
SAS Certification Prep Guide: Base Programming for SAS 9

Table of Contents

2

Chapter 1: Basic Concepts .. 6
Overview .. 7

Introduction .. 7
Objectives ... 7

SAS Programs ... 7
Components of SAS Programs .. 7
Characteristics of SAS Programs ... 8
Layout for SAS Programs.. 9
Processing SAS Programs ... 9
Log Messages.. 9
Results of Processing ... 10

SAS Libraries... 12
How SAS Files Are Stored... 12
Storing Files Temporarily or Permanently .. 13

Referencing SAS Files .. 14
Two-Level Names .. 14
Referencing Temporary SAS Files.. 14
Referencing Permanent SAS Files.. 15
Rules for SAS Names ... 15

SAS Data Sets... 15
Overview of Data Sets.. 16
Descriptor Portion .. 16
Data Portion .. 16
Observations (Rows).. 17

Variable Attributes... 17
Name.. 17
Type ... 18
Length .. 18
Format .. 18
Informat.. 19
Label... 19
Variables (Columns) ... 20
Missing Values ... 20

Summary.. 21
Text Summary... 21
Points to Remember .. 22

Quiz ... 23
Chapter 2: Referencing Files and Setting Options ... 26

Overview .. 26
Introduction .. 26
Objectives ... 26

Referencing Files... 27
SAS Libraries ... 27

3

Assigning Librefs.. 27
Verifying Librefs... 28
How Long Librefs Remain in Effect.. 28
Specifying Two-Level Names .. 28
Other Formats ... 28

Viewing the Contents of SAS Libraries .. 30
The CONTENTS Procedure ... 30
The DATASETS Procedure .. 32

Setting SAS System Options... 33
SAS Output ... 33
Handling Two-Digit Year Values: Year 2000 Compliance........................... 38

Viewing System Options .. 41
The OPTIONS Procedure .. 42

Additional System Options ... 43
Summary.. 43

Text Summary... 43
Points to Remember .. 44

Quiz ... 44
Chapter 3: Editing and Debugging SAS Programs ... 49

Overview .. 49
Introduction .. 49
Objectives ... 49

SAS Program Layout.. 49
Interpreting Error Messages... 50

Error Types ... 50
Syntax Errors... 50

Correcting Errors... 51
Resubmitting a Revised Program .. 51

Resolving Common Problems ... 53
Missing RUN Statement .. 53
Missing Semicolon.. 54
Unbalanced Quotation Marks .. 55
Invalid Option.. 57

Additional Features ... 57
Comments in SAS Programs ... 58
SAS System Options... 58

Summary.. 58
Text Summary... 58
Points to Remember .. 59

Quiz ... 59
Chapter 4: Creating List Reports.. 62

Overview .. 62
Introduction .. 62
Objectives ... 62

4

Types of Reports... 63
Basic Report .. 63
Column Totals ... 63
Sorting and Labels ... 64
Selected Observations and Variables ... 65

Creating a Basic Report ... 66
Selecting Observations ... 68
Removing the OBS Column... 69

Identifying Observations.. 69
Example .. 70

Selecting Observations .. 71
Specifying WHERE Expressions ... 72
Using the CONTAINS Operator ... 73
Specifying Compound WHERE Expressions .. 73
Examples of WHERE Statements... 73

Sorting Data ... 74
Example .. 74

Generating Column Totals.. 76
Requesting Subtotals ... 77
Creating a Customized Layout with BY Groups and ID Variables 78
Requesting Subtotals on Separate Pages... 80

Double-Spacing Listing Output ... 81
Specifying Titles and Footnotes.. 82

TITLE and FOOTNOTE Statements.. 82
Modifying and Canceling Titles and Footnotes.. 85

Assigning Descriptive Labels .. 86
Temporarily Assigning Labels to Variables ... 86

Formatting Data Values ... 88
Temporarily Assigning Formats to Variables... 88
Specifying SAS Formats.. 89

Using Permanently Assigned Labels and Formats .. 90
Additional Features ... 91
Summary.. 92

Text Summary... 92
Points to Remember .. 93

Quiz ... 94
Chapter 5: Creating SAS Data Sets from Raw Data 100

Overview .. 100
Introduction .. 100
Objectives ... 100

Raw Data Files .. 101
Steps to Create a SAS Data Set.. 101
Referencing a SAS Library.. 102

Using a LIBNAME Statement... 102

5

Referencing a Raw Data File .. 103
Using a FILENAME Statement ... 103
Referencing a Fully Qualified Filename .. 104
Referencing a File in an Aggregate Storage Location.............................. 104

Writing a DATA Step Program .. 105
Naming the Data Set.. 105
Specifying the Raw Data File .. 105
Column Input .. 106
Describing the Data ... 107

Submitting the DATA Step Program.. 109
Verifying the Data.. 109
Checking DATA Step Processing.. 110
Listing the Data Set ... 110
Reading the Entire Raw Data File.. 111
Invalid Data... 112

Creating and Modifying Variables ... 113
SAS Expressions .. 114
Using Operators in SAS Expressions .. 114
More Examples of Assignment Statements .. 115
Date Constants .. 116

Subsetting Data .. 117
Reading Instream Data.. 117

Example .. 118
Steps to Create a Raw Data File ... 119

Using the_NULL_ Keyword ... 120
Specifying the Raw Data File .. 120
Describing the Data ... 121

Additional Features ... 122
Summary.. 122

Text Summary... 122
Points to Remember .. 124

Quiz ... 124
Chapter 6: Understanding DATA Step Processing.. 131

Overview .. 131
Introduction .. 131
Objectives ... 131

Writing Basic DATA Steps .. 131
How SAS Processes Programs .. 133
Compilation Phase... 133

Input Buffer .. 133
Program Data Vector.. 133
Syntax Checking .. 134
Data Set Variables ... 134
Descriptor Portion of the SAS Data Set.. 134

6

Summary of the Compilation Phase... 136
Execution Phase.. 136

Example .. 137
Initializing Variables ... 137
Input Data... 138
Input Pointer ... 138
End of the DATA Step .. 140
Iterations of the DATA Step.. 141
End-of-File Marker ... 142
Summary of the Execution Phase.. 144
End of the Execution Phase .. 144

Debugging a DATA Step .. 145
Diagnosing Errors in the Compilation Phase... 145
Diagnosing Errors in the Execution Phase.. 145

Testing Your Programs .. 149
Writing a NULL Data Set... 149
Limiting Observations... 150
PUT Statement .. 150

Summary.. 152
Text Summary... 152
Points to Remember .. 153

Quiz ... 153
Chapter 7: Creating and Applying User-Defined.. 156

Overview .. 156
Introduction .. 156
Objectives ... 157

Introduction to PROC FORMAT... 157
Invoking PROC FORMAT.. 158

Permanently Storing Your Formats.. 158
Defining a Unique Format .. 159

Specifying Value Ranges .. 160
Defining Multiple Formats... 161

Associating User-Defined Formats with Variables....................................... 162
Referencing Your Formats .. 162
Assigning Your Formats to Variables ... 163
Displaying a List of Your Formats.. 165

Summary.. 165
Text Summary... 165
Points to Remember .. 166

Quiz ... 166

Chapter 1: Basic Concepts

7

Overview

Introduction
To program effectively using SAS, you need to understand basic concepts about SAS programs and the SAS files that
they process. In particular, you need to be familiar with SAS data sets.

In this chapter, you'll examine a simple SAS program and see how it works. You'll see how SAS data sets are stored
temporarily or permanently in SAS libraries. You'll also learn details about SAS data sets, which are files that contain data
that is logically arranged in a form that SAS can understand.

Objectives
In this chapter, you learn about
� the structure and components of SAS programs
� the steps involved in processing SAS programs
� SAS libraries and the types of SAS files that they contain
� temporary and permanent SAS libraries
� The structure and components of SAS data sets.

SAS Programs
You can use SAS programs to access, manage, analyze, or present your data. Let's begin by looking at a simple SAS
program.
data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

This program creates a new SAS data set from an existing SAS data set and then prints a listing of the new data set. A SAS
data set is a data file that is formatted in a way that SAS can understand.

Let's see how this program works.

Components of SAS Programs
Our sample SAS program contains two steps: a DATA step and a PROC step.

8

data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

These two types of steps, alone or combined, form most SAS programs.

A SAS program can consist of a DATA step

or a PROC step

or any combination of DATA and PROC steps.

DATA steps typically create or modify SAS data sets. They can also be used to produce custom-designed reports. For
example, you can use DATA steps to
� put your data into a SAS data set
� compute values
� check for and correct errors in your data
� produce new SAS data sets by subsetting, merging, and updating existing data sets.

PROC (procedure) steps are pre-written routines that enable you to analyze and process the data in a SAS data set and to
present the data in the form of a report. PROC steps sometimes create new SAS data sets that contain the results of the
procedure. PROC steps can list, sort, and summarize data. For example, you can use PROC steps to
� create a report that lists the data
� produce descriptive statistics
� create a summary report
� produce plots and charts.

Characteristics of SAS Programs
Next let's look at the individual statements in our sample program. SAS programs consist of SAS statements. A SAS
statement has two important characteristics:
� It usually begins with a SAS keyword.
� It always ends with a semicolon.

9

As you've seen, a DATA step begins with a DATA statement, which begins with the keyword DATA. A PROC step begins
with a PROC statement, which begins with the keyword PROC. Our sample program contains a DATA statement, a
SET statement, a RUN statement, a PROC PRINT statement, and another RUN statement.

Statements Sample Program Code

a DATA statement data clinic.admit2;

a SET statement set clinic.admit;

a RUN statement run;

a PROC PRINT statement proc print data=clinic.admit2;

another RUN statement run;

Layout for SAS Programs
SAS statements are in free format. This means that
� they can begin and end anywhere on a line
� one statement can continue over several lines
� several statements can be on a line.

Blanks or special characters separate "words" in a SAS statement.
Note You can specify SAS statements in uppercase or lowercase. In most situations, text that is enclosed in

quotation marks is case sensitive.

You’ve examined the general structure of our sample program. But what happens when you run the program?

Processing SAS Programs
When you submit a SAS program, SAS begins reading the statements and checking them for errors.

DATA and PROC statements signal the beginning of a new step. When SAS encounters a subsequent DATA, PROC, or
RUN statement (for DATA steps and most procedures) or a QUIT statement (for some procedures), SAS stops reading
statements and executes the previous step in the program. In our sample program, each step ends with a RUN statement.
data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;
Note The beginning of a new step (DATA or PROC) implies the end of the previous step. Though the RUN

statement is not always required between steps in a SAS program, using it can make the SAS program
easier to read and debug, and it makes the SAS log easier to read.

Log Messages
Each time a step is executed, SAS generates a log of the processing activities and the results of the processing. The SAS
log collects messages about the processing of SAS programs and about any errors that occur.

When SAS processes our sample program, you see the log messages shown below. Notice that you get separate sets of
messages for each step in the program.

10

SAS Log

1 data clinic.: admit2;

2 set clinic.admit;

3 run;

NOTE: The data set CLINIC.ADMIT2 has 21

 observations and 9 variables.

NOTE: The DATA statement used 1.03 seconds

4 proc print data=clinic.admit2;

5 run;

NOTE: The PROCEDURE PRINT used 0.2 seconds.

Results of Processing
Suppose you submit the sample program below.
data clinic.admit2;

 set clinic.admit;

run;

proc print data=clinic.admit2;

run;

When the program is processed, it
� creates the SAS data set Clinic.Admit2 in the DATA step. The DATA step produces messages in the SAS log, but

it does not create a report or other output.
� creates the following HTML report of the SAS data set Clinic.Admit2:

Obs ID Name Sex Age Date Height Weight
ActLev
el

Fee

1 2458 Murray, W M 27 1 72 168
HIGH

85.20

2 2462 Almers, C F 34 3 66 152
HIGH

124.80

3 2501 Bonaventure,
T

F 31 17 61 123
LOW

149.75

4 2523 Johnson, R F 43 31 63 137
MOD

149.75

5 2539 LaMance, K M 51 4 71 158
LOW

124.80

11

Obs ID Name Sex Age Date Height Weight
ActLev
el

Fee

6 2544 Jones, M M 29 6 76 193
HIGH

124.80

7 2552 Reberson, P F 32 9 67 151
MOD

149.75

8 2555 King, E M 35 13 70 173
MOD

149.75

9 2563 Pitts, D M 34 22 73 154
LOW

124.80

10 2568 Eberhardt, S F 49 27 64 172
LOW

124.80

11 2571 Nunnelly, A F 44 19 66 140
HIGH

149.75

12 2572 Oberon, M F 28 17 62 118
LOW

85.20

13 2574 Peterson, V M 30 6 69 147
MOD

149.75

14 2575 Quigley, M F 40 8 69 163
HIGH

124.80

15 2578 Cameron, L M 47 5 72 173
MOD

124.80

16 2579 Underwood,
K

M 60 22 71 191
LOW

149.75

17 2584 Takahashi, Y F 43 29 65 123
MOD

124.80

18 2586 Derber, B M 25 23 75 188
HIGH

85.20

19 2588 Ivan, H F 22 20 63 139
LOW

85.20

20 2589 Wilcox, E F 41 16 67 141
HIGH

149.75

21 2595 Warren, C M 54 7 71 183
MOD

149.75

Note Throughout this book, procedure output is shown in HTML in the style shown
above unless otherwise noted. You can learn how to create HTML output in
Chapter 2, Referencing Files and Setting Options.

You've seen the results of submitting our sample program. For other SAS programs, the results of processing might vary:
� SAS programs often invoke procedures that create output in the form of a report, as is the case with the TABULATE

procedure.
proc tabulate data=clinic.admit;

12

class sex;

var height weight;

table sex*(height weight),mean;

run;

Mean

Sex

Height 64.82F

Weight 141.73

Height 72.00M

Weight 172.80
� Other SAS programs perform tasks such as sorting and managing data, which have no visible results except for

messages in the log. (All SAS programs produce log messages, but some SAS programs produce only log
messages.)

proc copy in=clinic out=work;

select admit;

run;
SAS Log

6 proc copy in: =clinic out=work;

7 select admit;

8 run;

NOTE: Copying CLINIC.ADMIT to WORK.ADMIT (memtype=DATA).

NOTE: There were 21 observations read from the data set

 CLINIC.ADMIT.

NOTE: The data set WORK.ADMIT has 21 observations and 9

 variables.

NOTE: PROCEDURE COPY used (Total process time):

 real time 0.13 seconds

 cpu time 0.08 seconds

Note You can turn off log messages by using system options, which you can learn about in Chapter 2,
Referencing Files and Setting Options.

SAS Libraries
You've learned about SAS programs and SAS data sets. Now let's look at SAS libraries to see how SAS data sets and
other SAS files are organized and stored.

How SAS Files Are Stored

13

Every SAS file is stored in a SAS library, which is a collection of SAS files. A SAS data library is the highest level of
organization for information within SAS.

SAS libraries have different implementations depending on your operating environment, but a library usually corresponds to
the level of organization that your host operating system uses to access and store files. In some operating environments, a
library is a physical collection of files. In others, the files are only logically related.

For example, in the Windows and UNIX environments, a library is typically a group of SAS files in the same folder or
directory.

The table below summarizes the implementation of SAS libraries in various operating environments.

Environment Library

Windows, UNIX, OpenVMS
(directory based- systems)

a group of SAS files that are stored in the same directory. Other files can be stored
in the directory, but only the files that have SAS file extensions are recognized as
part of the SAS library. (Refer to the online documentation for more information.)

CMS a group of SAS files that have the same file type.

z/OS a specially formatted host data set in which only SAS files are stored.

Storing Files Temporarily or Permanently
Depending on the library name that you use when you create a file, you can store SAS files temporarily or permanently.

Temporary SAS libraries last only for the current SAS session.

Storing files temporarily:

If you don't specify a library name when you create a file (or if you specify the library name Work), the file is stored in the
temporary SAS data library. When you end the session, the temporary library and all of its files are deleted.

14

Permanent SAS libraries are available to you during subsequent SAS sessions.

Storing files permanently:

To store files permanently in a SAS data library, you specify a library name other than the default library name Work.

For example, by specifying the library name Clinic when you create a file, you specify that the file is to be stored in a
permanent SAS data library until you delete it.

Note You can learn how to set up permanent SAS libraries in Chapter 2, Referencing Files and Setting
Options.

Referencing SAS Files

Two-Level Names
To reference a permanent SAS data set in your SAS programs, you use a two-level name:

libref.filename

In the two-level name, libref is the name of the SAS data library that contains the file, and filename is the name of the file
itself. A period separates the libref and filename.

For example, in our sample program, Clinic.Admit is the two-level name for the SAS data set Admit, which is stored in the
library named Clinic.

Referencing Temporary SAS Files
To reference temporary SAS files, you can specify the default libref Work, a period, and the filename. For example, the two -
level name Work.Test references the SAS data set named Test that is stored in the temporary SAS library Work.

15

Alternatively, you can use a one-level name (the filename only) to reference a file in a temporary SAS library. When you
specify a one-level name, the default libref Work is assumed. For example, the one -level name Test also references the
SAS data set named Test that is stored in the temporary SAS library Work.

Info If the USER library is assigned, SAS uses the User library rather than the Work library for one-level
names. User is a permanent library. For more information, see the SAS Language Reference: Concepts
documentation.

Referencing Permanent SAS Files
You can see that Clinic.Admit and Clinic.Admit2 are permanent SAS data sets because the library name is Clinic, not
Work.

So referencing a SAS file in any library except Work indicates that the SAS file is stored permanently. For example, when
our sample program creates Clinic.Admit2, it stores the new Admit2 data set permanently in the SAS library Clinic.

Rules for SAS Names
SAS data set names
� can be 1 to 32 characters long
� must begin with a letter (A–Z, either uppercase or lowercase) or an underscore (_)
� can continue with any combination of numbers, letters, or underscores.

These are examples of valid data set names:
� Payroll
� LABDATA1995_1997
� _EstimatedTaxPayments3

SAS Data Sets

16

So far, you've seen the components and characteristics of SAS programs, including how they reference SAS data sets.
Data sets are one type of SAS file. There are other types of SAS files (such as catalogs), but this chapter focuses on SAS
data sets. For many procedures and for some DATA step statements, data must be in the form of a SAS data set to be
processed. Now let's take a closer look at SAS data sets.

Overview of Data Sets
As you saw in our sample program, for many of the data processing tasks that you perform with SAS, you
� access data in the form of a SAS data set
� analyze, manage, or present the data.

Conceptually, a SAS data set is a file that consists of two parts: a descriptor portion and a data portion. Sometimes a
SAS data set also points to one or more indexes, which enable SAS to locate records in the data set more efficiently. (The
data sets that you see in this chapter do not contain indexes.)

Descriptor Portion
The descriptor portion of a SAS data set contains information about the data set, including
� the name of the data set
� the date and time that the data set was created
� the number of observations
� the number of variables.

Let's look at another SAS data set. The table below lists part of the descriptor portion of the data set Clinic.Insure, which
contains insurance information for patients who are admitted to a wellness clinic. (It's a good idea to give your data set a
name that is descriptive of the contents.)

Data Set Name: CLINIC.INSURE

Member Type: DATA

Engine: V8

Created: 10:05 Tuesday, March 30, 1999

Observations: 21

Variables: 7

Indexes: 0

Observation Length: 64

Data Portion

17

The data portion of a SAS data set is a collection of data values that are arranged in a rectangular table. In the example
below, the name Jones is a data value, the weight 158.3 is a data value, and so on.

Observations (Rows)
Rows (called observations) in the data set are collections of data values that usually relate to a single object. The values
Jones, M, 48, and 128.6 constitute a single observation in the data set shown below.
Variable Attributes
In addition to general information about the data set, the descriptor portion contains information about the attributes of each
variable in the data set. The attribute information includes the variable's name, type, length, format, informat, and label.

When you write SAS programs, it's important to understand the attributes of the variables that you use. For example, you
might need to combine SAS data sets that contain same-named variables. In this case, the variables must be the same type
(character or numeric).

The following is a partial listing of the attribute information in the descriptor portion of the SAS data set Clinic.Insure. Let's
look at the name, type, and length variable attributes. You'll learn about the format, informat, and label attributes later in
this chapter.

Variable Type Length Format Informat Label

Policy Num 8 Policy Number

Total Num 8 DOLLAR8.2 COMMA10. Total Balance

Name Char 20 Patient Name

Name
Each variable has a name that conforms to SAS naming conventions. Variable names follow exactly the same rules as SAS
data set names. Like data set names, variable names
� can be 1 to 32 characters long
� must begin with a letter (A–Z, either uppercase or lowercase) or an underscore (_)
� can continue with any combination of numbers, letters, or underscores.

18

Type
A variable's type is either character or numeric.
� Character variables, such as Name (shown below), can contain any values.
� Numeric variables, such as Policy and Total (shown below), can contain only numeric values (the digits 0

through 9, +, -, ., and E for scientific notation).

A variable's type determines how missing values for a variable are displayed. In the following data set, Name and Sex are
character variables, and Age and Weight are numeric variables.
� For character variables such as Name, a blank represents a missing value.
� For numeric variables such as Age, a period represents a missing value.

Name Sex Age Weight

M 48 128.6

Laverne M 58 158.3

Jaffe F . 115.5

Wilson M 28 170.1

Length
A variable's length (the number of bytes used to store it) is related to its type.
� Character variables can be up to 32,767 bytes long. In the example below, Name has a length of 20 characters and

uses 20 bytes of storage.
� All numeric variables have a default length of 8. Numeric values (no matter how many digits they contain) are stored

as floating-point numbers in 8 bytes of storage, unless you specify a different length.

You've seen that each SAS variable has a name, type, and length. In addition, you can define format, informat, and label
attributes for variables. Let's look briefly at these optional attributes— you'll learn more about them in later chapters as you
need to use them.

Format

19

Formats are variable attributes that affect the way data values are written. SAS software offers a variety of character,
numeric, and date and time formats. You can also create and store your own formats. To write values out using a particular
form, you select the appropriate format.

For example, to display the value 1234 as $1234.00 in a report, you can use the DOLLAR8.2 format, as shown for Total
below.

Usually you have to specify the maximum width (w) of the value to be written. Depending on the particular format, you might
also need to specify the number of decimal places (d) to be written. For example, to display the value 5678 as 5,678.00 in a
report, you can use the COMMA8.2 format, which specifies a width of 8 including 2 decimal places.

Note You can permanently assign a format to a variable in a SAS data set, or you can temporarily specify a
format in a PROC step to determine the way the data values appear in output.

Informat
Whereas formats write values out by using some particular form, informats read data values in certain forms into
standard SAS values. Informats determine how data values are read into a SAS data set. You must use informats to read
numeric values that contain letters or other special characters.

For example, the numeric value $1,234.00 contains two special characters, a dollar sign ($) and a comma (,). You can use
an informat to read the value while removing the dollar sign and comma, and then store the resulting value as a standard
numeric value. For Total below, the COMMA10. informat is specified.

Label
A variable can have a label, which consists of descriptive text up to 256 characters long. By default, many reports identify
variables by their names. You might want to display more descriptive information about the variable by assigning a label to
the variable.

20

For example, you can label Policy as Policy Number, Total as Total Balance, and Name as Patient Name to display
these labels in reports.

You might even want to use labels to shorten long variable names in your reports. Assigning labels to variables is discussed
in Chapter 4, Creating List Reports.

This data set has four observations, each containing information about an individual. A SAS data set can store any number
of observations.

Variables (Columns)
Columns (called variables) in the data set are collections of values that describe a particular characteristic. The values
Jones, Laverne, Jaffe, and Wilson constitute the variable Name in the data set shown below.

This data set contains four variables for each observation: Name, Sex, Age, and Weight. A SAS data set can store
thousands of variables.

Missing Values
The rectangular arrangement of rows and columns in a SAS data set implies that every variable must exist for each
observation. If a data value is unknown for a particular observation, a missing value is recorded in the SAS data set.

21

Summary

Text Summary

Components of SAS Programs
SAS programs consist of two types of steps: DATA steps and PROC (procedure) steps. These two steps, alone or
combined, form most SAS programs. A SAS program can consist of a DATA step, a PROC step, or any combination of
DATA and PROC steps. DATA steps typically create or modify SAS data sets, but they can also be used to produce
custom-designed reports. PROC steps are pre- written routines that enable you to analyze and process the data in a SAS
data set and to present the data in the form of a report. PROC steps sometimes create new SAS data sets that contain the
results of the procedure.

Characteristics of SAS Programs
SAS programs consist of SAS statements. A SAS statement usually begins with a SAS keyword and always ends with a
semicolon. A DATA step begins with the keyword DATA. A PROC step begins with the keyword PROC. SAS statements are
in free format, so they can begin and end anywhere on a line. One statement can continue over several lines, and several
statements can be on a line. Blanks or special characters separate "words" in a SAS statement.

Processing SAS Programs
When you submit a SAS program, SAS reads SAS statements and checks them for errors. When it encounters a
subsequent DATA, PROC, RUN, or QUIT statement, SAS executes the previous step in the program.

Each time a step is executed, SAS generates a log of the processing activities and the results of the processing. The SAS
log collects messages about the processing of SAS programs and about any errors that occur.

The results of processing can vary. Some SAS programs open an interactive window or invoke procedures that create
output in the form of a report. Other SAS programs perform tasks such as sorting and managing data, which have no visible
results other than messages in the log.

SAS Libraries
Every SAS file is stored in a SAS library, which is a collection of SAS files such as SAS data sets and catalogs. In some
operating environments, a SAS library is a physical collection of files. In others, the files are only logically related. In the
Windows and UNIX environments, a SAS library is typically a group of SAS files in the same folder or directory.

22

Depending on the libref you use, you can store SAS files in temporary SAS libraries or in permanent SAS libraries.
� Temporary SAS files that are created during the session are held in a special workspace that is assigned the default

libref Work. If you don't specify a libref when you create a file (or if you specify Work), then the file is stored in the
temporary SAS library. When you end the session, the temporary library is deleted.

� To store a file permanently in a SAS library, you assign it a libref other than the default Work. For example, by
assigning the libref Clinic to a SAS library, you specify that files within the library are to be stored until you delete them.

Referencing SAS Files
To reference a SAS file, you use a two-level name, libref.filename. In the two-level name, libref is the name for the SAS
library that contains the file, and filename is the name of the file itself. A period separates the libref and filename.

To reference temporary SAS files, you specify the default libref Work, a period, and the filename. Alternatively, you can
simply use a one-level name (the filename only) to reference a file in a temporary SAS library. Referencing a SAS file in any
library except Work indicates that the SAS file is stored permanently.

SAS data set names can be 1 to 32 characters long, must begin with a letter (A–Z, either uppercase or lowercase) or an
underscore (_), and can continue with any combination of numbers, letters, or underscores.

Overview of SAS Data Sets
For many of the data processing tasks that you perform with SAS, you access data in the form of a SAS data set and use
SAS programs to analyze, manage, or present the data. Conceptually, a SAS data set is a file that consists of two parts: a
descriptor portion and a data portion. Some SAS data sets also contain one or more indexes, which enable SAS to locate
records in the data set more efficiently.

The descriptor portion of a SAS data set contains information about the data set.

The data portion of a SAS data set is a collection of data values that are arranged in a rectangular table. Observations in
the data set correspond to rows or data lines in a raw data file or in an external database. An observation is the information
about each object in a SAS data set. Variables in the data set correspond to columns in a raw data file or in an external
database. A variable is the set of data values that describe a particular characteristic. If a data value is unknown for a
particular observation, a missing value is recorded in the SAS data set.

Variable Attributes
In addition to general information about the data set, the descriptor portion contains attribute information for each variable in
the data set. The attribute information includes the variable's name, length, and type. A variable's type determines how
missing values for a variable are displayed by SAS. For character variables, a blank represents a missing value. For
numeric variables, a period represents a missing value.

Points to Remember
� Before referencing SAS files, you must assign a name (libref, or library reference) to the library in which the files are

stored (or specify that SAS is to assign the name automatically).
� You can store SAS files either temporarily or permanently.
� Variable names follow the same rules as SAS data set names. However, your site might choose to restrict variable

names to those valid in SAS Version 6, to uppercase variable names automatically, or to remove all restrictions on
variable names.

Warning After completing Chapter 1 and before continuing with Chapter 2 of this book, you should take
one of the tutorials located on the CD that accompanies this book. These tutorials teach you how
to create and manage your SAS programs by using the programming workspace provided in SAS
and SAS Enterprise Guide.
Which tutorial you take will depend on the version of SAS that you are running on your machine.
o If you are running SAS9, take the Using the Programming Workspace: SAS

23

Windowing Environment tutorial.
o If you are running SAS Enterprise Guide 3.0, take the Using the Programming

Workspace: SAS Enterprise Guide 3.0 tutorial.
o If you are running SAS Enterprise Guide 4.1, take the Using the Programming

Workspace: SAS Enterprise Guide 4.1 tutorial.

Now, insert the CD and print one of the following tutorials:
o Using the Programming Workspace: SAS Windowing Environment
o Using the Programming Workspace: SAS Enterprise Guide 3.0
o Using the Programming Workspace: SAS Enterprise Guide 4.1

If you do not find the release or version of SAS that you are running at your site, check the
following companion Web site for updates:
support.sas.com/certbasetutorials

Ensure that you read the Before You Begin section on the CD for instructions on how to create
the sample data and how to use the contents of the CD.

Quiz
Select the best answer for each question. After completing the quiz, you can check your answers using the answer key in
the appendix.

1. How many observations and variables does the data set below contain?

Name Sex Age

Picker M 32
Fletcher 28
Romano F .
Choi M 42

a. 3 observations, 4 variables
b. 3 observations, 3 variables
c. 4 observations, 3 variables
d. can't tell because some values are missing

2. How many program steps are executed when the program below is processed?
data user.tables;

 infile jobs;

 input date name $ job $;

run;

proc sort data=user.tables;

 by name;

run;

proc print data=user.tables;

run;
a. three
b. four
c. five
d. six

24

3. What type of variable is the variable AcctNum in the data set below?

AcctNum Balance

3456_1 M
2451_2
Romano F
Choi M

a. numeric
b. character
c. can be either character or numeric
d. can't tell from the data shown

4. What type of variable is the variable Wear in the data set below?

Brand Wear

Acme 43
Ajax 34
Atlas .

A. numeric
B. character
C. can be either character or numeric
D. can't tell from the data shown

5. Which of the following variable names is valid?
a. 4BirthDate
b. $Cost
c. _Items_
d. Tax-Rate

6. Which of the following files is a permanent SAS file?
a. Sashelp.PrdSale
b. Sasuser.MySales
c. Profits.Quarter1
d. all of the above

7. In a DATA step, how can you reference a temporary SAS data set named Forecast?
a. Forecast
b. Work.Forecast
c. Sales.Forecast (after assigning the libref Sales)
d. only a and b above

8. What is the default length for the numeric variable Balance?

Name Balance

Adams 105.73

Geller 107.89

Martinez 97.45

25

Noble 182.50
a. 5
b. 6
c. 7
d. 8

9. How many statements does the following SAS program contain?
proc print data=new.prodsale

 label double;

 var state day price1 price2; where state='NC';

 label state='Name of State';

run;
a. three
b. four
c. five
d. six

10. What is a SAS data library?
a. a collection of SAS files, such as SAS data sets and catalogs
b. in some operating environments, a physical collection of SAS files
c. in some operating environments, a logically related collection of SAS files
d. all of the above

Answers

1. Correct answer: c

Rows in the data set are called observations, and columns are called variables. Missing values don't affect the
structure of the data set.

2. Correct answer: a

When it encounters a DATA, PROC, or RUN statement, SAS stops reading statements and executes the previous step
in the program. The program above contains one DATA step and two PROC steps, for a total of three program steps.

3. Correct answer: b

It must be a character variable, because the values contain letters and underscores, which are not valid characters for
numeric values.

4. Correct answer: a

It must be a numeric variable, because the missing value is indicated by a period rather than by a blank.

5. Correct answer: c

Variable names follow the same rules as SAS data set names. They can be 1 to 32 characters long, must begin with a
letter (A–Z, either uppercase or lowercase) or an underscore, and can continue with any combination of numbers,
letters, or underscores.

6. Correct answer: d

26

To store a file permanently in a SAS data library, you assign it a libref other than the default Work. For example, by
assigning the libref Profits to a SAS data library, you specify that files within the library are to be stored until you delete
them. Therefore, SAS files in the Sashelp and Sasuser libraries are permanent files.

7. Correct answer: d

To reference a temporary SAS file in a DATA step or PROC step, you can specify the one-level name of the file (for
example, Forecast) or the two-level name using the libref Work (for example, Work.Forecast).

8. Correct answer: d

The numeric variable Balance has a default length of 8. Numeric values (no matter how many digits they contain) are
stored in 8 bytes of storage unless you specify a different length.

9. Correct answer: c

The five statements are
� PROC PRINT statement (two lines long)
� VAR statement
� WHERE statement (on the same line as the VAR statement)
� LABEL statement
� RUN statement (on the same line as the LABEL statement).

10. Correct answer: d

Every SAS file is stored in a SAS data library, which is a collection of SAS files, such as SAS data sets and catalogs.
In some operating environments, a SAS data library is a physical collection of files. In others, the files are only logically
related. In the Windows and UNIX environments, a SAS data library is typically a group of SAS files in the same folder
or directory.

Chapter 2: Referencing Files and Setting Options

Overview
Warning Have you reviewed the appropriate tutorial for your programming environment on the companion CD-

ROM? If you have not, please review the appropriate tutorial before beginning this chapter.

Introduction
When you begin a SAS session, it's often convenient to set up your environment first. For example, you might want to
� define libraries that contain the SAS data sets that you intend to use
� set features of your SAS listings, such as whether the date and time appear
� specify how two-digit year values should be interpreted.

Objectives

27

In this chapter, you learn to
� define new libraries by using programming statements
� reference SAS files to be used during your SAS session
� set system options to determine how date values are read and to control the appearance of listing output that is

created during your SAS session.

Referencing Files

SAS Libraries
In the previous chapter, you learned that SAS files are stored in SAS libraries. By default, SAS defines several libraries for
you:
� Sashelp is a permanent library that contains sample data and other files that control how SAS works at your site.

This is a read-only library.
� Sasuser is a permanent library that contains SAS files in the Profile catalog that store your personal settings. This

is also a convenient place to store your own files.
� Work is a temporary library for files that do not need to be saved from session to session.

You can also define additional libraries. In fact, often the first step in setting up your SAS session is to define the libraries.

To define a library, you assign a library name (a libref) to it and specify a path, such as a directory path. You will use the
libref as the first part of the file's two-level name (libref.filename) to reference the file within the library. You can use
programming statements to assign library names.

Assigning Librefs
To define libraries, you can use a LIBNAME statement. You can store the LIBNAME statement with any SAS program so
that the SAS data library is assigned each time the program is submitted.

General form, basic LIBNAME statement:

LIBNAME libref 'SAS-data-library';

where
� libref is 1 to 8 characters long, begins with a letter or underscore, and contains only letters, numbers, or

underscores.
� SAS-data-library is the name of a SAS data library in which SAS data files are stored. The specification of the

physical name of the library differs by operating environment.

The LIBNAME statement below assigns the libref Clinic to the SAS data library D:\Users\Qtr\Reports in the Windows
environment.
libname clinic 'd:\users\qtr\reports';

The table below gives examples of physical names for SAS data libraries in various operating environments.

Environment Sample Physical Name

Windows c:\fitness\data

UNIX /users/april/fitness/sasdata

OpenVMS dua0:[april.fitness]

28

Environment Sample Physical Name

CMS b

z/OS (OS/390) april.fitness.sasdata
Note The code examples in this book are shown in the Windows operating environment. If

you are running SAS within another operating environment, then the platform-specific
names and locations will look different. Otherwise, SAS programming code will be the
same across operating environments.

You can use multiple LIBNAME statements to assign as many librefs as needed.

Verifying Librefs
After assigning a libref, it is a good idea to check the Log window to verify that the libref has been assigned successfully.
SAS Log

17 libname clinic 'd:\users\qtr\reports';

 NOTE: Libref CLINIC was successfully assigned as follows:

 Engine: V9

 Physical Name: d:\users\qtr\reports

How Long Librefs Remain in Effect
The LIBNAME statement is global, which means that the librefs remain in effect until you modify them, cancel them, or end
your SAS session.

Therefore, the LIBNAME statement assigns the libref for the current SAS session only. Each time you begin a SAS session,
you must assign a libref to each permanent SAS data library that contains files that you want to access in that session.
(Remember that Work is the default libref for a temporary SAS data library.)

When you end your SAS session or delete a libref, SAS no longer has access to the files in the library. However, the
contents of the library still exist on your operating system.

Specifying Two-Level Names
After you assign a libref, you specify the libref as the first element in the two-level name for a SAS file.

For example, in order for the PRINT procedure to read Clinic.Admit, you specify the two-level name of the file as follows:
proc print data=clinic.admit;

run;

Other Formats

29

You can use the LIBNAME statement to reference not only SAS files but also files that were created with other software
products, such as database management systems.

SAS can read or write these files by using the appropriate engine for that file type. Depending on your operating
environment and on the SAS/ACCESS products that you license, you can create libraries with various engines. Each engine
enables you to read a different file format, including file formats from other software vendors.

For some file types, you need to tell SAS which engine to use. For others, SAS automatically chooses the appropriate
engine.

A SAS engine is a set of internal instructions that SAS uses for writing to and reading from files in a SAS library.

Specifying Engines
To indicate which engine to use, you specify the engine name in the LIBNAME statement, as shown below.

General form, LIBNAME statement for files in other formats:

LIBNAME libref engine 'SAS-data-library';

where
� libref is 1 to 8 characters long, begins with a letter or underscore, and contains only letters, numbers, or

underscores.
� engine is the name of a library engine that is supported in your operating environment.
� SAS-data-library is the name of a SAS library in which SAS data files are stored. The specification of the physical

name of the library differs by operating environment.

Interface Library Engines
Interface library engines support read-only access to BMDP, OSIRIS, and SPSS files. With these engines, the physical
filename that is associated with a libref is an actual filename, not a SAS library. This is an exception to the rules for librefs.

Engine Description

BMDP allows read-only access to BMDP files

OSIRIS allows read-only access to OSIRIS files

SPSS allows read-only access to SPSS files

For example, the LIBNAME statement below specifies the libref Rptdata and the engine SPSS for the file G:\Myspss.dat in
the Windows operating environment.

30

libname rptdata spss 'g:\myspss.dat';

For more information about interface library engines, see the SAS documentation for your operating environment.

SAS/ACCESS Engines
If your site licenses SAS/ACCESS software, then you can use the LIBNAME statement to access data that is stored in a
DBMS file. The types of data that you can access depend on your operating environment and on which SAS/ACCESS
products you have licensed.

Relational Databases Nonrelational Files PC Files

ORACLE ADABAS Excel (.xls)

SYBASE IMS/DL-I Lotus (.wkn)

Informix CA-IDMS DBF

DB2 for z/OS (OS/390) SYSTEM 2000 DIF

DB2 for UNIX and PC

Oracle Rdb

ODBC

CA-OpenIngres

Viewing the Contents of SAS Libraries

The CONTENTS Procedure
You've learned how to use SAS windows to view the contents of a SAS library or of a SAS file. Alternatively, you can use
the CONTENTS procedure to create SAS output that describes either of the following:
� the contents of a library
� the descriptor information for an individual SAS data set.

General form, basic PROC CONTENTS step:

PROC CONTENTS DATA=libref._ALL_ NODETAILS;
RUN;

where
� libref is the libref that has been assigned to the SAS library.
� _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the libref.
� NODETAILS (NODS) suppresses the printing of detailed information about each file when you specify _ALL_. You

can specify NODS only when you specify _ALL_.

Example
To view the contents of the Mylib library, submit the following PROC CONTENTS step:
proc contents data=mylib._all_ nods;

run;

31

The output from this step lists only the names, types, sizes, and modification dates for the SAS files in the Mylib library.

----- Directory -----

Libref: MYLIB

Engine: V8

Physical Name: C:\WINNT\Profiles\Personal\My SAS Files\V8

File Name: C:\WINNT\Profiles\Personal\My SAS Files\V8

Name Memtype File Size Last Modified

1 ADMIT DATA 9216 23JUN2000:16:30:38

2 ADMITJUNE DATA 9216 23JUN2000:16:30:38

3 COMPANY DATA 5120 23JUN2000:16:30:38

4 CREDIT DATA 5120 23JUN2000:16:30:38

5 CUSTDET1 DATA 33792 04MAY2000:13:45:49

6 DIABETES DATA 9216 23JUN2000:16:30:38

7 DMDATA CATALOG 21504 04MAY2000:13:59:19

To view the descriptor information for the Mylib.Admit data set, you can submit the following PROC CONTENTS step:
proc contents data=mylib.admit;

run;

The output from this step lists information for Mylib.Admit, including an alphabetic list of the variables in the data set.

Data Set Name MYLIB.ADMIT Observations 21

Member Type DATA Variables 9

Engine V8 Indexes 0

Created 15:05 Thursday, July 17, 2003 Observation Length 64

Last Modified 15:05 Thursday, July 17, 2003 Deleted Observations 0

Protection Compressed N
O

Data Set Type Sorted N
O

Label

Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 127

Obs in First Data Page 21

32

Number of Data Set Repairs 0

File Name C:\WINNT\Profiles\Personal\My SAS Files\V8\admit.sas7bdat

Release Created 8.0202M0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format

8 ActLevel Char 4

4 Age Num 8

5 Date Num 8

9 Fee Num 8 7.2

6 Height Num 8

1 ID Char 4

2 Name Char 14

3 Sex Char 1

7 Weight Num 8

The DATASETS Procedure
In addition to PROC CONTENTS, you can also use PROC DATASETS with the CONTENTS statement to view the contents
of a SAS library or a SAS data set.

General form, PROC DATASETS step with CONTENTS statement:

PROC DATASETS;
CONTENTS DATA=libref._ALL_ NODETAILS;

QUIT;

where
� CONTENTS describes the contents of one or more SAS data sets and prints the directory of the SAS data library.
� libref is the libref that has been assigned to the SAS data library.
� _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the libref.
� NODETAILS (NODS) suppresses the printing of detailed information about each file when you specify _ALL_. You

can specify NODS only when you specify _ALL_.

For example, the following PROC steps produce essentially the same output (with minor formatting differences):
proc datasets;

 contents data=sasuser._all_ nods;

quit;

proc contents data=sasuser._all_ nods;

run;

33

The major difference between the CONTENTS procedure and the CONTENTS statement in PROC DATASETS is the
default for libref in the DATA= option. For PROC CONTENTS, the default is either Work or User. For the CONTENTS
statement, the default is the libref of the procedure input library. Notice also that PROC DATASETS is an interactive
procedure that requires a QUIT statement rather than a RUN statement.

Note In addition to the CONTENTS statement, PROC DATASETS also uses several other statements. These
statements enable you to perform tasks that PROC CONTENTS does not perform. For more information
about PROC DATASETS, see the SAS documentation for your operating environment.

Viewing Descriptor Information for a SAS Data Set
As with PROC CONTENTS, you can also use PROC DATASETS to display the descriptor information for a specific SAS
data set.

By default, PROC CONTENTS and PROC DATASETS list variables alphabetically. To list variable names in the order of
their logical position (or creation order) in the data set, you can specify the VARNUM option in PROC CONTENTS or in
the CONTENTS statement in PROC DATASETS.

For example, either of these programs creates output that includes the list of variables shown below:
proc datasets;

 contents data=sasuser.admit varnum;

quit;

proc contents data=sasuser.admit varnum;

run;

Variables in Creation Order

Variable Type Len Format

1 ID Char 4

2 Name Char 14

3 Sex Char 1

4 Age Num 8

5 Date Num 8

6 Height Num 8

7 Weight Num 8

8 ActLevel Char 4

9 Fee Num 8 7.2

Setting SAS System Options

SAS Output
Next, let's consider the appearance and format of your SAS output. You can specify result formats to create your output as
� an HTML document
� a listing (traditional SAS output)
� both of the above.

34

You can create HTML output by using programming statements on any SAS platform. In addition, in desktop operating
environments, you can use windows to specify result formats. You can learn more about how to create HTML output in
Chapter 10, Producing HTML Output.

If you create your procedure output as a SAS listing, you can also control the appearance of your output by setting system
options such as
� line size (the maximum width of the log and output)
� page size (the number of lines per printed page of output)
� the display of page numbers
� the display of date and time.

Note The above options do not affect the appearance of HTML output.

All SAS system options have default settings that are used unless you specify otherwise. For example, page numbers are
automatically displayed (unless your site modifies this default).

To modify system options, you submit an OPTIONS statement. You can place an OPTIONS statement anywhere in a SAS
program to change the settings from that point onward. However, it is good programming practice to place OPTIONS
statements outside of DATA or PROC steps so that your programs are easier to read and debug.

Note Because the OPTIONS statement is global, the settings remain in effect until you modify them, or until
you end your SAS session.

General form, OPTIONS statement:

OPTIONS options;

where options specifies one or more system options to be changed. The available system options depend on your host
operating system.

Example: NUMBER | NONUMBER and DATE | NODATE Options
By default, page numbers and dates appear with output. The following OPTIONS statement suppresses the printing of both
page numbers and the date and time in listing output.
options nonumber nodate;

In the following example, page numbers and the current date are not displayed in the PROC PRINT output. Page numbers
are not displayed in the PROC FREQ output, either, but the date does appear at the top of the page that contains the PROC
FREQ report.
options nonumber nodate;

proc print data=clinic.admit;

35

 var id sex age height weight;

 where age>=30;

run;

options date;

proc freq data=clinic.diabetes;

 where fastgluc>=300;

 tables sex;

run;

 The SAS System

 Obs ID Sex Age Height Weight

 2 2462 F 34 66 152

 3 2501 F 31 61 123

 4 2523 F 43 63 137

 5 2539 M 51 71 158

 7 2552 F 32 67 151

 8 2555 M 35 70 173

 9 2563 M 34 73 154

 10 2568 F 49 64 172

 11 2571 F 44 66 140

 13 2574 M 30 69 147

 14 2575 F 40 69 163

 15 2578 M 47 72 173

 16 2579 M 60 71 191

 17 2584 F 43 65 123

 20 2589 F 41 67 141

 21 2595 M 54 71 183

 The SAS System

 15:19 Thursday, September 23, 1999

 Cumulative Cumulative

 Sex Frequency Percent Frequency Percent

--

 F 2 25.0 2 25.0

 M 6 75.0 8 100.0

36

Example: PAGENO= Option
If you print page numbers, you can specify the beginning page number for your report by using the PAGENO= option. If you
don't specify the PAGENO= option, output is numbered sequentially throughout your SAS session, starting with page 1.

In the following example, the output pages are numbered sequentially throughout the SAS session, beginning with number
3.
options nodate pageno=3;

proc print data=hrd.funddrv;

run;

 The SAS System 3

Obs LastName Qtr1 Qtr2 Qtr3 Qtr4

1 ADAMS 18 18 20 20

2 ALEXANDER 15 18 15 10

3 APPLE 25 25 25 25

4 ARTHUR 10 25 20 30

5 AVERY 15 15 15 15

6 BAREFOOT 20 20 20 20

7 BAUCOM 25 20 20 30

8 BLAIR 10 10 5 10

9 BLALOCK 5 10 10 15

10 BOSTIC 20 25 30 25

11 BRADLEY 12 16 14 18

Example: PAGESIZE= Option
The PAGESIZE= option specifies how many lines each page of output contains. In the following example, each page of the
output that the PRINT procedure produces contains 15 lines (including those used by the title, date, and so on).
options pageno=1 pagesize=15;

proc print data=clinic.admit;

run;

 The SAS System 1

 15:19 Thursday, September 23, 1999

Obs ID Name Sex Age Date

1 2458 Murray, W M 27 1

2 2462 Almers, C F 34 3

37

3 2501 Bonaventure, T F 31 17

4 2523 Johnson, R F 43 31

5 2539 LaMance, K M 51 4

6 2544 Jones, M M 29 6

7 2552 Reberson, P F 32 9

8 2555 King, E M 35 13

9 2563 Pitts, D M 34 22

10 2568 Eberhardt, S F 49 27

Example: LINESIZE= Option
The LINESIZE= option specifies the width of the print line for your procedure output and log. Observations that do not fit
within the line size continue on a different line.

In the following example, the observations are longer than 64 characters, so the observations continue on a subsequent
page.
options pageno=1 linesize=64;

proc print data=flights.europe;

run;

 The SAS System 1

 15:19 Thursday, September 23, 1999

Obs Flight Date Depart Orig Dest Miles Mail Freight Boarded

1 821 04MAR99 9:31 LGA LON 3442 403 209 167

2 271 04MAR99 11:40 LGA PAR 3856 492 308 146

3 271 05MAR99 12:19 LGA PAR 3857 366 498 177

4 821 06MAR99 14:56 LGA LON 3442 345 243 167

5 821 07MAR99 13:17 LGA LON 3635 248 307 215

6 271 07MAR99 9:31 LGA PAR 3442 353 205 155

7 821 08MAR99 11:40 LGA LON 3856 391 395 186

8 271 08MAR99 12:19 LGA PAR 3857 366 279 152

9 821 09MAR99 14:56 LGA LON 3442 219 368 203

10 271 09MAR99 13:17 LGA PAR 3635 357 282 159

 The SAS System 2

 15:19 Thursday, September 23, 1999

 Obs Transfer NonRev Deplaned Capacity MonthDay Revenue

38

 1 17 7 222 250 1 150634

 2 8 3 163 250 1 156804

 3 15 5 227 250 1 190098

 4 13 4 222 250 1 150634

 5 14 6 158 250 1 193930

 6 18 7 172 250 2 166470

 7 8 1 114 250 2 167772

 8 7 4 187 250 2 163248

 9 6 3 210 250 2 183106

 10 15 4 191 250 2 170766

Handling Two-Digit Year Values: Year 2000 Compliance
If you use two-digit year values in your data lines, external files, or programming statements, you should consider another
important system option, the YEARCUTOFF= option. This option specifies which 100-year span is used to interpret two-digit
year values.

All versions of SAS represent dates correctly from 1582 A.D. to 20,000 A.D. (Leap years, century, and fourth-century
adjustments are made automatically. Leap seconds are ignored, and SAS does not adjust for daylight saving time.)
However, you should be aware of the YEARCUTOFF= value to ensure that you are properly interpreting two-digit years in
data lines.

As with other system options, you specify the YEARCUTOFF= option in the OPTIONS statement:
options yearcutoff=1925;

How the YEARCUTOFF= Option Works
When a two-digit year value is read, SAS interprets it based on a 100-year span that starts with the YEARCUTOFF= value.
The default value of YEARCUTOFF= is 1920.

Date Expression Interpreted As

12/07/41 12/07/1941

18Dec15 18Dec2015

04/15/30 04/15/1930

15Apr95 15Apr1995

However, you can override the default and change the value of YEARCUTOFF= to the first year of another 100-year span.
For example, if you specify YEARCUTOFF=1950, then the 100-year span will be from 1950 to 2049.
options yearcutoff=1950;

39

Using YEARCUTOFF=1950, dates are interpreted as shown below:

Date Expression Interpreted As

12/07/41 12/07/2041

18Dec15 18Dec2015

04/15/30 04/15/2030

15Apr95 15Apr1995

How Four-Digit Year Values Are Handled
Remember, the value of the YEARCUTOFF= system option affects only two-digit year values. A date value that contains a
four-digit year value will be interpreted correctly even if it does not fall within the 100-year span set by the YEARCUTOFF=
system option.

Note You can learn more about reading date values in Chapter 19, Reading Date and Time Values.

Using System Options to Specify Observations
You've seen how to use SAS system options to change the appearance of output and interpret two- digit year values. You
can also use the OBS= and FIRSTOBS= system options to specify the observations to process from SAS data sets.

You can specify either or both of these options as needed. That is, you can use
� OBS= to specify the last observation to be processed
� FIRSTOBS= to specify the first observation to be processed
� FIRSTOBS= and OBS= together to specify a range of observations to be processed.

General form, FIRSTOBS= and OBS= options in an OPTIONS statement:

OPTIONS FIRSTOBS=n;
OPTIONS OBS=n;

where n is a positive integer. For FIRSTOBS=, n specifies the number of the first observation to process. For OBS=, n
specifies the number of the last observation to process. By default, FIRSTOBS=1. The default value for OBS= is MAX,
which is the largest signed, four-byte integer that is representable in your operating environment.

Warning Each of these options applies to every input data set that is used in a program or a SAS process.

Example: FIRSTOBS= and OBS= Options
The data set Sasuser.Heart contains 20 observations. If you specify FIRSTOBS=10, SAS reads the 10th observation of the
data set first and reads through the last observation (for a total of 11 observations).
options firstobs=10;

proc print data=sasuser.heart;

run;

The PROC PRINT step produces the following output:

40

Obs Patient Sex Survive Shock Arterial Heart Cardiac Urinary

10 509 2 SURV OTHER 79 84 256 90

11 742 1 DIED HYPOVOL 100 54 135 0

12 609 2 DIED NONSHOCK 93 101 260 90

13 318 2 DIED OTHER 72 81 410 405

14 412 1 SURV BACTER 61 87 296 44

15 601 1 DIED BACTER 84 101 260 377

16 402 1 SURV CARDIO 88 137 312 75

17 98 2 SURV CARDIO 84 87 260 377

18 4 1 SURV HYPOVOL 81 149 406 200

19 50 2 SURV HYPOVOL 72 111 332 12

20 2 2 DIED OTHER 101 114 424 97

If you specify OBS=10 instead, SAS reads through the 10th observation, in this case for a total of 10 observations. (Notice
that FIRSTOBS= has been reset to the default value.)
options firstobs=1 obs=10;

proc print data=sasuser.heart;

run;

Now the PROC PRINT step produces this output:

Obs Patient Sex Survive Shock Arterial Heart Cardiac Urinary

1 203 1 SURV NONSHOCK 88 95 66 110

2 54 1 DIED HYPOVOL 83 183 95 0

3 664 2 SURV CARDIO 72 111 332 12

4 210 2 DIED BACTER 74 97 369 0

5 101 2 DIED NEURO 80 130 291 0

6 102 2 SURV OTHER 87 107 471 65

7 529 1 DIED CARDIO 103 106 217 15

8 524 2 DIED CARDIO 145 99 156 10

9 426 1 SURV OTHER 68 77 410 75

10 509 2 SURV OTHER 79 84 256 90

Combining FIRSTOBS= and OBS= processes observations in the middle of the data set. For example, the following
program processes only observations 10 through 15, for a total of 6 observations:
options firstobs=10 obs=15;

proc print data=sasuser.heart;

run;

41

Here is the output:

Obs Patient Sex Survive Shock Arterial Heart Cardiac Urinary

10 509 2 SURV OTHER 79 84 256 90

11 742 1 DIED HYPOVOL 100 54 135 0

12 609 2 DIED NONSHOCK 93 101 260 90

13 318 2 DIED OTHER 72 81 410 405

14 412 1 SURV BACTER 61 87 296 44

15 601 1 DIED BACTER 84 101 260 377

To reset the number of the last observation to process, you can specify OBS=MAX in the OPTIONS statement.
options obs=max;

This instructs any subsequent SAS programs in the SAS session to process through the last observation in the data set
being read.

Using FIRSTOBS= and OBS= for Specific Data Sets
As you saw above, using the FIRSTOBS= or OBS= system options determines the first or last observation, respectively,
that is read for all steps for the duration of your current SAS session or until you change the setting. However, you might
want to
� override these options for a given data set
� apply these options to a specific data set only.

To affect any single file, you can use FIRSTOBS= or OBS= as data set options instead of as system options. You specify
the data set option in parentheses immediately following the input data set name.

Note A FIRSTOBS= or OBS= specification from a data set option overrides the corresponding FIRSTOBS= or
OBS= system option.

Example: FIRSTOBS= and OBS as Data Set Options
As shown in the last example, this program processes only observations 10 through 15, for a total of 6 observations:
options firstobs=10 obs=15;

proc print data=sasuser.heart;

run;

You can create the same output by specifying FIRSTOBS= and OBS= as data set options. The data set options override the
system options for this instance only.
options firstobs=10 obs=15;

proc print data=sasuser.heart(firstobs=4 obs=20);

run;

To specify FIRSTOBS= or OBS= for this program only, you could omit the OPTIONS statement altogether and simply use
the data set options.

Viewing System Options

42

The OPTIONS Procedure
You can use the OPTIONS procedure to display the current setting of one or all SAS system options. The results are
displayed in the log.

General form, OPTIONS procedure:

PROC OPTIONS <option(s)>;
RUN;

where option(s) specifies how SAS system options are displayed.

Example
To list all SAS system options, their settings, and a description, submit the following code:
proc options;

run;

The log lists the options and their settings:
Partial Log

1 proc options;:

2 run;

SAS (r) Proprietary Software Release 9 TS2M0

Portable Options:

 APPLETLOC=C:\Program Files\SAS Institute\Shared Files\applets\9

 Location of Java applets

ARMAGENT= ARM Agent to use to collect ARM records

ARMLOC=ARMLOC.LOG Identify location where ARM records are to be

 written

ARMSUBSYS=(ARM_NONE)

 Enable/Disable ARMing of SAS subsystems

NOASYNCHIO Do not enable asynchronous input/output

 AUTOSAVELOC= Identifies the location

 where program editor contents are auto saved

To list the value of one particular system option, use the OPTION= option in the PROC OPTIONS statement as shown
below:
proc options option=yearcutoff;

run;
Note If a SAS system option uses an equal sign, such as YEARCUTOFF=, you do not include the equal sign

when specifying the option to OPTION=.

The log shows that the setting of the YEARCUTOFF= option is 1920.

43

3 proc options option=yearcutoff;

4 run;

 SAS (r) Proprietary Software Release 9 TS2M0

 YEARCUTOFF=1920 Cutoff year for DATE and DATETIME informats

 and functions

Additional System Options
When you set up your SAS session, you can set SAS system options that affect listing output, information written to the
SAS log, and much more. Here are some additional system options that you are likely to use with SAS procedures:

Option Description

FORMCHAR='formatting-
characters'

specifies the formatting characters for your output device. Formatting characters
are used to construct the outlines of tables, and dividers for various procedures,
such as the FREQ and TABULATE procedures. If you do not specify formatting
characters as an option in the procedure, then the default specifications given in
the FORMCHAR= system option are used.

FORMDLIM='delimiting-character' specifies a character that is used to delimit page breaks in SAS System output.
Normally, the delimiting character is null. When the delimiting character is null, a
new physical page starts whenever a page break occurs.

LABEL | NOLABEL permits SAS procedures to temporarily replace variable names with descriptive
labels. The LABEL system option must be in effect before the LABEL option of
any procedure can be used. If NOLABEL is specified, then the LABEL option of a
procedure is ignored. The default setting is LABEL.

OBS=n specifies the observation from a data set (or the record from a raw data file) that
SAS reads last. You can also use the OBS= system option to control the analysis
of SAS data sets in PROC steps. n specifies the number of the last observation to
process.

SOURCE | NOSOURCE controls whether SAS source statements are written to the SAS log. NOSOURCE
specifies not to write SAS source statements to the SAS log. The default setting is
SOURCE.

You can also use programming statements to control the result format of each item of procedure output individually. For
more information, see Chapter 10, Producing HTML Output.

Summary

Text Summary

Referencing Files in SAS Libraries
To reference a SAS file, you assign a libref (library reference) to the SAS library in which the file is stored. Then you use the
libref as the first part of the two-level name (libref.filename) for the file.

To reference a SAS library, you can submit a LIBNAME statement. You can store the LIBNAME statement with any SAS
program to reference the SAS library automatically when you submit the program. The LIBNAME statement assigns the

44

libref for the current SAS session only. You must assign a libref each time you begin a SAS session in order to access SAS
files that are stored in a permanent SAS library. (Work is the default libref for a temporary SAS library.)

You can also use the LIBNAME statement to reference data in files that were created with other software products, such as
database management systems. SAS can write to or read from the files by using the appropriate engine for that file type.
For some file types, you need to tell SAS which engine to use. For others, SAS automatically chooses the appropriate
engine.

Viewing the Contents of SAS Libraries
To list the contents of a library, use the CONTENTS procedure. Append a period and the _ALL_ option to the libref to get a
listing of all files in the library. Add the NODS option to suppress detailed information about the files. As an alternative to
PROC CONTENTS, you can use PROC DATASETS.

Setting SAS System Options
For your listing output, you can also control the appearance of your output by setting system options such as line size, page
size, the display of page numbers, and the display of the date and time. (These options do not affect the appearance of
HTML output.)

All SAS system options have default settings that are used unless you specify otherwise. For example, page numbers are
automatically displayed (unless your site modifies this default). To modify system options, you submit an OPTIONS
statement. You can place an OPTIONS statement anywhere in a SAS program to change the current settings. Because the
OPTIONS statement is global, the settings remain in effect until you modify them or until you end your SAS session.

If you use two-digit year values in your SAS data lines, you must be aware of the YEARCUTOFF= option to ensure that
you are properly interpreting two-digit years in your SAS program. This option specifies which 100-year span is used to
interpret two-digit year values.

Viewing SAS System Options
You can use the OPTIONS procedure to display the value of one or more SAS system options. The output of this
procedure is included in the log.

Points to Remember
� LIBNAME and OPTIONS statements remain in effect for the current SAS session only.
� When you work with date values,

o check the default value of the YEARCUTOFF= system option and change it if necessary
o specify the proper informat for reading a date value or the proper format for writing a date value
o specify the correct field width so that the entire date value is read or written.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. If you submit the following program, how does the output look?
options pagesize=55 nonumber;

proc tabulate data=clinic.admit;

 class actlevel;

 var age height weight;

 table actlevel,(age height weight)*mean;

45

run;

options linesize=80;

 proc means data=clinic.heart min max maxdec=1;

 var arterial heart cardiac urinary;

 class survive sex;

run;
a. The PROC MEANS output has a print line width of 80 characters, but the PROC TABULATE

output has no print line width.
b. The PROC TABULATE output has no page numbers, but the PROC MEANS output has page

numbers.
c. Each page of output from both PROC steps is 55 lines long and has no page numbers, and the

PROC MEANS output has a print line width of 80 characters.
d. The date does not appear on output from either PROC step.

2. In order for the date values 05May1955 and 04Mar2046 to be read correctly, what value must the
YEARCUTOFF= option have?

a. a value between 1947 and 1954, inclusive
b. 1955 or higher
c. 1946 or higher
d. any value

3. When you specify an engine for a library, you are always specifying
a. the file format for files that are stored in the library.
b. the version of SAS that you are using.
c. access to other software vendors' files.
d. instructions for creating temporary SAS files.

4. Which statement prints a summary of all the files stored in the library named Area51?
a. proc contents data=area51._all_ nods;
b. proc contents data=area51 _all_ nods;
c. proc contents data=area51 _all_ noobs;
d. proc contents data=area51 _all_.nods;

5. The following PROC PRINT output was created immediately after PROC TABULATE output. Which
SAS system options were specified when the report was created?

1

10:03 Friday, March 17, 2000

Act

Obs ID Height Weight Level Fee

1 2458 72 168 HIGH 85.20

2 2462 66 152 HIGH 124.80

3 2501 61 123 LOW 149.75

4 2523 63 137 MOD 149.75

5 2539 71 158 LOW 124.80

6 2544 76 193 HIGH 124.80

46

7 2552 67 151 MOD 149.75

8 2555 70 173 MOD 149.75

9 2563 73 154 LOW 124.80
a. OBS=, DATE, and NONUMBER
b. PAGENO=1 and DATE
c. NUMBER and DATE only
d. none of the above

6. Which of the following programs correctly references a SAS data set named SalesAnalysis that is
stored in a permanent SAS library?

a. data saleslibrary.salesanalysis;

b. set mydata.quarter1sales;

c. if sales>100000;

d. run;

e. data mysales.totals;

f. set sales_99.salesanalysis;

g. if totalsales>50000;

h. run;

i. proc print data=salesanalysis.quarter1;

j. var sales salesrep month;

k. run;

l. proc freq data=1999data.salesanalysis;

m. tables quarter*sales;

n. run;

7. Which time span is used to interpret two-digit year values if the YEARCUTOFF= option is set to 1950?
a. 1950-2049
b. 1950-2050
c. 1949-2050
d. 1950-2000

8. Assuming you are using SAS code and not special SAS windows, which one of the following
statements is false?

a. LIBNAME statements can be stored with a SAS program to reference the SAS library
automatically when you submit the program.

b. When you delete a libref, SAS no longer has access to the files in the library. However, the
contents of the library still exist on your operating system.

c. Librefs can last from one SAS session to another.
d. You can access files that were created with other vendors' software by submitting a LIBNAME

statement.

9. What does the following statement do?
libname osiris spss 'c:\myfiles\sasdata\data';

a. defines a library called Spss using the OSIRIS engine
b. defines a library called Osiris using the SPSS engine
c. defines two libraries called Osiris and Spss using the default engine

47

d. defines the default library using the OSIRIS and SPSS engines

10. What does the following OPTIONS statement do?
options pagesize=15 nodate;

a. suppresses the date and limits the page size of the log
b. suppresses the date and limits the vertical page size for text output
c. suppresses the date and limits the vertical page size for text and HTML output
d. suppresses the date and limits the horizontal page size for text output

Answers

1. Correct: answer: c

When you specify a system option, it remains in effect until you change the option or end your SAS session, so both
PROC steps generate output that is printed 55 lines per page with no page numbers. If you don't specify a system
option, SAS uses the default value for that system option.

2. Correct answer: d

As long as you specify an informat with the correct field width for reading the entire date value, the YEARCUTOFF=
option doesn't affect date values that have four-digit years.

3. Correct answer: a

A SAS engine is a set of internal instructions that SAS uses for writing to and reading from files in a SAS library. Each
engine specifies the file format for files that are stored in the library, which in turn enables SAS to access files with a
particular format. Some engines access SAS files, and other engines support access to other vendors' files.

4. Correct answer: a

To print a summary of library contents with the CONTENTS procedure, use a period to append the _ALL_ option to the
libref. Adding the NODS option suppresses detailed information about the files.

5. Correct answer: b

Clearly, the DATE and PAGENO= options are specified. Because the page number on the output is 1, even though
PROC TABULATE output was just produced. If you don't specify PAGENO=, all output in the Output window is
numbered sequentially throughout your SAS session.

6. Correct answer: b

Librefs must be 1 to 8 characters long, must begin with a letter or underscore, and can contain only letters, numbers, or
underscores. After you assign a libref, you specify it as the first element in the two-level name for a SAS file.

7. Correct answer: a

The YEARCUTOFF= option specifies which 100-year span is used to interpret two-digit year values. The default value
of YEARCUTOFF= is 1920. However, you can override the default and change the value of YEARCUTOFF= to the first
year of another 100-year span. If you specify YEARCUTOFF=1950, then the 100-year span will be from 1950 to 2049.

8. Correct answer: c

48

The LIBNAME statement is global, which means that librefs remain in effect until you modify them, cancel them, or end
your SAS session. Therefore, the LIBNAME statement assigns the libref for the current SAS session only. You must
assign a libref before accessing SAS files that are stored in a permanent SAS data library.

9. Correct answer: b

In the LIBNAME statement, you specify the library name before the engine name. Both are followed by the path.

10. Correct answer: b

These options affect the format of listing output only. NODATE suppresses the date and PAGESIZE= determines the
number of rows to print on the page.

49

Chapter 3: Editing and Debugging SAS Programs

Overview

Introduction
Now that you're familiar with the basics, you can learn how to correct errors in your programs and resolve common

problems effectively.

Objectives
In this chapter, you learn to
� enhance the readability of your SAS programs
� interpret error messages in the SAS log
� correct errors
� resolve common problems.

SAS Program Layout
Before discussing how to edit and debug programs, let's review the characteristics of SAS statements and look at
enhancing the readability of your SAS programs.

Remember that SAS programs consist of SAS statements.

SAS statements.....

50

Although you can write SAS statements in almost any format, a consistent layout enhances readability and helps you
understand the program's purpose. It's a good idea to
� begin DATA and PROC steps in column one
� indent statements within a step
� begin RUN statements in column one
� include a RUN statement after every DATA step or PROC step.
data work.bankacct;

 infile records;

 input Name $ 1-10 AccountType $ 12-20

 Deposit 22-25 Withdrawal 27-30;

run;

proc print data=work.bankacct;

run;

proc means mean;

 var deposit withdrawal;

run;

Interpreting Error Messages

Error Types
So far, the programs that you've seen in this book have been error free, but programming errors do occur. SAS can detect
several types of errors. The most common are
� syntax errors that occur when program statements do not conform to the rules of the SAS language
� data errors that occur when some data values are not appropriate for the SAS statements that are specified in a

program.

This chapter focuses on identifying and correcting syntax errors.

Syntax Errors
When you submit a program, SAS scans each step for syntax errors, then processes the step (if no syntax errors are
found). SAS then goes to the next step and repeats the process. Syntax errors, such as misspelled words, generally cause
SAS to stop processing the step in which the error occurred.

You already know that information is written to the SAS log while a SAS program is executing. When a program that
contains an error is submitted, messages regarding the problem also appear in the SAS log. When a syntax error is
detected, the SAS log
� displays the word ERROR
� identifies the possible location of the error
� gives an explanation of the error.

Example
The program below contains a syntax error. The DATA step copies the SAS data set Clinic.Admit into a new data set
named Clinic.Admitfee. The PROC step should print the values for the variables ID, Name, Actlevel, and Fee in the
new data set. However, print is misspelled in the PROC PRINT statement.
data clinic.admitfee;

 set clinic.admit;

51

run;

proc prin data=clinic.admitfee;

 var id name actlevel fee;

run;

When the program is submitted, messages in the SAS log indicate that the procedure PRIN was not found and that SAS
stopped processing the PRINT step due to errors. No output is produced by the PRINT procedure, because the second step
fails to execute.

Warning Problems with your statements or data might not be evident when you look at results. Therefore, it's
important to review the messages in the log each time you submit a SAS program.

Correcting Errors
To modify programs that contain errors, you can edit them in the Editor window. You can correct simple errors, such as the
spelling error in the following program, by typing over the incorrect text, deleting text, or inserting text.
data clinic.admitfee;

 set clinic.admit;

run;

proc prin data=clinic.admitfee;

 var id name actlevel fee;

run;

In the program below, the missing t has been inserted into the PRINT keyword that is specified in the PROC PRINT
statement.
data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee;

 var id name actlevel fee;

run;
Info Some problems are relatively easy to diagnose and correct. But sometimes you might not know right away

how to correct errors. The online Help provides information about individual procedures as well as help that
is specific to your operating environment. From the Help menu, you can also select SAS on the Web for
links to Technical Support and Frequently Asked Questions, if you have Internet access.

Resubmitting a Revised Program
After correcting your program, you can submit it again.

52

SAS Enterprise Guide When you submit the code, SAS Enterprise Guide prompts you to choose whether or
not you want to replace the previous results. If you choose not to replace the results,
SAS Enterprise Guide makes a copy of the code and a new code item is added to the
project.

Previously, because there was an error in the PRINT procedure, the code that contained the error did not produce output.
This time, the PRINT procedure executes and produces output.

Obs ID Name ActLevel Fee

1 2458 Murray, W HIGH 85.20

2 2462 Almers, C HIGH 124.80

3 2501 Bonaventure, T LOW 149.75

4 2523 Johnson, R MOD 149.75

5 2539 LaMance, K LOW 124.80

6 2544 Jones, M HIGH 124.80

7 2552 Reberson, P MOD 149.75

8 2555 King, E MOD 149.75

9 2563 Pitts, D LOW 124.80

10 2568 Eberhardt, S LOW 124.80

11 2571 Nunnelly, A HIGH 149.75

12 2572 Oberon, M LOW 85.20

13 2574 Peterson, V MOD 149.75

14 2575 Quigley, M HIGH 124.80

15 2578 Cameron, L MOD 124.80

16 2579 Underwood, K LOW 149.75

17 2584 Takahashi, Y MOD 124.80

18 2586 Derber, B HIGH 85.20

19 2588 Ivan, H LOW 85.20

20 2589 Wilcox, E HIGH 149.75

21 2595 Warren, C MOD 149.75

Remember to check the SAS log again to verify that your program ran correctly.
SAS Log

54 data clinic.: admitfee;

55 set clinic.admit;

56 run;

53

NOTE: The data set CLINIC.ADMITFEE has

 21 observations and 9 variables.

NOTE: DATA statement used:

 real time 0.09 seconds

 cpu time 0.03 seconds

57 proc print data=clinic.admitfee;

58 var id name actlevel fee;

59 run;

NOTE: PROCEDURE PRINT used;

 real time 1.78 seconds

 cpu time 0.03 seconds

Resolving Common Problems
In addition to correcting spelling mistakes, you might need to resolve several other types of common syntax errors. These
errors include
� omitting semicolons
� leaving quotation marks unbalanced
� specifying invalid options.

Another common problem is omitting a RUN statement at the end of a program. Although this is not technically an error, it
can produce unexpected results. For the sake of convenience, we'll consider it together with syntax errors.

The table below lists these problems and their symptoms.

Problem Symptom

missing RUN statement "PROC (or DATA) step running" at top of active window

missing semicolon log message indicating an error in a statement that seems to be valid

unbalanced quotation marks log message indicating that a text string enclosed in quotation marks has
become too long or that a statement is ambiguous

invalid option log message indicating that an option is invalid or not recognized

Missing RUN Statement
Each step in a SAS program is compiled and executed independently from every other step. As a step is compiled, SAS
recognizes the end of the current step when it encounters
� a DATA or PROC statement, which indicates the beginning of a new step
� a RUN or QUIT statement, which indicates the end of the current step.

When the program below is submitted, the DATA step executes, but the PROC step does not. The PROC step does not
execute because there is no following DATA or PROC step to indicate the beginning of a new step, nor is there a following
RUN statement to indicate the end of the step.

54

data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee;

var id name actlevel fee;
SAS Windowing Environment If you submit this code using the SAS windowing environment, the PRINT

procedure waits before executing because there is nothing to indicate the end of
the PROC step. A "PROC PRINT running" message appears at the top of the
active window.

SAS Enterprise Guide SAS Enterprise Guide automatically adds a RUN statement at the end of code when it
is submitted to SAS. So although you need to learn to add a RUN statement to the end
of your steps, you will not encounter this problem if you forget to add a RUN statement
when using SAS Enterprise Guide.

Resolving the Problem
To correct the error, submit a RUN statement to complete the PROC step.
run;

Missing Semicolon
One of the most common errors is the omission of a semicolon at the end of a statement. The program below is missing a
semicolon at the end of the PROC PRINT statement.
data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee

 var id name actlevel fee;

run;

When you omit a semicolon, SAS reads the statement that lacks the semicolon, plus the following statement, as one long
statement. The SAS log then lists errors that relate to the combined statement, not the actual mistake (the missing
semicolon).
SAS Log

1832 proc print data: =clinic.admitfee

1833 var id name actlevel fee;

 22

 76

ERROR 22-322:Syntax error, expecting one of the following:

;, (, DATA, DOUBLE, HEADING, LABEL,

N, NOOBS, OBS, ROUND, ROWS, SPLIT, UNIFORM, WIDTH.

ERROR 76-322:Syntax error, statement will be ignored.

1834 run;

55

NOTE: The SAS System stopped processing this step

 because of errors.

NOTE: PROCEDURE PRINT used:

 real time 0.35 seconds

 cpu time 0.03 seconds

Resolving the Problem
To correct the error, do the following:

1. Find the statement that lacks a semicolon. You can usually locate the statement that lacks the semicolon by looking
at the underscored keywords in the error message and working backwards.

2. Add a semicolon in the appropriate location.
3. Resubmit the corrected program.
4. Check the SAS log again to make sure there are no other errors.

Unbalanced Quotation Marks
Some syntax errors, such as the missing quotation mark after HIGH in the program below, cause SAS to misinterpret the
statements in your program.
data clinic.admitfee;

 set clinic.admit;

where actlevel= ‘HIGH;

run;

proc print data=clinic.admitfee;

 var id name actlevel fee;

run;

When you have unbalanced quotation marks, SAS is often unable to detect the end of the statement in which the error
occurs. When the program above is submitted, SAS is unable to resolve the DATA step, and a "DATA STEP running"
message appears at the top of the active window.

In addition, when unbalanced quotation marks appear in a program that contains TITLE or FOOTNOTE statements, there is
sometimes a warning in the SAS log which indicates that
� a text string enclosed in quotation marks has become too long
� a statement that contains quotation marks (such as a TITLE or FOOTNOTE statement) is ambiguous due to invalid

options or unquoted text.
SAS Log (PROC PRINT Running)

93 proc print data=clinic.admitfee;

94 var id name actlevel fee;

95 title 'Patient Billing;

96 title2 'January 1998';

WARNING: The TITLE statement is ambiguous due to

invalid options or unquoted text.

97 run;

56

Simply adding a quotation mark and resubmitting your program usually does not solve the problem. SAS still considers the
quotation marks to be unbalanced.

Warning If you do not resolve this problem when it occurs, it is likely that any subsequent programs that you
submit in the current SAS session will generate errors.

Resolving the Problem
SAS Enterprise Guide When you submit a program with unbalanced quotation marks, you might not receive

an error message. This is because SAS Enterprise Guide automatically submits an
ending quotation mark for you. However, you will not get valid results.
Because there might be no visual indicator in the Project window that there is an error
in your program, you should learn to detect this syntax error before you submit your
program. The Code Editor window uses color coding to help you recognize errors.

SAS Windowing Environment In the SAS windowing environment, you must cancel the program before you
recall, correct, and resubmit the code. To submit a line of SAS code that cancels
the program, complete the following steps:

1. Submit an asterisk followed by a quotation mark, a semicolon, and a
RUN statement.
*'; run;

2. Delete the line that contains the asterisk followed by the quotation mark,
the semicolon, and the RUN statement.

3. Insert the missing quotation mark in the appropriate place in your
program.

4. Submit the corrected program.
SAS Log

98 *';: run;

NOTE: There were 7 observations read from the data set

 CLINIC.ADMITFEE.

NOTE: PROCEDURE PRINT used (Total process time):

 real time 31.38 seconds

 cpu time 1.21 seconds

99 proc print data=clinic.admitfee;

99 var id name actlevel fee;

100 title 'Patient Billing';

101 title2 'January 1998';

102 run;

NOTE: There were 7 observations read from the data set

 CLINIC.ADMITFEE.

NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.16 seconds

 cpu time 0.15 seconds

57

Invalid Option
An invalid option error occurs when you specify an option that is not valid in a particular statement. In the program below,
the KEYLABEL option is not valid when used with the PROC PRINT statement.
data clinic.admitfee;

 set clinic.admit;

run;

proc print data=clinic.admitfee keylabel;

 label actlevel='Activity Level';

run;

When a SAS statement that contains an invalid option is submitted, a message appears in the SAS log indicating that there
is a syntax error. The message lists the options that are valid in the statement.
SAS Log

12 proc print data: =clinic.admitfee keylabel;

 22 200

ERROR 22-322: Syntax error, expecting one of the following: ;,

(,

N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE,

UNIFORM,

ERROR 200-322: The symbol is not recognized and will be ignored.

13 label actlevel='Activity Level';

14 run;

NOTE: The SAS System stopped processing this step

 because of errors.

NOTE: PROCEDURE PRINT used:

 real time 0.23 seconds

 cpu time 0.04 seconds

Resolving the Problem
To correct the error:

1. Remove or replace the invalid option, and check your statement syntax as needed.
2. Resubmit the corrected program.
3. Check the SAS log again to make sure there are no other errors.

Additional Features

58

Comments in SAS Programs
You can insert comments into a SAS program to document the purpose of the program, to explain segments of the
program, or to describe the steps in a complex program or calculation. A comment statement begins and ends with a
comment symbol. There are two forms of comment statements:
*text;

or
/*text*/

SAS ignores text in comments during processing.

The following program shows some of the ways comments can be used to describe a SAS program.
 /* Read national sales data for vans */

 /* from an external raw data file */

data perm.vansales;

 infile vandata;

 input @1 Region $9.

 @13 Quarter 1. /* Values are 1, 2, 3, or 4 */

 @16 TotalSales comma11.;

 /* Print the entire data set */

proc print data=perm.vansales;

run;

SAS System Options
SAS includes several system options that enable you to control error handling and SAS log messages. The table shown
below contains brief descriptions of some of these options. You can use the OPTIONS statement to specify these options.

Option Description

ERRORS=n Specifies the maximum number of observations for which complete data error messages
are printed.

FMTERR | NOFMTERR Controls whether SAS generates an error message when a format of a variable cannot be
found. NOFMTERR results in a warning instead of an error. FMTERR is the default.

SOURCE | NOSOURCE Controls whether SAS writes source statements to the SAS log. SOURCE is the default

Summary

Text Summary

SAS Program Layout
SAS programs consist of SAS statements. Although you can write SAS statements in almost any format, a consistent layout
enhances readability and enables you to understand the program's purpose.

59

Interpreting Error Messages
When a SAS program that contains errors is submitted, error messages appear in the SAS log. SAS can detect several
types of errors, including syntax and data errors. This chapter focuses on identifying and resolving common syntax errors.

Correcting Errors
To modify a program that contains syntax errors, you can correct the errors in the Editor window and then resubmit the
revised program. You can delete any error-free steps from a revised program before resubmitting it.

Detecting and Resolving Common Problems
You might need to resolve several types of common problems: missing RUN statements, missing semicolons, unbalanced
quotation marks, and invalid options.

Points to Remember
� It's a good idea to begin DATA steps, PROC steps, and RUN statements on the left and to indent statements within

a step.
� End each step with a RUN statement.
� Review the messages in the SAS log each time you submit a SAS program.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. As you write and edit SAS programs, it’s a good idea to
a. begin DATA and PROC steps in column one.
b. indent statements within a step.
c. begin RUN statements in column one.
d. all of the above.

2. What usually happens when a syntax error is detected?
a. SAS continues processing the step.
b. SAS continues to process the step, and the SAS log displays messages about the error.
c. SAS stops processing the step in which the error occurred, and the SAS log displays messages about

the error.
d. SAS stops processing the step in which the error occurred, and the Output window displays messages

about the error.

3. A syntax error occurs when
a. some data values are not appropriate for the SAS statements that are specified in a program.
b. the form of the elements in a SAS statement is correct, but the elements are not valid for that usage.
c. program statements do not conform to the rules of the SAS language.
d. none of the above.

4. How can you tell whether you have specified an invalid option in a SAS program?
a. A log message indicates an error in a statement that seems to be valid.
b. A log message indicates that an option is not valid or not recognized.
c. The message "PROC running" or "DATA step running" appears at the top of the active window.
d. You can't tell until you view the output from the program.

5. Which of the following programs contain a syntax error?

60

a. proc sort data=sasuser.mysales;

b. by region;

c. run;

d. dat sasuser.mysales;

e. set mydata.sales99;

f. run;

g. proc print data=sasuser.mysales label;

h. label region='Sales Region';

i. run;
j. none of the above.

6. What does the following log indicate about your program?

proc print data=sasuser.cargo99

 var origin dest cargorev;

 22

 76

ERROR 22-322: Syntax error, expecting one of the

following:

;, (, DATA, DOUBLE, HEADING, LABEL,

 N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE,

 UNIFORM, WIDTH.

ERROR 76-322: Syntax error, statement will be ignored.

11 run;

a. SAS identifies a syntax error at the position of the VAR statement.
b. SAS is reading VAR as an option in the PROC PRINT statement.
c. SAS has stopped processing the program because of errors.
d. all of the above

Answers

1. Correct answer: d

Although you can write SAS statements in almost any format, a consistent layout enhances readability and enables you
to understand the program's purpose. It's a good idea to begin DATA and PROC steps in column one, to indent
statements within a step, to begin RUN statements in column one, and to include a RUN statement after every DATA
step or PROC step.

2. Correct answer: c

Syntax errors generally cause SAS to stop processing the step in which the error occurred. When a program that
contains an error is submitted, messages regarding the problem also appear in the SAS log. When a syntax error is
detected, the SAS log displays the word ERROR, identifies the possible location of the error, and gives an explanation of
the error.

61

3. Correct answer: c

Syntax errors are common types of errors. Some SAS system options, features of the Editor window, and the DATA step
debugger can help you identify syntax errors. Other types of errors include data errors, semantic errors, and execution-
time errors.

4. Correct answer: b

When you submit a SAS statement that contains an invalid option, a log message notifies you that the option is not valid
or not recognized. You should recall the program, remove or replace the invalid option, check your statement syntax as
needed, and resubmit the corrected program.

5. Correct answer: b

The DATA step contains a misspelled keyword (dat instead of data). However, this is such a common (and easily
interpretable) error that SAS produces only a warning message, not an error.

6. Correct answer: d

Because there is a missing semicolon at the end of the PROC PRINT statement, SAS interprets VAR as an option in
PROC PRINT and finds a syntax error at that location. SAS stops processing programs when it encounters a syntax
error.

62

Chapter 4: Creating List Reports

Overview

Introduction
To list the information in a data set, you can create a report with a PROC PRINT step. Then you can enhance the report
with additional statements and options to create reports like those shown below.

Objectives
In this chapter you learn to
� specify SAS data sets to print
� select variables and observations to print
� sort data by the values of one or more variables
� specify column totals for numeric variables

63

� double-space SAS listing output
� add titles and footnotes to procedure output
� assign descriptive labels to variables
� apply formats to the values of variables.

Types of Reports

Basic Report
You can easily list the contents of a SAS data set by using a simple program like the one shown below.
libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

run;

Obs ID Name Sex Age Date Height Weight ActLevel Fee

1 2458 Murray, W M 27 1 72 168 HIGH 85.20

2 2462 Almers, C F 34 3 66 152 HIGH 124.80

3 2501 Bonaventure, T F 31 17 61 123 LOW 149.75

4 2523 Johnson, R F 43 31 63 137 MOD 149.75

5 2539 LaMance, K M 51 4 71 158 LOW 124.80

6 2544 Jones, M M 29 6 76 193 HIGH 124.80

7 2552 Reberson, P F 32 9 67 151 MOD 149.75

8 2555 King, E M 35 13 70 173 MOD 149.75

9 2563 Pitts, D M 34 22 73 154 LOW 124.80

10 2568 Eberhardt, S F 49 27 64 172 LOW 124.80

11 2571 Nunnelly, A F 44 19 66 140 HIGH 149.75

12 2572 Oberon, M F 28 17 62 118 LOW 85.20

13 2574 Peterson, V M 30 6 69 147 MOD 149.75

14 2575 Quigley, M F 40 8 69 163 HIGH 124.80

15 2578 Cameron, L M 47 5 72 173 MOD 124.80

16 2579 Underwood, K M 60 22 71 191 LOW 149.75

17 2584 Takahashi, Y F 43 29 65 123 MOD 124.80

18 2586 Derber, B M 25 23 75 188 HIGH 85.20

19 2588 Ivan, H F 22 20 63 139 LOW 85.20

20 2589 Wilcox, E F 41 16 67 141 HIGH 149.75

21 2595 Warren, C M 54 7 71 183 MOD 149.75

Column Totals

64

You can produce column totals for numeric variables within your report.
libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

sum fee;

run;

Obs ID Name Sex Age Date Height Weight ActLevel Fee

1 2458 Murray, W M 27 1 72 168 HIGH 85.20

2 2462 Almers, C F 34 3 66 152 HIGH 124.80

3 2501 Bonaventure, T F 31 17 61 123 LOW 149.75

4 2523 Johnson, R F 43 31 63 137 MOD 149.75

5 2539 LaMance, K M 51 4 71 158 LOW 124.80

6 2544 Jones, M M 29 6 76 193 HIGH 124.80

7 2552 Reberson, P F 32 9 67 151 MOD 149.75

8 2555 King, E M 35 13 70 173 MOD 149.75

9 2563 Pitts, D M 34 22 73 154 LOW 124.80

10 2568 Eberhardt, S F 49 27 64 172 LOW 124.80

11 2571 Nunnelly, A F 44 19 66 140 HIGH 149.75

12 2572 Oberon, M F 28 17 62 118 LOW 85.20

13 2574 Peterson, V M 30 6 69 147 MOD 149.75

14 2575 Quigley, M F 40 8 69 163 HIGH 124.80

15 2578 Cameron, L M 47 5 72 173 MOD 124.80

16 2579 Underwood, K M 60 22 71 191 LOW 149.75

17 2584 Takahashi, Y F 43 29 65 123 MOD 124.80

18 2586 Derber, B M 25 23 75 188 HIGH 85.20

19 2588 Ivan, H F 22 20 63 139 LOW 85.20

20 2589 Wilcox, E F 41 16 67 141 HIGH 149.75

21 2595 Warren, C M 54 7 71 183 MOD 149.75

2686.95

Sorting and Labels
You can sort data by the values of one or more variables and replace variable names with descriptive labels.
libname clinic 'your-SAS-data-library';

proc sort data=clinic.admit out=admit;

by age;

run;

65

proc print data=admit label;

 var age height weight fee;

label fee='Admission Fee';

run;

Obs Age Height Weight Admission
Fee

1 22 63 139 85.20

2 25 75 188 85.20

3 27 72 168 85.20

4 28 62 118 85.20

5 29 76 193 124.80

6 30 69 147 149.75

7 31 61 123 149.75

8 32 67 151 149.75

9 34 66 152 124.80

10 34 73 154 124.80

11 35 70 173 149.75

12 40 69 163 124.80

13 41 67 141 149.75

14 43 63 137 149.75

15 43 65 123 124.80

16 44 66 140 149.75

17 47 72 173 124.80

18 49 64 172 124.80

19 51 71 158 124.80

20 54 71 183 149.75

21 60 71 191 149.75

Selected Observations and Variables
You can choose the observations and variables that appear in your report. In addition, you can remove the default Obs
column that displays observation numbers.
libname clinic 'your-SAS-data-library';

proc print data=clinic.admit noobs;

var age height weight fee;

where age>30;

run;

66

Age Height Weight Fee

34 66 152 124.80

31 61 123 149.75

43 63 137 149.75

51 71 158 124.80

32 67 151 149.75

35 70 173 149.75

34 73 154 124.80

49 64 172 124.80

44 66 140 149.75

40 69 163 124.80

47 72 173 124.80

60 71 191 149.75

43 65 123 124.80

41 67 141 149.75

54 71 183 149.75

Creating a Basic Report
To produce a simple list report, you first reference the library in which your SAS data set is stored. If you want, you can also
set SAS system options to control the appearance of your reports. Then you submit a basic PROC PRINT step.

General form, basic PROC PRINT step:

PROC PRINT <DATA=SAS-data-set>;
RUN;

where SAS-data-set is the name of the SAS data set to be printed.

In the program below, the PROC PRINT statement invokes the PRINT procedure and specifies the data set Therapy in the
SAS data library to which the libref Patients has been assigned.
libname patients 'c:\records\patients';

proc print data=patients.therapy;

run;

Notice the layout of the resulting report. By default,
� all observations and variables in the data set are printed
� a column for observation numbers appears on the far left
� variables appear in the order in which they occur in the data set.

67

Obs Date AerClass WalkJogRun Swim

1 JAN1999 56 78 14

2 FEB1999 32 109 19

3 MAR1999 35 106 22

4 APR1999 47 115 24

5 MAY1999 55 121 31

6 JUN1999 61 114 67

7 JUL1999 67 102 72

8 AUG1999 64 76 77

9 SEP1999 78 77 54

10 OCT1999 81 62 47

11 NOV1999 84 31 52

12 DEC1999 2 44 55

13 JAN2000 37 91 83

14 FEB2000 41 102 27

15 MAR2000 52 98 19

16 APR2000 61 118 22

17 MAY2000 49 88 29

18 JUN2000 24 101 54

19 JUL2000 45 91 69

20 AUG2000 63 65 53

21 SEP2000 60 49 68

22 OCT2000 78 70 41

23 NOV2000 82 44 58

24 DEC2000 93 57 47
Note Be sure to specify the equal sign in the DATA= option in SAS procedures. If you omit the equal

sign, your program produces an error similar to the following in the SAS log.
SAS Log

1 proc print data: patients.therapy;

 73

 2 run;

 ERROR 73-322: Expecting an =.

68

 NOTE: The SAS System stopped processing this step

because of errors.

Selecting Observations
By default, a PROC PRINT step lists all the variables in a data set. You can select variables and control the order in which
they appear by using a VAR statement in your PROC PRINT step.

General form, VAR statement:

VAR variable(s);

where variable(s) is one or more variable names, separated by blanks.

For example, the following VAR statement specifies that only the variables Age, Height, Weight, and Fee be printed, in
that order:
proc print data=clinic.admit;

var age height weight fee;

run;

The procedure output from the PROC PRINT step with the VAR statement lists only the values for the variables Age,
Height, Weight, and Fee.

Obs Age Height Weight Fee

1 27 72 168 85.20

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

6 29 76 193 124.80

7 32 67 151 149.75

8 35 70 173 149.75

9 34 73 154 124.80

10 49 64 172 124.80

11 44 66 140 149.75

12 28 62 118 85.20

13 30 69 147 149.75

14 40 69 163 124.80

15 47 72 173 124.80

69

Obs Age Height Weight Fee

16 60 71 191 149.75

17 43 65 123 124.80

18 25 75 188 85.20

19 22 63 139 85.20

20 41 67 141 149.75

21 54 71 183 149.75

In addition to selecting variables, you can control the default Obs column that PROC PRINT displays to list observation
numbers. If you prefer, you can choose not to display observation numbers.

Obs Age Height Weight Fee

1 27 72 168 85.20

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

Removing the OBS Column
To remove the Obs column, specify the NOOBS option in the PROC PRINT statement.
 proc print data=work.example noobs;

 var age height weight fee;

 run;

Age Height Weight Fee

27 72 168 85.20

34 66 152 124.80

31 61 123 149.75

43 63 137 149.75

51 71 158 124.80

Identifying Observations
You've learned how to remove the Obs column altogether. As another alternative, you can use one or more variables to
replace the Obs column in the output.

To specify which variables should replace the Obs column, use the ID statement. This technique is particularly useful when
observations are too long to print on one line.

70

General form, ID statement:

ID variable(s);

where variable(s) specifies one or more variables to print instead of the observation number at the beginning of each row of
the report.

Example

To replace the Obs column and identify observations based on an employee's ID number and last name, you can submit the
following program.
proc print data=sales.reps;

 id idnum lastname;

run;

This is HTML output from the program:

IDn
um

LastName FirstN
ame

City St
ate

S
e
x

JobC
ode

Salar
y

Birth Hired HomePh
one

1269 CASTON FRANK
LIN

STAMFO
RD

CT M NA1 41690
.00

06MA
Y60

01DE
C80

203/781-
3335

1935 FERNAND
EZ

KATRI
NA

BRIDGEP
ORT

CT NA2 51081
.00

31MA
R42

19OC
T69

203/675-
2962

1417 NEWKIRK WILLIA
M

PATERS
ON

NJ , NA2 52270
.00

30JUN
52

10MA
R77

201/732-
6611

1839 NORRIS DIANE NEW
YORK

NY F NA1 43433
.00

02DE
C58

06JUL
81

718/384-
1767

1111 RHODES JEREM
Y

PRINCET
ON

NJ M NA1 40586
.00

17JUL
61

03NO
V80

201/812-
1837

1352 RIVERS SIMON NEW
YORK

NY M NA2 5379.
80

05DE
C48

19OC
T74

718/383-
3345

1332 STEPHEN
SON

ADAM BRIDGEP
ORT

CT M NA1 42178
.00

20SE
P58

07JUN
79

203/675-
1497

1443 WELLS AGNES STAMFO
RD

CT F NA1 422.7
4

20NO
V56

01SE
P79

203/781-
5546

Not
e

In listing output, the IDnum and LastName columns are repeated for each observation that is
printed on more than one line.

 IDnum LastName FirstName City State Sex JobCode

 1269 CASTON FRANKLIN STAMFORD CT M NA1

 1935 FERNANDEZ KATRINA BRIDGEPO CT NA2

 1417 NEWKIRK WILLIAM PATERSON NJ , NA2

 1839 NORRIS DIANE NEW YORK NY F NA1

71

 1111 RHODES JEREMY PRINCETO NJ M NA1

 1352 RIVERS SIMON NEW YORK NY M NA2

 1332 STEPHENS ADAM BRIDGEPO CT M NA1

 1443 WELLS AGNES STAMFORD CT F NA1

 IDnum LastName Salary Birth Hired HomePhone

 1269 CASTON 41690.00 06MAY60 01DEC80 203/781-3335

 1935 FERNANDEZ 51081.00 31MAR42 19OCT69 203/675-2962

 1417 NEWKIRK 52270.00 30JUN52 10MAR77 201/732-6611

 1839 NORRIS 43433.00 02DEC58 06JUL81 718/384-1767

 1111 RHODES 40586.00 17JUL61 03NOV80 201/812-1837

 1352 RIVERS 5379.80 05DEC48 19OCT74 718/383-3345

 1332 STEPHENS 42178.00 20SEP58 07JUN79 203/675-1497

 1443 WELLS 422.74 20NOV56 01SEP79 203/781-5546

If a variable in the ID statement also appears in the VAR statement, the output contains two columns for that variable. In the
example below, the variable IDnum appears twice.
proc print data=sales.reps;

 id idnum lastname;

 var idnum sex jobcode salary;

run;

IDnum LastName IDnum Sex JobCode Salary

1269 CASTON 1269 M NA1 41690.00

1935 FERNANDEZ 1935 NA2 51081.00

1417 NEWKIRK 1417 , NA2 52270.00

1839 NORRIS 1839 F NA1 43433.00

1111 RHODES 1111 M NA1 40586.00

1352 RIVERS 1352 M NA2 5379.80

1332 STEPHENSON 1332 M NA1 42178.00

1443 WELLS 1443 F NA1 422.74

Selecting Observations
By default, a PROC PRINT step lists all the observations in a data set. You can control which observations are printed by
adding a WHERE statement to your PROC PRINT step. There can be only one WHERE statement in a step.

72

General form, WHERE statement:

WHERE where-expression;

where where-expression specifies a condition for selecting observations. The where-expression can be any valid SAS
expression.

For example, the following WHERE statement selects only observations for which the value of Age is greater than 30:
proc print data=clinic.admit;

 var age height weight fee;

where age>30;

run;

Here is the procedure output from the PROC PRINT step with the WHERE statement:

Obs Age Height Weight Fee

2 34 66 152 124.80

3 31 61 123 149.75

4 43 63 137 149.75

5 51 71 158 124.80

7 32 67 151 149.75

8 35 70 173 149.75

9 34 73 154 124.80

10 49 64 172 124.80

11 44 66 140 149.75

14 40 69 163 124.80

15 47 72 173 124.80

16 60 71 191 149.75

17 43 65 123 124.80

20 41 67 141 149.75

21 54 71 183 149.75

Specifying WHERE Expressions

73

In the WHERE statement you can specify any variable in the SAS data set, not just the variables that are specified in the
VAR statement. The WHERE statement works for both character and numeric variables. To specify a condition based on
the value of a character variable, you must
� enclose the value in quotation marks
� write the value with lowercase and uppercase letters exactly as it appears in the data set.

You use the following comparison operators to express a condition in the WHERE statement:

Symbol Meaning Example

= or eq equal to where name='Jones, C.';

^= or ne not equal to where temp ne 212;

> or gt greater than where income>20000;

< or lt less than where partno lt "BG05";

>= or ge greater than or equal to where id>='1543';

<= or le less than or equal to where pulse le 85;
Note You can learn more about valid SAS expressions in Chapter 5, Creating SAS

Data Sets from Raw Data.

Using the CONTAINS Operator
The CONTAINS operator selects observations that include the specified substring. The mnemonic equivalent for the
CONTAINS operator is ?. You can use either the CONTAINS keyword or the mnemonic equivalent in your code, as shown
below.
 where firstname CONTAINS 'Jon';

 where firstname ? 'Jon';

Specifying Compound WHERE Expressions
You can also use WHERE statements to select observations that meet multiple conditions. To link a sequence of
expressions into compound expressions, you use logical operators, including the following:

Operator Meaning

AND or & and, both. If both expressions are true, then the compound expression is true.

OR or | or, either. If either expression is true, then the compound expression is true.

Examples of WHERE Statements
� Here are some examples of WHERE statements that use logical operators:
where age<=55 and pulse>75;

where area='A' or region='S';

where ID>1050 and state='NC';
� When you test for multiple values of the same variable, you specify the variable name in each expression:
where actlevel='LOW' or actlevel='MOD';

where fee=124.80 or fee=178.20;
� You can use the IN operator as a convenient alternative:
where actlevel in ('LOW','MOD');

74

where fee in (124.80,178.20);
� To control the way compound expressions are evaluated, you can use parentheses (expressions in parentheses

are evaluated first):
where (age<=55 and pulse>75) or area='A';

where age<=55 and (pulse>75 or area='A');

Sorting Data
By default, PROC PRINT lists observations in the order in which they appear in your data set. To sort your report based on
values of a variable, you must use PROC SORT to sort your data before using the PRINT procedure to create reports from
the data.

The SORT procedure
� rearranges the observations in a SAS data set
� creates a new SAS data set that contains the rearranged observations
� replaces the original SAS data set by default
� can sort on multiple variables
� can sort in ascending or descending order
� does not generate printed output
� treats missing values as the smallest possible values.

General form, simple PROC SORT step:

PROC SORT DATA=SAS-data-set <OUT=SAS-data-set>;
BY <DESCENDING> BY-variable(s);

RUN;

where
� the DATA= option specifies the data set to be read.
� the OUT= option specifies the output data set that contains the data in sorted order.
� BY-variable(s) in the required BY statement specifies one or more variables whose values are used to sort the data.
� the DESCENDING option in the BY statement sorts observations in descending order. If you have more than one

variable in the BY statement, DESCENDING applies only to the variable that immediately follows it.
Warning If you don't use the OUT= option, PROC SORT permanently sorts the data set that is specified in

the DATA= option. If you need your data to be sorted to produce output for only one SAS session,
then you should specify a temporary SAS data set as the output data set.

Example

In the following program, the PROC SORT step sorts the permanent SAS data set Clinic.Admit by the values of the
variable Age within the values of the variable Weight and creates the temporary SAS data set Wgtadmit. Then the PROC
PRINT step prints the Wgtadmit data set.
 proc sort data=clinic.admit out=work.wgtadmit;

 by weight age;

 run;

 proc print data=work.wgtadmit;

 var age height weight fee;

 where age>30;

75

 run;

The report displays observations in ascending order of age within weight.

Obs Age Height Weight Fee

2 31 61 123 149.75

3 43 65 123 124.80

4 43 63 137 149.75

6 44 66 140 149.75

7 41 67 141 149.75

9 32 67 151 149.75

10 34 66 152 124.80

11 34 73 154 124.80

12 51 71 158 124.80

13 40 69 163 124.80

15 49 64 172 124.80

16 35 70 173 149.75

17 47 72 173 124.80

18 54 71 183 149.75

20 60 71 191 149.75

Adding the DESCENDING option to the BY statement sorts observations in ascending order of age within descending order
of weight. Notice that DESCENDING applies only to the variable Weight.
proc sort data=clinic.admit out=work.wgtadmit;

 by descending weight age;

run;

proc print data=work.wgtadmit;

 var age height weight fee;

 where age>30;

run;

Obs Age Height Weight Fee

2 60 71 191 149.75

4 54 71 183 149.75

5 35 70 173 149.75

6 47 72 173 124.80

7 49 64 172 124.80

9 40 69 163 124.80

76

Obs Age Height Weight Fee

10 51 71 158 124.80

11 34 73 154 124.80

12 34 66 152 124.80

13 32 67 151 149.75

15 41 67 141 149.75

16 44 66 140 149.75

18 43 63 137 149.75

19 31 61 123 149.75

20 43 65 123 124.80

Generating Column Totals
To produce column totals for numeric variables, you can list the variables to be summed in a SUM statement in your PROC
PRINT step.

General form, SUM statement:

SUM variable(s);

where variable(s) is one or more variable names, separated by blanks. You do not need to name the variables in a VAR
statement if you specify them in the SUM statement.

The SUM statement in the following PROC PRINT step requests column totals for the variable BalanceDue:
 proc print data=clinic.insure;

 var name policy balancedue;

 where pctinsured < 100;

sum balancedue;

 run;

Column totals appear at the end of the report in the same format as the values of the variables.

Obs Name Policy BalanceDue

2 Almers, C 95824 156.05

3 Bonaventure, T 87795 9.48

4 Johnson, R 39022 61.04

5 LaMance, K 63265 43.68

6 Jones, M 92478 52.42

7 Reberson, P 25530 207.41

77

Obs Name Policy BalanceDue

8 King, E 18744 27.19

9 Pitts, D 60976 310.82

10 Eberhardt, S 81589 173.17

13 Peterson, V 75986 228.00

14 Quigley, M 97048 99.01

15 Cameron, L 42351 111.41

17 Takahashi, Y 54219 186.58

18 Derber, B 74653 236.11

20 Wilcox, E 94034 212.20

21 Warren, C 20347 164.44

2279.01

Requesting Subtotals
You might also want to subtotal numeric variables. To produce subtotals, add both a SUM statement and a BY statement
to your PROC PRINT step.

General form, BY statement in the PRINT procedure:

BY <DESCENDING> BY-variable-1
<...<DESCENDING> <BY-variable-n>>
<NOTSORTED>;

where
� BY-variable specifies a variable that the procedure uses to form BY groups. You can specify more than one

variable, separated by blanks.
� the DESCENDING option specifies that the data set is to be sorted in descending order by the variable that

immediately follows.
� the NOTSORTED option specifies that the observations are not necessarily sorted in alphabetic or numeric order. If

observations that have the same values for the BY variables are not contiguous, then the procedure treats each
contiguous set as a separate BY group.

Warning If you do not use the NOTSORTED option in the BY statement, the observations in the data set
must either be sorted by all the variables that you specify, or they must be indexed appropriately.

Example
The SUM statement in the following PROC PRINT step requests column totals for the variable Fee, and the BY statement
produces a subtotal for each value of ActLevel.
proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

78

proc print data=work.activity;

 var age height weight fee;

 where age>30;

sum fee;

by actlevel;

run;

In the output, the BY variable name and value appear before each BY group. The BY variable name and the subtotal
appear at the end of each BY group.
ActLevel=HIGH

Obs Age Height Weight Fee

2 34 66 152 124.80

4 44 66 140 149.75

5 40 69 163 124.80

7 41 67 141 149.75

ActLevel 549.10

ActLevel=LOW

Obs Age Height Weight Fee

8 31 61 123 149.75

9 51 71 158 124.80

10 34 73 154 124.80

11 49 64 172 124.80

13 60 71 191 149.75

ActLevel 673.90

ActLevel=MOD

Obs Age Height Weight Fee

15 43 63 137 149.75

16 32 67 151 149.75

17 35 70 173 149.75

19 47 72 173 124.80

20 43 65 123 124.80

21 54 71 183 149.75

ActLevel 848.60

2071.60

Creating a Customized Layout with BY Groups and ID Variables

79

In the previous example, you might have noticed the redundant information for the BY variable. For example, in the partial
PROC PRINT output below, the BY variable ActLevel is identified both before the BY group and for the subtotal.
ActLevel=HIGH

Obs Age Height Weight Fee

2 34 66 152 124.80

4 44 66 140 149.75

5 40 69 163 124.80

7 41 67 141 149.75

ActLevel 549.10

To show the BY variable heading only once, you can use an ID statement and a BY statement together with the SUM
statement. When an ID statement specifies the same variable as the BY statement,
� the Obs column is suppressed
� the ID/BY variable is printed in the left-most column
� each ID/BY value is printed only at the start of each BY group and on the line that contains that group's subtotal.

Example
The ID, BY, and SUM statements work together to produce the output shown below. The ID variable is listed only once for
each BY group and once for each sum. The BY lines are suppressed. Instead, the value of the ID variable, ActLevel,
identifies each BY group.
proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

proc print data=work.activity;

 var age height weight fee;

 where age>30;

sum fee;

by actlevel;

id actlevel;

run;

ActLevel Age Height Weight Fee

HIGH 34 66 152 124.80

44 66 140 149.75

40 69 163 124.80

41 67 141 149.75

HIGH 549.10

LOW 31 61 123 149.75

51 71 158 124.80

34 73 154 124.80

80

ActLevel Age Height Weight Fee

49 64 172 124.80

60 71 191 149.75

LOW 673.90

MOD 43 63 137 149.75

32 67 151 149.75

35 70 173 149.75

47 72 173 124.80

43 65 123 124.80

54 71 183 149.75

MOD 848.60

2071.60

Requesting Subtotals on Separate Pages
As another enhancement to your PROC PRINT report, you can request that each BY group be printed on a separate page
by using the PAGEBY statement.

General form, PAGEBY statement:

PAGEBY BY-variable;

where BY-variable identifies a variable that appears in the BY statement in the PROC PRINT step. PROC PRINT begins
printing a new page if the value of any of the variables in the BY statement changes.

Warning The variable that is specified in the PAGEBY statement must also be specified in the BY statement in
the PROC PRINT step.

Example
The PAGEBY statement in the program below prints BY groups for the variable ActLevel separately. The BY groups
appear on separate pages in the output.
proc sort data=clinic.admit out=work.activity;

 by actlevel;

run;

proc print data=work.activity;

 var age height weight fee;

 where age>30;

sum fee;

by actlevel;

id actlevel;

81

pageby actlevel;

run;

ActLevel Age Height Weight Fee

HIGH 34 66 152 124.80

44 66 140 149.75

40 69 163 124.80

41 67 141 149.75

HIGH 549.10

ActLevel Age Height Weight Fee

LOW 31 61 123 149.75

51 71 158 124.80

34 73 154 124.80

49 64 172 124.80

60 71 191 149.75

LOW 673.90

ActLevel Age Height Weight Fee

MOD 43 63 137 149.75

32 67 151 149.75

35 70 173 149.75

47 72 173 124.80

43 65 123 124.80

54 71 183 149.75

MOD 848.60

2071.60

Double-Spacing Listing Output
If you are generating SAS listing output, one way to control the layout is to double-space it. To double-space, specify the
DOUBLE option in the PROC PRINT statement.
proc print data=clinic.stress double;

 var resthr maxhr rechr;

 where tolerance='I';

run;
Note Double-spacing does not apply to HTML output.

SAS Output

82

 OBS RestHR MaxHR RecHR

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

 14 74 152 113

 15 75 158 108

 20 78 189 138

SAS
Enterprise
Guide

To generate SAS listing output, you must select Text output on the Results tab of the Options window.

Specifying Titles and Footnotes
Now you've learned how to structure your PROC PRINT output. However, you might also want to make your reports easy to
interpret by
� adding titles and footnotes
� replacing variable names with descriptive labels
� formatting variable values.

Although this chapter focuses on PROC PRINT, you can apply these enhancements to most SAS procedure output.

TITLE and FOOTNOTE Statements
To make your report more meaningful and self-explanatory, you can specify up to 10 titles with procedure output by using
TITLE statements before the PROC step. Likewise, you can specify up to 10 footnotes by using FOOTNOTE statements
before the PROC step.

Note Because TITLE and FOOTNOTE statements are global statements, place them before the PRINT
procedure. Titles and footnotes are assigned as soon as TITLE or FOOTNOTE statements are read; they
apply to all subsequent output.

General form, TITLE and FOOTNOTE statements:

TITLE<n> 'text';
FOOTNOTE<n> 'text';

where

83

� n is a number from 1 to 10 that specifies the title or footnote line
� 'text' is the actual title or footnote to be displayed.

Warning Be sure to match quotation marks that enclose the title or footnote text.

Note The maximum title or footnote length depends on your operating environment and on the value of the
LINESIZE= option.

The keyword title is equivalent to title1. Likewise, the keyword footnote is equivalent to footnote1.
If you don't specify a title, the default title is The SAS System. No footnote is printed unless you specify one.

Examples: Titles
The two TITLE statements below, specified for lines 1 and 3, define titles for the PROC PRINT output.
title1 'Heart Rates for Patients with';

title3 'Increased Stress Tolerance Levels';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

In HTML output, title lines appear consecutively, without extra spacing to indicate skipped title numbers.
Heart Rates for Patients with Increased Stress Tolerance Levels

Obs RestHR MaxHR RecHR

2 68 171 133

3 78 177 139

8 70 167 122

11 65 181 141

14 74 152 113

15 75 158 108

20 78 189 138

In SAS listing output, title line 2 is blank, as shown below. Titles are centered by default.

 Heart Rates for Patients with

 Increased Stress Tolerance Levels

 OBS RestHR MaxHR RecHR

84

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

 14 74 152 113

 15 75 158 108

 20 78 189 138

Examples: Footnotes
The two FOOTNOTE statements below, specified for lines 1 and 3, define footnotes for the PROC PRINT output.
footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

Footnotes appear at the bottom of each page of procedure output. Notice that footnote lines are “pushed up” from the
bottom. The FOOTNOTE statement that has the largest number appears on the bottom line.

In HTML output, footnote lines simply appear consecutively, without extra spacing to indicate skipped footnote numbers.

Obs RestHR MaxHR RecHR

2 68 171 133

3 78 177 139

8 70 167 122

11 65 181 141

14 74 152 113

15 75 158 108

20 78 189 138

Data from Treadmill Tests 1st Quarter Admissions

In SAS listing output, footnote line 2 is blank, as shown below. Footnotes are centered by default.

 OBS RestHR MaxHR RecHR

 2 68 171 133

 3 78 177 139

 8 70 167 122

 11 65 181 141

85

 14 74 152 113

 15 75 158 108

 20 78 189 138

 Data from Treadmill Tests

 1st Quarter Admissions

Modifying and Canceling Titles and Footnotes
TITLE and FOOTNOTE statements are global statements. That is, after you define a title or footnote, it remains in effect
until you modify it, cancel it, or end your SAS session.

For example, the footnotes that are assigned in the PROC PRINT step below also appear in the output from the PROC
TABULATE step.
footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

proc tabulate data=clinic.stress;

 where tolerance='I';

 var resthr maxhr;

 table mean*(resthr maxhr);

run;

Re-defining a title or footnote line cancels any higher-numbered title or footnote line, in that order. In the example below,
defining a title for line 2 in the second report automatically cancels title line 3.
title3 'Participation in Exercise Therapy';

proc print data=clinic.therapy;

 var swim walkjogrun aerclass;

run;

title2 'Report for March';

proc print data=clinic.therapy;

run;

To cancel all previous titles or footnotes, specify a null TITLE or FOOTNOTE statement (a TITLE or FOOTNOTE statement
with no number or text) or a TITLE1 or FOOTNOTE1 statement with no text. This will also cancel the default title The SAS
System.

For example, in the program below, the null TITLE1 statement cancels all titles that are in effect before either PROC step
executes. The null FOOTNOTE statement cancels all footnotes that are in effect after the PROC PRINT step executes. The
PROC TABULATE output appears without a footnote.

86

title1;

footnote1 'Data from Treadmill Tests';

footnote3 '1st Quarter Admissions';

proc print data=clinic.stress;

 var resthr maxhr rechr;

 where tolerance='I';

run;

footnote;

proc tabulate data=clinic.stress;

 var timemin timesec;

 table max*(timemin timesec);

run;

Assigning Descriptive Labels

Temporarily Assigning Labels to Variables
You can also enhance your PROC PRINT report by labeling columns with more descriptive text. To label columns, you use
� the LABEL statement to assign a descriptive label to a variable
� the LABEL option in the PROC PRINT statement to specify that the labels be displayed.

General form, LABEL statement:

LABEL variable1='label1'
variable2='label2'
... ;

Labels can be up to 256 characters long. Enclose the label in quotation marks.
Note The LABEL statement applies only to the PROC step in which it appears.

Example
In the PROC PRINT step below, the variable name WalkJogRun is displayed with the label Walk/Jog/Run. Note the
LABEL option in the PROC PRINT statement.
proc print data=clinic.therapy label;

label walkjogrun='Walk/Jog/Run';

run;

Obs Date AerClass Walk/Jog/Run Swim

1 JAN1999 56 78 14

2 FEB1999 32 109 19

3 MAR1999 35 106 22

87

Obs Date AerClass Walk/Jog/Run Swim

4 APR1999 47 115 24

5 MAY1999 55 121 31

6 JUN1999 61 114 67

7 JUL1999 67 102 72

8 AUG1999 64 76 77

9 SEP1999 78 77 54

10 OCT1999 81 62 47

11 NOV1999 84 31 52

12 DEC1999 2 44 55

13 JAN2000 37 91 83

14 FEB2000 41 102 27

15 MAR2000 52 98 19

16 APR2000 61 118 22

17 MAY2000 49 88 29

18 JUN2000 24 101 54

19 JUL2000 45 91 69

20 AUG2000 63 65 53

21 SEP2000 60 49 68

22 OCT2000 78 70 41

23 NOV2000 82 44 58

24 DEC2000 93 57 47

Using Single or Multiple LABEL Statements
You can assign labels in separate LABEL statements …
proc print data=clinic.admit label;

 var age height;

label age='Age of Patient';

label height='Height in Inches';

run;

…or you can assign any number of labels in a single LABEL statement.
proc print data=clinic.admit label;

 var actlevel height weight;

label actlevel='Activity Level'

height='Height in Inches'

88

weight='Weight in Pounds';

run;

Formatting Data Values

Temporarily Assigning Formats to Variables
In your SAS reports, formats control how the data values are displayed. To make data values more understandable when
they are displayed in your procedure output, you can use the FORMAT statement, which associates formats with variables.

Formats affect only how the data values appear in output, not the actual data values as they are stored in the SAS data set.

General form, FORMAT statement:

FORMAT variable(s) format-name;

where
� variable(s) is the name of one or more variables whose values are to be written according to a particular pattern
� format-name specifies a SAS format or a user-defined format that is used to write out the values.

Note The FORMAT statement applies only to the PROC step in which it appears.

You can use a separate FORMAT statement for each variable, or you can format several variables (using either the same
format or different formats) in a single FORMAT statement.

This FORMAT Statement Associates To display Values as

format date mmddyy8.; the format MMDDYY8. with the variable Date 06/05/03

format net comma5.0
gross

comma8.2;

the format COMMA5.0 with the variable Net and the
format COMMA8.2 with the variable Gross

1,234
5,678.90

format net gross
dollar9.2;

the format DOLLAR9.2 with both variables, Net and
Gross

$1,234.00
$5,678.90

For example, the FORMAT statement below writes values of the variable Fee using dollar signs, commas, and no decimal
places:
proc print data=clinic.admit;

 var actlevel fee;

 where actlevel='HIGH';

format fee dollar4.;

run;

Obs ActLevel Fee

1 HIGH $85

2 HIGH $125

6 HIGH $125

89

Obs ActLevel Fee

11 HIGH $150

14 HIGH $125

18 HIGH $85

20 HIGH $150

Specifying SAS Formats
The table below describes some SAS formats that are commonly used in reports.

Format Specifies These Values Example

COMMAw.d that contain commas and decimal places comma8.2

DOLLARw.d that contain dollar signs, commas, and decimal places dollar6.2

MMDDYYw. as date values of the form 09/12/97 (MMDDYY8.) or 09/12/1997
(MMDDYY10.)

mmddyy10.

w. rounded to the nearest integer in w spaces 7.

w.d rounded to d decimal places in w spaces 8.2

$w. as character values in w spaces $12.

DATEw. as date values of the form 16OCT99 (DATE7.) or 16OCT1999 (DATE9.) date9.

Field Widths
All SAS formats specify the total field width (w) that is used for displaying the values in the output. For example, suppose
the longest value for the variable Net is a four-digit number, such as 5400. To specify the COMMAw.d format for Net, you
specify a field width of 5 or more. You must count the comma, because it occupies a position in the output, as shown in the
table below.

Warning When you use a SAS format, be sure to specify a field width (w) that is wide enough for the largest
possible value. Otherwise, values might not be displayed properly.

Stored Value 5400

Desired Format COMMAw.d

Displayed Value 5,400

Positions Displayed in Output 5

FORMAT statement format net comma5.0;

Decimal Places
For numeric variables you can also specify the number of decimal places (d), if any, to be displayed in the output. Numbers
are rounded to the specified number of decimal places.

Writing the whole number 2030 as 2,030.00 requires eight print positions, including two decimal places and the decimal
point.

Stored Value 2030

90

Desired Format COMMAw.d

Displayed Value 2,030.00

Positions Displayed in Output 8

FORMAT statement format qtr3tax
comma8.2;

Formatting 15374 with a dollar sign, commas, and two decimal places requires 10 print positions.

Stored Value 15374

Desired Format DOLLARw.d

Displayed Value $15,374.00

Positions Displayed in Output 10

FORMAT statement format totsales dollar10.2;

Examples
This table shows you how data values are displayed when different format, field width, and decimal place specifications are
used.

Stored Value Format Displayed Value

38245.3975 COMMA12.2 38,245.40

38245.3975 12.2 38245.40

38245.3975 DOLLAR12.2 $38,245.40

38245.3975 DOLLAR9.2 $38245.40

38245.3975 DOLLAR8.2 38245.40

0 MMDDYY8. 01/01/60

0 MMDDYY10. 01/01/1960

0 DATE7. 01JAN60

0 DATE9. 01JAN1960
Note If a format is too small, the following message is written to the SAS log: "NOTE: At

least one W.D format was too small for the number to be printed. The decimal may
be shifted by the 'BEST' format."

Using Permanently Assigned Labels and Formats
You have seen how to temporarily assign labels and formats to variables. When you use a LABEL or FORMAT statement
within a PROC PRINT step, the label or format applies only to the output from that step.

However, in your PROC PRINT steps, you can also take advantage of permanently assigned labels or formats. Permanent
labels and formats can be assigned in the DATA step. These labels and formats are saved with the data set, and they can
later be used by procedures that reference the data set.

91

For example, the DATA step below creates Flights.March and defines a format and label for the variable Date. Because
the LABEL and FORMAT statements are inside the DATA step, they are written to the Flights.March data set and are
available to the subsequent PRINT procedure.
data flights.march;

 set flights.mar01;

label date='Departure Date';

format date date9.;

run;

proc print data=flights.march label;

run;
Partial Listing

Obs Departure Date Dest Boarded

1 01MAR2000 LON 198

2 01MAR2000 PAR 207

3 01MAR2000 LON 205

4 01MAR2000 COP 138

5 01MAR2000 MUN 147

Notice that the PROC PRINT statement still requires the LABEL option in order to display the permanent labels. Many other
SAS procedures display permanently assigned labels and formats without additional statements or options.

Note You can learn more about permanently assigning labels and formats in Chapter 11, Creating and
Managing Variables.

Additional Features
When you create list reports, you can use several other features to enhance your procedure output. For example, you can
� control where text strings split in labels by using the SPLIT= option.
 proc print data=reps split='*';

 var salesrep type unitsold net commission;

 label salesrep='Sales*Representative';

 run;
� create your own formats, which are particularly useful for formatting character values.
 proc format;

value $repfmt

'TFB'='Bynum'

'MDC'='Crowley'

'WKK'='King';

 proc print data=vcrsales;

 var salesrep type unitsold;

 format salesrep $repfmt.;

 run;

92

Note You can learn more about user-defined formats in Chapter 7, Creating and Applying User-Defined
Formats.

Summary

Text Summary

Creating a Basic Report
To list the information in a SAS data set, you can use PROC PRINT. You use the PROC PRINT statement to invoke the
PRINT procedure and to specify the data set that you are listing. Include the DATA= option to specify the data set that you
are using. By default, PROC PRINT displays all observations and variables in the data set, includes a column for
observation numbers on the far left, and displays variables in the order in which they occur in the data set. If you use a
LABEL statement with PROC PRINT, you must specify the LABEL option or the SPLIT= option in the PROC PRINT
statement.

To refine a basic report, you can
� select which variables and observations are processed
� sort the data
� generate column totals for numeric variables.

Selecting Variables
You can select variables and control the order in which they appear by using a VAR statement in your PROC PRINT step.
To remove the Obs column, you can specify the NOOBS option in the PROC PRINT statement. As an alternative, you can
replace the Obs column with one or more variables by using the ID statement.

Selecting Observations
The WHERE statement enables you to select observations that meet a particular condition in the SAS data set. You use
comparison operators to express a condition in the WHERE statement. You can also use the CONTAINS operator to
express a condition in the WHERE statement. To specify a condition based on the value of a character variable, you must
enclose the value in quotation marks, and you must write the value with lowercase and uppercase letters exactly as it
appears in the data set. You can also use WHERE statements to select a subset of observations based on multiple
conditions. To link a sequence of expressions to compound expressions, you use logical operators. When you test for
multiple values of the same variable, you specify the variable name in each expression. You can use the IN operator as a
convenient alternative. To control how compound expressions are evaluated, you can use parentheses.

Sorting Data
To display your data in sorted order, you use PROC SORT to sort your data before using PROC PRINT to create reports.
By default, PROC SORT sorts the data set that is specified in the DATA= option and overwrites this data set with the sorted
data set. If you do not want your original data to be sorted permanently, you must create an output data set that contains the
data in sorted order. The OUT= option in the PROC SORT statement specifies an output data set. If you need sorted data to
produce output for only one SAS session, you should specify a temporary SAS data set as the output data set. The BY
statement, which is required with PROC SORT, specifies the variable(s) whose values are used to sort the data.

Generating Column Totals
To total the values of numeric variables, use the SUM statement in the PROC PRINT step. You do not need to specify the
variables in a VAR statement if you specify them in the SUM statement. Column totals appear at the end of the report in the
same format as the values of the variables. To produce subtotals, add both the SUM statement and the BY statement to
your PROC PRINT step. To show BY variable headings only once, use an ID and BY statement together with the SUM

93

statement. As another enhancement to your report, you can request that each BY group be printed on a separate page by
using the PAGEBY statement.

Double-Spacing Output
To double-space your SAS listing output, you can specify the DOUBLE option in the PROC PRINT statement.

Specifying Titles
To make your report more meaningful and self-explanatory, you can specify up to 10 titles with procedure output by using
TITLE statements anywhere within or preceding the PROC step. After you define a title, it remains in effect until you modify
it, cancel it, or end your SAS session. Redefining a title line cancels any higher-numbered title lines. To cancel all previous
titles, specify a null TITLE statement (a TITLE statement with no number or text).

Specifying Footnotes
To add footnotes to your output, you can use the FOOTNOTE statement. Like TITLE statements, FOOTNOTE statements
are global. Footnotes appear at the bottom of each page of procedure output, and footnote lines are "pushed up" from the
bottom. The FOOTNOTE statement that has the largest number appears on the bottom line. After you define a footnote, it
remains in effect until you modify it, cancel it, or end your SAS session. Re-defining a footnote line cancels any higher-
numbered footnote lines. To cancel all previous footnotes, specify a null FOOTNOTE statement (a FOOTNOTE statement
with no number or text).

Assigning Descriptive Labels
To label the columns in your report with more descriptive text, you use the LABEL statement, which assigns a descriptive
label to a variable. To display the labels that were assigned in a LABEL statement, you must specify the LABEL option in
the PROC PRINT statement.

Formatting Data Values
To make data values more understandable when they are displayed in your procedure output, you can use the FORMAT
statement, which associates formats with variables. The FORMAT statement remains in effect only for the PROC step in
which it appears. Formats affect only how the data values appear in output, not the actual data values as they are stored in
the SAS data set. All SAS formats specify the total field width (w) that is used for displaying the values in the output. For
numeric variables you can also specify the number of decimal places (d), if any, to be displayed in the output.

Using Permanently Assigned Labels and Formats
You can take advantage of permanently assigned labels or formats without adding LABEL or FORMAT statements to your
PROC step. Some SAS procedures require a LABEL option in order to display permanent labels. Many other SAS
procedures display permanently assigned labels and formats within additional statements or options.

Points to Remember
� VAR, WHERE, and SUM statements remain in effect only for the PROC step in which they appear.
� If you don't use the OUT= option, PROC SORT permanently sorts the data set that is specified in the DATA=

option.
� TITLE and FOOTNOTE statements remain in effect until you modify them, cancel them, or end your SAS session.
� Be sure to match the quotation marks that enclose the text in TITLE, FOOTNOTE, and LABEL statements.
� To display labels in PRINT procedure output, remember to add the LABEL option to the PROC PRINT statement.
� To permanently assign labels or formats to data set variables, place the LABEL or FORMAT statement inside the

DATA step.

94

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which PROC PRINT step below creates the following output?

Date On Changed Flight

04MAR99 232 18 219

05MAR99 160 4 219

06MAR99 163 14 219

07MAR99 241 9 219

08MAR99 183 11 219

09MAR99 211 18 219

10MAR99 167 7 219

a. roc print data=flights.laguardia noobs;

b. var on changed flight;

c. where on>=160;

d. run;

e. proc print data=flights.laguardia;

f. var date on changed flight;

g. where changed>3;

h. run;

i. proc print data=flights.laguardia label;

j. id date;

k. var boarded transferred flight;

l. label boarded='On' transferred='Changed';

m. where flight='219';

n. run;

o. proc print flights.laguardia noobs;

p. id date;

q. var date on changed flight;

r. where flight='219';

s. run;

2. Which of the following PROC PRINT steps is correct if labels are not stored with the data set?
a. proc print data=allsales.totals label;

b. label region8='Region 8 Yearly Totals';

c. run;

d. proc print data=allsales.totals; label region8='Region 8 Yearly
Totals';

95

e. run;

f. proc print data allsales.totals label noobs;

g. run;

h. proc print allsales.totals label;

i. run;

3. Which of the following statements selects from a data set only those observations for which the value of the
variable Style is RANCH, SPLIT, or TWOSTORY?

a. where style='RANCH' or 'SPLIT' or 'TWOSTORY';
b. where style in 'RANCH' or 'SPLIT' or 'TWOSTORY';
c. where style in (RANCH, SPLIT, TWOSTORY);
d. where style in ('RANCH','SPLIT','TWOSTORY');

4. If you want to sort your data and create a temporary data set named Calc to store the sorted data, which of
the following steps should you submit?

a. proc sort data=work.calc out=finance.dividend;

b. run;

c. proc sort dividend out=calc;

d. by account;

e. run;

f. proc sort data=finance.dividend out=work.calc;

g. by account;

h. run;

i. proc sort from finance.dividend to calc;

j. by account;

k. run;

5. Which options are used to create the following PROC PRINT output?

13:27 Monday, March 22, 1999

Patient Arterial Heart Cardiac Urinary

203 88 95 66 110

54 83 183 95 0

664 72 111 332 12

210 74 97 369 0

101 80 130 291 0

96

a. the DATE system option and the LABEL option in PROC PRINT
b. the DATE and NONUMBER system options and the DOUBLE and NOOBS options in PROC PRINT
c. the DATE and NONUMBER system options and the DOUBLE option in PROC PRINT
d. the DATE and NONUMBER system options and the NOOBS option in PROC PRINT

6. Which of the following statements can you use in a PROC PRINT step to create this output?

Month Instructors AerClass WalkJogRun Swim

01 1 37 91 83

02 2 41 102 27

03 1 52 98 19

04 1 61 118 22

05 3 49 88 29

8 240 497 180

a. var month instructors;

b. sum instructors aerclass walkjogrun swim;

c. var month;

d. sum instructors aerclass walkjogrun swim;

e. var month instructors aerclass;

f. sum instructors aerclass walkjogrun swim;
g. all of the above

7. What happens if you submit the following program?
proc sort data=clinic.diabetes;

run;

proc print data=clinic.diabetes;

 var age height weight pulse;

 where sex='F';

run;
a. The PROC PRINT step runs successfully, printing observations in their sorted order.
b. The PROC SORT step permanently sorts the input data set.
c. The PROC SORT step generates errors and stops processing, but the PROC PRINT step runs

successfully, printing observations in their original (unsorted) order.
d. The PROC SORT step runs successfully, but the PROC PRINT step generates errors and stops

processing.

8. If you submit the following program, which output does it create?
proc sort data=finance.loans out=work.loans;

 by months amount;

run;

proc print data=work.loans noobs;

 var months;

 sum amount payment;

 where months<360;

97

run;
a.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

$27,200 $1,165.03

b.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

27,200 1,165.03

c.

Months Amount Payment

12 $3,500 $308.52

48 $5,000 $128.02

24 $8,700 $403.47

36 $10,000 $325.02

$27,200 $1,165.03

d.

Months Amount Payment

12 $3,500 $308.52

24 $8,700 $403.47

36 $10,000 $325.02

48 $5,000 $128.02

$1,165.03

98

e.

9. Choose the statement below that selects rows in which
� the amount is less than or equal to $5000
� the account is 101–1092, or the rate equals 0.095.
a. where amount <= 5000 and

b. account='101-1092' or rate = 0.095;

c. where (amount le 5000 and account='101-1092')

d. or rate = 0.095;

e. where amount <= 5000 and

f. (account='101-1092' or rate eq 0.095);

g. where amount <= 5000 or account='101-1092'

h. and rate = 0.095;

10. What does PROC PRINT display by default?
a. PROC PRINT does not create a default report; you must specify the rows and columns to be

displayed.
b. PROC PRINT displays all observations and variables in the data set. If you want an additional column

for observation numbers, you can request it.
c. PROC PRINT displays columns in the following order: a column for observation numbers, all character

variables, and all numeric variables.
d. PROC PRINT displays all observations and variables in the data set, a column for observation

numbers on the far left, and variables in the order in which they occur in the data set.

Answers

1. Correct answer: c

The DATA= option specifies the data set that you are listing, and the ID statement replaces the Obs column with the
specified variable. The VAR statement specifies variables and controls the order in which they appear, and the
WHERE statement selects rows based on a condition. The LABEL option in the PROC PRINT statement causes the
labels that are specified in the LABEL statement to be displayed.

2. Correct answer: a

You use the DATA= option to specify the data set to be printed. The LABEL option specifies that variable labels appear
in output instead of variable names.

3. Correct answer: d

In the WHERE statement, the IN operator enables you to select observations based on several values. You specify
values in parentheses and separate them by spaces or commas. Character values must be enclosed in quotation marks
and must be in the same case as in the data set.

4. Correct answer: c

In a PROC SORT step, you specify the DATA= option to specify the data set to sort. The OUT= option specifies an
output data set. The required BY statement specifies the variable(s) to use in sorting the data.

99

5. Correct answer: b

The DATE and NONUMBER system options cause the output to appear with the date but without page numbers. In the
PROC PRINT step, the DOUBLE option specifies double spacing, and the NOOBS option removes the default Obs
column.

6. Correct answer: d

You do not need to name the variables in a VAR statement if you specify them in the SUM statement, but you can. If
you choose not to name the variables in the VAR statement as well, then the SUM statement determines the order of
the variables in the output.

7. Correct answer: c

The BY statement is required in PROC SORT. Without it, the PROC SORT step fails. However, the PROC PRINT step
prints the original data set as requested.

8. Correct answer: a

Column totals appear at the end of the report in the same format as the values of the variables, so b is incorrect.
Work.Loans is sorted by Month and Amount, so c is incorrect. The program sums both Amount and Payment, so d is
incorrect.

9. Correct answer: c

To ensure that the compound expression is evaluated correctly, you can use parentheses to group
OBS Account Amount Rate MonthsPayment

1 101-1092 $22,000 10.00%60 $467.43

2 101-1731 $114,0009.50%360 $958.57

3 101-1289 $10,000 10.50%36 $325.02

4 101-3144 $3,500 10.50%12 $308.52

5 103-1135 $8,700 10.50%24 $403.47

6 103-1994 $18,500 10.00%60 $393.07

7 103-2335 $5,000 10.50%48 $128.02

8 103-3864 $87,500 9.50%360 $735.75

9 103-3891 $30,000 9.75%360 $257.75

For example, from the data set above, a and b above select observations 2 and 8 (those that have a rate of 0.095); c
selects no observations; and d selects observations 4 and 7 (those that have an amount less than or equal to 5000).

10. Correct answer: d

You can remove the column for observation numbers. You can also specify the variables you want, and you can select
observations according to conditions.

100

Chapter 5: Creating SAS Data Sets from Raw Data
Overview

Introduction
In order to create reports with SAS procedures, your data must be in the form of a SAS data set. If your data is not stored in
the form of a SAS data set, then you need to create a SAS data set by entering data, by reading raw data, or by accessing
external files (files that were created by other software).

This shows you how to design and write a DATA step program to create a SAS data set from raw data that is stored in an
external file. It also shows you how to read data from a SAS data set and write observations out to a raw data file.

Objectives

101

In this chapter, you learn to
� reference a SAS library
� reference a raw data file
� name a SAS data set to be created
� specify a raw data file to be read
� read standard character and numeric values in fixed fields
� create new variables and assign values
� select observations based on conditions
� read instream data
� submit and verify a DATA step program
� read a SAS data set and write the observations out to a raw data file.

Raw Data Files
A raw data file is an external text file whose records contain data values that are organized in fields. Raw data files are non-
proprietary and can be read by a variety of software programs. The sample raw data files in this book are shown with a ruler
to help you identify where individual fields begin and end. The ruler is not part of the raw data file.

The table below describes the record layout for a raw data file that contains readings from exercise stress tests that have
been performed on patients at a health clinic. Exercise physiologists in the clinic use the test results to prescribe various
exercise therapies. The file contains fixed fields; that is, values for each variable are in the same location in all records.

Field Name Starting Column Ending Column Description of Field

ID 1 4 patient ID number

Name 6 25 patient name

RestHR 27 29 resting heart rate

MaxHR 31 33 maximum heart rate during test

RecHR 35 37 recovery heart rate after test

TimeMin 39 40 time, complete minutes

TimeSec 42 43 time, seconds

Tolerance 45 45 comparison of stress test tolerance
between this test and the last test
(I=increased, D=decreased, S=same,
N=no previous test)

Steps to Create a SAS Data Set

102

Let's take a look at the steps for creating a SAS data set from a raw data file. In the first part of this chapter, you will learn
the steps to create a SAS data set from a raw data file that contains fixed fields. The examples shown use a raw data file
that contains data from exercise stress tests, which was introduced on the previous page.

Before reading the raw data from the file, you must first reference the SAS library in which you will store the data set. Then
you can write a DATA step program to read the raw data file and create a SAS data set.

To read the raw data file, the DATA step must provide the following instructions to SAS:
� the location or name of the external text file
� a name for the new SAS data set
� a reference that identifies the external file
� a description of the data values to be read.

After using the DATA step to read the raw data, you can use a PROC PRINT step to produce a list report that displays the
data values that are in the new data set.

The table below outlines the basic statements that you'll use to construct your program. Throughout this chapter, you'll see
similar tables that show sample SAS statements for reading raw data in fixed fields.

To Do This Use This SAS Statement

Reference a SAS data library LIBNAME statement

Reference an external file FILENAME statement

Name a SAS data set DATA statement

Identify an external file INFILE statement

Describe data INPUT statement

Execute the DATA step RUN statement

List the data PROC PRINT statement

Execute the final program step RUN statement

You can also use additional SAS statements to perform tasks that customize your data for your needs. For example, you
might want to create new variables from the values of existing variables.

Referencing a SAS Library

Using a LIBNAME Statement
As you begin to write the program, remember that you use a LIBNAME statement to reference the permanent SAS library in
which the data set will be stored.

To Do This Use This SAS Statement Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

For example, the LIBNAME statement below assigns the libref Taxes to the SAS library C:\Users\Acct\Qtr1\Report in the
Windows environment.
 libname taxes 'c:\users\acct\qtr1\report';

103

You do not need to use a LIBNAME statement in all situations. For example, you do not need to use a LIBNAME statement
if you are storing the data set in a temporary SAS data set or if SAS has automatically assigned the libref for the permanent
library that you are using.
Referencing a Raw Data File

Using a FILENAME Statement
Before you can read your raw data, you must point to the location of the external file that contains the data. You use the
FILENAME statement to point to this location.

To Do This Use This SAS Statement Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

Just as you assign a libref by using a LIBNAME statement, you assign a fileref by using a FILENAME statement.

Filerefs perform the same function as librefs: they temporarily point to a storage location for data. However, librefs reference
SAS data libraries, whereas filerefs reference external files.

General form, FILENAME statement:

FILENAME fileref 'filename';

where
� fileref is a name that you associate with an external file. The name must be 1 to 8 characters long, begin with a

letter or underscore, and contain only letters, numbers, or underscores.
� filename is the fully qualified name or location of the file.

Defining a Fully Qualified Filename
The following FILENAME statement temporarily associates the fileref Tests with the external file that contains the data from
the exercise stress tests. The complete filename is specified as C:\Users\Tmill.dat in the Windows environment.
 filename tests 'c:\users\tmill.dat';

104

Defining an Aggregate Storage Location
You can also use a FILENAME statement to associate a fileref with an aggregate storage location, such as a directory that
contains multiple external files.

This FILENAME statement temporarily associates the fileref Finance with the aggregate storage directory
C:\Users\Personal\Finances:
filename finance 'c:\users\personal\finances';

Note Both the LIBNAME and FILENAME statements are global. In other words, they remain in effect until you
change them, cancel them, or end your SAS session.

Referencing a Fully Qualified Filename
When you associate a fileref with an individual external file, you specify the fileref in subsequent SAS statements and
commands.

Referencing a File in an Aggregate Storage Location
To reference an external file with a fileref that points to an aggregate storage location, you specify the fileref followed by the
individual filename in parentheses:

105

Note In the Windows operating environment, you can omit the filename extension but you will need to add
quotation marks when referencing the external file, as in

infile tax(‘refund’);

For details about referencing external files stored in aggregate storage locations, see the SAS
documentation for your operating environment.

Writing a DATA Step Program

Naming the Data Set
The DATA statement indicates the beginning of the DATA step and names the SAS data set to be created.

To Do This Use This SAS
Statement

Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

General form, basic DATA statement:

DATA SAS-data-set-1 <...SAS-data-set-n>;

where SAS-data-set names (in the format libref.filename) the data set or data sets to be created.

In the following example, the two-level name Clinic.Admit specifies that the file Admit is stored in the permanent SAS
library to which the libref Clinic has been assigned.

Specifying the Raw Data File
When reading raw data, use the INFILE statement to indicate which file the data is in.

To Do This Use This SAS
Statement

Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

General form, INFILE statement:

106

INFILE file-specification <options>;

where
� file-specification can take the form fileref to name a previously defined file reference or 'filename' to point to the

actual name and location of the file
� options describes the input file's characteristics and specifies how it is to be read with the INFILE statement.

To read the raw data file to which the fileref Tests has been assigned, you write the following INFILE statement:
 infile tests;

Note Instead of using a FILENAME statement, you can choose to identify the raw data file by specifying the
entire filename and location in the INFILE statement. For example, the following statement points directly
to the C:\Irs\Personal\Refund.dat file:

 infile 'c:\irs\personal\refund.dat';

Column Input
In this chapter, you'll be working with column input, the most common input style. Column input specifies actual column
locations for values. However, column input is appropriate only in certain situations. When you use column input, your data
must be
� standard character or numeric values
� in fixed fields.

Standard and Nonstandard Numeric Data
Standard numeric data values can contain only
� numbers
� decimal points
� numbers in scientific or E-notation (2.3E4, for example)
� plus or minus signs.

Nonstandard numeric data includes
� values that contain special characters, such as percent signs (%), dollar signs ($), and commas (,)
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

The external file that is referenced by the fileref Staff contains the personnel information for a technical writing department
of a small computer manufacturer. The fields contain values for each employee's last name, first name, job title, and annual
salary.

Notice that the values for Salary contain commas. The values for Salary are considered to be nonstandard numeric
values. You cannot use column input to read these values.

107

Fixed-Field Data
Raw data can be organized in several different ways.

This external file contains data that is in free format, meaning data that is not arranged in columns. Notice that the values for
a particular field do not begin and end in the same columns. You cannot use column input to read this file.

This external file contains data that is arranged in columns or fixed fields. You can specify a beginning and ending column
for each field. Let's look at how column input can be used to read this data.

Describing the Data
The INPUT statement describes the fields of raw data to be read and placed into the SAS data set.

To Do This Use This SAS
Statement

Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

Describe data INPUT statement input ID 1-4 Age 6-7 ...;

Execute the DATA step RUN statement run;

General form, INPUT statement using column input:

INPUT variable ;<$> startcol-endcol . . .

where
� variable is the SAS name that you assign to the field
� the dollar sign ($) identifies the variable type as character (if the variable is numeric, then nothing appears here)
� startcol represents the starting column for this variable
� endcol represents the ending column for this variable.

108

Look at the small data file shown below. For each field of raw data that you want to read into your SAS data set, you must
specify the following information in the INPUT statement:
� a valid SAS variable name
� a type (character or numeric)
� a range (starting column and ending column).

The INPUT statement below assigns the character variable ID to the data in columns 1–4, the numeric variable Age to the
data in columns 6–7, the character variable ActLevel to the data in columns 9–12, and the character variable Sex to the
data in column 14.
filename exer 'c:\users\exer.dat';

data exercise;

 infile exer;

input ID $ 1-4 Age 6-7 ActLevel $ 9-12 Sex $ 14;

run;
SAS Data Set Work.Exercise

Obs ID Age ActLevel Sex

1 2810 61 MOD F

2 2804 38 HIGH F

3 2807 42 LOW M

4 2816 26 HIGH M

5 2833 32 MOD F

6 2823 29 HIGH M

When you use column input, you can
� read any or all fields from the raw data file
� read the fields in any order
� specify only the starting column for values that occupy only one column.
 input ActLevel $ 9-12 Sex $ 14 Age 6-7;

Note Remember, when you create a new variable, you must specify it in the exact case that you want it stored.
An example is NewBalance. Thereafter, you can specify the variable in lowercase.

Specifying Variable Names
Each variable has a name that conforms to SAS naming conventions. Variable names
� must be 1 to 32 characters in length
� must begin with a letter (A–Z) or an underscore (_)

109

� can continue with any combination of numbers, letters, or underscores.

Let's look at an INPUT statement that uses column input to read the three data fields in the raw data file below.

The values for the variable that you are naming Age are located in columns 1–2. Because Age is a numeric variable, you do
not specify a dollar sign ($) after the variable name.
input Age 1–2

The values for the variable ActLevel are located in columns 3–6. You specify a $ to indicate that ActLevel is a character
variable.
input Age 1-2 ActLevel $ 3–6

The values for the character variable Sex are located in column 7. Notice that you specify only a single column.
input Age 1–2 ActLevel $ 3–6 Sex $ 7;

Submitting the DATA Step Program

Verifying the Data
To verify your data, it is a good idea to use the OBS= option in the INFILE statement. Adding OBS=n to the INFILE
statement enables you to process only records 1 through n, so you can verify that the correct fields are being read before
reading the entire data file.

The program below reads the first 10 records in the raw data file referenced by the fileref Tests. The data is stored in a
permanent SAS data set named Clinic.Stress. Don't forget a RUN statement, which tells SAS to execute the previous SAS
statements.
data clinic.stress;

 infile tests obs=10;

 input ID 1-4 Name $ 6-25

 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

run;
SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance

2458 Murray, W 72 185 128 12 38 D

2462 Almers, C 68 171 133 10 5 I

110

SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance

2501 Bonaventure,
T

78 177 139 11 13 I

2523 Johnson, R 69 162 114 9 42 S

2539 LaMance, K 75 168 141 11 46 D

2544 Jones, M 79 187 136 12 26 N

2552 Reberson, P 69 158 139 15 41 D

2555 King, E 70 167 122 13 13 I

2563 Pitts, D 71 159 116 10 22 S

2568 Eberhardt, S 72 182 122 16 49 N

Checking DATA Step Processing
After submitting the previous program, messages in the log verify that the raw data file was read correctly. The notes in the
log indicate that
� 10 records were read from the raw data file
� the SAS data set Clinic.Stress was created with 10 observations and 8 variables.
SAS Log

NOTE: The infile TESTS is:

 File Name=C:\My SAS Files\tests.dat,

 RECFM=V,LRECL=256

NOTE: 10 records were read from the infile TESTS.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 10 observations

 and 8 variables.

NOTE: DATA statement used 0.07 seconds

Listing the Data Set
The messages in the log seem to indicate that the DATA step program correctly accessed the raw data file. But it is a good
idea to look at the ten observations in the new data set before reading the entire raw data file. You can submit a PROC
PRINT step to view the data.

To Do This Use This SAS
Statement

Example

Reference a SAS data library LIBNAME statement libname libref 'SAS-data-library';

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

111

To Do This Use This SAS
Statement

Example

Name a SAS data set DATA statement data clinic.stress;

Identify an external file INFILE statement infile tests obs=10;

Describe data INPUT statement input ID 1-4 Name $ 6-25 ...;

Execute the DATA step RUN statement run;

List the data PROC PRINT statement proc print data=clinic.stress;

Execute the final program step RUN statement run;

The following PROC PRINT step lists the Clinic.Stress data set.
 proc print data=clinic.stress;

 run;

The PROC PRINT output indicates that the variables in the Clinic.Stress data set were read correctly for the first 10
records.

Obs ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance

1 2458 Murray, W 72 185 128 12 38 D

2 2462 Almers, C 68 171 133 10 5 I

3 2501 Bonaventure,
T

78 177 139 11 13 I

4 2523 Johnson, R 69 162 114 9 42 S

5 2539 LaMance, K 75 168 141 11 46 D

6 2544 Jones, M 79 187 136 12 26 N

7 2552 Reberson, P 69 158 139 15 41 D

8 2555 King, E 70 167 122 13 13 I

9 2563 Pitts, D 71 159 116 10 22 S

10 2568 Eberhardt, S 72 182 122 16 49 N

Reading the Entire Raw Data File
Now that you've checked the log and verified your data, you can modify the DATA step to read the entire raw data file. To
do so, remove the OBS= option from the INFILE statement and re-submit the program.
data clinic.stress;

infile tests;

 input ID 1-4 Name $ 6-25

 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

run;

112

Invalid Data
When you submit the revised DATA step and check the log, you see a note indicating that invalid data appears for the
variable RecHR in line 14 of the raw data file, columns 35–37.

This note is followed by a column ruler and the actual data line that contains the invalid value for RecHR.

NOTE: Invalid data for RecHR in line 14 35-37.

RULE: ----+----1----+----2----+----3----+----4----+----5---

14 2575 Quigley, M 74 152 Q13 11 26 I 45

ID=2575 Name=Quigley, M RestHR=74 MaxHR=152 RecHR=. TimeMin=11

TimeSec=26 Tolerance=I _ERROR_=1

N=14

NOTE: 21 records were read from the infile TESTS.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 21 observations

 and 8 variables.

NOTE: DATA statement used 0.13 seconds

The value Q13 is a data-entry error. It was entered incorrectly for the variable RecHR.

RecHR is a numeric variable, but Q13 is not a valid number. So RecHR is assigned a missing value, as indicated in the log.
Because RecHR is numeric, the missing value is represented with a period.

Notice, though, that the DATA step does not fail as a result of the invalid data but continues to execute. Unlike syntax
errors, invalid data errors do not cause SAS to stop processing a program.

Assuming you have a way to edit the file and can justify a correction, you can correct the invalid value and re-run the DATA
step. If you did this, the log would then show that the data set Clinic.Stress was created with 21 observations, 8 variables,
and no messages about invalid data.

NOTE: The infile TESTS2 is:

 File Name=C:\My SAS Files\tests2.dat,

 RECFM=V,LRECL=256

NOTE: 21 records were read from the infile TESTS2.

 The minimum record length was 80.

 The maximum record length was 80.

NOTE: The data set CLINIC.STRESS has 21 observations

 and 8 variables.

NOTE: DATA statement used 0.14 seconds

113

After correcting the raw data file, you can list the data again to verify that it is correct.
 proc print data=clinic.stress;

 run;

Obs ID Name RestHr MaxHR RecHR TimeMin TimeSec Tolerance

1 2458 Murray, W 72 185 128 12 38 D

2 2462 Almers, C 68 171 133 10 5 I

3 2501 Bonaventure,
T

78 177 139 11 13 I

4 2523 Johnson, R 69 162 114 9 42 S

5 2539 LaMance, K 75 168 141 11 46 D

6 2544 Jones, M 79 187 136 12 26 N

7 2552 Reberson, P 69 158 139 15 41 D

8 2555 King, E 70 167 122 13 13 I

9 2563 Pitts, D 71 159 116 10 22 S

10 2568 Eberhardt, S 72 182 122 16 49 N

11 2571 Nunnelly, A 65 181 141 15 2 I

12 2572 Oberon, M 74 177 138 12 11 D

13 2574 Peterson, V 80 164 137 14 9 D

14 2575 Quigley, M 74 152 113 11 26 I

15 2578 Cameron, L 75 158 108 14 27 I

Whenever you use the DATA step to read raw data, remember the steps that you followed in this chapter, which help
ensure that you don't waste resources when accessing data:
� Write the DATA step using the OBS= option in the INFILE statement.
� Submit the DATA step.
� Check the log for messages.
� View the resulting data set.
� Remove the OBS= option and re-submit the DATA step.
� Check the log again.
� View the resulting data set again.

Creating and Modifying Variables
So far in this book, you've read existing data. But sometimes existing data doesn't provide the information that you need. To
modify existing values or to create new variables, you can use an assignment statement in any DATA step.

General form, assignment statement:

variable=expression;

where
� variable names a new or existing variable

114

� expression is any valid SAS expression.
Note The assignment statement is one of the few SAS statements that doesn't begin with a keyword.

For example, here is an assignment statement that assigns the character value Toby Witherspoon to the variable Name:
Name='Toby Witherspoon';

SAS Expressions
You use SAS expressions in assignment statements and many other SAS programming statements to
� transform variables
� create new variables
� conditionally process variables
� calculate new values
� assign new values.

An expression is a sequence of operands and operators that form a set of instructions. The instructions are performed to
produce a new value:
� Operands are variable names or constants. They can be numeric, character, or both.
� Operators are special-character operators, grouping parentheses, or functions. You can learn about functions in

Chapter 14, Transforming Data with SAS Functions.

Using Operators in SAS Expressions
To perform a calculation, you use arithmetic operators. The table below lists arithmetic operators.

Operator Action Example Priority

- negative prefix negative=-x; I

** exponentiation raise=x**y; I

* multiplication mult=x*y; II

/ division divide=x/y; II

+ addition sum=x+y; III

- subtraction diff=x-y; III

When you use more than one arithmetic operator in an expression,
� operations of priority I are performed before operations of priority II, and so on
� consecutive operations that have the same priority are performed

o from right to left within priority I
o from left to right within priorities II and III

� you can use parentheses to control the order of operations.
Warning When a value that is used with an arithmetic operator is missing, the result of the expression is

missing. The assignment statement assigns a missing value to a variable if the result of the
expression is missing.

You use the following comparison operators to express a condition.

Operator Meaning Example

= or eq equal to name='Jones, C.'

115

Operator Meaning Example

^= or ne not equal to temp ne 212

> or gt greater than income>20000

< or lt less than partno lt "BG05"

>= or ge greater than or equal to id>='1543'

<= or le less than or equal to pulse le 85

To link a sequence of expressions into compound expressions, you use logical operators, including the following.

Operator Meaning

AND or & and, both. If both expressions are true, then the compound expression is true.

OR or | or, either. If either expression is true, then the compound expression is true.

More Examples of Assignment Statements

The assignment statement in the DATA step below creates a new variable, TotalTime, by multiplying the values of
TimeMin by 60 and then adding the values of TimeSec.
data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

TotalTime=(timemin*60)+timesec;

run;
SAS Data Set Clinic.Stress (Partial Listing)

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

2458 Murray, W 72 185 128 12 38 D 758

2462 Almers, C 68 171 133 10 5 I 605

2501 Bonaventure,
T

78 177 139 11 13 I 673

2523 Johnson, R 69 162 114 9 42 S 582

2539 LaMance, K 75 168 141 11 46 D 706

The expression can also contain the variable name that is on the left side of the equal sign, as the following assignment
statement shows. This statement re-defines the values of the variable RestHR as 10 percent higher.
data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

116

resthr=resthr+(resthr*.10);

run;

When a variable name appears on both sides of the equal sign, the original value on the right side is used to evaluate the
expression. The result is assigned to the variable on the left side of the equal sign.
data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

resthr=resthr+(resthr*.10);

run; ^ ^

result original value

Date Constants
You can assign date values to variables in assignment statements by using date constants. To represent a constant in
SAS date form, specify the date as 'ddmmmyy' or 'ddmmmyyyy', followed by a D.

General form, date constant:

'ddmmm<yy>yy' D

or

"ddmmm<yy>yy" D

where
� dd is a one- or two-digit value for the day
� mmm is a three-letter abbreviation for the month (JAN, FEB, and so on)
� yy or yyyy is a two- or four-digit value for the year, respectively.

Note Be sure to enclose the date in quotation marks.

Example
In the following program, the second assignment statement assigns a date value to the variable TestDate.
data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

TestDate='01jan2000'd;

run;

117

Note You can also use SAS time constants and SAS datetime constants in assignment statements.
Time='9:25't;

DateTime='18jan2005:9:27:05'dt;

Subsetting Data
As you read your data, you can subset it by processing only those observations that meet a specified condition. To do this,
you can use a subsetting IF statement in any DATA step.

The subsetting IF statement causes the DATA step to continue processing only those raw data records or observations that
meet the condition of the expression specified in the IF statement. The resulting SAS data set or data sets contain a subset
of the original external file or SAS data set.

General form, subsetting IF statement:

IF expression;

where expression is any valid SAS expression.
� If the expression is true, the DATA step continues to process that record or observation.
� If the expression is false, no further statements are processed for that record or observation, and control returns to

the top of the DATA step.

For example, the subsetting IF statement below selects only observations whose values for Tolerance are D. The IF
statement is positioned in the DATA step so that other statements do not need to process unwanted observations.
data clinic.stress;

infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

Because Tolerance is a character variable, the value D must be enclosed in quotation marks, and it must be the same
case as in the data set.

Note See the SAS documentation for your operating environment for a comparison of the WHERE and
subsetting IF statements when they are used in the DATA step.

Reading Instream Data
Throughout this chapter, our program has contained an INFILE statement that identifies an external file to read.
data clinic.stress;

infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

118

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

However, you can also read instream data lines that you enter directly in your SAS program, rather than data that is stored
in an external file. Reading instream data is extremely helpful if you want to create data and test your programming
statements on a few observations that you can specify according to your needs.

To read instream data, you use
� a DATALINES statement as the last statement in the DATA step (except for the RUN statement) and immediately

preceding the data lines
� a null statement (a single semicolon) to indicate the end of the input data.
data clinic.stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

datalines;

 .

 .

 .

data lines go here

 .

 .

 .

;

General form, DATALINES statement:

DATALINES;
Note You can use only one DATALINES statement in a DATA step. Use separate DATA steps to enter multiple

sets of data.
Note You can also use CARDS; as the last statement in a DATA step (except for the RUN statement) and

immediately preceding the data lines. The CARDS statement is an alias for the DATALINES statement.
Note If your data contains semicolons, use the DATALINES4 statement plus a null statement that consists of

four semicolons (;;;;) to indicate the end of the input data.

Example

To read the data for the treadmill stress tests as instream data, you can submit the following program:
data clinic.stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

119

datalines;

 2458 Murray, W 72 185 128 12 38 D

 2462 Almers, C 68 171 133 10 5 I

 2501 Bonaventure, T 78 177 139 11 13 I

 2523 Johnson, R 69 162 114 9 42 S

 2539 LaMance, K 75 168 141 11 46 D

 2544 Jones, M 79 187 136 12 26 N

 2552 Reberson, P 69 158 139 15 41 D

 2555 King, E 70 167 122 13 13 I

 2563 Pitts, D 71 159 116 10 22 S

 2568 Eberhardt, S 72 182 122 16 49 N

 2571 Nunnelly, A 65 181 141 15 2 I

 2572 Oberon, M 74 177 138 12 11 D

 2574 Peterson, V 80 164 137 14 9 D

 2575 Quigley, M 74 152 113 11 26 I

 2578 Cameron, L 75 158 108 14 27 I

 2579 Underwood, K 72 165 127 13 19 S

 2584 Takahashi, Y 76 163 135 16 7 D

 2586 Derber, B 68 176 119 17 35 N

 2588 Ivan, H 70 182 126 15 41 N

 2589 Wilcox, E 78 189 138 14 57 I

 2595 Warren, C 77 170 136 12 10 S

 ;
Warning Notice that you do not need a RUN statement following the null statement (the semicolon after the

data lines). The null statement functions as a step boundary when the DATALINES statement is used,
so the DATA step is executed as soon as SAS encounters it. If you do place a RUN statement after
the null statement, any statements between the null statement and the RUN statement are not
executed as part of the DATA step.

Steps to Create a Raw Data File
Look at the SAS program and SAS data set created earlier in this chapter.
data clinic.stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;
SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

120

SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

2458 Murray, W 72 185 128 12 38 D 758

2539 LaMance,
K

75 168 141 11 46 D 706

2552 Reberson,
P

69 158 139 15 41 D 941

2572 Oberon, M 74 177 138 12 11 D 731

2574 Peterson,
V

80 164 137 14 9 D 849

2584 Takahashi,
Y

76 163 135 16 7 D 967

As you can see, the data set has been modified with SAS statements. If you wanted to write the new observations to a raw
data file, you could reverse the process that you've been following and write out the observations from a SAS data set as
records or lines to a new raw data file.

Using the_NULL_ Keyword
Because the goal of your SAS program is to create a raw data file and not a SAS data set, it is inefficient to list a data set
name in the DATA statement. Instead, use the keyword _NULL_, which enables you to use the DATA step without actually
creating a SAS data set. A SET statement specifies the SAS data set that you want to read from.
 data _null_;

 set clinic.stress;

The next step is to specify the output file.

Specifying the Raw Data File
You use the FILE and PUT statements to write the observations from a SAS data set to a raw data file, just as you used the
INFILE and INPUT statements to create a SAS data set. These two sets of statements work almost identically.

When writing observations to a raw data file, use the FILE statement to specify the output file.

General form, FILE statement:

FILE file-specification;

where file-specification can take the form fileref to name a previously defined file reference or 'filename' to point to the actual
name and location of the file.

For example, if you want to read the Clinic.Stress data set to a raw data file that is referenced by the fileref Newdat, you
would begin your program with the following SAS statements.
data _null_;

 set clinic.stress;

121

file newdat;

Instead of identifying the raw data file with a SAS fileref, you can choose to specify the entire filename and location in the
FILE statement. For example, the following FILE statement points directly to the C:\Clinic\ Patients\Stress.dat file. Note
that the path specifying the filename and location must be enclosed in quotation marks.
data _null_;

 set clinic.stress;

file 'c:\clinic\patients\stress.dat';

Describing the Data
Whereas the FILE statement specifies the output file, the PUT statement describes the lines to write to the raw data file.

General form, PUT statement using column output:

PUT variable startcol-endcol . . .;

where
� variable is the name of the variable whose value is written
� startcol indicates where in the line to begin writing the value
� endcol indicates where in the line to end the value.

In general, the PUT statement mirrors the capabilities of the INPUT statement. In this case you are working with column
output. Therefore, you need to specify the variable name, starting column, and ending column for each field that you want to
create. Because you are creating raw data, you don't need to follow character variable names with a dollar sign ($).
data _null_;

 set clinic.stress;

 file 'c:\clinic\patients\stress.dat';

put id 1-4 name 6-25 resthr 27-29 maxhr 31-33

rechr 35-37 timemin 39-40 timesec 42-43

tolerance 45 totaltime 47-49;

run;
SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

2458 Murray, W 72 185 128 12 38 D 758

2539 LaMance,
K

75 168 141 11 46 D 706

2552 Reberson,
P

69 158 139 15 41 D 941

2572 Oberon, M 74 177 138 12 11 D 731

2574 Peterson,
V

80 164 137 14 9 D 849

2584 Takahashi, 76 163 135 16 7 D 967

122

SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR TimeMin TimeSec Tolerance TotalTime
Y

The resulting raw data file would look like this:

In later chapters you'll learn how to use INPUT and PUT statements to read and write raw data in other forms and record
types.

Note If you do not execute a FILE statement before a PUT statement in the current iteration of the DATA step,
then SAS writes the lines to the SAS log. If you specify the PRINT option in the FILE statement, before the
PUT statement, then SAS writes the lines to the procedure output file.

Additional Features
In this chapter, you learned to read raw data by writing an INPUT statement that uses column input. You also learned how
to write to a raw data file by using the FILE statement with column input. However, column input is appropriate only in
certain situations. When you use column input, your data must be
� standard character and numeric values. If the raw data file contains nonstandard values, then you need to use

formatted input, another style of input. To learn about formatted input, see Chapter 17, Reading Raw Data in Fixed
Fields.

� in fixed fields. That is, values for a particular variable must be in the same location in all records. If your raw data
file contains values that are not in fixed fields, then you need to use list input. To learn about list input, see Chapter 18,
Reading Free-Format Data.

Other forms of the INPUT statement enable you to read
� nonstandard data values such as hexadecimal, packed decimal, SAS date values, and monetary values that

contain dollar signs and commas
� free-format data (data that is not in fixed fields)
� implied decimal points
� variable-length data values
� variable-length records
� different record types.

Summary

Text Summary

Raw Data Files
A raw data file is an external file whose records contain data values that are organized in fields. The raw data files in this
chapter contain fixed fields.

Steps to Create a SAS Data Set
You need to follow several steps to create a SAS data set using raw data.

1. Reference the raw data file to be read.

123

2. Name the SAS data set.
3. Identify the location of the raw data.
4. Describe the data values to be read.

Referencing a SAS Library
To begin your program, you might need to use a LIBNAME statement to reference the SAS library in which your data set will
be stored.

Referencing a Raw Data File
Before you can read your raw data, you must reference the raw data file by creating a fileref. Just as you assign a libref by
using a LIBNAME statement, you assign a fileref by using a FILENAME statement.

Writing a DATA Step Program
The DATA statement indicates the beginning of the DATA step and names the SAS data set(s) to be created.

Next, you specify the raw data file by using the INFILE statement. The OBS= option in the INFILE statement enables you to
process a specified number of observations.

This chapter teaches column input, the most common input style. Column input specifies actual column locations for data
values. The INPUT statement describes the raw data to be read and placed into the SAS data set.

Submitting the DATA Step Program
When you submit the program, you can use the OBS= option with the INFILE statement to verify that the correct data is
being read before reading the entire data file.

After you submit the program, view the log to check the DATA step processing. You can then list the data set by using the
PROC PRINT procedure.

After you've checked the log and verified your data, you can modify the DATA step to read the entire raw data file by
removing the OBS= option from the INFILE statement.

If you are working with a raw data file that contains invalid data, the DATA step continues to execute. Unlike syntax errors,
invalid data errors do not cause SAS to stop processing a program. If you have a way to edit the invalid data, it's best to
correct the problem and re-run the DATA step.

Creating and Modifying Variables
To modify existing values or to create new variables, you can use an assignment statement in any DATA step. Within
assignment statements, you can specify any SAS expression.

You can use date constants to assign dates in assignment statements. You can also use SAS time constants and SAS
datetime constants in assignment statements.

Subsetting Data
To process only observations that meet a specified condition, use a subsetting IF statement in the DATA step.

124

Reading Instream Data
To read instream data lines instead of an external file, use a DATALINES statement or a CARDS statement and enter data
directly in your SAS program. Omit the RUN statement at the end of the DATA step.

Creating a Raw Data File
When the goal of your SAS program is to create a raw data file and not a SAS data set, it is inefficient to list a data set
name in the DATA statement. Instead use the keyword _NULL_, which allows the power of the DATA step without actually
creating a SAS data set. A SET statement specifies the SAS data set that you want to read from.

You can use the FILE and PUT statements to write out the observations from a SAS data set to a raw data file the same
way you used the INFILE and INPUT statements to create a SAS data set. These two sets of statements work almost
identically.

Points to Remember
� LIBNAME and FILENAME statements are global. Librefs and filerefs remain in effect until you change them, cancel

them, or end your SAS session.
� For each field of raw data that you read into your SAS data set, you must specify the following in the INPUT

statement: a valid SAS variable name, a type (character or numeric), a starting column, and if necessary, an ending
column.

� When you use column input, you can read any or all fields from the raw data file, read the fields in any order, and
specify only the starting column for variables whose values occupy only one column.

� Column input is appropriate only in some situations. When you use column input, your data must be standard
character and numeric values, and these values must be in fixed fields. That is, values for a particular variable must
be in the same location in all records.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which SAS statement associates the fileref Crime with the raw data file C:\States\Data\Crime?
a. filename crime 'c:\states\data\crime';
b. filename crime c:\states\data\crime;
c. fileref crime 'c:\states\data\crime';
d. filename 'c:\states\data\crime' crime;

2. Filerefs remain in effect until
a. you change them.
b. you cancel them.
c. you end your SAS session.
d. all of the above

3. Which statement identifies the name of a raw data file to be read with the fileref Products and specifies
that the DATA step read only records 1–15?

a. infile products obs 15;
b. infile products obs=15;
c. input products obs=15;
d. input products 1-15;

4. Which of the following programs correctly writes the observations from the data set below to a raw
data file?

125

SAS Data Set Work.Patients

ID Sex Age Height Weight Pulse

2304 F 16 61 102 100

1128 M 43 71 218 76

4425 F 48 66 162 80

1387 F 57 64 142 70

9012 F 39 63 157 68

6312 M 52 72 240 77

5438 F 42 62 168 83

3788 M 38 73 234 71

9125 F 56 64 159 70

3438 M 15 66 140 67

a. data _null_;

b. set work.patients;

c. infile 'c:\clinic\patients\referrals.dat';

d. input id 1-4 sex 6 age 8-9 height 11-12

e. weight 14-16 pulse 18-20;

f. run;
g.
h. data referrals.dat;

i. set work.patients;

j. input id 1-4 sex 6 age 8-9 height 11-12

k. weight 14-16 pulse 18-20;

l. run;
m.
n. data _null_;

o. set work.patients;

p. file c:\clinic\patients\referrals.dat;

q. put id 1-4 sex 6 age 8-9 height 11-12

r. weight 14-16 pulse 18-20;

s. run;
t.
u. data _null_;

v. set work.patients;

w. file 'c:\clinic\patients\referrals.dat';

x. put id 1-4 sex 6 age 8-9 height 11-12

y. weight 14-16 pulse 18-20;

z. run;

126

5. Which raw data file can be read using column input?
a.

b.

c.

d. all of the above

6. Which program creates the output shown below?

Obs ID LastName FirstName City

1 3427 Chen Steve Raleigh

2 1436 Davis Lee Atlanta

3 2812 King Vicky Memphis

4 1653 Sanchez Jack Atlanta

a. data work.salesrep;

b. infile empdata;

c. input ID $ 1-4 LastName $ 6-12

d. FirstName $ 14-18 City $ 20-29;

e. run;

f. proc print data=work.salesrep;

g. run;

127

h. data work.salesrep;

i. infile empdata;

j. input ID $ 1-4 Name $ 6-12

k. FirstName $ 14-18 City $ 20-29;

l. run;

m. proc print data=work.salesrep;

n. run;

o. data work.salesrep;

p. infile empdata;

q. input ID $ 1-4 name1 $ 6-12

r. name2 $ 14-18 City $ 20-29;

s. run;

t. proc print data=work.salesrep;

u. run;
v. all of the above

7. Which statement correctly reads the fields in the following order: StockNumber, Price, Item,
Finish, Style?
Field Name Start Column End Column Data Type

StockNumber 1 3 character

Finish 5 9 character

Style 11 18 character

Item 20 24 character

Price 27 32 numeric

a. input StockNumber $ 1-3 Finish $ 5-9 Style $ 11-18

b. Item $ 20-24 Price 27-32;

c. input StockNumber $ 1-3 Price 27-32

d. Item $ 20-24 Finish $ 5-9 Style $ 11-18;

e. input $ StockNumber 1-3 Price 27-32

f. $ Item 20-24 $ Finish 5-9 $ Style 11-18;

g. input StockNumber $ 1-3 Price $ 27-32

h. Item $ 20-24 Finish $ 5-9 Style $ 11-18;

8. Which statement correctly re-defines the values of the variable Income as 100 percent higher?
a. income=income*1.00;
b. income=income+(income*2.00);
c. income=income*2;

128

d. income= *2;

9. Which program correctly reads instream data?
a. data finance.newloan;

b. input datalines;

c. if country='JAPAN';

d. MonthAvg=amount/12;

e. 1998 US CARS 194324.12

f. 1998 US TRUCKS 142290.30

g. 1998 CANADA CARS 10483.44

h. 1998 CANADA TRUCKS 93543.64

i. 1998 MEXICO CARS 22500.57

j. 1998 MEXICO TRUCKS 10098.88

k. 1998 JAPAN CARS 15066.43

l. 1998 JAPAN TRUCKS 40700.34

m. ;

n. data finance.newloan;

o. input Year 1-4 Country $ 6-11

p. Vehicle $ 13-18 Amount 20-28;

q. if country='JAPAN';

r. MonthAvg=amount/12;

s. datalines;

t. run;

u. data finance.newloan;

v. input Year 1-4 Country 6-11

w. Vehicle 13-18 Amount 20-28;

x. if country='JAPAN';

y. MonthAvg=amount/12;

z. datalines;

aa. 1998 US CARS 194324.12

bb. 1998 US TRUCKS 142290.30

cc. 1998 CANADA CARS 10483.44

dd. 1998 CANADA TRUCKS 93543.64

ee. 1998 MEXICO CARS 22500.57

ff. 1998 MEXICO TRUCKS 10098.88

gg. 1998 JAPAN CARS 15066.43

hh. 1998 JAPAN TRUCKS 40700.34

ii. ;

jj. data finance.newloan;

kk. input Year 1-4 Country $ 6-11

129

ll. Vehicle $ 13-18 Amount 20-28;

mm. if country='JAPAN';

nn. MonthAvg=amount/12;

oo. datalines;

pp. 1998 US CARS 194324.12

qq. 1998 US TRUCKS 142290.30

rr. 1998 CANADA CARS 10483.44

ss. 1998 CANADA TRUCKS 93543.64

tt. 1998 MEXICO CARS 22500.57

uu. 1998 MEXICO TRUCKS 10098.88

vv. 1998 JAPAN CARS 15066.43

ww. 1998 JAPAN TRUCKS 40700.34

xx. ;

10. Which SAS statement subsets the raw data shown below so that only the observations in which Sex
(in the second field) has a value of F are processed?

a. if sex=f;
b. if sex=F;
c. if sex='F';
d. a or b

Answers

1. Correct answer: a

Before you can read your raw data, you must reference the raw data file by creating a fileref. You assign a fileref by
using a FILENAME statement in the same way that you assign a libref by using a LIBNAME statement.

2. Correct answer: d

Like LIBNAME statements, FILENAME statements are global; they remain in effect until you change them, cancel them,
or end your SAS session.

3. Correct answer: b

130

You use an INFILE statement to specify the raw data file to be read. You can specify a fileref or an actual filename (in
quotation marks). The OBS= option in the INFILE statement enables you to process only records 1 through n.

4. Correct answer: d

The keyword _NULL_ in the DATA statement enables you to use the power of the DATA step without actually creating a
SAS data set. You use the FILE and PUT statements to write out the observations from a SAS data set to a raw data
file. The FILE statement specifies the raw data file and the PUT statement describes the lines to write to the raw data
file. The filename and location that are specified in the FILE statement must be enclosed in quotation marks.

5. Correct answer: b

Column input is appropriate only in some situations. When you use column input, your data must be standard character
or numeric values, and they must be in fixed fields. That is, values for a particular variable must be in the same location
in all records.

6. Correct answer: a

The INPUT statement creates a variable using the name that you assign to each field. Therefore, when you write an
INPUT statement, you need to specify the variable names exactly as you want them to appear in the SAS data set.

7. Correct answer: b

You can use column input to read fields in any order. You must specify the variable name to be created, identify
character values with a $, and name the correct starting column and ending column for each field.

8. Correct answer: c

To re-define the values of the variable Income in an Assignment statement, you specify the variable name on the left
side of the equal sign and an appropriate expression including the variable name on the right side of the equal sign.

9. Correct answer: d

To read instream data, you specify a DATALINES statement and data lines, followed by a null statement (single
semicolon) to indicate the end of the input data. Program a contains no DATALINES statement, and the INPUT
statement doesn't specify the fields to read. Program b contains no data lines, and the INPUT statement in program c
doesn't specify the necessary dollar signs for the character variables Country and Vehicle.

10. Correct answer: c

To subset data, you can use a subsetting IF statement in any DATA step to process only those observations that meet
a specified condition. Because Sex is a character variable, the value F must be enclosed in quotation marks and must
be in the same case as in the data set.

131

Chapter 6: Understanding DATA Step Processing

Overview

Introduction
In Chapter 5, Creating SAS Data Sets from Raw Data, you learned how to read data, perform basic modifications, and
create a new SAS data set.

This chapter teaches you what happens "behind the scenes" when the DATA step reads raw data. You'll examine the
program data vector, which is a logical framework that SAS uses when creating SAS data sets.

Understanding how the program operates can help you to anticipate how variables will be created and processed, to plan
your modifications, and to interpret and debug program errors. It also gives you useful strategies for preventing and
correcting common DATA step errors.

Objectives
In this chapter, you learn to
� identify the two phases that occur when a DATA step is processed
� interpret automatic variables
� identify the processing phase in which an error occurs
� debug SAS DATA steps
� test programs by limiting the number of observations that are created
� flag errors in the SAS log.

Writing Basic DATA Steps

132

In Chapter 5, Creating SAS Data Sets from Raw Data, you learned how to write a DATA step to create a permanent SAS
data set from raw data that is stored in an external file.

data clinic.stress;

 infile tests obs = 8;

 input ID 1-4 Name $ 6-25 RestHR 27-29

 MaxHR 31-33 RecHR 35-37

 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

run;

You learned how to submit the DATA step and how to check the log to see whether the step ran successfully.
SAS Log

NOTE: The infile TESTS is:

 FILENAME=may/t1/rawdata.dat

NOTE: 8 records were read from the infile TESTS.

NOTE: The data set CLINIC.STRESS has 8

 observations and 8 variables.

NOTE: The DATA statement used 0:00:07.00 real

 0:00:07.10 cpu.

You also learned how to display the contents of the data set with the PRINT procedure.
proc print data=clinic.stress;

run;

Obs ID Name RestHr MaxHR RecHR TimeMin TimeSec Tolerance

1 2458 Murray, W 72 185 128 12 38 D

2 2462 Almers, C 68 171 133 10 5 I

3 2501 Bonaventure,
T

78 177 139 11 13 I

4 2523 Johnson, R 69 162 114 9 42 S

5 2539 LaMance, K 75 168 141 11 46 D

6 2544 Jones, M 79 187 136 12 26 N

7 2552 Reberson, P 69 158 139 15 41 D

8 2555 King, E 70 167 122 13 13 I

133

How SAS Processes Programs
When you submit a DATA step, SAS processes the DATA step and then creates a new SAS data set. Let's see exactly how
that happens.

A SAS DATA step is processed in two phases:

� During the compilation phase, each statement is scanned for syntax errors. Most syntax errors prevent further
processing of the DATA step. When the compilation phase is complete, the descriptor portion of the new data set is
created.

� If the DATA step compiles successfully, then the execution phase begins. During the execution phase, the DATA
step reads and processes the input data. The DATA step executes once for each record in the input file, unless
otherwise directed.

The diagram below shows the flow of DATA step processing for reading raw data. We'll examine both the compilation phase
and the execution phase in this chapter.

Let's start with the compilation phase.
Compilation Phase

Input Buffer
At the beginning of the compilation phase, the input buffer (an area of memory) is created to hold a record from the
external file. The input buffer is created only when raw data is read, not when a SAS data set is read. The term input buffer
refers to a logical concept; it is not a physical storage area.

Program Data Vector
After the input buffer is created, the program data vector is created. The program data vector is the area of memory where
SAS builds a data set, one observation at a time. Like the term input buffer, the term program data vector refers to a
logical concept.

134

The program data vector contains two automatic variables that can be used for processing but which are not written to the
data set as part of an observation.
� _N_ counts the number of times that the DATA step begins to execute.
� _ERROR_ signals the occurrence of an error that is caused by the data during execution. The default value is 0,

which means there is no error. When one or more errors occur, the value is set to 1.

Syntax Checking
During the compilation phase, SAS also scans each statement in the DATA step, looking for syntax errors. Syntax errors
include
� missing or misspelled keywords
� invalid variable names
� missing or invalid punctuation
� invalid options.

Data Set Variables
As the INPUT statement is compiled, a slot is added to the program data vector for each variable in the new data set.
Usually, variable attributes such as length and type are determined the first time a variable is encountered.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Any variables that are created with an assignment statement in the DATA step are also added to the program data vector.
For example, the assignment statement below creates the variable Total. As the statement is compiled, the variable is
added to the program data vector. The attributes of the variable are determined by the expression in the statement.
Because the expression produces a numeric value, Total is defined as a numeric variable and is assigned the default
length of 8.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

Total=instock+backord;

run;

Descriptor Portion of the SAS Data Set

135

At the bottom of the DATA step (in this example, when the RUN statement is encountered), the compilation phase is
complete, and the descriptor portion of the new SAS data set is created. The descriptor portion of the data set includes
� the name of the data set
� the number of observations and variables
� the names and attributes of the variables.
Data Set Descriptor

Data Set Name: PERM.UPDATE Observations: 0

Member Type: DATA Variables: 5

Engine: V9 Indexes: 0

Created: 14:38 Thursday, June 20, 2002 Observation Length: 48

Last Modified: 14:38 Thursday, June 20, 2002 Deleted Observations: 0

Protection: Compressed: NO

Data Set Type: Sorted: NO

Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 4096

Number of Data Set Pages: 1

First Data Page: 1

Max Obs per Page: 84

Obs in First Data Page: 0

Number of Data Set Repairs: 0

File Name: C:\WINNT\My SAS Files\V8\update.sas7bdat

Release Created: 9.0000M0

Host Created: WIN_NT

-----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

 4 BackOrd Num 8 8

 2 IDnum Char 5 37

 3 InStock Num 8 0

 1 Item Char 13 24

 5 Total Num 8 16

At this point, the data set contains the five variables that are defined in the input data set and in the assignment statement.
Remember, _N_ and _ERROR_ are not written to the data set. There are no observations because the DATA step has not
yet executed. During execution, each raw data record is processed and is then written to the data set as an observation.

136

Note For additional information about assigning attributes to variables, see the SAS documentation for your
operating environment.

Summary of the Compilation Phase
Let's review the compilation phase.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

During the compilation phase, the input buffer is created to hold a record from the external file.

The program data vector is created to hold the current observation.

The descriptor portion of the SAS data set is created.
Data Set Descriptor (Partial)

Data Set Name: PERM.UPDATE

Member Type: DATA

Engine: V9

Created: 11:25 Friday, June 21, 2002

Observations: 0

Variables: 5

Indexes: 0

Observation Length: 30

Execution Phase
After the DATA step is compiled, it is ready for execution. During the execution phase, the data portion of the data set is
created. The data portion contains the data values.

137

During execution, each record in the input raw data file is read, stored in the program data vector, and then written to the
new data set as an observation. The DATA step executes once for each record in the input file, unless otherwise directed by
additional statements.

Example

The following DATA step reads values from the file Invent and executes nine times because there are nine records in the
file.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Initializing Variables
At the beginning of the execution phase, the value of _N_ is 1. Because there are no data errors, the value of _ERROR_ is 0.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

138

The remaining variables are initialized to missing. Missing numeric values are represented by periods, and missing
character values are represented by blanks.

Input Data
Next, the INFILE statement identifies the location of the raw data.
data perm.update;

infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Input Pointer
When an INPUT statement begins to read data values from a record that is held in the input buffer, it uses an input pointer
to keep track of its position (the input pointer is represented by an arrow in the examples in this book).

The input pointer starts at column 1 of the first record, unless otherwise directed. As the INPUT statement executes, the raw
data in columns 1–13 is read and is assigned to Item in the program data vector.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Notice that the input pointer now rests on column 14. With column input, the pointer moves as far as the INPUT statement
instructs it, and it stops in the column immediately following the last one read.

139

Next, the data in columns 15–19 is read and is assigned to IDnum in the program data vector, as shown below. Likewise,
the INPUT statement reads the values for InStock from columns 21–22, and it reads the values for BackOrd from
columns 24–25. At the end of the INPUT statement processing, the input pointer is in column 26.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Next, the assignment statement executes. The values for InStock and BackOrd are added to produce the values for
Total.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

Total=instock+backord;

run;

140

End of the DATA Step
At the end of the DATA step, several actions occur. First, the values in the program data vector are written to the output
data set as the first observation.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;
SAS Data Set Perm.Update

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

Next, the value of _N_ is set to 2 and control returns to the top of the DATA step. Finally, the variable values in the program
data vector are re-set to missing. Notice that the automatic variable _ERROR_ retains its value.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Finally, the variable values in the program data vector are re-set to missing. Notice that the automatic variables _N_ and
ERROR retain their values.

Note When reading variables from raw data, SAS sets the value of each variable in the DATA step to missing
at the beginning of each cycle of execution, with these exceptions:

141

� variables that are named in a RETAIN statement
� variables that are created in a SUM statement
� data elements in a _TEMPORARY_ array
� any variables that are created with options in the FILE or INFILE statements
� automatic variables.

In contrast, when reading variables from a SAS data set, SAS sets the values to missing only before the first cycle of
execution of the DATA step. Thereafter, the variables retain their values until new values become available—for example,
through an assignment statement or through the next execution of a SET or MERGE statement. Variables that are created
with options in the SET or MERGE statements also retain their values from one cycle of execution to the next. (You will
learn about reading SAS data sets and about arrays, the SET statement, and the MERGE statement in later chapters.)

Iterations of the DATA Step
You can see that the DATA step works like a loop, repetitively executing statements to read data values and create
observations one by one. Each loop (or cycle of execution) is called an iteration. At the beginning of the second iteration,
the value of _N_ is set to 2, and _ERROR_ is still 0. Notice that the input pointer rests in column 1 of the second record.

As the INPUT statement executes for the second time, the values from the second record are held in the input buffer and
then read into the program data vector.
data perm.update;
 infile invent;

input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;

 Total=instock+backord;
run;

142

Next, the value for Total is calculated based on the current values for InStock and BackOrd. The RUN statement
indicates the end of the DATA step.

At the bottom of the DATA step, the values in the program data vector are written to the data set as the second observation.
SAS Data Set Perm.Update

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

6 Glass Mugs SB082 6 12 18

Next, the value of _N_ is set to 3, control returns to the top of the DATA step, and the values for Item, IDnum, InStock,
BackOrd, and Total are re-set to missing.

End-of-File Marker

143

The execution phase continues in this manner until the end-of-file marker is reached in the raw data file. When there are no
more records in the raw data file to be read, the data portion of the new data set is complete.

SAS Data Set Perm.Update

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

6 Glass Mugs SB082 6 12 18

Glass Tray BQ049 12 6 18

Padded Hangrs MN256 15 20 35

Jewelry Box AJ498 23 0 23

Red Apron AQ072 9 12 21

Crystal Vase AQ672 27 0 27

Brass Clock LS930 21 0 21

Picnic Basket AN910 2 10 12

Remember, the order in which variables are defined in the DATA step determines the order in which the variables are
stored in the data set. The DATA step below, which reverses the order of Item and IDnum, produces a different data set
from the same raw data.
data perm.update;
 infile invent;
 input IDnum $ 15-19 Item $ 1-13 > reversed
 InStock 21-22 BackOrd 24-25;
 Total=instock+backord;
run;
SAS Data Set Perm.Update

IDnum Item InStock BackOrd Total

LG088 Bird Feeder 3 20 23

SB082 6 Glass Mugs 6 12 18

BQ049 Glass Tray 12 6 18

MN256 Padded Hangrs 15 20 35

144

SAS Data Set Perm.Update

IDnum Item InStock BackOrd Total

AJ498 Jewelry Box 23 0 23

AQ072 Red Apron 9 12 21

AQ672 Crystal Vase 27 0 27

LS930 Picnic Basket 21 0 21

AN910 Brass Clock 2 10 12

--reversed--

Summary of the Execution Phase
You've seen how the DATA step iteratively reads records in the raw data file. Now take a minute to review execution-phase
processing.

During the execution phase
� variables in the program data vector are initialized to missing before each execution of the DATA step
� each statement is executed sequentially
� the INPUT statement reads the next record from the external file identified by the INFILE statement, and it writes

the values into the program data vector
� other statements can then further modify the current observation
� the values in the program data vector are written to the SAS data set at the end of the DATA step
� program flow is returned to the top of the DATA step
� the DATA step is executed until the end-of-file marker is reached in the external file.

End of the Execution Phase
At the end of the execution phase, the SAS log confirms that the raw data file was read, and it displays the number of
observations and variables in the data set.
SAS Log (Partial)

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UPDATE has 9 observations
 and 5 variables.

You already know how to display the data set with the PRINT procedure.

145

proc print data=perm.update;
run;
Obs Item IDnum InStock BackOrd Total

1 Bird Feeder LG088 3 20 23

2 6 Glass Mugs SB082 6 12 18

3 Glass Tray BQ049 12 6 18

4 Padded Hangrs MN256 15 20 35

5 Jewelry Box AJ498 23 0 23

6 Red Apron AQ072 9 12 21

7 Crystal Vase AQ672 27 0 27

8 Picnic Basket LS930 21 0 21

9 Brass Clock AN910 2 10 12

Debugging a DATA Step

Diagnosing Errors in the Compilation Phase
Now that you know how a DATA step is processed, you can use that knowledge to correct errors. Many errors are detected
during the compilation phase, including
� misspelled keywords and data set names
� missing semicolons
� unbalanced quotation marks
� invalid options.

During the compilation phase, SAS can interpret some syntax errors (such as the keyword DATA misspelled as DAAT). If it
cannot interpret the error, SAS
� prints the word ERROR followed by an error message in the log
� compiles but does not execute the step where the error occurred, and prints the following message to warn you:
� NOTE: The SAS System stopped processing this step because of

 errors.

Some errors are explained fully by the message that SAS prints; other error messages are not as easy to interpret. For
example, because SAS statements are in free format, when you fail to end a SAS statement with a semicolon, SAS does
not always detect the error at the point where it occurs.

Diagnosing Errors in the Execution Phase
As you have seen, errors can occur in the compilation phase, resulting in a DATA step that is compiled but not executed.
Errors can also occur during the execution phase. When SAS detects an error in the execution phase, the following can
occur, depending on the type of error:
� A note, warning, or error message is displayed in the log.
� The values that are stored in the program data vector are displayed in the log.
� The processing of the step either continues or stops.

146

Example
Suppose you misspelled the fileref in the INFILE statement below. This is not a syntax error, because SAS does not validate
the file that you reference until the execution phase. During the compilation phase, the fileref Invnt is assumed to reference
some external raw data file.
data perm.update;
 infile invnt;
 input Item $ 1-13 IDnum $ 15-19
 InStock 21-22 BackOrd 24-25;
 Total=instock+backord;
run;

This error is not detected until the execution phase begins. Because there is no external file that is referenced by the fileref
Invnt, the DATA step stops processing.
SAS Log

7 data perm.: update;
08 infile invnt;
09 input Item $ 1-13 IDnum $ 15-19
10 InStock 21-22 BackOrd 24-25;
11 Total=instock+backord;
12 run;

ERROR: No logical assign for filename INVNT.

NOTE: The SAS System stopped processing this step
 because of errors.
WARNING: The data set PERM.UPDATE may be incomplete.
 When this step was stopped there were
 0 observations and 5 variables.

Because Invent is misspelled as Invnt, the statement in the DATA step that identifies the raw data is incorrect. Note,
however, that the correct number of variables was defined in the descriptor portion of the data set.

Incorrectly identifying a variable's type is another common execution-time error. As you know, the values for IDnum are
character values. Suppose you forget to place the dollar sign ($) after the variable's name in your INPUT statement. This is
not a compile-time error, because SAS cannot verify IDnum's type until the data values for IDnum are read.
data perm.update;
 infile invent;
 input Item $ 1-13 IDnum 15-19
 InStock 21-22 BackOrd 24-25;
 Total=instock+backord;
run;

147

In this case, the DATA step completes the execution phase, and the observations are written to the data set. However,
several notes appear in the log.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

RULE: ----+----1----+----2----+----3----+----4--
07 Crystal Vase AQ672 27 0
Item=Crystal Vase IDnum=. InStock=27 BackOrd=0
Total=27 _ERROR_=1 _N_=7
NOTE: Invalid data for IDnum in line 8 15-19.

08 Picnic Basket LS930 21 0
Item=Picnic Basket IDnum=. InStock=21 BackOrd=0
Total=21 _ERROR_=1 _N_=8
NOTE: Invalid data for IDnum in line 9 15-19.

09 Brass Clock AN910 2 10
Item=Brass Clock IDnum=. InStock=2 BackOrd=10
Total=12 _ERROR_=1 _N_=9

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UPDATE has 9 observations
 and 5 variables.

Each note identifies the location of the invalid data for each observation. In this example, the invalid data is located in
columns 15–19 for all observations.

The second line in each note (excluding the Rule line) displays the raw data record. Notice that the second field displays the
values for IDnum, which are obviously character values.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.
RULE: ----+----1----+----2----+----3----+----4--
07 Crystal Vase AQ672 27 0

148

Item=Crystal Vase IDnum=. InStock=27 BackOrd=0
Total=27 _ERROR_=1 _N_=7
NOTE: Invalid data for IDnum in line 8 15-19.
08 Picnic Basket LS930 21 0

Item=Picnic Basket IDnum=. InStock=21 BackOrd=0
Total=21 _ERROR_=1 _N_=8
NOTE: Invalid data for IDnum in line 9 15-19.
09 Brass Clock AN910 2 10

Item=Brass Clock IDnum=. InStock=2 BackOrd=10
Total=12 _ERROR_=1 _N_=9

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UPDATE has 9 observations
 and 5 variables.

The third and fourth lines display the values that are stored in the program data vector. Here, the values for IDnum are
missing, although the other values have been correctly assigned to their respective variables. Notice that _ERROR_ has a
value of 1, indicating that an error has occurred.
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.
RULE: ----+----1----+----2----+----3----+----4--
07 Crystal Vase AQ672 27 0
Item=Crystal Vase IDnum=. InStock=27 BackOrd=0

Total=27 _ERROR_=1 _N_=7

NOTE: Invalid data for IDnum in line 8 15-19.
08 Picnic Basket LS930 21 0
Item=Picnic Basket IDnum=. InStock=21 BackOrd=0

Total=21 _ERROR_=1 _N_=8

NOTE: Invalid data for IDnum in line 9 15-19.
09 Brass Clock AN910 2 10
Item=Brass Clock IDnum=. InStock=2 BackOrd=10

Total=12 _ERROR_=1 _N_=9

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UPDATE has 9 observations
 and 5 variables.

The PRINT procedure displays the data set, showing that the values for IDnum are missing. In this example, the periods
indicate that IDnum is a numeric variable, although it should be defined as a character variable.

149

proc print data=perm.update;
run;
Obs Item IDnum InStock BackOrd Total

1 Bird Feeder . 3 20 23

2 6 Glass Mugs . 6 12 18

3 Glass Tray . 12 6 18

4 Padded Hangrs . 15 20 35

5 Jewelry Box . 23 0 23

6 Red Apron . 9 12 21

7 Crystal Vase . 27 0 27

8 Picnic Basket . 21 0 21

9 Brass Clock . 2 10 12

When you read raw data with the DATA step, it's important to check the SAS log to verify that your data was read correctly.
Here is a typical message.
SAS Log

WARNING: The data set PERM.UPDATE may be incomplete.
 When this step was stopped there were
 0 observations and 5 variables.

When no observations are written to the data set, you should check to see whether your DATA step was completely
executed. Most likely, a syntax error or another error is being detected at the beginning of the execution phase.

An invalid data message indicates that the program executed, but the data is not acceptable. Typically, the message
indicates that a variable's type has been incorrectly identified in the INPUT statement, or that the raw data file contains
some invalid data value(s).
SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.
Testing Your Programs

Writing a NULL Data Set
After you write or edit a DATA step, you can compile and execute your program without creating a data set. This enables
you to detect the most common errors and saves you development time. A simple way to test a DATA step is to specify the
keyword _NULL_ as the data set name in the DATA statement.
data _null_;
 infile invent;
 input Item $ 1-13 IDnum $ 15-19
 InStock 21-22 BackOrd 24-25;
 Total=instock+backord;

150

run;

When you submit the DATA step, no data set is created, but any compilation or execution errors are written to the log after
the values of the variables are read and verified. After correcting any errors, you can replace _NULL_ with the name of the
data set that you want to create.

Limiting Observations
Remember that you can use the OBS= option in the INFILE statement to limit the number of observations that are read or
created during the execution of the DATA step.
data perm.update;
 infile inventobs=10;
 input Item $ 1-13 IDnum $ 15-19
 InStock 21-22 BackOrd 24-25;
 Total=instock+backord;
run;

When processed, this DATA step creates the Perm.Update data set with variables but with only 10 observations.

PUT Statement
When the source of program errors is not apparent, you can use the PUT statement to examine variable values and to print
your own message in the log. For diagnostic purposes, you can use IF-THEN/ELSE statements to conditionally check for
values. You can learn about IF-THEN/ELSE statements in detail in Chapter 11, Creating and Managing Variables.
data work.test;
 infile loan;
 input Code $ 1 Amount 3-10 Rate 12-16
 Account $ 18-25 Months 27-28;
 if code='1' then type='variable';
 else if code='2' then type='fixed';
 else put 'MY NOTE: invalid value: '

code=;

run;

In this example, if CODE does not have the expected values of 1 or 2, the PUT statement writes a message to the log:
SAS Log

MY NOTE: invalid value: Code=V

NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

General form, simple PUT statement:

PUT specification(s);

151

where each specification specifies what is written, how it is written, and where it is written. This can include
� a character string
� one or more data set variables
� the automatic variables _N_ and _ERROR_
� the automatic variable _ALL_

and much more. The following pages show examples of PUT specifications.

Character Strings
You can use a PUT statement to specify a character string to identify your message in the log. The character string must be
enclosed in quotation marks.
 put 'MY NOTE: The condition was met.';
SAS Log

MY NOTE: The condition was met.
NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

Data Set Variables
You can use a PUT statement to specify one or more data set variables to be examined for that iteration of the DATA step.
put 'MY NOTE: invalid value: '

code type;
SAS Log

MY NOTE: invalid value: V FIXED
NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

When you specify a variable in the PUT statement, only the value of the variable is written to the log. To write both the
variable name and its value in the log, add an equal sign (=) to the variable name.
put 'MY NOTE: invalid value: '

code= type=;
SAS Log

MY NOTE: invalid value: Code=V type=FIXED
NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

152

Automatic Variables
You can use a PUT statement to display the values of the automatic variables _N_ and _ERROR_. In some cases, knowing
the value of _N_ can help you locate an observation in the data set.
put 'MY NOTE: invalid value: '

code= _n_= _error_=;
SAS Log

MY NOTE: invalid value: Code=V N=4 ERROR=0
NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

You can also use a PUT statement to write all variable names and variable values, including automatic variables, to the log.
Use the _ALL_ specification.
put 'MY NOTE: invalid value: ' _all_ ;
SAS Log

MY NOTE: invalid value: Account=101-3144
Amount=$3,500 Rate=10.50% Months=1

Code=V type=C ERROR=0 N=4

NOTE: The data set WORK.TEST has 9 observations
 and 6 variables.

Conditional Processing
You can use a PUT statement with conditional processing (that is, with IF-THEN/ELSE statements) to flag program errors or
data that is out of range. In the example below, the PUT statement is used to flag any missing or zero values for the variable
Rate.
data finance.newcalc;
 infile newloans;
 input LoanID $ 1-4 Rate 5-8 Amount 9-19;
 if rate>0 then
 Interest=amount*(rate/12);

else put 'DATA ERROR ' rate= _n_=;

run;
Note The PUT statement can accomplish a wide variety of tasks. This chapter shows a few ways to use the

PUT statement to help you debug a program or examine variable values. For a complete description of
the PUT statement, see the SAS documentation for your operating environment.

Summary

Text Summary

153

How SAS Processes Programs
A SAS DATA step is processed in two distinct phases. During the compilation phase, each statement is scanned for
syntax errors. During the execution phase, the DATA step writes observations to the new data set.

Compilation Phase
At the beginning of the compilation phase, the input buffer and the program data vector are created. The program data
vector is the area of memory where data sets are built, one observation at a time. Two automatic variables are also created:
N counts the number of DATA step executions, and _ERROR_ signals the occurrence of an error. DATA step statements
are checked for syntax errors, such as invalid options or misspellings.

Execution Phase
During the execution phase, each record in the input file is processed, stored in the program data vector, and then written to
the new data set as an observation. The DATA step executes once for each record in the input file, unless otherwise
directed.

Diagnosing Errors in the Compilation Phase
Missing semicolons, misspelled keywords, and invalid options cause syntax errors in the compilation phase. Detected errors
are underlined and are identified with a number and message in the log. If SAS can interpret a syntax error, then the DATA
step compiles and executes; if SAS cannot interpret the error, then the DATA step compiles but doesn't execute.

Diagnosing Errors in the Execution Phase
Illegal mathematical operations or processing a character variable as numeric causes errors in the execution phase.
Depending on the type of error, the log might show a warning and might include invalid data from the program data vector,
and the DATA step either stops or continues.

Testing Your Programs
To detect common errors and save development time, compile and execute your program without creating observations.
Specify the keyword _NULL_ as the data set name to view compilation or execution errors without creating a data set. Or
use the OBS= option in the INFILE statement to limit the number of observations that are read or created during the DATA
step. You can also use the PUT statement to examine variable values and to generate your own message in the log.

Points to Remember
� Making, diagnosing, and resolving errors is part of the process of writing programs. However, checking for common

errors will save you time and trouble. Ensure that
o each SAS statement ends with a semicolon
o filenames are spelled correctly
o keywords are spelled correctly.

� In SAS output, missing numeric values are represented by periods, and missing character values are left blank.
� The order in which variables are defined in the DATA step determines the order in which the variables are stored in

the data set.
� Standard character values can include numbers, but numeric values cannot include characters.
Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

154

1. Which of the following is not created during the compilation phase?
a. the data set descriptor
b. the first observation
c. the program data vector
d. the _N_ and _ERROR_ automatic variables

2. During the compilation phase, SAS scans each statement in the DATA step, looking for syntax errors.
Which of the following is not considered a syntax error?

a. incorrect values and formats
b. invalid options or variable names
c. missing or invalid punctuation
d. missing or misspelled keywords

3. Unless otherwise directed, the DATA step executes
a. once for each compilation phase.
b. once for each DATA step statement.
c. once for each record in the input file.
d. once for each variable in the input file.

4. At the beginning of the execution phase, the value of _N_ is 1, the value of _ERROR_ is 0, and the
values of the remaining variables are set to

a. 0
b. 1
c. undefined
d. missing

5. Suppose you run a program that causes three DATA step errors. What is the value of the automatic
variable _ERROR_ when the observation that contains the third error is processed?

a. 0
b. 1
c. 2
d. 3

6. Which of the following actions occurs at the end of the DATA step?
a. The automatic variables _N_ and _ERROR_ are incremented by one.
b. The DATA step stops execution.
c. The descriptor portion of the data set is written.
d. The values of variables created in programming statements are re-set to missing in the

program data vector.

7. Look carefully at the DATA step shown below. Based on the INPUT statement, in what order will the
variables be stored in the new data set?
data perm.update;
 infile invent;

 input IDnum $ 15-19 Item $ 1-13 Instock 21-22
 BackOrd 24-25;
 Total=instock+backord;
run;

a. IDnum Item InStock BackOrd Total
b. Item IDnum InStock BackOrd Total
c. Total IDnum Item InStock BackOrd

155

d. Total Item IDnum InStock BackOrd

8. If SAS cannot interpret syntax errors, then
a. data set variables will contain missing values.
b. the DATA step does not compile.
c. the DATA step still compiles, but it does not execute.
d. the DATA step still compiles and executes.

9. What is wrong with this program?
data perm.update;
 infile invent
 input Item $ 1-13 IDnum $ 15-19 Instock 21-22
 BackOrd 24-25;
 total=instock+backord;
run;

a. missing semicolon on second line
b. missing semicolon on third line
c. incorrect order of variables
d. incorrect variable type

10. Look carefully at this section of a SAS session log. Based on the note, what was the most likely
problem with the DATA step?

NOTE: Invalid data for IDnum in line 7 15-19.
RULE: ----+----1----+----2----+----3----+----4
7 Bird Feeder LG088 3 20
Item=Bird Feeder IDnum=. InStock=3 BackOrd=20
Total=23 _ERROR_=1 _N_=1

a. A keyword was misspelled in the DATA step.
b. A semicolon was missing from the INFILE statement.
c. A variable was misspelled in the INPUT statement.
d. A dollar sign was missing in the INPUT statement.

Answers

1. Correct answer: b

At the beginning of the compilation phase, the program data vector is created. The program data vector includes the
two automatic variables _N_ and _ERROR_. The descriptor portion of the new SAS data set is created at the end of the
compilation phase. The descriptor portion includes the name of the data set, the number of observations and variables,
and the names and attributes of the variables. Observations are not written until the execution phase.

2. Correct answer: a

Syntax checking can detect many common errors, but it cannot verify the values of variables or the correctness of
formats.

156

3. Correct answer: c

The DATA step executes once for each record in the input file, unless otherwise directed.

4. Correct answer: d

The remaining variables are initialized to missing. Missing numeric values are represented by periods, and missing
character values are represented by blanks.

5. Correct answer: b

The default value of _ERROR_ is 0, which means there is no error. When an error occurs, whether it is one error or
multiple errors, the value is set to 1.

6. Correct answer: d

By default, at the end of the DATA step, the values in the program data vector are written to the data set as an
observation, the value of the automatic variable _N_ is incremented by one, control returns to the top of the DATA step,
and the values of variables created in programming statements are set to missing. The automatic variable _ERROR_
retains its value.

7. Correct answer: a

The order in which variables are defined in the DATA step determines the order in which the variables are stored in the
data set.

8. Correct answer: c

When SAS can't interpret syntax errors, the DATA step compiles, but it does not execute.

9. Correct answer: a

A semicolon is missing from the second line. It will cause an error because the INPUT statement will be interpreted as
invalid INFILE statement options.

10. Correct answer: d

The third line of the log displays the values for IDnum, which are clearly character values. The fourth line displays the
values in the program data vector and shows that the values for IDnum are missing, even though the other values are
correctly assigned. Thus, it appears that numeric values were expected for IDnum. A dollar sign, to indicate character
values, must be missing from the INPUT statement.

Chapter 7: Creating and Applying User-Defined

Overview

Introduction

157

In Chapter 4, Creating List Reports, you learned to associate formats with variables either temporarily or permanently.

But sometimes you might want to create custom formats for displaying variable values. For example, you can format a
product number so that it is displayed as descriptive text, as shown below.

Using the FORMAT procedure, you can define your own formats for variables. You can store your formats temporarily or
permanently, and you can display a list of all your formats and descriptions of their values.

Objectives
In this chapter, you learn to
� create your own formats for displaying variable values
� permanently store the formats that you create
� associate your formats with variables.

Introduction to PROC FORMAT
Sometimes variable values are stored according to a code. For example, when the PRINT procedure displays the data set
Perm.Empinfo, notice that the values for JobTitle are coded, and they are not easily interpreted.

Obs FirstName LastName JobTitle Salary

1 Donny Evans 112 29996.63

2 Lisa Helms 105 18567.23

3 John Higgins 111 25309.00

4 Amy Larson 113 32696.78

5 Mary Moore 112 28945.89

6 Jason Powell 103 35099.50

7 Judy Riley 111 25309.00

8 Neal Ryan 112 28180.00

You can display more descriptive values for these variables. Here is how a report that contains formatted values for the
variable JobTitle might look. The predefined SAS formats cannot help here.

Obs FirstName LastName JobTitle Salary

1 Donny Evans technical writer 29996.63

2 Lisa Helms text processor 18567.23

3 John Higgins assoc. technical writer 25309.00

4 Amy Larson senior technical writer 32696.78

5 Mary Moore technical writer 28945.89

6 Jason Powell manager 35099.50

158

Obs FirstName LastName JobTitle Salary

7 Judy Riley assoc. technical writer 25309.00

8 Neal Ryan technical writer 28180.00

However, you can use the FORMAT procedure to define your own formats for displaying values of variables.

Invoking PROC FORMAT
To begin a PROC FORMAT step, you use a PROC FORMAT statement.

General form, PROC FORMAT statement:

PROC FORMAT <options>;

where options includes
� LIBRARY=libref specifies the libref for a SAS data library that contains a permanent catalog in which user-defined

formats are stored
� FMTLIB prints the contents of a format catalog.

Any time you use PROC FORMAT to create a format, the format is stored in a format catalog. If the SAS data library does
not already contain a format catalog, SAS automatically creates one. If you do not specify the LIBRARY= option, then the
formats are stored in a default format catalog named Work.Formats.

As the libref Work implies, any format that is stored in Work.Formats is a temporary format that exists only for the current
SAS session. At the end of the current session, the catalog is erased.

Permanently Storing Your Formats

You can store your formats in a permanent format catalog named Formats when you specify the LIBRARY= option in the
PROC FORMAT statement.
PROC FORMAT LIBRARY=libref;

But first, you need a LIBNAME statement that associates the libref with the permanent SAS data library in which the format
catalog is to be stored. It is recommended, but not required, that you use the word Library as the libref when creating your
own permanent formats.
libname library 'c:\sas\formats\lib';
libname library 'c:\data\setup\library';
libname library 'c:\sales\ancillary\libset';

When you associate a permanent format with a variable in a subsequent DATA or PROC step, you use the Library libref to
reference the location of the format catalog.

We'll discuss the use of permanent user-defined formats later, after you learn how to create them.

Now, any format that you create in this PROC FORMAT step is stored in a permanent format catalog called
Library.Formats.
libname library 'c:\sas\formats\lib';
proc format library=library;

159

 ... ;
run;

In the program above, the catalog Library.Formats is located in the SAS data library C:\Sas\Formats\Lib, which is
referenced by the libref Library.

You can use LIB= as an abbreviation for the LIBRARY= option.
proc format lib=library;

You can specify a catalog name in the LIBRARY= option, and you can store formats in any catalog. The catalog name must
conform to SAS naming conventions.
proc format lib=library.catalog;

Now that you know how to store your own formats, let's learn how to create them.

Defining a Unique Format
You can use the VALUE statement to define a format for displaying one or more values.

General form, VALUE statement:

VALUE format-name
range1='label1'
range2='label2'
... ;

where
� format-name names the format that you are creating. The format name

o must begin with a dollar sign ($) if the format applies to character data
o cannot be longer than eight characters
o cannot be the name of an existing SAS format
o cannot end with a number
o does not end in a period when specified in a VALUE statement.

� range specifies one or more variable values and a character string or an existing format
� label is a text string enclosed in quotation marks.

Notice that the statement begins with the keyword VALUE and ends with a semicolon after all the labels have been defined.
The following VALUE statement creates the JOBFMT format to specify descriptive labels that will later be assigned to the
variable JobTitle:
proc format lib=library;
 value jobfmt
 103='manager'
 105='text processor'
 111='assoc. technical writer'
 112='technical writer'
 113='senior technical writer';
run;

The VALUE range specifies

160

� a single value, such as 24 or 'S'
� a range of numeric values, such as 0–1500
� a range of character values enclosed in quotation marks, such as 'A'–'M'.
� a list of unique values separated by commas, such as 90,180,270 or 'B','D','F'. These values can be character

values or numeric values, but not a combination of character and numeric values (because formats themselves are
either character or numeric).

When the specified values are character values, they must be enclosed in quotation marks and must match the case of the
variable's values. The format's name must also start with a dollar sign ($). For example, the VALUE statement below
defines the $GRADE format, which displays the character values as text labels.
proc format lib=library;
 value $grade
 'A'='Good'
 'B'-'D'='Fair'
 'F'='Poor'
 'I','U'='See Instructor';
run;

When the specified values are numeric values, they are not enclosed in quotation marks, and the format's name should not
begin with a dollar sign ($). The VALUE statement that defines the format JOBFMT assigns labels to numeric values.
proc format lib=library;
 value jobfmt

 103='manager'
 105='text processor'
 111='assoc. technical writer'
 112='technical writer'
 113='senior technical writer';
run;

Specifying Value Ranges
You can specify a non-inclusive range of numeric values by using the "less than" symbol (<) to avoid any overlapping. In
this example, the range of values from 0 to less than 13 is labeled as child. The next range begins at 13, so the label
teenager would be assigned to the values 13 to 19.
proc format lib=library;
 value agefmt
 0-<13='child'
 13-<20='teenager'
 20-<65='adult'
 65-100='senior citizen';
run;

You can also use the keywords LOW and HIGH to specify the lower and upper limits of a variable's value rang e. The
keyword LOW does not include missing numeric values. The keyword OTHER can be used to label missing values as well
as any values that are not specifically addressed in a range.
proc format lib=library;

161

 value agefmt
low-<13='child'

 13-<20='teenager'
 20-<65='adult'
 65-high='senior citizen'

other='unknown';
run;

Note If applied to a character format, the keyword LOW includes missing character values.

When specifying a label for displaying each range, remember to
� enclose the label in quotation marks
� limit the label to 256 characters
� use double quotation marks if you want an apostrophe to appear in the label, as in this example:
 000="employee's jobtitle unknown";

Defining Multiple Formats
To define several formats, you can use multiple VALUE statements in a single PROC FORMAT step. In this example, each
VALUE statement defines a different format.
proc format lib=library;

value jobfmt

 103='manager'
 105='text processor'

 111='assoc. technical writer'
 112='technical writer'
 113='senior technical writer';

value $respnse

 'Y'='Yes'
 'N'='No'
 'U'='Undecided'
 'NOP'='No opinion';
run;

The SAS log prints notes informing you that the formats have been created.
SAS Log (Partial Listing)

01 proc format lib=library;
02 value jobfmt
03 103='manager'
04 105='text processor'
05 111='assoc. technical writer'
06 112='technical writer'
07 113='senior technical writer';

162

NOTE: Format JOBFMT has been written to LIBRARY.FORMATS.

Because you have defined the JOBFMT format for displaying the values of JobTitle, the format can be used with PROC
PRINT for more legible output.
(Without Format)

FirstName LastName JobTitle Salary

Donny Evans 112 29996.63

Lisa Helms 105 18567.23

John Higgins 111 25309.00

Amy Larson 113 32696.78

Mary Moore 112 28945.89

Jason Powell 103 35099.50

(With Format)

FirstName LastName JobTitle Salary

Donny Evans technical writer 29996.63

Lisa Helms text processor 18567.23

John Higgins assoc. technical writer 25309.00

Amy Larson senior technical writer 32696.78

Mary Moore technical writer 28945.89

Jason Powell manager 35099.50

The next section shows how to apply your formats to variables.

Associating User-Defined Formats with Variables

Referencing Your Formats
Remember that permanent, user-defined formats are stored in a format catalog. For example, the program below stores the
format JOBFMT in a catalog named Library.Formats, which is located in the directory C:\Sas\Formats\Lib in the Windows
environment.
libname library 'c:\sas\formats\lib';
proc format lib=library;
 value jobfmt

103='manager'
 105='text processor'
 111='assoc. technical writer'
 112='technical writer'
 113='senior technical writer';

163

run;

To use the JOBFMT format in a subsequent SAS session, you must assign the libref Library again.
 libname library 'c:\sas\formats\lib';
 data ... ;

SAS searches for the format JOBFMT in two libraries, in this order:
� the temporary library referenced by the libref Work
� a permanent library referenced by the libref Library.

SAS uses the first instance of a specified format that it finds.
Info You can delete formats by using PROC CATALOG or the SAS Explorer window.

Assigning Your Formats to Variables
Just as with SAS formats, you associate a user-defined format with a variable in a FORMAT statement.
data perm.empinfo;
 infile empdata;
 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.
 @19 Salary comma9.;

format salary comma9.2 jobtitle jobfmt.;

run;
Note Don't worry about @ pointer controls in programs in this chapter (as in @9FirstName), because they

don't affect the behavior of formats. To learn more about using @ pointer controls in SAS programs, see
Chapter 17, Reading Raw Data in Fixed Fields.

Remember, you can place the FORMAT statement in either a DATA step or a PROC step. By placing the FORMAT
statement in a DATA step, you can permanently associate a format with a variable. Note that you do not have to specify a
width value when using a user-defined format.

When you submit the PRINT procedure, the output for Perm.Empinfo now shows commas in the values for Salary, and it
shows descriptive labels in place of the values for JobTitle.
proc print data=perm.empinfo;
run;
Obs FirstName LastName JobTitle Salary

1 Donny Evans technical writer 29,996.63

2 Lisa Helms text processor 18,567.23

3 John Higgins assoc. technical writer 25,309.00

4 Amy Larson senior technical writer 32,696.78

5 Mary Moore technical writer 28,945.89

6 Jason Powell manager 35,099.50

7 Judy Riley assoc. technical writer 25,309.00

8 Neal Ryan technical writer 28,180.00

164

When associating a format with a variable, remember to
� use the same format name in the FORMAT statement that you specified in the VALUE statement
� place a period at the end of the format name when it is used in the FORMAT statement.

� libname library 'c:\sas\formats\lib';
� proc format lib=library;
� value jobfmt
� 103='manager'
� 105='text processor'
� 111='assoc. technical writer'
� 112='technical writer'
� 113='senior technical writer';
� run;
� libname perm 'c:\data\perm';
� filename empdata 'c:\data\temp\newhires.txt';
� data perm.empinfo;
� infile empdata;
� input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.
� @19 Salary comma9.;
� format salary comma9.2 jobtitle jobfmt.;

run;

Notice that a period is not required at the end of the SAS format COMMA9.2 in the FORMAT statement. The period in this
format occurs between the width specification and the decimal place specification. All formats contain periods, but only
user-defined formats invariably require periods at the end of the name.

If you do not format all of a variable's values, then those values that are not listed in the VALUE statement are printed as
they appear in the SAS data set, as shown in the following example:
proc format lib=library;
 value jobfmt
 103='manager'
 105='text processor';
 112='technical writer';
run;
proc print data=perm.empinfo;
run;
Obs FirstName LastName JobTitle Salary

1 Donny Evans 112 29996.63

2 Lisa Helms text processor 18567.23

3 John Higgins 111 25309.00

4 Amy Larson 113 32696.78

5 Mary Moore 112 28945.89

165

Obs FirstName LastName JobTitle Salary

6 Jason Powell manager 35099.50

7 Judy Riley 111 25309.00

8 Neal Ryan technical writer 28180.00

Displaying a List of Your Formats
When you build a large catalog of permanent formats, it can be easy to forget the exact spelling of a specific format name or
its range of values. Adding the keyword FMTLIB to the PROC FORMAT statement displays a list of all the formats in your
catalog, along with descriptions of their values.
libname library 'c:\sas\formats\lib';
proc format library=library fmtlib;
run;

When you submit this PROC step, a description of each format in your permanent catalog is displayed as output.

SAS Output

Format Name: JobFmt Length: 23 Number of Values: 5
Min Length: 1 Max Length: 40 Default Length: 23 Fuzz: Std

START END LABEL (VER. 9.00 29AUG2002:11:13:14)

103 103 manager

105 105 text processor

111 111 assoc. technical writer

112 112 technical writer

113 113 senior technical writer

In addition to the name, range, and label, the format description includes the
� length of the longest label
� number of values defined by this format
� version of SAS that this format is compatible with
� date and time of creation.

Summary

Text Summary

Invoking PROC FORMAT
The FORMAT procedure enables you to substitute descriptive text values for the values of variables. The LIBRARY= option
stores the new formats in a specified format catalog. Otherwise, they are stored in a default catalog named Work.Formats.
The keyword FMTLIB displays the formats and values that are currently stored in the catalog. The VALUE statement
defines a new format for the values of a variable.

166

Defining a Unique Format
Formats can be specified for a single value, a range of numeric values, or a list of unique values. Unique values must be
separated by commas. When character values are specified, the values must be enclosed in quotation marks, and the
format name must begin with a dollar sign ($). You can specify non-inclusive numeric ranges by using the "less than" sign
(<). The keywords HIGH, LOW, and OTHER can be used to label values that are not specifically addressed in a range.

Associating User-Defined Formats with Variables
To access the permanent, user-defined formats in a format catalog, you'll need to use a LIBNAME statement to reference
the catalog library. To associate user-defined formats with variables in the FORMAT statement, use the same format names
in both the FORMAT and VALUE statements, but place a period at the end of the format name when it is used in the
FORMAT statement.

Points to Remember
� Formats—even permanently associated ones—do not affect the values of variables in a SAS data set. Only the

appearance of the values is changed.
� A user-defined format name must begin with a dollar sign ($) when it is assigned to character variables. A user-

defined format name cannot end with a number.
� Use two double quotation marks when you want an apostrophe to appear in a label.
� Place a period at the end of the format name when you use the format name in the FORMAT statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. If you don't specify the LIBRARY= option, your formats are stored in Work.Formats, and they exist
1. only for the current procedure.
2. only for the current DATA step.
3. only for the current SAS session.
4. permanently.

2. Which of the following statements will store your formats in a permanent catalog?
1. libname library 'c:\sas\formats\lib';proc format lib=library ...;
2. libname library 'c:\sas\formats\lib';format lib=library ...;
3. library='c:\sas\formats\lib';proc format library ...;
4. library='c:\sas\formats\lib';proc library ...;

3. When creating a format with the VALUE statement, the new format's name
� cannot end with a number
� cannot end with a period
� cannot be the name of a SAS format, and

1. cannot be the name of a data set variable.
2. must be at least two characters long.
3. must be at least eight characters long.
4. must begin with a dollar sign ($) if used with a character variable.

4. Which of the following FORMAT procedures is written correctly?
1. proc format lib=library value colorfmt; 1='Red' 2='Green' 3='Blue' run;
2. proc format lib=library; value colorfmt 1='Red' 2='Green' 3='Blue'; run;
3. proc format lib=library; value colorfmt; 1='Red' 2='Green' 3='Blue' run;
4. proc format lib=library; value colorfmt 1='Red'; 2='Green'; 3='Blue'; run;

167

5. Which of these is false? Ranges in the VALUE statement can specify
1. a single value, such as 24 or 'S'.
2. a range of numeric values, such as 0–1500.
3. a range of character values, such as 'A'–'M'.
4. a list of numeric and character values separated by commas, such as 90,'B',180,'D',270.

6. How many characters can be used in a label?
1. 40
2. 96
3. 200
4. 256

7. Which keyword can be used to label missing values as well as any values that are not specified in a
range?

1. LOW
2. MISS
3. MISSING
4. OTHER

8. You can place the FORMAT statement in either a DATA step or a PROC step. What happens when you
place the FORMAT statement in a DATA step?

1. You temporarily associate the formats with variables.
2. You permanently associate the formats with variables.
3. You replace the original data with the format labels.
4. You make the formats available to other data sets.

9. The format JOBFMT was created in a FORMAT procedure. Which FORMAT statement will apply it to
the variable JobTitle in the program output?

1. format jobtitle jobfmt;
2. format jobtitle jobfmt.;
3. format jobtitle=jobfmt;
4. format jobtitle='jobfmt';

10. Which keyword, when added to the PROC FORMAT statement, will display all the formats in your
catalog?

1. CATALOG
2. LISTFMT
3. FMTCAT
4. FMTLIB

Answers

1. Correct answer: c

If you do not specify the LIBRARY= option, formats are stored in a default format catalog named Work.Formats. As the
libref Work implies, any format that is stored in Work.Formats is a temporary format that exists only for the current SAS
session.

2. Correct answer: a

To store formats in a permanent catalog, you first write a LIBNAME statement to associate the libref with the SAS data
library in which the catalog will be stored. Then add the LIB= (or LIBRARY=) option to the PROC FORMAT statement,

168

specifying the name of the catalog.

3. Correct answer: d

The name of a format that is created with a VALUE statement must begin with a dollar sign ($) if it applies to a character
variable.

4. Correct answer: b

A semicolon is needed after the PROC FORMAT statement. The VALUE statement begins with the keyword VALUE
and ends with a semicolon after all the labels have been defined.

5. Correct answer: d

You can list values separated by commas, but the list must contain either all numeric values or all character values.
Data set variables are either numeric or character.

6. Correct answer: d

When specifying a label, enclose it in quotation marks and limit the label to 256 characters.

7. Correct answer: d

MISS and MISSING are invalid keywords, and LOW does not include missing values. The keyword OTHER can be
used in the VALUE statement to label missing values as well as any values that are not specifically included in a range.

8. Correct answer: b

By placing the FORMAT statement in a DATA step, you permanently associate the defined formats with variables.

9. Correct answer: b

To associate a user-defined format with a variable, place a period at the end of the format name when it is used in the
FORMAT statement.

10. Correct answer: d

Adding the keyword FMTLIB to the PROC FORMAT statement displays a list of all the formats in your catalog, along
with descriptions of their values.

169

Chapter 8: Creating Enhanced List and Summary Reports
Overview

Introduction
List and summary reports are often created from SAS data. To produce a variety of reports using a single report-writing tool,
you can use PROC REPORT. In addition to creating list reports, PROC REPORT enables you to
� create custom reports
� request separate subtotals and grand totals
� calculate columns
� create and store report definitions.

You can use PROC REPORT in three ways:
� in a windowing mode with a prompting facility that guides you as you build a report
� in a windowing mode without the prompting facility
� in a nonwindowing mode. In this case, you submit a series of statements with the PROC REPORT statement, just

as you do in other SAS procedures.
SAS Enterprise Guide In SAS Enterprise Guide, you work with PROC REPORT in a nonwindowing

mode. You can access PROC REPORT in a windowing mode through the SAS
programming interface.

This chapter shows you how to use PROC REPORT by submitting SAS statements. Although PROC REPORT enables you
to create highly customized reports, we'll focus on basic statements and will add a few enhancements. By the end of the
chapter, you'll create a list report and a summary report.
PROC REPORT List Report

Flight Number
Flight
Origin Flight Destination

Mail /
Pounds

Freight /
Pounds

Revenue

821 LGA LON 403 209 $150,634.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

821 LGA LON 391 395 $167,772.00

821 LGA LON 219 368 $183,106.00

821 LGA LON 389 479 $169,576.00

170

PROC REPORT List Report

Flight Number
Flight
Origin Flight Destination

Mail /
Pounds

Freight /
Pounds

Revenue

821 LGA LON 448 282 $143,561.00

821 LGA LON 403 209 $170,766.00

821 LGA LON 345 243 $129,560.00

821 LGA LON 248 307 $196,736.00

821 LGA LON 391 395 $125,344.00

821 LGA LON 219 368 $166,543.00

821 LGA LON 389 479 $129,745.00

PROC REPORT Summary Report

Flight Number
Flight
Origin

Flight
Destination

Mail / Pounds Freight /
Pounds Total Revenue

821 LGA LON 4,438 4,284 $2,077,907.00

271 LGA PAR 5,050 4,421 $1,969,201.00

219 LGA LON 2,700 2,513 $1,111,647.00

Objectives
In this chapter, you learn to
� invoke the REPORT procedure and specify a windowing or nonwindowing environment
� select columns for your report
� define the usage for columns
� specify attributes, options, and justification for columns
� specify features of column headings, including split characters, underlining, and blank lines.

Creating a Default List Report
Let's start by creating a list report. Suppose you want to create a listing of mail, freight, and passenger revenue for flights
between LaGuardia Airport and London or Paris.

As with other SAS procedures, you first reference the library in which your data is stored, and then you submit a basic
PROC REPORT step.

General form, basic PROC REPORT step:

PROC REPORT <DATA=SAS-data-set> <options>;
RUN;

where
� SAS-data-set is the name of the SAS data set that is used for the report
� options includes

SAS Windowing
Environment

� WINDOWS or WD, which invokes the procedure in a windowing mode. Your
report appears in the REPORT window. This is the default for the SAS
windowing environnment.

171

� NOWINDOWS or NOWD, which displays a listing of the report in the
OUTPUT window.

Note If you specify HTML output in your SAS preferences, then
the HTML output appears in addition to or instead of the
OUTPUT window listing, as requested. Some PROC
REPORT formatting options are not applicable to HTML
output.

�

SAS Enterprise Guide � NOWINDOWS or NOWD, which displays a listing of the report in the results
window. This is the default for Enterprise Guide.

Note Some PROC REPORT formatting options are not applicable to
HTML output.

�

Example

In this program, PROC REPORT reads the Flights.Europe data set and creates a report in a nonwindowing mode.
 proc report data=flights.europe nowd;

 run;

This is HTML output from the PROC REPORT step. Notice that by default
� all observations and variables in the data set are printed
� Variables appear in the order in which they occur in the data set.

Fl
ig
ht

Dat
e

De
pa
rt

O
r
i
g

D
e
s
t

M
il
e
s

M
a
il

Fr
ei
gh
t

Bo
ard
ed

Trans
ferre
d

NonR
evenu
e

Dep
lane
d

Cap
acit
y

DayOf
Mont
h

Rev
enu
e

82
1

04M
AR9
9

9:3
1

L
G
A

L
O
N

3
4
4
2

4
0
3

20
9

167 17 7 222 250 1 150
634

27
1

04M
AR9
9

11:
40

L
G
A

P
A
R

3
8
5
6

4
9
2

30
8

146 8 3 163 250 1 156
804

27
1

05M
AR9
9

12:
19

L
G
A

P
A
R

3
8
5
7

3
6
6

49
8

177 15 5 227 250 1 190
098

Selecting Variables
Now let's see how you can choose the data that you want to display.

To select and order the variables that appear in your list report, you can use the COLUMN statement.

172

General form, COLUMN statement:

COLUMN variable(s);

where variable(s) is one or more variable names, separated by blanks.

Example

The following COLUMN statement specifies that only the variables Flight, Orig, Dest, Mail, Freight, and Revenue
be printed, in that order.
proc report data=flights.europe nowd;

column flight orig dest mail freight revenue;

run;
Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

271 LGA PAR 353 205 166470

821 LGA LON 391 395 167772

271 LGA PAR 366 279 163248

821 LGA LON 219 368 183106

271 LGA PAR 357 282 170766

821 LGA LON 389 479 169576

271 LGA PAR 415 463 195468

622 LGA FRA 296 414 187636

821 LGA LON 448 282 143561

271 LGA PAR 352 351 123456

219 LGA LON 331 376 189065

387 LGA CPH 395 217 196540

622 LGA FRA 296 232 165456

821 LGA LON 403 209 170766

271 LGA PAR 492 308 125632

219 LGA LON 485 267 197456

387 LGA CPH 393 304 134561

173

Flight Orig Dest Mail Freight Revenue

622 LGA FRA 340 311 125436

271 LGA PAR 366 498 128972

219 LGA LON 388 298 162343

821 LGA LON 345 243 129560

219 LGA LON 421 356 134520

387 LGA CPH 546 204 135632

622 LGA FRA 391 423 107865

821 LGA LON 248 307 196736

271 LGA PAR 353 205 153423

219 LGA LON 447 299 106753

387 LGA CPH 415 367 128564

622 LGA FRA 346 . 178543

821 LGA LON 391 395 125344

271 LGA PAR 366 279 133345

219 LGA LON 356 547 122766

387 LGA CPH 363 297 134523

622 LGA FRA 317 421 100987

821 LGA LON 219 368 166543

271 LGA PAR 357 282 126543

219 LGA LON 272 370 198744

387 LGA CPH 336 377 109885

622 LGA FRA 272 363 134459

821 LGA LON 389 479 129745

271 LGA PAR 415 463 134976

Selecting Observations
You might also want to select rows for your report based on a condition. To select observations, you can use the WHERE
statement, just as you have learned to do with PROC PRINT.

Example

The following WHERE statement specifies that only observations that have the value LON or PAR for the variable Dest be
printed.
proc report data=flights.europe nowd;
 column flight orig dest mail freight revenue;

174

where dest in ('LON','PAR');

run;

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

271 LGA PAR 353 205 166470

821 LGA LON 391 395 167772

271 LGA PAR 366 279 163248

821 LGA LON 219 368 183106

271 LGA PAR 357 282 170766

821 LGA LON 389 479 169576

271 LGA PAR 415 463 195468

821 LGA LON 448 282 143561

271 LGA PAR 352 351 123456

219 LGA LON 331 376 189065

821 LGA LON 403 209 170766

271 LGA PAR 492 308 125632

219 LGA LON 485 267 197456

271 LGA PAR 366 498 128972

219 LGA LON 388 298 162343

821 LGA LON 345 243 129560

219 LGA LON 421 356 134520

821 LGA LON 248 307 196736

271 LGA PAR 353 205 153423

219 LGA LON 447 299 106753

821 LGA LON 391 395 125344

271 LGA PAR 366 279 133345

219 LGA LON 356 547 122766

821 LGA LON 219 368 166543

271 LGA PAR 357 282 126543

175

Flight Orig Dest Mail Freight Revenue

219 LGA LON 272 370 198744

821 LGA LON 389 479 129745

271 LGA PAR 415 463 134976

Defining Variables

Overview of Defining Variables
In the output that you've seen in this chapter so far, you might have noticed that PROC REPORT displays
� each data value the way it is stored in the data set
� variable names as column headings in the report
� a default width for the report columns
� left-justified character values
� right-justified numeric values
� observations in the order in which they are stored in the data set.
Partial PROC REPORT Output

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

271 LGA PAR 492 308 156804

You can enhance the report by
� defining how each variable is used in the report
� assigning formats to variables
� specifying column headings and widths
� justifying the variable values and column headings within the report columns
� changing the order of the rows in the report.

Using DEFINE Statements
To describe how to use and display variables in your report, you use one or more DEFINE statements. You can list
DEFINE statements in any order, and you can list options (usages, attributes, and so on) in any order in a DEFINE
statement.

General form, simple DEFINE statement:

DEFINE variable / <usage> <attribute(s)> <option(s)>
<justification> <'column-heading'> ;

where
� variable is the name of the variable that you want to define.
� usage specifies how to use the variable. Valid options are ACROSS, ANALYSIS, COMPUTED, DISPLAY, GROUP,

and ORDER.
� attribute(s) specifies attributes for the variable, including FORMAT=, WIDTH=, and SPACING=.
� option(s) specifies formatting options, including DESCENDING, NOPRINT, NOZERO, and PAGE.
� <justification> specifies column justification (CENTER, LEFT, or RIGHT).
� 'column-heading' specifies a label for the column heading.

176

Example
These DEFINE statements specify attributes, usages, options, justification, and column headings for the variables Flight
and Orig.
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;

define flight/order descending 'Flight Number'

center width=6 spacing=5;

define orig/'Flight Origin' center width=6;

run;

In this chapter, you'll look at each of these ways of defining variables.

Defining Column Attributes
You can easily change the appearance of your PROC REPORT output by specifying attributes for variables. For example,
you can select a format for data values, specify the column width, and specify the spacing between columns.

To enhance your PROC REPORT output, you'll use the following attributes.

Attribute Action

FORMAT=format Assigns a SAS format or a user-defined format to the item.

SPACING=horizontal-positions Specifies how many blank characters to leave between the selected column
and the column immediately to its left. The default is 2.

WIDTH=column-width Specifies the width of the column. The default column width is just large
enough to handle the specified format.

Assigning Formats
In previous chapters, you learned that formats determine how data values appear in SAS output. If you do not specify a
format for a variable within the PROC REPORT step, PROC REPORT uses the format that is stored in the data set. If no
format is stored in the data set, PROC REPORT uses the default format for that variable type.

To assign a format to a specific report column, use the FORMAT= attribute in the DEFINE statement for that column. You
can specify any appropriate SAS format or user-defined format.

Example
The variable Revenue has no format assigned to it in the Flights.Europe data set. So in your current report, revenue
values appear as shown in the example below.
Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 150634

177

Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

271 LGA PAR 492 308 156804

271 LGA PAR 366 498 190098

821 LGA LON 345 243 150634

821 LGA LON 248 307 193930

But suppose you want your revenue figures to be formatted with a dollar sign, commas, and two decimal places, in a total
width of 15 positions. To do this, you can assign the DOLLAR15.2 format to Revenue.
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;

define revenue/format=dollar15.2;

run;

Here is part of the HTML output from the previous program.
Partial PROC REPORT Output, HTML

Flight Orig Dest Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Notice that the format supplies the dollar sign, comma, decimal point, and decimal places. However, because the HTML
table column conforms to the width of its contents, assigning the format does not increase the column width beyond the
length of the data values.

By contrast, the monospace SAS listing of the report does display the increased column width.
Partial PROC REPORT Output, SAS Listing

Fli Ori Des
ght g t Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

178

Note You can also use FORMAT statements with PROC REPORT. However, the DEFINE statement enables you
to specify more than one column attribute at a time. Also, you can use the FORMAT= attribute to define report
columns (such as statistics or computed variables) that are not data set variables.

Specifying Column Widths
In the previous example of SAS listing output, you might have noticed that several headings were wrapped over two lines.
(In HTML output, the longest cell value determines the column width, so wrapping doesn't occur.)

If a variable in the input data set doesn't have a format associated with it, then the default PROC REPORT column width is
� the variable's length for character variables
� 9 for numeric variables.

The character variables Flight, Orig, and Dest each have a length of 3, and no format is associated with them. So 3 is
their default column width.
Partial PROC REPORT Output, SAS Listing

Fli Ori Des
ght g t Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

To specify a width for columns in your report, use the WIDTH= attribute in the DEFINE statement. You can specify values
from 1 to the value of the LINESIZE= system option.

The WIDTH= attribute has no effect on HTML output.

Example
To specify column widths that accommodate the column headings for Flight, Orig, and Dest, you can use the following
DEFINE statements in your PROC REPORT step:
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;

define flight/width=6;

define orig/width=4;

define dest/width=4;

run;

Now the headings appear on one line.

179

Partial PROC REPORT Output, SAS Listing

Flight Orig Dest Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

Specifying Column Spacing
Another way to enhance your PROC REPORT output is to specify column spacing, which is the number of blank
characters between the selected column and the column immediately to its left. The default column spacing is 2. To specify
a different column spacing, use the SPACING= attribute in the DEFINE statement.

The SPACING= attribute has no effect on HTML output.

Example
In the following PROC REPORT output, no spacing has been specified. Orig and Dest have two blank characters
preceding their columns.
Partial PROC REPORT Output, SAS Listing

Flight Orig Dest Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

To specify five blank spaces before the column headings for Orig and Dest, you can use DEFINE statements as shown
below in your PROC REPORT step:
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=6;
 define orig / width=4 spacing=5;
 define dest / width=4 spacing=5;
run;

Now the two columns display the extra spacing.
Partial PROC REPORT Output, SAS Listing

180

Flight Orig Dest Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

Defining Column Headings
In addition to specifying column widths and spacing, you might want to change column headings. To define a column
heading, enclose the heading text in quotation marks in the DEFINE statement.

Example

Suppose you want to label Flight as Flight Number, Orig as Flight Origin and Dest as Flight Destination. Add these
column headings to the DEFINE statements, being sure to match quotation marks. You can also change the WIDTH=
specifications to accommodate the new headings.
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=13'Flight Number';
 define orig / width=13 spacing=5 'Flight Origin';
 define dest / width=18 spacing=5 'Flight Destination';
run;
Partial PROC REPORT Output, SAS Listing

Flight Number Flight Origin Flight Destination
821 LGA LON
271 LGA PAR
271 LGA PAR
821 LGA LON
821 LGA LON

Here is HTML output from the same program.
Partial PROC REPORT Output, HTML

Flight Number Flight Origin Flight Destination Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

181

Partial PROC REPORT Output, HTML

Flight Number Flight Origin Flight Destination Mail Freight Revenue

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00

Now you have the column headings that you want. But the columns are so wide that you might prefer to split the long
column headings across two lines.

Splitting Column Headings across Multiple Lines
To control how words break in column headings, you can use a split character in the column label. When PROC REPORT
encounters the split character in a column heading, it breaks the heading and continues the heading on the next line. The
split character itself does not appear in the heading.

To use a split character, you can do either of the following:
� Use the default slash (/) as the split character.
� Define a split character by using the SPLIT= option in the PROC REPORT statement.

Example
Suppose you want to break headings so that only one word appears on a line. Using the default slash as the split character,
you can submit this PROC REPORT step. Notice that the column width has been reduced.
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=6 'Flight/Number';
 define orig / width=6 spacing=5 'Flight/Origin';
 define dest / width=11 spacing=5 'Flight/Destination';
run;

Or you can submit this program, which uses the SPLIT= option and produces exactly the same output:
proc report data=flights.europe nowd split='*';
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=6 'Flight*Number';
 define orig / width=6 spacing=5 'Flight*Origin';
 define dest / width=11 spacing=5 'Flight*Destination';
run;

Here are both types of output from both programs.
Partial PROC REPORT Output, HTML

Flight Number FlightOrigin Flight Destination Mail Freight Revenue

182

Partial PROC REPORT Output, HTML

Flight Number FlightOrigin Flight Destination Mail Freight Revenue

821 LGA LON 403 209 $150,634.00

271 LGA PAR 492 308 $156,804.00

271 LGA PAR 366 498 $190,098.00

821 LGA LON 345 243 $150,634.00

821 LGA LON 248 307 $193,930.00
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight
Number Origin Destination Mail Freight Revenue
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

Specifying Column Justification
You might also want to specify justification for columns in your report. Remember that by default in listing output, PROC
REPORT left-justifies character variables and right-justifies numeric variables. For each variable that you define, you can
specify the justification option CENTER, LEFT, or RIGHT in the DEFINE statement.

Each option justifies both the formatted values of the report item within the column width and the column headings over the
values.

Example

To center headings and values for Flight, Orig, and Dest, you can specify the CENTER option in your DEFINE
statements as shown below:
proc report data=flights.europe nowd;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=6 'Flight/Number' center;
 define orig / width=6 spacing=5 'Flight/Origin' center;
 define dest / width=11 spacing=5 'Flight/Destination' center;
run;
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight
Number Origin Destination Mail Freight Revenue
--

183

 821 LGA LON 403 209 $150,634.00
 271 LGA PAR 492 308 $156,804.00
 271 LGA PAR 366 498 $190,098.00
 821 LGA LON 345 243 $150,634.00
 821 LGA LON 248 307 $193,930.00

Enhancing the Heading’s Appearance
To complete the job of enhancing headings in your list report, you can take advantage of two useful options in the PROC
REPORT statement:
� HEADLINE, which underlines all column headings and the spaces between them
� HEADSKIP, which writes a blank line beneath all column headings or after the underline if the HEADLINE option is

used.

These options have no effect on HTML output.

Example

In this PROC REPORT step, the PROC REPORT statement specifies both HEADLINE and HEADSKIP.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');

column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / width=6 'Flight/Number' center;
 define orig / width=6 spacing=5 'Flight/Origin' center;
 define dest / width=11 spacing=5 'Flight/Destination' center;
run;

In the SAS listing output, the column headings are underlined and are followed by a blank line.
Partial PROC REPORT Output, SAS Listing

Flight Flight Flight
Number Origin Destination Mail Freight Revenue
--
821 LGA LON 403 209 $150,634.00
271 LGA PAR 492 308 $156,804.00
271 LGA PAR 366 498 $190,098.00
821 LGA LON 345 243 $150,634.00
821 LGA LON 248 307 $193,930.00

Defining Variable Usage
So far, you've selected data for your list report and defined column attributes and headings. Next, let's look at a more
complex PROC REPORT feature: usage for variables in your report. You've seen that you define variable usage in the
DEFINE statement. Now you can see how each usage affects the layout of your report and the values that the report
contains.

184

How PROC REPORT Uses Variables
PROC REPORT uses each variable in one of six ways (DISPLAY, ORDER, GROUP, ACROSS, ANALYSIS, or
COMPUTED). By default, PROC REPORT uses
� character variables as display variables
� numeric variables as analysis variables, which are used to calculate the SUM statistic.

Because you haven't explicitly defined any variable usages, your current list report contains only display and analysis
variables:
� The character variables Flight, Orig, and Dest are display variables. Display variables don't affect the order of

rows in the report. A report that contains one or more display variables has a detail row for each observation that is
read from the data set. Each detail row contains a value for each display variable.

� The numeric variables Mail, Freight, and Revenue are analysis variables. Analysis variables are used to
calculate a statistic (in this case, the default SUM).

In the illustration below, columns for display variables are shown in white. Columns for analysis variables are shown in gray.

Illustration of Partial PROC REPORT Output

Using Order Variables
How you use a variable in a report determines, among other things, the order of the rows in your report.

An order variable orders the detail rows in a report according to their formatted values. For example, suppose you want to
see values in your list report ordered by flight number. To use Flight as an order variable, you specify the ORDER usage
option in the DEFINE statement, as shown below.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / order 'Flight/Number' width=6 center;
 define orig / width=6 spacing=5 'Flight/Origin' center;
 define dest / width=11 spacing=5 'Flight/Destination'

 center;
run;

In the ordered output shown below, notice that PROC REPORT displays only the first occurrence of each value of an order
variable in a set of rows that have the same value for all order variables.

Flight Number Flight Origin Flight Destination Mail Freight Revenue

219 LGA LON 331 376 $189,065.00

185

Flight Number Flight Origin Flight Destination Mail Freight Revenue

LGA LON 485 267 $197,456.00

LGA LON 388 298 $162,343.00

LGA LON 421 356 $134,520.00

LGA LON 447 299 $106,753.00

LGA LON 356 547 $122,766.00

LGA LON 272 370 $198,744.00

271 LGA PAR 492 308 $156,804.00

LGA PAR 366 498 $190,098.00

LGA PAR 353 205 $166,470.00

LGA PAR 366 279 $163,248.00

LGA PAR 357 282 $170,766.00

LGA PAR 415 463 $195,468.00

LGA PAR 352 351 $123,456.00

LGA PAR 492 308 $125,632.00

LGA PAR 366 498 $128,972.00

LGA PAR 353 205 $153,423.00

LGA PAR 366 279 $133,345.00

LGA PAR 357 282 $126,543.00

LGA PAR 415 463 $134,976.00

821 LGA LON 403 209 $150,634.00

LGA LON 345 243 $150,634.00

LGA LON 248 307 $193,930.00

LGA LON 391 395 $167,772.00

LGA LON 219 368 $183,106.00

LGA LON 389 479 $169,576.00

LGA LON 448 282 $143,561.00

LGA LON 403 209 $170,766.00

LGA LON 345 243 $129,560.00

LGA LON 248 307 $196,736.00

LGA LON 391 395 $125,344.00

LGA LON 219 368 $166,543.00

LGA LON 389 479 $129,745.00

186

By default, the order is ascending, but you can change it with the DESCENDING option in the DEFINE statement:
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');

 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / orderdescending 'Flight/Number' width=6
 center;
 define orig / width=6 spacing=5 'Flight/Origin' center;

 define dest / width=11 spacing=5 'Flight/Destination'
 center;
run;

Using Group Variables
Your list report is complete. But suppose you now want to create a summary report. That is, rather than a list of the mail,
freight, and revenue for each flight, you want the total mail, freight, and revenue by flight number. Here is the summary
report that you want to create.

Flight Number Flight Origin Flight Destination Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 4421 $1,969,201.00

821 LGA LON 4438 4284 $2,077,907.00

To summarize your data using PROC REPORT, you can define one or more group variables. A group variable groups the
detail rows in a report according to their formatted values. If a report contains one or more group variables, then PROC
REPORT consolidates into one row all observations from the data set that have a unique combination of values for all group
variables.

To define a group variable, you specify the GROUP usage option in the DEFINE statement.

Example
If you submit the following PROC REPORT step, with Flight defined as a group variable, you get the output shown below.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / group 'Flight/Number' width=6 center;
 define orig / width=6 spacing=5 'Flight/Origin' center;
 define dest / width=11 spacing=5 'Flight/Destination'
 center;
run;

Flight Number Flight Origin Flight Destination Mail Freight Revenue

219 LGA LON 331 376 $189,065.00

187

Flight Number Flight Origin Flight Destination Mail Freight Revenue

LGA LON 485 267 $197,456.00

LGA LON 388 298 $162,343.00

LGA LON 421 356 $134,520.00

LGA LON 447 299 $106,753.00

LGA LON 356 547 $122,766.00

LGA LON 272 370 $198,744.00

271 LGA PAR 492 308 $156,804.00

LGA PAR 366 498 $190,098.00

LGA PAR 353 205 $166,470.00

LGA PAR 366 279 $163,248.00

LGA PAR 357 282 $170,766.00

LGA PAR 415 463 $195,468.00

LGA PAR 352 351 $123,456.00

LGA PAR 492 308 $125,632.00

LGA PAR 366 498 $128,972.00

LGA PAR 353 205 $153,423.00

LGA PAR 366 279 $133,345.00

LGA PAR 357 282 $126,543.00

LGA PAR 415 463 $134,976.00

821 LGA LON 403 209 $150,634.00

LGA LON 345 243 $150,634.00

LGA LON 248 307 $193,930.00

LGA LON 391 395 $167,772.00

LGA LON 219 368 $183,106.00

LGA LON 389 479 $169,576.00

LGA LON 448 282 $143,561.00

LGA LON 403 209 $170,766.00

LGA LON 345 243 $129,560.00

LGA LON 248 307 $196,736.00

LGA LON 391 395 $125,344.00

LGA LON 219 368 $166,543.00

LGA LON 389 479 $129,745.00

188

But this output looks exactly like the list output in which Flight was an order variable. What happened?

The problem with the preceding output is that your report contains display variables. As character variables, Orig and Dest
are defined as display variables by default.

All of the variables in a summary report must be defined as group, analysis, across, or computed variables. This is
because PROC REPORT must be able to summarize all variables across an observation in order to collapse observations.
If PROC REPORT can't create groups, it displays group variables as order variables.

Revising the Report
To group data in your report, you need to define the character variables (Flight, Orig, and Dest) as group variables, as
shown below:
roc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;

 define revenue / format=dollar15.2;
 define flight / group 'Flight/Number' width=6 center;
 define orig / group width=6 spacing=5 'Flight/Origin'
 center;
 define dest / group width=11 spacing=5

 'Flight/Destination' center;
run;

Now PROC REPORT can create groups, and your summary report displays the total mail, freight, and revenue by flight
number. Remember that the default statistic for the analysis variables is SUM.

Flight Number Flight Origin Flight Destination Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 4421 $1,969,201.00

821 LGA LON 4438 4284 $2,077,907.00

The following table compares the effects of using order variables and group variables.

Effect on Report Order Group

Rows are ordered yes yes

Repetitious printing of values is suppressed yes yes

Rows that have the same values are collapsed no yes

Type of report produced list summary

Specifying Statistics
As you saw in the previous example, the default statistic for analysis variables is SUM. However, you might want to display
other statistics in your PROC REPORT output. To associate a statistic with an analysis variable, specify the statistic as an
attribute in the DEFINE statement.

189

Here's the previous sample output, which displays the default statistic SUM for the three analysis variables:

Flight
Number

Flight
Origin

Flight
Destination

Mail Freight Revenue

219 LGA LON 2700 2513 $1,111,647.00

271 LGA PAR 5050 5050 $1,969,201.00

821 LGA LON 4438 4438 $2,077,907.00

By specifying MEAN in the DEFINE statement for Revenue, you can display the average revenue for each flight number.
The optional column heading Average Revenue clarifies that the MEAN statistic is displayed.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight orig dest mail freight revenue;
 define revenue / mean format=dollar15.2

'Average/Revenue';

 define flight / group 'Flight/Number' width=6 center;
 define orig / group width=6 spacing=5 'Flight/Origin'
 center;
 define dest / group width=11 spacing=5
 'Flight/Destination' center;
run;

Flight
Number

Flight
Origin

Flight
Destination

Mail Freight Average
Revenue

219 LGA LON 2700 2513 $158,806.71

271 LGA PAR 5050 4421 $151,477.00

821 LGA LON 4438 4284 $159,839.00

You can use the following statistics in PROC REPORT.

Statistic Definition

CSS Corrected sum of squares

USS Uncorrected sum of squares

CV Coefficient of variation

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with nonmissing values

NMISS Number of observations with missing values

RANGE Range

190

Statistic Definition

STD Standard deviation

STDERR Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

PCTN Percentage of a cell or row frequency to a total frequency

PCTSUM Percentage of a cell or row sum to a total sum

VAR Variance

T Student's t for testing the hypothesis that the population mean is 0

PRT Probability of a greater absolute value of student's t

Using Across Variables
So far, we've looked at display, analysis, order, and group variables. You can also define variables as across variables,
which are functionally similar to group variables. However, PROC REPORT displays the groups that it creates for an across
variable horizontally rather than vertically.

Let's look at an example of across variables to clarify this usage.

Example
The following program uses group variables to produce the output shown. The table shows unique combinations of values
of the group variables, and sums of each analysis variable for each combination.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight dest mail freight revenue;
 define revenue / format=dollar15.2;
 define flight / group 'Flight/Number' width=6 center;
 define dest / group width=11 spacing=5
 'Flight/Destination' center;
run;

Flight Number Flight Destination Mail Freight Revenue

219 LON 2700 2513 $1,111,647.00

271 PAR 5050 4421 $1,969,201.00

821 LON 4438 4284 $2,077,907.00

Now let's suppose you change the group variables to across variables, as in this program.
proc report data=flights.europe nowd headline headskip;
 where dest in ('LON','PAR');
 column flight dest mail freight revenue;

191

 define revenue / format=dollar15.2;
 define flight / across 'Flight/Number' width=6 center;
 define dest / across width=11 spacing=5
 'Flight/Destination' center;
run;

In this case, for each across variable, the table cells contain a frequency count for each unique value. For each analysis
variable, the table cells represent the sum of all the variable's values.

Flight Number Flight Destination

219 271 821 LON PAR Mail Freight Revenue

7 13 13 20 13 12188 11218 $5,158,755.00

Using Computed Variables
The last type of variable usage is reserved for computed variables, whic h are numeric or character variables that you
define for the report. They are not in the input data set, and PROC REPORT doesn't add them to the input data set. You
can't change the usage of a computed variable.

In the nonwindowing environment, you add a computed variable as follows:
1. Include the computed variable in the COLUMN statement.
2. Define the variable's usage as COMPUTED in the DEFINE statement.
3. Compute the value of the variable in a compute block that is associated with the variable.

Warning The position of a computed variable is important. PROC REPORT assigns values to the
columns in a row of a report from left to right. Consequently, you can't base the calculation of a
computed variable on any variable that appears to its right in the report.

Let's see how you create a new variable for your report.

Example
Suppose you want to determine the number of empty seats for each flight. To do so, you can compute the variable
EmptySeats by subtracting the number of passengers deplaning (Deplaned) from the plane's total seats (Capacity),
assuming that the plane is full.

In the following program, you
� specify EmptySeats in the COLUMN statement to the right of the variables that are used in its calculation.
� define EmptySeats as a computed variable in a DEFINE statement.
� begin a compute block by specifying EmptySeats in a COMPUTE statement.
� use DATA step statements in the compute block to calculate the values of EmptySeats. Notice that when you refer

to an analysis variable, you use a compound name that identifies both the original variable and the statistic that PROC
REPORT now calculates from it. The compound name has the form variable-name.statistic.

� close the compute block with an ENDCOMP statement.
� proc report data=flights.europe nowd;
� where dest in ('LON','PAR');
� column flight capacity deplaned emptyseats;
� define flight / width=6;
� define emptyseats/computed 'Empty Seats';

� compute emptyseats;

192

� emptyseats=capacity.sum-deplaned.sum;

� endcomp;

run;

The program creates the following output.

Flight Capacity Deplaned Empty
Seats

821 250 222 28

271 250 163 87

271 250 227 23

821 250 222 28

821 250 158 92

Summary

Text Summary

Creating a Default List Report
To create a default list report, you submit a basic PROC REPORT step. You can specify options to invoke the procedure in
either a windowing or nonwindowing mode. By default, all observations and variables in the data set are printed, and
variables appear in the order in which they occur in the data set.

Selecting Variables
To select and order the variables that appear in your list report, you can use the COLUMN statement.

Selecting Observations
To select rows for your report, you can use the WHERE statement as you do with many other SAS procedures.

Defining Variables
You can enhance your report by defining how each variable is used in the report. To describe how to use and display
variables in your report, you use one or more DEFINE statements.

Defining Column Attributes
To assign a format to a specific report column, use the FORMAT= attribute in the DEFINE statement for that column. To
specify a width for columns in your report, use the WIDTH= attribute in the DEFINE statement. To specify a different
column spacing, use the SPACING= attribute in the DEFINE statement. To define a column heading, enclose the heading
text in quotation marks in the DEFINE statement. To control how words break in column headings, you can use a split
character in the column label. For each variable that you define, you can specify the justification option CENTER, LEFT,
or RIGHT in the DEFINE statement.

193

Enhancing the Heading’s Appearance
To enhance headings in your report, you can use the HEADLINE option, which underlines all column headings and the
spaces between them, and the HEADSKIP option, which writes a blank line before the data values. These options have no
effect on HTML output.

Defining Variable Usage
PROC REPORT uses each variable in one of six ways (DISPLAY, ORDER, GROUP, ACROSS, ANALYSIS, or
COMPUTED). By default, PROC REPORT uses character variables as display variables, and it uses numeric variables as
analysis variables, which are used to calculate the SUM statistic. You can define usage for variables in the DEFINE
statement.

Variable Usage in PROC REPORT

Display variables do not affect the order of rows in the report. A report that contains one or more display
variables has a detail row for each observation in the data set. Each detail row contains
a value for each display variable. By default, PROC REPORT treats all character
variables as display variables.

Ordervariables order the detail rows in a report according to their formatted values.

Groupvariables order the detail rows in a report according to their formatted values. If a report contains
one or more group variables, PROC REPORT tries to consolidate into one row all
observations from the data set that have a unique combination of values for all group
variables.

Across are functionally similar to group variables; however, PROC REPORT displays

variables the groups that it creates for an across variable horizontally rather than vertically.

Analysis are used to calculate a statistic. By default, PROC REPORT uses numeric

variables variables as analysis variables, which are used to calculate the SUM statistic.

Computed variables are variables that you define for the report. They are not in the data set. You cannot
change the usage of a computed variable. Computed variables can be either numeric or
character variables.

Specifying Statistics
To associate a statistic with an analysis variable, specify the statistic as an attribute in the DEFINE statement.

Points to Remember
� You can use PROC REPORT in either a windowing or nonwindowing mode.
� You can use FORMAT statements with PROC REPORT, but the DEFINE statement enables you to specify more

than one column attribute at a time.
� For HTML output, the FORMAT= option cannot increase cell width beyond the width of cell values. The WIDTH=

and SPACING= attributes, along with the HEADSKIP and HEADLINE options, have no effect on HTML output.
� You can use the default slash as the split character, or you can specify a split character using the SPLIT= option in

the PROC REPORT statement.
� By default, PROC REPORT uses character variables as display variables and numeric variables as analysis

variables, which are used to calculate the SUM statistic.
� All of the variables in a summary report must be defined as group, analysis, across, or computed variables. If PROC

REPORT can't create groups, it displays group variables as order variables.
� You can't change the usage of a computed variable.

194

� The position of a computed variable is important. You can't base the calculation of a computed variable on any
variable that appears to its right in the report.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. If Style has four unique values and you submit the following program, which output do you get?
(Assume that all the other variables are numeric.)
proc report data=sasuser.houses nowd;
 column style sqfeet bedrooms price;
 define style / group;
run;

a.

Style SqFeet Bedrooms Price

CONDO 6755 11 $397,250

RANCH 5005 9 $274,300

SPLIT 4110 8 $233,950

TWOSTORY 5835 12 $335,300
b.

Style SqFeet Bedrooms Price

CONDO 1400 2 $80,050

1390 3 $79,350

2105 4 $127,150

1860 2 $110,700

RANCH 1250 2 $64,000

1500 3 $86,650

1535 3 $89,100

720 1 $34,550

SPLIT 1190 1 $65,850

1615 4 $94,450

1305 3 $73,650

TWOSTORY 1810 4 $107,250

1040 2 $55,850

1240 2 $69,250

1745 4 $102,950
c.

195

Style SqFeet Bedrooms Price

15 21705 40 $1,240,800
d.

Style SqFeet Bedrooms Price

RANCH 1250 2 $64,000

SPLIT 1190 1 $65,850

CONDO 1400 2 $80,050

TWOSTORY 1810 4 $107,250

RANCH 1500 3 $86,650

SPLIT 1615 4 $94,450

SPLIT 1305 3 $73,650

CONDO 1390 3 $79,350

TWOSTORY 1040 2 $55,850

CONDO 2105 4 $127,150

RANCH 1535 3 $89,100

TWOSTORY 1240 2 $69,250

RANCH 720 1 $34,550

TWOSTORY 1745 4 $102,950

CONDO 1860 2 $110,700
e.

2. When you define an order variable,
a. the detail rows are ordered according to their formatted values.
b. you can't create summary reports.
c. PROC REPORT displays only the first occurrence of each order variable value in a set of rows

that have the same value for all order variables.
d. all of the above

3. Which attributes or options are reflected in this PROC REPORT output?
style SqFeet Price

 RANCH 720 $34,550
TWOSTORY 1040 $55,850
 SPLIT 1190 $65,850
TWOSTORY 1240 $69,250
 RANCH 1250 $64,000
 SPLIT 1305 $73,650

196

 CONDO 1390 $79,350
 CONDO 1400 $80,050
 RANCH 1500 $86,650
 RANCH 1535 $89,100
 SPLIT 1615 $94,450
TWOSTORY 1745 $102,950
TWOSTORY 1810 $107,250
 CONDO 1860 $110,700
 CONDO 2105 $127,150

a. SKIPLINE and FORMAT=
b. CENTER, HEADLINE, HEADSKIP, and either WIDTH=, SPACING=, or FORMAT=
c. SPACING= only
d. CENTER, FORMAT=, and HEADLINE

4. To create a summary report that shows the average number of bedrooms and the maximum number of
baths for each style of house, which DEFINE statements do you use in your PROC REPORT step?

a. define style / center 'Style of/House';
b. define bedrooms / mean 'Average/Bedrooms';
c. define baths / max 'Maximum/Baths';
d. define style / group;
e. define bedrooms / mean 'Average/Bedrooms';
f. define baths / max 'Maximum/Baths';
g. define style / order;
h. define bedrooms / mean 'Average/Bedrooms';
i. define baths / max 'Maximum/Baths';
j. define style / group;
k. define bedrooms / 'Average/Bedrooms';
l. define baths / 'Maximum/Baths'

5. Which program does not contain an error?
a. proc report data=sasuser.houses nowd;
b. column style bedrooms baths;
c. define style / order;
d. define bedbathratio / computed format=4.2;
e. compute bedbathratio;
f. bedbathratio=baths.sum/bedrooms.sum;
g. endcomp;
h. run;
i. proc report data=sasuser.houses nowd;
j. column style bedrooms baths BedBathRatio;
k. define style / order;
l. define bedbathratio / order format=4.2;

197

m. compute bedbathratio;
n. bedbathratio=baths.sum/bedrooms.sum;
o. endcomp;
p. run;
q. proc report data=sasuser.houses nowd;
r. column style bedrooms baths BedBathRatio;
s. define style / order;
t. define bedbathratio / computed format=4.2;
u. compute bedbathratio;
v. bedbathratio=baths.sum/bedrooms.sum;
w. endcomp;
x. run;
y. proc report data=sasuser.houses nowd;
z. column style bedrooms baths BedBathRatio;
aa. define style / order;
bb. define bedbathratio / computed format=4.2;
cc. compute bedbathratio;
dd. bedbathratio=baths/bedrooms;
ee. endcomp;
ff. run;

6. What output does this PROC REPORT step produce?
proc report data=sasuser.houses nowd;
 column style sqfeet bedrooms price;
run;

a. a list report ordered by values of the first variable in the COLUMN statement
b. a summary report ordered by values of the first variable in the COLUMN statement
c. a list report that displays a row for each observation in the input data set and which calculates

the SUM statistic for numeric variables
d. a list report that calculates the N (frequency) statistic for character variables

7. Which of the following programs produces this output?

Style

CONDO RANCH SPLIT TWOSTORY Average Price

4 4 3 4 $82,720

a. proc report data=sasuser.houses nowd;
b. column style condo range split
c. twostory price;
d.
e. define price / mean 'Average Price';
f. run;

198

g. proc report data=sasuser.houses nowd;
h. column style price;
i. define style / group;
j. define price / mean 'Average Price';
k. run;
l. proc report data=sasuser.houses nowd;
m. column style price;
n. define style / across;
o. define price / mean 'Average Price';
p. run;
q. proc report data=sasuser.houses nowd;
r. column style price;
s. define style / across 'CONDO' 'RANCH'
t. 'SPLIT' 'TWOSTORY';
u. define price / mean 'Average Price';
v. run;

8. If you submit this program, where does your PROC REPORT output appear?
proc report data=sasuser.houses nowd;
 column style sqfeet bedrooms price;
 define style / group;
run;

a. in the PROC REPORT window
b. as HTML and/or SAS listing output
c. both of the above
d. neither of the above

9. How can you create output with headings that break as shown below?
style of Average Maximum
 House Bedrooms Baths
 CONDO 2.75 2.5
 RANCH 2.25 3
 SPLIT 2.666666 3
TWOSTORY 3 3

a. You must specify the SPLIT= option in the PROC REPORT statement and use the split
character in column headings in DEFINE statements.

b. You must use the default split character in column headings in DEFINE statements.
c. You must specify either the WIDTH= or the SPACING= attribute in DEFINE statements.
d. These headings split this way by default.

10. Suppose you want to create a report using both character and numeric variables. If you don't use any
DEFINE statements in your PROC REPORT step,

a. your PROC REPORT step will not execute successfully.
b. you can produce only list reports.
c. you can order rows by specifying options in the PROC REPORT statement.

199

d. you can produce only summary reports.

Answers

1. Correct answer: a

This program creates a summary report, which consolidates into one row all observations from the data set that have a
unique combination of values for the variable Style.

2. Correct answer: d

Order variables do order rows according to the formatted values of the order variable, and PROC REPORT suppresses
repetitious printing of order values. However, you can't use order variables in a summary report.

3. Correct answer: b

The HEADLINE option underlines the headings, and the HEADSKIP option skips a line between the headings and the
rows in the report. Also, Style is centered, and the column for Price is wider than the default.

4. Correct answer: b

To create a summary report, you must define a group variable. To produce the statistics that you want, you must specify
the MEAN and MAX statistics for Bedrooms and Baths.

5. Correct answer: c

Program c correctly specifies a computed variable in the COLUMN statement, defines the variable in a DEFINE
statement, and computes values using the form variable-name.statistic in a compute block.

6. Correct answer: c

By default, PROC REPORT displays character variables as display variables. A report that contains one or more display
variables has a detail row for each observation in the data set. By default, PROC REPORT displays numeric variables
as analysis variables, which are used to calculate the default statistic SUM.

7. Correct answer: c

In this output, the table cells contain a frequency count for each unique value of an across variable, Style. You don't
have to specify across variable values in your PROC REPORT step.

8. Correct answer: b

In nonwindowing mode, your PROC REPORT output appears as HTML and/or as SAS listing output, depending on
your option settings.

9. Correct answer: d

By default, columns for character variables are the same as the variable's length, and columns for numeric variables
have a width of 9. So these headings split this way by default.

10. Correct answer: b

Unless you use DEFINE statements to define order variables or group variables, you can't order rows or produce
summary reports. However, DEFINE statements are not required in all PROC REPORT steps.

200

Chapter 9: Producing Descriptive Statistics

Overview

Introduction
As you have seen, one of the many features of PROC REPORT is the ability to summarize large amounts of data by
producing descriptive statistics. However, there are SAS procedures that are designed specifically to produce various types
of descriptive statistics and to display them in meaningful reports. The type of descriptive statistics that you need and the
SAS procedure that you should use depend on whether you need to summarize continuous data values or discrete data
values.

If the data values that you want to describe are continuous numeric values (for example, people's ages), then you can use
the MEANS procedure or the SUMMARY procedure to calculate statistics such as the mean, sum, minimum, and maximum.

Variable N Mean Std Dev Minimum Maximum

Age 20 47 13 15 63

Height 20 67 4 61 75

Weight 20 175 36 102 240

Pulse 20 75 8 65 100

FastGluc 20 299 126 152 568

PostGluc 20 355 126 206 625

If the data values that you want to describe are discrete (for example, the color of people's eyes), then you can use the
FREQ procedure to show the distribution of these values, such as percentages and counts.

Eye Color Frequency Percent Cumulative Frequency Cumulative Percent

Brown 92 58.60 92 58.60

201

Eye Color Frequency Percent Cumulative Frequency Cumulative Percent

Blue 65 41.40 157 100.00

This chapter shows you how to use the MEANS, SUMMARY, and FREQ procedures to describe your data.

Objectives
In this chapter, you learn to
� determine the n-count, mean, standard deviation, minimum, and maximum of numeric variables using the MEANS

procedure
� control the number of decimal places used in PROC MEANS output
� specify the variables for which to produce statistics
� use the SUMMARY procedure to produce the same results as the MEANS procedure
� describe the difference between the SUMMARY and MEANS procedures
� create one-way frequency tables for categorical data using the FREQ procedure
� create two-way and n-way crossed frequency tables
� Control the layout and complexity of crossed frequency tables.

Computing Statistics for Numeric Variables

Computing Statistics Using PROC MEANS
Descriptive statistics such as the mean, minimum, and maximum can provide useful information about numeric data. The
MEANS procedure provides these and other data summarization tools, as well as helpful options for controlling your output.

The MEANS procedure can include many statements and options for specifying needed statistics. For simplicity, let's
consider the procedure in its basic form.

General form, basic MEANS procedure:

PROC MEANS <DATA=SAS-data-set>
<statistic-keyword(s)> <option(s)>;
RUN;

where
� SAS-data-set is the name of the data set to be used
� statistic-keyword(s) specifies the statistics to compute
� option(s) controls the content, analysis, and appearance of output.

In its simplest form, PROC MEANS prints the n-count (number of nonmissing values), the mean, the standard deviation,
and the minimum and maximum values of every numeric variable in a data set.
proc means data=perm.survey;
run;
Variable N Mean Std Dev Minimum Maximum

Item1 4 3.7500000 1.2583057 2.0000000 5.0000000

Item2 4 3.0000000 1.6329932 1.0000000 5.0000000

202

Variable N Mean Std Dev Minimum Maximum

Item3 4 4.2500000 0.5000000 4.0000000 5.0000000

Item4 4 3.5000000 1.2909944 2.0000000 5.0000000

Item5 4 3.0000000 1.6329932 1.0000000 5.0000000

Item6 4 3.7500000 1.2583057 2.0000000 5.0000000

Item7 4 3.0000000 1.8257419 1.0000000 5.0000000

Item8 4 2.7500000 1.5000000 1.0000000 4.0000000

Item9 4 3.0000000 1.4142136 2.0000000 5.0000000

Item10 4 3.2500000 1.2583057 2.0000000 5.0000000

Item11 4 3.0000000 1.8257419 1.0000000 5.0000000

Item12 4 2.7500000 0.5000000 2.0000000 3.0000000

Item13 4 2.7500000 1.5000000 1.0000000 4.0000000

Item14 4 3.0000000 1.4142136 2.0000000 5.0000000

Item15 4 3.0000000 1.6329932 1.0000000 5.0000000

Item16 4 2.5000000 1.9148542 1.0000000 5.0000000

Item17 4 3.0000000 1.1547005 2.0000000 4.0000000

Item18 4 3.2500000 1.2583057 2.0000000 5.0000000

Specifying Statistics
The default statistics that the MEANS procedure produces (n-count, mean, standard deviation, minimum, and maximum)
are not always the ones that you need. You might prefer to limit output to the mean of the values. Or you might need to
compute a different statistic, such as the median or range of the values.

To specify statistics, include statistic keywords as options in the PROC MEANS statement. When you specify a statistic in
the PROC MEANS statement, default statistics are not produced. For example, to see the median and range of
Perm.Survey numeric values, add the MEDIAN and RANGE keywords as options.
proc means data=perm.survey median range;
run;
Variable Median Range

Item1 4.0000000 3.0000000

Item2 3.0000000 4.0000000

Item3 4.0000000 1.0000000

Item4 3.5000000 3.0000000

Item5 3.0000000 4.0000000

Item6 4.0000000 3.0000000

Item7 3.0000000 4.0000000

203

Variable Median Range

Item8 3.0000000 3.0000000

Item9 2.5000000 3.0000000

Item10 3.0000000 3.0000000

Item11 3.0000000 4.0000000

Item12 3.0000000 1.0000000

Item13 3.0000000 3.0000000

Item14 2.5000000 3.0000000

Item15 3.0000000 4.0000000

Item16 2.0000000 4.0000000

Item17 3.0000000 2.0000000

Item18 3.0000000 3.0000000

The following keywords can be used with PROC MEANS to compute statistics:
Descriptive Statistics

Keyword Description

CLM Two-sided confidence limit for the mean

CSS Corrected sum of squares

CV Coefficient of variation

KURTOSIS / KURT Kurtosis

LCLM One-sided confidence limit below the mean

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with non-missing values

NMISS Number of observations with missing values

RANGE Range

SKEWNESS / SKEW Skewness

STDDEV / STD Standard deviation

STDERR / STDMEAN Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

204

Descriptive Statistics

Keyword Description

VAR Variance

Quantile Statistics

Keyword Description

MEDIAN / P50 Median or 50th percentile

P1 1st percentile

P5 5th percentile

P10 10th percentile

Q1 / P25 Lower quartile or 25th percentile

Q3 / P75 Upper quartile or 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

QRANGE Difference between upper and lower quartiles: Q3-Q1

Hypothesis Testing

Keyword Description

PROBT Probability of a greater absolute value for the t value

T Student's t for testing the hypothesis that the population mean is 0

Limiting Decimal Places
By default, PROC MEANS output uses the BEST. format to display values in the report. As the following example shows,
this can result in unnecessary decimal places, making your output difficult to read.
proc means data=clinic.diabetes min max;
run;
Variable Minimum Maximum

Age 15.0000000 63.0000000

Height 61.0000000 75.0000000

Weight 102.0000000 240.0000000

Pulse 65.0000000 100.0000000

FastGluc 152.0000000 568.0000000

PostGluc 206.0000000 625.0000000

To limit decimal places, use the MAXDEC= option in the PROC MEANS statement, and set it equal to the length that you
prefer.

205

General form, PROC MEANS statement with MAXDEC= option:

PROC MEANS <DATA=SAS-data-set>
<statistic-keyword(s)> MAXDEC=n;

where n specifies the maximum number of decimal places.

proc means data=clinic.diabetes min max maxdec=0;
 run;
Variable Minimum Maximum

Age 15 63

Height 61 75

Weight 102 240

Pulse 65 100

FastGluc 152 568

PostGluc 206 625

Specifying Variables in PROC MEANS
By default, the MEANS procedure generates statistics for every numeric variable in a data set, although you'll typically want
to focus on only a few variables, particularly if the data set is large. It also makes sense to exclude certain types of
variables. The values of employee identification numbers, for example, are unlikely to yield useful statistics.

To specify the variables that PROC MEANS analyzes, add a VAR statement and list the variable names.

General form, VAR statement:

VAR variable(s);

where variable(s) lists numeric variables for which to calculate statistics.

proc means data=clinic.diabetes min max maxdec=0;
var age height weight;

run;
Variable Minimum Maximum

AgeHeight 1561 6375

Weight 102 240

In addition to listing variables separately, you can use a numbered range of variables.
proc means data=perm.survey mean stderr maxdec=2;

var item1-item5;
run;

206

Variable Mean Std Error

Item1 3.75 0.63

Item2 3.00 0.82

Item3 4.25 0.25

Item4 3.50 0.65

Item5 3.00 0.82

Group Processing Using the CLASS Statement
You will often want statistics for grouped observations, instead of for observations as a whole. For example, census
numbers are more useful when grouped by region than when viewed as a national total. To produce separate analyses of
grouped observations, add a CLASS statement to the MEANS procedure.

General form, CLASS statement:

CLASS variable(s);

where variable(s) specifies category variables for group processing.

PROC MEANS does not generate statistics for CLASS variables, because their values are used only to categorize data.
CLASS variables can be either character or numeric, but they should contain a limited number of discrete values that
represent meaningful groupings.

The output of the program shown below is categorized by values of the variables Survive and Sex. The order of the
variables in the CLASS statement determines their order in the output table.
proc means data=clinic.heart maxdec=1;
 var arterial heart cardiac urinary;

class survive sex;
run;
Survive Sex N

Ob
s

Variable N Mean Std
Dev

Minimum Maximum

DIED 1 4 Arterial
Heat
Cardiac
Urinary

4
4
4
4

92.5
111.0
176.8

98.0

10.5
53.4
75.2

186.1

83.0
54.0
95.0

0.0

103.0
183.0
260.0
377.0

2 6 Arterial
Heat
Cardiac
Urinary

6
6
6
6

94.2
103.7
318.3
100.3

27.3
16.7

102.6
155.7

72.0
81.0

156.0
0.0

145.0
130.0
424.0
405.0

SURV 1 5 Arterial 5 77.2 12.2 61.0 88.0

207

Survive Sex N
Ob
s

Variable N Mean Std
Dev

Minimum Maximum

Heat
Cardiac
Urinary

5
5
5

109.0
298.0
100.8

32.0
139.8

60.2

77.0
66.0
44.0

149.0
410.0
200.0

2 5 Arterial
Heat
Cardiac
Urinary

5
5
5
5

78.8
100.0
330.2
111.2

6.8
13.4
87.0

152.4

72.0
84.0

256.0
12.0

87.0
111.0
471.0
377.0

Group Processing Using the BY Statement
Like the CLASS statement, the BY statement specifies variables to use for categorizing observations.

General form, BY statement:

BY variable(s);

where variable(s) specifies category variables for group processing.

But BY and CLASS processing differ in two key ways:
1. Unlike CLASS processing, BY processing requires that your data already be sorted or indexed in the order of the

BY variables. Unless data set observations are already sorted, you will need to run the SORT procedure before
using PROC MEANS with any BY group.

Warning Be careful when sorting data sets to enable group processing. If you don't specify an output
data set by using the OUT= option, then PROC SORT will overwrite your initial data set with
the newly sorted observations.

2. BY group results have a layout that is different from the layout of CLASS group results. Note that the BY statement
in the program below creates four small tables; a CLASS statement would produce a single large table.

3. proc sort data=clinic.heart out=work.heartsort;
4. by survive sex;
5. run;
6. proc means data=work.heartsort maxdec=1;
7. var arterial heart cardiac urinary;
8. by survive sex;

run;
Survive=DIED Sex=1

Variable N Mean Std Dev Minimum Maximum

Arterial 4 92.5 10.5 83.0 103.0

Heart 4 111.0 53.4 54.0 183.0

Cardiac 4 176.8 75.2 95.0 260.0

208

Survive=DIED Sex=1

Variable N Mean Std Dev Minimum Maximum

Urinary 4 98.0 186.1 0.0 377.0

Survive=DIED Sex=2

Variable N Mean Std Dev Minimum Maximum

Arterial 6 94.2 27.3 72.0 145.0

Heart 6 103.7 16.7 81.0 130.0

Cardiac 6 318.3 102.6 156.0 424.0

Urinary 6 100.3 155.7 0.0 405.0

Survive=SURV Sex=1

Variable N Mean Std Dev Minimum Maximum

Arterial 5 77.2 12.2 61.0 88.0

Heart 5 109.0 32.0 77.0 149.0

Cardiac 5 298.0 139.8 66.0 410.0

Urinary 5 100.8 60.2 44.0 200.0

Survive=SURV Sex=2

Variable N Mean Std Dev Minimum Maximum

Arterial 5 78.8 6.8 72.0 87.0

Heart 5 100.0 13.4 84.0 111.0

Cardiac 5 330.2 87.0 256.0 471.0

Urinary 5 111.2 152.4 12.0 377.0
Info Because it doesn't require a sorting step, the CLASS statement is easier to use than the BY statement.

However, BY-group processing can be more efficient when you are categorizing data that includes many
variables.

Creating a Summarized Data Set Using PROC MEANS
You might want to create an output SAS data set that contains only the summarized variable. You can do this by using the
OUTPUT statement in PROC MEANS.

General form, OUTPUT statement:

OUTPUT OUT=SAS-data-set <statistic-keyword=variable-name(s)>;

where
� SAS-data-set specifies the name of the output data set
� statistic-keyword= specifies the summary statistic to be written out
� variable-name(s) specifies the names of the variables that will be created to contain the values of the summary

statistic. These variables correspond to the analysis variables that are listed in the VAR statement.

209

When you use the OUTPUT statement without specifying the statistic-keyword= option, the summary statistics N, MEAN,
STD, MIN, and MAX are produced for all of the numeric variables or for all of the variables that are listed in a VAR
statement.

Specifying the statistic-keyword= Option

To specify which statistics to produce in the output data set, you must specify the keyword for the statistic and then list all of
the variables. The variables must be listed in the same order as in the VAR statement. You can specify more than one
statistic in the OUTPUT statement.

The following program creates a typical PROC MEANS report and also creates a summarized output data set that includes
only the MEAN and MIN statistics:
proc means data=clinic.diabetes;
 var age height weight;
 class sex;
 output out=work.sum_gender

mean=AvgAge AvgHeight AvgWeight
min=MinAge MinHeight MinWeight;

run;
Sex N Obs Variable N Mean Std Dev Minimum Maximum

F 11 Age 11 48.9090909 13.3075508 16.0000000 63.0000000

Height 11 63.9090909 2.1191765 61.0000000 68.0000000

Weight 11 150.4545455 18.4464828 102.0000000 168.0000000

M 9 Age 9 44.0000000 12.3895117 15.0000000 54.0000000

Height 9 70.6666667 2.6457513 66.0000000 75.0000000

Weight 9 204.2222222 30.2893454 140.0000000 240.0000000

To see the contents of the output data set, submit the following PROC PRINT step:
proc print data=work.sum_gender;

 run;

Ob
s

Se
x

_TYPE
_

_FREQ
_

AvgAg
e

AvgHeig
ht

AvgWeig
ht

MinAg
e

MinHeig
ht

MinWeig
ht

1 0 20 46.700
0

66.9500 174.650 15 61 102

2 F 1 11 48.909
1

63.9091 150.455 16 61 102

3 M 1 9 44.000
0

70.6667 204.222 15 66 140

Note You can use the NOPRINT option in the PROC MEANS statement to prevent the default
report from being created. For example, the following program creates only the output data
set:
proc means data=clinic.diabetes noprint;

210

Ob
s

Se
x

_TYPE
_

_FREQ
_

AvgAg
e

AvgHeig
ht

AvgWeig
ht

MinAg
e

MinHeig
ht

MinWeig
ht

 var age height weight;
 class sex;
 output out=work.sum_gender
 mean=AvgAge AvgHeight AvgWeight;
 run;

Note In addition to the variables that you specify, the procedure adds the _TYPE_ and _FREQ_ variables to
the output data set. When no statistic keywords are specified, PROC MEANS also adds the variable
STAT. For more information about these variables, see the SAS documentation for the MEANS
procedure.

Creating a Summarized Data Set Using PROC SUMMARY
You can also create a summarized output data set by using the SUMMARY procedure. When you use PROC SUMMARY,
you use the same code to produce the output data set that you would use with PROC MEANS.

The difference between the two procedures is that PROC MEANS produces a report by default (remember that you can use
the NOPRINT option to suppress the default report). By contrast, to produce a report in PROC SUMMARY, you must
include a PRINT option in the PROC SUMMARY statement.

Example

The following example creates an output data set but does not create a report:
proc summary data=clinic.diabetes;
 var age height weight;
 class sex;
 output out=work.sum_gender
 mean=AvgAge AvgHeight AvgWeight;
run;

If you placed a PRINT option in the PROC SUMMARY statement above, this program would produce the same report as if
you replaced the word SUMMARY with MEANS:
proc summary data=clinic.diabetes print;
 var age height weight;
 class sex;
 output out=work.sum_gender
 mean=AvgAge AvgHeight AvgWeight;
run;
Sex N

Obs
Variable N Mean Std Dev Minimum Maximum

Age 11 48.9090909 13.3075508 16.0000000 63.0000000

Height 11 63.9090909 2.1191765 61.0000000 68.0000000

F 11

Weight 11 150.4545455 18.4464828 102.0000000 168.0000000

211

Sex N
Obs

Variable N Mean Std Dev Minimum Maximum

Age 9 44.0000000 12.3895117 15.0000000 54.0000000

Height 9 70.6666667 2.6457513 66.0000000 75.0000000

M 9

Weight 9 204.2222222 30.2893454 140.0000000 240.0000000

Producing Frequency Tables

Producing Frequency Tables Using PROC FREQ
The FREQ procedure is a descriptive procedure as well as a statistical procedure. It produces oneway and n-way frequency
tables, and it concisely describes your data by reporting the distribution of variable values. You can use the FREQ
procedure to create crosstabulation tables that summarize data for two or more categorical variables by showing the
number of observations for each combination of variable values.

The FREQ procedure can include many statements and options for controlling frequency output. For simplicity, let's
consider the procedure in its basic form.

General form, basic FREQ procedure:

PROC FREQ <DATA=SAS-data-set>;
RUN;

where SAS-data-set is the name of the data set to be used.

By default, PROC FREQ creates a one-way table with the frequency, percent, cumulative frequency, and cumulative
percent of every value of all variables in a data set.

Variable Frequency Percent Cumulative Frequency Cumulative Percent

Value Number of
observations
with the value

Frequency of the
value divided by
the total number
of observations

Sum of the frequency
counts of the value and all
other values listed above it
in the table

Cumulative frequency of
the value divided by the
total number of
observations

For example, the following FREQ procedure creates a frequency table for each variable in the data set Parts.Widgets. All
the unique values are shown for ItemName, LotSize, and Region.
proc freq data=parts.widgets;
run;
ItemName Frequency Percent Cumulative Frequency Cumulative Percent

Bolt 2930 34.52 2930 34.52

Locknut 3106 36.60 6036 71.12

Washer 2451 28.88 8487 100.00

212

ItemName Frequency Percent Cumulative Frequency Cumulative Percent

LotSize Frequency Percent Cumulative Frequency Cumulative Percent

1 4256 50.15 4256 50.15

2 1009 11.89 5265 62.04

3 3222 37.96 8487 100.00

Region Frequency Percent Cumulative Frequency Cumulative Percent

East 2848 33.56 2848 33.56

North 1355 15.97 4203 49.53

South 1706 20.10 5909 69.63

West 2578 30.38 8487 100.00

Specifying Variables in PROC FREQ
By default, the FREQ procedure creates frequency tables for every variable in your data set. But this isn't always what you
want. A variable that has continuous numeric values—such as DateTime—can result in a lengthy and meaningless table.
Likewise, a variable that has a unique value for each observation—such as FullName—is unsuitable for PROC FREQ
processing. Frequency distributions work best with variables whose values can be described as categorical, and whose
values are best summarized by counts rather than by averages.

To specify the variables to be processed by the FREQ procedure, include a TABLES statement.

General form, TABLES statement:

TABLES variable(s);

where variable(s) lists the variables to include.

Example
The order in which the variables appear in the TABLES statement determines the order in which they are listed in the PROC
FREQ report.

Consider the SAS data set Finance.Loans. The variables Rate and Months are best described as categorical values, so
they are the best choices for frequency tables.

Account Amount Rate Months Payment

101-
1092

$22,000 10.00% 60 $467.43

101-
1731

$114,000 9.50% 360 $958.57

101-
1289

$10,000 10.50% 36 $325.02

213

Account Amount Rate Months Payment

101-
3144

$3,500 10.50% 12 $308.52

103-
1135

$8,700 10.50% 24 $403.47

103-
1994

$18,500 10.50% 60 $393.07

103-
2335

$5,000 10.50% 48 $128.02

103-
3864

$87,500 9.50% 360 $735.75

103-
3891

30,000 9.75% 360 $257.75

proc freq data=finance.loans;
tables rate months;

run;
Rate Frequency Percent Cumulative Frequency Cumulative Percent

9.50% 2 22.22 2 22.22

9.75% 1 11.11 3 33.33

10.00% 2 22.22 5 55.56

10.50% 4 44.44 9 100.00

Months Frequency Percent Cumulative Frequency Cumulative Percent

12 1 11.11 1 11.11

24 1 11.11 2 22.22

36 1 11.11 3 33.33

48 1 11.11 4 44.44

60 2 22.22 6 66.67

360 3 33.33 9 100.00

In addition to listing variables separately, you can use a numbered range of variables.
proc freq data=perm.survey;

tables item1-item3;

run;
Item1 Frequency Percent Cumulative Frequency Cumulative Percent

2 1 25.00 1 25.00

4 2 50.00 3 75.00

5 1 25.00 4 100.00

214

Item1 Frequency Percent Cumulative Frequency Cumulative Percent

Item2 Frequency Percent Cumulative Frequency Cumulative Percent

1 1 25.00 1 25.00

3 2 50.00 3 75.00

5 1 25.00 4 100.00

Item3 Frequency Percent Cumulative Frequency Cumulative Percent

4 3 75.00 3 75.00

5 1 25.00 4 100.00
Note Adding the NOCUM option to your TABLES statement suppresses the display of

cumulative frequencies and cumulative percentages in one-way frequency tables
and in list output. The syntax for the NOCUM option is shown below.
TABLES variable(s) / NOCUM;

Creating Two-Way Tables
So far, you have used the FREQ procedure to create one-way frequency tables. The table results show total frequency
counts for the values within the data set. However, it is often helpful to crosstabulate frequencies with the values of other
variables. For example, census data is typically crosstabulated with a variable that represents geographical regions.

The simplest crosstabulation is a two-way table. To create a two-way table, join two variables with an asterisk (*) in the
TABLES statement of a PROC FREQ step.

General form, TABLES statement for crosstabulation:

TABLES variable-1*variable-2 <* ... variable-n>;

where
� variable-1 specifies table rows
� variable-2 specifies table columns
� variable-n specifies a multi-way table.

When crosstabulations are specified, PROC FREQ produces tables with cells that contain
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

For example, the following program creates the two-way table shown on the following page.
proc format;
 value wtfmt low-139='< 140'
 140-180='140-180'
 181-high='> 180';
 value htfmt low-64='< 5''5"'
 65-70='5''5-10"'

215

 71-high='> 5''10"';
 run;
 proc freq data=clinic.diabetes;

 tables weight*height;
 format weight wtfmt. height htfmt.;
run;

Note that the first variable, Weight, forms the table rows, and the second variable, Height, forms the columns; reversing
the order of the variables in the TABLES statement would reverse their positions in the table. Note also that the statistics
are listed in the legend box.

Creating N-Way Tables
For a frequency analysis of more than two variables, use PROC FREQ to create n-way crosstabulation tables. A series of
two-way tables is produced, with a table for each level of the other variables.

For example, suppose you want to add the variable Sex to your crosstabulation of Weight and Height in the data set
Clinic.Diabetes. Add Sex to the TABLES statement, joined to the other variables with an asterisk (*).
tables sex*weight*height;

Determining the Table Layout
The order of the variables is important. In n-way tables, the last two variables of the TABLES statement become the two-
way rows and columns. Variables that precede the last two variables in the TABLES statement stratify the crosstabulation
tables.

Notice the structure of the output that is produced by the program shown below. Two crosstabulation tables, one for each
value of Sex, are produced.
proc format;
 value wtfmt low-139='< 140'

216

 140-180='140-180'
 181-high='> 180';
 value htfmt low-64='< 5''5"'
 65-70='5''5-10"'
 71-high='> 5''10"';
 run;
 proc freq data=clinic.diabetes;
 tables sex*weight*height;
 format weight wtfmt. height htfmt.;
run;

217

Changing the Table Format
Beginning in SAS 9, adding the CROSSLIST option to your TABLES statement displays crosstabulation tables in ODS
column format. This option creates a table that has a table definition that you can customize by using the TEMPLATE
procedure.

Notice the structure of the output that is produced by the program shown below. proc format;
proc format;
 value wtfmt low-139='< 140'
 140-180='140-180'
 181-high='> 180';
 value htfmt low-64='< 5''5"'
 65-70='5''5-10"'

 71-high='> 5''10"';
 run;
 proc freq data=clinic.diabetes;
 tables sex*weight*height/crosslist;
 format weight wtfmt. height htfmt.;
run;

Table of Weight by Height

Controlling for Sex= F

Weight Height Frequency Percent Row Percent Column Percent

< 140 < 5'5" 2 18.18 100.00 28.57

218

Table of Weight by Height

Controlling for Sex= F

Weight Height Frequency Percent Row Percent Column Percent

5'5-10" 0 0.00 0.00 0.00

>5'10" 0 0.00 0.00 .

Total 2 18.18 100.00

140-180 < 5'5" 5 45.45 55.56 71.43

5'5-10" 4 36.36 44.44 100.00

>5'10" 0 0.00 0.00 .

Total 9 81.82 100.00

> 180 < 5'5" 0 0.00 . 0.00

5'5-10" 0 0.00 . 0.00

>5'10" 0 0.00 . .

Total 0 0.00 .

Total < 5'5" 7 63.64 100.00

5'5-10" 4 36.36 100.00

>5'10" 0 0.00 .

Total 11 100.00

Table of Weight by Height

Controlling for Sex=M

Weight Height Frequency Percent Row Percent Column Percent

< 140 < 5'5" 0 0.00 . .

5'5-10" 0 0.00 . 0.00

>5'10" 0 0.00 . 0.00

Total 0 0.00 .

140-180 < 5'5" 0 0.00 0.00 .

5'5-10" 1 11.11 100.00 25.00

>5'10" 0 0.00 0.00 0.00

Total 1 11.11 100.00

> 180 < 5'5" 0 0.00 0.00

5'5-10" 3 3.33 37.50 75.00

>5'10" 5 55.56 62.50 100.00

219

Table of Weight by Height

Controlling for Sex= F

Weight Height Frequency Percent Row Percent Column Percent

Total 8 88.89 100.00

Total < 5'5" 0 0.00

5'5-10" 4 44.44 100.00

>5'10" 5 55.56 100.00

Total 9 100.00

Creating Tables in List Formats
When three or more variables are specified, the multiple levels of n-way tables can produce considerable output. Such
bulky, often complex crosstabulations are often easier to read as a continuous list. Although this eliminates row and column
frequencies and percents, the results are compact and clear.

To generate list output for crosstabulations, add a slash (/) and the LIST option to the TABLES statement in your PROC
FREQ step.
TABLES variable-1*variable-2 <* ... variable-n> / LIST;

Example
Adding the LIST option to our Clinic.Diabetes program puts the program’s frequencies in a simple, short table.
proc format;
 value wtfmt low-139='< 140'
 140-180='140-180'
 181-high='> 180';
 value htfmt low-64='< 5''5"'
 65-70='5''5-10"'
 71-high='> 5''10"';
 run;
 proc freq data=clinic.diabetes;
 tables sex*weight*height / list;
 format weight wtfmt. height htfmt.;
run;

Sex Weight Height Frequency Percent Cumulative
Frequency

Cumulative
Percent

F < 140 < 5'5" 2 10.00 2 10.00

F 140-180 < 5'5" 5 25.00 7 35.00

F 140-180 5'5-10" 4 20.00 11 55.00

M 140-180 5'5-10" 1 5.00 12 60.00

220

Sex Weight Height Frequency Percent Cumulative
Frequency

Cumulative
Percent

M > 180 5'5-10" 3 15.00 15 75.00

M > 180 > 5'10" 5 25.00 20 100.00

Suppressing Table Information
Another way to control the format of crosstabulation tables is to limit the output of the FREQ procedure to a few specific
statistics. Remember that when crosstabulations are run, PROC FREQ produces tables with cells that contain
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

You can use options to suppress any of these statistics. To control the depth of crosstabulation results, add a slash (/) and
any combination of the following options to the TABLES statement:
� NOFREQ suppresses cell frequencies.
� NOPERCENT suppresses cell percentages
� NOROW supresses row percentages.
� NOCOL suppresses column percentages.

Example
Suppose you want to use only the percentages of Sex and Weight combinations in the data set Clinic.Diabetes. To block
frequency counts and row and column percentages, add the NOFREQ, NOROW, and NOCOL options to your program's
TABLES statement.
proc format;
 value wtfmt low-139='< 140'
 140-180='140-180'
 181-high='> 180';
run;
proc freq data=clinic.diabetes;
 tables sex*weight / nofreq norow nocol;
 format weight wtfmt.;
run;

Notice that Percent is the only statistic that remains in the table's legend box.

221

Summary

Text Summary

Purpose of PROC MEANS
The MEANS procedure provides an easy way to compute descriptive statistics. Descriptive statistics such as the mean,
minimum, and maximum provide useful information about numeric data.

Specifying Statistics
By default, PROC MEANS computes the n-count (the number of nonmissing values), the mean, the standard deviation, and
the minimum and maximum values for variables. To specify statistics, list their keywords in the PROC MEANS statement.
Descriptive Statistics

Keyword Description

CLM Two-sided confidence limit for the mean

CSS Corrected sum of squares

CV Coefficient of variation

KURTOSIS / KURT Kurtosis

LCLM One-sided confidence limit below the mean

MAX Maximum value

MEAN Average

MIN Minimum value

N Number of observations with nonmissing values

NMISS Number of observations with missing values

RANGE Range

SKEWNESS / SKEW Skewness

STDDEV / STD Standard Deviation

STDERR / STDMEAN Standard error of the mean

SUM Sum

SUMWGT Sum of the Weight variable values

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

VAR Variance

Quantile Statistics

Keyword Description

MEDIAN / P50 Median or 50th percentile

222

Quantile Statistics

Keyword Description

P1 1st percentile

P5 5th percentile

P10 10th percentile

Q1 / P25 Lower quartile or 25th percentile

Q3 / P75 Upper quartile or 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

QRANGE Difference between upper and lower quartiles: Q3-Q1

Hypothesis Testing

Keyword Description

PROBT Probability of a greater absolute value for the t value

T Student's t for testing the hypothesis that the population mean is 0

Limiting Decimal Places
Because PROC MEANS uses the BEST. format by default, procedure output can contain unnecessary decimal places. To
limit decimal places, use the MAXDEC= option and set it equal to the length that you prefer.

Specifying Variables in PROC MEANS
By default, PROC MEANS computes statistics for all numeric variables. To specify the variables to include in PROC
MEANS output, list them in a VAR statement.

Group Processing Using the CLASS Statement
Include a CLASS statement, specifying variable names, in order to group PROC MEANS output by variable values.
Statistics are not computed for the CLASS variables.

Group Processing Using the BY Statement
Include a BY statement, specifying variable names, in order to group PROC MEANS output by variable values. Your data
must be sorted according to those variables. Statistics are not computed for the BY variables.

Creating a Summarized Data Set Using PROC MEANS
You can create an output SAS data set that contains summarized variables by using the OUTPUT statement in PROC
MEANS. When you use the OUTPUT statement without specifying the statistic-keyword= option, the summary statistics N,
MEAN, STD, MIN, and MAX are produced for all of the numeric variables or for all of the variables that are listed in a VAR
statement.

223

Creating a Summarized Data Set Using PROC SUMMARY
You can also create a summarized output data set by using PROC SUMMARY. The PROC SUMMARY code for producing
an output data set is exactly the same as the code for producing an output data set with PROC MEANS. The difference
between the two procedures is that PROC MEANS produces a report by default, whereas PROC SUMMARY produces an
output data set by default.

The FREQ Procedure
The FREQ procedure is a descriptive procedure as well as a statistical procedure that produces oneway and n-way
frequency tables. It concisely describes your data by reporting the distribution of variable values.

Specifying Variables
By default, the FREQ procedure creates frequency tables for every variable in your data set. To specify the variables to
analyze, include them in a TABLES statement.

Creating Two-Way Tables
When a TABLES statement contains two variables joined by an asterisk (*), PROC FREQ produces crosstabulation tables.
The resulting table displays values for
� cell frequency
� cell percentage of total frequency
� cell percentage of row frequency
� cell percentage of column frequency.

Creating N-Way Tables
Crosstabulations can include more than two variables. When three or more variables are joined in a TABLES statement, the
result is a series of two-way tables that are grouped by the values of the first two variables that are listed. You can use the
CROSSLIST option to format your tables in ODS column format.

Creating Tables in List Format
To reduce the bulk of n-way table output, add a slash (/) and the LIST option to the end of the TABLES statement. PROC
FREQ then prints compact, multicolumn lists instead of a series of tables.

Suppressing Table Information
You can suppress the display of specific statistics by adding a slash (/) and one or more options to the TABLES statement:
� NOFREQ suppresses cell frequencies.
� NOPERCENT suppresses cell percentages.
� NOROW suppresses row percentages.
� NOCOL suppresses column percentages.

Points to Remember
� In PROC MEANS, use a VAR statement to limit output to relevant variables. Exclude statistics for nominal variables

such as ID or ProductCode.
� By default, PROC MEANS prints the full width of each numeric variable. Use the MAXDEC= option to limit decimal

places and to improve legibility.
� Data must be sorted for BY-group processing. You might need to run PROC SORT before using PROC MEANS

with a BY statement.

224

� PROC MEANS and PROC SUMMARY produce the same results; however, the default output is different. PROC
MEANS produces a report, whereas PROC SUMMARY produces an output data set.

� If you do not include a TABLES statement, PROC FREQ produces statistics for every variable in the data set.
� Variables that have continuous numeric values can create a large amount of output. Use a TABLES statement to

exclude such variables, or group their values by applying a FORMAT statement.
Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. The default statistics produced by the MEANS procedure are n-count, mean, minimum, maximum, and
a. median.
b. range.
c. standard deviation.
d. standard error of the mean.

2. Which statement will limit a PROC MEANS analysis to the variables Boarded, Transfer, and
Deplane?

a. by boarded transfer deplane;
b. class boarded transfer deplane;
c. output boarded transfer deplane;
d. var boarded transfer deplane;

3. The data set Survey.Health includes the following variables. Which is a poor candidate for PROC
MEANS analysis?

a. IDnum
b. Age
c. Height
d. Weight

4. Which of the following statements is true regarding BY-group processing?
a. BY variables must be either indexed or sorted.
b. Summary statistics are computed for BY variables.
c. BY-group processing is preferred when you are categorizing data that contains few variables.
d. BY-group processing overwrites your data set with the newly grouped observations.

5. Which group processing statement produced the PROC MEANS output shown below?

Survive Sex N
Obs

Variable N Mean Std
Dev

Minimum Maximum

Arterial 4 92.5 10.5 83.0 103.0

Heart 4 111.0 53.4 54.0 183.0

Cardiac 4 176.8 75.2 95.0 260.0

DIED 1 4

Urinary 4 98.0 186.1 0.0 377.0

Arterial 6 94.2 27.3 72.0 145.0

Heart 6 103.7 16.7 81.0 130.0

Cardiac 6 318.3 102.6 156.0 424.0

2 6

Urinary 6 100.3 155.7 0.0 405.0

225

Arterial 5 77.2 12.2 61.0 88.0

Heart 5 109.0 32.0 77.0 149.0

Cardiac 5 298.0 139.8 66.0 410.0

SURV 1 5

Urinary 5 100.8 60.2 44.0 200.0

Arterial 5 78.8 6.8 72.0 87.0

Heart 5 100.0 13.4 84.0 111.0

Cardiac 5 330.2 87.0 256.0 471.0

2 5

Urinary 5 111.2 152.4 12.0 377.0
a. class sex survive;
b. class survive sex;
c. by sex survive;
d. by survive sex;

6. Which program can be used to create the following output?

Sex N
Obs

Variable N Mean Std Dev Minimum Maximum

Age 11 48.9090909 13.3075508 16.0000000 63.0000000

Height 11 63.9090909 2.1191765 61.0000000 68.0000000

F 11

Weight 11 150.4545455 18.4464828 102.0000000 168.0000000

Age 9 44.0000000 12.3895117 15.0000000 54.0000000

Height 9 70.6666667 2.6457513 66.0000000 75.0000000

M 9

Weight 9 204.2222222 30.2893454 140.0000000 240.0000000

a. proc means data=clinic.diabetes;
b. var age height weight;
c. class sex;
d. output out=work.sum_gender
e. mean=AvgAge AvgHeight AvgWeight;
f. run;
g. proc summary data=clinic.diabetes print;
h. var age height weight;
i. class sex;
j. output out=work.sum_gender
k. mean=AvgAge AvgHeight AvgWeight;

run;
l. proc means data=clinic.diabetes noprint;
m. var age height weight;
n. class sex;

226

o. output out=work.sum_gender
p. mean=AvgAge AvgHeight AvgWeight;
q. run;
r. Both a and b.

7. By default, PROC FREQ creates a table of frequencies and percentages for which data set variables?
a. character variables
b. numeric variables
c. both character and numeric variables
d. none: variables must always be specified

8. Frequency distributions work best with variables that contain
a. continuous values.
b. numeric values.
c. categorical values.
d. unique values.

9. Which PROC FREQ step produced this two-way table?

a. proc freq data=clinic.diabetes;
b. tables height weight;
c. format height htfmt. weight wtfmt.;r
d. un;
e. proc freq data=clinic.diabetes;
f. tables weight height;
g. format weight wtfmt. height htfmt.;
h. run;
i. proc freq data=clinic.diabetes;
j. tables height*weight;
k. format height htfmt. weight wtfmt.;

227

l. run;
m. proc freq data=clinic.diabetes;
n. tables weight*height;
o. format weight wtfmt. height htfmt.;
p. run;

10. Which PROC FREQ step produced this table?

a. proc freq data=clinic.diabetes;
b. tables sex weight / list;
c. format weight wtfmt.;
d. run;
e. proc freq data=clinic.diabetes;
f. tables sex*weight / nocol;
g. format weight wtfmt.;
h. run;
i. proc freq data=clinic.diabetes;
j. tables sex weight / norow nocol;
k. format weight wtfmt.;
l. run;
m. proc freq data=clinic.diabetes;
n. tables sex*weight / nofreq norow nocol;
o. format weight wtfmt.;
p. run;

Answers

1. Correct answer: c

By default, the MEANS procedure produces the n-cout, mean, minimum, and standard deviation.

2. Correct answer: d

To specify the variables that PROC MEANS analyzes, add a VAR statement and list the variable names.

3. Correct answer: a

228

Unlike Age, Height, or Weight, the values of IDnum are unlikely to yield any useful statistics.

4. Correct answer: a

Unlike CLASS processing, BY-group processing requires that your data already be indexed or sorted in the order of the
BY variables. You might need to run the SORT procedure before using PROC MEANS with a BY group.

5. Correct answer: b

A CLASS statement produces a single large table, whereas BY-group processing creates a series of small tables. The
order of the variables in the CLASS statement determines their order in the output table.

6. Correct answer: d

You can use either PROC MEANS or PROC SUMMARY to create the table. Adding a PRINT option to the PROC
SUMMARY statement produces the same reports as if you used PROC MEANS.

7. Correct answer: c

By default, the PROC FREQ creates a table for all variables in a data set.

8. Correct answer: c

Both continuous values and many unique values can result in lengthy and meaningless tables. Frequency distributors
work best with categorical values.

9. Correct answer: d

An asterisk is used to join the variables in a two-way TABLES statement. The first variable forms the table rows, and the
second variable forms the table columns.

10. Correct answer: d

An asterisk is used to join the variables in crosstabulation tables. The only results that are shown in this table are cell
percentages. The NOFREQ option suppresses cell frequencies, the NOROW option suppresses row percentages, and
the NOCOL option suppresses column percentages.

Chapter 10: Producing HTML Output

Overview

Introduction

229

In previous chapters, you've seen both traditional SAS listing output and HTML output. When you set options to create
HTML output, SAS uses Output Delivery System (ODS) statements to generate the output.

Using ODS, you can create, customize, and manage HTML output in any operating environment by submitting programming
statements. After you create HTML files, you can view them using Internet Explorer, Netscape Navigator, or any Web
browser that fully supports HTML 3.2.

This chapter shows you how to create and view HTML output using ODS. You also learn how to apply styles to ODS output.
Warning By default, all code that you submit to SAS Enterprise Guide has ODS statements included to create

HTML output. Before you submit your own ODS statements, you must turn off this default behavior.
The practice programs on your companion CD include instructions for turning off the default behavior.

Objectives
In this chapter, you learn to
� open and close ODS destinations
� create a simple HTML file with the output of one or more procedures
� create HTML output with a linked table of contents in a frame
� use options to specify links and file paths
� view HTML output
� apply styles to HTML output.

The Output Delivery System
Before you learn to write ODS programming statements, it's helpful to understand a little about ODS.

Advantages of ODS
ODS gives you formatting options and makes procedure output much more flexible. With ODS, you can easily create output
in a variety of formats, including

� HTML output

Obs ID Name Fee

1 2458 Murray, W 85.20

2 2462 Almers, C 124.80

3 2501 Bonaventure, T 149.75

4 2523 Johnson, R 149.75

230

Obs ID Name Fee

5 2539 LaMance, K 124.80

6 2544 Jones, M 124.80
� An output data set of procedure results

VarName Quantile Estimate

RestHR 100% Max 80

RestHR 99% 80

RestHR 95% 79

RestHR 90% 78

RestHR 75% Q3 76

RestHR 50% Median 72

RestHR 25% Q1 70

RestHR 10% 68
� Traditional SAS listing output

� The SAS System
�

� Obs ID Name Fee
� 1 2458 Murray, W 85.20
� 2 2462 Almers, C 124.80
� 3 2501 Bonaventure, T 149.75
� 4 2523 Johnson, R 149.75
� 5 2539 LaMance, K 124.80
� 6 2544 Jones, M 124.80

Also, ODS holds your output in its component parts (data and table definition) so that numerical data retains its full data
precision.

Let's see how ODS creates output.

How ODS Works
When you submit your ODS statements and the SAS program that creates your output, ODS does the following:

1. ODS creates your output in the form of output objects.

Each output object contains the results of a procedure or DATA step (the data component) and can also contain
information about how to render the results (the table definition).

231

2. ODS sends the output object to the ODS destination(s) that you specify and creates formatted output as specified
by the destination. For example, when the Listing and HTML destinations are open, ODS creates Listing and
HTML output.

SAS Windowing
Environment

In the SAS windowing environment, ODS also creates a link to each
output object in the Results window and identifies each output object by
the appropriate icon.

Opening and Closing ODS Destinations

ODS Destinations
You use ODS statements to specify destinations for your output. Each destination creates a specific type of formatted
output. The table that follows lists the ODS destinations that are supported.

This destination… Produces…

HTML output that is formatted in HyperText Markup Language (HTML)

Listing output that is formatted like traditional SAS procedure (listing) output

Markup Language Family output that is formatted using markup languages such as Extensible Markup
Language (XML)

ODS Document a hierarchy of output objects that enables you to render multiple ODS output
without re-running procedures

Output SAS data sets

232

This destination… Produces…

Printer Family output that is formatted for a high-resolution printer, such as PostScript (PS),
Portable Document Format (PDF), or Printer Control Language (PCL) files

RTF Rich Text Format output for use with Microsoft Word
Note In this chapter, we will discuss the Listing destination

and the HTML destination. For information about all
ODS destinations, see the SAS documentation for the
Output Delivery System.

Using Statements to Open and Close ODS Destinations
For each type of formatted output that you want to create, you use an ODS statement to open the destination. The
exception is the Listing destination, which is open by default. At the end of your program, you use another ODS statement to
close the destination so that you can access your output.

General form, ODS statement to open and close destinations:

ODS open-destination;

ODS close-destination CLOSE;

where
� open-destination is a keyword and any required options for the type of output that you want to create, such as

o HTML FILE='html-file-pathname'
o LISTING.

� close-destination is a keyword for the type of output.

You can issue ODS statements in any order, depending on whether you need to open or close the ODS destination. Most
ODS destinations are closed by default, and you open them at the beginning of your program and close them at the end.
The exception is the Listing destination, which is open by default.

Example
The following program creates SAS listing output because the Listing destination is open by default. No other ODS
destinations are open, so no other output formats are produced.
proc print data=sasuser.mydata;
run;

The following program produces HTML and listing output:
ods html body='c:\mydata.html';
proc print data=sasuser.mydata;

233

run;
ods html close;

Note This example is meant to demonstrate how you open and close ODS destinations. You learn the specifics
of creating HTML output later in this chapter.

Closing the Listing Destination
As you have learned, the Listing destination is open by default. Because open destinations use system resources, it's a
good idea to close the Listing destination at the beginning of your program if you don't want to produce listing output. Here
is an example:
 ods listing close;

The Listing destination remains closed until you end your current SAS session or until you re-open the destination. It's a
good programming practice to re-set ODS to listing output (the default setting) at the end of your programs. Here is an
example:
 ods listing;

Example
The following program produces only HTML output:
ods listing close;

 ods html body='c:\mydata.html';
 proc print data=sasuser.mydata;
 run;
 ods html close;
ods listing;

Closing Multiple ODS Destinations Concurrently
One of the features of ODS is that you can produce output in multiple formats concurrently by opening each ODS
destination at the beginning of the program.

When you have more than one open ODS destination, you can use the keyword _ALL_ in the ODS CLOSE statement to
close all open destinations concurrently.

Example
The program below opens the HTML and PDF destinations before the PROC step and closes all ODS destinations at the
end of the program:
ods html file='HTML-file-pathname';
ods pdf file='PDF-file-pathname';
proc print data=sasuser.admit;
run;
ods _all_ close;
ods listing;

Notice that the last ODS statement re-opens the Listing destination so that ODS returns to producing listing output for
subsequent DATA or PROC steps in the current session.

234

Creating Simple HTML
To create HTML output, you open the HTML destination using the ODS HTML statement.

General form, ODS HTML statement:

ODS HTML BODY=file-specification;
ODS HTML CLOSE;

where file-specification identifies the file that contains the HTML output. The specification can be
� an HTML filename (include the complete pathname if you want to save the HTML file to a specific location)
� a fileref (file shortcut) that has been assigned to an HTML file
� a SAS catalog entry in the form entry-name.html.

Note FILE= can also be used to specify the file that contains the HTML output. FILE= is an alias for BODY=.

Example

The program below creates PROC PRINT output in an HTML file. The BODY= option specifies the file F:\admit.html in the
Windows operating environment as the file that contains the PROC PRINT results.
ods listing close;
ods html body='f:\admit.html';
proc print data=clinic.admit label;
 var sex age height weight actlevel;
 label actlevel='Activity Level';
run;
ods html close;
ods listing;

Notice that ODS statements close the Listing destination and open the HTML destination. Then, after the RUN statement,
you close the HTML destination and open the Listing destination.

The HTML file admit.html contains the results of all procedure steps between the ODS HTML statement and ODS
HTML CLOSE statement.

Obs Sex Age Height Weight ActivityLevel

1 M 27 72 168 HIGH

2 F 34 66 152 HIGH

3 F 31 61 123 LOW

4 F 43 63 137 MOD

5 M 51 71 158 LOW

6 M 29 76 193 HIGH

7 F 32 67 151 MOD

235

Obs Sex Age Height Weight ActivityLevel

8 M 35 70 173 MOD

9 M 34 73 154 LOW

10 F 49 64 172 LOW

11 F 44 66 140 HIGH

12 F 28 62 118 LOW

13 M 30 69 147 MOD

14 F 40 69 163 HIGH

15 M 47 72 173 MOD

16 M 60 71 191 LOW

17 F 43 65 123 MOD

18 M 25 75 188 HIGH

19 F 22 63 139 LOW

20 F 41 67 141 HIGH

21 M 54 71 183 MOD

Viewing Your HTML Output
SAS Windowing
Environment

If you're working in the SAS windowing environment, when you submit the
program, the body file will automatically appear in the SAS internal browser or
your preferred Web browser.

SAS Enterprise Guide When you submit the program, two HTML results will appear in the Project window.
One uses the HTML style that is active in SAS Enterprise Guide. The other uses the
ODS statements from the code that you submitted and creates a temporary file labeled
with the path and filename that you designated. It is similar in style to the actual HTML
file that gets created in the location that you specify.

Creating HTML Output from Multiple Procedures
You can also use the ODS HTML statement to direct the results from multiple procedures to the same HTML file.

The program below generates HTML output for the PRINT and TABULATE procedures. The results for both procedures are
saved to the file C:\Records\data.html (in the Windows operating system).

SAS Windowing
Environment

In the SAS windowing environment, a link for each output object (one for each
procedure) appears in the Results window.

ods listing close;
ods html body='c:\records\data.html';
proc print data=clinic.admit label;
 var id sex age height weight actlevel;
 label actlevel='Activity Level';
run;
proc tabulate data=clinic.stress2;

236

 var resthr maxhr rechr;
 table min mean, resthr maxhr rechr;
run;
ods html close;
ods listing;

The following is a representation of the HTML file containing the results from the program above. Notice that the results
from each procedure are appended.
The SAS System

Obs ID Sex Age Height Weight Activity Level

1 2458 M 27 72 168 HIGH

2 2462 F 34 66 152 HIGH

3 2501 F 31 61 123 LOW

4 2523 F 43 63 137 MOD

5 2539 M 51 71 158 LOW

6 2544 M 29 76 193 HIGH

7 2552 F 32 67 151 MOD

8 2555 M 35 70 173 MOD

9 2563 M 34 73 154 LOW

10 2568 F 49 64 172 LOW

11 2571 F 44 66 140 HIGH

12 2572 F 28 62 118 LOW

13 2574 M 30 69 147 MOD

14 2575 F 40 69 163 HIGH

15 2578 M 47 72 173 MOD

16 2579 M 60 71 191 LOW

17 2584 F 43 65 123 MOD

18 2586 M 25 75 188 HIGH

19 2588 F 22 63 139 LOW

20 2589 F 41 67 141 HIGH

21 2595 M 54 71 183 MOD

The SAS System

RestHR MaxHR RecHR

Min 65.00 152.00 108.00

Mean 72.95 171.10 128.95

237

Creating HTML Output with a Table of Contents
So far in this chapter, you've used the BODY= option to create a simple HTML file containing your procedure output.
Suppose you want to create an HTML file that has a table of contents with links to the output of each specific procedure.
You can do this by specifying additional files in the ODS HTML statement.

General form, ODS HTML statement to create a linked table of contents:

ODS HTML
BODY=body-file-specification
CONTENTS=contents-file-specification
FRAME=frame-file-specification;

ODS HTML CLOSE;

where
� body-file-specification is the name of an HTML file that contains the procedure output.
� contents-file-specification is the name of an HTML file that contains a table of contents with links to the procedure

output.
� frame-file-specification is the name of an HTML file that integrates the table of contents and the body file. If you

specify FRAME=, you must also specify CONTENTS=.
Note To direct the HTML output to a specific storage location, specify the complete pathname of the HTML file

in the file-specification.

Example

In the program below,
� the BODY= option creates data.html in the c:\records directory. The body file contains the results of the two

procedures.
� the CONTENTS= option creates toc.html in the c:\records directory. The table of contents file has links to each

procedure output in the body file.
� the FRAME= option creates frame.html in the c:\records directory. The frame file integrates the table of contents

and the body file.

ods listing close;
ods html body='c:\records\data.html'

contents='c:\records\toc.html'

238

frame='c:\records\frame.html';
proc print data=clinic.admit label;
 var id sex age height weight actlevel;
 label actlevel='Activity Level';
run;
proc print data=clinic.stress2;
 var id resthr maxhr rechr;
run;
ods html close;
ods listing;

The frame file, frame.html, is shown below.

Viewing Frame Files
SAS Windowing
Environment

In the SAS windowing environment, the Results window does not display links to
frame files. Only the body file will automatically appear in the internal browser or
your preferred Web browser. To view the frame file that integrates the body file
and the table of contents, select File →Open from within the internal browser or
your preferred Web browser. Then open the frame file that you specified using
FRAME=. In the example above, this file is frame.html, which is stored in the
Records directory in the Windows environment.

SAS Enterprise Guide In SAS Enterprise Guide, use Windows Explorer to locate the frame file frame.html in
the Records directory, and then double-click the file to open it in your browser. If you
are using SAS Enterprise Guide 4.1, you can double-click the shortcut to frame.html in
the Project Explorer window.

Using the Table of Contents
The table of contents created by the CONTENTS= option contains a numbered heading for each procedure that creates
output. Below each heading is a link to the output for that procedure.

On some browsers, you can select a heading to contract or expand the table of contents.

239

Using Options to Specify Links and Paths
When ODS generates HTML files for the body, contents, and frame, it also generates links between the files by using the
HTML filenames that you specify in the ODS HTML statement. If you specify complete pathnames, then ODS uses those
pathnames in the links it generates.

The ODS statement below creates a frame file that has links to C:\Records\toc.html and C:\Records\data.html, and a
contents file that has links to C:\Records\data.html.
ods html body='c:\records\data.html'

contents='c:\records\toc.html'
frame='c:\records\frame.html';

A portion of the source code for the HTML file frame.html is shown below. Notice that the links have the complete
pathnames specified in the file specifications for the contents and body files. Links in the contents file contain the same
pathname.

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="c:\records\toc.html"
 NAME="contents" SCROLLING=auto>
<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="c:\records\data.html"
 NAME="body" SCROLLING=auto>

These links work when you are viewing the HTML files locally, but if you want to place these files on a Web server so that
other people can access them, then the links need to include either the complete URL for an absolute link or the HTML
filename for a relative link.

The URL= Suboption
By specifying the URL= suboption in the BODY= or CONTENTS= file specification, you can provide a URL that ODS uses
in all the links that it creates to the file. You can use the URL= suboption in any ODS file specification except FRAME=
(because no ODS file references the frame file).

General form, URL= suboption in a file specification:

(URL='Uniform-Resource-Locator')

where Uniform-Resource-Locator is the name of an HTML file or the full URL of an HTML file. ODS uses this URL instead of
the filename in all the links and references that it creates that point to the file.

Info The URL= suboption is useful for building HTML files that can be moved from one location to another. If
the links from the contents and page files are constructed with a simple URL (one name), they work as

240

long as the contents, page, and body files are all in the same location.

Example: Relative URLs
In this ODS HTML statement, the URL= suboption specifies only the HTML filename. This is the most common style of
linking between files because maintenance is easier and the files can be moved as long as they all remain in the same
directory or storage location.
ods html body='c:\records\data.html' (url='data.html')
 contents='c:\records\toc.html' (url='toc.html')
 frame='c:\records\frame.html';

The source code for frame.html has only the HTML filename as specified in the URL= suboptions for the body and contents
files.

<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="toc.html"
 NAME="contents" SCROLLING=auto>
<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="data.html"
 NAME="body" SCROLLING=auto>

Example: Absolute URLs
Alternatively, in this ODS HTML statement, the URL= suboptions specify complete URLs by using HyperText Transfer
Protocol (HTTP). These files can be stored in the same or different locations.
ods html body='c:\records\data.html'

(url='http://mysite.com/myreports/data.html')

 contents='c:\records\toc.html'
(url='http://mysite.com/mycontents/toc.html')

 frame='c:\records\frame.html';

As you would expect, the source code for frame.html has the entire HTTP addresses that you specified in the URL=
suboptions for the body and contents files.
<FRAME MARGINWIDTH="4" MARGINHEIGHT="0" SRC="http://mysite.com/myreports/toc.html"
 NAME="contents" SCROLLING=auto>
<FRAME MARGINWIDTH="9" MARGINHEIGHT="0" SRC="http://mysite.com/myreports/data.html"
 NAME="body" SCROLLING=auto>

Note When you use the URL= suboption to specify a complete URL, you might need to move your files to that
location before you can view them.

The PATH= Option
So far, you've learned to specify the complete pathname for HTML files in the BODY=, CONTENTS=, and FRAME=
specifications when you want to save HTML files to specific locations. To streamline your ODS HTML statement, you can
also use the PATH= option to specify the location where you want to store your HTML output, and you can use the
URL=NONE to prevent ODS from using the pathname in any links it creates in your files.

241

General form, PATH= option:

PATH=file-specification <(URL='Uniform-Resource-Locator' | NONE)>

where
� file-location-specification identifies the location where you want HTML files to be saved. It can be one of the

following:
o the complete pathname to an aggregate storage location, such as a directory or partitioned data set
o a fileref (file shortcut) that has been assigned to a storage location
o a SAS catalog (libname.catalog).

� Uniform-Resource-Locator provides a URL for links in the HTML files that ODS generates. If you specify the
keyword NONE, no information from the PATH= option appears in the links or references.

If you do not use the URL= suboption, then information from the PATH= option is added to links and references in the
files that are created.

Example: PATH= Option with URL=NONE
In the program below, the PATH= option directs the files data.html, toc.html, and frame.html to the C:\Records directory
in the Windows operating environment. The links from the frame file to the body and contents files contain only the HTML
filenames data.html and toc.html.
ods listing close;
ods html path='c:\records' (url=none)
 body='data.html'
 contents='toc.html'
 frame='frame.html';
proc print data=clinic.admit;
run;
proc print data=clinic.stress2;
run;
ods html close;
ods listing;

This program generates the same files and links as the previous example in which you learned to use the URL= suboption
with the BODY= and CONTENTS= file specifications. However, it's a bit simpler to specify the path only once in the PATH=
option and to specify URL=NONE.

Info If you plan to move your HTML files, you should specify URL=NONE with the PATH= option to prevent
information from the PATH= option from creating URLs that are invalid or incorrect.

Example: PATH= Option without the URL= Suboption
In the program below, the PATH= option directs the files data.html, toc.html, and frame.html to the C:\Records directory
in the Windows operating environment. The links from the frame file to the body and contents files contain the complete
pathname, c:\records\data.html and c:\records\toc.html:
ods listing close;
 ods html path='c:\records'
 body='data.html'
 contents='toc.html'

242

 frame='frame.html';
proc print data=clinic.admit;
 run;
 proc print data=clinic.stress2;
 run;
 ods html close;
 ods listing;

Example: PATH= Option with a Specified URL
In the program below, the PATH= option directs the files data.html, toc.html, and frame.html to the C:\Records directory
in the Windows operating environment. The links from the frame file to the body and contents files contain the specified
URL, http://mysite.com/myreports/data.html and http://mysite.com/myreports/toc.html:
ods listing close;
ods html path='c:\records'(url='http://mysite.com/myreports/')
 body='data.html'
 contents='toc.html'
 frame='frame.html';
proc print data=clinic.admit;
run;
proc print data=clinic.stress2;
run;
ods html close;
ods listing;

Changing the Appearance of HTML Output

The STYLE= Option
You can change the appearance of your HTML output by using the STYLE= option in the ODS HTML statement.

General form, STYLE= option:

STYLE=style-name

where style-name is the name of a valid SAS or user-defined style definition.
Note Don't enclose style-name in quotation marks.

Example
Predefined styles are shipped with SAS. In the program below, the STYLE= option applies the Brick style to the output for
both PROC PRINT steps.
ods listing close;

243

 ods html body='c:\records\data.html'(url='data.html')
 contents='c:\records\toc.html'(url='toc.html')
 frame='c:\records\frame.html'

style=brick;

proc print data=clinic.admit label;
 var id sex age height weight actlevel;
 label actlevel='Activity Level';
run;
 proc print data=clinic.stress2;
 var id resthr maxhr rechr;
run;
 ods html close;
 ods listing;

The following example shows PROC PRINT output with the Brick style applied.

Note Your site might have its own customized style definitions.

Additional Features

Customizing HTML Output
You've seen that you can use the STYLE= option to apply predefined styles to your HTML output. However, you might want
to further customize your results.

ODS provides ways for you to customize HTML output using definitions for tables, columns, headers, and so forth. These
definitions describe how to render the HTML output or part of the HTML output. You can create style definitions using
PROC TEMPLATE.

Summary

244

Text Summary

The OUTPUT Delivery System
The Output Delivery System (ODS) makes new report formatting options available in SAS. ODS separates your output into
component parts so that the output can be sent to any ODS destination that you specify.

Opening and Closing ODS Destinations
Each ODS destination creates a different type of formatted output. By default, the Listing destination is open and SAS
creates listing output. Because an open destination uses system resources, it's a good idea to close the Listing destination if
you don't need to create listing output. By using ODS statements, you can create multiple output formats concurrently.
When you have several ODS destinations open, you can close them all by using the ODS _ALL_ CLOSE statement.

Creating Simple HTML Output
You use the ODS HTML statement to open the HTML destination. Use the BODY= or FILE= options to create an HTML
body file containing procedure results. You can also use the ODS HTML statement to direct the HTML output from multiple
procedures to the same HTML file.

Creating HTML Output with a Table of Contents
In order to manage multiple pieces of procedure output, you can use the CONTENTS= and FRAME= options with the ODS
HTML statement to create a table of contents that links to your HTML output. The table of contents contains a heading for
each procedure that creates output.

Using Options to Specify Links and Paths
By specifying the URL=option in the file specification, you can provide a URL that ODS uses in all the links that it creates to
the file. You can also use the PATH= option to specify the directory where you want to store your HTML output. When you
use the PATH= option, you don't need to specify the complete pathname for the body, contents, or frame files.

Changing the Appearance of HTML Output
You can change the appearance of your output by using the STYLE= option in the ODS HTML statement. Several
predefined styles are shipped with SAS.

Additional Features
ODS provides ways for you to customize HTML output using style definitions. Definitions are created by using PROC
TEMPLATE and describe how to render the HTML output or part of the HTML output.

Points to Remember
� An open destination uses system resources. Therefore, it's a good idea to close the Listing destination before you

create HTML output and re-open the Listing destination after you close the HTML destination.
� The ODS HTML CLOSE statement closes the HTML destination and is added after the RUN statement for the

procedure.
� If you use the CONTENTS= and FRAME= options, open the frame file from within your Web browser to view the

procedure output and the table of contents.
Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

245

1. Using ODS statements, how many types of output can you generate concurrently?
a. 1 (only listing output)
b. 2
c. 3
d. as many as you want

2. If ODS is set to its default settings, what types of output are created by the code below?
ods html file='c:\myhtml.htm';
ods pdf file='c:\mypdf.pdf';

a. HTML and PDF
b. PDF only
c. HTML, PDF, and listing
d. No output is created because ODS is closed by default.

3. What is the purpose of closing the Listing destination in the code shown below?
ods listing close;
ods html ... ;

a. It conserves system resources.

b. It simplifies your program.

c. It makes your program compatible with other hardware platforms.

d. It makes your program compatible with previous versions of SAS software.

4. When the code shown below is run, what will the file D:\Output\body.html contain?
ods html body='d:\output\body.html';
proc print data=work.alpha;
run;
proc print data=work.beta;
run;
ods html close;

a. The PROC PRINT output for Work.Alpha.
b. The PROC PRINT output for Work.Beta.
c. The PROC PRINT output for both Work.Alpha and Work.Beta.
d. Nothing. No output will be written to D:\Output\body.html.

5. When the code shown below is run, what file will be loaded by the links in D:\Output\contents.html?
ods html body='d:\output\body.html'
 contents='d:\output\contents.html'
 frame='d:\output\frame.html';

a. D:\Output\body.html
b. D:\Output\contents.html
c. D:\Output\frame.html
d. There are no links from the file D:\Output\contents.html.

6. The table of contents created by the CONTENTS= option contains a numbered heading for
a. each procedure.

246

b. each procedure that creates output.
c. each procedure and DATA step.
d. each HTML file created by your program.

7. When the code shown below is run, what will the file D:\Output\frame.html display?
ods html body='d:\output\body.html'
 contents='d:\output\contents.html'
 frame='d:\output\frame.html';

a. The file D:\Output\contents.html.
b. The file D:\Output\frame.html.
c. The files D:\Output\contents.html and D:\Output\body.html.
d. It displays no other files.

8. What is the purpose of the URL= suboptions shown below?
ods html body='d:\output\body.html' (url='body.html')
 contents='d:\output\contents.html' (url='contents.html')
 frame='d:\output\frame.html';

a. To create absolute link addresses for loading the files from a server.
b. To create relative link addresses for loading the files from a server.
c. To allow HTML files to be loaded from a local drive.
d. To send HTML output to two locations.

9. Which ODS HTML option was used in creating the following table?

a. format=brown
b. format='brown'
c. style=brown
d. style='brown'

10. What is the purpose of the PATH= option?
ods html path='d:\output' (url=none)
 body='body.html'
 contents='contents.html'
 frame='frame.html';

a. It creates absolute link addresses for loading HTML files from a server.
b. It creates relative link addresses for loading HTML files from a server.
c. It allows HTML files to be loaded from a local drive.
d. It specifies the location of HTML file output.

1. Correct answer: d

You can generate any number of output types as long as you open the ODS destination for each type of output that
you want to create.

2. Correct answer: c

247

Listing output is created by default, so these statements create HTML, PDF, and listing output.

3. Correct answer: a

By default, SAS programs produce listing output. If you want only HTML output, it's a good idea to close the Listing
destination before creating HTML output, because an open destination uses system resources.

4. Correct answer: c

When multiple procedures are run while HTML output is open, procedure output is appended to the same body file.

5. Correct answer: a

The CONTENTS= option creates a table of contents containing links to the body file, D:\Output\body.html.

6. Correct answer: b

The table of contents contains a numbered heading for each procedure that creates output.

7. Correct answer: c

The FRAME= option creates an HTML file that integrates the table of contents and the body file.

8. Correct answer: b

Specifying the URL= suboption in the file specification provides a URL that ODS uses in the links it creates. Specifying
a simple (one name) URL creates a relative link address to the file.

9. Correct answer: c

You can change the appearance of HTML output by using the STYLE= option in the ODS HTML statement. The style
name doesn't need quotation marks.

10. Correct answer: d You use the PATH= option to specify the location for HTML output. When you use the PATH=
option, you don't need to specify the full pathname for the body, contents, or frame files.

Chapter 11: Creating and Managing Variables

Overview

Introduction
You've learned how to create a SAS data set from raw data that is stored in an external file. You've also learned how to
subset observations and how to assign values to variables.

This chapter shows you additional techniques for creating and managing variables. In this chapter, you learn how to create
accumulator variables, assign variable values conditionally, select variables, and assign permanent labels and formats to
variables.

248

Ob
s

ID Name RestH
R

MaxH
R

RecH
R

Toleranc
e

TotalTim
e

Cumulativ
e Total
Seconds
(+5,400)

TestLengt
h

1 245
8

Murray,
W

72 185 128 D 758 6,158 Normal

2 253
9

LaMance,
K

75 168 141 D 706 6,864 Short

3 257
2

Oberon,
M

74 177 138 D 731 7,595 Short

4 257
4

Peterson,
V

80 164 137 D 849 8,444 Long

5 258
4

Takahash
i, Y

76 163 135 D 967 9,411 Long

Objectives
In this chapter, you learn to
� create variables that accumulate variable values
� initialize values of accumulator variables
� assign values to variables conditionally
� specify an alternative action when a condition is false
� specify lengths for variables
� delete unwanted observations
� select variables
� assign permanent labels and formats.

Creating and Modifying Variables

Accumulating Totals
It is often useful to create a variable that accumulates the values of another variable.

Suppose you want to create the data set Clinic.Stress and to add a new variable, SumSec, to accumulate the total number
of elapsed seconds in treadmill stress tests.
SAS Data Set Clinic.Stress (Partial Listing)

ID Name RestHr MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

2458 Murray, W 72 185 128 12 38 D 758

2462 Almers, C 68 171 133 10 5 I 605

2501 Bonaventure,
T

78 177 139 11 13 I 673

2523 Johnson, R 69 162 114 9 42 S 582

2539 LaMance, K 75 168 141 11 46 D 706

To add the result of an expression to an accumulator variable, you can use a Sum statement in your DATA step.

249

General form, Sum statement:

variable+expression;

where
� variable specifies the name of the accumulator variable. This variable must be numeric. The variable is

automatically set to 0 before the first observation is read. The variable's value is retained from one DATA step
execution to the next.

� expression is any valid SAS expression.
Warning If the expression produces a missing value, the Sum statement treats it like a zero. (By contrast, in an

assignment statement, a missing value is assigned if the expression produces a missing value.)
Note The Sum statement is one of the few SAS statements that doesn't begin with a keyword.

The Sum statement adds the result of the expression that is on the right side of the plus sign (+) to the numeric variable that
is on the left side of the plus sign. At the beginning of the DATA step, the value of the numeric variable is not set to missing
as it usually is when reading raw data. Instead, the variable retains the new value in the program data vector for use in
processing the next observation.

Example
To find the total number of elapsed seconds in treadmill stress tests, you need a variable (in this example, SumSec) whose
value begins at 0 and increases by the amount of the total seconds in each observation. To calculate the total number of
elapsed seconds in treadmill stress tests, you use the Sum statement shown below.
data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 TotalTime=(timemin*60)+timesec;

SumSec+totaltime;

run;

The value of the variable on the left side of the plus sign (here, SumSec) begins at 0 and increases by the value of
TotalTime with each observation.

SumSec = TotlaTime + Previous Total

0

758 = 758 + 0

1363 = 605 + 758

2036 = 673 + 1363

2618 = 582 + 2036

3324 = 706 + 2618

250

Initializing Accumulator Variables
In a previous example, the accumulator variable SumSec was initialized to 0 by default before the first observation was read.
But what if you want to initialize SumSec to a different number, such as the total seconds from previous treadmill stress
tests?

You can use the RETAIN statement to assign an initial value other than the default value of 0 to a variable whose value is
assigned by a Sum statement.

The RETAIN statement
� assigns an initial value to a retained variable
� prevents variables from being initialized each time the DATA step executes.

General form, simple RETAIN statement for initializing accumulator variables:

RETAIN variable initial-value;

where
� variable is a variable whose values you want to retain
� initial-value specifies an initial value (numeric or character) for the preceding variable.

Note The RETAIN statement
� is a compile-time only statement that creates variables if they do not already exist
� initializes the retained variable to missing before the first execution of the DATA step if you do not

supply an initial value
� has no effect on variables that are read with SET, MERGE, or UPDATE statements. (The SET and

MERGE statements are discussed in later chapters.)

Example
Suppose you want to add 5400 seconds (the accumulated total seconds from a previous treadmill stress test) to the variable
SumSec in the Clinic.Stress data set when you create the data set. To initialize SumSec with the value 5400, you use the
RETAIN statement shown below:
data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

 sumsec+totaltime;
run;

Now the value of SumSec begins at 5400 and increases by the value of TotalTime with each observation.

SumSec = TotlaTime + Previous Total

5400

6158 = 758 + 0

6763 = 605 + 6158

251

SumSec = TotlaTime + Previous Total

7436 = 673 + 6763

8018 = 582 + 7436

8724 = 706 + 8018

Assigning Values Conditionally
In the previous section, you created the variable SumSec by using a Sum statement to add total seconds from a treadmill
stress test. This time, let's create a variable that categorizes the length of time that a subject spends on the treadmill during
a stress test. This new variable, TestLength, will be based on the value of the existing variable TotalTime. The value of
TestLength will be assigned conditionally.

If This Is the TotalTime Then This Is the TestLength

greater than 800 Long

750 - 800 Normal

less than 750 Short

To perform an action conditionally, use an IF-THEN statement. The IF-THEN statement executes a SAS statement when
the condition in the IF clause is true.

General form, IF-THEN statement:

IF expression THEN statement;

where
� expression is any valid SAS expression
� statement is any executable SAS statement.

Example

To assign the value Long to the variable TestLength when the value of TotalTime is greater than 800, add the following
IF-THEN statement to your DATA step:
data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;

if totaltime>800 then TestLength='Long';

run;

252

SAS executes the assignment statement only when the condition (TotalTime>800) is true. If the condition is false, then
the value of TestLength will be missing.

Comparison and Logical Operators
When writing IF-THEN statements, you can use any of the following comparison operators:

Operator Comparison Operation

= or eq equal to

^= or ne not equal to

> or gt greater than

< or lt less than

>= or ge greater than or equal to

<= or le less than or equal to

in equal to one of a list

Examples
if test<85 and time<=20
 then Status='RETEST';
if region in ('NE','NW','SW')
 then Rate=fee-25;
if target gt 300 or sales ge 50000
 then Bonus=salary*.05;

You can also use these logical operators:

Operator Logical Operation

& and

| or

^ or ~ not

Use the AND operator to execute the THEN statement if both expressions that are linked by AND are true.
if status='OK' and type=3
 then Count+1;
if (age^=agecheck | time^=3)

& error=1 then Test=1;

Use the OR operator to execute the THEN statement if either expression that is linked by OR is true.
if (age^=agecheck | time^=3)
 & error=1 then Test=1;
if status='S' or cond='E'
 then Control='Stop';

253

Use the NOT operator with other operators to reverse the logic of a comparison.
if not(loghours<7500)
 then Schedule='Quarterly';
if region not in ('NE','SE')
 then Bonus=200;

Character values must be specified in the same case in which they appear in the data set and must be enclosed in
quotation marks.
if status='OK' and type=3
 then Count+1;
if status='S' or cond='E'
 then Control='Stop';
if not(loghours<7500)
 then Schedule='Quarterly';
if region not in ('NE','SE')
 then Bonus=200;

Logical comparisons that are enclosed in parentheses are evaluated as true or false before they are compared to other
expressions. In the example below, the OR comparison in parentheses is evaluated before the first expression and the AND
operator are evaluated.

Warning In SAS, any numeric value other than 0 or missing is true, and a value of 0 or missing is false.
Therefore, a numeric variable or expression can stand alone in a condition. If its value is a number
other than 0 or missing, the condition is true; if its value is 0 or missing, the condition is false.
0 = False
. = False
1 = True
As a result, you need to be careful when using the OR operator with a series of comparisons.
Remember that only one comparison in a series of OR comparisons must be true to make a condition
true, and any nonzero, nonmissing constant is always evaluated as true. Therefore, the following
subsetting IF statement is always true:
 if x=1 or 2;
SAS first evaluates x=1, and the result can be either true or false. However, because the 2 is
evaluated as nonzero and nonmissing (true), the entire expression is true. In the following statement,
however, the condition is not necessarily true because either comparison can evaluate as true or
false:
 if x=1 or x=2;

Providing an Alternative Action
Now suppose you want to assign a value to TestLength that is based on the other possible values of TotalTime. One
way to do this is to add IF-THEN statements to the other two conditions, as shown below.
if totaltime>800 then TestLength='Long';
if 750<=totaltime<=800 then TestLength='Normal';

254

if totaltime<750 then TestLength='Short';

However, when the DATA step executes, each IF statement is evaluated in order, even if the first condition is true. This
wastes system resources and slows the processing of your program.

Instead of using a series of IF-THEN statements, you can use the ELSE statement to specify an alternative action to be
performed when the condition in an IF-THEN statement is false. As shown below, you can write multiple ELSE statements
to specify a series of mutually exclusive conditions.
if totaltime>800 then TestLength='Long';
else if 750<=totaltime<=800 then TestLength='Normal';
else if totaltime<750 then TestLength='Short';

The ELSE statement must immediately follow the IF-THEN statement in your program. An ELSE statement executes only if
the previous IF-THEN/ELSE statement is false.

General form, ELSE statement:

ELSE statement;

where statement is any executable SAS statement, including another IF-THEN statement.

So to assign a value to TestLength when the condition in your IF-THEN statement is false, you can add the ELSE
statement to your DATA step, as shown below:
data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800 then TestLength='Normal';

else if totaltime<750 then TestLength='Short';

run;

Using ELSE statements with IF-THEN statements can save resources:
� Using IF-THEN statements without the ELSE statement causes SAS to evaluate all IF-THEN statements.
� Using IF-THEN statements with the ELSE statement causes SAS to execute IF-THEN statements until it

encounters the first true statement. Subsequent IF-THEN statements are not evaluated.

For greater efficiency, construct your IF-THEN/ELSE statements with conditions of decreasing probability.
Note Remember that you can use PUT statements to test your conditional logic.

data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

255

 Tolerance $ 45;
 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 if totaltime>800 then TestLength='Long';
 else if 750<=totaltime<=800 then TestLength='Normal';

else put 'NOTE: Check this Length: ' totaltime=;

run;

Specifying Lengths for Variables
Previously, you added IF-THEN and ELSE statements to a DATA step in order to create the variable TestLength. Values
for TestLength were assigned conditionally, based on the value for TotalTime.
data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength='Normal';

 else if totaltime<750 then TestLength='Short';

run;

But look what happens when you submit this program.

During compilation, when creating a new character variable in an assignment statement, SAS allocates as many bytes of
storage space as there are characters in the first value that it encounters for that variable. In this case, the first value for
TestLength occurs in the IF-THEN statement, which specifies a four-character value (Long). So TestLength is assigned
a length of 4, and any longer values (Normal and Short) are truncated.
Variable TestLength (Partial Listing)

TestLength

Norm

Shor

Shor

Shor

Norm

Shor

Long

256

Variable TestLength (Partial Listing)

TestLength

...

The example above assigns a character constant as the value of the new variable. The table that follows lists more
examples of the default type and length that SAS assigns when the type and length of a variable are not explicitly set.

Expression Example Resulting Type
of X

Resulting Length
of X

Explanation

Character variable length a $ 4;
x=a;

Character
variable

4 Length of source variable

Character literal
(character
constant)

x='ABC';
x='ABCDE';

Character
variable

3 Length of first literal
(constant) encountered

Concatenation of
variables

length a $ 4
b $ 6
c $ 2;
x=a||b||c;

Character
variable

12 Sum of the lengths of all
variables

Concatenation of
variables and
literals

length a $ 4;
x=a||'CAT';
x=a||'CATNIP';

Charactervariable 7 Sum of the lengths of
variables and literals
(constants) encountered in
first assignment statement

Numeric variable length a 4;
x=a;

Numeric variable 8 Default numeric length (8
bytes unless otherwise
specified)
Note: In general, it is not
recommended that you
change the default length of
numeric variables, as this
can affect numeric
precision. See the SAS
documentation for your
operating environment for
more information.

You can use a LENGTH statement to specify a length (the number of bytes) for TestLength before the first value is
referenced elsewhere in the DATA step.

General form, LENGTH statement:

LENGTH variable(s) <$> length;

where
� variable(s) names the variable(s) to be assigned a length
� $ is specified if the variable is a character variable
� length is an integer that specifies the length of the variable.

257

Examples
length Type $ 8;
length Address1 Address2 Address3 $ 200;
length FirstName $ 12 LastName $ 16;

Within your program, you include a LENGTH statement to assign a length to accommodate the longest value of the variable
TestLength. The longest value is Normal, which has six characters. Because TestLength is a character variable, you
must follow the variable name with a dollar sign ($).
data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

length TestLength $ 6;
 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength='Normal';

 else if totaltime<750 then TestLength='Short';

run;
Note Make sure the LENGTH statement appears before any other reference to the variable in the DATA step. If

the variable has been created by another statement, then a later use of the LENGTH statement will not
change its size.

Now that you have added the LENGTH statement to your program, the values of TestLength are no longer truncated.
Variable TestLength (Partial Listing)

TestLength

Normal

Short

Short

Short

Normal

Short

Long

...

Subsetting Data

Deleting Unwanted Observations

258

So far in this chapter, you've learned to use IF-THEN statements to execute assignment statements conditionally. But you
can specify any executable SAS statement in an IF-THEN statement. For example, you can use an IF-THEN statement
with a DELETE statement to determine which observations to omit from the data set that SAS is creating as it reads raw
data.
� The IF-THEN statement executes a SAS statement when the condition in the IF clause is true.
� The DELETE statement stops processing the current observation.

General form, DELETE statement:

DELETE;

To conditionally execute a DELETE statement, you submit a statement in the following general form:

IF expression THEN DELETE;

If the expression is
� true, the DELETE statement executes, and control returns to the top of the DATA step (the observation is deleted).
� false, the DELETE statement does not execute, and processing continues with the next statement in the DATA

step.

Example
The IF-THEN and DELETE statements below omit any observations whose values for RestHR are lower than 70.
data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;

if resthr<70 then delete;

 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 length TestLength $ 6;
 if totaltime>800 then testlength='Long';
 else if 750<=totaltime<=800 then testlength='Normal';
 else if totaltime<750 then TestLength='Short';
run;

Selecting Variables with the DROP= and KEEP= Data Set Options
Sometimes you might need to read and process fields that you don't want to keep in your data set. In this case, you can use
the DROP= and KEEP= data set options to specify the variables that you want to drop or keep.

Use the KEEP= option instead of the DROP= option if more variables are dropped than kept. You specify data set options in
parentheses after a SAS data set name.

259

General form, DROP= and KEEP= data set options:

(DROP=variable(s))
(KEEP=variable(s))

where
� the DROP= or KEEP= option, in parentheses, follows the name of the data set that contains the variables to be

dropped or kept
� variable(s) identifies the variables to drop or keep.

Example
Suppose you are interested in keeping only the new variable TotalTime and not the original variables TimeMin and
TimeSec. You can drop TimeMin and TimeSec when you create the Stress data set.
data clinic.stress(drop=timemin timesec);
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 if tolerance='D';
 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 length TestLength $ 6;
 if totaltime>800 then testlength='Long';
 else if 750<=totaltime<=800 then testlength='Normal';
 else if totaltime<750 then TestLength='Short';
run;
SAS Data Set Clinic.Stress

ID Name RestHR MaxHR RecHR Tolerance TotalTime SumSec TestLength

2458 Murray, W 72 185 128 D 758 6158 Normal

2539 LaMance,
K

75 168 141 D 706 6864 Short

2552 Reberson,
P

69 158 139 D 941 7805 Long

2572 Oberon, M 74 177 138 D 731 8536 Short

2574 Peterson,
V

80 164 137 D 849 9385 Long

2584 Takahashi,
Y

76 163 135 D 967 10352 Long

260

Another way to exclude variables from your data set is to use the DROP statement or the KEEP statement. Like the
DROP= and KEEP= data set options, these statements drop or keep variables. However, the DROP statement differs from
the DROP= data set option in the following ways:
� You cannot use the DROP statement in SAS procedure steps.
� The DROP statement applies to all output data sets that are named in the DATA statement.
� To exclude variables from some data sets but not from others, place the appropriate DROP= data set option next to

each data set name that is specified in the DATA statement.

The KEEP statement is similar to the DROP statement, except that the KEEP statement specifies a list of variables to write
to output data sets. Use the KEEP statement instead of the DROP statement if the number of variables to keep is
significantly smaller than the number to drop.

General form, DROP and KEEP statements:

DROP variable(s);

KEEP variable(s);

where variable(s) identifies the variables to drop or keep.

Example
The two programs below produce the same results. The first example uses the DROP= data set option; the second example
uses the DROP statement.
data clinic.stress (drop=timemin timesec);
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 if tolerance='D';
 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 length TestLength $ 6;
 if totaltime>800 then testlength='Long';
 else if 750<=totaltime<=800 then testlength='Normal';
 else if totaltime<750 then TestLength='Short';
run;

data clinic.stress;
 infile tests;
 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
 RecHR 35-37 TimeMin 39-40 TimeSec 42-43
 Tolerance $ 45;
 if tolerance='D';

261

drop timemin timesec;

 TotalTime=(timemin*60)+timesec;
 retain SumSec 5400;
 sumsec+totaltime;
 length TestLength $ 6;
 if totaltime>800 then testlength='Long';
 else if 750<=totaltime<=800 then testlength='Normal';
 else if totaltime<750 then TestLength='Short';
run;

Assigning Permanent Labels and Formats
At this point, you've read and manipulated your raw data to obtain the observations, variables, and variable values that you
want. Your final task in this chapter is to permanently assign labels and formats to variables.

In Chapter 4, Creating List Reports, you practiced temporarily assigning labels and formats within a PROC step. These
temporary labels and formats are applicable only for the duration of the step. To permanently assign labels and formats, you
use LABEL and FORMAT statements in DATA steps.

Note Remember that labels and formats do not affect how data is stored in the data set, only how data appears
in output.

Example

To specify the label Cumulative Total Seconds (+5,400) and the format COMMA6. for the variable SumSec, you can
submit the following program:
data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 if resthr<70 then delete;

 if tolerance='D';

 drop timemin timesec;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6;

 if totaltime>800 then testlength='Long';

 else if 750<=totaltime<=800 then testlength='Normal';

 else if totaltime<750 then TestLength='Short';

label sumsec='Cumulative Total Seconds (+5,400)';
format sumsec comma6.;

run;

262

You're finished! When you print the new data set, SumSec is labeled and formatted as specified. (Don't forget to include the
LABEL option in the PROC PRINT statement.)
proc print data=clinic.stress label;

run;

Ob
s

ID Name RestH
R

MaxH
R

RecH
R

Toleranc
e

TotalTim
e

Cumulativ
e Total
Seconds
(+5,400)

TestLengt
h

1 245
8

Murray,
W

72 185 128 D 758 6,158 Normal

2 253
9

LaMance,
K

75 168 141 D 706 6,864 Short

3 257
2

Oberon,
M

74 177 138 D 731 7,595 Short

4 257
4

Peterson,
V

80 164 137 D 849 8,444 Long

5 258
4

Takahash
i, Y

76 163 135 D 967 9,411 Long

Note Remember that many SAS procedures automatically use permanent labels and formats in
output, without requiring additional statements or options.

Warning If you assign temporary labels or formats within a PROC step, they override any permanent labels or
formats that were assigned during the DATA step.

Assigning Values Conditionally Using SELECT Groups
Earlier in this chapter, you learned to assign values conditionally by using IF-THEN/ELSE statements. You can also use
SELECT groups in DATA steps to perform conditional processing. A SELECT group contains these statements:

Use This Statement To Perform This Action

SELECT begins a SELECT group.

WHEN identifies SAS statements that are executed when a particular condition is true.

OTHERWISE (optional) specifies a statement to be executed if no WHEN condition is met.

END ends a SELECT group.

You can decide whether to use IF-THEN/ELSE statements or SELECT groups based on the following criteria.

When you have a long series of mutually exclusive conditions and the comparison is numeric, using a SELECT group is
slightly more efficient than using a series of IF-THEN or IF-THEN/ELSE statements because CPU time is reduced. SELECT
groups also make the program easier to read and debug.

For programs with few conditions, use IF-THEN/ELSE statements.

General form, SELECT group:

SELECT <(select-expression)>;
WHEN-1 (when-expression-1 <..., when-expression-n>) statement;
WHEN-n (when-expression-1 <..., when-expression-n>) statement;

263

 <OTHERWISE statement;>
END;

where
� SELECT begins a SELECT group.
� the optional select-expression specifies any SAS expression that evaluates to a single value.
� WHEN identifies SAS statements that are executed when a particular condition is true.
� when-expression specifies any SAS expression, including a compound expression. You must specify at least one

when-expression.
� statement is any executable SAS statement. You must specify the statement argument.
� the optional OTHERWISE statement specifies a statement to be executed if no WHEN condition is met.
� END ends a SELECT group.

Example

The following code is a simple example of a SELECT group. Notice that the variable a is specified in the SELECT
statement, and various values to compare to a are specified in the WHEN statements. When the value of the variable a is

� 1, x is multiplied by 10
� 3, 4, or 5, x is multiplied by 100
� 2 or any other value, nothing happens.
� select (a);
� when (1) x=x*10;
� when (3,4,5) x=x*100;
� otherwise;

end;

Example: SELECT Group in a DATA Step

Now let's look at a SELECT group in context. In the DATA step below, the SELECT group assigns values to the variable
Group based on values of the variable JobCode. Most of the assignments are one-to-one correspondences, but ticket
agents (the JobCode values TA1, TA2, and TA3) are grouped together, as are values in the Other category.
data emps(keep=salary group);

 set sasuser.payrollmaster;

 length Group $ 20;

 select(jobcode);

 when ("FA1") group="Flight Attendant I";

 when ("FA2") group="Flight Attendant II";

 when ("FA3") group="Flight Attendant III";

 when ("ME1") group="Mechanic I";

 when ("ME2") group="Mechanic II";

 when ("ME3") group="Mechanic III";

 when ("NA1") group="Navigator I";

 when ("NA2") group="Navigator II";

 when ("NA3") group="Navigator III";

 when ("PT1") group="Pilot I";

264

 when ("PT2") group="Pilot II";

 when ("PT3") group="Pilot III";

 when ("TA1","TA2","TA3") group="Ticket Agents";

 otherwise group="Other";

 end;

run;

Notice that in this case the SELECT statement does contain a select-expression. You are checking values of a single
variable, so using select(jobcode) and only the JobCode value in each WHEN statement is more concise than
eliminating the select-expression and repeating the variable in each when-expression, as in when(jobcode="FA1").

Note Notice that the LENGTH statement in the DATA step above specifies a length of 20 for Group.
Remember that without the LENGTH statement, values for Group might be truncated, as the first value
for Group (Flight Attendant I) is not the longest possible value.

Warning When you are comparing values in the when-expression, be sure to express the values exactly as
they are coded in the data. For example, the when-expression below would be evaluated as false
because the values for JobCode in Sasuser.Payrollmaster are stored in uppercase letters.
when ("fa1") group="Flight Attendant I";
In this case, given the SELECT group above, Group would be assigned the value Other.

Specifying SELECT Statements with Expressions
As you saw in the general form for SELECT groups, you can optionally specify a select-expression in the SELECT
statement. The way SAS evaluates a when-expression depends on whether you specify a select-expression.

If you do specify a select-expression in the SELECT statement, SAS compares the value of the select-expression with the
value of each when-expression. That is, SAS evaluates the select- expression and when-expression, compares the two for
equality, and returns a value of true or false.

� If the comparison is true, SAS executes the statement in the WHEN statement.
� If the comparison is false, SAS proceeds either to the next when-expression in the current WHEN statement, or to

the next WHEN statement if no more expressions are present. If no WHEN statements remain, execution proceeds
to the OTHERWISE statement, if one is present.

Warning If the result of all SELECT-WHEN comparisons is false and no OTHERWISE statement is present,
SAS issues an error message and stops executing the DATA step.

In the following SELECT group, SAS determines the value of toy and compares it to values in each
WHEN statement in turn. If a WHEN statement is true compared to the toy value, then SAS assigns
the related price and continues processing the rest of the DATA step. If none of the comparisons is
true, then SAS executes the OTHERWISE statement and writes a debugging message to the SAS
log.
select (toy);

 when ("Bear") price=35.00;

 when ("Violin") price=139.00;

 when ("Top","Whistle","Duck") price=7.99;

 otherwise put "Check unknown toy: " toy=;

end;

Specifying SELECT Statements without Expressions
If you don't specify a select-expression, SAS evaluates each when-expression to produce a result of true or false.

265

� If the result is true, SAS executes the statement in the WHEN statement.
� If the result is false, SAS proceeds either to the next when-expression in the current WHEN statement, or to the

next WHEN statement if no more expressions are present, or to the OTHERWISE statement if one is present. (That
is, SAS performs the action that is indicated in the first true WHEN statement.)

If more than one WHEN statement has a true when-expression, only the first WHEN statement is used; once a when-
expression is true, no other when-expressions are evaluated.

Warning If the result of all when-expressions is false and no OTHERWISE statement is present, SAS issues an
error message.

In the example below, the SELECT statement does not specify a select-expression. The WHEN
statements are evaluated in order, and only one is used. For example, if the value of toy is Bear and
the value of month is FEB, only the second WHEN statement is used, even though the condition in
the third WHEN statement is also met. In this case, the variable price is assigned the value 25.00.
select;

 when (toy="Bear" and month in ('OCT', 'NOV', 'DEC')) price=45.00;

 when (toy="Bear" and month in ('JAN', 'FEB')) price=25.00;

 when (toy="Bear") price=35.00;

 otherwise;

end;

Grouping Statements Using DO Groups
So far in this chapter, you've seen examples of conditional processing (IF-THEN/ELSE statements and SELECT groups)
that execute only a single SAS statement when a condition is true. However, you can also execute a group of statements as
a unit by using DO groups.

To construct a DO group, you use the DO and END statements along with other SAS statements.

General form, simple DO group:

DO;
SAS statements

END;

where
� the DO statement begins DO-group processing
� SAS statements between the DO and END statements are called a DO group and execute as a unit
� the END statement terminates DO-group processing.

Note You can nest DO statements within DO groups.

You can use DO groups in IF-THEN/ELSE statements and SELECT groups to perform many statements as part of the
conditional action.

Examples

In this simple DO group, the statements between DO and END are performed only when TotalTime is greater than 800. If
TotalTime is less than or equal to 800, statements in the DO group do not execute, and the program continues with the
assignment statement that follows the appropriate ELSE statement.

266

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 length TestLength $ 6 Message $ 20;

 if totaltime>800 then

do;
testlength='Long';
message='Run blood panel';

end;
 else if 750<=totaltime<=800 then testlength='Normal';

 else if totaltime<750 then TestLength='Short';

run;

In the SELECT group below, the statements between DO and END are performed only when the value of Payclass is
hourly. Notice that an IF -THEN statement appears in the DO group; the PUT statement executes only when Hours is
greater than 40. The second END statement in the program closes the SELECT group.
data payroll;

 set salaries;

 select(payclass);

 when ('monthly') amt=salary;

 when ('hourly')

do;
amt=hrlywage*min(hrs,40);
if hrs>40 then put 'CHECK TIMECARD';

end;
 otherwise put 'PROBLEM OBSERVATION';

 end;

run;

Indenting and Nesting DO Groups

You can nest DO groups to any level, just like you nest IF-THEN/ELSE statements. (The memory capabilities of your
system might limit the number of nested DO statements that you can use. For details, see the SAS documentation about
how many levels of nested DO statements your system's memory can support.)

The following is an example of nested DO groups:
do;

statements;

267

 do;

statements;

 do;

statements;

 end;

 end;

end;

It is good practice to indent the statements in DO groups, as shown in the preceding statements, so that their position
indicates the levels of nesting.

Note There are three other forms of the DO statement:
� The iterative DO statement executes statements between DO and END statements repetitively

based on the value of an index variable. The iterative DO statement can contain a WHILE or UNTIL
clause.

� The DO UNTIL statement executes statements in a DO loop repetitively until a condition is true,
checking the condition after each iteration of the DO loop.

� The DO WHILE statement executes statements in a DO loop repetitively while a condition is true,
checking the condition before each iteration of the DO loop.

You can learn about these forms of the DO statement in Chapter 15, Generating Data with DO Loops.

Summary

Text Summary

Accumulating Totals
Use a Sum statement to add the result of an expression to an accumulator variable.

Initializing Accumulator Variables
You can use the RETAIN statement to assign an initial value to a variable whose value is assigned by a Sum statement.

Assigning Values Conditionally
To perform an action conditionally, use an IF-THEN statement. The IF-THEN statement executes a SAS statement when
the condition in the IF clause is true. You can include comparison and logical operators; logical comparisons that are
enclosed in parentheses are evaluated as true or false before other expressions are evaluated. Use the ELSE statement to
specify an alternative action when the condition in an IF-THEN statement is false.

Specifying Lengths for Variables
When creating a new variable, SAS allocates as many bytes of storage space as there are characters in the first value that
it encounters for that variable. This can result in truncated values. You can use the LENGTH statement to specify a length
before the variable's first value is referenced in the DATA step.

Subsetting Data
To omit observations as you read raw data, include the DELETE statement in an IF-THEN statement. If you need to read
and process variables that you don't want to keep in the data set, then use the DROP= and KEEP= data set options or the
DROP and KEEP statements.

268

Assigning Permanent Labels and Formats
You can use LABEL and FORMAT statements in DATA steps to permanently assign labels and formats. These do not
affect how data is stored in the data set, only how it appears in output.

Assigning Values Conditionally Using SELECT Groups
As an alternative to IF-THEN/ELSE statements, you can use SELECT groups in DATA steps to perform conditional
processing. SELECT groups are more efficient than IF-THEN/ELSE statements when you have a long series of mutually
exclusive conditions.

Grouping Statements Using DO Groups
You can execute a group of statements as a unit by DO groups in DATA steps. You can use DO groups in IF-THEN/ELSE
statements and SELECT groups to perform many statements as part of the conditional action.

Points to Remember
� Like the assignment statement, the Sum statement does not contain a keyword.
� If the expression in a Sum statement produces a missing value, the Sum statement ignores it. (By contrast,

assignment statements assign a missing value if the expression produces a missing value.)
� Using ELSE statements with IF-THEN statements can save resources. For greater efficiency, construct your IF-

THEN/ELSE statements with conditions of decreasing probability.
� When you create a new variable, make sure the LENGTH statement appears before any other reference to the

variable in the DATA step. If the variable has been created by another statement, a later use of the LENGTH statement
will not change its size.

� Labels and formats do not affect how data is stored in the data set, only how it appears in output. You assign labels
and formats temporarily in PROC steps and permanently in DATA steps.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which program creates the output shown below?

StockNum Finish Style Item TotalPrice

310 oak pedestal table 329.99

311 maple pedestal table 699.98

312 brass floor lamp 779.97

313 glass table lamp 839.96

269

a. data test2;
b. infile furnture;
c. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18
d. Item $ 20-24 Price 26-31;
e. if finish='oak' then delete;
f. retain TotPrice 100;
g. totalprice+price;
h. drop price;
i. run;
j. proc print data=test2 noobs;
k. run;
l. data test2;
m. infile furnture;
n. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18
o. Item $ 20-24 Price 26-31;
p. if finish='oak' and price<200 then delete;
q. TotalPrice+price;
r. run;
s. proc print data=test2 noobs;
t. run;
u. data test2(drop=price);
v. infile furnture;
w. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18
x. Item $ 20-24 Price 26-31;
y. if finish='oak' and price<200 then delete;
z. TotalPrice+price;
aa. run;
bb. proc print data=test2 noobs;
cc. run;
dd. data test2;
ee. infile furnture;
ff. input StockNum $ 1-3 Finish $ 5-9 Style $ 11-18
gg. Item $ 20-24 Price 26-31;
hh. if finish=oak and price<200 then delete price;
ii. TotalPrice+price;
jj. run;
kk. proc print data=test2 noobs;
ll. run;

2. How is the variable Amount labeled and formatted in the PROC PRINT output?

270

data credit;
 infile creddata;
 input Account $ 1-5 Name $ 7-25 Type $ 27
 Transact $ 29-35 Amount 37-50;
 label amount='Amount of Loan';
 format amount dollar12.2;

run;
proc print data=credit label;
 label amount='Total Amount Loaned';
 format amount comma10.;
run;

a. label Amount of Loan, format DOLLAR12.2
b. label Total Amount Loaned, format COMMA10.
c. label Amount, default format
d. The PROC PRINT step does not execute because two labels and two formats are assigned to

the same variable.

3. Consider the IF-THEN statement shown below. When the statement is executed, which expression is
evaluated first?
if finlexam>=95
 and (research='A' or
 (project='A' and present='A'))
 then Grade='A+';

a. finlexam>=95
b. research='A'
c. project='A' and present='A'
d. research='A' or

(project='A' and present='A')

4. Consider the small raw data file and program shown below. What is the value of Count after the fourth
record is read?

a. missing
b. 0
c. 30
d. 70

5. Now consider the revised program below. What is the value of Count after the third observation is
read?

271

a. missing
b. 0
c. 100
d. 130

6. For the observation shown below, what is the result of the IF-THEN statement?

Status Type Count Action Control

ok 3 12 E Go

if status='OK' and type=3
 then Count+1;
if status='S' or action='E'
 then Control='Stop';

a. Count = 12 Control = Go
b. Count = 13 Control = Stop
c. Count = 12 Control = Stop
d. Count = 13 Control = Go

7. Which of the following can determine the length of a new variable?
a. the length of the variable's first value
b. the assignment statement
c. the LENGTH statement
d. all of the above

8. Which set of statements is the most efficient equivalent to the code shown below?
if code='1' then Type='Fixed';
if code='2' then Type='Variable';
if code^='1' and code^='2' then Type='Unknown';

a. if code='1' then Type='Fixed';
b. else if code='2' then Type='Variable';
c. else Type='Unknown';
d. if code='1' then Type='Fixed';
e. if code='2' then Type='Variable';
f. else Type='Unknown';
g. if code='1' then type='Fixed';
h. else code='2' and type='Variable';
i. else type='Unknown';
j. if code='1' and type='Fixed';
k. then code='2' and type='Variable';

272

l. else type='Unknown';

9. What is the length of the variable Type, as created in the DATA step below?
data finance.newloan;
 set finance.records;
 TotLoan+payment;
 if code='1' then Type='Fixed';
 else Type='Variable';
 length type $ 10;
run;

a. 5
b. 8
c. 10
d. It depends on the first value of Type.

10. Which program contains an error?
a. data clinic.stress(drop=timemin timesec);
b. infile tests;
c. input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
d. RecHR 35-37 TimeMin 39-40 TimeSec 42-43
e. Tolerance $ 45;
f. TotalTime=(timemin*60)+timesec;
g. SumSec+totaltime;
h. run;
i. proc print data=clinic.stress;
j. label totaltime='Total Duration of Test';
k. format timemin 5.2;
l. drop sumsec;
m. run;
n. proc print data=clinic.stress(keep=totaltime timemin);
o. label totaltime='Total Duration of Test';
p. format timemin 5.2;
q.
r. run; data clinic.stress;
s. infile tests;
t. input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33
u. RecHR 35-37 TimeMin 39-40 TimeSec 42-43
v. Tolerance $ 45;
w. TotalTime=(timemin*60)+timesec;
x. keep id totaltime tolerance;
y. run;

273

Answers

1. Correct answer: c

Program c correctly deletes the observation in which the value of Finish is oak and the value of Price is less than 200.
It also creates TotalPrice by summing the variable Price down observations, then drops Price by using the
DROP= data set option in the DATA statement.

2. Correct answer: b

The PROC PRINT output displays the label Total Amount Loaned for the variable Amount and formats this variable
using the COMMA10. format. Temporary labels or formats that are assigned in a PROC step override permanent labels
or formats that are assigned in a DATA step.

3. Correct answer: c

Logical comparisons that are enclosed in parentheses are evaluated as true or false before they are compared to other
expressions. In the example above, the AND comparison within the nested parentheses is evaluated before being
compared to the OR comparison.

4. Correct answer: d

The Sum statement adds the result of the expression that is on the right side of the plus sign to the numeric variable
that is on the left side. The new value is then retained for subsequent observations. The Sum statement treats the
missing value as a 0, so the value of Count in the fourth observation would be 10+20+0+40, or 70

5. Correct answer: d

The RETAIN statement assigns an initial value of 100 to the variable Count, so the value of Count in the third
observation would be 100+10+20+0, or 130.

6. Correct answer: c

You must enclose character values in quotation marks, and you must specify them in the same case in which they
appear in the data set. The value ok is not identical to OK, so the value of Count is not changed by the IF-THEN
statement.

7. Correct answer: d

The length of a variable is determined by its first reference in the DATA step. When creating a new character variable,
SAS allocates as many bytes of storage space as there are characters in the first value that it encounters for that
variable. The first reference to a new variable can also be made with a LENGTH statement or an assignment statement.
The length of the variable's first value does not matter once the variable has been referenced in your program.

8. Correct answer: a

Answer a is the most efficient. You can write multiple ELSE statements to specify a series of mutually exclusive
conditions. The ELSE statement must immediately follow the IF-THEN statement in your program. An ELSE statement
executes only if the previous IF-THEN/ELSE statement is false.

9. Correct answer: a

The length of a new variable is determined by the first reference in the DATA step, not by data values. In this case, the
length of Type is determined by the value Fixed. The LENGTH statement is in the wrong place; it must be read before

274

any other reference to the variable in the DATA step. The LENGTH statement cannot change the length of an existing
variable.

10. Correct answer: b

To select variables, you can use a DROP or KEEP statement in any DATA step. You can also use the DROP= or
KEEP= data set options following a data set name in any DATA or PROC step. However, you cannot use DROP or
KEEP statements in PROC steps.

Chapter 12: Reading SAS Data Sets

Overview

Introduction
You've learned about creating a SAS data set from raw data. However, you might want to create a new data set from an
existing SAS data set. To create the new data set, you can read a data set using the DATA step. As you read the data set,
you can use all the programming features of the DATA step to manipulate your data.

275

This chapter shows you how to use the DATA step to read an existing SAS data set. When you create your new data set,
you can choose variables, select observations based on one or more conditions, and assign values conditionally. You can
also assign variable attributes such as formats and labels.

Note You can also merge, concatenate, or interleave two or more data sets. For details, see Chapter 13,
Combining SAS Data Sets.

Objectives
In this chapter, you learn to
� create a new data set from an existing data set
� use BY groups to process observations
� read observations by observation number
� stop processing when necessary
� explicitly write observations to output
� detect the last observation in a data set
� identify differences in DATA step processing for raw data and DATA step processing for existing data sets.

Reading a Single Data Set
Suppose you want to create a small data set, Lab23.Drug1H, from the Research.CLTrials data set, which contains
information about treadmill test time and relative tolerance levels.

To create the data set, you must first reference the library in which CLTrials is stored and then the library in which you want
to store Drug1H. Then you write a DATA step to read your data and create a new data set.

General form, basic DATA step for reading a single data set:

DATA SAS-data-set;
SET SAS-data-set;
RUN;

where
� SAS-data-set in the DATA statement is the name (libref.filename) of the SAS data set to be created
� SAS-data-set in the SET statement is the name (libref.filename) of the SAS data set to be read.

276

You write a DATA step to name the SAS data set to be created. Then, you specify the data set that will be read in the SET
statement. The DATA statement below creates the permanent SAS data set Drug1H, which will be stored in a SAS data
library to which the libref Lab23 has been assigned. The SET statement below reads the permanent SAS data set
Research.CLTrials.
ibname lab23 'c:\drug\allergy\labtests';

libname research 'c:\drug\allergy';

data lab23.drug1h;
 setresearch.cltrials;
run;

The DATA step above reads all observations and variables from the existing data set into the new data set. When you
submit this DATA step, the following messages appear in the log, confirming that the new data set was created:
SAS Log

 8 data lab23.drug1h;

 9 set research.cltrials;

10 run;

NOTE: The data set LAB23.DRUG1H has 21

 observations and 8 variables.

Manipulating Data
In the previous section of this chapter, the example program created a data set that was identical to the existing data set,
Research.CLTrials. But you usually don't want an exact duplicate of the existing data set. When you read a data set, you
can use any of the programming features of the DATA step to manipulate your data.

For example, you can use any of the statements and data set options that you learned in previous chapters.

To Do This Use This Type of Statement

Subset data if resthr<70 then delete;

if tolerance='D';

Drop unwanted variables drop timemin timesec;

Create or modify a variable TotalTime=(timemin*60)+timesec;

Initialize a sum variable
Sum accumulated values

retain SumSec 5400;

sumsec+totaltime;

Specify a variable's length length TestLength $ 6;

Execute statements conditionally if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800

then TestLength='Normal';

else if totaltime<750

then TestLength='Short';

Label a variable label sumsec='Cumulative Total Seconds';

format sumsec comma6.;

277

To Do This Use This Type of Statement

Format a variable

Example

The following DATA step reads the data set Research.CLTrials, selects observations and variables, and creates new
variables.
data lab23.drug1h(drop=placebo uric);

 set research.cltrials(drop=triglyc);

 if sex='M' then delete;

 if placebo='YES';

 TestDate='22MAY1999'd;

 retain Days 30;

 days+1;

 length Retest $ 5;

 if cholesterol>190 then retest='YES';

 else if 150<=cholesterol<=190 then retest='CHECK';

 else if cholesterol<150 then retest='NO';

 label retest='Perform Cholesterol Test 2?';

 format enddate mmddyy10.;

run;

Where to Specify the DROP= and KEEP= Data Set Options

You've learned that you can specify the DROP= and KEEP= data set options anywhere you name a SAS data set.
However, using DROP= and KEEP= when reading an existing data set requires that you decide where to specify these
options. You can specify DROP= and KEEP= in either the DATA statement or the SET statement, depending on whether
or not you want to process values of the variables in that DATA step:

� If you don't process certain variables and you don't want them to appear in the new data set, then specify them in
the DROP= option in the SET statement.

In the DATA step shown below, the DROP= option in the SET statement prevents the variables Triglycerides
and UricAcid from being read. These variables won't appear in the Lab23.Drug1H data set.
data lab23.drug1h(drop=placebo);

set research.cltrials(drop=triglycerides uricacid);
 if placebo='YES';

run;
� If you do need to process a variable in the original data set (in a subsetting IF statement, for example), you must

specify the variable in the DROP= option in the DATA statement. Otherwise, the statement that is using the variable
for processing causes an error.

This DATA step uses the variable Placebo to select observations. To drop Placebo from the new data set, the
DROP= option must appear in the DATA statement.
data lab23.drug1h(drop=placebo);
 set research.cltrials(drop=triglycerides uricacid);

278

 if placebo='YES';

run;

When used in the DATA statement, the DROP= option simply drops the variables from the new data set. However, the
variables are still read from the original data set and are available within the DATA step.

� Remember, in either situation, you can use the KEEP= option instead of the DROP= option if more variables are
dropped than kept.

Using BY-Group Processing

Finding the First and Last Observations in a Group
In Chapter 4, Creating List Reports, you learned to use a BY statement in PROC SORT to sort observations and in PROC
PRINT to group observations for subtotals. You can also use the BY statement in the DATA step to group observations for
processing.
data temp;
 set salary;

by dept;

run;

When you use the BY statement with the SET statement,
� the data sets that are listed in the SET statement must be sorted by the values of the BY variable(s), or the data

sets must have an appropriate index.
� the DATA step creates two temporary variables for each BY variable. One is named FIRST.variable, where

variable is the name of the BY variable, and the other is named LAST.variable. Their values are either 1 or 0.
FIRST.variable and LAST.variable identify the first and last observation in each BY group.

This Variable Equals

FIRST.variable 1 for the first observation in a BY group

0 for any other observation in a BY group

LAST.variable 1 for the last observation in a BY group

0 for any other observation in a BY group

Example
To work with FIRST.variable and LAST.variable, let's look at a different set of data. The Company.USA data set
contains payroll information for individual employees. Suppose you want to compute the annual payroll by department.
Assume 2,000 work hours per year for hourly employees.

Before computing the annual payroll, you need to group observations by values of the variable Dept.
SAS Data Set Company.USA (Partial Listing)

Dept WageCat WageRate

ADM20 S 3392.50

ADM30 S 5093.75

CAM10 S 1813.30

CAM10 S 1572.50

279

SAS Data Set Company.USA (Partial Listing)

Dept WageCat WageRate

CAM10 H 13.48

ADM30 S 2192.25

The following program computes the annual payroll by department. Notice that the variable name Dept has been appended
to FIRST. and LAST.
proc sort data=company.usa out=work.temp;
 by dept;
run;
data company.budget(keep=dept payroll);
 set work.temp;
 by dept;
 if wagecat='S' then Yearly=wagerate*12;
 else if wagecat='H' then Yearly=wagerate*2000;
 if first.dept then Payroll=0;
 payroll+yearly;
 if last.dept;
run;

If you could look behind the scenes at the program data vector (PDV) as the Company.Budget data set is being created,
you would see the following. Notice the values for FIRST.Dept and LAST.Dept.
Selected PDV Variables

N Dept Payroll FIRST.Dept LAST.Dept

1 ADM10 70929.0 1 0

1 ADM10 119479.2 0 0

1 ADM10 173245.2 0 0

1 ADM10 255516.0 0 0

1 ADM10 293472.0 0 1

1 ADM20 40710.0 1 0

1 ADM20 68010.0 0 0

1 ADM20 94980.0 0 0

1 ADM20 136020.0 0 0

1 ADM20 177330.0 0 1

1 ADM30 61125.0 1 1

When you print the new data set, you can now list and sum the annual payroll by department.

280

proc print data=company.budget noobs;
 sum payroll;
 format payroll dollar12.2;
run;
Dept Payroll

Dept Payroll

ADM10 $293,472.00

ADM20 $177,330.00

ADM30 $173,388.00

CAM10 $130,709.60

CAM20 $156,731.20

$931,630.80

Finding the First and Last Observations in Subgroups
When you specify multiple BY variables,
� FIRST.variable for each variable is set to 1 at the first occurrence of a new value for the variable
� a change in the value of a primary BY variable forces LAST.variable to equal 1 for the secondary BY variables.

Example
Suppose you now want to compute the annual payroll by job type for each manager. In your program, you specify two BY
variables, Manager and JobType.
proc sort data=company.usa out=work.temp2;
 by manager jobtype;
data company.budget2(keep=manager jobtype payroll);
 set work.temp2;

by manager jobtype;

 if wagecat='S' then Yearly=wagerate*12;
 else if wagecat='H' then Yearly=wagerate*2000;
 if first.jobtype then Payroll=0;
 payroll+yearly;
 if last.jobtype;
run;

If you could look at the PDV now, you would see the following. Notice that the values for FIRST.JobType and
LAST.JobType change according to values of FIRST.Manager and LAST.Manager.
Selected PDV Variables

N Manager JobType Payroll FIRST.
Manage
r

LAST.
Manage
r

FIRST.
JobTyp
e

LAST.JobType

1 Coxe 3 40710.0 1 0 1 1

281

Selected PDV Variables

N Manager JobType Payroll FIRST.
Manage
r

LAST.
Manage
r

FIRST.
JobTyp
e

LAST.JobType

2 Coxe 50 41040.0 0 0 1 0

3 Coxe 50 82350.0 0 0 0 1

4 Coxe 240 27300.0 0 0 1 0

5 Coxe 240 54270.0 0 1 0 1

6 Delgado 240 35520.0 1 0 1 0

7 Delgado 240 63120.0 0 0 0 1

8 Delgado 420 18870.0 0 0 1 0

9 Delgado 420 45830.0 0 0 0 1

10 Delgado 440 21759.6 0 1 1 1

11 Overby 1 82270.8 1 0 1 1

12 Overby 5 48550.2 0 0 1 1

13 Overby 10 53766.0 0 0 1 1

14 Overby 20 70929.0 0 0 1 0

15 Overby 20 108885.0 0 1 0 1

Now you can sum the annual payroll by job type for each manager. In the following output, the payroll for only two
managers (Coxe and Delgado) is listed. Remember, neither the FIRST.variable nor the LAST.variable is stored in
the new data set.
proc print data=company.budget2 noobs;;
 by manager;
 var jobtype;
 sum payroll;
 where manager in ('Coxe','Delgado');
 format payroll dollar12.2;
run;
Manager=Coxe

JobType Payroll

3 $40,710.00

50 $123,390.00

240 $81,570.00

Manager $245,670.00

282

Manager=Delgado

JobType Payroll

240 $98,640.00

420 $64,700.00

440 $21,759.00

Manager $185,099.00

Reading Observations Using Direct Access

The POINT= Option
So far in this chapter, you've read the observations in an input data set sequentially. That is, you have accessed
observations in the order in which they appear in the physical file. However, you can also access observations directly, by
going straight to an observation in a SAS data set without having to process each observation that precedes it.

To access observations directly by their observation number, you use the POINT= option in the SET statement.

General form, POINT= option:

POINT=variable;

where variable
� specifies a temporary numeric variable that contains the observation number of the observation to be read
� must be given a value before the SET statement is executed.

Example
Let's suppose you want to read only the fifth observation from a data set. In the following DATA step, the value 5 is
assigned to the variable ObsNum. The POINT= option reads the value of ObsNum to determine which observation to read
from the data set Company.USA.
data work.getobs5;

obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;
run;

Preventing Continuous Looping with the POINT= Option
As you learned in a previous chapter, the DATA step continues to read observations until it reaches the end-of-file marker in
the input data. However, because the POINT= option reads only specified observations, SAS cannot read an end-of-file
indicator as it would if the file were being read sequentially. So submitting the following program would cause continuous
looping:
data work.getobs5(drop=obsnum);

obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;
run;

283

Because there is no end-of-file condition when you use direct access to read data, you must take either or both of the
following precautions:
� Use a STOP statement to prevent continuous looping. The STOP statement causes SAS to stop p rocessing the

current DATA step immediately and to resume processing statements after the end of the current DATA step.
� Use programming logic that checks for an invalid value of the POINT= variable. If SAS reads an invalid value for

the POINT= variable, it sets the automatic variable _ERROR_ to 1. You can use this information to check for conditions
that cause continuous processing.

General form, STOP statement:

STOP;

So if you add a STOP statement, your program no longer loops continuously.
data work.getobs5(drop=obsnum);

obsnum=5;

 set company.usa(keep=manager payroll) point=obsnum;
stop;

run;

But your program doesn't write any observations to output, either. Remember from Chapter 6, Understanding DATA Step
Processing, that the DATA step writes observations to output at the end of the DATA step. However, in this program, the
STOP statement immediately stops processing before the end of the DATA step.

The following section shows you how to write the observation to output before processing stops.

Writing Observations Explicitly
To override the default way in which the DATA step writes observations to output, you can use an OUTPUT statement in
the DATA step. Placing an explicit OUTPUT statement in a DATA step overrides the automatic output, so that observations
are added to a data set only when the explicit OUTPUT statement is executed.

General form, OUTPUT statement:

OUTPUT <SAS-data-set(s)>;

where SAS -data-set(s) names the data set(s) to which the observation is written. All data set names that are specified in the
OUTPUT statement must also appear in the DATA statement.

Using an OUTPUT statement without a following data set name causes the current observation to be written to all data sets
that are named in the DATA statement.

With an OUTPUT statement, your program now writes a single observation to output—observation 5.
data work.getobs5(drop=obsnum);
 obsnum=5;
 set company.usa(keep=manager payroll) point=obsnum;

output;

284

 stop;
run;
proc print data=work.getobs5 noobs;
run;
Manager Payroll

Delgado 45830

Suppose your DATA statement contains two data set names, and you include an OUTPUT statement that only references
one of the data sets. The DATA step will create both data sets, but only the data set that is named in the OUTPUT
statement will contain output. For example, the program below creates two temporary data sets, Empty and Full. The result
of this DATA step is that the data set Empty is created but contains no observations, and the data set Full contains all of
the observations from Company.Usa.
data empty full;
 set company.use;
 output full;
run;

More Complex Ways of Using Direct Access
To convey concepts clearly, the examples in this section have been as simple as possible. However, most uses of the
POINT= option are more complex. For example, POINT= is commonly used in combining data sets, not simply in reading a
single data set.

You can see more complex examples of using POINT= in Chapter 15, Generating Data with DO Loops.

Detecting the End of a Data Set

The END= Option
Instead of reading specific observations, you might want to determine when the last observation in an input data set has
been read, so that you can perform specific processing. For example, you might want to write to output only an observation
that contains totals for variables in all observations in the data set.

To create a temporary numeric variable whose value is used to detect the last observation, you can use the END= option in
the SET statement.

General form, END= option:

END=variable

where variable creates and names a temporary variable that contains an end-of-file marker. The variable, which is initialized
to 0, is set to 1 when the SET statement reads the last observation of the data set.

This variable is not added to the data set.
Warning Do not specify END= with POINT=. POINT= reads only a specific observation, so the last observation

in the data set is not encountered.

285

Examples
Suppose you want to sum the number of seconds for treadmill stress tests. If you submit the following program, you
produce a new data set that contains cumulative totals for each of the values of TotalTime.
data work.addtoend(drop=timemin timesec);
 set clinic.stress2(keep=timemin timesec);
 TotalMin+timemin;
 TotalSec+timesec;
 TotalTime=totalmin*60+timesec;
run;
proc print data=work.addtoend noobs;
run;
TotalMin TotalSec TotalTime

12 38 758

22 43 1325

33 56 1993

42 98 2562

53 144 3226

65 170 3926

80 211 4841

93 224 5593

103 246 6202

119 295 7189

134 297 8042

146 308 8771

160 317 9609

171 343 10286

185 370 11127

198 389 11899

214 396 12847

231 431 13895

246 472 14801

260 529 15657

272 539 16330

286

But what if you want only the final total (the last observation) in the new data set? The following program uses the END=
variable last to select only the last observation of the data set. You specify END= in the SET statement and last
wherever you need it in processing (here, in the subsetting IF statement).
data work.addtoend(drop=timemin timesec);
 set clinic.stress2(keep=timemin timesec)end=last;
 TotalMin+timemin;
 TotalSec+timesec;
 TotalTime=totalmin*60+timesec;

if last;

run;
proc print data=work.addtoend noobs;
run;

Now the new data set has one observation:

TotalMin TotalSec TotalTime

272 539 16330

Understanding How Data Sets Are Read
In a previous chapter, you learned about the compilation and execution phases of the DATA step as they pertain to reading
raw data. DATA step processing for reading existing SAS data sets is very similar. The main difference is that while reading
an existing data set with the SET statement, SAS retains the values of the variables from one observation to the next.

Let's briefly look at the compilation and execution phases of DATA steps that use a SET statement. In this example, the
DATA step reads the data set Finance.Loans, creates the variable Interest, and creates the new data set
Finance.DueJan.
data finance.duejan;

set finance.loans;
 Interest=amount*(rate/12);

run;
SAS Data Set Finance.Loans

Account Amount Rate Months Payment

101-1092 22000 0.100 60 467.43

101-1731 114000 0.095 360 958.57

101-1289 10000 0.105 36 325.02

101-3144 3500 0.105 12 308.52

Compilation Phase
The compilation phase includes the following steps:

1. The program data vector is created and contains the automatic variables _N_ and _ERROR_.

287

2. SAS also scans each statement in the DATA step, looking for syntax errors.
3. When the SET statement is compiled, a slot is added to the program data vector for each variable in the input data

set. The input data set supplies the variable names, as well as attributes such as type and length.

4. Any variables that are created in the DATA step are also added to the program data vector. The attributes of each
of these variables are determined by the expression in the statement.

5. At the bottom of the DATA step, the compilation phase is complete, and the descriptor portion of the new SAS data
set is created. There are no observations because the DATA step has not yet executed.

When the compilation phase is complete, the execution phase begins.

Execution Phase
The execution phase includes the following steps:

1. The DATA step executes once for each observation in the input data set. For example, this DATA step will execute
four times because there are four observations in the input data set Finance.Loans.

2. At the beginning of the execution phase, the value of _N_ is 1. Because there are no data errors, the value of
ERROR is 0. The remaining variables are initialized to missing. Missing numeric values are represented by a
period, and missing character values are represented by a blank.

3. The SET statement reads the first observation from the input data set and writes the values to the program data
vector.

288

4. Then, the assignment statement executes to compute the value for Interest.

5. At the end of the first iteration of the DATA step, the values in the program data vector are written to the new data
set as the first observation.

6. The value of _N_ is set to 2, and control returns to the top of the DATA step. Remember, the automatic variable
N keeps track of how many times the DATA step has begun to execute.

289

7. SAS retains the values of variables that were read from a SAS data set with the SET statement, or that were
created by a Sum statement. All other variable values, such as the values of the variable Interest, are set to
missing.

Note When SAS reads raw data, the situation is different. In that case, SAS sets the value of each
variable in the DATA step to missing at the beginning of each iteration, with these exceptions:

� variables named in a RETAIN statement
� variables created in a Sum statement
� data elements in a _TEMPORARY_ array
� any variables created by using options in the FILE or INFILE statements
� automatic variables.

8. At the beginning of the second iteration, the value of _N_ is set to 2, and the value of _ERROR_ is re-set to 0.
Remember, the automatic variable _N_ keeps track of how many times the DATA step has begun to execute.

290

9. As the SET statement executes, the values from the second observation are written to the program data vector.

10. The assignment statement executes again to compute the value for Interest for the second observation.

11. At the bottom of the DATA step, the values in the program data vector are written to the data set as the second
observation.

291

12. The value of _N_ is set to 3, and control returns to the top of the DATA step. SAS retains the values of variables
that were read from a SAS data set with the SET statement, or that were created by a Sum statement. All other
variable values, such as the values of the variable Interest, are set to missing.

This process continues until all of the observations are read.

Additional Features
The DATA step provides many other programming features for manipulating data sets. For example, you can
� use IF-THEN/ELSE logic with DO groups and DO loops to control processing that is based on one or more

conditions
� specify additional data set options
� process variables in arrays
� use SAS functions.

You can also combine SAS data sets in several ways, including match merging, interleaving, one-to-one merging, and
updating. You will learn how to do these tasks in later chapters.

Summary

Text Summary

292

Setting Up
Before you can create a new data set, you must assign a libref to the SAS data library that will store the data set.

Reading a Single Data Set
After you have referenced the library in which your data set is stored, you can write a DATA step to name the SAS data set
to be created. You then specify the data set to be read in the SET statement.

Selecting Variables
You can select the variables that you want to drop or keep by using the DROP= and KEEP= data set options in parentheses
after a SAS data set name. For convenience, use DROP= if more variables are kept than dropped.

BY-Group Processing
Use the BY statement in the DATA step to group observations for processing. When you use the BY statement with the SET
statement, the DATA step automatically creates two temporary variables, FIRST. and LAST. When you specify multiple BY
variables, a change in the value of a primary BY variable forces LAST.variable to equal 1 for the secondary BY
variables.

Reading Observations Using Direct Access
In addition to reading input data sequentially, you can access observations directly by using the POINT= option to go
directly to a data set observation. There is no end-of-file condition when you use direct access, so include an explicit
OUTPUT statement and then the STOP statement to prevent continuous looping.

Detecting the End of a Data Set
To determine when the last observation in an input data set has been read, use the END= option in the SET statement. The
specified variable is initialized to 0, then set to 1 when the SET statement reads the last observation of the data set.

Points to Remember
� When you perform BY-group processing, the data sets that are listed in the SET statement must either be sorted by

the values of the BY variable(s), or they must have an appropriate index.
� When using direct access to read data, you must prevent continuous looping. Add a STOP statement to the DATA

step, or use programming logic that checks for an invalid value of the POINT= variable.
� Do not specify the END= option with the POINT= option in a SET statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. If you submit the following program, which variables appear in the new data set?
data work.cardiac(drop=age group);
 set clinic.fitness(keep=age weight group);
 if group=2 and age>40;
run;

a. none
b. Weight

293

c. Age, Group
d. Age, Weight, Group

2. Which of the following programs correctly reads the data set Orders and creates the data set
FastOrdr?

a. data catalog.fastordr(drop=ordrtime);
b. set july.orders(keep=product units price);
c. if ordrtime<4;
d. Total=units*price;
e. run;
f. data catalog.orders(drop=ordrtime);
g. set july.fastordr(keep=product units price);
h. if ordrtime<4;
i. Total=units*price;
j. run;
k. data catalog.fastordr(drop=ordrtime);
l. set july.orders(keep=product units price
m. ordrtime);
n. if ordrtime<4;
o. Total=units*price;
p. run;
q. none of the above

3. Which of the following statements is false about BY-group processing?

When you use the BY statement with the SET statement,
a. the data sets that are listed in the SET statement must be indexed or sorted by the values of

the BY variable(s).
b. the DATA step automatically creates two variables, FIRST. and LAST., for each variable in the

BY statement.
c. FIRST. and LAST. identify the first and last observation in each BY group, in that order.
d. FIRST. and LAST. are stored in the data set.

4. There are 500 observations in the data set Company.USA. What is the result of submitting the
following program?
data work.getobs5(drop=obsnum);
 obsnum=5;
 set company.usa(keep=manager payroll) point=obsnum;
 stop;
run;

a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

5. There is no end-of-file condition when you use direct access to read data, so how can your program
prevent a continuous loop?

294

a. Do not use a POINT= variable.
b. Check for an invalid value of the POINT= variable.
c. Do not use an END= variable.
d. Include an OUTPUT statement.

6. Assuming that the data set Company.USA has five or more observations, what is the result of
submitting the following program?
data work.getobs5(drop=obsnum);
 obsnum=5;
 set company.usa(keep=manager payroll) point=obsnum;
 output;
 stop;
run;

a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

7. Which of the following statements is true regarding direct access of data sets?
a. You cannot specify END= with POINT=.
b. You cannot specify OUTPUT with POINT=.
c. You cannot specify STOP with END=.
d. You cannot specify FIRST. with LAST.

8. What is the result of submitting the following program?
data work.addtoend;
 set clinic.stress2 end=last;
 if last;
run;

a. an error
b. an empty data set
c. a continuous loop
d. a data set that contains one observation

9. At the start of DATA step processing, during the compilation phase, variables are created in the
program data vector (PDV), and observations are set to

a. blank
b. missing
c. 0
d. there are no observations.

10. The DATA step executes
a. continuously if you use the POINT= option and the STOP statement.
b. once for each variable in the output data set.
c. once for each observation in the input data set.
d. until it encounters an OUTPUT statement.

Answers

1. Correct answer: b

295

The variables Age, Weight, and Group are specified using the KEEP= option in the SET statement. After processing,
Age and Group are dropped in the DATA statement.

2. Correct answer: c

You specify the data set to be created in the DATA statement. The DROP= data set option prevents variables from
being written to the data set. Because you use the variable OrdrTime when processing your data, you cannot drop
OrdrTime in the SET statement. If you use the KEEP= option in the SET statement, then you must list OrdrTime as
one of the variables to be kept.

3. Correct answer: d

When you use the BY statement with the SET statement, the DATA step creates the temporary variables FIRST. and
LAST. They are not stored in the data set.

4. Correct answer: b

The DATA step writes observations to output at the end of the DATA step. However, in this program, the STOP
statement stops processing before the end of the DATA step. An explicit OUTPUT statement is needed in order to
produce observations.

5. Correct answer: b

To avoid a continuous loop when using direct access, either include a STOP statement or use programming logic that
checks for an invalid value of the POINT= variable. If SAS reads an invalid value of the POINT= variable, it sets the
automatic variable _ERROR_ to 1. You can use this information to check for conditions that cause continuous
processing.

6. Correct answer: d

By combining the POINT= option with the OUTPUT and STOP statements, your program can write a single observation
to output.

7. Correct answer: a

The END= option and POINT= option are incompatible in the same SET statement. Use one or the other in your
program.

8. Correct answer: d

This program uses the END= option to name a temporary variable that contains an end-of-file marker. That variable,
LAST, is set to 1 when the SET statement reads the last observation of the data set.

9. Correct answer: d

At the bottom of the DATA step, the compilation phase is complete, and the descriptor portion of the new SAS data set
is created. There are no observations because the DATA step has not yet executed.

10. Correct answer: c

The DATA step executes once for each observation in the input data set. You use the POINT= option with the STOP
statement to prevent continuous looping.

296

Chapter 13: Combining SAS Data Sets
Overview

Introduction
In SAS programming, a common task is to combine observations from two or more data sets into a new data set. By using
the DATA step, you can combine data sets in several ways, including the following:

Method of Combining Illustration

297

Method of Combining Illustration

One-to-one reading
Creates observations that contain all of the variables from each
contributing data set.
Combines observations based on their relative position in each
data set.
Statement: SET

Concatenating
Appends the observations from one data set to another.
Statement: SET

298

Method of Combining Illustration

Interleaving
Intersperses observations from two or more data sets, based on
one or more common variables.
Statements: SET, BY

Match-merging
Matches observations from two or more data sets into a single
observation in a new data set according to the values of a
common variable.
Statements: MERGE, BY

Note You can also use PROC SQL to
join data sets according to
common values. PROC SQL
enables you to perform many
other types of data set joins. See
the SQL Processing with SAS e-
learning course for additional
training.

This chapter shows you how to combine SAS data sets by using one-to-one reading, concatenating, interleaving, and
match-merging. When you use the DATA step to combine data sets, you have a high degree of control in creating and
manipulating data sets.

299

Objectives
In this chapter, you learn to
� perform one-to-one reading of data sets
� concatenate data sets
� interleave data sets
� match-merge data sets
� predict the results by understanding match-merge processing
� re-name any like-named variables to avoid overwriting values
� select only matched observations, if desired.

One-to-One Reading
In Chapter 12, Reading SAS Data Sets, you learned how to use the SET statement to read an existing SAS data set. You
can also use multiple SET statements in a DATA step to combine data sets. This is called one-to-one reading. In one-to-
one reading, you can read different data sets, or you can read the same data set more than once, as if you were reading
from separate data sets.

General form, basic DATA step for one-to-one reading:

DATA output-SAS-data-set;
SET SAS-data-set-1;

SET SAS-data-set-2;
RUN;

where
� output-SAS-data-set names the data set to be created
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

Note You can specify any number of data sets in the SET statement.

How One-to-One Reading Selects Data
When you perform one-to-one reading,
� the new data set contains all the variables from all the input data sets. If the data sets contain variables that have

the same names, the values that are read in from the last data set overwrite the values that were read in from earlier
data sets.

� the number of observations in the new data set is the number of observations in the smallest original data set.
Observations are combined based on their relative position in each data set; that is, the first observation in one data set
is joined with the first observation in the other, and so on. The DATA step stops after it has read the last observation
from the smallest data set.

How One-to-One Reading Works
Let's look at a simple case of one-to-one reading.
data one2one;
 set c;
 set d;
run;

300

1. The first SET statement reads one observation from data set C.

Num VarA VarB

1 A1
2. Then the second SET statement reads one observation from data set D. The value for Num in data set D overwrites

the value for Num in data set C.

Num VarA VarB

2 A1 B1
3. Next, the first SET statement reads the second observation from data set C.

Num VarA VarB

2 A1 B1

3 A2
4. Finally, the second SET statement reads the second observation from data set D, overwriting the value for Num in

data set C. Because this is the last observation in the smallest data set, processing stops. The DATA step does not
read the third observation in data set C.

Num VarA VarB

2 A1 B1

4 A2 B2

The following section shows how you might use one-to-one reading.

Example
Suppose you have basic patient data (ID, sex, and age) in the data set Clinic.Patients and want to combine it with other
patient data (height and weight) for patients under age 60. The height and weight data is stored in the data set
Clinic.Measure. Both data sets are sorted by the variable ID.

Notice that Clinic.Patients contains 7 observations in which the patient age is less than 60, and Clinic.Measure contains 6
observations.
SAS Data Set Clinic.Patients

301

Obs ID Sex Age

1 1129 F 48

2 1387 F 57

3 2304 F 16

4 2486 F 63

5 4759 F 60

6 5438 F 42

7 6488 F 59

8 9012 F 39

9 9125 F 56

SAS Data Set Clinic.Measure

Obs ID Height Weight

1 1129 61 137

2 1387 64 142

3 2304 61 102

4 5438 62 168

5 6488 64 154

6 9012 63 157

To subset observations from the first data set and combine them with observations from the second data set, you can
submit the following program:
ata clinic.one2one;
 set clinic.patients;
 if age<60;
 set clinic.measure;
run;

The resulting data set, Clinic.One2one, contains 6 observations (the number of observations read from the smallest data
set, here Clinic.Measure). The last observation in Clinic.Patients is not read.
SAS Data Set Clinic.One2one

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 57 64 142

3 2304 F 16 61 102

4 5438 F 42 62 168

5 6488 F 59 64 154

302

SAS Data Set Clinic.One2one

Obs ID Sex Age Height Weight

6 9012 F 39 63 157

Concatenating
Another way to combine SAS data sets with the SET statement is concatenating, which appends the observations from
one data set to another data set. To concatenate SAS data sets, you specify a list of data set names in the SET statement.

General form, basic DATA step for concatenating:

DATA output-SAS-data-set;
SET SAS-data-set-1 SAS-data-set-2;

RUN;

where
� output-SAS-data-set names the data set to be created
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.

Note You can specify any number of data sets in the SET statement.

How Concatenating Selects Data
When a program concatenates data sets, all of the observations are read from the first data set that is listed in the SET
statement. Then all of the observations are read from the second data set that is listed, and so on, until all of the listed data
sets have been read. The new data set contains all of the variables and observations from all of the input data sets.
data concat;
 set a b;
run;

303

Notice that A and C contain a common variable named Num:
� Both instances of Num (or any common variable) must have the same type attribute, or SAS stops processing the

DATA step and issues an error message stating that the variables are incompatible.
� However, if the length attribute is different, SAS takes the length from the first data set that contains the variable.

In this case, the length of Num in A determines the length of Num in Concat.
� The same is true for the label, format, and informat attributes: If any of these attributes are different, SAS takes

the attribute from the first data set that contains the variable with that attribute.

Example
The following DATA step creates Clinic.Concat by concatenating Clinic.Therapy1999 and Clinic.Therapy2000.
data clinic.concat;
 set clinic.therapy1999 clinic.therapy2000;
run;

The listing of Clinic.Concat follows. The first 12 observations were read from Clinic.Therapy1999, and the last 12
observations were read from Clinic.Therapy2000.
SAS Data Set Clinic.Concat

Obs Month Year AerClass WalkJogRun Swim

1 01 1999 26 78 14

2 02 1999 32 109 19

3 03 1999 15 106 22

4 04 1999 47 115 24

5 05 1999 95 121 31

6 06 1999 61 114 67

7 07 1999 67 102 72

8 08 1999 24 76 77

9 09 1999 78 77 54

10 10 1999 81 62 47

11 11 1999 84 31 52

12 12 1999 92 44 55

13 01 2000 37 91 83

14 02 2000 41 102 27

15 03 2000 52 98 19

16 04 2000 61 118 22

17 05 2000 49 88 29

18 06 2000 24 101 54

19 07 2000 45 91 69

20 08 2000 63 65 53

304

SAS Data Set Clinic.Concat

Obs Month Year AerClass WalkJogRun Swim

21 09 2000 60 49 68

22 10 2000 78 70 41

23 11 2000 82 44 58

24 12 2000 93 57 47

Interleaving
If you use a BY statement when you concatenate data sets, the result is interleaving. Interleaving intersperses
observations from two or more data sets, based on one or more common variables.

To interleave SAS data sets, specify a list of data set names in the SET statement, and specify one or more BY variables in
the BY statement.

General form, basic DATA step for interleaving:

DATA output-SAS-data-set;
SET SAS-data-set-1 SAS-data-set-2;
BY variable(s);

RUN;

where
� output-SAS-data-set names the data set to be created
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read
� variable(s) specifies one or more variables that are used to interleave observations.

Note You can specify any number of data sets in the SET statement. Each input data set must be sorted or
indexed in ascending order based on the BY variable(s).

How Interleaving Selects Data
When SAS interleaves data sets, observations in each BY group in each data set in the SET statement are read
sequentially, in the order in which the data sets and BY variables are listed, until all observations have been processed. The
new data set includes all the variables from all the input data sets, and it contains the total number of observations from all
input data sets.
data interlv;
 set c d;
 by num;
run;

305

Example
The following DATA step creates Clinic.Interlv by interleaving Clinic.Therapy1999 and Clinic.Therapy2000:
data clinic.interlv;
 set clinic.therapy1999 clinic.therapy2000;
 by month;
run;

Below is the listing of Clinic.Interlv. Notice that, unlike the previous example, observations are interleaved by month
instead of being concatenated.
SAS Data Set Clinic.Interlv

Obs Month Year AerClass WalkJogRun Swim

1 01 1999 26 78 14

2 01 2000 37 91 83

3 02 1999 32 109 19

4 02 2000 41 102 27

5 03 1999 15 106 22

6 03 2000 52 98 19

7 04 1999 47 115 24

8 04 2000 61 118 22

9 05 1999 95 121 31

10 05 2000 49 88 29

11 06 1999 61 114 67

306

SAS Data Set Clinic.Interlv

Obs Month Year AerClass WalkJogRun Swim

12 06 2000 24 101 54

13 07 1999 67 102 72

14 07 2000 45 91 69

15 08 1999 24 76 77

16 08 2000 63 65 53

17 09 1999 78 77 54

18 09 2000 60 49 68

19 10 1999 81 62 47

20 10 2000 78 70 41

21 11 1999 84 31 52

22 11 2000 82 44 58

23 12 1999 92 44 55

24 12 2000 93 57 47

Simple Match-Merging
So far in this chapter, you've learned how to combine data sets based on the order of the observations in the input data
sets. But sometimes you need to combine observations from two or more data sets into a single observation in a new data
set according to the values of a common variable. This is called match-merging.

When you match-merge, you use a MERGE statement rather than a SET statement to combine data sets.

General form, basic DATA step for match-merging:

DATA output-SAS-data-set;
MERGE SAS-data-set-1 SAS-data-set-2;
BY <DESCENDING> variable(s);

RUN;

where
� output-SAS-data-set names the data set to be created.
� SAS-data-set-1 and SAS-data-set-2 specify the data sets to be read.
� variable(s) in the BY statement specifies one or more variables whose values are used to match observations.
� DESCENDING indicates that the input data sets are sorted in descending order (largest to smallest numerically, or

reverse alphabetical for character variables) by the variable that is specified. If you have more than one variable in the
BY statement, DESCENDING applies only to the variable that immediately follows it.

Note Each input data set in the MERGE statement must be sort ed in order of the values of the BY variable(s),
or it must have an appropriate index. Each BY variable must have the same type in all data sets to be
merged.

Note You cannot use the DESCENDING option with indexed data sets because indexes are always stored in
ascending order.

307

How Match-Merging Selects Data
Generally speaking, during match-merging SAS sequentially checks each observation of each data set to see whether the
BY values match, then writes the combined observation to the new data set.
data merged;
 merge a b;
 by num;
run;

Basic DATA step match-merging produces an output data set that contains values from all observations in all input data
sets. (You can add statements and options to select only observations that match for two or more specific input data sets.)

If an input data set doesn't have any observations for a particular value of the same-named variable, then the observation in
the output data set contains missing values for the variables that are unique to that input data set.

Note In match-merging, often one data set contains unique values for the same-named variable and other data
sets contain multiple values for the same-named variable.

Example: Merging Data Sets That Are Sorted in Ascending Order
Suppose you have sorted the data sets Clinic.Demog and Clinic.Visit as follows:
proc sort data=clinic.demog;
 by id;
run;
proc print data=clinic.demog;
run;

308

Obs ID Age Sex Date

1 A001 21 m 05/22/75

2 A002 32 m 06/15/63

3 A003 24 f 08/17/72

4 A004 . 03/27/69

5 A005 44 f 02/24/52

6 A007 39 m 11/11/57

proc sort data=clinic.visit;
 by id;
run;
proc print data=clinic.visit;
run;
Obs ID Visit SysBP DiasBP Weight Date

1 A001 1 140 85 195 11/05/98

2 A001 2 138 90 198 10/13/98

3 A001 3 145 95 200 07/04/98

4 A002 1 121 75 168 04/14/98

5 A003 1 118 68 125 08/12/98

6 A003 2 112 65 123 08/21/98

7 A004 1 143 86 204 03/30/98

8 A005 1 132 76 174 02/27/98

9 A005 2 132 78 175 07/11/98

10 A005 3 134 78 176 04/16/98

11 A008 1 126 80 182 05/22/98

You can then submit this DATA step to create Clinic.Merged by merging Clinic.Demog and Clinic.Visit according to
values of the variable ID:
data clinic.merged;

merge clinic.demog clinic.visit;

by id;

run;

proc print data=clinic.merged;
run;

Notice that all observations, including unmatched observations and observations that have missing data, are written to the
output data set.

309

Obs ID Age Sex Date
Visit

SysBP DiasBP Weight

1 A001 21 m 11/05/98 1 140 85 195

2 A001 21 m 10/13/98 2 138 90 198

3 A001 21 m 07/04/98 3 145 95 200

4 A002 32 m 04/14/98 1 121 75 168

5 A003 24 f 08/12/98 1 118 68 125

6 A003 24 f 08/21/98 2 112 65 123

7 A004 . 03/30/98 1 143 86 204

8 A005 44 f 02/27/98 1 132 76 174

9 A005 44 f 07/11/98 2 132 78 175

10 A005 44 f 04/16/98 3 134 78 176

11 A007 39 m 11/11/57 . . .

12 A008 . 05/22/98 1 126 80 182

Example: Sorting and Merging Data Sets in Descending Order
The example above illustrates merging two data sets that are sorted in ascending order of the BY variable ID. To sort the
data sets in descending order and then merge them, you can submit the following program:
proc sort data=clinic.demog;
 by descending id;
run;
proc sort data=clinic.visit;
 by descending id;
run;
data clinic.merged;
 merge clinic.demog clinic.visit;
 by descending id;
run;
proc print data=clinic.merged;
run;

Notice that you specify the DESCENDING option in the BY statements in both the PROC SORT steps and the DATA step. If
you omit the DESCENDING option in the DATA step, you generate error messages about improperly sorted BY variables.

Now the data sets are merged in descending order of the BY variable ID.

Obs ID Age Sex Date Visit SysBP DiasBP Weight

1 A008 . 05/22/98 1 126 80 182

2 A007 39 m 11/11/57 . . .

310

Obs ID Age Sex Date Visit SysBP DiasBP Weight

3 A005 44 f 02/27/98 1 132 76 174

4 A005 44 f 07/11/98 2 132 78 175

5 A005 44 f 04/16/98 3 134 78 176

6 A004 . 03/30/98 1 143 86 204

7 A003 24 f 08/12/98 1 118 68 125

8 A003 24 f 08/21/98 2 112 65 123

9 A002 32 m 04/14/98 1 121 75 168

10 A001 21 m 11/05/98 1 140 85 195

11 A001 21 m 10/13/98 2 138 90 198

12 A001 21 m 07/04/98 3 145 95 200

Match-Merge Processing

Introduction
The match-merging examples in this chapter are straightforward. However, match-merging can be more complex,
depending on your data and on the output data set that you want to create. To predict the results of match-merges correctly,
you need to understand how the DATA step performs match- merges.

When you submit a DATA step, it is processed in two phases:
� the compilation phase, in which SAS checks the syntax of the SAS statements and compiles them (translates

them into machine code). During this phase, SAS also sets up descriptor information for the output data set and
creates the program data vector (PDV), an area of memory where SAS builds your data set, one observation at a
time.

� the execution phase, in which the DATA step reads data and executes any subsequent programming statements.
When the DATA step executes, data values are read into the appropriate variables in the program data vector. From
here, the variables are written to the output data set as a single observation.

311

The following sections cover match-merge processing in greater detail. In those sections, you learn
� how the DATA step sets up the new output data set
� what happens when variables in different data sets have the same name
� how the DATA step matches observations in input data sets
� what happens when observations don't match
� how missing values are handled.

The Compilation Phase: Setting Up the New Data Set
To prepare to merge data sets, SAS

1. reads the descriptor portions of the data sets that are listed in the MERGE statement
2. reads the rest of the DATA step program
3. creates the program data vector (PDV) for the merged data set
4. assigns a tracking pointer to each data set that is listed in the MERGE statement.

If variables that have the same name appear in more than one data set, then the variable from the first data set that
contains the variable (in the order listed in the MERGE statement) determines the length of the variable. (Recall that the
value of the variable is the value in the last data set that contains it.)

The illustration above shows match-merging during the compilation phase. After reading the descriptor portions of the data
sets Clients and Amounts, SAS

1. creates a program data vector for the new Claims data set. The program data vector contains all variables from the
two data sets. Note that although Name appears in both input data sets, it appears in the program data vector only
once.

2. assigns tracking pointers to Clients and Amounts.

312

The Execution Phase: Match-Merging Observations
After compiling the DATA step, SAS sequentially match-merges observations by moving the pointers down each
observation of each data set and checking to see whether the BY values match.
� If Yes, the observations are written to the PDV in the order in which the data sets appear in the MERGE statement.

Values of any same-named variable are overwritten by values of the same-named variable in subsequent data sets.
SAS writes the combined observation to the new data set and retains the values in the PDV until the BY value changes
in all the data sets.

� If No, SAS determines which of the values comes first and writes the observation that contains this value to the
PDV. Then the contents of the PDV are written to the new data set.

When the BY value changes in all the input data sets, the PDV is initialized to missing.

313

The DATA step continues to process every observation in each data set until it has processed all observations in all data
sets.

Handling Unmatched Observations and Missing Values
By default, all observations that are written to the PDV, including observations that have missing data and no matching BY
values, are written to the output data set. (If you specify a subsetting IF statement to select observations, then only those
that meet the IF condition are written.)
� If an observation contains missing values for a variable, then the observation in the output data set contains the

missing values as well. Observations that have missing values for the BY variable appear at the top of the output data
set.

� If an input data set doesn't have a matching BY value, then the observation in the output data set contains
missing values for the variables that are unique to that input data set.

314

Summary of Match-Merge Processing
Now that you've learned the basics of match-merge processing, you can review the compilation and execution phases step
by step.

1. First, SAS sets up the new data set by reading the descriptor portions of the data sets and creating the program
data vector.

2. Next, SAS sequentially match-merges observations and writes the new observation to the PDV, then to the new
data set.

3. When the BY value changes in all the input data sets, the PDV is initialized to missing.
4. Missing values for variables, as well as missing values resulting form unmatched observations, are written to the

new data set.

Renaming Variables
Sometimes you might have same-named variables in more than one input data set. In this case, DATA step match-merging
overwrites values of the like-named variable in the first data set in which it appears with values of the like-named variable
in subsequent data sets.

For example, Clinic.Demog contains the variable Date (date of birth), and Clinic.Visit also contains Date (date of the
clinic visit in 1998). The DATA step below overwrites the date of birth with the date of the clinic visit.
data clinic.merged;

merge clinic.demog clinic.visit;
by id;

run;
proc print data=clinic.merged;

run;

The following output shows the effects of overwriting the values of a variable in the Clinic.Merged data set. In most
observations, the date is now the date of the clinic visit. In observation 11, the date is still the birth date because Clinic.Visit
did not contain a matching ID value and did not contribute to the observation.

Obs ID Age Sex Date Visit SysBP DiasBP Weight

1 A001 21 m 11/05/98 1 140 85 195

2 A001 21 m 10/13/98 2 138 90 198

3 A001 21 m 07/04/98 3 145 95 200

315

Obs ID Age Sex Date Visit SysBP DiasBP Weight

4 A002 32 m 04/14/98 1 121 75 168

5 A003 24 f 08/12/98 1 118 68 125

6 A003 24 f 08/21/98 2 112 65 123

7 A004 . 03/30/98 1 143 86 204

8 A005 44 f 02/27/98 1 132 76 174

9 A005 44 f 07/11/98 2 132 78 175

10 A005 44 f 04/16/98 3 134 78 176

11 A007 39 m 11/11/57 . . .

12 A008 . 05/22/98 1 126 80 182

You now have a data set with values for Date that mean two different things: date of birth and date of clinic visit.

To prevent overwriting, you can rename variables by using the RENAME= data set option in the MERGE statement.

General form, RENAME= data set option:

(RENAME=(old-variable-name=new-variable-name))

where
� the RENAME= option, in parentheses, follows the name of each data set that contains one or more variables to be

renamed
� old-variable-name specifies the variable to be renamed
� new-variable-name specifies the new name for the variable.

Note You can rename any number of variables in each occurrence of the RENAME= option.
You can also use RENAME= to rename variables in the SET statement or in the output data set that is
specified in the DATA statement.

In the following example, the RENAME= option renames the variable Date in Clinic.Demog to BirthDate, and it renames
the variable Date in Clinic.Visit to VisitDate.
data clinic.merged;

 merge clinic.demog(rename=(date=BirthDate))
 clinic.visit(rename=(date=VisitDate));
 by id;

run;

proc print data=clinic.merged;

run;

The following output shows the effect of the RENAME= option.

Obs ID Age Sex BirthDate Visit SysBP DiasBP Weight VisitDate

1 A001 21 m 05/22/75 1 140 85 195 11/05/98

316

Obs ID Age Sex BirthDate Visit SysBP DiasBP Weight VisitDate

2 A001 21 m 05/22/75 2 138 90 198 10/13/98

3 A001 21 m 05/22/75 3 145 95 200 07/04/98

4 A002 32 m 06/15/63 1 121 75 168 04/14/98

5 A003 24 f 08/17/72 1 118 68 125 08/12/98

6 A003 24 f 08/17/72 2 112 65 123 08/21/98

7 A004 . 03/27/69 1 143 86 204 03/30/98

8 A005 44 f 02/24/52 1 132 76 174 02/27/98

9 A005 44 f 02/24/52 2 132 78 175 07/11/98

10 A005 44 f 02/24/52 3 134 78 176 04/16/98

11 A007 39 m 11/11/57

12 A008 . . 1 126 80 182 05/22/98

Excluding Unmatched Observations
By default, DATA step match-merging combines all observations in all input data sets. However, you might want to select
only observations that match for two or more specific input data sets.

To exclude unmatched observations from your output data set, you can use the IN= data set option and the subsetting IF
statement in your DATA step. In this case, you use

� the IN= data set option to create and name a variable that indicates whether the data set contributed data to the
current observation

� the subsetting IF statement to check the IN= values and to write to the merged data set only those observations that
appear in the data sets for which IN= is specified.

Creating Temporary IN= Variables
Suppose you want to match-merge the data sets Clinic.Demog and Clinic.Visit and select only observations that appear in
both data sets.

First, you use IN= to create two temporary variables, indemog and invisit. The IN= variable is a temporary variable that
is available to program statements during the DATA step, but it is not included in the SAS data set that is being created.

General form, IN= data set option:

(IN=variable)

where
� the IN= option, in parentheses, follows the data set name
� variable names the variable to be created.

317

Within the DATA step, the value of the variable is 1 if the data set contributed data to the current observation. Otherwise, its
value is 0.

The DATA step that contains the IN= options appears below. The first IN= creates the temporary variable indemog, which
is set to 1 when an observation from Clinic.Demog contributes to the current observation; otherwise, it is set to 0. Likewise,
the value of invisit depends on whether Clinic.Visit contributes to an observation or not.
data clinic.merged;

 merge clinic.demog(in=indemog)
 clinic.visit(in=invisit
 rename=(date=BirthDate));
 by id;

run;
Note When you specify multiple data set options for a given data set, enclose them in a single set of

parentheses.

Selecting Matching Observations
Next, to select only observations that appear in both Clinic.Demog and Clinic.Visit, you specify a subsetting IF statement
in the DATA step.

In the DATA step below, the subsetting IF statement checks the values of indemog and invisit and continues
processing only those observations that meet the condition of the expression. Here the condition is that both Clinic.Demog
and Clinic.Visit contribute to the observation. If the condition is met, the new observation is written to Clinic.Merged.
Otherwise, the observation is deleted.
data clinic.merged;

 merge clinic.demog(in=indemog
 rename=(date=BirthDate))

 clinic.visit(in=invisit
 rename=(date=VisitDate));
 by id;

if indemog=1 and invisit=1;
run;

proc print data=clinic.merged;

run;

In previous examples, Clinic.Merged contained 12 observations. In the output below, notice that only 10 observations met
the condition in the IF expression.

Obs ID Age Sex BirthDate Visit SysBP DiasBP Weight VisitDate

1 A001 21 m 05/22/75 1 140 85 195 11/05/98

2 A001 21 m 05/22/75 2 138 90 198 10/13/98

318

Obs ID Age Sex BirthDate Visit SysBP DiasBP Weight VisitDate

3 A001 21 m 05/22/75 3 145 95 200 07/04/98

4 A002 32 m 06/15/63 1 121 75 168 04/14/98

5 A003 24 f 08/17/72 1 118 68 125 08/12/98

6 A003 24 f 08/17/72 2 112 65 123 08/21/98

7 A004 . 03/27/69 1 143 86 204 03/30/98

8 A005 44 f 02/24/52 1 132 76 174 02/27/98

9 A005 44 f 02/24/52 2 132 78 175 07/11/98

10 A005 44 f 02/24/52 3 134 78 176 04/16/98

Note SAS evaluates the expression within an IF statement to produce a result that is either
nonzero, zero, or missing. A nonzero or nonmissing result causes the expression to be
true; a zero or missing result causes the expression to be false.
Thus, you can specify the subsetting IF statement from the previous example in either
of the following ways. The first IF statement checks specifically for a value of 1. The
second IF statement checks for a value that is neither missing nor 0 (which for IN=
variables is always 1).
if indemog=1 and invisit=1;

if indemog and invisit;

Selecting Variables
As with reading raw data or reading SAS data sets, you can specify the variables that you want to drop or keep by using the
DROP= and KEEP= data set options.

For example, the DATA step below reads all variables from Clinic.Demog and all variables except Weight from
Clinic.Visit. It then excludes the variable ID from Clinic.Merged after the merge processing is complete.
data clinic.merged(drop=id);
 merge clinic.demog(in=indemog

 rename=(date=BirthDate))

 clinic.visit(drop=weight in=invisit
 rename=(date=VisitDate)) ;
 by id;

 if indemog and invisit;

319

run;

proc print data=clinic.merged;

run;

Obs Age Sex BirthDate Visit SysBP DiasBP VisitDate

1 21 m 05/22/75 1 140 85 11/05/98

2 21 m 05/22/75 2 138 90 10/13/98

3 21 m 05/22/75 3 145 95 07/04/98

4 32 m 06/15/63 1 121 75 04/14/98

5 24 f 08/17/72 1 118 68 08/12/98

6 24 f 08/17/72 2 112 65 08/21/98

7 . 03/27/69 1 143 86 03/30/98

8 44 f 02/24/52 1 132 76 02/27/98

9 44 f 02/24/52 2 132 78 07/11/98

10 44 f 02/24/52 3 134 78 04/16/98

Where to Specify the DROP= and KEEP= Options
As you've seen in previous chapters, you can specify the DROP= and KEEP= options wherever you specify a SAS data set.
When match-merging, you can specify these options in either the DATA statement or the MERGE statement, depending
on whether or not you want to process values of the variables in that DATA step:

� If you don't process certain variables and you don't want them to appear in the new data set, then specify them in
the DROP= option in the MERGE statement.

� merge clinic.demog(in=indemog

� rename=(date=BirthDate))

� clinic.visit(drop=weight in=invisit
� rename=(date=VisitDate));
� If you do need to process a variable in the original data set (in a subsetting IF statement, for example), then you

must specify the variable in the DROP= option in the DATA statement. Otherwise, the statement that uses the
variable for processing causes an error.

� data clinic.merged(drop=id);

When used in the DATA statement, the DROP= option simply drops the variables from the new data set. However, they are
still read from the original data set and are available for processing within the DATA step.
Additional Features
The DATA step provides a large number of other programming features for manipulating data when you combine data sets.
For example, you can

� use IF-THEN/ELSE logic to control processing based on one or more conditions
� specify additional data set options
� perform calculations
� create new variables
� process variables in arrays
� use SAS functions
� use special variables such as FIRST. and LAST. to control processing.

320

You can also combine SAS data sets in other ways:
� You can perform one-to-one merging, which creates a data set that contains all of the variables and observations

from each contributing data set. Observations are combined based on their relative position in each data set.

One-to-one merging is the same as one-to-one reading, with two exceptions:
o You use the MERGE statement instead of multiple SET statements.
o The DATA step reads all observations from all data sets.

data work.onemerge;

 merge clinic.demog clinic.visit;

run;
� You can perform a conditional merge, using DO loops or other conditional statements:

� data work.combine;

� set sales.pounds;

� do while(not(begin le date le last));

� set sales.rate;

� end;

� Dollars=(sales*1000)*rate;

� run;
Note You can learn about DO loops in Chapter 15, Generating Data with DO Loops.

� You can read the same data set in more than one SET statement:

� data work.combine(drop=totpay);

� if _n_=1 then do until(last);

� set sales.budget(keep=payroll) end=last;

� end;

� set sales.budget;

� Percent=payroll/totpay;

run;

Summary

Text Summary

One-to-One Reading
You can combine data sets with one-to-one reading by including multiple SET statements in a DATA step. When you
perform one-to-one reading, the new data set contains all the variables from all the input data sets. If the data sets contain
same-named variables, the values that are read in from the last data set replace those that were read in from earlier ones.
The number of observations in the new data set is the number of observations in the smallest original data set.

Concatenating
To append the observations from one data set to another data set, you concatenate them by specifying the data set names
in the SET statement. When SAS concatenates, data sets in the SET statement are read sequentially, in the order in which
they are listed. The new data set contains all the variables and the total number of observations from all input data sets.

321

Interleaving
If you use a BY statement when you concatenate data sets, the result is interleaving. Interleaving intersperses
observations from two or more data sets, based on one or more common variables. Each input data set must be sorted or
indexed in ascending order based on the BY variable(s). Observations in each BY group in each data set in the SET
statement are read sequentially, in the order in which the data sets and BY variables are listed, until all observations have
been processed. The new data set contains all the variables and the total number of observations from all input data sets.

Simple Match-Merging
Sometimes you need to combine observations from two or more data sets into a single observation in a new data set
according to the values of a same-named variable. This is match-merging, which uses a MERGE statement rather than a
SET statement to combine data sets. Each input data set must be sorted or indexed in ascending order based on the BY
variable(s). During match-merging, SAS sequentially checks each observation of each data set to see whether the BY
values match, then writes the combined observation to the new data set.

Match- Merge Processing
To predict the results of match-merging correctly, you need to understand how the DATA step processes data in match-
merges.

Compiling
To prepare to merge data sets, SAS

1. reads the descriptor portions of the data sets that are listed in the MERGE statement
2. reads the rest of the DATA step program
3. creates the program data vector (PDV), an area of memory where SAS builds your data set one observation at a

time
4. assigns a tracking pointer to each data set that is listed in the MERGE statement.

If variables with the same name appear in more than one data set, then the variable from the first data set that contains the
variable (in the order listed in the MERGE statement) determines the length of the variable.

Executing
After compiling the DATA step, SAS sequentially match-merges observations by moving the pointers down each
observation of each data set and checking to see whether the BY values match.
� If Yes, the observations are written to the PDV in the order in which the data sets appear in the MERGE statement.

Values of any same-named variable are overwritten by values of the same-named variable in subsequent data sets.
SAS writes the combined observation to the new data set and retains the values in the PDV until the BY value changes
in all the data sets.

� If No, SAS determines which of the values comes first and writes the observation that contains this value to the
PDV. Then the observation is written to the new data set.

When the BY value changes in all the input data sets, the PDV is initialized to missing. The DATA step merge continues to
process every observation in each data set until it has processed all observations in all data sets.

Handling Unmatched Observations and Missing Values
All observations that are written to the PDV, including observations that have missing data and no matching BY values, are
written to the output data set.
� If an observation contains missing values for a variable, then the observation in the output data set contains the

missing values as well. Observations that have missing values for the BY variable appear at the top of the output data
set.

322

� If an input data set doesn't have a matching BY value, then the observation in the output data set contains missing
values for the variables that are unique to that input data set.

Renaming Variables
Sometimes you might have same-named variables in more than one input data set. In this case, match-merging overwrites
values of the same-named variable in the first data set with values of the same-named variable in subsequent data sets. To
prevent overwriting, use the RENAME= data set option in the MERGE statement to rename variables.

Excluding Unmatched Observations
By default, match-merging combines all observations in all input data sets. However, you might want to select only
observations that match for two or more input data sets. To exclude unmatched observations, use the IN= data set option
and the subsetting IF statement in your DATA step. The IN= data set option creates a variable to indicate whether the data
set contributed data to the current observation. The subsetting IF statement then checks the IN= values and writes to the
merged data set only observations that appear in the data sets for which IN= is specified.

Selecting Variables
You can specify the variables you want to drop or keep by using the DROP= and KEEP= data set options. When match-
merging, you can specify these options in either the DATA statement or the MERGE statement, depending on whether or
not you want to process values of the variables in that DATA step. When used in the DATA statement, the DROP= option
simply drops the variables from the new data set. However, they are still read from the original data set and are available
within the DATA step.

Points to Remember
� You can rename any number of variables in each occurrence of the RENAME= option.
� In match-merging, the IN= data set option can apply to any data set in the MERGE statement. The RENAME=,

DROP=, and KEEP= options can apply to any data set in the DATA or MERGE statements.
� Use the KEEP= option instead of the DROP= option if more variables are dropped than kept.
� When you specify multiple data set options for a particular data set, enclose them in a single set of parentheses.
Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which program will combine Brothers.One and Brothers.Two to produce Brothers.Three?

a. data brothers.three;
b. set brothers.one;
c. set brothers.two;
d. run;
e. data brothers.three;
f. set brothers.one brothers.two;
g. run;
h. data brothers.three;

323

i. set brothers.one brothers.two;
j. by varx;
k. run;
l. data brothers.three;
m. merge brothers.one brothers.two;
n. by varx;
o. run;

2. Which program will combine Actors.Props1 and Actors.Props2 to produce Actors.Props3?

a. data actors.props3;
b. set actors.props1;
c. set actors.props2;
d. run;
e. data actors.props3;
f. set actors.props1 actors.props2;
g. run;
h. data actors.props3;
i. set actors.props1 actors.props2;
j. by actor;
k. run;
l. data actors.props3;
m. merge actors.props1 actors.props2;
n. by actor;
o. run;

3. If you submit the following program, which new data set is created?

data work.jobsatis;
 set work.dataone work.datatwo;
run;

a.

324

Career Supervis Finance Variety Feedback Autonomy

72 26 9 . . .

63 76 7 . . .

96 31 7 . . .

96 98 6 . . .

84 94 6 . . .

. . . 10 11 70

. . . 85 22 93

. . . 83 63 73

. . . 82 75 97

. . . 36 77 97
b.

Career Supervis Finance Variety Feedback Autonomy

72 26 9 10 11 70

63 76 7 85 22 93

96 31 7 83 63 73

96 98 6 82 75 97

84 94 6 36 77 97
c.

Career Supervis Finance

72 26 9

63 76 7

96 31 7

96 98 6

84 94 6

10 11 70

85 22 93

83 63 73

82 75 97

36 77 97
d. none of the above

4. If you concatenate the data sets below in the order shown, what is the value of Sale in observation 2
of the new data set?

325

a. missing
b. $30,000
c. $40,000
d. you cannot concatenate these data sets

5. What happens if you merge the following data sets by variable SSN?

a. The values of Age in the 1st data set overwrite the values of Age in the 2nd data set.
b. The values of Age in the 2nd data set overwrite the values of Age in the 1st data set.
c. The DATA step fails because the two data sets contain same-named variables that have

different values.
d. The values of Age in the 2nd data set are set to missing.

6. Suppose you merge data sets Health.Set1 and Health.Set2 below:

326

Which output does the following program create?
data work.merged;
 merge health.set1(in=in1) health.set2(in=in2);
 by id;
 if in1 and in2;
run;
proc print data=work.merged;
run;

a.

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1274 F 50 . .

3 1387 F 57 64 142

4 2304 F 16 61 102

5 2486 F 63 . .

6 4425 F 48 . .

7 4759 F 60 . .

8 5438 F 42 62 168

9 6488 F 59 64 154

10 9012 F 39 63 157

11 9125 F 56 64 159
b.

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 50 64 142

3 2304 F 57 61 102

4 5438 F 16 62 168

5 6488 F 63 64 154

6 9012 F 48 63 157

7 9125 F 60 64 159

8 5438 F 42 . .

9 6488 F 59 . .

10 9012 F 39 . .

11 9125 F 56 . .
c.

327

Obs ID Sex Age Height Weight

1 1129 F 48 61 137

2 1387 F 57 64 142

3 2304 F 16 61 102

4 5438 F 42 62 168

5 6488 F 59 64 154

6 9012 F 39 63 157

7 9125 F 56 64 159
d. none of the above

7. The data sets Ensemble.Spring and Ensemble.Summer both contain a variable named Blue. How do
you prevent the values of the variable Blue from being overwritten when you merge the two data
sets?

a. data ensemble.merged;
b. merge ensemble.spring(in=blue)
c. ensemble.summer;
d. by fabric;
e. run;
f. data ensemble.merged;
g. merge ensemble.spring(out=blue)
h. ensemble.summer;
i. by fabric;
j. run;
k. data ensemble.merged;
l. merge ensemble.spring(blue=navy)
m. ensemble.summer;
n. by fabric;
o. run;
p. data ensemble.merged;
q. merge ensemble.spring(rename=(blue=navy))
r. ensemble.summer;
s. by fabric;
t. run;

8. What happens if you submit the following program to merge Blood.Donors1 and Blood.Donors2,
shown below?
data work.merged;
 merge blood.donors1 blood.donors2;
 by id;
run;

328

a. The Merged data set contains some missing values because not all observations have
matching observations in the other data set.

b. The Merged data set contains 8 observations.
c. The DATA step produces errors.
d. Values for Units in Blood.Donors2 overwrite values for Units in Blood.Donors1.

9. If you merge Company.Staff1 and Company.Staff2 below by ID, how many observations does the new
data set contain?

a. 4
b. 5
c. 6
d. 9

10. If you merge data sets Sales.Reps, Sales.Close, and Sales.Bonus by ID, what is the value of Bonus in
the third observation in the new data set?

a. $4,000
b. $3,000
c. missing
d. can't tell from the information given

Answers

1. Correct answer: a

329

This is a case of one-to-one reading, which requires multiple SET statements. Notice that where same- named
variables occur, the values that are read in from the second data set replace those that are read in from the first one.
Also, the number of observations in the new data set is the number of observations in the smallest original data set.

2. Correct answer: c

This is a case of interleaving, which requires a list of data set names in the SET statement and one or more BY
variables in the BY statement. Notice that observations in each BY group are read sequentially, in the order in which the
data sets and BY variables are listed. The new data set contains all the variables from all the input data sets, as well as
the total number of records from all input data sets.

3. Correct answer: a

Concatenating appends the observations from one data set to another data set. The new data set contains the total
number of records from all input data sets, so b is incorrect. All the variables from all the input data sets appear in the
new data set, so c is incorrect.

4. Correct answer: a

The concatenated data sets are read sequentially, in the order in which they are listed in the SET statement. The
second observation in Sales.Reps does not contain a value for Sale, so a missing value appears for this variable.
(Note that if you merge the data sets, the value of Sale for the second observation is ($30,000.)

5. Correct answer: b

If you have variables with the same name in more than one input data set, then values of the same-named variable in
the first data set in which it appears are overwritten by values of the same-named variable in subsequent data sets.

6. Correct answer: c

The DATA step uses the IN= data set option and the subsetting IF statement to exclude unmatched observations from
the output data set. So a and b, which contain unmatched observations, are incorrect.

7. Correct answer: d

Match-merging overwrites same-named variables in the first data set with same-named variables in subsequent data
sets. To prevent overwriting, rename variables by using the RENAME= data set option in the MERGE statement.

8. Correct answer: c

The two input data sets are not sorted by values of the BY variable, so the DATA step produces errors and stops
processing.

9. Correct answer: c

In this example, the new data set contains one observation for each unique value of ID. The merged data set is shown
below.

10. Correct answer: a

In the new data set, the third observation is the second observation for ID number 2 (Kelly Windsor). The value for
Bonus is retained from the previous observation because the BY variable value didn't change. The new data set is
shown below.

330

ID Name Sale Bonus

1 Nay Rong $28,000 $2,000

2 Kelly Windsor $30,000 $4,000

2 Kelly Windsor $40,000 $4,000

3 Julio Meraz $15,000 $3,000

3 Julio Meraz $20,000 $3,000

3 Julio Meraz $25,000 $3,000

4 Richard Krabill $35,000 $2,500

Chapter 14: Transforming Data with SAS Functions
Overview

Introduction
When planning modifications to SAS data sets, be sure to examine the many SAS functions that are available. SAS
functions are prewritten expressions that provide programming shortcuts for many calculations and manipulations of data.

This chapter teaches you how to use a variety of functions, such as those shown in the table below. You learn to convert
data from one data type to another, to work with SAS date and time values, and to manipulate the values of character
variables.

Function Description Form Sample Value

YEAR Extracts the year value from a SAS date value. YEAR(date) 2006

QTR Extracts the quarter value from a SAS date value QTR(date) 1

MONTH Extracts the month value from a SAS date value. MONTH(date) 12

DAY Extracts the day value from a SAS date value. DAY(date) 5

Objectives
In this chapter, you learn to
� convert character data to numeric data

331

� convert numeric data to character data
� create SAS date values
� extract the month, year, and interval from a SAS date value
� perform calculations with date and datetime values and time intervals
� extract, edit, and search the values of character variables
� replace or remove all occurrences of a particular word within a character string.

Understanding SAS Functions
SAS functions are built-in routines that enable you to complete many types of data manipulations quickly and easily.
Generally speaking, functions provide programming shortcuts. There are many categories of SAS functions: arithmetic
functions, financial functions, character functions, probability functions, and more.

Categories of SAS Functions

Array Mathematical

Bitwise Logical Operations Probability

Character Quantile

Character String Matching Random Number

Currency Conversion SAS File I/O

Date and Time Special

Descriptive Statistics State and Zip Code

Double Byte Character Set Trigonometric

External Files Truncation

Financial Variable Control

Hyperbolic Variable Information

Macro Web Tools

Some functions provide results that can also be obtained by using a SAS procedure. For example, functions that provide
descriptive statistics return values that can also be obtained through the MEANS procedure.
SAS Functions That Compute Descriptive Statistics

Function Syntax Calculates

SUM sum(argument, argument,...) sum of values

MEAN mean(argument, argument,...) average of nonmissing values

MIN min(argument, argument,...) minimum value

MAX max(argument, argument,...) maximum value

VAR var(argument, argument,...) variance of the values

STD std(argument, argument,...) standard deviation of the values

Despite the similarity of certain SAS functions and procedures, don't assume that they can be used interchangeably. For
example, missing values might be handled differently for a similar function and procedure.

332

Uses of SAS Functions
Using SAS functions, you can

� calculate sample statistics
� create SAS date values
� convert U.S. Zip codes to state postal codes
� round values
� generate random numbers
� extract a portion of a character value
� convert data from one data type to another.

This chapter concentrates on functions that
� convert data
� manipulate SAS date values
� modify values of character variables.

However, be sure to explore the many other SAS functions, which are described in the SAS documentation.

Example of a SAS Function
SAS functions can be used in DATA step programming statements and in some statistical procedures. A SAS function can
be specified anywhere that you would use a SAS expression, as long as the function is part of a SAS statement.

Let's look at a simple example of a SAS function. The assignment statement below uses the MEAN function to calculate the
average of three exam scores that are stored in the variables Exam1, Exam2, and Exam3.
AvgScore=mean(exam1,exam2,exam3);

When you reference a SAS function, the function returns a value that is based on the function arguments. The MEAN
function above contains three arguments: the variables Exam1, Exam2, and Exam3. The function calculates the mean of
the three variables that are listed as arguments.

Note Some functions require a specific number of arguments, whereas other functions can contain any number
of arguments. Some functions require no arguments.

General Form of SAS Functions

Arguments, Variable Lists, Arrays
To use a SAS function, specify the function name followed by the function arguments, which are enclosed in parentheses.

General form, SAS function:

function-name(argument-1<,argument-n>);

where arguments can be
� variables P H D Q x,y,z
� constants P H D Q 456,502,612,498
� expressions P H D Q 37*2,192/5 mean(22,34,56)

Warning Even if the function does not require arguments, the function name must still be followed by
parentheses—for example, function-name().

When a function contains more than one argument, the arguments are usually separated by commas.

333

function-name(argument-1,argument-2,argument-n)

However, for some functions, variable lists and arrays can also be used as arguments, as long as the list or the array is
preceded by the word OF.

Example
Here is an example of a function that contains multiple arguments. Notice that the arguments are separated by commas.
mean(x1,x2,x3)

The arguments for this function can also be written as a variable list.
mean(of x1-x3)

Or, the variables can be referenced by an array.
mean(of newarray {*})

When specifying function arguments with a variable list or an array, be sure to precede the list or the array with the word
OF. If you omit the word OF, the function arguments might not be interpreted as you expect. For example, the function
below calculates the average of X1 minus X3, not the average of the variables X1, X2, and X3.
mean(x1-x3)

Target Variables
Now that you are familiar with the purpose and general form of SAS functions, let's think about target variables. A target
variable is the variable to which the result of a function is assigned. For example, in the statement below, the variable
AvgScore is the target variable.
AvgScore=mean(exam1,exam2,exam3);

Unless the length of the target variable has been previously defined, a default length is assigned. The default length
depends on the function; the default for character functions can be as long as 200.

Default lengths could cause variables to use more space than necessary in your data set. So, when using SAS functions,
consider the appropriate length for any target variables. If necessary, add a LENGTH statement to specify a length for the
target variable before the statement that creates the values of that variable.

Converting Data with Functions

Introduction to Converting Data
Suppose you are asked to complete a number of modifications to the data set Hrd.Temp. The first modification is to create
a new variable that contains the salary of temporary employees. Examining the data set, you realize that one of the
variables needed to calculate salaries is the character variable PayRate. To complete the calculation, you need to convert
PayRate from character to numeric.
SAS Data Set Hrd.Temp

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL HILL NC 27514 9974749 14570 14608 40 26 208

334

data hrd.newtemp;
 set hrd.temp;
 Salary=payrate*hours;
run;

In such cases, you should use the INPUT function before attempting the calculation. The INPUT function converts character
data values to numeric values. The PUT function converts numeric data values to character values. Both functions are
discussed in this section.

Potential Problems of Omitting INPUT or PUT
What happens if you omit the INPUT function or the PUT function when converting data?

SAS will detect the mismatched variables and will try an automatic character-to-numeric or numeric- to-character
conversion. However, this process doesn't always work. Suppose each value of PayRate begins with a dollar sign ($).
When SAS tries to automatically convert the values of PayRate to numeric values, the dollar sign blocks the process. The
values cannot be converted to numeric values. Similar problems can occur with automatic numeric-to-character conversion.

Therefore, it is always best to include INPUT and PUT functions in your programs when conversions occur.

Automatic Character-to-Numeric Conversion
Let's begin with the automatic conversion of character values to numeric values.

By default, if you reference a character variable in a numeric context such as an arithmetic operation, SAS tries to
convert the variable values to numeric. For example, in the DATA step below, the character variable PayRate appears in a
numeric context. It is multiplied by the numeric variable Hours to create a new variable named Salary.
data hrd.newtemp;
 set hrd.temp;
 Salary=payrate*hours;
run;

When this step is executed, SAS automatically converts the character values of PayRate to numeric values so that the
calculation can occur. This conversion is completed by creating a temporary numeric value for each character value of
PayRate. This temporary value is used in the calculation. The character values of PayRate are not replaced by numeric
values.

Whenever data is automatically converted, a message is written to the SAS log stating that the conversion has occurred.
SAS Log

4 data hrd.: newtemp;
5 set hrd.temp;
6 Salary=payrate*hours;
7 run;

NOTE: Character values have been converted to

numeric values at the places given by:

(Line):(Column).

335

6:11

NOTE: The data set Hrd.Newtemp has 40 observations
and 19 variables.

NOTE: The data statement used 0.78 seconds.

When Automatic Conversion Occurs
Automatic character-to-numeric conversion occurs when a character value is
� assigned to a previously defined numeric variable, such as the numeric variable Rate

 Rate=payrate;
� used in an arithmetic operation

 Salary=payrate*hours;
� compared to a numeric value, using a comparison operator

 if payrate>=rate;
� specified in a function that requires numeric arguments.

 NewRate=sum(payrate,raise);

The automatic conversion
� uses the w.d informat, where w is the width of the character value that is being converted
� produces a numeric missing value from any character value that does not conform to standard numeric notation

(digits with an optional decimal point or leading sign).

Character Value automatic conversion Numeric Value

12.47 ► 12.47

-8.96 ► -8.96

1.243E1 ► 12.43

1,742.64 ► .

Restriction for WHERE Expressions
The WHERE statement does not perform automatic conversions in comparisons. The simple program below demonstrates
what happens when a WHERE expression encounters the wrong data type. The variable Number contains a numeric value,
and the variable Character contains a character value, but the two WHERE statements specify the wrong data type.
data work.convtest;
 Number=4;
 Character='4';
run;
proc print data=work.convtest;
 where character=4;
run;
proc print data=work.convtest;

336

 where number='4';
run;

This mismatch of character and numeric variables and values prevents the program from processing the WHERE
statements. Automatic conversion is not performed. Instead, the program stops, and error messages are written to the SAS
log.
SAS Log

1 data work.: convtest;
2 Number=4;
3 Character='4';
4 run;
NOTE: The data set Work.ConvTest has 1 observations and 2 variables.

5 proc print data=work.convtest;
6 where character=4;
7 run;
ERROR: Where clause operator requires compatible variables.

NOTE: The SAS System stopped processing this step because of errors.

8 proc print data=work.convtest;
9 where number='4';
10 run;
ERROR: Where clause operator requires compatible variables.

zzzz

NOTE: The SAS System stopped processing this step because of errors.

Explicit Character-to-Numeric Conversion
In order to avoid the problems we saw in the previous section, use the INPUT function to convert character data values to
numeric values. To learn how to use this function, let's examine one of the data set modifications needed for Hrd.Temp. As
mentioned earlier, you need to calculate employee salaries by multiplying the character variable PayRate by the numeric
variable Hours.
SAS Data Set Hrd.Temp

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL HILL NC 27514 9974749 14570 14608 40 26 208

RALEIGH NC 27612 6970450 14516 14527 15 10 80

337

To calculate salaries, you write the following DATA step. It creates a new data set, Hrd.Newtemp, to contain the original
data plus the new variable Salary.
data hrd.newtemp;
 set hrd.temp;
 Salary=payrate*hours;
run;

However, you know that submitting this DATA step would cause an automatic character-to-numeric conversion, because
the character variable PayRate is used in a numeric context. You can explicitly convert the character values of PayRate to
numeric values by using the INPUT function.

General form, INPUT function:

INPUT(source,informat)

where
� source indicates the character variable, constant, or expression to be converted to a numeric value
� a numeric informat must also be specified, as in this example: input(payrate,2.)

When choosing the informat, be sure to select a numeric informat that can read the form of the values.

Character Value Informat

2115233 7.

2,115,233 COMMA9.

Here's an example of the INPUT function:
 Test=input(saletest,comma9.);

The function uses the numeric informat COMMA9. to read the values of the character variable SaleTest. Then the
resulting numeric values are stored in the variable Test.

Now let's use the INPUT function to convert the character values of PayRate to numeric values. You begin the function by
specifying PayRate as the source. Because PayRate has a length of 2, you choose the numeric informat 2. to read the
values of the variable.
 input(payrate,2.)

Finally, you add the function to the assignment statement in your DATA step.
data hrd.newtemp;
 set hrd.temp;
 Salary=input(payrate,2.)*hours;
run;

After the DATA step is executed, the new data set (which contains the variable Salary) is created.
SAS Data Set Hrd.Newtemp

City Stat
e

Zip Phone StartDat
e

EndDat
e

PayRat
e

Day
s

Hour
s

BirthDat
e

Salar
y

338

SAS Data Set Hrd.Newtemp

City Stat
e

Zip Phone StartDat
e

EndDat
e

PayRat
e

Day
s

Hour
s

BirthDat
e

Salar
y

CAR
Y

NC 2751
3

622454
9

14567 14621 10 11 88 7054 880

CAR
Y

NC 2751
3

622325
1

14524 14565 8 25 200 5757 1600

Notice that no conversion messages appear in the SAS log when you use the INPUT function.
SAS Log

13 data hrd.: newtemp;
14 set hrd.temp;
15 Salary=input(payrate,2.)*hours;
16 run;

NOTE: The data set Hrd.Newtemp has 40 observations
and 19 variables.

NOTE: The DATA statement used 0.55 seconds.

The form of the INPUT function is very similar to the form of the PUT function (which performs numeric-to-character
conversions).

INPUT(source,informat)

PUT(source,format)

However, note that the INPUT function requires an informat, whereas the PUT function requires a format. To remember
which function requires a format versus an informat, note that the INPUT function requires the informat.

Automatic Numeric-to-Character Conversion
The automatic conversion of numeric data to character data is very similar to character-to-numeric conversion. Numeric
data values are converted to character values whenever they are used in a character context.

For example, the numeric values of the variable Site are converted to character values if you
� assign the numeric value to a previously defined character variable, such as the character variable SiteCode:

SiteCode=site
� use the numeric value with an operator that requires a character value, such as the concatenation operator:

SiteCode=site||dept;
� specify the numeric value in a function that requires character arguments, such as the SUBSTR function:

Region=substr(site,1,4);

Specifically, SAS writes the numeric value with the BEST12. format, and the resulting character value is right-aligned. This
conversion occurs before the value is assigned or used with any operator or function. Automatic numeric-to-character
conversion can cause unexpected results. For example, suppose the original numeric value has fewer than 12 digits. The
resulting character value will have leading blanks, which might cause problems when you perform an operation or function.

339

Numeric-to-character conversion also causes a message to be written to the SAS log indicating that the conversion has
occurred.
SAS Log

9 data hrd.: newtemp;
10 set hrd.temp;
11 SiteCode=site;
12 run;

NOTE: Numeric values have been converted to character

values at the places given by: (Line):(Column).

11:13

NOTE: The data set HRD.NEWTEMP has 40 observations
and 19 variables.

NOTE: The data statement used 1.06 seconds.

As we saw with the INPUT function, it is best not to rely on automatic conversion. When you know that numeric data must
be converted to character data, perform an explicit conversion by including a PUT function in your SAS program. We look at
the INPUT and PUT functions in the next section.

Explicit Numeric-to-Character Conversion
You can use the PUT function to explicitly convert numeric data values to character data values.

Let's use this function to complete one of the modifications that is needed for the data set Hrd.Temp. Suppose you are
asked to create a new character variable named Assignment that concatenates the values of the numeric variable Site
and the character variable Dept. The new variable values must contain the value of Site followed by a slash (/) and then
the value of Dept— for example, 26/DP.
SAS Data Set Hrd.Temp

Overtime Job Contact Dept Site

4 Word processing Word Processor DP 26

. Filing, administrative duties Admin. Asst. PURH 57

. Organizational dev. specialist Consultant PERS 34

. Bookkeeping, word processing Bookkeeper Asst. BK 57

You write an assignment statement that contains the concatenation operator (||) to indicate that Site

should be concatenated with Dept,using a slash as a separator. Note that the slash is enclosed in quotation marks. All
character constants must be enclosed in quotation marks.
data hrd.newtemp;
 set hrd.temp;

340

 Assignment=site||'/'||dept;
run;

You know that submitting this DATA step will cause SAS to automatically convert the numeric values of Site to character
values, because Site is used in a character context. The variable Site

appears with the concatenation operator, which requires character values. To explicitly convert the numeric values of Site
to character values, you must add the PUT function to your assignment statement.

General form, PUT function:
PUT(source,format)

where
� source indicates the numeric variable, constant, or expression to be converted to a character value
� a format matching the data type of the source must also be specified, as in this example: put(site,2.)

Note o The PUT function always returns a character string.
o The PUT function returns the source written with a format.
o The format must agree with the source in type.
o Numeric formats right-align the result; character formats left-align the result.
o If you use the PUT function to create a variable that has not been previously identified, it

creates a character variable whose length is equal to the format width.

Because you are listing a numeric variable as the source, you must specify a numeric format.

Now that you know the general form of the PUT function, you can rewrite the assignment statement in your DATA step to
explicitly convert the numeric values of Site to character values.

To perform this conversion, write the PUT function, specifying Site as the source. Because Site

has a length of 2, choose 2. as the numeric format. After you add this PUT function to the assignment statement, the DATA
step creates the new data set that contains Assignment.
data hrd.newtemp;
 set hrd.temp;
 Assignment=put(site,2.)||'/'||dept;

run;
SAS Data Set Hrd.Newtemp

Overtime Job Contact Dept Site BirthDate Assignment

4 Word processing Word
Processor

DP 26 7054 26/DP

. Filing, administrative
duties

Admin.
Asst.

PURH 57 5757 57/PURH

Notice that no conversion messages appear in the SAS log when you use the PUT function.
SAS Log

13 data hrd.: newtemp;
14 set hrd.temp;

341

15 Assignment=put(site,2.)||'/'||dept;
16 run;

NOTE: The data set Hrd.Newtemp has 40 observations
and 19 variables.

NOTE: The DATA statement used 0.71 seconds.

Matching the Data Type
Remember that the format specified in the PUT function must match the data type of the source.
 PUT(source,format)

So, to do an explicit numeric-to-character data conversion, you specify a numeric source and a numeric format. The form of
the PUT function is very similar to the form of the INPUT function.
 PUT(source,format)

 INPUT(source,informat)

Note that the PUT function requires a format, whereas the INPUT function requires an informat. To remember which
function requires a format versus an informat, note that the INPUT function requires the informat.

Manipulating SAS Date Values with Functions

SAS Date and Time Values
SAS includes a variety of functions that enable you to work with SAS date values. SAS stores a date value as the number
of days from January 1, 1960, to a given date. Here is an example:

A SAS time value is stored as the number of seconds since midnight. Here is an example:

Consequently, a SAS datetime value is stored as the number of seconds between midnight on January 1, 1960, and a
given date and time.

SAS stores date values as numbers so that you can easily sort the values or perform arithmetic computations. You can use
SAS date values as you use any other numeric values.
data test(keep=name totday);
 set hrd.temp;

TotDay=enddate-startdate;

run;
SAS Data Set Hrd.Temp

342

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

You can display SAS date values in a variety of forms by associating a SAS format with the values. The format affects only
the display of the dates, not the date values in the data set. For example, the FORMAT statement below associates the
DATE9. format with the variables StartDate and EndDate. A portion of the output created by this PROC PRINT step
appears below.
proc print data=hrd.temp;
 format startdate enddate date9.;
run;
Days Hours

City State Zip Phone StartDate EndDate Pay
Rate

Days Hours

CARY NC 27513 6224549 19NOV1999 12JAN2000 10 11 88

CARY NC 27513 6223251 07OCT1999 17NOV1999 8 25 200

CHAPEL HILL NC 27514 9974749 22NOV1999 30DEC1999 40 26 208

RALEIGH NC 27612 6970450 29SEP1999 10OCT1999 15 10 80

SAS date values are valid for dates that are based on the Gregorian calendar from A.D. 1582 through A.D. 20,000.

Note Use caution when working with historical dates. The Gregorian calendar was used throughout most of
Europe from 1582, but Great Britain and the American colonies did not adopt the calendar until 1752.

SAS Date Functions
SAS stores dates, times, and datetimes as numeric values. You can use several functions to create these values.

Function Typical Use Result

MDY date=mdy(mon,day,yr); SAS date

TODAY DATE now=today();

now=date();

today's date as a SAS date

TIME curtime=time(); current time as a SAS time

TIME curtime=time(); current time as a SAS time

You use other functions to extract months, quarters, days, and years from SAS date values.

Function Typical Use Result

DAY day=day(date); day of month (1-31)

QTR quarter=qtr(date); quarter (1-4)

WEEKDAY wkday=weekday(date); day of week (1-7)

343

Function Typical Use Result

MONTH month=month(date); month (1-12)

YEAR yr=year(date); year (4 digits)

INTCK x=intck('day',d1,d2);

x=intck('week',d1,d2);

x=intck('month',d1,d2);

x=intck('qtr',d1,d2);

x=intck('year',d1, d2);

days from D1 to D2
weeks from D1 to D2
months from D1 to D2
quarters from D1 to D2
years from D1 to D2

INTNX x=intnx('interval',start-
from,increment);

date, time, or datetime value

DATDIF
YRDIF

x=datdif('date1',date2, ACT/ACT);
x=yrdif('date1',date2, ACT/ACT);

days between date1 and date2
years between date1 and date2

In the following pages, you will see several SAS date functions, showing how they are used to both create and extract date
values.

YEAR, QTR, MONTH, and DAY Functions
Every SAS date value can be queried for the values of its year, month, and day. You extract these values by using the
functions YEAR, QTR, MONTH, and DAY. They all work the same way, so we'll discuss them as a group.

General form, YEAR, QTR, MONTH, and DAY functions:

YEAR(date)
QTR(date)
MONTH(date)
DAY(date)

where date is a SAS date value that is specified either as a variable or as a SAS date constant. For more information about
SAS date constants, see the SAS documentation.

The YEAR function returns a four-digit numeric value that represents the year—for example, 2002. The QTR function
returns a value of 1, 2, 3, or 4 from a SAS date value to indicate the quarter of the year in which a date value falls. The
MONTH function returns a numeric value that ranges from 1 to 12, representing the month of the year. The value 1
represents January, 2 represents February, and so on. The DAY function returns a numeric value from 1 to 31, representing
the day of the month. As you can see, these functions are very similar in purpose and form.

Function Description Form Sample Value

YEAR Extracts the year value from a SAS date value. YEAR(date) 2005

QTR Extracts the quarter value from a SAS date value QTR(date) 1

MONTH Extracts the month value from a SAS date value. MONTH(date) 12

DAY Extracts the day value from a SAS date value. DAY(date) 5

344

Finding the Year
Now let's use the YEAR function to complete a task.

Suppose you need to create a subset of the data set Hrd.Temp that contains information about all temporary employees
who were hired during a specific year, such as 1998. Hrd.Temp contains the dates on which employees began work with
the company and their ending dates, but there is no year variable.
SAS Data Set Hrd.Temp

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL HILL NC 27514 9974749 14570 14608 40 26 208

RALEIGH NC 27612 6970450 14516 14527 15 10 80

To determine the year in which employees were hired, you can apply the YEAR function to the variable that contains the
employee start date, StartDate. You write the YEAR function as
 year(startdate)

Then, to create the new data set, you include this function in a subsetting IF statement within a DATA step. This subsetting
IF statement specifies that only observations in which the YEAR function extracts a value of 1998 are placed in the new
data set.
data hrd.temp98;
 set hrd.temp;
 if year(startdate)=1998;
run;

Finally, you add a PROC PRINT step to the program so that you can view the new data set. Notice that the PROC PRINT
step includes a FORMAT statement to display the variables StartDate and EndDate with the DATE9. format.
data hrd.temp98;
 set hrd.temp;
 if year(startdate)=1998;
proc print data=hrd.temp98;
 format startdate enddate date9.;
run;

Here is a portion of the PROC PRINT output that is created by your program. Notice that the new data set contains
information about those employees who were hired in 1998.

City State Zip Phone StartDate EndDate Pay
Rate

Days Hours

CHAPEL HILL NC 27514 9972070 02AUG1998 17AUG1998 12 12 96

DURHAM NC 27713 3633020 06OCT1998 10OCT1998 10 5 40

Finding the Year and Month
Let's use the YEAR and MONTH functions to complete a simple task.

345

Suppose you need to create a subset of the data set Hrd.Temp that contains information about all temporary employees
who were hired in November 1999. Hrd.Temp contains the beginning and ending dates for staff employment, but there are
no month or year variables in the data set.
SAS Data Set Hrd.Temp

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL HILL NC 27514 9974749 14570 14608 40 26 208

RALEIGH NC 27612 6970450 14516 14527 15 10 80

To determine the year in which employees were hired, you can apply the YEAR function to the variable that contains the
employee start date, StartDate. You write the YEAR function as
 year(startdate)

Likewise, to determine the month in which employees were hired, you apply the MONTH function to StartDate.
 month(startdate)

To create the new data set, you include these functions in a subsetting IF statement within a DATA step. The subsetting IF
statement specifies that the new data set includes only observations in which the YEAR function extracts a value of 1999
and the MONTH function extracts a value of 11 (for November).
data hrd.nov99;
 set hrd.temp;
 if year(startdate)=1999 and month(startdate)=11;
run;

Finally, you add a PROC PRINT step to the program so that you can view the new data set. Notice that the PROC PRINT
step includes a FORMAT statement to display the variables StartDate and EndDate with the DATE9. format.
data hrd.nov99;
 set hrd.temp;
 if year(startdate)=1999 and month(startdate)=11;
proc print data=hrd.nov99;
 format startdate enddate date9.;
run;

Here is a portion of the PROC PRINT output that is created by your program. Notice that the new data set contains
information about only those employees who were hired in November 1999.

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 19NOV1999 12JAN2000 10 11 88

CHAPELHILL NC 27514 9974749 22NOV1999 30DEC1999 40 26 208

DURHAM NC 27713 3633618 02NOV1999 13NOV1999 12 9 72

CARRBORO NC 27510 9976732 16NOV1999 04JAN2000 15 7 64

WEEKDAY Function

346

The WEEKDAY function enables you to extract the day of the week from a SAS date value.

General form, WEEKDAY function:

WEEKDAY(date)

where date is a SAS date value that is specified either as a variable or as a SAS date constant. For more information about
SAS date constants, see the SAS documentation.

The WEEKDAY function returns a numeric value from 1 to 7. The values represent the days of the week.

Value equals Day of the Week

1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

For example, suppose the data set Radio.Sch contains a broadcast schedule. The variable AirDate contains SAS date
values. To create a data set that contains only weekend broadcasts, you use the WEEKDAY function in a subsetting IF
statement. You include only observations in which the value of AirDate corresponds to a Saturday or Sunday.
data radio.schwkend;
 set radio.sch;
 if weekday(airdate)=7 or weekday(airdate)=1;
run;

MDY Function
The MDY function creates a SAS date value from numeric values that represent the month, day, and year. For example,
suppose the data set Hrd.Temp contains the employee start date in three numeric variables, Month, Day, and Year.
SAS Data Set Hrd.Temp

City State Zip Phone Month Day Year PayRate Days Hours

CARY NC 27513 6224549 1 12 2000 10 11 88

CARY NC 27513 6223251 11 17 1999 8 25 200

CHAPEL HILL NC 27514 9974749 12 30 1999 40 26 208

RALEIGH NC 27612 6970450 10 10 1999 15 10 80

Having the start date in three variables makes it difficult to perform calculations that are based on the length of employment.
You can convert these numeric values to useful SAS date values by applying the MDY function.

347

General form, MDY function:

MDY(month,day,year)

where
� month can be a variable that represents the month, or a number from 1-12
� day can be a variable that represents the day, or a number from 1-31
� year can be a variable that represents the year, or a number that has 2 or 4 digits.

In the data set Hrd.Temp, the values for month, day, and year are stored in the numeric variables Month, Day, and Year.
You write the following MDY function to create the SAS date values:
 mdy(month,day,year)

Then place this function in an assignment statement to create a new variable to contain the SAS date values.
data hrd.newtemp(drop=month day year);
 set hrd.temp;

Date=mdy(month,day,year);

run;

Here is the new data set that contains the variable Date.
SAS Data Set Hrd.Newtemp

City State Zip Phone PayRate Days Hours Date

CARY NC 27513 6224549 10 11 88 14621

CARY NC 27513 6223251 8 25 200 14565

CHAPEL HILL NC 27514 9974749 40 26 208 14608

RALEIGH NC 27612 6970450 15 10 80 14527

Remember, to display SAS date values in a more readable form, you can associate a SAS format with the values. For
example, the FORMAT statement below associates the DATE9. format with the variable Date. A portion of the output that is
created by this PROC PRINT step appears below.
roc print data=hrd.newtemp;

format date date9.;

run;
City State Zip Phone PayRate Days Hours Date

City State Zip Phone PayRate Days Hours Date

CARY NC 27513 6224549 10 11 88 12JAN2000

CARY NC 27513 6223251 8 25 200 17NOV1999

CHAPEL HILL NC 27514 9974749 40 26 208 30DEC1999

RALEIGH NC 27612 6970450 15 10 80 10OCT1999

The MDY function can also add the same SAS date to every observation. This might be useful if you want to compare a
fixed beginning date with differing end dates. Just use numbers instead of data set variables when providing values to the
MDY function.

348

data hrd.newtemp;
 set hrd.temp;

DateCons=mdy(6,17,2002);

proc print data=hrd.newtemp;
 format datecons date9.;
run;
City State Zip Phone PayRate Days Hours DateCons

CARY NC 27513 6224549 10 11 88 17JUN2002

CARY NC 27513 6223251 8 25 200 17JUN2002

CHAPEL HILL NC 27514 9974749 40 26 208 17JUN2002

RALEIGH NC 27612 6970450 15 10 80 17JUN2002
Warning Be careful when entering and formatting year values. The MDY function

accepts two- digit values for the year, but SAS interprets two-digit values
according to the 100-year span that is set by the YEARCUTOFF= system
option. The default value of YEARCUTOFF= is 1920. For details, see
Chapter 19, Reading Date and Time Values.

Whenever possible, use four-digit year values in the MDY function:
� MDY(5,10,20) = May 10, 1920
� MDY(5,10,2020) = May 10, 2020

To display the years clearly, format SAS dates with the DATE9. format. This forces the year to appear with four digits, as
shown above in the Date and DateCons variables of your Hrd.Newtemp output.

Let's look at another example of the MDY function. The data set Dec.Review contains a variable named Day. This variable
contains the day of the month for each employee's performance appraisal. The appraisals were all completed in December
1998.
SAS Data Set Dec.Review

Site Day Rate Name

Westin 12 A2 Mitchell, K

Stockton 4 A5 Worton, M

Center City 17 B1 Smith, A

The following DATA step uses the MDY function to create a new variable named ReviewDate. This variable contains the
SAS date value for the date of each performance appraisal.
data dec.review98;
 set dec.review;
 ReviewDate=mdy(12,day,1998);

run;
SAS Data Set Dec.Review98

Site Day Rate Name ReviewDate

Westin 12 A2 Mitchell,
K

14225

349

SAS Data Set Dec.Review98

Site Day Rate Name ReviewDate

Stockton 4 A5 Worton,
M

14217

Center
City

17 B1 Smith,
A

14230

Note If you specify an invalid date in the MDY function, SAS assigns a missing value to the target variable.

data dec.review98;
 set dec.review;
 ReviewDate=mdy(15,day,1998);
run;
SAS Data Set Dec.Review98

Site Day Rate Name ReviewDate

Westin 12 A2 Mitchell, K .

Stockton 4 A5 Worton, M .

Center City 17 B1 Smith, A .

DATE and TODAY Functions
The DATE and TODAY functions return the current date from the system clock as a SAS date value. The DATE and
TODAY functions have the same form and can be used interchangeably.

General form, DATE and TODAY functions:

DATE()
TODAY()

These functions require no arguments, but they must still be followed by parentheses.

Let's add a new variable, which contains the current date, to the data set Hrd.Temp. To create this variable, write an
assignment statement such as the following:
 EditDate=date();

After this statement is added to a DATA step and the step is submitted, the data set that contains EditDate is created.
data hrd.newtemp;
 set hrd.temp;
 EditDate=date();
run;

Note For this example, the SAS date values shown below were created by submitting this program on January
15, 2000.

SAS Data Set Hrd.Newtemp

350

EndDate EditDate

14621 14624

14565 14624

14608 14624

Remember, to display these SAS date values in a different form, you can associate a SAS format with the values. For
example, the FORMAT statement below associates the DATE9. format with the variable EditDate. A portion of the output
that is created by this PROC PRINT step appears below.
proc print data=hrd.newtemp;
 format editdate date9.;
run;
EndDate EditDate

EndDate EditDate

14621 15JAN2000

14565 15JAN2000

14608 15JAN2000

The DATE and TODAY functions can also create a SAS date value from the current date.

ThisDate=date(); or ThisDate=today();

INTCK Function
The INTCK function returns the number of time intervals that occur in a given time span. You can use it to count the
passage of days, weeks, months, and so on.

General form, INTCK function:

INTCK('interval',from,to)

where
� 'interval' specifies a character constant or variable. The value must be one of the following:

DAY DTMONTH

WEEKDAY DTWEEK

WEEK HOUR

TENDAY MINUTE

SEMIMONTH SECOND

MONTH

QTR

SEMIYEAR

YEAR
� from specifies a SAS date, time, or datetime value that identifies the beginning of the time span.

351

� to specifies a SAS date, time, or datetime value that identifies the end of the time span.
Note The type of interval (date, time, or datetime) must match the type of value in from.

The INTCK function counts intervals from fixed interval beginnings, not in multiples of an interval unit from the from value.
Partial intervals are not counted. For example, WEEK intervals are counted by Sundays rather than seven-day multiples
from the from argument. MONTH intervals are counted by day 1 of each month, and YEAR intervals are counted from
01JAN, not in 365-day multiples.

Consider the results in the following table. The values that are assigned to the variables Weeks, Months, and Years are
based on consecutive days.

SAS Statement Value

Weeks = intck ('week','31 dec 2000'd,'01jan2001'd); 0

Months = intck ('month','31 dec 2000'd,'01jan2001'd); 1

Years = intck ('year','31 dec 2000'd,'01jan2001'd); 1

Because December 31, 2000, is a Sunday, no WEEK interval is crossed between that day and January 1, 2001. However,
both MONTH and YEAR intervals are crossed.

The following statement creates the variable Years and assigns it a value of 2. The INTCK function determines that 2 years
have elapsed between June 15, 1999, and June 15, 2001.
 Years=intck('year','15jun1999'd,'15jun2001'd);

Note As shown here, the from and to dates are often specified as date constants. A date constant is a date in
the form ddMMMyyyy in quotation marks followed by the character d.

Likewise, the following statement assigns the value 24 to the variable Months.
 Months=intck('month','15jun1999'd,'15jun2001'd);

However, the following statement assigns 0 to the variable Years,
even though 364 days have elapsed. In this case the YEAR boundary
(01JAN) is not crossed.
 Years=intck('year','01jan2002'd,'31dec2002'd);

Example: The INTCK Function
A common use of the INTCK function is to identify periodic events such as due dates and anniversaries.

The following program identifies mechanics whose 20th year of employment occurs in the current month. It uses the INTCK
function to compare the value of the variable Hired to the date on which the program is run.
data work.anniv20;
 set flights.mechanics
 (keep=id lastname firstname hired);
 Years=intck('year',hired,today());
 if years=20 and month(hired)=month(today());
proc print data=work.anniv20;

352

 title '20-Year Anniversaries This Month';
run;

The following output is created when the program is run in December 1999.
20-Year Anniversaries This Month

Obs ID LastName FirstName Hired Years

1 1403 BOWDEN EARL 24DEC79 20

2 1121 HERNANDEZ MICHAEL 10DEC79 20

3 1412 MURPHEY JOHN 08DEC79 20

INTNX Function
The INTNX function is similar to the INTCK function. The INTNX function applies multiples of a given interval to a date, time,
or datetime value and returns the resulting value. You can use the INTNX function to identify past or future days, weeks,
months, and so on.

General form, INTNX function:

INTNX('interval',start-from,increment<,'alignment'>)

where
� 'interval' specifies a character constant or variable
� start-from specifies a starting SAS date, time, or datetime value
� increment specifies a negative or positive integer that represents time intervals toward the past or future
� 'alignment' (optional) forces the alignment of the returned date to the beginning, middle, or end of the interval.

Note The type of interval (date, time, or datetime) must match the type of value in start-from and
increment.

When you specify date intervals, the value of the character constant or variable that is used in interval must be one of the
following:

DAY DTMONTH

WEEKDAY DTWEEK

WEEK HOUR

TENDAY MINUTE

SEMIMONTH SECOND

MONTH

QTRSEMIYEAR

YEAR

For example, the following statement creates the variable TargetYear and assigns it a SAS date value of 13515, which
corresponds to January 1, 1997.
 TargetYear=intnx('year','05feb94'd,3);

Likewise, the following statement assigns the value for the date July 1, 2001, to the variable TargetMonth.

353

 TargetMonth=intnx('semiyear','01jan2001'd,1);

As you know, SAS date values are based on the number of days since January 1, 1960. Yet the INTNX function can use
intervals of weeks, months, years, and so on. What day should be returned when these larger intervals are used?

That's the purpose of the optional alignment argument: it lets you specify whether the date value should be at the beginning,
middle, or end of the interval. When specifying date alignment in the INTNX function, use the following arguments or their
corresponding aliases:

BEGINNING B

MIDDLE M

END E

SAMEDAY S

The best way to understand the alignment argument is to see its effect on identical statements. The following table shows
the results of three INTNX statements that differ only in the value of alignment.

SAS Statement Date Value

MonthX=intnx('month','01jan95'd,5,'b'); 12935 (June 1, 1995)

MonthX=intnx('month','01jan95'd,5,'m'); 12949 (June 15, 1995)

MonthX=intnx('month','01jan95'd,5,'e'); 12964 (June 30, 1995)

These statements count five months from January, but the returned value depends on whether alignment specifies the
beginning, middle, or end day of the resulting month. If alignment is not specified, the beginning day is returned by default.

DATDIF and YRDIF Functions
The DATDIF and YRDIF functions calculate the difference in days and years between two SAS dates, respectively. Both
functions accept start dates and end dates that are specified as SAS date values. Also, both functions use a basis argument
that describes how SAS calculates the date difference.

General form, DATDIF and YRDIF functions:

DATDIF(start_date,end_date,basis)
YRDIF(start_date,end_date,basis)

where
� start_date specifies the starting date as a SAS date value
� end_date specifies the ending date as a SAS date value
� basis specifies a character constant or variable that describes how SAS calculates the date difference.

There are two character strings that are valid for basis in the DATDIF function and four character strings that are valid for
basis in the YRDIF function. These character strings and their meanings are listed in the table below.

Character String Meaning Valid In
DATDIF

Valid In YRDIF

'30/360' specifies a 30 day month and a 360 day year yes yes

354

Character String Meaning Valid In
DATDIF

Valid In YRDIF

'ACT/ACT' uses the actual number of days or years between
dates

yes yes

'ACT/360' uses the actual number of days between dates in
calculating the number of years (calculated by the
number of days divided by 360)

no yes

'ACT/365' uses the actual number of days between dates in
calculating the number of years (calculated by the
number of days divided by 365)

no yes

Modifying Character Values with Functions

Introduction to Modifying Character Values
This section teaches you how to use SAS functions to manipulate the values of character variables. After completing this
section, you will be able to
� replace the contents of a character value
� trim trailing blanks from a character value
� search a character value and extract a portion of the value
� convert a character value to uppercase or lowercase.

To begin, let's look at some of the modifications that need to be made to the character variables in Hrd.Temp. These
modifications include
� separating the values of one variable into multiple variables
SAS Data

Name LastName FirstName MiddleName

CICHOCK, ELIZABETH MARIE→ CICHOCK ELIZABETH MARIE

BENINCASA, HANNAH LEE → BENINCASA HANNAH LEE
� replacing a portion of a character variable's values
SAS Data

Phone Phone

6224549 → 4334549

6223251 → 4333251
� searching for a specific string within a variable's values.
SAS Data

Job

filing, administrative duties

bookkeeping, word processing, accounting

The character functions listed below can help you complete these tasks.

Function Purpose

355

Function Purpose

SCAN returns a specified word from a character value.

SUBSTR extracts a substring or replaces character values.

TRIM trims trailing blanks from character values.

CATX concatenates character strings, removes leading and trailing blanks, and inserts separators.

INDEX searches a character value for a specific string.

FIND searches for a specific substring of characters within a character string that you specify.

UPCASE converts all letters in a value to uppercase.

LOWCASE converts all letters in a value to lowercase.

PROPCASE converts all letters in a value to proper case.

TRANWRD replaces or removes all occurrences of a pattern of characters within a character string.

SCAN Function
The SCAN function enables you to separate a character value into words and to return a specified word. Let's look at the
following example to see how the SCAN function works.

The data set Hrd.Temp stores the names of temporary employees in the variable Name. The Name variable contains the
employees' first, middle, and last names.
SAS Data Set Hrd.Temp

Agency ID Name

Administrative Support, Inc. F274 CICHOCK, ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA, HANNAH LEE

However, suppose you want to separate the value of Name into three variables: one variable to store the first name, one to
store the middle name, and one to store the last name. You can use the SCAN function to create these new variables.
SAS Data Set Hrd.Temp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

Specifying Delimiters
The SCAN function uses delimiters, which are characters that are specified as word separators, to separate a character
string into words. For example, if you are working with the character string below and you specify the comma as a delimiter,
the SCAN function separates the string into three words.

356

Then the function returns whichever word you specify. In this example, if you specify the third word, the SCAN function
returns the word HIGH.

Here's another example. Once again, let's use the comma as a delimiter, and specify that the third word be returned.

209 RADCLIFFE ROAD, CENTER CITY, NY, 92716

In this example, the word returned by the SCAN function is NY.

Specifying Multiple Delimiters
When using the SCAN function, you can specify as many delimiters as needed to correctly separate the character
expression. When you specify multiple delimiters, SAS uses all of the delimiters as word separators. For example, if you
specify both the slash and the hyphen as delimiters, the SCAN function separates the following text string into three words:

The SCAN function treats two or more contiguous delimiters, such as the parenthesis and slash below, as one delimiter.
Also, leading delimiters have no effect.

Default Delimiters
If you do not specify delimiters when using the SCAN function, default delimiters are used. The default delimiters are
 blank . < (+ | & ! $ *) ; ^ - / , %

SYNTAX
Now that you are familiar with how the SCAN function works, let's examine the syntax of the function.

General form, SCAN function:

SCAN(argument,n,delimiters)

where
� argument specifies the character variable or expression to scan
� n specifies which word to read
� delimiters are special characters that must be enclosed in single quotation marks (' ').

Use the SCAN function to create your new name variables for Hrd.Temp. To begin, examine the values of the existing
Name variable to determine which characters separate the names in the values. Notice that blanks and commas appear
between the names and that the employee's last name appears first, then the first name, and then the middle name.
SAS Data Set Hrd.Temp

Agency ID Name

Administrative Support, Inc. F274 CICHOCK, ELIZABETH MARIE

357

SAS Data Set Hrd.Temp

Agency ID Name

Administrative Support, Inc. F101 BENINCASA, HANNAH LEE

OD Consulting, Inc. F054 SHERE, BRIAN THOMAS

New Time Temps Agency F077 HODNOFF, RICHARD LEE

To create the LastName variable to store the employee's last name, you write an assignment statement that contains the
following SCAN function:
 LastName=scan(name,1,' ,');

Note that a blank and a comma are specified as delimiters. You can also write the function without listing delimiters,
because the blank and comma are default delimiters.
 LastName=scan(name,1);

The complete DATA step that is needed to create LastName, FirstName, and MiddleName appears below. Notice that
the original Name variable is dropped from the new data set.
data hrd.newtemp(drop=name);
 set hrd.temp;
 LastName=scan(name,1);
 FirstName=scan(name,2);
 MiddleName=scan(name,3);
run;

Specifying Variable Length
Note that the SCAN function assigns a length of 200 to each target variable. (Remember, a target variable is the variable
that receives the result of the function.) So, if you submit the DATA step above, the LastName, FirstName, and
MiddleName variables are each assigned a length of 200. This length is longer than necessary for these variables.

To save storage space, add a LENGTH statement to your DATA step, and specify an appropriate length for all three
variables. Because SAS sets the length of a new character variable the first time it is encountered in the DATA step, be sure
to place the LENGTH statement before the assignment statements that contain the SCAN function.
ata hrd.newtemp(drop=name);
 set hrd.temp;

length LastName FirstName MiddleName $ 10;

 lastname=scan(name,1);
 firstname=scan(name,2);
 middlename=scan(name,3);
run;

SUBSTR Function
The SUBSTR function can be used to
� extract a portion of a character value
� replace the contents of a character value.

358

Let's begin with the task of extracting a portion of a value. In the data set Hrd.Newtemp, the names of temporary
employees are stored in three name variables: LastName, FirstName, and MiddleName.
SAS Data Set Hrd.Newtemp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

OD Consulting, Inc. F054 SHERE BRIAN THOMAS

New Time Temps Agency F077 HODNOFF RICHARD LEE

However, suppose you want to modify the data set to store only the middle initial instead of the full middle name. To do so,
you must extract the first letter of the middle name values and assign these values to the new variable MiddleInitial.
SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

Administrative Support, Inc. F274 CICHOCK ELIZABETH M

Administrative Support, Inc. F101 BENINCASA HANNAH L

OD Consulting, Inc. F054 SHERE BRIAN T

New Time Temps Agency F077 HODNOFF RICHARD L

The SUBSTR function enables you to extract any number of characters from a character string, starting at a specified
position in the string.

General form, SUBSTR function:

SUBSTR(argument,position,<n>)

where
� argument specifies the character variable or expression to scan.
� position is the character position to start from.
� n specifies the number of characters to extract. If n is omitted, all remaining characters are included in the substring.

Using the SUBSTR function, you can extract the first letter of the MiddleName value to create the new variable
MiddleInitial.
SAS Data Set Hrd.Newtemp

Agency ID LastName FirstName MiddleName

Administrative Support, Inc. F274 CICHOCK ELIZABETH MARIE

Administrative Support, Inc. F101 BENINCASA HANNAH LEE

OD Consulting, Inc. F054 SHERE BRIAN THOMAS

New Time Temps Agency F077 HODNOFF RICHARD LEE

You write the SUBSTR function as:
 substr(middlename,1,1)

359

This function specifies that a character string be extracted from the value of MiddleName. The string to be extracted begins
in position 1 and contains one character. Then, you place this function in an assignment statement in your DATA step.
data work.newtemp(drop=middlename);
 set hrd.newtemp;
 MiddleInitial=substr(middlename,1,1);
run;

The new MiddleInitial variable is given the same length as MiddleName. The MiddleName variable is then dropped
from the new data set.
SAS Data Set Work.Newtemp

Agency ID LastName FirstName MiddleInitial

Administrative Support, Inc. F274 CICHOCK ELIZABETH M

Administrative Support, Inc. F101 BENINCASA HANNAH L

OD Consulting, Inc. F054 SHERE BRIAN T

New Time Temps Agency F077 HODNOFF RICHARD L

You can use the SUBSTR function to extract a substring from any character value if you know the position of the value.

Positioning the SUBSTR Function
SAS uses the SUBSTR function to extract a substring or to modify a variable's values, depending on the position of the
function in the assignment statement.

When the function is on the right side of an assignment statement, the function returns the requested string.
 MiddleInitial=substr(middlename,1,1);

But if you place the SUBSTR function on the left side of an assignment statement, the function is used to modify variable
values.
 substr(region,1,3)='NNW';

When the SUBSTR function modifies variable values, the right side of the assignment statement must specify the value to
place into the variable. For example, to replace the fourth and fifth characters of a variable named Test with the value 92,
you write the following assignment statement:
substr(test,4,2)='92';

Test Test
S7381K2 → S7392K2
S7381K7 → S7392K7

Replacing Text
There is a second use for the SUBSTR function. This function can also be used to replace the contents of a character
variable. For example, suppose the local phone exchange 622 was replaced by the exchange 433. You need to update the
character variable Phone in Hrd.Temp to reflect this change.
SAS Data Set Hrd.Temp

360

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL
HILL

NC 27514 9974749 14570 14608 40 26 208

RALEIGH NC 27612 6970450 14516 14527 15 10 80

You can use the SUBSTR function to complete this modification. The syntax of the SUBSTR function, when used to replace
a variable's values, is identical to the syntax for extracting a substring.
SUBSTR(argument,position,n)

However, in this case,
� the first argument specifies the character variable whose values are to be modified.
� the second argument specifies the position at which the replacement is to begin.
� the third argument specifies the number of characters to replace. If n is omitted, all remaining characters are

replaced.

Now let's use the SUBSTR function to replace the 622 exchange in the variable Phone. You begin by writing this
assignment statement:
data hrd.temp2;
 set hrd.temp;

substr(phone,1,3)='433';

run;

This statement specifies that the new exchange 433 should be placed in the variable Phone, starting at character position 1
and replacing three characters.
SAS Data Set Hrd.Temp

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 6224549 14567 14621 10 11 88

CARY NC 27513 6223251 14524 14565 8 25 200

CHAPEL
HILL

NC 27514 9974749 14570 14608 40 26 208

But executing this DATA step places the value 433 into all values of Phone. You only need to replace the values of Phone
that contain the 622 exchange. So, you add an assignment statement to the DATA step to extract the exchange from
Phone. Notice that the SUBSTR function is used on the right side of the assignment statement.
data hrd.temp2(drop=exchange);
 set hrd.temp;

Exchange=substr(phone,1,3);

 substr(phone,1,3)='433';
run;

Now the DATA step needs an IF-THEN statement to verify the value of the variable Exchange. If the exchange is 622, the
assignment statement executes to replace the value of Phone.

361

data hrd.temp2(drop=exchange);
 set hrd.temp;
 Exchange=substr(phone,1,3);

if exchange='622' then substr(phone,1,3)='433';
run;

After the DATA step is executed, the appropriate values of Phone contain the new exchange.
SAS Data Set Hrd.Temp2

City State Zip Phone StartDate EndDate PayRate Days Hours

CARY NC 27513 4334549 14567 14621 10 11 88

CARY NC 27513 4333251 14524 14565 8 25 200

CHAPEL
HILL

NC 27514 9974749 14570 14608 40 26 208

Once again, remember the rules for using the SUBSTR function. If the SUBSTR function is on the right side of an
assignment statement, the function extracts a substring.
 MiddleInitial=substr(middlename,1,1);

If the SUBSTR function is on the left side of an assignment statement, the function replaces the contents of a character
variable.
 substr(region,1,3)='NNW';

SCAN Function Compared with SUBSTR Function
The SCAN function is similar to the SUBSTR function. Let's briefly compare the two. Both the SCAN and SUBSTR functions
can extract a substring from a character value:
� SCAN extracts words within a value that is marked by delimiters.
� SUBSTR extracts a portion of a value by starting at a specified location.

The SUBSTR function is best used when you know the exact position of the substring that you want to extract from the
character value. The substring does not need to be marked by delimiters. For example, the first two characters of the
variable ID identify the class level of college students. The position of these characters does not vary within the values of
ID.
SAS Data

Name ID

Trentonson, Matthew Robert SO45467

Truell, Marcia Elizabeth SR32881

The SUBSTR function is the best choice to extract class level information from ID. By contrast, the SCAN function is best
used when
� you know the order of the words in the character value
� the starting position of the words varies
� the words are marked by some delimiter.

TRIM Function

362

The TRIM function enables you to remove trailing blanks from character values. To learn about the TRIM function, let's
modify the data set Hrd.Temp.

The data set Hrd.Temp contains four address variables: Address, City, State, and Zip.
SAS Data Set Hrd.Temp (Selected Variables)

Agency ID Name Address City State Zip Phone StartDate

Administrative
Support, Inc.

F274 CICHOCK,
ELIZABETH
MARIE

65 ELM
DR

CARY NC 27513 6224549 14567

Administrative
Support, Inc

F101 BENINCASA,
HANNAH
LEE

11 SUN
DR

CARY NC 27513 6223251 14524

You need to create one address variable that contains the values of the three variables Address, City, and Zip.
(Because all temporary employees are hired locally, the value of State does not need to be included in the new variable.)
SAS Data Set Hrd.NewTemp

Agency ID Name NewAddre
ss

Phone StartDa
te

EndDa
te

PayRa
te

Day
s

Hour
s

Administrati
ve Support,
Inc.

F27
4

CICHOCK,
ELIZABET
H MARIE

65 ELM
DR, CARY,
27513

62245
49

14567 14621 10 11 88

Administrati
ve Support,
Inc.

F10
1

BENINCAS
A,
HANNAH
LEE

11 SUN
DR, CARY,
27513

62232
51

14524 14565 8 25 200

Writing a DATA step to create this new variable is easy. You include an assignment statement that contains the
concatenation operator (||), as shown below.
data hrd.newtemp(drop=address city state zip);
 set hrd.temp;
 NewAddress=address||', '||city||', '||zip;
run;

The concatenation operator (||) enables you to concatenate character values. In this assignment statement, the character
values of Address, City, and Zip are concatenated with two character constants that consist of a comma and a blank.
The commas and blanks are needed to separate the street, city, and ZIP code values. The length of NewAddress is the
sum of the length of each variable and constant that is used to create the new variable. Notice that this DATA step drops the
original address variables from the new data set.

When the DATA step is executed, you notice that the values of NewAddress do not appear as expected. The values of the
new variable contain embedded blanks.
SAS Data Set Hrd.NewTemp

NewAddress

65 ELM DRIVE , CARY , 27513

11 SUN DRIVE , CARY , 27513

363

SAS Data Set Hrd.NewTemp

NewAddress

712 HARDWICK STREET , CHAPEL HILL , 27514

5372 WHITEBUD ROAD , RALEIGH , 27612

These blanks appear in the values of NewAddress because the values of the original address variables contained trailing
blanks. Whenever the value of a character variable does not match the length of the variable, SAS pads the value with
trailing blanks.

Address
length=32

City
length=15

Zip
length=5

65 ELM DRIVE··············· RALEIGH········ 27612

11 SUN DRIVE··············· DURHAM········· 27612

712 HARTWICK STREET········ CHAPEL HILL···· 27514

So, when the original address values are concatenated to create NewAddress, the trailing blanks in the original values are
included in the values of the new variable. The variable Zip is the only one that does not contain trailing blanks.

NewAddress
length=56

65 ELM DRIVE·················, RALEIGH········, 27612

11 SUN DRIVE·················, DURHAM·········, 27612

712 HARTWICK STREET··········, CHAPEL HILL····, 27514

The TRIM function enables you to remove trailing blanks from character values.

General form, TRIM function:

TRIM(argument)

where argument can be any character expression, such as
� a character variable: trim(address)
� another character function: trim(left(id)).

To remove the blanks from the variable NewAddress, include the TRIM function in your assignment statement. Trim the
values of Address and City.
data hrd.newtemp(drop=address city state zip);
 set hrd.temp;
 NewAddress=trim(address)||', '||trim(city)||', '||zip;
run;

The revised DATA step creates the values that you expect for NewAddress.
SAS Data Set Hrd.Newtemp

364

NewAddress

65 ELM DRIVE, CARY, 27513

11 SUN DRIVE, CARY, 27513

712 HARDWICK STREET, CHAPEL HILL, 27514

5372 WHITEBUD ROAD, RALEIGH, 27612

Points to Remember
Keep in mind that the TRIM function does not affect how a variable is stored. Suppose you trim the values of a variable and
then assign these values to a new variable. The trimmed values are padded with trailing blanks again if the values are
shorter than the length of the new variable.

Here's an example. In the DATA step below, the trimmed value of Address is assigned to the new variable Street. When
the trimmed value is assigned to Street, trailing blanks are added to the value to match the length of 20.
data temp;
 set hrd.temp;
 length Street $ 20;
 Street=trim(address);
run;

Address
length=32

Street
length=20

65 ELM DRIVE·················· 65 ELM DRIVE········

11 SUN DRIVE·················· 11 SUN DRIVE········

712 HARTWICK STREET··········· 712 HARTWICK STREET·

CATX Function
The CATX function enables you to concatenate character strings, remove leading and trailing blanks, and insert separators.
The CATX function returns a value to a variable, or returns a value to a temporary buffer. The results of the CATX function
are usually equivalent to those that are produced by a combination of the concatenation operator and the TRIM and LEFT
functions.

Remember that you learned to use the TRIM function along with the concatenation operator to create one address variable
that contains the values of the three variables Address, City, and Zip, and to remove extra blanks from the new values.
You used the DATA step shown below.
data hrd.newtemp(drop=address city state zip);
 set hrd.temp;
 NewAddress=trim(address)||', '||trim(city)||', '||zip;
run;

You can accomplish the same concatenation using only the CATX function.

General form, CATX function:

365

CATX(separator,string-1 <,...string-n>)

where
� separator specifies the character string that is used as a separator between concatenated strings
� string specifies a SAS character string.

You want to create the new variable NewAddress by concatenating the values of the Address, City, and Zip variables
from the data set Hrd.Temp. You want to strip excess blanks from the old variable values and separate the variable values
with a comma. The DATA step below uses the CATX function to create NewAddress.
data hrd.newtemp(drop=address city state zip);
 set hrd.temp;
 NewAddress=catx(', ',address,city,zip);
run;

The revised DATA step creates the values that you expect for NewAddress.
SAS Data Set Hrd.Newtemp

NewAddress

65 ELM DRIVE, CARY, 27513

11 SUN DRIVE, CARY, 27513

712 HARDWICK STREET, CHAPEL HILL, 27514

5372 WHITEBUD ROAD, RALEIGH, 27612

INDEX Function
The INDEX function enables you to search a character value for a specified string. The INDEX function searches values
from left to right, looking for the first occurrence of the string. It returns the position of the string's first character; if the string
is not found, it returns a value of 0.

Suppose you need to search the values of the variable Job, which lists job skills. You want to create a data set that contains
the names of all temporary employees who have word processing experience.
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

The INDEX function can complete this search.

General form, INDEX function:

INDEX(source,excerpt)

where
� source specifies the character variable or expression to search

366

� excerpt specifies a character string that is enclosed in quotation marks (' ').

To search for the occurrences of word processing in the values of the variable Job, you write the INDEX function as shown
below. Note that the character string is enclosed in quotation marks.
 index(job,'word processing')

Then, to create the new data set, include the INDEX function in a subsetting IF statement. Only those observations in which
the function locates the string and returns a value greater than 0 are written to the data set.
data hrd.datapool;
 set hrd.temp;
 if index(job,'word processing') > 0;
run;

Here's your data set that shows the temporary employees who have word processing experience.
SAS Data Set Hrd.Datapool

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

bookkeeping, word processing BOOKKEEPER AST BK 57

word processing, sec. work WORD PROCESSOR DP 95

bookkeeping, word processing BOOKKEEPER AST BK 44

word processing WORD PROCESSOR DP 59

word processing, sec. work WORD PROCESSOR PUB 38

word processing WORD PROCESSOR DP 44

word processing WORD PROCESSOR DP 90

Note that the INDEX function is case sensitive, so the character string that you are searching for must be specified exactly
as it is recorded in the data set. For example, the INDEX function shown below would not locate any employees who have
word processing experience.
 index(job,'WORD PROCESSING')
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

bookkeeping, word processing BOOKKEEPER ASST. BK 57

Finding a String Regardless of Case
To ensure that all occurrences of a character string are found, you can use the UPCASE or LOWCASE function with the
INDEX function. The UPCASE and LOWCASE functions enable you to convert variable values to uppercase or lowercase
letters. You can then specify the character string in the INDEX function accordingly.

367

 index(upcase(job),'WORD PROCESSING')
 index(lowcase(job),'word processing')

FIND Function
The FIND function enables you to search for a specific substring of characters within a character string that you specify. The
FIND function searches a string for the first occurrence of the substring, and returns the position of that substring. If the
substring is not found in the string, FIND returns a value of 0.

The FIND function is similar to the INDEX function. Remember that you used the INDEX function to search the values of the
variable Job in Hrd.Temp in order to create a data set that contains the names of all temporary employees who have word
processing experience.
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

You can also use the FIND function to complete this search.

General form, FIND function:

FIND(string,substring<,modifiers><,startpos>)

where
� string specifies a character constant, variable, or expression that will be searched for substrings
� substring is a character constant, variable, or expression that specifies the substring of characters to seach for in

string
� modifiers is a character constant, variable, or expression that specifies one or more modifiers
� startpos is an integer that specifies the position at which the search should start and the direction of the search.

Note If string or substring is a character literal, you must enclose it in quotation marks.

The modifiers argument enables you to specify one or more modifiers for the function, as listed below.
� The modifier i causes the FIND function to ignore character case during the search. If this modifier is not specified,

FIND searches for character substrings with the same case as the characters in substring.
� The modifier t trims trailing blanks from string and substring.

Note If the modifier is a constant, enclose it in quotation marks. Specify multiple constants in a single set of
quotation marks.

If startpos is not specified, FIND starts the search at the beginning of the string and searches the string from left to right. If
startpos is specified, the absolute value of startpos determines the position at which to start the search. The sign of startpos
determines the direction of the search. If startpos is positive, FIND searches from startpos to the right; and if startpos is
negative, FIND searches from startpos to the left.

368

Example
The values of the variable Job are all lowercase. Therefore, to search for the occurrence of word processing in the values of
the variable Job, you write the FIND function as shown below. Note that the character substring is enclosed in quotation
marks.
 find(job,'word processing','t')

Then, to create the new data set, include the FIND function in a subsetting IF statement. Only those observations in which
the function locates the string and returns a value greater than 0 are written to the data set.
data hrd.datapool;
 set hrd.temp;
 if find(job,'word processing','t') > 0;
run;

UPCASE Function
The UPCASE function converts all letters in a character expression to uppercase.

General form, UPCASE function:

UPCASE(argument)

where argument can be any SAS expression, such as a character variable or constant.

Let's use the UPCASE function to convert the values of a character variable in Hrd.Temp. The values of the variable Job
appear in lowercase letters.
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

bookkeeping, word processing BOOKKEEPER ASST. BK 57

To convert the values of Job to uppercase, you write the UPCASE function as follows:
 upcase(job)

Then place the function in an assignment statement in a DATA step.
data hrd.newtemp;
 set hrd.temp;
 Job=upcase(job);
run;

Here's the new data set that contains the converted values of Job.
SAS Data Set Hrd.Newtemp

369

Job Contact Dept Site

WORD PROCESSING WORD PROCESSOR DP 26

FILING, ADMINISTRATIVE DUTIES ADMIN. ASST. PURH 57

ORGANIZATIONAL DEV. SPECIALIST CONSULTANT PERS 34

BOOKKEEPING, WORD PROCESSING BOOKKEEPER ASST. BK 57

LOWCASE Function
The LOWCASE function converts all letters in a character expression to lowercase.

General form, LOWCASE function:

LOWCASE(argument)

where argument can be any SAS expression, such as a character variable or constant.

Here's an example of the LOWCASE function. In this example, the function converts the values of a variable named Title
to lowercase letters.
 lowcase(title)

Another example of the LOWCASE function is shown below. The assignment statement in this DATA step uses the
LOWCASE function to convert the values of the variable Contact to lowercase.
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

data hrd.newtemp;
 set hrd.temp;
 Contact=lowcase(contact);
run;

After this DATA step is executed, the new data set is created. Notice the converted values of the variable Contact.
SAS Data Set Hrd.Newtemp

Job Contact Dept Site

word processing word processor DP 26

filing, administrative duties admin. asst. PURH 57

organizational dev. specialist consultant PERS 34

370

PROPCASE Function
The PROPCASE function converts all words in an argument to proper case (so that the first letter in each word is
capitalized).

General form, PROPCASE function:

PROPCASE(argument<,delimiter(s)>)

where
� argument can be any SAS expression, such as a character variable or constant
� delimiter(s) specifies one or more delimiters that are enclosed in quotation marks. The default delimiters are blank,

forward slash, hyphen, open parenthesis, period, and tab.
Note If you specify delimiter(s), then the default delimiters are no longer in effect.

The PROPCASE function copies a character argument and converts all uppercase letters to lowercase letters. It then
converts to uppercase the first character of a word that is preceded by a delimiter. PROPCASE uses the default delimiters
unless you use the delimiter(s) argument.

Here's an example of the PROPCASE function. In this example, the function converts the values of a variable named
Title to proper case and uses the default delimiters.
 lowcase(title)

Another example of the PROPCASE function is shown below. The assignment statement in this DATA step uses the
PROPCASE function to convert the values of the variable Contact to proper case.
SAS Data Set Hrd.Temp

Job Contact Dept Site

word processing WORD PROCESSOR DP 26

filing, administrative duties ADMIN. ASST. PURH 57

organizational dev. specialist CONSULTANT PERS 34

data hrd.newtemp;
 set hrd.temp;
 Contact=propcase(contact);
run;

After this DATA step is executed, the new data set is created. Notice the converted values of the variable Contact.
SAS Data Set Hrd.Newtemp

Job Contact Dept Site

word processing Word Processor DP 26

filing, administrative duties Admin. Asst. PURH 57

organizational dev. specialist Consultant PERS 34

TRANWRD Function

371

The TRANWRD function replaces or removes all occurrences of a pattern of characters within a character string. The
translated characters can be located anywhere in the string.

General form, TRANWRD function:

TRANWRD(source,target,replacement)

where
� source specifies the source string that you want to translate
� target specifies the string that SAS searches for in source
� replacement specifies the string that replaces target.

Note target and replacement can be specified as variables or as character strings. If you specify character
strings, be sure to enclose the strings in quotation marks (' ' or " ").

You can use TRANWRD function to update variables in place. In this example, the function updates the values of Name by
changing every occurrence of the string Monroe to Manson.
 name=tranwrd(name,'Monroe','Manson')

Another example of the TRANWRD function is shown below. In this case, two assignment statements use the TRANWRD
function to change all occurrences of Miss or Mrs. to Ms.
SAS Data Set Work.Before

Name

Mrs. Millicent Garrett Fawcett

Miss Charlotte Despard

Mrs. Emmeline Pankhurst

Miss Sylvia Pankhurst

data work.after;
 set work.before;
 name=tranwrd(name,'Miss','Ms.');
 name=tranwrd(name,'Mrs.','Ms.');
run;

After this DATA step is executed, the new data set is created. Notice the changed strings within the variable Name.
SAS Data Set Work.After

Name

Ms. Millicent Garrett Fawcett

Ms. Charlotte Despard

Ms. Emmeline Pankhurst

Ms. Sylvia Pankhurst

Modifying Numeric Values with Functions

372

Introduction
You've seen how SAS functions can be used to
� convert between character and numeric variable values
� manipulate SAS date values
� modify values of character variables.

SAS provides additional functions to create or modify numeric values. These include arithmetic, financial, and probability
functions. There are far too many of these functions to explore them all in detail, but let's look at two examples.

INT Function
To return the integer portion of a numeric value, use the INT function. Any decimal portion of the INT function argument is
discarded.

General form, INT function:

INT(argument)

where argument is a numeric variable, constant, or expression.

The two data sets shown below give before-and-after views of values that are truncated by the INT function.

ROUND Function
To round values to the nearest specified unit, use the ROUND function.

General form, ROUND function:

ROUND(argument,round-off-unit)

where
� argument is a numeric variable, constant, or expression.
� round-off-unit is numeric and nonnegative.

If a round-off unit is not provided, a default value of 1 is used, and the argument is rounded to the nearest integer. The two
data sets shown below give before-and-after views of values that are modified by the ROUND function.

373

To learn more about SAS functions that modify numeric values, see the SAS documentation.

Nesting SAS Functions
Throughout this lesson, you've seen examples of individual functions. For example, in this assignment statement the SCAN
function selects the middle name (third word) from the variable Name:
 MiddleName=scan(name,3);

Then this assignment statement uses the SUBSTR function to select the first letter from the variable MiddleName:
 MiddleInitial=substr(MiddleName,1,1);

To write more efficient programs, however, you can nest functions as appropriate. For example, you can nest the SCAN
function within the SUBSTR function in an assignment statement to compute the value for MiddleInitial:
 MiddleInitial=substr(scan(name,3),1,1);

This example of nested numeric functions determines the number of years between June 15, 1999, and today:
 Years=intck('year','15jun1999'd,today());

Note You can nest any function as long as the function that is used as the argument meets the requirements
for the argument.

Summary

Text Summary

Using SAS Functions
SAS functions can be used to convert data and to manipulate the values of character variables. Functions are written by
specifying the function name, then its arguments in parentheses. Arguments can include variables, constants, or
expressions. Although arguments are typically separated by commas, they can also be specified as variable lists or arrays.

Automatic Character-to-Numeric Conversion
When character variables are used in a numeric context, SAS tries to convert the character values to numeric values.
Numeric context includes arithmetic operations, comparisons with numeric values, and assignment to previously defined
numeric variables. The original character values are not changed. The conversion creates temporary numeric values and
places a note in the SAS log.

Explicit Character-to-Numeric Conversion
The INPUT function provides direct, controlled conversion of character values to numeric values. When a character
variable is specified in a numeric informat, the INPUT function generates numeric values without placing a note in the SAS
log.

374

Automatic Numeric-to-Character Conversion
When numeric variables are used in a character context, SAS tries to convert the numeric values to character values.
Character context includes concatenation operations, use in functions that require character arguments, and assignment to
previously defined character variables. The original numeric values are not changed; the conversion creates temporary
character values and places a note in the SAS log.

Explicit Numeric-to-Character Conversion
The PUT function provides direct, controlled conversion of numeric values to character values. The format specified in a
PUT function must match the source, so use an appropriate numeric format to create the new character values. No note will
appear in the SAS log.

SAS Date and Time Values
SAS date values are stored as the number of days from January 1, 1960; time values are stored as the number of seconds
since midnight. These values can be displayed in a variety of forms by associating them with SAS formats.

YEAR, QTR, MONTH, and DAY Functions
To extract the year, quarter, month, or day value from a SAS date value, specify the YEAR, QTR, MONTH, or DAY function
followed by the SAS date value in parentheses. The YEAR function returns a four-digit number; QTR returns a value of 1, 2,
3, or 4; MONTH returns a number from 1 to 12; and DAY returns 1 to 31.

WEEKDAY Function
To extract the day of the week from a SAS date value, specify the function WEEKDAY followed by the SAS date value in
parentheses. The function returns a numeric value from 1 to 7, representing the day of the week.

MDY Function
To create a SAS date value for a month, day, and year, specify the MDY function followed by the date values. The result
can be displayed in several ways by applying a SAS date format. SAS interprets two-digit values according to the 100-year
span that is set by the YEARCUTOFF= system option. The default value of YEARCUTOFF= is 1920.

DATE and TODAY Functions
To convert the current date to a SAS date value, specify the DATE or TODAY function without arguments. The DATE and
TODAY functions can be used interchangeably.

INTCK Function
To count the number of time intervals that occur in a time span, use the INTCK function and specify the interval constant or
variable, the beginning date value, and the ending date value. The INTCK function counts intervals from fixed interval
beginnings, not in multiples of an interval unit. Partial intervals are not counted.

INTNX Function
To apply multiples of an interval to a date value, use the INTNX function and specify the interval constant or variable, the
start-from date value, and the increment. Include the alignment option to specify whether the date returned should be at the
beginning, middle, or end of the interval.

375

DATDIF and YRDIF Functions
To calculate the difference between dates as a number of days or as a number of years, use the DATDIF or YRDIF
function. These functions accept SAS date values and return a difference between the date values calculated according to
the basis that you specify in the function.

SCAN Function
The SCAN function separates a character string to return a word based on its position. It defines words by counting
delimiters, which are characters that are used as word separators. The name of the function is followed, in parentheses, by
the name of the character variable, the number of delimiters to count, and the specified delimiters enclosed in quotation
marks.

SUBSTR Function
The SUBSTR function can be used to extract or replace any portion of a character string. To extract values, place the
function on the right side of an assignment statement and specify, in parentheses, the name of the character variable, the
starting character position, and the number of characters to extract. To replace values, place the function on the left side of
an assignment statement and specify, in parentheses, the name of the variable being modified, the starting character
position, and the number of characters to replace.

SCAN Function versus SUBSTR Function
Both the SCAN and SUBSTR functions can extract a substring from a character value. SCAN relies on delimiters, whereas
SUBSTR reads values from specified locations. Use SCAN when you know the delimiter and the order of words. Use
SUBSTR when the positions of the characters don't vary.

TRIM Function
Because SAS pads the length of character values, unwanted spaces can sometimes appear after strings are concatenated.
To remove trailing blanks from character values, specify the TRIM function with the name of a character variable.
Remember that trimmed values will be padded with blanks again if they are shorter than the length of the new variable.

CATX Function
You can concatenate character strings, remove leading and trailing blanks, and insert separators in one step by using the
CATX function. The results of the CATX function are usually equivalent to those that are produced by a combination of the
concatenation operator and the TRIM and LEFT functions.

INDEX Function
To test character values for the presence of a string, use the INDEX function and specify, in parentheses, the name of the
variable and the string enclosed in quotation marks. The INDEX function can be used with an IF statement when you are
creating a data set. However, only those observations in which the function finds the string and returns a value greater than
0 are written to the new data set.

FIND Function
You can also use the FIND function to search for a specific substring of characters within a character string that you specify.
The FIND function is similar to the INDEX function, but the FIND function enables you to ignore character case in your
search and to trim trailing blanks. The FIND function can also begin the search at any position that you specify in the string.

376

UPCASE Function
The UPCASE function converts all letters in a character expression to uppercase. Include the function in an assignment
statement, and specify the variable name in parentheses.

LOWCASE Function
Uppercase letters in character values can be converted to lowercase by using the LOWCASE function. Include the function
in an assignment statement, and specify the variable name in parentheses.

PROPCASE Function
Character values can be converted to proper case by using the PROPCASE function. Include the function in an assignment
statement, and specify the variable name in parentheses. Remember that you can specify delimiters or use the default
delimiters.

TRANWRD Function
You can replace or remove patterns of characters in the values of character variables by using the TRANWRD function. Use
the function in an assignment statement, and specify the source, target, and replacement strings or variables in
parentheses.

INT Function
To return the integer portion of a numeric value, use the INT function. Any decimal portion of the INT function argument is
discarded.

ROUND Function
To round values to the nearest specified unit, use the ROUND function. If a round-off unit is not provided, the argument is
rounded to the nearest integer.

Nesting SAS Functions
To write more efficient programs, you can nest functions as appropriate. You can nest any functions as long as the
function that is used as the argument meets the requirements for the argument.

Points to Remember
� Even if a function doesn't require arguments, the function name must still be followed by parentheses.
� When specifying a variable list or an array as a function argument, be sure to precede the list or the array with the

word OF.
� To remember which function requires a format versus an informat, note that the INPUT function requires the

informat.
� If you specify an invalid date in the MDY function, a missing value is assigned to the target variable.
� The SCAN function treats contiguous delimiters as one delimiter; leading delimiters have no effect.
� When using the SCAN function, you can save storage space by adding a LENGTH statement to your DATA step to

set an appropriate length for your new variable(s). Place the LENGTH statement before the assignment statements that
contain the SCAN function.

� When the SUBSTR function is on the left side of an assignment statement, it replaces variable values. When
SUBSTR is on the right side of an assignment statement, it extracts variable values. The syntax of the function is the
same; only the placement of the function changes.

� The INDEX function is case sensitive. To ensure that all forms of a character string are found, use the UPCASE or
LOWCASE function with the INDEX function.

377

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which function calculates the average of the variables Var1, Var2, Var3, and Var4?
a. mean(var1,var4)
b. mean(var1-var4)
c. mean(of var1,var4)
d. mean(of var1-var4)

2. Within the data set Hrd.Temp, PayRate is a character variable and Hours is a numeric variable. What
happens when the following program is run?
data work.temp;
 set hrd.temp;
 Salary=payrate*hours;
run;

a. SAS converts the values of PayRate to numeric values. No message is written to the log.
b. SAS converts the values of PayRate to numeric values. A message is written to the log.
c. SAS converts the values of Hours to character values. No message is written to the log.
d. SAS converts the values of Hours to character values. A message is written to the log.

3. A typical value for the character variable Target is 123,456. Which statement correctly converts the
values of Target to numeric values when creating the variable TargetNo?

a. TargetNo=input(target,comma6.);
b. TargetNo=input(target,comma7.);
c. TargetNo=put(target,comma6.);
d. TargetNo=put(target,comma7.);

4. A typical value for the numeric variable SiteNum is 12.3. Which statement correctly converts the
values of SiteNum to character values when creating the variable Location?

a. Location=dept||'/'||input(sitenum,3.1);
b. Location=dept||'/'||input(sitenum,4.1);
c. Location=dept||'/'||put(sitenum,3.1);
d. Location=dept||'/'||put(sitenum,4.1);

5. Suppose the YEARCUTOFF= system option is set to 1920. Which MDY function creates the date value
for January 3, 2020?

a. MDY(1,3,20)
b. MDY(3,1,20)
c. MDY(1,3,2020)
d. MDY(3,1,2020)

6. The variable Address2 contains values such as Piscataway, NJ. How do you assign the two-letter
state abbreviations to a new variable named State?

a. State=scan(address2,2);
b. State=scan(address2,13,2);
c. State=substr(address2,2);
d. State=substr(address2,13,2);

378

7. The variable IDCode contains values such as 123FA and 321MB. The fourth character identifies sex.
How do you assign these character codes to a new variable named Sex?

a. Sex=scan(idcode,4);
b. Sex=scan(idcode,4,1);
c. Sex=substr(idcode,4);
d. Sex=substr(idcode,4,1);

8. Due to growth within the 919 area code, the telephone exchange 555 is being reassigned to the 920
area code. The data set Clients.Piedmont includes the variable Phone, which contains telephone
numbers in the form 919-555-1234. Which of the following programs will correctly change the values of
Phone?

a. data work.piedmont(drop=areacode exchange); set clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5,3); if areacode='919' and
exchange='555' then scan(phone,1,3)='920'; run;

b. data work.piedmont(drop=areacode exchange); set clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5,3); if areacode='919' and
exchange='555' then phone=scan('920',1,3); run;

c. data work.piedmont(drop=areacode exchange); set clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5,3); if areacode='919' and
exchange='555' then substr(phone,1,3)='920'; run;

d. data work.piedmont(drop=areacode exchange); set clients.piedmont;
Areacode=substr(phone,1,3); Exchange=substr(phone,5,3); if areacode='919' and
exchange='555' then phone=substr('920',1,3); run;

9. Suppose you need to create the variable FullName by concatenating the values of FirstName, which
contains first names, and LastName, which contains last names. What's the best way to remove extra
blanks between first names and last names?

a. data work.maillist; set retail.maillist; length FullName $ 40; fullname=trim firstname||'
'||lastname; run;

b. data work.maillist; set retail.maillist; length FullName $ 40; fullname=trim(firstname)||'
'||lastname; run;

c. data work.maillist; set retail.maillist; length FullName $ 40; fullname=trim(firstname)||'
'||trim(lastname);run;

d. data work.maillist; set retail.maillist; length FullName $ 40; fullname=trim(firstname||'
'||lastname); run;

10. Within the data set Furnitur.Bookcase, the variable Finish contains values such as
ash/cherry/teak/matte-black. Which of the following creates a subset of the data in which the values of
Finish contain the string walnut? Make the search for the string case-insensitive.

a. data work.bookcase; set furnitur.bookcase; if index(finish,walnut) = 0; run;
b. data work.bookcase; set furnitur.bookcase; if index(finish,'walnut') > 0; run;
c. data work.bookcase; set furnitur.bookcase; if index(lowcase(finish),walnut) = 0; run;
d. data work.bookcase; set furnitur.bookcase; if index(lowcase(finish),'walnut') > 0;run;

Answers

1. Correct answer: d

Use a variable list to specify a range of variables as the function argument. When specifying a variable list, be sure to
precede the list with the word OF. If you omit the word OF, the function argument might not be interpreted as expected.

2. Correct answer: b

379

When this DATA step is executed, SAS automatically converts the character values of PayRate to numeric values so
that the calculation can occur. Whenever data is automatically converted, a message is written to the SAS log stating
that the conversion has occurred.

3. Correct answer: b

You explicitly convert character values to numeric values by using the INPUT function. Be sure to select an informat
that can read the form of the values.

4. Correct answer: d

You explicitly convert numeric values to character values by using the PUT function. Be sure to select a format that can
read the form of the values.

5. Correct answer: c

Because the YEARCUTOFF= system option is set to 1920, SAS sees the two-digit year value 20 as 1920. Four-digit
year values are always read correctly

6. Correct answer: a

The SCAN function is used to extract words from a character value when you know the order of the words, when their
position varies, and when the words are marked by some delimiter. In this case, you don't need to specify delimiters,
because the blank and the comma are default delimiters.

7. Correct answer: d

The SUBSTR function is best used when you know the exact position of the substring to extract from the character
value. You specify the position to start from and the number of characters to extract.

8. Correct answer: c

The SUBSTR function replaces variable values if it is placed on the left side of an assignment statement. When placed
on the right side (as in Question 7), the function extracts a substring.

9. Correct answer: b

The TRIM function removes trailing blanks from character values. In this case, extra blanks must be removed from the
values of FirstName. Although answer c also works, the extra TRIM function for the variable LastName is
unnecessary. Because of the LENGTH statement, all values of FullName are padded to 40 characters.

10. Correct answer: d

Use the INDEX function in a subsetting IF statement, enclosing the character string in quotation marks. Only those
observations in which the function locates the string and returns a value greater than 0 are written to the data set.

380

Chapter 15: Generating Data with DO Loops

Overview

Introduction
You can execute SAS statements repeatedly by placing them in a DO loop. DO loops can execute any number of times in a
single iteration of the DATA step. Using DO loops enables you to write concise DATA steps that are easier to change and
debug.

For example, the DO loop in this program eliminates the need for 12 separate programming statements to calculate annual
earnings:
data finance.earnings;

 set finance.master;

 Earned=0;

do count=1 to 12;
earned+(amount+earned)*(rate/12);

end;
run;

You can also use DO loops to
� generate data

381

� conditionally execute statements
� read data.

This chapter shows you how to construct DO loops and how to include DO loops in your programs.

Objectives
In this chapter, you learn to

� construct a DO loop to perform repetitive calculations
� control the execution of a DO loop
� generate multiple observations in one iteration of the DATA step
� construct nested DO loops.

Constructing DO Loops

Introduction
DO loops process a group of statements repeatedly rather than once. This can greatly reduce the number of statements
required for a repetitive calculation. For example, these 12 Sum statements compute a company's annual earnings from
investments. Notice that all 12 statements are identical.
data finance.earnings;
 set finance.master;
 Earned=0;
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
 earned+(amount+earned)*(rate/12);
run;

Each Sum statement accumulates the calculated interest earned for an investment for one month. The variable Earned is
created in the DATA step to store the earned interest. The investment is compounded monthly, meaning that the value of
the earned interest is cumulative.

A DO loop enables you to achieve the same results with fewer statements. In this case, the Sum statement executes 12
times within the DO loop during each iteration of the DATA step.
data finance.earnings;
 set finance.master;
 Earned=0;

382

do count=1 to 12;

earned+(amount+earned)*(rate/12);

end;

run;

General Form of DO Loops
To construct a DO loop, you use the DO and END statements along with other SAS statements.

General form, simple iterative DO loop:

DO index-variable=start TO stop BY increment;
SAS statements
END;

where the start, stop, and increment values
� are set upon entry into the DO loop
� cannot be changed during the processing of the DO loop
� can be numbers, variables, or SAS expressions.

The END statement terminates the loop.
Note The value of the index variable can be changed within the loop.

When creating a DO loop with the iterative DO statement, you must specify an index variable. The index variable stores
the value of the current iteration of the DO loop. You can use any valid SAS name.
DO index-variable=start TO stop BY increment;

SAS statements

END;

Next, specify the conditions that execute the DO loop. A simple specification contains a start value, a stop value, and an
increment value for the DO loop.
DO index-variable=start TO stop BY increment;

SAS statements

END;

The start value specifies the initial value of the index variable.
DO index-variable=start TO stop BY increment;

SAS statements

END;

The TO clause specifies the stop value. The stop value is the last index value that executes the DO loop.
DO index-variable=start TO stop BY increment;

SAS statements

END;

383

The optional BY clause specifies an increment value for the index variable. Typically, you want the DO loop to increment by
1 for each iteration. If you do not specify a BY clause, the default increment value is 1.
DO index-variable=start TO stop BY increment;

SAS statements

END;

For example, the specification below increments the index variable by 1, resulting in quiz values of 1, 2, 3, 4, and 5:
 do quiz=1 to 5;

By contrast, the following specification increments the index variable by 2, resulting in rows values of 2, 4, 6, 8, 10, and 12:
 do rows=2 to 12 by 2;

DO Loop Execution
Using the form of the DO loop that was just presented, let's see how the DO loop executes in the DATA step. This example
calculates how much interest was earned each month for a one-year investment.
data finance.earnings;
 Amount=1000;
 Rate=.075/12;
 do month=1 to 12;
 Earned+(amount+earned)*(rate);
 end;
run;

This DATA step does not read data from an external source. When submitted, it compiles and then executes only once to
generate data. During compilation, the program data vector is created for the Finance.Earnings data set.

When the DATA step executes, the values of Amount and Rate are assigned.

Next, the DO loop executes. During each execution of the DO loop, the value of Earned is calculated and is added to its
previous value; then the value of month is incremented. On the twelfth execution of the DO loop, the program data vector
looks like this:

After the twelfth execution of the DO loop, the value of month is incremented to 13. Because 13 exceeds the stop value of
the iterative DO statement, the DO loop stops executing, and processing continues to the next DATA step statement. The

384

end of the DATA step is reached, the values are written to the Finance.Earnings data set, and in this example, the DATA
step ends. Only one observation is written to the data set.
SAS Data Set Finance.Earnings

Amount Rate month Earned

1000 0.00625 13 77.6326

Notice that the index variable month is also stored in the data set. In most cases, the index variable is needed only for
processing the DO loop and can be dropped from the data set.

Counting Iterations of DO Loops
In some cases, it is useful to create an index variable to count and store the number of iterations in the DO loop. Then you
can drop the index variable from the data set.
data work.earn (drop=counter);
 Value=2000;
 do counter=1 to 20;
 Interest=value*.075;
 value+interest;
 Year+1;
 end;
run;
SAS Data Set Work.Earn

Value Interest Year

8495.70 592.723 20

The Sum statement Year+1 accumulates the number of iterations of the DO loop and stores the total in the new variable
Year. The final value of Year is then stored in the data set, whereas the index variable counter is dropped. The data set
has one observation.

Explicit OUTPUT Statements
To create an observation for each iteration of the DO loop, place an OUTPUT statement inside the loop. By default, every
DATA step contains an implicit OUTPUT statement at the end of the step. But placing an explicit OUTPUT statement in a
DATA step overrides automatic output, causing SAS to add an observation to the data set only when the explicit OUTPUT
statement is executed.

The previous example created one observation because it used automatic output at the end of the DATA step. In the
following example, the OUTPUT statement overrides automatic output, so the DATA step writes 20 observations.
data work.earn;
 Value=2000;
 do Year=1 to 20;
 Interest=value*.075;
 value+interest;

output;

 end;

385

run;
SAS Data Set Work.Earn
(Partial Listing)

Value Year Interest

2150.00 1 150.000

2311.25 2 161.250

2484.59 3 173.344

2670.94 4 186.345

2871.26 5 200.320

3086.60 6 215.344

3318.10 7 231.495

3566.96 8 248.857

...

8495.70 20 592.723

Decrementing DO Loops
You can decrement a DO loop's index variable by specifying a negative value for the BY clause. For example, the
specification in this iterative DO statement decreases the index variable by 1, resulting in values of 5, 4, 3, 2, and 1.
DO index-variable=5 to 1 by -1;

SAS statements

END;

When you use a negative BY clause value, the start value must always be greater than the stop value in order to decrease
the index variable during each iteration.
DO index-variable=5 to 1 by -1;

SAS statements

END;

Specifying a Series of Items
You can also specify how many times a DO loop executes by listing items in a series.

General form, DO loop with a variable list:

DO index-variable=value1, value2, value3...;
SAS statements
END;

where values can be character or numeric.

386

When the DO loop executes, it executes once for each item in the series. The index variable equals the value of the current
item. You must use commas to separate items in the series.

To list items in a series, you must specify either
� all numeric values
� DO index-variable=2,5,9,13,27;
� SAS statements

END;
� all character values, with each value enclosed in quotation marks
� DO index-variable='MON','TUE','WED','THR','FRI';
� SAS statements

END;
� all variable names—the index variable takes on the values of the specified variables.
� DO index-variable=win,place,show;
� SAS statements

END;

Variable names must represent either all numeric or all character values. Do not enclose variable names in quotation
marks.

Nesting DO Loops
Iterative DO statements can be executed within a DO loop. Putting a DO loop within a DO loop is called nesting.
do i=1 to 20;

SAS statements

do j=1 to 10;
SAS statements

end;
SAS statements

end;

The following DATA step computes the value of a one-year investment that earns 7.5% annual interest, compounded
monthly.
data work.earn;

 Capital=2000;

do month=1 to 12;
Interest=capital*(.075/12);
capital+interest;

end;
run;

Let's assume the same amount of capital is to be added to the investment each year for 20 years. The new program must
perform the calculation for each month during each of the 20 years. To do this, you can include the monthly calculations
within another DO loop that executes 20 times.
data work.earn;

387

do year=1 to 20;
 Capital+2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

end;
run;

During each iteration of the outside DO loop, an additional 2,000 is added to the capital, and the nested DO loop executes
12 times.
data work.earn;

 do year=1 to 20;

 Capital+2000;

do month=1 to 12;
 Interest=capital*(.075/12);

 capital+interest;

end;
 end;

run;

Remember, in order for nested DO loops to execute correctly, you must
� assign a unique index-variable name in each iterative DO statement.
� data work.earn;

� do year=1 to 20;
� Capital+2000;

� do month=1 to 12;
� Interest=capital*(.075/12);

� capital+interest;

� end;

� end;

run;
� end each DO loop with an END statement.
� data work.earn;

� do year=1 to 20;
� Capital+2000;

� do month=1 to 12;
� Interest=capital*(.075/12);

� capital+interest;

� end;
� end;

388

run;
Note It is easier to manage nested DO loops if you indent the statements in each DO loop as shown above.

Iteratively Processing Data That Is Read from a Data Set
So far you have seen examples of DATA steps that use DO loops to generate one or more observations from one iteration
of the DATA step. Now let's look at a DATA step that reads a data set to compute the value of a new variable.

The SAS data set Finance.CDRates, shown below, contains interest rates for certificates of deposit (CDs) that are
available from several institutions.
SAS Data Set Finance.CDRates

Institution Rate Years

MBNA America 0.0817 5

Metropolitan Bank 0.0814 3

Standard Pacific 0.0806 4

Suppose you want to compare how much each CD will earn at maturity with an investment of $5,000. The DATA step below
creates a new data set, Work.Compare, that contains the added variable, Investment.
data work.compare(drop=i);

 set finance.cdrates;

 Investment=5000;

 do i=1 to years;

 investment+rate*investment;

 end;

run;
SAS Data Set Work.Compare

Institution Rate Years Investment

The index variable is used only to execute the DO loop, so it is dropped from the new data set. Notice that the data set
variable Years is used as the stop value in the iterative DO statement. As a result, the DO loop executes the number of
times that are specified by the current value of Years. During the first iteration of the DATA step, for example, the DO loop
executes five times.

During each iteration of the DATA step,
� an observation is read from Finance.CDRates
� the value 5000 is assigned to the variable Investment
� the DO loop executes, based on the current value of Years
� the value of Investment is computed (each time that the DO loop executes), using the current value of Rate.

At the bottom of the DATA step, the first observation is written to the Work.Compare data set. Control returns to the top of
the DATA step, and the next observation is read from Finance.CDRates. These steps are repeated for each observation in
Finance.CDRates. The resulting data set contains the computed values of Investment for all observations that have been
read from Finance.CDRates.
SAS Data Set Work.Compare

Institution Rate Years Investment

389

SAS Data Set Work.Compare

Institution Rate Years Investment

MBNA America 0.0817 5 7404.64

Metropolitan Bank 0.0814 3 6323.09

Standard Pacific 0.0806 4 6817.57

Conditionally Executing DO Loops
The iterative DO statement requires that you specify the number of iterations for the DO loop. However, there are times
when you want to execute a DO loop until a condition is reached or while a condition exists, but you don't know how many
iterations are needed.

Suppose you want to calculate the number of years that are required for an investment to reach $50,000. In the DATA step
below, using an iterative DO statement is inappropriate because you are trying to determine the number of iterations
required for Capital to reach $50,000.
data work.invest;

 do year=1 to ? ;
 Capital+2000;

 capital+capital*.10;

 end;

run;

The DO WHILE and DO UNTIL statements enable you to execute DO loops based on whether a condition is true or false.

Using the DO UNTIL Statement
The DO UNTIL statement executes a DO loop until the expression is true.

General form, DO UNTIL statement:

DO UNTIL(expression);
more SAS statements
END;

where expression is a valid SAS expression enclosed in parentheses.

The expression is not evaluated until the bottom of the loop, so a DO UNTIL loop always executes at least once. When the
expression is evaluated as true, the DO loop is not executed again.

Assume you want to know how many years it will take to earn $50,000 if you deposit $2,000 each year into an account that
earns 10% interest. The DATA step that follows uses a DO UNTIL statement to perform the calculation until the value is
reached. Each iteration of the DO loop represents one year of earning.
data work.invest;

 do until(Capital>=50000);

 capital+2000;

390

 capital+capital*.10;

 Year+1;

 end;

run;

During each iteration of the DO loop,
� 2000 is added to the value of Capital to reflect the annual deposit of $2,000
� the value of Capital with 10% interest is calculated
� the value of Year is incremented by 1.

Because there is no index variable in the DO UNTIL statement, the variable Year is created in a Sum statement to count
the number of iterations of the DO loop. This program produces a data set that contains the single observation shown
below. To accumulate more than $50,000 in capital requires 13 years (and 13 iterations of the DO loop).
SAS Data Set Work.Invest

Capital Year

53949.97 13

Using the DO WHILE Statement
Like the DO UNTIL statement, the DO WHILE statement executes DO loops conditionally. You can use the DO WHILE
statement to execute a DO loop while the expression is true.

General form, DO WHILE statement:

DO WHILE(expression);
more SAS statements
END;

where expression is a valid SAS expression enclosed in parentheses.

An important difference between the DO UNTIL and DO WHILE statements is that the DO WHILE expression is evaluated
at the top of the DO loop. If the expression is false the first time it is evaluated, then the DO loop never executes. For
example, in the following program, if the value of Capital is less than 50,000, the DO loop does not execute.
data work.invest;

 do while(Capital>=50000);

 capital+2000;

 capital+capital*.10;

 Year+1;

 end;

run;

Using Conditional Clauses with the Iterative DO Statement
You have seen how the DO WHILE and DO UNTIL statements enable you to execute statements conditionally and how the
iterative DO statement enables you to execute statements a set number of times, unconditionally.

391

DO WHILE(expression);

DO UNTIL(expression);

DO index-variable=start TO stop BY increment;

Now let's look at a form of the iterative DO statement that combines features of both conditional and unconditional execution
of DO loops.

In this DATA step, the DO UNTIL statement determines how many years it takes (13) for an investment to reach $50,000.
data work.invest;

 do until(Capital>=50000);

 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;
SAS Data Set Work.Invest

Capital Year

53949.97 13

Suppose you also want to limit the number of years that you invest your capital to 10 years. You can add the UNTIL or
WHILE expression to an iterative DO statement to further control the number of iterations. This iterative DO statement
enables you to execute the DO loop until Capital is greater than or equal to 50000 or until the DO loop executes 10 times,
whichever occurs first.
data work.invest(drop=i);

do i=1 to 10 until(Capital>=50000);
 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;
SAS Data Set Work.Invest

Capital Year

35062.33 10

In this case, the DO loop stops executing after 10 iterations, and the value of Capital never reaches 50000. If you
increase the amount added to Capital each year to 4000, the DO loop stops executing after the eighth iteration when the
value of Capital exceeds 50000.
data work.invest(drop=i);

do i=1 to 10 until(Capital>=50000);
 Year+1;

capital+4000;
 capital+capital*.10;

 end;

392

run;
SAS Data Set Work.Invest

Capital Year

50317.91 8

The UNTIL and WHILE specifications in an iterative DO statement function similarly to the DO UNTIL and DO WHILE
statements. Both statements require a valid SAS expression enclosed in parentheses.

UNTIL(expression);
 DO index-variable=start TO stop BY increment WHILE(expression);

The UNTIL expression is evaluated at the bottom of the DO loop, so the DO loop always executes at least once. The
WHILE expression is evaluated before the execution of the DO loop. So, if the condition is not true, the DO loop never
executes.

Creating Samples
Because it performs iterative processing, a DO loop provides an easy way to draw sample observations from a data set. For
example, suppose you would like to sample every tenth observation of the 5,000 observations in Factory.Widgets. Start
with a simple DATA step:
data work.subset;

 set factory.widgets;

run;

You can create the sample data set by enclosing the SET statement in a DO loop. Use the start, stop, and increment values
to select every tenth observation of the 5,000. Add the POINT= option to the SET statement, setting the POINT= option
equal to the index variable that is used in the DO loop. (You learned about the POINT= option in Chapter 12, Reading SAS
Data Sets.)
data work.subset;

do sample=10 to 5000 by 10;
 set factory.widgets point=sample;

end;
run;

Remember that, in order to prevent continuous DATA step looping, you need to add a STOP statement when using the
POINT= option. Then, because the STOP statement prevents the output of observations at the end of the DATA step, you
also need to add an OUTPUT statement. Place the statement inside the DO loop in order to output each observation that is
selected. (If the OUTPUT statement were placed after the DO loop, only the last observation would be written.)
data work.subset;

 do sample=10 to 5000 by 10;

 set factory.widgets point=sample;

output;
 end;

stop;
run;

393

When the program runs, the DATA step reads the observations that are identified by the POINT= option in
Factory.Widgets. The values of the POINT= option are provided by the DO loop, which starts at 10 and goes to 5,000 in
increments of 10. The data set Work.Subset contains 500 observations.

Summary

Text Summary

Purpose of DO Loops
DO loops process groups of SAS statements repeatedly, reducing the number of statements that are required in repetitive
calculations.

Syntax of Iterative DO Loops
To construct an iterative DO loop, specify an index variable and the conditions that will execute the loop. These conditions
include a start value for the index variable, a stop value, and an increment value. Start, stop, and increment values can be
any number, numeric variable, or SAS expression that results in a number.

DO Loop Execution
During each iteration of a DO loop, new values are created in the SAS program data vector. When the loop's index value
exceeds the stop value, the DO loop stops, and processing continues with the following DATA step statement.

Counting DO Loop Iterations
A simple way to track DO loop iterations is to create a temporary counting variable, then drop this variable from the data set.
Or, include an OUTPUT statement within the DO loop to write an observation for each iteration. This overrides the
automatic generation of output at the end of the DATA step.

Decrementing DO Loops
You can decrement a DO loop by specifying a negative value for the BY clause. The start value must be greater than the
stop value.

Specifying a Series of Items
You can specify how many times a DO loop executes by listing items in a series; the DO loop will execute once for each
item, with the index variable equal to the value of each item. A series can consist of all numeric values, all character values
(enclosed in quotation marks), or all variable names (without quotation marks).

Nesting DO Loops
DO loops can run within DO loops, as long as you assign a unique index variable to each loop and terminate each DO loop
with its own END statement.

Iteratively Processing Data That Is Read from a Data Set
You can use a DO loop to read a data set and compute the value of a new variable. DO loop start and stop values, for
example, can be read from a data set.

394

Conditionally Executing DO Loops
The DO UNTIL statement executes a DO loop until a condition is true. Because the expression is not evaluated until the
bottom of the loop, a DO UNTIL loop will execute at least once. The DO WHILE statement is used to execute a DO loop
while a condition is true. Because the DO WHILE statement is evaluated at the top of the DO loop, if the expression is false
the first time it is evaluated, then the DO loop never executes.

Using Conditional Clauses within Iterative DO Statements
DO WHILE and DO UNTIL statements can be used within iterative DO loops to combine conditional and unconditional
execution.

Creating Samples
DO loops provide an easy way to create samples from other data sets. Enclose the SET statement in a DO loop, using the
start, stop, and increment values to select the observations. Add the POINT= option to the SET statement, setting it equal to
the index variable of the DO loop. Then add a STOP statement to prevent DATA step looping, and add an OUTPUT
statement to write DATA step output.

Points to Remember
� If you do not specify a BY clause, then the increment value for DO loops is 1.
� In most cases, the index variable is needed only for processing the DO loop and can be dropped from the data set.
� The index variable is always incremented by one value beyond the stop value unless you terminate the DO loop in

some other manner.
� It's easier to manage nested DO loops if you indent the statements in each loop.
� In order for nested DO loops to execute correctly, you must

o assign a unique index-variable name in each iterative DO statement
o end each DO loop with an END statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which statement is false regarding the use of DO loops?
a. They can contain conditional clauses.
b. They can generate multiple observations.
c. They can be used to combine DATA and PROC steps.
d. They can be used to read data.

2. During each execution of the following DO loop, the value of Earned is calculated and is added to its
previous value. How many times does this DO loop execute?
data finance.earnings;
 Amount=1000;
 Rate=.075/12;
 do month=1 to 12;
 Earned+(amount+earned)*rate;
 end;
run;

a. 0
b. 1

395

c. 12
d. 13

3. On January 1 of each year, $5,000 is invested in an account. Complete the DATA step below to
determine the value of the account after 15 years if a constant interest rate of 10% is expected.
data work.invest;

...
 Capital+5000;
 capital+(capital*.10);
 end;
run;

a. do count=1 to 15;
b. do count=1 to 15 by 10%;
c. do count=1 to capital;
d. do count=capital to (capital*.10);

4. In the data set Work.Invest, what would be the stored value for Year?
data work.invest;
 do year=1990 to 2004;
 Capital+5000;
 capital+(capital*.10);
 end;
run;

a. missing
b. 1990
c. 2004
d. 2005

5. Which of the following statements is false regarding the program shown below?
data work.invest;
 do year=1990 to 2004;
 Capital+5000;
 capital+(capital*.10);
 output;
 end;
run;

a. The OUTPUT statement writes current values to the data set immediately.
b. The stored value for Year is 2005.
c. The OUTPUT statement overrides the automatic output at the end of the DATA step.
d. The DO loop performs 15 iterations.

6. How many observations will the data set Work.Earn contain?
data work.earn;
 Value=2000;
 do year=1 to 20;
 Interest=value*.075;

396

 value+interest;
 output;
 end;
run;

a. 0
b. 1
c. 19
d. 20

7. Which of the following would you use to compare the result of investing $4,000 a year for five years in
three different banks that compound interest monthly? Assume a fixed rate for the five-year period.

a. DO WHILE statement
b. nested DO loops
c. DO UNTIL statement
d. a DO group

8. Which statement is false regarding DO UNTIL statements?
a. The condition is evaluated at the top of the loop, before the enclosed statements are executed.
b. The enclosed statements are always executed at least once.
c. SAS statements in the DO loop are executed until the specified condition is true.
d. The DO loop must have a closing END statement.

9. Select the DO WHILE statement that would generate the same result as the program below.
data work.invest;
capital=100000;
 do until(Capital gt 500000);
 Year+1;
 capital+(capital*.10);
 end;
run;

a. do while(Capital ge 500000);
b. do while(Capital=500000);
c. do while(Capital le 500000);
d. do while(Capital<500000);

10. In the following program, complete the statement so that the program stops generating observations
when Distance reaches 250 miles or when 10 gallons of fuel have been used.
data work.go250;
 set perm.cars;
 do gallons=1 to 10 ... ;
 Distance=gallons*mpg;
 output;
 end;
run;

a. while(Distance<250)
b. when(Distance>250)
c. over(Distance le 250)

397

d. until(Distance=250)

Answers

1. Correct answer: c

DO loops are DATA step statements and cannot be used in conjunction with PROC steps.

2. Correct answer: c

The number of iterations is determined by the DO statement’s stop value, which in this case is 12.

3. Correct answer: a

Use a DO loop to perform repetitive calculations starting at 1 and looping 15 times.

4. Correct answer: d

At the end of the fifteenth iteration of the DO loop, the value for Year is incremented to 2005. Because this value
exceeds the stop value, the DO loop ends. At the bottom of the DATA step, the current values are written to the data
set.

5. Correct answer: b

The OUTPUT statement overrides the automatic output at the end of the DATA step. On the last iteration of the DO
loop, the value of Year, 2004, is written to the data set.

6. Correct answer: d

The number of observations is based on the number of times the OUTPUT statement executes. The new data set has
20 observations, one for each iteration of the DO loop.

7. Correct answer: b

Place the monthly calculation in a DO loop within a DO loop that iterates once for each year. The DO WHILE and DO
UNTIL statements are not used here because the number of required iterations is fixed. A non-iterative DO group would
not be useful.

8. Correct answer: a

The DO UNTIL condition is evaluated at the bottom of the loop, so the enclosed statements are always executed at
least once.

9. Correct answer: c

Because the DO WHILE loop is evaluated at the top of the loop, you specify the condition that must exist in order to
execute the enclosed statements.

10. Correct answer: a

The WHILE expression causes the DO loop to stop executing when the value of Distance becomes equal to or greater
than 250.

398

Chapter 16: Processing Variables with Arrays

Overview

Introduction
In DATA step programming, you often need to perform the same action on more than one variable. Although you can
process variables individually, it is easier to handle them as a group. You can do this by using array processing.

For example, using an array and DO loop, the program below eliminates the need for 365 separate programming
statements to convert the daily temperature from Fahrenheit to Celsius for the year.
data work.report (drop=i);

 set master.temps;

array daytemp{365} day1-day365;

399

do i=1 to 365;
daytemp{i}=5*(daytemp{i}-32)/9;

end;
run;

You can use arrays to simplify the code needed to
� perform repetitive calculations
� create many variables that have the same attributes
� read data
� rotate SAS data sets by changing variables to observations or observations to variables
� compare variables
� perform a table lookup.

This chapter teaches you how to define an array and how to reference elements of the array in the DATA step.

Objectives
In this chapter, you learn to

� group variables into one- and two-dimensional arrays
� perform an action on array elements
� create new variables with an ARRAY statement
� assign initial values to array elements
� create temporary array elements with an ARRAY statement.

Creating One-Dimensional Arrays

Understanding SAS Arrays
A SAS array is a temporary grouping of SAS variables under a single name. An array exists only for the duration of the
DATA step.

One reason for using an array is to reduce the number of statements that are required for processing variables. For
example, in the DATA step below, the values of seven data set variables are converted from Fahrenheit to Celsius
temperatures.
data work.report;
 set master.temps;

mon=5*(mon-32)/9;
tue=5*(tue-32)/9;
wed=5*(wed-32)/9;
thr=5*(thr-32)/9;
fri=5*(fri-32)/9;
sat=5*(sat-32)/9;
sun=5*(sun-32)/9;

run;

400

As you can see, the assignment statements perform the same calculation on each variable in this series of statements. Only
the name of the variable changes in each statement.

By grouping the variables into a one-dimensional array, you can process the variables in a DO loop. You use fewer
statements, and the DATA step program is more easily modified or corrected.
data work.report(drop=i);
 set master.temps;

array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;
wkday{i}=5*(wkday{i}-32)/9;

 end;
run;

You will learn other uses for arrays in this chapter.

General Form of an Array
To group previously defined data set variables into an array, use an ARRAY statement.

General form, ARRAY statement:

ARRAY array-name{dimension} <elements>;

where
� array-name specifies the name of the array.
� dimension describes the number and arrangement of array elements. The default dimension is one.
� elements lists the variables to include in the array. Array elements must be either all numeric or all character. If no

elements are listed, new variables will be created with default names.
Warning Do not give an array the same name as a variable in the same DATA step. Also, avoid using the

name of a SAS function; the array will be correct, but you won't be able to use the function in the
same DATA step, and a warning message will appear in the SAS log.

Warning You cannot use array names in LABEL, FORMAT, DROP, KEEP, or LENGTH statements. Arrays
exist only for the duration of the DATA step. They do not become part of the output data set.

For example, in the data set Finance.Sales91, you might want to process the variables Qtr1, Qtr2, Qtr3, and Qtr4 in
the same way.
Description of Finance.Sales91

Variable Type Length

SalesRep char 8

Qtr1 num 8

Qtr2 num 8

Qtr3 num 8

Qtr4 num 8

401

Specifying the Array Name
To group the variables in the array, first give the array a name. In this example, make the array name sales.
 array sales{4} qtr1 qtr2 qtr3 qtr4;

Specifying the Dimension
Following the array name, you must specify the dimension of the array. The dimension describes the number and
arrangement of elements in the array. There are several ways to specify the dimension.
� In a one-dimensional array, you can simply specify the number of array elements. The array elements are the

existing variables that you want to reference and process elsewhere in the DATA step.
� array sales{4} qtr1 qtr2 qtr3 qtr4;
� The dimension of an array doesn't have to be the number of array elements. You can specify a range of values for

the dimension when you define the array. For example, you can define the array sales as follows:
array sales{96:99} totals96 totals97 totals98 totals99;

� You can also indicate the dimension of a one-dimensional array by using an asterisk (*). This way, SAS determines
the dimension of the array by counting the number of elements.
array sales{*} qtr1 qtr2 qtr3 qtr4;

� Enclose the dimension in either parentheses, braces, or brackets.
� ()

� array sales{4} qtr1 qtr2 qtr3 qtr4;
� []

Specifying Array Elements
When specifying the elements of an array, you can list each variable name that you want to include in the array. When
listing elements, separate each element with a space. As with all SAS statements, you end the ARRAY statement with a
semicolon (;).
 array sales{4} qtr1 qtr2 qtr3 qtr4;

You can also specify array elements as a variable list. Here is an example of an ARRAY statement that groups the
variables Qtr1 through Qtr4 into a one-dimensional array, using a variable list.
 array sales{4} qtr1-qtr4;

Let's look more closely at array elements that are specified as variable lists.

Variable Lists as Array Elements
You can specify variable lists in the forms shown below. Each type of variable list is explained in more detail following the
table.

Variables Form

a numbered range of variables Var1-Varn

all numeric variables _NUMERIC_

all character variables _CHARACTER_

all variables _ALL_

402

Specifying a Numbered Range of Variables
Qtr1 Qtr2 Qtr3 Qtr4 →→→→ Qtr1-Qtr4

When specifying a numbered range of variables,
� the variables must have the same name except for the last character or characters
� the last character of each variable must be numeric
� the variables must be numbered consecutively.
array sales{4} qtr1-qtr4;

In the preceding example, you would use sales{4} to reference Qtr4. However, the index of an array doesn't have to
range from one to the number of array elements. You can specify a range of values for the index when you define the array.
For example, you can define the array sales as follows:
array sales{96:99} totals96-totals99;

Specifying All Numeric Variables
Amount Rate Term → → → → _NUMERIC_

NUMERIC specifies all numeric variables that have already been defined in the current DATA step.
array sales{*} _numeric_;

Specifying All Character Variables
FrstName LastName Address → → → → _CHARACTER_

CHARACTER specifies all character variables that have already been defined in the current DATA step.
array sales{*} _character_;

Specifying All Variables
FrstName LastName Address Amount Rate Term → → → → _ALL_

ALL specifies all variables of the same type (all character or all numeric) that have been defined in the current DATA
step.
array sales{*} _all_;

Referencing Elements of an Array
Now let's look at some ways you can use arrays to process variables in the DATA step.
data work.report(drop=i);
 set master.temps;

array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;
 if wkday{i}>95 then output;
 end;
run;

403

data work.weights(drop=i);
 set master.class;

array wt{6} w1-w6;

 do i=1 to 6;
 wt{i}=wt{i}*2.2;
 end;
run;

data work.new(drop=i);
 set master.synyms;

array term{9} also1-also9;

 do i=1 to 9;
 if term{i} ne ' ' then output;
 end;
run;

The ability to reference the elements of an array by an index value is what gives arrays their power. Typically, arrays are
used with DO loops to process multiple variables and to perform repetitive calculations.
array quarter{4} jan apr jul oct;
do i=1 to 4;
 YearGoal=quarter{i}*1.2;
end;

When you define an array in a DATA step, an index value is assigned to each array element. The index values are assigned
in the order of the array elements.

1 2 3 4

array quarter{4} jan apr jul oct;
do i=1 to 4;
 YearGoal=quarter{i}*1.2;
end;

You use an array reference to perform an action on an array element during execution. To reference an array element in
the DATA step, specify the name of the array, followed by an index value enclosed in brackets.

General form, ARRAY reference:

array-name{index value}

where index value
� is enclosed in parentheses, braces, or brackets
� specifies an integer, a numeric variable, or a SAS numeric expression
� is within the lower and upper bounds of the dimension of the array.

404

When used in a DO loop, the index variable of the iterative DO statement can reference each element of the array.
array quarter {4} jan apr jul oct;
do i=1 to 4;
 YearGoal=qtr{i}*1.2;
end;

For example, the DO loop above increments the index variable i from the lower bound of the quarter array, 1, to the
upper bound, 4. The following sequence illustrates this process:

1

 array quarter{4} jan apr jul oct;
 do i=1 to 4;
 YearGoal=quarter{1}*1.2;
 end;

2

 array quarter{4} jan apr jul oct;
 do i=1 to 4;
 YearGoal=quarter{2}*1.2;
 end;

3

 array quarter{4} jan apr jul oct;
 do i=1 to 4;
 YearGoal=quarter{3}*1.2;
 end;

4

 array quarter{4} jan apr jul oct;
 do i=1 to 4;
 YearGoal=quarter{4}*1.2;
 end;

During each iteration of the DO loop, quarter{i} refers to an element of the array quarter in the order listed.

Compilation and Execution
Let's look at another example of a DATA step that contains an array with a DO loop.

The Health Center of a company conducts a fitness class for its employees. Each week, participants are weighed so that
they can monitor their progress. The weight data, currently stored in kilograms, needs to be converted to pounds.
SAS Data Set Hrd.Fitclass

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

405

SAS Data Set Hrd.Fitclass

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 69.6 68.9 68.8 67.4 66.0 66.2

Betsy 52.6 52.6 51.7 50.4 49.8 49.1

Brenda 68.6 67.6 67.0 66.4 65.8 65.2

Carl 67.6 66.6 66.0 65.4 64.8 64.2

Carmela 63.6 62.5 61.9 61.4 60.8 58.2

David 70.6 69.8 69.2 68.4 67.8 67.0

You can use a DO loop to update the variables Weight1 through Weight6 for each observation in the Hrd.Fitclass data
set.
data hrd.convert;
 set hrd.fitclass;
 array wt{6} weight1-weight6;

do i=1 to 6;

wt{i}=wt{i}*2.2046;

end;

run;
Note The wt{i} that appears on the right side of the equal sign (=) is an array reference, not a variable

name, so it does not violate the rule against having the same variable and array name in a DATA step.

To understand how the DO loop processes the array elements, let's examine the compilation and execution phases of this
DATA step.

During compilation, the program data vector is created for the Hrd.Convert data set.

The DATA step is scanned for syntax errors. If there are any syntax errors in the ARRAY statement, they are detected at
this time.

The index values of the array elements are assigned. Note that the array name and the array references are not included in
the program data vector. The array name and array references exist only for the duration of the DATA step.

During the first iteration of the DATA step, the first observation in Hrd.Fitclass is read into the program data vector.
data hrd.convert;
 set hrd.fitclass;
 array wt{6} weight1-weight6;
 do i=1 to 6;

wt{i}=wt{i}*2.2046;
 end;
run;

406

Because the ARRAY statement is a compile-time only statement, it is ignored during execution. The DO loop is executed
next.

During the first iteration of the DO loop, the index variable i is set to 1. As a result, the array reference wt{i} becomes
wt{1}. Because wt{1} refers to the first array element, Weight1, the value of Weight1 is converted from kilograms to
pounds.
data hrd.convert;
 set hrd.fitclass;
 array wt{6} weight1-weight6;

do i=1 to 6;

wt{i}=wt{i}*2.2046;

end;

run;

As the DATA step continues its DO loop iterations, the index variable i is changed from 1 to 2, 3, 4, 5, and 6, causing
Weight2 through Weight6 to receive new values in the program data vector, as shown below.

Using the DIM Function in an Iterative DO Statement
You can also use the DIM function to return the number of elements in the array. When using DO loops to process arrays,
you can use the DIM function in the TO clause of the iterative DO statement. For a one-dimensional array, specify the array
name as the argument for the DIM function.

General form, DIM function:

DIM(array-name)

where array-name specifies the array.

In this example, dim(wt) returns a value of 6.
data hrd.convert;
 set hrd.fitclass;
 array wt{*} weight1-weight6;
 do i=1 to dim(wt);
 wt{i}=wt{i}*2.2046;

407

 end;
run;

When you use the DIM function, you do not have to re-specify the stop value of an iterative DO statement if you change the
dimension of the array.
data hrd.convert; data hrd.convert;
 set hrd.fitclass; set hrd.fitclass;
 array wt{*} weight1-weight6; array wt{*} weight1-weight10;
 do i=1 to dim(wt); do i=1 to dim(wt) ;
 wt{i}=wt(i)*2.2046; wt{i}=wt{i}*2.2046;
 end; end;
run; run;

Expanding Your Use of Arrays

Creating Variables in an ARRAY Statement
So far you have learned several ways to reference existing variables in an ARRAY statement. You can also create
variables in an ARRAY statement by omitting the array elements from the statement. Because you are not referencing
existing variables, SAS automatically creates the variables for you and assigns default names to them.

General form, ARRAY statement to create new variables:

ARRAY array-name{dimension};

where
� array-name specifies the name of the array.
� dimension describes the number and arrangement of array elements. The default dimension is 1.

For example, suppose you need to calculate the weight gain or loss from week to week for each member of a fitness class,
as shown below.
SAS Data Set Hrd.Convert

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 153.4 151.9 151.7 148.6 145.5 145.9

Betsy 116.0 116.0 114.0 111.1 109.8 108.2

Brenda 151.2 149.0 147.7 146.4 145.1 143.7

Carl 149.0 146.8 145.5 144.2 142.9 141.5

Carmela 140.2 137.8 136.5 135.4 134.0 128.3

You'd like to create variables that contain this weekly difference. To perform the calculation, you first group the variables
Weight1 through Weight6 into an array.
data hrd.diff;
 set hrd.convert;

408

array wt{6} weight1-weight6;

Next, you want to create the new variables to store the differences between the six recorded weights. You can use an
additional ARRAY statement without elements to create the new variables.
data hrd.diff;
 set hrd.convert;
 array wt{6} weight1-weight6;

array WgtDiff{5};
SAS Data Set Hrd.Convert

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 153.4 <-1->151.9 <-2->151.7 <-3->148.6 <-4->145.5 <-5->145.9

Betsy 116.0 116.0 114.0 111.1 109.8 108.2

Brenda 151.2 149.0 147.7 146.4 145.1 143.7

Carl 149.0 146.8 145.5 144.2 142.9 141.5

Carmela 140.2 137.8 136.5 135.4 134.0 128.3

Remember, when creating variables in an ARRAY statement, you do not need to specify array elements as long as you
specify how many elements will be in the array.
 array WgtDiff{5};

Creating Default Variable Names
SAS creates default variable names by concatenating the array name and the numbers 1, 2, 3, and so on, up to the array
dimension.
 array WgtDiff{5};

 WgtDiff1 WgtDiff2 WgtDiff3 WgtDiff4 WgtDiff5
Note If you prefer, you can specify individual variable names. To specify variable names, you list each name as

an element of the array. The following ARRAY statement creates the numeric variables Oct12, Oct19,
Oct26, Nov02, and Nov09.

array WgtDiff{5} Oct12 Oct19 Oct26 Nov02 Nov09;

 array WgtDiff{5};

409

 Oct12 Oct19 Oct26 Nov02 Nov09

Creating Arrays of Character Variables
To create an array of character variables, add a dollar sign ($) after the array dimension.
 array firstname{5} $;

By default, all character variables that are created in an ARRAY statement are assigned a length of 8. You can assign your
own length by specifying the length after the dollar sign.
 array firstname{5} $ 24;

The length that you specify is automatically assigned to all variables that are created by the ARRAY statement.

Using an ARRAY Statement with an Iterative DO Statement
During the compilation of the DATA step, the variables that this ARRAY statement creates are added to the program data
vector and are stored in the resulting data set.
data hrd.diff;
 set hrd.convert;
 array wt{6} Weight1-Weight6;

array WgtDiff{5};

Warning When referencing the array elements, be careful not to confuse the array references WgtDiff{1}
through WgtDiff{5} (note the braces) with the variable names WgtDiff1 through WgtDiff5.
The program data vector below shows the relationship between the array references and the
corresponding variable names.

Now you can use a DO loop to calculate the differences between each of the recorded weights. Notice that each value of
WgtDiff{i} is calculated by subtracting wt{i}from wt(i+1). By manipulating the index variable, you can easily
reference any array element.
data hrd.diff;
 set hrd.convert;
 array wt{6} weight1-weight6;
 array WgtDiff{5};

do i=1 to 5;

410

wgtdiff{i}=wt{i+1}-wt{i};

end;

run;

A portion of the resulting data set is shown below.
SAS Data Set Hrd.Diff

Name WgtDiff1 WgtDiff2 WgtDiff3 WgtDiff4 WgtDiff5

Alicia -1.54322 -0.22046 -3.08644 -3.08644 0.44092

Betsy 0.00000 -1.98414 -2.86598 -1.32276 -1.54322

Brenda -2.20460 -1.32276 -1.32276 -1.32276 -1.32276

Assigning Initial Values to Arrays
Sometimes it is useful to assign initial values to elements of an array when you define the array.
 array goal{4} g1 g2 g3 g4 (initial values);

Here is an example:
 array goal{4} g1 g2 g3 g4 (9000 9300 9600 9900);

To assign initial values in an ARRAY statement,
� place the values after the array elements
� specify one initial value for each corresponding array element
� separate each value with a comma or blank
� enclose the initial values in parentheses.

Enclose each character value in quotation marks.
 array col{3} $ color1-color3 ('red','green','blue');

It's also possible to assign initial values to an array without specifying each array element. The following statement creates
the variables Var1, Var2, Var3, and Var4, and assigns them initial values of 1, 2, 3, and 4:
 array Var{4} (1 2 3 4);

For this example, assume that you have the task of comparing the actual sales figures in the Finance.Qsales data set to
the sales goals for each sales representative at the beginning of the year. The sales goals are not recorded in
Finance.Qsales.
Description of Finance.Qsales

Variable Type Length

SalesRep char 8

Sales1 num 8

Sales2 num 8

Sales3 num 8

Sales4 num 8

The DATA step below reads the Finance.Qsales data set to create the Finance.Report data set. The ARRAY statement
creates an array to process sales data for each quarter.

411

data finance.report;
 set finance.qsales;

array sale{4} sales1-sales4;

To compare the actual sales to the sales goals, you must create the variables for the sales goals and assign values to them.
data finance.report;
 set finance.qsales;
 array sale{4} sales1-sales4;

array Goal{4} (9000 9300 9600 9900);

A third ARRAY statement creates the variables Achieved1 through Achieved4 to store the comparison of actual sales
versus sales goals.
data finance.report;
 set finance.qsales;
 array sale{4} sales1-sales4;
 array Goal{4} (9000 9300 9600 9900);

array Achieved{4};

 do i=1 to 4;
 achieved{i}=100*sale{i}/goal{i};
 end;
run;

A DO loop executes four times to calculate the value of each element of the achieved array (expressed as a percentage).
data finance.report;
 set finance.qsales;
 array sale{4} sales1-sales4;
 array Goal{4} (9000 9300 9600 9900);
 array Achieved{4};

do i=1 to 4;

achieved{i}=100*sale{i}/goal{i};

end;

run;

Before submitting this DATA step, you can drop the index variable from the new data set by adding a DROP= option to the
DATA statement.
data finance.report(drop=i);
 set finance.qsales;
 array sale{4} sales1-sales4;
 array Goal{4} (9000 9300 9600 9900);
 array Achieved{4};
 do i=1 to 4;
 achieved{i}=100*sale{i}/goal{i};
 end;

412

run;

This is an example of a simple table-lookup program. The resulting data set contains the variables that were read from
Finance.Qsales, plus the eight variables that were created with ARRAY statements.
SAS Data Set Finance.Report

SalesRep Sales1 Sales2 Sales3 Sales4 Goal1 Goal2

Britt 8400 8800 9300 9800 9000 9300

Fruchten 9500 9300 9800 8900 9000 9300

Goodyear 9150 9200 9650 11000 9000 9300

Goal3 Goal4 Achieved1 Achieved2 Achieved3 Achieved4

9600 9900 93.333 94.624 96.875 98.990

9600 9900 105.556 100.000 102.083 89.899

9600 9900 101.667 98.925 100.521 111.111
Note Variables to which initial values are assigned in an ARRAY statement are

automatically retained.

The variables Goal1 through Goal4 should not be stored in the data set, because they are needed only to calculate the
values of Achieved1 through Achieved4. The next example shows you how to create temporary array elements.

Creating Temporary Array Elements
To create temporary array elements for DATA step processing without creating new variables, specify _TEMPORARY_
after the array name and dimension.
data finance.report;
 set finance.qsales;
 array sale{4} sales1-sales4;
 array goal{4} _temporary_ (9000 9300 9600 9900);
 array Achieved{4};
 do i=1 to 4;
 achieved{i}=100*sale{i}/goal{i};
 end;
run;

Temporary array elements do not appear in the resulting data set.
SAS Data Set Finance.Report

SalesRep Sales1 Sales2 Sales3 Sales4

Britt 8400 8800 9300 9800

Fruchten 9500 9300 9800 8900

Goodyear 9150 9200 9650 11000

Achieved1 Achieved2 Achieved3 Achieved4

413

Achieved1 Achieved2 Achieved3 Achieved4

93.333 94.624 96.875 98.990

105.556 100.000 102.083 89.899

101.667 98.925 100.521 111.111

Temporary array elements are useful when the array is needed only to perform a calculation. You can improve performance
time by using temporary array elements.

Understanding Multidimensional Arrays
So far you have learned how to group variables into one-dimensional arrays. You can also group variables into table-like
structures called multidimensional arrays. This section teaches you how to define and use two-dimensional arrays, which
are a common type of multidimensional array.

Suppose you want to write a DATA step to compare responses on a quiz to the correct answers. As long as there is only
one correct answer per question, this is a simple one-to-one comparison.

Resp1 → Answer1

Resp2 → Answer2

Resp3 → Answer3

Resp4 → Answer4

However, if there is more than one correct answer per question, you must compare each response to each possible correct
answer in order to determine whether there is a match.

Resp1 → Answer1 Answer2 Answer3

Resp2 → Answer4 Answer5 Answer6

Resp3 → Answer7 Answer8 Answer9

Resp4 → Answer10 Answer11 Answer12

You can process the above data more easily by grouping the Answer variables into a two-dimensional array. Think of a
one-dimensional array as a single row of variables, as in this example:
 Answer1 Answer2 Answer3 Answer4 ... Answer9 Answer10 Answer11 Answer12

And think of a two-dimensional array as multiple rows of variables, as in this example:

Answer1 Answer2 Answer3

Answer4 Answer5 Answer6

Answer7 Answer8 Answer9

Answer10 Answer11 Answer12

Defining a Multidimensional Array
To define a multidimensional array, you specify the number of elements in each dimension, separated by a comma. This
ARRAY statement defines a two-dimensional array:
 array new{3,4} x1-x12;

414

In a two-dimensional array, the two dimensions can be thought of as a table of rows and columns.
 array new{r,c} x1-x12;

The first dimension in the ARRAY statement specifies the number of rows.
 array new{3,4} x1-x12;

The second dimension specifies the number of columns.
 array new{3,4} x1-x12;

You can reference any element of the array by specifying the two dimensions. In the example below, you can perform an
action on the variable x7 by specifying the array reference new{2,3}. You can easily locate the array element in the table
by finding the row (2), then the column (3).
array new{3,4} x1-x12;
new{2,3}=0;

When you define a two-dimensional array, the array elements are grouped in the order in which they are listed in the
ARRAY statement. For example, the array elements x1 through x4 can be thought of as the first row of the table.
 array new{3,4} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

The elements x5 through x8 become the second row of the table, and so on.
 array new{3,4} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

415

Example: Referencing Elements of a Two-Dimensional Array
Multidimensional arrays are typically used with nested DO loops. The next example uses a one- dimensional array, a two-
dimensional array, and a nested DO loop to restructure a set of variables.

Your company's sales figures are stored by month in the SAS data set Finance.Monthly. Your task is to generate a new
data set of quarterly sales rather than monthly sales.
Description of Finance.Monthly

Variable Type Length

Year num 8

Month1 num 8

Month2 num 8

Month3 num 8

Month4 num 8

Month5 num 8

Month6 num 8

Month7 num 8

Month8 num 8

Month9 num 8

Month10 num 8

Month11 num 8

Month12 num 8

Defining the array m{4,3} puts the variables Month1 through Month12 into four groups of three months (yearly quarters).
Table Representation: of m Array

Month1 Month2 Month3

Month4 Month5 Month6

Month7 Month8 Month9

Month10 Month11 Month12

data finance.quarters;
 set finance.monthly;

array m{4,3} month1-month12;

Defining the array Qtr{4} creates the numeric variables Qtr1, Qtr2, Qtr3, Qtr4, which will be used to sum the sales
for each quarter.
data finance.quarters;
 set finance.monthly;
 array m{4,3} month1-month12;

array Qtr{4};

416

A nested DO loop is used to reference the values of the variables Month1 through Month12 and to calculate the values of
Qtr1 through Qtr4. Because the variables i and j are used only for loop processing, the DROP= option is used to exclude
them from the Finance.Quarters data set.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};

do i=1 to 4;

 qtr{i}=0;
do j=1 to 3;

 qtr{i}+m{i,j};
end;

end;

run;

Each element in the Qtr array represents the sum of one row in the m array. The number of elements in the Qtr array
should match the first dimension of the m array (that is, the number of rows in the m array). The first DO loop executes once
for each of the four elements of the Qtr array.

The assignment statement, qtr{i}=0, sets the value of qtr{i}to zero after each iteration of the first DO loop. Without the
assignment statement, the values of Qtr1, Qtr2, Qtr3, and Qtr4 would accumulate across iterations of the DATA step
due to the qtr{i}+m{i,j} Sum statement within the DO loop.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;

 array Qtr{4};
do i=1 to 4;

qtr{i}=0;

 do j=1 to 3;
 qtr{i}+m{i,j};
 end;

end;

run;

The second DO loop executes the same number of times as the second dimension of the m array (that is, the number of
columns in each row of the m array).
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
 do i=1 to 4;
 qtr{i}=0;

do j=1 to 3;

417

 qtr{i}+m{i,j};
end;

 end;
run;

To see how the nested DO loop processes these arrays, let's examine the execution of this DATA step.

When this DATA step is compiled, the program data vector is created. The PDV contains the variables Year, Month1
through Month12, and the new variables Qtr1 through Qtr4. (Only the beginning and ending portions of the program data
vector are represented here.)
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
 do i=1 to 4;
 qtr{i}=0;
 do j=1 to 3;
 qtr{i}+m{i,j};
 end;
 end;
run;

During the first execution of the DATA step, the values of the first observation of Finance.Monthly are read into the
program data vector. When the first DO loop executes the first time, the index variable i is set to 1.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};

> do i=1 to 4; i=1
 qtr{i}=0;
 do j=1 to 3;
 qtr{i}+m{i,j};
 end;
 end;
run;

During the first iteration of the nested DO loop, the value of Month1, which is referenced by m{i,j}, is added to Qtr1.
data finance.quarters(drop=i j);

418

 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
 do i=1 to 4; i=1
 qtr{i}=0;

> do j=1 to 3; j=1
 qtr{1}+m{1,1};
 end;
 end;
run;

During the second iteration of the nested DO loop, the value of Month2, which is referenced by m {i,j}, is added to
Qtr1.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
 do i=1 to 4; i=1
 qtr{i}=0;

> do j=1 to 3; j=2

 qtr{1}+m{1,2};
 end;

 end;
run;

The nested DO loop continues to execute until the index variable j exceeds the stop value, 3. When the nested DO loop
completes execution, the total sales for the first quarter, Qtr1, have been computed.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
 do i=1 to 4; i=1
 qtr{i}=0;

> do j=1 to 3; j=3

 qtr{1}+m{1,3};
 end;
 end;

419

run;

The outer DO loop increments i to 2, and the process continues for the array element Qtr2 and the m array elements
Month4 through Month6.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;

array Qtr{4};
> do i=1 to 4; i=2

 qtr{i}=0;
 do j=1 to 3; j=1
 qtr{i}+m{i,j};
 end;
 end;
run;

After the outer DO loop completes execution, the end of the DATA step is reached, and the variable values for the first
observation are written to the data set Finance.Quarters.
data finance.quarters(drop=i j);
 set finance.monthly;
 array m{4,3} month1-month12;
 array Qtr{4};
> do i=1 to 4; i=5 (loop ends)

 qtr{i}=0;
 do j=1 to 3;
 qtr{i}+m{i,j};
 end;
 end;
run;

What you have seen so far represents the first iteration of the DATA step. All observations in the data set Finance.Monthly
are processed in the same manner. Below is a portion of the resulting data set, which contains the sales figures grouped by
quarters.
SAS Data Set Finance.Quarters (Partial Listing)

Year Qtr1 Qtr2 Qtr3 Qtr4

1989 69100 64400 69200 71800

420

SAS Data Set Finance.Quarters (Partial Listing)

Year Qtr1 Qtr2 Qtr3 Qtr4

1990 73100 72000 83200 82800

1991 73400 81800 85200 87800

Additional Features
You've seen a number of uses for arrays, including creating variables, performing repetitive calculations, and performing
table lookups. You can also use arrays for rotating (transposing) a SAS data set.

When you rotate a SAS data set, you change variables to observations or observations to variables. For example, suppose
you want to rotate the Finance.Funddrive data set to create four output observations from each input observation.
SAS Data Set Finance.Funddrive

LastName Qtr1 Qtr2 Qtr3 Qtr4

ADAMS 18 18 20 20

ALEXANDE 15 18 15 10

APPLE 25 25 25 25

ARTHUR 10 25 20 30

AVERY 15 15 15 15

BAREFOOT 20 20 20 20

BAUCOM 25 20 20 30

BLAIR 10 10 5 10

BLALOCK 5 10 10 15

BOSTIC 20 25 30 25

BRADLEY 12 16 14 18

BRADY 20 20 20 20

BROWN 18 18 18 18

BRYANT 16 18 20 18

BURNETTE 10 10 10 10

CHEUNG 30 30 30 30

LEHMAN 20 20 20 20

VALADEZ 14 18 40 25

The following program rotates the data set and lists the first 16 observations in the new data set.
data work.rotate(drop=qtr1-qtr4);

 set finance.funddrive;

 array contrib{4} qtr1-qtr4;

 do Qtr=1 to 4;

421

 Amount=contrib{qtr};

 output;

 end;

run;

proc print data=rotate(obs=16) noobs;

run;

LastName Qtr Amount

ADAMS 1 18

ADAMS 2 18

ADAMS 3 20

ADAMS 4 20

ALEXANDER 1 15

ALEXANDER 2 18

ALEXANDER 3 15

ALEXANDER 4 10

APPLE 1 25

APPLE 2 25

APPLE 3 25

APPLE 4 25

ARTHUR 1 10

ARTHUR 2 25

ARTHUR 3 20

ARTHUR 4 30

Summary

Text Summary

Purpose of SAS Arrays
An array is a temporary grouping of variables under a single name. This can reduce the number of statements that are
needed to process variables and can simplify the maintenance of DATA step programs.

Defining an Array
To group previously defined data set variables into an array, use an ARRAY statement that specifies the array's name, its
dimension enclosed in braces, brackets, or parentheses, and the elements to include. For example: array sales{4}
qtr1 qtr2 qtr3 qtr4;

422

Variable Lists as Array Elements
You can use a variable list to specify array elements. Depending on the form of the variable list, it can specify all numeric
or all character variables, or a numbered range of variables.

Referencing Elements of an Array
When you define an array in a DATA step, an index value is assigned to each element. During execution, you can use an
array reference to perform actions on specific array elements. When used in a DO loop, for example, the index variable of
the iterative DO statement can reference each element of the array.

The DIM Function
When using DO loops to process arrays, you can also use the DIM function in the TO clause of the iterative DO statement.
When you use the DIM function, you do not have to re-specify the stop value of a DO statement if you change the
dimension of the array.

Creating Variables with the ARRAY Statement
If you don't specify array elements in an ARRAY statement, SAS automatically creates the variables for you by
concatenating the array name and the numbers 1, 2, 3... up to the array dimension. To create an array of character
variables, add a dollar sign ($) after the array dimension. By default, all character variables that are created with an ARRAY
statement are assigned a length of 8. However, you can specify a different length after the dollar sign.

Assigning Initial Values to Arrays
To assign initial values in an ARRAY statement, place the values in parentheses after the array elements, specifying one
initial value for each array element and separating each value with a comma or blank. To assign initial values to character
variables, enclose each value in quotation marks and separate the values with commas.

Creating Temporary Array Elements
You can create temporary array elements for DATA step processing without creating additional variables. Just specify
TEMPORARY after the array name and dimension. This is useful when the array is needed only to perform a calculation.

Multidimensional Arrays
To define a multidimensional array, specify the number of elements in each dimension, separated by a comma. For
example, array new{3,4} x1-x12; defines a two-dimensional array, with the first dimension specifying the number of
rows (3) and the second dimension specifying the number of columns (4).

Referencing Elements of a Two-Dimensional Array
Multidimensional arrays are typically used with nested DO loops. If a DO loop processes a two- dimensional array, you can
reference any element within the array by specifying the two dimensions.

Rotating Data Sets
You can use arrays to rotate a data set. Rotating a data set changes variables to observations or observations to variables.

Points to Remember
� A SAS array exists only for the duration of the DATA step.

423

� Do not give an array the same name as a variable in the same DATA step. Also, avoid using the name of a SAS
function as an array name—the array will be correct, but you won't be able to use the function in the same DATA step,
and a warning will be written to the SAS log.

� You can indicate the dimension of a one-dimensional array with an asterisk (*) as long as you specify the elements
of the array.

� When referencing array elements, be careful not to confuse variable names with the array references. WgtDiff1
through WgtDiff5 is not the same as WgtDiff{1} through WgtDiff{5}.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which statement is false regarding an ARRAY statement?
a. It is an executable statement.
b. It can be used to create variables.
c. It must contain either all numeric or all character elements.
d. It must be used to define an array before the array name can be referenced.

2. What belongs within the braces of this ARRAY statement?
array contrib{?} qtr1-qtr4;

a. quarter
b. quarter*
c. 1-4
d. 4

3. For the program below, select an iterative DO statement to process all elements in the contrib array.
data work.contrib;
 array contrib{4} qtr1-qtr4;

...
 contrib{i}=contrib{i}*1.25;
 end;
run;

a. do i=4;
b. do i=1 to 4;
c. do until i=4;
d. do while i le 4;

4. What is the value of the index variable that references Jul in the statements below?
array quarter{4} Jan Apr Jul Oct;
do i=1 to 4;
 yeargoal=quarter{i}*1.2;
end;

a. 1
b. 2
c. 3
d. 4

5. Which DO statement would not process all the elements in the factors array shown below?

424

 array factors{*} age height weight bloodpr;
a. do i=1 to dim(factors);
b. do i=1 to dim(*);
c. do i=1,2,3,4;
d. do i=1 to 4;

6. Which statement below is false regarding the use of arrays to create variables?
a. The variables are added to the program data vector during the compilation of the DATA step.
b. You do not need to specify the array elements in the ARRAY statement.
c. By default, all character variables are assigned a length of eight.
d. Only character variables can be created.

7. For the first observation, what is the value of diff{i} at the end of the second iteration of the DO
loop?

Weight1 Weight2 Weight3

192 200 215

137 130 125

220 210 213

array wt{*} weight1-weight10;
array diff{9};
do i=1 to 9;
 diff{i}=wt{i+1}-wt{i};
end;

a. 15
b. 10
c. 8
d. -7

8. Finish the ARRAY statement below to create temporary array elements that have initial values of 9000,
9300, 9600, and 9900.
 array goal{4} ... ;

a. _temporary_ (9000 9300 9600 9900)
b. temporary (9000 9300 9600 9900)
c. _temporary_ 9000 9300 9600 9900
d. (temporary) 9000 9300 9600 9900

9. Based on the ARRAY statement below, select the array reference for the array element q50.
 array ques{3,25} q1-q75;

a. ques{q50}
b. ques{1,50}
c. ques{2,25}
d. ques{3,0}

10. Select the ARRAY statement that defines the array in the following program.
data rainwear.coat;
 input category high1-high3 / low1-low3;

...

425

 do i=1 to 2;
 do j=1 to 3;
 compare{i,j}=round(compare{i,j}*1.12);
 end;
 end;
run;

a. array compare{1,6} high1-high3 low1-low3;
b. array compare{2,3} high1-high3 low1-low3;
c. array compare{3,2} high1-high3 low1-low3;
d. array compare{3,3} high1-high3 low1-low3;

Answers

1. Correct answer: a

An ARRAY statement is not an executable statement; it merely defines an array.

2. Correct answer: d

The value in braces indicates the number of elements in the array. In this case, there are four elements.

3. Correct answer: b

In the DO statement, you specify the index variable that represents the values of the array elements. Then specify the
start and stop positions of the array elements.

4. Correct answer: c

The index value represents the position of the array element. In this case, the third element is Jul.

5. Correct answer: b

To process all the elements in an array, you can either specify the array dimension or use the DIM function with the
array name as the argument.

6. Correct answer: d

Either numeric or character variables can be created by an ARRAY statement.

7. Correct answer: a

At the end of the second iteration, diff{i} resolves as follows:
diff{2}=wt{2+1}-wt{2};

diff{2}=215-200

8. Correct answer: a

To create temporary array elements, specify _TEMPORARY_ after the array name and dimension. Specify an initial value
for each element, separated by either blanks or commas, and enclose the values in parentheses.

426

9. Correct answer: c

This two-dimensional array would consist of three rows of 25 elements. The first row would contain q1 through q25, the
second row would start with q26 and end with q50, and the third row would start with q51 and end with q75.

10. Correct answer: b

The nested DO loops indicate that the array is named compare and is a two-dimensional array that has two rows and
three columns.

Chapter 17: Reading Raw Data in Fixed Fields

Overview

Introduction
Raw data can be organized in several ways.

This external file contains data that is arranged in columns or fixed fields. You can specify a beginning and ending column
for each field. However, this file contains nonstandard data, because one of the variable's values includes a special
character, the dollar sign ($).

This external file contains no special characters, but its data is free format, meaning that it is not arranged in columns.
Notice that the values for a particular field do not begin and end in the same columns.

How your data is organized and what type of data you have determine which input style you should use to read the data.
SAS provides three primary input styles—column input, formatted input, and list input. This chapter teaches you how to use
column input and formatted input to read standard and nonstandard data that is arranged in fixed fields.

Objectives

427

In this chapter, you learn to
� distinguish between standard and nonstandard numeric data
� read standard fixed-field data
� read nonstandard fixed-field data.

Review of Column Input

Introduction
In Chapter 5, Creating SAS Data Sets from Raw Data, you learned how to use column input to read raw data that is
stored in an external file.

You can use column input to read the values for Item, IDnum, InStock, and BackOrd from the raw data file that is
referenced by the fileref Invent.
input Item $ 1-13 IDnum $ 15-19 InStock 21-22

BackOrd 24-25;

Notice that the INPUT statement lists the variables with their corresponding column locations in order from left to right.
However, one of the features of column input is the ability to read fields in any order.

For example, you could have read the values for InStock and BackOrd before the values for Item and IDnum.
input InStock 21-22 BackOrd 24-25 Item $ 1-13

 IDnum $ 15-19;

When you print a report that is based on this data set, by default, the variables will be listed in the order in which they were
created.

InStock BackOrd Item IDnum

3 20 BIRD FEEDER LG088

6 12 GLASS MUGS SB082

12 6 GLASS TRAY BQ049

15 20 PADDED HANGRS MN256

23 0 JEWELRY BOX AJ498

9 12 RED APRON AQ072

27 0 CRYSTAL VASE AQ672

21 0 PICNIC BASKET LS930

428

Column Input Features
Column input has several features that make it useful for reading raw data.

� It can be used to read character variable values that contain embedded blanks.
� input Name $ 1-25;

� No placeholder is required for missing data. A blank field is read as missing and does not cause other fields to be
read incorrectly.

� input Item $ 1-13 IDnum $ 15-19

Instock 21-22 Backord 24-25;

� Fields or parts of fields can be re-read.
� input Item $ 1-13 IDnum $ 15-19 Supplier $ 15-16

 InStock 21-22 BackOrd 24-25;

� Fields do not have to be separated by blanks or other delimiters.
� input Item $ 1-13 IDnum $ 14-18 InStock 19-20
� BackOrd 21-22;

Identifying Standard and Nonstandard Numeric Data

Standard Numeric Data
Standard numeric data values can contain only
� numbers
� decimal points
� numbers in scientific, or E, notation (23E4)
� minus signs and plus signs.

Some examples of standard numeric data are 15, -15, 15.4, +.05, 1.54E3, and -1.54E-3.

429

Nonstandard Numeric Data
Nonstandard numeric data includes
� values that contain special characters, such as percent signs (%), dollar signs ($), and commas (,)
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

The external file that is referenced by the fileref Empdata contains the personnel information for the technical writing
department of a small computer manufacturer. The fields contain values for each employee's last name, first name, job title,
and annual salary.

Notice that the values for Salary contain commas. So, the values for Salary are considered to be nonstandard numeric
values.

Choosing an Input Style
Nonstandard data values require an input style that has more flexibility than column input.

You can use formatted input, which combines the features of column input with the ability to read both standard and
nonstandard data.

Whenever you encounter raw data that is organized into fixed fields, you can use
� column input to read standard data only
� formatted input to read both standard and nonstandard data.

Using Formatted Input

General Form of the INPUT Statement Using Formatted Input
Formatted input is a very powerful method for reading both standard and nonstandard data in fixed fields.

General form, INPUT statement using formatted input:

430

INPUT <pointer-control> variable informat.;

where
� pointer-control positions the input pointer on a specified column
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

In this chapter, you will learn to work with two column pointer controls.
� The @n moves the input pointer to a specific column number.
� The +n moves the input pointer forward to a column number that is relative to the current position.

Let's first take a look at the @n column pointer control.

Using the @n Column Pointer Control
The @n is an absolute pointer control that moves the input pointer to a specific column number. The @ moves the pointer to
column n, which is the first column of the field that is being read.

General form, INPUT statement using formatted input and the @n pointer control:

INPUT @n variable informat.;
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

Let's use the @n pointer control to locate variable values in the external file Empdata. As you can see, the values for
LastName begin in column 1. We could start with the @1 pointer control.
 input @1 LastName $7.

However, the default column pointer location is column 1, so you do not need to use a column pointer control to read the
first field.
 input LastName $7.

Next, the values for FirstName begin in column 9. To point to column 9, use an @ sign and the column number in the
INPUT statement:
 input LastName $7. @9 FirstName $5.

431

Note The $7. and $5. informats are explained later in this chapter.

Reading Columns in Any Order
Column pointer controls are very useful. For example, you can use the @n to move a pointer forward or backward when
reading a record.

In this INPUT statement, the value for FirstName is read first, starting in column 9.
 input @9 FirstName $5.

Now let's read the values for LastName, which begin in the first column. Here you must use the @n pointer control to move
the pointer back to column 1.
 input @9 FirstName $5. @1 LastName $7.

The rest of the INPUT statement specifies the column locations of the raw data value for JobTitle and Salary.
 input @9 FirstName $5. @1 LastName $7. @15 JobTitle 3.

@19 Salary comma9.;

Note The $5., $7., 3., and comma9. informats are explained later in this chapter.

The +n Pointer Control
The +n pointer control moves the input pointer forward to a column number that is relative to the current position. The +
moves the pointer forward n columns.

General form, INPUT statement using formatted input and the +n pointer control:

432

INPUT +n variable informat.;
� variable is the name of the variable that is being created
� informat is the special instruction that specifies how SAS reads raw data.

In order to count correctly, it is important to understand where the column pointer control is located after each data value is
read. Let's look at an example.

Suppose you want to read the data from Empdata in the following order: LastName, FirstName, Salary, JobTitle.
Like the @n pointer control, the default column location for the +n pointer control is column 1. Because the values for
LastName begin in column 1, a column pointer control is not needed.
 input LastName $7.

With formatted input, the column pointer control moves to the first column following the field that was just read. In this
example, after LastName is read, the pointer moves to column 8.

To start reading FirstName, which begins in column 9, you move the column pointer control ahead 1 column with +1.
 input LastName $7. +1 FirstName $5.

After reading FirstName, the column pointer moves to column 14. Now you want to skip over the values for JobTitle
and read the values for Salary, which begin in column 19. Move the column pointer ahead 5 columns from column 14.
 input LastName $7. +1 FirstName $5. +5 Salary comma9.

The last field to be read contains the values for JobTitle. You can use the @n column pointer control to return to column
15.
 input LastName $7. +1 FirstName $5. +5 Salary comma9.

@15 JobTitle 3.;

433

Note The $7., $5., comma9., and 3. informats are explained later in this chapter.

Note You can use the notation +(-n) to move the +n pointer control backward.

Info For more information about the +(-n) notation, see the SAS documentation.

Using Informats
Remember that the general form of the INPUT statement for formatted input is

INPUT <pointer-control> variable informat.;

An informat is an instruction that tells SAS how to read raw data. SAS provides many informats for reading standard and
nonstandard data values. Here is a small sample.

PERCENTw.d DATEw. NENGOw.

$BINARYw. DATETIMEw. PDw.d

$VARYINGw. HEXw. PERCENTw .

$w. JULIANw. TIMEw .

COMMAw.d MMDDYYw. w.d

Note that
� each informat contains a w value to indicate the width of the raw data field
� each informat also contains a period, which is a required delimiter
� for some informats, the optional d value specifies the number of implied decimal places
� informats for reading character data always begin with a dollar sign ($).

Info For a complete list of informats, see the SAS documentation.

Reading Character Values
The $w. informat enables you to read character data. The w represents the field width of the data value (the total number of
columns that contain the raw data field).

In the example below, the $ indicates that FirstName is a character variable, the 5 indicates a field width of five columns,
and a period ends the informat.
 input @9 FirstName $5.;

434

Reading Standard Numeric Data
The informat for reading standard numeric data is the w.d informat.

The w specifies the field width of the raw data value, the period serves as a delimiter, and the d optionally specifies the
number of implied decimal places for the value. The w.d informat ignores any specified d value if the data already contains a
decimal point.

For example, the raw data value that is shown below contains 6 digits (4 are decimals) and 1 decimal point. Therefore, the
w. informat requires a field width of only 7 to correctly read the raw data value.

Raw Data Value w. Informat Variable Value

34.0008 → 7.→ 34.0008

In the example that is shown below, the values for JobTitle in columns 15-17 contain only numbers. Remember that
standard numeric data values can contain only numbers, decimal points, scientific notation, and plus and minus signs.

A d value is not necessary to read the values for JobTitle. Simply move the column pointer control forward 7 spaces to
column 15, name the variable, and specify a field width of 3.
 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.;

Warning Remember to specify the period in the informat name. For example, if you omit the period in the
following INPUT statement, SAS assigns a length of 3 to JobTitle instead of reading JobTitle
with the 3. informat.
 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3;

Reading Nonstandard Numeric Data
The COMMAw.d informat is used to read numeric values and to remove embedded

� blanks

435

� commas
� dashes
� dollar signs
� percent signs
� right parentheses
� left parentheses, which are converted to minus signs.

The COMMAw.d informat has three parts:

1. the informat name COMMA

2 a value that specifies the width of the field to be read (including dollar signs, decimal places,
or other special characters), followed by a period

w.

3 an optional value that specifies the number of implied decimal places for a value (not
necessary if the value already contains decimal places).

d

In the example below, the values for Salary contain commas, which means that they are nonstandard numeric values.

The values for Salary begin in column 19, so use the @n or +n pointer control to point to column 19, and then name the
variable.
data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.

@19 Salary

Now add the COMMAw.d informat and specify the field width. The values end in column 27, so the field width is 9 columns.
Add a RUN statement to complete the DATA step.
data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.

@19 Salary comma9.;
run;

436

If you use PROC PRINT to display the data set, the commas are removed from the values for Salary in the resulting
output.
data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.

 @19 Salary comma9.;

run;

proc print data=perm.empinfo;
run;

Obs FirstName LastName JobTitle Salary

1 DONNY EVANS 112 29996.63

2 ALISA HELMS 105 18567.23

3 JOHN HIGGINS 111 25309.00

4 AMY LARSON 113 32696.78

5 MARY MOORE 112 28945.89

6 JASON POWELL 103 35099.50

7 JUDY RILEY 111 25309.00

Thus, the COMMAw.d informat does more than simply read the raw data values. It removes special characters such as
commas from numeric data and stores only numeric values in a SAS data set.

DATA Step Processing of Informats
Let's place our INPUT statement in a DATA step and submit it for processing. Remember that after the DATA step is
submitted, it is compiled and then executed.
data perm.empinfo;

 infile empdata;

input @9 FirstName $5. @1 LastName $7. +7 JobTitle 3.
@19 Salary comma9.;

run;

During the compile phase, the character variables in the program data vector are defined with the exact length that is
specified by the informat. But notice that the lengths that are defined for JobTitle and Salary in the program data vector
are different from the lengths that are specified by their informats.

437

Remember, by default, SAS stores numeric values (no matter how many digits the value contains) as floating-point numbers
in 8 bytes of storage. The length of a stored numeric variable is not affected by an informat's width nor by other column
specifications in an INPUT statement.

However, it is still necessary to specify the actual width of a raw data field in an INPUT statement. Otherwise, if you specify
a default field width of 8 for all numeric values, you'll get inappropriate variable values when the program executes.

In the following example, the values for JobTitle would contain embedded blanks, thus creating invalid numeric values.
data perm.empinfo;

 infile empdata;

 input @9 FirstName $5. @1 LastName $7.

 +7 JobTitle 8. @19 Salary comma8.;
run;

Note Remember that the w value of the informat represents the width of the field in the raw data file. The
values for JobTitle only have a width of 3 in the raw data file. However, because they are numeric
values, SAS stores them with a default length of 8.

Record Formats
The record format of an external file might affect how data is read with column input and formatted input. A record format
specifies how records are organized in a file.

In some operating environments, external files can have different types of record formats. Two common record formats are
fixed-length records and variable-length records.

Fixed-Length Records
External files that have a fixed-length record format have an end-of-record marker after a predetermined number of
columns. A typical record length is 80 columns.

438

Variable-Length Records
Files that have a variable-length record format have an end-of-record marker after the last field in each record.

As you can see, the length of each record varies.

Reading Variable-Length Records
When you are working with variable-length records that contain fixed-field data, you might have values that are shorter than
others or that are missing. This can cause problems when you try to read the raw data into your SAS data set.

For example, notice that the following INPUT statement specifies a field width of 8 columns for Receipts. In the third
record, the input pointer encounters an end-of-record marker before the 8th column.
 input Dept $ 1-11 @13 Receipts comma8.;

Note The asterisk symbolizes the end-of-record marker and is not part of the data.

The input pointer moves down to the next record in an attempt to find a value for Receipts. However, GRILL is a character
value, and Receipts is a numeric variable. Thus, an invalid data error occurs, and Receipts is set to missing.

The PAD Option
When you use column input or formatted input to read fixed-field data in variable-length records, you can avoid problems by
using the PAD option in the INFILE statement.The PAD option pads each record with blanks so that all data lines have the
same length.
 infile receipts pad;

439

The examples in this chapter have not required the PAD option. However, when you use column input or formatted input to
read fixed-field data in variable-length records, remember to determine whether or not you need to use the PAD option. For
more information about the PAD option, see the SAS documentation for your operating environment.

Warning The PAD option is useful only when missing data occurs at the end of a record and when SAS
encounters an end-of-record marker before the last field is completely read.

The default value of the maximum record length is determined by your operating environment. If you get unexpected results
when reading many variables, you might need to change the maximum record length by specifying the LRECL=option in
the INFILE statement. For more information about the LRECL= option, see the SAS documentation for your operating
environment.

Summary

Text Summary

Review of Column Input
When data is arranged in columns or fixed fields, you can use column input to read them. With column input, the beginning
and ending column are specified for each field. Character variables are identified by a dollar ($) sign.

Column input has several features:
� Fields can be read in any order.
� It can be used to read character variables that contain embedded blanks.
� No placeholder is required for missing data. A blank field is read as missing and does not cause other fields to be

read incorrectly.
� Fields or parts of fields can be re-read.
� Fields do not have to be separated by blanks or other delimiters.
� It can be used to read standard character and numeric data.

Identifying Nonstandard Numeric Data
Standard numeric data values are values that contain only numbers, scientific notation, decimal points, and plus and
minus signs. When numeric data contains characters such as commas or dollar signs, the data is considered to be
nonstandard.

Nonstandard numeric data includes
� values that contain special characters, such as percent signs, dollar signs, and commas
� date and time values
� data in fraction, integer binary, real binary, and hexadecimal forms.

Choosing an Input Style
SAS provides two input styles for reading data in fixed fields—column input and formatted input. You can use
� column input to read standard data only
� formatted input to read both standard and nonstandard data.

440

Using Formatted Input
Formatted input uses column pointer controls to position the input pointer on a specified column. A column pointer control is
optional when the first variable is in the first column.

The @n is an absolute pointer control that moves the input pointer to a specific column number. You can read columns in
any order with the @n column pointer control.

The +n is a relative pointer control that moves the input pointer forward to a column number that is relative to the current
position. The +n pointer control cannot move backward. However, you can use the notation +(-n) to move the pointer control
backward.

Using Informats
An informat tells SAS how to read raw data. There are informats for reading standard and nonstandard character values
and for reading standard and nonstandard numeric data values.

Informats always contain a w value to indicate the width of the raw data field. A period (.) ends the informat or separates the
w value from the optional d value, which specifies the number of implied decimal places.

Record Formats
A record format specifies how records are organized in a file. Some operating environments have different types of record
formats; the two most common are fixed-length records and variable-length records.

When you read variable-length records that contain fixed-field data into a SAS data set, there might be values that are
shorter than others or that are missing. The PAD option pads each record with blanks so that all data lines have the same
length.

Points to Remember
� When you use column input or formatted input, the input pointer stops on the column following the last column that

was read.
� When you use informats, you do not need to specify a d value if the data values already contain decimal places.
� Column input can be used to read standard character or standard numeric data only.
� Formatted input can be used to read both standard and nonstandard data.
� When reading variable-length records that contain fixed-field data, you can avoid problems by using the PAD option

in the INFILE statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which SAS statement correctly uses column input to read the values in the raw data file below in this
order: Address (4th field), SquareFeet (second field), Style (first field), Bedrooms (third field)?

a. input Address 15-29 SquareFeet 8-11 Style 1-6
b. Bedrooms 13;
c. input $ 15-29 Address 8-11 SquareFeet $ 1-6 Style

441

d. 13 Bedrooms;
e. input Address $ 15-29 SquareFeet 8-11 Style $ 1-6
f. Bedrooms 13;
g. input Address 15-29 $ SquareFeet 8-11 Style 1-6
h. $ Bedrooms 13;

2. Which is not an advantage of column input?
a. It can be used to read character variables that contain embedded blanks.
b. No placeholder is required for missing data.
c. Standard as well as nonstandard data values can be read.
d. Fields do not have to be separated by blanks or other delimiters.

3. Which is an example of standard numeric data?
a. -34.245
b. $24,234.25
c. 1/2
d. 50%

4. Formatted input can be used to read
a. standard free-format data
b. standard data in fixed fields
c. nonstandard data in fixed fields
d. both standard and nonstandard data in fixed fields

5. Which informat should you use to read the values in column 1-5?

a. w.
b. $w.
c. w.d
d. COMMAw.d

6. The COMMAw.d informat can be used to read which of the following values?
a. 12,805
b. $177.95
c. 18 %
d. all of the above

7. Which INPUT statement correctly reads the values for ModelNumber (first field) after the values for
Item (second field)? Both Item and ModelNumber are character variables.

a. input +7 Item $9. @1 ModelNumber $5.;
b. input +6 Item $9. @1 ModelNumber $5.;
c. input @7 Item $9. +1 ModelNumber $5.;
d. input @7 Item $9 @1 ModelNumber 5.;

442

8. Which INPUT statement correctly reads the numeric values for Cost (third field)?

a. input @17 Cost 7.2;
b. input @17 Cost 9.2.;
c. input @17 Cost comma7.;
d. input @17 Cost comma9.;

9. Which SAS statement correctly uses formatted input to read the values in this order: Item (first field),
UnitCost (second field), Quantity (third field)?

a. input @1 Item $9. +1 UnitCost comma6.
b. @18 Quantity 3.;
c. input Item $9. @11 UnitCost comma6.
d. @18 Quantity 3.;
e. input Item $9. +1 UnitCost comma6.
f. @18 Quantity 3.;
g. all of the above

10. Which raw data file requires the PAD option in the INFILE statement in order to correctly read the data
using either column input or formatted input?

a.

b.

c.

d.

443

Answers

1. Correct answer: c

Column input specifies the variable’s name, followed by a dollar ($) sign if the values are character values, and the
beginning and ending column locations of the raw data values.

2. Correct answer: c

Column input is useful for reading standard values only.

3. Correct answer: a

A standard numeric value can contain numbers, scientific notation, decimal points, and plus and minus signs.
Nonstandard numeric data includes values that contain fractions or special characters such as commas, dollar signs,
and percent signs.

4. Correct answer: d

Formatted input can be used to read both standard and nonstandard data in fixed fields.

5. Correct answer: b

The $w. informat enables you to read character data. The w represents the field width of the data value or the total
number of columns that contain the raw data field.

6. Correct answer: d

The COMMAw.d informat strips out special characters such as commas, dollar signs, and percent signs from numeric
data, and stores only numeric values in a SAS data set.

7. Correct answer: b

The +6 pointer control moves the input pointer to the beginning column of Item, and the values are read. Then the @1
pointer control returns to column 1, where the values for ModelNumber are located.

8. Correct answer: d

The values for Cost contain dollar signs and commas, so you must use the COMMAw.d informat. Counting the
numbers, dollar sign, comma, and decimal point, the field width is 9 columns. Because the data value contains decimal
places, a d value is not needed.

9. Correct answer: d

The default location of the column pointer control is column 1, so a column pointer control is optional for reading the first
field. You can use the @n or +n pointer controls to specify the beginning column of the other fields. You can use the $w.
informat to read the values for Item, the COMMAw.d informat for UnitCost, and the w.d informat for Quantity.

444

10. Correct answer: a

Use the PAD option in the INFILE statement to read variable-length records that contain fixed-field data. The PAD
option pads each record with blanks so that all data lines have the same length.

Chapter 18: Reading Free-Format Data

445

Overview

Introduction
As you learned in Chapter 17, Reading Raw Data in Fixed Fields, raw data can be organized in several ways.

This external file contains data that is arranged in columns, or fixed fields. You can specify a beginning and ending column
for each field.

By contrast, the following external file contains data that is free format, meaning data that is not arranged in columns.
Notice that the values for a particular field do not begin and end in the same columns.

In the previous chapter, you learned that how your data is organized determines which input style you should use to read
the data. SAS provides three primary input styles: column, formatted, and list input. Previously, you learned how to use
column input and formatted input. This chapter teaches you how to use list input to read free-format data that is not
arranged in fixed fields.

Objectives
In this chapter, you learn to use the INPUT statement with list input to read
� free-format data (data that is not organized in fixed fields)
� free-format data that is separated by nonblank delimiters, such as commas
� free-format data that contains missing values
� character values that exceed eight characters
� nonstandard free-format data
� character values that contain embedded blanks.

In addition, you learn how to mix column, formatted, and list input styles in a single INPUT statement.

Reading Free-Format Data
You have already worked with raw data that is in fixed fields. In doing so, you used column input to read standard data
values in fixed fields. You have also used formatted input to read both standard and nonstandard data in fixed fields.

Suppose you have raw data that is free format; that is, it is not arranged in fixed fields. The fields are often separated by
blanks or by some other delimiter, such as the pound sign (#) shown below. In this case, column input and formatted input

446

that you might have used before to read standard and nonstandard data in fixed fields will not enable you to read all of the
values in the raw data file.

Using List Input
List input is a powerful tool for reading both standard and nonstandard free-format data.

General form, INPUT statement using list input:

INPUT variable <$>;

where
� variable specifies the variable whose value the INPUT statement is to read
� $ specifies that the variable is a character variable.

Suppose you have an external data file like the one that follows. The file, which is referenced by the fileref Credit, contains
the results of a survey on the use of credit cards by males and females in the 18-39 age range.

You need to read the data values for
� gender
� age
� number of bank credit cards
� bank card use per month
� number of department store credit cards
� department store card use per month.

List input might be the easiest input style to use because, as shown in the INPUT statement below, you simply list the
variable names in the same order as the corresponding raw data fields. Remember to distinguish character variables from
numeric variables.

447

nput Gender $ Age Bankcard FreqBank Deptcard
 FreqDept;

Because list input, by default, does not specify column locations,
� all fields must be separated by at least one blank or other delimiter
� fields must be read in order from left to right
� you cannot skip or re-read fields.

Processing List Input
It's important to remember that list input causes SAS to scan the input lines for values rather than reading from specific
columns. When the INPUT statement is submitted for processing, the input pointer is positioned at column 1 of the raw data
file, as shown below.
data perm.survey;
 infile credit;

input Gender $ Age Bankcard FreqBank Deptcard

FreqDept;

run;

SAS reads the first field until it encounters a blank space. The blank space indicates the end of the field, and the data value
is assigned to the program data vector for the first variable in the INPUT statement.

Next, SAS scans the record until the next nonblank space is found, and the second value is read until another blank is
encountered. Then the value is assigned to its corresponding variable in the program data vector.

This process of scanning ahead to the next nonblank column, reading the data value until a blank is encountered, and
assigning the value to a variable in the program data vector continues until all the fields have been read and values have
been assigned to variables in the program data vector.

When the DATA step has finished executing, you can display the data set with the PRINT procedure. The code below
produces the output that follows.
 proc print data=perm.survey;
 run;
(Partial Output)

448

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0

7 MALE 25 2 9 2 1

Working with Delimiters
Most free-format data fields are clearly separated by blanks and are easy to imagine as variables and observations. But
fields can also be separated by other delimiters, such as commas, as shown below.

When characters other than blanks are used to separate the data values, you can tell SAS which field delimiter to use. Use
the DLM= option in the INFILE statement to specify a delimiter other than a blank (the default).

General form, DLM= option:

DLM=delimiter(s)

where delimiter(s) specifies a delimiter for list input in either of the following forms:
� 'list-of-delimiting-characters' specifies one or more characters (up to 200) to read as delimiters. The list of

characters must be enclosed in quotation marks.
� character-variable specifies a character variable whose value becomes the delimiter.

Example
The following program creates the output shown below.
data perm.survey;

449

infile credit dlm=',';

 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;
Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0

7 MALE 25 2 9 2 1

8 FEMALE 21 1 4 2 6

9 MALE 38 3 11 4 3

10 FEMALE 30 3 5 1 0
Warning The field delimiter must not be a character that occurs in a data value. For

example, this raw data file contains values for LastName and Salary. Notice that
the values for Salary contain commas.

If the field delimiter is also a comma, the fields are identified incorrectly, as shown below.

SAS Data Set

Obs LastName Salary

1 BROWN 24

2 JOHNSON 25

3 McABE 21
Note Later in this chapter, you'll learn how to work with data values that contain delimiters.

Reading a Range of Variables

450

When the variable values in the raw data file are sequential and are separated by a blank (or by another delimiter), you can
specify a range of variables in the INPUT statement. This is especially useful if your data contains similar variables, such as
the answers to a questionnaire.

For example, the following INPUT statement creates five new numeric variables and assigns them the names Ques1,
Ques2, Ques3, and so on. You can also specify a range in the VAR statement in the PROC PRINT step to list a range of
specific variables.

data survey.phone;
 infile survey;

input IDnum $ Ques1-Ques5;

run;
proc print data=survey.phone;

var ques1-ques3;

run;
Obs Ques1 Ques2 Ques3

1 23 94 56

2 26 55 49

3 33 99 54

4 71 33 22

5 88 49 29

If you are specifying a range of character variables, both the variable list and the $ sign must be enclosed in parentheses.
data survey.stores;
 infile stordata;
 input Age (Store1-Store3) ($);
run;
proc print data=survey.stores;
run;

Warning You can also specify a range of variables using formatted input. If you specify a range of variables
using formatted input, both the variable list and the format must be enclosed in parentheses,
regardless of the variable's type.

data test.scores;
 infile group3;
 input Age (Score1-Score4) (6.);
 run;

451

Limitations of List Input
In its default form, list input places several limitations on the types of data that can be read:
� Although the width of a field can be greater than eight columns, both character and numeric variables have a default

length of 8. Character values that are longer than eight characters will be truncated.
� Data must be in standard numeric or character format.
� Character values cannot contain embedded delimiters.
� Missing numeric and character values must be represented by a period or some other character.

Note There are ways to work around these limitations using modified list input, which will be discussed
later in this chapter.

Reading Missing Values

Reading Missing Values at the End of a Record
Suppose the third person represented in the raw data file below did not answer the questions about how many department
store credit cards she has and how often she uses them.

Because the missing values occur at the end of the record, you can use the MISSOVER option in the INFILE statement to
read the missing values at the end of the record. The MISSOVER option prevents SAS from going to another record if,
when using list input, it does not find values in the current line for all the INPUT statement variables. At the end of the
current record, values that are expected but not found are set to missing.

For the raw data file shown above, the MISSOVER option prevents the fields in the fourth record from being read as values
for Deptcard and FreqDept in the third observation. Note that Deptcard and FreqDept are set to missing.
data perm.survey;
 infile credit missover;
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;
Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 . .

452

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

6 MALE 21 1 5 0 0
Warning The MISSOVER option works only for missing values that occur at the end of the

record.

Reading Missing Values at the Beginning or Middle of a Record
Remember that the MISSOVER option works only for missing values that occur at the end of the record. A different method
is required when you are using list input to read raw data that contains missing values at the beginning or middle of a
record. Let's look at what happens when a missing value occurs at the beginning or middle of a record.

Suppose the value for Age is missing in the first record.

When the program below executes, each field in the raw data file is read one by one. The INPUT statement tells SAS to
read six data values from each record. However, the first record contains only five values.
data perm.survey;
 infile credit dlm=',';
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;

The two commas in the first record are interpreted as one delimiter. The incorrect value (1) is read for Age. The program
continues to read subsequent incorrect values for Bankcard (8), FreqBank (0), and Deptcard (0). The program then
attempts to read the character filed FEMALE, at the beginning of the second record, as the value for the numeric variable
FreqDept. This causes the value of FreqDept in the first observation to be interpreted as missing. The input pointer then
moves down to the third record to begin reading values for the second observation. Therefore, the first observation in the
data set contains incorrect values and values from the second in the raw data file are not included.

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE 1 8 0 0 .

2 FEMALE 34 2 10 3 3

3 MALE 35 2 12 4 8

4 FEMALE 36 4 16 3 7

453

The DSD Option
You can use the DSD option in the INFILE statement to correctly read the raw data. The DSD option changes how SAS
treats delimiters when list input is used. Specifically, the DSD option
� sets the default delimiter to a comma
� treats two consecutive delimiters as a missing value
� removes quotation marks from values.

When the following program reads the raw data file, the DSD option sets the default delimiter to a comma and treats the two
consecutive delimiters as a missing value. Therefore, the data is read correctly.
data perm.survey;
 infile credit dsd;
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE . 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

The DLM= Option
If the data uses multiple delimiters or a single delimiter other than a comma, then simply specify the delimiter value(s) with
the DLM= option. In the following example, an asterisk (*) is used as a delimiter. However, the data is still read correctly
because of the DSD option.
data perm.survey;
 infile credit dsd dlm='*';
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;

454

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 MALE . 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

The DSD option can also be used to read raw data when there is a missing value at the beginning of a record, as long as a
delimiter precedes the first value in the record.
data perm.survey;
 infile credit dsd;
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;
proc print data=perm.survey;
run;

Obs Gender Age Bankcard FreqBank Deptcard FreqDept

1 27 1 8 0 0

2 FEMALE 29 3 14 5 10

3 FEMALE 34 2 10 3 3

4 MALE 35 2 12 4 8

5 FEMALE 36 4 16 3 7

You can also use the DSD and DLM= options to read fields that are delimited by blanks.
data perm.survey;

455

 infile credit dsd dlm=' ';
 input Gender $ Age Bankcard FreqBank
 Deptcard FreqDept;
run;

Note Later in this chapter, you'll learn how to use the DSD option to remove quotation marks from values in raw
data.

Specifying the Length of Character Values
Remember that when you use list input to read raw data, character values are assigned a default length of 8. Let's look at
what happens when list input is used to read character variables whose values are longer than 8.

The raw data file that is referenced by the fileref Citydata contains 1970 and 1980 population figures for several large U.S.
cities. Notice that some city names are rather long.

The longer character values are truncated when they are written to the program data vector.

PROC PRINT output shows the truncated values for City.
data perm.growth;

 infile citydata;

 input City $ Pop70 Pop80;

run;

proc print data=perm.growth;

run;

Obs City Pop70 Pop80

1 ANCHORAG 48081 174431

2 ATLANTA 495039 425022

3 BOSTON 641071 562994

456

Obs City Pop70 Pop80

4 CHARLOTT 241420 314447

5 CHICAGO 3369357 3005072

6 DALLAS 844401 904078

7 DENVER 514678 492365

8 DETROIT 1514063 1203339

9 MIAMI 334859 346865

10 PHILADEL 1949996 1688210

11 SACRAMEN 257105 275741

The LENGTH Statement
Remember, variable attributes are defined when the variable is first encountered in the DATA step. In the program below,
the LENGTH statement precedes the INPUT statement and defines both the length and type of the variable City. A length
of 12 has been assigned to accommodate PHILADELPHIA, which is the longest value for City.
data perm.growth;

 infile citydata;

length City $ 12;
 input city $ Pop70 Pop80;
run;

proc print data=perm.growth;

run;

Using this method, you do not need to specify City's type in the INPUT statement. However, leaving the $ in the INPUT
statement will not produce an error. Your output should now display the complete values for City.

Obs City Pop70 Pop80

1 ANCHORAGE 48081 174431

2 ATLANTA 495039 425022

457

Obs City Pop70 Pop80

3 BOSTON 641071 562994

4 CHARLOTTE 241420 314447

5 CHICAGO 3369357 3005072

6 DALLAS 844401 904078

7 DENVER 514678 492365

8 DETROIT 1514063 1203339

9 MIAMI 334859 346865

10 PHILADELPHIA 1949996 1688210

11 SACRAMENTO 257105 275741
Note Because variable attributes are defined when the variable is first encountered in the

DATA step, a variable that is defined in a LENGTH statement (if it precedes an
INPUT statement) will appear first in the data set, regardless of the order of the
variables in the INPUT statement.

Modifying List Input
You can make list input more versatile by using modified list input. There are two modifiers that can be used with list input.
� The ampersand (&) modifier is used to read character values that contain embedded blanks.
� The colon (:) modifier is used to read nonstandard data values and character values that are longer than eight

characters, but which contain no embedded blanks.

You can use modified list input to read the file shown below. This file contains the names of the 10 largest U.S. cities ranked
in order based on their 1986 estimated population figures.

Notice that some of the values for city names contain embedded blanks. Also, note that the values representing the
population of each city are nonstandard numeric values (they contain commas).

In the following sections you will learn how to use the ampersand (&) modifier to read the values for city (City). Then you
will learn how the colon (:) modifier can be used to read the nonstandard numeric values that represent population (Pop86).

Reading Values That Contain Embedded Blanks

458

The ampersand (&) modifier enables you to read character values that contain single embedded blanks. The & indicates
that a character value that is being read with list input might contain one or more single embedded blanks. The value is read
until two or more consecutive blanks are encountered. The & modifier precedes a specified informat if one is used.
 input Rank City &;

In the raw data file shown below, each value of City is followed by two consecutive blanks. There are two ways that you
can use list input to read the values of City.

Using the Ampersand (&) Modifier with a LENGTH Statement
As shown below, you can use a LENGTH statement to define the length of City, and then add an & modifier to the INPUT
statement to indicate that the values contain embedded blanks.

Using the Ampersand (&) Modifier with an Informat
You can also read the values for City with the & modifier followed by the $w. informat, which reads standard character
values, as shown below. When you do this, the w value in the informat determines the variable's length and should be large
enough to accommodate the longest value.

Note Remember that you must use two consecutive blanks as delimiters when you use the & modifier. You
cannot use any other delimiter to indicate the end of each field.

Reading Nonstandard Values
The colon (:) modifier enables you to read nonstandard data values and character values that are longer than eight
characters, but which contain no embedded blanks. The colon (:) indicates that values are read until a blank (or other
delimiter) is encountered, and then an informat is applied. If an informat for reading character values is specified, the w
value specifies the variable's length, overriding the default length.

Notice the values representing the 1986 population of each city in the raw data file below. Because they contain commas,
these values are nonstandard numeric values.

459

In order to read these values, you can modify list input with the colon (:) modifier, followed by the COMMAw.d informat, as
shown in the program below. Notice that the COMMAw.d informat does not specify a w value.
data perm.cityrank;
 infile topten;
 input Rank City & $12.

Pop86 : comma.;

Remember that list input reads each value until the next blank is detected. The default length of numeric variables is 8, so
you don't need to specify a w value to indicate the length of a numeric variable.

This is different from using a numeric informat with formatted input. In that case, you must specify a w value in order to
indicate the number of columns to be read.

Processing the DATA Step
At compile time, the informat $12. in the example below sets the length of City to 12 and stores this information in the
descriptor portion of the data set. During the execution phase, however, the w value of 12 does not determine the number
of columns that are read. This is different from the function of informats in the formatted input style.
data perm.cityrank;
 infile topten;
 input Rank City & $12.
 Pop86 : comma.;
run;

The & modifier indicates that the values for City should be read until two consecutive blanks are encountered. Therefore,
the value NEW YORK is read from column 4 to column 11, a total of only 8 columns. When blanks are encountered in both
columns 12 and 13, the value NEW YORK is written to the program data vector.

460

data perm.cityrank;
 infile topten;
 input Rank City & $12.
 Pop86 : comma.;
run;

The input pointer moves forward to the next nonblank column, which is column 14 in the first record. Now the values for
Pop86 are read from column 14 until the next blank is encountered. The COMMAw.d informat removes the commas, and
the value is written to the program data vector.
data perm.cityrank;
 infile topten;
 input Rank City & $12.

Pop86 : comma.;

run;

Notice that the character values for City and the nonstandard values for Pop86 are stored correctly in the data set.
SAS Data Set Perm.Cityrank

Rank City Pop86

1 NEW YORK 7262700

2 LOS ANGELES 3259340

3 CHICAGO 3009530

461

SAS Data Set Perm.Cityrank

Rank City Pop86

4 HOUSTON 1728910

5 PHILADELPHIA 1642900

6 DETROIT 1086220

7 SAN DIEGO 1015190

8 DALLAS 1003520

9 SAN ANTONIO 914350

10 PHOENIX 894070

Comparing Formatted Input and Modified List Input
As you have seen, informats work differently in modified list input than they do in formatted input. With formatted input, the
informat determines both the length of character variables and the number of columns that are read. The same number of
columns are read from each record.
 input @3 City $12.;

The informat in modified list input determines only the length of the variable, not the number of columns that are read.
Here, the raw data values are read until two consecutive blanks are encountered.
 input City & $12.;

Creating Free-Format Data
In Chapter 5, Creating SAS Data Sets from Raw Data, you learned how the PUT statement can be used with column
output to write observations from a SAS data set to a raw data file. The PUT statement can also be used with list output to
create free-format raw data files.

List output is similar to list input. With list output, you simply list the names of the variables whose values you want to write.
The PUT statement writes a variable, leaves a blank, then writes the next value.

General form, PUT statement using list output:

PUT variable <: format>;

where
� variable specifies the variable whose value you want to write
� a colon (:) precedes a format

462

� format. specifies a format to use for writing the data values.

The following program creates the raw data file Findat, using the SAS data set Perm.Finance. The DATEw. format is used
to write the value of Date in the form DDMMYYYY.
data _null_;

 set perm.finance;

 file 'c:\data\findat';

put ssn name salary date : date9.;
run;
SAS Data Set Finance

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

Specifying a Delimiter
You can use the DLM= option with a FILE statement to create a character-delimited raw data file.
data _null_;

 set perm.finance;

 file 'c:\data\findat2' dlm=',';
 put ssn name salary date : date9.;

run;
SAS Data Set Finance

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

463

SAS Data Set Finance

SSN Name Salary Date

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

Note For creating a simple raw data file, an alternative to the DATA step is the EXPORT procedure.

General form, PROC EXPORT:

PROC EXPORT DATA=SAS-data-set;
OUTFILE=filename <DELIMITER='delimiter'>;

RUN;

where
� SAS-data-set names the input SAS data set
� filename specifies the complete path and file name of the output
� delimiter specifies the delimiter to separate columns of data in the output file.

Note For more
information
about the
EXPORT
procedure,
see the
SAS
documenta
tion.

Using the DSD Option
What happens if you need to create a comma-delimited file that requires the use of a format that writes out values using
commas?

If you used the following program, the resulting raw data file would contain five fields rather than four.
data _null_;

 set perm.finance;

 file 'c:\data\findat2' dlm=',';
 put ssn name salary : comma6. date date9.;

464

run;
SAS Data Set Finance

SSN Name Salary Date

074-53-9892 Vincent 35000 05/22/97

776-84-5391 Phillipon 29750 12/15/96

929-75-0218 Gunter 27500 04/30/97

446-93-2122 Harbinger 33900 07/08/96

228-88-9649 Benito 28000 03/04/96

029-46-9261 Rudelich 35000 02/15/95

442-21-8075 Sirignano 5000 11/22/95

You can use the DSD option in the FILE statement to specify that data values containing commas should be enclosed in
quotation marks. Remember that the DSD option uses a comma as a delimiter, so a DLM= option isn't necessary here.
data _null_;

 set perm.finance;

 file 'c:\data\findat2' dsd;
 put ssn name salary : comma. date : date9.;

run;

Reading Values That Contain Delimiters within a Quoted String
You can also use the DSD option in an INFILE statement to read values that contain delimiters within a quoted string. As
shown in the following PROC PRINT output, the INPUT statement treats the commas within the values for Salary as valid
characters and removes the quotation marks from the character strings before the value is stored.
data work.finance2;

 infile findat2 dsd;
 length SSN $ 11 Name $ 9;

 input ssn name Salary : comma. Date date9.;

run;

465

proc print data=work.finance2;

 format date date9.;

run;

Obs SSN Name Salary Date

1 074-53-9892 Vincent 35000 22MAY1997

2 776-84-5391 Phillipon 29750 15DEC1996

3 929-75-0218 Gunter 27500 30APR1997

4 446-93-2122 Harbinger 33900 08JUL1996

5 228-88-9649 Benito 28000 04MAR1996

6 029-46-9261 Rudelich 35000 15FEB1995

7 442-21-8075 Sirignano 5000 22NOV1995

Mixing Input Styles
Evaluating your raw data and choosing the most appropriate input style is a very important task. You have already worked
with three input styles for reading raw data.

Input Style Reads

Column standard data values in fixed fields

Formatted nonstandard data values in fixed fields

List data values that are not arranged in fixed fields, but are separated by blanks or other
delimiters

With some file layouts, you might need to mix input styles in the same INPUT statement in order to read the data correctly.

Look at the raw data file below and think about how to combine input styles to read these values.

� Column input is an appropriate choice for the first field because the values can be read as standard character
values and are located in fixed columns.

� The next two fields are also located in fixed columns, but the values require an informat. So, formatted input is a
good choice here.

� Values in the fourth field begin in column 28 but do not end in the same column. List input is appropriate here, but
notice that some values are longer than eight characters. You need to use the : format modifier with an informat to read
these values.

� The last field does not always begin or end in the same column, so list input is the best input style for those values.

466

Field Description Starting Column Field Width Data Type Input Style

Social Security # 1 11 character column

Date of Hire 13 7 date formatted

Annual Salary 21 6 numeric formatted

Department 28 5 to 9 character list

Phone Extension ?? 4 numeric list

The INPUT statement to read the data should look like this:
data perm.mixed;
 infile rawdata;

input SSN $ 1-11 @13 HireDate date7.

@21 Salary comma6.Department : $9. Phone;

run;
proc print data=perm.mixed;
run;

When you submit the PRINT procedure, the output displays values for each variable.

Obs SSN HireDate Salary Department Phone

1 209-20-3721 6581 41983 SALES 2896

2 223-96-8933 9619 27356 EDUCATION 2344

3 232-18-3485 7899 33167 MARKETING 2674

4 251-25-9392 9017 34033 RESEARCH 2956

Additional Features

Writing Character Strings and Variable Values
You can use a PUT statement to write both character strings and variable values to a raw data file. To write out a character
string, simply add a character string, enclosed in quotation marks, to the PUT statement. It's a good idea to include a blank
space as the last character in the string to avoid spacing problems.
filename totaldat 'c:\records\junsales';
data _null_;
 set work.totals;
 file totaldat;
 put 'Sales for salesrep ' salesrep

'totaled ' sales : dollar9.;
run;
SAS Data Set Work.Totals

Obs SalesRep Sales

467

SAS Data Set Work.Totals

Obs SalesRep Sales

1 Friedman $14,893

2 Keane $14,324

3 Schuster $13,914

4 Davidson $13,674

Note For more information about using the PUT statement to write character strings, see the SAS
documentation for your operating environment.

Summary

Text Summary

Free-Format Data
External files can contain raw data that is free format; that is, the data is not arranged in fixed fields. The fields can be
separated by blanks or by some other delimiter, such as commas.

Using List Input
Free-format data can easily be read with list input because you do not need to specify column locations of the data. You
simply list the variable names in the same order as the corresponding raw data fields. You must distinguish character
variables from numeric variables by using the dollar ($) sign.

When characters other than blanks are used to separate the data values, you can specify the field delimiter by using the
DLM= option in the INFILE statement.

You can also specify a range of variables in the INPUT statement when the variable values in the raw data file are
sequential and are separated by blanks (or by some other delimiter). This is especially useful if your data contains similar
variables, such as the answers to a questionnaire.

In its simplest form, list input places several limitations on the types of data that can be read.

Reading Missing Values
If your data contains missing values at the end of a record, you can use the INFILE statement with the MISSOVER option to
prevent SAS from going to the next record to find the missing values.

If your data contains missing values at the beginning or in the middle of a record, you might be able to use the DSD option
in the INFILE statement to correctly read the raw data. The DSD option sets the default delimiter to a comma and treats two
consecutive delimiters as a missing value.

If the data uses multiple delimiters or a single delimiter other than a comma, you can use both the DSD option and the
DLM= option in the INFILE statement.

468

The DSD option can also be used to read raw data when there is a missing value at the beginning of a record, as long as a
delimiter precedes the first value in the record.

Specifying the Length of Character Values
You can specify the length of character variables by using the LENGTH statement. The LENGTH statement enables you to
use list input to read names that are longer than eight characters without truncating them.

Because variable attributes are defined when the variable is first encountered in the DATA step, the LENGTH statement
precedes the INPUT statement and defines both the length and the type of the variable.

When you use the LENGTH statement, you do not need to specify the variable type again in the INPUT statement.

Modifying List Input
Modified list input can be used to read values that contain embedded blanks and nonstandard values. Modified list input
uses two format modifiers:
� the ampersand (&) modifier enables you to read character values that contain single embedded blanks
� the colon (:) modifier enables you to read nonstandard data values and character values that are longer than eight

characters, but which contain no embedded blanks.

Remember that informats work differently in modified list input than they do in formatted input.

Creating Free-Format Data
You can create a raw data file using list output. With list output, you simply list the names of the variables whose values
you want to write. The PUT statement writes a variable, leaves a blank, then writes the next value.

You can use the DLM= option with a FILE statement to create a delimited raw data file. You can use the DSD option in a
FILE statement to specify that data values containing commas should be enclosed in quotation marks. You can also use the
DSD option to read values that contain delimiters within a quoted string.

Mixing Input Styles
With some file layouts, you might need to mix input styles in the same INPUT statement in order to read the data correctly.

Points to Remember
� When you use list input,

o fields must be separated by at least one blank or other delimiter.
o fields must be read in order, from left to right. You cannot skip or re-read fields.
o use a LENGTH statement to avoid truncating character values that are longer than eight characters.

� In formatted input, the informat determines both the length of character variables and the number of columns that
are read. The same number of columns are read from each record.

� The informat in modified list input determines only the length of the variable value, not the number of columns that
are read.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. The raw data file referenced by the fileref Students contains data that is

469

a. arranged in fixed fields
b. free format
c. mixed format
d. arranged in columns

2. Which input style should be used to read the values in the raw data file that is referenced by the fileref
Students?

a. column
b. formatted
c. list
d. mixed

3. Which SAS program was used to create the raw data file Teamdat from the SAS data set Work.Scores?

SAS Data Set Work.Scores

Obs Name HighScore Team

1 Joe 87 Blue Beetles, Durham

2 Dani 79 Raleigh Racers, Raleigh

3 Lisa 85 Sand Sharks, Cary

4 Matthew 76 Blue Beetles, Durham

a. data _null_;
b. set work.scores;
c. file 'c:\data\teamdat' dlm=',';
d. put name highscore team; run;
e.
f. data _null_;
g. set work.scores;
h. file 'c:\data\teamdat' dlm=' ';

470

i. put name highscore team;
j. run;
k.
l. data _null_;
m. set work.scores;
n. file 'c:\data\teamdat' dsd;
o. put name highscore team;
p. run;
q. data _null_;
r. set work.scores;
s. file 'c:\data\teamdat';
t. put name highscore team;
u. run;

4. Which SAS statement reads the raw data values in order and assigns them to the variables shown
below?

Variables: FirstName (character), LastName (character), Age (numeric), School (character), Class
(numeric)

a. input FirstName $ LastName $ Age School $ Class;
b. input FirstName LastName Age School Class;
c. input FirstName $ 1-4 LastName $ 6-12 Age 14-15
d. School $ 17-19 Class 21;
e. input FirstName 1-4 LastName 6-12 Age 14-15
f. School 17-19 Class 21;

5. Which SAS statement should be used to read the raw data file that is referenced by the fileref
Salesrep?

a. infile salesrep;
b. infile salesrep ':';
c. infile salesrep dlm;
d. infile salesrep dlm=':';

471

6. Which of the following raw data files can be read by using the MISSOVER option in the INFILE
statement? Missing values are indicated with colored blocks.

a.

b.

c.

d.

7. Which SAS program correctly reads the data in the raw data file that is referenced by the fileref
Volunteer?

a. data perm.contest;
b. infile volunteer;
c. input FirstName $ LastName $ Age School $ Class;
d. run;

472

e. data perm.contest;
f. infile volunteer;
g. length LastName $ 11;
h. input FirstName $ lastname $ Age School $ Class;
i. run;
j. data perm.contest;
k. infile volunteer;
l. input FirstName $ lastname $ Age School $ Class;
m. length LastName $ 11;
n. run;
o. data perm.contest;
p. infile volunteer;
q. input FirstName $ LastName $ 11. Age School $ Class;
r. run;

8. Which type of input should be used to read the values in the raw data file that is referenced by the
fileref University?

a. column
b. formatted
c. list
d. modified list

9. Which SAS statement correctly reads the values for Flavor and Quantity? Make sure the length of
each variable can accommodate the values that are shown.

a. input Flavor & $9. Quantity : comma.;
b. input Flavor & $14. Quantity : comma.;
c. input Flavor : $14. Quantity & comma.;
d. input Flavor $14. Quantity : comma.;

10. Which SAS statement correctly reads the raw data values in order and assigns them to these
corresponding variables: Year (numeric), School (character), Enrolled (numeric)?

473

a. input Year School & $27.
b. Enrolled : comma.;
c. input Year 1-4 School & $27.
d. Enrolled : comma.;
e. input @1 Year 4. +1 School & $27.
f. Enrolled : comma.;
g. all of the above

Answers

1. Correct answer: b

The raw data file contains data that is free format, meaning that the data is not arranged in columns or fixed fields.

2. Correct answer: c

List input should be used to read data that is free format because you do not need to specify the column locations of the
data.

3. Correct answer: c

You can use the DSD option in the FILE statement to specify that data values containing commas should be enclosed
in quotation marks. The DSD option uses a comma as the delimiter by default.

4. Correct answer: a

Because the data is free format, list input is used to read the values. With list input, you simply name each variable and
identify its type.

5. Correct answer: d

The INFILE statement identifies the location of the external data file. The DLM= option specifies the colon (:) as the
delimiter that separates each field.

6. Correct answer: a

You can use the MISSOVER option in the INFILE statement to read the missing values at the end of a record. The
MISSOVER option prevents SAS from moving to the next record if values are missing in the current record.

7. Correct answer: b

The LENGTH statement extends the length of the character variable LastName so that it is large enough to
accommodate the data. Variable attributes such as length are defined the first time a variable is named in a DATA step.

474

The LENGTH statement should precede the INPUT statement so that the correct length is defined.

8. Correct answer: d

Notice that the values for School contain embedded blanks, and the values for Enrolled are nonstandard numeric
values. Modified list input can be used to read the values that contain embedded blanks and nonstandard values.

9. Correct answer: b

The INPUT statement uses list input with format modifiers and informats to read the values for each variable. The
ampersand (&) modifier enables you to read character values that contain single embedded blanks. The colon (:)
modifier enables you to read nonstandard data values and character values that are longer than eight characters, and
that contain no embedded blanks.

10. Correct answer: d

The values for Year can be read with column, formatted, or list input. However, the values for School and Enrolled
are free-format data that contain embedded blanks or nonstandard values. Therefore, these last two variables must be
read with modified list input.

475

Chapter 19: Reading Date and Time Values

Overview

Introduction
SAS provides many informats for reading raw data values in various forms. In Chapter 17, Reading Raw Data in Fixed
Fields, you learned how to use informats to read standard and nonstandard data. In this chapter, you learn how to use a
special category of SAS informats called date and time informats. These informats enable you to read a variety of
common date and time expressions. After you read date and time values, you can also perform calculations with them.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

Days=dateout-datein+1;
 RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;
run;

Objectives
In this chapter, you learn how

� SAS stores date and time values
� to use SAS informats to read common date and time expressions
� to handle two-digit date values
� to calculate time intervals by subtracting two dates
� to multiply a time interval by a rate
� to display various date and time values.

How SAS Stores Date Values

476

Before you read date or time values into a SAS data set or use those values in calculations, you should understand how
SAS stores date and time values.

When you use a SAS informat to read a date, SAS converts it to a numeric date value. A SAS date value is the number of
days from January 1, 1960, to the given date.

Here are some examples of how the appropriate SAS informat can convert different expressions for the date January 2,
2000, to a single SAS date value:

Date Expression SAS Date Informat SAS Date Value

02Jan00 DATEw. 14611

01-02-2000 MMDDYYw. 14611

02/01/00 DDMMYYw. 14611

2000/01/02 YYMMDDw. 14611

Storing dates and times as numeric values enables you to use dates and times in calculations in much the same way as you
would use any other number.

How SAS Stores Time Values
SAS stores time values similar to the way it stores date values. A SAS time value is stored as the number of seconds since
midnight.

A SAS datetime is a special value that combines both date and time information. A SAS datetime value is stored as the
number of seconds between midnight on January 1, 1960, and a given date and time.

Reading Date and Time Informats
You use SAS date and time informats to read date and time expressions and convert them to SAS date and time values.
Like other SAS informats, date and time informats are composed of

� an informat name
� a field width
� a period delimiter.

SAS informat names indicate the form of date expression that can be read using that particular informat. Here are some
examples of common date and time informats:

� DATEw.
� DATETIMEw.
� MMDDYYw.
� TIMEw.

As you know, there are several ways to write a particular date. For example, all the following expressions represent the date
October 15, 1999. Each of these common date expressions can be read using the appropriate SAS date informat.

477

Date Expression SAS Date Informat

10/15/99 MMDDYYw.

15Oct99 DATEw.

10-15-99 MMDDYYw.

99/10/15 YYMMDDw.

Specifying Informats
Using the INPUT statement with an informat after a variable name is the simplest way to read date and time values into a
variable.

General form, INPUT statement with an informat:

INPUT <pointer-control> variable informat.;

where
� pointer-control gives the absolute or relative position of the pointer.
� variable is the name of the variable that is being read.
� informat. is any valid SAS informat. Note that the informat includes a final period.

For example, the following INPUT statement uses two informats:
input @15 Style $3. @21 Price 5.2;

The $w. character informat ($3.) reads values, starting at column 15 of the raw data, into the variable Style. The w.d
numeric informat (5.2) reads values, starting at column 21, into the variable Price.

Now let's look at some specific informats that you can use.

MMDDYYw. Informat
You can tell by its name that the informat MMDDYYw. reads date values in the form 10/15/99.

General form, values that are read with the MMDDYYw. informat:

mmddyy or mmddyyyy where
� mm is an integer between 01 and 12, representing the month
� dd is an integer between 01 and 31, representing the day
� yy or yyyy is an integer that represents the year.

In the MMDDYYw. informat, the month, day, and year fields can be separated by blanks or delimiters such as hyphens (-) or
slashes (/). If you use delimiters, you must place them between all fields in the values. Remember to specify a field width
that includes not only the month, day, and year values, but any delimiters as well. Here are some date expressions that you
can read using the MMDDYYw. informat:

Date Expression SAS Date Informat

478

Date Expression SAS Date Informat

101599 MMDDYY6.
10/15/99 MMDDYY8.
10 15 99 MMDDYY8.
10-15-1999 MMDDYY10.

DATEw. Informat
The DATEw. informat reads date values in the form 30May2000.

General form, values that are read with the DATEw. informat:

ddmmmyy or ddmmmyyyy

where
� dd is an integer from 01 to 31, representing the day
� mmm is the first three letters of the month's name
� yy or yyyy is an integer that represents the year.

You can place blanks or other special characters between the day, month, and year, as long as you increase the width of
the informat to include these delimiters. Here are some date expressions that you can read using the DATEw. informat:

Date Expression SAS Date Informat

30May00 DATE7.
30May2000 DATE9.
30-May-2000 DATE11.

TIMEw. Informat
The TIMEw. informat reads values in the form hh:mm:ss.ss.

General form, values that are read with the TIMEw. informat:

hh:mm:ss.ss

where
� hh is an integer from 00 to 23, representing the hour
� mm is an integer from 00 to 59, representing the minute
� ss.ss is an optional field that represents seconds and hundredths of seconds.

If you do not enter a value for ss.ss, a value of zero is assumed. Here are some examples of time expressions that you can
read using the TIMEw. informat:

479

Time Expression SAS Time Informat

17:00:01.34 TIME11.
17:00 TIME5.
2:34 TIME5.

Warning Notice the last example. The field is only 4 columns wide, but a w value
of 5 is specified. Five is the minimum acceptable field width for the
TIMEw. informat. If you specify a w value less than 5, you'll receive the
following error message in the SAS log:
SAS Log

ERROR 29 - 85: Width specified for informat
 TIME is invalid.

DATETIMEw. Informat
The DATETIMEw. informat reads expressions that are composed of two parts, a date value and a time value, in the form:
ddmmmyy hh:mm:ss.ss.

General form, values that are read with the DATETIMEw. informat:

ddmmmyy hh:mm:ss.ss

where
� ddmmmyy is the date value, the same form as for the DATEw. informat
� the time value must be in the form hh:mm:ss.ss
� hh is an integer from 00 to 23, representing the hour
� mm is an integer from 00 to 59, representing the minute
� ss.ss is an optional field that represents seconds and hundredths of seconds
� the date value and time value are separated by a blank or other delimiter.

If you do not enter a value for ss.ss, a value of zero is assumed.

Here are some examples of the DATETIMEw. informat. Note that in the time value, you must use delimiters to separate the
values for hour, minutes, and seconds.

Date and Time Expression SAS Datetime Informat

30May2000:10:03:17.2 DATETIME20.

30May00 10:03:17.2 DATETIME18.

30May2000/10:03 DATETIME15.

YEARCUTOFF= SAS System Option

480

Recall from Chapter 2, Referencing Files and Setting Options, that the value of the YEARCUTOFF= system option
affects only two-digit year values. A date value that contains a four-digit year value will be interpreted correctly even if it
does not fall within the 100-year span set by the YEARCUTOFF= system option.

Date Expression SAS Date Informat Interpreted As

06Oct59 date7. 06Oct1959

17Mar1783 date9. 17Mar1783

However, if you specify an inappropriate field width, you will receive incorrect results. Notice that the date expression in the
table below contains a four-digit year value. The informat specifies a w value that is too small to read the entire value, so the
last two digits of the year are truncated.

Date Expression SAS Date Informat Interpreted As

17Mar1783 date7. 17Mar1917

Another problem arises if you use the wrong informat to read a date or time expression. The SAS log displays an invalid
data message, and the variable's values are set to missing.

SAS Log

3 input birthday date8.;
4 run;
NOTE: Invalid data for BIRTHDAY in line 3 1-8.
RULE: ----+----1----+----3----+----4----+----5
3 03/23/98
BIRTHDAY=. _ERROR_=1 _N_=1

When you work with date and time values,
� check the default value of the YEARCUTOFF= system option, and change it if necessary. The default

YEARCUTOFF= value is 1920. Recall that you can use the OPTIONS procedure to display the current setting of
system options.

� specify the proper informat for reading a date value.
� specify the correct field width so that the entire date value is read.

Note Later in this chapter, you'll learn how to work with data values that contain delimiters.

Using Dates and Times in Calculations

Introduction
In this chapter so far, you've learned how date and time informats read common date and time expressions in specific
forms. Now you will see how converting date and time expressions to numeric SAS date values can be useful, particularly
for determining time intervals or performing calculations.

481

Suppose you work in the billing department of a small community hospital. It's your job to create a SAS data set from the
raw data file that is referenced by the fileref Aprdata. A portion of the raw data file below shows data values that represent
each patient's
� last name
� date checked in
� date checked out
� daily room rate
� equipment cost.

The data set that you create must also include variable values that represent how many days each person stayed in the
hospital, the total room charges, and the total of all expenses that each patient incurred. When building the SAS program,
you must first name the data set, identify the raw data file Aprdata, and use formatted input to read the data.

Example
Warning The following example is shown with the YEARCUTOFF= system option. When you work with two-

digit year data, remember to check the default value of the YEARCUTOFF= option, and change it if
necessary.

options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8.

Notice that the values in the second and third fields are in the form mmddyy. To complete the INPUT statement, add
instructions to read the values for RoomRate (third field) and EquipCost (fourth field), and add a semicolon.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut

mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

Now that the INPUT statement is complete, calculate how many days each patient was hospitalized. Because DateIn and
DateOut are numeric variables, you can simply subtract to find the difference. But because the dates should be inclusive
(patients are charged for both the first and last days), you must add 1 to the difference. Call this new variable Days.
options yearcutoff=1920;
 data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut

 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
Days=dateout-datein+1;

You can calculate a total room charge by multiplying the variable values for Days and RoomRate.
options yearcutoff=1920;
data perm.aprbills;

482

 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;

RoomCharge=days*roomrate;

Calculating the total cost for each patient is easy. Create a variable named Total whose value is the sum of RoomCharge
and EquipCost. Then add a PROC PRINT step and a RUN statement to view the new data.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;
 RoomCharge=days*roomrate;

Total=roomcharge+equipcost;
run;
proc print data=perm.aprbills;
run;
Obs LastName DateIn DateOut RoomRate EquipCost Days RoomCharge Total

1 Akron 14339 14343 175 298.45 5 875 1173.45

2 Brown 14346 14365 125 326.78 20 2500 2826.78

3 Carnes 14361 14363 125 174.24 3 375 549.24

4 Denison 14345 14346 175 87.41 2 350 437.41

5 Fields 14349 14356 175 378.96 8 1400 1778.96

6 Jamison 14350 14357 125 346.28 8 1000 1346.28

If the values for DateIn and DateOut look odd to you, remember that these are SAS date values. Applying a format such
as MMDDYY8. displays them as they appeared in Aprdata. You'll work with some other date and time formats later in this
chapter.

Follow the execution of the program that you've written. When the DATA step executes, the values for DateIn and
DateOut are converted to SAS date values.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut

mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;
 RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;

483

run;

After the rest of the INPUT statement executes, the value for Days is created by subtracting the SAS date value for DateIn
from the value for DateOut and then adding 1.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;

Days=dateout-datein+1;
 RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;
run;

The value for RoomCharge is calculated next. RoomCharge is the product of Days and RoomRate.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;

RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;
run;

484

The value for Total is the final calculation. Total is the sum of EquipCost and RoomCharge.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;
 RoomCharge=days*roomrate;

Total=roomcharge+equipcost;
run;

Using Date and Time Formats
Remember that when Perm.Aprbills is printed, the values for DateIn and DateOut appear as SAS date values.
options yearcutoff=1920;
data perm.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;
 RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;
run;
proc print data=perm.aprbills;
run;

Obs LastName DateIn DateOut RoomRate EquipCost Days RoomCharge Total

1 Akron 14339 14343 175 298.45 5 875 1173.45

2 Brown 14346 14365 125 326.78 20 2500 2826.78

3 Carnes 14361 14363 125 174.24 3 375 549.24

485

Obs LastName DateIn DateOut RoomRate EquipCost Days RoomCharge Total

4 Denison 14345 14346 175 87.41 2 350 437.41

5 Fields 14349 14356 175 378.96 8 1400 1778.96

6 Jamison 14350 14357 125 346.28 8 1000 1346.28

SAS provides many specialized date and time formats that enable you to specify how date and time values are displayed
and stored. Let's take a closer look at two date formats: WEEKDATEw. and WORDDATEw.

The WEEKDATEw. Format
You can use the WEEKDATEw. format to write these values out in a format that displays the day of the week, month, day,
and year.

General form, WEEKDATEw. format:

WEEKDATEw.

The WEEKDATEw. format writes date values in the form day-of-week, month-name dd, yy (or yyyy).

where
� dd is an integer between 01 and 31, representing the day
� yy or yyyy is an integer that represents the year.

Note If the w value is too small to write the complete day of the week and month, SAS abbreviates as needed.

proc print data=perm.aprbills;
format datein dateout weekdate17.;

run;
Obs LastName DateIn DateOut RoomRate EquipCost Days RoomCharge Total

1 Akron Mon, Apr
5, 1999

Fri, Apr
9, 1999

175 298.45 5 875 1173.45

2 Brown Mon, Apr
12, 1999

Sat, May
1, 1999

125 326.78 20 2500 2826.78

3 Carnes Tue, Apr
27, 1999

Thu, Apr
29, 1999

125 174.24 3 375 549.24

4 Denison Sun, Apr
11, 1999

Mon,
Apr 12,

1999

175 87.41 2 350 437.41

5 Fields Thu, Apr
15, 1999

Thu, Apr
22, 1999

175 378.96 8 1400 1778.96

6 Jamison Fri, Apr
16, 1999

Fri, Apr
23, 1999

125 346.28 8 1000 1346.28

You can vary the results by changing the w value in the format.

486

FORMAT Statement Result

format datein weekdate3.; Mon

format datein weekdate6.; Monday

format datein weekdate17.; Monday, Apr 5, 99

format datein weekdate21.; Monday, April 5, 1999

The WORDDATEw. Format
The WORDDATEw. format is similar to the WEEKDATEw. format, but it does not display the day of the week or the two-
digit year values.

General form, WORDDATEw. format:

WORDDATEw.

The WORDDATEw. format writes date values in the form month-name dd, yyyy.

where
� dd is an integer between 01 and 31, representing the day
� yyyy is an integer that represents the year.

Note If the w value is too small to write the complete month, SAS abbreviates as needed.

proc print data=perm.aprbills;
format datein dateout worddate12.;

run;
Obs LastName DateIn DateOut RoomRate EquipCost Days RoomCharge Total

1 Akron Apr 5,
1999

Apr 9,
1999

175 298.45 5 875 1173.45

2 Brown Apr 12,
1999

May 1,
1999

125 326.78 20 2500 2826.78

3 Carnes Apr 27,
1999

Apr 29,
1999

125 174.24 3 375 549.24

4 Denison Apr 11,
1999

Apr 12,
1999

175 87.41 2 350 437.41

5 Fields Apr 15,
1999

Apr 22,
1999

175 378.96 8 1400 1778.96

6 Jamison Apr 16,
1999

Apr 23,
1999

125 346.28 8 1000 1346.28

You can vary the results by changing the w value in the format.

FORMAT Statement Result

487

FORMAT Statement Result

format datein worddate3.; Apr

format datein worddate5.; April

format datein worddate14.; April 15, 1999

Remember that you can permanently assign a format to variable values by including a FORMAT statement in the DATA
step.
options yearcutoff=1920;
data work.aprbills;
 infile aprdata;
 input LastName $8. @10 DateIn mmddyy8. +1 DateOut
 mmddyy8. +1 RoomRate 6. @35 EquipCost 6.;
 Days=dateout-datein+1;
 RoomCharge=days*roomrate;
 Total=roomcharge+equipcost;

format datein dateout worddate12.;
run;
proc print data=work.aprbills;
run;

Summary

Text Summary

How SAS Stores Date and Time Values
SAS stores date values as numeric SAS date values, which are the number of days from January 1, 1960. SAS time
values are the number of seconds since midnight.

Reading Dates and Times with Informats
Use SAS informats to read date and time expressions and convert them to SAS date and time values.
� MMDDYYw. reads dates such as 053090, 05/30/90, or 05 30 1990.
� DATEw. reads dates such as 30May1990, 30May90, or 30-May-1990.
� TIMEw . reads times such as 17:00, 17:00:01.34, or 2:34.
� DATETIMEw. reads dates and times such as 30May1990:10:03:17.2, 30May90 10:03:17.2, or 30May1990/10:03.

Two-digit year values require special consideration. When a two-digit year value is read, SAS defaults to a year within a
100-year span that is determined by the YEARCUTOFF= system option. The default value of YEARCUTOFF= is 1920. You
can check or reset the value of this option in your SAS session to use a different 100-year span for date informats.

Using Dates and Times in Calculations
Date and time values can be used in calculations like other numeric values. In addition to tracking time intervals, SAS date
and time values can be used with SAS functions and with complex calculations.

488

Using Date and Time Formats
SAS provides many specialized date and time formats that enable you to specify how date and time values are displayed
and stored. You can use the WEEKDATEw. format to write date values in the form day-of-week, month-name dd, yy (or
yyyy). You can use the WORDDATEw. format to write date values in the form month-name dd, yyyy.

Points to Remember
� SAS makes adjustments for leap years, but not for leap seconds or daylight saving time.
� The minimum acceptable field width for the TIMEw. informat is 5. If you specify a w value less than 5, you'll receive

an error message in the SAS log.
� The default value of the YEARCUTOFF= option is 1920. When you work with two-digit year data, remember to

check the default value of the YEARCUTOFF= option, and change it if necessary.
� The value of the YEARCUTOFF= system option does not affect four-digit year values. Four-digit values are always

read correctly.
� Be sure to specify the proper informat for reading a date value, and specify the correct field width so that the entire

value is read.
� If SAS date values appear in your program output, use a date format to display them in legible form.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. SAS date values are the number of days since which date?
a. January 1, 1900
b. January 1, 1950
c. January 1, 1960
d. January 1, 1970

2. A great advantage of storing dates and times as SAS numeric date and time values is that
a. they can easily be edited.
b. they can easily be read and understood.
c. they can be used in text strings like other character values.
d. they can be used in calculations like other numeric values.

3. SAS does not automatically make adjustments for daylight saving time, but it does make adjustments
for

a. leap seconds
b. leap years
c. Julian dates
d. time zones

4. An input data file has date expressions in the form 10222001. Which SAS informat should you use to
read these dates?

a. DATE6.
b. DATE8.
c. MMDDYY6.
d. MMDDYY8.

5. The minimum width of the TIMEw. informat is
a. 4
b. 5
c. 6
d. 7

489

6. Shown below are date and time expressions and corresponding SAS datetime informats. Which date
and time expresssion cannot be read by the informat that is shown beside it?

a. 30May2000:10:03:17.2 DATETIME20.
b. 30May00 10:03:17.2 DATETIME18.
c. 30May2000/10:03 DATETIME15.
d. 30May2000/1003 DATETIME14.

7. What is the default value of the YEARCUTOFF= system option?
a. 1920
b. 1910
c. 1900
d. 1930

8. Suppose your input data file contains the date expression 13APR2009. The YEARCUTOFF= system
option is set to 1910. SAS will read the date as

a. 13APR1909
b. 13APR1920
c. 13APR2009
d. 13APR2020

9. Suppose the YEARCUTOFF= system option is set to 1920. An input file contains the date expression
12/08/1925, which is being read with the MMDDYY8. informat. Which date will appear in your data?

a. 08DEC1920
b. 08DEC1925
c. 08DEC2019
d. 08DEC2025

10. Suppose your program creates two variables from an input file. Both variables are stored as SAS date
values: FirstDay records the start of a billing cycle, and LastDay records the end of that cycle. The
code for calculating the total number of days in the cycle would be

a. TotDays=lastday-firstday;
b. TotDays=lastday-firstday+1;
c. TotDays=lastday/firstday;
d. You cannot use date values in calculations.

Answers

1. Correct answer: c

A SAS date value is the number of days from January 1, 1960, to the given date.

2. Correct answer: d

In addition to tracking time intervals, SAS date and time values can be used in calculations like other numeric values.
This lets you calculate values that involve dates much more easily than in other programming languages.

3. Correct answer: b

SAS automatically makes adjustments for leap years.

4. Correct answer: d

490

The SAS informat MMDDYYw. reads dates such as 10222001, 10/22/01, or 10-22-01. In this case, the field width is
eight.

5. Correct answer: b

The minimum acceptable field width for the TIMEw. informat is five. If you specify a w value less than five, you will
receive an error message in the SAS log.

6. Correct answer: d

In the time value of a date and time expression, you must use delimiters to separate the values for hour, minutes, and
seconds.

7. Correct answer: a

The default value of YEARCUTOFF= is 1920. This enables you to read two-digit years from 00-19 as the years 2000
through 2019.

8. Correct answer: c

The value of the YEARCUTOFF= system option does not affect four-digit year values. Four-digit values are always read
correctly.

9. Correct answer: c

The w value of the informat MMDDYY8. is too small to read the entire value, so the last two digits of the year are
truncated. The last two digits thus become 19 instead of 25. Because the YEARCUTOFF= system option is set to 1920,
SAS interprets this year as 2019. To avoid such errors, be sure to specify an informat that is wide enough for your date
expressions.

10. Correct answer: b

To find the number of days spanned by two dates, subtract the first day from the last day and add one. Because SAS
date values are numeric values, they can easily be used in calculations.

491

Chapter 20: Creating a Single Observation from Multiple
Records

Overview

Introduction
Information for one observation can be spread out over several records. You can write multiple INPUT statements to read
each record that comprises a single observation, as in this example:

Or, you can write one INPUT statement that contains a line pointer control to specify the record(s) from which values are to
be read, as in this example:

Objectives
In this chapter, you learn to
� read multiple records sequentially and create a single observation
� read multiple records non-sequentially and create a single observation.

Use Line Pointer Controls
You know that as SAS reads raw data values, it keeps track of its position with an input pointer. You have used column
pointer controls and column specifications to determine the column placement of the input pointer.

Column Specifications input Name $ 1-12 Age 15-16 Gender $ 18;

Column Pointer Controls input Name $12. @15 Age 2. @18 Gender $1.;

But you can also position the input pointer on a specific record by using a line pointer control in the INPUT statement.
input #2 Name $ 1-12 Age 15-16 Gender $ 18;

492

There are two types of line pointer controls.
� The forward slash (/) specifies a line location that is relative to the current one.
� The #n specifies the absolute number of the line to which you want to move the pointer.

First we'll look at the forward slash (/). Later in this chapter, you'll learn how to use the #n, and you will see how these two
controls can be combined.

Reading Multiple Records Sequentially

The Forward Slash (/) Line Pointer Control
You use the forward slash (/) line pointer control to read multiple records sequentially. The / advances the input pointer to
the next record. The / line pointer control only moves the input pointer forward and must be specified after the instructions
for reading the values in the current record.

The single INPUT statement below reads the values for Lname and Fname in the first record, followed by the values for
Department and JobCode in the second record. Then the value for Salary is read in the third record.

Take a closer look at using the forward slash (/) line pointer control in the following example.

The raw data file Memdata contains the mailing list of a professional organization. Your task is to combine the information
for each member into one data set observation. We'll begin by reading each member's name, followed by the street
address, and finally the city, state, and zip code.

� As you write the instructions to read the values for Fname and Lname, notice that not all of the values for Lname
begin in the same column. So, you should use standard list input to read these values.

� Now you want to read the values for Address from the second record. The / line pointer control advances the input
pointer to the next record. At this point the INPUT statement is incomplete, so you should not place a semicolon after
the line pointer control.

493

� You can use column input to read the values in the next record as one variable named Address. Then add a line
pointer control to move the input pointer to the next record.

� As you write the statements to read the values for City, notice that one of the values is longer than eight
characters and contains embedded blanks. Also note that each value is followed by two consecutive blanks. To read
these values, you should use modified list input with the ampersand (&) modifier.

The values for State and the values for Zip do not begin in the same column. Therefore, you should use list input
to read these values.

Sequential Processing of Multiple Records in the DATA Step
Now that you've learned the basics of using the / line pointer control, let's take a closer look at the sequential processing of
multiple records in the DATA step.

During compilation, the program data vector is created for the Perm.Members data set. When the DATA step executes, the
values in the first record are read, and the / line pointer control moves the input pointer to the second record.

494

The values for Address are read, and the second / line pointer control advances the input pointer to the third record.

The values for City, State, and Zip are read, and the INPUT statement is completely executed.

The values in the program data vector are written to the data set as the first observation.

Control returns to the top of the DATA step, and the variable values are reinitialized to missing.

During the second iteration, values for Fname and Lname are read beginning in column one of the fourth record.

The values for Address are read and the / line pointer control advances the input pointer to the fifth record.

495

The values for City, State, and Zip are read, and the INPUT statement is completely executed.

The values in the program data vector are written to the data set as the second observation.

After the data set is complete, PROC PRINT output for Perm.Members shows that a single observation contains the
complete information for each member.
proc print data=perm.members;
run;
Obs Fname Lname Address City State Zip

1 LEE ATHNOS 1215 RAINTREE CIRCLE PHOENIX AZ 85044

2 HEIDIE BAKER 1751 DIEHL ROAD VIENNA VA 22124

3 MYRON BARKER 131 DONERAIL DRIVE ATLANTA GA 30363

4 JOYCE BENEFIT 85 MAPLE AVENUE MENLO PARK CA 94025

Number of Records Per Observation
Note that the raw data file must contain the same number of records for each observation that is being created.

For example, suppose there are only two records for the second member. However, the INPUT statement is set up to read
three records.

496

The second member's name and address are read and assigned to corresponding variables. Then the input pointer
advances to the next record, as directed by the INPUT statement, and the third member's name is read as a value for City.

The DATA step is still looking for a value for State and Zip, so the input pointer advances to the next record and reads the
values for the member's address.

The PROC PRINT output for this data set illustrates the problem.

Obs Fname Lname Address City State Zip

1 LEE ATHNOS 1215
RAINTREE
CLRCLE

PHOENIX AZ 85044

2 HEIDIE BAKER 1751 DIEHL
ROAD

MYRON
BARK

131 DONERAIL

3 ATLANTA GA JOYCE
BENEFIT

85 MAPLE A MENLO PARK

So, before you write the INPUT statement, ensure that the raw data file contains the same number of records for each
observation.

Note For more information about working with raw data files that contain missing records, see the SAS
documentation.

Reading Multiple Records Non-Sequentially

The #n Line Pointer Control

497

You already know how to read multiple records sequentially by using the / line pointer control. Now let's look at reading
multiple records non-sequentially by using the #n line pointer control.

The #n specifies the absolute number of the line to which you want to move the input pointer. The #n pointer control can
read records in any order; therefore, it must be specified before the instructions for reading values in a specific record.

The INPUT statement below first reads the values for Department and JobCode in the second record, then the values for
Lname and Fname in the first record. Finally, it reads the value for Salary in the third record.

Example: Using the #n Line Pointer Control
Take a closer look at using the #n line pointer control in the following example.

The raw data file Patdata contains information about the patients of a small group of general surgeons.

The first three records contain a patient's name, address, city, state, and zip code. The fourth record contains the patient's
ID number followed by the name of the primary physician.

Suppose you want to read each patient's information in the following order:
1. ID number (ID)
2. first name (Fname)
3. last name (Lname)
4. address (Address)
5. city (City)
6. state (State)
7. zip (Zip)
8. doctor (Doctor)

� To read the values for ID in the fourth record, specify #4 before naming the variable and defining its attributes.

� To read the values for Fname and Lname in the first record, specify #1 before naming the variables and defining
their attributes.

498

� Use the #n line pointer control to move the input pointer to the second record and read the value for Address.

� Now move the input pointer to the third record and read the values for City, State, and Zip, in that order.
Note In this raw data file, the values for City contain eight or fewer characters and do not contain embedded

blanks. So, you can use standard list input to read these values.

� Now you need to move the input pointer down to the fourth record to read the values for Doctor, which begin in
column 7. Don't forget to add a semicolon at the end of the INPUT statement. A RUN statement completes the
program.

Execution of the DATA Step
The #n pointer controls in the program below cause four records to be read for each execution of the DATA step.
data perm.patients;
 infile patdata;
 input #4 ID $5.
 #1 Fname $ Lname $
 #2 Address $23.
 #3 City $ State $ Zip $

 #4 @7 Doctor $6.;
run;

The first time the DATA step executes, the first four records are read, and an observation is written to the data set.

499

During the second iteration, the next four records are read, and the second observation is written to the data set, and so on.

The PROC PRINT output of the data set shows how information that was spread over several records has been condensed
into one observation.
 proc print data=perm.patients noobs;
 run;
ID Fname Lname Address City State Zip Doctor

XM034 ALEX BEDWAN 609 WILTON
MEADOW DRIVE

GARNER NC 27529 FLOYD

XF124 ALISON BEYER 8521 HOLLY
SPRINGS ROAD

APEX NC 27502 LAWSON

XF232 LISA BONNER 109 BRAMPTON
AVENUE

CARY NC 27511 LAWSON

XM065 GEORGE CHESSON 3801 WOODSIDE
COURT

GARNER NC 27529 FLOYD

Combining Line Pointer Controls
The forward slash (/) line pointer control and the #n line pointer control can be used together in a SAS program to read
multiple records both sequentially and non-sequentially.

For example, you could use both the / line pointer control and the #n line pointer control to read the variables in the raw data
file Patdata in the following order:
1. ID 5. City

2. Fname 6. State

3. Lname 7. Zip

4. Address 8. Doctor

� To read the values for ID in the fourth record, specify #4 before naming the variable and defining its attributes.
� Specify #1 to move the input pointer back to the first record, where the values for Fname and Lname are read.
� Because the next record to be read is sequential, you can use the / line pointer control after the variable Lname to

move the input pointer to the second record, where the value for Address is read.

500

� The / line pointer control in the next line directs the input pointer to the third record, where the values for City,
State, and Zip are read.

� The final / line pointer control moves the input pointer back to the fourth record, where the value for Doctor is read.
Note Alternatively, you can use only the #n line pointer control (as shown earlier in this chapter and below) to

read the variables in the order shown above.

Summary

Text Summary

Multiple Records Per Observation
Information for one observation can be spread out over several records. You can write one INPUT statement that contains
line pointer controls to specify the records from which values are read.

Reading Multiple Records Sequentially
The forward slash (/) line pointer control is used to read multiple records sequentially. Each time a / pointer is encountered,
the input pointer advances to the next line.

Reading Multiple Records Non-Sequentially
The #n line pointer control is used to read multiple records non-sequentially. The #n specifies the absolute number of the
line to which you want to move the pointer.

Combining Line Pointer Controls
The / line pointer control and the #n line pointer control can be combined within a SAS program to read multiple records
both sequentially and non-sequentially.

Points to Remember
� When a file contains multiple records per observation, the file must contain the same number of records for each

observation that is being created.
� Because the / pointer control can only move forward, the pointer control is specified after the values in the current

record are read.
� The #n pointer control can read records in any order and must be specified before the variable names are defined.
� A semicolon should be placed at the end of the complete INPUT statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. You can position the input pointer on a specific record by using
a. column pointer controls.

501

b. column specifications.
c. line pointer controls.
d. line hold specifiers.

2. Which pointer control is used to read multiple records sequentially?
a. @n
b. +n
c. /
d. all of the above

3. Which pointer control can be used to read records non-sequentially?
a. @n
b. #n
c. +n
d. /

4. Which SAS statement correctly reads the values for Fname, Lname, Address, City, State, and Zip
in order?

a. input Fname $ Lname $ /
b. Address $20. /
c. City $ State $ Zip $;
d. input Fname $ Lname $ /;
e. Address $20. /;
f. City $ State $ Zip $;
g. input / Fname $ Lname $
h. / Address $20.
i. City $ State $ Zip $;
j. input / Fname $ Lname $;
k. / Address $20.;
l. City $ State $ Zip $;

5. Which INPUT statement correctly reads the values for ID in the fourth record, then returns to the first
record to read the values for Fname and Lname?

502

a. input #4 ID $5.
b. #1 Fname $ Lname $;
c. input #4 ID $ 1-5
d. #1 Fname $ Lname $;
e. input #4 ID $
f. #1 Fname $ Lname $;
g. all of the above

6. How many records will be read for each iteration of the DATA step?

data spring.sportswr;
 infile newitems;
 input #1 Item $ Color $
 #3 @8 Price comma6.
 #2 Fabric $
 #3 SKU $ 1-6;
run;

a. one
b. two
c. three
d. four

7. Which INPUT statement correctly reads the values for City, State, and Zip?

503

a. input #3 City $ State $ Zip $;
b. input #3 City & $11. State $ Zip $;
c. input #3 City $11. +2 State $2. + 2 Zip $5.;
d. all of the above

8. Which program does not read the values in the first record as a variable named Item and the values in
the second record as two variables named Inventory and Type?

a. data perm.supplies;
b. infile instock pad;
c. input Item & $16. /
d. Inventory 2. Type $8.;
e. run;
f. data perm.supplies;
g. infile instock pad;
h. input Item & $16.
i. / Inventory 2. Type $8.;
j. run;
k. data perm.supplies;
l. infile instock pad;
m. input #1 Item & $16.
n. Inventory 2. Type $8.;
o. run;
p. data perm.supplies;
q. infile instock pad;
r. input Item & $16.
s. #2 Inventory 2. Type $8.;

504

t. run;

9. Which INPUT statement reads the values for Lname, Fname, Department, and Salary (in that order)?

a. input #1 Lname $ Fname $ /
b. Department $12. Salary comma10.;
c. input #1 Lname $ Fname $ /
d. Department : $12. Salary : comma.;
e. input #1 Lname $ Fname $
f. #2 Department : $12. Salary : comma.;
g. both b and c

10. Which raw data file poses potential problems when you are reading multiple records for each
observation?

a.

b.

c.

505

d.

Answers

1. Correct answer: c

Information for one observation can be spread out over several records. You can write one INPUT statement that
contains line pointer controls to specify the records from which values are read.

2. Correct answer: c

The forward slash (/) line pointer control is used to read multiple records sequentially. Each time a / pointer is
encountered, the input pointer advances to the next line. @n and +n are column pointer controls.

3. Correct answer: b

The #n line pointer control is used to read records non-sequentially. The #n specifies the absolute number of the line to
which you want to move the pointer.

4. Correct answer: a

The INPUT statement uses the / line pointer control to move the input pointer forward from the first record to the second
record, and from the second record to the third record. The / line pointer control only moves the input pointer forward
and must be specified after the instructions for reading the values in the current record. You should place a semicolon
only at the end of a complete INPUT statement.

5. Correct answer: d

The first #n line pointer control enables you to read the values for ID from the fourth record. The second #n line pointer
control moves back to the first record and reads the values for Fname and Lname. You can use formatted input, column
input, or list input to read the values for ID.

6. Correct answer: c

The first time the DATA step executes, the first three records are read, and an observation is written to the data set.
During the second iteration, the next three records are read, and the second observation is written to the data set.
During the third iteration, the last three records are read, and the final observation is written to the data set.

7. Correct answer: b

A combination of modified and simple list input can be used to read the values for City, State, and Zip. You need to
use modified list input to read the values for City, because one of the values is longer than eight characters and
contains an embedded blank. You cannot use formatted input, because the values do not begin and end in the same
column in each record.

506

8. Correct answer: c

The values for Item in the first record are read, then the following / or #n line pointer control advances the input pointer
to the second record to read the values for Inventory and Type.

9. Correct answer: d

You can use either the / or #n line pointer control to advance the input pointer to the second line, in order to read the
values for Department and Salary. The colon (:) modifier is used to read the character values that are longer than
eight characters (Department) and the nonstandard data values (Salary).

10. Correct answer: c

The third raw data file does not contain the same number of records for each observation, so the output from this data
set will show invalid data for the ID and salary information in the fourth line.

507

Chapter 21: Creating Multiple Observations from a Single
Record

Overview

Introduction
Sometimes raw data files contain data for several observations in one record. Data is stored in this manner to reduce the
size of the entire data file.

Each record can contain
� repeating blocks of data that represent separate observations

� an ID field followed by an equal number of repeating fields that represent separate observations

� an ID field followed by a varying number of repeating fields that represent separate observations.

This chapter shows you several ways of creating multiple observations from a single record.

Objectives
In this chapter, you learn to
� create multiple observations from a single record that contains repeating blocks of data
� create multiple observations from a single record that contains one ID field followed by the same number of

repeating fields
� create multiple observations from a single record that contains one ID field followed by a varying number of

repeating fields.

Additionally, you learn to
� hold the current record across iterations of the DATA step

508

� hold the current record for the next INPUT statement
� execute SAS statements based on a variable's value
� explicitly write an observation to a data set
� execute SAS statements while a condition is true.

Reading Repeating Blocks of Data
Each record in the file Tempdata contains three blocks of data. Each block contains a date followed by the day's high
temperature in a small city that is located in the southern United States.

You could write a DATA step that reads each record and creates three different Date and Temp variables.

SAS Data Set

Date1 Temp1 Date2 Temp2 Date3 Temp3

11048 68 11049 67 11050 70

But if you create a separate observation for each block of data in a record, you can later use several statistical procedures
to analyze the data for each day.

SAS Data Set

Date HighTemp

11048 68

11049 67

11050 70

Holding the Current Record with a Line-Hold Specifier
As you begin to write the INPUT statement, you need to hold the current record until each block of data has been read and
written to the data set as an observation. This is easily accomplished by using a line-hold specifier in the INPUT statement.

SAS provides two line-hold specifiers.
� The trailing at sign (@) holds the input record for the execution of the next INPUT statement.
� The double trailing at sign (@@) holds the input record for the execution of the next INPUT statement, even across

iterations of the DATA step.

509

The term trailing indicates that the @ or @@ must be the last item that is specified in the INPUT statement. Here is an
example:
 input Name $20. @; or input Name $20. @@;

This chapter teaches you how the trailing @@ can be used to hold a record across multiple iterations of the DATA step.

Using the Double Trailing At Sign (@) to Hold the Current Record
Typically, each time a DATA step executes, the INPUT statement reads a new record. But when you use the trailing @@,
the INPUT statement holds the current record and reads the next value.

The double trailing at sign (@@)
� works like the trailing @ except it also holds the data line in the input buffer across multiple executions of the

DATA step
� typically is used to read multiple SAS observations from a single data line
� should not be used with the @ pointer control, with column input, nor with the MISSOVER option.

A record that is being held by the double trailing at sign (@@) is not released until one of the following events occurs:
� the input pointer moves past the end of the record. Then the input pointer moves down to the next record.

� an INPUT statement that has no line-hold specifier executes.
� input ID $ @@;
� .
� .
� input Department 5.;

This example requires only one INPUT statement to read the values for Date and HighTemp, but the INPUT statement
must execute three times for each record.

The INPUT statement reads a block of values for Date and HighTemp, and then holds the current record by using the
trailing @@. The values in the program data vector are written to the data set as an observation, and control returns to the
top of the DATA step.
data perm.april90;
 infile tempdata;

input Date : date. HighTemp @@;

510

In the next iteration, the INPUT statement reads the next block of values for Date and HighTemp from the same record.

Completing the DATA Step
You can add a FORMAT statement to the DATA step to display the date or time values with a format that you specify in the
data set. In the FORMAT statement below, the DATEw. format is used to display the values for Date in the form
ddmmmyyyy.
data perm.april90;
 infile tempdata;
 input Date : date. HighTemp @@;

format date date9.;
run;

DATA Step Processing of Repeating Blocks of Data
Here is the complete DATA step.
data perm.april90;
 infile tempdata;
 input Date : date. HighTemp @@;
 format date date9.;
run;

Example
As the execution phase begins, the input pointer rests on column 1 of record 1.

511

During the first iteration of the DATA step, the first block of values for Date and HighTemp are read and stored in the
program data vector.

The first observation is written to the data set, control returns to the top of the DATA step, and values are reset to missing.

During the second iteration, the @@ prevents the input pointer from moving down to column 1 of the next record.

512

The INPUT statement reads the second block of values for Date and HighTemp in the first record.

The second observation is written to the data set, and control returns to the top of the DATA step.

513

During the third iteration, the last block of values is read and written to the data set as the third observation. Control returns
to the top of the DATA step, and values are reset to missing.

During the fourth iteration, the first block of values in the second record is read and written as the fourth observation. Control
returns to the top of the DATA step, and values are reset to missing.

514

The execution phase continues until the last block of data is read.

You can display the data set with the PRINT procedure.
 proc print data=perm.april90;
 run;
Obs Date HighTemp

1 01APR1990 68

515

Obs Date HighTemp

2 02APR1990 67

3 03APR1990 70

4 04APR1990 74

5 05APR1990 72

6 06APR1990 73

7 07APR1990 71

8 08APR1990 75

9 09APR1990 76

10 10APR1990 78

11 11APR1990 70

12 12APR1990 69

13 13APR1990 71

14 14APR1990 71

15 15APR1990 74

Reading the Same Number of Repeating Fields
So far you have created multiple observations from a single record by executing the DATA step once for each block of data
in a record.

Now look at another file that is organized differently.

Each record in the file Data97 contains a sales representative's ID number, followed by four repeating fields that represent
his or her quarterly sales totals for 1997.

You want to pair each sales representative’s ID number with one quarterly sales total to produce a single observation. That
way, four observations can be derived from one record.

516

To accomplish this, you must execute the DATA step once for each record, repetitively reading and writing values in one
iteration.

This means that a DATA step must
� read the value for ID and hold the current record
� create a new variable named Quarter to identify the fiscal quarter for each sales figure
� read a new value for Sales and write the values to the data set as an observation
� continue reading a new value for Sales and writing values to the data set three more times.

Using the Single Trailing At Sign (@) to Hold the Current Record

First, you need to read the value for ID and hold the record so that subsequent values for Sales can be read.
data perm.sales97;
 infile data97;

input ID $

You are already familiar with the double trailing @@, which holds the current record across multiple iterations of the DATA
step.

However, in this case, you want to hold the record with the trailing @ line-hold specifier so that a second INPUT statement
can read the values for Sales within the same iteration of the DATA step. Like the double trailing @@, the single trailing @

� enables the next INPUT statement to read from the same record
� releases the current record when a subsequent INPUT statement executes without a line-hold specifier.

It's easy to distinguish between the trailing @@ and the trailing @ by remembering that
� the double trailing at sign (@@) holds a record across multiple iterations of the DATA step until the end of the

record is reached.
� the single trailing at sign (@) releases a record when control returns to the top of the DATA step.

In this example, the first INPUT statement reads the value for ID and uses the trailing @ to hold the current record for the
next INPUT statement in the DATA step.
data perm.sales97;
 infile data97;

input ID $ @;

517

 input Sales : comma. @;
 output;

The second INPUT statement reads a value for Sales and holds the record. The COMMAw.d informat in the INPUT
statement reads the numeric value for Sales and removes the embedded commas. An OUTPUT statement writes the
observation to the SAS data set, and the DATA step continues processing.

Note Notice that the COMMAw.d informat does not specify a w value. Remember that list input reads values
until the next blank is detected. The default length of numeric variables is 8 bytes, so you don't need to
specify a w value to determine the length of a numeric variable.

When all of the repeating fields have been read and sent to output, control returns to the top of the DATA step, and the
record is released.

data perm.sales97;
 infile data97;
 input ID $ @;
 input Sales : comma. @;
 output;
 input Sales : comma. @;
 output;
 input Sales : comma. @;
 output;
 input Sales : comma. @;
 output;

run;

More Efficient Programming

Each record contains four different values for the variable Sales, so the INPUT statement must execute four times. Rather
than writing four INPUT statements, you can execute one INPUT statement repeatedly in an iterative DO loop.

Each time the loop executes, you need to write the values for ID, Quarter, and Sales as an observation to the data set.
This is easily accomplished by using the OUTPUT statement.
data perm.sales97;
 infile data97;
 input ID $ @;

do Quarter=1 to 4;
 input Sales : comma. @;

output;
 end;

518

run;

By default, every DATA step contains an implicit OUTPUT statement at the end of the step. Placing an explicit OUTPUT
statement in a DATA step overrides the automatic output, and SAS adds an observation to a data set only when the explicit
OUTPUT statement is executed.

Processing a DATA Step That Contains an Iterative DO Loop
Now that the program is complete, let's see how SAS processes a DATA step that contains an iterative DO loop.
data perm.sales97;
 infile data97;
 input ID $ @;
 do Quarter=1 to 4;
 input Sales : comma. @;
 output;
 end;
run;

During the first iteration, the value for ID is read and Quarter is initialized to 1, so the loop begins to execute.

The INPUT statement reads the first repeating field and assigns the value to Sales in the program data vector. The @
holds the current record.

The OUTPUT statement writes the values in the program data vector to the data set as the first observation.

The END statement indicates the bottom of the loop, but control returns to the DO statement, not to the top of the DATA
step. Now the value of Quarter is incremented to 2.

519

The INPUT statement executes again, reading the second repeating field and storing the value for Sales in the program
data vector.

The OUTPUT statement writes the values in the program data vector as the second observation.

The loop continues executing while the value for Quarter is 3, then 4. In the process, the third and fourth observations are
created.

After the fourth observation is created, Quarter is incremented to 5 at the bottom of the DO loop and control returns to the
top of the loop. The loop does not execute again because the value of Quarter is now greater than 4.

520

The RUN statement executes. Control returns to the top of the DATA step, and the input pointer moves to column 1 of the
next record. The variable values in the program data vector are reset to missing. Notice that SAS is reading the second
record from the original file but has created four observations in the new SAS data set.

When the execution phase is complete, you can display the data set with the PRINT procedure.
proc print data=perm.sales97;
run;
Obs ID Quarter Sales

1 0734 1 1323.34

2 0734 2 2472.85

3 0734 3 3276.65

4 0734 4 5345.52

5 0943 1 1908.34

6 0943 2 2560.38

7 0943 3 3472.09

8 0943 4 5290.86

9 1009 1 2934.12

10 1009 2 3308.41

11 1009 3 4176.18

12 1009 4 7581.81

Reading a Varying Number of Repeating Fields
So far each record in the file Data97 has contained the same number of repeating fields.

But suppose some of the employees quit after the first quarter. Records that contain information for those employees might
not contain sales totals for the second, third, or fourth quarter. These records contain a varying number of repeating fields.

521

The DATA step that you just wrote won't work with a varying number of repeating fields because now the value of Quarter
is not constant for every record.
data perm.sales97;
 infile data97;
 input ID $ @;

do Quarter=1 to 4;
 input Sales : comma. @;
 output;
 end;
run;

Using the MISSOVER Option

You can adapt the DATA step to accommodate a varying number of values for Sales.

Like the previous example with the same number of repeating fields, your DATA step must read the same record more than
once. However, you need to prevent the input pointer from moving to the next record when there are missing values for
Sales.

You can use the MISSOVER option in an INFILE statement to prevent SAS from reading the next record when missing
values are encountered at the end of a record. Essentially, records that have a varying number of repeating fields are
records that contain missing values, so you need to specify the MISSOVER option here as well.

Because there is at least one value for the repeating field, Sales, in each record, the first INPUT statement reads both the
value for ID and the first value for Sales in the first record. The trailing @ holds the record so that any subsequent
repeating fields can be read.
data perm.sales97;
 infile data97 missover;

input ID $ Sales : comma. @;

Note SAS provides several options to control reading past the end of a line. You've seen the MISSOVER option
for setting remaining INPUT statement variables to missing values if the pointer reaches the end of a
record. You can also use other options such as the TRUNCOVER option, which reads column or
formatted input when the last variable that is read by the INPUT statement contains varying-length data.
The TRUNCOVER option assigns the contents of the input buffer to a variable when the field is shorter
than expected.
Other related options include FLOWOVER (the default), STOPOVER, and SCANOVER. For more
information about TRUNCOVER and related options, see the SAS documentation.

Executing SAS Statements While a Condition Is True

522

Now consider how many times to read each record. Earlier, you created an index variable named Quarter whose value
ranged from 1 to 4 because there were four repeating fields.

Now you want to read the record only while a value for Sales exists. Use a DO WHILE statement instead of the iterative
DO statement, enclosing the expression in parentheses. In the example below, the DO WHILE statement executes while
the value of Sales is not equal to a missing value (which is represented by a period).
data perm.sales97;
 infile data97 missover;
 input ID $ Sales : comma. @;

do while (sales ne .);

Creating a Counter Variable
Because the DO WHILE statement does not create an index variable, you can create your own "counter" variable. You can
then use a Sum statement to increment the value of the counter variable each time the DO WHILE loop executes.

In the example below, the assignment statement that precedes the loop creates the counter variable Quarter and assigns
it an initial value of zero. Each time the DO WHILE loop executes, the Sum statement increments the value of Quarter by
one.
data perm.sales97;
 infile data97 missover;
 input ID $ Sales : comma. @;

Quarter=0;
do while (sales ne .);

quarter+1;

Completing the DO WHILE Loop
Now look at the other statements that should be executed in the DO WHILE loop. First, you need an OUTPUT statement to
write the current observation to the data set. Then, another INPUT statement reads the next value for Sales and holds the
record. You complete the DO WHILE loop with an END statement.
data perm.sales97;
 infile data97 missover;
 input ID $ Sales : comma. @;
 Quarter=0;
 do while (sales ne .);
 quarter+1;

output;
input sales : comma. @;

end;
run;

Processing a DATA Step That Has a Varying Number of Repeating Fields
Here is the new version of the DATA step.

523

data perm.sales97;
 infile data97 missover;
 input ID $ Sales : comma. @;
 Quarter=0;
 do while (sales ne .);
 quarter+1;
 output;
 input sales : comma. @;
 end;
run;

During the first iteration of the DATA step, values for ID and Sales are read. Quarter is initialized to zero.

The DO WHILE statement checks to see if Sales has a value at the top of the loop. Because it does have a value, the
other statements in the DO loop execute.

The INPUT statement reads the next value for Sales, the end of the loop is reached, and control returns to the DO WHILE
statement.

The condition is checked at the top of the loop and Sales still has a value, so the loop executes again.

524

Quarter is incremented to 2, and the values in the program data vector are written as the second observation.

The MISSOVER option prevents the input pointer from moving to the next record in search of another value for Sales. At
this point, Sales has no value.

Because the condition is now false, the statements in the loop are not executed.

Instead, control returns to the top of the DATA step, the values in the program data vector are reset to missing, and the
input pointer moves to column 1 of the next record. The DATA step continues executing until all the values for Sales are
read.

525

PROC PRINT output for the data set shows a varying number of observations for each employee.
proc print data=perm.sales97;

 run;
Obs ID Sales Quarter

1 1824 1323.34 1

2 1824 2472.85 2

3 1943 2199.23 1

4 2046 3598.48 1

5 2046 4697.98 2

6 2046 4598.45 3

7 2063 4963.87 1

8 2063 3434.42 2

9 2063 2241.64 3

10 2063 2759.11 4

Summary

Text Summary

File Formats
One raw data record can contain enough information to produce several observations. Data is stored in this manner in order
to reduce the size of the entire file. The data can be organized into
� repeating blocks of data
� an ID field followed by the same number of repeating fields
� an ID field followed by a varying number of repeating fields.

Reading Repeating Blocks of Data
To create multiple observations from a record that contains repeating blocks of data, the DATA step needs to hold the
current record until each block of data has been read and written to the data set as an observation. The DATA step should
include statements that
� read the first block of values and hold the current record with the double trailing at sign (@@) line-hold specifier
� optionally add a FORMAT statement to display date or time values with a specified format

526

� write the first block of values as an observation
� execute the DATA step until all repeating blocks have been read.

Reading the Same Number of Repeating Fields
To create multiple observations from a record that contains an ID field and the same number of repeating fields, you must
execute the DATA step once for each record, repetitively reading and writing values in one iteration. The DATA step should
include statements that
� read the ID field and hold the current record with the single trailing at sign (@) line-hold specifier
� execute SAS statements using an iterative DO loop. The iterative DO loop repetitively processes statements that

o read the next value of the repeating field and hold the record with the @ line- hold specifier
o explicitly write an observation to the data set by using an OUTPUT statement.

� complete the iterative DO loop with an END statement.

Reading a Varying Number of Repeating Fields
To create multiple observations from a record that contains an ID field and a varying number of repeating fields, you must
execute the DATA step once for each record, repetitively reading and writing values in one iteration while the value of the
repeating field exists. The DATA step should include statements that
� prevent SAS from reading the next record if missing values were encountered in the current record by using the

MISSOVER option
� read the ID field and the first repeating field, and then hold the record with the single trailing at sign (@) line-hold

specifier
� optionally create a counter variable
� execute SAS statements while a condition is true, using a DO WHILE loop. A DO WHILE loop repetitively

processes statements that
o optionally increment the value of the counter variable by using a Sum statement
o explicitly add an observation to the data set by using an OUTPUT statement
o read the next value of the repeating field and hold the record with the single trailing at sign (@) line-hold

specifier.
� complete the DO WHILE loop with an END statement.

Points to Remember
� The double trailing at sign (@@) holds a record across multiple iterations of the DATA step until the end of the

record is reached.
� The single trailing at sign (@) releases a record when control returns to the top of the DATA step.
� Use an END statement to complete DO loops and DO WHILE loops.

Quiz
Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. Which is true for the double trailing at sign (@@)?
a. It enables the next INPUT statement to read from the current record across multiple iterations

of the DATA step.
b. It must be the last item that is specified in the INPUT statement.
c. It is released when the input pointer moves past the end of the record.
d. All of the above.

2. A record that is being held by a single trailing at sign (@) is automatically released when
a. the input pointer moves past the end of the record.
b. the next iteration of the DATA step begins.
c. another INPUT statement that has a single trailing at sign (@) executes.

527

d. another value is read from the observation.

3. Which SAS program correctly creates a separate observation for each block of data?

a. ata perm.produce;
b. infile fruit;
c. input Item $4. Variety : $10.;
d. run;
e. data perm.produce;
f. infile fruit;
g. input Item $4. Variety : $10. @;
h. run;
i. data perm.produce;
j. infile fruit;
k. input Item $ Variety : $10. @@;
l. run;
m. data perm.produce;
n. infile fruit @@;
o. input Item $4. Variety : $10.;
p. run;

4. Which SAS program segment reads the values for ID and holds the record for each value of Quantity,
so that three observations are created for each record?

a. data work.sales;
b. infile unitsold;
c. input ID $;
d. do week=1 to 3;
e. input Quantity : comma.;
f. output;
g. end;
h. run;
i. data work.sales;
j. infile unitsold;
k. input ID $ @@;
l. do week=1 to 3;
m. input Quantity : comma.;

528

n. output;
o. end;
p. run;
q. data work.sales;
r. infile unitsold;
s. input ID $ @;
t. do week=1 to 3;
u. input Quantity : comma.;
v. output;
w. end;
x. run;
y. data work.sales;
z. infile unitsold;
aa. input ID $ @;
bb. do week=1 to 3;
cc. input Quantity : comma. @;
dd. output;
ee. end;
ff. run;

5. Which SAS statement repetitively executes several statements when the value of an index variable
named Count ranges from 1 to 50, incremented by 5?

a. do count=1 to 50 by 5;
b. do while count=1 to 50 by 5;
c. do count=1 to 50 + 5;
d. do while (count=1 to 50 + 5);

6. Which option below, when used in a DATA step, writes an observation to the data set after each value
for Activity has been read?

a. do choice=1 to 3;
b. input Activity : $10. @;
c. output;
d. end;
e. run;
f. do choice=1 to 3;
g. input Activity : $10. @;
h. end;
i. output;
j. run;
k. do choice=1 to 3;
l. input Activity : $10. @;
m. end;

529

n. run;
o. a and b

7. Which SAS statement repetitively executes several statements while the value of Cholesterol is
greater than 200?

a. do cholesterol > 200;
b. do cholesterol gt 200;
c. do while (cholesterol > 200);
d. do while cholesterol > 200;

8. Which choice below is an example of a Sum statement?
a. totalpay=1;
b. totalpay+1;
c. totalpay*1;
d. totalpay by 1;

9. Which program creates the SAS data set Perm.Topstore from the raw data file shown below?

SAS Data Set Perm.Topstore

Store Sales Month

1001 77163.19 1

1001 76804.75 2

1001 74384.27 3

1002 76612.93 1

1002 81456.34 2

1002 82063.97 3

1003 82185.16 1

1003 79742.33 2

a. data perm.topstores;
b. infile sales98 missover;
c. input Store Sales : comma. @;
d. do while (sales ne .);
e. month + 1;
f. output;
g. input sales : comma. @;
h. end;
i. run;
j.
k. data perm.topstores;

530

l. infile sales98 missover;
m. input Store Sales : comma. @;
n. do while (sales ne .);
o. Month=0;
p. month + 1;
q. output;
r. input sales : comma. @;
s. end;
t. run;
u.
v. data perm.topstores;
w. infile sales98 missover;
x. input Store Sales : comma. Month @;
y. do while (sales ne .);
z. month + 1;
aa. input sales : comma. @;
bb. end;
cc. output;
dd. run;
ee.
ff. data perm.topstores;
gg. infile sales98 missover;
hh. input Store Sales : comma. @;
ii. Month=0;
jj. do while (sales ne .);
kk. month + 1;
ll. output;
mm. input sales : comma. @;
nn. end;
oo. run;

10. How many observations are produced by the DATA step that reads this external file?

a. 3
b. 5
c. 12
d. 15

Answers

531

1. Correct answer: d

The double trailing at sign (@@) enables the next INPUT statement to read from the current record across multiple
iterations of the DATA step. It must be the last item that is specified in the INPUT statement. A record that is being held
by the double trailing at sign (@@) is not released until the input pointer moves past the end of the record, or until an
INPUT statement that has no line-hold specifier executes.

2. Correct answer: b

Unlike the double trailing at sign (@@), the single trailing at sign (@) is automatically released when control returns to
the top of the DATA step for the next iteration. The trailing @ does not toggle on and off. If another INPUT statement
that has a trailing @ executes, the holding effect is still on.

3. Correct answer: c

Each record in this file contains three repeating blocks of data values for Item and Variety. The INPUT statement
reads a block of values for Item and Variety, and then holds the current record by using the double trailing at sign
(@@). The values in the program data vector are written to the data set as the first observation. In the next iteration, the
INPUT statement reads the next block of values for Item and Variety from the same record.

4. Correct answer: d

This raw data file contains an ID fieldthat is followed by repeating fields. The first INPUT statement reads the values for
ID and uses the @ line-hold specifier to hold the current record for the next INPUT statement in the DATA step. The
second INPUT statement reads the values for Quantity. When all of the repeating fields have been read, control
returns to the top of the DATA step, and the record is released.

5. Correct answer: a

The iterative DO statement begins the execution of a loop based on the value of an index variable. Here, the loop
executes when the value of Count ranges from 1 to 50, incremented by 5.

6. Correct answer: a

The OUTPUT statement must be included in the loop so that each time a value for Activity is read, an observation is
immediately written to the data set.

7. Correct answer: c

The DO WHILE statement checks for the condition that Cholesterol is greater than 200. The expression must be
enclosed in parentheses. The expression is evaluated at the top of the loop, before any statements are executed. If the
condition is true, the DO WHILE loop executes. If the expression is false the first time it is evaluated, then the loop
never executes.

8. Correct answer: b

The Sum statement adds the result of an expression to a counter variable. So the + sign is an essential part of the Sum
statement. Here, the value of TotalPay is incremented by 1.

9. Correct answer: d

The assignment statement that precedes the DO WHILE loop creates the counter variable Month and assigns an initial
value of zero to it. Each time the DO WHILE loop executes, the Sum statement increments the value of Month by 1.

532

10. Correct answer: c

This DATA step produces one observation for each repeating field. The MISSOVER option in the INFILE statement
prevents SAS from reading the next record when missing values occur at the end of a record. Every observation
contains one value for Flavor, paired with the corresponding value for ID. Because there are 12 values for Flavor,
there are 12 observations in the data set

