SAS Certification Prep Guide: Base Programming for SAS 9

Table of Contents

Chapter 1: BaSiC CONCEPLS ..vuurerrurirriirirnieirerrrsrrrasrersesessesensssesssrsnnsesnnsesnnnees 6

O 1Y 7
INErOdUCION ..ceecee e 7
(@]) = 0L V=PRI 7

Y AN 10T | = 1P 7
Components Of SAS Programscoccuuueieeeruiniieeii s sesnsesessnssssssnssssnnanesens 7
Characteristics Of SAS PrOgramscvveeeeuisireennnsssresnsssresnssssssssssessnnssaees 8
Layout for SAS ProgramsS........coiveeeuiiiirrniniserrnsssersssssrrnns s s s s ersnsssssnnnnss 9
Processing SAS Programsccuucviruiiruiiisnsrnssirrsisrsssssassssssssnssssnnsssnnses 9
LOG MESSAGES ... ceuienieurieiiinr it s e s s e 9
RESUILS Of PrOCESSING .vvuuiiiieriiieiiiieierrrie s ss e e rr e e e s e s e rrnn s e e nnans 10

SAS LiDrari€S. .. iieeiieiei e 12
HOW SAS Files Are STOred.......cuuvuiiiiiiiieiiiies e 12
Storing Files Temporarily or Permanentlyccovvvrviiiiiiiinicceieseeeenn 13

ReferenCing SAS FileS ... e e 14
TWO-LEVEI NAMES ...ceeeiiei i e enas 14
Referencing Temporary SAS Files.......ccuviiiiiiiiiiciiin e 14
Referencing Permanent SAS FileS......ccuueiiiiiiiiiiicrie e ena e 15
RUIES fOr SAS NAMESuviiiieriiieriie e e s e e r s e rrn e e e e nnnns 15

SAS Data SELS.....iiiieriiiiiiis i e 15
Overview Of Data SetsS......cuuuriiiiiiiiiriiin e e 16
DI<Iw 0] o] gl =o] o] [P PPRPRP 16
D= = o o o P 16
ObSErvations (ROWS)iivuuiieriireiieeeuiesesissssussssssesnsssnnssrsussesnssesnnsersnseees 17

Variable AttrDULES......ceeeiee e s 17
NAME e 17
I 18
LENGEN e 18
0] 01 = 18
INfOrMAL. . e e 19
LDl e e 19
Variables (COIUMNS)cuvueiiiieiiie i e e e e s e e s e e e e e enes 20
MiISSING VAlUEBS ...ceveiieeeiie et ers e rr e s rr e r s e e s e e rnn e s e e nnnas 20

NS0 101 10 7= Y2 21
LIS (S8 1010 = 2 21
Points to RemMemDErcvvieei e s 22

5 2P 23

Chapter 2: Referencing Files and Setting Optionscccceeviiieviiiiieenineeeenne, 26

L@ A< P 26
| g T [T u o] o I PP 26
(0]) =11 V/= PP 26

ReferenCing FileS......ivvuuiiiieie e e e e s 27
Y AN o] = 1PN 27

AsSIgNING LIDrefS. ... e 27

Verifying LIDrefS...ouu it 28
How Long Librefs Remain in Effect........ccviiiiiiiiieeee e, 28
Specifying TWO-Level NamMESoivvvruiiieiiiiinirrein s eerrs e s e e 28
(10 0= gl 0 1= | PP 28
Viewing the Contents Of SAS Librariesccveeviiiiii e 30
The CONTENTS ProCedUIecoiveereiiieeiiasieeese s s ren s sersns e s srsnnssssennnnssnens 30
The DATASETS ProCeAUIEc.uiiiiiriiiieeeiasseersessssen s s ersns e s srsnnssssennsssenes 32
Setting SAS System OpPLiONS........oviiriiiiiiiiir e e 33
N0 S T U1 11 | PP 33
Handling Two-Digit Year Values: Year 2000 Compliance......c...ccceeevevunnnn. 38
Viewing System OPLiONScocvuiiiiiiiiiiirir s s e rra e eaa e ees 41
The OPTIONS PrOCEAUIEcceeviereiiiee e e eeeeenis s s s e eerrnss s s e s srenns e e s e s eennnns 42
Additional System OPLiONSc.oviiiiiiiiiiiiir i e 43
N1 U 101 10 7= T Y2 43
LIS (S8 110 1= 2 43
POINES t0 REMEMDENuuiiiiiiiiiii e e e 44
20 PP 44
Chapter 3: Editing and Debugging SAS Programscceeeiveernnnerennnneerennnns 49
O 1Y 49
| g T [T u o] o I PP 49
(0]) =11 V7= PP 49
SAS Program LaYOUL......c..viiuuiiiiuiiinirinssrns s rr s sra s ssa s ssas s sn s sa s s s s senns s 49
Interpreting Error MESSAQES.cvuiveuiiriirieresras s ses s s s e s rn s e e e s e e enns 50
o g 1N 0 <P PPRPRP 50
)T L1 Dl = (o] £ PP 50
(@0 <ot o = o] = 51
Resubmitting a Revised Programcccevvvieiiiiieiiinisceiis e eenne s eennan 51
Resolving Common Problems.........cooveuviiiiiiiii e 53
Missing RUN Statement.........ccuoviiiiiiiiiiii s e 53
1S g IR = 31 Te(o] (o] o 1 PP 54
Unbalanced Quotation Markscoiueiiiiiiiiin i e 55

| 171 1o 10 o) 4 o] o SR 57
Additional FEAtUIEScvvviieeeiii e e e e s 57
Comments iN SAS Programsoceeuriersiesninrssssnsssssssrssssnssssnnssssnssees 58
SAS SYStEM OPLIONS....uiiieniiieiiirire e e s s er e s s s e e eanaees 58

N1 U 1101 10 7= T Y2 58
LIS (S8 110 1= 2 58
Points to RemMembercoveveiii s 59
20 PP 59
Chapter 4: Creating LiSt REPOMS....ccuuiiiiiiiiiiiccirie e e 62
L@ A< 62
INErodUCION ..ceecee e 62
(0]) =11 V7= PP 62

BN 81T 2= o T o R 63

2T T ol (<] 0o o PP 63
ColuMN TOLAIS ...eeeeieie e 63
Sorting and Labelsooveveiiiieeee e 64
Selected Observations and Variables...........ccucieiiiiiiiiiiiiin e 65
Creating @ BasiC REPOITcvuiiiiiiiiiii i rr e e e r e r e e e 66
Selecting ObServations..........cceueiiiiiiiiinieerce e 68
Removing the OBS ColumN........ccuuiiiiiiiiiiii e e 69
Identifying ODbServations...........cviiiieeiiiieiiin e e 69
D= 011 0] (= PP 70
Selecting ObSErvationscceeiiiiiieinieerre e e e e e 71
Specifying WHERE EXPreSSIONSccuvuiiiirriiiiiensseersn s ernnssssennnseseennn s 72
Using the CONTAINS Operatorccceuueiieiruiiiieiriie s eens s srnns e s sesnessennnn s 73
Specifying Compound WHERE EXPresSionSceeeveeuinireenninneeesninesesnnnnns 73
Examples of WHERE Statements.........ccovvvieiiiiiiinin e eennn e 73

NS Y0] e = | = 74
= 0] o] [P 74
Generating Column TOtalS......cuuuiiiiiiiiii e 76
Requesting SUDLOLAISciveeeiiieiice e 77
Creating a Customized Layout with BY Groups and ID Variables 78
Requesting Subtotals on Separate Pages...........cveviieiviiiiveenieneeenne e, 80
Double-Spacing Listing OUtpUL........oovviviiiiii e 81
Specifying Titles and FOOTNOES.........oivviviiiiii e 82
TITLE and FOOTNOTE Statements.........ccevuviiniiiierimriiins s eserennne s e eeeennns 82
Modifying and Canceling Titles and Footnotes............ccoeeviveiiiiiiicniiecneenn, 85
Assigning Descriptive Labelscuueiiiiiiiiiiciiiec e 86
Temporarily Assigning Labels to Variablescccccoviviviiiiiiiiicceiieneees 86
Formatting Data Valuesceiiiiiiiiiciiicseerie e rre e 88
Temporarily Assigning Formats to Variables..........ccccooovevieiiiiiiiiiccnieneens 88
Specifying SAS FOrMAtS.......oiiiieiiiiieiiin e rr e e e e 89
Using Permanently Assigned Labels and Formatscccocoiviiiiiiiiiiinneeee, 90
Additional FEAtUIEScvveiiieeiie e e e e s 91
YU] 0= VPP 92
LIS (S8 1010 1= 2 92
Points to RemMemDbDErcoveeei e s 93
2P 94
Chapter 5: Creating SAS Data Sets from Raw Data.........cccooeeviiiiiiiiiiiniinnns 100
L@ A< P 100
INErodUCION ..eeeece e 100
(0]) =T 1)Y= PSPPSR 100

R LT B = | = L= PP 101
Steps to Create @ SAS Data Set........covvviiiiiiiiiii s 101
Referencing @ SAS LiDrary ... 102
Using a LIBNAME Statement.........coocviiiiiiiiininiir s rne e 102

Referencing @ Raw Data Filecooveeviiiiiiii e 103

Using a FILENAME Statement ..o s 103
Referencing a Fully Qualified Filenamecoovviiiciiiiiiiineeeeeeeeene e 104
Referencing a File in an Aggregate Storage Location...........cceevvvvviinnnnens 104
Writing @ DATA Step Programccueeiiiriiiieiiers s s eess s eenn s sn s sn e e 105
Naming the Data Set.........ccuuiiiiiiiiiiiiiirc e 105
Specifying the Raw Data Fileccuiiiiiiiiiicereee e 105
(@0 113 1o T 1 o o 11 | PR 106
Describing the Datacoiveeriiiiiiiii e rrr e e e 107
Submitting the DATA Step Program........cc.cevieerrnineersnssrrnnnseesssnsseeennnsseees 109
Verifying the Data.......cceeiiiiiiiii e e 109
Checking DATA Step ProCeSSING.....ccuuueierrrnsiierrniissrrnnasssrssasssrsssesssnnnes 110
Listing the Data Setcoiviiiiiii e 110
Reading the Entire Raw Data File........cccevviiiiiiiiiiiiiic e 111
INValid Data......cccuniiiii i 112
Creating and Modifying Variablesccccoiiiiiiiiiiiii e 113
SAS EXPIrESSIONS ..vuiiiuiiuiiuisiiessaes s sesssassansess st s esnsssasssnsssnnsenssrnnsennses 114
Using Operators in SAS EXPreSSiONScvvevviriiersniersesesnsssrssssrsnnsssnnssenns 114
More Examples of Assignment Statementscccovvviviiiiiiiiiiinceenieneees 115
Date CONSTANES ...cvuuiiiiii e e s 116
SUDSELEING DAta ...cccvviiiiiirie e 117
Reading INstream Data......c..covieeiiiiiiiiiiiicccri e 117
= 011 0] =PRI 118
Steps to Create @ Raw Data File.......cvvvvuiiiiviiiiin e 119
Using the_ NULL_ KEYWOIdccuoviiiiiiiiiieiiiie e eennn e e s e 120
Specifying the Raw Data Fileccuiiiiiiiii e 120
Describing the Datacovveeriiiiiiiiiiieers e e e e 121
Additional FEAtUIESuciiiiiiieriiie e e e e e e 122
YU L0100 =V 122
TEXE SUMMAIY vuiiieicis e e e s e s e e s s s s e s s s eannenes 122
POINtS t0 REMEMDEY .. cveiiiei e 124
5 2 124
Chapter 6: Understanding DATA Step Processing.........cccueeviverninieenninnseennnnnn 131
L@ A< 131
INErodUCION ..ceeecce e 131
(0]) =0 1 V=P 131
Writing BasiC DATA STEPS ...cuuiiriiiiiiiii s r e 131
HOW SAS ProCesses ProgramsSccceuieeuiireniiiinnisssssssssssnsssnsssnsssssnnees 133
Compilation Phase.........ceuuiiiiiiinirii e e e e e e 133
g oL Ll = 133
Program Data VeCtOr........cuuiiiriiiiiieiic e rn s s s s s snn e ees 133
SYNtaX ChECKING ...vvvveiiiieiiir e e e e e s e e s s e e s e rn s e e rn e s e ennn s 134
Data Set Variablesooiiiiiii e e 134
Descriptor Portion of the SAS Data Set......cocccevviiiiiiiviiieein e 134

Summary of the Compilation Phase......c.cccceevviiiiiiiiiiircnrec e, 136

EXECULION PRASE....cceveiiiiiieieiii i e e 136
= 011 0] =PRI 137
INitializing Variablesccuuiiiiiiiiiiceie e e e 137
INPUL Data.. v i e 138
INPUL POINEEL ..iiviiii i e e r e s e e eaa e 138
ENd Of the DATA SEEP cvvuiiiiiee e e e e e s r e e 140
Iterations Of the DATA SEEP....cuuiiiiiiiiiierrrin e e 141
ENd-Of-File Markeroiiiiiiieiiiie e e 142
Summary of the Execution Phase..........ccoeeeiiiiiiiiiiiiiineevnn e 144
End of the Execution Phase ..o 144

Debugging @ DATA SEEP ..ccvvuiiiieiieierre e errrs e e e e e e rn e e e s 145
Diagnosing Errors in the Compilation Phase........ccccoovveiiiiiiiiiiiicciniecnees 145
Diagnosing Errors in the Execution Phase..........cccoeeiiiivviiiiiviiiecceceneeeeens 145

Testing YOUr PrOgramsScu.uivieniiiiniirnisssssssn s s s s s ses s s s s s ssnn s senns s 149
Writing @ NULL Data Set........coooeuiiiiiiiiiii e 149
Limiting ObServationS........ccuuuiiiiiiii e e e 150
e I = =] 0 T o | P 150

NS U 1101 0= T Y2 152
TEXE SUMMIAIY ceiiitiiie et r e s e e e e s e e s e raernnseas 152
POINtS t0 REMEMDENuuiiiiceeiiee e 153

2P 153

Chapter 7: Creating and Applying User-Defined.........cccceviiiiviiiiiiiceniinieennnnn. 156

OVEIVIEW ..uiiiiiiiisieeiss s s ess s s ra s s e e s s s e s s e ana s s s e aa s s srnn s s e e ena s s ennnnssanns 156
[T [T u o] o PP 156
(0]) =T V=SOSR 157

Introduction to PROC FORMATcuuuiiiiiiiniserrrssssesnsssrrnn s sesssnsssennnnssenes 157

INVOKING PROC FORMATevuiiiiiiieernisss s seeersn s s s s s srnnnns s s s s ssrnnnnsssssnenenns 158
Permanently Storing Your FOrmats......ccceoviiiiiiiiiiiiii e eeene e 158

Defining @ Unique FOrmMatcouuoiiiiieiiiiirrs e er e 159
Specifying Value RANGESccuviiiiiriiiiriiniieeie s e s e e rn e ennn s 160
Defining Multiple FOrmats..........ccuuiiiiiriniirei e r e 161

Associating User-Defined Formats with Variables.........cccccovvevviiiiiiicnieennnn, 162
Referencing YOUr FOrmMatsoovvveeiiiiirin e errr e e rne e 162
Assigning Your Formats to Variablesccceevviiiiiiiiiiii e 163
Displaying a List of Your FOrmats........ccceevvieuiiiiiiiinnerern e eeenn e 165

NS0 1101 0= T Y 165
TEXE SUMMAIY .eeiiieieeis e s e s e s r s s s s s e e s s s eannsnes 165
Points to RemMemDbDErcoviiei e 166

@ 20 166

Chapter 1: Basic Concepts

Overview

Introduction

To program effectively using SAS, you need to understand basic concepts about SAS programs and the SAS files that
they process. In particular, you need to be familiar with SAS data sets.

In this chapter, you'll examine a simple SAS program and see how it works. You'll see how SAS data sets are stored
temporarily or permanently in SAS libraries. You'll also learn details about SAS data sets, which are files that contain data
that is logically arranged in a form that SAS can understand.

data clinic_admit2; SAS data lbeany
Sel clinic C e T |
i orieris of
prac print
FUm
: kel
//' DGEIF\.
F
EAZ program /‘ F::r; "\:‘\.:
files
A Inaune ;
//' | Parea
SAS dats sal ﬁden
Objectives

In this chapter, you learn about

- the structure and components of SAS programs

the steps involved in processing SAS programs

SAS libraries and the types of SAS files that they contain
temporary and permanent SAS libraries

The structure and components of SAS data sets.

SAS Programs

You can use SAS programs to access, manage, analyze, or present your data. Let's begin by looking at a simple SAS
program.

data clinic.admit2;
set clinic.admit;
run;
proc print data=clinic.admit2;
run;

This program creates a new SAS data set from an existing SAS data set and then prints a listing of the new data set. A SAS
data set is a data file that is formatted in a way that SAS can understand.

Let's see how this program works.

Components of SAS Programs

Our sample SAS program contains two steps: a DATA step and a PROC step.

data clinic.admit2;
set clinic.admit;

run;

proc print data=clinic.admit2;

run;

These two types of steps, alone or combined, form most SAS programs.

A SAS program can consist of a DATA step
DATA Step

or a PROC step
PROC Step

or any combination of DATA and PROC steps.
DATA Step
PROC Step
PROC Step

DATA steps typically create or modify SAS data sets. They can also be used to produce custom-designed reports. For
example, you can use DATA steps to

- put your data into a SAS data set

- compute values

= check for and correct errors in your data

= produce new SAS data sets by subsetting, merging, and updating existing data sets.

PROC (procedure) steps are pre-written routines that enable you to analyze and process the data in a SAS data set and to
present the data in the form of a report. PROC steps sometimes create new SAS data sets that contain the results of the
procedure. PROC steps can list, sort, and summarize data. For example, you can use PROC steps to

- create a report that lists the data

= produce descriptive statistics

. create a summary report

= produce plots and charts.

Characteristics of SAS Programs

Next let's look at the individual statements in our sample program. SAS programs consist of SAS statements. A SAS

statement has two important characteristics:
. It usually begins with a SAS keyword.
= It always ends with a semicolon.

As you've seen, a DATA step begins with a DATA statement, which begins with the keyword DATA. A PROC step begins
with a PROC statement, which begins with the keyword PROC. Our sample program contains Q. DATA statement, 0,
SET statement, €2 RUN statement,g a PROC PRINT statement, and ©another RUN statement.

‘ Statements ‘ Sample Program Code
oa DATA statement data clinic.admit2;
Qa SET statement set clinic.admit;
€2 RUN statement run;

ﬂa PROC PRINT statement [PXoc print data=clinic.admit2;

Banother RUN statement run;

Layout for SAS Programs

SAS statements are in free format. This means that

. they can begin and end anywhere on a line
. one statement can continue over several lines
= several statements can be on a line.

Blanks or special characters separate "words" in a SAS statement.
Note You can specify SAS statements in uppercase or lowercase. In most situations, text that is enclosed in
quotation marks is case sensitive.

You've examined the general structure of our sample program. But what happens when you run the program?

Processing SAS Programs
When you submit a SAS program, SAS begins reading the statements and checking them for errors.

DATA and PROC statements signal the beginning of a new step. When SAS encounters a subsequent DATA, PROC, or
RUN statement (for DATA steps and most procedures) or a QUIT statement (for some procedures), SAS stops reading
statements and executes the previous step in the program. In our sample program, each step ends with a RUN statement.

data clinic.admit2;
set clinic.admit;
run;
proc print data=clinic.admit2;

run;
Note The beginning of a new step (DATA or PROC) implies the end of the previous step. Though the RUN
statement is not always required between steps in a SAS program, using it can make the SAS program
easier to read and debug, and it makes the SAS log easier to read.

Log Messages

Each time a step is executed, SAS generates a log of the processing activities and the results of the processing. The SAS
log collects messages about the processing of SAS programs and about any errors that occur.

When SAS processes our sample program, you see the log messages shown below. Notice that you get separate sets of
messages for each step in the program.

SAS Loi

1 data clinic.: admit2;
2 set clinic.admit;
3 run;

NOTE: The data set CLINIC.ADMIT2 has 21
observations and 9 variables.

NOTE: The DATA statement used 1.03 seconds

4 proc print data=clinic.admit2;

5 run;

NOTE: The PROCEDURE PRINT used 0.2 seconds.

Results of Processing

Suppose you submit the sample program below.
data clinic.admit2;
set clinic.admit;
run;
proc print data=clinic.admit2;

run;

When the program is processed, it

. creates the SAS data set Clinic.Admit2 in the DATA step. The DATA step produces messages in the SAS log, but
it does not create a report or other output.
. creates the following HTML report of the SAS data set Clinic. Admit2:
Obs ID Name Sex Age Date Height Weight Fee
ActLev
el
1 2458 Murray, W M 27 1 72 168 85.20
HIGH
2 2462 Almers, C F 34 3 66 152 124.80
HIGH
3 2501 Bonaventure, F 31 17 61 123 149.75
T LOW
4 2523 Johnson, R F 43 31 63 137 149.75
MOD
5 2539 LaMance, K M 51 4 71 158 124.80
LOW

Obs ID Name Sex Age Date Height Weight Fee
ActLev
el
6 2544 Jones, M M 29 6 76 193 124.80
HIGH
7 2552 Reberson, P F 32 9 67 151 149.75
MOD
8 2555 King, E M 35 13 70 173 149.75
MOD
9 2563 Pitts, D M 34 22 73 154 124.80
LOW
10 2568 Eberhardt, S F 49 27 64 172 124.80
LOW
11 2571 Nunnelly, A F 44 19 66 140 149.75
HIGH
12 2572 Oberon, M F 28 17 62 118 85.20
LOW
13 2574 Peterson, V M 30 6 69 147 149.75
MOD
14 2575 Quigley, M F 40 8 69 163 124.80
HIGH
15 2578 Cameron, L M 47 5 72 173 124.80
MOD
16 2579 Underwood, M 60 22 71 191 149.75
K LOW
17 2584 Takahashi, Y F 43 29 65 123 124.80
MOD
18 2586 Derber, B M 25 23 75 188 85.20
HIGH
19 2588 Ivan, H F 22 20 63 139 85.20
LOW
20 2589 Wilcox, E F 41 16 67 141 149.75
HIGH
21 2595 Warren, C M 54 7 71 183 149.75
MOD
Note Throughout this book, procedure output is shown in HTML in the style shown

above unless otherwise noted. You can learn how to create HTML output in
Chapter 2, Referencing Files and Setting Options.

You've seen the results of submitting our sample program. For other SAS programs, the results of processing might vary:
- SAS programs often invoke procedures that create output in the form of a report, as is the case with the TABULATE
procedure.

proc tabulate data=clinic.admit;

11

class sex;
var height weight;
table sex* (height weight) ,mean;

run;

‘Sex | ‘

| Mean

F |Height |64.82

| Weight | 141.73

M |Height | 72.00

|Weight ‘ 172.80

Other SAS programs perform tasks such as sorting and managing data, which have no visible results except for
messages in the log. (All SAS programs produce log messages, but some SAS programs produce only log
messages.)

proc copy in=clinic out=work;

select admit;

run;
SAS Log
6 proc copy in: =clinic out=work;

7 select admit;

8 run;

NOTE: Copying CLINIC.ADMIT to WORK.ADMIT (memtype=DATA).

NOTE: There were 21 observations read from the data set
CLINIC.ADMIT.

NOTE: The data set WORK.ADMIT has 21 observations and 9
variables.

NOTE: PROCEDURE COPY used (Total process time) :
real time 0.13 seconds

cpu time 0.08 seconds

Note You can turn off log messages by using system options, which you can learn about in Chapter 2,
Referencing Files and Setting Options.

SAS Libraries

You've learned about SAS programs and SAS data sets. Now let's look at SAS libraries to see how SAS data sets and
other SAS files are organized and stored.

How SAS Files Are Stored

12

Every SAS file is stored in a SAS library, which is a collection of SAS files. A SAS data library is the highest level of
organization for information within SAS.

SAS libraries have different implementations depending on your operating environment, but a library usually corresponds to
the level of organization that your host operating system uses to access and store files. In some operating environments, a
library is a physical collection of files. In others, the files are only logically related.

For example, in the Windows and UNIX environments, a library is typically a group of SAS files in the same folder or
directory.

SAS data librany

J Contents of Clinic' 1 /

"

E=] it i Profile

L CinElS L] Prafile2
Eﬂ Finance Eﬂ Records
E Fundrive E Strbest SAS
Eﬂ Insure Eﬂ Survey fies
E,; Parmnz EE'} Therapy

@ Patients ﬂﬁ Waview

The table below summarizes the implementation of SAS libraries in various operating environments.

‘ Environment ‘ Library

Windows, UNIX, OpenVMS a group of SAS files that are stored in the same directory. Other files can be stored
(directory based- systems) in the directory, but only the files that have SAS file extensions are recognized as
part of the SAS library. (Refer to the online documentation for more information.)
‘ CMS ‘ a group of SAS files that have the same file type.
‘ z/0S ‘ a specially formatted host data set in which only SAS files are stored.

Storing Files Temporarily or Permanently

Depending on the library name that you use when you create a file, you can store SAS files temporarily or permanently.

Temporary

SAS Data Library
(Work)

Temporary SAS libraries last only for the current SAS session.
Storing files temporarily:

If you don't specify a library name when you create a file (or if you specify the library name Work the file is stored in the
temporary SAS data library. When you end the session, the temporary library and all of its files are deleted.

13

o

Permanent
SAS Data Library

Permanent SAS libraries are available to you during subsequent SAS sessions.

Storing files permanently:

To store files permanently in a SAS data library, you specify a library name other than the default library name Work.
For example, by specifying the library name Clinic when you create a file, you specify that the file is to be stored in a

permanent SAS data library until you delete it.
Note You can learn how to set up permanent SAS libraries in Chapter 2, Referencing Files and Setting

Options.
Referencing SAS Files

Two-Level Names
To reference a permanent SAS data set in your SAS programs, you use a two-level name:
libref.filename

In the two-level name, libref is the name of the SAS data library that contains the file, and filename is the name of the file
itself. A period separates the libref and filename.

librasy rame

fhitwsd)
Conleris o 'l.|!¢ g I
Tike Fearne - ecirat
(Tikerszene) ChnElE
ﬁhm
Furuiive
data clinig admilg,
set Elinic. admik; b
rumn;
proc print data=clinic admit2;
run;

For example, in our sample program, Clinic.Admit is the two-level name for the SAS data set Admit, which is stored in the
library named Clinic.
LIBREF.FILENAME

P

Clinic. Admit
Referencing Temporary SAS Files

To reference temporary SAS files, you can specify the default libref Worka period, and the filename. For example, the two -
level name Work.Test references the SAS data set named Test that is stored in the temporary SAS library Work

14

LIBREF.FILENAME

l'emporary
SAS File

Work. Test

Alternatively, you can use a one-level name (the filename only) to reference a file in a temporary SAS library. When you
specify a one-level name, the default libref Works assumed. For example, the one -level name Test also references the
SAS data set named Test that is stored in the temporary SAS library Work.

LIBREF.FILENAME

l'emporary
SAS File,
COme-Level

Mame Test

Info If the USER library is assigned, SAS uses the User library rather than the Work library for one-level
names. User is a permanent library. For more information, see the SAS Language Reference: Concepts
documentation.

Referencing Permanent SAS Files

You can see that Clinic.Admit and Clinic.Admit2 are permanent SAS data sets because the library name is Clinic, not
Work

Permancnt LIBREF,FILEHAME LIBREF,FILENAME
BASFiles / \ / \
Climie. Admit Clinie. Admit 2

So referencing a SAS file in any library except Work indicates that the SAS file is stored permanently. For example, when
our sample program creates Clinic.Admit2, it stores the new Admit2 data set permanently in the SAS library Clinic.

Rules for SAS Names

SAS data set names

. can be 1 to 32 characters long
- must begin with a letter (A—Z, either uppercase or lowercase) or an underscore (_)
= can continue with any combination of numbers, letters, or underscores.

These are examples of valid data set names:

. Payroll
. LABDATA1995_1997
= _EstimatedTaxPayments3

SAS Data Sets

15

So far, you've seen the components and characteristics of SAS programs, including how they reference SAS data sets.
Data sets are one type of SAS file. There are other types of SAS files (such as catalogs), but this chapter focuses on SAS
data sets. For many procedures and for some DATA step statements, data must be in the form of a SAS data set to be
processed. Now let's take a closer look at SAS data sets.

Overview of Data Sets

As you saw in our sample program, for many of the data processing tasks that you perform with SAS, you
. access data in the form of a SAS data set
. analyze, manage, or present the data.

Conceptually, a SAS data set is a file that consists of two parts: a descriptor portion and a data portion. Sometimes a
SAS data set also points to one or more indexes, which enable SAS to locate records in the data set more efficiently. (The
data sets that you see in this chapter do not contain indexes.)

degcriplon

porlion data sat aftibuta 5

vanable smnbule s

data
porlion

Arovg

|
1

|] ohservation
|

wvariable

(b

invlazes

Descriptor Portion

The descriptor portion of a SAS data set contains information about the data set, including

L] the name of the data set

= the date and time that the data set was created
= the number of observations

= the number of variables.

Let's look at another SAS data set. The table below lists part of the descriptor portion of the data set Clinic.Insure, which
contains insurance information for patients who are admitted to a wellness clinic. (It's a good idea to give your data set a

name that is descriitive of the contents.i

Data Set Name: CLINIC.INSURE

Member Type: DATA

Engine: V8

Created: 10:05 Tuesday, March 30, 1999
Observations: 21

Variables: 7

Indexes: 0

Observation Lenith: 64

Data Portion

The data portion of a SAS data set is a collection of data values that are arranged in a rectangular table. In the example
below, the name Jones is a data value, the weight 158.3 is a data value, and so on.

| Name |5ex |Age |WEight|

Jones |M 48 128.6|
Data |
oo Laverne |M 58| 158.3
Jaffe r : 115.5|
Wilson |M 28| 170.4 |

Observations (Rows)

Rows (called observations) in the data set are collections of data values that usually relate to a single object. The values
Jones, M, 48, and 128.6 constitute a single observation in the data set shown below.

Variable Attributes

In addition to general information about the data set, the descriptor portion contains information about the attributes of each
variable in the data set. The attribute information includes the variable's name, type, length, format, informat, and label.

When you write SAS programs, it's important to understand the attributes of the variables that you use. For example, you
might need to combine SAS data sets that contain same-named variables. In this case, the variables must be the same type
(character or numeric).

The following is a partial listing of the attribute information in the descriptor portion of the SAS data set Clinic.Insure. Let's
look at the name, type, and length variable attributes. You'll learn about the format, informat, and label attributes later in

this chaiter.

Variable Type Length Format Informat Label

Policy Num 8 Policy Number
Total Num 8 DOLLAR8.2 COMMAl0. Total Balance
Name Char 20 Patient Name
Name

Each variable has a name that conforms to SAS naming conventions. Variable names follow exactly the same rules as SAS
data set names. Like data set names, variable names

- can be 1 to 32 characters long
- must begin with a letter (A—Z, either uppercase or lowercase) or an underscore (_)
. can continue with any combination of numbers, letters, or underscores.

variable Type Length Format Informat Label

Policy Mum 8 Policy Number
Total Mum & DOLLARE.2Z COMMALOD. Total Balance
Hame Char 20 Patient Mame
Type
A variable's type is either character or numeric.
. Character variables, such as Name (shown below), can contain any values.
= Numeric variables, such as Policy and Total (shown below), can contain only numeric values (the digits O

through 9, +, -, ., and E for scientific notation).
[

variable Type Length Format Informat Label

Folicy [Hum 8 Policy Humber
Total Num & DOLLARSE .2 COMMALQD. Total Balance
Hame Char 20 Patient Mame

A variable's type determines how missing values for a variable are displayed. In the following data set, Name and Sex are
character variables, and Age and Weight are numeric variables.

= For character variables such as Name, a blank represents a missing value.
- For numeric variables such as Age, a period represents a missing value.
‘ Name ‘ Sex | Age ‘ Weight
‘ ‘ M | 48 ‘ 128.6
‘ Laverne ‘ M | 58 ‘ 158.3
‘Jaffe ‘F | ‘115.5
‘ Wilson ‘ M | 28 ‘ 170.1
Length
A variable's length (the number of bytes used to store it) is related to its type.
- Character variables can be up to 32,767 bytes long. In the example below, Name has a length of 20 characters and
uses 20 bytes of storage.
. All numeric variables have a default length of 8. Numeric values (no matter how many digits they contain) are stored

as floating-point numbers in 8 bytes of storage, unless you specify a different length.
|

Variable Type Length Format Informat Label

Policy Hum B Policy Number
Total Hum 8 DOLLARS.2 COMMALD. Total Balance
Name Char 20 Patient Name

You've seen that each SAS variable has a name, type, and length. In addition, you can define format, informat, and label
attributes for variables. Let's look briefly at these optional attributes— you'll learn more about them in later chapters as you
need to use them.

Format

18

Formats are variable attributes that affect the way data values are written. SAS software offers a variety of character,
numeric, and date and time formats. You can also create and store your own formats. To write values out using a particular
form, you select the appropriate format.

SAS
data value

= SAS format

Y

Faormatted SAS
data value

For example, to display the value 7234 as $1234.00 in a report, you can use the DOLLARS.2 format, as shown for Total

below.

|
variable Type Length Format Informat Lakbel

Policy Hum 8 Folicy HMumber
Total Hum & DOLLARSE .2 COMMALD. Tobal Balance
Hama Char 21 Fatient Mame

Usually you have to specify the maximum width (w) of the value to be written. Depending on the particular format, you might
also need to specify the number of decimal places (d) to be written. For example, to display the value 5678 as 5,678.00 in a
report, you can use the COMMAS8.2 format, which specifies a width of 8 including 2 decimal places.
Note You can permanently assign a format to a variable in a SAS data set, or you can temporarily specify a
format in a PROC step to determine the way the data values appear in output.

Informat

Whereas formats write values out by using some particular form, informats read data values in certain forms into
standard SAS values. Informats determine how data values are read into a SAS data set. You mustuse informats to read
numeric values that contain letters or other special characters.

Data value

oAD

—» BAS Informat —™ ..o o 0e

For example, the numeric value $7,234.00 contains two special characters, a dollar sign ($) and a comma (,). You can use
an informat to read the value while removing the dollar sign and comma, and then store the resulting value as a standard

numeric value. For Total below, the COMMA10. informat is specified.
i
varlable Type Length Format Informat Label

Policy Hum B8 Policy Mumber

Total Hum B8 DOLLARE.Z COMMALD. Total Balance

Hame Char 20 Fatient Name
Label

A variable can have a label, which consists of descriptive text up to 256 characters long. By default, many reports identify
variables by their names. You might want to display more descriptive information about the variable by assigning a label to
the variable.

19

For example, you can label Policy as Policy Number, Total as Total Balance, and Name as Patient Name to display
these labels in reports.
I

varlable Type Length Format Informat Labal

Policy Hum B Pol icy Humber
Total Hum B8 DOLLARE.Z COHMALD. [Total Balance
Hame Char 20 Pat lent Name

You might even want to use labels to shorten long variable names in your reports. Assigning labels to variables is discussed
in Chapter 4, Creating List Reports.

' Name |Sex|Age |weight|
Jones |M | 48| 128.6
Observation rLE‘uI"Ef'I"lE‘ M 58 158.3|
\laffe |F 115.5|
‘wilson |M | 28] 170.1

This data set has four observations, each containing information about an individual. A SAS data set can store any number
of observations.

Variables (Columns)

Columns (called variables) in the data set are collections of values that describe a particular characteristic. The values
Jones, Laverne, Jaffe, and Wilson constitute the variable Name in the data set shown below.

| Name |Sex Age | Weight
Jones |M | 48| 128.6
Variable 'Laverne|M 28| 158.3
Jaffe |F 115.5
‘Wilson |M | 28] 170.1

This data set contains four variables for each observation: Name, Sex, Age, and Weight. A SAS data set can store
thousands of variables.

Missing Values

The rectangular arrangement of rows and columns in a SAS data set implies that every variable must exist for each
observation. If a data value is unknown for a particular observation, a missing value is recorded in the SAS data set.

20

Name |Sex Age Weight|
Jones |M 48 125.5|
::fj;ng Laverne| M 58 158.3|
Jaffe F 115.5|
‘Wilson | M 28| 170.1|
Summary

Text Summary

Components of SAS Programs

SAS programs consist of two types of steps: DATA steps and PROC (procedure) steps. These two steps, alone or
combined, form most SAS programs. A SAS program can consist of a DATA step, a PROC step, or any combination of
DATA and PROC steps. DATA steps typically create or modify SAS data sets, but they can also be used to produce
custom-designed reports. PROC steps are pre- written routines that enable you to analyze and process the data in a SAS
data set and to present the data in the form of a report. PROC steps sometimes create new SAS data sets that contain the
results of the procedure.

Characteristics of SAS Programs

SAS programs consist of SAS statements. A SAS statement usually begins with a SAS keyword and always ends with a
semicolon. A DATA step begins with the keyword DATA. A PROC step begins with the keyword PROC. SAS statements are
in free format, so they can begin and end anywhere on a line. One statement can continue over several lines, and several
statements can be on a line. Blanks or special characters separate "words" in a SAS statement.

Processing SAS Programs

When you submit a SAS program, SAS reads SAS statements and checks them for errors. When it encounters a
subsequent DATA, PROC, RUN, or QUIT statement, SAS executes the previous step in the program.

Each time a step is executed, SAS generates a log of the processing activities and the results of the processing. The SAS
log collects messages about the processing of SAS programs and about any errors that occur.

The results of processing can vary. Some SAS programs open an interactive window or invoke procedures that create

output in the form of a report. Other SAS programs perform tasks such as sorting and managing data, which have no visible
results other than messages in the log.

SAS Libraries

Every SAS file is stored in a SAS library, which is a collection of SAS files such as SAS data sets and catalogs. In some
operating environments, a SAS library is a physical collection of files. In others, the files are only logically related. In the
Windows and UNIX environments, a SAS library is typically a group of SAS files in the same folder or directory.

21

Depending on the libref you use, you can store SAS files in temporary SAS libraries or in permanent SAS libraries.

. Temporary SAS files that are created during the session are held in a special workspace that is assigned the default
libref Work. If you don't specify a libref when you create a file (or if you specify Work then the file is stored in the
temporary SAS library. When you end the session, the temporary library is deleted.

- To store a file permanently in a SAS library, you assign it a libref other than the default WorkFor example, by
assigning the libref Clinido a SAS library, you specify that files within the library are to be stored until you delete them.

Referencing SAS Files

To reference a SAS file, you use a two-level name, libref.filename. In the two-level name, libref is the name for the SAS
library that contains the file, and filename is the name of the file itself. A period separates the libref and filename.

To reference temporary SAS files, you specify the default libref Work, a period, and the filename. Alternatively, you can

simply use a one-level name (the filename only) to reference a file in a temporary SAS library. Referencing a SAS file in any
library except Work indicates that the SAS file is stored permanently.

SAS data set names can be 1 to 32 characters long, must begin with a letter (A—Z, either uppercase or lowercase) or an
underscore (_), and can continue with any combination of numbers, letters, or underscores.

Overview of SAS Data Sets

For many of the data processing tasks that you perform with SAS, you access data in the form of a SAS data set and use
SAS programs to analyze, manage, or present the data. Conceptually, a SAS data set is a file that consists of two parts: a

descriptor portion and a data portion. Some SAS data sets also contain one or more indexes, which enable SAS to locate
records in the data set more efficiently.

The descriptor portion of a SAS data set contains information about the data set.

The data portion of a SAS data set is a collection of data values that are arranged in a rectangular table. Observations in
the data set correspond to rows or data lines in a raw data file or in an external database. An observation is the information
about each object in a SAS data set. Variables in the data set correspond to columns in a raw data file or in an external
database. A variable is the set of data values that describe a particular characteristic. If a data value is unknown for a
particular observation, a missing value is recorded in the SAS data set.

Variable Attributes

In addition to general information about the data set, the descriptor portion contains attribute information for each variable in
the data set. The attribute information includes the variable's name, length, and type. A variable's type determines how
missing values for a variable are displayed by SAS. For character variables, a blank represents a missing value. For
numeric variables, a period represents a missing value.

Points to Remember

- Before referencing SAS files, you must assign a name (libref, or library reference) to the library in which the files are
stored (or specify that SAS is to assign the name automatically).

. You can store SAS files either temporarily or permanently.

. Variable names follow the same rules as SAS data set names. However, your site might choose to restrict variable

names to those valid in SAS Version 6, to uppercase variable names automatically, or to remove all restrictions on
variable names.
Warning After completing Chapter 1 and before continuing with Chapter 2 of this book, you should take
one of the tutorials located on the CD that accompanies this book. These tutorials teach you how

to create and manage your SAS programs by using the programming workspace provided in SAS
and SAS Enterprise Guide.

Which tutorial you take will depend on the version of SAS that you are running on your machine.
o If you are running SAS9, take the Using the Programming Workspace: SAS

22

Windowing Environment tutorial.

o If you are running SAS Enterprise Guide 3.0, take the Using the Programming
Workspace: SAS Enterprise Guide 3.0 tutorial.
o If you are running SAS Enterprise Guide 4.1, take the Using the Programming

Workspace: SAS Enterprise Guide 4.1 tutorial.
Now, insert the CD and print one of the following tutorials:

o Using the Programming Workspace: SAS Windowing Environment
o Using the Programming Workspace: SAS Enterprise Guide 3.0
o Using the Programming Workspace: SAS Enterprise Guide 4.1

If you do not find the release or version of SAS that you are running at your site, check the
following companion Web site for updates:

support.sas.com/certbasetutorials

Ensure that you read the Before You Begin section on the CD for instructions on how to create
the sample data and how to use the contents of the CD.

Quiz

Select the best answer for each question. After completing the quiz, you can check your answers using the answer key in
the appendix.

1. How many observations and variables does the data set below contain? >
‘ Name | Sex | Age)
‘Picker |M |32
‘Fletcher | |28
|Romano | F .

‘Choi |M |42

a. 3 observations, 4 variables
b. 3 observations, 3 variables
c. 4 observations, 3 variables
d. can't tell because some values are missing

2. How many program steps are executed when the program below is processed? >
data user.tables;
infile jobs;
input date name $ job $;
run;
proc sort data=user.tables;
by name;
run;

proc print data=user.tables;

run;
a. three
b. four
c. five
d. six

23

3. What type of variable is the variable AcctNum in the data set below?

‘ AcctNum | Balance

(34561 |M

‘2451_2 ‘

‘Romano ‘F

‘Choi ‘M
numeric
character
can be either character or numeric
can't tell from the data shown

coooe

4. What type of variable is the variable Wear in the data set below?

‘ Brand ‘ Wear

‘Acme ‘43

‘Ajax ‘34
‘Atlas ‘.

A. numeric

B. character

C. can be either character or numeric
D. can't tell from the data shown

5. Which of the following variable names is valid?
a. 4BirthDate
b. $Cost
c. _ltems_
d. Tax-Rate

6. Which of the following files is a permanent SAS file?
a. Sashelp.PrdSale
b. Sasuser.MySales
C. Profits.Quarterl
d. all of the above

7. In a DATA step, how can you reference a temporary SAS data set named Forecast?
a. Forecast
b. Work.Forecast
C. Sales.Forecast (after assigning the libref Sales)
d. onlyaand b above

8. What is the default length for the numeric variable Balance?

‘ Name ‘ Balance

‘ Adams | 105.73
‘ Geller | 107.89
‘ Martinez | 97.45

24

Noble 182.50

00T
O~NO O,

9. How many statements does the following SAS program contain? Ly
proc print data=new.prodsale
label double;
var state day pricel price2; where state='NC';

label state='Name of State';

run,
a. three
b. four
c. five
d. six
10. What is a SAS data library?)
a. acollection of SAS files, such as SAS data sets and catalogs -
b. in some operating environments, a physical collection of SAS files
c. in some operating environments, a logically related collection of SAS files
d. all of the above
Answers

1. Correct answer: c

Rows in the data set are called observations, and columns are called variables. Missing values don't affect the
structure of the data set.

2. Correct answer: a

When it encounters a DATA, PROC, or RUN statement, SAS stops reading statements and executes the previous step
in the program. The program above contains one DATA step and two PROC steps, for a total of three program steps.

3. Correct answer: b

It must be a character variable, because the values contain letters and underscores, which are not valid characters for
numeric values.

4. Correct answer: a
It must be a numeric variable, because the missing value is indicated by a period rather than by a blank.

5. Correct answer: ¢
Variable names follow the same rules as SAS data set names. They can be 1 to 32 characters long, must begin with a
letter (A—Z, either uppercase or lowercase) or an underscore, and can continue with any combination of numbers,

letters, or underscores.

6. Correct answer: d

25

To store a file permanently in a SAS data library, you assign it a libref other than the default WorkFor example, by
assigning the libref Profits to a SAS data library, you specify that files within the library are to be stored until you delete
them. Therefore, SAS files in the Sashelp and Sasuser libraries are permanent files.

7. Correct answer: d

To reference a temporary SAS file in a DATA step or PROC step, you can specify the one-level name of the file (for
example, Forecast) or the two-level name using the libref Work (for example, Work.Forecast).

8. Correct answer: d

The numeric variable Balance has a default length of 8. Numeric values (no matter how many digits they contain) are
stored in 8 bytes of storage unless you specify a different length.

9. Correct answer: c

The five statements are

. PROC PRINT statement (two lines long)

VAR statement

WHERE statement (on the same line as the VAR statement)
LABEL statement

RUN statement (on the same line as the LABEL statement).

10. Correct answer: d
Every SAS file is stored in a SAS data library, which is a collection of SAS files, such as SAS data sets and catalogs.
In some operating environments, a SAS data library is a physical collection of files. In others, the files are only logically

related. In the Windows and UNIX environments, a SAS data library is typically a group of SAS files in the same folder
or directory.

Chapter 2: Referencing Files and Setting Options

Overview
Warning Have you reviewed the appropriate tutorial for your programming environment on the companion CD-
ROM? If you have not, please review the appropriate tutorial before beginning this chapter.

Introduction

When you begin a SAS session, it's often convenient to set up your environment first. For example, you might want to

- define libraries that contain the SAS data sets that you intend to use
= set features of your SAS listings, such as whether the date and time appear
. specify how two-digit year values should be interpreted.

Objectives

26

In this chapter, you learn to

. define new libraries by using programming statements
= reference SAS files to be used during your SAS session
= set system options to determine how date values are read and to control the appearance of listing output that is

created during your SAS session.
Referencing Files

SAS Libraries

In the previous chapter, you learned that SAS files are stored in SAS libraries. By default, SAS defines several libraries for
you:

. Sashelp is a permanent library that contains sample data and other files that control how SAS works at your site.
This is a read-only library.

- Sasuser is a permanent library that contains SAS files in the Profile catalog that store your personal settings. This
is also a convenient place to store your own files.

. Works a temporary library for files that do not need to be saved from session to session.

You can also define additional libraries. In fact, often the first step in setting up your SAS session is to define the libraries.

To define a library, you assign a library name (a libref) to it and specify a path, such as a directory path. You will use the
libref as the first part of the file's two-level name (libref.filename) to reference the file within the library. You can use
programming statements to assign library names.

Assigning Librefs

To define libraries, you can use a LIBNAME statement. You can store the LIBNAME statement with any SAS program so
that the SAS data Iibrari is assiined each time the iroiram is submitted.

General form, basic LIBNAME statement:

LIBNAME libref 'SAS-data-library’;

where

= libref is 1 to 8 characters long, begins with a letter or underscore, and contains only letters, numbers, or
underscores.

. SAS-data-library is the name of a SAS data library in which SAS data files are stored. The specification of the

ihisical name of the Iibrari differs bi oieratini environment.

The LIBNAME statement below assigns the libref Clinido the SAS data library D:\Users\Qtr\Reports in the Windows
environment.

libname clinic 'd:\users\gtr\reports';

The table below gives examples of physical names for SAS data libraries in various operating environments.

‘ Environment | Sample Physical Name

‘ Windows | c:\fithess\data

‘ UNIX | /users/april/fitness/sasdata
‘ OpenVMS | duaO:[april.fitness]

27

‘ Environment | Sample Physical Name

cms b

‘ z/0OS (0S/390) | april fitness.sasdata

Note The code examples in this book are shown in the Windows operating environment. If
you are running SAS within another operating environment, then the platform-specific
names and locations will look different. Otherwise, SAS programming code will be the
same across operating environments.

You can use multiple LIBNAME statements to assign as many librefs as needed.

Verifying Librefs

After assigning a libref, it is a good idea to check the Log window to verify that the libref has been assigned successfully.

SAS Loi

17 libname clinic 'd:\users\gtr\reports';

NOTE: Libref CLINIC was successfully assigned as follows:
Engine: V9

Phiisical Name: d: \users\itr\reiorts

How Long Librefs Remain in Effect

The LIBNAME statement is global, which means that the librefs remain in effect until you modify them, cancel them, or end
your SAS session.

Therefore, the LIBNAME statement assigns the libref for the current SAS session only. Each time you begin a SAS session,

you must assign a libref to each permanent SAS data library that contains files that you want to access in that session.
(Remember that Work is the default libref for a temporary SAS data library.)

When you end your SAS session or delete a libref, SAS no longer has access to the files in the library. However, the
contents of the library still exist on your operating system.

Specifying Two-Level Names
After you assign a libref, you specify the libref as the first element in the two-level name for a SAS file.

For example, in order for the PRINT procedure to read Clinic.Admit, you specify the two-level name of the file as follows:
proc print data=clinic.admit;

run;

Other Formats

28

You can use the LIBNAME statement to reference not only SAS files but also files that were created with other software
products, such as database management systems.

SAS can read or write these files by using the appropriate engine for that file type. Depending on your operating
environment and on the SAS/ACCESS products that you license, you can create libraries with various engines. Each engine
enables you to read a different file format, including file formats from other software vendors.

For some file types, you need to tell SAS which engine to use. For others, SAS automatically chooses the appropriate
engine.

files

S5A% data
library

A SAS engine is a set of internal instructions that SAS uses for writing to and reading from files in a SAS library.

Specifying Engines

To indicate which eniine to use| iou siecifi the eniine name in the LIBNAME statement| as shown below.

General form, LIBNAME statement for files in other formats:

LIBNAME libref engine 'SAS-data-library’;

where

= libref is 1 to 8 characters long, begins with a letter or underscore, and contains only letters, numbers, or
underscores.

. engine is the name of a library engine that is supported in your operating environment.

. SAS-data-library is the name of a SAS library in which SAS data files are stored. The specification of the physical

name of the Iibrari differs bi oieratini environment.

Interface Library Engines

Interface library engines support read-only access to BMDP, OSIRIS, and SPSS files. With these engines, the physical
filename that is associated with a libref is an actual filename, not a SAS library. This is an exception to the rules for librefs.

‘ Engine | Description

‘ BMDP | allows read-only access to BMDP files
‘ OSIRIS | allows read-only access to OSIRIS files

‘ SPSS | allows read-only access to SPSS files

For example, the LIBNAME statement below specifies the libref Rptdata and the engine SPSS for the file G:\Myspss.dat in
the Windows operating environment.

29

libname rptdata spss 'g:\myspss.dat';

For more information about interface library engines, see the SAS documentation for your operating environment.

SAS/ACCESS Engines

If your site licenses SAS/ACCESS software, then you can use the LIBNAME statement to access data that is stored in a
DBMS file. The types of data that you can access depend on your operating environment and on which SAS/ACCESS
products you have licensed.

‘ Relational Databases | Nonrelational Files | PC Files

‘ ORACLE ‘ ADABAS ‘ Excel (.xIs)

‘ SYBASE ‘ IMS/DL-I ‘ Lotus (.wkn)
‘ Informix ‘ CA-IDMS ‘ DBF

‘ DB2 for z/OS (0S/390) ‘ SYSTEM 2000 ‘ DIF

‘ DB2 for UNIX and PC ‘ ‘

‘ Oracle Rdb ‘ ‘

|oDBC | |

‘ CA-Openlngres ‘ ‘

Viewing the Contents of SAS Libraries

The CONTENTS Procedure

You've learned how to use SAS windows to view the contents of a SAS library or of a SAS file. Alternatively, you can use
the CONTENTS procedure to create SAS output that describes either of the following:
= the contents of a library

= the descriitor information for an individual SAS data set.

General form, basic PROC CONTENTS step:

PROC CONTENTS DATA=/ibref._ALL_ NODETAILS;
RUN;

where

- libref is the libref that has been assigned to the SAS library.

- _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the libref.

- NODETAILS (NODS) suppresses the printing of detailed information about each file when you specify _ALL . You

can siecifi NODS onli when iou SﬁeCifi ALL .

Example

To view the contents of the Mylib library, submit the following PROC CONTENTS step:
proc contents data=mylib. all nods;

runy;

The output from this step lists only the names, types, sizes, and modification dates for the SAS files in the Mylib library.

‘ Libref:

‘ Engine:

‘ Physical Name:

‘ C:\WINNT\Profiles\Personal\My SAS Files\V8

‘ File Name:

‘ C:\WINNT\Profiles\Personal\My SAS Files\V8

‘ # ‘ Name ‘ Memtype ‘ File Size ‘ Last Modified

‘ 1 | ADMIT ‘ DATA | 9216 | 23JUN2000:16:30:38
‘ 2 |ADMITJUNE ‘ DATA | 9216 | 23JUN2000:16:30:38
‘ 3 | COMPANY ‘ DATA | 5120 | 23JUN2000:16:30:38
‘ 4 | CREDIT ‘ DATA | 5120 | 23JUN2000:16:30:38
‘ 5 | CUSTDET1 ‘ DATA | 33792 | 04MAY2000:13:45:49
‘ 6 | DIABETES ‘ DATA | 9216 | 23JUN2000:16:30:38

'7 | DMDATA

| CATALOG | 21504

| 04MAY2000:13:59:19

To view the descriptor information for the Mylib.Admit data set, you can submit the following PROC CONTENTS step:

proc contents data=mylib.admit;

runy;

The output from this step lists information for Mylib.Admit, including an alphabetic list of the variables in the data set.

‘ Data Set Name

| MYLIB.ADMIT

‘ Observations

‘ 21
‘ Member Type | DATA ‘ Variables ‘ 9
‘ Engine | V8 ‘ Indexes ‘ 0
‘ Created | 15:05 Thursday, July 17, 2003 ‘ Observation Length ‘ 64
‘ Last Modified | 15:05 Thursday, July 17, 2003 ‘ Deleted Observations ‘ 0
Protection Compressed N
o)
Data Set Type Sorted g

‘ Label |

Engine/Host Dependent Information

‘ Data Set Page Size

‘8192

‘ Number of Data Set Pages ‘ 1

‘ First Data Page ‘ 1

‘ Max Obs per Page ‘ 127
‘ Obs in First Data Page ‘ 21

31

‘ Number of Data Set Repairs ‘ 0

‘ File Name ‘ C:AWINNT\Profiles\Personal\My SAS Files\V8\admit.sas7bdat

‘ Release Created ‘ 8.0202M0

‘ Host Created ‘ XP_PRO

‘ Alphabetic List of Variables and Attributes

‘ # ‘ Variable ‘ Type ‘ Len ‘ Format
‘ 8 ‘ ActLevel ‘ Char | 4 ‘

‘ 4 ‘ Age ‘ Num | 8 ‘

‘ 5 ‘ Date ‘ Num | 8 ‘

‘ 9 ‘ Fee ‘ Num | 8 ‘ 7.2
‘ 6 ‘ Height ‘ Num | 8 ‘

‘ 1 ‘ ID ‘ Char | 4 ‘

‘ 2 ‘ Name ‘ Char | 14 ‘

‘ 3 ‘ Sex ‘ Char | 1 ‘

‘ 7 ‘ Weight ‘ Num | 8 ‘

The DATASETS Procedure

In addition to PROC CONTENTS, you can also use PROC DATASETS with the CONTENTS statement to view the contents
of a SAS Iibrari or a SAS data set.

General form, PROC DATASETS step with CONTENTS statement:

PROC DATASETS;
CONTENTS DATA=libref._ALL_ NODETAILS;

QUIT;

where

. CONTENTS describes the contents of one or more SAS data sets and prints the directory of the SAS data library.
= libref is the libref that has been assigned to the SAS data library.

= _ALL_ requests a listing of all files in the library. Use a period (.) to append _ALL_ to the libref.

= NODETAILS (NODS) suppresses the printing of detailed information about each file when you specify _ALL . You

can SieCifi NODS onli when iou SieCifi ALL .

For example, the following PROC steps produce essentially the same output (with minor formatting differences):
proc datasets;
contents data=sasuser. all nods;
quit;
proc contents data=sasuser. all nods;

runy;

The major difference between the CONTENTS procedure and the CONTENTS statement in PROC DATASETS is the
default for libref in the DATA= option. For PROC CONTENTS, the default is either Worlor User. For the CONTENTS
statement, the default is the libref of the procedure input library. Notice also that PROC DATASETS is an interactive
procedure that requires a QUIT statement rather than a RUN statement.
Note In addition to the CONTENTS statement, PROC DATASETS also uses several other statements. These
statements enable you to perform tasks that PROC CONTENTS does not perform. For more information
about PROC DATASETS, see the SAS documentation for your operating environment.

Viewing Descriptor Information for a SAS Data Set

As with PROC CONTENTS, you can also use PROC DATASETS to display the descriptor information for a specific SAS
data set.

By default, PROC CONTENTS and PROC DATASETS list variables alphabetically. To list variable names in the order of
their logical position (or creation order) in the data set, you can specify the VARNUM option in PROC CONTENTS or in
the CONTENTS statement in PROC DATASETS.
For example, either of these programs creates output that includes the list of variables shown below:
proc datasets;

contents data=sasuser.admit wvarnum;

quit;

proc contents data=sasuser.admit varnum;

run;
‘ Variables in Creation Order

‘ # ‘ Variable | Type | Len | Format
‘ 1 | ID | Char | 4 |

‘ 2 | Name | Char | 14 |

‘ 3 | Sex | Char | 1 |

‘ 4 | Age | Num | 8 |

‘ 5 | Date | Num | 8 |

‘ 6 | Height | Num | 8 |

‘ 7 | Weight | Num | 8 |

‘ 8 | ActLevel | Char | 4 |

‘ 9 | Fee | Num | 8 | 7.2

Setting SAS System Options

SAS Output

Next, let's consider the appearance and format of your SAS output. You can specify result formats to create your output as
. an HTML document

- a listing (traditional SAS output)

. both of the above.

33

You can create HTML output by using programming statements on any SAS platform. In addition, in desktop operating
environments, you can use windows to specify result formats. You can learn more about how to create HTML output in
Chapter 10, Producing HTML Output.

If you create your procedure output as a SAS listing, you can also control the appearance of your output by setting system
options such as

- line size (the maximum width of the log and output)
. page size (the number of lines per printed page of output)
= the display of page numbers

the display of date and time.
Note The above options do not affect the appearance of HTML output.

All SAS system options have default settings that are used unless you specify otherwise. For example, page numbers are
automatically displayed (unless your site modifies this default).

Date and time Page numbers

. ¥ B
19:31 Tuesday, March 3, 1998
Sax Age Height Weight
H 27 T2 168
Fage F =L EE ig2
2z F a Bi 123
F 43 B3 137
H 51 Ti 158
H 23 6 193
F 3g BT 151
H s TQ 173
¥ H EL T3 154

Ling s

To modify system options, you submit an OPTIONS statement. You can place an OPTIONS statement anywhere in a SAS
program to change the settings from that point onward. However, it is good programming practice to place OPTIONS
statements outside of DATA or PROC steps so that your programs are easier to read and debug.

Note Because the OPTIONS statement is global, the settings remain in effect until you modify them, or until

iou end iour SAS session.

General form, OPTIONS statement:
OPTIONS options;

where options specifies one or more system options to be changed. The available system options depend on your host

oieratini sistem.

Example: NUMBER | NONUMBER and DATE | NODATE Options

By default, page numbers and dates appear with output. The following OPTIONS statement suppresses the printing of both
page numbers and the date and time in listing output.

options nonumber nodate;

In the following example, page numbers and the current date are not displayed in the PROC PRINT output. Page numbers
are not displayed in the PROC FREQ output, either, but the date does appear at the top of the page that contains the PROC
FREQ report.

options nonumber nodate;

proc print data=clinic.admit;

var id sex age height weight;
where age>=30;

run;

options date;

proc freqg data=clinic.diabetes;
where fastgluc>=300;
tables sex;

run;

The SAS System

Obs ID Sex Age Height Weight
2 2462 F 34 66 152
3 2501 F 31 61 123
4 2523 F 43 63 137
5 2539 M 51 71 158
7 2552 F 32 67 151
8 2555 M 35 70 173
9 2563 M 34 73 154
10 2568 F 49 64 172
11 2571 F 44 66 140
13 2574 M 30 69 147
14 2575 F 40 69 163
15 2578 M 47 72 173
16 2579 M 60 71 191
17 2584 F 43 65 123
20 2589 F 41 67 141
21 2595 M 54 71 183

The SAS System
15:19 Thursday, September 23, 1999

Cumulative Cumulative
Sex Frequency Percent Frequency Percent
F 2 25.0 2 25.0
M 6 75.0 8 100.0

Example: PAGENO= Option

If you print page numbers, you can specify the beginning page number for your report by using the PAGENO= option. If you
don't specify the PAGENO= option, output is numbered sequentially throughout your SAS session, starting with page 1.

In the following example, the output pages are numbered sequentially throughout the SAS session, beginning with number
3.

options nodate pageno=3;

proc print data=hrd.funddrv;

run;
e ——
The SAS System 3

Obs LastName Qtrl Qtr2 Qtr3 Qtr4

1 ADAMS 18 18 20 20

2 ALEXANDER 15 18 15 10

3 APPLE 25 25 25 25

4 ARTHUR 10 25 20 30

5 AVERY 15 15 15 15

6 BAREFOOT 20 20 20 20

7 BAUCOM 25 20 20 30

8 BLAIR 10 10 5 10

9 BLALOCK 5 10 10 15

10 BOSTIC 20 25 30 25

11 BRADLEY 12 16 14 18

Example: PAGESIZE= Option

The PAGESIZE= option specifies how many lines each page of output contains. In the following example, each page of the
output that the PRINT procedure produces contains 15 lines (including those used by the title, date, and so on).

options pageno=1 pagesize=15;

proc print data=clinic.admit;

run;
The SAS System 1
15:19 Thursday, September 23, 1999
Obs 1ID Name Sex Age Date
1 2458 Murray, W M 27 1
2 2462 Almers, C F 34 3

3 2501 Bonaventure, T F 31 17
4 2523 Johnson, R F 43 31
5 2539 LaMance, K M 51 4
6 2544 Jones, M M 29 6
7 2552 Reberson, P F 32 9
8 2555 King, E M 35 13
9 2563 Pitts, D M 34 22
10 2568 Eberhardt, S F 49 277

Example: LINESIZE= Option

The LINESIZE= option specifies the width of the print line for your procedure output and log. Observations that do not fit
within the line size continue on a different line.

In the following example, the observations are longer than 64 characters, so the observations continue on a subsequent
page.

options pageno=1 linesize=64;

proc print data=flights.europe;

run;

The SAS System 1
15:19 Thursday, September 23, 1999

Obs Flight Date Depart Orig Dest Miles Mail Freight Boarded

1 821 04MAR99 9:31 LGA LON 3442 403 209 167
2 271 04MAR99 11:40 LGA PAR 3856 492 308 146
3 271 05MAR99 12:19 LGA PAR 3857 366 498 177
4 821 06MAR99 14:56 LGA LON 3442 345 243 167
5 821 07MAR99 13:17 LGA LON 3635 248 307 215
6 271 07MAR99 9:31 LGA PAR 3442 353 205 155
7 821 08MAR99 11:40 LGA LON 3856 391 395 186
8 271 08MAR99 12:19 LGA PAR 3857 366 279 152
9 821 09MAR99 14:56 LGA LON 3442 219 368 203
10 271 O9MAR99 13:17 LGA PAR 3635 357 282 159

The SAS System 2
15:19 Thursday, September 23, 1999

Obs Transfer NonRev Deplaned Capacity MonthDay Revenue

1 17 7 222 250 1 150634
2 8 3 163 250 1 156804
3 15 5 227 250 1 190098
4 13 4 222 250 1 150634
5 14 6 158 250 1 193930
6 18 7 172 250 2 166470
7 8 1 114 250 2 167772
8 7 4 187 250 2 163248
9 6 3 210 250 2 183106
10 15 4 191 250 2 170766

Handling Two-Digit Year Values: Year 2000 Compliance

If you use two-digit year values in your data lines, external files, or programming statements, you should consider another
important system option, the YEARCUTOFF= option. This option specifies which 100-year span is used to interpret two-digit
year values.

1900 1910 1820 1930 1940 1950 1960 1970 1980 1990 2000 2910 3020 F030
a—l 1] 1 1 1 1 1 | .

100-¥ear Span

All versions of SAS represent dates correctly from 1582 A.D. to 20,000 A.D. (Leap years, century, and fourth-century
adjustments are made automatically. Leap seconds are ignored, and SAS does not adjust for daylight saving time.)
However, you should be aware of the YEARCUTOFF= value to ensure that you are properly interpreting two-digit years in
data lines.

As with other system options, you specify the YEARCUTOFF= option in the OPTIONS statement:

options yearcutoff=1925;

How the YEARCUTOFF= Option Works

When a two-digit year value is read, SAS interprets it based on a 100-year span that starts with the YEARCUTOFF= value.
The default value of YEARCUTOFF= is 1920.

1920 «—100 years—2019|

‘ Date Expression | Interpreted As
‘ 12/07/41 | 12/07/1941
‘ 18Dec15 | 18Dec2015
‘ 04/15/30 | 04/15/1930
‘ 15Apr95 | 15Apr1995

However, you can override the default and change the value of YEARCUTOFF= to the first year of another 100-year span.
For example, if you specify YEARCUTOFF=1950, then the 100-year span will be from 1950 to 2049.

options yearcutoff=1950;

38

Using YEARCUTOFF=1950, dates are interpreted as shown below:
|1950 «—100 years—2049 |

‘ Date Expression | Interpreted As
‘ 12/07/41 | 12/07/2041
‘ 18Dec15 | 18Dec2015
‘ 04/15/30 | 04/15/2030
‘ 15Apro5 | 15Apr1995

How Four-Digit Year Values Are Handled

Remember, the value of the YEARCUTOFF= system option affects only two-digit year values. A date value that contains a
four-digit year value will be interpreted correctly even if it does not fall within the 100-year span set by the YEARCUTOFF=
system option.

Note You can learn more about reading date values in Chapter 19, Reading Date and Time Values.

Using System Options to Specify Observations

You've seen how to use SAS system options to change the appearance of output and interpret two- digit year values. You
can also use the OBS= and FIRSTOBS= system options to specify the observations to process from SAS data sets.

You can specify either or both of these options as needed. That is, you can use
- OBS-= to specify the last observation to be processed
- FIRSTOBS= to specify the first observation to be processed

= FIRSTOBS= and OBS= toiether to siecifi a ranie of observations to be irocessed.

General form, FIRSTOBS= and OBS= options in an OPTIONS statement:

OPTIONS FIRSTOBS=n;
OPTIONS OBS=n;

where n is a positive integer. For FIRSTOBS=, n specifies the number of the first observation to process. For OBS=, n
specifies the number of the last observation to process. By default, FIRSTOBS=1. The default value for OBS= is MAX,
which is the largest signed, four-byte integer that is representable in your operating environment.

Warning Each of these options applies to every input data set that is used in a program or a SAS process.

Example: FIRSTOBS= and OBS= Options

The data set Sasuser.Heart contains 20 observations. If you specify FIRSTOBS=10, SAS reads the 10th observation of the
data set first and reads through the last observation (for a total of 11 observations).

options firstobs=10;
proc print data=sasuser.heart;

runy;

The PROC PRINT step produces the following output:

‘ Obs ‘ Patient | Sex ‘ Survive ‘ Shock ‘ Arterial ‘ Heart | Cardiac | Urinary
‘ 10 ‘ 509 | 2 ‘ SURV ‘ OTHER ‘ 79 ‘ 84 | 256 | 90

‘ 11 ‘ 742 | 1 ‘ DIED ‘ HYPOVOL ‘ 100 ‘ 54 | 135 | 0

‘ 12 ‘ 609 | 2 ‘ DIED ‘ NONSHOCK ‘ 93 ‘ 101 | 260 | 90

‘ 13 ‘ 318 | 2 ‘ DIED ‘ OTHER ‘ 72 ‘ 81 |410 |405
‘ 14 ‘ 412 | 1 ‘ SURV ‘ BACTER ‘ 61 ‘ 87 | 296 |44

‘ 15 ‘ 601 | 1 ‘ DIED ‘ BACTER ‘ 84 ‘ 101 | 260 | 377
‘ 16 ‘ 402 | 1 ‘ SURV ‘ CARDIO ‘ 88 ‘ 137 | 312 | 75

‘ 17 ‘ 98 | 2 ‘ SURV ‘ CARDIO ‘ 84 ‘ 87 | 260 | 377
‘ 18 ‘ 4 | 1 ‘ SURV ‘ HYPOVOL ‘ 81 ‘ 149 |406 | 200
‘ 19 ‘ 50 | 2 ‘ SURV ‘ HYPOVOL ‘ 72 ‘ 111 | 332 | 12

‘ 20 ‘ 2 | 2 ‘ DIED ‘ OTHER ‘ 101 ‘ 114 |424 | 97

If you specify OBS=10 instead, SAS reads through the 10th observation, in this case for a total of 10 observations. (Notice
that FIRSTOBS= has been reset to the default value.)

options firstobs=1 obs=10;
proc print data=sasuser.heart;

run;

Now the PROC PRINT step produces this output:

‘ Obs ‘ Patient | Sex ‘ Survive ‘ Shock ‘ Arterial ‘ Heart | Cardiac | Urinary
‘ 1 ‘ 203 | 1 ‘ SURV ‘ NONSHOCK ‘ 88 ‘ 95 | 66 | 110
‘ 2 ‘ 54 | 1 ‘ DIED ‘ HYPOVOL ‘ 83 ‘ 183 | 95 | 0

‘ 3 ‘ 664 | 2 ‘ SURV ‘ CARDIO ‘ 72 ‘ 111 | 332 | 12

‘ 4 ‘ 210 | 2 ‘ DIED ‘ BACTER ‘ 74 ‘ 97 | 369 | 0

‘ 5 ‘ 101 | 2 ‘ DIED ‘ NEURO ‘ 80 ‘ 130 | 291 | 0

‘ 6 ‘ 102 | 2 ‘ SURV ‘ OTHER ‘ 87 ‘ 107 | 471 | 65

‘ 7 ‘ 529 | 1 ‘ DIED ‘ CARDIO ‘ 103 ‘ 106 |217 | 15

‘ 8 ‘ 524 | 2 ‘ DIED ‘ CARDIO ‘ 145 ‘ 99 | 156 | 10

‘ 9 ‘ 426 | 1 ‘ SURV ‘ OTHER ‘ 68 ‘ 77 | 410 | 75

‘ 10 ‘ 509 | 2 ‘ SURV ‘ OTHER ‘ 79 ‘ 84 | 256 | 90

Combining FIRSTOBS= and OBS= processes observations in the middle of the data set. For example, the following
program processes only observations 10 through 15, for a total of 6 observations:

options firstobs=10 obs=15;
proc print data=sasuser.heart;

run;

40

Here is the output:

‘ Obs ‘ Patient | Sex ‘ Survive ‘ Shock ‘ Arterial ‘ Heart | Cardiac | Urinary
‘ 10 ‘ 509 | 2 ‘ SURV ‘ OTHER ‘ 79 ‘ 84 | 256 | 90

‘ 11 ‘ 742 | 1 ‘ DIED ‘ HYPOVOL ‘ 100 ‘ 54 | 135 | 0

‘ 12 ‘ 609 | 2 ‘ DIED ‘ NONSHOCK ‘ 93 ‘ 101 | 260 | 90

‘ 13 ‘ 318 | 2 ‘ DIED ‘ OTHER ‘ 72 ‘ 81 |41O |405

‘ 14 ‘ 412 | 1 ‘ SURV ‘ BACTER ‘ 61 ‘ 87 | 296 |44

‘ 15 ‘ 601 | 1 ‘ DIED ‘ BACTER ‘ 84 ‘ 101 | 260 | 377

To reset the number of the last observation to process, you can specify OBS=MAX in the OPTIONS statement.
options obs=max;

This instructs any subsequent SAS programs in the SAS session to process through the last observation in the data set
being read.

Using FIRSTOBS= and OBS= for Specific Data Sets

As you saw above, using the FIRSTOBS= or OBS= system options determines the first or last observation, respectively,
that is read for all steps for the duration of your current SAS session or until you change the setting. However, you might
want to

= override these options for a given data set

= apply these options to a specific data set only.

To affect any single file, you can use FIRSTOBS= or OBS= as data set options instead of as system options. You specify
the data set option in parentheses immediately following the input data set name.
Note A FIRSTOBS= or OBS= specification from a data set option overrides the corresponding FIRSTOBS= or
OBS= system option.

Example: FIRSTOBS= and OBS as Data Set Options

As shown in the last example, this program processes only observations 10 through 15, for a total of 6 observations:
options firstobs=10 obs=15;

proc print data=sasuser.heart;

run;

You can create the same output by specifying FIRSTOBS= and OBS= as data set options. The data set options override the
system options for this instance only.

options firstobs=10 obs=15;

proc print data=sasuser.heart (firstobs=4 obs=20);

run;

To specify FIRSTOBS= or OBS= for this program only, you could omit the OPTIONS statement altogether and simply use
the data set options.

Viewing System Options

41

The OPTIONS Procedure

You can use the OPTIONS procedure to display the current setting of one or all SAS system options. The results are
displayed in the log.

General form, OPTIONS procedure:

PROC OPTIONS <option(s)>;
RUN;

where option(s) specifies how SAS system options are displayed.

Example

To list all SAS system options, their settings, and a description, submit the following code:
proc options;

run;

The log lists the options and their settings:

Partial Loi

1 proc options;:

2 run;

SAS (r) Proprietary Software Release 9 TS2MO

Portable Options:

APPLETLOC=C:\Program Files\SAS Institute\Shared Files\applets\9

Location of Java applets

ARMAGENT= ARM Agent to use to collect ARM records

ARMLOC=ARMLOC.LOG Identify location where ARM records are to be

written

ARMSUBSYS= (ARM_NONE)
Enable/Disable ARMing of SAS subsystems

NOASYNCHIO Do not enable asynchronous input/output
AUTOSAVELOC= Identifies the location

where iroiram editor contents are auto saved

To list the value of one particular system option, use the OPTION= option in the PROC OPTIONS statement as shown
below:

proc options option=yearcutoff;

run;
Note If a SAS system option uses an equal sign, such as YEARCUTOFF=, you do not include the equal sign
when specifying the option to OPTION=.

The log shows that the setting of the YEARCUTOFF= option is 1920.

42

3 proc options option=yearcutoff;

4 run;
SAS (r) Proprietary Software Release 9 TS2MO
YEARCUTOFF=1920 Cutoff year for DATE and DATETIME informats

and functions

Additional System Options

When you set up your SAS session, you can set SAS system options that affect listing output, information written to the
SAS log, and much more. Here are some additional system options that you are likely to use with SAS procedures:

Option Description
FORMCHAR='formatting- specifies the formatting characters for your output device. Formatting characters
characters' are used to construct the outlines of tables, and dividers for various procedures,

such as the FREQ and TABULATE procedures. If you do not specify formatting
characters as an option in the procedure, then the default specifications given in
the FORMCHAR= system option are used.

FORMDLIM='delimiting-character specifies a character that is used to delimit page breaks in SAS System output.
Normally, the delimiting character is null. When the delimiting character is null, a
new physical page starts whenever a page break occurs.

LABEL | NOLABEL permits SAS procedures to temporarily replace variable names with descriptive
labels. The LABEL system option must be in effect before the LABEL option of
any procedure can be used. If NOLABEL is specified, then the LABEL option of a
procedure is ignored. The default setting is LABEL.

OBS=n specifies the observation from a data set (or the record from a raw data file) that
SAS reads last. You can also use the OBS= system option to control the analysis
of SAS data sets in PROC steps. n specifies the number of the last observation to
process.

SOURCE | NOSOURCE controls whether SAS source statements are written to the SAS log. NOSOURCE
specifies not to write SAS source statements to the SAS log. The default setting is
SOURCE.

You can also use programming statements to control the result format of each item of procedure output individually. For
more information, see Chapter 10, Producing HTML Output.

Summary

Text Summary

Referencing Files in SAS Libraries

To reference a SAS file, you assign a libref (library reference) to the SAS library in which the file is stored. Then you use the
libref as the first part of the two-level name (libref.filename) for the file.

To reference a SAS library, you can submit a LIBNAME statement. You can store the LIBNAME statement with any SAS
program to reference the SAS library automatically when you submit the program. The LIBNAME statement assigns the

43

libref for the current SAS session only. You must assign a libref each time you begin a SAS session in order to access SAS
files that are stored in a permanent SAS library. (Work is the default libref for a temporary SAS library.)

You can also use the LIBNAME statement to reference data in files that were created with other software products, such as
database management systems. SAS can write to or read from the files by using the appropriate engine for that file type.
For some file types, you need to tell SAS which engine to use. For others, SAS automatically chooses the appropriate
engine.

Viewing the Contents of SAS Libraries

To list the contents of a library, use the CONTENTS procedure. Append a period and the _ALL_ option to the libref to get a
listing of all files in the library. Add the NODS option to suppress detailed information about the files. As an alternative to
PROC CONTENTS, you can use PROC DATASETS.

Setting SAS System Options

For your listing output, you can also control the appearance of your output by setting system options such as line size, page
size, the display of page numbers, and the display of the date and time. (These options do not affect the appearance of
HTML output.)

All SAS system options have default settings that are used unless you specify otherwise. For example, page numbers are
automatically displayed (unless your site modifies this default). To modify system options, you submit an OPTIONS
statement. You can place an OPTIONS statement anywhere in a SAS program to change the current settings. Because the
OPTIONS statement is global, the settings remain in effect until you modify them or until you end your SAS session.

If you use two-digit year values in your SAS data lines, you must be aware of the YEARCUTOFF= option to ensure that

you are properly interpreting two-digit years in your SAS program. This option specifies which 100-year span is used to
interpret two-digit year values.

Viewing SAS System Options

You can use the OPTIONS procedure to display the value of one or more SAS system options. The output of this
procedure is included in the log.

Points to Remember

. LIBNAME and OPTIONS statements remain in effect for the current SAS session only.

" When you work with date values,
o check the default value of the YEARCUTOFF= system option and change it if necessary
o specify the proper informat for reading a date value or the proper format for writing a date value
o specify the correct field width so that the entire date value is read or written.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. If you submit the following program, how does the output look? Ly
options pagesize=55 nonumber;
proc tabulate data=clinic.admit;
class actlevel;
var age height weight;
table actlevel, (age height weight) *mean;

44

run;
options linesize=80;
proc means data=clinic.heart min max maxdec=1l;
var arterial heart cardiac urinary;
class survive sex;

run;

a. The PROC MEANS output has a print line width of 80 characters, but the PROC TABULATE
output has no print line width.

b. The PROC TABULATE output has no page numbers, but the PROC MEANS output has page
numbers.

c. Each page of output from both PROC steps is 55 lines long and has no page numbers, and the
PROC MEANS output has a print line width of 80 characters.

d. The date does not appear on output from either PROC step.

In order for the date values 05May1955 and 04Mar2046 to be read correctly, what value must the
YEARCUTOFF= option have?

a. avalue between 1947 and 1954, inclusive

b. 1955 or higher

c. 1946 or higher

d. any value

When you specify an engine for a library, you are always specifying
a. the file format for files that are stored in the library.
b. the version of SAS that you are using.
c. access to other software vendors' files.
d. instructions for creating temporary SAS files.

Which statement prints a summary of all the files stored in the library named Area51?
a. proc contents data=area5l._all_nods;
proc contents data=area5l _all nods;

b.
C. proc contents data=area5l _all_ noobs;
d.

proc contents data=area5l _all .nods;

The following PROC PRINT output was created immediately after PROC TABULATE output. Which
SAS system options were specified when the report was created?

1
10:03 Friday, March 17, 2000

Act
Obs ID Height Weight Level T2

1 2458 72 168 HIGH 85.20
2 2462 66 152 HIGH 124.80
3 2501 61 123 LOW 149.75
4 2523 63 137 MOD 149.75
5 2539 71 158 LOW 124.80
6 2544 76 193 HIGH 124.80

45

7 2552 67 151 MOD 149.75
8 2555 70 173 MOD 149.75

9 2563 73 154 LOW 124.80
a. OBS=, DATE, and NONUMBER
b. PAGENO=1 and DATE
c. NUMBER and DATE only
d. none of the above

6. Which of the following programs correctly references a SAS data set named SalesAnalysis that is Ly
stored in a permanent SAS library? -
a. data saleslibrary.salesanalysis;
b. set mydata.quarterlsales;
c. if sales>100000;
d. run;
e. data mysales.totals;
f. set sales 99.salesanalysis;
g. if totalsales>50000;
h. run;
i. proc print data=salesanalysis.quarterl;
J. var sales salesrep month;
k. run;
proc freq data=1999data.salesanalysis;
m. tables quarter*sales;
n. run;

7. Which time span is used to interpret two-digit year values if the YEARCUTOFF= option is set to 19507 »

a. 1950-2049 -

b. 1950-2050

c. 1949-2050

d. 1950-2000
8. Assuming you are using SAS code and not special SAS windows, which one of the following Ly
statements is false? -

a. LIBNAME statements can be stored with a SAS program to reference the SAS library
automatically when you submit the program.

b. When you delete a libref, SAS no longer has access to the files in the library. However, the
contents of the library still exist on your operating system.

c. Librefs can last from one SAS session to another.
d. You can access files that were created with other vendors' software by submitting a LIBNAME
statement.
9. What does the following statement do? L)

libname osiris spss 'c:\myfiles\sasdata\data';
a. defines a library called Spss using the OSIRIS engine
b. defines a library called Osiris using the SPSS engine
c. defines two libraries called Osiris and Spss using the default engine

46

d. defines the default library using the OSIRIS and SPSS engines

10. What does the following OPTIONS statement do? Ly

options pagesize=15 nodate;
a. suppresses the date and limits the page size of the log
b. suppresses the date and limits the vertical page size for text output
c. suppresses the date and limits the vertical page size for text and HTML output
d. suppresses the date and limits the horizontal page size for text output

Answers

1. Correct: answer: ¢
When you specify a system option, it remains in effect until you change the option or end your SAS session, so both
PROC steps generate output that is printed 55 lines per page with no page numbers. If you don't specify a system
option, SAS uses the default value for that system option.

2. Correct answer: d

As long as you specify an informat with the correct field width for reading the entire date value, the YEARCUTOFF=
option doesn't affect date values that have four-digit years.

3. Correct answer: a
A SAS engine is a set of internal instructions that SAS uses for writing to and reading from files in a SAS library. Each
engine specifies the file format for files that are stored in the library, which in turn enables SAS to access files with a
particular format. Some engines access SAS files, and other engines support access to other vendors' files.

4. Correct answer: a

To print a summary of library contents with the CONTENTS procedure, use a period to append the _ALL_ option to the
libref. Adding the NODS option suppresses detailed information about the files.

5. Correct answer: b
Clearly, the DATE and PAGENO= options are specified. Because the page number on the output is 1, even though
PROC TABULATE output was just produced. If you don't specify PAGENO=, all output in the Output window is
numbered sequentially throughout your SAS session.

6. Correct answer: b

Librefs must be 1 to 8 characters long, must begin with a letter or underscore, and can contain only letters, numbers, or
underscores. After you assign a libref, you specify it as the first element in the two-level name for a SAS file.

7. Correct answer: a
The YEARCUTOFF= option specifies which 100-year span is used to interpret two-digit year values. The default value
of YEARCUTOFF= is 1920. However, you can override the default and change the value of YEARCUTOFF= to the first
year of another 100-year span. If you specify YEARCUTOFF=1950, then the 100-year span will be from 1950 to 2049.

8. Correct answer: ¢

47

10.

The LIBNAME statement is global, which means that librefs remain in effect until you modify them, cancel them, or end
your SAS session. Therefore, the LIBNAME statement assigns the libref for the current SAS session only. You must
assign a libref before accessing SAS files that are stored in a permanent SAS data library.

Correct answer: b

In the LIBNAME statement, you specify the library name before the engine name. Both are followed by the path.

Correct answer: b

These options affect the format of listing output only. NODATE suppresses the date and PAGESIZE= determines the
number of rows to print on the page.

48

Chapter 3: Editing and Debugging SAS Programs
Overview

Introduction

Now that you're familiar with the basics, you can learn how to correct errors in your programs and resolve common

problems effectively.
BereyEa guipan o ‘l

your A5 session

H Log - [Usditled] M=

Gat meassages
abougyour 3AS
sEEEan and
e prsgrams

B

il Eabeal -
M
e

Endter, ndit, and

subenit SAS —
_J Brgrans
Objectives
In this chapter, you learn to
= enhance the readability of your SAS programs
= interpret error messages in the SAS log
. correct errors

resolve common problems.

SAS Program Layout

Before discussing how to edit and debug programs, let's review the characteristics of SAS statements and look at
enhancing the readability of your SAS programs.

Remember that SAS programs consist of SAS statements.

SAS statements.....
AbwiEys and willi
/a samicolon
umalml';m"'— & dara perm wanaales:

P infile wandata;
L.~

input @1 Region $9. @13 Quarter 1.
can begin f 416 Toraliales commall.; |
amywhing an Tun;
2lne proc print dataTperm.vansales; run;
sy

contain blardks or /’ |
spetial characiers can bé combined can confeue

10 Separale words an ore ling orvRr Seviral lines

49

Although you can write SAS statements in almost any format, a consistent layout enhances readability and helps you
understand the program's purpose. It's a good idea to

. begin DATA and PROC steps in column one
. indent statements within a step
. begin RUN statements in column one

include a RUN statement after every DATA step or PROC step.

data work.bankacct;

infile records;

input Name $ 1-10 AccountType $ 12-20

Deposit 22-25 Withdrawal 27-30;

run;
proc print data=work.bankacct;
run;
proc means mean;

var deposit withdrawal;

Interpreting Error Messages

Error Types

So far, the programs that you've seen in this book have been error free, but programming errors do occur. SAS can detect
several types of errors. The most common are

. syntax errors that occur when program statements do not conform to the rules of the SAS language
= data errors that occur when some data values are not appropriate for the SAS statements that are specified in a
program.

This chapter focuses on identifying and correcting syntax errors.

Syntax Errors

When you submit a program, SAS scans each step for syntax errors, then processes the step (if no syntax errors are
found). SAS then goes to the next step and repeats the process. Syntax errors, such as misspelled words, generally cause
SAS to stop processing the step in which the error occurred.

You already know that information is written to the SAS log while a SAS program is executing. When a program that
contains an error is submitted, messages regarding the problem also appear in the SAS log. When a syntax error is
detected, the SAS log

- displays the word ERROR

- identifies the possible location of the error
= gives an explanation of the error.
Example

The program below contains a syntax error. The DATA step copies the SAS data set Clinic. Admit into a new data set
named Clinic. Admitfee. The PROC step should print the values for the variables ID, Name, Actlevel, and Fee in the
new data set. However, print is misspelled in the PROC PRINT statement.

data clinic.admitfee;

set clinic.admit;

50

run;
proc prin data=clinic.admitfee;
var id name actlevel fee;

run;

When the program is submitted, messages in the SAS log indicate that the procedure PRIN was not found and that SAS
stopped processing the PRINT step due to errors. No output is produced by the PRINT procedure, because the second step
fails to execute.

error notication passible explanation
i location of tha armor
| of the amor

P B |

24E6 proc pui:n datafclinic. adnitfes]
!R‘T\.“JP: FROCEDURE FRIN not fouksd.

2487 wvag id pane actlevel fee;

24E8 Eun

NOTE: The SAS Syatem atopped processing this

step because of eccors.

HOTE: FROCEDURE FRIN used [Total process time):
pEal Eims 0.03 secands

cpu Eime 0,00 =econds

Warning Problems with your statements or data might not be evident when you look at results. Therefore, it's
important to review the messages in the log each time you submit a SAS program.

Correcting Errors

To modify programs that contain errors, you can edit them in the Editor window. You can correct simple errors, such as the
spelling error in the following program, by typing over the incorrect text, deleting text, or inserting text.

data clinic.admitfee;
set clinic.admit;

run;

proc prin data=clinic.admitfee;
var id name actlevel fee;

run;

In the program below, the missing t has been inserted into the PRINT keyword that is specified in the PROC PRINT

statement.

data clinic.admitfee;
set clinic.admit;

run;

proc print data=clinic.admitfee;
var id name actlevel fee;

run;

Info Some problems are relatively easy to diagnose and correct. But sometimes you might not know right away
how to correct errors. The online Help provides information about individual procedures as well as help that
is specific to your operating environment. From the Help menu, you can also select SAS on the Web for
links to Technical Support and Frequently Asked Questions, if you have Internet access.

Resubmitting a Revised Program

After correcting your program, you can submit it again.

51

SAS Enterprise Guide When you submit the code, SAS Enterprise Guide prompts you to choose whether or
not you want to replace the previous results. If you choose not to replace the results,
SAS Enterprise Guide makes a copy of the code and a new code item is added to the
project.

Previously, because there was an error in the PRINT procedure, the code that contained the error did not produce output.
This time, the PRINT procedure executes and produces output.

‘ Obs | ID | Name | ActLevel ‘ Fee

‘ 1 ‘ 2458 | Murray, W | HIGH ‘ 85.20
‘ 2 ‘ 2462 |Almers, C | HIGH ‘ 124.80
‘ 3 ‘ 2501 | Bonaventure, T | LOW ‘ 149.75
‘4 ‘ 2523 | Johnson, R | MOD ‘ 149.75
‘ 5 ‘ 2539 | LaMance, K | LOW ‘ 124.80
‘ 6 ‘ 2544 | Jones, M | HIGH ‘ 124.80
‘ 7 ‘ 2552 | Reberson, P | MOD ‘ 149.75
‘ 8 ‘ 2555 | King, E | MOD ‘ 149.75
‘ 9 ‘ 2563 | Pitts, D | LOW ‘ 124.80
‘ 10 ‘ 2568 | Eberhardt, S | LOW ‘ 124.80
‘ 11 ‘ 2571 | Nunnelly, A | HIGH ‘ 149.75
‘ 12 ‘ 2572 | Oberon, M | LOW ‘ 85.20
‘ 13 ‘ 2574 | Peterson, V | MOD ‘ 149.75
‘ 14 ‘2575 |Quigley, M | HIGH ‘ 124.80
‘ 15 ‘ 2578 | Cameron, L | MOD ‘ 124.80
‘ 16 ‘ 2579 | Underwood, K | LOW ‘ 149.75
‘ 17 ‘ 2584 | Takahashi, Y | MOD ‘ 124.80
‘ 18 ‘ 2586 | Derber, B | HIGH ‘ 85.20
‘ 19 ‘ 2588 | Ivan, H | LOW ‘ 85.20
‘ 20 ‘ 2589 |Wi|cox, E | HIGH ‘ 149.75
‘ 21 ‘ 2595 | Warren, C | MOD ‘ 149.75

Remember to check the SAS log again to verify that your program ran correctly.

SAS Loi

54 data clinic.: admitfee;
55 set clinic.admit;
56 run;

52

NOTE : The data set CLINIC.ADMITFEE has
21 observations and 9 variables.

NOTE: DATA statement used:

real time 0.09 seconds
cpu time 0.03 seconds
57 proc print data=clinic.admitfee;
58 var id name actlevel fee;
59 run;

NOTE : PROCEDURE PRINT used;
real time 1.78 seconds

cpu time 0.03 seconds

Resolving Common Problems

In addition to correcting spelling mistakes, you might need to resolve several other types of common syntax errors. These
errors include

" omitting semicolons
. leaving quotation marks unbalanced
. specifying invalid options.

Another common problem is omitting a RUN statement at the end of a program. Although this is not technically an error, it
can produce unexpected results. For the sake of convenience, we'll consider it together with syntax errors.

The table below lists these problems and their symptoms.

‘ Problem | Symptom

‘ missing RUN statement | "PROC (or DATA) step running" at top of active window
‘ missing semicolon | log message indicating an error in a statement that seems to be valid

unbalanced quotation marks log message indicating that a text string enclosed in quotation marks has

become too long or that a statement is ambiguous

‘ invalid option | log message indicating that an option is invalid or not recognized

Missing RUN Statement

Each step in a SAS program is compiled and executed independently from every other step. As a step is compiled, SAS
recognizes the end of the current step when it encounters

. a DATA or PROC statement, which indicates the beginning of a new step

= a RUN or QUIT statement, which indicates the end of the current step.

When the program below is submitted, the DATA step executes, but the PROC step does not. The PROC step does not

execute because there is no following DATA or PROC step to indicate the beginning of a new step, nor is there a following
RUN statement to indicate the end of the step.

53

data clinic.admitfee;
set clinic.admit;
run;
proc print data=clinic.admitfee;

var id name actlevel fee;

SAS Windowing Environment If you submit this code using the SAS windowing environment, the PRINT
procedure waits before executing because there is nothing to indicate the end of
the PROC step. A "PROC PRINT running" message appears at the top of the
active window.

SAS Enterprise Guide SAS Enterprise Guide automatically adds a RUN statement at the end of code when it
is submitted to SAS. So although you need to learn to add a RUN statement to the end
of your steps, you will not encounter this problem if you forget to add a RUN statement
when using SAS Enterprise Guide.

Resolving the Problem

To correct the error, submit a RUN statement to complete the PROC step.

run;

Missing Semicolon

One of the most common errors is the omission of a semicolon at the end of a statement. The program below is missing a
semicolon at the end of the PROC PRINT statement.

data clinic.admitfee;
set clinic.admit;
run,
proc print data=clinic.admitfee
var id name actlevel fee;
run,
When you omit a semicolon, SAS reads the statement that lacks the semicolon, plus the following statement, as one long

statement. The SAS log then lists errors that relate to the combined statement, not the actual mistake (the missing
semicolon).

SAS Loi

1832 proc print data: =clinic.admitfee
1833 var id name actlevel fee;

22

76

ERROR 22-322:Syntax error, expecting one of the following:

;» (, DATA, DOUBLE, HEADING, LABEL,

N, NOOBS, OBS, ROUND, ROWS, SPLIT, UNIFORM, WIDTH.
ERROR 76-322:Syntax error, statement will be ignored.
1834 run;

54

NOTE: The SAS System stopped processing this step
because of errors.
NOTE: PROCEDURE PRINT used:

real time 0.35 seconds

ciu time 0.03 seconds

Resolving the Problem

To correct the error, do the following:
1. Find the statement that lacks a semicolon. You can usually locate the statement that lacks the semicolon by looking
at the underscored keywords in the error message and working backwards.
2. Add a semicolon in the appropriate location.
3. Resubmit the corrected program.
4. Check the SAS log again to make sure there are no other errors.

Unbalanced Quotation Marks

Some syntax errors, such as the missing quotation mark after HIGH in the program below, cause SAS to misinterpret the
statements in your program.

data clinic.admitfee;
set clinic.admit;
where actlevel= ‘HIGH;

run;

proc print data=clinic.admitfee;
var id name actlevel fee;

run;

When you have unbalanced quotation marks, SAS is often unable to detect the end of the statement in which the error
occurs. When the program above is submitted, SAS is unable to resolve the DATA step, and a "DATA STEP running"
message appears at the top of the active window.

In addition, when unbalanced quotation marks appear in a program that contains TITLE or FOOTNOTE statements, there is

sometimes a warning in the SAS log which indicates that

= a text string enclosed in quotation marks has become too long

= a statement that contains quotation marks (such as a TITLE or FOOTNOTE statement) is ambiguous due to invalid
options or unquoted text.

SAS Loi iPROC PRINT Runninii

93 proc print data=clinic.admitfee;

94 var id name actlevel fee;

95 title 'Patient Billing;

96 title2 '"January 1998';

WARNING: The TITLE statement is ambiguous due to
invalid options or unquoted text.

97 run;

e
55

Simply adding a quotation mark and resubmitting your program usually does not solve the problem. SAS still considers the
quotation marks to be unbalanced.
Warning If you do not resolve this problem when it occurs, it is likely that any subsequent programs that you
submit in the current SAS session will generate errors.

Resolving the Problem
SAS Enterprise Guide When you submit a program with unbalanced quotation marks, you might not receive
an error message. This is because SAS Enterprise Guide automatically submits an
ending quotation mark for you. However, you will not get valid results.

Because there might be no visual indicator in the Project window that there is an error
in your program, you should learn to detect this syntax error before you submit your
program. The Code Editor window uses color coding to help you recognize errors.

SAS Windowing Environment In the SAS windowing environment, you must cancel the program before you
recall, correct, and resubmit the code. To submit a line of SAS code that cancels
the program, complete the following steps:

1. Submit an asterisk followed by a quotation mark, a semicolon, and a
RUN statement.

*'; run;

2. Delete the line that contains the asterisk followed by the quotation mark,
the semicolon, and the RUN statement.

3. Insert the missing quotation mark in the appropriate place in your
program.

4. Submit the corrected program.

SAS Loi

98 *';: run;

NOTE: There were 7 observations read from the data set
CLINIC.ADMITFEE.
NOTE: PROCEDURE PRINT used (Total process time):
real time 31.38 seconds

cpu time 1.21 seconds

99 proc print data=clinic.admitfee;

99 var id name actlevel fee;
100 title 'Patient Billing';
101 title2 'January 1998';
102 run;

NOTE: There were 7 observations read from the data set
CLINIC.ADMITFEE.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.16 seconds

ciu time 0.15 seconds

56

Invalid Option
An invalid option error occurs when you specify an option that is not valid in a particular statement. In the program below,
the KEYLABEL option is not valid when used with the PROC PRINT statement.
data clinic.admitfee;
set clinic.admit;
run,
proc print data=clinic.admitfee keylabel;
label actlevel='Activity Level';
run,

When a SAS statement that contains an invalid option is submitted, a message appears in the SAS log indicating that there
is a syntax error. The message lists the options that are valid in the statement.

SAS Loi

12 proc print data: =clinic.admitfee keylabel;

22 200
ERROR 22-322: Syntax error, expecting one of the following: ;,
(r
N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE,
UNIFORM,
ERROR 200-322: The symbol is not recognized and will be ignored.
13 label actlevel="'Activity Level';

14 run;

NOTE: The SAS System stopped processing this step
because of errors.
NOTE: PROCEDURE PRINT used:

real time 0.23 seconds

ciu time 0.04 seconds

Resolving the Problem

To correct the error:
1. Remove or replace the invalid option, and check your statement syntax as needed.
2. Resubmit the corrected program.
3. Check the SAS log again to make sure there are no other errors.

Additional Features

57

Comments in SAS Programs

You can insert comments into a SAS program to document the purpose of the program, to explain segments of the
program, or to describe the steps in a complex program or calculation. A comment statement begins and ends with a
comment symbol. There are two forms of comment statements:

*text,

or
/*text*/

SAS ignores text in comments during processing.

The following program shows some of the ways comments can be used to describe a SAS program.
/* Read national sales data for vans */
/* from an external raw data file */
data perm.vansales;
infile vandata;
input @1 Region $9.
@13 Quarter 1. /* Values are 1, 2, 3, or 4 */
@16 TotalSales commall.;
/* Print the entire data set */
proc print data=perm.vansales;

run;

SAS System Options

SAS includes several system options that enable you to control error handling and SAS log messages. The table shown
below contains brief descriptions of some of these options. You can use the OPTIONS statement to specify these options.

Option Description

ERRORS=n Specifies the maximum number of observations for which complete data error messages
are printed.

FMTERR | NOFMTERR Controls whether SAS generates an error message when a format of a variable cannot be
found. NOFMTERR results in a warning instead of an error. FMTERR is the default.

‘ SOURCE | NOSOURCE Controls whether SAS writes source statements to the SAS log. SOURCE is the default

Summary

Text Summary

SAS Program Layout

SAS programs consist of SAS statements. Although you can write SAS statements in almost any format, a consistent layout
enhances readability and enables you to understand the program's purpose.

58

Interpreting Error Messages

When a SAS program that contains errors is submitted, error messages appear in the SAS log. SAS can detect several
types of errors, including syntax and data errors. This chapter focuses on identifying and resolving common syntax errors.

Correcting Errors

To modify a program that contains syntax errors, you can correct the errors in the Editor window and then resubmit the
revised program. You can delete any error-free steps from a revised program before resubmitting it.

Detecting and Resolving Common Problems

You might need to resolve several types of common problems: missing RUN statements, missing semicolons, unbalanced
quotation marks, and invalid options.

Points to Remember

= It's a good idea to begin DATA steps, PROC steps, and RUN statements on the left and to indent statements within
a step.

= End each step with a RUN statement.

. Review the messages in the SAS log each time you submit a SAS program.

Quiz

Select the best answer for each question. After completing the quiz, check your answers using the answer key in the
appendix.

1. As you write and edit SAS programs, it's a good idea to b
a. begin DATA and PROC steps in column one. -
b. indent statements within a step.
c. begin RUN statements in column one.
d. all of the above.

2. What usually happens when a syntax error is detected? b
a. SAS continues processing the step. -
b. SAS continues to process the step, and the SAS log displays messages about the error.
c. SAS stops processing the step in which the error occurred, and the SAS log displays messages about
the error.
d. SAS stops processing the step in which the error occurred, and the Output window displays messages
about the error.

3. A syntax error occurs when >
a. some data values are not appropriate for the SAS statements that are specified in a program. -
b. the form of the elements in a SAS statement is correct, but the elements are not valid for that usage.
c. program statements do not conform to the rules of the SAS language.
d. none of the above.

4. How can you tell whether you have specified an invalid option in a SAS program? >
A log message indicates an error in a statement that seems to be valid. -
b. Alog message indicates that an option is not valid or not recognized.

c. The message "PROC running" or "DATA step running" appears at the top of the active window.

d. You can't tell until you view the output from the program.

o

5. Which of the following programs contain a syntax error? b

59

a. proc sort data=sasuser.mysales;
b. by region;

c. run;

d. dat sasuser.mysales;

e. set mydata.sales99;

f. run;

g. proc print data=sasuser.mysales
h. label region='Sales Region';
i. run;

j. none of the above.

6. What does the following lo

proc print data=sasuser.cargo99

var origin dest cargorev;

label;

indicate about your program?

22
76
ERROR 22-322: Syntax error, expecting one of the
following:
;, (, DATA, DOUBLE, HEADING, LABEL,
N, NOOBS, OBS, ROUND, ROWS, SPLIT, STYLE,

UNIFORM, WIDTH.

ERROR 76-322: Syntax error,

statement will be ignored.

11 run;
a. SAS identifies a syntax error at the position of the VAR statement.
b. SAS is reading VAR as an option in the PROC PRINT statement.
c. SAS has stopped processing the program because of errors.
d. all of the above
Answers

1. Correct answer: d

Although you can write SAS statements in almost any format, a consistent layout enhances readability and enables you
to understand the program's purpose. It's a good idea to begin DATA and PROC steps in column one, to indent
statements within a step, to begin RUN statements in column one, and to include a RUN statement after every DATA

step or PROC step.

2. Correct answer: ¢

Syntax errors generally cause SAS to stop processing the step in which the error occurred. When a program that
contains an error is submitted, messages regarding the problem also appear in the SAS log. When a syntax error is
detected, the SAS log displays the word ERROR, identifies the possible location of the error, and gives an explanation of

the error.

60

. Correct answer: c

Syntax errors are common types of errors. Some SAS system options, features of the Editor window, and the DATA step
debugger can help you identify syntax errors. Other types of errors include data errors, semantic errors, and execution-
time errors.

. Correct answer: b

When you submit a SAS statement that contains an invalid option, a log message notifies you that the option is not valid
or not recognized. You should recall the program, remove or replace the invalid option, check your statement syntax as
needed, and resubmit the corrected program.

. Correct answer: b

The DATA step contains a misspelled keyword (dat instead of data). However, this is such a common (and easily
interpretable) error that SAS produces only a warning message, not an error.

. Correct answer: d
Because there is a missing semicolon at the end of the PROC PRINT statement, SAS interprets VAR as an option in

PROC PRINT and finds a syntax error at that location. SAS stops processing programs when it encounters a syntax
error.

61

Chapter 4: Creating List Reports
Overview

Introduction

To list the information in a data set, you can create a report with a PROC PRINT step. Then you can enhance the report
with additional statements and options to create reports like those shown below.
Basic Report Column Totals

Sorting and Lahcels Selected Observations and Variahles
e T = e e
FREER P SEEEEEE
P T ———— 70 o))) e
N | T — EEEEEEE
el S S S
i il A i

Objectives

In this chapter you learn to

. specify SAS data sets to print

= select variables and observations to print

= sort data by the values of one or more variables

specify column totals for numeric variables

62

double-space SAS listing output
add titles and footnotes to procedure output
assign descriptive labels to variables

apply formats to the values of variables.

Types of Reports

Basic Report

You can easily list the contents of a SAS data set by using a simple program like the one shown below.

libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

run;

||D

‘ Name

‘ Sex

| ActLevel

‘ Obs | Age ‘ Date ‘ Height ‘ Weight ‘ Fee

‘ 1 | 2458 ‘ Murray, W ‘ M | 27 ‘ 1 ‘ 72 | 168 | HIGH ‘ 85.20
‘ 2 | 2462 ‘ Almers, C ‘ F | 34 ‘ 3 ‘ 66 | 152 | HIGH ‘ 124.80
‘ 3 | 2501 ‘ Bonaventure, T ‘ F | 31 ‘ 17 ‘ 61 | 123 | LOW ‘ 149.75
‘ 4 | 2523 ‘ Johnson, R ‘ F | 43 ‘ 31 ‘ 63 | 137 | MOD ‘ 149.75
‘ 5 | 2539 ‘ LaMance, K ‘ M | 51 ‘ 4 ‘ 71 | 158 | LOW ‘ 124.80
‘ 6 | 2544 ‘ Jones, M ‘ M | 29 ‘ 6 ‘ 76 | 193 | HIGH ‘ 124.80
‘ 7 | 2552 ‘ Reberson, P ‘ F | 32 ‘ 9 ‘ 67 | 151 | MOD ‘ 149.75
‘ 8 | 2555 ‘ King, E ‘ M | 35 ‘ 13 ‘ 70 | 173 | MOD ‘ 149.75
‘ 9 | 2563 ‘ Pitts, D ‘ M | 34 ‘ 22 ‘ 73 | 154 | LOW ‘ 124.80
‘ 10 | 2568 ‘ Eberhardt, S ‘ F | 49 ‘ 27 ‘ 64 | 172 | LOW ‘ 124.80
‘ 11 | 2571 ‘ Nunnelly, A ‘ F | 44 ‘ 19 ‘ 66 | 140 | HIGH ‘ 149.75
‘ 12 | 2572 ‘ Oberon, M ‘ F | 28 ‘ 17 ‘ 62 | 118 | LOW ‘ 85.20
‘ 13 | 2574 ‘ Peterson, V ‘ M | 30 ‘ 6 ‘ 69 | 147 | MOD ‘ 149.75
‘ 14 | 2575 ‘ Quigley, M ‘ F | 40 ‘ 8 ‘ 69 | 163 | HIGH ‘ 124.80
‘ 15 | 2578 ‘ Cameron, L ‘ M | 47 ‘ 5 ‘ 72 | 173 | MOD ‘ 124.80
‘ 16 | 2579 ‘ Underwood, K ‘ M | 60 ‘ 22 ‘ 71 | 191 | LOW ‘ 149.75
‘ 17 | 2584 ‘ Takahashi, Y ‘ F | 43 ‘ 29 ‘ 65 | 123 | MOD ‘ 124.80
‘ 18 | 2586 ‘ Derber, B ‘ M | 25 ‘ 23 ‘ 75 | 188 | HIGH ‘ 85.20
‘ 19 | 2588 ‘ lvan, H ‘ F | 22 ‘ 20 ‘ 63 | 139 | LOW ‘ 85.20
‘ 20 | 2589 ‘ Wilcox, E ‘ F | 41 ‘ 16 ‘ 67 | 141 | HIGH ‘ 149.75
‘ 21 | 2595 ‘ Warren, C ‘ M | 54 ‘ 7 ‘ 71 | 183 | MOD ‘ 149.75

Column Totals

You can produce column totals for numeric variables within your report.

libname clinic 'your-SAS-data-library';

proc print data=clinic.admit;

sum fee;

run; 7 7 7 7 7 7

‘ Obs | ID ‘ Name ‘ Sex | Age | Date | Height ‘ Weight | ActLevel | Fee

‘ 1 | 2458 ‘ Murray, W ‘ M | 27 | 1 | 72 ‘ 168 | HIGH | 85.20
‘ 2 | 2462 ‘ Almers, C ‘ F | 34 | 3 | 66 ‘ 152 | HIGH | 124.80
‘ 3 | 2501 ‘ Bonaventure, T ‘ F | 31 | 17 | 61 ‘ 123 | LOW | 149.75
‘ 4 | 2523 ‘ Johnson, R ‘ F | 43 | 31 | 63 ‘ 137 | MOD | 149.75
‘ 5 | 2539 ‘ LaMance, K ‘ M | 51 | 4 | 71 ‘ 158 | LOW | 124.80
‘ 6 | 2544 ‘ Jones, M ‘ M | 29 | 6 | 76 ‘ 193 | HIGH | 124.80
‘ 7 | 2552 ‘ Reberson, P ‘ F | 32 | 9 | 67 ‘ 151 | MOD | 149.75
‘ 8 | 2555 ‘ King, E ‘ M | 35 | 13 | 70 ‘ 173 | MOD | 149.75
‘ 9 | 2563 ‘ Pitts, D ‘ M | 34 | 22 | 73 ‘ 154 | LOwW | 124.80
‘ 10 | 2568 ‘ Eberhardt, S ‘ F | 49 | 27 | 64 ‘ 172 | LOW | 124.80
‘ 11 | 2571 ‘ Nunnelly, A ‘ F | 44 | 19 | 66 ‘ 140 | HIGH | 149.75
‘ 12 | 2572 ‘ Oberon, M ‘ F | 28 | 17 | 62 ‘ 118 | LOow | 85.20
‘ 13 | 2574 ‘ Peterson, V ‘ M | 30 | 6 | 69 ‘ 147 | MOD | 149.75
‘ 14 | 2575 ‘ Quigley, M ‘ F | 40 | 8 | 69 ‘ 163 | HIGH | 124.80
‘ 15 | 2578 ‘ Cameron, L ‘ M | 47 | 5 | 72 ‘ 173 | MOD | 124.80
‘ 16 | 2579 ‘ Underwood, K ‘ M | 60 | 22 | 71 ‘ 191 | LOow | 149.75
‘ 17 | 2584 ‘ Takahashi, Y ‘ F | 43 | 29 | 65 ‘ 123 | MOD | 124.80
‘ 18 | 2586 ‘ Derber, B ‘ M | 25 | 23 | 75 ‘ 188 | HIGH | 85.20
‘ 19 | 2588 ‘ lvan, H ‘ F | 22 | 20 | 63 ‘ 139 | LOow | 85.20
‘ 20 | 2589 ‘ Wilcox, E ‘ F | 41 | 16 | 67 ‘ 141 | HIGH | 149.75
‘ 21 | 2595 ‘ Warren, C ‘ M | 54 | 7 | 71 ‘ 183 | MOD | 149.75
| [L L | | | 2686.95

Sorting and Labels

You can sort data by the values of one or more variables and replace variable names with descriptive labels.
libname clinic 'your-SAS-data-library';
proc sort data=clinic.admit out=admit;

by age;

run;

64

proc print data=admit label;
var age height weight fee;
label fee='Admission Fee';

run;

‘ Obs ‘ Age Height ‘ Weight Admission
Fee

‘ 1 ‘ 22 ‘ 63 | 139 ‘ 85.20
‘ 2 ‘ 25 ‘ 75 | 188 ‘ 85.20
‘ 3 ‘ 27 ‘ 72 | 168 ‘ 85.20
‘ 4 ‘ 28 ‘ 62 | 118 ‘ 85.20
‘ 5 ‘ 29 ‘ 76 | 193 ‘ 124.80
‘ 6 ‘ 30 ‘ 69 | 147 ‘ 149.75
‘ 7 ‘ 31 ‘ 61 | 123 ‘ 149.75
‘ 8 ‘ 32 ‘ 67 | 151 ‘ 149.75
‘ 9 ‘ 34 ‘ 66 | 152 ‘ 124.80
‘ 10 ‘ 34 ‘ 73 | 154 ‘ 124.80
‘ 11 ‘ 35 ‘ 70 | 173 ‘ 149.75
‘ 12 ‘ 40 ‘ 69 | 163 ‘ 124.80
‘ 13 ‘ 41 ‘ 67 | 141 ‘ 149.75
‘ 14 ‘ 43 \ 63 | 137 \ 149.75
‘ 15 ‘ 43 ‘ 65 | 123 ‘ 124.80
‘ 16 ‘ 44 ‘ 66 | 140 ‘ 149.75
‘ 17 ‘ 47 ‘ 72 | 173 ‘ 124.80
‘ 18 ‘ 49 ‘ 64 | 172 ‘ 124.80
‘ 19 ‘ 51 ‘ 71 | 158 ‘ 124.80
‘ 20 ‘ 54 ‘ 71 | 183 ‘ 149.75
‘ 21 ‘ 60 ‘ 7 | 191 ‘ 149.75

Selected Observations and Variables

You can choose the observations and variables that appear in your report. In addition, you can remove the default Obs
column that displays observation numbers.

libname clinic 'your-SAS-data-library';
proc print data=clinic.admit noobs;

var age height weight fee;

where age>30;

run;

65

‘ Age ‘ Height ‘ Weight ‘ Fee

‘ 34 | 66 ‘ 152 ‘ 124.80
‘ 31 | 61 ‘ 123 ‘ 149.75
‘ 43 | 63 ‘ 137 ‘ 149.75
‘ 51 | 71 ‘ 158 ‘ 124.80
‘ 32 | 67 ‘ 151 ‘ 149.75
‘ 35 | 70 ‘ 173 ‘ 149.75
‘ 34 | 73 ‘ 154 ‘ 124.80
‘ 49 | 64 ‘ 172 ‘ 124.80
‘ 44 | 66 ‘ 140 ‘ 149.75
‘ 40 | 69 ‘ 163 ‘ 124.80
‘ 47 | 72 ‘ 173 ‘ 124.80
‘ 60 | 71 ‘ 191 ‘ 149.75
‘ 43 | 65 ‘ 123 ‘ 124.80
‘ 41 | 67 ‘ 141 ‘ 149.75
‘ 54 | 71 ‘ 183 ‘ 149.75

Creating a Basic Report

To produce a simple list report, you first reference the library in which your SAS data set is stored. If you want, you can also
set SAS sistem oitions to control the aiiearance of iour reiorts. Then iou submit a basic PROC PRINT stei.

General form, basic PROC PRINT step:

PROC PRINT <DATA=SAS-data-set>;
RUN;

where SAS-data-set is the name of the SAS data set to be irinted.

In the program below, the PROC PRINT statement invokes the PRINT procedure and specifies the data set Therapy in the
SAS data library to which the libref Patients has been assigned.

libname patients 'c:\records\patients';
proc print data=patients.therapy;

run;

Notice the layout of the resulting report. By default,

= all observations and variables in the data set are printed
= a column for observation numbers appears on the far left
. variables appear in the order in which they occur in the data set.

66

Obs ‘ Date

‘ | AerClass ‘ WalkJogRun ‘ Swim
‘ 1 ‘ JAN1999 | 56 ‘ 78 ‘ 14
‘ 2 ‘ FEB1999 | 32 ‘ 109 ‘ 19
‘ 3 ‘ MAR1999 | 35 ‘ 106 ‘ 22
‘ 4 ‘ APR1999 | 47 ‘ 115 ‘ 24
‘ 5 ‘ MAY 1999 | 55 ‘ 121 ‘ 31
‘ 6 ‘JUN1999 | 61 ‘ 114 ‘ 67
‘ 7 ‘ JUL1999 | 67 ‘ 102 ‘ 72
‘ 8 ‘ AUG1999 | 64 ‘ 76 ‘ 77
‘ 9 ‘ SEP1999 | 78 ‘ 77 ‘ 54
‘ 10 ‘ OCT1999 | 81 ‘ 62 ‘ 47
‘ 11 ‘ NOV1999 | 84 ‘ 31 ‘ 52
‘ 12 ‘ DEC1999 | 2 ‘ 44 ‘ 55
‘ 13 ‘ JAN2000 | 37 ‘ 91 ‘ 83
‘ 14 ‘ FEB2000 | 41 ‘ 102 ‘ 27
‘ 15 ‘ MAR2000 | 52 ‘ 98 ‘ 19
‘ 16 ‘ APR2000 | 61 ‘ 118 ‘ 22
‘ 17 ‘ MAY2000 | 49 ‘ 88 ‘ 29
‘ 18 ‘ JUN2000 | 24 ‘ 101 ‘ 54
‘ 19 ‘ JUL2000 | 45 ‘ 91 ‘ 69
‘ 20 ‘ AUG2000 | 63 ‘ 65 ‘ 53
‘ 21 ‘ SEP2000 | 60 ‘ 49 ‘ 68
‘ 22 ‘ OCT2000 | 78 ‘ 70 ‘ 41
‘ 23 ‘ NOV2000 | 82 ‘ 44 ‘ 58
‘ 24 ‘ DEC2000 | 93 ‘ 57 ‘ 47
Note Be sure to specify the equal sign in the DATA= option in SAS procedures. If you omit the equal

sign, your program produces an error similar to the following in the SAS log.

SAS Loi

1 proc print data: patients.therapy;

2 run;

ERROR 73-322: Expecting an =.

67

NOTE: The SAS System stopped processing this step

because of errors.

Selecting Observations

By default, a PROC PRINT step lists all the variables in a data set. You can select variables and control the order in which
thei aiﬁear bi usini a VAR statement in iour PROC PRINT stei.

General form, VAR statement:

VAR variable(s);

where variableisi is one or more variable names| seiarated bi blanks.

For example, the following VAR statement specifies that only the variables Age, Height, Weight, and Fee be printed, in
that order:

proc print data=clinic.admit;
var age height weight fee;

run;

The procedure output from the PROC PRINT step with the VAR statement lists only the values for the variables Age,
Height, Weight, and Fee.

‘ Obs ‘ Age ‘ Height | Weight | Fee

\ 1 \ 27 \ 72 | 168 | 85.20
‘ 2 \ 34 \ 66 | 152 | 124.80
‘ 3 \ 31 \ 61 | 123 | 149.75
‘ 4 \ 43 \ 63 | 137 | 149.75
‘ 5 \ 51 \ 71 | 158 | 124.80
\ 6 \ 29 \ 76 | 193 | 124.80
‘ 7 \ 32 \ 67 | 151 | 149.75
‘ 8 \ 35 \ 70 | 173 | 149.75
‘ 9 \ 34 \ 73 | 154 | 124.80
\ 10 \ 49 \ 64 | 172 | 124.80
\ 11 \ 44 \ 66 | 140 | 149.75
\ 12 \ 28 \ 62 | 118 | 85.20
‘ 13 ‘ 30 \ 69 | 147 | 149.75
‘ 14 \ 40 \ 69 | 163 | 124.80
\ 15 \ 47 \ 72 | 173 | 124.80

‘ Obs ‘ Age ‘ Height | Weight | Fee

‘ 16 ‘ 60 ‘ 71 | 191 | 149.75
‘ 17 ‘ 43 ‘ 65 | 123 | 124.80
‘ 18 ‘ 25 ‘ 75 | 188 | 85.20
‘ 19 ‘ 22 ‘ 63 | 139 | 85.20
‘ 20 ‘ 41 ‘ 67 | 141 | 149.75
‘ 21 ‘ 54 ‘ 71 | 183 | 149.75

In addition to selecting variables, you can control the default Obs column that PROC PRINT displays to list observation
numbers. If you prefer, you can choose not to display observation numbers.

‘ Obs | Age ‘ Height | Weight | Fee

‘ 1 | 27 ‘ 72 | 168 ‘ 85.20
‘ 2 | 34 ‘ 66 | 152 ‘ 124.80
‘ 3 | 31 \ 61 | 123 \ 149.75
‘ 4 | 43 ‘ 63 | 137 ‘ 149.75
‘ 5 | 51 ‘ 71 | 158 ‘ 124.80

Removing the OBS Column

To remove the Obs column, specify the NOOBS option in the PROC PRINT statement.
proc print data=work.example noobs;

var age height weight fee;

run;
‘ Age | Height | Weight | Fee

‘ 27 | 72 ‘ 168 ‘ 85.20
‘ 34 | 66 ‘ 152 ‘ 124.80
‘ 31 | 61 ‘ 123 ‘ 149.75
‘ 43 | 63 ‘ 137 ‘ 149.75
‘ 51 | 71 ‘ 158 ‘ 124.80

Identifying Observations

You've learned how to remove the Obs column altogether. As another alternative, you can use one or more variables to
replace the Obs column in the output.

To specify which variables should replace the 0bs column, use the ID statement. This technique is particularly useful when

observations are too Ioni to irint on one line.

69

General form, ID statement:
ID variable(s);

where variable(s) specifies one or more variables to print instead of the observation number at the beginning of each row of

the reiort.

Example

To replace the Obs column and identify observations based on an employee's ID number and last name, you can submit the
following program.

proc print data=sales.reps;

id idnum lastname;

runy;

This is HTML output from the program:

IDn LastName FirstN City St S JobC Salar Birth Hired HomePh

um ame ate e ode y one
X

1269 CASTON FRANK STAMFO CT M NA1 41690 06MA 01DE | 203/781-
LIN RD .00 Y60 C80 3335

1935 FERNAND KATRI BRIDGEP CT NA2 51081 31MA 190C | 203/675-
EZ NA ORT .00 R42 T69 | 2962

1417 NEWKIRK WILLIA PATERS NJ , NA2 52270 30JUN 10MA | 201/732-
M ON .00 52 R77 | 6611

1839 NORRIS DIANE NEW NY F NA1 43433 02DE 06JUL | 718/384-
YORK .00 C58 81 1767

1111 RHODES JEREM PRINCET NJ M NA1 40586 17JUL O3NO | 201/812-
Y ON .00 61 V80 1837

1352 RIVERS SIMON NEW NY M NA2 5379. 05DE 190C | 718/383-
YORK 80 C48 T74 | 3345

1332 STEPHEN ADAM BRIDGEP CT M NA1 42178 20SE 07JUN 203/675-
SON ORT .00 P58 79 1497

1443 | WELLS AGNES STAMFO CT F NA1 422.7 20NO 01SE | 203/781-
RD 4 V56 P79 | 5546

Not In listing output, the IDnum and LastName columns are repeated for each observation that is

e irinted on more than one line.

IDnum LastName FirstName City State Sex JobCode
1269 CASTON FRANKLIN STAMEORD CT M NA1l
1935 FERNANDEZ KATRINA BRIDGEPO CT NAZ2
1417 NEWKIRK WILLIAM PATERSON NJ ’ NA2
1839 NORRIS DIANE NEW YORK NY F NA1l

70

1111 RHODES JEREMY PRINCETO NJ M NA1
1352 RIVERS SIMON NEW YORK NY M NA2
1332 STEPHENS ADAM BRIDGEPO CT M NA1
1443 WELLS AGNES STAMFORD CT F NA1
IDnum LastName Salary Birth Hired HomePhone
1269 CASTON 41690.00 O06MAY60 01DECS80 203/781-3335
1935 FERNANDEZ 51081.00 31MAR42 190CT69 203/675-2962
1417 NEWKIRK 52270.00 30JUN52 10MAR77 201/732-6611
1839 NORRIS 43433.00 O02DEC58 06JUL81 718/384-1767
1111 RHODES 40586.00 17JUL61 03NOV80 201/812-1837
1352 RIVERS 5379.80 O05DEC48 190CT74 718/383-3345
1332 STEPHENS 42178.00 20SEP58 07JUN79 203/675-1497
1443 WELLS 422.74 20NOV56 01SEP79 203/781-5546

If a variable in the ID statement also appears in the VAR statement, the output contains two columns for that variable. In the
example below, the variable TDnum appears twice.

proc print data=sales.reps;
id idnum lastname;

var idnum sex jobcode salary;

run;
‘ IDnum ‘ LastName ‘ IDnum | Sex ‘ JobCode | Salary

‘ 1269 ‘ CASTON ‘ 1269 ‘ M | NA1 | 41690.00
‘ 1935 ‘ FERNANDEZ ‘ 1935 ‘ | NA2 | 51081.00
‘ 1417 ‘ NEWKIRK ‘ 1417 ‘ , | NA2 | 52270.00
‘ 1839 ‘ NORRIS ‘ 1839 ‘ F | NA1 | 43433.00
‘ 1111 ‘ RHODES ‘ 1111 ‘ M | NA1 | 40586.00
‘ 1352 ‘ RIVERS ‘ 1352 ‘ M | NA2 | 5379.80
‘ 1332 ‘ STEPHENSON ‘ 1332 ‘ M | NA1 | 42178.00
‘ 1443 ‘ WELLS ‘ 1443 ‘ F | NA1 | 422.74

Selecting Observations

By default, a PROC PRINT step lists all the observations in a data set. You can control which observations are printed by

addini a WHERE statement to iour PROC PRINT stei. There can be onli one WHERE statement in a steﬁ.

71

General form, WHERE statement:
WHERE where-expression;

where where-expression specifies a condition for selecting observations. The where-expression can be any valid SAS

exiression.

For example, the following WHERE statement selects only observations for which the value of Age is greater than 30:
proc print data=clinic.admit;

var age height weight fee;

where age>30;

run;

Here is the procedure output from the PROC PRINT step with the WHERE statement:

‘ Obs ‘ Age ‘ Height ‘ Weight ‘ Fee

| 2 | 3 | e | 152 | 124.80
| 3 | 31 | e | 123 | 149.75
| 4 | 43 | e3 | 137 | 149.75
| 5 | 51 | 71 | 158 | 124.80
| 7 | 32 | 67 | 151 | 149.75
| 8 | 3 | 70 | 173 | 149.75
| o | 34 | 73 | 154 | 124.80
| 10 | 49 | es | 172 | 124.80
| 1M | a4 | e | 140 | 149.75
| 14 | 40 | 69 | 163 | 124.80
| 15 | a7 | 72 173 | 124.80
| 6 | 60 | 71 | 191 | 149.75
| 17 | 4 | e | 123 | 124.80
| 20 | 41 | 67 | 141 | 149.75
| 21 | 54 | 71 | 183 | 149.75

Specifying WHERE Expressions

72

In the WHERE statement you can specify any variable in the SAS data set, not just the variables that are specified in the
VAR statement. The WHERE statement works for both character and numeric variables. To specify a condition based on
the value of a character variable, you must

= enclose the value in quotation marks

- write the value with lowercase and uppercase letters exactly as it appears in the data set.

You use the following comparison operators to express a condition in the WHERE statement:

‘ Symbol | Meaning ‘ Example
‘=oreq |equmto ‘where name="'Jones, C.';
‘“=orne |notequaHo ‘where temp ne 212;
‘ >or gt | greater than ‘ where income>20000;
‘<Orﬂ hessthan ‘where partno 1t "BGOS5";
‘ >= or ge | greater than or equal to ‘ where id>='1543";
‘ <=orle | less than or equal to ‘ where pulse le 85;
Note You can learn more about valid SAS expressions in Chapter 5, Creating SAS

Data Sets from Raw Data.

Using the CONTAINS Operator

The CONTAINS operator selects observations that include the specified substring. The mnemonic equivalent for the
CONTAINS operator is ?. You can use either the CONTAINS keyword or the mnemonic equivalent in your code, as shown
below.

where firstname CONTAINS 'Jon';

where firstname ? 'Jon';

Specifying Compound WHERE Expressions

You can also use WHERE statements to select observations that meet multiple conditions. To link a sequence of
expressions into compound expressions, you use logical operators, including the following:

‘ Operator ‘ Meaning

‘ AND or & ‘ and, both. If both expressions are true, then the compound expression is true.
‘ ORoor | ‘ or, either. If either expression is true, then the compound expression is true.

Examples of WHERE Statements

Here are some examples of WHERE statements that use logical operators:
where age<=55 and pulse>75;
where area='A' or region='S';

where ID>1050 and state='NC';
= When you test for multiple values of the same variable, you specify the variable name in each expression:

where actlevel='LOW' or actlevel='MOD';

where fee=124.80 or fee=178.20;
= You can use the IN operator as a convenient alternative:

where actlevel in ('LOW', 'MOD');

73

where fee in (124.80,178.20);
- To control the way compound expressions are evaluated, you can use parentheses (expressions in parentheses
are evaluated first):

where (age<=55 and pulse>75) or area='A';

where age<=55 and (pulse>75 or area='A');

Sorting Data

By default, PROC PRINT lists observations in the order in which they appear in your data set. To sort your report based on
values of a variable, you must use PROC SORT to sort your data before using the PRINT procedure to create reports from
the data.

The SORT procedure

rearranges the observations in a SAS data set

creates a new SAS data set that contains the rearranged observations
replaces the original SAS data set by default

can sort on multiple variables

can sort in ascending or descending order

does not generate printed output

treats missini values as the smallest iossible values.

General form, simple PROC SORT step:

PROC SORT DATA=SAS-data-set <OUT=SAS-data-set>;
BY <DESCENDING> BY-variable(s);

RUN;

where

= the DATA= option specifies the data set to be read.

= the OUT= option specifies the output data set that contains the data in sorted order.

. BY-variable(s) in the required BY statement specifies one or more variables whose values are used to sort the data.

the DESCENDING option in the BY statement sorts observations in descending order. If you have more than one
variable in the BY statement, DESCENDING applies only to the variable that immediately follows it.
Warning If you don't use the OUT= option, PROC SORT permanently sorts the data set that is specified in
the DATA= option. If you need your data to be sorted to produce output for only one SAS session,

then iou should SieCifi a temiorari SAS data set as the outiut data set.

Example

In the following program, the PROC SORT step sorts the permanent SAS data set Clinic.Admit by the values of the
variable Age within the values of the variable Weight and creates the temporary SAS data set Wgtadmit. Then the PROC
PRINT step prints the Wgtadmit data set.

proc sort data=clinic.admit out=work.wgtadmit;
by weight age;

run;

proc print data=work.wgtadmit;
var age height weight fee;

where age>30;

74

run;

The report displays observations in ascending order of age within weight.

‘ Obs | Age ‘ Height | Weight | Fee

‘ 2 | 31 \ 61 | 123 \ 149.75
‘ 3 | 43 \ 65 | 123 \ 124.80
‘ 4 | 43 \ 63 | 137 \ 149.75
\ 6 | 44 \ 66 | 140 \ 149.75
\ 7 | 41 \ 67 | 141 \ 149.75
‘ 9 | 32 \ 67 | 151 \ 149.75
‘ 10 | 34 \ 66 | 152 \ 124.80
‘ 11 | 34 \ 73 | 154 \ 124.80
‘ 12 | 51 \ 71 | 158 \ 124.80
‘ 13 | 40 \ 69 | 163 \ 124.80
‘ 15 | 49 \ 64 | 172 \ 124.80
‘ 16 | 35 \ 70 | 173 \ 149.75
‘ 17 | 47 \ 72 | 173 \ 124.80
‘ 18 | 54 \ 71 | 183 \ 149.75
‘ 20 | 60 \ 71 | 191 \ 149.75

Adding the DESCENDING option to the BY statement sorts observations in ascending order of age within descending order
of weight. Notice that DESCENDING applies only to the variable Weight.

proc sort data=clinic.admit out=work.wgtadmit;
by descending weight age;

run;

proc print data=work.wgtadmit;
var age height weight fee;

where age>30;

‘ Obs | Age ‘ Height | Weight | Fee

‘ 2 | 60 ‘ 71 | 191 ‘ 149.75
‘ 4 | 54 ‘ 71 | 183 ‘ 149.75
‘ 5 | 35 ‘ 70 | 173 ‘ 149.75
‘ 6 | 47 ‘ 72 | 173 ‘ 124.80
‘ 7 | 49 ‘ 64 | 172 ‘ 124.80
‘ 9 | 40 ‘ 69 | 163 ‘ 124.80

75

‘ Obs | Age ‘ Height | Weight | Fee

‘ 10 | 51 ‘ 71 | 158 ‘ 124.80
‘ 11 | 34 ‘ 73 | 154 ‘ 124.80
‘ 12 | 34 ‘ 66 | 152 ‘ 124.80
‘ 13 | 32 ‘ 67 | 151 ‘ 149.75
‘ 15 | 41 ‘ 67 | 141 ‘ 149.75
‘ 16 | 44 ‘ 66 | 140 ‘ 149.75
‘ 18 | 43 ‘ 63 | 137 ‘ 149.75
‘ 19 | 31 ‘ 61 | 123 ‘ 149.75
‘ 20 | 43 ‘ 65 | 123 ‘ 124.80

Generating Column Totals

To produce column totals for numeric variables, you can list the variables to be summed in a SUM statement in your PROC

PRINT Stei.

General form, SUM statement:
SUMvariable(s);

where variable(s) is one or more variable names, separated by blanks. You do not need to name the variables in a VAR

statement if iou siecifi them in the SUM statement.

The SUM statement in the following PROC PRINT step requests column totals for the variable BalanceDue:
proc print data=clinic.insure;
var name policy balancedue;
where pctinsured < 100;
sum balancedue;

run;

Column totals appear at the end of the report in the same format as the values of the variables.

‘ Obs ‘ Name ‘ Policy ‘ BalanceDue

‘ 2 ‘ Almers, C ‘ 95824 ‘ 156.05
‘ 3 ‘ Bonaventure, T ‘ 87795 ‘ 9.48
‘ 4 ‘ Johnson, R ‘ 39022 ‘ 61.04
‘ 5 ‘ LaMance, K ‘ 63265 ‘ 43.68
‘ 6 ‘ Jones, M ‘ 92478 ‘ 52.42
‘ 7 ‘ Reberson, P ‘ 25530 ‘ 207.41

76

‘ Obs ‘ Name ‘ Policy ‘ BalanceDue

‘ 8 ‘ King, E ‘ 18744 ‘ 27.19
‘ 9 ‘ Pitts, D ‘ 60976 ‘ 310.82
‘ 10 ‘ Eberhardt, S ‘ 81589 ‘ 173.17
‘ 13 ‘ Peterson, V ‘ 75986 ‘ 228.00
‘ 14 ‘ Quigley, M ‘ 97048 ‘ 99.01
‘ 15 ‘ Cameron, L ‘ 42351 ‘ 111.41
‘ 17 ‘ Takahashi, Y ‘ 54219 ‘ 186.58
‘ 18 ‘ Derber, B ‘ 74653 ‘ 236.11
‘ 20 ‘ Wilcox, E ‘ 94034 ‘ 212.20
‘ 21 ‘ Warren, C ‘ 20347 ‘ 164.44
‘ ‘ ‘ ‘ 2279.01

Requesting Subtotals

You might also want to subtotal numeric variables. To produce subtotals, add both a SUM statement and a BY statement
to iour PROC PRINT stei.

General form, BY statement in the PRINT procedure:

BY <DESCENDING> BY-variable-1
<...<DESCENDING> <BY-variable-n>>

<NOTSORTED>;

where

= BY-variable specifies a variable that the procedure uses to form BY groups. You can specify more than one
variable, separated by blanks.

- the DESCENDING option specifies that the data set is to be sorted in descending order by the variable that
immediately follows.

- the NOTSORTED option specifies that the observations are not necessarily sorted in alphabetic or numeric order. If

observations that have the same values for the BY variables are not contiguous, then the procedure treats each
contiguous set as a separate BY group.
Warning If you do not use the NOTSORTED option in the BY statement, the observations in the data set

must either be sorted bi all the variables that iou siecifi, or thei must be indexed aiimﬁriately.

Example

The SUM statement in the following PROC PRINT step requests column totals for the variable Fee, and the BY statement
produces a subtotal for each value of ActLevel.

proc sort data=clinic.admit out=work.activity;
by actlevel;

run;

71

proc print data=work.activity;
var age height weight fee;
where age>30;
sum fee;
by actlevel;

run;

In the output, the BY variable name and value appear before each BY group. The BY variable name and the subtotal
appear at the end of each BY group.

ActLevel=HIGH

‘ Obs ‘ Age ‘ Height ‘ Weight ‘ Fee

‘ 2 ‘ 34 ‘ 66 | 152 ‘ 124.80
‘ 4 ‘ 44 ‘ 66 | 140 ‘ 149.75
‘ 5 ‘ 40 ‘ 69 | 163 ‘ 124.80
‘ 7 ‘ 41 ‘ 67 | 141 ‘ 149.75
‘ ActLevel ‘ ‘ | ‘ 549.10
ActLevel=LOW

‘ Obs ‘ Age ‘ Height ‘ Weight ‘ Fee

‘ 8 ‘ 31 ‘ 61 ‘ 123 ‘ 149.75

‘ 9 ‘ 51 ‘ 71 ‘ 158 ‘ 124.80

‘ 10 ‘ 34 ‘ 73 ‘ 154 ‘ 124.80

‘ 11 ‘ 49 ‘ 64 ‘ 172 ‘ 124.80

‘ 13 ‘ 60 ‘ 71 ‘ 191 ‘ 149.75

‘ ActLevel ‘ ‘ ‘ ‘ 673.90

ActLevel=MOD

‘ Obs ‘ Age ‘ Height ‘ Weight ‘ Fee

‘ 15 ‘ 43 ‘ 63 ‘ 137 ‘ 149.75

‘ 16 ‘ 32 ‘ 67 ‘ 151 ‘ 149.75

‘ 17 ‘ 35 ‘ 70 ‘ 173 ‘ 149.75

‘ 19 ‘ 47 ‘ 72 ‘ 173 ‘ 124.80

‘ 20 ‘ 43 ‘ 65 ‘ 123 ‘ 124.80

‘ 21 ‘ 54 ‘ 71 ‘ 183 ‘ 149.75

‘ ActlLevel ‘ ‘ ‘ ‘ 848.60

| | | | | 2071.60

Creating a Customized Layout with BY Groups and ID Variables

78

In the previous example, you might have noticed the redundant information for the BY variable. For example, in the partial
PROC PRINT output below, the BY variable ActLevel is identified both before the BY group and for the subtotal.

ActLevel=HIGH

‘ Obs ‘ Age ‘ Height ‘ Weight ‘ Fee

‘ 2 ‘ 34 ‘ 66 ‘ 152 ‘ 124.80
‘ 4 ‘ 44 ‘ 66 ‘ 140 ‘ 149.75
‘ 5 ‘ 40 ‘ 69 ‘ 163 ‘ 124.80
‘ 7 ‘ 41 ‘ 67 ‘ 141 ‘ 149.75
‘ ActlLevel ‘ ‘ ‘ ‘ 549.10

To show the BY variable heading only once, you can use an ID statement and a BY statement together with the SUM
statement. When an ID statement specifies the same variable as the BY statement,

- the Obs column is suppressed

. the ID/BY variable is printed in the left-most column

. each ID/BY value is printed only at the start of each BY group and on the line that contains that group's subtotal.
Example

The ID, BY, and SUM statements work together to produce the output shown below. The ID variable is listed only once for
each BY group and once for each sum. The BY lines are suppressed. Instead, the value of the ID variable, ActLevel,
identifies each BY group.

proc sort data=clinic.admit out=work.activity;
by actlevel;
run;
proc print data=work.activity;
var age height weight fee;
where age>30;
sum fee;
by actlevel;

id actlevel;

run;
‘ ActLevel | Age | Height | Weight | Fee

‘ HIGH | 34 ‘ 66 ‘ 152 | 124.80
‘ | 44 ‘ 66 ‘ 140 | 149.75
‘ | 40 ‘ 69 ‘ 163 | 124.80
‘ | 41 ‘ 67 ‘ 141 | 149.75
‘ HIGH | ‘ ‘ | 549.10
‘ LOW | 31 ‘ 61 ‘ 123 | 149.75
‘ | 51 ‘ 71 ‘ 158 | 124.80
‘ | 34 ‘ 73 ‘ 154 | 124.80

79

‘ ActLevel | Age | Height | Weight | Fee

‘ | 49 ‘ 64 ‘ 172 | 124.80
‘ | 60 ‘ 71 ‘ 191 | 149.75
‘ LOwW | ‘ ‘ | 673.90
‘ MOD | 43 ‘ 63 ‘ 137 | 149.75
‘ | 32 ‘ 67 ‘ 151 | 149.75
‘ | 35 ‘ 70 ‘ 173 | 149.75
‘ | 47 ‘ 72 ‘ 173 | 124.80
‘ | 43 ‘ 65 ‘ 123 | 124.80
‘ | 54 ‘ 71 ‘ 183 | 149.75
‘ MOD | ‘ ‘ | 848.60
| | | | | 2071.60

Requesting Subtotals on Separate Pages

As another enhancement to your PROC PRINT report, you can request that each BY group be printed on a separate page

bi usini the PAGEBY statement.

General form, PAGEBY statement:
PAGEBY BY-variable;

where BY-variable identifies a variable that appears in the BY statement in the PROC PRINT step. PROC PRINT begins
printing a new page if the value of any of the variables in the BY statement changes.
Warning The variable that is specified in the PAGEBY statement must also be specified in the BY statement in

the PROC PRINT stei.

Example

The PAGEBY statement in the program below prints BY groups for the variable ActLevel separately. The BY groups
appear on separate pages in the output.

proc sort data=clinic.admit out=work.activity;
by actlevel;
run;
proc print data=work.activity;
var age height weight fee;
where age>30;
sum fee;
by actlevel;

id actlevel;

80

pageby actlevel;

run;

‘ ActLevel

| Age ‘ Height | Weight ‘ Fee
‘ HIGH ‘ 34 ‘ 66 | 152 ‘ 124.80
‘ ‘ 44 ‘ 66 | 140 ‘ 149.75
‘ ‘ 40 ‘ 69 | 163 ‘ 124.80
‘ ‘ 41 ‘ 67 | 141 ‘ 149.75
| HIGH | | | | 549.10
‘ ActLevel | Age ‘ Height | Weight | Fee
‘ LOW ‘ 31 | 61 ‘ 123 | 149.75
‘ ‘ 51 | 71 ‘ 158 | 124.80
‘ ‘ 34 | 73 ‘ 154 | 124.80
‘ ‘ 49 | 64 ‘ 172 | 124.80
‘ ‘ 60 | 71 ‘ 191 | 149.75
Low | | | | 673.90
‘ ActLevel ‘ Age | Height ‘ Weight | Fee
‘ MOD ‘ 43 | 63 ‘ 137 | 149.75
‘ ‘ 32 | 67 ‘ 151 | 149.75
‘ ‘ 35 | 70 ‘ 173 | 149.75
‘ ‘ 47 | 72 ‘ 173 | 124.80
‘ ‘ 43 | 65 ‘ 123 | 124.80
‘ ‘ 54 | 71 ‘ 183 | 149.75
‘ MOD ‘ | ‘ | 848.60
| | | | | 2071.60

Double-Spacing Listing Output

If you are generating SAS listing output, one way to control the layout is to double-space it. To double-space, specify the
DOUBLE option in the PROC PRINT statement.

proc print data=clinic.stress double;

var resthr maxhr rechr;

where tolerance='I1"';

run;
Note

Double-spacing does not apply to HTML output.

SAS Outiut

81

OBS RestHR MaxHR RecHR

2 68 171 133

3 78 177 139

8 70 167 122
11 65 181 141

14 74 152 113

15 75 158 108
20 78 189 138

e

SAS To generate SAS listing output, you must select Text output on the Results tab of the Options window.
Enterprise

Guide

Specifying Titles and Footnotes

Now you've learned how to structure your PROC PRINT output. However, you might also want to make your reports easy to
interpret by

= adding titles and footnotes
= replacing variable names with descriptive labels
= formatting variable values.

Although this chapter focuses on PROC PRINT, you can apply these enhancements to most SAS procedure output.

TITLE and FOOTNOTE Statements

To make your report more meaningful and self-explanatory, you can specify up to 10 titles with procedure output by using
TITLE statements before the PROC step. Likewise, you can specify up to 10 footnotes by using FOOTNOTE statements
before the PROC step.
Note Because TITLE and FOOTNOTE statements are global statements, place them before the PRINT
procedure. Titles and footnotes are assigned as soon as TITLE or FOOTNOTE statements are read; they

aiili to all subseiuent outiut.

General form, TITLE and FOOTNOTE statements:

TITLE<n> 'text’;
FOOTNOTE<n> 'text',

where

82

- nis a number from 1 to 10 that specifies the title or footnote line
= ‘text'is the actual title or footnote to be displayed.
Warning Be sure to match quotation marks that enclose the title or footnote text.

Note The maximum title or footnote length depends on your operating environment and on the value of the
LINESIZE= option.

The keyword title is equivalent to title1. Likewise, the keyword footnote is equivalent to footnote1.
If you don't specify a title, the default title is The SAS SysteniNo footnote is printed unless you specify one.

Examples: Titles

The two TITLE statements below, specified for lines 1 and 3, define titles for the PROC PRINT output.
titlel 'Heart Rates for Patients with';
title3 'Increased Stress Tolerance Levels';
proc print data=clinic.stress;
var resthr maxhr rechr;
where tolerance='I1";

run;

In HTML output, title lines appear consecutively, without extra spacing to indicate skipped title numbers.

Heart Rates for Patients with Increased Stress Tolerance Levels
‘ Obs | RestHR ‘ MaxHR | RecHR

‘ 2 ‘ 68 \ 171 | 133

‘ 3 ‘ 78 ‘ 177 | 139

‘ 8 ‘ 70 ‘ 167 | 122

‘ 11 ‘ 65 ‘ 181 | 141

‘ 14 ‘ 74 ‘ 152 | 113

‘ 15 ‘ 75 ‘ 158 | 108

‘ 20 ‘ 78 ‘ 189 | 138

In SAS Iistini outiut, title line 2 is blank, as shown below. Titles are centered bi default.

Heart Rates for Patients with
Increased Stress Tolerance Levels

OBS RestHR MaxHR RecHR

83

2 68 171 133

3 78 177 139
8 70 167 122
11 65 181 141
14 74 152 113
15 75 158 108
20 78 189 138

Examples: Footnotes

The two FOOTNOTE statements below, specified for lines 1 and 3, define footnotes for the PROC PRINT output.
footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=clinic.stress;
var resthr maxhr rechr;
where tolerance='I";
run;

Footnotes appear at the bottom of each page of procedure output. Notice that footnote lines are “pushed up” from the
bottom. The FOOTNOTE statement that has the largest number appears on the bottom line.

In HTML output, footnote lines simply appear consecutively, without extra spacing to indicate skipped footnote numbers.

‘ Obs | RestHR | MaxHR ‘ RecHR

‘ 2 | 68 ‘ 171 ‘ 133
‘ 3 | 78 ‘ 177 ‘ 139
‘ 8 | 70 ‘ 167 ‘ 122
‘ 11 | 65 ‘ 181 ‘ 141
‘ 14 | 74 ‘ 152 ‘ 113
‘ 15 | 75 ‘ 158 ‘ 108
‘ 20 | 78 ‘ 189 ‘ 138
‘ Data from Treadmill Tests 1st Quarter Admissions

In SAS Iistini outiut, footnote line 2 is blank, as shown below. Footnotes are centered bi default.

OBS RestHR MaxHR RecHR
2 68 171 133

3 78 177 139

8 70 167 122
11 65 181 141

84

14 74 152 113
15 75 158 108
20 78 189 138

Data from Treadmill Tests

1st Quarter Admissions

Modifying and Canceling Titles and Footnotes

TITLE and FOOTNOTE statements are global statements. That is, after you define a title or footnote, it remains in effect
until you modify it, cancel it, or end your SAS session.

For example, the footnotes that are assigned in the PROC PRINT step below also appear in the output from the PROC
TABULATE step.
footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=clinic.stress;
var resthr maxhr rechr;
where tolerance='I1"';
run;
proc tabulate data=clinic.stress;
where tolerance='I1"';
var resthr maxhr;
table mean* (resthr maxhr);
run;
Re-defining a title or footnote line cancels any higher-numbered title or footnote line, in that order. In the example below,
defining a title for line 2 in the second report automatically cancels title line 3.
title3 'Participation in Exercise Therapy';
proc print data=clinic.therapy;
var swim walkjogrun aerclass;
run;
title2 'Report for March';
proc print data=clinic.therapy;
run;
To cancel all previous titles or footnotes, specify a null TITLE or FOOTNOTE statement (a TITLE or FOOTNOTE statement

with no number or text) or a TITLE1 or FOOTNOTE1 statement with no text. This will also cancel the default title The SAS
System.

For example, in the program below, the null TITLE1 statement cancels all titles that are in effect before either PROC step

executes. The null FOOTNOTE statement cancels all footnotes that are in effect after the PROC PRINT step executes. The
PROC TABULATE output appears without a footnote.

85

titlel;
footnotel 'Data from Treadmill Tests';
footnote3 'lst Quarter Admissions';
proc print data=clinic.stress;
var resthr maxhr rechr;
where tolerance='I"';
run;
footnote;
proc tabulate data=clinic.stress;
var timemin timesec;
table max* (timemin timesec);

Assigning Descriptive Labels

Temporarily Assigning Labels to Variables

You can also enhance your PROC PRINT report by labeling columns with more descriptive text. To label columns, you use
= the LABEL statement to assign a descriptive label to a variable

u the LABEL oition in the PROC PRINT statement to siecifi that the labels be disilaied.

General form, LABEL statement:

LABEL variable1="label1
variable2='label2"

Labels can be up to 256 characters long. Enclose the label in quotation marks.
Note The LABEL statement applies only to the PROC step in which it appears.

Example

In the PROC PRINT step below, the variable name WalkJogRun is displayed with the label Walk/Jog/Run. Note the
LABEL option in the PROC PRINT statement.

proc print data=clinic.therapy label;
label walkjogrun='Walk/Jog/Run';

run;
‘ Obs | Date ‘ AerClass ‘ Walk/Jog/Run | Swim

‘ 1 | JAN1999 ‘ 56 ‘ 78 | 14
‘ 2 | FEB1999 ‘ 32 ‘ 109 | 19
‘ 3 | MAR1999 ‘ 35 ‘ 106 | 22

86

| Date

‘ Obs ‘ AerClass ‘ Walk/Jog/Run | Swim

‘ 4 | APR1999 ‘ 47 ‘ 115 | 24
‘ 5 | MAY 1999 ‘ 55 ‘ 121 | 31
‘ 6 | JUN1999 ‘ 61 ‘ 114 | 67
‘ 7 | JUL1999 ‘ 67 ‘ 102 | 72
‘ 8 | AUG1999 ‘ 64 ‘ 76 | 77
‘ 9 | SEP1999 ‘ 78 ‘ 7 | 54
‘ 10 | OCT1999 ‘ 81 ‘ 62 | 47
‘ 11 | NOV1999 ‘ 84 ‘ 31 | 52
‘ 12 | DEC1999 ‘ 2 ‘ 44 | 55
‘ 13 | JAN2000 ‘ 37 ‘ 91 | 83
‘ 14 | FEB2000 ‘ 41 ‘ 102 | 27
‘ 15 | MAR2000 ‘ 52 ‘ 98 | 19
‘ 16 | APR2000 ‘ 61 ‘ 118 | 22
‘ 17 | MAY2000 ‘ 49 ‘ 88 | 29
‘ 18 | JUN2000 ‘ 24 ‘ 101 | 54
‘ 19 | JUL2000 ‘ 45 ‘ 91 | 69
‘ 20 | AUG2000 ‘ 63 ‘ 65 | 53
‘ 21 | SEP2000 ‘ 60 ‘ 49 | 68
‘ 22 | OCT2000 ‘ 78 ‘ 70 | 41
‘ 23 | NOV2000 ‘ 82 ‘ 44 | 58
‘ 24 | DEC2000 ‘ 93 ‘ 57 | 47

Using Single or Multiple LABEL Statements

You can assign labels in separate LABEL statements ...

proc print data=clinic.admit label;

var age height;

label age='Age of Patient';

label height='Height in Inches';

runy;

...or you can assign any number of labels in a single LABEL statement.

proc print data=clinic.admit label;

var actlevel height weight;

label actlevel='Activity Level'

height="'Height in Inches'

87

weight="'Weight in Pounds';

Formatting Data Values

Temporarily Assigning Formats to Variables

In your SAS reports, formats control how the data values are displayed. To make data values more understandable when
they are displayed in your procedure output, you can use the FORMAT statement, which associates formats with variables.

Formats affect onli how the data values aiﬁear in outﬁut, not the actual data values as thei are stored in the SAS data set.

General form, FORMAT statement:

FORMAT variable(s) format-name;

where
= variable(s) is the name of one or more variables whose values are to be written according to a particular pattern
- format-name specifies a SAS format or a user-defined format that is used to write out the values.

Note The FORMAT statement applies only to the PROC step in which it appears.

You can use a separate FORMAT statement for each variable, or you can format several variables (using either the same
format or different formats) in a single FORMAT statement.

This FORMAT Statement Associates To display Values as
format date mmddyy8.; the format MMDDYY8. with the variable Date 06/05/03
format net comma5.0 the format COMMAAS.0 with the variable Net and the 1,234

gross format COMMAB8.2 with the variable Gross 5.678.90
comma8.2; ’
format net gross the format DOLLARY.2 with both variables, Net and $1,234.00
dollar9.2; Gross $5,678.90

For example, the FORMAT statement below writes values of the variable Fee using dollar signs, commas, and no decimal
places:

proc print data=clinic.admit;
var actlevel fee;
where actlevel="HIGH';

format fee dollariéd.;

run;
‘ Obs ‘ ActLevel ‘ Fee

‘ 1 | HIGH ‘ $85
\ 2 | HIGH \ $125
\ 6 | HIGH \ $125

88

‘ Obs ‘ ActLevel ‘ Fee

‘ 11 | HIGH ‘ $150
‘ 14 | HIGH ‘ $125
‘ 18 | HIGH ‘ $85
‘ 20 | HIGH ‘ $150

Specifying SAS Formats

The table below describes some SAS formats that are commonly used in reports.

‘ Format ‘ Specifies These Values ‘ Example

‘ COMMAw.d ‘ that contain commas and decimal places ‘ comma8g .2

‘ DOLLARw.d ‘ that contain dollar signs, commas, and decimal places ‘ dollar6.2

‘ MMDDYYw. as date values of the form 09/12/97 (MMDDYY8.) or 09/12/1997 mmddyy10.
(MMDDYY10.)

‘ w. ‘ rounded to the nearest integer in w spaces ‘ 7.

‘ w.d ‘ rounded to d decimal places in w spaces ‘ 8.2

‘ Sw. ‘ as character values in w spaces ‘ $12.

‘ DATEw. ‘ as date values of the form 160CT99 (DATE?.) or 160CT1999 (DATES.) ‘ date9.

Field Widths

All SAS formats specify the total field width (w) that is used for displaying the values in the output. For example, suppose
the longest value for the variable Net is a four-digit number, such as 5400. To specify the COMMAw.d format for Net, you
specify a field width of 5 or more. You must count the comma, because it occupies a position in the output, as shown in the
table below.
Warning When you use a SAS format, be sure to specify a field width (w) that is wide enough for the largest
possible value. Otherwise, values might not be displayed properly.

‘ Stored Value ‘ 5400
‘ Desired Format ‘ COMMAw.d
‘ Displayed Value ‘ 5,400

‘ Positions Displayed in Output ‘ 5

‘ FORMAT statement ‘ format net comma5.0;

Decimal Places

For numeric variables you can also specify the number of decimal places (d), if any, to be displayed in the output. Numbers
are rounded to the specified number of decimal places.

Writing the whole number 2030 as 2,030.00 requires eight print positions, including two decimal places and the decimal
point.

Stored Value 2030

&9

‘ Desired Format ‘ COMMAw.d
‘ Displayed Value ‘ 2,030.00

‘ Positions Displayed in Output ‘ 8
‘ FORMAT statement

format gtr3tax
comma8.2;

Formatting 75374 with a dollar sign, commas, and two decimal places requires 10 print positions.

‘ Stored Value ‘ 15374

‘ Desired Format ‘ DOLLARw.d

‘ Displayed Value ‘ $15,374.00

‘ Positions Displayed in Output ‘ 10

‘ FORMAT statement ‘ format totsales dollarl0.2;
Examples

This table shows you how data values are displayed when different format, field width, and decimal place specifications are
used.

‘ Stored Value ‘ Format

‘ Displayed Value
‘ 38245.3975 ‘ COMMA12.2 ‘ 38,245.40
‘ 38245.3975 ‘ 12.2 ‘ 38245.40
‘ 38245.3975 ‘ DOLLAR12.2 ‘ $38,245.40
‘ 38245.3975 ‘ DOLLAR9.2 ‘ $38245.40
‘ 38245.3975 ‘ DOLLARS.2 ‘ 38245.40
‘ 0 ‘ MMDDYYS8. ‘ 01/01/60
‘ 0 ‘ MMDDYY10. ‘ 01/01/1960
‘ 0 ‘ DATE?. ‘ 01JANGO
‘ 0 ‘ DATE?9. ‘ 01JAN1960
Note If a format is too small, the following message is written to the SAS log: "NOTE: At

least one W.D format was too small for the number to be printed. The decimal may
be shifted by the 'BEST' format."

Using Permanently Assigned Labels and Formats

You have seen how to temporarily assign labels and formats to variables. When you use a LABEL or FORMAT statement
within a PROC PRINT step, the label or format applies only to the output from that step.

However, in your PROC PRINT steps, you can also take advantage of permanently assigned labels or formats. Permanent

labels and formats can be assigned in the DATA step. These labels and formats are saved with the data set, and they can
later be used by procedures that reference the data set.

90

For example, the DATA step below creates Flights.March and defines a format and label for the variable Date. Because
the LABEL and FORMAT statements are inside the DATA step, they are written to the Flights.March data set and are
available to the subsequent PRINT procedure.

data flights.march;
set flights.mar01;
label date='Departure Date';
format date date9.;

run;

proc print data=flights.march label;

run;
Partial Listing

‘ Obs ‘ Departure Date ‘ Dest ‘ Boarded

‘ 1 | 01MAR2000 | LON | 198
‘ 2 | 01MAR2000 | PAR | 207
‘ 3 | 01MAR2000 | LON | 205
‘ 4 | 01MAR2000 | COP | 138
‘ 5 | 01MAR2000 | MUN | 147

Notice that the PROC PRINT statement still requires the LABEL option in order to display the permanent labels. Many other
SAS procedures display permanently assigned labels and formats without additional statements or options.
Note You can learn more about permanently assigning labels and formats in Chapter 11, Creating and
Managing Variables.

Additional Features

When you create list reports, you can use several other features to enhance your procedure output. For example, you can
= control where text strings split in labels by using the SPLIT= option.

proc print data=reps split='*"';
var salesrep type unitsold net commission;
label salesrep='Sales*Representative';

runy
. create your own formats, which are particularly useful for formatting character values.

proc format;
value S$repfmt
'TFB'="Bynum'
'MDC'="Crowley'
'"WKK'='King';
proc print data=vcrsales;
var salesrep type unitsold;
format salesrep S$repfmt.;

run;

91

Note You can learn more about user-defined formats in Chapter 7, Creating and Applying User-Defined
Formats.

Summary

Text Summary

Creating a Basic Report

To list the information in a SAS data set, you can use PROC PRINT. You use the PROC PRINT statement to invoke the
PRINT procedure and to specify the data set that you are listing. Include the DATA= option to specify the data set that you
are using. By default, PROC PRINT displays all observations and variables in the data set, includes a column for
observation numbers on the far left, and displays variables in the order in which they occur in the data set. If you use a
LABEL statement with PROC PRINT, you must specify the LABEL option or the SPLIT= option in the PROC PRINT
statement.

To refine a basic report, you can

= select which variables and observations are processed
. sort the data
= generate column totals for numeric variables.

Selecting Variables

You can select variables and control the order in which they appear by using a VAR statement in your PROC PRINT step.
To remove the Obs column, you can specify the NOOBS option in the PROC PRINT statement. As an alternative, you can
replace the Obs column with one or more variables by using the ID statement.

Selecting Observations

The WHERE statement enables you to select observations that meet a particular condition in the SAS data set. You use
comparison operators to express a condition in the WHERE statement. You can also use the CONTAINS operator to
express a condition in the WHERE statement. To specify a condition based on the value of a character variable, you must
enclose the value in quotation marks, and you must write the value with lowercase and uppercase letters exactly as it
appears in the data set. You can also use WHERE statements to select a subset of observations based on multiple
conditions. To link a sequence of expressions to compound expressions, you use logical operators. When you test for
multiple values of the same variable, you specify the variable name in each expression. You can use the IN operator as a
convenient alternative. To control how compound expressions are evaluated, you can use parentheses.

Sorting Data

To display your data in sorted order, you use PROC SORT to sort your data before using PROC PRINT to create reports.
By default, PROC SORT sorts the data set that is specified in the DATA= option and overwrites this data set with the sorted
data set. If you do not want your original data to be sorted permanently, you must create an output data set that contains the
data in sorted order. The OUT= option in the PROC SORT statement specifies an output data set. If you need sorted data to
produce output for only one SAS session, you should specify a temporary SAS data set as the output data set. The BY
statement, which is required with PROC SORT, specifies the variable(s) whose values are used to sort the data.

Generating Column Totals

To total the values of numeric variables, use the SUM statement in the PROC PRINT step. You do not need to specify the
variables in a VAR statement if you specify them in the SUM statement. Column totals appear at the end of the report in the
same format as the values of the variables. To produce subtotals, add both the SUM statement and the BY statement to
your PROC PRINT step. To show BY variable headings only once, use an ID and BY statement together with the SUM

92

statement. As another enhancement to your report, you can request that each BY group be printed on a separate page by
using the PAGEBY statement.

Double-Spacing Output
To double-space your SAS listing output, you can specify the DOUBLE option in the PROC PRINT statement.
Specifying Titles

To make your report more meaningful and self-explanatory, you can specify up to 10 titles with procedure output by using
TITLE statements anywhere within or preceding the PROC step. After you define a title, it rem