Interaction effect:

The interaction effect is defined as average of the average of the average of the average effect of all possible treatment combination in 2ⁿ factorial experiment. Such that level of one factor in each group is same while level of other factors are different.

Main effect:

Main effect is defined as contrast of all possible treatment combinations at two level formed in two groups, such that level of one factor in each group is same,while level of other factors are different.

Interaction effect:

Interaction effect is defined as contrast of the contrast of all possible treatment combination in 2 factorial experiment, such that level of one factor in each group is same,while level of other factors are different. There are three methods to estimate Main effect and Interaction effect:

Yate's method combinations

contrasts

 $A = -a_0b_0 - a_0b_1 + a_1b_0 + a_1b_1 = (a_1b_1 + a_1b_0) - (a_0b_1 + a_0b_0)$ $B = -a_0b_0 + a_0b_1 - a_1b_0 + a_1b_1 = (a_0b_1 + a_1b_1) - (a_0b_0 + a_1b_1)$ $AB = a_0b_0 - a_0b_1 - a_1b_0 + a_1b_1 = (a_1b_1 - a_0b_1) - (a_1b_0 - a_0b_0)$

2) Fisher & Yate's method :

A = (a-1)(b+1) = ab-b+a-1OR $\mathbf{A} = (a_1 - a_0)(b_1 + b_0) = a_1b_1 + a_1b_0 - a_0b_1 - a_0b_0$ $= (a_1b_1 + a_1b_0) - (a_0b_1 + a_0b_0)$ $\mathbf{B} = (b_1 - b_0)(a_1 + a_0) = a_1b_1 + a_0b_1 - a_1b_0 - a_0b_0$ $= (a_1b_1 + a_0b_1) - (a_1b_0 + a_0b_0)$ $AB = (a_1 - a_0)(b_1 - b_0) = a_1b_1 - a_1b_0 - a_0b_1 + a_0b_0$ $= (a_1b_1 - a_0b_1) - (a_1b_0 - a_0b_0)$

3)Ghosh method: Hadmard matrix of size m, where m=2,4,8,... i.e.m = 2ⁿ Take n= 2:

Then

 $H_4 = 1 -1 1 -1$ 1 1 -1 -1 1 -1 -1 1

1 1 1 1

Delete the first row of Hadmard matrix and write the remaining matrix of (m-1) * m and call H.

1 -1 1 -1 H= 1 1 -1 -1

1

-1 -1 1

Now the treatment combination from right to left,

 $A = a_1b_1 - a_0b_1 + a_1b_0 - a_0b_0 = (a_1b_1 + a_1b_0) - (a_0b_1 + a_0b_0)$ $B = a_1b_1 + a_0b_1 - a_1b_0 - a_0b_0 = (a_1b_1 + a_0b_1) - ((a_1b_0 + a_0b_0))$ $AB = a_1b_1 - a_0b_1 - a_1b_0 + a_0b_0 = (a_1b_1 - a_0b_1) - (a_1b_0 - a_0b_0)$

ANOVA TABLE OF 2² FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Replication	r-1	$\frac{\sum R_{i}^{2} - c.f. = R.S.S.}{t}$	σ _R ²	σ_R^2 / σ_e^2
Treatment combinatio n	4-1=3			
Α	1	$[A]^2/4r = A S.S.$	$[A]^{2}/4r = \sigma_{A}^{2}$	$\sigma_A^{2}/\sigma_e^{2}$
B	1	[B] ² /4r = B S.S .	$[B]^{2}/4r = \sigma_{B}^{2}$	$\sigma_{B}^{2}/\sigma_{e}^{2}$
AB	. 1	[AB]²/4r = AB S.S.	[AB]²/4r=σ _{AB} ²	$\sigma_{AB}^{2/2}$
Error	3(r-1)	By subtraction=Se ² = <i>E.S.S.</i>	σ _e ²	
Total	4(r-1)	$\Sigma Y_{ij}^2 - c.f. = T.S.S.$		

Example:

An agriculture experiment was conducted at Junagadh agriculture university to find the increase of groundnut of the application of 2 fertilizers of Nitrogen and Potash. Nitrogen was applied as 40 gm/hector and 80 gm/h, while Potash was applied at 50 gm/h and 100 gm/h. The groundnut seeds were planted in such way that the distance between 2 plants in a row is same. This experiment is conducted in 3 replication. The collected observations of groundnut are shown below.

Rep-1	Rep-2	Rep-3
a ₀ b ₀ (60)	a ₁ b ₁ (79)	a ₀ b ₁ (72)
a ₀ b ₁ (70)	a ₀ b ₀ (66)	a ₀ b ₀ (55)
a ₁ b ₀ (75)	a ₀ b ₁ (88)	a ₁ b ₀ (69)
a ₁ b ₁ (80)	a ₁ b ₀ (100)	a ₁ b ₁ (120)

Analyse the data and give your comments.

Calculation:

 H_0 :The distance between two plants in a row is same.

Table:

	Rep-1	Rep-2	Rep-3	Total
a ₀ b ₀	60	66	55	T ₀₀ =181
a ₀ b ₁	70	88	72	T ₀₁ =230
a ₁ b ₀	75	100	69	T ₁₀ =244
a ₁ b ₁	80	79	120	T ₁₁ =279
	285	333	316	G=934

C.F.= G²/N= (934)²/12 = 72696.33 Total S.S = $\sum Y_{ij}^2$ - C.F. =3539.67 Repli.s.s. = $\sum R_i^2/t$ - C.F. =296.17 Now,

A= $-T_{00}-T_{01}+T_{10}+T_{11}$ = -181-230+244+279 = 112s.s. due to A= [A]²/4r = (112) ²/12 = 1045.33

B= $T_{01} + T_{11} - T_{10} - T_{00} = 230 + 279 - 181 - 244 = 84$ s.s. due to B= [B] ² /4r = (84) ² /12 = 588

AB= $T_{11} - T_{10} + T_{00} - T_{01} = -14$ s.s. due to AB= [AB] ²/4r = 16.333

ANOVA TABLE:

S.V.	d.f.	S.S.	M.s.s.	F-ratio	F _t	
					5%	1%
Repli.	3-1=2	296.17	148.085	0.5574	5.14	10.92
Treat. combinatio n	4-1=3					
А	1	1045.33	1045.33	3.9351	5.99	13.74
В	1	588	588	2.2135	5.99	13.74
AB	1	16.333	16.333	0.0614	5.99	13.74
Error	6	1593.837	265.639			
Total	12-1=11	3539.67	321.788			

For repli.: **Fc**<**Ft** (for both level) => test is insignificant & we accept our H_0 .

For main effect **A** & **B** and interaction effect **AB**: **Fc**<**Ft** (for both level) => test is insignificant & we accept our H_0 .

2³ Factorial Experiment:

Let A,B,C are three factors, each are at two levels namely 0 and 1,so 2³ possible treatment combinations are,

a ₀ b ₀ c ₀	Α		B		С	
$a_0b_0c_1$	0	1	0	1	0	1
$a_0b_1c_0$						
$a_0b_1c_1$						
$a_1b_0c_0$						
$a_1b_0c_1$						
$a_1b_1c_0$						
a ₁ b ₁ c ₁						

Main effects and Interaction contrasts in 2³ factorials:

Combin	Main effects and Interactions						
ations	Α	В	С	AB	AC	BC	ABC
a ₀ b ₀ c ₀				+	+	+	
a ₀ b ₀ c ₁	_	-	+	+	_	-	+
a ₀ b ₁ c ₀	_	+	_	_	+	_	+
a ₀ b ₁ c ₁		+	+		_	+	_
a ₁ b ₀ c ₀	+	Ι		_	_	+	+
a ₁ b ₀ c ₁	+	I	+		+	I	_
a ₁ b ₁ c ₀	+	+	_	+	—	_	—
a ₁ b ₁ c ₁	+	+	+	+	+	+	+

Here, $A = -a_0b_0c_0 - a_0b_0c_1 - a_0b_1c_0 - a_0b_1c_1 + a_1b_0c_0 + a_1b_0c_1 + a_1b_1c_0 + a_1b_1c_1$ $= (a_1b_0c_0 + a_1b_0c_1 + a_1b_1c_0 + a_1b_1c_1) - (a_0b_0c_0 + a_0b_0c_1 + a_0b_1c_0 + a_0b_1c_1)$

 $B = -a_0b_0c_0 - a_0b_0c_1 + a_0b_1c_0 + a_0b_1c_1 - a_1b_0c_0 - a_1b_0c_1 + a_1b_1c_0 + a_1b_1c_1$ = $(a_1b_1c_0 + a_1b_1c_1 + a_0b_1c_0 + a_0b_1c_1) - (a_0b_0c_0 + a_0b_0c_1 + a_1b_0c_0 + a_1b_0c_1)$

 $C = -a_0b_0c_0 + a_0b_0c_1 - a_0b_1c_0 + a_0b_1c_1 - a_1b_0c_0 + a_1b_0c_1 - a_1b_1c_0 + a_1b_1c_1$ = $(a_1b_0c_1 + a_1b_1c_1 + a_0b_1c_1 + a_0b_0c_1) - (a_0b_0c_0 + a_0b_1c_0 + a_1b_0c_0 + a_1b_1c_0)$

 $AB = a_0b_0c_0 + a_0b_0c_1 - a_0b_1c_0 - a_0b_1c_1 - a_1b_0c_0 - a_1b_0c_1 + a_1b_1c_0 + a_1b_1c_1$ = $(a_0b_0c_0 + a_0b_0c_1 + a_1b_1c_0 + a_1b_1c_1) - (a_0b_1c_0 + a_0b_1c_1 + a_1b_0c_0 + a_1b_0c_1)$

 $ABC = -a_0b_0c_0 + a_0b_0c_1 + a_0b_1c_0 - a_0b_1c_1 + a_1b_0c_0 - a_1b_0c_1 - a_1b_1c_0 + a_1b_1c_1$ = $(a_0b_0c_1 + a_0b_1c_0 + a_1b_0c_0 + a_1b_1c_1) - (a_0b_0c_0 + a_0b_1c_1 + a_1b_0c_1 + a_1b_1c_0)$

ANOVA TABLE OF 2³ FACTORIAL EXPERIMENTS.

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Replication	r-1	<u>∑Ri2</u> – C.F.	σ_R^2	
		ti		
Treatment combination	2 ³ -1=7			
А	1	[A ^{]2} /2 ³ r	σ_A^2	σ_A^2/σ_e^2
В	1	[B] ² /2 ³ r	σ_B^2	$\sigma_{B}^{2}/\sigma_{e}^{2}$
AB	1	[AB] ² /2 ³ r	$\sigma_{AB}{}^2$	$\sigma_{AB}^{2}/\sigma_{e}^{2}$
С	1	[C] ² /2 ³ r	σ_{c}^{2}	$\sigma_{\rm C}^2/\sigma_{\rm e}^2$
AC	1	[AC] ² /2 ³ r	σ_{AC}^{2}	σ_{AC}^2/σ_e^2
BC	1	[BC] ² /2 ³ r	σ_{BC}^{2}	σ_{BC}^2/σ_e^2
ABC	1	[ABC] ² /2 ³ r	σ_{ABC}^{2}	$\sigma_{ABC}^2/\sigma_e^2$
Error	7(r-1)	By subtraction	σ_e^2	
Total	2 ³ r-1	∑Y _{ij} 2-C.F.		

3ⁿ Factorial Experiment: *Definition:*

If we have n factors and each are at 3 levels, then the treatment combinations in a block randomly then the experiment is called 3ⁿ symmetrical factorial experiment.

* when factors are taken at 3 levels instead of 2, the scope of the experiment increases. It becomes more informative. Further, when the levels of a factor are quantitative, the pattern of change of response with the increase of the level values of the factor can be studied in a better way. A study to investigate if the change is linear or quadratic is possible when the factors at 3 levels, though from this point of view the more the number of levels the better.

3² Factorial Experiment:

Let there are two factors N and P, each are at 3 levels namely 0,1, and 2.

<u> </u>			P		
0	1	2	0	1	2

All possible combinations are,

 $\begin{array}{ccc} n_{0}p_{0} & n_{1}p_{0} & n_{2}p_{0} \\ n_{0}p_{1} & n_{1}p_{1} & n_{2}p_{1} \end{array}$

 n_0p_2 n_1p_2 n_2p_2

Method 1:

- In 3² factorial experiment, there are two types of Main effect namely,
- 1) Linear Main effect
- 2) Quadratic Main effect

The contrast N_2 - N_0 gives the linear contrast among the three levels of N, if they are equispaced. It indicates a linear relation between the response and level values of N. The other contrast, N_2 - $2N_1$ + N_0 . This contrast indicates a quadratic relation between the levels and their responses.

Now,

 $N_{L} = N_{2} - N_{0}$

 $= (n_2p_0+n_2p_1+n_2p_2) - (n_0p_0+n_0p_1+n_0p_2)$

 $N_{Q} = N_{2} - 2N_{1} + N_{0}$

 $= (n_2p_0 + n_2p_1 + n_2p_2) - 2(n_1p_0 + n_1p_1 + n_1p_2) + (n_0p_0 + n_0p_1 + n_0p_2)$

 $P_{L} = P_{2} - P_{0} = (p_{2}n_{0} + p_{2}n_{1} + p_{2}n_{2}) - (p_{0}n_{0} + p_{0}n_{1} + p_{0}n_{2})$ $P_{Q} = P_{2} - 2P_{1} + P_{0}$ $= (p_2n_0 + p_2n_1 + p_2n_2) - 2(p_1n_0 + p_1n_1 + p_1n_2) + (p_0n_0 + p_0n_1 + p_0n_2)$ $N_1 P_1 = (N_2 - N_0)(P_2 - P_0)$ $= [(n_2p_0 + n_2p_1 + n_2p_2) - (n_0p_0 + n_0p_1 + n_0p_2)]$ $[(p_2n_0+p_2n_1+p_2n_2) - (p_0n_0+p_0n_1+p_0n_2)]$ $N_{L}P_{Q} = (N_{2}-N_{0})(P_{2}-2P_{1}+P_{0})$ $= [(n_2p_0 + n_2p_1 + n_2p_2) - (n_0p_0 + n_0p_1 + n_0p_2)]$ $[(p_2n_0+p_2n_1+p_2n_2) - 2(p_1n_0+p_1n_1+p_1n_2) + (p_0n_0+p_0n_1+p_0n_2)]$ $N_Q P_L = (N_2 - N1 + N_0)(P_2 - P_0)$ $= [(n_2p_0 + n_2p_1 + n_2p_2) - 2(n_1p_0 + n_1p_1 + n_1p_2) + (n_0p_0 + n_0p_1 + n_0p_2)]$ $[(p_2n_0+p_2n_1+p_2n_2) - (p_0n_0+p_0n_1+p_0n_2)]$ $N_0P_1 = (N_2 - N1 + N_0)(P_2 - 2P_1 + P_0)$ $= [(n_2p_0 + n_2p_1 + n_2p_2) - 2(n_1p_0 + n_1p_1 + n_1p_2) + (n_0p_0 + n_0p_1 + n_0p_2)]$ $[(p_2n_0+p_2n_1+p_2n_2) - (p_1n_0+p_1n_1+p_1n_2) + (p_0n_0+p_0n_1+p_0n_2)]$

Now,

s.s. of $N_L = (N_L)^2/6r$ s.s. of $N_Q = (N_Q)^2/18r$ s.s. of $P_L = (P_L)^2/6r$ s.s. of $P_Q = (P_Q)^2/18r$ s.s. of $N_L P_L = (N_L P_L)^2/36r$ s.s. of $N_L P_Q = (N_L P_Q)^2/108r$ s.s. of $N_Q P_L = (N_Q P_L)^2/108r$ s.s. of $N_Q P_Q = (N_Q P_Q)^2/324r$

s.s. of N= s.s. of N_L + s.s. of N_Q s.s. of P = s.s. of P_L + s.s. of P_Q s.s. of NP= s.s. of N_L P_L + s.s. of N_L P_Q + s.s. of N_Q P_L + s.s. of N_Q P_Q

Method-2 (Ghosh method) : 0 -> 3, 1->2, 2->6

Treatment combination	Replicatio n total	Col-1	Col-2	divi sor	s.s.= <u>(col-2)</u> ² divisor
00	R ₁	$R_1 + R_2 + R_3 = A$	A+B+C=G	9r	
01	R ₂	$R_4 + R_5 + R_6 = B$	D+E+F=P	6r	$P^2/6r=s.s.of P_L$
02	R ₃	$R_7 + R_8 + R_9 = C$	G+H+I=Q	18r	$Q^2/18r=s.s.of P_Q$
10	R ₄	$R_3 - R_1 = D$	C-A=R	6r	R ² /6r=s.s.of N _L
11	R ₅	$R_6 - R_4 = E$	F-D=S	4r	S ² /4r=s.s.of N _L P _L
12	R ₆	$R_9-R_7=F$	I-G=T	12r	$T^2/12r=s.s.of N_LP_Q$
20	R ₇	$R_3-2R_2+R_1=G$	C-2B+A=U	18r	U ² /18r=s.s.of N _Q
21	R ₈	$R_6-2R_5+R_4=H$	F-2E+D=V	12r	$V^2/12r=s.s.of N_QP_L$
22	R ₉	$R_9-2R_8+R_7=I$	I-2H+G=W	36r	$W^2/36r=s.s.of N_QP_Q$

ANOVA TABLE OF 3² FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.(s.s./d.f.)	F-ratio
Replication	r-1	$\Sigma R_i^2 / t - c.f.$	σ_R^2	σ_R^2/σ_e^2
Treat.Combi.	3 ² -1=8			
N	2	N _L s.s _. +N _Q s.s	σ_N^2	σ_N^2/σ_e^2
NL	1	N _L s.s	σN_L^2	$\sigma N_L^2 / \sigma_e^2$
N _Q	1	N _Q s.s	σN_Q^2	$\sigma N_Q^2 / \sigma_e^2$
Р	2	P _L s.s +P _Q s.s	σ_P^2	$\sigma_{P}^{2}/\sigma_{e}^{2}$
PL	1	P _L s.s	σP_L^2	$\sigma P_L^2 / \sigma_e^2$
Pq	1	P _Q s.s	σP _Q ²	$\sigma P_Q^2 / \sigma_e^2$
NP	4	$N_LP_Ls.s++N_QP_Qs.s$	σ_{NP}^{2}	$\sigma_{\rm NP}^{2}/\sigma_{\rm e}^{2}$
N _L P _L	1	N _L P _L s.s	$\sigma N_L P_L^2$	$\sigma N_L P_L^2 / \sigma_e^2$
N _L P _Q	1	N _L P _Q s.s	$\sigma N_L P_Q^2$	$\sigma N_L P_Q^2 / \sigma_e^2$
N _Q P _L	1	N _Q P _L s.s	$\sigma N_Q P_L^2$	$\sigma N_Q P_L^2 / \sigma_e^2$
N _Q P _Q	1	N _Q P _Q s.s	σN _Q P _Q ²	$\sigma N_Q P_Q^2 / \sigma_e^2$
Error	8(r-1)	By subtraction	σ_e^2	
Total	3 ² r-1	ΣY_{ii}^2 - c.f.		

Method-3:

			SUM		
		0	1	2	
	0	n _o p _o	n ₁ p ₀	n ₂ p ₀	$n_0 p_0 + n_1 p_0 + n_2 p_0$ >eq.(1)
Ρ	1	n _o p ₁	n ₁ p ₁	n ₂ p ₁	$n_0p_1+n_1p_1+n_2p_1$ \rightarrow eq.(2)
	2	n ₀ p ₂	n ₁ p ₂	n ₂ p ₂	$n_0p_1+n_1p_2+n_2p_2$ >eq.(3)
SUM		n ₀ p ₀ +n ₀ p ₁ +n ₀ p ₂ →eq.(4)	n ₁ p ₀ +n ₁ p ₁ +n ₁ p ₂ →eq.(5)	n ₂ p ₀ +n ₂ p ₁ +n ₂ p ₂ →eq.(6)	Grand Total

S.S. of P = $[eq.(1)]^2 + [eq.(2)]^2 + [eq.(3)]^2 - c.f.$; Where c.f.=G²/N 3r

S.S. of $N = [eq.(4)]^2 + [eq.(5)]^2 + [eq.(6)]^2 - c.f.$

Cell s.s. due to NP = $[n_0p_0^2+n_1p_0^2+...+n_2p_2^2]/r - C.f.$ s.s. of NP = cell s.s. due to NP – s.s. of N – s.s. of P

ANOVA TABLE OF 3² FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Repli.	r-1	$\frac{\sum Ri2}{ti} - C.F.$	σ_R^2	
Treatment combination	3 ² – 1=8			
Ν	2	N s.s.	σ_N^2	σ_N^2/σ_e^2
Р	2	Ps.s.	σ _P ²	$\sigma_{\rm P}^{2}/\sigma_{\rm e}^{2}$
NP	4	NP s.s.	σ_{NP}^{2}	$\sigma_{\rm NP}^{2}/\sigma_{\rm e}^{2}$
Error	8(r-1)	Es.s.	σ_e^2	
total	9r-1	T s.s.	1.11	4.5

Example:

N and P were considered sugarcane in Saurashtra region.Nitrogen are considered at 3 level namely 30 gm/h, 80 gm/h, 120 gm/h. Similarly phospharas was taken at 3 different level namely 60 gm/h, 100 gm/h and 150 gm/h. The experiment is conducted in 3 replications. The collected data is shown below:

Repli1	Repli2	Repli3
n ₀ p ₀ (40)	n ₁ p ₀ (67)	n ₂ p ₂ (76)
n ₀ p ₁ (60)	n ₁ p ₁ (86)	n ₂ p ₀ (89)
n ₀ p ₂ (65)	n ₁ p ₂ (94)	n ₀ p ₀ (44)
n ₁ p ₀ (80)	n ₀ p ₁ (55)	n ₁ p ₁ (99)
n ₁ p ₁ (85)	n ₀ p ₂ (48)	n ₁ p ₂ (105)
n ₁ p ₂ (90)	n ₀ p ₀ (42)	n ₀ p ₁ (49)
n ₂ p ₀ (70)	n ₂ p ₁ (78)	n ₀ p ₂ (50)
n ₂ p ₁ (72)	n ₂ p ₂ (85)	n ₁ p ₀ (106)
n ₂ p ₂ (84)	n ₂ p ₀ (60)	n ₂ p ₁ (87)

Analyse the data and give your comments.

Calculation:

H₀: The experiment is conducted in 3 replications.

	ł	Total		
	R1	R2	R3	
n _o p _o	40	42	44	126
n ₁ p ₁	60	55	49	164
n ₀ p ₂	65	48	50	163
n ₁ p ₀	80	67	106	253
n ₁ p ₁	85	86	99	270
n ₁ p ₂	90	94	105	289
n ₂ p ₀	70	60	89	219
n ₂ p ₁	72	78	87	237
n ₂ p ₂	84	85	76	245
Total	646	615	705	1966 = G

s.s. of P = $[(598)^2 + (671)^2 + (697)^2] - c.f.$

3*3

s.s. of P = 144005.5556 - 143153.9259= 585.4074**s.s.** of N = $(453)^2 + (812)^2 + (701)^2 - 143153.9259$ 3*3 = 7507.6296 **Cell s.s. due to NP =** $(126)^2 + \dots + (245)^2 - 143153.9259$ 3 = (453926/3) - 143153.9259 = 8154.740767s.s. of NP = cell s.s. of NP - s.s. of N - s.s. of P = 8154.740767-7507.6296-585.4074= 61.703767

ANOVA TABLE:

S.V.	d.f.	S.S.	M.s.s.	F-ratio		F _t
					5%	1%
Repli	3-1=2	464.5185	232.2592	2.6452	3.63	6.23
Treat.comb	3 ² –1=8					
Ν	2	7507.629	3753.814	42.7537	3.63	6.23
Р	2	585.4074	292.7037	3.3337	3.63	6.23
NP	4	61.7037	15.4259	0.1756	3.01	4.77
Error	16	1404.814	87.8009			
total	27-1=26	10024.074				

For repli.: $\mathbf{Fc} < \mathbf{Ft}$ (for both level) => test is insignificant & we accept our H₀. For main effect N: $\mathbf{Fc} > \mathbf{Ft}$ (for both level) => test is significant & we reject our H₀. For main effect P; $\mathbf{Fc} < \mathbf{Ft}$ (for both level)=> test is insignificant & we accept our H₀ For interaction effect NP; $\mathbf{Fc} < \mathbf{Ft}$ (for both level)=> test is insignificant & we accept our H₀

3³ Factorial Experiment:

Let there are three factors N and P and K, each are at 3 levels namely 0,1, and 2.

Ν P K 0 0 1 2 0 1 2 1 2 All possible combinations are, n_op_ok_o $n_1 p_0 k_0$ $n_2 p_0 k_0$ $n_0 p_0 k_1$ $n_1p_0k_1$ $n_2 p_0 k_1$ $n_0 p_0 k_2$ $n_1 p_0 k_2$ $n_2 p_0 k_2$ $n_0 p_1 k_0$ $n_1p_1k_0$ $n_2 p_1 k_0$ $n_0 p_1 k_1$ $n_1p_1k_1$ $n_2 p_1 k_1$ $n_2p_1k_2$ $n_0 p_1 k_2$ $n_1p_1k_2$ $n_0 p_2 k_0$ $n_1p_2k_0$ $n_2 p_2 k_0$ $n_1p_2k_1$ $n_2p_2k_1$ $n_0 p_2 k_1$ $n_1p_2k_2$ $n_0 p_2 k_2$ $n_2p_2k_2$

Method 1:

In 3² factorial experiment, there are two types of Main effect namely,

- 1) Linear Main effect
- 2) Quadratic Main effect

The contrast N_2 - N_0 gives the linear contrast among the three levels of N, if they are equispaced. It indicates a linear relation between the response and level values of N.

The other contrast, $N_2 - 2N_1 + N_0$. This contrast indicates a quadratic relation between the levels and their responses.

Now,

 $\mathsf{N}_{\mathsf{L}} = \mathsf{N}_2 \text{-} \mathsf{N}_0$

 $=(n_{2}p_{0}k_{0}+n_{2}p_{0}k_{1}+n_{2}p_{0}k_{2}+n_{2}p_{1}k_{0}+n_{2}p_{1}k_{1}+n_{2}p_{1}k_{2}+n_{2}p_{2}k_{0}+n_{2}p_{2}k_{1}+n_{2}p_{2}k_{2})-(n_{0}p_{0}k_{0}+n_{0}p_{0}k_{1}+n_{0}p_{0}k_{2}+n_{0}p_{1}k_{0}+n_{0}p_{1}k_{1}+n_{0}p_{1}k_{2}+n_{0}p_{2}k_{0}+n_{0}p_{2}k_{1}+n_{0}p_{2}k_{2})$

 $N_{Q} = N_{2} - 2N_{1} + N_{0}$

 $= (n_{2}p_{0}k_{0}+n_{2}p_{0}k_{1}+n_{2}p_{0}k_{2}+n_{2}p_{1}k_{0}+n_{2}p_{1}k_{1}+n_{2}p_{1}k_{2}+n_{2}p_{2}k_{0}+n_{2}p_{2}k_{1}+n_{2}p_{2}k_{2})^{-}$ $2(n_{1}p_{0}k_{0}+n_{1}p_{0}k_{1}+n_{1}p_{0}k_{2}+n_{1}p_{1}k_{0}+n_{1}p_{1}k_{1}+n_{1}p_{1}k_{2}+n_{1}p_{2}k_{0}+n_{1}p_{2}k_{1}+n_{1}p_{2}k_{2})$ $+(n_{0}p_{0}k_{0}+n_{0}p_{0}k_{1}+n_{0}p_{0}k_{2}+n_{0}p_{1}k_{0}+n_{0}p_{1}k_{1}+n_{0}p_{1}k_{2}+n_{0}p_{2}k_{0}+n_{0}p_{2}k_{1}+n_{0}p_{2}k_{2})$ $P_{L}=P_{2}-P_{0}$ $K_{L}=K_{2}-K_{0}$ $N_{Q}P_{L}K_{L}=(N_{2}-2N_{1}+N_{0})(P_{2}-P_{0})(K_{2}-K_{0})$ $N_{L}P_{L}K_{L}=(N_{2}-N_{0})(P_{2}-P_{0})(K_{2}-K_{0})$ $N_{Q}P_{L}=(N_{2}-2N_{1}+N_{0})(P_{2}-P_{0})$ $N_{Q}P_{Q}=(N_{2}-2N_{1}+N_{0})(P_{2}-P_{0})$ $N_{Q}P_{Q}=(N_{2}-2N_{1}+N_{0})(P_{2}-P_{0})$ $N_{Q}P_{Q}=(N_{2}-2N_{1}+N_{0})(P_{2}-2P_{1}+P_{0})$ $P_{1}K_{1}=(P_{2}-P_{0})(K_{2}-K_{0})$

$$\begin{split} &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{L}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{N}_{0}) \\ &\mathsf{N}_{\mathsf{L}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - \mathsf{N}_{0})(\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0}))(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{K}_{0}) \\ &\mathsf{N}_{\mathsf{L}}\mathsf{P}_{\mathsf{L}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - \mathsf{N}_{0})(\mathsf{P}_{2} - \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{K}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{L}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - \mathsf{K}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{K}_{\mathsf{Q}} = (\mathsf{N}_{2} - 2\mathsf{N}_{1} + \mathsf{N}_{0}) (\mathsf{P}_{2} - 2\mathsf{P}_{1} + \mathsf{P}_{0})(\mathsf{K}_{2} - 2\mathsf{K}_{1} + \mathsf{P}_{0}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{N}_{\mathsf{Q}} = (\mathsf{N}_{\mathsf{Q}} - 2\mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}}) (\mathsf{P}_{\mathsf{Q}} - 2\mathsf{P}_{\mathsf{Q}} + \mathsf{P}_{\mathsf{Q}}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{N}_{\mathsf{Q}} = (\mathsf{N}_{\mathsf{Q}} - 2\mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}}) (\mathsf{P}_{\mathsf{Q}} - 2\mathsf{P}_{\mathsf{Q}} + \mathsf{P}_{\mathsf{Q}}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{P}_{\mathsf{Q}}\mathsf{N}_{\mathsf{Q}} = (\mathsf{N}_{\mathsf{Q}} - 2\mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{N}_{\mathsf{Q}} = \mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}}) \\ \\ &\mathsf{N}_{\mathsf{Q}}\mathsf{N}_{\mathsf{Q}} = \mathsf{N}_{\mathsf{Q}} = \mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}} = \mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{\mathsf{Q}} \\ \\ \\ &\mathsf{N}_{\mathsf{Q}} = \mathsf{N}_{\mathsf{Q}} + \mathsf{N}_{$$

 $P_{L}K_{Q} = (P_{2}-P_{0})(K_{2}-2K_{1}+K_{0})$ $P_{Q}K_{Q} = (P_{2}-2P_{1}+P_{0})(K_{2}-2K_{1}+N_{0})$ $N_{Q}K_{L} = (N_{2}-2N_{1}+N_{0})(K_{2}-K_{0})$ $N_{L}P_{L} = (N_{2}-N_{0})(P_{2}-P_{0})$ $N_{0})N_{L}K_{L} = (N_{2}-N_{0})(K_{2}-K_{0})$ $N_{L}P_{Q} = (N_{2}-N_{0})(P_{2}-2P_{1}+P_{0})$ $N_{L}K_{Q} = (N_{2}-N_{0})(K_{2}-2K_{1}+K_{0})$

- s.s. of $N_L K_Q = (N_L K_Q)^2 / 972r$
- s.s. of $N_1 K_1 = (N_1 K_1)^2/324r$
- s.s. of $P_Q K_Q = (P_Q K_Q)^2 / 2916r$
- s.s. of $P_0K_1 = (P_0K_1)^2/972r$
- s.s. of $P_L K_0 = (P_L K_0)^2 / 972r$
- s.s. of $P_L K_L = (P_L K_L)^2 / 324r$
- s.s. of $N_Q P_Q = (N_Q P_Q)^2 / 2916r$
- s.s. of $N_0 P_1 = (N_0 P_1)^2/972r$
- s.s. of $N_L P_Q = (N_L P_Q)^2/972r$
- s.s. of $N_L P_L = (N_L P_L)^2/324r$
- s.s. of K_Q= (K_Q)²/54r
- s.s. of K_L= (K_L)²/18r
- s.s. of P_Q= (P_Q)²/54r
- s.s. of P_L= (P_L)²/18r
- s.s. of N_Q= (N_Q)²/54r
- s.s. of N_L= (N_L)²/18r

- s.s. of N_QP_QK_Q= (N_QP_QK_Q)²/157464r
- s.s. of $N_Q P_Q K_L = (N_Q P_Q K_L)^2 / 52488r$
- s.s. of $N_Q P_L K_Q = (N_Q P_L K_Q)^2 / 52488r$
- s.s. of $N_Q P_L K_L = (N_Q P_L K_L)^2 / 17496r$
- s.s. of $N_L P_Q K_Q = (N_L P_Q K_Q)^2 / 52488r$
- s.s. of $N_L P_Q K_L = (N_L P_Q K_L)^2 / 17496r$
- s.s. of N_LP_LK_Q= (N_LP_LK_Q)²/17496r
- s.s. of $N_L P_L K_L = (N_L P_L K_L)^2 / 5832r$

- s.s. of N_QK_Q= (N_QK_Q)²/2916r
- s.s. of $N_Q K_L = (N_Q K_L)^2 / 972r$

Now,

Method-3:

	Ν			SUM		
			0	1	2	
		Ρ	0 1 2	0 1 2	0 1 2	
К	0		n ₀ p ₀ k ₀ +n ₀ p ₁ k ₀ + n ₀ p ₂ k ₀	n ₁ p ₀ k ₀ +n ₁ p ₁ k ₀ + n ₁ p ₂ k ₀	n ₂ p ₀ k ₀ +n ₂ p ₁ k ₀ + n ₂ p ₂ k ₀	n ₀ p ₀ k ₀ ++ n ₂ p ₂ k ₀ →eq.(1)
	1		n ₀ p ₀ k ₁ +n ₀ p ₁ k ₁ + n ₀ p ₂ k ₁	n ₁ p ₀ k ₁ +n ₁ p ₁ k ₁ + n ₁ p ₂ k ₁	n ₂ p ₀ k ₁ +n ₂ p ₁ k ₁ + n ₂ p ₂ k ₁	n ₀ p ₀ k ₁ +… n ₂ p ₂ k ₁ →eq.(2)
	2		n ₀ p ₀ k ₂ +n ₀ p ₁ k ₂ + n ₀ p ₂ k ₂	n ₁ p ₀ k ₂ +n ₁ p ₁ k ₂ + n ₁ p ₂ k ₂	n ₂ p ₀ k ₂ +n ₂ p ₁ k ₂ + n ₂ p ₂ k ₂	n ₀ p ₀ k ₂ +… n ₂ p ₂ k ₂ →eq.(3)
			n ₀ p ₀ k ₀ +…+ n ₀ p ₂ k ₂ →eq.(4)	n₁p₀k₀+…+ n₁p₂k₂ →eq.(5)	n₂p₀k₀+…+ n₂p₂k₂ →eq.(6)	Grand total

s.s. of K= $[eq.(1)]^2 + [eq.(2)]^2 + [eq.(3)]^2 - c.f.$; Where c.f.=G²/N 9r s.s. of N= $[eq.(4)]^2 + [eq.(5)]^2 + [eq.(6)]^2 - c.f.$; Where c.f.=G²/N cell s.s. due to NK={ $[n_0p_0k_0+n_0p_1k_0+n_0p_2k_0]^2+...+[n_2p_0k_2+n_2p_1k_2+n_2p_2k_2]^2$ }/3r-c.f.

s.s. of NK = cell s.s. - Ns.s. - Ks.s.

				SUM		
			0	1	2	
		K	0 1 2	0 1 2	0 1 2	
Ρ	0		n ₀ p ₀ k ₀ +n ₀ p ₀ k 1+ n ₀ p ₀ k ₂	n ₁ p ₀ k ₀ +n ₁ p ₀ k ₁ + n ₁ p ₀ k ₂	n ₂ p ₀ k ₀ +n ₂ p ₀ k ₁ + n ₂ p ₀ k ₂	n ₀ p ₀ k ₀ ++ n₂p ₀ k₂ →eq.(7)
	1		n ₀ p ₁ k ₀ +n ₀ p ₁ k 1+n ₀ p ₁ k ₂	n ₁ p ₁ k ₀ +n ₁ p ₁ k ₁ + n ₁ p ₁ k ₂	n ₂ p ₁ k ₀ +n ₂ p ₁ k ₁ + n ₂ p ₁ k ₂	n ₀ p ₁ k ₀ + n ₂ p ₁ k ₂ →eq.(8)
	2		n ₀ p ₂ k ₀ +n ₀ p ₂ k 1+ n ₀ p ₂ k ₂	n ₁ p ₂ k ₀ +n ₁ p ₂ k 1+ n ₁ p ₂ k ₂	n ₂ p ₂ k ₀ +n ₂ p ₂ k ₁ + n ₂ p ₂ k ₂	n ₀ p ₂ k ₀ + n ₂ p ₂ k ₂ →eq.(9)
			n ₀ p ₀ k ₀ ++ n ₀ p ₂ k ₂ →eq.(10)	$n_1 p_0 k_0^+ \dots^+$ $n_1 p_2 k_2^-$ 	$n_2 p_0 k_0 + + n_2 p_2 k_2$ >eq.(12)	Grand total

s.s. of P= $[eq.(7)]^2 + [eq.(8)]^2 + [eq.(9)]^2 - c.f.$; Where c.f.=G²/N 9r s.s. of N= $[eq.(10)]^2 + [eq.(11)]^2 + [eq.(12)]^2 - c.f.$; Where c.f.=G²/N 9r

cell s.s. due to NP={ $[n_0p_0k_0+n_0p_0k_1+n_0p_0k_2]^2+...+[n_2p_2k_0+n_2p_2k_1+n_2p_2k_2]^2$ }/3r-c.f. s.s. of NP = cell s.s. – Ns.s. – Ps.s.

				SUM		
			0	1	2	
		Ν	0 1 2	0 1 2	0 1 2	
к	0		$n_0 p_0 k_0 + n_1 p_0 k_0 + n_2 p_0 k_0$	$n_0 p_1 k_0 + n_1 p_1 k_0 + n_2 p_1 k_0$	$n_0 p_2 k_0 + n_1 p_2 k_0 + n_2 p_2 k_0$	$n_0 p_0 k_0 + + n_2 p_2 k_0$ >eq.(13)
	1		$n_0 p_0 k_1 + n_1 p_0 k_1 + n_2 p_0 k_1$	$n_0 p_1 k_1 + n_1 p_1 k_1 + n_2 p_1 k_1$	$n_0 p_2 k_1 + n_1 p_2 k_1 + n_2 p_2 k_1$	n ₀ p ₀ k ₁ +… n ₂ p ₂ k ₁ →eq.(14)
	2		$n_0 p_0 k_2 + n_1 p_0 k_2 + n_2 p_0 k_2$	$n_0 p_1 k_2 + n_1 p_1 k_2 + n_2 p_1 k_2$	$n_0 p_2 k_2 + n_1 p_2 k_2 + n_2 p_2 k_2$	$n_0 p_0 k_2 + n_2 p_2 k_2$ >eq.(15)
			$n_0 p_0 k_0 + + n_2 p_0 k_2$ >eq.(16)	$n_0 p_1 k_0 + + n_2 p_1 k_2$ >eq.(17)	n ₀ p ₂ k ₀ +…+ n ₂ p ₂ k ₂ →eq.(18)	Grand total

s.s. of K= $[eq.(13)]^2 + [eq.(14)]^2 + [eq.(15)]^2 - c.f.$; Where c.f.=G²/N 9r s.s. of P= $[eq.(16)]^2 + [eq.(17)]^2 + [eq.(18)]^2 - c.f.$; Where c.f.=G²/N 9r cell s.s. due to PK={ $[n_0p_0k_0+n_1p_0k_0+n_2p_0k_0]^2 + ... + [n_0p_2k_2+n_1p_2k_2+n_2p_2k_2]^2$ }/3r-c.f.

s.s. of PK = cell s.s. - Ps.s. - Ks.s.

ANOVA TABLE OF 3³ FACTORIAL EXPERIMENT:

S.V.	d.f.	S.S.	M.s.s.	F-ratio
Repli.	r-1	$\Sigma R_i^2/t - C.F.$	σ_R^2	
Treat.combi.	3 ³ -1=26			
N	2	N s.s.	σ_N^2	$\sigma_{\rm N}^{2}/\sigma_{\rm e}^{2}$
Р	2	P s.s.	σ_{P}^{2}	$\sigma_{\rm P}^{2}/\sigma_{\rm e}^{2}$
NP	4	NP s.s.	σ_{NP}^{2}	$\sigma_{\rm NP}^{2}/\sigma_{\rm e}^{2}$
K	2	K s.s.	σ_{K}^{2}	$\sigma_{\rm K}^{2}/\sigma_{\rm e}^{2}$
NK	4	NK s.s.	$\sigma_{\rm NK}^{2}$	$\sigma_{\rm NK}{}^{2}/\sigma_{\rm e}{}^{2}$
РК	4	PK s.s.	σ_{PK}^{2}	$\sigma_{\rm PK}{}^2/\sigma_{\rm e}{}^2$
NPK	8	NPK s.s.	σ _{NPK} ²	$\sigma_{\rm NPK}^{2}/\sigma_{\rm e}^{2}$
Error	26(r-1)	E s.s.	σ_e^2	
total	3 ³ r -1	ΣY_{ij}^2		

Importance of Factorial Experiment:
 The efficiency of factorial experiment is more.
 Give an information about effects of factors and interactions of factorial experiment.
 The results of factorial experiment is very optimum.

Limits:

If the no. of factors or no. of level of factors is very large, then the no. of possible treatment combinations is very large => the variance σ² is increase => efficiency is decrease.
 Ex.: 2³ = (256, 2⁹ = 512, 5³ = 512...)

