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Preface

This book is an introduction to statistical computing and computational sta-
tistics. Computational statistics is a rapidly expanding area in statistical
research and applications. It includes computationally intensive methods in
statistics, such as Monte Carlo methods, bootstrap, MCMC, density estima-
tion, nonparametric regression, classification and clustering, and visualization
of multivariate data. Gentle [113] and Wegman [295] describe computational
statistics as computationally intensive methods in statistics. Statistical com-
puting, at least traditionally, focused on numerical algorithms for statistics
(see e.g. Thisted [269]). Generally a book has only one of these terms in
the title; for example, Givens and Hoeting’s “Computational Statistics” [121]
includes classical statistical computing topics in optimization, numerical in-
tegration, density estimation and smoothing, as well as the Monte Carlo and
MCMC methods of computational statistics. We chose the title “Statistical
Computing with R” for this book, which is both computational statistics and
statistical computing, and perhaps emphasizes Monte Carlo and resampling
methods more than the title would suggest.

R is a statistical computing environment based on the S language. The soft-
ware is free under the terms of the Free Software Foundation’s GNU General
Public License. It is available for a wide variety of platforms including among
others Linux, Windows, and MacOS. See http://www.r-project.org/ for a
description. All examples in the text are implemented in R.

This book is designed for graduate students or advanced undergraduates
with preparation in calculus, linear algebra, probability and mathematical
statistics. The text will be suitable for an introductory course in computa-
tional statistics, and may also be used for independent study. In addition,
because of the computational nature of the material, this book serves as an
excellent tutorial on the R language, providing examples that illustrate pro-
gramming concepts in the context of practical computational problems. The
text does not assume previous expertise in any particular programming lan-
guage.

The presentation will focus on implementation rather than theory, but the
connection to the mathematical ideas and theoretical foundations will be made
clear. The first chapter provides an overview of computational statistics and
a brief introduction to the R statistical computing environment. The second
chapter is a summary and review of some basic concepts in probability and
classical statistical inference. Each of the remaining chapters covers a topic
in computational statistics.

xv



xvi

The selection of topics includes the traditional core material of computa-
tional statistics: simulating random variables from probability distributions,
Monte Carlo integration and variance reduction methods, Monte Carlo and
MCMC methods, bootstrap and jackknife, density estimation, and visualiza-
tion of multivariate data. Although R includes random generators for the
commonly used probability distributions, there is instructive value in study-
ing the algorithms for generating them. Research problems often involve
distributions that are non-standard, generalized, or not implemented. Meth-
ods for generating mixtures and multivariate data are also covered. The text
concludes with a chapter on numerical methods in R.

A large number of examples and exercises are included. All examples are
fully implemented in the R statistical computing environment, and the R
code for examples in the book can be downloaded from the author’s web
site at personal.bgsu.edu/~mrizzo. In an effort to keep the material self-
contained, most examples and exercises use datasets available in the R distri-
bution (base plus recommended packages), or simulated data. Some functions
and datasets in contributed packages available on CRAN are used, which can
be installed by functions provided in R.

Books in print have a long lifetime, while software is constantly evolving.
By the time this book is in a reader’s hands, one or more newer versions of R
will have been released. Every effort has been made to check the code samples
under the current version of R; comments, suggestions, and corrections are
always welcome.
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Chapter 1

Introduction

1.1 Computational Statistics and Statistical Computing

Computational statistics and statistical computing are two areas within
statistics that may be broadly described as computational, graphical, and
numerical approaches to solving statistical problems. Statistical computing
traditionally has more emphasis on numerical methods and algorithms, such
as optimization and random number generation, while computational statis-
tics may encompass such topics as exploratory data analysis, Monte Carlo
methods, and data partitioning, etc. However, most researchers who apply
computationally intensive methods in statistics use both computational statis-
tics and statistical computing methods; there is much overlap and the terms
are used differently in different contexts and disciplines. Gentle [113] and
Givens and Hoeting [121] use “computational statistics” to encompass all the
relevant topics that should be covered in a modern introductory text, so that
“statistical computing” is somewhat absorbed under this more broad defini-
tion of computational statistics. On the other hand, journals and professional
organizations seem to use both terms to cover similar areas. Some examples
are the International Association for Statistical Computing (IASC), part of
the International Statistical Insititute, and the Statistical Computing section
of the American Statistical Association.

This book encompasses parts of both of these subjects, because a first
course in computational methods for statistics necessarily includes both. Some
examples of topics covered are described below.

Monte Carlo methods refer to a diverse collection of methods in statistical
inference and numerical analysis where simulation is used. Many statistical
problems can be approached through some form of Monte Carlo integration.
In parametric bootstrap, samples are generated from a given probability dis-
tribution to compute probabilities, gain information about sampling distrib-
utions of statistics such as bias and standard error, assess the performance of
procedures in statistical inference, and to compare the performance of compet-
ing methods for the same problem. Resampling methods such as the ordinary
bootstrap and jackknife are nonparametric methods that can be applied when
the distribution of the random variable or a method to simulate it directly is
unavailable. The need for Monte Carlo analysis also arises because in many

1
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problems, an asymptotic approximation is unsatisfactory or intractable. The
convergence to the limit distribution may be too slow, or we require results
for finite samples; or the asymptotic distribution has unknown parameters.
Monte Carlo methods are covered in Chapters 5, 6, 7, 8, and 9. The first tool
needed in a simulation is a method for generating psuedo random samples;
these methods are covered in Chapter 3.

Markov Chain Monte Carlo (MCMC) methods are based on an algorithm
to sample from a specified target probability distribution that is the stationary
distribution of a Markov chain. These methods are widely applied for prob-
lems arising in Bayesian analysis, and in such diverse fields as computational
physics and computational finance. Markov Chain Monte Carlo methods are
covered in Chapter 9.

Several special topics also deserve an introduction in a survey of compu-
tationally intensive methods. Density estimation (Chapter 10) provides a
nonparametric estimate of a density, which has many applications in addition
to estimation ranging from exploratory data analysis to cluster analysis. Com-
putational methods are essential for the visualization of multivariate data and
reduction of dimensionality. The increasing interest in massive and streaming
data sets, and high dimensional data arising in applications of biology and en-
gineering, for example, demand improved and new computational approaches
for multivariate analysis and visualization. Chapter 4 is an introduction to
methods for visualization of multivariate data. A review of selected topics in
numerical methods for optimization and numerical integration is presented in
Chapter 11.

Many references can be recommended for further reading on these topics.
Gentle [113] and the volume edited by Gentle, et al. [114] have thorough cov-
erage of topics in computational statistics. Givens and Hoeting [121] is a
recent graduate text on computational statistics and statistical computing.
Martinez and Martinez [192] is an accessible introduction to computational
statistics, with numerous examples in Matlab. Texts on statistical computing
include the classics by Kennedy and Gentle [161] and Thisted [269], and a
more recent survey of methods in statistical computing is covered in Kundu
and Basu [165]. For statistical applications of numerical analysis see Lange
[168] or Monahan [202]. Books that primarily cover Monte Carlo methods
or resampling methods include Davison and Hinkley [63], Efron and Tibshi-
rani [84], Hjorth [143], Liu [179], and Robert and Casella [228]. On density
estimation see Scott [244] and Silverman [252].
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1.2 The R Environment

The R environment is a suite of software and programming language based
on S, for data analysis and visualization. “What is R” is one of the frequently
asked questions included in the online documentation for R. Here is an excerpt
from the R FAQ [217]:

R is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a de-
bugger, access to certain system functions, and the ability to run
programs stored in script files.

The home page of the R project is http://www.r-project.org/, and the
current R distribution and documentation are available on the Comprehensive
R Archive Network (CRAN). The CRAN master site is at TU Wien, Austria,
http://cran.R-project.org/. The R distribution includes the base and
recommended packages with documentation. A help system and several ref-
erence manuals are installed with the program.

R is based on the S langauge. Some details about differences between R
and S are given in the R FAQ [147]. Venables and Ripley [278] is a good
resource for applied statistics with S, Splus, and R. Other references on the S
language include [24, 41, 42, 277].

An excellent starting point is the manual Introduction to R [279]. Some
introductory books using R include Dalgaard [62] and Verzani [280]. On
programming methods see Chambers [41], and Venables and Ripley [277, 278].
Other texts that feature Splus, S, and/or R may also be helpful (see e.g.
Crawley [57] or Everitt and Hothorn [88]). Albert [5] is an introductory text
on Bayesian computation. On statistical models see Faraway [90, 91], Fox,
[97], Harrell [131], and Pinhiero and Bates [211]. Many more references can
be found through links on the R project home page.

Programming is discussed as needed in the chapters that follow. In this
text, new functions or programming methods are explained in remarks called
“R notes” as they arise. Readers are always encouraged to consult the R
help system and manuals [147, 279, 217]. For platform specific details about
installation and interacting with the graphical user interface the best resource
is the R manual [218] and current information at www.r-project.org.

In the remainder of this chapter, we cover some basic information aimed
to help a new user get started with R. Topics include basic syntax, using the
online help, datasets, files, scripts, and packages. There is a brief overview of
basic graphics functions. Also see Appendix B on working with data frames.



4 Statistical Computing with R

1.3 Getting Started with R

R has a command line interface that can be used interactively or in batch
mode. Commands can be typed at the prompt in the R Console window, or
submitted by the source command (see Section 1.8). For example, we can
evaluate the standard normal density φ(x) = 1√

2π
e−x2/2 at x = 2 by typing

the formula or (more conveniently) the dnorm function:

> 1/sqrt(2*pi) * exp(-2)
[1] 0.05399097
> dnorm(2)
[1] 0.05399097

In the example above, the command prompt is >. The [1] indicates that
the result displayed is the first element of a vector.

A command can be continued on the next line. The prompt symbol changes
whenever the command on the previous line is not complete. In the example
below, the plot command is continued on the second line, as indicated by the
prompt symbol changing to +.

> plot(cars, xlab="Speed", ylab="Distance to Stop",
+ main="Stopping Distance for Cars in 1920")

Whenever a statement or expression is not complete at the end of a line,
the parser automatically continues it on the next line. No special symbol is
needed to end a line. (A semicolon can be used to separate statements on
a single line, although this tends to make code harder to read.) A group of
statements can be gathered into a single (compound) expression by enclosing
them in curly braces { }.

To cancel a command, a partial command, or a running script use Ctrl-C,
or in the Windows version of the R GUI, press the escape key (Esc). To exit
the R system type the command q() or close the R GUI.

The usual assignment operator is <-. For example, x <- sqrt(2 * pi)
assigns the value of

√
2π to the symbol x.

Commands entered at the command prompt in the R console are auto-
matically echoed to the console, but assignment operations are silent. Some
objects have print methods so that the output displayed is not necessarily
the entire object, but a summarized report. Compare the effect of these com-
mands. The first command displays a sequence (0.0 0.5 1.0 1.5 2.0 2.5 3.0),
but does not store it. The second command stores the sequence in x, but does
not display it.

seq(0, 3, 0.5)
x <- seq(0, 3, 0.5)
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TABLE 1.1: R Syntax and Commonly Used Operators
Description R symbol Example
Comment # #this is a comment
Assignment <- x <- log2(2)
Concatenation operator c c(3,2,2)
Elementwise multiplication * a * b
Exponentiation ^ 2^1.5
x mod y x %% y 25 %% 3
Integer division %/% 25 %/% 3
Sequence from a to b by h seq seq(a,b,h)
Sequence operator : 0:20

Syntax

Below are some help topics on R operators and syntax. The ? invokes the
help system for the indicated keyword.

?Syntax
?Arithmetic
?Logic
?Comparison #relational operators
?Extract #operators on vectors and arrays
?Control #control flow

Symbols or labels for functions and variables are case-sensitive and can
include letters, digits, and periods. Symbols cannot contain the underscore
character and cannot start with a digit. Many symbols are already defined by
the R base or recommended packages. To check if a symbol is already defined,
type the symbol at the prompt. The symbols q, t, I, T, and F, for example,
are used by R. Note that whenever a package is loaded, other symbols may
now be defined by the package.

> T
[1] TRUE
> t
function (x) UseMethod("t") <environment: namespace:base>
> g
Error: Object "g" not found

Here we see that both T and t are already defined, but g is not yet defined
by R or by the user. Nothing prevents a user from assigning a new value to
predefined symbols such as t or T, but it is a bad programming practice in
general and can lead to unexpected results and programming errors.

Most new R users have some experience with other programming envi-
ronments and languages such as C, MATLAB, or SAS. Some operations and
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features are common to all these languages. A brief list summarizing R syntax
for some of these common elements is shown in Table 1.1. For more details see
the help topic Syntax. Some of the functions common to most development
environments are listed in Table 1.2.

Most arithmetic operations are vectorized. For example, x^2 will square
each of the elements of the vector x, or each entry of the matrix x if x is a
matrix. Similarly, x*y will multiply each of the elements of the vector x times
the corresponding element of y (generating a warning if the vectors are not
the same length). Operators for matrices are described in Table 1.3.

TABLE 1.2: Commonly Used Functions
Description R symbol
Square root sqrt
�x�, �x� floor, ceiling
Natural logarithm log
Exponential function ex exp
Factorial factorial
Random Uniform numbers runif
Random Normal numbers rnorm
Normal distribution pnorm, dnorm, qnorm
Rank, sort rank, sort
Variance, covariance var, cov
Std. dev., correlation sd, cor
Frequency tables table
Missing values NA, is.na

TABLE 1.3: R Syntax and Functions for Vectors and Matrices
Description R symbol Example
Zero vector numeric(n) x <- numeric(n)

integer(n) x <- integer(n)
rep(0,n) x <- rep(0,n)

Zero matrix matrix(0,n,m) x <- matrix(0,n,m)
ith element of vector a a[i] a[i] <- 0
jth column of a matrix A A[,j] sum(A[,j])
ijth entry of matrix A A[i,j] x <- A[i,j]
Matrix multiplication %*% a %*% b
Elementwise multiplication * a * b
Matrix transpose t t(A)
Matrix inverse solve solve(A)
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1.4 Using the R Online Help System

For documentation on a topic, type ?topic or help(topic) where “topic”
is the name of the topic for which you need help. For example, ?seq will
bring up documentation for the sequence function. In some cases, it may be
necessary to surround the topic with quotation marks.

> ?%%
Error: syntax error, unexpected SPECIAL in " ?%%"

The second version (below) produces the help topic.

> ?"%%"

On most systems Html help is also available by the command help.start();
in Windows also try the Help menu, Html help. This command displays Help
in a web browser, with hyperlinks. The Html help system has a search engine.

Another way to search for help on a topic is help.search(). This and
the search engine in Html help may help locate several relevant topics. For
example, if we are searching for a method to compute a permutation,

help.search("permutation")

produces two results: order and sample. We can then consult the help topics
for order and sample. The help topic for sample shows that x is sampled
without replacement (a permutation of the elements of vector x) by:

sample(x) #permutation of all elements of x
sample(x, size=k) #permutation of k elements of x

(If the goal was to count permutations, and evaluate n!
(n−k)! , we want ?Special,

a list of special functions including factorial and gamma.)
Many help files end with executable examples. The examples can be copied

and pasted at the command line. To run all the examples associated with
topic, use example(topic). See e.g. the interesting set of examples for
density. To run all the examples for density, type example(density).
To see one example, open the help page, copy the lines and paste them at the
command prompt.

help(density)
# copy and paste the lines below from the help page
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# The Old Faithful geyser data
d <- density(faithful$eruptions, bw = "sj")
d
plot(d)

A list of available data sets in the base and loaded packages is displayed by
data(), and documentation on a loaded data set is displayed by the associated
help topic For example, help(faithful) displays the Old Faithful geyser
data help topic. If a package is installed but not yet loaded, specify the name
of the package. For example, help("geyser", package = MASS) displays
help for the dataset geyser without loading the package MASS [278].

R note 1.1 Data sets in the base package can be accessed without explicitly
loading them via data. Data sets in other packages can be loaded by the data

function. For example,
data("geyser", package = "MASS")

loads geyser data from the MASS package.

1.5 Functions

The syntax for a function definition is

function( arglist ) expr
return(value)

Many examples of functions are documented in the chapter “Writing your
own functions” of the manual [279].

Here is a simple example of a user-defined R function that “rolls” n fair
dice and returns the sum.

sumdice <- function(n) {
k <- sample(1:6, size=n, replace=TRUE)
return(sum(k))

}

The function definition can be entered by several methods.

1. Typing the lines at the prompt, if the definition is short.

2. Copy from an editor and paste at the command prompt.

3. Save the function in a script file and source the file.

Note that the R GUI provides an editor and toolbar for submitting code.
Once the user-defined function is entered in the workspace, it can be used like
other R functions.
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#to print the result at the console
> sumdice(2)
[1] 9

#to store the result rather than print it
a <- sumdice(100)

#we expect the mean for 100 dice to be close to 3.5
> a / 100
[1] 3.59

The value returned by an R function is the argument of the return state-
ment or the value of the last evaluated expression. The sumdice function
could be written as

sumdice <- function(n)
sum(sample(1:6, size=n, replace=TRUE))

Functions can have default argument values. For example, sumdice can be
generalized to roll s-sided dice, but keep the default as 6-sided. The usage is
shown below.

sumdice <- function(n, sides = 6) {
if (sides < 1) return (0)
k <- sample(1:sides, size=n, replace=TRUE)
return(sum(k))

}

> sumdice(5) #default 6 sides
[1] 12
> sumdice(n=5, sides=4) #4 sides
[1] 14

1.6 Arrays, Data Frames, and Lists

Arrays, data frames, and lists are some of the objects used to store data
in R. A matrix is a two dimensional array. A data frame is not a matrix,
although it can be represented in a rectangular layout like a matrix. Unlike
a matrix, the columns of a data frame may be different types of variables.
Arrays contain a single type.
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Data Frames

A data frame is a list of variables, each of the same length but not necessarily
of the same type. In this section we will discuss how to extract values of
variables from a data frame.

Example 1.1 (Iris data)

The Fisher iris data set gives four measurements on observations from three
species of iris. The first few cases in the iris data are shown below.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa

The iris data is an example of a data frame object. It has 150 cases in
rows and 5 variables in columns. After loading the data, variables can be
referenced by $name (the column name), by subscripts like a matrix, or by
position using the [[ ]] operator. The list of variable names is returned by
names. Some examples with output are shown below.

> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"
> table(iris$Species)

setosa versicolor virginica
50 50 50

> w <- iris[[2]] #Sepal.Width
> mean(w)
[1] 3.057333

Alternately, the data frame can be attached and variables referenced di-
rectly by name. If a data frame is attached, it is a good practice to detach it
when it is no longer needed, to avoid clashes with names of other variables.

> attach(iris)
> summary(Petal.Length[51:100]) #versicolor petal length

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 4.00 4.35 4.26 4.60 5.10

If we only need the iris data temporarily, we can use with. The syntax is
in this example would be

with(iris, summary(Petal.Length[51:100]))
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Suppose we wish to compute the means of all variables, by species. The
first four columns of the data frame can be extracted with iris[,1:4]. Here
the missing row index indicates that all rows should be included. The by
function easily computes the means by species.

> by(iris[,1:4], Species, mean)
Species: setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
--------------------------------------------------
Species: versicolor
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.936 2.770 4.260 1.326
--------------------------------------------------
Species: virginica
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.588 2.974 5.552 2.026

> detach(iris)

�

R note 1.2 Although iris$Sepal.Width, iris[[2]], and iris[ ,2] all pro-
duce the same result, the $ and [[ ]] operators can only select one element,
while the [ ] operator can select several. See the help topic Extract.

Arrays and Matrices

An array is a multiply subscripted collection of a single type of data. An
array has a dimension attribute, which is a vector containing the dimensions
of the array.

Example 1.2 (Arrays)

Different arrays are shown. The sequence of numbers from 1 to 24 is first a
vector without a dimension attribute, then a one dimensional array, then used
to fill a 4 by 6 matrix, and finally a 3 by 4 by 2 array.

x <- 1:24 # vector
dim(x) <- length(x) # 1 dimensional array
matrix(1:24, nrow=4, ncol=6) # 4 by 6 matrix
x <- array(1:24, c(3, 4, 2)) # 3 by 4 by 2 array
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The 3 × 4 × 2 array defined by the last statement is displayed below.

, , 1
[,1] [,2] [,3] [,4]

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2
[,1] [,2] [,3] [,4]

[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

The array x is displayed showing x[, , 1] (the first 3× 4 elements) followed
by x[, , 2] (the second 3 × 4 elements). �

A matrix is a doubly subscripted array of a single type of data. If A is a
matrix, then A[i, j] is the ij-th element of A, A[, j] is the j-th column
of A, and A[i ,] is the i-th row of A. A range of rows or columns can be
extracted using the : sequence operator. For example, A[2:3, 1:4] extracts
the 2 × 4 matrix containing rows 2 and 3 and columns 1 through 4 of A.

Example 1.3 (Matrices)

The statements

A <- matrix(0, nrow=2, ncol=2)
A <- matrix(c(0, 0, 0, 0), nrow=2, ncol=2)
A <- matrix(0, 2, 2)

all assign to A the 2 × 2 zero matrix. Matrices are filled in column major
order by default; that is, the row index changes faster than the column index.
Thus,

A <- matrix(1:8, nrow=2, ncol=4)

stores in A the matrix [
1 3 5 7
2 4 6 8

]
.

If necessary, use the option byrow=TRUE in matrix to change the default. �

Example 1.4 (Iris data: Example 1.1, cont.)

We can convert the first four columns of the iris data to a matrix using
as.matrix.
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> x <- as.matrix(iris[,1:4]) #all rows of columns 1 to 4

> mean(x[,2]) #mean of sepal width, all species
[1] 3.057333
> mean(x[51:100,3]) #mean of petal length, versicolor
[1] 4.26

It is possible to convert the matrix to a three dimensional array, but arrays
(and matrices) are stored in “column major order” by default. For arrays,
“column major” means that the indices to the left are changing faster than
indices to the right. In this case it is easy to convert the matrix to a 50×3×4
array, with the species as the second dimension. This works because in the
data matrix, by column major order, the iris species changes faster than the
variable name (column).

> y <- array(x, dim=c(50, 3, 4))
> mean(y[,,2]) #mean of sepal width, all species
[1] 3.057333
> mean(y[,2,3]) #mean of petal length, versicolor
[1] 4.26

It is somewhat more difficult to produce a 50 × 4 × 3 array of iris data, with
species as the third dimension. Here is one approach. First the matrix is
sliced into three blocks of 50 observations each, corresponding to the three
species. Then the three blocks are concatenated into a vector length 600, so
that species is changing the most slowly, and observation (row) is changing
fastest. This vector then fills a 50× 4 × 3 array.

> y <- array(c(x[1:50,], x[51:100,], x[101:150,]),
+ dim=c(50, 4, 3))

> mean(y[,2,]) #mean of sepal width, all species
[1] 3.057333

> mean(y[,3,2]) #mean of petal length, versicolor
[1] 4.26

This array is provided in R as the data set iris3. �

Lists

A list is an ordered collection of objects. The members of a list (the com-
ponents) can be different types. Lists are more general than data frames; in
fact, a data frame is a list with class “data.frame”. A list can be created by
the list() function.

Lists are frequently used to return several results of a function in a single
object. Several classical hypothesis tests that return class htest are a good
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example. See e.g. the help topic for t.test or chisq.test. Refer to the
“Value” section of the documentation. The value returned is a list containing
the test statistic, p-value, etc. The components of a list can be referenced by
name using $ or by position using [[ ]].

Example 1.5 (Named list)

The Wilcoxon rank sum test is implemented in the function wilcox.test.
Here the test is applied to two normal samples with different means.

w <- wilcox.test(rnorm(10), rnorm(10, 2))
> w #print the summary

Wilcoxon rank sum test

data: rnorm(10) and rnorm(10, 2)
W = 2, p-value = 4.33e-05
alternative hypothesis:
true location shift is not equal to 0

> w$statistic #stored in object w
W 2
> w$p.value
[1] 4.330035e-05

Try unlist(w) and unclass(w) to see more details. �

Some examples of functions in this book that return a named list can be
found in Examples 7.14 on page 205, 10.12 on page 305, and 11.17 on page 349.

Example 1.6 (A list of names)

Below we create a list to assign row and column names in a matrix. The
first component for row names will be NULL in this case because we do not
want to assign row names.

a <- matrix(runif(8), 4, 2) #a 4x2 matrix
dimnames(a) <- list(NULL, c("x", "y"))

Here is the 4 × 2 matrix with column names (type a to display it).

x y
[1,] 0.88009604 0.6583918
[2,] 0.32964955 0.1385332
[3,] 0.61625490 0.1378254
[4,] 0.08102034 0.1746324
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# if we want row names
> dimnames(a) <- list(letters[1:4], c("x", "y"))
> a

x y
a 0.88009604 0.6583918
b 0.32964955 0.1385332
c 0.61625490 0.1378254
d 0.08102034 0.1746324

# another way to assign row names
> row.names(a) <- list("NE", "NW", "SW", "SE")
> a

x y
NE 0.88009604 0.6583918
NW 0.32964955 0.1385332
SW 0.61625490 0.1378254
SE 0.08102034 0.1746324

�

1.7 Workspace and Files

The workspace in R contains data and other objects. User defined objects
created in a session will persist until R is closed. If the workspace is saved
before quitting R, the objects created during the session will be saved. It is
not necessary to save the workspace for the examples and code here.

The ls command will display the names of objects in the current workspace.
One or more objects can be removed from the workspace by the rm or remove
command. For more information consult the R documentation.

Note that saving objects in the workspace can lead to unexpected results
and serious hidden programming errors. For example, in the following, sup-
pose that the programmer intended to randomly generate the value of b, but
accidentally omitted the code.

y <- runif(100, 0, b)
Now, if an object named b happens to be found in the workspace, and the
value of b produces a valid expression in runif, no error will be reported. An
error will occur, but the programmer will not realize that it has occurred.

It is recommended that the user occasionally check what is stored in the
workspace, and remove unneeded objects. The entire list of objects returned
by ls() can be removed (without warning!) by rm(list = ls()).
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In general, it is probably a bad practice to save functions in the workspace,
because the user may forget that certain objects exist and these objects are
either not documented at all or only through comments. It is a better idea to
save functions in scripts and data in files. Collections of functions and data
sets can also be organized and documented in packages. (See Sections 1.8 and
1.9 below.)

The Working Directory

Many scripts and data sets are provided, and many will be created by users.
It is convenient to create a folder or directory with a short path name to store
these files. In the examples, we assume that the files are located in /Rfiles,
which will be created by the user. Any other name or path can be used.

Although it is not necessary to specify the working directory, sometimes
it may be convenient to do so. A user can get or set the current working
directory by the commands getwd and setwd. To set the working directory
to “/Rfiles”, for example, the command is setwd("/Rfiles"). Windows users
can make this change the default by editing the Properties (Start in) in the
Windows shortcut to R-GUI. More information about startup options for R
can be found in the help topic Startup.

Reading Data from External Files

Often data to be analyzed is stored in external files. Typically, data is
stored in plain text files, delimited by white space such as tabs or spaces, or
by special characters such as commas.

Univariate data from an external file can be read into a vector by the scan
command. If the file contains a data frame or a matrix, or is csv (comma
separated values) format, use the read.table function. The read.table
function has many options to support different file formats. Here are a few
simple examples that refer to data files in Hand, et al. [126]. The data files
currently are available at http://www.stat.ncsu.edu/sas/sicl/data/ or
at http://www.stat.ucla.edu/data/. To download, do not save the web
page. Instead copy the data into a local text editor and save as plain text.
Windows users note the unix style forward slashes in the path name below.
See the R for Windows FAQ [225].

forearm <- scan("/Rfiles/forearm.dat") #a vector
x <- read.table("/Rfiles/irises.dat") #a data frame

> dim(x)
[1] 50 12

#get the fourth variable in the data frame
x <- read.table("/Rfiles/irises.dat")[[4]] #a vector
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#read and coerce to matrix
x <- as.matrix(read.table("/Rfiles/irises.dat"))

The version of the iris data in [126] is given in a 50 by 12 array, with the
variables in columns 1:4, 5:8, and 9:12 corresponding to the four measurements
on each of the three species. Note that many of the data files from [126] are
divided in groups by horizontal white space only (see e.g. the Tibetan skulls
data), so they may require reformatting before reading into a data frame.

The help topic for read.table also contains documentation for read.csv
and read.delim, for reading comma-separated-values (.csv) files and text
files with other delimiters. Also see Appendix B.3.4 for an example with .csv
format.

R note 1.3 By default, read.table will convert character variables to fac-
tors. To prevent conversion of character data to factors, set as.is = TRUE

(also see the colClasses argument of read.table).

One of the recommended R packages included with the distribution is
the foreign package, which provides several utility functions for reading
files in Minitab, S, SAS, SPSS, Stata, and other formats. For details type
help(package = foreign).

1.8 Using Scripts

R scripts are plain text files containing R code. Once code is saved in a
script, all of it can be submitted via the source command, or part of it can be
executed by copy and paste (to the console).

To save R commands in a file, prepare the file with a plain text editor
and save with extension .R. The Windows R GUI provides an integrated
text editor. The File menu contains commands “New Script”, “Open Script”,
“Source R code”, etc. If a script editor is open, more commands for submitting
the code are provided under the Edit menu and on the toolbar.

There are many other GUI’s available for preparing and submitting scripts
in R. Currently a list of several appears at the URL www.sciviews.org/_rgui.
The RWinEdt package [177] is particularly nice for Windows users who like
WinEdt.

The source command loads and executes the commands in the script. It
is not necessary to close the file, and in fact, it may be convenient to keep
it open for editing. Save changes before source-ing the file. For example, if
“/Rfiles/example.R” is a file containing R code, the command

source("/Rfiles/example.R")
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will enter all lines of the file at the command prompt and execute the code.
Windows users should use the unix style forward slashes above or double
backslashes like the command below.

source("\\Rfiles\\example.R")

Recent commands can be recalled using the up-arrow key. To edit your source
file and run it again (after saving), simply use the up-arrow to recall your
source command and press Enter.

Note that by default, evaluations of expressions are not printed at the con-
sole when a script is running. Use the print command within a script to
display the value of an expression.

Thus, in interactive mode, an expression and its value are both printed

> sqrt(pi)
[1] 1.772454

but from a script it is necessary to use print(sqrt(pi)).
Alternately, set options in the source statement to control how much is

printed. By setting echo=TRUE the statements and evaluation of expressions
are echoed to the console. To see evaluation of expressions but not statements,
leave echo=FALSE and set print.eval=TRUE. The examples are below.

source("/Rfiles/example.R", echo=TRUE)
source("/Rfiles/example.R", print.eval=TRUE)

1.9 Using Packages

The R installation consists of the base and several recommended packages.
Type library() to see a list of installed packages. A package must be installed
and loaded to be available. Base packages are automatically loaded. Other
packages can be installed and loaded as needed.

Several of the recommended packages are used in this text. Some con-
tributed packages are also used. The R system provides an interface to install
contributed packages from CRAN as needed (see install.packages; in the
Windows GUI see the Packages menu). A frequent error is the ‘Object not
found’ error, which can occur when a symbol is used from a package that is
not available. If this error occurs, check spelling, then check that the package
containing the object is loaded.

To load an installed package use the library or require command. For
example, to load the recommended package boot, type library(boot) at
the command prompt. If the package is loaded, the help system for the
package is also loaded. The package can also be loaded via the Packages
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TABLE 1.4: Some Basic Graphics Functions in R
(graphics) and Other Packages

Method in (graphics) in (package)
Scatter plot plot
Add regression line to plot abline
Add reference line to plot abline
Reference curve curve
Histogram hist truehist (MASS)
Bar plot barplot
Plot empirical CDF plot.ecdf
QQ Plot qqplot qqmath (lattice)
Normal QQ plot qqnorm
QQ normal ref. line qqline
Box plot boxplot
Stem plot stem

menu in the GUI. Typing the command help(package=boot) will bring up
a window showing the contents of the package, whether or not the package is
loaded. Once the package is loaded, typing ?boot will bring up the help topic
for the boot function in the boot package (if not loaded, use help(boot,
package=boot)).

A complete list of all available packages is provided on the CRAN web
site. A list of available packages is also included in the R FAQ [147]. Type
installed.packages() to see a list of all the installed packages.

1.10 Graphics

The R graphics package contains most of the commonly used graphics
functions. In this section, for reference, some of the graphics functions and
options or parameters are listed. Examples of graphics and the R code used to
produce them appear throughout the text. See Murrell [204] for many more
examples. Maindonald and Braun [184]), and Venables and Ripley [278] also
have many examples of graphics in R.

Table 1.4 lists some basic 2D graphics functions in R (graphics) and other
packages. Several examples using the graphics functions in Table 1.4 are given
throughout the text. See Table 4.1 and the examples of Chapter 4 for more 2D
graphics functions and some 3D visualization methods. Also see the gallery
of graphics at http://addictedtor.free.fr/graphiques/.
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Colors, plotting symbols, and line types

In most plotting functions, colors, symbols, and line types can be specified
using col, pch, and lty. The size of a symbol is specified by cex. Available
plotting characters are shown in the manual [279, Ch. 12], which includes this
example for displaying plotting characters in a legend.

plot.new() #if a plot is not open
legend(locator(1), as.character(0:25), pch=0:25)
#then click to locate the legend

The example above can be used to display line types, by substituting lty for
pch. The following produces a display of colors.

legend(locator(1), as.character(0:8), lwd=20, col=0:8)

Other colors and color palettes are available. For example,

plot.new()
palette(rainbow(15))
legend(locator(1), as.character(1:15), lwd=15, col=1:15)

puts a 15 color rainbow palette into effect and displays the colors. Use
colors() to see the vector of named colors.

The figures in this text have been drawn in black and white. Where color
palettes would normally be used, we have substituted a grayscale palette. In
these cases, on screen it is better to substitute one of the pre-defined color
palettes or a custom palette. To define a color palette, refer to ?palette, and
to use a defined color palette, see the topic ?rainbow (the topics rainbow,
heat.colors, topo.colors, and terrain.colors are documented on the
same page.)

A table of plotting characters is produced by show.pch() (Hmisc). A
utility to display available colors in R is show.colors() in the DAAG package
[184]. Also see show.col() in the Hmisc package [132].

Setting the graphical parameter par(ask = TRUE) has the effect that the
graphics device will wait for user input before displaying the next plot; e.g.
the message “Waiting to confirm page change ... ” appears, and in the GUI
the user should click on the graphics window to display the next screen. To
turn off this behavior, type par(ask = FALSE).



Chapter 2

Probability and Statistics Review

In this chapter we briefly review without proofs some definitions and concepts
in probability and statistics. Many introductory and more advanced texts can
be recommended for review and reference. On introductory probability see
e.g. Bean [23], Ghahramani [118], or Ross [232]. Mathematical statistics and
probability books at an advanced undergraduate or first year graduate level
include e.g. DeGroot and Schervish [64], Freund (Miller and Miller) [201],
Hogg, McKean and Craig [146] or Larsen and Marx [170]. Casella and Berger
[39] or Bain and Englehart [16] are somewhat more advanced. Durrett [77] is
a graduate probability text. Lehmann [172] and Lehmann and Casella [173]
are graduate texts in statistical inference.

2.1 Random Variables and Probability

Distribution and Density Functions

The cumulative distribution function (cdf) of a random variable X is FX

defined by
FX(x) = P (X ≤ x), x ∈ R.

In this book P (·) denotes the probability of its argument. We will omit the
subscript X and write F (x) if it is clear in context. The cdf has the following
properties:

1. FX is non-decreasing.
2. FX is right-continuous; that is,

lim
ε→0+

FX(x + ε) = FX(x), for allx ∈ R.

3. lim
x→−∞FX(x) = 0 and lim

x→∞FX(x) = 1.

A random variable X is continuous if FX is a continuous function. A random
variable X is discrete if FX is a step function.

Discrete distributions can be specified by the probability mass function
(pmf) pX(x) = P (X = x). The discontinuities in the cdf are at the points
where the pmf is positive, and p(x) = F (x) − F (x−).

21
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If X is discrete, the cdf of X is

FX(x) = P (X ≤ x) =
∑

{k≤x: p
X

(k)>0}
p

X
(k).

Continuous distributions do not have positive probability mass at any single
point. For continuous random variables X the probability density function
(pdf) or density of X is fX(x) = F ′

X(x), provided that FX is differentiable,
and by the fundamental theorem of calculus

FX(x) = P (X ≤ x) =
∫ x

−∞
fX(t)dt.

The joint density of continuous random variables X and Y is fX,Y (x, y)
and the cdf of (X,Y ) is

FX,Y (x, y) = P (X ≤ x;Y ≤ y) =
∫ y

−∞

∫ x

−∞
fX,Y (s, t)dsdt.

The marginal probability densities of X and Y are given by

fX(x) =
∫ ∞

−∞
fX,Y (x, y)dy; fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.

The corresponding formulas for discrete random variables are similar, with
sums replacing the integrals. In the remainder of this chapter, for simplicity
fX(x) denotes either the pdf (if X is continuous) or the pmf (if X is discrete)
of X .

The set of points {x : fX(x) > 0} is the support set of the random variable
X . Similarly, the bivariate distribution of (X,Y ) is supported on the set
{(x, y) : fX,Y (x, y) > 0}.

Expectation, Variance, and Moments

The mean of a random variable X is the expected value or mathematical
expectation of the variable, denoted E[X ]. If X is continuous with density f ,
then the expected value of X is

E[X ] =
∫ ∞

−∞
xf(x)dx.

If X is discrete with pmf f(x), then

E[X ] =
∑

{x: fX (x)>0}
xf(x).

(The integrals and sums above are not necessarily finite. We implicitly assume
that E|X | < ∞ whenever E[X ] appears in formulas below.) The expected
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value of a function g(X) of a continuous random variable X with pdf f is
defined by

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx.

Let µX = E[X ]. Then µX is also called the first moment of X . The rth

moment of X is E[Xr]. Hence if X is continuous,

E[Xr] =
∫ ∞

−∞
xrfX(x)dx.

The variance of X is the second central moment,

V ar(X) = E[(X − E[X ])2].

The identity E[(X − E[X ])2] = E[X2] − (E[X ])2 provides an equivalent for-
mula for variance,

V ar(X) = E[X2] − (E[X ])2 = E[X2] − µ2
X .

The variance of X is also denoted by σ2
X . The square root of the variance is

the standard deviation. The reciprocal of the variance is the precision.
The expected value of the product of continuous random variables X and

Y with joint pdf fX,Y is

E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dxdy.

The covariance of X and Y is defined by

Cov(X,Y ) = E[(X − µX)(Y − µY )]
= E[XY ] − E[X ]E[Y ] = E[XY ] − µXµY .

The covariance of X and Y is also denoted by σXY . Note that Cov(X,X) =
V ar(X). The product-moment correlation is

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

=
σXY

σXσY
.

Correlation can also be written as

ρ(X,Y ) = E

[(
X − µX

σX

)(
Y − µY

σY

)]
.

Two variables X and Y are uncorrelated if ρ(X,Y ) = 0.
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Conditional Probability and Independence

In classical probability, the conditional probability of an event A given that
event B has occurred is

P (A|B) =
P (AB)
P (B)

,

where AB = A ∩ B is the intersection of events A and B. Events A and B
are independent if P (AB) = P (A)P (B); otherwise they are dependent. The
joint probability that both A and B occur can be written

P (AB) = P (A|B)P (B) = P (B|A)P (A).

If random variables X and Y have joint density fX,Y (x, y), then the condi-
tional density of X given Y = y is

fX|Y =y(x) =
fX,Y (x, y)
fY (y)

.

Similarly the conditional density of Y given X = x is

fY |X=x(y) =
fX,Y (x, y)
fX(x)

.

Thus, the joint density of (X,Y ) can be written

fX,Y (x, y) = fX|Y =y(x)fY (y) = fY |X=x(y)fX(x).

Independence

The random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

for all x and y; or equivalently, if and only if FX,Y (x, y) = FX(x)FY (y), for
all x and y.

The random variables X1, . . . , Xd are independent if and only if the joint
pdf f of X1, . . . , Xd is equal to the product of the marginal density functions.
That is, X1, . . . , Xd are independent if and only if

f(x1, . . . , xd) =
d∏

j=1

fj(xj)

for all x = (x1, . . . , xd)T in Rd, where fj(xj) is the marginal density (or
marginal pmf) of Xj .

The variables {X1, . . . , Xn} are a random sample from a distribution FX

if X1, . . . , Xn are independently and identically distributed with distribution
FX . In this case the joint density of {X1, . . . , Xn} is

f(x1, . . . , xn) =
n∏

i=1

fX(xi).
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If X and Y are independent, then Cov(X,Y ) = 0 and ρ(X,Y ) = 0. How-
ever, the converse is not true; uncorrelated variables are not necessarily inde-
pendent. The converse is true in an important special case: if X and Y are
normally distributed then Cov(X,Y ) = 0 implies independence.

Properties of Expected Value and Variance

Suppose that X and Y are random variables, and a and b are constants.
Then the following properties hold (provided the moments exist).

1. E[aX + b] = aE[X ] + b.

2. E[X + Y ] = E[X ] + E[Y ].

3. If X and Y are independent, E[XY ] = E[X ]E[Y ].

4. V ar(b) = 0.

5. V ar[aX + b] = a2V ar(X).

6. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ).

7. If X and Y are independent, V ar(X + Y ) = V ar(X) + V ar(Y ).

If {X1, . . . , Xn} are independent and identically distributed (iid) we have

E[X1 + · · · +Xn] = nµX , V ar(X1 + · · · +Xn) = nσ2
X ,

so the sample mean X = 1
n

∑n
i=1Xi has expected value µX and variance

σ2
X/n. (Apply properties 2, 7, and 5 above.)
The conditional expected value of X given Y = y is

E[X |Y = y] =
∫ ∞

−∞
xfX|Y =y(x)dx,

if FX|Y =y(x) is continuous.
Two important results are the conditional expectation rule and the condi-

tional variance formula:

E[X ] = E[E[X |Y ]] (2.1)
V ar(X) = E[V ar(X |Y )] + V ar(E[X |Y ]). (2.2)

See e.g. Ross [233, Ch. 3] for a proof of (2.1, 2.2) and many applications.

2.2 Some Discrete Distributions

Some important discrete distributions are the “counting distributions.” The
counting distributions are used to model the frequency of events and waiting
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time for events in discrete time, for example. Three important counting distri-
butions are the binomial (and Bernoulli), negative binomial (and geometric),
and Poisson.

Several discrete distributions including the binomial, geometric, and neg-
ative binomial distributions can be formulated in terms of the outcomes of
Bernoulli trials. A Bernoulli experiment has exactly two possible outcomes,
“success” or “failure.” A Bernoulli random variable X has the probability
mass function

P (X = 1) = p, P (X = 0) = 1 − p,

where p is the probability of success. It is easy to check that E[X ] = p and
V ar(X) = p(1 − p). A sequence of Bernoulli trials is a sequence of outcomes
X1, X2, . . . of iid Bernoulli experiments.

Binomial and Multinomial Distribution

Suppose that X records the number of successes in n iid Bernoulli trials
with success probability p. Then X has the Binomial(n, p) distribution [ab-
breviated X ∼ Bin(n, p)] with

P (X = x) =
(
n

x

)
px(1 − p)n−x =

n!
x!(n− x)!

px(1 − p)n−x, x = 0, 1, . . . , n.

The mean and variance formulas are easily derived by observing that that the
binomial variable is an iid sum of n Bernoulli(p) variables. Therefore

E[X ] = np, V ar(X) = np(1 − p).

A binomial distribution is a special case of a multinomial distribution. Sup-
pose that there are k+1 mutually exclusive and exhaustive eventsA1, . . . , Ak+1

that can occur on any trial of an experiment, and each event occurs with prob-
ability P (Aj) = pj , j = 1, . . . , k + 1. Let Xj record the number of times that
event Aj occurs in n independent and identical trials of the experiment. Then
X = (X1, . . . , Xk) has the multinomial distribution with joint pdf

f(x1, . . . , xk) =
n!

x1!x2! . . . xk+1!
px1
1 px2

2 . . . p
xk+1
k+1 , 0 ≤ xj ≤ n, (2.3)

where xk+1 = n−∑k
j=1 xj .

Geometric Distribution

Consider a sequence of Bernoulli trials, with success probability p. Let
the random variable X record the number of failures until the first success is
observed. Then

P (X = x) = p(1 − p)x, x = 0, 1, 2, . . . . (2.4)
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A random variable X with pmf (2.4) has the Geometric(p) distribution [ab-
breviated X ∼ Geom(p)]. If X ∼ Geom(p), then the cdf of X is

FX(x) = P (X ≤ x) = 1 − (1 − p)�x�+1, x ≥ 0,

and otherwise FX(x) = 0. The mean and variance of X are given by

E[X ] =
1 − p

p
; V ar[X ] =

1 − p

p2
.

Alternative formulation of Geometric distribution

The geometric distribution is sometimes formulated by letting Y be defined
as the number of trials until the first success. Then Y = X + 1, where X is
the random variable defined above with pmf (2.4). Under this model, we have
P (Y = y) = p(1 − p)y−1, y = 1, 2, . . . , and

E[Y ] = E[X + 1] =
1 − p

p
+ 1 =

1
p
;

V ar[Y ] = V ar[X + 1] = V ar[X ] =
1 − p

p2
.

However, as a counting distribution, or frequency model, the first formulation
(2.4) given above is usually applied, because frequency models typically must
include the possibility of a zero count.

Negative Binomial Distribution

The negative binomial frequency model applies in the same setting as a
geometric model, except that the variable of interest is the number of failures
until the rth success. Suppose that exactly X failures occur before the rth

success. If X = x, then the rth success occurs on the (x + r)th trial. In the
first x+ r− 1 trials, there are r− 1 successes and x failures. This can happen(
x+r−1

r−1

)
=
(
x+r−1

x

)
ways, and each way has probability prqx. The probability

mass function of the random variable X is given by

P (X = x) =
(
x+ r − 1
r − 1

)
prqx, x = 0, 1, 2, . . . . (2.5)

The negative binomial distribution is defined for r > 0 and 0 < p < 1 as
follows. The random variable X has a negative binomial distribution with
parameters (r, p) if

P (X = x) =
Γ(x+ r)

Γ(r)Γ(x + 1)
prqx, x = 0, 1, 2, . . . , (2.6)

where Γ(·) is the complete gamma function defined in (2.8). Note that (2.5)
and (2.6) are equivalent when r is a positive integer. If X has pmf (2.6) we will
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write X ∼ NegBin(r, p). The special case NegBin(r = 1, p) is the Geom(p)
distribution.

Suppose that X ∼ NegBin(r, p), where r is a positive integer. Then X is
the iid sum of r Geom(p) variables. Therefore, the mean and variance of X
given by

E[X ] = r
1 − p

p
, V ar[X ] = r

1 − p

p2
,

are simply r times the mean and variance of the Geom(p) variable in (2.4).
These formulas are also valid for all r > 0.

Note that like the geometric random variable, there is an alternative formu-
lation of the negative binomial model that counts the number of trials until
the rth success.

Poisson Distribution

A random variable X has a Poisson distribution with parameter λ > 0 if
the pmf of X is

p(x) =
e−λλx

x!
, x = 0, 1, 2, . . . .

If X ∼ Poisson(λ) then

E[X ] = λ; V ar(X) = λ.

A useful recursive formula for the pmf is p(x+ 1) = p(x) λ
x+1 , x = 0, 1, 2, . . . .

The Poisson distribution has many important properties and applications (see
e.g. [124, 158, 233]).

Examples

Example 2.1 (Geometric cdf)

The cdf of the geometric distribution with success probability p can be derived
as follows. If q = 1− p, then at the points x = 0, 1, 2, . . . the cdf of X is given
by

P (X ≤ x) =
x∑

k=0

pqk = p(1 + q + q2 + · · · + qx) =
p(1 − qx+1)

1 − q
= 1 − qx+1.

Alternately, P (X ≤ x) = 1 − P (X ≥ x + 1) = 1 − P (first x+1 trials are
failures) = 1 − qx+1. �
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Example 2.2 (Mean of the the Poisson distribution)

If X ∼ Poisson(λ), then

E[X ] =
∞∑

x=0

x
e−λλx

x!
= λ

∞∑
x=1

e−λλx−1

(x − 1)!
= λ

∞∑
x=0

e−λλx

x!
= λ.

The last equality follows because the summand is the Poisson pmf and the
total probability must sum to 1. �

2.3 Some Continuous Distributions

Normal Distribution

The normal distribution with mean µ and variance σ2 [abbreviatedN(µ, σ2)]
is the continuous distribution with pdf

f(x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}
, −∞ < x <∞.

The standard normal distribution N(0, 1) has zero mean and unit variance,
and the standard normal cdf is

Φ(z) =
∫ z

−∞

1√
2π
e−t2/2 dt, −∞ < z <∞.

The normal distribution has several important properties. We summarize
some of these properties, without proof. For more properties and characteri-
zations see [156, Ch. 13], [210], or [270].

A linear transformation of a normal variable is also normally distributed.
If X ∼ N(µ, σ) then the distribution of Y = aX + b is N(aµ + b, a2σ2). It
follows that if X ∼ N(µ, σ), then

Z =
X − µ

σ
∼ N(0, 1).

Linear combinations of normal variables are normal; if X1, . . . , Xk are inde-
pendent, Xi ∼ N(µi, σ

2
i ), and a1, . . . , ak are constants, then

Y = a1X1 + · · · + akXk

is normally distributed with mean µ=
∑k

i=1 aiµi and variance σ2 =
∑k

i=1 a
2
iσ

2
i .

Therefore, if X1, . . . , Xn is a random sample (X1, . . . , Xn are iid) from a
N(µ, σ2) distribution, the sum Y = X1+ · · ·+Xn is normally distributed with
E[Y ] = nµ and V ar(Y ) = nσ2. It follows that the sample mean X = Y/n has
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the N(µ, σ2/n) distribution if the sampled distribution is normal. (In case the
sampled distribution is not normal, but the sample size is large, the Central
Limit Theorem implies that the distribution of Y is approximately normal.
See Section 2.5)

Gamma and Exponential Distributions

A random variableX has a gamma distribution with shape parameter r > 0
and rate parameter λ > 0 if the pdf of X is

f(x) =
λr

Γ(r)
xr−1e−λx, x ≥ 0, (2.7)

where Γ(r) is the complete gamma function, defined by

Γ(r) =
∫ ∞

0

tr−1e−tdt, r = 0,−1,−2, . . . . (2.8)

Recall that Γ(n) = (n− 1)! for positive integers n.
The notation X ∼ Gamma(r, λ) indicates that X has the density (2.7),

with shape r and rate λ. If X ∼ Gamma(r, λ) then

E[X ] =
r

λ
; V ar(X) =

r

λ2
.

Gamma distributions can also be parameterized by the scale parameter θ =
1/λ instead of the rate parameter λ. In terms of (r, θ) the mean is rθ and
the variance is rθ2. An important special case of the gamma distribution
is r = 1, which is the exponential distribution with rate parameter λ. The
Exponential(λ) pdf is

f(x) = λe−λx, x ≥ 0.

If X is exponentially distributed with rate λ [abbreviated X ∼ Exp(λ)], then

E[X ] =
1
λ

; V ar(X) =
1
λ2
.

It can be shown that the sum of iid exponentials has a gamma distribution.
If X1, . . . , Xr are iid with the Exp(λ) distribution, then Y = X1 + · · · + Xr

has the Gamma(r, λ) distribution.

Chisquare and t

The Chisquare distribution with ν degrees of freedom is denoted by χ2(ν).
The pdf of a χ2(ν) random variable X is

f(x) =
1

Γ(ν/2)2ν/2
x(ν/2)−1e−x/2, x ∈ R, ν = 1, 2, . . . , .
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Note that χ2(ν) is a special case of the gamma distribution, with shape pa-
rameter ν/2 and rate parameter 1/2. The square of a standard normal vari-
able has the χ2(1) distribution. If Z1, . . . , Zν are iid standard normal then
Z2

1 + · · · + Z2
ν ∼ χ2(ν). If X ∼ χ2(ν1) and Y ∼ χ2(ν2) are independent, then

X + Y ∼ χ2(ν1 + ν2). If X ∼ χ2(ν), then

E[X ] = ν, V ar(X) = 2ν.

The Student’s t distribution [256] is defined as follows. Let Z ∼ N(0, 1)
and V ∼ χ2(ν). If Z and V are independent, then the distribution of

T =
Z√
V/ν

has the Student’s t distribution with ν degrees of freedom, denoted t(ν). The
density of a t(ν) random variable X is given by

f(x) =
Γ(ν+1

2 )
Γ(ν

2 )
1√
νπ

1(
1 + x2

ν

)(ν+1)/2
, x ∈ R, ν = 1, 2, . . .

The mean and variance of X ∼ t(ν) are given by

E[X ] = 0, ν > 1; V ar(X) =
ν

ν − 2
, ν > 2.

In the special case ν = 1 the t(1) distribution is the standard Cauchy distribu-
tion. For small ν the t distribution has “heavy tails” compared to the normal
distribution. For large ν, the t(ν) distribution is approximately normal, and
t(ν) converges in distribution to standard normal as ν → ∞.

Beta and Uniform Distributions

A random variable X with density function

f(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0. (2.9)

has the Beta(α, β) distribution. The constant in the beta density is the recip-
rocal of the beta function, defined by

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt =
Γ(α)Γ(β)
Γ(α + β)

.

The continuous uniform distribution on (0,1) or Uniform(0,1) is the special
case Beta(1,1).

The parameters α and β are shape parameters. When α = β the distrib-
ution is symmetric about 1/2. When α = β the distribution is skewed, with
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the direction and amount of skewness depending on the shape parameters.
The mean and variance are

E[X ] =
α

α+ β
; V ar(X) =

αβ

(α+ β)2(α+ β + 1)
.

If X ∼ Uniform(0, 1) = Beta(1, 1), then E[X ] = 1
2 and V ar(X) = 1

12 .
In Bayesian analysis, a beta distribution is often chosen to model the dis-

tribution of a probability parameter, such as the probability of success in
Bernoulli trials or a binomial experiment.

Lognormal Distribution

A random variable X has the Lognormal(µ, σ2) distribution [abbreviated
X ∼ LogN(µ, σ2)] if X = eY , where Y ∼ N(µ, σ2). That is, logX ∼ N(µ, σ2).
The lognormal density function is

fX(x) =
1

x
√

2πσ
e−(log x−µ)2/(2σ2), x > 0.

The cdf can be evaluated by the normal cdf of logX ∼ N(µ, σ2), so the cdf
of X ∼ LogN(µ, σ2) is given by

FX(x) = Φ
(

log x− µ

σ

)
, x > 0.

The moments are

E[Xr] = E[erY ] = exp
{
rµ+

1
2
r2σ2

}
, r > 0. (2.10)

The mean and variance are

E[X ] = eµ+σ2/2, V ar(X) = e2µ+σ2
(eσ2 − 1).

Examples

Example 2.3 (Two-parameter exponential cdf)

The two-parameter exponential density is

f(x) = λe−λ(x−η), x ≥ η, (2.11)

where λ and η are positive constants. Denote the distribution with density
function (2.11) by Exp(λ, η). When η = 0 the density (2.11) is exponential
with rate λ.

The cdf of the two-parameter exponential distribution is given by

F (x) =
∫ x

η

λe−λ(t−η)dt =
∫ x−η

0

λe−λudu = 1 − e−λ(x−η), x ≥ η.
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In the special case η = 0 we have the cdf of the Exp(λ) distribution,

F (x) = 1 − e−λx, x ≥ 0.

�

Example 2.4 (Memoryless property of the exponential distribution)

The exponential distribution with rate parameter λ has the memoryless prop-
erty. That is, if X ∼ Exp(λ), then

P (X > s+ t|X > s) = P (X > t), for all s, t ≥ 0.

The cdf of X is F (x) = 1 − exp(−λx), x ≥ 0 (see Example 2.3). Therefore,
for all s, t ≥ 0 we have

P (X > s+ t|X > s) =
P (X > s+ t)
P (X > s)

=
1 − F (s+ t)

1 − F (s)

=
e−λ(s+t)

e−λs
= e−λt = 1 − F (t)

= P (X > t).

The first equality is simply the definition of conditional probability, P (A|B) =
P (AB)/P (B). �

2.4 Multivariate Normal Distribution

The bivariate normal distribution

Two continuous random variables X and Y have a bivariate normal distri-
bution if the joint density of (X,Y ) is the bivariate normal density function,
which is given by

f(x, y) =
1

2πσ1σ2

√
1 − ρ2

exp
{
− 1

2(1 − ρ2)

[(
x− µ1

σ1

)2

− 2ρ
(
x− µ1

σ1

)(
y − µ2

σ2

)
+
(
y − µ2

σ2

)2 ]}
, (2.12)

(x, y) ∈ R2. The parameters are µ1 = E[X ], µ2 = E[Y ], σ2
1 = V ar(X), σ2

2 =
V ar(Y ), and ρ = Cor(X,Y ). The notation (X,Y ) ∼ BVN(µ1, µ2, σ

2
1 , σ

2
2 , ρ)

indicates that (X,Y ) have the joint pdf (2.12). Some properties of the bivari-
ate normal distribution (2.12) are:
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1. The marginal distributions ofX and Y are normal; that isX ∼ N(µ1, σ
2
1)

and Y ∼ N(µ2, σ
2
2).

2. The conditional distribution of Y given X = x is normal with mean
µ2 + ρσ2/σ1(x − µ1) and variance σ2

2(1 − ρ2).

3. The conditional distribution of X given Y = y is normal with mean
µ1 + ρσ1/σ2(y − µ2) and variance σ2

1(1 − ρ2).

4. X and Y are independent if and only if ρ = 0.

Suppose (X1, X2) ∼ BVN(µ1, µ2, σ
2
1 , σ

2
2 , ρ). Let µ = (µ1, µ2)T and

Σ =
[
σ11 σ12

σ21 σ22

]
,

where σij = Cov(Xi, Xj). Then the bivariate normal pdf (2.12) of (X1, X2)
can be written in matrix notation as

f(x1, x2) =
1

(2π)|Σ|1/2
exp

{
− 1

2
(x− µ)T Σ−1(x− µ)

}
,

where x = (x1, x2)T ∈ R2.

The multivariate normal distribution

The joint distribution of continuous random variables X1, . . . , Xd is multi-
variate normal or d-variate normal, denoted Nd(µ,Σ), if the joint pdf is given
by

f(x1, . . . , xd) =
1

(2π)d/2|Σ|1/2
exp

{
− 1

2
(x− µ)T Σ−1(x− µ)

}
, (2.13)

where Σ is the d × d nonsingular covariance matrix of (X1, . . . , Xd)T , µ =
(µ1, . . . , µd)T is the mean vector, and x = (x1, . . . , xd)T ∈ Rd.

The one-dimensional marginal distributions of a multivariate normal vari-
able are normal with mean µi and variance σ2

i , i = 1, . . . , d. Here σ2
i is

the ith entry on the diagonal of Σ. In fact, all of the marginal distributions
of a multivariate normal vector are multivariate normal (see e.g. Tong [273,
Sec. 3.3]).

The normal random variables X1, . . . , Xd are independent if and only if the
covariance matrix Σ is diagonal.

Linear transformations of multivariate normal random vectors are multi-
variate normal. That is, if C is an m× d matrix and b = (b1, . . . , bm)T ∈ Rm,
then Y = CX + b has the m-dimensional multivariate normal distribution
with mean vector Cµ+ b and covariance matrix CΣCT .

Applications and properties of the multivariate normal distribution are cov-
ered by Anderson [8] and Mardia et al. [188]. Refer to Tong [273] for prop-
erties and characterizations of the bivariate normal and multivariate normal
distribution.
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2.5 Limit Theorems

Laws of Large Numbers

The Weak Law of Large Numbers (WLLN) or (LLN) states that the sam-
ple mean converges in probability to the population mean. Suppose that
X1, X2 . . . are independent and identically distributed (iid), E|X1| < ∞ and
µ = E[X1]. For each n let Xn = 1

n

∑n
i=1Xi. Then Xn → µ in probability as

n→ ∞. That is, for every ε > 0,

lim
n→0

P (|Xn − µ| < ε) = 1.

For a proof, see e.g. Durrett [77].
The Strong Law of Large Numbers (SLLN) states that the sample mean

converges almost surely to the population mean µ. Suppose that X1, X2, . . .
are pairwise independent and identically distributed, E|X1| < ∞ and µ =
E[X1]. For each n let Xn = 1

n

∑n
i=1Xi. Then Xn → µ almost surely as

n→ ∞. That is, for every ε > 0,

P ( lim
n→0

|Xn − µ| < ε) = 1.

For Etemadi’s proof see Durrett [77].

Central Limit Theorem

The first version of the Central Limit Theorem was proved by de Moivre in
the early 18th century for random samples of Bernoulli variables. The general
proof was given independently by Lindeberg and Lévy in the early 1920’s.

THEOREM 2.1 (The Central Limit Theorem) If X1, . . . , Xn is a ran-
dom sample from a distribution with mean µ and finite variance σ2 > 0, then
the limiting distribution of

Zn =
X − µ

σ/
√
n

is the standard normal distribution.

See Durrett [77] for the proofs.

2.6 Statistics

Unless otherwise stated, X1, . . . , Xn is a random sample from a distribution
with cdf FX(x) = P (X ≤ x), pdf or pmf fX(x), mean E[X ] = µX and
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variance σ2
X . The subscript X on F, f, µ, and σ is omitted when it is clear in

context. Lowercase letters x1, . . . , xn denote an observed random sample.
A statistic is a function Tn = T (X1, . . . , Xn) of a sample. Some examples

of statistics are the sample mean, sample variance, etc. The sample mean is
X = 1

n

∑n
i=1Xi, and sample variance is

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
∑n

i=1X
2
i − nX

2

n− 1
.

The sample standard deviation is S =
√
S2.

The empirical distribution function

An estimate of F (x) = P (X ≤ x) is the proportion of sample points that
fall in the interval (−∞, x]. This estimate is called the empirical cumulative
distribution function (ecdf) or empirical distribution function (edf). The ecdf
of an observed sample x1, . . . , xn is defined by

Fn(x) =

⎧⎨⎩
0, x < x(1),
i
n , x(i) ≤ x < x(i+1), i = 1, . . . , n− 1
1, x(n) ≤ x,

,

where x(1) ≤ x(2) ≤ · · · ≤ x(n) is the ordered sample.
A quantile of a distribution is found by inverting the cdf. The cdf may not

be strictly increasing, however, so the definition is as follows. The q quantile
of a random variable X with cdf F (x) is

Xq = inf
x
{x : F (x) ≥ q}, 0 < q < 1.

Quantiles can be estimated by the inverse ecdf of a random sample or other
function of the order statistics. Methods for computing sample quantiles differ
among statistical packages R, SAS, Minitab, SPSS, etc. (see Hyndman and
Fan [148] and the quantile help topic in R).

R note 2.1 The default method of estimation used in the R quantile func-
tion assigns cumulative probability (k − 1)/(n− 1) to the kth order statistic.
Thus, the empirical cumulative probabilities are defined

0,
1

n− 1
,

2
n− 1

, . . . ,
n− 2
n− 1

, 1.

Note that this set of probabilities differs from the usual assignment {k/n}n
k=1

of the ecdf.
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Bias and Mean Squared Error

A statistic θ̂n is an unbiased estimator of a parameter θ if E[θ̂n] = θ. An
estimator θ̂n is asymptotically unbiased for θ if

lim
n→∞E[θ̂n] = θ.

The bias of an estimator θ̂ for a parameter θ is defined bias(θ̂) = E[θ̂] − θ.
Clearly X is an unbiased estimator of the mean µ = E[X ]. It can be

shown that E[S2] = σ2 = V ar(X), so the sample variance S2 is an unbiased
estimator of σ2. The maximum likelihood estimator of variance is

σ̂2 =
1
n

n∑
i=1

(Xi −X)2,

which is a biased estimator of σ2. However, the bias −σ2/n tends to zero as
n→ ∞, so σ̂2 is asymptotically unbiased for σ2.

The mean squared error (MSE) of an estimator θ̂ for parameter θ is

MSE(θ̂) = E[(θ̂ − θ)2].

Notice that for an unbiased estimator the MSE is the equal to the variance
of the estimator. If θ̂ is biased for θ, however, the MSE is larger than the
variance. In fact, the MSE can be split into two parts,

MSE(θ̂) = E[θ̂2 − 2θθ̂ + θ2] = E[θ̂2] − 2θE[θ̂] + θ2

= E[θ̂2] − (E[θ̂])2 + (E[θ̂])2 − 2θE[θ̂] + θ2

= V ar(θ̂) + (E[θ̂] − θ)2,

so the MSE is the sum of variance and squared bias:

MSE(θ̂) = V ar(θ̂) + [bias(θ̂)]2.

The standard error of an estimator θ̂ is the square root of the variance:

se(θ̂) =
√
V ar(θ̂). An important example is the standard error of the mean

se(X) =
√
V ar(X) =

√
V ar(X)

n
=
σ

X√
n
.

A sample proportion p̂ is an unbiased estimator of the population proportion
p. The standard error of a sample proportion is

√
p(1 − p)/n. Note that

se(p̂) ≤ 0.5/
√
n.

For each fixed x ∈ R, the ecdf Fn(x) is an unbiased estimator of the cdf
F (x). The standard error of Fn(x) is

√
F (x)(1 − F (x))/n ≤ 0.5/

√
n.
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The variance of the q sample quantile [63, 2.7] is

V ar(x̂q) =
q(1 − q)
nf(xq)2

, (2.14)

where f is the density of the sampled distribution. When quantiles are esti-
mated, the density f is usually unknown, but (2.14) shows that larger samples
are needed for estimates of quantiles in the part of the support set where the
density is close to zero.

Method of Moments

The rth sample moment m′
r = 1

n

∑n
i=1X

r
i , r = 1, 2, . . . is an unbiased es-

timator of the rth population moment E[Xr], provided that the rth moment
exists. If X has density f(x; θ1, . . . , θk), then the method of moments estima-
tor of θ = (θ1, . . . , θk) is given by the simultaneous solution θ̂ = (θ̂1, . . . , θ̂k)
of the equations

E[Xr] = m′
r(x1, . . . , xn) =

1
n

n∑
i=1

xr
i , r = 1, . . . , k.

The Likelihood Function

Suppose that the sample observations are iid from a distribution with den-
sity function f(X |θ), where θ is a parameter. The likelihood function is the
conditional probability of observing the sample, given θ, which is given by

L(θ) =
n∏

i=1

f(xi|θ). (2.15)

The parameter θ could be a vector of parameters, θ = (θ1, . . . , θp). The
likelihood function regards the data as a function of the parameter(s) θ. As
L(θ) is a product, it is usually easier to work with the logarithm of L(θ),
called the log likelihood function,

l(θ) = log(L(θ)) =
n∑

i=1

log f(xi|θ). (2.16)

Maximum Likelihood Estimation

The method of maximum likelihood was introduced by R. A. Fisher. By
maximizing the likelihood function L(θ) with respect to θ, we are looking for
the most likely value of θ given the information available, namely the sample
data. Suppose that Θ is the parameter space of possible values of θ. If the
maximum of L(θ) exists and it occurs at a unique point θ̂ ∈ Θ, then θ̂ is called
the maximum likelihood estimator of L(θ). If the maximum exists but is not
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unique, then any of the points where the maximum is attained is an MLE of
θ. For many problems, the MLE can be determined analytically. However, it
is often the case that the optimization cannot be solved analytically, and in
that case numerical optimization or other computational approaches can be
applied.

Maximum likelihood estimators have an invariance property. This property
states that if θ̂ is an MLE of θ and τ is a function of θ, then τ(θ̂) is an MLE
of τ(θ).

Note that the maximum likelihood principle can also be applied in problems
where the observed variables are not independent or identically distributed
(the likelihood function (2.15) given above is for the iid case).

Example 2.5 (Maximum likelihood estimation of two parameters)

Find the maximum likelihood estimator of θ = (λ, η) for the two-parameter
exponential distribution (see Example 2.3). Suppose that x1, . . . , xn is a ran-
dom sample from the Exp(λ, η) distribution. The likelihood function is

L(θ) = L(λ, η) =
n∏

i=1

λe−λ(xi−η)I(xi ≥ η),

where I(·) is the indicator variable (I(A) = 1 on set A and I(A) = 0 on the
complement of A). Then if x(1) = min{x1, . . . , xn}, we have

L(θ) = L(λ, η) = λn exp{−λ
n∑

i=1

(xi − η)}, x(1) ≥ η,

and the log-likelihood is given by

l(θ) = l(λ, η) = n logλ− λ

n∑
i=1

(xi − η), x(1) ≥ η.

Then l(θ) is an increasing function of η for every fixed λ, and η ≤ x(1), so
η̂ = x(1). To find the maximum of l(θ) with respect to λ, solve

∂l(λ, η)
∂λ

=
n

λ
−

n∑
i=1

(xi − η) = 0,

to find the critical point λ = 1/(x̄− η). The MLE of θ = (λ, η) is

(λ̂, η̂) =
(

1
x̄− x(1)

, x(1)

)
.

�
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Example 2.6 (Invariance property of MLE)

Find the maximum likelihood estimator of the α-quantile of the Exp(λ, η)
distribution in Examples 2.3 and 2.5. From Example 2.3 we have

F (x) = 1 − e−λ(x−η), x ≥ η.

Therefore F (xα) = α implies that

xα = − 1
λ

log(1 − α) + η,

and by the invariance property of maximum likelihood, the MLE of xα is

x̂α = −(x̄− x(1)) log(1 − α) + x(1).

�

2.7 Bayes’ Theorem and Bayesian Statistics

The Law of Total Probability

If events A1, . . . , Ak partition a sample space S into mutually exclusive and
exhaustive nonempty events, then the Law of Total Probability states that the
total probability of an event B is given by

P (B) = P (A1B) + P (A2B) + · · · + P (AkB)
= P (B|A1)P (A1) + P (B|A2)P (A2) + · · · + P (B|Ak)P (Ak)

=
k∑

j=1

P (B|Aj)P (Aj).

For continuous random variables X and Y we have the distributional form
of the Law of Total Probability

fY (y) =
∫ ∞

−∞
fY |X=x(y)fX(x)dx.

For discrete random variables X and Y we can write the distributional form
of the Law of Total Probability as

fY (y) = P (Y = y) =
∑

x

P (Y = y|X = x)P (X = x).
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Bayes’ Theorem

Bayes’ Theorem provides a method for inverting conditional probabilities.
In its simplest form, if A and B are events and P (B) > 0, then

P (A|B) =
P (B|A)P (A)

P (B)
.

Often the Law of Total Probability is applied to compute P (B) in the denom-
inator. These formulas follow from the definitions of conditional and joint
probability.

For continuous random variables the distributional form of Bayes’ Theorem
is

fX|Y =y(x) =
fY |X=x(y)fX(x)

fY (y)
=

fY |X=x(y)fX(x)∫∞
−∞ fY |X=x(y)fX(x)dx

.

For discrete random variables

fX|Y =y(x) = P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)∑
x{P (Y = y|X = x)P (X = x)} .

These formulas follow from the definitions of conditional and joint probability.

Bayesian Statistics

In the frequentist approach to statistics, the parameters of a distribution
are considered to be fixed but unknown constants. The Bayesian approach
views the unknown parameters of a distribution as random variables. Thus,
in Bayesian analysis, probabilities can be computed for parameters as well as
the sample statistics.

Bayes’ Theorem allows one to revise his/her prior belief about an unknown
parameter based on observed data. The prior belief reflects the relative
weights that one assigns to the possible values for the parameters. Suppose
that X has the density f(x|θ). The conditional density of θ given the sample
observations x1, . . . , xn is called the posterior density, defined by

fθ|x(θ) =
f(x1, . . . , xn|θ)fθ(θ)∫
f(x1, . . . , xn|θ)fθ(θ) dθ

,

where fθ(θ) is the pdf of the prior distribution of θ. The posterior distribution
summarizes our modified beliefs about the unknown parameters, taking into
account the data that has been observed. Then one is interested in comput-
ing posterior quantities such as posterior means, posterior modes, posterior
standard deviations, etc.

Note that any constant in the likelihood function cancels out of the posterior
density. The basic relation is

posterior ∝ prior × likelihood,
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which describes the shape of the posterior density up to a multiplicative con-
stant. Often the evaluation of the constant is difficult and the integral cannot
be obtained in closed form. However, Monte Carlo methods are available
that do not require the evaluation of the constant in order to sample from
the posterior distribution and estimate posterior quantities of interest. See
e.g. [44, 103, 106, 120, 228] on development of Markov Chain Monte Carlo
sampling.

Readers are referred to Lee [171] for an introductory presentation of Bayesian
statistics. Albert [5] is a good introduction to computational Bayesian meth-
ods with R. A textbook covering probability and mathematical statistics from
both a classical and Bayesian perspective at an advanced undergraduate level
is DeGroot and Schervish [64].

2.8 Markov Chains

In this section we briefly review discrete time, discrete state space Markov
chains. A basic understanding of Markov chains is necessary background for
Chapter 9 on Markov Chain Monte Carlo methods. Readers are referred to
Ross [234, Ch. 4] for an excellent introduction to Markov chains.

A Markov chain is a stochastic process {Xt} indexed by time t ≥ 0. Our
goal is to generate a chain by simulation, so we consider discrete time Markov
chains. The time index will be the nonnegative integers, so that the process
starts in state X0 and makes successive transitions toX1, X2, . . . , Xt, . . . . The
set of possible values of Xt is the state space.

Suppose that the state space of a Markov chain is finite or countable. With-
out loss of generality, we can suppose that the states are 0, 1, 2, . . . . The
sequence {Xt|t ≥ 0} is a Markov chain if

P (Xt+1 = j|X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = i) =
P (Xt+1 = j|Xt = i),

for all pairs of states (i, j), t ≥ 0. In other words, the transition probability
depends only on the current state, and not on the past.

If the state space is finite, the transition probabilities P (Xt+1|Xt) can be
represented by a transition matrix P = (pij) where the entry pij is the prob-
ability that the chain makes a transition to state j in one step starting from
state i. The probability that the chain moves from state i to state j in k

steps is p(k)
ij , and the Chapman-Kolmogorov equations (see e.g. [234, Ch. 4])

provide that the k-step transition probabilities are the entries of the matrix
Pk. That is, P(k) = (p(k)

ij ) = Pk, the kth power of the transition matrix.
A Markov chain is irreducible if all states communicate with all other states:

given that the chain is in state i, there is a positive probability that the chain
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can enter state j in finite time, for all pairs of states (i, j). A state i is recurrent
if the chain returns to i with probability 1; otherwise state i is transient. If
the expected time until the chain returns to i is finite, then i is nonnull or
positive recurrent. The period of a state i is the greatest common divisor of
the lengths of paths starting and ending at i. In an irreducible chain, the
periods of all states are equal, and the chain is aperiodic if the states all have
period 1. Positive recurrent, aperiodic states are ergodic. In a finite-state
Markov chain all recurrent states are positive recurrent.

In an irreducible, ergodic Markov chain the transition probabilities converge
to a stationary distribution π on the state space, independent of the initial
state of the chain.

In a finite-state Markov chain, irreducibility and aperiodicity imply that for
all states j

πj = lim
n→∞ p

(n)
ij

exists and is independent of the initial state i. The probability distribution
π = {πj} is called the stationary distribution, and π is the unique nonnegative
solution to the system of equations

πj =
∞∑

i=0

πipij , j ≥ 0;
∞∑

j=0

πj = 1. (2.17)

We can interpret πj as the (limiting) proportion of time that the chain is in
state j.

Example 2.7 (Finite state Markov chain)

Ross [234] gives the following example of a Markov chain model for mutations
of DNA. A DNA nucleotide has four possible values. For each unit of time
the model specifies that the nucleotide changes with probability 3α, for some
0 < α < 1/3. If it does change, then it is equally likely to change to any of
the other three values. Thus pii = 1 − 3α and pij = 3α/3 = α, i = j. If we
number the states 1 to 4, the transition matrix is

P =

⎡⎢⎢⎣
1 − 3α α α α
α 1 − 3α α α
α α 1 − 3α α
α α α 1 − 3α

⎤⎥⎥⎦ (2.18)

where pij = Pi,j is the probability of a mutation from state i to state j.
The ith row of a transition matrix is the conditional probability distribution
P (Xn+1 = j|Xn = i), j = 1, 2, 3, 4 of a transition to state j given that the
process is currently in state i. Thus each row must sum to 1 (the matrix is
row stochastic). This matrix happens to be doubly stochastic because the
columns also sum to 1, but in general a transition matrix need only be row
stochastic.
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Suppose that α = 0.1. Then the two-step and the 16-step transition matri-
ces are

P2 =

⎡⎢⎢⎣
0.52 0.16 0.16 0.16
0.16 0.52 0.16 0.16
0.16 0.16 0.52 0.16
0.16 0.16 0.16 0.52

⎤⎥⎥⎦ , P16 .=

⎡⎢⎢⎣
0.2626 0.2458 0.2458 0.2458
0.2458 0.2626 0.2458 0.2458
0.2458 0.2458 0.2626 0.2458
0.2458 0.2458 0.2458 0.2626

⎤⎥⎥⎦ .
The three-step transition matrix is P2P = P3, etc. The probability p

(2)
14

of transition from state 1 to state 4 in two steps is P2
1,4 = 0.16, and the

probability that the process returns to state 2 from state 2 in 16 steps is
p
(16)
22 = P16

2,2 = 0.2626.
All entries of P are positive, hence all states communicate; the chain is irre-

ducible and ergodic. The transition probabilities in every row are converging
to the same stationary distribution π on the four states. The stationary dis-
tribution is the solution of equations (2.17); in this case π(i) = 1

4 , i = 1, 2, 3, 4.
(In this example, it can be shown that the limiting probabilities do not depend
on α: Pn

ii = 1
4 + 3

4 (1 − 4α)n → 1
4 as n→ ∞.) �

Example 2.8 (Random walk)

An example of a discrete-time Markov chain with an infinite state space is
the random walk. The state space is the set of all integers, and the transition
probabilities are

pi,i+1 = p, i = 0,±1,±2, . . . ,
pi,i−1 = 1 − p, i = 0,±1,±2, . . . ,
pi,j = 0, j /∈ {i− 1, i+ 1}.

In the random walk model, at each transition a step of unit length is taken
at random to the right with probability p or left with probability 1 − p. The
state of the process at time n is the current location of the walker at time n.
Another interpretation considers the gambler who bets $1 on a sequence of
Bernoulli(p) trials and wins or loses $1 at each transition; if X0 = 0, the state
of the process at time n is his gain or loss after n trials.

In the random walk model all states communicate, so the chain is irre-
ducible. All states have period 2. For example, it is impossible to return to
state 0 starting from 0 in an odd number of steps. The probability that the
first return to 0 from state 0 occurs in exactly 2n steps is

p
(2n)
00 =

(
2n
n

)
pn(1 − p)n =

(2n)!
n!n!

(p(1 − p))n.

It can be shown that
∑∞

n=1 p
(2n)
00 < ∞ if and only if p = 1/2. Thus, the

expected number of visits to 0 is finite if and only if p = 1/2. Recurrence
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and transience are class properties, hence the chain is recurrent if and only if
p = 1/2 and otherwise all states are transient. When p = 1/2 the process is
called a symmetric random walk. The symmetric random walk is discussed
in Example 3.26. �





Chapter 3

Methods for Generating Random
Variables

3.1 Introduction

One of the fundamental tools required in computational statistics is the
ability to simulate random variables from specified probability distributions.
On this topic many excellent references are available. On the general subject
of methods for generating random variates from specified probability distrib-
utions, readers are referred to [69, 94, 112, 114, 154, 228, 223, 233, 238]. On
specific topics, also see [3, 4, 31, 43, 68, 98, 155, 159, 190].

In the simplest case, to simulate drawing an observation at random from
a finite population, a method of generating random observations from the
discrete uniform distribution is required. Therefore a suitable generator of
uniform pseudo random numbers is essential. Methods for generating random
variates from other probability distributions all depend on the uniform random
number generator.

In this text we assume that a suitable uniform pseudo random number
generator is available. Refer to the help topic for .Random.seed or RNGkind
for details about the default random number generator in R. For reference
about different types of random number generators and their properties see
Gentle [112] and Knuth [164].

The uniform pseudo random number generator in R is runif. To gener-
ate a vector of n (pseudo) random numbers between 0 and 1 use runif(n).
Throughout this text, whenever computer generated random numbers are
mentioned, it is understood that these are pseudo random numbers. To gen-
erate n random Uniform(a, b) numbers use runif(n, a, b). To generate an
n by m matrix of random numbers between 0 and 1 use matrix(runif(n*m),
nrow=n, ncol=m) or matrix(runif(n*m), n, m).

In the examples of this chapter, several functions are given for generating
random variates from continuous and discrete probability distributions. Gen-
erators for many of these distributions are available in R (e.g. rbeta, rgeom,
rchisq, etc.), but the methods presented below are general and apply to many
other types of distributions. These methods are also applicable for external
libraries, stand alone programs, or nonstandard simulation problems.

47
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Most of the examples include a comparison of the generated sample with
the theoretical distribution of the sampled population. In some examples,
histograms, density curves, or QQ plots are constructed. In other examples
summary statistics such as sample moments, sample percentiles, or the em-
pirical distribution are compared with the corresponding theoretical values.
These are informal approaches to check the implementation of an algorithm
for simulating a random variable.

Example 3.1 (Sampling from a finite population)

The sample function can be used to sample from a finite population, with or
without replacement.

> #toss some coins

> sample(0:1, size = 10, replace = TRUE)

[1] 0 1 1 1 0 1 1 1 1 0

> #choose some lottery numbers

> sample(1:100, size = 6, replace = FALSE)

[1] 51 89 26 99 74 73

> #permuation of letters a-z

> sample(letters)

[1] "d" "n" "k" "x" "s" "p" "j" "t" "e" "b" "g"

"a" "m" "y" "i" "v" "l" "r" "w" "q" "z"

[22] "u" "h" "c" "f" "o"

> #sample from a multinomial distribution

> x <- sample(1:3, size = 100, replace = TRUE,

prob = c(.2, .3, .5))

> table(x)

x

1 2 3

17 35 48

�

Random Generators of Common Probability Distributions in R

In the sections that follow, various methods of generating random variates
from specified probability distributions are presented. Before discussing those
methods, however, it is useful to summarize some of the probability functions
available in R. The probability mass function (pmf) or density (pdf), cumu-
lative distribution function (cdf), quantile function, and random generator of
many commonly used probability distributions are available. For example,
four functions are documented in the help topic Binomial:

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)
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The same pattern is applied to other probability distributions. In each case,
the abbreviation for the name of the distribution is combined with first letter
d for density or pmf, p for cdf, q for quantile, or r for random generation from
the distribution.

A partial list of available probability distributions and parameters is given
in Table 3.1. For a complete list, refer to the R documentation [279, Ch. 8].
In addition to the parameters listed, some of the functions take optional log,
lower.tail, or log.p arguments, and some take an optional ncp (noncen-
trality) parameter.

TABLE 3.1: Selected Univariate Probability Functions
Available in R

Distribution cdf Generator Parameters
beta pbeta rbeta shape1, shape2
binomial pbinom rbinom size, prob
chi-squared pchisq rchisq df
exponential pexp rexp rate
F pf rf df1, df2
gamma pgamma rgamma shape, rate or scale
geometric pgeom rgeom prob
lognormal plnorm rlnorm meanlog, sdlog
negative binomial pnbinom rnbinom size, prob
normal pnorm rnorm mean, sd
Poisson ppois rpois lambda
Student’s t pt rt df
uniform punif runif min, max

3.2 The Inverse Transform Method

The inverse transform method of generating random variables is based on
the following well known result (see e.g. [16, p. 201] or [231, p. 203]).

THEOREM 3.1 (Probability Integral Transformation) If X is a con-
tinuous random variable with cdf FX(x), then U = FX(X) ∼ Uniform(0, 1).

The inverse transform method of generating random variables applies the
probability integral transformation. Define the inverse transformation

F−1
X (u) = inf{x : FX(x) = u}, 0 < u < 1.
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If U ∼ Uniform(0, 1), then for all x ∈ R

P (F−1
X (U) ≤ x) = P (inf{t : FX(t) = U} ≤ x)

= P (U ≤ FX(x))
= FU (FX(x)) = FX(x),

and therefore F−1
X (U) has the same distribution as X . Thus, to generate a

random observation X , first generate a Uniform(0,1) variate u and deliver the
inverse value F−1

X (u). The method is easy to apply, provided that F−1
X is easy

to compute. The method can be applied for generating continuous or discrete
random variables. The method can be summarized as follows.

1. Derive the inverse function F−1
X (u).

2. Write a command or function to compute F−1
X (u).

3. For each random variate required:

(a) Generate a random u from Uniform(0,1).
(b) Deliver x = F−1

X (u)

3.2.1 Inverse Transform Method, Continuous Case

Example 3.2 (Inverse transform method, continuous case)

This example uses the inverse transform method to simulate a random sample
from the distribution with density fX(x) = 3x2, 0 < x < 1.

Here FX(x) = x3 for 0 < x < 1, and F−1
X (u) = u1/3. Generate all n

required random uniform numbers as vector u. Then u^(1/3) is a vector of
length n containing the sample x1, . . . , xn.

n <- 1000
u <- runif(n)
x <- u^(1/3)
hist(x, prob = TRUE) #density histogram of sample
y <- seq(0, 1, .01)
lines(y, 3*y^2) #density curve f(x)

The histogram and density plot in Figure 3.1 suggests that the empirical and
theoretical distributions approximately agree. �

R note 3.1 In Figure 3.1, the title includes a math expression. This title is
obtained by specifying the main title using the expression function as follows:

hist(x, prob = TRUE, main = expression(f(x)==3*x^2))
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f(x) = 3x2
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FIGURE 3.1: Probability density histogram of a random sample generated
by the inverse transform method in Example 3.2, with the theoretical density
f(x) = 3x2 superimposed.

Alternately, main = bquote(f(x)==3*x^2)) produces the same title. Math
annotation is covered in the help topic for plotmath. Also see the help topics
for text and axis.

Example 3.3 (Exponential distribution)

This example applies the inverse transform method to generate a random
sample from the exponential distribution with mean 1/λ.

If X ∼ Exp(λ), then for x > 0 the cdf of X is FX(x) = 1 − e−λx. The
inverse transformation is F−1

X (u) = − 1
λ log(1 − u). Note that U and 1 − U

have the same distribution and it is simpler to set x = − 1
λ log(u). To generate

a random sample of size n with parameter lambda:

-log(runif(n)) / lambda

A generator rexp is available in R. However, this algorithm is very useful for
implementation in other situations, such as a C program. �

3.2.2 Inverse Transform Method, Discrete Case

The inverse transform method can also be applied to discrete distributions.
If X is a discrete random variable and

. . . < xi−1 < xi < xi+1 < . . .
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are the points of discontinuity of FX(x), then the inverse transformation is
F−1

X (u) = xi, where FX(xi−1) < u ≤ FX(xi).
For each random variate required:

1. Generate a random u from Uniform(0,1).

2. Deliver xi where F (xi−1) < u ≤ F (xi).

The solution of F (xi−1) < u ≤ F (xi) in Step (2) may be difficult for
some distributions. See Devroye [69, Ch. III] for several different methods of
implementing the inverse transform method in the discrete case.

Example 3.4 (Two point distribution)

This example applies the inverse transform to generate a random sample of
Bernoulli(p = 0.4) variates. Although there are simpler methods to generate
a two point distribution in R, this example illustrates computing the inverse
cdf of a discrete random variable in the simplest case.

In this example, FX(0) = fX(0) = 1− p and FX(1) = 1. Thus, F−1
X (u) = 1

if u > 0.6 and F−1
X (u) = 0 if u ≤ 0.6. The generator should therefore deliver

the numerical value of the logical expression u > 0.6.

n <- 1000
p <- 0.4
u <- runif(n)
x <- as.integer(u > 0.6) #(u > 0.6) is a logical vector

> mean(x)
[1] 0.41
> var(x)
[1] 0.2421421

Compare the sample statistics with the theoretical moments. The sample
mean of a generated sample should be approximately p = 0.4 and the sample
variance should be approximately p(1 − p) = 0.24. Our sample statistics are
x̄ = 0.41 (se =

√
0.24/1000 .= 0.0155) and s2 .= 0.242. �

R note 3.2 In R one can use the rbinom (random binomial) function with
size=1 to generate a Bernoulli sample. Another method is to sample from
the vector (0,1) with probabilities (1 − p, p).

rbinom(n, size = 1, prob = p)

sample(c(0,1), size = n, replace = TRUE, prob = c(.6,.4))

Also see Example 3.1.
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Example 3.5 (Geometric distribution)

Use the inverse transform method to generate a random geometric sample
with parameter p = 1/4.

The pmf is f(x) = pqx, x = 0, 1, 2, . . . , where q = 1 − p. At the points
of discontinuity x = 0, 1, 2, . . . , the cdf is F (x) = 1 − qx+1. For each sample
element we need to generate a random uniform u and solve

1 − qx < u ≤ 1 − qx+1.

This inequality simplifies to x < log(1 − u)/ log(q) ≤ x + 1. The solution
is x + 1 = � log(1 − u)/ log(q)�, where �t� denotes the ceiling function (the
smallest integer not less than t).

n <- 1000
p <- 0.25
u <- runif(n)
k <- ceiling(log(1-u) / log(1-p)) - 1

Here again there is a simplification, because U and 1 − U have the same
distribution. Also, the probability that log(1−u)/ log(1−p) equals an integer
is zero. The last step can therefore be simplified to

k <- floor(log(u) / log(1-p))

�

The geometric distribution was particularly easy to simulate by the inverse
transform method because it was easy to solve the inequality

F (x− 1) < u ≤ F (x)

rather than compare each u to all the possible values F (x). The same method
applied to the Poisson distribution is more complicated because we do not have
an explicit formula for the value of x such that F (x − 1) < u ≤ F (x).

The R function rpois generates random Poisson samples. The basic method
to generate a Poisson(λ) variate (see e.g. [233]) is to generate and store the
cdf via the recursive formula

f(x+ 1) =
λf(x)
x+ 1

; F (x+ 1) = F (x) + f(x+ 1).

For each Poisson variate required, a random uniform u is generated, and the
cdf vector is searched for the solution to F (x− 1) < u ≤ F (x).

To illustrate the main idea of the inverse transform method for generating
Poisson variates, here is a similar example for which there is no R generator
available: the logarithmic distribution. The logarithmic distribution is a one
parameter discrete distribution supported on the positive integers.
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Example 3.6 (Logarithmic distribution)

This example implements a function to simulate a Logarithmic(θ) random
sample by the inverse transform method. A random variable X has the loga-
rithmic distribution (see [158], Ch. 7) if

f(x) = P (X = x) =
a θx

x
, x = 1, 2, . . . (3.1)

where 0 < θ < 1 and a = (− log(1 − θ))−1. A recursive formula for f(x) is

f(x+ 1) =
θx

x+ 1
f(x), x = 1, 2, . . . . (3.2)

Theoretically, the pmf can be evaluated recursively using (3.2), but the
calculation is not sufficiently accurate for large values of x and ultimately
produces f(x) = 0 with F (x) < 1. Instead we compute the pmf from (3.1) as
exp(log a + x log θ − log x). In generating a large sample, there will be many
repetitive calculations of the same values F (x). It is more efficient to store
the cdf values. Initially choose a length N for the cdf vector, and compute
F (x), x = 1, 2, . . . , N . If necessary, N will be increased.

To solve F (x−1) < u ≤ F (x) for a particular u, it is necessary to count the
number of values x such that F (x−1) < u. If F is a vector and ui is a scalar,
then the expression F < ui produces a logical vector; that is, a vector the
same length as F containing logical values TRUE or FALSE. In an arithmetic
expression, TRUE has value 1 and FALSE has value 0. Notice that the sum of
the logical vector (ui > F ) is exactly x− 1.

The code for logarithmic is on the next page. Generate random samples
from a Logarithmic(0.5) distribution.

n <- 1000
theta <- 0.5
x <- rlogarithmic(n, theta)
#compute density of logarithmic(theta) for comparison
k <- sort(unique(x))
p <- -1 / log(1 - theta) * theta^k / k
se <- sqrt(p*(1-p)/n) #standard error

In the following results, the relative frequencies of the sample (first line) match
the theoretical distribution (second line) of the Logarithmic(0.5) distribution
within two standard errors.

> round(rbind(table(x)/n, p, se),3)
1 2 3 4 5 6 7

0.741 0.169 0.049 0.026 0.008 0.003 0.004
p 0.721 0.180 0.060 0.023 0.009 0.004 0.002
se 0.014 0.012 0.008 0.005 0.003 0.002 0.001

�
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rlogarithmic <- function(n, theta) {

#returns a random logarithmic(theta) sample size n

u <- runif(n)

#set the initial length of cdf vector

N <- ceiling(-16 / log10(theta))

k <- 1:N

a <- -1/log(1-theta)

fk <- exp(log(a) + k * log(theta) - log(k))

Fk <- cumsum(fk)

x <- integer(n)

for (i in 1:n) {

x[i] <- as.integer(sum(u[i] > Fk)) #F^{-1}(u)-1

while (x[i] == N) {

#if x==N we need to extend the cdf

#very unlikely because N is large

logf <- log(a) + (N+1)*log(theta) - log(N+1)

fk <- c(fk, exp(logf))

Fk <- c(Fk, Fk[N] + fk[N+1])

N <- N + 1

x[i] <- as.integer(sum(u[i] > Fk))

}

}

x + 1

}

Remark 3.1 A more efficient generator for the Logarithmic(θ) distribution
is implemented in Example 3.9 of Section 3.4.

3.3 The Acceptance-Rejection Method

Suppose that X and Y are random variables with density or pmf f and g
respectively, and there exists a constant c such that

f(t)
g(t)

≤ c

for all t such that f(t) > 0. Then the acceptance-rejection method (or rejec-
tion method) can be applied to generate the random variable X .

The Acceptance-Rejection Method

1. Find a random variable Y with density g satisfying f(t)/g(t) ≤ c, for
all t such that f(t) > 0. Provide a method to generate random Y.
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2. For each random variate required:

(a) Generate a random y from the distribution with density g.
(b) Generate a random u from the Uniform(0, 1) distribution.
(c) If u < f(y)/(cg(y)) accept y and deliver x = y; otherwise reject y

and repeat from step (2a).

Note that in step (2c),

P (accept|Y ) = P
(
U <

f(Y )
cg(Y )

∣∣Y ) =
f(Y )
cg(Y )

.

The last equality is simply evaluating the cdf of U . The total probability of
acceptance for any iteration is therefore∑

y

P (accept|y)P (Y = y) =
∑

y

f(y)
cg(y)

g(y) =
1
c
,

and the number of iterations until acceptance has the geometric distribution
with mean c. Hence, on average each sample value of X requires c iterations.
For efficiency, Y should be easy to simulate and c small.

To see that the accepted sample has the same distribution as X , apply
Bayes’ Theorem. In the discrete case, for each k such that f(k) > 0,

P (k |accepted) =
P (accepted |k)g(k)

P (accepted)
=

[f(k)/(cg(k))] g(k)
1/c

= f(k).

The continuous case is similar.

Example 3.7 (Acceptance-rejection method)

This example illustrates the acceptance-rejection method for the beta distrib-
ution. On average, how many random numbers must be simulated to generate
1000 variates from the Beta(α = 2, β = 2) distribution by this method? It
depends on the upper bound c of f(x)/g(x), which depends on the choice of
the function g(x).

The Beta(2,2) density is f(x) = 6x(1 − x), 0 < x < 1. Let g(x) be the
Uniform(0,1) density. Then f(x)/g(x) ≤ 6 for all 0 < x < 1, so c = 6. A
random x from g(x) is accepted if

f(x)
cg(x)

=
6x(1 − x)

6(1)
= x(1 − x) > u.

On average, cn = 6000 iterations (12000 random numbers) will be required for
a sample size 1000. In the following simulation, the counter j for iterations
is not necessary, but included to record how many iterations were actually
needed to generate the 1000 beta variates.
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n <- 1000
k <- 0 #counter for accepted
j <- 0 #iterations
y <- numeric(n)

while (k < n) {
u <- runif(1)
j <- j + 1
x <- runif(1) #random variate from g
if (x * (1-x) > u) {

#we accept x
k <- k + 1
y[k] <- x

}
}

> j
[1] 5873

In this simulation, 5873 iterations (11746 random numbers) were required
to generate the 1000 beta variates. Compare the empirical and theoretical
percentiles.

#compare empirical and theoretical percentiles
p <- seq(.1, .9, .1)
Qhat <- quantile(y, p) #quantiles of sample
Q <- qbeta(p, 2, 2) #theoretical quantiles
se <- sqrt(p * (1-p) / (n * dbeta(Q, 2, 2))) #see Ch. 1

The sample percentiles (first line) approximately match the Beta(2,2) per-
centiles computed by qbeta (second line), most closely near the center of
the distribution. Larger numbers of replicates are required for estimation of
percentiles where the density is close to zero.

> round(rbind(Qhat, Q, se), 3)
10% 20% 30% 40% 50% 60% 70% 80% 90%

Qhat 0.189 0.293 0.365 0.449 0.519 0.589 0.665 0.741 0.830
Q 0.196 0.287 0.363 0.433 0.500 0.567 0.637 0.713 0.804
se 0.010 0.011 0.012 0.013 0.013 0.013 0.012 0.011 0.010

Repeating the simulation with n = 10000 produces more precise estimates.

> round(rbind(Qhat, Q, se), 3)
10% 20% 30% 40% 50% 60% 70% 80% 90%

Qhat 0.194 0.292 0.368 0.436 0.504 0.572 0.643 0.716 0.804
Q 0.196 0.287 0.363 0.433 0.500 0.567 0.637 0.713 0.804
se 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003



58 Statistical Computing with R

�

Remark 3.2 See Example 3.8 for a more efficient beta generator based on
the ratio of gammas method.

3.4 Transformation Methods

Many types of transformations other than the probability inverse transfor-
mation can be applied to simulate random variables. Some examples are

1. If Z ∼ N(0,1), then V = Z2 ∼ χ2(1).

2. If U ∼ χ2(m) and V ∼ χ2(n) are independent, then F = U/m
V/n has the

F distribution with (m,n) degrees of freedom.

3. If Z ∼ N(0,1) and V ∼ χ2(n) are independent, then T = Z√
V/n

has the

Student t distribution with n degrees of freedom.

4. If U, V ∼ Unif(0,1) are independent, then

Z1 =
√
−2 logU cos(2πV ),

Z2 =
√
−2 logV sin(2πU)

are independent standard normal variables (see e.g. [238, p. 86]).

5. If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then X =
U

U+V has the Beta(r, s) distribution.

6. If U, V ∼ Unif(0,1) are independent, then

X =
⌊
1 +

log(V )
log(1 − (1 − θ)U )

⌋
has the Logarithmic(θ) distribution, where �x� denotes the integer part
of x.

Generators based on transformations (5) and (6) are implemented in Exam-
ples 3.8 and 3.9. Sums and mixtures are special types of transformations that
are discussed in Section 3.5. Example 3.21 uses a multivariate transformation
to generate points uniformly distributed on the unit sphere.

Example 3.8 (Beta distribution)

The following relation between beta and gamma distributions provides an-
other beta generator.



Methods for Generating Random Variables 59

If U ∼ Gamma(r, λ) and V ∼ Gamma(s, λ) are independent, then

X =
U

U + V

has the Beta(r, s) distribution [238, p.64]. This transformation determines an
algorithm for generating random Beta(a, b) variates.

1. Generate a random u from Gamma(a, 1).

2. Generate a random v from Gamma(b, 1).

3. Deliver x = u
u+v .

This method is applied below to generate a random Beta(3, 2) sample.

n <- 1000
a <- 3
b <- 2
u <- rgamma(n, shape=a, rate=1)
v <- rgamma(n, shape=b, rate=1)
x <- u / (u + v)

The sample data can be compared with the Beta(3, 2) distribution using a
quantile-quantile (QQ) plot. If the sampled distribution is Beta(3, 2), the QQ
plot should be nearly linear.

q <- qbeta(ppoints(n), a, b)
qqplot(q, x, cex=0.25, xlab="Beta(3, 2)", ylab="Sample")
abline(0, 1)

The line x = q is added for reference. The QQ plot of the ordered sample vs
the Beta(3, 2) quantiles in Figure 3.2 is very nearly linear, as it should be if
the generated sample is in fact a Beta(3, 2) sample. �

Example 3.9 (Logarithmic distribution, version 2)

This example provides another, more efficient generator for the logarithmic
distribution (see Example 3.6). If U, V are independent Uniform(0,1) random
variables, then

X =
⌊
1 +

log(V )
log(1 − (1 − θ)U )

⌋
(3.3)

has the Logarithmic(θ) distribution ([69, pp. 546-8], [159]). This transforma-
tion provides a simple and efficient generator for the logarithmic distribution.
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FIGURE 3.2: QQ Plot comparing the Beta(3, 2) distribution with a sim-
ulated random sample generated by the ratio of gammas method in Example
3.8.

1. Generate u from Unif(0,1).

2. Generate v from Unif(0,1).

3. Deliver x = �1 + log(v)/ log(1 − (1 − θ)u)�.
Below is a comparison of the Logarithmic(0.5) distribution with a sample

generated using transformation (3.3). The empirical probabilities p.hat are
within two standard errors of the theoretical probabilities p.

n <- 1000
theta <- 0.5
u <- runif(n) #generate logarithmic sample
v <- runif(n)
x <- floor(1 + log(v) / log(1 - (1 - theta)^u))
k <- 1:max(x) #calc. logarithmic probs.
p <- -1 / log(1 - theta) * theta^k / k
se <- sqrt(p*(1-p)/n)
p.hat <- tabulate(x)/n

> print(round(rbind(p.hat, p, se), 3))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

p.hat 0.740 0.171 0.052 0.018 0.010 0.006 0.003
p 0.721 0.180 0.060 0.023 0.009 0.004 0.002
se 0.014 0.012 0.008 0.005 0.003 0.002 0.001

The following function is a simple replacement for rlogarithmic in Exam-
ple 3.6 on page 54.
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rlogarithmic <- function(n, theta) {
stopifnot(all(theta > 0 & theta < 1))
th <- rep(theta, length=n)
u <- runif(n)
v <- runif(n)
x <- floor(1 + log(v) / log(1 - (1 - th)^u))
return(x)

}

�

R note 3.3 The & operator performs an elementwise AND comparison. The
&& operator evaluates from left to right until a logical result is obtained. For
example

x <- 1:5

> 1 < x & x < 5

[1] FALSE TRUE TRUE TRUE FALSE

> 1 < x && x < 5

[1] FALSE

> any( 1 < x & x < 5 )

[1] TRUE

> any( 1 < x && x < 5 )

[1] FALSE

> any(1 < x) && any(x < 5)

[1] TRUE

> all(1 < x) && all(x < 5)

[1] FALSE

Similarly, | performs elementwise an OR comparison and || evaluates from
left to right.

R note 3.4 The tabulate function bins positive integers, so it can be used
on the logarithmic sample. For other types of data, recode the data to positive
integers or use table. If the data are not positive integers, tabulate will
truncate real numbers and ignore without warning integers less than 1.

3.5 Sums and Mixtures

Sums and mixtures of random variables are special types of transforma-
tions. In this section we focus on sums of independent random variables
(convolutions) and several examples of discrete and continuous mixtures.
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Convolutions

LetX1, . . . , Xn be independent and identically distributed with distribution
Xj ∼ X , and let S = X1 + · · · +Xn. The distribution function of the sum S

is called the n-fold convolution of X and denoted F ∗(n)
X . It is straightforward

to simulate a convolution by directly generating X1, . . . , Xn and computing
the sum.

Several distributions are related by convolution. If ν > 0 is an integer,
the chisquare distribution with ν degrees of freedom is the convolution of
ν iid squared standard normal variables. The negative binomial distribu-
tion NegBin(r, p) is the convolution of r iid Geom(p) random variables. The
convolution of r independent Exp(λ) random variables has the Gamma(r, λ)
distribution. See Bean [23] for an introductory level presentation of these and
many other interesting relationships between families of distributions.

In R it is of course easier to use the functions rchisq, rgeom and rnbinom
to generate chisquare, geometric and negative binomial random samples. The
following example is presented to illustrate a general method that can be
applied whenever distributions are related by convolutions.

Example 3.10 (Chisquare)

This example generates a chisquare χ2(ν) random variable as the convolution
of ν squared normals. If Z1, . . . , Zν are iid N(0,1) random variables, then
V = Z2

1 + · · · + Z2
ν has the χ2(ν) distribution. Steps to generate a random

sample of size n from χ2(ν) are as follows.

1. Fill an n× ν matrix with nν random N(0,1) variates.

2. Square each entry in the matrix (1).

3. Compute the row sums of the squared normals. Each row sum is one
random observation from the χ2(ν) distribution.

4. Deliver the vector of row sums.

An example with n = 1000 and ν = 2 is shown below.

n <- 1000
nu <- 2
X <- matrix(rnorm(n*nu), n, nu)^2 #matrix of sq. normals
#sum the squared normals across each row: method 1
y <- rowSums(X)
#method 2
y <- apply(X, MARGIN=1, FUN=sum) #a vector length n
> mean(y)
[1] 2.027334
> mean(y^2)
[1] 7.835872
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A χ2(ν) random variable has mean ν and variance 2ν. Our sample statistics
below agree very closely with the theoretical moments E[Y ] = ν = 2 and
E[Y 2] = 2ν + ν2 = 8. Here the standard errors of the sample moments are
0.063 and 0.089 respectively. �

R note 3.5 This example introduces the apply function. The apply function
applies a function to the margins of an array. To sum across the rows of
matrix X, the function (FUN=sum) is applied to the rows (MARGIN=1). Notice
that a loop is not used to compute the row sums. In general for efficient
programming in R, avoid unnecessary loops. (For row and column sums it is
easier to use rowSums and colSums.)

Mixtures

A random variable X is a discrete mixture if the distribution of X is a
weighted sum FX(x) =

∑
θiFXi (x) for some sequence of random variables

X1, X2, . . . and θi > 0 such that
∑

i θi = 1. The constants θi are called the
mixing weights or mixing probabilities. Although the notation is similar for
sums and mixtures, the distributions represented are different.

A random variable X is a continuous mixture if the distribution of X is
FX(x) =

∫∞
−∞ FX|Y =y(x)fY (y) dy for a family X |Y = y indexed by the real

numbers y and weighting function fY such that
∫∞
−∞ fY (y) dy = 1.

Compare the methods for simulation of a convolution and a mixture of
normal variables. Suppose X1 ∼ N(0, 1) and X2 ∼ N(3, 1) are independent.
The notation S = X1 + X2 denotes the convolution of X1 and X2. The
distribution of S is normal with mean µ1 + µ2 = 3 and variance σ2

1 + σ2
2 = 2.

To simulate the convolution:

1. Generate x1 ∼ N(0, 1).

2. Generate x2 ∼ N(3, 1).

3. Deliver s = x1 + x2.

We can also define a 50% normal mixture X , denoted FX(x) = 0.5FX1(x)+
0.5FX2(x). Unlike the convolution above, the distribution of the mixture X
is distinctly non-normal; it is bimodal.

To simulate the mixture:

1. Generate an integer k ∈ {1, 2}, where P (1) = P (2) = 0.5.

2. If k = 1 deliver random x from N(0, 1);
if k = 2 deliver random x from N(3, 1).

In the following example we will compare simulated distributions of a con-
volution and a mixture of gamma random variables.
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Example 3.11 (Convolutions and mixtures)

Let X1 ∼ Gamma(2, 2) and X2 ∼ Gamma(2, 4) be independent. Compare
the histograms of the samples generated by the convolution S = X1 +X2 and
the mixture FX = 0.5FX1 + 0.5FX2 .

n <- 1000
x1 <- rgamma(n, 2, 2)
x2 <- rgamma(n, 2, 4)
s <- x1 + x2 #the convolution
u <- runif(n)
k <- as.integer(u > 0.5) #vector of 0’s and 1’s
x <- k * x1 + (1-k) * x2 #the mixture

par(mfcol=c(1,2)) #two graphs per page
hist(s, prob=TRUE)
hist(x, prob=TRUE)
par(mfcol=c(1,1)) #restore display

The histograms shown in Figure 3.3, of the convolution S and mixture X , are
clearly different. �

R note 3.6 The par function can be used to set (or query) certain graphical
parameters. A list of all graphical parameters is returned by par(). The
command par(mfcol=c(n,m)) configures the graphical device to display nm
graphs per screen, in n rows and m columns.

The method of generating the mixture in this example is simple for a mix-
ture of two distributions, but not for arbitrary mixtures. The next example
illustrates how to generate a mixture of several distributions with arbitrary
mixing probabilities.

Example 3.12 (Mixture of several gamma distributions)

This example is similar to the previous one, but there are several components
to the mixture and the mixing weights are not uniform. The mixture is

FX =
5∑

i=1

θjFXj ,

where Xj ∼ Gamma(r = 3, λj = 1/j) are independent and the mixing prob-
abilities are θj = j/15, j = 1, . . . , 5.

To simulate one random variate from the mixture FX :

1. Generate an integer k ∈ {1, 2, 3, 4, 5}, where P (k) = θk, k = 1, . . . , 5.

2. Deliver a random Gamma(r, λk) variate.
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FIGURE 3.3: Histogram of a simulated convolution of Gamma(2, 2) and
Gamma(2, 4) random variables (left), and a 50% mixture of the same variables
(right), from Example 3.11.

To generate a sample size n, steps (1) and (2) are repeated n times. Notice
that the algorithm stated above suggests using a for loop, but for loops
are really inefficient in R. The algorithm can be translated into a vectorized
approach.

1. Generate a random sample k1, . . . , kn of integers in a vector k, where
P (k) = θk, k = 1, . . . , 5. Then k[i] indicates which of the five gamma
distributions will be sampled to get the ith element of the sample (use
sample).

2. Set rate equal to the length n vector λ = (λk).

3. Generate a gamma sample size n, with shape parameter r and rate
vector rate (use rgamma).

Then an efficient way to implement this in R is shown by the following exam-
ple.

n <- 5000
k <- sample(1:5, size=n, replace=TRUE, prob=(1:5)/15)
rate <- 1/k
x <- rgamma(n, shape=3, rate=rate)

#plot the density of the mixture
#with the densities of the components
plot(density(x), xlim=c(0,40), ylim=c(0,.3),

lwd=3, xlab="x", main="")
for (i in 1:5)

lines(density(rgamma(n, 3, 1/i)))
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The plot in Figure 3.4 shows the density of each Xj and the density of the
mixture (thick line). The density curves in Figure 3.4 are actually density
estimates, which will be discussed in Chapter 10. �
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FIGURE 3.4: Density estimates from Example 3.12: A mixture (thick line)
of several gamma densities (thin lines).

Example 3.13 (Mixture of several gamma distributions)

Let

FX =
5∑

j=1

θjFXj

where Xj ∼ Gamma(3, λj) are independent, with rates λ = (1, 1.5, 2, 2.5, 3),
and mixing probabilities θ = (0.1, 0.2, 0.2, 0.3, 0.2).

This example is similar to the previous one. Sample from 1:5 with prob-
ability weights θ to get a vector length n. The ith position in this vector
indicates which of the five gamma distributions is sampled to get the ith ele-
ment of the sample. This vector is used to select the correct rate parameter
from the vector λ.

n <- 5000
p <- c(.1,.2,.2,.3,.2)
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lambda <- c(1,1.5,2,2.5,3)
k <- sample(1:5, size=n, replace=TRUE, prob=p)
rate <- lambda[k]
x <- rgamma(n, shape=3, rate=rate)

Note that lambda[k] is a vector the same length as k, containing the elements
of lambda indexed by the vector k. In mathematical notation, lambda[k] is
equal to (λk1 , λk2 , . . . , λkn).

Compare the first few entries of k and the corresponding values of rate
with λ.

> k[1:8]
[1] 5 1 4 2 1 3 2 3
> rate[1:8]
[1] 3.0 1.0 2.5 1.5 1.0 2.0 1.5 2.0

�

Example 3.14 (Plot density of mixture)

Plot the densities (not density estimates) of the gamma distributions and
the mixture in Example 3.13. (This example is a programming exercise that
involves vectors of parameters and repeated use of the apply function.)

The density of the mixture is

f(x) =
5∑

j=1

θjfj(x), x > 0, (3.4)

where fj is the Gamma(3, λj) density. To produce the plot, we need a function
to compute the density f(x) of the mixture.

f <- function(x, lambda, theta) {
#density of the mixture at the point x
sum(dgamma(x, 3, lambda) * theta)

}

The function f computes the density of the mixture (3.4) for a single value of
x. If x has length 1, dgamma(x, 3, lambda) is a vector the same length as
lambda; in this case (f1(x), . . . , f5(x)). Then dgamma(x, 3, lambda)*theta
is the vector (θ1f1(x), . . . , θ5f5(x)). The sum of this vector is the density of
the mixture (3.3) evaluated at the point x.

x <- seq(0, 8, length=200)
dim(x) <- length(x) #need for apply

#compute density of the mixture f(x) along x
y <- apply(x, 1, f, lambda=lambda, theta=p)
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The density of the mixture is computed by function f applied to the vec-
tor x. The function f takes several arguments, so the additional arguments
lambda=lambda, theta=prob are supplied after the name of the function, f.

A plot of the five densities with the mixture is shown in Figure 3.5. The
code to produce the plot is listed below. The densities fk can be computed
by the dgamma function. A sequence of points x is defined and each of the
densities are computed along x.

#plot the density of the mixture
plot(x, y, type="l", ylim=c(0,.85), lwd=3, ylab="Density")

for (j in 1:5) {
#add the j-th gamma density to the plot
y <- apply(x, 1, dgamma, shape=3, rate=lambda[j])
lines(x, y)

}

�

R note 3.7 The apply function requires a dimension attribute for x. Since x

is a vector, it does not have a dimension attribute by default. The dimension
of x is assigned by dim(x) <- length(x). Alternately, x <- as.matrix(x)

converts x to a matrix (a column vector), which has a dimension attribute.

Example 3.15 (Poisson-Gamma mixture)

This is an example of a continuous mixture. The negative binomial distribu-
tion is a mixture of Poisson(Λ) distributions, where Λ has a gamma distribu-
tion. Specifically, if (X |Λ = λ) ∼ Poisson(λ) and Λ ∼ Gamma(r, β), then X
has the negative binomial distribution with parameters r and p = β/(1 + β)
(see e.g. [23]). This example illustrates a method of sampling from a Poisson-
Gamma mixture and compares the sample with the negative binomial distri-
bution.

#generate a Poisson-Gamma mixture
n <- 1000
r <- 4
beta <- 3
lambda <- rgamma(n, r, beta) #lambda is random

#now supply the sample of lambda’s as the Poisson mean
x <- rpois(n, lambda) #the mixture

#compare with negative binomial
mix <- tabulate(x+1) / n
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FIGURE 3.5: Densities from Example 3.14: A mixture (thick line) of sev-
eral gamma densities (thin lines).

negbin <- round(dnbinom(0:max(x), r, beta/(1+beta)), 3)
se <- sqrt(negbin * (1 - negbin) / n)

The empirical distribution (first line below) of the mixture agrees very closely
with the pmf of NegBin(4, 3/4) (second line).

> round(rbind(mix, negbin, se), 3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

mix 0.334 0.305 0.201 0.091 0.042 0.018 0.005 0.003 0.001
negbin 0.316 0.316 0.198 0.099 0.043 0.017 0.006 0.002 0.001
se 0.015 0.015 0.013 0.009 0.006 0.004 0.002 0.001 0.001

�

3.6 Multivariate Distributions

Generators for the multivariate normal distribution, multivariate normal
mixtures, Wishart distribution, and uniform distribution on the sphere in Rd

are presented in this section.
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3.6.1 Multivariate Normal Distribution

A random vectorX = (X1, . . . , Xd) has a d-dimensional mutivariate normal
(MVN) distribution denoted Nd(µ,Σ) if the density of X is

f(x) =
1

(2π)d/2 |Σ|1/2
exp{−(1/2)(x− µ)T Σ−1(x− µ)}, x ∈ Rd, (3.5)

where µ = (µ1, . . . , µd)T is the mean vector and Σ is a d×d symmetric positive
definite matrix

Σ =

⎡⎢⎢⎢⎣
σ11 σ12 . . . σ1d

σ21 σ22 . . . σ2d

...
...

...
σd1 σd2 . . . σdd

⎤⎥⎥⎥⎦
with entries σij = Cov(Xi, Xj). Here Σ−1 is the inverse of Σ, and |Σ| is
the determinant of Σ. The bivariate normal distribution is the special case
N2(µ,Σ).

A random Nd(µ,Σ) variate can be generated in two steps. First generate
Z = (Z1, . . . , Zd), where Z1, . . . , Zd are iid standard normal variates. Then
transform the random vector Z so that it has the desired mean vector µ and
covariance structure Σ. The transformation requires factoring the covariance
matrix Σ.

Recall that if Z ∼ Nd(µ,Σ), then the linear transformation CZ + b is
multivariate normal with mean Cµ+b and covarianceCΣCT . If Z isNd(0, Id),
then

CZ + b ∼ Nd(b, CCT ).

Suppose that Σ can be factored so that Σ = CCT for some matrix C. Then

CZ + µ ∼ Nd(µ,Σ),

and CZ + µ is the required transformation.
The required factorization of Σ can be obtained by the spectral decomposi-

tion method (eigenvector decomposition), Choleski factorization, or singular
value decomposition (svd). The corresponding R functions are eigen, chol,
and svd.

Usually, one does not apply a linear transformation to the random vectors
of a sample one at a time. Typically, one applies the transformation to a
data matrix and transforms the entire sample. Suppose that Z = (Zij) is an
n× d matrix where Zij are iid N(0,1). Then the rows of Z are n random ob-
servations from the d-dimensional standard MVN distribution. The required
transformation applied to the data matrix is

X = ZQ+ JµT , (3.6)

where QTQ = Σ and J is a column vector of ones. The rows of X are n
random observations from the d-dimensional MVN distribution with mean
vector µ and covariance matrix Σ.
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Method for generating multivariate normal samples

To generate a random sample of size n from the Nd(µ,Σ) distribution:

1. Generate an n× d matrix Z containing nd random N(0, 1) variates
(n random vectors in Rd).

2. Compute a factorization Σ = QTQ.

3. Apply the transformation X = ZQ+ JµT .

4. Deliver the n× d matrix X .
Each row of X is a random variate from the Nd(µ,Σ) distribution.

The X = ZQ + JµT transformation can be coded in R as follows. Recall
that the matrix multiplication operator is %*%.

Z <- matrix(rnorm(n*d), nrow = n, ncol = d)
X <- Z %*% Q + matrix(mu, n, d, byrow = TRUE)

The matrix product JµT is equal to matrix(mu, n, d, byrow = TRUE). This
saves a matrix multiplication. The argument byrow = TRUE is necessary here;
the default is byrow = FALSE. The matrix is filled row by row with the entries
of the mean vector mu.

In this section each method of generating MVN random samples is illus-
trated with examples. Also note that there are functions provided in R pack-
ages for generating multivariate normal samples. See the mvrnorm function in
the MASS package [278], and rmvnorm in the mvtnorm package [115]. In all of
the examples below, the rnorm function is used to generate standard normal
random variates.

Spectral decomposition method for generating Nd(µ,Σ) samples

The square root of the covariance is Σ1/2 = PΛ1/2P−1, where Λ is the diag-
onal matrix with the eigenvalues of Σ along the diagonal and P is the matrix
whose columns are the eigenvectors of Σ corresponding to the eigenvalues in
Λ. This method can also be called the eigen-decomposition method. In the
eigen-decomposition we have P−1 = PT and therefore Σ1/2 = PΛ1/2PT . The
matrix Q = Σ1/2 is a factorization of Σ such that QTQ = Σ.

Example 3.16 (Spectral decomposition method)

This example provides a function rmvn.eigen to generate a multivariate nor-
mal random sample. It is applied to generate a bivariate normal sample with
zero mean vector and

Σ =
[
1.0 0.9
0.9 1.0

]
.

# mean and covariance parameters
mu <- c(0, 0)
Sigma <- matrix(c(1, .9, .9, 1), nrow = 2, ncol = 2)
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The eigen function returns the eigenvalues and eigenvectors of a matrix.

rmvn.eigen <-
function(n, mu, Sigma) {

# generate n random vectors from MVN(mu, Sigma)
# dimension is inferred from mu and Sigma
d <- length(mu)
ev <- eigen(Sigma, symmetric = TRUE)
lambda <- ev$values
V <- ev$vectors
R <- V %*% diag(sqrt(lambda)) %*% t(V)
Z <- matrix(rnorm(n*d), nrow = n, ncol = d)
X <- Z %*% R + matrix(mu, n, d, byrow = TRUE)
X

}

Print summary statistics and display a scatterplot as a check on the results
of the simulation.

# generate the sample
X <- rmvn.eigen(1000, mu, Sigma)

plot(X, xlab = "x", ylab = "y", pch = 20)

> print(colMeans(X))
[1] -0.001628189 0.023474775

> print(cor(X))
[,1] [,2]

[1,] 1.0000000 0.8931007
[2,] 0.8931007 1.0000000

Output from Example 3.16 shows the sample mean vector is (−0.002, 0.023)
and sample correlation is 0.893, which agree closely with the specified para-
meters. The scatter plot of the sample data shown in Figure 3.6 exhibits the
elliptical symmetry of multivariate normal distributions. �

SVD Method of generating Nd(µ,Σ) samples

The singular value decomposition (svd) generalizes the idea of eigenvectors
to rectangular matrices. The svd of a matrix X is X = UDV T , where D is
a vector containing the singular values of X , U is a matrix whose columns
contain the left singular vectors ofX , and V is a matrix whose columns contain
the right singular vectors of X . The matrix X in this case is the population
covariance matrix Σ, and UV T = I. The svd of a symmetric positive definite
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FIGURE 3.6: Scatterplot of a random bivariate normal sample with mean
vector zero, variances σ2

1 = σ2
2 = 1 and correlation ρ = 0.9, from Example

3.16.

matrix Σ gives U = V = P and Σ1/2 = UD1/2V T . Thus the svd method
for this application is equivalent to the spectral decomposition method, but
is less efficient because the svd method does not take advantage of the fact
that the matrix Σ is square symmetric.

Example 3.17 (SVD method)

This example provides a function rmvn.svd to generate a multivariate normal
sample, using the svd method to factor Σ.

rmvn.svd <-
function(n, mu, Sigma) {

# generate n random vectors from MVN(mu, Sigma)
# dimension is inferred from mu and Sigma
d <- length(mu)
S <- svd(Sigma)
R <- S$u %*% diag(sqrt(S$d)) %*% t(S$v) #sq. root Sigma
Z <- matrix(rnorm(n*d), nrow=n, ncol=d)
X <- Z %*% R + matrix(mu, n, d, byrow=TRUE)
X

}

This function is applied in Example 3.19 on page 76. �
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Choleski factorization method of generating Nd(µ,Σ) samples

The Choleski factorization of a real symmetric positive-definite matrix is
X = QTQ, where Q is an upper triangular matrix. The Choleski factorization
is implemented in the R function chol. The basic syntax is chol(X) and the
return value is an upper triangular matrix R such that RTR = X .

Example 3.18 (Choleski factorization method)

The Choleski factorization method is applied to generate 200 random obser-
vations from a four-dimensional multivariate normal distribution.

rmvn.Choleski <-
function(n, mu, Sigma) {

# generate n random vectors from MVN(mu, Sigma)
# dimension is inferred from mu and Sigma
d <- length(mu)
Q <- chol(Sigma) # Choleski factorization of Sigma
Z <- matrix(rnorm(n*d), nrow=n, ncol=d)
X <- Z %*% Q + matrix(mu, n, d, byrow=TRUE)
X

}

In this example, we will generate the samples according to the same mean
and covariance structure as the four-dimensional iris virginica data.

y <- subset(x=iris, Species=="virginica")[, 1:4]
mu <- colMeans(y)
Sigma <- cov(y)
> mu
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.588 2.974 5.552 2.026
> Sigma

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.40434286 0.09376327 0.30328980 0.04909388
Sepal.Width 0.09376327 0.10400408 0.07137959 0.04762857
Petal.Length 0.30328980 0.07137959 0.30458776 0.04882449
Petal.Width 0.04909388 0.04762857 0.04882449 0.07543265

#now generate MVN data with this mean and covariance
X <- rmvn.Choleski(200, mu, Sigma)
pairs(X)

The pairs plot of the data in Figure 3.7 gives a 2-D view of the bivariate
distribution of each pair of marginal distributions. The joint distribution of
each pair of marginal distributions is theoretically bivariate normal. The plot
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can be compared with Figure 4.1, which displays the iris virginica data. (The
iris virginica data are not multivariate normal, but means and correlation for
each pair of variables should be similar to the simulated data.) �

Sepal.Length

2.5 3.0 3.5 4.0 1.5 2.0 2.5

5.
0

6.
0

7.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Width

Petal.Length

4.
5

5.
0

5.
5

6.
0

6.
5

5.0 6.0 7.0

1.
5

2.
0

2.
5

4.5 5.0 5.5 6.0 6.5

Petal.Width

FIGURE 3.7: Pairs plot of the bivariate marginal distributions of a simu-
lated multivariate normal random sample in Example 3.18. The parameters
match the mean and covariance of the iris virginica data.

Remark 3.3 To standardize a multivariate normal sample, we invert the pro-
cedure above, substituting the sample mean vector and sample covariance ma-
trix if the parameters are unknown. The transformed d-dimensional sample
then has zero mean vector and covariance Id. This is not the same as scaling
the columns of the data matrix. �

Comparing Performance of Generators

We have discussed several methods for generating random samples from
specified probability distributions. When several methods are available, which
method is preferred? One consideration may be the computational time re-
quired (the time complexity). Another important consideration, if the pur-
pose of the simulation is to estimate one or more parameters, is the variance
of the estimator. The latter topic is considered in Chapter 5. To compare
the empirical performance with respect to computing time, we can time each
procedure.

R provides the system.time function, which times the evaluation of its
argument. This function can be used as a rough benchmark to compare the
performance of different algorithms. In the next example, the system.time
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function is used to compare the CPU time required for several different meth-
ods of generating multivariate normal samples.

Example 3.19 (Comparing performance of MVN generators)

This example generates multivariate normal samples in a higher dimension
(d = 30) and compares the timing of each of the methods presented in Sec-
tion 3.6.1 and two generators available in R packages. This example uses a
function rmvnorm in the package mvtnorm [115]. This package is not part of the
standard R distribution but can be installed from CRAN. The MASS package
[278] is one of the recommended packages included with the R distribution.

library(MASS)
library(mvtnorm)
n <- 100 #sample size
d <- 30 #dimension
N <- 2000 #iterations
mu <- numeric(d)

set.seed(100)
system.time(for (i in 1:N)

rmvn.eigen(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvn.svd(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvn.Choleski(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

mvrnorm(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvnorm(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

cov(matrix(rnorm(n*d), n, d)))

Most of the work involved in generating a multivariate normal sample is the
factorization of the covariance matrix. The covariances used for this example
are actually the sample covariances of standard multivariate normal samples.
Thus, the randomly generated Σ varies with each iteration, but Σ is close to
an identity matrix. In order to time each method on the same covariance
matrices, the random number seed is restored before each run. The last run
simply generates the covariances, for comparison with the total time.
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The results below (summarized from the console output) suggest that there
are differences in performance among these five methods when the covari-
ance matrix is close to identity. The Choleski method is somewhat faster,
while rmvn.eigen and mvrnorm (MASS) [278] appear to perform about equally
well. The similar performance of rmvn.eigen and mvrnorm is not surprising,
because according to the documentation for mvrnorm, the method of matrix
decomposition is the eigendecomposition. Documentation for mvrnorm states
that “although a Choleski decomposition might be faster, the eigendecompo-
sition is stabler.”

Timings of MVN generators

user system elapsed
rmvn.eigen 7.36 0.00 7.37
rmvn.svd 9.93 0.00 9.94
rmvn.choleski 5.32 0.00 5.35
mvrnorm 7.95 0.00 7.96
rmvnorm 11.91 0.00 11.93
generate Sigma 2.78 0.00 2.78

�

The system.time function was also used to compare the methods in Ex-
amples 3.22 and 3.23. The code (not shown) is similar to the examples above.

3.6.2 Mixtures of Multivariate Normals

A multivariate normal mixture is denoted

pNd(µ1,Σ1) + (1 − p)Nd(µ2,Σ2) (3.7)

where the sampled population isNd(µ1,Σ1) with probability p, andNd(µ2,Σ2)
with probability 1 − p. As the mixing parameter p and other parameters are
varied, the multivariate normal mixtures have a wide variety of types of de-
partures from normality. For example, a 50% normal location mixture is
symmetric with light tails, and a 90% normal location mixture is skewed with
heavy tails. A normal location mixture with p = 1 − 1

2 (1 −
√

3
3 ) .= 0.7887,

provides an example of a skewed distribution with normal kurtosis [140]. Pa-
rameters can be varied to generate a wide variety of distributional shapes.
Johnson [154] gives many examples for the bivariate normal mixtures. Many
commonly applied statistical procedures do not perform well under this type
of departure from normality, so normal mixtures are often chosen to compare
the properties of competing robust methods of analysis.

If X has the distribution (3.7) then a random observation from the distri-
bution of X can be generated as follows.
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To generate a random sample from pNd(µ1,Σ1) + (1 − p)Nd(µ2,Σ2)

1. Generate U ∼ Uniform(0,1).

2. If U ≤ p generate X from Nd(µ1,Σ1);
otherwise generate X from Nd(µ2,Σ2).

The following procedure is equivalent.

1. Generate N ∼ Bernoulli(p).

2. If N = 1 generate X from Nd(µ1,Σ1);
otherwise generate X from Nd(µ2,Σ2).

Example 3.20 (Multivariate normal mixture)

Write a function to generate a multivariate normal mixture with two compo-
nents. The components of a location mixture differ in location only. Use the
mvrnorm(MASS) function [278] to generate the multivariate normal observa-
tions.

First we write this generator in an inefficient loop to clearly illustrate the
steps outlined above. (We will eliminate the loop later.)

library(MASS) #for mvrnorm
#ineffecient version loc.mix.0 with loops

loc.mix.0 <- function(n, p, mu1, mu2, Sigma) {
#generate sample from BVN location mixture
X <- matrix(0, n, 2)

for (i in 1:n) {
k <- rbinom(1, size = 1, prob = p)
if (k)

X[i,] <- mvrnorm(1, mu = mu1, Sigma) else
X[i,] <- mvrnorm(1, mu = mu2, Sigma)

}
return(X)

}

Although the code above will generate the required mixture, the loop is
rather inefficient. Generate n1, the number of observations realized from the
first component, from Binomial(n, p). Generate n1 variates from component
1 and n2 = n − n1 from component 2 of the mixture. Generate a random
permutation of the indices 1:n to indicate the order in which the sample
observations appear in the data matrix. See Appendix B.1 for details about
permutations of rows of a matrix.
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#more efficient version

loc.mix <- function(n, p, mu1, mu2, Sigma) {
#generate sample from BVN location mixture
n1 <- rbinom(1, size = n, prob = p)
n2 <- n - n1
x1 <- mvrnorm(n1, mu = mu1, Sigma)
x2 <- mvrnorm(n2, mu = mu2, Sigma)
X <- rbind(x1, x2) #combine the samples
return(X[sample(1:n), ]) #mix them

}

To illustrate the normal mixture generator, we apply loc.mix to generate
a random sample of n = 1000 observations from a 50% 4-dimensional normal
location mixture with µ1 = (0, 0, 0, 0) and µ2 = (2, 3, 4, 5) and covariance I4.

x <- loc.mix(1000, .5, rep(0, 4), 2:5, Sigma = diag(4))
r <- range(x) * 1.2
par(mfrow = c(2, 2))
for (i in 1:4)

hist(x[ , i], xlim = r, ylim = c(0, .3), freq = FALSE,
main = "", breaks = seq(-5, 10, .5))

par(mfrow = c(1, 1))

It is difficult to visualize data in R4, so we display only the histograms of the
marginal distributions in Figure 3.8. All of the one dimensional marginal dis-
tributions are univariate normal location mixtures. Methods for visualization
of multivariate data are covered in Chapter 4. Also, an interesting view of a
bivariate normal mixture with three components is shown in Figure 10.13 on
page 313. �

3.6.3 Wishart Distribution

Suppose M = XTX , where X is an n× d data matrix of a random sample
from a Nd(µ,Σ) distribution. Then M has a Wishart distribution with scale
matrix Σ and n degrees of freedom, denoted M ∼Wd(Σ, n) (see e.g. [8, 188]).
Note that when d = 1, the elements of X are a univariate random sample
from N(µ, σ2) so W1(σ2, n) D= σ2χ2(n).

An obvious, but inefficient approach to generating random variates from
a Wishart distribution, is to generate multivariate normal random samples
and compute the matrix product XTX . This method is computationally
expensive because nd random normal variates must be generated to determine
the d(d+ 1)/2 distinct entries in M .
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FIGURE 3.8: Histograms of the marginal distributions of multivariate nor-
mal location mixture data generated in Example 3.20.

A more efficient method based on Bartlett’s decomposition [21] is summa-
rized by Johnson [154, p. 204] as follows. Let T = (Tij) be a lower triangular
d× d random matrix with independent entries satisfying

1. Tij
iid∼ N(0, 1), i > j.

2. Tii ∼
√
χ2(n− i+ 1), i = 1, . . . , d.

Then the matrix A = TT T has aWd(Id, n) distribution. To generateWd(Σ, n)
random variates, obtain the Choleski factorization Σ = LLT , where L is lower
triangular. Then LALT ∼ Wd(Σ, n) [21, 133, 207]. Implementation is left as
an exercise.

3.6.4 Uniform Distribution on the d-Sphere

The d-sphere is the set of all points x ∈ Rd such that ‖x‖ = (xTx)1/2 = 1.
Random vectors uniformly distributed on the d-sphere have equally likely
directions. A method of generating this distribution uses a property of the
multivariate normal distribution (see e.g. [94, 154]). If X1, . . . , Xd are iid
N(0, 1), then U = (U1, . . . , Ud) is uniformly distributed on the unit sphere in
Rd, where

Uj =
Xj

(X2
1 + · · · +X2

d)1/2
, j = 1, . . . , d. (3.8)
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Algorithm to generate uniform variates on the d-Sphere

1. For each variate ui, i = 1, . . . , n repeat

(a) Generate a random sample xi1, . . . , xid from N(0, 1).
(b) Compute the Euclidean norm ‖xi‖ = (x2

i1 + · · · + x2
id)1/2.

(c) Set uij = xij/‖xi‖, j = 1, . . . , d.
(d) Deliver ui = (ui1, . . . , uid).

To implement these steps efficiently in R for a sample size n,

1. Generate nd univariate normals in n × d matrix M. The ith row of M
corresponds to to the ith random vector ui.

2. Compute the denominator of (3.8) for each row, storing the n norms in
vector L.

3. Divide each number M[i,j] by the norm L[i], to get the matrix U,
where U[i,] = ui = (ui1, . . . , uid).

4. Deliver matrix U containing n random observations in rows.

Example 3.21 (Generating variates on a sphere)

This example provides a function to generate random variates uniformly dis-
tributed on the unit d-sphere.

runif.sphere <- function(n, d) {
# return a random sample uniformly distributed
# on the unit sphere in R ^d
M <- matrix(rnorm(n*d), nrow = n, ncol = d)
L <- apply(M, MARGIN = 1,

FUN = function(x){sqrt(sum(x*x))})
D <- diag(1 / L)
U <- D %*% M
U

}

The function runif.sphere is used to generate a sample of 200 points uni-
formly distributed on the circle.

#generate a sample in d=2 and plot
X <- runif.sphere(200, 2)
par(pty = "s")
plot(X, xlab = bquote(x[1]), ylab = bquote(x[2]))
par(pty = "m")

The circle of points is shown in Figure 3.9. �
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R note 3.8 The apply function in runif.sphere returns a vector contain-
ing the n norms ‖x1‖, ‖x2‖, . . . , ‖xn‖ of the sample vectors in matrix M.

R note 3.9 The command par(pty = "s") sets the square plot type so the
circle is round rather than elliptical; par(pty = "m") restores the type to
maximal plotting region. See the help topic ?par for other plot parameters.
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FIGURE 3.9: A random sample of 200 points from the bivariate distribu-
tion (X1, X2) that is uniformly distributed on the unit circle in Example 3.21.

Uniformly distributed points on a hyperellipsoid can be generated by ap-
plying a suitable linear transformation to a Uniform sample on the d-sphere.
Fishman [94, 3.28] gives an algorithm for generating points in and on a sim-
plex.

3.7 Stochastic Processes

A stochastic process is a collection {X(t) : t ∈ T } of random variables
indexed by the set T , which usually represents time. The index set T could
be discrete or continuous. The set of possible values X(t) can take is the state
space, which also can be discrete or continuous. Ross [234] is an excellent
introduction to stochastic processes, and includes a chapter on simulation.
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A counting process records the number of events or arrivals that occur
by time t. A counting process has independent increments if the number
of arrivals in disjoint time intervals are independent. A counting process
has stationary increments if the number of events occurring in an interval
depends only on the length of the interval. An example of a counting process
is a Poisson process.

To study a counting process through simulation, we can generate a real-
ization of the process that records events for a finite period of time. The set
of times of consecutive arrivals records the outcome and determines the state
X(t) at any time t. In a simulation, the sequence of arrival times must be
finite. One method of simulation for a counting process is to choose a suf-
ficiently long time interval and generate the arrival times or the interarrival
times in this interval.

Poisson Processes

A homogeneous Poisson process {N(t), t ≥ 0} with rate λ is a counting
process, with independent increments, such that N(0) = 0 and

P (N(s+ t) −N(s) = n) =
eλt(λt)n

n!
, n ≥ 0, t, s > 0. (3.9)

Thus, a homogeneous Poisson process has stationary increments and the num-
ber of events N(t) in [0, t] has the Poisson(λt) distribution. If T1 is the time
until the first arrival,

P (T1 > t) = P (N(t) = 0) = e−λt, t ≥ 0,

so T1 is exponentially distributed with rate λ. The interarrival times T1, T2, . . .
are the times between successive arrivals. The interarrival times are iid expo-
nentials with rate λ, which follows from (3.9) and the memoryless property of
the exponential distribution.

One method of simulating a Poisson process is to generate the interarrival
times. Then the time of the nth arrival is the sum Sn = T1 + · · · + Tn (the
waiting time until nth arrival). A sequence of interarrival times {Tn}∞n=1 or
sequence of arrival times {Sn}∞n=1 are a realization of the process. Thus, a re-
alization is an infinite sequence, rather than a single number. In a simulation,
the finite sequence of interarrival times {Tn}N

n=1 or arrival times {Sn}N
n=1 are

a simulated realization of the process on the interval [0, SN ).
Another method of simulating a Poisson process is to use the fact that the

conditional distribution of the (unordered) arrival times given N(t) = n is the
same as that of a random sample of size n from a Uniform(0, t) distribution.

The state of the process at a given time t is equal to the number of arrivals
in [0, t], which is the number min(k : Sk > t)−1. That is, N(t) = n−1, where
Sn is the smallest arrival time exceeding t.
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Algorithm for simulating a homogeneous Poisson process on an in-
terval [0, t0] by generating interarrival times.

1. Set S1 = 0.

2. For j = 1, 2, . . . while Sj ≤ t0:

(a) Generate Tj ∼ Exp(λ).
(b) Set Sj = T1 + · · · + Tj.

3. N(t0) = minj(Sj > t0) − 1.

It is inefficient to implement this algorithm in R using a for loop. It should
be translated into vectorized operations, as shown in the next example.

Example 3.22 (Poisson process)

This example illustrates a simple approach to simulation of a Poisson process
with rate λ. Suppose we need N(3), the number of arrivals in [0, 3]. Generate
iid exponential times Ti with rate λ and find the index n where the cumulative
sum Sn = T1 + · · ·+ Tn first exceeds 3. It follows that the number of arrivals
in [0, 3] is n− 1. On average this number is E[N(3)] = 3λ.

lambda <- 2
t0 <- 3
Tn <- rexp(100, lambda) #interarrival times
Sn <- cumsum(Tn) #arrival times
n <- min(which(Sn > t0)) #arrivals+1 in [0, t0]

Results from two runs are shown below.

> n-1
[1] 8
> round(Sn[1:n], 4)
[1] 1.2217 1.3307 1.3479 1.4639 1.9631 2.0971

2.3249 2.3409 3.9814

> n-1
[1] 5
> round(Sn[1:n], 4)
[1] 0.4206 0.8620 1.0055 1.6187 2.6418 3.4739

For this example, the average of simulated values N(3) = n − 1 for a large
number of runs should be close to E[N(3)] = 3λ = 6. �

An alternate method of generating the arrival times of a Poisson process is
based on the fact that given the number of arrivals in an interval (0, t), the
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conditional distribution of the unordered arrival times are uniformly distrib-
uted on (0, t). That is, given that the number of arrivals in (0, t) is n, the
arrival times S1, . . . , Sn are jointly distributed as an ordered random sample
of size n from a Uniform(0, t) distribution.

Applying the conditional distribution of the arrival times, it is possible to
simulate a Poisson(λ) process on an interval (0, t) by first generating a random
observation n from the Poisson(λt) distribution, then generating a random
sample of n Uniform(0, t) observations and ordering the uniform sample to
obtain the arrival times.

Example 3.23 (Poisson process, cont.)

Returning to Example 3.22, simulate a Poisson(λ) process and find N(3),
using the conditional distribution of the arrival times. As a check, we estimate
the mean and variance of N(3) from 10000 replications.

lambda <- 2
t0 <- 3
upper <- 100
pp <- numeric(10000)
for (i in 1:10000) {

N <- rpois(1, lambda * upper)
Un <- runif(N, 0, upper) #unordered arrival times
Sn <- sort(Un) #arrival times
n <- min(which(Sn > t0)) #arrivals+1 in [0, t0]
pp[i] <- n - 1 #arrivals in [0, t0]
}

Alternately, the loop can be replaced by replicate, as shown.

pp <- replicate(10000, expr = {
N <- rpois(1, lambda * upper)
Un <- runif(N, 0, upper) #unordered arrival times
Sn <- sort(Un) #arrival times
n <- min(which(Sn > t0)) #arrivals+1 in [0, t0]
n - 1 }) #arrivals in [0, t0]

The mean and variance should both be equal to λt = 6 in this example. Here
the sample mean and sample variance of the generated values N(3) are indeed
very close to 6.

> c(mean(pp), var(pp))
[1] 5.977100 5.819558

Actually, it is possible that none of the generated arrival times exceed the
time t0 = 3. In this case, the process needs to be simulated for a longer time
than the value in upper. Therefore, in practice, one should choose upper
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according to the parameters of the process, and do some error checking. For
example, if we need N(t0), one approach is to wrap the min(which()) step
with try and check that the result of try is an integer using is.integer.
See the corresponding help topics for details.

Ross [234] discusses the computational efficiency of the two methods applied
in Examples 3.22 and 3.23. Actually, the second method is considerably slower
(by a factor of 4 or 5) than the previous method of Example 3.22 when coded
in R. The rexp generator is almost as fast as runif, while the sort operation
adds O(n log(n)) time. Some performance improvement might be gained if
this algorithm is coded in C and a faster sorting algorithm designed for uniform
numbers is used. �

Nonhomogeneous Poisson Processes

A counting process is a Poisson process with intensity function λ(t), t ≥ 0
if N(t) = 0, N(t) has independent increments, and for h > 0,

P (N(t+ h) −N(t) ≥ 2) = o(h), and
P (N(t+ h) −N(t) = 1) = λ(t)h+ o(h).

The Poisson process N(t) is nonhomogeneous if the intensity function λ(t) is
not constant. A nonhomogeneous Poisson process has independent increments
but does not have stationary increments. The distribution of

N(s+ t) −N(s)

is Poisson with mean
∫ s+t

s
λ(y)dy. The function m(t) = E[N(t)] =

∫ t

0
λ(y)dy

is called the mean value function of the process. Note that m(t) = λ in the
case of the homogeneous Poisson process, where the intensity function is a
constant.

Every nonhomogeneous Poisson process with a bounded intensity function
can be obtained by time sampling a homogeneous Poisson process. Suppose
that λ(t) ≤ λ < ∞ for all t ≥ 0. Then sampling a Poisson(λ) process such
that an event happening at time t is accepted or counted with probability
λ(t)/λ generates the nonhomogeneous process with intensity function λ(t).
To see this, let N(t) be the number of accepted events in [0, t]. Then N(t)
has the Poisson distribution with mean

E[N(t)] = λ

∫ t

0

λ(y)
λ

dy =
∫ t

0

λ(y)dy.

To simulate a nonhomogeneous Poisson process on an interval [0, t0], find
λ0 < ∞ such that λ(t) <= λ0, 0 ≤ t ≤ t0. Then generate from the homo-
geneous Poisson(λ0) process the arrival times {Sj}, and accept each arrival
with probability λ(Sj)/λ0. The steps to simulate the process on an interval
[0, t0) are as follows.
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Algorithm for simulating a nonhomogeneous Poisson process on an
interval [0, t0] by sampling from a homogeneous Poisson process.

1. Set S1 = 0.

2. For j = 1, 2, . . . while Sj ≤ t0:

(a) Generate Tj ∼ Exp(λ0) and set Sj = T1 + · · · + Tj.
(b) Generate Uj ∼ Uniform(0,1).
(c) If Uj ≤ λ(Sj)/λ0 accept (count) this arrival and set Ij = 1;

otherwise Ij = 0.

3. Deliver the arrival times {Sj : Ij = 1}.

Although this algorithm is quite simple, for implementation in R it is more
efficient if translated into vectorized operations. This is shown in the next
example.

Example 3.24 (Nonhomogeneous Poisson process)

Simulate a realization from a nonhomogeneous Poisson process with intensity
function λ(t) = 3 cos2(t). Here the intensity function is bounded above by
λ = 3, so the jth arrival is accepted if Uj ≤ 3 cos2(Sj)/3 = cos2(Sj).

lambda <- 3
upper <- 100
N <- rpois(1, lambda * upper)
Tn <- rexp(N, lambda)
Sn <- cumsum(Tn)
Un <- runif(N)
keep <- (Un <= cos(Sn)^2) #indicator, as logical vector
Sn[keep]

Now, the values in Sn[keep] are the ordered arrival times of the nonhomoge-
neous Poisson process.

> round(Sn[keep], 4)
[1] 0.0237 0.5774 0.5841 0.6885 2.3262

2.4403 2.9984 3.4317 3.7588 3.9297
[11] 4.2962 6.2602 6.2862 6.7590 6.8354

7.0150 7.3517 8.3844 9.4499 9.4646 . . .

To determine the state of the process at time t = 2π, for example, refer to
the entries of Sn indexed by keep.

> sum(Sn[keep] <= 2*pi)
[1] 12
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> table(keep)/N
keep

FALSE TRUE
0.4969325 0.5030675

Thus N(2π) = 12, and in this example approximately 50% of the arrivals were
counted. �

Renewal Processes

A renewal process is a generalization of the Poisson process. If {N(t), t ≥ 0}
is a counting process, such that the sequence of nonnegative interarrival times
T1, T2, . . . are iid (not necessarily exponential distribution), then {N(t), t ≥ 0}
is a renewal process. The function m(t) = E[N(t)] is called the mean value
function of the process, which uniquely determines the distribution of the
interarrival times.

If the distribution FT (t) of the iid interarrival times is specified, then a
renewal process can be simulated by generating the sequence of interarrival
times, by a method similar to Example 3.22.

Example 3.25 (Renewal process)

Suppose the interarrival times of a renewal process have the geometric distrib-
ution with success probability p. (This example is discussed in [234, Sec. 7.2].)
Then the interarrival times are nonnegative integers, and Sj = T1 + · · · + Tj

have the negative binomial distribution with size parameter r = j and prob-
ability p. The process can be simulated by generating geometric interarrival
times and computing the consecutive arrival times by the cumulative sum of
interarrival times.

t0 <- 5
Tn <- rgeom(100, prob = .2) #interarrival times
Sn <- cumsum(Tn) #arrival times
n <- min(which(Sn > t0)) #arrivals+1 in [0, t0]

The distribution of N(t0) can be estimated by replicating the simulation
above.

Nt0 <- replicate(1000, expr = {
Sn <- cumsum(rgeom(100, prob = .2))
min(which(Sn > t0)) - 1
})

table(Nt0)/1000
Nt0

0 1 2 3 4 5 6 7
0.273 0.316 0.219 0.108 0.053 0.022 0.007 0.002
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To estimate the means E[N(t)], vary the time t0.

t0 <- seq(0.1, 30, .1)
mt <- numeric(length(t0))

for (i in 1:length(t0)) {
mt[i] <- mean(replicate(1000,
{
Sn <- cumsum(rgeom(100, prob = .2))
min(which(Sn > t0[i])) - 1
}))

}
plot(t0, mt, type = "l", xlab = "t", ylab = "mean")

Let us compare with the homogeneous Poisson process, where the interarrival
times have a constant mean. Here we have p = 0.2 so the average interarrival
time is 0.8/0.2 = 4. The Poisson process that has mean interarrival time
4 has Poisson parameter λt = t/4. We added a reference line to the plot
corresponding to the Poisson process mean λt = t/4 using abline(0, .25).

The plot is shown in Figure 3.10. It should not be surprising that the mean
of the renewal process is very close to λt, because the geometric distribution
is the discrete analog of exponential; it has the memoryless property. That
is, if X ∼ Geometric(p), then for all j, k = 0, 1, 2, . . .

P (X > j + k|X > j) =
(1 − p)j+k

(1 − p)j
= (1 − p)k = P (X > k).

�

Symmetric Random Walk

Let X1, X2, . . . be a sequence of iid random variables with probability
distribution P (Xi = 1) = P (Xi = −1) = 1/2. Define the partial sum
Sn =

∑n
i=1Xi. The process {Sn, n ≥ 0} is called a symmetric random walk.

For example, if a gambler bets $1 on repeated trials of coin flipping, then Sn

represents the gain/loss after n tosses.

Example 3.26 (Plot a partial realization of a random walk)

It is very simple to generate a symmetric random walk process over a short
time span.

n <- 400
incr <- sample(c(-1, 1), size = n, replace = TRUE)
S <- as.integer(c(0, cumsum(incr)))
plot(0:n, S, type = "l", main = "", xlab = "i")
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FIGURE 3.10: Sequence of sample means of a simulated renewal process
in Example 3.25. The reference line corresponds to the mean λt = t/4 of a
homogeneous Poisson process.

A partial realization of the symmetric random walk process starting at S0 = 0
is shown in Figure 3.11. The process has returned to 0 several times within
time [1, 400].

> which(S == 0)
[1] 1 3 27 29 31 37 41 95 225 229 233 237 239 241

The value of Sn can be determined by the partial random walk starting at
the most recent time the process returned to 0. �

If the state of the symmetric random walk Sn at time n is required, but not
the history up to time n, then for large n it may be more efficient to generate
Sn as follows.

Assume that S0 = 0 is the initial state of the process. If the process has
returned to the origin before time n, then to generate Sn we can ignore the
past history up until the time the process most recently hit 0. Let T be the
time until the first return to the origin. Then to generate Sn, one can simplify
the problem by first generating the waiting times T until the total time first
exceeds n. Then starting from the last return to the origin before time n,
generate the increments Xi and sum them.
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FIGURE 3.11: Partial realization of a symmetric random walk in Example
3.26.

Algorithm to simulate the state Sn of a symmetric random walk

The following algorithm is adapted from [69, XIV.6].
Let Wj be the waiting time until the jth return to the origin.

1. Set W1 = 0.

2. For j = 1, 2, . . . while Wj ≤ n:

(a) Generate a random Tj from the distribution of the time until the
first return to 0.

(b) Set Wj = T1 + · · · + Tj .

3. Set t0 = Wj − Tj (time of last return to 0 in time n.)

4. Set s1 = 0.

5. Generate the increments from time t0 + 1 until time n:
For i = 1, 2, . . . , n− t0

(a) Generate a random increment xi ∼ P (X = ±1) = 1/2.
(b) Set si = x1 + · · · + xi.
(c) If si = 0 reset the counter to i = 1 (another return to 0 is not

accepted, so reject this partial random walk and generate a new
sequence of increments starting again from time t0 + 1.)

6. Deliver si.
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To implement the algorithm, one needs to provide a generator for T , the
time until the next return of the process to 0. The probability distribution of
T [69, Thm. 6.1] is given by

P (T = 2n) = p2n =
(

2n− 2
n− 1

)
1

n 22n−1
=

Γ(2n− 1)
n 22n−1 Γ2(n)

, n ≥ 1,

P (T = 2n+ 1) = 0, n ≥ 0.

Example 3.27 (Generator for the time until return to origin)

An efficient algorithm for generating from the distribution T is given by De-
vroye [69, p. 754]. Here we will apply an inefficient version that is easily imple-
mented in R. Notice that p2n equals 1/(2n) times the probability P (X = n−1)
where X ∼ Binomial (2n− 2, p = 1/2).

The following methods are equivalent.

#compute the probabilities directly
n <- 1:10000
p2n <- exp(lgamma(2*n-1)

- log(n) - (2*n-1)*log(2) - 2*lgamma(n))

#or compute using dbinom
P2n <- (.5/n) * dbinom(n-1, size = 2*n-2, prob = 0.5)

Recall that if X is a discrete random variable and

. . . < xi−1 < xi < xi+1 < . . .

are the points of discontinuity of FX(x), then the inverse transformation is
F−1

X (u) = xi, where FX(xi−1) < u ≤ FX(xi). Therefore, a generator can be
written for values of T up to 20000 using the probability vector computed
above.

pP2n <- cumsum(P2n)
#for example, to generate one T
u <- runif(1)
Tj <- 2 * (1 + sum(u > pP2n))

Here are two examples to illustrate the method of looking up the solution
FX(xi−1) < u ≤ FX(xi) in the probability vector.

#first part of pP2n

[1] 0.5000000 0.6250000 0.6875000 0.7265625 0.7539062 0.7744141

In the first example u = 0.6612458 and the first return to the origin occurs at
time n = 6, and in the second example u = 0.5313384 and the next return to
the 0 occurs at time n = 4 after the first return to 0. Thus the second return
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to the origin occurs at time 10. (The case u > max(pP2n) must be handled
separately.)

Suppose now that n is given and we need to compute the time of the last
return to 0 in (0, n].

n <- 200
sumT <- 0
while (sumT <= n) {

u <- runif(1)
s <- sum(u > pP2n)
if (s == length(pP2n)) warning("T is truncated")
Tj <- 2 * (1 + s)
#print(c(Tj, sumT))
sumT <- sumT + Tj
}

sumT - Tj

In case the random uniform exceeds the maximal value in the cdf vector pP2n,
a warning is issued. Here instead of issuing a warning, one could append to the
vector and return a valid T . We leave that as an exercise. A better algorithm is
suggested by Devroye [69, p. 754]. One run of the simulation above generates
the times 110, 128, 162, 164, 166, 168, and 210 that the process visits 0
(uncomment the print statement to print the times). Therefore the last visit
to 0 before n = 200 is at time 168.

Finally, S200 can be generated by simulating a symmetric random walk
starting from S168 = 0 for t = 169, . . . , 200 (rejecting the partial random walk
if it hits 0). �

Packages and Further Reading

General references on discrete event simulation and simulation of stochastic
processes include Banks et al. [18], Devroye [69], and Fishman [95]. Algorithms
for generating random tours in general are discussed by Fishman [94, Ch. 5].
Also see Cornuejols and Tütüncü [53] on related optimization methods.

Ross [234, Ch. 10] has a nice introduction to Brownian Motion, starting
with the interpretation of Brownian Motion as the limit of random walks. For
a more theoretical treatment see Durrett [77, Ch. 7].

See Franklin [98] for simulation of Gaussian processes. Functions to simu-
late long memory time series processes, including fractional Brownian motion
are available in the R package fSeries (see e.g. fbmSim) [299] and sde [149].
The FracSim package [65, 66] implements methods for simulation of multi-
fractional Lévy motions. Also see Coeurjolly [51] for a bibliographical and
comparative study on simulation and identification of fractional Brownian
motion.

References on the general subject of methods for generating random variates
from specified probability distributions have been given in Section 3.1.
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Exercises

3.1 Write a function that will generate and return a random sample of size n from
the two-parameter exponential distribution Exp(λ, η) for arbitrary n, λ, and
η. (See Examples 2.3 and 2.6.) Generate a large sample from Exp(λ, η) and
compare the sample quantiles with the theoretical quantiles.

3.2 The standard Laplace distribution has density f(x) = 1
2e

−|x|, x ∈ R. Use the
inverse transform method to generate a random sample of size 1000 from this
distribution. Use one of the methods shown in this chapter to compare the
generated sample to the target distribution.

3.3 The Pareto(a, b) distribution has cdf

F (x) = 1 −
(
b

x

)a

, x ≥ b > 0, a > 0.

Derive the probability inverse transformation F−1(U) and use the inverse
transform method to simulate a random sample from the Pareto(2, 2) dis-
tribution. Graph the density histogram of the sample with the Pareto(2, 2)
density superimposed for comparison.

3.4 The Rayleigh density [156, Ch. 18] is

f(x) =
x

σ2
e−x2/(2σ2), x ≥ 0, σ > 0.

Develop an algorithm to generate random samples from a Rayleigh(σ) distri-
bution. Generate Rayleigh(σ) samples for several choices of σ > 0 and check
that the mode of the generated samples is close to the theoretical mode σ
(check the histogram).

3.5 A discrete random variable X has probability mass function

x 0 1 2 3 4
p(x) 0.1 0.2 0.2 0.2 0.3

Use the inverse transform method to generate a random sample of size 1000
from the distribution of X . Construct a relative frequency table and compare
the empirical with the theoretical probabilities. Repeat using the R sample
function.

3.6 Prove that the accepted variates generated by the acceptance-rejection sam-
pling algorithm are a random sample from the target density fX .

3.7 Write a function to generate a random sample of size n from the Beta(a, b)
distribution by the acceptance-rejection method. Generate a random sample
of size 1000 from the Beta(3,2) distribution. Graph the histogram of the
sample with the theoretical Beta(3,2) density superimposed.
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3.8 Write a function to generate random variates from a Lognormal(µ, σ) distri-
bution using a transformation method, and generate a random sample of size
1000. Compare the histogram with the lognormal density curve given by the
dlnorm function in R.

3.9 The rescaled Epanechnikov kernel [85] is a symmetric density function

fe(x) =
3
4
(1 − x2), |x| ≤ 1. (3.10)

Devroye and Györfi [71, p. 236] give the following algorithm for simulation
from this distribution. Generate iid U1, U2, U3 ∼ Uniform(−1, 1). If |U3| ≥
|U2| and |U3| ≥ |U1|, deliver U2; otherwise deliver U3. Write a function
to generate random variates from fe, and construct the histogram density
estimate of a large simulated random sample.

3.10 Prove that the algorithm given in Exercise 3.9 generates variates from the
density fe (3.10).

3.11 Generate a random sample of size 1000 from a normal location mixture. The
components of the mixture have N(0, 1) and N(3, 1) distributions with mixing
probabilities p1 and p2 = 1 − p1. Graph the histogram of the sample with
density superimposed, for p1 = 0.75. Repeat with different values for p1

and observe whether the empirical distribution of the mixture appears to be
bimodal. Make a conjecture about the values of p1 that produce bimodal
mixtures.

3.12 Simulate a continuous Exponential-Gamma mixture. Suppose that the rate
parameter Λ has Gamma(r, β) distribution and Y has Exp(Λ) distribution.
That is, (Y |Λ = λ) ∼ fY (y|λ) = λe−λy . Generate 1000 random observations
from this mixture with r = 4 and β = 2.

3.13 It can be shown that the mixture in Exercise 3.12 has a Pareto distribution
with cdf

F (y) = 1 −
(

β

β + y

)r

, y ≥ 0.

(This is an alternative parameterization of the Pareto cdf given in Exercise
3.3.) Generate 1000 random observations from the mixture with r = 4 and
β = 2. Compare the empirical and theoretical (Pareto) distributions by graph-
ing the density histogram of the sample and superimposing the Pareto density
curve.

3.14 Generate 200 random observations from the 3-dimensional multivariate nor-
mal distribution having mean vector µ = (0, 1, 2) and covariance matrix

Σ =

⎡⎣ 1.0 − 0.5 0.5
− 0.5 1.0 − 0.5

0.5 − 0.5 1.0

⎤⎦
using the Choleski factorization method. Use the R pairs plot to graph an
array of scatter plots for each pair of variables. For each pair of variables,
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(visually) check that the location and correlation approximately agree with
the theoretical parameters of the corresponding bivariate normal distribution.

3.15 Write a function that will standardize a multivariate normal sample for arbi-
trary n and d. That is, transform the sample so that the sample mean vector
is zero and sample covariance is the identity matrix. To check your results,
generate multivariate normal samples and print the sample mean vector and
covariance matrix before and after standardization.

3.16 Efron and Tibshirani discuss the scor (bootstrap) test score data on 88
students who took examinations in five subjects [84, Table 7.1], [188, Ta-
ble 1.2.1]. Each row of the data frame is a set of scores (xi1, . . . , xi5) for
the ith student. Standardize the scores by type of exam. That is, standard-
ize the bivariate samples (X1, X2) (closed book) and the trivariate samples
(X3, X4, X5) (open book). Compute the covariance matrix of the transformed
sample of test scores.

3.17 Compare the performance of the Beta generator of Exercise 3.7, Example 3.8
and the R generator rbeta. Fix the parameters a = 2, b = 2 and time each
generator on 1000 iterations with sample size 5000. (See Example 3.19.) Are
the results different for different choices of a and b?

3.18 Write a function to generate a random sample from a Wd(Σ, n) (Wishart)
distribution for n > d+ 1 ≥ 1, based on Bartlett’s decomposition.

3.19 Suppose that A and B each start with a stake of $10, and bet $1 on consecutive
coin flips. The game ends when either one of the players has all the money.
Let Sn be the fortune of player A at time n. Then {Sn, n ≥ 0} is a symmetric
random walk with absorbing barriers at 0 and 20. Simulate a realization of
the process {Sn, n ≥ 0} and plot Sn vs the time index from time 0 until a
barrier is reached.

3.20 A compound Poisson process is a stochastic process {X(t), t ≥ 0} that can be
represented as the random sum X(t) =

∑N(t)
i=1 Yi, t ≥ 0, where {N(t), t ≥ 0}

is a Poisson process and Y1, Y2, . . . are iid and independent of {N(t), t ≥ 0}.
Write a program to simulate a compound Poisson(λ)–Gamma process (Y has
a Gamma distribution). Estimate the mean and the variance of X(10) for
several choices of the parameters and compare with the theoretical values.
Hint: Show that E[X(t)] = λtE[Y1] and V ar(X(t)) = λtE[Y 2

1 ].

3.21 A nonhomogeneous Poisson process has mean value function m(t) = t2 + 2t,
t ≥ 0. Determine the intensity function λ(t) of the process, and write a
program to simulate the process on the interval [4, 5]. Compute the probability
distribution ofN(5)−N(4), and compare it to the empirical estimate obtained
by replicating the simulation.



Chapter 4

Visualization of Multivariate Data

4.1 Introduction

The topic of visualization of multivariate data is related to more general
subjects called exploratory data analysis (EDA) and statistical graphics. The
term “exploratory” is in contrast to “confirmatory,” which could describe
hypothesis testing. Tukey [275] believed that it was important to do the
exploratory work before hypothesis testing, to learn what are the appropriate
questions to ask, and the most appropriate methods to answer them. With
multivariate data, we may also be interested in dimension reduction or finding
structure or groups in the data. Here we restrict attention to methods for
visualizing multivariate data.

In this chapter several graphics functions are used. In addition to the R
graphics package, which loads when R is started, other packages discussed in
this chapter are lattice [239] and MASS (see [278]). Also see the rggobi [167]
interface to GGobi and rgl [2] package for interactive 3D visualization. Table
1.4 lists some basic graphics functions in R (graphics) or other packages.
Table 4.1 lists more 2D graphics functions and some of the 3D visualization
methods.

Chapter 1 gives a brief summary of options for colors, plotting symbols,
and line types.

4.2 Panel Displays

A panel display is an array of two-dimensional graphical summaries of pairs
of variables in a multivariate dataset. For example, a scatterplot matrix dis-
plays the scatterplots for all pairs of variables in an array. The pairs function
in the graphics package produces a scatterplot matrix, as shown in Figures
4.1 and 4.2 in Example 4.1, and Figure 3.7 on page 75. An example of a panel
display of three-dimensional plots is Figure 4.5 on page 106.

97
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TABLE 4.1: Graphics Functions for Multivariate Data in R
(graphics) and Other Packages

Method in (graphics) in (package)
3D scatterplot cloud (lattice)
Matrix of scatterplots pairs splom (lattice)
Bivariate density surface persp wireframe (lattice)
Contour plot contour, image contourplot (lattice)

contourLines contour (MASS)
filled.contour levelplot (lattice)

Parallel coord. plot parallel (lattice)
parcoord (MASS)

Star plot stars
Segment plot stars
Interactive 3D graphics (rggobi), (rgl)

Example 4.1 (Scatterplot matrix)

We compare the four variables in the iris data for the species virginica, in a
scatterplot matrix.

data(iris)
#virginica data in first 4 columns of the last 50 obs.
pairs(iris[101:150, 1:4])

In the plot produced by the pairs command above (not shown) the variable
names will appear along the diagonal. The pairs function takes an optional
argument diag.panel, which is a function that determines what is displayed
along the diagonal. For example, to obtain a graph with estimated density
curves along the diagonal, supply the name of a function to plot the densities.
The function below called panel.d plots the densities.

panel.d <- function(x, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(usr[1:2], 0, .5))
lines(density(x))

}

In panel.d, the graphics parameter usr specifies the extremes of the user co-
ordinates of the plotting region. Before plotting, we apply the scale function
to standardize each of the one-dimensional samples.

x <- scale(iris[101:150, 1:4])
r <- range(x)
pairs(x, diag.panel = panel.d, xlim = r, ylim = r)
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The pairs plot is displayed in Figure 4.1. From the plot we can observe that
the length variables are positively correlated, and the width variables appear
to be positively correlated. Other structure could be present in the data that
is not revealed by the bivariate marginal distributions.

The lattice package [239] provides functions to construct panel displays.
Here we illustrate the scatterplot matrix function splom in lattice.

library(lattice)
splom(iris[101:150, 1:4]) #plot 1

#for all 3 at once, in color, plot 2
splom(iris[,1:4], groups = iris$Species)

#for all 3 at once, black and white, plot 3
splom(~iris[1:4], groups = Species, data = iris,

col = 1, pch = c(1, 2, 3), cex = c(.5,.5,.5))

The last plot (plot 3) is displayed in Figure 4.2. It is displayed here in black
and white, but on screen the panel display is easier to interpret when displayed
in color (plot 2). Also see the 3D scatterplot of the iris data in Figure 4.5. �
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FIGURE 4.1: Scatterplot matrix (pairs) comparing four measurements
of iris virginica species in Example 4.1.

For other types of panel displays, see the conditioning plots [42, 48, 49]
implemented in coplot.



100 Statistical Computing with R

Scatter Plot Matrix
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FIGURE 4.2: Scatterplot matrix comparing four measurements of iris
data: setosa (circle), versicolor (triangle), virginica (cross) from Example 4.1.

4.3 Surface Plots and 3D Scatter Plots

Several packages provide surface and contour plots. The persp (graphics)
function draws perspective plots of surfaces over the plane. Try running the
demo examples for persp, to see many interesting graphs. The command
is simply demo(persp). We will also look at 3D methods in the lattice
graphics package and the rgl package [239, 278, 2].

4.3.1 Surface plots

For certain graphs we need to mesh a grid of regularly spaced points in the
plane. The command for this is expand.grid. If we do not need to save the
x, y values, and only need the function values {zij = f(xi, yj)}, the outer
function can be used.
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Example 4.2 (Plot bivariate normal density)

Plot the standard bivariate normal density

f(x, y) =
1
2π
e−

1
2 (x2+y2), (x, y) ∈ R2.

Code to plot the bivariate standard normal density surface using the persp
function is below. Most of the parameters are optional; x, y, z are required.
For this function we need the complete grid of z values, but only one vector
of x and one vector of y values. In this example, zij = f(xi, yj) are computed
by the outer function.

#the standard BVN density
f <- function(x,y) {

z <- (1/(2*pi)) * exp(-.5 * (x^2 + y^2))
}

y <- x <- seq(-3, 3, length= 50)
z <- outer(x, y, f) #compute density for all (x,y)

persp(x, y, z) #the default plot

persp(x, y, z, theta = 45, phi = 30, expand = 0.6,
ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "f(x, y)")

The second version of the perspective plot is shown in Figure 4.3. �

R note 4.1 The outer function outer(x, y, f) in Example 4.2 applies the
third argument, a bivariate function, to the grid of (x, y) values. The returned
value is a matrix of function values for every point (xi, yj) in the grid. Storing
the grid was not necessary.

For a presentation, adding color (say, col = "lightblue") produces a
more attractive plot. The box can be suppressed by box = FALSE.

Adding elements to a perspective plot

The persp function returns the ‘viewing transformation’ in a 4× 4 matrix.
This transformation can be used to add elements to the plot.

Example 4.3 (Add elements to perspective plot)

This example uses the viewing transformation returned by the perspective
plot of the standard bivariate normal density to add points, lines, and text to
the plot.
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FIGURE 4.3: Perspective plot of the standard bivariate normal density in
Example 4.2.

#store viewing transformation in M
persp(x, y, z, theta = 45, phi = 30,

expand = .4, box = FALSE) -> M

The transformation returned by the persp function call is

[,1] [,2] [,3] [,4]
[1,] 2.357023e-01 -0.1178511 0.2041241 -0.2041241
[2,] 2.357023e-01 0.1178511 -0.2041241 0.2041241
[3,] -2.184757e-16 4.3700078 2.5230252 -2.5230252
[4,] 1.732284e-17 -0.3464960 -2.9321004 3.9321004

This transformation M is applied to (x, y, z, t) to project points onto the screen
for display in the same coordinate system used to draw the perspective plot.

#add some points along a circle
a <- seq(-pi, pi, pi/16)
newpts <- cbind(cos(a), sin(a)) * 2
newpts <- cbind(newpts, 0, 1) #z=0, t=1
N <- newpts %*% M
points(N[,1]/N[,4], N[,2]/N[,4], col=2)

#add lines
x2 <- seq(-3, 3, .1)
y2 <- -x2^2 / 3
z2 <- dnorm(x2) * dnorm(y2)
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N <- cbind(x2, y2, z2, 1) %*% M
lines(N[,1]/N[,4], N[,2]/N[,4], col=4)

#add text
x3 <- c(0, 3.1)
y3 <- c(0, -3.1)
z3 <- dnorm(x3) * dnorm(y3) * 1.1
N <- cbind(x3, y3, z3, 1) %*% M
text(N[1,1]/N[1,4], N[1,2]/N[1,4], "f(x,y)")
text(N[2,1]/N[2,4], N[2,2]/N[2,4], bquote(y==-x^2/3))

The plot with added elements is shown in Figure 4.4 (Note: R provides a
function trans3d to compute the coordinates above. Here we have shown the
calculations.) �

f(x,y)

y = −x2 3

FIGURE 4.4: Perspective plot of the standard bivariate normal density
with elements added using the viewing transformation returned by persp in
Example 4.3.

Other functions for graphing surfaces

Surfaces can also be graphed using the wireframe (lattice) function
[239]. Supply a formula z ∼ x * y and a data frame or data matrix con-
taining the points (x, y, z).
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Example 4.4 (Surface plot using wireframe(lattice))

The following code displays a surface plot of the bivariate normal density
similar to Figure 4.3 using wireframe(lattice). The wireframe function
requires a formula z ∼ x ∗ y, where z = f(x, y) is the surface to be plotted.
The syntax for wireframe requires that x, y and z have the same number of
rows. We can generate the matrix of (x, y) coordinates using expand.grid.

library(lattice)
x <- y <- seq(-3, 3, length= 50)

xy <- expand.grid(x, y)
z <- (1/(2*pi)) * exp(-.5 * (xy[,1]^2 + xy[,2]^2))
wireframe(z ~ xy[,1] * xy[,2])

The wireframe plot (not shown) looks very similar to the perspective plot of
the bivariate normal density in Figure 4.3. �

An interactive 3D display is provided by the graphics package rgl [2]. If
the rgl package is installed, run the demo. One of the examples in the demo
shows a bivariate normal density. (Actually, the data used to plot the surface
in this demo is generated by smoothing simulated bivariate normal data.)

library(rgl)
demo(bivar) #or demo(rgl) to see more

It may be helpful to enlarge the graph window. The graph can be rotated and
tilted by the mouse to see the surface from different angles. For the source
code of this demo, refer to the file ./demo/bivar.r in the directory where rgl
is installed.

Chapter 10 gives examples of methods to construct and plot density esti-
mates for bivariate data. See e.g. Figures 10.11, 10.12(a), and 10.13.

4.3.2 Three-dimensional scatterplot

The cloud (lattice) [239] function produces 3D scatterplots. A possible
application of this type of plot is to explore whether there are groups or
clusters in the data. To apply the cloud function, provide a formula z ∼ x∗y,
where z = f(x, y) is the surface to be plotted. The first part of the following
example is a simple application of cloud with groups identified by color. The
second part of the example illustrates several options.

Example 4.5 (3D scatterplot)

This example uses the cloud function in the lattice package to display a
3D scatterplot of the iris data. There are three species of iris and each is
measured on four variables. The following code produces a 3D scatterplot of
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sepal length, sepal width, and petal length. The plot produced is similar to
(3) in Figure 4.5.

library(lattice)
attach(iris)
#basic 3 color plot with arrows along axes
print(cloud(Petal.Length ~ Sepal.Length * Sepal.Width,

data=iris, groups=Species))

The iris data has four variables, so there are four subsets of three variables
to graph. To see all four plots on the screen, use the more and split options.
The split arguments determine the location of the plot within the panel
display.

print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,
data = iris, groups = Species, main = "1", pch=1:3,
scales = list(draw = FALSE), zlab = "SL",
screen = list(z = 30, x = -75, y = 0)),
split = c(1, 1, 2, 2), more = TRUE)

print(cloud(Sepal.Width ~ Petal.Length * Petal.Width,
data = iris, groups = Species, main = "2", pch=1:3,
scales = list(draw = FALSE), zlab = "SW",
screen = list(z = 30, x = -75, y = 0)),
split = c(2, 1, 2, 2), more = TRUE)

print(cloud(Petal.Length ~ Sepal.Length * Sepal.Width,
data = iris, groups = Species, main = "3", pch=1:3,
scales = list(draw = FALSE), zlab = "PL",
screen = list(z = 30, x = -55, y = 0)),
split = c(1, 2, 2, 2), more = TRUE)

print(cloud(Petal.Width ~ Sepal.Length * Sepal.Width,
data = iris, groups = Species, main = "4", pch=1:3,
scales = list(draw = FALSE), zlab = "PW",
screen = list(z = 30, x = -55, y = 0)),
split = c(2, 2, 2, 2))

detach(iris)

The four 3D scatterplots are shown in Figure 4.5. The plots show that
the three species of iris are separated into groups or clusters in the three
dimensional subspaces spanned by any three of the four variables. There
is some structure evident in these plots. One might follow up with cluster
analysis or principal components analysis to analyze the apparent structure
in the data. �
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R note 4.2 Syntax for cloud: The screen option sets the orientation of the
axes. Setting draw = FALSE suppresses arrows and tick marks on the axes.

Syntax for print(cloud): To split the screen into n rows and m columns,
and put the plot into position (r, c), set split equal to the vector (r, c, n,m).
One unusual feature of cloud is that unlike most graphics functions in R,
cloud does not plot a panel figure unless we print it. See print.trellis

for documentation on the print method for cloud.

1

Petal.Length
Petal.Width

SL

2

Petal.Length
Petal.Width

SW

3

Sepal.Length
Sepal.Width

PL

4

Sepal.Length
Sepal.Width

PW

FIGURE 4.5: 3D scatterplots of iris data produced by cloud (lattice)
in Example 4.5, with each species represented by a different plotting character.

4.4 Contour Plots

A contour plot represents a 3D surface (x, y, f(x, y)) in the plane by pro-
jecting the level curves f(x, y) = c for selected constants c. The functions
contour (graphics) and contourplot (lattice) [239] produce contour
plots. The functions filled.contour in the graphics package and levelplot
function in the lattice package produce filled contour plots. Both contour
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and contourplot label the contours by default. A variation of this type of
plot is image (graphics), which uses color to identify contour levels.

Example 4.6 (Contour plot)

A good example is provided in R using the volcano data. Information about
this data is in the help file for volcano. The data is an 87 by 61 matrix
containing topographic information for the Maunga Whau volcano.

#contour plot with labels
contour(volcano, asp = 1, labcex = 1)

#another version from lattice package
library(lattice)
contourplot(volcano) #similar to above

Figure 4.6(a) shows the contour plot of the volcano data produced by the
contour function.

It may also be interesting to see the 3D surface of the volcano for comparison
with the contour plots. A 3D view of the volcano surface is provided in the
examples of the persp function. The R code for the example is in the persp
help page. To run the example, type example(persp).

If the rgl package is installed, an interactive 3D view of the volcano appears
in the examples. When the volcano surface is displayed, use the mouse to
rotate and tilt the surface, to view it from different angles.

library(rgl)
example(rgl)

Yet another 3D view of the volcano data, with shading to indicate contour
levels, appears in the examples of the wireframe function in the lattice
package. See the first example in the wireframe help file. �

Example 4.7 (Filled contour plots)

A contour plot with a 3D effect could be displayed in 2D by overlaying the
contour lines on a color map corresponding to the height. The image function
in the graphics package provides the color background for the plot. The plot
produced below is similar to Figure 4.6(a), with the background of the plot
in terrain colors.

image(volcano, col = terrain.colors(100), axes = FALSE)
contour(volcano, levels = seq(100,200,by = 10), add = TRUE)
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FIGURE 4.6: Contour plot and levelplot of volcano data in Examples 4.6
and 4.7.

Using image without contour produces essentially the same type of plot as
filled.contour (graphics) and levelplot (lattice). The contours of
filled.contour and levelplot are identified by a legend rather than super-
imposing the contour lines. Compare the plot produced by image with the
following two plots.

filled.contour(volcano, color = terrain.colors, asp = 1)
levelplot(volcano, scales = list(draw = FALSE),

xlab = "", ylab = "")

The plot produced by levelplot is shown in Figure 4.6(b). (The display on
the screen will be in color.) �

A limitation of 2D scatterplots is that for large data sets, there are often
regions where data is very dense, and regions where data is quite sparse. In
this case, the 2D scatterplot does not reveal much information about the
bivariate density. Another approach is to produce a 2D or flat histogram,
with the density estimate in each bin represented by an appropriate color.

Example 4.8 (2D histogram)

In this example, simulated bivariate normal data is displayed in a flat his-
togram with hexagonal bins. The hexbin function in package hexbin [38]
(available from Bioconductor repository) produces a basic version of this plot
in grayscale, shown in Figure 4.7.

library(hexbin)
x <- matrix(rnorm(4000), 2000, 2)
plot(hexbin(x[,1], x[,2]))
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Compare the flat density histogram in Figure 4.7 with the bivariate histogram
in Figure 10.11 on page 308. Note that the darker colors correspond to the
regions where the density is highest, and colors are increasingly lighter along
radial lines extending from the mode near the origin. The plot exhibits ap-
proximately circular symmetry, consistent with the standard bivariate normal
density.

The bivariate histogram can also be displayed in 2D using a color palette,
such as heat.colors or terrain.colors, to represent the density for each
bin. A similar type of plot is implemented in the gplots package [290]. The
plot (not shown) resulting from the following code is similar to Figure 4.7,
but with color and square bins.

library(gplots)
hist2d(x, nbins = 30,

col = c("white", rev(terrain.colors(30))))
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FIGURE 4.7: Flat density histogram of bivariate normal data with hexag-
onal bins produced by hexbin in Example 4.8.
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4.5 Other 2D Representations of Data

In addition to contour plots and other projections of data into two dimen-
sions, there are several other methods for representing multivariate data in
two dimensions. These include, among others, Andrews curves, parallel co-
ordinate plots, and various iconographic displays such as segment plots and
star plots.

4.5.1 Andrews Curves

If X1, . . . , Xn ∈ Rd, one approach to visualizing the data in two dimen-
sions is to map each of the sample data vectors onto a real valued function.
Andrews Curves [10] map each sample observation xi = xi1, . . . , xid to the
function

fi(t) =
xi1√

2
+ xi2 sin t+ xi3 cos t+ xi4 sin 2t+ xi5 cos 2t+ . . .

=
xi1√

2
+

∑
1≤k≤d/2

xi,2k sinkt+
∑

1≤k<d/2

xi,2k+1 cos kt, −π ≤ t ≤ π.

Thus, each observation is represented by its projection onto a set of orthog-
onal basis functions {2−1/2, {sinkt}∞k=1, {coskt}∞k=1}. Notice that differences
between measurements are amplified more in the lower frequency terms, so
that the representation depends on the order of the variables or features.

Example 4.9 (Andrews curves)

In this example, measurements of leaves taken at N. Queensland, Australia for
two types of leaf architecture [162] are represented by Andrews curves. The
data set is leafshape17 in the DAAG package [184, 185]. Three measurements
(leaf length, petiole, and leaf width) correspond to points in R3. It is easiest
to interpret the plots if leaf architectures are identified by different colors,
but here we use different line types. To plot the curves, define a function to
compute fi(t) for arbitrary points xi in R3 and −π ≤ t ≤ π. Evaluate the
function along the interval [−π, π] for each sample point xi.

library(DAAG)
attach(leafshape17)

f <- function(a, v) {
#Andrews curve f(a) for a data vector v in R^3
v[1]/sqrt(2) + v[2]*sin(a) + v[3]*cos(a)

}
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#scale data to range [-1, 1]
x <- cbind(bladelen, petiole, bladewid)
n <- nrow(x)
mins <- apply(x, 2, min) #column minimums
maxs <- apply(x, 2, max) #column maximums
r <- maxs - mins #column ranges
y <- sweep(x, 2, mins) #subtract column mins
y <- sweep(y, 2, r, "/") #divide by range
x <- 2 * y - 1 #now has range [-1, 1]

#set up plot window, but plot nothing yet
plot(0, 0, xlim = c(-pi, pi), ylim = c(-3,3),

xlab = "t", ylab = "Andrews Curves",
main = "", type = "n")

#now add the Andrews curves for each observation
#line type corresponds to leaf architecture
#0=orthotropic, 1=plagiotropic
a <- seq(-pi, pi, len=101)
dim(a) <- length(a)
for (i in 1:n) {

g <- arch[i] + 1
y <- apply(a, MARGIN = 1, FUN = f, v = x[i,])
lines(a, y, lty = g)

}
legend(3, c("Orthotropic", "Plagiotropic"), lty = 1:2)
detach(leafshape17)

The plot of Andrews curves for this example is shown in Figure 4.8. The
plot reveals similarities within plagiotropic and orthotropic leaf architecture
groups, and differences between these groups. In general, this type of plot
may reveal possible clustering of data. �

R note 4.3 In Example 4.9 the sweep operator is applied to subtract the
column minimums above. The syntax is

sweep(x, MARGIN, STATS, FUN="-", ...)

By default, the statistic is subtracted but other operations are possible. Here

y <- sweep(x, 2, mins) #subtract column mins

y <- sweep(y, 2, r, "/") #divide by range

sweeps out (subtracts) the minimum of each columns (margin = 2). Then the
ranges of each of the three columns (in r) are swept out; that is, each column
is divided by its range. �



112 Statistical Computing with R

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

t

A
nd

re
w

s 
C

ur
ve

s

Orthotropic
Plagiotropic

FIGURE 4.8: Andrews curves for leafshape17 (DAAG) data at latitude
17.1: leaf length, width, and petiole measurements in Example 4.9. Curves
are identified by leaf architecture.

R note 4.4 In Figure 4.8 to identify the curves by color, replace lty with
col parameters in the lines and legend statements. �

4.5.2 Parallel Coordinate Plots

Parallel coordinate plots provide another approach to visualization of mul-
tivariate data. The representation of vectors by parallel coordinates was in-
troduced by Inselberg [152] and applied for data analysis by Wegman [294].

Rather than represent axes as orthogonal, the parallel coordinate system
represents axes as equidistant parallel lines. Usually these lines are horizontal
with common origin, scale, and orientation. Then to represent vectors in Rd,
the parallel coordinates are simply the coordinates along the d copies of the
real line. Each coordinate of a vector is then plotted along its corresponding
axis, and the points are joined together with line segments.

Parallel coordinate plots are implemented by the parcoord function in the
MASS package [278] and the parallel function in the lattice package [239].
The parcoord function displays the axes as vertical lines. The panel function
parallel displays the axes as horizontal lines.
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Example 4.10 (Parallel coordinates)

This example illustrates using the parallel (lattice) function to construct
a panel display of parallel coordinate plots for the crabs (MASS) data [278].
The crabs data frame has 5 measurements on each of 200 crabs, from four
groups of size 50. The groups are identified by species (blue or orange) and
sex. The graph is best viewed in color. Here we use black and white, and for
readability select only 1/5 of the data.

library(MASS)
library(lattice)
trellis.device(color = FALSE) #black and white display
x <- crabs[seq(5, 200, 5), ] #get every fifth obs.
parallel(~x[4:8] | sp*sex, x)

The resulting parallel coordinate plots are displayed in Figure 4.9(a). The
labels along the vertical axis identify each axis corresponding to the five mea-
surements (frontal lobe size, rear width, carapace length, carapace width,
body depth). Much of the variability between groups is in overall size.

Adjusting the measurements of individual crabs for size may produce more
interesting plots. Following the suggestion in Venables and Ripley [278] we
adjust the measurements by the area of the carapace.

trellis.device(color = FALSE) #black and white display
x <- crabs[seq(5, 200, 5), ] #get every fifth obs.
a <- x$CW * x$CL #area of carapace
x[4:8] <- x[4:8] / sqrt(a) #adjust for size
parallel(~x[4:8] | sp*sex, x)

In the resulting plot in Figure 4.9(b), differences in species and sex are much
more evident after adjustment than in Figure 4.9(a). �

4.5.3 Segments, stars, and other representations

Multivariate data can be represented by a two dimensional icon or glyph,
such as a star. The Andrews curves in Example 4.9 are an example; the
curves are the two-dimensional symbols. Andrews curves were displayed su-
perimposed on the same coordinate system. Other representations as icons
are best displayed in a table, so that features of observations can be compared.
A tabular display does not have much practical value for high dimension or
large data sets, but can be useful for some small data sets. Some examples
include star plots and segment plots. This type of plot is easily obtained in
R using the stars (graphics) function.
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FIGURE 4.9: Parallel coordinate plots in Example 4.10 for a subset of the
crabs (MASS) data. (a) Differences between species (B=blue, O=orange) and
sex (M, F) are largely obscured by large variation in overall size. (b) After
adjusting the measurements for size of individual crabs, differences between
groups are evident.

Example 4.11 (Segment plot)

This example uses the subset of crabs (MASS) data from Example 4.10. As
in Example 4.10, individual measurements are adjusted for overall size by area
of carapace.

#segment plot
library(MASS) #for crabs data
attach(crabs)
x <- crabs[seq(5, 200, 5), ] #get every fifth obs.
x <- subset(x, sex == "M") #keep just the males
a <- x$CW * x$CL #area of carapace
x[4:8] <- x[4:8] / sqrt(a) #adjust for size

#use default color palette or other colors
palette(gray(seq(.4, .95, len = 5))) #use gray scale
#palette(rainbow(6)) #or use color
stars(x[4:8], draw.segments = TRUE,

labels = x$sp, nrow = 4,
ylim = c(-2,10), key.loc = c(3,-1))

#after viewing, restore the default colors
palette("default"); detach(crabs)
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The plot is shown in Figure 4.10. The observations are labeled by species. The
differences between the species (for males) in this sample are quite evident in
the plot. The plot suggests, for example, that orange crabs have greater body
depth relative to carapace width than blue crabs. �
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FL
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BD

FIGURE 4.10: Segment plot of a subset of the males in the crabs (MASS)
data set in Example 4.11. The measurements have been adjusted by overall
size of the individual crab. The two species are blue (B) and orange (O).

4.6 Other Approaches to Data Visualization

Many other methods for data visualization are in the literature and we men-
tion here only a few more. Asimov’s grand tour [14] is an interactive graphical
tool that projects data onto a plane, rotating through all angles to reveal any
structure in the data. The grand tour is similar to projection pursuit ex-
ploratory data analysis (PPEDA) (Friedman and Tukey [100]). In both cases,
structure might be defined as departure from normality. Once the structure
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is removed, the search can be repeated until no significant structure remains.
Principal components analysis similarly uses projections (see e.g. [188, Ch. 8]
and [278, Sec. 11.1]). When the data are projected onto the eigenvector corre-
sponding to the maximal eigenvalue of the covariance matrix, this first princi-
pal component is in the direction that explains the most variation in the data.
Dimension is reduced by projecting onto a small number of the principal com-
ponents that collectively explain most of the variation. Pattern recognition
and data mining are two broad areas of research that use some visualization
methods. See Ripley [224] or Duda and Hart [75]. An interesting collection of
topics on data mining and data visualization is found in Rao, Wegman, and
Solka [222]. For an excellent resource on visualization of categorical data see
Friendly [102] and http://www.math.yorku.ca/SCS/vcd/.

In addition to the R functions and packages mentioned in this chapter,
several methods are available in other packages. Again, here we only name
a few. Chernoff’s faces [46] are implemented in faces(aplpack) [298] and
in faces(TeachingDemos) [254]. Mosaic plots for visualization of categorical
data are available in mosaicplot. Also see the package vcd [199] for visu-
alization of categorical data. The functions prcomp and princomp provide
principal components analysis. Many packages for R fall under the data min-
ing or machine learning umbrella; for a start see nnet [278], rpart [268], and
randomForest [176]. More packages are described on the Multivariate Task
View and Machine Learning Task View on the CRAN web. Also see the graph
gallery at http://addictedtor.free.fr/graphiques/.

The rggobi [167] package provides a command-line interface to GGobi,
which is an open source visualization program for exploring high-dimensional
data. GGobi has a graphical user interface, providing dynamic and interactive
graphics. The GGobi software can be obtained from http://www.ggobi.org/
downloads/. Readers are referred to documentation and examples at http:
//www.ggobi.org/rggobi and the book by Cook and Swayne [52] featuring
examples using R and GGobi.

Exercises

4.1 Generate 200 random observations from the multivariate normal distribution
having mean vector µ = (0, 1, 2) and covariance matrix

Σ =

⎡⎣ 1.0 − 0.5 0.5
− 0.5 1.0 − 0.5

0.5 − 0.5 1.0

⎤⎦ .
Construct a scatterplot matrix and verify that the location and correlation
for each plot agrees with the parameters of the corresponding bivariate dis-
tributions.
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4.2 Add a fitted smooth curve to each of the scatterplots in Figure 4.1 of Example
4.1. (?panel.smooth)

4.3 The random variables X and Y are independent and identically distributed
with normal mixture distributions. The components of the mixture have
N(0, 1) and N(3, 1) distributions with mixing probabilities p1 and p2 = 1−p1

respectively. Generate a bivariate random sample from the joint distribution
of (X,Y ) and construct a contour plot. Adjust the levels of the contours so
that the the contours of the second mode are visible.

4.4 Construct a filled contour plot of the bivariate mixture in Exercise 4.3.

4.5 Construct a surface plot of the bivariate mixture in Exercise 4.3.

4.6 Repeat Exercise 4.3 for various different choices of the parameters of the
mixture model, and compare the distributions through contour plots.

4.7 Create a parallel coordinates plot of the crabs (MASS) [278] data using all 200
observations. Compare the plots before and after adjusting the measurements
by the size of the crab. Interpret the resulting plots.

4.8 Create a plot of Andrews curves for the leafshape17 (DAAG) [185] data,
using the logarithms of measurements (logwid, logpet, loglen). Set line type
to identify leaf architecture as in Example 4.9. Compare with the plot in
Figure 4.8.

4.9 Refer to the full leafshape (DAAG) data set. Produce Andrews curves for
each of the six locations. Split the screen into six plotting areas, and display
all six plots on one screen. Set line type or color to identify leaf architecture.
Do the plots suggest differences in leaf shape by location?

4.10 Generalize the function in Example 4.9 to return the Andrews curve function
for vectors in Rd, where the dimension d ≥ 2 is arbitrary. Test this function
by producing Andrews curves for the iris data (d = 4) and crabs (MASS)
data (d = 5).

4.11 Refer to the full leafshape (DAAG) data set. Display a segment style stars
plot for leaf measurements at latitude 42 (Tasmania). Repeat using the loga-
rithms of the measurements.





Chapter 5

Monte Carlo Integration and
Variance Reduction

5.1 Introduction

Monte Carlo integration is a statistical method based on random sampling.
Monte Carlo methods were developed in the late 1940’s after World War II,
but the idea of random sampling was not new. As early as 1777, Comte de
Buffon used a random experiment to empirically check his probability calcula-
tion for the famous Buffon’s needle experiment. Another well known example
is that W. S. Gossett used random sampling to study the distribution of what
are now called “Student t” statistics, publishing under the alias Student in
1908 [256]. The development of ENIAC, the first electronic computer, com-
pleted in 1946 at the University of Pennsylvania, and the seminal article by
Metropolis and Ulam in 1949 [198] marked an important new era in the appli-
cation of sampling methods. Teams of scientists at the Los Alamos National
Laboratory and many other researchers contributed to the early development,
including Ulam, Richtmyer, and von Neumann [276, 283]. For an interesting
discussion of the history of the Monte Carlo method and scientific computing,
see Eckhart [78] and Metropolis [195, 196].

5.2 Monte Carlo Integration

Let g(x) be a function and suppose that we want to compute
∫ b

a
g(x)dx

(assuming that this integral exists). Recall that if X is a random variable
with density f(x), then the mathematical expectation of the random variable
Y = g(X) is

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx.

If a random sample is available from the distribution of X , an unbiased esti-
mator of E[g(X)] is the sample mean.

119
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5.2.1 Simple Monte Carlo estimator

Consider the problem of estimating θ =
∫ 1

0
g(x)dx. If X1, . . . , Xm is a

random Uniform(0,1) sample then

θ̂ = gm(X) =
1
m

m∑
i=1

g(Xi)

converges to E[g(X)] = θ with probability 1, by the Strong Law of Large
Numbers. The simple Monte Carlo estimator of

∫ 1

0
g(x)dx is gm(X).

Example 5.1 (Simple Monte Carlo integration)

Compute a Monte Carlo estimate of

θ =
∫ 1

0

e−x dx

and compare the estimate with the exact value.

m <- 10000
x <- runif(m)
theta.hat <- mean(exp(-x))
print(theta.hat)
print(1 - exp(-1))

[1] 0.6355289
[1] 0.6321206

The estimate is θ̂ .= 0.6355 and θ = 1 − e−1 .= 0.6321. �

To compute
∫ b

a
g(t)dt, make a change of variables so that the limits of

integration are from 0 to 1. The linear transformation is y = (t− a)/(b − a)
and dy = (1/(b− a))dt. Substituting,∫ b

a

g(t)dt =
∫ 1

0

g(y(b− a) + a)(b− a)dy.

Alternately, we can replace the Uniform(0,1) density with any other density
supported on the interval between the limits of integration. For example,∫ b

a

g(t)dt = (b− a)
∫ b

a

g(t)
1

b− a
dt

is b − a times the expected value of g(Y ), where Y has the uniform density
on (a, b). The integral is therefore (b− a) times the average value of g(·) over
(a, b).
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Example 5.2 (Simple Monte Carlo integration, cont.)

Compute a Monte Carlo estimate of

θ =
∫ 4

2

e−x dx

and compare the estimate with the exact value of the integral.

m <- 10000
x <- runif(m, min=2, max=4)
theta.hat <- mean(exp(-x)) * 2
print(theta.hat)
print(exp(-2) - exp(-4))

[1] 0.1172158
[1] 0.1170196

The estimate is θ̂ .= 0.1172 and θ = e−2 − e−4 .= 0.1170. �

To summarize, the simple Monte Carlo estimator of the integral θ =
∫ b

a
g(x)dx

is computed as follows.

1. Generate X1, . . . , Xm, iid from Uniform(a, b).

2. Compute g(X) = 1
mg(Xi).

3. θ̂ = (b− a)g(X).

Example 5.3 (Monte Carlo integration, unbounded interval)

Use the Monte Carlo approach to estimate the standard normal cdf

Φ(x) =
∫ x

−∞

1√
2π

e−t2/2 dt.

First, notice that we cannot apply the algorithm above directly because
the limits of integration cover an unbounded interval. However, we can break
this problem into two cases: x ≥ 0 and x < 0, and use the symmetry of
the normal density to handle the second case. Then the problem is to es-
timate θ =

∫ x

0
e−t2/2dt for x > 0. This can be done by generating random

Uniform(0, x) numbers, but it would mean changing the parameters of the
uniform distribution for each different value of the cdf required. Suppose that
we prefer an algorithm that always samples from Uniform(0,1).

This can be accomplished by a change of variables. Making the substitution
y = t/x, we have dt = xdy and

θ =
∫ 1

0

xe−(xy)2/2dy.
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Thus, θ = EY [xe−(xY )2/2], where the random variable Y has the Uniform(0,1)
distribution. Generate iid Uniform(0,1) random numbers u1, . . . , um, and
compute

θ̂ = gm(u) =
1
m

m∑
i=1

x e−(uix)2/2.

The sample mean θ̂ converges to E[θ̂] = θ as m → ∞. If x > 0, the estimate
of Φ(x) is 0.5 + θ̂/

√
2π. If x < 0 compute Φ(x) = 1 − Φ(−x).

x <- seq(.1, 2.5, length = 10)
m <- 10000
u <- runif(m)
cdf <- numeric(length(x))
for (i in 1:length(x)) {

g <- x[i] * exp(-(u * x[i])^2 / 2)
cdf[i] <- mean(g) / sqrt(2 * pi) + 0.5

}

Now the estimates θ̂ for ten values of x are stored in the vector cdf. Com-
pare the estimates with the value Φ(x) computed (numerically) by the pnorm
function.

Phi <- pnorm(x)
print(round(rbind(x, cdf, Phi), 3))

Results for several values x > 0 are shown compared with the value of the
normal cdf function pnorm. The Monte Carlo estimates appear to be very
close to the pnorm values. (The estimates will be worse in the extreme upper
tail of the distribution.)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

x 0.10 0.367 0.633 0.900 1.167 1.433 1.700 1.967 2.233 2.500

cdf 0.54 0.643 0.737 0.816 0.879 0.925 0.957 0.978 0.990 0.997

Phi 0.54 0.643 0.737 0.816 0.878 0.924 0.955 0.975 0.987 0.994

Notice that it would have been simpler to generate random Uniform(0, x)
random variables and skip the transformation. This is left as an exercise. In
fact, the integrand of the previous example is itself a density function, and we
can generate random variables from this density. This provides a more direct
approach to estimating the integral. �

Example 5.4 (Example 5.3, cont.)

Let I(·) be the indicator function, and Z ∼ N(0, 1). Then for any constant x
we have E[I(Z ≤ x)] = P (Z ≤ x) = Φ(x), the standard normal cdf evaluated
at x.
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Generate a random sample z1, . . . , zm from the standard normal distribu-
tion. Then the sample mean

Φ̂(x) =
1
m

m∑
i=1

I(zi ≤ x)

converges with probability one to its expected value E[I(Z ≤ x)] = P (Z ≤ x)
= Φ(x).

x <- seq(.1, 2.5, length = 10)
m <- 10000
z <- rnorm(m)
dim(x) <- length(x)
p <- apply(x, MARGIN = 1,

FUN = function(x, z) {mean(z < x)}, z = z)

Now the estimates in p for the sequence of x values can be compared to the
result of the R normal cdf function pnorm.

Phi <- pnorm(x)

print(round(rbind(x, p, Phi), 3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

x 0.10 0.367 0.633 0.900 1.167 1.433 1.700 1.967 2.233 2.500

p 0.546 0.652 0.741 0.818 0.876 0.925 0.954 0.976 0.988 0.993

Phi 0.54 0.643 0.737 0.816 0.878 0.924 0.955 0.975 0.987 0.994

In this example, compared with the results in Example 5.3, it appears that
we have better agreement with pnorm in the upper tail, but worse agreement
near the center. �

Summarizing, if f(x) is a probability density function supported on a set
A, (that is, f(x) ≥ 0 for all x ∈ R and

∫
A
f(x) = 1), to estimate the integral

θ =
∫

A

g(x)f(x)dx,

generate a random sample x1, . . . , xm from the distribution f(x), and compute
the sample mean

θ̂ =
1
m

m∑
i=1

g(xi).

Then with probability one, θ̂ converges to E[θ̂] = θ as m→ ∞.
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The standard error of θ̂ = 1
m

∑m
i=1 g(xi).

The variance of θ̂ is σ2/m, where σ2 = V arf (g(X)). When the distribution
of X is unknown we substitute for FX the empirical distribution Fm of the
sample x1, . . . , xm. The variance of θ̂ can be estimated by

σ̂2

m
=

1
m2

m∑
i=1

[g(xi) − g(x)]2. (5.1)

Note that
1
m

m∑
i=1

[g(xi) − g(x)]2 (5.2)

is the plug-in estimate of V ar(g(X)). That is, (5.2) is the variance of U , where
U is uniformly distributed on the set of replicates {g(xi)}. The corresponding
estimate of standard error of θ̂ is

ŝe(θ̂) =
σ̂√
m

=
1
m

{
m∑

i=1

[g(xi) − g(x)]2
}1/2

. (5.3)

The Central Limit Theorem implies that

θ̂ − E[θ̂]√
V ar θ̂

converges in distribution to N(0, 1) as m → ∞. Hence, if m is sufficiently
large, θ̂ is approximately normal with mean θ. The large-sample, approxi-
mately normal distribution of θ̂ can be applied to put confidence limits or
error bounds on the Monte Carlo estimate of the integral, and check for con-
vergence.

Example 5.5 (Error bounds for MC integration)

Estimate the variance of the estimator in Example 5.4, and construct approx-
imate 95% confidence intervals for the estimate of Φ(2) and Φ(2.5).

x <- 2
m <- 10000
z <- rnorm(m)
g <- (z < x) #the indicator function
v <- mean((g - mean(g))^2) / m
cdf <- mean(g)
c(cdf, v)
c(cdf - 1.96 * sqrt(v), cdf + 1.96 * sqrt(v))

[1] 9.772000e-01 2.228016e-06
[1] 0.9742744 0.9801256
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The probability P (I(Z < x) = 1) is Φ(2) � 0.977. Here g(X) has the
distribution of the sample proportion of 1’s in m = 10000 Bernoulli trials with
p
.= 0.977, and the variance of g(X) is therefore (0.977)(1 − 0.977)/10000 =

2.223e-06. The MC estimate 2.228e-06 of variance is quite close to this value.
For x = 2.5 the output is

[1] 9.94700e-01 5.27191e-07
[1] 0.9932769 0.9961231

The probability P (I(Z < x) = 1) is Φ(2.5) � 0.995. The Monte Carlo
estimate 5.272e-07 of variance is approximately equal to the theoretical value
(0.995)(1 − 0.995)/10000 = 4.975e-07. �

5.2.2 Variance and Efficiency

We have seen that a Monte Carlo approach to estimating the integral∫ b

a
g(x)dx is to represent the integral as the expected value of a function of

a uniform random variable. That is, if X ∼ Uniform(a, b), then f(x) = 1
b−a ,

a < x < b, and

θ =
∫ b

a

g(x)dx

= (b− a)
∫ b

a

g(x)
1

b− a
dx = (b− a)E[g(X)].

Recall that the sample-mean Monte Carlo estimator of the integral θ is
computed as follows.

1. Generate X1, . . . , Xm, iid from Uniform(a, b).
2. Compute g(X) = 1

mg(Xi).

3. θ̂ = (b− a)g(X).

The sample mean g(X) has expected value g(X) = θ/(b− a), and

V ar(g(X)) = (1/m)V ar(g(X)).

Therefore E[θ̂] = θ and

V ar(θ̂) = (b− a)2V ar(g(X)) =
(b− a)2

m
V ar(g(X)). (5.4)

By the Central Limit Theorem, for large m, g(X) is approximately normally
distributed, and therefore θ̂ is approximately normally distributed with mean
θ and variance given by (5.4).

The “hit-or-miss” approach to Monte Carlo integration also uses a sample
mean to estimate the integral, but the sample mean is taken over a different
sample and therefore this estimator has a different variance than formula (5.4).

Suppose f(x) is the density of a random variable X . The “hit-or-miss”
approach to estimating F (x) =

∫ x

−∞ f(t)dt is as follows.
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1. Generate a random sample X1, . . . , Xm from the distribution of X .
2. For each observation Xi, compute

g(Xi) = I(Xi ≤ x) =
{

1, Xi ≤ x;
0, Xi > x.

3. Compute F̂ (x) = g(X) = 1
m

∑m
i=1 I(Xi ≤ x).

Note that the random variable Y = g(X) has the Binomial(1, p) distribution,
where the success probability is p = P (X ≤ x) = F (x). The transformed
sample Y1, . . . , Ym are the outcomes of m independent, identically distributed
Bernoulli trials. The estimator F̂ (x) is the sample proportion p̂ = y/m, where
y is the total number of successes observed in m trials. Hence E[F̂ (x)] = p =
F (x) and V ar(F̂ (x)) = p(1 − p)/m = F (x)(1 − F (x))/m.

The variance of F̂ (x) can be estimated by p̂(1− p̂)/m = F̂ (x)(1− F̂ (x))/m.
The maximum variance occurs when F (x) = 1/2, so a conservative estimate
of the variance of F̂ (x) is 1/(4m).

Efficiency

If θ̂1 and θ̂2 are two estimators for θ, then θ̂1 is more efficient (in a statistical
sense) than θ̂2 if

V ar(θ̂1)

V ar(θ̂2)
< 1.

If the variances of estimators θ̂i are unknown, we can estimate efficiency by
substituting a sample estimate of the variance for each estimator.

Note that variance can alway be reduced by increasing the number of repli-
cates, so computational efficiency is also relevant.

5.3 Variance Reduction

We have seen that Monte Carlo integration can be applied to estimate
functions of the type E[g(X)]. In this section we consider several approaches
to reducing the variance in the sample mean estimator of θ = E[g(X)].

If θ̂1 and θ̂2 are estimators of the parameter θ, and V ar(θ̂2) < V ar(θ̂1),
then the percent reduction in variance achieved by using θ̂2 instead of θ̂1 is

100

(
V ar(θ̂1) − V ar(θ̂2)

V ar(θ̂1)

)
.
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The Monte Carlo approach to estimating θ = E[g(X)] is to compute the
sample mean g(X) for a large number m of replicates from the distribution
of g(X). The function g(·) is often a statistic; that is, an n-variate function
g(X1, . . . , Xn) of a sample. When g(X) is used in that context, we have
g(X) = g(X1, . . . , Xn), where X denotes the sample elements. Unless it is not
clear in context, however, for simplicity we use g(X).

Let

X(j) = {X(j)
1 , . . . , X(j)

n }, j = 1, . . . ,m

be iid from the distribution of X , and compute the corresponding replicates

Yj = g(X(j)
1 , . . . , X(j)

n ), j = 1, . . . ,m. (5.5)

Then Y1, . . . , Ym are independent and identically distributed with distribution
of Y = g(X), and

E[Y ] = E

⎡⎣ 1
m

m∑
j=1

Yj

⎤⎦ = θ.

Thus, the Monte Carlo estimator θ̂ = Y is unbiased for θ = E[Y ]. The
variance of the Monte Carlo estimator is

V ar(θ̂) = V arY =
V arfg(X)

m
.

Increasing the number of replicates m clearly reduces the variance of the
Monte Carlo estimator. However, a large increase in m is needed to get even
a small improvement in standard error. To reduce the standard error from 0.01
to 0.0001, we would need approximately 10000 times the number of replicates.
In general, if standard error should be at most e and V arf (g(X)) = σ2, then
m ≥ �σ2/e2� replicates are required.

Thus, although variance can always be reduced by increasing the number
of Monte Carlo replicates, the computational cost is high. Other methods for
reducing the variance can be applied that are less computationally expensive
than simply increasing the number of replicates.

In the following sections some approaches to reducing the variance of this
type of estimator are introduced. Several approaches have been covered in
the literature. Readers are referred to [69, 112, 113, 121, 228, 233, 238] for
reference and more examples.
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5.4 Antithetic Variables

Consider the mean of two identically distributed random variables U1 and
U2. If U1 and U2 are independent, then

V ar

(
U1 + U2

2

)
=

1
4
(V ar(U1) + V ar(U2)),

but in general we have

V ar

(
U1 + U2

2

)
=

1
4
(V ar(U1) + V ar(U2) + 2Cov(U1, U2)),

so the variance of (U1 + U2)/2 is smaller if U1 and U2 are negatively corre-
lated than when the variables are independent. This fact leads us to consider
negatively correlated variables as a possible method for reducing variance.

For example, suppose that X1, . . . , Xn are simulated via the inverse trans-
form method. For each of the m replicates we have generated Uj ∼ Uni-
form(0,1), and computed X(j) = F−1

X (Uj), j = 1, . . . , n. Note that if U is
uniformly distributed on (0, 1) then 1−U has the same distribution as U , but
U and 1 − U are negatively correlated. Then in (5.5)

Yj = g(F−1
X (U (j)

1 ), . . . , F−1
X (U (j)

n ))

has the same distribution as

Y ′
j = g(F−1

X (1 − U
(j)
1 ), . . . , F−1

X (1 − U (j)
n ).

Under what conditions are Yj and Y ′
j negatively correlated? Below it is

shown that if the function g is monotone, the variables Yj and Y ′
j are nega-

tively correlated.
Define (x1, . . . , xn) ≤ (y1, . . . , yn) if xj ≤ yj , j = 1, . . . , n. An n-variate

function g = g(X1, . . . , Xn) is increasing if it is increasing in its coordi-
nates. That is, g is increasing if g(x1, . . . , xn) ≤ g(y1, . . . , yn) whenever
(x1, . . . , xn) ≤ (y1, . . . , yn). Similarly g is decreasing if it is decreasing in
its coordinates. Then g is monotone if it is increasing or decreasing.

PROPOSITION 5.1 If X1, . . . , Xn are independent, and f and g are in-
creasing functions, then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]. (5.6)

Proof. Assume that f and g are increasing functions. The proof is by
induction on n. Suppose n = 1. Then (f(x) − f(y))(g(x) − g(y)) ≥ 0 for
all x, y ∈ R. Hence E[(f(X) − f(Y ))(g(X) − g(Y ))] ≥ 0, and

E[f(X)g(X)] + E[f(Y )g(Y )] ≥ E[f(X)g(Y )] +E[f(Y )g(X)].
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Here X and Y are iid, so

2E[f(X)g(X)] = E[f(X)g(X)] + E[f(Y )g(Y )]
≥ E[f(X)g(Y )] + E[f(Y )g(X)] = 2E[f(X)]E[g(X)],

so the statement is true for n = 1. Suppose that the statement (5.6) is true
for X ∈ Rn−1. Condition on Xn and apply the induction hypothesis to obtain

E[f(X)g(X)|Xn = xn] ≥ E[f(X1, . . . , Xn−1, xn)]E[g(X1, . . . , Xn−1, xn)]
= E[f((X)|Xn = xn]E[g((X)|Xn = xn)],

or
E[f(X)g(X)|Xn] ≥ E[f(X)|Xn]E[g(X)|Xn)].

Now E[f(X)|Xn] and E[g(X)|Xn)] are each increasing functions of Xn, so
applying the result for n = 1 and taking the expected values of both sides

E[f(X)g(X)] ≥ E[E[f(X)|Xn]E[g(X)|Xn)]] ≥ E[f(X)]E[g(X)].

�

COROLLARY 5.1 If g = g(X1, . . . , Xn) is monotone, then

Y = g(F−1
X (U1), . . . , F−1

X (Un))

and
Y ′ = g(F−1

X (1 − U1), . . . , F−1
X (1 − Un)).

are negatively correlated.

Proof. Without loss of generality we can suppose that g is increasing. Then

Y = g(F−1
X (U1), . . . , F−1

X (Un))

and
−Y ′ = f = −g(F−1

X (1 − U1), . . . , F−1
X (1 − Un))

are both increasing functions. Therefore E[g(U)f(U)] ≥ E[g(U)]E[f(U)] and
E[Y Y ′] ≤ E[Y ]E[Y ′], which implies that

Cov(Y, Y ′) = E[Y Y ′] − E[Y ]E[Y ′] ≤ 0,

so Y and Y ′ are negatively correlated. �

The antithetic variable approach is easy to apply. If m Monte Carlo repli-
cates are required, generate m/2 replicates

Yj = g(F−1
X (U (j)

1 ), . . . , F−1
X (U (j)

n )) (5.7)
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and the remaining m/2 replicates

Y ′
j = g(F−1

X (1 − U
(j)
1 ), . . . , F−1

X (1 − U (j)
n )), (5.8)

where U (j)
i are iid Uniform(0,1) variables, i = 1, . . . , n, j = 1, . . . ,m/2. Then

the antithetic estimator is

θ̂ =
1
m
{Y1 + Y ′

1 + Y2 + Y ′
2 + · · · + Ym/2 + Y ′

m/2}

=
2
m

m/2∑
j=1

(
Yj + Y ′

j

2

)
.

Thus nm/2 rather than nm uniform variates are required, and the variance
of the Monte Carlo estimator is reduced by using antithetic variables.

Example 5.6 (Antithetic variables)

Refer to Example 5.3, illustrating Monte Carlo integration applied to estimate
the standard normal cdf

Φ(x) =
∫ x

−∞

1√
2π

e−t2/2 dt.

Repeat the estimation using antithetic variables, and find the approximate
reduction in standard error. In this example (after change of variables) the
target parameter is θ = EU [xe−(xU)2/2], where U has the Uniform(0,1) distri-
bution.

By restricting the simulation to the upper tail (see Example 5.3) the func-
tion g(·) is monotone, so the hypothesis of Corollary 5.1 is satisfied. Generate
random numbers u1, . . . , um/2 ∼ Uniform(0, 1) and compute half of the repli-
cates using

Yj = g(j)(u) = x e−(ujx)2/2, j = 1, . . . ,m/2

as before, but compute the remaining half of the replicates using

Y ′
j = x e−((1−uj)x)2/2, j = 1, . . . ,m/2.

The sample mean

θ̂ = gm(u) =
1
m

m/2∑
j=1

(
x e−(ujx)2/2 + x e−((1−uj)x)2/2

)

=
1

m/2

m/2∑
j=1

(
x e−(ujx)2/2 + x e−((1−uj)x)2/2

2

)
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converges to E[θ̂] = θ asm→ ∞. If x > 0, the estimate of Φ(x) is 0.5+θ̂/
√

2π.
If x < 0 compute Φ(x) = 1 − Φ(−x). The Monte Carlo estimation of the
integral Φ(x) is implemented in the function MC.Phi below. Optionally MC.Phi
will compute the estimate with or without antithetic sampling. The MC.Phi
function could be made more general if an argument naming a function, the
integrand, is added (see integrate for an example of this type of argument
to a function).

MC.Phi <- function(x, R = 10000, antithetic = TRUE) {
u <- runif(R/2)
if (!antithetic) v <- runif(R/2) else

v <- 1 - u
u <- c(u, v)
cdf <- numeric(length(x))
for (i in 1:length(x)) {

g <- x[i] * exp(-(u * x[i])^2 / 2)
cdf[i] <- mean(g) / sqrt(2 * pi) + 0.5

}
cdf

}

A comparison of estimates obtained from a single Monte Carlo experiment is
below.

x <- seq(.1, 2.5, length=5)
Phi <- pnorm(x)
set.seed(123)
MC1 <- MC.Phi(x, anti = FALSE)
set.seed(123)
MC2 <- MC.Phi(x)
print(round(rbind(x, MC1, MC2, Phi), 5))

[,1] [,2] [,3] [,4] [,5]
x 0.10000 0.70000 1.30000 1.90000 2.50000
MC1 0.53983 0.75825 0.90418 0.97311 0.99594
MC2 0.53983 0.75805 0.90325 0.97132 0.99370
Phi 0.53983 0.75804 0.90320 0.97128 0.99379

The approximate reduction in variance can be estimated for given x by a
simulation under both methods, the simple Monte Carlo integration approach
and the antithetic variable approach.
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m <- 1000
MC1 <- MC2 <- numeric(m)
x <- 1.95
for (i in 1:m) {

MC1[i] <- MC.Phi(x, R = 1000, anti = FALSE)
MC2[i] <- MC.Phi(x, R = 1000)

}

> print(sd(MC1))
[1] 0.007008661
> print(sd(MC2))
[1] 0.000470819
> print((var(MC1) - var(MC2))/var(MC1))
[1] 0.9954873

The antithetic variable approach achieved approximately 99.5% reduction in
variance at x = 1.95. �

5.5 Control Variates

Another approach to reduce the variance in a Monte Carlo estimator of
θ = E[g(X)] is the use of control variates. Suppose that there is a function
f , such that µ = E[f(X)] is known, and f(X) is correlated with g(X).

Then for any constant c, it is easy to check that θ̂c = g(X) + c(f(Y ) − µ)
is an unbiased estimator of θ.

The variance

V ar(θ̂c) = V ar(g(X)) + c2V ar(f(X)) + 2c Cov(g(X), f(X)) (5.9)

is a quadratic function of c. It is minimized at c = c∗, where

c∗ = −Cov(g(X), f(X))
V ar(f(X))

and minimum variance is

V ar(θ̂c∗) = V ar(g(X)) − [Cov(g(X), f(X))]2

V ar(f(X))
. (5.10)

The random variable f(X) is called a control variate for the estimator g(X).
In (5.10) we see that V ar(g(X)) is reduced by

[Cov(g(X), f(X))]2

V ar(f(X))
,
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hence the percent reduction in variance is

100
[Cov(g(X), f(X))]2

V ar(g(X))V ar(f(X))
= 100[Cor(g(X), f(X))]2.

Thus, it is advantageous if f(X) and g(X) are strongly correlated. No reduc-
tion of variance is possible in case f(X) and g(Y ) are uncorrelated.

To compute the constant c∗, we need Cov(g(X), f(X)) and V ar(f(X)),
but these parameters can be estimated if necessary, from a preliminary Monte
Carlo experiment.

Example 5.7 (Control variate)

Apply the control variate approach to compute

θ = E[eU ] =
∫ 1

0

eudu,

where U ∼ Uniform(0,1). In this example, we do not need simulation because
θ = e− 1 = 1.718282 by integration, but this provides an example where we
can verify that the control variate approach is correctly implemented. If the
simple Monte Carlo approach is applied with m replicates, the variance of the
estimator is V ar(g(U))/m, where

V ar(g(U)) = V ar(eU ) = E[e2U ] − θ2 =
e2 − 1

2
− (e− 1)2 .= 0.2420351.

A natural choice for a control variate is U ∼ Uniform(0,1). Then E[U ] =
1/2, V ar(U) = 1/12, and Cov(eU , U) = 1 − (1/2)(e− 1) .= 0.1408591. Hence

c∗ =
−Cov(eU , U)
V ar(U)

= −12 + 6(e− 1) .= −1.690309.

Our controlled estimator is θ̂c∗ = eU − 1.690309(U − 0.5). For m replicates,
mV ar(θ̂c∗) is

V ar(eU ) − [Cov(eU , U)]2

V ar(U)
=
e2 − 1

2
− (e− 1)2 − 12

(
1 − e− 1

2

)
.= 0.2420356− 12(0.1408591)2

= 0.003940175.

The percent reduction in variance using the control variate compared with the
simple Monte Carlo estimate is 100(1-0.003940175/0.2429355) = 98.3781%.

Now we implement the control variate method for this problem and com-
pute empirically the percent reduction in variance achieved in the simulation.
Comparing the simple Monte Carlo estimate with the control variate approach
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m <- 10000
a <- - 12 + 6 * (exp(1) - 1)
U <- runif(m)
T1 <- exp(U) #simple MC
T2 <- exp(U) + a * (U - 1/2) #controlled

gives the following results

> mean(T1)
[1] 1.717834
> mean(T2)
[1] 1.718229
> (var(T1) - var(T2)) / var(T1)
[1] 0.9838606

illustrating that the percent reduction 98.3781% in variance derived above is
approximately achieved in this simulation. �

Example 5.8 (MC integration using control variates)

Use the method of control variates to estimate∫ 1

0

e−x

1 + x2
dx.

(A version of this problem appears in [64, p. 734].) The parameter of interest
is θ = E[g(X)] and g(X) = e−x/(1 + x2), where X is uniformly distributed
on (0,1). We seek a function ‘close’ to g(x) with known expected value,
such that g(X) and f(X) are strongly correlated. For example, the function
f(x) = e−.5(1 + x2)−1 is ‘close’ to g(x) on (0,1) and we can compute its
expectation. If U is uniformly distributed on (0,1), then

E[f(U)] = e−.5

∫ 1

0

1
1 + u2

du = e−.5 arctan(1) = e−.5π

4
.

Setting up a preliminary simulation to obtain an estimate of the constant c∗,
we also obtain an estimate of Cor(g(U), f(U) � 0.974.

f <- function(u)
exp(-.5)/(1+u^2)

g <- function(u)
exp(-u)/(1+u^2)

set.seed(510) #needed later
u <- runif(10000)
B <- f(u)
A <- g(u)
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Estimates of c∗ and Cor(f(U), g(U)) are

> cor(A, B)
[1] 0.9740585
a <- -cov(A,B) / var(B) #est of c*
> a
[1] -2.436228

Simulation results with and without the control variate follow.

m <- 100000
u <- runif(m)
T1 <- g(u)
T2 <- T1 + a * (f(u) - exp(-.5)*pi/4)

> c(mean(T1), mean(T2))
[1] 0.5253543 0.5250021
> c(var(T1), var(T2))
[1] 0.060231423 0.003124814
> (var(T1) - var(T2)) / var(T1)
[1] 0.9481199

Here the approximate reduction in variance of g(X) compared with g(X) +
ĉ∗(f(X)−µ) is 95%. We will return to this problem to apply another approach
to variance reduction, the method of importance sampling. �

5.5.1 Antithetic variate as control variate.

The antithetic variate estimator of the previous section is actually a special
case of the control variate estimator. First notice that the control variate
estimator is a linear combination of unbiased estimators of θ. In general, if θ̂1
and θ̂2 are any two unbiased estimators of θ, then for every constant c,

θ̂c = c θ̂1 + (1 − c)θ̂2

is also unbiased for θ. The variance of c θ̂1 + (1 − c)θ̂2 is

V ar(θ̂2) + c2V ar(θ̂1 − θ̂2) + 2c Cov(θ̂2, θ̂1 − θ̂2). (5.11)

In the special case of antithetic variates in (5.7) and (5.8), θ̂1 and θ̂2 are
identically distributed and Cor(θ̂1, θ̂2) = −1. Then Cov(θ̂1, θ̂2) = −V ar(θ̂1),
and the variance in (5.11) is

V arθ̂c = 4c2V ar(θ̂1) − 4cV ar(θ̂1) + V ar(θ̂1) = (4c2 − 4c+ 1)V ar(θ̂1),

and the optimal constant is c∗ = 1/2. The control variate estimator in this
case is

θ̂c∗ =
θ̂1 + θ̂2

2
,
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which (for this particular choice of θ̂1 and θ̂2) is the antithetic variable esti-
mator of θ.

5.5.2 Several control variates.

The idea of combining unbiased estimators of the target parameter θ to
reduce variance can be extended to several control variables. In general, if
E[θ̂i] = θ, i = 1, 2, . . . k and c = (c1, . . . , ck) such that

∑k
i=1 ci = 1, then

k∑
i=1

ciθ̂i

is also unbiased for θ. The corresponding control variate estimator is

θ̂c = g(X) +
k∑

i=1

c∗i (fi(X) − µi))

where µi = E[fi(X)], i = 1, . . . , k, and

E[θ̂c] = E[g(X)] +
k∑

i=1

c∗iE[fi(X) − µi] = θ.

The controlled estimate θ̂ĉ∗ , and estimates for the optimal constants c∗i , can
be obtained by fitting a linear regression model. The details are discussed in
section 5.5.3.

5.5.3 Control variates and regression.

In this section we will discuss the duality between the control variate ap-
proach and simple linear regression. This provides more insight into how the
control variate reduces the variance in Monte Carlo integration. In addition,
we have a convenient method for estimating the optimal constant c∗, the tar-
get parameter, the percent reduction in variance, and the standard error of
the estimator, all by fitting a simple linear regression model.

Suppose that (X1, Y1), . . . ,(Xn, Yn) is a random sample from a bivariate
distribution with mean (µX , µY ) and variances (σ2

X , σ
2
Y ). Let us compare the

least squares estimators for regression of X on Y with the control variate
estimator.

If there is a linear relation X = β1Y + β0 + ε, and E[ε] = 0, then

E[X ] = E[E[X |Y ]] = E[β0 + β1Y + ε] = β0 + β1µY .

Here β0 and β1 are constant parameters and ε is a random error variable.
Let us consider the bivariate sample (g(X1), f(X1)), . . . ,(g(Xn), f(Xn)).

Now if g(X) replacesX and f(X) replaces Y , we have g(X) = β0+β1f(X)+ε,
and

E[g(X)] = β0 + β1E[f(X)].
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The least squares estimator of the slope is

β̂1 =
∑n

i=1(Xi −X)(Yi − Y )∑n
i=1(Yi − Y )2

=
Ĉov(X,Y )

V̂ ar(Y )
=
Ĉov(g(X), f(X))

V̂ ar(f(X))
= −ĉ∗.

This shows that a convenient way to estimate c∗ is to use the estimated slope
from the fitted simple linear regression model of g(X) on f(X):

L <- lm(gx ~ fx)
c.star <- -L$coeff[2]

The least squares estimator of the intercept is β̂0 = g(X) − (−ĉ∗)f(X), so
that the predicted response at µ = E[f(X)] is

β̂0 + β̂1µ = g(X) + ĉ∗(f(X) − ĉ∗µ)

= g(X) + ĉ∗(f(X) − µ) = θ̂ĉ∗ .

Thus, the control variate estimate θ̂ĉ∗ is the predicted value of the response
variable (g(X)) at the point µ = E[f(X)].

The estimate of the error variance in the regression of X on Y is

σ̂2
ε = V̂ ar(X − X̂) = V̂ ar(X − (β̂0 + β̂1Y ))

= V̂ ar(X − β̂1Y ) = V̂ ar(X + ĉ∗Y ),

the residual mean squared error (MSE). The estimate of variance of the control
variate estimator is

V̂ ar(g(X) + ĉ∗(f(X) − µ)) =
V̂ ar(g(X) + ĉ∗(f(X) − µ))

n

=
V̂ ar(g(X) + ĉ∗f(X))

n
=
σ̂2

ε

n
.

Thus, the estimated standard error of the control variate estimate is easily
computed using R by applying the summary method to the lm object from the
fitted regression model, for example using

se.hat <- summary(L)$sigma

to extract the value of σ̂ε =
√
MSE.

Finally, recall that the proportion of reduction in variance for the control
variate is [Cor(g(X), f(X))]2. In the simple linear regression model, the coef-
ficient of determination is same number (R2), which is the proportion of total
variation in g(X) about its mean explained by f(X).

Example 5.9 (Control variate and regression)

Returning to Example 5.8, let us repeat the estimation by fitting a regression
model. In this problem,

g(x) =
∫ 1

0

e−x

1 + x2
dx
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and the control variate is

f(x) = e−.5(1 + x2)−1, 0 < x < 1,

with µ = E[f(X)] = e−.5π/4. To estimate the constant c∗,

set.seed(510)
u <- runif(10000)
f <- exp(-.5)/(1+u^2)
g <- exp(-u)/(1+u^2)
c.star <- - lm(g ~ f)$coeff[2] # beta[1]
mu <- exp(-.5)*pi/4

> c.star
f

-2.436228

We used the same random number seed as in Example 5.8 and obtained
the same estimate for c∗. Now θ̂ĉ∗ is the predicted response at the point
µ = 0.4763681, so

u <- runif(10000)
f <- exp(-.5)/(1+u^2)
g <- exp(-u)/(1+u^2)
L <- lm(g ~ f)
theta.hat <- sum(L$coeff * c(1, mu)) #pred. value at mu

The estimate θ̂, residual mean squared error and the proportion of reduction
in variance (R-squared) agree with the estimates obtained in Example 5.8.

> theta.hat
[1] 0.5253113
> summary(L)$sigma^2
[1] 0.003117644
> summary(L)$r.squared
[1] 0.9484514

�

In case several control variates are used, similarly one can estimate a linear
model

X = β0 +
k∑

i=1

βiYi + ε

to estimate the optimal constants c∗ = (c∗1, . . . , c
∗
k). Then −ĉ∗ = (β̂1, . . . , β̂k)

and the estimate is the predicted response X̂ at the point µ = (µ1, . . . , µk)
(see section 5.5.2). The estimated variance of the controlled estimator is again
σ̂2

ε/n = MSE/n, where n is the sample size (the number of replicates, in this
case).
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5.6 Importance Sampling

The average value of a function g(x) over an interval (a, b) is usually defined
(in calculus) by

1
b− a

∫ b

a

g(x)dx.

Here a uniform weight function is applied over the entire interval (a, b). If X
is a random variable uniformly distributed on (a, b), then

E[g(X)] =
∫ b

a

g(x)
1

b− a
dx =

1
b− a

∫ b

a

g(x)dx, (5.12)

which is simply the average value of the function g(x) over the interval (a, b)
with respect to a uniform weight function. The simple Monte Carlo method
generates a large number of replicates X1, . . . , Xm uniformly distributed on
[a, b] and estimates

∫ b

a g(x)dx by the sample mean

b− a

m

m∑
i=1

g(Xi),

which converges to
∫ b

a g(x)dx with probability 1 by the strong law of large
numbers. One limitation of this method is that it does not apply to unbounded
intervals. Another drawback is that it can be inefficient to draw samples
uniformly across the interval if the function g(x) is not very uniform.

However, once we view the integration problem as an expected value prob-
lem (5.12), it seems reasonable to consider other weight functions (other den-
sities) than uniform. This leads us to a general method called importance
sampling.

Suppose X is a random variable with density function f(x), such that
f(x) > 0 on the set {x : g(x) > 0}. Let Y be the random variable g(X)/f(X).
Then ∫

g(x)dx =
∫

g(x)
f(x)

f(x)dx = E[Y ].

Estimate E[Y ] by simple Monte Carlo integration. That is, compute the
average

1
m

m∑
i=1

Yi =
1
m

m∑
i=1

g(Xi)
f(Xi)

,

where the random variables X1, . . . , Xm are generated from the distribution
with density f(x). The density f(x) is called the importance function.

In an importance sampling method, the variance of the estimator based on
Y = g(X)/f(X) is V ar(Y )/m, so the variance of Y should be small. The
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variance of Y is small if Y is nearly constant, so the density f(·) should be
‘close’ to g(x). Also, the variable with density f(·) should be reasonably easy
to simulate.

In Example 5.5, random normals are generated to compute the Monte Carlo
estimate of the standard normal cdf, Φ(2) = P (X ≤ 2). In the naive Monte
Carlo approach, estimates in the tails of the distribution are less precise.
Intuitively, we might expect a more precise estimate for a given sample size
if the simulated distribution is not uniform. In this case, the average must
be a weighted average rather than the unweighted sample mean, to correct
for this bias. This method is called importance sampling (see e.g. Robert and
Casella [228, Sec. 3.3]). The advantage of importance sampling is that the
importance sampling distribution can be chosen so that variance of the Monte
Carlo estimator is reduced.

Suppose that f(x) is a density supported on a set A. If φ(x) > 0 on A,
then the the integral

θ =
∫

A

g(x)f(x)dx,

can be written
θ =

∫
A

g(x)
f(x)
φ(x)

φ(x)dx.

If φ(x) is a density on A, then an estimator of θ = Eφ[g(x)f(x)/φ(x)] is

θ̂ =
1
n

n∑
i=1

g(Xi)
f(Xi)
φ(Xi)

,

where X1, . . . , Xn is a random sample from density φ(x). The function φ(·)
is called the envelope or the importance sampling function. There are many
densities φ(x) that are convenient to simulate. Typically one should choose
φ(x) so that φ(x) � |g(x)|f(x) on A (and φ(x) has finite variance).

Example 5.10 (Choice of the importance function)

In this example (from [64, p. 728]) several possible choices of importance
functions to estimate ∫ 1

0

e−x

1 + x2
dx

by importance sampling method are compared. The candidates for the im-
portance functions are

f0(x) = 1, 0 < x < 1,

f1(x) = e−x, 0 < x <∞,

f2(x) = (1 + x2)−1/π, −∞ < x <∞,

f3(x) = e−x/(1 − e−1), 0 < x < 1,

f4(x) = 4(1 + x2)−1/π, 0 < x < 1.
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The integrand is

g(x) =
{
e−x/(1 + x2), if (0 < x < 1);
0, otherwise.

While all five of the possible importance functions are positive on the set
0 < x < 1 where g(x) > 0, f1 and f2 have larger ranges and many of the
simulated values will contribute zeros to the sum, which is inefficient. All of
these distributions are easy to simulate; f2 is standard Cauchy or t(ν = 1).
The densities are plotted on (0,1) for comparison with g(x) in Figure 5.1(a).
The function that corresponds to the most nearly constant ratio g(x)/f(x)
appears to be f3, which can be seen more clearly in Figure 5.1(b). From the
graphs, we might prefer f3 for the smallest variance.

m <- 10000

theta.hat <- se <- numeric(5)

g <- function(x) {

exp(-x - log(1+x^2)) * (x > 0) * (x < 1)

}

x <- runif(m) #using f0

fg <- g(x)

theta.hat[1] <- mean(fg)

se[1] <- sd(fg)

x <- rexp(m, 1) #using f1

fg <- g(x) / exp(-x)

theta.hat[2] <- mean(fg)

se[2] <- sd(fg)

x <- rcauchy(m) #using f2

i <- c(which(x > 1), which(x < 0))

x[i] <- 2 #to catch overflow errors in g(x)

fg <- g(x) / dcauchy(x)

theta.hat[3] <- mean(fg)

se[3] <- sd(fg)

u <- runif(m) #f3, inverse transform method

x <- - log(1 - u * (1 - exp(-1)))

fg <- g(x) / (exp(-x) / (1 - exp(-1)))

theta.hat[4] <- mean(fg)

se[4] <- sd(fg)

u <- runif(m) #f4, inverse transform method

x <- tan(pi * u / 4)

fg <- g(x) / (4 / ((1 + x^2) * pi))

theta.hat[5] <- mean(fg)

se[5] <- sd(fg)
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FIGURE 5.1: Importance functions in Example 5.10: f0, . . . , f4 (lines 0:4)
with g(x) in (a) and the ratios g(x)/f(x) in (b).

Code to display Figures 5.1(a) and 5.1(b) is given on page 152.
The estimates (labeled theta.hat) of

∫ 1

0
g(x)dx and the corresponding

standard errors se for the simulation using each of the importance functions
are

> rbind(theta.hat, se)
[,1] [,2] [,3] [,4] [,5]

theta.hat 0.5241140 0.5313584 0.5461507 0.52506988 0.5260492
se 0.2436559 0.4181264 0.9661300 0.09658794 0.1427685

so the simulation indicates that f3 and possibly f4 produce smallest variance
among these five importance functions, while f2 produces the highest variance.
The standard Monte Carlo estimate without importance sampling has ŝe .=
0.244 (f0 = 1). The importance functions f1 and f2 do not reduce error, but
f3 and f4 each reduce the standard error in estimating θ.

The Cauchy density f2 is supported on the entire real line, while the in-
tegrand g(x) is evaluated on (0,1). There are a very large number of zeros
(about 75%) produced in the ratio g(x)/f(x) in this case, and all other values
far from 0, resulting in a large variance. The following summary statistics for
the ratio g(x)/f2(x) confirm this.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.5173 0.0000 3.1380

For f1 there is a similar inefficiency, as f1 is supported on (0,∞), which also
generates many zeros in the sum of g(x)/f(x) for the values outside of (0,1).
The inefficiency for f1 is not as bad as f2 (about 37% zeros), however, because
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the tail of the distribution is lighter. The following summary statistics for the
ratio g(x)/f1(x) also confirm this.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.6891 0.5314 0.9267 1.0000

�

Example 5.10 illustrates that care must be taken to select an importance
function that results in small variance of Y = g(X)/f(X). The importance
function should be an f that is supported on exactly the set where g(x) > 0,
and such that the ratio g(x)/f(x) is nearly constant.

Variance in Importance Sampling

If φ(x) is the importance sampling distribution (envelope), f(x) = 1 on A,
and X has pdf φ(x) supported on A, then

θ =
∫

A

g(x)dx =
∫

A

g(x)
φ(x)

φ(x)dx = E

[
g(X)
φ(X)

]
.

If X1, . . . , Xn is a random sample from the distribution of X , the estimator
is again the sample-mean

θ̂ = g(X) =
1
n

n∑
i=1

g(Xi)
φ(Xi)

.

Thus, the importance sampling method is a sample-mean method, and

V ar(θ̂) = E[θ̂2] − (E[θ̂])2 =
∫

A

g2(x)
φ(x)

ds− θ2.

The distribution of X can be chosen to reduce the variance of the sample-
mean estimator. The minimum variance(∫

A

|g(x)|dx
)2

− θ2

is obtained when

φ(x) =
|g(x)|∫

A
|g(x)|dx .

Unfortunately, the problem is to estimate
∫

A
g(x)dx, so it is unlikely that the

value of
∫

A
|g(x)|dx in the denominator of φ(x) is available. Although it may

be difficult to choose φ(x) to attain minimum variance, variance may be “close
to” optimal if φ(x) is chosen so that the shape of the density φ(x) is “close
to” |g(x)| on A.
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For general f(x), choose φ(x) so that φ(x) � |g(x)|f(x) on A. If the ratio
of the function being integrated to the importance function is bounded, then
the importance sampling estimator will have finite variance. Considering the
relative computational efficiency of estimators, one should also choose φ(x) so
that the cost (time) to generate the Monte Carlo replicates is small.

5.7 Stratified Sampling

Another approach to variance reduction is stratified sampling, which aims
to reduce the variance of the estimator by dividing the interval into strata
and estimating the integral on each of the stratum with smaller variance.
Linearity of the integral operator and the strong law of large numbers imply
that the sum of these estimates converges to

∫
g(x)dx with probability 1. In

stratified sampling, the number of replicates m and number of replicates mj

to be drawn from each of k strata are fixed so that m = m1 + · · ·+mk, with
the goal that

V ar(θ̂k(m1, . . . ,mk)) < V ar(θ̂),

where θ̂k(m1, . . . ,mk) is the stratified estimator and θ̂ is the standard Monte
Carlo estimator based on m = m1 + · · · +mk replicates.

To see how this might work, let us first see a numerical example.

Example 5.11 (Example 5.10, cont.)

In Figure 5.1(a) it is clear that our integrand g(x) is not constant on (0,1).
Divide the interval into, say, four subintervals, and compute a Monte Carlo
estimate of the integral on each subinterval using 1/4 of the total number
of replicates. Then combine these four estimates to obtain the estimate of∫ 1

0
e−x(1 + x2)−1 dx. Does it appear that the variance of the estimator is

reduced, compared with the variance of the standard Monte Carlo estimator?

The results are shown on the next page. Although 10 runs are not really
enough to get good estimates of the standard errors, in this simulation it
appears that stratification has improved variance by a factor of about 10. �

Intuitively, there can be more reduction in variance using stratification when
the means of the strata are widely dispersed, as in Example 5.11, than if
the means of the strata are approximately equal. For integrands that are
monotone functions, stratification similar to Example 5.11 should be an effec-
tive way to reduce variance.
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M <- 20 #number of replicates

T2 <- numeric(4)

estimates <- matrix(0, 10, 2)

g <- function(x) {

exp(-x - log(1+x^2)) * (x > 0) * (x < 1) }

for (i in 1:10) {

estimates[i, 1] <- mean(g(runif(M)))

T2[1] <- mean(g(runif(M/4, 0, .25)))

T2[2] <- mean(g(runif(M/4, .25, .5)))

T2[3] <- mean(g(runif(M/4, .5, .75)))

T2[4] <- mean(g(runif(M/4, .75, 1)))

estimates[i, 2] <- mean(T2)

}

> estimates

[,1] [,2]

[1,] 0.6281555 0.5191537

[2,] 0.5105975 0.5265614

[3,] 0.4625555 0.5448566

[4,] 0.4999053 0.5151490

[5,] 0.4984972 0.5249923

[6,] 0.4886690 0.5179625

[7,] 0.5151231 0.5246307

[8,] 0.5503624 0.5171037

[9,] 0.5586109 0.5463568

[10,] 0.4831167 0.5548007

> apply(estimates, 2, mean)

[1] 0.5195593 0.5291568

> apply(estimates, 2, var)

[1] 0.0023031762 0.0002012629

PROPOSITION 5.2 Denote the standard Monte Carlo estimator with M
replicates by θ̂M , and let

θ̂S =
1
k

k∑
j=1

θ̂j

denote the stratified estimator with equal size m = M/k strata. Denote the
mean and variance of g(U) on stratum j by θj and σ2

j , respectively. Then
V ar(θ̂M ) ≥ V ar(θ̂S).

Proof. By independence of θ̂j
′s,

V ar(θ̂S) = V ar

⎛⎝1
k

k∑
j=1

θ̂j

⎞⎠ =
1
k2

k∑
j=1

σ2
j

m
=

1
Mk

k∑
j=1

σ2
j .
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Now, if J is the randomly selected stratum, it is selected with uniform prob-
ability 1/k, and applying the conditional variance formula

V ar(θ̂M ) =
V ar(g(U))

M
=

1
M

(V ar(E[g(U |J)]) +E[V ar(g(U |J)])

=
1
M

(
V ar(θJ ) + E

[
σ2

J

])
=

1
M

⎛⎝V ar(θJ ) +
1
k

k∑
j=1

σ2
j

⎞⎠
=

1
M
V ar(θJ ) + V ar(θ̂S) ≥ V ar(θ̂S).

The inequality is strict except in the case where all the strata have identical
means. �

From the above inequality it is clear that the reduction in variance is larger
when the means of the strata are widely dispersed.

A similar proof can be applied in the general case when the strata have
unequal probabilities. See Fishman [94, Sec. 4.3] for a proof of the general
case.

Example 5.12 (Examples 5.10–5.11, cont., stratified sampling)

Stratified sampling is implemented in a more general way, for the Monte Carlo
estimate of

∫ 1

0 e
−x(1 + x2)−1dx. The standard Monte Carlo estimate is also

obtained for comparison.

M <- 10000 #number of replicates
k <- 10 #number of strata
r <- M / k #replicates per stratum
N <- 50 #number of times to repeat the estimation
T2 <- numeric(k)
estimates <- matrix(0, N, 2)

g <- function(x) {
exp(-x - log(1+x^2)) * (x > 0) * (x < 1)
}

for (i in 1:N) {
estimates[i, 1] <- mean(g(runif(M)))
for (j in 1:k)

T2[j] <- mean(g(runif(M/k, (j-1)/k, j/k)))
estimates[i, 2] <- mean(T2)

}

The result of this simulation produces the following estimates.
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> apply(estimates, 2, mean)
[1] 0.5251321 0.5247715
> apply(estimates, 2, var)
[1] 6.188117e-06 6.504485e-08

This represents a more than 98% reduction in variance. �

5.8 Stratified Importance Sampling

A modification to the importance sampling method of estimating θ =∫
g(x)dx is stratified importance sampling.
Choose a suitable importance function f . Suppose that X is generated

with density f and cdf F using the probability integral transformation. If M
replicates are generated, the importance sampling estimate of θ has variance
σ2/M , where σ2 = V ar(g(X)/f(X)).

For the stratified importance sampling estimate, divide the real line into
k intervals Ij = {x : aj−1 ≤ x < aj} with endpoints a0 = −∞, aj =
F−1(j/k), j = 1, . . . , k − 1, and ak = ∞. (The real line is divided into
intervals corresponding to equal areas 1/k under the density f(x). The interior
endpoints are the percentiles or quantiles.) On each subinterval define gj(x) =
g(x) if x ∈ Ij and gj(x) = 0 otherwise. We now have k parameters to estimate,

θj =
∫ aj

aj−1

gj(x)dx, j = 1, . . . , k

and θ = θ1 + · · · + θk. The conditional densities provide the importance
functions on each subinterval. That is, on each subinterval Ij , the conditional
density fj of X is defined by

fj(x) = fX|Ij
(x|Ij) =

f(x, aj−1 ≤ x < aj)
P (aj−1 ≤ x < aj)

=
f(x)
1/k

= kf(x), aj−1 ≤ x < aj .

Let σ2
j = V ar(gj(X)/fj(X)). For each j = 1, . . . , k we simulate an impor-

tance sample size m, compute the importance sampling estimator θ̂j of θj on
the jth subinterval, and compute θ̂SI = 1

k

∑k
j=1 θ̂j . Then by independence of

θ̂1, . . . , θ̂k,

V ar(θ̂SI) = V ar

⎛⎝ k∑
j=1

θ̂j

⎞⎠ =
k∑

j=1

σ2
j

m
=

1
m

k∑
j=1

σ2
j .
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Denote the importance sampling estimator by θ̂I . In order to determine
whether θ̂SI is a better estimator of θ than θ̂I , we need to check that V ar(θ̂SI )
is smaller than the variance without stratification. The variance is reduced
by stratification if

σ2

M
>

1
m

k∑
j=1

σ2
j =

k

M

k∑
j=1

σ2
j ⇒ σ2 − k

k∑
j=1

σ2
j > 0.

Thus, we need to prove the following.

PROPOSITION 5.3 Suppose M = mk is the number of replicates for an
importance sampling estimator θ̂I , and θ̂SI is a stratified importance sam-
pling estimator, with estimates θ̂j for θj on the individual strata, each with m
replicates. If V ar(θ̂I) = σ2/M and V ar(θ̂j) = σ2

j /m, j = 1, . . . , k, then

σ2 − k

k∑
j=1

σ2
j ≥ 0, (5.13)

with equality if and only if θ1 = · · · = θk. Hence stratification never increases
the variance, and there exists a stratification that reduces the variance except
when g(x) is constant.

Proof. To determine when the inequality (5.13) holds, we need to consider
the relation between the random variables with densities fj and the random
variable X with density f .

Consider a two-stage experiment. First a number J is drawn at random
from the integers 1 to k. After observing J = j, a random variable X∗ is
generated from the density fj and

Y ∗ =
gj(X)
fj(X)

=
gj(X∗)
kf(X∗)

.

To compute the variance of Y ∗ we apply the conditional variance formula

V ar(Y ∗) = E[V ar(Y ∗|J)] + V ar(E[Y ∗|J ]). (5.14)

Here

E[V ar(Y ∗|J)] =
k∑

j=1

σ2
jP (J = j) =

1
k

k∑
j=1

σ2
j

and V ar(E[Y ∗|J ]) = V ar(θJ ). Thus in (5.14) we have

V ar(Y ∗) =
1
k

k∑
j=1

σ2
j + V ar(θJ ).
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On the other hand,

k2V ar(Y ∗) = k2E[V ar(Y ∗|J)] + k2V ar(E[Y ∗|J ]).

and
σ2 = V ar(Y ) = V ar(kY ∗) = k2V ar(Y ∗)

which imply that

σ2 = k2V ar(Y ∗) = k2

⎛⎝1
k

k∑
j=1

σ2
j + V ar(θJ )

⎞⎠ = k

k∑
j=1

σ2
j + k2V ar(θJ ).

Therefore

σ2 − k
k∑

j=1

σ2
j = k2V ar(θJ ) ≥ 0,

and equality holds if and only if θ1 = · · · = θk. �

Example 5.13 (Example 5.10, cont.)

In Example 5.10 our best result was obtained with importance function f3(x) =
e−x/(1 − e−1), 0 < x < 1. From 10000 replicates we obtained the estimate
θ̂ = 0.5257801 and an estimated standard error 0.0970314. Now divide the
interval (0,1) into five subintervals, (j/5, (j + 1)/5), j = 0, 1, . . . , 4.

Then on the jth subinterval variables are generated from the density

5e−x

1 − e−1
,

j − 1
5

< x <
j

5
.

The implementation is left as an exercise. �

Exercises

5.1 Compute a Monte Carlo estimate of∫ π/3

0

sin t dt

and compare your estimate with the exact value of the integral.

5.2 Refer to Example 5.3. Compute a Monte Carlo estimate of the standard
normal cdf, by generating from the Uniform(0,x) distribution. Compare your
estimates with the normal cdf function pnorm. Compute an estimate of the
variance of your Monte Carlo estimate of Φ(2), and a 95% confidence interval
for Φ(2).
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5.3 Compute a Monte Carlo estimate θ̂ of

θ =
∫ 0.5

0

e−x dx

by sampling from Uniform(0, 0.5), and estimate the variance of θ̂. Find an-
other Monte Carlo estimator θ∗ by sampling from the exponential distribution.
Which of the variances (of θ̂ and θ̂∗) is smaller, and why?

5.4 Write a function to compute a Monte Carlo estimate of the Beta(3, 3) cdf,
and use the function to estimate F (x) for x = 0.1, 0.2, . . . , 0.9. Compare the
estimates with the values returned by the pbeta function in R.

5.5 Compute (empirically) the efficiency of the sample mean Monte Carlo method
of estimation of the definite integral in Example 5.3 relative to the “hit or
miss” method in Example 5.4.

5.6 In Example 5.7 the control variate approach was illustrated for Monte Carlo
integration of

θ =
∫ 1

0

exdx.

Now consider the antithetic variate approach. Compute Cov(eU , e1−U ) and
V ar(eU + e1−U ), where U ∼ Uniform(0,1). What is the percent reduction in
variance of θ̂ that can be achieved using antithetic variates (compared with
simple MC)?

5.7 Refer to Exercise 5.6. Use a Monte Carlo simulation to estimate θ by the
antithetic variate approach and by the simple Monte Carlo method. Compute
an empirical estimate of the percent reduction in variance using the antithetic
variate. Compare the result with the theoretical value from Exercise 5.6.

5.8 Let U ∼ Uniform(0,1), X = aU , and X ′ = a(1 − U), where a is a constant.
Show that ρ(X,X ′) = −1. Is ρ(X,X ′) = −1 if U is a symmetric beta random
variable?

5.9 The Rayleigh density [156, (18.76)] is

f(x) =
x

σ2
e−x2/(2σ2), x ≥ 0, σ > 0.

Implement a function to generate samples from a Rayleigh(σ) distribution,
using antithetic variables. What is the percent reduction in variance of X+X′

2

compared with X1+X2
2 for independent X1, X2?

5.10 Use Monte Carlo integration with antithetic variables to estimate∫ 1

0

e−x

1 + x2
dx,

and find the approximate reduction in variance as a percentage of the variance
without variance reduction.
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5.11 If θ̂1 and θ̂2 are unbiased estimators of θ, and θ̂1 and θ̂2 are antithetic, we
derived that c∗ = 1/2 is the optimal constant that minimizes the variance of
θ̂c = cθ̂2 + (1 − c)θ̂2. Derive c∗ for the general case. That is, if θ̂1 and θ̂2
are any two unbiased estimators of θ, find the value c∗ that minimizes the
variance of the estimator θ̂c = cθ̂2 + (1 − c)θ̂2 in equation (5.11). (c∗ will be
a function of the variances and the covariance of the estimators.)

5.12 Let θ̂IS
f be an importance sampling estimator of θ =

∫
g(x)dx, where the

importance function f is a density. Prove that if g(x)/f(x) is bounded, then
the variance of the importance sampling estimator θ̂IS

f is finite.

5.13 Find two importance functions f1 and f2 that are supported on (1,∞) and
are ‘close’ to

g(x) =
x2

√
2π

e−x2/2, x > 1.

Which of your two importance functions should produce the smaller variance
in estimating ∫ ∞

1

x2

√
2π

e−x2/2 dx

by importance sampling? Explain.

5.14 Obtain a Monte Carlo estimate of∫ ∞

1

x2

√
2π

e−x2/2 dx

by importance sampling.

5.15 Obtain the stratified importance sampling estimate in Example 5.13 and com-
pare it with the result of Example 5.10.
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R Code

Code to display the plot of importance functions in Figures 5.1(a)
and 5.1(b) on page 142.

x <- seq(0, 1, .01)
w <- 2
f1 <- exp(-x)
f2 <- (1 / pi) / (1 + x^2)
f3 <- exp(-x) / (1 - exp(-1))
f4 <- 4 / ((1 + x^2) * pi)
g <- exp(-x) / (1 + x^2)

#figure (a)
plot(x, g, type = "l", main = "", ylab = "",

ylim = c(0,2), lwd = w)
lines(x, g/g, lty = 2, lwd = w)
lines(x, f1, lty = 3, lwd = w)
lines(x, f2, lty = 4, lwd = w)
lines(x, f3, lty = 5, lwd = w)
lines(x, f4, lty = 6, lwd = w)
legend("topright", legend = c("g", 0:4),

lty = 1:6, lwd = w, inset = 0.02)

#figure (b)
plot(x, g, type = "l", main = "", ylab = "",

ylim = c(0,3.2), lwd = w, lty = 2)
lines(x, g/f1, lty = 3, lwd = w)
lines(x, g/f2, lty = 4, lwd = w)
lines(x, g/f3, lty = 5, lwd = w)
lines(x, g/f4, lty = 6, lwd = w)
legend("topright", legend = c(0:4),

lty = 2:6, lwd = w, inset = 0.02)



Chapter 6

Monte Carlo Methods in Inference

6.1 Introduction

Monte Carlo methods encompass a vast set of computational tools in mod-
ern applied statistics. Monte Carlo integration was introduced in Chapter
5. Monte Carlo methods may refer to any method in statistical inference or
numerical analysis where simulation is used. However, in this chapter only
a subset of these methods are discussed. This chapter introduces some of
the Monte Carlo methods for statistical inference. Monte Carlo methods can
be applied to estimate parameters of the sampling distribution of a statistic,
mean squared error (MSE), percentiles, or other quantities of interest. Monte
Carlo studies can be designed to assess the coverage probability for confidence
intervals, to find an empirical Type I error rate of a test procedure, to estimate
the power of a test, and to compare the performance of different procedures
for a given problem.

In statistical inference there is uncertainty in an estimate. The methods
covered in this chapter use repeated sampling from a given probability model,
sometimes called parametric bootstrap, to investigate this uncertainty. If
we can simulate the stochastic process that generated our data, repeatedly
drawing samples under identical conditions, then ultimately we hope to have
a close replica of the process itself reflected in the samples. Other Monte
Carlo methods, such as (nonparametric) bootstrap, are based on resampling
from an observed sample. Resampling methods are covered in Chapters 7
and 8. Monte Carlo integration and Markov Chain Monte Carlo methods are
covered in Chapters 5 and 9. Methods for generating random variates from
specified probability distributions are covered in Chapter 3. See the references
in Section 5.1 on some of the early history of Monte Carlo methods, and for
general reference see e.g. [63, 84, 228].

153
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6.2 Monte Carlo Methods for Estimation

Suppose X1, . . . , Xn is a random sample from the distribution of X . An
estimator θ̂ for a parameter θ is an n variate function

θ̂ = θ̂(X1, . . . , Xn)

of the sample. Functions of the estimator θ̂ are therefore n-variate func-
tions of the data, also. For simplicity, let x = (x1, . . . , xn)T ∈ Rn, and let
x(1), x(2), . . . denote a sequence of independent random samples generated
from the distribution of X . Random variates from the sampling distribution
of θ̂ can be generated by repeatedly drawing independent random samples
x(j) and computing θ̂(j) = θ̂(x(j)

1 , . . . , x
(j)
n ) for each sample.

6.2.1 Monte Carlo estimation and standard error

Example 6.1 (Basic Monte Carlo estimation)

Suppose that X1, X2 are iid from a standard normal distribution. Estimate
the mean difference E|X1 −X2|.

To obtain a Monte Carlo estimate of θ = E[g(X1, X2)] = E|X1−X2| based
on m replicates, generate random samples x(j) = (x(j)

1 , x
(j)
2 ) of size 2 from

the standard normal distribution, j = 1, . . . ,m. Then compute the replicates
θ̂(j) = gj(x1, x2) = |x(j)

1 − x
(j)
2 |, j = 1, . . . ,m, and the mean of the replicates

θ̂ =
1
m

m∑
i=1

θ̂(j) = g(X1, X2) =
1
m

m∑
i=1

|x(j)
1 − x

(j)
2 |.

This is easy to implement, as shown below.

m <- 1000
g <- numeric(m)
for (i in 1:m) {

x <- rnorm(2)
g[i] <- abs(x[1] - x[2])

}
est <- mean(g)

One run produces the following estimate.

> est
[1] 1.128402

One can derive by integration that E|X1 − X2| = 2/
√
π

.= 1.128379 and
V ar(|X1−X2|) = 2−4/π. In this example the standard error of the estimate
is
√

(2 − 4/π)/m .= 0.02695850. �
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Estimating the standard error of the mean

The standard error of a meanX of a sample size n is
√
V ar(X)/n.When the

distribution ofX is unknown we can substitute for F the empirical distribution
Fn of the sample x1, . . . , xn. The “plug-in” estimate of the variance of X is

V̂ ar(x) =
1
n

n∑
i=1

(xi − x̄)2.

Note that V̂ ar(x) is the population variance of the finite pseudo population
{x1, . . . , xn} with cdf Fn. The corresponding estimate of the standard error
of x̄ is

ŝe(x̄) =
1√
n

{
1
n

n∑
i=1

(xi − x̄)2
}1/2

=
1
n

{
n∑

i=1

(xi − x̄)2
}1/2

.

Using the unbiased estimator of V ar(X) we have

ŝe(x̄) =
1√
n

{
1

n− 1

n∑
i=1

(xi − x̄)2
}1/2

.

In a Monte Carlo experiment, the sample size is large and the two estimates
of standard error are approximately equal.

In Example 6.1 the sample size is m (the number of replicates of θ̂), and
the estimate of standard error of θ̂ is

> sqrt(sum((g - mean(g))^2)) / m
[1] 0.02708121

In Example 6.1 we have the exact value se(θ̂) =
√

(2 − 4/π)/m .= 0.02695850
for comparison.

6.2.2 Estimation of MSE

Monte Carlo methods can be applied to estimate the MSE of an estima-
tor. Recall that the MSE of an estimator θ̂ for a parameter θ is defined by
MSE(θ̂) = E[(θ̂ − θ)2]. If m (pseudo) random samples x(1), . . . , x(m) are gen-
erated from the distribution of X , then a Monte Carlo estimate of the MSE
of θ̂ = θ̂(x1, . . . , xn) is

M̂SE =
1
m

m∑
j=1

(θ̂(j) − θ)2,

where θ̂(j) = θ̂(x(j)) = θ̂(x(j)
1 , . . . , x

(j)
n ).
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Example 6.2 (Estimating the MSE of a trimmed mean)

A trimmed mean is sometimes applied to estimate the center of a continuous
symmetric distribution that is not necessarily normal. In this example, we
compute an estimate of the MSE of a trimmed mean. Suppose thatX1, . . . , Xn

is a random sample and X(1), . . . , X(n) is the corresponding ordered sample.
The trimmed sample mean is computed by averaging all but the largest and
smallest sample observations. More generally, the kth level trimmed sample
mean is defined by

X [−k] =
1

n− 2k

n−k∑
i=k+1

X(i).

Obtain a Monte Carlo estimate of the MSE(X [−1]) of the first level trimmed
mean assuming that the sampled distribution is standard normal.

In this example, the center of the distribution is 0 and the target parameter
is θ = E[X] = E[X [−1]] = 0. We will denote the first level trimmed sample
mean by T . A Monte Carlo estimate of MSE(T ) based on m replicates can
be obtained as follows.

1. Generate the replicates T (j), j = 1 . . . ,m by repeating:

(a) Generate x(j)
1 , . . . , x

(j)
n , iid from the distribution of X .

(b) Sort x(j)
1 , . . . , x

(j)
n in increasing order, to obtain x(j)

(1) ≤ · · · ≤ x
(j)
(n).

(c) Compute T (j) = 1
n−2

∑n−1
i=2 x

(j)
(i) .

2. Compute M̂SE(T ) = 1
m

∑m
j=1(T

(j) − θ)2 = 1
m

∑m
j=1(T

(j))2.

Then T (1), . . . , T (m) are independent and identically distributed according
to the sampling distribution of the level-1 trimmed mean for a standard normal
distribution, and we are computing the sample mean estimate M̂SE(T ) of
MSE(T ). This procedure can be implemented by writing a for loop as shown
below (replicate can replace the loop; see R note 6.1 on page 161).

n <- 20
m <- 1000
tmean <- numeric(m)
for (i in 1:m) {

x <- sort(rnorm(n))
tmean[i] <- sum(x[2:(n-1)]) / (n-2)
}

mse <- mean(tmean^2)

> mse
[1] 0.05176437
> sqrt(sum((tmean - mean(tmean))^2)) / m #se
[1] 0.007193428
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The estimate of MSE for the trimmed mean in this run is approximately
0.052 (ŝe .= 0.007). For comparison, the MSE of the sample mean X is
V ar(X)/n, which is 1/20 = 0.05 in this example. Note that the median is
actually a trimmed mean; it trims all but one or two of the observations. The
simulation is repeated for the median below.

n <- 20
m <- 1000
tmean <- numeric(m)
for (i in 1:m) {

x <- sort(rnorm(n))
tmean[i] <- median(x)
}

mse <- mean(tmean^2)

> mse
[1] 0.07483438
> sqrt(sum((tmean - mean(tmean))^2)) / m #se
[1] 0.008649554

The estimate of MSE for the sample median is approximately 0.075 and
ŝe(M̂SE) .= 0.0086. �

Example 6.3 (MSE of a trimmed mean, cont.)

Compare the MSE of level-k trimmed means for the standard normal and a
“contaminated” normal distribution. The contaminated normal distribution
in this example is a mixture

pN(0, σ2 = 1) + (1 − p)N(0, σ2 = 100).

The target parameter is the mean, θ = 0. (This example is from [64, 9.7].)
Write a function to estimate MSE(X [−k]) for different k and p. To generate

the contaminated normal samples, first randomly select σ according to the
probability distribution P (σ = 1) = p; P (σ = 10) = 1 − p. Note that
the normal generator rnorm can accept a vector of parameters for standard
deviation. After generating the n values for σ, pass this vector as the sd
argument to rnorm (see e.g. Example 3.12 and Example 3.13).

n <- 20
K <- n/2 - 1
m <- 1000
mse <- matrix(0, n/2, 6)
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trimmed.mse <- function(n, m, k, p) {
#MC est of mse for k-level trimmed mean of
#contaminated normal pN(0,1) + (1-p)N(0,100)
tmean <- numeric(m)
for (i in 1:m) {

sigma <- sample(c(1, 10), size = n,
replace = TRUE, prob = c(p, 1-p))

x <- sort(rnorm(n, 0, sigma))
tmean[i] <- sum(x[(k+1):(n-k)]) / (n-2*k)
}

mse.est <- mean(tmean^2)
se.mse <- sqrt(mean((tmean-mean(tmean))^2)) / sqrt(m)
return(c(mse.est, se.mse))

}

for (k in 0:K) {
mse[k+1, 1:2] <- trimmed.mse(n=n, m=m, k=k, p=1.0)
mse[k+1, 3:4] <- trimmed.mse(n=n, m=m, k=k, p=.95)
mse[k+1, 5:6] <- trimmed.mse(n=n, m=m, k=k, p=.9)

}

The results of the simulation are shown in Table 6.1. The results in the table
are n times the estimates. This comparison suggests that a robust estimator
of the mean can lead to reduced MSE for contaminated normal samples. �

TABLE 6.1: Estimates of Mean Squared Error for
the kth Level Trimmed Mean in Example 6.3 (n = 20)

Normal p = 0.95 p = 0.90

k n M̂SE n ŝe n M̂SE n ŝe n M̂SE n ŝe
0 0.976 0.140 6.229 0.140 11.485 0.140
1 1.019 0.143 1.954 0.143 4.126 0.143
2 1.009 0.142 1.304 0.142 1.956 0.142
3 1.081 0.147 1.168 0.147 1.578 0.147
4 1.048 0.145 1.280 0.145 1.453 0.145
5 1.103 0.149 1.395 0.149 1.423 0.149
6 1.316 0.162 1.349 0.162 1.574 0.162
7 1.377 0.166 1.503 0.166 1.734 0.166
8 1.382 0.166 1.525 0.166 1.694 0.166
9 1.491 0.172 1.646 0.172 1.843 0.172
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6.2.3 Estimating a confidence level

One type of problem that arises frequently in statistical applications is the
need to evaluate the cdf of the sampling distribution of a statistic, when the
density function of the statistic is unknown or intractable. For example, many
commonly used estimation procedures are derived under the assumption that
the sampled population is normally distributed. In practice, it is often the
case that the population is non-normal and in such cases, the true distribution
of the estimator may be unknown or intractable. The following examples
illustrate a Monte Carlo method to assess the confidence level in an estimation
procedure.

If (U, V ) is a confidence interval estimate for an unknown parameter θ, then
U and V are statistics with distributions that depend on the distribution FX

of the sampled population X . The confidence level is the probability that
the interval (U, V ) covers the true value of the parameter θ. Evaluating the
confidence level is therefore an integration problem.

Note that the sample-mean Monte Carlo approaches to evaluating an in-
tegral

∫
g(x)dx do not require that the function g(x) is specified. It is only

necessary that the sample from the distribution g(X) can be generated. It is
often the case in statistical applications, that g(x) is in fact not specified, but
the variable g(X) is easily generated.

Consider the confidence interval estimation procedure for variance. It is
well known that this procedure is sensitive to mild departures from normality.
We use Monte Carlo methods to estimate the true confidence level when the
normal theory confidence interval for variance is applied to non-normal data.
The classical procedure based on the assumption of normality is outlined first.

Example 6.4 (Confidence interval for variance)

If X1, . . . , Xn is a random sample from a Normal(µ, σ2) distribution, n ≥ 2,
and S2 is the sample variance, then

V =
(n− 1)S2

σ2
∼ χ2(n− 1). (6.1)

A one side 100(1−α)% confidence interval is given by (0, (n−1)S2/χ2
α), where

χ2
α is the α-quantile of the χ2(n− 1) distribution. If the sampled population

is normal with variance σ2, then the probability that the confidence interval
contains σ2 is 1 − α.

The calculation of the 95% upper confidence limit (UCL) for a random
sample size n = 20 from a Normal(0, σ2 = 4) distribution is shown below.

n <- 20
alpha <- .05
x <- rnorm(n, mean=0, sd=2)
UCL <- (n-1) * var(x) / qchisq(alpha, df=n-1)
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Several runs produce the upper confidence limits UCL = 6.628, UCL = 7.348,
UCL = 9.621, etc. All of these intervals contain σ2 = 4. In this example, the
sampled population is normal with σ2 = 4, so the confidence level is exactly

P

(
19S2

χ2
.05(19)

> 4
)

= P

(
(n− 1)S2

σ2
> χ2

.05(n− 1)
)

= 0.95.

If the sampling and estimation is repeated a large number of times, approxi-
mately 95% of the intervals based on (6.1) should contain σ2, assuming that
the sampled population is normal with variance σ2. �

Empirical confidence level is an estimate of the confidence level obtained
by simulation. For the simulation experiment, repeat the steps above a large
number of times, and compute the proportion of intervals that contain the
target parameter.

Monte Carlo experiment to estimate a confidence level

Suppose that X ∼ FX is the random variable of interest and that θ is the
target parameter to be estimated.

1. For each replicate, indexed j = 1, . . . ,m:

(a) Generate the jth random sample, X(j)
1 , . . . , X

(j)
n .

(b) Compute the confidence interval Cj for the jth sample.
(c) Compute yj = I(θ ∈ Cj) for the jth sample.

2. Compute the empirical confidence level ȳ = 1
m

∑m
j=1 yj .

The estimator ȳ is a sample proportion estimating the true confidence level
1 − α∗, so V ar(ȳ) = (1 − α∗)α∗/m and an estimate of standard error is
ŝe(ȳ) =

√
(1 − ȳ)ȳ/m.

Example 6.5 (MC estimate of confidence level)

Refer to Example 6.4. In this example we have µ = 0, σ = 2, n = 20,
m = 1000 replicates, and α = 0.05. The sample proportion of intervals that
contain σ2 = 4 is a Monte Carlo estimate of the true confidence level. This
type of simulation can be conveniently implemented by using the replicate
function.

n <- 20
alpha <- .05
UCL <- replicate(1000, expr = {

x <- rnorm(n, mean = 0, sd = 2)
(n-1) * var(x) / qchisq(alpha, df = n-1)
} )
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#count the number of intervals that contain sigma^2=4
sum(UCL > 4)
#or compute the mean to get the confidence level
> mean(UCL > 4)
[1] 0.956

The result is that 956 intervals satisfied (UCL > 4), so the empirical confi-
dence level is 95.6% in this experiment. The result will vary but should be
close to the theoretical value, 95%. The standard error of the estimate is
(0.95(1 − 0.95)/1000)1/2 .= 0.00689. �

R note 6.1 Notice that in the replicate function, the lines to be repeatedly
executed are enclosed in braces { }. Alternately, the expression argument
(expr) can be a function call:

calcCI <- function(n, alpha) {

y <- rnorm(n, mean = 0, sd = 2)

return((n-1) * var(y) / qchisq(alpha, df = n-1))

}

UCL <- replicate(1000, expr = calcCI(n = 20, alpha = .05))

The interval estimation procedure based on (6.1) for estimating variance is
sensitive to departures from normality, so the true confidence level may be
different than the stated confidence level when data are non-normal. The true
confidence level depends on the cdf of the statistic S2. The confidence level
is the probability that the interval (0, (n − 1)S2/χ2

α) contains the true value
of the parameter σ2, which is

P

(
(n− 1)S2

χ2
α

> σ2

)
= P

(
S2 >

σ2χ2
α

n− 1

)
= 1 −G

(
σ2χ2

α

n− 1

)
,

where G(·) is the cdf of S2. If the sampled population is non-normal, we have
the problem of estimating the cdf

G(t) = P (S2 ≤ cα) =
∫ cα

0

g(x)dx,

where g(x) is the (unknown) density of S2 and cα = σ2χ2
α/(n−1). An approx-

imate solution can be computed empirically using Monte Carlo integration to
estimate G(cα). The estimate of G(t) = P (S2 ≤ t) =

∫ t

0 g(x)dx, is computed
by Monte Carlo integration. It is not necessary to have an explicit formula
for g(x), provided that we can sample from the distribution of g(X).

Example 6.6 (Empirical confidence level)

In Example 6.4, what happens if the sampled population is non-normal? For
example, suppose that the sampled population is χ2(2), which has variance 4,
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but is distinctly non-normal. We repeat the simulation, replacing the N(0,4)
samples with χ2(2) samples.

n <- 20
alpha <- .05
UCL <- replicate(1000, expr = {

x <- rchisq(n, df = 2)
(n-1) * var(x) / qchisq(alpha, df = n-1)
} )

> sum(UCL > 4)
[1] 773
> mean(UCL > 4)
[1] 0.773

In this experiment, only 773 or 77.3% of the intervals contained the population
variance, which is far from the 95% coverage under normality. �

Remark 6.1 The problems in Examples 6.1– 6.6 are parametric in the sense
that the distribution of the sampled population is specified. The Monte Carlo
approach here is sometimes called parametric bootstrap. The ordinary boot-
strap discussed in Chapter 7 is a different procedure. In “parametric” boot-
strap, the pseudo random samples are generated from a given probability distri-
bution. In the “ordinary” bootstrap, the samples are generated by resampling
from an observed sample. Bootstrap methods in this book refer to resampling
methods.

Monte Carlo methods for estimation, including several types of bootstrap
confidence interval estimates, are covered in Chapter 7. Bootstrap and jack-
knife methods for estimating the bias and standard error of an estimate are
also covered in Chapter 7. The remainder of this chapter focuses on hypothesis
tests, which are also covered in Chapter 8.

6.3 Monte Carlo Methods for Hypothesis Tests

Suppose that we wish to test a hypothesis concerning a parameter θ that
lies in a parameter space Θ. The hypotheses of interest are

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

where Θ0 and Θ1 partition the parameter space Θ.
Two types of error can occur in statistical hypothesis testing. A Type I

error occurs if the null hypothesis is rejected when in fact the null hypothesis
is true. A Type II error occurs if the null hypothesis is not rejected when in
fact the null hypothesis is false.
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The significance level of a test is denoted by α, and α is an upper bound on
the probability of Type I error. The probability of rejecting the null hypothesis
depends on the true value of θ. For a given test procedure, let π(θ) denote
the probability of rejecting H0. Then

α = sup
θ∈Θ0

π(θ).

The probability of Type I error is the conditional probability that the null
hypothesis is rejected given that H0 is true. Thus, if the test procedure is
replicated a large number of times under the conditions of the null hypothesis,
the observed Type I error rate should be at most (approximately) α.

If T is the test statistic and T ∗ is the observed value of the test statistic,
then T ∗ is significant if the test decision based on T ∗ is to reject H0. The
significance probability or p-value is the smallest possible value of α such that
the observed test statistic would be significant.

6.3.1 Empirical Type I error rate

An empirical Type I error rate can be computed by a Monte Carlo exper-
iment. The test procedure is replicated a large number of times under the
conditions of the null hypothesis. The empirical Type I error rate for the
Monte Carlo experiment is the sample proportion of significant test statistics
among the replicates.

Monte Carlo experiment to assess Type I error rate:

1. For each replicate, indexed by j = 1, . . . ,m:

(a) Generate the jth random sample x(j)
1 , . . . , x

(j)
n from the null distri-

bution.
(b) Compute the test statistic Tj from the jth sample.
(c) Record the test decision Ij = 1 if H0 is rejected at significance level

α and otherwise Ij = 0.

2. Compute the proportion of significant tests 1
m

∑m
j=1 Ij . This proportion

is the observed Type I error rate.

For the Monte Carlo experiment above, the parameter estimated is a proba-
bility and the estimate, the observed Type I error rate, is a sample proportion.
If we denote the observed Type I error rate by p̂, then an estimate of se(p̂) is

ŝe(p̂) =

√
p̂(1 − p̂)

m
≤ 0.5√

m
.

The procedure is illustrated below with a simple example.
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Example 6.7 (Empirical Type I error rate)

Suppose that X1, . . . , X20 is a random sample from a N(µ, σ2) distribution.
Test H0 : µ = 500 H1 : µ > 500 at α = 0.05. Under the null hypothesis,

T ∗ =
X − 500
S/

√
20

∼ t(19),

where t(19) denotes the Student t distribution with 19 degrees of freedom.
Large values of T ∗ support the alternative hypothesis. Use a Monte Carlo
method to compute an empirical probability of Type I error when σ = 100,
and check that it is approximately equal to α = 0.05.

The simulation below illustrates the procedure for the case σ = 100. The
t-test is implemented by t.test in R, and we are basing the test decisions on
the reported p-values returned by t.test.

n <- 20
alpha <- .05
mu0 <- 500
sigma <- 100

m <- 10000 #number of replicates
p <- numeric(m) #storage for p-values
for (j in 1:m) {

x <- rnorm(n, mu0, sigma)
ttest <- t.test(x, alternative = "greater", mu = mu0)
p[j] <- ttest$p.value
}

p.hat <- mean(p < alpha)
se.hat <- sqrt(p.hat * (1 - p.hat) / m)
print(c(p.hat, se.hat))

[1] 0.050600000 0.002191795

The observed Type I error rate in this simulation is 0.0506, and the standard
error of the estimate is approximately

√
0.05 × 0.95/m .= 0.0022. Estimates

of Type I error probability will vary, but should be close to the nominal rate
α = 0.05 because all samples were generated under the null hypothesis from
the assumed model for a t-test (normal distribution). In this experiment the
empirical Type I error rate differs from α = 0.05 by less than one standard
error.

Theoretically, the probability of rejecting the null hypothesis when µ = 500
is exactly α = 0.05 in this example. The simulation really only investigates
empirically whether the method of computing the p-value in t.test (a nu-
merical algorithm) is consistent with the theoretical value α = 0.05. �
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One of the simplest approaches to testing for univariate normality is the
skewness test. In the following example we investigate whether a test based
on the asymptotic distribution of the skewness statistic achieves the nominal
significance level α under the null hypothesis of normality.

Example 6.8 (Skewness test of normality)

The skewness
√
β1 of a random variable X is defined by√

β1 =
E[(X − µX)]3

σ3
X

,

where µX = E[X ] and σ2
X = V ar(X). (The notation

√
β1 is the classical

notation for the signed skewness coefficient.) A distribution is symmetric if√
β1 = 0, positively skewed if

√
β1 > 0, and negatively skewed if

√
β1 < 0.

The sample coefficient of skewness is denoted by
√
b1, and defined as

√
b1 =

1
n

∑n
i=1(Xi −X)3

( 1
n

∑n
i=1(Xi −X)2)3/2

. (6.2)

(Note that
√
b1 is classical notation for the signed skewness statistic.) If the

distribution of X is normal, then
√
b1 is asymptotically normal with mean

0 and variance 6/n [59]. Normal distributions are symmetric, and a test
for normality based on skewness rejects the hypothesis of normality for large
values of |√b1|. The hypotheses are

H0 :
√
β1 = 0; H1 :

√
β1 = 0,

where the sampling distribution of the skewness statistic is derived under the
assumption of normality.

However, the convergence of
√
b1 to its limit distribution is rather slow and

the asymptotic distribution is not a good approximation for small to moderate
sample sizes.

Assess the Type I error rate for a skewness test of normality at α = 0.05
based on the asymptotic distribution of

√
b1 for sample sizes n = 10, 20, 30,

50, 100, and 500.
The vector of critical values cv for each of the sample sizes n = 10, 20, 30,

50, 100, and 500 are computed under the normal limit distribution and stored
in cv.

n <- c(10, 20, 30, 50, 100, 500) #sample sizes
cv <- qnorm(.975, 0, sqrt(6/n)) #crit. values for each n

asymptotic critical values:
n 10 20 30 50 100 500
cv 1.5182 1.0735 0.8765 0.6790 0.4801 0.2147
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The asymptotic distribution of
√
b1 does not depend on the mean and vari-

ance of the sampled normal distribution, so the samples can be generated
from the standard normal distribution. If the sample size is n[i] then H0 is
rejected if |√b1| > cv[i].

First write a function to compute the sample skewness statistic.

sk <- function(x) {
#computes the sample skewness coeff.
xbar <- mean(x)
m3 <- mean((x - xbar)^3)
m2 <- mean((x - xbar)^2)
return( m3 / m2^1.5 )

}

In the code below, the outer loop varies the sample size n and the inner
loop is the simulation for the current n. In the simulation, the test decisions
are saved as 1 (reject H0) or 0 (do not reject H0) in the vector sktests.
When the simulation for n = 10 ends, the mean of sktests gives the sample
proportion of significant tests for n = 10. This result is saved in p.reject[1].
Then the simulation is repeated for n = 20, 30, 50, 100, 500, and saved in
p.reject[2:6].

#n is a vector of sample sizes
#we are doing length(n) different simulations

p.reject <- numeric(length(n)) #to store sim. results
m <- 10000 #num. repl. each sim.

for (i in 1:length(n)) {
sktests <- numeric(m) #test decisions
for (j in 1:m) {

x <- rnorm(n[i])
#test decision is 1 (reject) or 0
sktests[j] <- as.integer(abs(sk(x)) >= cv[i] )
}

p.reject[i] <- mean(sktests) #proportion rejected
}

> p.reject
[1] 0.0129 0.0272 0.0339 0.0415 0.0464 0.0539

The results of the simulation are the empirical estimates of Type I error rate
summarized below.

n 10 20 30 50 100 500
estimate 0.0129 0.0272 0.0339 0.0415 0.0464 0.0539
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With m = 10000 replicates the standard error of the estimate is approxi-
mately

√
0.05 × 0.95/m .= 0.0022.

The results of the simulation suggest that the asymptotic normal approx-
imation for the distribution of

√
b1 is not adequate for sample sizes n ≤ 50,

and questionable for sample sizes as large as n = 500. For finite samples one
should use

V ar(
√
b1) =

6(n− 2)
(n+ 1)(n+ 3)

,

the exact value of the variance [93] (also see [60] or [270]). Repeating the
simulation with

cv <- qnorm(.975, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))
> round(cv, 4)
[1] 1.1355 0.9268 0.7943 0.6398 0.4660 0.2134

produces the simulation results summarized below.

n 10 20 30 50 100 500
estimate 0.0548 0.0515 0.0543 0.0514 0.0511 0.0479

These estimates are closer to the nominal level α = 0.05. On skewness tests
and other classical tests of normality see [58] or [270]. �

6.3.2 Power of a Test

In a test of hypotheses H0 vs H1, a Type II error occurs when H1 is true,
but H0 is not rejected. The power of a test is given by the power function
π : Θ → [0, 1], which is the probability π(θ) of rejecting H0 given that the
true value of the parameter is θ. Thus, for a given θ1 ∈ Θ1, the probability of
Type II error is 1−π(θ1). Ideally, we would prefer a test with low probability
of error. Type I error is controlled by the choice of the significance level α.
Low Type II error corresponds to high power under the alternative hypothesis.
Thus, when comparing test procedures for the same hypotheses at the same
significance level, we are interested in comparing the power of the tests. In
general the comparison is not one problem but many; the power π(θ1) of a
test under the alternative hypothesis depends on the particular value of the
alternative θ1. For the t-test in Example 6.7, Θ1 = (500,∞). In general,
however, the set Θ1 can be more complicated.

If the power function of a test cannot be derived analytically, the power of
a test against a fixed alternative θ1 ∈ Θ1 can be estimated by Monte Carlo
methods. Note that the power function is defined for all θ ∈ Θ, but the
significance level α controls π(θ) ≤ α for all θ ∈ Θ0.
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Monte Carlo experiment to estimate power of a test against a fixed
alternative

1. Select a particular value of the parameter θ1 ∈ Θ.

2. For each replicate, indexed by j = 1, . . . ,m:

(a) Generate the jth random sample x(j)
1 , . . . , x

(j)
n under the conditions

of the alternative θ = θ1.
(b) Compute the test statistic Tj from the jth sample.
(c) Record the test decision: set Ij = 1 if H0 is rejected at significance

level α, and otherwise set Ij = 0.

3. Compute the proportion of significant tests π̂(θ1) = 1
m

∑m
j=1 Ij .

Example 6.9 (Empirical power)

Use simulation to estimate power and plot an empirical power curve for the
t-test in Example 6.7. (For a numerical approach that does not involve simu-
lation, see the remark below.)

To plot the curve, we need the empirical power for a sequence of alternatives
θ along the horizontal axis. Each point corresponds to a Monte Carlo exper-
iment. The outer for loop varies the points θ (mu) and the inner replicate
loop (see R Note 6.1) estimates the power at the current θ.

n <- 20
m <- 1000
mu0 <- 500
sigma <- 100
mu <- c(seq(450, 650, 10)) #alternatives
M <- length(mu)
power <- numeric(M)
for (i in 1:M) {

mu1 <- mu[i]
pvalues <- replicate(m, expr = {

#simulate under alternative mu1
x <- rnorm(n, mean = mu1, sd = sigma)
ttest <- t.test(x,

alternative = "greater", mu = mu0)
ttest$p.value } )

power[i] <- mean(pvalues <= .05)
}

The estimated power π̂(θ) values are now stored in the vector power. Next,
plot the empirical power curve, adding vertical error bars at π̂(θ) ± ŝe(π̂(θ))
using the errbar function in the Hmisc package [132].
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library(Hmisc) #for errbar
plot(mu, power)
abline(v = mu0, lty = 1)
abline(h = .05, lty = 1)

#add standard errors
se <- sqrt(power * (1-power) / m)
errbar(mu, power, yplus = power+se, yminus = power-se,

xlab = bquote(theta))
lines(mu, power, lty=3)
detach(package:Hmisc)

The power curve is shown in Figure 6.1. Note that the empirical power
π̂(θ) is small when θ is close to θ0 = 500, and increasing as θ moves farther
away from θ0, approaching 1 as θ → ∞. �

Remark 6.2 The non-central t distribution arises in power calculations for
t-tests. The general non-central t with parameters (ν, δ) is defined as the
distribution of T (ν, δ) = (Z + δ)/

√
V/ν where Z ∼ N(0, 1) and V ∼ χ2(ν)

are independent.
Suppose X1, X2, . . . , Xn is a random sample from a N(µ, σ2) distribution,

and the t-statistic T = (X−µ0)/(S/
√
n) is applied to test H0 : µ = µ0. Under

the null hypothesis, T has the central t(n−1) distribution, but if µ = µ0, T has
the non-central t distribution with n− 1 degrees of freedom and non-centrality
parameter δ = (µ − µ0)

√
n/σ. A numerical approach to evaluating the cdf

of the non-central t distribution, based on an algorithm of Lenth [175], is
implemented in the R function pt. Also see power.t.test. �

Example 6.10 (Power of the skewness test of normality)

The skewness test of normality was described in Example 6.8. In this example,
we estimate by simulation the power of the skewness test of normality against a
contaminated normal (normal scale mixture) alternative described in Example
6.3. The contaminated normal distribution is denoted by

(1 − ε)N(µ = 0, σ2 = 1) + εN(µ = 0, σ2 = 100), 0 ≤ ε ≤ 1.

When ε = 0 or ε = 1 the distribution is normal, but the mixture is non-
normal for 0 < ε < 1. We can estimate the power of the skewness test for a
sequence of alternatives indexed by ε and plot a power curve for the power
of the skewness test against this type of alternative. For this experiment, the
significance level is α = 0.1 and the sample size is n = 30. The skewness
statistic sk is implemented in Example 6.8.
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FIGURE 6.1: Empirical power π̂(θ)±ŝe(π̂(θ)) for the t-test ofH0 : θ = 500
vs H1 : θ > 500 in Example 6.9.

alpha <- .1

n <- 30

m <- 2500

epsilon <- c(seq(0, .15, .01), seq(.15, 1, .05))

N <- length(epsilon)

pwr <- numeric(N)

#critical value for the skewness test

cv <- qnorm(1-alpha/2, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))

for (j in 1:N) { #for each epsilon

e <- epsilon[j]

sktests <- numeric(m)

for (i in 1:m) { #for each replicate

sigma <- sample(c(1, 10), replace = TRUE,

size = n, prob = c(1-e, e))

x <- rnorm(n, 0, sigma)

sktests[i] <- as.integer(abs(sk(x)) >= cv)

}

pwr[j] <- mean(sktests)

}

#plot power vs epsilon

plot(epsilon, pwr, type = "b",

xlab = bquote(epsilon), ylim = c(0,1))

abline(h = .1, lty = 3)

se <- sqrt(pwr * (1-pwr) / m) #add standard errors

lines(epsilon, pwr+se, lty = 3)

lines(epsilon, pwr-se, lty = 3)
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FIGURE 6.2: Empirical power π̂(ε)± ŝe(π̂(ε)) for the skewness test of nor-
mality against ε-contaminated normal scale mixture alternative in Example
6.10.

The empirical power curve is shown in Figure 6.2. Note that the power curve
crosses the horizontal line corresponding to α = 0.10 at both endpoints, ε = 0
and ε = 1 where the alternative is normally distributed. For 0 < ε < 1 the
empirical power of the test is greater than 0.10 and highest when ε is about
0.15. �

6.3.3 Power comparisons

Monte Carlo methods are often applied to compare the performance of
different test procedures. A skewness test of normality was introduced in
Example 6.8. There are many tests of normality in the literature (see [58]
and [270]). In the following example three tests of univariate normality are
compared.

Example 6.11 (Power comparison of tests of normality)

Compare the empirical power of the skewness test of univariate normality
with the Shapiro-Wilk [248] test. Also compare the power of the energy test
[263], which is based on distances between sample elements.

Let N denote the family of univariate normal distributions. Then the test
hypotheses are

H0 : F
X
∈ N H1 : F

X
/∈ N.
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The Shapiro-Wilk test is based on the regression of the sample order statis-
tics on their expected values under normality, so it falls in the general category
of tests based on regression and correlation. The approximate critical values
of the statistic are determined by a transformation of the statistic W to nor-
mality [235, 236, 237] for sample sizes 7 ≤ n ≤ 2000. The Shapiro-Wilk test
is implemented by the R function shapiro.test.

The energy test is based on an energy distance between the sampled distri-
bution and normal distribution, so large values of the statistic are significant.
The energy test is a test of multivariate normality [263], so the test consid-
ered here is the special case d = 1. As a test of univariate normality, energy
performs very much like the Anderson-Darling test [9]. The energy statistic
for testing normality is

Qn = n

⎡⎣ 2
n

n∑
i=1

E‖xi −X‖ −E‖X −X ′‖ − 1
n2

n∑
i,j=1

‖xi − xj‖
⎤⎦ , (6.3)

where X,X ′ are iid. Large values of Qn are significant. In the univariate case,
the following computing formula is equivalent:

Qn = n

[
2
n

n∑
i=1

(2Yi Φ(Yi) + 2φ(Yi)) − 2√
π
− 2
n2

n∑
k=1

(2k − 1 − n)Y(k)

]
,

(6.4)
where Yi = Xi−µX

σX
, Y(k) is the kth order statistic of the standardized sample,

Φ is the standard normal cdf and φ is the standard normal density. If the
parameters are unknown, substitute the sample mean and sample standard
deviation to to compute Y1, . . . , Yn. A computing formula for the multivari-
ate case is given in [263]. The energy test for univariate and multivariate
normality is implemented in mvnorm.etest in the energy package [226].

The skewness test of normality was introduced in Examples 6.8 and 6.10.
The sample skewness function sk is given in Example 6.8 on page 166.

For this comparison we set significance level α = 0.1. The example below
compares the power of the tests against the contaminated normal alternatives
described in Example 6.3. The alternative is the normal mixture denoted by

(1 − ε)N(µ = 0, σ2 = 1) + εN(µ = 0, σ2 = 100), 0 ≤ ε ≤ 1.

When ε = 0 or ε = 1 the distribution is normal, and in this case the empirical
Type I error rate should be controlled at approximately the nominal rate
α = 0.1. If 0 < ε < 1 the distributions are non-normal, and we are interested
in comparing the empirical power of the tests against these alternatives.
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# initialize input and output
library(energy)
alpha <- .1
n <- 30
m <- 2500 #try smaller m for a trial run
epsilon <- .1
test1 <- test2 <- test3 <- numeric(m)

#critical value for the skewness test
cv <- qnorm(1-alpha/2, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))

# estimate power
for (j in 1:m) {

e <- epsilon
sigma <- sample(c(1, 10), replace = TRUE,

size = n, prob = c(1-e, e))
x <- rnorm(n, 0, sigma)
test1[j] <- as.integer(abs(sk(x)) >= cv)
test2[j] <- as.integer(

shapiro.test(x)$p.value <= alpha)
test3[j] <- as.integer(

mvnorm.etest(x, R=200)$p.value <= alpha)
}

print(c(epsilon, mean(test1), mean(test2), mean(test3)))
detach(package:energy)

The simulation was repeated for several choices of ε and results saved in a
matrix sim. Simulation results for n = 30 are summarized in Table 6.2 and
in Figure 6.3. The plot is obtained as follows.

# plot the empirical estimates of power
plot(sim[,1], sim[,2], ylim = c(0, 1), type = "l",

xlab = bquote(epsilon), ylab = "power")
lines(sim[,1], sim[,3], lty = 2)
lines(sim[,1], sim[,4], lty = 4)
abline(h = alpha, lty = 3)
legend("topright", 1, c("skewness", "S-W", "energy"),

lty = c(1,2,4), inset = .02)

Standard error of the estimates is at most 0.5/
√
m = 0.01. Estimates for

empirical Type I error rate correspond to ε = 0 and ε = 1. All tests achieve
approximately the nominal significance level α = 0.10 within one standard
error. The tests are at approximately the same significance level, so it is
meaningful to compare the results for power.
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The simulation results suggest that the Shapiro-Wilk and energy tests are
about equally powerful against this type of alternative when n = 30 and
ε < 0.5. Both have higher power than the skewness test overall and energy
appears to have highest power for 0.5 ≤ ε ≤ 0.8.

�

6.4 Application: “Count Five” Test for Equal Variance

The examples in this section illustrate the Monte Carlo method for a simple
two sample test of equal variance.

The two sample “Count Five” test for equality of variance introduced by
McGrath and Yeh [193] counts the number of extreme points of each sample
relative to the range of the other sample. Suppose the means of the two
samples are equal and the sample sizes are equal. An observation in one
sample is considered extreme if it is not within the range of the other sample.
If either sample has five or more extreme points, the hypothesis of equal
variance is rejected.

Example 6.12 (Count Five test statistic)

The computation of the test statistic is illustrated with a numerical example.
Compare the side-by-side boxplots in Figure 6.4 and observe that there are
some extreme points in each sample with respect to the other sample.

x1 <- rnorm(20, 0, sd = 1)
x2 <- rnorm(20, 0, sd = 1.5)
y <- c(x1, x2)

group <- rep(1:2, each = length(x1))
boxplot(y ~ group, boxwex = .3, xlim = c(.5, 2.5), main = "")
points(group, y)

# now identify the extreme points
> range(x1)
[1] -2.782576 1.728505
> range(x2)
[1] -1.598917 3.710319
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FIGURE 6.3: Empirical power of three tests of normality against a conta-
minated normal alternative in Example 6.11 (n = 30, α = 0.1, se ≤ 0.01)

TABLE 6.2: Empirical Power of Three Tests of
Normality against a Contaminated Normal
Alternative in Example 6.11 (n = 30, α = 0.1,
se ≤ 0.01)

ε skewness test Shapiro-Wilk energy test
0.00 0.0984 0.1076 0.1064
0.05 0.6484 0.6704 0.6560
0.10 0.8172 0.9008 0.8896
0.15 0.8236 0.9644 0.9624
0.20 0.7816 0.9816 0.9800
0.25 0.7444 0.9940 0.9924
0.30 0.6724 0.9960 0.9980
0.40 0.5672 0.9828 0.9964
0.50 0.4424 0.9112 0.9724
0.60 0.3368 0.7380 0.8868
0.70 0.2532 0.4900 0.6596
0.80 0.1980 0.2856 0.3932
0.90 0.1296 0.1416 0.1724
1.00 0.0992 0.0964 0.0980
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FIGURE 6.4: Boxplots showing extreme points for the Count Five statistic
in Example 6.12.

> i <- which(x1 < min(x2))
> j <- which(x2 > max(x1))

> x1[i]
[1] -2.782576

> x2[j]
[1] 2.035521 1.809902 3.710319

The Count Five statistic is the maximum number of extreme points, max(1, 3),
so the Count Five test will not reject the hypothesis of equal variance. Note
that we only need the number of extreme points, and the extreme count can
be determined without reference to a boxplot as follows.

out1 <- sum(x1 > max(x2)) + sum(x1 < min(x2))

out2 <- sum(x2 > max(x1)) + sum(x2 < min(x1))

> max(c(out1, out2))

[1] 3

�

Example 6.13 (Count Five test statistic, cont.)

Consider the case of two independent random samples from the same normal
distribution. Estimate the sampling distribution of the maximum number of
extreme points, and find the 0.80, 0.90, and 0.95 quantiles of the sampling
distribution.
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The function maxout below counts the maximum number of extreme points
of each sample with respect to the range of the other sample. The sampling
distribution of the extreme count statistic can be estimated by a Monte Carlo
experiment.

maxout <- function(x, y) {
X <- x - mean(x)
Y <- y - mean(y)
outx <- sum(X > max(Y)) + sum(X < min(Y))
outy <- sum(Y > max(X)) + sum(Y < min(X))
return(max(c(outx, outy)))

}

n1 <- n2 <- 20
mu1 <- mu2 <- 0
sigma1 <- sigma2 <- 1
m <- 1000

# generate samples under H0
stat <- replicate(m, expr={

x <- rnorm(n1, mu1, sigma1)
y <- rnorm(n2, mu2, sigma2)
maxout(x, y)
})

print(cumsum(table(stat)) / m)
print(quantile(stat, c(.8, .9, .95)))

The “Count Five” test criterion looks reasonable for normal distributions.
The empirical cdf and quantiles are

1 2 3 4 5 6 7 8 9 10 11

0.149 0.512 0.748 0.871 0.945 0.974 0.986 0.990 0.996 0.999 1.000

80% 90% 95%

4 5 6

Notice that the quantile function gives 6 as the 0.95 quantile. However, if
α = 0.05 is the desired significance level, the critical value 5 appears to be the
best choice. The quantile function is not always the best way to estimate a
critical value. If quantile is used, compare the result to the empirical cdf. �

The “Count Five” test criterion can be applied for independent random
samples when the random variables are similarly distributed and sample sizes
are equal. (Random variablesX and Y are called similarly distributed if Y has
the same distribution as (X − a)/b where a and b > 0 are constants.) When
the data are centered by their respective population means, McGrath and Yeh
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[193] show that the Count Five test on the centered data has significance level
at most 0.0625.

In practice, the populations means are generally unknown and each sample
would be centered by subtracting its sample mean. Also, the sample sizes
may be unequal.

Example 6.14 (Count Five test)

Use Monte Carlo methods to estimate the significance level of the test when
each sample is centered by subtracting its sample mean. Here again we con-
sider normal distributions. The function count5test returns the value 1
(reject H0) or 0 (do not reject H0).

count5test <- function(x, y) {
X <- x - mean(x)
Y <- y - mean(y)
outx <- sum(X > max(Y)) + sum(X < min(Y))
outy <- sum(Y > max(X)) + sum(Y < min(X))
# return 1 (reject) or 0 (do not reject H0)
return(as.integer(max(c(outx, outy)) > 5))

}

n1 <- n2 <- 20
mu1 <- mu2 <- 0
sigma1 <- sigma2 <- 1
m <- 10000
tests <- replicate(m, expr = {

x <- rnorm(n1, mu1, sigma1)
y <- rnorm(n2, mu2, sigma2)
x <- x - mean(x) #centered by sample mean
y <- y - mean(y)
count5test(x, y)
} )

alphahat <- mean(tests)
> print(alphahat)
[1] 0.0565

If the samples are centered by the population mean, we should expect an
empirical Type I error rate of about 0.055, from our previous simulation to
estimate the quantiles of the maxout statistic. In the simulation, each sample
was centered by subtracting the sample mean, and the empirical Type I error
rate was 0.0565 (se .= 0.0022). �
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Example 6.15 (Count Five test, cont.)

Repeating the previous example, we are estimating the empirical Type I error
rate when sample sizes differ and the “Count Five” test criterion is applied.
Each sample is centered by subtracting the sample mean.

n1 <- 20
n2 <- 30
mu1 <- mu2 <- 0
sigma1 <- sigma2 <- 1
m <- 10000

alphahat <- mean(replicate(m, expr={
x <- rnorm(n1, mu1, sigma1)
y <- rnorm(n2, mu2, sigma2)
x <- x - mean(x) #centered by sample mean
y <- y - mean(y)
count5test(x, y)
}))

print(alphahat)
[1] 0.1064

The simulation result suggests that the “Count Five” criterion does not nec-
essarily control Type I error at α ≤ 0.0625 when the sample sizes are unequal.
Repeating the simulation above with n1 = 20 and n2 = 50, the empirical Type
I error rate was 0.2934. See [193] for a method to adjust the test criterion for
unequal sample sizes. �

Example 6.16 (Count Five, cont.)

Use Monte Carlo methods to estimate the power of the Count Five test, where
the sampled distributions are N(µ1 = 0, σ2

1 = 1), N(µ2 = 0, σ2
2 = 1.52), and

the sample sizes are n1 = n2 = 20.

# generate samples under H1 to estimate power
sigma1 <- 1
sigma2 <- 1.5

power <- mean(replicate(m, expr={
x <- rnorm(20, 0, sigma1)
y <- rnorm(20, 0, sigma2)
count5test(x, y)
}))
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> print(power)
[1] 0.3129

The empirical power of the test is 0.3129 (se ≤ 0.005) against the alternative
(σ1 = 1, σ2 = 1.5) with n1 = n2 = 20. See [193] for power comparisons with
other tests for equal variance and applications. �

Exercises

6.1 Estimate the MSE of the level k trimmed means for random samples of size
20 generated from a standard Cauchy distribution. (The target parameter θ
is the center or median; the expected value does not exist.) Summarize the
estimates of MSE in a table for k = 1, 2, . . . , 9.

6.2 Plot the empirical power curve for the t-test in Example 6.9, changing the
alternative hypothesis to H1 : µ = 500, and keeping the significance level
α = 0.05.

6.3 Plot the power curves for the t-test in Example 6.9 for sample sizes 10, 20,
30, 40, and 50, but omit the standard error bars. Plot the curves on the same
graph, each in a different color or different line type, and include a legend.
Comment on the relation between power and sample size.

6.4 Suppose that X1, . . . , Xn are a random sample from a from a lognormal dis-
tribution with unknown parameters. Construct a 95% confidence interval for
the parameter µ. Use a Monte Carlo method to obtain an empirical estimate
of the confidence level.

6.5 Suppose a 95% symmetric t-interval is applied to estimate a mean, but the
sample data are non-normal. Then the probability that the confidence interval
covers the mean is not necessarily equal to 0.95. Use a Monte Carlo experiment
to estimate the coverage probability of the t-interval for random samples of
χ2(2) data with sample size n = 20. Compare your t-interval results with the
simulation results in Example 6.4. (The t-interval should be more robust to
departures from normality than the interval for variance.)

6.6 Estimate the 0.025, 0.05, 0.95, and 0.975 quantiles of the skewness
√
b1 under

normality by a Monte Carlo experiment. Compute the standard error of the
estimates from (2.14) using the normal approximation for the density (with
exact variance formula). Compare the estimated quantiles with the quantiles
of the large sample approximation

√
b1 ≈ N(0, 6/n).

6.7 Estimate the power of the skewness test of normality against symmetric
Beta(α, α) distributions and comment on the results. Are the results different
for heavy-tailed symmetric alternatives such as t(ν)?
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6.8 Refer to Example 6.16. Repeat the simulation, but also compute the F test
of equal variance, at significance level α̂ .= 0.055. Compare the power of the
Count Five test and F test for small, medium, and large sample sizes. (Recall
that the F test is not applicable for non-normal distributions.)

6.9 Let X be a non-negative random variable with µ = E[X ] <∞. For a random
sample x1, . . . , xn from the distribution of X , the Gini ratio is defined by

G =
1

2n2µ

n∑
j=1

n∑
i=1

|xi − xj |.

The Gini ratio is applied in economics to measure inequality in income dis-
tribution (see e.g. [163]). Note that G can be written in terms of the order
statistics x(i) as

G =
1
n2µ

n∑
i=1

(2i− n− 1)x(i).

If the mean is unknown, let Ĝ be the statisticGwith µ replaced by x̄. Estimate
by simulation the mean, median and deciles of Ĝ if X is standard lognormal.
Repeat the procedure for the uniform distribution and Bernoulli(0.1). Also
construct density histograms of the replicates in each case.

6.10 Construct an approximate 95% confidence interval for the Gini ratio γ = E[G]
if X is lognormal with unknown parameters. Assess the coverage rate of the
estimation procedure with a Monte Carlo experiment.

Projects

6.A Use Monte Carlo simulation to investigate whether the empirical Type I er-
ror rate of the t-test is approximately equal to the nominal significance level
α, when the sampled population is non-normal. The t-test is robust to mild
departures from normality. Discuss the simulation results for the cases where
the sampled population is (i) χ2(1), (ii) Uniform(0,2), and (iii) Exponen-
tial(rate=1). In each case, test H0 : µ = µ0 vs H0 : µ = µ0, where µ0 is the
mean of χ2(1), Uniform(0,2), and Exponential(1), respectively.

6.B Tests for association based on Pearson product moment correlation ρ, Spear-
man’s rank correlation coefficient ρs, or Kendall’s coefficient τ , are imple-
mented in cor.test. Show (empirically) that the nonparametric tests based
on ρs or τ are less powerful than the correlation test when the sampled dis-
tribution is bivariate normal. Find an example of an alternative (a bivariate
distribution (X,Y ) such that X and Y are dependent) such that at least one
of the nonparametric tests have better empirical power than the correlation
test against this alternative.
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6.C Repeat Examples 6.8 and 6.10 for Mardia’s multivariate skewness test. Mar-
dia [187] proposed tests of multivariate normality based on multivariate gen-
eralizations of skewness and kurtosis. If X and Y are iid, the multivariate
population skewness β1,d is defined by Mardia as

β1,d = E
[
(X − µ)T Σ−1(Y − µ)

]3
.

Under normality, β1,d = 0. The multivariate skewness statistic is

b1,d =
1
n2

n∑
i,j=1

((Xi − X̄)T Σ̂−1(Xj − X̄))3, (6.5)

where Σ̂ is the maximum likelihood estimator of covariance. Large values of
b1,d are significant. The asymptotic distribution of nb1,d/6 is chisquared with
d(d+ 1)(d+ 2)/6 degrees of freedom.

6.D Repeat Example 6.11 for multivariate tests of normality. Mardia [187] defines
multivariate kurtosis as

β2,d = E
[
(X − µ)T Σ−1(X − µ)

]2
.

For d-dimensional multivariate normal distributions the kurtosis coefficient is
β2,d = d(d + 2). The multivariate kurtosis statistic is

b2,d =
1
n

n∑
i=1

((Xi − X̄)T Σ̂−1(Xi − X̄))2. (6.6)

The large sample test of multivariate normality based on b2,d rejects the null
hypothesis at significance level α if∣∣∣∣∣b2,d − d(d+ 2)√

8d(d+ 2)/n

∣∣∣∣∣ ≥ Φ−1(1 − α/2).

However, b2,d converges very slowly to the normal limiting distribution. Com-
pare the empirical power of Mardia’s skewness and kurtosis tests of multivari-
ate normality with the energy test of multivariate normality mvnorm.etest
(energy) (6.3) [226, 263]. Consider multivariate normal location mixture al-
ternatives where the two samples are generated from mlbench.twonorm in the
mlbench package [174].



Chapter 7

Bootstrap and Jackknife

7.1 The Bootstrap

The bootstrap was introduced in 1979 by Efron [80], with further develop-
ments in 1981 [82, 81], 1982 [83], and numerous other publications including
the monograph of Efron and Tibshirani [84]. Chernick [45] has an extensive
bibliography. Davison and Hinkley [63] is a comprehensive reference with
many applications. Also see Barbe and Bertail [19], Shao and Tu [247], and
Mammen [186].

Bootstrap methods are a class of nonparametric Monte Carlo methods that
estimate the distribution of a population by resampling. Resampling methods
treat an observed sample as a finite population, and random samples are
generated (resampled) from it to estimate population characteristics and make
inferences about the sampled population. Bootstrap methods are often used
when the distribution of the target population is not specified; the sample is
the only information available.

The term “bootstrap” can refer to nonparametric bootstrap or parametric
bootstrap. Monte Carlo methods that involve sampling from a fully specified
probability distribution, such as methods of Chapter 6 are sometimes called
parametric bootstrap. Nonparametric bootstrap is the subject of this chapter.
In nonparametric bootstrap, the distribution is not specified.

The distribution of the finite population represented by the sample can be
regarded as a pseudo-population with similar characteristics as the true popu-
lation. By repeatedly generating random samples from this pseudo-population
(resampling), the sampling distribution of a statistic can be estimated. Prop-
erties of an estimator such as bias or standard error can be estimated by
resampling.

Bootstrap estimates of a sampling distribution are analogous to the idea
of density estimation. We construct a histogram of a sample to obtain an
estimate of the shape of the density function. The histogram is not the density,
but in a nonparametric problem, can be viewed as a reasonable estimate of
the density. We have methods to generate random samples from completely
specified densities; bootstrap generates random samples from the empirical
distribution of the sample.

183
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Suppose that x = (x1, . . . , xn) is an observed random sample from a distri-
bution with cdf F (x). If X∗ is selected at random from x, then

P (X∗ = xi) =
1
n
, i = 1, . . . , n.

Resampling generates a random sample X∗
1 , . . . , X

∗
n by sampling with replace-

ment from x. The random variables X∗
i are iid, uniformly distributed on the

set {x1, . . . , xn}.
The empirical distribution function (ecdf) Fn(x) is an estimator of F (x).

It can be shown that Fn(x) is a sufficient statistic for F (x); that is, all the
information about F (x) that is contained in the sample is also contained
in Fn(x). Moreover, Fn(x) is itself the distribution function of a random
variable; namely the random variable that is uniformly distributed on the set
{x1, . . . , xn}. Hence the empirical cdf Fn is the cdf of X∗. Thus in bootstrap,
there are two approximations. The ecdf Fn is an approximation to the cdf FX .
The ecdf F ∗

m of the bootstrap replicates is an approximation to the ecdf Fn.
Resampling from the sample x is equivalent to generating random samples
from the distribution Fn(x). The two approximations can be represented by
the diagram

F → X → Fn

Fn → X∗ → F ∗
n .

To generate a bootstrap random sample by resampling x, generate n ran-
dom integers {i1, . . . , in} uniformly distributed on {1, . . . , n} and select the
bootstrap sample x∗ = (xi1 , . . . , xin).

Suppose θ is the parameter of interest (θ could be a vector), and θ̂ is an
estimator of θ. Then the bootstrap estimate of the distribution of θ̂ is obtained
as follows.

1. For each bootstrap replicate, indexed b = 1, . . . , B:

(a) Generate sample x∗(b) = x∗1, . . . , x
∗
n by sampling with replacement

from the observed sample x1, . . . , xn.
(b) Compute the bth replicate θ̂(b) from the bth bootstrap sample.

2. The bootstrap estimate of Fθ̂(·) is the empirical distribution of the repli-
cates θ̂(1), . . . , θ̂(B).

The bootstrap is applied to estimate the standard error and the bias of an
estimator in the following sections. First let us see an example to illustrate the
relation between the ecdf Fn and the distribution of the bootstrap replicates.
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Example 7.1 (Fn and bootstrap samples)

Suppose that we have observed the sample

x = {2, 2, 1, 1, 5, 4, 4, 3, 1, 2}.
Resampling from x we select 1, 2, 3, 4, or 5 with probabilities 0.3, 0.3, 0.1,
0.2, and 0.1 respectively, so the cdf F

X∗ of a randomly selected replicate is
exactly the ecdf Fn(x):

F
X∗(x) = Fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x < 1;
0.3, 1 ≤ x < 2;
0.6, 2 ≤ x < 3;
0.7, 3 ≤ x < 4;
0.9, 4 ≤ x < 5;
1, x ≥ 5.

Note that if Fn is not close to FX then the distribution of the replicates will
not be close to FX . The sample x above is actually a sample from a Poisson(2)
distribution. Resampling from x a large number of replicates produces a good
estimate of Fn but not a good estimate of FX , because regardless of how many
replicates are drawn, the bootstrap samples will never include 0. �

7.1.1 Bootstrap Estimation of Standard Error

The bootstrap estimate of standard error of an estimator θ̂ is the sample
standard deviation of the bootstrap replicates θ̂(1), . . . , θ̂(B).

ŝe(θ̂∗) =

√√√√ 1
B − 1

B∑
b=1

(θ̂(b) − θ̂∗)2, (7.1)

where θ̂∗ = 1
B

∑B
b=1 θ̂

(b) [84, (6.6)].
According to Efron and Tibshirani [84, p. 52], the number of replicates

needed for good estimates of standard error is not large; B = 50 is usually
large enough, and rarely is B > 200 necessary. (Much larger B will be needed
for confidence interval estimation.)

Example 7.2 (Bootstrap estimate of standard error)

The law school data set law in the bootstrap [271] package is from Efron and
Tibshirani [84]. The data frame contains LSAT (average score on law school
admission test score) and GPA (average undergraduate grade-point average)
for 15 law schools.

LSAT 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594

GPA 339 330 281 303 344 307 300 343 336 313 312 274 276 288 296
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This data set is a random sample from the universe of 82 law schools in law82
(bootstrap). Estimate the correlation between LSAT and GPA scores, and
compute the bootstrap estimate of the standard error of the sample correla-
tion.

1. For each bootstrap replicate, indexed b = 1, . . . , B:

(a) Generate sample x∗(b) = x∗1, . . . , x
∗
n by sampling with replacement

from the observed sample x1, . . . , xn.
(b) Compute the bth replicate θ̂(b) from the bth bootstrap sample, where

θ̂ is the sample correlation R between (LSAT, GPA).

2. The bootstrap estimate of se(R) is the sample standard deviation of the
replicates θ̂(1), . . . , θ̂(B) = R(1), . . . , R(B).

library(bootstrap) #for the law data
print(cor(law$LSAT, law$GPA))
[1] 0.7763745
print(cor(law82$LSAT, law82$GPA))
[1] 0.7599979

The sample correlation is R = 0.7763745. The correlation for the universe
of 82 law schools is R = 0.7599979. Use bootstrap to estimate the standard
error of the correlation statistic computed from the sample of scores in law.

#set up the bootstrap
B <- 200 #number of replicates
n <- nrow(law) #sample size
R <- numeric(B) #storage for replicates

#bootstrap estimate of standard error of R
for (b in 1:B) {

#randomly select the indices
i <- sample(1:n, size = n, replace = TRUE)
LSAT <- law$LSAT[i] #i is a vector of indices
GPA <- law$GPA[i]
R[b] <- cor(LSAT, GPA)

}
#output
> print(se.R <- sd(R))
[1] 0.1358393
> hist(R, prob = TRUE)

The bootstrap estimate of se(R) is 0.1358393. The normal theory estimate
for standard error of R is 0.115. The jackknife-after-bootstrap method of
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estimating ŝe(ŝe(θ̂)) is covered in Section 7.3. The histogram of the replicates
of R is shown in Figure 7.1. �

In the next example, the boot function in recommended package boot [34]
is applied to run the bootstrap. See Appendix B.1 for a note about how to
write the function for the statistic argument in boot.

Example 7.3 (Bootstrap estimate of standard error: boot function)

Example 7.2 is repeated, using the boot function in boot. First, write a
function that returns θ̂(b), where the first argument to the function is the
sample data, and the second argument is the vector {i1, . . . , in} of indices. If
the data is x and the vector of indices is i, we need x[i,1] to extract the
first resampled variable, and x[i,2] to extract the second resampled variable.
The code and output is shown below.

r <- function(x, i) {
#want correlation of columns 1 and 2
cor(x[i,1], x[i,2])

}

The printed summary of output from the boot function is obtained by the
command boot or the result can be saved in an object for further analysis.
Here we save the result in obj and print the summary.

library(boot) #for boot function
> obj <- boot(data = law, statistic = r, R = 2000)
> obj

ORDINARY NONPARAMETRIC BOOTSTRAP

Call: boot(data = law, statistic = r, R = 2000)
Bootstrap Statistics :

original bias std. error
t1* 0.7763745 -0.004795305 0.1303343

The observed value θ̂ of the correlation statistic is labeled t1*. The bootstrap
estimate of standard error of the estimate is ŝe(θ̂) .= 0.13, based on 2000
replicates. To compare with formula (7.1), extract the replicates in $t.

> y <- obj$t
> sd(y)
[1] 0.1303343

�
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R note 7.1 The syntax and options for the boot (boot) function and the
bootstrap (bootstrap) function are different. Note that the bootstrap

package [271] is a collection of functions and data for the book by Efron and
Tibshirani [84], and the boot package [34] is a collection of functions and
data for the book by Davison and Hinkley [63].
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FIGURE 7.1: Bootstrap replicates for law school data in Example 7.2.

7.1.2 Bootstrap Estimation of Bias

If θ̂ is an unbiased estimator of θ, E[θ̂] = θ. The bias of an estimator θ̂ for
θ is

bias(θ̂) = E[θ̂ − θ] = E[θ̂] − θ.

Thus, every statistic is an unbiased estimator of its expected value, and in
particular, the sample mean of a random sample is an unbiased estimator
of the mean of the distribution. An example of a biased estimator is the
maximum likelihood estimator of variance, σ̂2 = 1

nΣn
i=1(Xi −X)2, which has

expected value (1 − 1/n)σ2. Thus, σ̂2 underestimates σ2, and the bias is
−σ2/n.

The bootstrap estimation of bias uses the bootstrap replicates of θ̂ to esti-
mate the sampling distribution of θ̂. For the finite population x = (x1, . . . , xn),
the parameter is θ̂(x) and there are B independent and identically distributed
estimators θ̂(b). The sample mean of the replicates {θ̂(b)} is unbiased for its
expected value E[θ̂∗], so the bootstrap estimate of bias is

b̂ias(θ̂) = θ̂∗ − θ̂, (7.2)

where θ̂∗ = 1
B

∑B
b=1 θ̂

(b), and θ̂ = θ̂(x) is the estimate computed from the
original observed sample. (In bootstrap Fn is sampled in place of FX , so
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we replace θ with θ̂ to estimate the bias.) Positive bias indicates that θ̂ on
average tends to overestimate θ.

Example 7.4 (Boostrap estimate of bias)

In the law data of Example 7.2, compute the bootstrap estimate of bias in
the sample correlation.

#sample estimate for n=15
theta.hat <- cor(law$LSAT, law$GPA)

#bootstrap estimate of bias
B <- 2000 #larger for estimating bias
n <- nrow(law)
theta.b <- numeric(B)

for (b in 1:B) {
i <- sample(1:n, size = n, replace = TRUE)
LSAT <- law$LSAT[i]
GPA <- law$GPA[i]
theta.b[b] <- cor(LSAT, GPA)

}
bias <- mean(theta.b - theta.hat)
> bias
[1] -0.005797944

The estimate of bias is -0.005797944. Note that this is close to the estimate
of bias returned by the boot function in Example 7.3. See Section 7.3 for
the jackknife-after-bootstrap method to estimate the standard error of the
bootstrap estimate of bias. �

Example 7.5 (Bootstrap estimate of bias of a ratio estimate)

The patch (bootstrap) data from Efron and Tibshirani [84, 10.3] contains
measurements of a certain hormone in the bloodstream of eight subjects after
wearing a medical patch. The parameter of interest is

θ =
E(new) − E(old)

E(old) − E(placebo)
.

If |θ| ≤ 0.20, this indicates bioequivalence of the old and new patches. The
statistic is Y /Z. Compute a bootstrap estimate of bias in the bioequivalence
ratio statistic.
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data(patch, package = "bootstrap")
> patch
subject placebo oldpatch newpatch z y

1 1 9243 17649 16449 8406 -1200
2 2 9671 12013 14614 2342 2601
3 3 11792 19979 17274 8187 -2705
4 4 13357 21816 23798 8459 1982
5 5 9055 13850 12560 4795 -1290
6 6 6290 9806 10157 3516 351
7 7 12412 17208 16570 4796 -638
8 8 18806 29044 26325 10238 -2719

n <- nrow(patch) #in bootstrap package
B <- 2000
theta.b <- numeric(B)
theta.hat <- mean(patch$y) / mean(patch$z)

#bootstrap
for (b in 1:B) {

i <- sample(1:n, size = n, replace = TRUE)
y <- patch$y[i]
z <- patch$z[i]
theta.b[b] <- mean(y) / mean(z)
}

bias <- mean(theta.b) - theta.hat
se <- sd(theta.b)
print(list(est=theta.hat, bias = bias,

se = se, cv = bias/se))

$est [1] -0.0713061
$bias [1] 0.007901101
$se [1] 0.1046453
$cv [1] 0.07550363

If |bias|/se ≤ 0.25, it is not usually necessary to adjust for bias [84, 10.3].
The bias is small relative to standard error (cv < 0.08), so in this example it
is not necessary to adjust for bias. �

7.2 The Jackknife

The jackknife is another resampling method, proposed by Quenouille [215,
216] for estimating bias, and by Tukey [274] for estimating standard error, a
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few decades earlier than the bootstrap. Efron [83] is a good introduction to
the jackknife.

The jackknife is like a “leave-one-out” type of cross-validation. Let x =
(x1,. . . ,xn) be an observed random sample, and define the ith jackknife sample
x(i) to be the subset of x that leaves out the ith observation xi. That is,

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).

If θ̂ = Tn(x), define the ith jackknife replicate θ̂(i) = Tn−1(x(i)), i = 1, . . . , n.
Suppose the parameter θ = t(F ) is a function of the distribution F . Let

Fn be the ecdf of a random sample from the distribution F . The “plug-in”
estimate of θ is θ̂ = t(Fn). A “plug-in” θ̂ is smooth in the sense that small
changes in the data correspond to small changes in θ̂. For example, the sample
mean is a plug-in estimate for the population mean, but the sample median
is not a plug-in estimate for the population median.

The Jackknife Estimate of Bias

If θ̂ is a smooth (plug-in) statistic, then θ̂(i) = t(Fn−1(x(i))), and the jack-
knife estimate of bias is

b̂iasjack = (n− 1)( θ̂(·) − θ̂ ), (7.3)

where θ̂(·) = 1
n

∑n
i=1 θ̂(i) is the mean of the estimates from the leave-one-out

samples, and θ̂ = θ̂(x) is the estimate computed from the original observed
sample.

To see why the jackknife estimator (7.3) has the factor n− 1, consider the
case where θ is the population variance. If x1, . . . , xn is a random sample from
the distribution of X , the plug-in estimate of the variance of X is

θ̂ =
1
n

n∑
i=1

(xi − x̄)2.

The estimator θ̂ is biased for σ2
X with

bias(θ̂) = E[θ̂ − σ2
X ] =

n− 1
n

σ2
X − σ2

X = −σ
2
X

n
.

Each jackknife replicate computes the estimate θ̂(i) on a sample size n− 1, so
that the bias in the jackknife replicate is −σ2

X/(n− 1). Thus, for i = 1, . . . , n
we have

E[θ̂(i) − θ̂] = E[θ̂(i) − θ] − E[θ̂ − θ]

= bias(θ̂(i)) − bias(θ̂)

= − σ2
X

n− 1
−
(
−σ

2
X

n

)
= − σ2

X

n(n− 1)
=
bias(θ̂)
n− 1

.
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Thus, the jackknife estimate (7.3) with factor (n − 1) gives the correct esti-
mate of bias in the plug-in estimator of variance, which is also the maximum
likelihood estimator of variance.

R note 7.2 (leave-one-out) The [ ] operator provides a very simple way to
leave out the ith element of a vector.

x <- 1:5

for (i in 1:5)

print(x[-i])

[1] 2 3 4 5

[1] 1 3 4 5

[1] 1 2 4 5

[1] 1 2 3 5

[1] 1 2 3 4

Note that the jackknife requires only n replications to estimate the bias;
the bootstrap estimate of bias typically requires several hundred replicates.

Example 7.6 (Jackknife estimate of bias)

Compute the jackknife estimate of bias for the patch data in Example 7.5.

data(patch, package = "bootstrap")
n <- nrow(patch)
y <- patch$y
z <- patch$z
theta.hat <- mean(y) / mean(z)
print (theta.hat)

#compute the jackknife replicates, leave-one-out estimates
theta.jack <- numeric(n)
for (i in 1:n)

theta.jack[i] <- mean(y[-i]) / mean(z[-i])
bias <- (n - 1) * (mean(theta.jack) - theta.hat)

> print(bias) #jackknife estimate of bias
[1] 0.008002488

�
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The jackknife estimate of standard error

A jackknife estimate of standard error [274], [84, (11.5)] is

ŝejack =

√√√√n− 1
n

n∑
i=1

(
θ̂(i) − θ̂(·)

)2

, (7.4)

for smooth statistics θ̂.
To see why the jackknife estimator of standard error (7.4) has the factor

(n− 1)/n, consider the case where θ is the population mean and θ̂ = X. The
standard error of the mean of X is

√
V ar(X)/n. A factor of (n− 1)/n under

the radial makes ŝejack an unbiased estimator of the standard error of the
mean.

We can also consider the plug-in estimate of the standard error of the
mean. In the case of a continuous random variable X , the plug-in estimate of
the variance of a random sample is the variance of Y , where Y is uniformly
distributed on the sample x1, . . . , xn. That is,

V̂ ar(Y ) =
1
n
E[Y − E[Y ]]2 =

1
n
E[Y −X ]2

=
1
n

n∑
i=1

(Xi −X)2 · 1
n

=
n− 1
n2

S2
X =

n− 1
n

[ŝe(X)]2.

Thus, for the jackknife estimator of standard error, a factor of ((n − 1)/n)2

gives the plug-in estimate of variance. The factors ((n−1)/n)2 and ((n−1)/n)
are approximately equal if n is not small. Efron and Tibshirani [84] remark
that the choice of the factor (n − 1)/n instead of ((n − 1)/n)2 is somewhat
arbitrary.

Example 7.7 (Jackknife estimate of standard error)

To compute the jackknife estimate of standard error for the patch data in
Example 7.5, use the jackknife replicates from Example 7.6.

se <- sqrt((n-1) *
mean((theta.jack - mean(theta.jack))^2))

> print(se)
[1] 0.1055278

The jackknife estimate of standard error is 0.1055278. From the previous
result for the bias, we have the estimated coefficient of variation

> .008002488/.1055278
[1] 0.07583298

�
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When the Jackknife Fails

The jackknife can fail when the statistic θ̂ is not “smooth.” The statistic
is a function of the data. Smoothness means that small changes in the data
correspond to small changes in the statistic. The median is an example of a
statistic that is not smooth.

Example 7.8 (Failure of jackknife)

In this example the jackknife estimate of standard error of the median is
computed for a random sample of 10 integers from 1, 2 . . . , 100.

n <- 10
x <- sample(1:100, size = n)

#jackknife estimate of se
M <- numeric(n)
for (i in 1:n) { #leave one out

y <- x[-i]
M[i] <- median(y)

}
Mbar <- mean(M)
print(sqrt((n-1)/n * sum((M - Mbar)^2)))

#bootstrap estimate of se
Mb <- replicate(1000, expr = {

y <- sample(x, size = n, replace = TRUE)
median(y) })

print(sd(Mb))

# details and results:
# the sample, x: 29 79 41 86 91 5 50 83 51 42
# jackknife medians: 51 50 51 50 50 51 51 50 50 51
# jackknife est. of se: 1.5
# bootstrap medians: 46 50 46 79 79 51 81 65 ...
# bootstrap est. of se: 13.69387

Clearly something is wrong here, because the bootstrap estimate and the
jackknife estimate are far apart. The jackknife fails, because the median is
not smooth. �

In this case, when the statistic is not smooth, the delete-d jackknife (leave d
observations out on each replicate) can be applied (see Efron and Tibshirani
[84, 11.7]). If

√
n/d → 0 and n − d → ∞ then the delete-d jackknife is

consistent for the median. The computing time increases because there are a
large number of jackknife replicates when n and d are large.
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7.3 Jackknife-after-Bootstrap

In this chapter, bootstrap estimates of standard error and bias have been
introduced. These estimates are random variables. If we are interested in the
variance of these estimates, one idea is to try the jackknife.

Recall that ŝe(θ̂) is the sample standard deviation of B bootstrap replicates
of θ̂. Now, if we leave out the ith observation, the algorithm for estimation
of standard error is to resample B replicates from the n− 1 remaining obser-
vations – for each i. In other words, we would replicate the bootstrap itself.
Fortunately, there is a way to avoid replicating the bootstrap.

The jackknife-after-bootstrap computes an estimate for each “leave-one-out”
sample. Let J(i) denote the indices of bootstrap samples that do not contain
xi, and let B(i) denote number of bootstrap samples that do not contain
xi. Then we can compute the jackknife replication leaving out the B − B(i)
samples that contain xi [84, p. 277]. The jackknife estimate of standard error
is computed by the formula (7.4). Compute

ŝe(θ̂) = ŝejack(ŝeB(1), . . . , ŝeB(n)),

where

ŝeB(i) =

√√√√ 1
B(i)

∑
j∈J(i)

[
θ̂(j) − θ̂(J(i))

]2
, (7.5)

and
θ̂(J(i)) =

1
B(i)

∑
j∈J(i)

θ̂(j)

is the sample mean of the estimates from the leave-xi-out jackknife samples.

Example 7.9 (Jackknife-after-bootstrap)

Use the jackknife-after-bootstrap procedure to estimate the standard error of
ŝe(θ̂) for the patch data in Example 7.7.

# initialize
data(patch, package = "bootstrap")
n <- nrow(patch)
y <- patch$y
z <- patch$z
B <- 2000
theta.b <- numeric(B)
# set up storage for the sampled indices
indices <- matrix(0, nrow = B, ncol = n)
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# jackknife-after-bootstrap step 1: run the bootstrap
for (b in 1:B) {

i <- sample(1:n, size = n, replace = TRUE)
y <- patch$y[i]
z <- patch$z[i]
theta.b[b] <- mean(y) / mean(z)
#save the indices for the jackknife
indices[b, ] <- i
}

#jackknife-after-bootstrap to est. se(se)
se.jack <- numeric(n)
for (i in 1:n) {

#in i-th replicate omit all samples with x[i]
keep <- (1:B)[apply(indices, MARGIN = 1,

FUN = function(k) {!any(k == i)})]
se.jack[i] <- sd(theta.b[keep])

}

> print(sd(theta.b))
[1] 0.1027102
> print(sqrt((n-1) * mean((se.jack - mean(se.jack))^2)))
[1] 0.03050501

The bootstrap estimate of standard error is 0.1027102 and jackknife-after-
bootstrap estimate of its standard error is 0.03050501. �

Jackknife-after-bootstrap: Empirical influence values

The empirical influence values in jackknife-after-bootstrap are empirical
quantities that measure the difference between each jackknife replicate and
the observed statistic. There are several methods for estimating the influence
values. One approach uses the usual jackknife differences θ̂(i)− θ̂, i = 1, . . . , n.
The empinf function in the boot package computes empirical influence values
by four methods. The jack.after.boot function in the boot package [34]
produces a plot of empirical influence values. The plots can be used as a
diagnostic tool to see the effect or influence of individual observations. See
[63, Ch. 3] for examples and a discussion of how to interpret the plots.
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7.4 Bootstrap Confidence Intervals

In this section several approaches to obtaining approximate confidence in-
tervals for the target parameter in a bootstrap are discussed. The methods
include the standard normal bootstrap confidence interval, the basic bootstrap
confidence interval, the bootstrap percentile confidence interval, and the boot-
strap t confidence interval. Readers are referred to [63] and [84] for theoretical
properties and discussion of empirical performance of methods for bootstrap
confidence interval estimates.

7.4.1 The Standard Normal Bootstrap Confidence Interval

The standard normal bootstrap confidence interval is the simplest approach,
but not necessarily the best. Suppose that θ̂ is an estimator of parameter θ,
and assume the standard error of the estimator is se(θ̂). If θ̂ is a sample mean
and the sample size is large, then the Central Limit Theorem implies that

Z =
θ̂ − E[θ̂]

se(θ̂)
(7.6)

is approximately standard normal. Hence, if θ̂ is unbiased for θ, then an
approximate 100(1 − α)% confidence interval for θ is the Z-interval

θ̂ ± zα/2se(θ̂),

where zα/2 = Φ−1(1 − α/2). This interval is easy to compute, but we have
made several assumptions. To apply the normal distribution, we assume that
the distribution of θ̂ is normal or θ̂ is a sample mean and the sample size is
large. We have also implicitly assumed that θ̂ is unbiased for θ.

Bias can be estimated and used to center the Z statistic, but the estimator
is a random variable, so the transformed variable is not normal. Here we have
treated se(θ̂) as a known parameter, but in the bootstrap se(θ̂) is estimated
(the sample standard deviation of the replicates).

7.4.2 The Basic Bootstrap Confidence Interval

The basic bootstrap confidence interval transforms the distribution of the
replicates by subtracting the observed statistic. The quantiles of the trans-
formed sample are used to determine the confidence limits.

The 100(1−α)% confidence limits for the basic bootstrap confidence interval
are

(2θ̂ − θ̂1−α/2, 2θ̂ − θ̂α/2). (7.7)
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To see how the confidence limits in (7.7) are determined, consider first the
parametric case. Suppose that T is an estimator of θ and aα is the α quantile
of T − θ. Then

P (T − θ > aα) = 1 − α⇒ P (T − aα > θ) = 1 − α.

Thus, a 100(1 − 2α)% confidence interval with equal lower and upper tail
errors α is given by (t− a1−α, t− aα).

In bootstrap the distribution of T is generally unknown, but quantiles can
be estimated and an approximate method applied.

Compute the sample α quantiles θ̂α from the ecdf of the replicates θ̂∗.
Denote the α quantile of θ̂∗− θ̂ by bα. Then b̂α = θ̂α − θ̂ is an estimator of bα.
An approximate upper confidence limit for a 100(1−α)% confidence interval
for θ is given by

θ̂ − b̂α/2 = θ̂ − (θ̂α/2 − θ̂) = 2θ̂ − θ̂α/2.

Similarly an approximate lower confidence limit is given by 2θ̂− θ̂1−α/2. Thus,
a 100(1 − α) basic bootstrap confidence interval for θ is given by (7.7). See
Davison and Hinkley [63, 5.2] for more details.

7.4.3 The Percentile Bootstrap Confidence Interval

A bootstrap percentile interval uses the empirical distribution of the boot-
strap replicates as the reference distribution. The quantiles of the empirical
distribution are estimators of the quantiles of the sampling distribution of θ̂,
so that these (random) quantiles may match the true distribution better when
the distribution of θ̂ is not normal. Suppose that θ̂(1), . . . , θ̂(B) are the boot-
strap replicates of the statistic θ̂. From the ecdf of the replicates, compute
the α/2 quantile θ̂α/2, and the 1 − α/2 quantile θ̂1−α/2.

Efron and Tibshirani [84, 13.3] show that the percentile interval has some
theoretical advantages over the standard normal interval and somewhat better
coverage performance.

Adjustments to percentile methods have been proposed. For example, the
bias-corrected and accelerated (BCa) percentile intervals (see Section 7.5) are a
modified version of percentile intervals that have better theoretical properties
and better performance in practice.

The boot.ci (boot) function [34] computes five types of bootstrap con-
fidence intervals: basic, normal, percentile, studentized, and BCa. To use
this function, first call boot for the bootstrap, and pass the returned boot
object to boot.ci (along with other required arguments). For more details
see Davison and Hinkley [63, Ch. 5] and the boot.ci help topic.

Example 7.10 (Bootstrap confidence intervals for patch ratio statistic.)

This example illustrates how to obtain the normal, basic, and percentile
bootstrap confidence intervals using the boot and boot.ci functions in the
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boot package. The code generates 95% confidence intervals for the ratio sta-
tistic in Example 7.5.

library(boot) #for boot and boot.ci
data(patch, package = "bootstrap")

theta.boot <- function(dat, ind) {
#function to compute the statistic
y <- dat[ind, 1]
z <- dat[ind, 2]
mean(y) / mean(z)

}

Run the bootstrap and compute confidence interval estimates for the bioe-
quivalence ratio.

y <- patch$y
z <- patch$z
dat <- cbind(y, z)
boot.obj <- boot(dat, statistic = theta.boot, R = 2000)

The output for the bootstrap and bootstrap confidence intervals is below.

print(boot.obj)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call: boot(data = dat, statistic = theta.boot, R = 2000)
Bootstrap Statistics :

original bias std. error
t1* -0.0713061 0.01047726 0.1010179

print(boot.ci(boot.obj,
type = c("basic", "norm", "perc")))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL : boot.ci(boot.out = boot.obj, type = c("basic",

"norm", "perc"))
Intervals :
Level Normal Basic Percentile
95% (-0.2798, 0.1162 ) (-0.3045, 0.0857 ) (-0.2283, 0.1619 )
Calculations and Intervals on Original Scale

Recall that the old and new patches are bioequivalent if |θ| ≤ 0.20. Hence, the
interval estimates do not support bioequivalence of the old and new patches.
Next we compute the bootstrap confidence intervals according to their defin-
itions. Compare the following results with the boot.ci output.
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#calculations for bootstrap confidence intervals
alpha <- c(.025, .975)

#normal
print(boot.obj$t0 + qnorm(alpha * sd(boot.obj$t)))

-0.2692975 0.1266853

#basic
print(2*boot.obj$t0 -

quantile(boot.obj$t, rev(alpha), type=1))
97.5% 2.5%

-0.3018698 0.0857679

#percentile
print(quantile(boot.obj$t, alpha, type=6))
2.5% 97.5%

-0.2283370 0.1618647

�

R note 7.3 The normal interval computed by boot.ci corrects for bias. No-
tice that the boot.ci normal interval differs from our result by the bias esti-
mate shown in the output from boot. This is confirmed by reading the source
code for the function. To view the source code for this calculation, when the
boot package is loaded, enter the command getAnywhere(norm.ci) at the
console. Also see norm. inter and [63] for details of calculations of quan-
tiles.

Example 7.11 (Bootstrap confidence intervals for the correlation statistic)

Compute 95% bootstrap confidence interval estimates for the correlation sta-
tistic in the law data of Example 7.2.

library(boot)
data(law, package = "bootstrap")
boot.obj <- boot(law, R = 2000,

statistic = function(x, i){cor(x[i,1], x[i,2])})
print(boot.ci(boot.obj, type=c("basic","norm","perc")))

...

Intervals :
Level Normal Basic Percentile
95% (0.5182, 1.0448) (0.5916, 1.0994) (0.4534, 0.9611)
Calculations and Intervals on Original Scale
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All three intervals cover the correlation ρ = .76 of the universe of all law
schools in law82. One reason for the difference in the percentile and normal
confidence intervals could be that the sampling distribution of correlation
statistic is not close to normal (see the histogram in Figure 7.1). When the
sampling distribution of the statistic is approximately normal, the percentile
interval will agree with the normal interval. �

7.4.4 The Bootstrap t interval

Even if the distribution of θ̂ is normal and θ̂ is unbiased for θ, the normal
distribution is not exactly correct for the Z statistic (7.6), because we esti-
mate se(θ̂). Nor can we claim that it is a Student t statistic, because the
distribution of the bootstrap estimator ŝe(θ̂) is unknown. The bootstrap t
interval does not use a Student t distribution as the reference distribution.
Instead, the sampling distribution of a “t type” statistic (a studentized sta-
tistic) is generated by resampling. Suppose x = (x1, . . . , xn) is an observed
sample. The 100(1 − α)% bootstrap t confidence interval is

(θ̂ − t∗1−α/2ŝe(θ̂), θ̂ − t∗α/2ŝe(θ̂)),

where ŝe(θ̂), t∗α/2 and t∗1−α/2 are computed as outlined below.

Bootstrap t interval (studentized bootstrap interval)

1. Compute the observed statistic θ̂.

2. For each replicate, indexed b = 1, . . . , B:

(a) Sample with replacement from x to get the bth sample
x(b) = (x(b)

1 , . . . , x
(b)
n ).

(b) Compute θ̂(b) from the bth sample x(b).
(c) Compute or estimate the standard error ŝe(θ̂(b)) (a separate esti-

mate for each bootstrap sample; a bootstrap estimate will resample
from the current bootstrap sample x(b), not x).

(d) Compute the bth replicate of the “t” statistic, t(b) = θ̂(b)−θ̂

�se(θ̂(b))
.

3. The sample of replicates t(1), . . . , t(B) is the reference distribution for
bootstrap t. Find the sample quantiles t∗α/2 and t∗1−α/2 from the ordered
sample of replicates t(b).

4. Compute ŝe(θ̂), the sample standard deviation of the replicates θ̂(b).

5. Compute confidence limits

(θ̂ − t∗1−α/2ŝe(θ̂), θ̂ − t∗α/2ŝe(θ̂)).
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One disadvantage to the bootstrap t interval is that typically the estimates
of standard error ŝe(θ̂(b)) must be obtained by bootstrap. This is a bootstrap
nested inside a bootstrap. IfB = 1000, for example, the bootstrap t confidence
interval method takes approximately 1000 times longer than any of the other
methods.

Example 7.12 (Bootstrap t confidence interval)

This example provides a function to compute a bootstrap t confidence interval
for a univariate or a multivariate sample. The required arguments to the
function are the sample data x, and the function statistic that computes
the statistic. The default confidence level is 95%, the number of bootstrap
replicates defaults to 500, and the number of replicates for estimating standard
error defaults to 100.

boot.t.ci <-

function(x, B = 500, R = 100, level = .95, statistic){

#compute the bootstrap t CI

x <- as.matrix(x); n <- nrow(x)

stat <- numeric(B); se <- numeric(B)

boot.se <- function(x, R, f) {

#local function to compute the bootstrap

#estimate of standard error for statistic f(x)

x <- as.matrix(x); m <- nrow(x)

th <- replicate(R, expr = {

i <- sample(1:m, size = m, replace = TRUE)

f(x[i, ])

})

return(sd(th))

}

for (b in 1:B) {

j <- sample(1:n, size = n, replace = TRUE)

y <- x[j, ]

stat[b] <- statistic(y)

se[b] <- boot.se(y, R = R, f = statistic)

}

stat0 <- statistic(x)

t.stats <- (stat - stat0) / se

se0 <- sd(stat)

alpha <- 1 - level

Qt <- quantile(t.stats, c(alpha/2, 1-alpha/2), type = 1)

names(Qt) <- rev(names(Qt))

CI <- rev(stat0 - Qt * se0)

}
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Note that the boot.se function is a local function, visible only inside the
boot.t.ci function. The next example applies the boot.t.ci function. �

Example 7.13 (Bootstrap t confidence interval for patch ratio statistic.)

Compute a 95% bootstrap t confidence interval for the ratio statistic in Ex-
amples 7.5 and 7.10.

dat <- cbind(patch$y, patch$z)
stat <- function(dat) {

mean(dat[, 1]) / mean(dat[, 2]) }
ci <- boot.t.ci(dat, statistic = stat, B=2000, R=200)
print(ci)

2.5% 97.5%
-0.2547932 0.4055129

The upper confidence limit of the bootstrap t confidence interval is much
larger than the three intervals in Example 7.10 and the bootstrap t is the
widest interval in this example. �

7.5 Better Bootstrap Confidence Intervals

Better bootstrap confidence intervals (see [84, Sec. 14.3]) are a modified ver-
sion of percentile intervals that have better theoretical properties and better
performance in practice. For a 100(1−α)% confidence interval, the usual α/2
and 1−α/2 quantiles are adjusted by two factors: a correction for bias and a
correction for skewness. The bias correction is denoted z0 and the skewness
or “acceleration” adjustment is a. The better bootstrap confidence interval is
called BCa for “bias corrected” and “adjusted for acceleration.”

For a 100(1 − α)% BCa bootstrap confidence interval compute

α1 = Φ
(
ẑ0 +

ẑ0 + zα/2

1 − â(ẑ0 + zα/2)

)
, (7.8)

α2 = Φ
(
ẑ0 +

ẑ0 + z1−α/2

1 − â(ẑ0 + z1−α/2)

)
, (7.9)

where zα = Φ−1(α), and ẑ0, â are given by equations (7.10) and (7.11) below.
The BCa interval is

(θ̂∗α1
, θ̂∗α2

).

The upper and lower confidence limits of the BCa confidence interval are the
empirical α1 and α2 quantiles of the bootstrap replicates.
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The bias correction factor is in effect measuring the median bias of the
replicates θ̂∗ for θ̂. The estimate of this bias is

ẑ0 = Φ−1

(
1
B

B∑
b=1

I(θ̂(b) < θ̂)

)
, (7.10)

where I(·) is the indicator function. Note that ẑ0 = 0 if θ̂ is the median of
the bootstrap replicates.

The acceleration factor is estimated from jackknife replicates:

â =
∑n

i=1(θ(.) − θ(i))3

6
∑n

i=1((θ(.) − θ(i))2)3/2
, (7.11)

which measures skewness.
Other methods for estimating the acceleration have been proposed (see e.g.

Shao and Tu [247]). Formula (7.11) is given by Efron and Tibshirani [84,
p. 186]. The acceleration factor â is so named because it estimates the rate
of change of the standard error of θ̂ with respect to the target parameter θ
(on a normalized scale). When we use a standard normal bootstrap confi-
dence interval, we suppose that θ̂ is approximately normal with mean θ and
constant variance σ2(θ̂) that does not depend on the parameter θ. However,
it is not always true that the variance of an estimator has constant variance
with respect to the target parameter. Consider, for example, the sample pro-
portion p̂ = X/n as an estimator of the probability of success p in a binomial
experiment, which has variance p(1 − p)/n. The acceleration factor aims to
adjust the confidence limits to account for the possibility that the variance of
the estimator may depend on the true value of the target parameter.

Properties of BCa intervals

There are two important theoretical advantages to BCa bootstrap confi-
dence intervals. The BCa confidence intervals are transformation respecting
and BCa intervals have second order accuracy.

Transformation respecting means that if (θ̂∗α1
, θ̂∗α2

) is a confidence interval
for θ, and t(θ) is a transformation of the parameter θ, then the corresponding
interval for t(θ) is (t(θ̂∗α1

), t(θ̂∗α2
)). A confidence interval is first order accurate

if the error tends to zero at rate 1/
√
n for sample size n, and second order

accurate if the error tends to zero at rate 1/n.
The bootstrap t confidence interval is second order accurate but not trans-

formation respecting. The bootstrap percentile interval is transformation re-
specting but only first order accurate. The standard normal confidence inter-
val is neither transformation respecting nor second order accurate. See [63]
for discussion and comparison of theoretical properties of bootstrap confidence
intervals.
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Example 7.14 (BCa bootstrap confidence interval)

This example implements a function to compute a BCa confidence interval.
The BCa interval is (θ̂∗α1

, θ̂∗α2
), where θ̂∗α1

and θ̂∗α2
are given by equations

(7.8)–(7.11). �

boot.BCa <-
function(x, th0, th, stat, conf = .95) {

# bootstrap with BCa bootstrap confidence interval
# th0 is the observed statistic
# th is the vector of bootstrap replicates
# stat is the function to compute the statistic

x <- as.matrix(x)
n <- nrow(x) #observations in rows
N <- 1:n
alpha <- (1 + c(-conf, conf))/2
zalpha <- qnorm(alpha)

# the bias correction factor
z0 <- qnorm(sum(th < th0) / length(th))

# the acceleration factor (jackknife est.)
th.jack <- numeric(n)
for (i in 1:n) {

J <- N[1:(n-1)]
th.jack[i] <- stat(x[-i, ], J)

}
L <- mean(th.jack) - th.jack
a <- sum(L^3)/(6 * sum(L^2)^1.5)

# BCa conf. limits
adj.alpha <- pnorm(z0 + (z0+zalpha)/(1-a*(z0+zalpha)))
limits <- quantile(th, adj.alpha, type=6)
return(list("est"=th0, "BCa"=limits))

}
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Example 7.15 (BCa bootstrap confidence interval)

Compute a BCa confidence interval for the bioequivalence ratio statistic of
Example 7.10 using the function boot.BCa provided in Example 7.14.

data(patch, package = "bootstrap")
n <- nrow(patch)
B <- 2000
y <- patch$y
z <- patch$z
x <- cbind(y, z)
theta.b <- numeric(B)
theta.hat <- mean(y) / mean(z)

#bootstrap
for (b in 1:B) {

i <- sample(1:n, size = n, replace = TRUE)
y <- patch$y[i]
z <- patch$z[i]
theta.b[b] <- mean(y) / mean(z)
}

#compute the BCa interval
stat <- function(dat, index) {

mean(dat[index, 1]) / mean(dat[index, 2]) }

boot.BCa(x, th0 = theta.hat, th = theta.b, stat = stat)

In the result shown below, notice that the probabilities α/2 = 0.025 and
1 − α/2 = 0.975 have been adjusted to 0.0339, and 0.9824.

$est
[1] -0.0713061

$BCa
3.391094% 98.24405%
-0.2252715 0.1916788

Thus bioequivalence (|θ| ≤ 0.20) is not supported by the BCa confidence
interval estimate of θ. �

R note 7.4 (Empirical influence values) By default, the type="bca" op-
tion of the boot.ci function computes empirical influence values by a regres-
sion method. The method in example 7.14 corresponds to the “usual jackknife”
method of computing empirical jackknife values. See [63, Ch. 5] and the code
for empinf, usual.jack.
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Example 7.16 (BCa bootstrap confidence interval using boot.ci)

Compute a BCa confidence interval for the bioequivalence ratio statistic of
Examples 7.5 and 7.10, using the function boot.ci provided in the boot
package [34].

boot.obj <- boot(x, statistic = stat, R=2000)
boot.ci(boot.obj, type=c("perc", "bca"))

The percentile confidence interval is also given for comparison.

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : boot.ci(boot.out = boot.obj, type = c("perc", "bca"))

Intervals :
Level Percentile BCa
95% (-0.2368, 0.1824 ) (-0.2221, 0.2175 )
Calculations and Intervals on Original Scale

�

7.6 Application: Cross Validation

Cross validation is a data partitioning method that can be used to assess
the stability of parameter estimates, the accuracy of a classification algorithm,
the adequacy of a fitted model, and in many other applications. The jackknife
could be considered a special case of cross validation, because it is primarily
used to estimate bias and standard error of an estimator.

In building a classifier, a researcher can partition the data into training and
test sets. The model is estimated using the data in the training set only, and
the misclassification rate is estimated by running the classifier on the test set.
Similarly, the fit of any model can be assessed by holding back a test set from
the model estimation, and then using the test set to see how well the model
fits the new test data.

Another version of cross validation is the “n-fold” cross validation, which
partitions the data into n test sets (now test points). This “leave-one-out”
procedure is like the jackknife. The data could be divided into any number
K partitions, so that there are K test sets. Then the model fitting leaves out
one test set in turn, so that the models are fitted K times.
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Example 7.17 (Model selection)

The ironslag (DAAG) data [185] has 53 measurements of iron content by two
methods, chemical and magnetic (see “iron.dat” in [126]). A scatterplot of
the data in Figure 7.2 suggests that the chemical and magnetic variables are
positively correlated, but the relation may not be linear. From the plot, it
appears that a quadratic polynomial, or possibly an exponential or logarithmic
model might fit the data better than a line.

There are several steps to model selection, but we will focus on the predic-
tion error. The prediction error can be estimated by cross validation, without
making strong distributional assumptions about the error variable.

The proposed models for predicting magnetic measurement (Y) from chem-
ical measurement (X) are:

1. Linear: Y = β0 + β1X + ε.

2. Quadratic: Y = β0 + β1X + β2X
2 + ε.

3. Exponential: log(Y ) = log(β0) + β1X + ε.

4. Log-Log: log(Y ) = β0 + β1 log(X) + ε.

The code to estimate the parameters of the four models follows. Plots of
the predicted response with the data are also constructed for each model and
shown in Figure 7.2. To display four plots use par(mfrow=c(2,2)).

library(DAAG); attach(ironslag)

a <- seq(10, 40, .1) #sequence for plotting fits

L1 <- lm(magnetic ~ chemical)

plot(chemical, magnetic, main="Linear", pch=16)

yhat1 <- L1$coef[1] + L1$coef[2] * a

lines(a, yhat1, lwd=2)

L2 <- lm(magnetic ~ chemical + I(chemical^2))

plot(chemical, magnetic, main="Quadratic", pch=16)

yhat2 <- L2$coef[1] + L2$coef[2] * a + L2$coef[3] * a^2

lines(a, yhat2, lwd=2)

L3 <- lm(log(magnetic) ~ chemical)

plot(chemical, magnetic, main="Exponential", pch=16)

logyhat3 <- L3$coef[1] + L3$coef[2] * a

yhat3 <- exp(logyhat3)

lines(a, yhat3, lwd=2)

L4 <- lm(log(magnetic) ~ log(chemical))

plot(log(chemical), log(magnetic), main="Log-Log", pch=16)

logyhat4 <- L4$coef[1] + L4$coef[2] * log(a)

lines(log(a), logyhat4, lwd=2)

�
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FIGURE 7.2: Four proposed models for ironslag data in Example 7.17.

Once the model is estimated, we want to assess the fit. Cross validation
can be used to estimate the prediction errors.

Procedure to estimate prediction error by n-fold (leave-one-out)
cross validation

1. For k = 1, . . . , n, let observation (xk, yk) be the test point and use the
remaining observations to fit the model.

(a) Fit the model(s) using only the n− 1 observations in the training
set, (xi, yi), i = k.

(b) Compute the predicted response ŷk = β̂0 + β̂1xk for the test point.
(c) Compute the prediction error ek = yk − ŷk.

2. Estimate the mean of the squared prediction errors σ̂2
ε = 1

n

∑n
k=1 e

2
k.



210 Statistical Computing with R

Example 7.18 (Model selection: Cross validation)

Cross validation is applied to select a model in Example 7.17.

n <- length(magnetic) #in DAAG ironslag

e1 <- e2 <- e3 <- e4 <- numeric(n)

# for n-fold cross validation

# fit models on leave-one-out samples

for (k in 1:n) {

y <- magnetic[-k]

x <- chemical[-k]

J1 <- lm(y ~ x)

yhat1 <- J1$coef[1] + J1$coef[2] * chemical[k]

e1[k] <- magnetic[k] - yhat1

J2 <- lm(y ~ x + I(x^2))

yhat2 <- J2$coef[1] + J2$coef[2] * chemical[k] +

J2$coef[3] * chemical[k]^2

e2[k] <- magnetic[k] - yhat2

J3 <- lm(log(y) ~ x)

logyhat3 <- J3$coef[1] + J3$coef[2] * chemical[k]

yhat3 <- exp(logyhat3)

e3[k] <- magnetic[k] - yhat3

J4 <- lm(log(y) ~ log(x))

logyhat4 <- J4$coef[1] + J4$coef[2] * log(chemical[k])

yhat4 <- exp(logyhat4)

e4[k] <- magnetic[k] - yhat4

}

The following estimates for prediction error are obtained from the n-fold cross
validation.

> c(mean(e1^2), mean(e2^2), mean(e3^2), mean(e4^2))
[1] 19.55644 17.85248 18.44188 20.45424

According to the prediction error criterion, Model 2, the quadratic model,
would be the best fit for the data.

> L2
Call:
lm(formula = magnetic ~ chemical + I(chemical^2))
Coefficients:
(Intercept) chemical I(chemical^2)

24.49262 -1.39334 0.05452

The fitted regression equation for Model 2 is

Ŷ = 24.49262− 1.39334X + 0.05452X2.
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The residual plots for Model 2 are shown in Figure 7.3. An easy way to
get several residual plots is by plot(L2). Alternately, similar plots can be
displayed as follows.

par(mfrow = c(2, 2)) #layout for graphs
plot(L2$fit, L2$res) #residuals vs fitted values
abline(0, 0) #reference line
qqnorm(L2$res) #normal probability plot
qqline(L2$res) #reference line
par(mfrow = c(1, 1)) #restore display

Part of the summary for the fitted quadratic model is below.

Residuals:
Min 1Q Median 3Q Max

-8.4335 -2.7006 -0.2754 2.5446 12.2665

Residual standard error: 4.098 on 50 degrees of freedom
Multiple R-Squared: 0.5931, Adjusted R-squared: 0.5768

In the quadratic model the predictors X and X2 are highly correlated. See
poly for another approach with orthogonal polynomials. �
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FIGURE 7.3: Residuals of the quadratic model for ironslag data, from
Example 7.17.



212 Statistical Computing with R

Exercises

7.1 Compute a jackknife estimate of the bias and the standard error of the corre-
lation statistic in Example 7.2.

7.2 Refer to the law data (bootstrap). Use the jackknife-after-bootstrap method
to estimate the standard error of the bootstrap estimate of se(R).

7.3 Obtain a bootstrap t confidence interval estimate for the correlation statistic
in Example 7.2 (law data in bootstrap).

7.4 Refer to the air-conditioning data set aircondit provided in the boot pack-
age. The 12 observations are the times in hours between failures of air-
conditioning equipment [63, Example 1.1]:

3, 5, 7, 18, 43, 85, 91, 98, 100, 130, 230, 487.

Assume that the times between failures follow an exponential model Exp(λ).
Obtain the MLE of the hazard rate λ and use bootstrap to estimate the bias
and standard error of the estimate.

7.5 Refer to Exercise 7.4. Compute 95% bootstrap confidence intervals for the
mean time between failures 1/λ by the standard normal, basic, percentile,
and BCa methods. Compare the intervals and explain why they may differ.

7.6 Efron and Tibshirani discuss the scor (bootstrap) test score data on 88 stu-
dents who took examinations in five subjects [84, Table 7.1], [188, Table 1.2.1].
The first two tests (mechanics, vectors) were closed book and the last three
tests (algebra, analysis, statistics) were open book. Each row of the data
frame is a set of scores (xi1, . . . , xi5) for the ith student. Use a panel display
to display the scatter plots for each pair of test scores. Compare the plot with
the sample correlation matrix. Obtain bootstrap estimates of the standard
errors for each of the following estimates: ρ̂12 = ρ̂(mec, vec), ρ̂34 = ρ̂(alg,
ana), ρ̂35 = ρ̂(alg, sta), ρ̂45 = ρ̂(ana, sta).

7.7 Refer to Exercise 7.6. Efron and Tibshirani discuss the following example [84,
Ch. 7]. The five-dimensional scores data have a 5 × 5 covariance matrix Σ,
with positive eigenvalues λ1 > · · · > λ5. In principal components analysis,

θ =
λ1∑5

j=1 λj

measures the proportion of variance explained by the first principal compo-
nent. Let λ̂1 > · · · > λ̂5 be the eigenvalues of Σ̂, where Σ̂ is the MLE of Σ.
Compute the sample estimate

θ̂ =
λ̂1∑5

j=1 λ̂j
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of θ. Use bootstrap to estimate the bias and standard error of θ̂.

7.8 Refer to Exercise 7.7. Obtain the jackknife estimates of bias and standard
error of θ̂.

7.9 Refer to Exercise 7.7. Compute 95% percentile and BCa confidence intervals
for θ̂.

7.10 In Example 7.18, leave-one-out (n-fold) cross validation was used to select
the best fitting model. Repeat the analysis replacing the Log-Log model
with a cubic polynomial model. Which of the four models is selected by the
cross validation procedure? Which model is selected according to maximum
adjusted R2?

7.11 In Example 7.18, leave-one-out (n-fold) cross validation was used to select the
best fitting model. Use leave-two-out cross validation to compare the models.

Projects

7.A Conduct a Monte Carlo study to estimate the coverage probabilities of the
standard normal bootstrap confidence interval, the basic bootstrap confidence
interval, and the percentile confidence interval. Sample from a normal pop-
ulation and check the empirical coverage rates for the sample mean. Find
the proportion of times that the confidence intervals miss on the left, and the
porportion of times that the confidence intervals miss on the right.

7.B Repeat Project 7.A for the sample skewness statistic. Compare the coverage
rates for normal populations (skewness 0) and χ2(5) distributions (positive
skewness).





Chapter 8

Permutation Tests

8.1 Introduction

Permutation tests are based on resampling, but unlike the ordinary boot-
strap, the samples are drawn without replacement. Permutation tests are often
applied as a nonparametric test of the general hypothesis

H0 : F = G vs H1 : F = G, (8.1)

where F and G are two unspecified distributions. Under the null hypothesis,
two samples from F and G, and the pooled sample, are all random samples
from the same distribution F . Replicates of a two sample test statistic that
compares the distributions are generated by resampling without replacement
from the pooled sample. Nonparametric tests of independence, association,
location, common scale, etc. can also be implemented as permutation tests.
For example, in a test of multivariate independence

H0 : F
X,Y

= F
X
F

Y
vs H1 : F

X,Y
= F

X
F

Y
(8.2)

under the null hypothesis the data in a sample need not be matched, and all
pairs of samples obtained by permutations of the row labels (observations) of
either sample are equally likely. Any statistic that measures dependence can
be applied in a permutation test.

Permutation tests also can be applied to multi-sample problems, with sim-
ilar methodology. For example, to test

H0 : F1 = · · · = Fk vs H1 : Fi = Fj for some i, j (8.3)

the samples are drawn without replacement from the k pooled samples. Any
test statistic for the multi-sample problem can then be applied in a permuta-
tion test.

This chapter covers several applications of permutation tests for the general
hypotheses (8.1) and (8.2). See Efron and Tibshirani [84, Ch. 15] or Davison
and Hinkley for background, examples, and further discussion of permutation
tests.

215
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Permutation Distribution

Suppose that two independent random samples X1, . . . , Xn and Y1, . . . , Ym

are observed from the distributions FX and FY , respectively. Let Z be the
ordered set {X1, . . . , Xn, Y1, . . . , Ym}, indexed by

ν = {1, . . . , n, n+ 1, . . . , n+m} = {1, . . . , N}.
Then Zi = Xi if 1 ≤ i ≤ n and Zi = Yi−n if n + 1 ≤ i ≤ n + m. Let
Z∗ = (X∗, Y ∗) represent a partition of the pooled sample Z = X ∪ Y , where
X∗ has n elements and Y ∗ has N −n = m elements. Then Z∗ corresponds to
a permutation π of the integers ν, where Z∗

i = Zπ(i). The number of possible
partitions is equal to the number

(
N
n

)
of different ways to select the first n

indices of π(ν), hence there are
(
N
n

)
different ways to partition the pooled

sample Z into two subsets of size n and m.
The Permutation Lemma [84, p. 207] states that under H0 : F

X
= F

Y
, a

randomly selected Z∗ has probability

1(
N
n

) =
n!m!
N !

of equaling any of its possible values. That is, if F
X

= F
Y

then all permuta-
tions are equally likely.

If θ̂(X,Y ) = θ̂(Z, ν) is a statistic, then the permutation distribution of θ̂∗

is the distribution of the replicates

{θ̂∗} =
{
θ̂(Z, πj(ν)), j = 1, . . . ,

(
N

n

)}
= {θ̂(j) | πj(ν) is a permutation of ν}.

The cdf of θ̂∗ is given by

Fθ∗(t) = P (θ̂∗ ≤ t) =
(
N

n

)−1 N∑
j=1

I(θ̂(j) ≤ t). (8.4)

Thus, if θ̂ is applied to test a hypothesis and large values of θ̂ are significant,
then the permutation test rejects the null hypothesis when θ̂ is large relative
to the distribution of the permutation replicates. The achieved significance
level (ASL) of the observed statistic θ̂ is the probability

P (θ̂∗ ≥ θ̂) =
(
N

n

)−1 N∑
j=1

I(θ̂(j) ≥ θ̂),

where θ̂ = θ̂(Z, ν) is the statistic computed on the observed sample. The ASL
for a lower-tail or two-tail test based on θ̂ is computed in a similar way.
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In practice, unless the sample size is very small, evaluating the test statistic
for all of the

(
N
n

)
permutations is computationally excessive. An approximate

permutation test is implemented by randomly drawing a large number of
samples without replacement.

Approximate permutation test procedure

1. Compute the observed test statistic θ̂(X,Y ) = θ̂(Z, ν).

2. For each replicate, indexed b = 1, . . . , B:

(a) Generate a random permutation πb = π(ν).

(b) Compute the statistic θ̂(b) = θ̂∗(Z, πb).

3. If large values of θ̂ support the alternative, compute the ASL (the em-
pirical p-value) by

p̂ =
1 + #{θ̂(b) ≥ θ̂}

B + 1
=

{
1 +

∑B
b=1 I(θ̂

(b) ≥ θ̂)
}

B + 1
.

For a lower-tail or two-tail test p̂ is computed in a similar way.

4. Reject H0 at significance level α if p̂ ≤ α.

The formula for p̂ is given by Davison and Hinkley [63, p. 159], who state that
“at least 99 and at most 999 random permutations should suffice.”

Methods for implementing an approximate permutation test are illustrated
in the examples that follow. Although the boot function [34] can be used to
generate the replicates, it is not necessary to use boot. For a multivariate
permutation test using boot see the examples in Section 8.3.

Example 8.1 (Permutation distribution of a statistic)

The permutation distribution of a statistic is illustrated for a small sample,
from the chickwts data in R. Weights in grams are recorded, for six groups
of newly hatched chicks fed different supplements. There are six types of feed
supplements. A quick graphical summary of the data can be displayed by
boxplot(formula(chickwts)). The plot (not shown) suggests that soybean
and linseed groups may be similar. The distribution of weights for these two
groups are compared below.

attach(chickwts)
x <- sort(as.vector(weight[feed == "soybean"]))
y <- sort(as.vector(weight[feed == "linseed"]))
detach(chickwts)

The ordered chick weights for the two samples are
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X: 158 171 193 199 230 243 248 248 250 267 271 316 327 329
Y: 141 148 169 181 203 213 229 244 257 260 271 309

The groups can be compared in several ways. For example, sample means,
sample medians, or other trimmed means can be compared. More generally,
one can ask whether the distributions of the two variables differ and compare
the groups by any statistic that measures a distance between two samples.

Consider the sample mean. If the two samples are drawn from normal
populations with equal variances, we can apply the two-sample t-test. The
sample means areX = 246.4286 and Y = 218.7500. The two sample t statistic
is T = 1.3246. In this problem, however, the distributions of the weights are
unknown. The achieved significance level of T can be computed from the
permutation distribution without requiring distributional assumptions.

The sample sizes are n = 14 and m = 12, so there are a total of(
n+m

n

)
=
(

26
14

)
=

26!
14! 12!

= 9, 657, 700

different partitions of the pooled sample into two subsets of size 14 and 12.
Thus, even for small samples, enumerating all possible partitions of the pooled
sample is not practical. An alternate approach is to generate a large number
of the permutation samples, to obtain the approximate permutation distrib-
ution of the replicates. Draw a random sample of n indices from 1:N without
replacement, which determines a randomly selected partition (X∗, Y ∗). In
this way we can generate a large number of the permutation samples. Then
compare the observed statistic T to the replicates T ∗.

The approximate permutation test procedure is illustrated below with the
two-sample t statistic.

R <- 999 #number of replicates
z <- c(x, y) #pooled sample
K <- 1:26
reps <- numeric(R) #storage for replicates
t0 <- t.test(x, y)$statistic

for (i in 1:R) {
#generate indices k for the first sample
k <- sample(K, size = 14, replace = FALSE)
x1 <- z[k]
y1 <- z[-k] #complement of x1
reps[i] <- t.test(x1, y1)$statistic
}

p <- mean(c(t0, reps) >= t0)

> p
[1] 0.101
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The value of p̂ is the proportion of replicates T ∗ that are at least as large
as the observed test statistic (an approximate p-value). For a two-tail test
the ASL is 2p̂ if p̂ ≤ 0.5 (it is 2(1 − p̂) if p̂ > 0.5). The ASL is 0.202 so the
null hypothesis is not rejected. For comparison, the two-sample t-test reports
p-value = 0.198. A histogram of the replicates of T is displayed by

hist(reps, main = "", freq = FALSE, xlab = "T (p = 0.202)",
breaks = "scott")

points(t0, 0, cex = 1, pch = 16) #observed T

which is shown in Figure 8.1. �
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FIGURE 8.1: Permutation distribution of replicates in Example 8.1 (left)
and Example 8.2 (right).

8.2 Tests for Equal Distributions

Suppose that X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are independent
random samples from distributions F and G respectively, and we wish to test
the hypothesis H0 : F = G vs the alternative H1 : F = G. Under the null
hypothesis, samples X , Y , and the pooled sample Z = X ∪Y , are all random
samples from the same distribution F . Moreover, under H0, any subset X∗

of size n from the pooled sample, and its complement Y ∗, also represent
independent random samples from F .

Suppose that θ̂ is a two-sample statistic that measures the distance in some
sense between F and G. Without loss of generality, we can suppose that
large values of θ̂ support the alternative F = G. By the permutation lemma,
under the null hypothesis all values of θ̂∗ = θ̂(X∗, Y ∗) are equally likely. The
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permutation distribution of θ̂∗ is given by (8.4), and an exact permutation
test or the approximate permutation test procedure given on page 217 can be
applied.

Two-sample tests for univariate data

To apply a permutation test of equal distributions, choose a test statistic
that measures the difference between two distributions. For example, the two-
sample Kolmogorov-Smirnov (K-S) statistic or the two-sample Cramér-von
Mises statistic can be applied in the univariate case. Many other statistics
are in the literature, although the K-S statistic is one of the most widely
applied for univariate distributions. It is applied in the following example.

Example 8.2 (Permutation distribution of the K-S statistic)

In Example 8.1 the means of the soybean and linseed groups were compared.
Suppose now that we are interested in testing for any type of difference in the
two groups. The hypotheses of interest are H0 : F = G vs H1 : F = G, where
F is the distribution of weight of chicks fed soybean supplements and G is the
distribution of weight of chicks fed linseed supplements. The Kolmogorov-
Smirnov statistic D is the maximum absolute difference between the ecdf’s of
the two samples, defined by

D = sup
1≤i≤N

|Fn(zi) −Gm(zi)|,

where Fn is the ecdf of the first sample x1, . . . , xn and Gm is the ecdf of
the second sample y1, . . . , ym. Note that 0 ≤ D ≤ 1 and large values of
D support the alternative F = G. The observed value of D = D(X,Y ) =
0.2976190 can be computed using ks.test. To determine whether this value
of D is strong evidence for the alternative, we compare D with the replicates
D∗ = D(X∗, Y ∗).

R <- 999 #number of replicates
z <- c(x, y) #pooled sample
K <- 1:26
D <- numeric(R) #storage for replicates
options(warn = -1)
D0 <- ks.test(x, y, exact = FALSE)$statistic
for (i in 1:R) {

#generate indices k for the first sample
k <- sample(K, size = 14, replace = FALSE)
x1 <- z[k]
y1 <- z[-k] #complement of x1
D[i] <- ks.test(x1, y1, exact = FALSE)$statistic
}
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p <- mean(c(D0, D) >= D0)
options(warn = 0)
> p
[1] 0.46

The approximate ASL 0.46 does not support the alternative hypothesis that
distributions differ. A histogram of the replicates of D is displayed by

hist(D, main = "", freq = FALSE, xlab = "D (p = 0.46)",
breaks = "scott")

points(D0, 0, cex = 1, pch = 16) #observed D

which is shown in Figure 8.1. �

R note 8.1 In Example 8.2 the Kolmogorov-Smirnov test ks.test generates
a warning each time it tries to compute a p-value, because there are ties in
the data. We are not using the p-value, so it is safe to ignore these warnings.
Display of warnings or messages at the console regarding warnings can be
suppressed by options(warn = -1). The default value is warn = 0.

Example 8.3 (Two-sample K-S test)

Test whether the distributions of chick weights for the sunflower and linseed
groups differ. The K-S test can be applied as in Example 8.2.

attach(chickwts)
x <- sort(as.vector(weight[feed == "sunflower"]))
y <- sort(as.vector(weight[feed == "linseed"]))
detach(chickwts)

The sample sizes are n = m = 12, and the observed K-S test statistic is
D = 0.8333. The summary statistics below suggest that the distributions of
weights for these two groups may differ.

> summary(cbind(x, y))
x y

Min. :226.0 Min. :141.0
1st Qu.:312.8 1st Qu.:178.0
Median :328.0 Median :221.0
Mean :328.9 Mean :218.8
3rd Qu.:340.2 3rd Qu.:257.8
Max. :423.0 Max. :309.0

Repeating the simulation in Example 8.2 with the sunflower sample replacing
the soybean sample produces the following result.

p <- mean(c(D0, D) >= D0)
> p
[1] 0.001
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Thus, none of the replicates are as large as the observed test statistic. Here
the sample evidence supports the alternative hypothesis that the distributions
differ. �

Another univariate test for the two-sample problem is the Cramér-von Mises
test [56, 281]. The Cramér-von Mises statistic, which estimates the integrated
squared distance between the distributions, is defined by

W2 =
mn

(m+ n)2

⎡⎣ n∑
i=1

(Fn(xi) −Gm(xi))2 +
m∑

j=1

(Fn(yj) −Gm(yj))2

⎤⎦ ,
where Fn is the ecdf of the sample x1, . . . , xn and Gm is the ecdf of the
sample y1, . . . , ym. Large values of W2 are significant. The implementation of
the Cramér-von Mises test is left as an exercise.

The multivariate tests discussed in the next section can also be applied for
testing H0 : F = G in the univariate case.

8.3 Multivariate Tests for Equal Distributions

Classical approaches to the two-sample problem in the univariate case
based on comparing empirical distribution functions, such as the Kolmogorov–
Smirnov and Cramér-von Mises tests, do not have a natural distribution free
extension to the multivariate case. Multivariate tests based on maximum
likelihood depend on distributional assumptions about the underlying popu-
lations. Hence although likelihood tests may apply in special cases, they do
not apply to the general two-sample or k-sample problem, and may not be
robust to departures from these assumptions.

Many of the procedures that are available for the multivariate two-sample
problem (8.1) require a computational approach for implementation. Bickel
[27] constructed a consistent distribution free multivariate extension of the
univariate Smirnov test by conditioning on the pooled sample. Friedman
and Rafsky [101] proposed distribution free multivariate generalizations of
the Wald-Wolfowitz runs test and Smirnov test for the two-sample problem,
based on the minimal spanning tree of the pooled sample. A class of con-
sistent, asymptotically distribution free tests for the multivariate problem is
based on nearest neighbors [28, 139, 240]. The nearest neighbor tests apply
to testing the k-sample hypothesis when all distributions are continuous. A
multivariate nonparametric test for equal distributions was developed inde-
pendently by Baringhaus and Franz [20] and Székely and Rizzo [261, 262],
which is implemented as an approximate permutation test. We will discuss
the latter two, the nearest neighbor tests and the energy test [226, 261].
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In the following sections multivariate samples will be denoted by boldface
type. Suppose that

X = {X1, . . . , Xn1} ∈ Rd, Y = {Y1, . . . , Yn2} ∈ Rd,

are independent random samples, d ≥ 1. The pooled data matrix is Z, an
n× d matrix with observations in rows:

Zn×d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

...
xn1,1 xn1,2 . . . xn1,d

y1,1 y1,2 . . . y1,d

y2,1 y2,2 . . . y2,d

...
...

...
yn2,1 yn2,2 . . . yn2,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.5)

where n = n1 + n2.

Nearest neighbor tests

A multivariate test for equal distributions is based on nearest neighbors.
The nearest neighbor (NN) tests are a type of test based on ordered distances
between sample elements, which can be applied when the distributions are
continuous.

Usually the distance is the Euclidean norm ‖zi − zj‖. The NN tests are
based on the first through rth nearest neighbor coincidences in the pooled
sample. Consider the simplest case, r = 1. For example, if the observed
samples are the weights in Example 8.3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 423 340 392 339 341 226 320 295 334 322 297 318

y 309 229 181 141 260 203 148 169 213 257 244 271

then the first nearest neighbor of x1 = 423 is x3 = 392, which are in the
same sample. The first nearest neighbor of x6 = 226 is y2 = 229, in different
samples. In general, if the sampled distributions are equal, then the pooled
sample has on average less nearest neighbor coincidences than under the al-
ternative hypothesis. In this example, most of the nearest neighbors are found
in the same sample.

Let Z = {X1, . . . , Xn1 , Y1, . . . , Yn2} as in (8.5). Denote the first nearest
neighbor of Zi by NN1(Zi). Count the number of first nearest neighbor
coincidences by the indicator function Ii(1), which is defined by

Ii(1) = 1 if Zi and NN1(Zi) belong to the same sample;
Ii(1) = 0 if Zi and NN1(Zi) belong to different samples.
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The first nearest neighbor statistic is the proportion of first nearest neighbor
coincidences

Tn,1 =
1
n

n∑
i=1

Ii(1),

where n = n1 + n2. Large values of Tn,1 support the alternative hypothesis
that the distributions differ.

Similarly, denote the second nearest neighbor of a sample element Zi by
NN2(Zi) and define the indicator function Ii(2), which is 1 if NN2(Zi) is in
the same sample as Zi and otherwise Ii(2) = 0. The second nearest neighbor
statistic is based on the first and second nearest neighbor coincidences, defined
by

Tn,2 =
1
2n

n∑
i=1

(Ii(1) + Ii(2)).

In general, the rth nearest neighbor of Zi is defined to be the sample element
Zj satisfying ‖Zi − Z�‖ < ‖Zi − Zj‖ for exactly r − 1 indices 1 ≤ � ≤ n,
� = i. Denote the rth nearest neighbor of a sample element Zi by NNr(Zi).
For i = 1, . . . , n the indicator function Ii(r) is defined by Ii(r) = 1 if Zi

and NNr(Zi) belong to the same sample, and otherwise Ii(r) = 0. The J th

nearest neighbor statistic measures the proportion of first through J th nearest
neighbor coincidences:

Tn,J =
1
nJ

n∑
i=1

J∑
r=1

Ii(r). (8.6)

Under the hypothesis of equal distributions, the pooled sample has on aver-
age less nearest neighbor coincidences than under the alternative hypothesis,
so the test rejects the null hypothesis for large values of Tn,J . Henze [139]
proved that the limiting distribution of a class of nearest neighbor statistics
is normal for any distance generated by a norm on Rd. Schilling [240] derived
the mean and variance of the distribution of Tn,2 for selected values of n1/n
and d in the case of Euclidean norm. In general, the parameters of the nor-
mal distribution may be difficult to obtain analytically. If we condition on the
pooled sample to implement an exact permutation test, the procedure is dis-
tribution free. The test can be implemented as an approximate permutation
test, following the procedure outlined on page 217.

Remark 8.1 Nearest neighbor statistics are functions of the ordered distances
between sample elements. The sampled distributions are assumed to be con-
tinuous, so there are no ties. Thus, resampling without replacement is the
correct resampling method and the permutation test rather than the ordinary
bootstrap should be applied. In the ordinary bootstrap, many ties would occur
in the bootstrap samples.
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Searching for nearest neighbors is not a trivial computational problem, but
fast algorithms have been developed [25, 12, 13]. A fast nearest neighbor
method nn is available in the knnFinder package. The algorithm uses a kd-
tree. According to the package author Kemp [160], “The advantage of the
kd-tree is that it runs in O(M logM) time . . . where M is the number of data
points using Bentley’s kd-tree.”

Example 8.4 (Finding nearest neighbors)

The following numerical example illustrates the usage of the nn (knnFinder)
[160] function as a method to find the indices of the first through rth nearest
neighbors. The pooled data matrix Z is assumed to be in the layout (8.5).

library(knnFinder) #for nn function

#generate a small multivariate data set
x <- matrix(rnorm(12), 3, 4)
y <- matrix(rnorm(12), 3, 4)

z <- rbind(x, y)
o <- rep(0, nrow(z))

DATA <- data.frame(cbind(z, o))
NN <- nn(DATA, p = nrow(z)-1)

In the distance matrix below, for example, the first through fifth nearest
neighbors of Z1 are Z4, Z2, Z3, Z5, Z6.

> D <- dist(z)
> round(as.matrix(D), 2)

1 2 3 4 5 6
1 0.00 2.29 2.69 1.88 2.87 3.94
2 2.29 0.00 2.60 3.27 2.45 3.69
3 2.69 2.60 0.00 2.14 0.43 3.52
4 1.88 3.27 2.14 0.00 2.52 3.66
5 2.87 2.45 0.43 2.52 0.00 3.48
6 3.94 3.69 3.52 3.66 3.48 0.00

The index matrix returned by the function nn identifies the nearest neighbors
as follows. The ith row of $nn.idx on the next page contains the subscripts
(indices) of NN1(Zi), NN2(Zi), . . . , the nearest neighbors of Zi. According
to the first row of the index matrix $nn.idx, the indices of the first through
fifth nearest neighbors of Z1 are 4, 2, 3, 5, and 6, respectively.
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> NN$nn.idx
X1 X2 X3 X4 X5

1 4 2 3 5 6
2 1 5 3 4 6
3 5 4 2 1 6
4 1 3 5 2 6
5 3 2 4 1 6
6 5 3 4 2 1

> round(NN$nn.dist, 2)
X1 X2 X3 X4 X5

1 1.88 2.29 2.69 2.87 3.94
2 2.29 2.45 2.60 3.27 3.69
3 0.43 2.14 2.60 2.69 3.52
4 1.88 2.14 2.52 3.27 3.66
5 0.43 2.45 2.52 2.87 3.48
6 3.48 3.52 3.66 3.69 3.94

In this small data set it is easy to compute the nearest neighbor statistics.
For example, Tn,1 = 2/6 .= 0.333 and

Tn,2 =
1
2n

n∑
i=1

(Ii(1) + Ii(2)) =
1
12

(2 + 1) = 0.25.

�

Example 8.5 (Nearest neighbor statistic)

In this example a method of computing nearest neighbor statistics from the
result of nn (knnFinder) is shown. Compute Tn,3 for the chickwts data
from Example 8.3.

library(knnFinder)
attach(chickwts)
x <- as.vector(weight[feed == "sunflower"])
y <- as.vector(weight[feed == "linseed"])
detach(chickwts)

z <- c(x, y)
o <- rep(0, length(z))
z <- as.data.frame(cbind(z, o))
NN <- nn(z, p=3)

The data and the index matrix NN$nn.idx are shown on the facing page.
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pooled sample $nn.idx
[,1] X1 X2 X3

[1,] 423 1 3 5 2
[2,] 340 2 4 5 9
[3,] 392 3 1 5 2
[4,] 339 4 2 5 9
[5,] 341 5 2 4 9
[6,] 226 6 14 21 23
[7,] 320 7 12 10 13
[8,] 295 8 11 13 12
[9,] 334 9 4 2 5
[10,] 322 10 7 12 9
[11,] 297 11 8 13 12
[12,] 318 12 7 10 13 I=1 if index <= 12
--------------------------------------------------------
[13,] 309 13 12 7 11 I=1 if index > 12
[14,] 229 14 6 23 21
[15,] 181 15 20 18 21
[16,] 141 16 19 20 15
[17,] 260 17 22 24 23
[18,] 203 18 21 15 6
[19,] 148 19 16 20 15
[20,] 169 20 15 19 16
[21,] 213 21 18 6 14
[22,] 257 22 17 23 24
[23,] 244 23 22 14 17
[24,] 271 24 17 22 8

The first three nearest neighbors of each sample element Zi are in the ith

row. In the first block, count the number of entries that are between 1 and
n1 = 12. In the second block, count the number of entries that are between
n1 + 1 = 13 and n1 + n2 = 24.

block1 <- NN$nn.idx[1:12, ]
block2 <- NN$nn.idx[13:24, ]
i1 <- sum(block1 < 12.5)
i2 <- sum(block2 > 12.5)

> c(i1, i2)
[1] 29 29

Then

Tn,3 =
1
3n

n∑
i=1

3∑
j=1

Ii(j) =
1

3(24)
(29 + 29) =

58
72

= 0.8055556.

�
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Example 8.6 (Nearest neighbor test)

The permutation test for Tn,3 in Example 8.5 can be applied using the boot
function in the boot package [34] as follows.

library(boot)
Tn3 <- function(z, ix, sizes) {

n1 <- sizes[1]
n2 <- sizes[2]
n <- n1 + n2
z <- z[ix, ]
o <- rep(0, NROW(z))
z <- as.data.frame(cbind(z, o))
NN <- nn(z, p=3)
block1 <- NN$nn.idx[1:n1, ]
block2 <- NN$nn.idx[(n1+1):n, ]
i1 <- sum(block1 < n1 + .5)
i2 <- sum(block2 > n1 + .5)
return((i1 + i2) / (3 * n))

}
N <- c(12, 12)
boot.obj <- boot(data = z, statistic = Tn3,

sim = "permutation", R = 999, sizes = N)

Note: The permutation samples can also be generated by the sample function.
The result of the simulation is

> boot.obj
DATA PERMUTATION
Call: boot(data = z, statistic = Tn3, R = 999,

sim = "permutation", sizes = N)

Bootstrap Statistics :
original bias std. error

t1* 0.8055556 -0.3260066 0.07275428

The output from boot does not include a p-value, of course, because boot
has no way of knowing what hypotheses are being tested. What is printed at
the console is a summary of the boot object. The boot object itself is a list
that contains several things including the permutation replicates of the test
statistic. The test decision can be obtained from the observed statistic in $t0
and the replicates in $t.

> tb <- c(boot.obj$t, boot.obj$t0)
> mean(tb >= boot.obj$t0)
[1] 0.001

The ASL is p̂ = 0.001, so the hypothesis of equal distributions is rejected.
The histogram of replicates of Tn,3 is shown in Figure 8.2.



Permutation Tests 229

hist(tb, freq=FALSE, main="",
xlab="replicates of T(n,3) statistic")

points(boot.obj$t0, 0, cex=1, pch=16)

�
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FIGURE 8.2: Permutation distribution of Tn,3 in Example 8.6.

The multivariate rth nearest neighbor test can be implemented by an ap-
proximate permutation test. The steps are to write a general function that
computes the statistic Tn,r for any given (n1, n2, r) and permutation of the
row indices of the pooled sample. Then apply boot or generate permutations
using sample, similar to the implementation of the permutation test shown
in Example 8.6.

Energy test for equal distributions

The energy distance or e-distance statistic En is defined by

En = e(X,Y) =
n1n2

n1 + n2

(
2

n1n2

n1∑
i=1

n2∑
j=1

‖Xi − Yj‖

− 1
n2

1

n1∑
i=1

n1∑
j=1

‖Xi −Xj‖ − 1
n2

2

n2∑
i=1

n2∑
j=1

‖Yi − Yj‖
)
. (8.7)

On the name “energy” and concept of energy statistics in general see [258,
259]. The non-negativity of e(X,Y) is a special case of the following in-
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equality. If X,X ′, Y, Y ′ are independent random vectors in Rd with finite
expectations, X D= X ′ and Y D= Y ′, then

2E‖X − Y ‖ −E‖X −X ′‖ − E‖Y − Y ′‖ ≥ 0, (8.8)

and equality holds if and only if X and Y are identically distributed [262, 263].
The E distance between the distribution of X and Y is

E(X,Y ) = 2E‖X − Y ‖ −E‖X −X ′‖ − E‖Y − Y ′‖

and the empirical distance En = e(X,Y) is a constant times the plug-in
estimator of E(X,Y ).

Clearly large e-distance corresponds to different distributions, and measures
the distance between distributions in a similar sense as the univariate empiri-
cal distribution function (edf) statistics. In contrast to edf statistics, however,
e-distance does not depend on the notion of a sorted list, and e-distance is by
definition a multivariate measure of distance between distributions.

If X and Y are not identically distributed, and n = n1 + n2, then E[En]
is asymptotically a positive constant times n. As the sample size n tends to
infinity, under the null hypothesis E[En] tends to a positive constant, while
under the alternative hypothesis E[En] tends to infinity. Not only the expected
value of En, but En itself, converges (in distribution) under the null hypothesis,
and tends to infinity (stochastically) otherwise. A test for equal distributions
based on En is universally consistent against all alternatives with finite first
moments [261, 262]. The asymptotic distribution of En is a quadratic form
of centered Gaussian random variables, with coefficients that depend on the
distributions of X and Y .

To implement the test, suppose that Z is the n × d data matrix of the
pooled sample as in (8.5). The permutation operation is applied to the row
indices of Z. The calculation of the test statistic has O(n2) time complexity,
where n = n1 +n2 is the size of the pooled sample. (In the univariate case the
statistic can be written as a linear combination of the order statistics, with
O(n log n) complexity.)

Example 8.7 (Two-sample energy statistic)

The approximate permutation energy test is implemented in eqdist.etest
in the energy package [226]. However, in order to illustrate the details of the
implementation for a multivariate permutation test, we provide an R version
below. Note that the energy implementation is considerably faster than the
example below, because in eqdist.etest the calculation of the test statistic
is implemented in an external C library.

The En statistic is a function of the pairwise distances between sample ele-
ments. The distances remain invariant under any permutation of the indices,
so it is not necessary to recalculate distances for each permutation sample.
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However, it is necessary to provide a method for looking up the correct dis-
tance in the original distance matrix given the permutation of indices.

edist.2 <- function(x, ix, sizes) {
# computes the e-statistic between 2 samples
# x: Euclidean distances of pooled sample
# sizes: vector of sample sizes
# ix: a permutation of row indices of x

dst <- x
n1 <- sizes[1]
n2 <- sizes[2]
ii <- ix[1:n1]
jj <- ix[(n1+1):(n1+n2)]
w <- n1 * n2 / (n1 + n2)

# permutation applied to rows & cols of dist. matrix
m11 <- sum(dst[ii, ii]) / (n1 * n1)
m22 <- sum(dst[jj, jj]) / (n2 * n2)
m12 <- sum(dst[ii, jj]) / (n1 * n2)
e <- w * ((m12 + m12) - (m11 + m22))
return (e)

}

Below, the simulated samples in Rd are generated from distributions that
differ in location. The first distribution is centered at µ1 = (0, . . . , 0)T and
the second distribution is centered at µ2 = (a, . . . , a)T .

d <- 3
a <- 2 / sqrt(d)
x <- matrix(rnorm(20 * d), nrow = 20, ncol = d)
y <- matrix(rnorm(10 * d, a, 1), nrow = 10, ncol = d)
z <- rbind(x, y)
dst <- as.matrix(dist(z))

> edist.2(dst, 1:30, sizes = c(20, 10))
[1] 9.61246

The observed value of the test statistic is En = 9.61246. �

The function edist.2 is designed to be used with the boot (boot) function
[34] to perform the permutation test. Alternately, generate the permutation
vectors ix using the sample function. The boot method is shown in the
following example.
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Example 8.8 (Two-sample energy test)

This example shows how to apply the boot function to perform an approxi-
mate permutation test using a multivariate test statistic function. Apply the
permutation test to the data matrix z in Example 8.7.

library(boot) #for boot function
dst <- as.matrix(dist(z))
N <- c(20, 10)

boot.obj <- boot(data = dst, statistic = edist.2,
sim = "permutation", R = 999, sizes = N)

> boot.obj

DATA PERMUTATION

Call: boot(data = dst, statistic = edist.2, R = 999,
sim = "permutation", sizes = N)

Bootstrap Statistics :
original bias std. error

t1* 9.61246 -7.286621 1.025068

The permutation vectors generated by boot will have the same length as the
data argument. If data is a vector then the permutation vector generated
by boot will have length equal to the data vector. If data is a matrix, then
the permutation vector will have length equal to the number of rows of the
matrix. For this reason, it is necessary to convert the dist object to an n×n
distance matrix.

The ASL is computed from the replicates in the bootstrap object.

e <- boot.obj$t0
tb <- c(e, boot.obj$t)
mean(tb >= e)
[1] 0.001

hist(tb, main = "", breaks="scott", freq=FALSE,
xlab="Replicates of e")

points(e, 0, cex=1, pch=16)

None of the replicates exceed the observed value 9.61246 of the test statis-
tic. The approximate achieved significance level is 0.001, and we reject the
hypothesis of equal distributions. Replicates of En are shown in Figure 8.3(a).

The large estimate of bias reported by the boot function gives an indication
that the test statistic is large, because E(X,Y ) ≥ 0 and E(X,Y ) = 0 if and
only if the sampled distributions are equal.
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Finally, let us check the result of the test when the sampled distributions
are identical.

d <- 3
a <- 0
x <- matrix(rnorm(20 * d), nrow = 20, ncol = d)
y <- matrix(rnorm(10 * d, a, 1), nrow = 10, ncol = d)
z <- rbind(x, y)
dst <- as.matrix(dist(z))

N <- c(20, 10)
dst <- as.matrix(dist(z))
boot.obj <- boot(data = dst, statistic = edist.2,

sim="permutation", R=999, sizes=N)
> boot.obj
...
Bootstrap Statistics :

original bias std. error
t1* 1.664265 0.7325929 1.051064

e <- boot.obj$t0
E <- c(boot.obj$t, e)

mean(E >= e)
[1] 0.742

hist(E, main = "", breaks="scott",
xlab="Replicates of e", freq=FALSE)

points(e, 0, cex=1, pch=16)

In the second example the approximate achieved significance level is 0.742 and
the hypothesis of equal distributions is not rejected. Notice that the estimate
of bias here is small. The histogram of replicates is shown in Figure 8.3(b). �

The E distance and two-sample e-statistic En are easily generalized to the
k-sample problem. See e.g. the function edist (energy), which returns a
dissimilarity object like the dist object.

Example 8.9 (k-sample energy distances)

The function edist.2 in Example 8.7 is a two-sample version of the func-
tion edist in the energy package [226], which summarizes the empirical E-
distances between k ≥ 2 samples. The syntax is

edist(x, sizes, distance=FALSE, ix=1:sum(sizes), alpha=1)

The argument alpha is an exponent 0 < α ≤ 2 on the Euclidean distance.
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FIGURE 8.3: Permutation distribution of the two-sample e-statistic repli-
cates in Example 8.7.

It can be shown that for all 0 < α < 2 the corresponding e(α)-distance
determines a statistically consistent test of equal distributions for all random
vectors with finite first moments [262].

Consider the four-dimensional iris data. Compute the e-distance matrix for
the three species of iris.

library(energy) #for edist
z <- iris[ , 1:4]
dst <- dist(z)

> edist(dst, sizes = c(50, 50, 50), distance = TRUE)
1 2

2 123.55381
3 195.30396 38.85415

A test for the k-sample hypothesis of equal distributions is based on k-sample
e-distances with a suitable weight function. �

Comparison of nearest neighbor and energy tests

Example 8.10 (Power comparison)

In a simulation experiment, we compared the empirical power of the third
nearest neighbor test based on Tn,3 (8.6) and the energy test based on En

(8.7). The distributions compared,

F1 = N2(µ = (0, 0)2,Σ = I2), F2 = N2(µ = (0, δ)T ,Σ = I2),

differ in location. The empirical power was estimated for δ = 0, 0.5, 0.75, 1,
from a simulation of permutation tests on 10, 000 pairs of samples. Each per-
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mutation test decision was based on 499 permutation replicates (each entry
in the table required 5 · 106 calculations of the test statistic). Empirical re-
sults are given below for selected alternatives, sample sizes, and dimension,
at significance level α = 0.1. Both the En and Tn,3 statistics achieved ap-
proximately correct empirical significance in our simulations (see case δ = 0
in Table 8.1), although the Type I error rate for Tn,3 may be slightly inflated
when n is small.

TABLE 8.1: Significant Tests (nearest whole percent
at α = 0.1, se ≤ 0.5%) of Bivariate Normal Location
Alternatives F1 = N2((0, 0)T , I2), F2 = N2((0, δ)T , I2)

δ = 0 δ = 0.5 δ = 0.75 δ = 1
n1 n2 En Tn,3 En Tn,3 En Tn,3 En Tn,3

10 10 10 12 23 19 40 29 58 42
15 15 9 11 30 21 53 34 75 52
20 20 10 12 37 23 64 38 86 58
25 25 10 11 43 25 73 42 93 65
30 30 10 11 48 25 81 47 96 70
40 40 11 10 59 28 90 52 99 78
50 50 10 11 69 29 95 58 100 82
75 75 10 11 85 37 99 69 100 93

100 100 10 10 92 40 100 79 100 100

These alternatives differ in location only, and the empirical evidence summa-
rized in Table 8.1 suggests that En is more powerful than Tn,3 against this
class of alternatives. �

8.4 Application: Distance Correlation

A test of independence of random vectors X ∈ Rp and Y ∈ Rq

H0 : FXY = FXFY vs H1 : FXY = FXFY

can be implemented as a permutation test. The permutation test does not
require distributional assumptions, or any type of model specification for the
dependence structure. Not many universally consistent nonparametric tests
exist for the general hypothesis above. In this section we will discuss a new
multivariate nonparametric test of independence based on distance correla-
tion [265] that is consistent against all dependent alternatives with finite first
moments. The test will be implemented as a permutation test.
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Distance Correlation

Distance correlation is a new measure of dependence between random vec-
tors introduced by Székely, Rizzo, and Bakirov [265]. For all distributions with
finite first moments, distance correlation R generalizes the idea of correlation
in two fundamental ways:

1. R(X,Y ) is defined for X and Y in arbitrary dimension.

2. R(X,Y ) = 0 characterizes independence of X and Y .

Distance correlation satisfies 0 ≤ R ≤ 1, and R = 0 only if X and Y are
independent. Distance covariance V provides a new approach to the problem
of testing the joint independence of random vectors. The formal definitions
of the population coefficients V and R are given in [265]. The definitions of
the empirical coefficients are as follows.

Definition 8.1 The empirical distance covariance Vn(X,Y) is the nonnega-
tive number defined by

V2
n(X,Y) =

1
n2

n∑
k, l=1

AklBkl, (8.9)

where Akl and Bkl are defined in equations (8.11-8.12) below. Similarly,
Vn(X) is the nonnegative number defined by

V2
n(X) = V2

n(X,X) =
1
n2

n∑
k, l=1

A2
kl . (8.10)

The formulas for Akl and Bkl in (8.9–8.10) are given by

Akl = akl − āk. − ā. l + ā.. ; (8.11)
Bkl = bkl − b̄k. − b̄. l + b̄.. , (8.12)

where

akl = ‖Xk −Xl‖p, bkl = ‖Yk − Yl‖q, k, l = 1, . . . , n,

and the subscript “.” denotes that the mean is computed for the index that
it replaces. Note that these formulas are similar to computing formulas in
analysis of variance, so the distance covariance statistic is very easy to com-
pute. Although it may not be obvious that V2

n(X,Y) ≥ 0, this fact as well as
the motivation for the definition of Vn is explained in [265].

Definition 8.2 The empirical distance correlation Rn(X,Y) is the square
root of

R2
n(X,Y) =

{ V2
n(X,Y)√

V2
n(X)V2

n(Y)
, V2

n(X)V2
n(Y) > 0;

0, V2
n(X)V2

n(Y) = 0.
(8.13)
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The asymptotic distribution of nV2
n is a quadratic form of centered Gaussian

random variables, with coefficients that depend on the distributions of X and
Y . For the general problem of testing independence when the distributions
of X and Y are unknown, the test based on nV2

n can be implemented as a
permutation test.

Before proceeding to the details of the permutation test, we implement the
calculation of the distance covariance statistic (dCov).

Example 8.11 (Distance covariance statistic)

In the distance covariance function dCov, operations on the rows and columns
of the distance matrix generate the matrix with entries Akl. Note that each
term

Akl = akl − āk. − ā. l + ā..; akl = ‖Xk −Xl‖
is a function of the distance matrix of the X sample. In the function Akl, the
sweep operator is used twice. The first sweep subtracts ā. l, the row means,
from the distances akl. The second sweep subtracts āk ., the column means,
from the result of the first sweep. (The column means and row means are
equal because the distance matrix is symmetric.) If the samples are x and y,
then the matrix A = (Akl) is returned by Akl(x) and the matrix B = (Bkl) is
returned by Akl(y). The remaining calculations are simple functions of these
two matrices.

dCov <- function(x, y) {

x <- as.matrix(x)

y <- as.matrix(y)

n <- nrow(x)

m <- nrow(y)

if (n != m || n < 2) stop("Sample sizes must agree")

if (! (all(is.finite(c(x, y)))))

stop("Data contains missing or infinite values")

Akl <- function(x) {

d <- as.matrix(dist(x))

m <- rowMeans(d)

M <- mean(d)

a <- sweep(d, 1, m)

b <- sweep(a, 2, m)

return(b + M)

}

A <- Akl(x)

B <- Akl(y)

dCov <- sqrt(mean(A * B))

dCov

}
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A simple example to try out the dCov function is the following. Compute
Vn for the bivariate distributions of iris setosa (petal length, petal width) and
(sepal length, sepal width).

z <- as.matrix(iris[1:50, 1:4])
x <- z[ , 1:2]
y <- z[ , 3:4]
# compute the observed statistic
> dCov(x, y)
[1] 0.06436159

The returned value is Vn = 0.06436159. Here n = 50 so the test statistic for
a test of independence is nV2

n
.= 0.207. �

Example 8.12 (Distance correlation statistic)

The distance covariance must be computed to get the distance correlation
statistic. Rather than call the distance covariance function three times, which
means repeated calculation of the distances and the A and B matrices, it is
more efficient to combine all operations in one function.

DCOR <- function(x, y) {

x <- as.matrix(x)

y <- as.matrix(y)

n <- nrow(x)

m <- nrow(y)

if (n != m || n < 2) stop("Sample sizes must agree")

if (! (all(is.finite(c(x, y)))))

stop("Data contains missing or infinite values")

Akl <- function(x) {

d <- as.matrix(dist(x))

m <- rowMeans(d)

M <- mean(d)

a <- sweep(d, 1, m)

b <- sweep(a, 2, m)

return(b + M)

}

A <- Akl(x)

B <- Akl(y)

dCov <- sqrt(mean(A * B))

dVarX <- sqrt(mean(A * A))

dVarY <- sqrt(mean(B * B))

dCor <- sqrt(dCov / sqrt(dVarX * dVarY))

list(dCov=dCov, dCor=dCor, dVarX=dVarX, dVarY=dVarY)

}
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Applying the function DCOR to the iris data we obtain all of the distance
dependence statistics in one step.

z <- as.matrix(iris[1:50, 1:4])
x <- z[ , 1:2]
y <- z[ , 3:4]

> unlist(DCOR(x, y))
dCov dCor dVarX dVarY

0.06436159 0.61507138 0.28303069 0.10226284

�

Permutation tests of independence

A permutation test of independence is implemented as follows. Suppose
that X ∈ Rp and Y ∈ Rq and Z = (X,Y ). Then Z is a random vector in
Rp+q. In the following, we suppose that a random sample is in an n× (p+ q)
data matrix Z with observations in rows:

Zn×d =

⎡⎢⎢⎢⎣
x1,1 x1,2 . . . x1,p y1,1 y1,2 . . . y1,q

x2,1 x2,2 . . . x2,p y2,1 y2,2 . . . y2,q

...
...

...
xn,1 xn,2 . . . xn,p yn,1 yn,2 . . . xn,q

⎤⎥⎥⎥⎦ .
Let ν1 be the row labels of the X sample and let ν2 be the row labels of the

Y sample. Then (Z, ν1, ν2) is the sample from the joint distribution of X and
Y . If X and Y are dependent, the samples must be paired and the ordering
of labels ν2 cannot be changed independently of ν1. Under independence, the
samples X and Y need not be matched. Any permutation of the row labels of
the X or Y sample generates a permutation replicate. The permutation test
procedure for independence permutes the row indices of one of the samples
(it is not necessary to permute both ν1 and ν2).

Approximate permutation test procedure for independence

Let θ̂ be a two sample statistic for testing multivariate independence.

1. Compute the observed test statistic θ̂(X,Y ) = θ̂(Z, ν1, ν2).

2. For each replicate, indexed b = 1, . . . , B:

(a) Generate a random permutation πb = π(ν2).
(b) Compute the statistic θ̂(b) = θ̂∗(Z, πb) = θ̂(X,Y ∗, π(ν2)).

3. If large values of θ̂ support the alternative, compute the ASL by

p̂ =
1 + #{θ̂(b) ≥ θ̂}

B + 1
=

{
1 +

∑B
b=1 I(θ̂

(b) ≥ θ̂)
}

B + 1
.



240 Statistical Computing with R

The ASL for a lower-tail or two-tail test based on θ̂ is computed in a
similar way.

4. Reject H0 at significance level α if p̂ ≤ α.

Example 8.13 (Distance covariance test)

This example tests whether the bivariate distributions (petal length, petal
width) and (sepal length, sepal width) of iris setosa are independent. To
implement a permutation test, write a function to compute the replicates of
the test statistic nV2

n that takes as its first argument the data matrix and as
its second argument the permutation vector.

ndCov2 <- function(z, ix, dims) {
#dims contains dimensions of x and y
p <- dims[1]
q1 <- dims[2] + 1
d <- p + dims[2]
x <- z[ , 1:p] #leave x as is
y <- z[ix, q1:d] #permute rows of y
return(nrow(z) * dCov(x, y)^2)

}

library(boot)
z <- as.matrix(iris[1:50, 1:4])
boot.obj <- boot(data = z, statistic = ndCov2, R = 999,

sim = "permutation", dims = c(2, 2))

tb <- c(boot.obj$t0, boot.obj$t)
hist(tb, nclass="scott", xlab="", main="",

freq=FALSE)
points(boot.obj$t0, 0, cex=1, pch=16)

> mean(tb >= boot.obj$t0)
[1] 0.066
> boot.obj
DATA PERMUTATION
Call: boot(data = z, statistic = ndCov2, R = 999,

sim = "permutation", dims = c(2, 2))
Bootstrap Statistics :

original bias std. error
t1* 0.2071207 -0.05991699 0.0353751

The achieved significance level is 0.066 so the null hypothesis of independence
is rejected at α = 0.10. The histogram of replicates of the dCov statistic is
shown in Figure 8.4. �
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FIGURE 8.4: Permutation replicates of dCov in Example 8.13.

One of the advantages of the dCov test is that it is sensitive to all types of
dependence structures in data. Procedures based on the classical definition
of covariance, or measures of association based on ranks are generally less
effective against non-monotone types of dependence. An alternative with
non-monotone dependence is tested in the following example.

Example 8.14 (Power of dCov)

Consider the data generated by the following nonlinear model. Suppose that

Yij = Xijεij , i = 1, . . . , n, j = 1, . . . , 5,

where X ∼ N5(0, I5) and ε ∼ N5(0, σ2I5) are independent. Then X and Y
are dependent, but if the parameter σ is large, the dependence can be hard
to detect. We compared the permutation test implementation of dCov with
the parametric Wilks Lambda (W ) likelihood ratio test [296] using Bartlett’s
approximation for the critical value (see e.g. [188, Sec. 5.3.2b]). Recall that
Wilks Lambda tests whether the covariance Σ12 = Cov(X,Y ) is the zero
matrix.

From a power comparison with 10,000 test decisions for each of the sample
sizes we have obtained the results shown in Table 8.2 and Figure 8.5. Figure
8.5 shows a plot of power vs sample size. Table 8.2 reports the empirical
power for a subset of the cases in the plot.

The dCov test is clearly more powerful in this empirical comparison. This
example illustrates that the parametric Wilks Lambda test based on product-
moment correlation is not always powerful against non-monotone types of
dependence. The dCov test is statistically consistent with power approaching
1 as n→ ∞ (theoretically and empirically). �
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FIGURE 8.5: Empirical power comparison of the distance covariance test
dCov and Wilks Lambda W in Example 8.14.

TABLE 8.2: Example 8.14: Percent of Significant Tests
of Independence of Y = Xε at α = 0.1 (se ≤ 0.5%)

n dCov W n dCov W n dCov W
25 48.56 38.43 55 61.39 42.74 100 75.40 44.36
30 50.89 39.16 60 63.09 42.60 120 79.97 45.20
35 54.56 40.86 65 63.96 42.64 140 84.51 45.21
40 55.79 41.88 70 66.43 43.08 160 87.31 45.17
45 57.93 41.91 75 68.32 44.28 180 91.13 45.46
50 59.63 42.05 80 70.27 44.34 200 93.43 46.12

For properties of distance covariance and distance correlation, proofs of con-
vergence and consistency, and more empirical results, see [265]. The distance
correlation and covariance statistics and the corresponding permutation tests
are provided in the energy package [226].

Exercises

8.1 Implement the two-sample Cramér-von Mises test for equal distributions as a
permutation test. Apply the test to the data in Examples 8.1 and 8.2.

8.2 Implement the bivariate Spearman rank correlation test for independence
[255] as a permutation test. The Spearman rank correlation test statistic can
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be obtained from function cor with method = "spearman". Compare the
achieved significance level of the permutation test with the p-value reported
by cor.test on the same samples.

8.3 The Count 5 test for equal variances in Section 6.4 is based on the maximum
number of extreme points. Example 6.15 shows that the Count 5 criterion
is not applicable for unequal sample sizes. Implement a permutation test for
equal variance based on the maximum number of extreme points that applies
when sample sizes are not necessarily equal.

8.4 Complete the steps to implement a rth-nearest neighbors test for equal distri-
butions. Write a function to compute the test statistic. The function should
take the data matrix as its first argument, and an index vector as the sec-
ond argument. The number of nearest neighbors r should follow the index
argument.

Projects

8.A Replicate the power comparison in Example 8.10, reducing the number of
permutation tests from 10000 to 2000 and number of replicates from 499 to
199. Use the eqdist.etest (energy) version of the energy test.

8.B The aml (boot) [34] data contains estimates of the times to remission for
two groups of patients with acute myelogenous leukaemia (AML). One group
received maintenance chemotherapy treament and the other group did not.
See the description in the aml data help topic. Following Davison and Hinkley
[63, Example 4.12], compute the log-rank statistic and apply a permutation
test procedure to test whether the survival distributions of the two groups are
equal.





Chapter 9

Markov Chain Monte Carlo Methods

9.1 Introduction

Markov Chain Monte Carlo (MCMC) methods encompass a general frame-
work of methods introduced by Metropolis et al. [197] and Hastings [138] for
Monte Carlo integration. Recall (see Section 5.2) that Monte Carlo integra-
tion estimates the integral ∫

A

g(t)dt

with a sample mean, by restating the integration problem as an expectation
with respect to some density function f(·). The integration problem then is
reduced to finding a way to generate samples from the target density f(·).

The MCMC approach to sampling from f(·) is to construct a Markov chain
with stationary distribution f(·), and run the chain for a sufficiently long time
until the chain converges (approximately) to its stationary distribution.

This chapter is a brief introduction to MCMC methods, with the goal of
understanding the main ideas and how to implement some of the methods in
R. In the following sections, methods of constructing the Markov chains are
illustrated, such as the Metropolis and Metropolis-Hastings algorithms, and
the Gibbs sampler, with applications. Methods of checking for convergence
are briefly discussed. In addition to references listed in Section 5.1, see e.g.
Casella and George [40], Chen, Shao, and Ibrahim [44], Chib and Greenberg
[47], Gamerman [103], Gelman et al. [108], or Tierney [272]. For a thorough,
accessible treatment with applications, see Gilks, Richardson, and Spiegelhal-
ter [120]. For reference on Monte Carlo methods including extensive treatment
of MCMC methods see Robert and Casella [228].

9.1.1 Integration problems in Bayesian inference

Many applications of Markov Chain Monte Carlo methods are problems
that arise in Bayesian inference. From a Bayesian perspective, in a statistical
model both the observables and the parameters are random. Given observed
data x = {x1, . . . , xn}, and parameters θ, x depends on the prior distribution

245
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fθ(θ). This dependence is expressed by the likelihood f(x1, . . . , xn|θ). The
joint distribution of (x, θ) is therefore

fx,θ(x, θ) = fx|θ(x1, . . . , xn|θ)fθ(θ).

One can then update the distribution of θ conditional on the information in the
sample x = {x1, . . . , xn}, so that by Bayes Theorem the posterior distribution
of θ is given by

fθ|x(θ|x) =
fx|θ(x1, . . . , xn|θ)fθ(θ)∫
fx|θ(x1, . . . , xn|θ)fθ(θ)dθ

=
fx|θ(x)fθ(θ)∫
fx|θ(x)fθ(θ)dθ

.

Then the conditional expectation of a function g(θ) with respect to the pos-
terior density is

E[g(θ|x)] =
∫
g(θ)fθ|x(θ) dθ =

∫
g(θ)fx|θ(x)fθ(θ)dθ∫
fx|θ(x)fθ(θ)dθ

. (9.1)

To state the problem in more general terms,

E[g(Y )] =
∫
g(t)π(t) dt∫
π(t) dt

, (9.2)

where π(·) is (proportional to) a density or a likelihood. If π(·) is a density
function, then (9.2) is just the usual definition E[g(Y )] =

∫
g(t)fY (t)dt. If π(·)

is a likelihood, then the normalizing constant in the denominator is needed.
In Bayesian analysis, π(·) is a posterior density. The expectation (9.2) can
be evaluated even if π(·) is known only up to a constant. This simplifies the
problem because in practice the normalizing constant for a posterior density
fθ|x(θ) is often difficult to evaluate.

The practical problem, however, is that the integrations in (9.2) are of-
ten mathematically intractable, and difficult to compute by numerical meth-
ods, especially in higher dimensions. Markov Chain Monte Carlo provides a
method for this type of integration problem.

9.1.2 Markov Chain Monte Carlo Integration

The Monte Carlo estimate of E[g(θ)] =
∫
g(θ)fθ|x(θ)dθ is the sample mean

g =
1
m

m∑
i=1

g(xi),

where x1, . . . , xm is a sample from the distribution with density fθ|x. If
x1, . . . , xm are independent (it is a random sample) then by the laws of large
numbers, the sample mean g converges in probability to E[g(θ)] as sample size
n tends to infinity. In this case, one can in principle draw as large a Monte
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Carlo sample as required to obtain the desired precision in the estimate g.
Here the first “MC” in “MCMC” is not needed; Monte Carlo integration can
be used.

However, in a problem such as (9.1) it may be quite difficult to implement a
method for generating independent observations from the density fθ|x. Nev-
ertheless, even if the sample observations are dependent, a Monte Carlo inte-
gration can be applied if the observations can be generated so that their joint
density is roughly the same as the joint density of a random sample. This is
where the first “MC” comes to the rescue. Markov Chain Monte Carlo meth-
ods estimate the integral in (9.1) or (9.2) by Monte Carlo integration, and the
Markov Chain provides the sampler that generates the random observations
from the target distribution.

By a generalization of the strong law of large numbers, if {X0,X1,X2,. . . }
is a realization of an irreducible, ergodic Markov Chain with stationary dis-
tribution π, then

g(X)m =
1
m

m∑
t=0

g(Xt)

converges with probability one to E[g(X)] as m → ∞, where X has the sta-
tionary distribution π and the expectation is taken with respect to π (provided
the expectation exists).

For a brief review of discrete-time discrete-state-space Markov Chains see
Section 2.8. For an introduction to Markov chains and stochastic processes
see Ross [234].

9.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithms are a class of Markov Chain Monte
Carlo methods including the special cases of the Metropolis sampler, the Gibbs
sampler, the independence sampler, and the random walk. The main idea
is to generate a Markov Chain {Xt|t = 0, 1, 2, . . .} such that its stationary
distribution is the target distribution. The algorithm must specify, for a
given state Xt, how to generate the next state Xt+1. In all of the Metropolis-
Hastings (M-H) sampling algorithms, there is a candidate point Y generated
from a proposal distribution g(·|Xt). If this candidate point is accepted, the
chain moves to state Y at time t+1 and Xt+1 = Y ; otherwise the chain stays
in state Xt and Xt+1 = Xt. Note that the proposal distribution can depend
on the previous state Xt. For example, if the proposal distribution is normal,
one choice for g(·|Xt) might be Normal(µt = Xt, σ

2) for some fixed σ2.
The choice of proposal distribution is very flexible, but the chain generated

by this choice must satisfy certain regularity conditions. The proposal distrib-
ution must be chosen so that the generated chain will converge to a stationary
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distribution – the target distribution f . Required conditions for the generated
chain are irreducibility, positive recurrence, and aperiodicity (see [229]). A
proposal distribution with the same support set as the target distribution will
usually satisfy these regularity conditions. Refer to [121, Ch. 7-8], [228, Ch. 7]
or [229] for further details on the choice of proposal distribution.

9.2.1 Metropolis-Hastings Sampler

The Metropolis-Hastings sampler generates the Markov chain {X0, X1, . . . }
as follows.

1. Choose a proposal distribution g(·|Xt) (subject to regularity conditions
stated above).

2. Generate X0 from a distribution g.

3. Repeat (until the chain has converged to a stationary distribution ac-
cording to some criterion):

(a) Generate Y from g(·|Xt).
(b) Generate U from Uniform(0,1).
(c) If

U ≤ f(Y )g(Xt|Y )
f(Xt)g(Y |Xt)

accept Y and set Xt+1 = Y ; otherwise set Xt+1 = Xt.
(d) Increment t.

Observe that in step (3c) the candidate point Y is accepted with probability

α(Xt, Y ) = min
(

1,
f(Y )g(Xt|Y )
f(Xt)g(Y |Xt)

)
, (9.3)

so that it is only necessary to know the density of the target distribution f
up to a constant.

Assuming that the proposal distribution satisfies the regularity conditions,
the Metropolis-Hastings chain will converge to a unique stationary distribu-
tion π. The algorithm is designed so that the stationary distribution of the
Metropolis-Hastings chain is indeed the target distribution, f .

Suppose (r, s) are two elements of the state space of the chain, and without
loss of generality suppose that f(s)g(r|s) ≥ f(r)g(s|r). Thus, α(r, s) = 1 and
the joint density of (Xt, Xt+1) at (r, s) is f(r)g(s|r). The joint density of
(Xt, Xt+1) at (s, r) is

f(s)g(r|s) α(s, r) = f(s)g(r|s)
(
f(r)g(s|r)
f(s)g(r|s)

)
= f(r)g(s|r).

The transition kernel is

K(r, s) = α(r, s)g(s|r) + I(s = r)
[
1 −

∫
α

(r, s)g(s|r)ds
]
.
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(The second term in K(r, s) arises when the candidate point is rejected and
Xt+1 = Xt.) Hence we have the system of equations

α(r, s)f(r)g(s|r) = α(s, r)f(s)g(r|s),

I(s = r)
[
1 −

∫
α

(r, s)g(s|r)ds]f(r)
]

= I(r = s)
[
1 −

∫
α

(s, r)g(r|s)ds]f(s)
]

for the Metropolis-Hastings chain, and f satisfies the detailed balance condi-
tion K(s, r)f(s) = K(r, s)f(r). Therefore f is the stationary distribution of
the chain. See Theorems 6.46 and 7.2 in [228].

Example 9.1 (Metropolis-Hastings sampler)

Use the Metropolis-Hastings sampler to generate a sample from a Rayleigh
distribution. The Rayleigh density [156, (18.76)] is

f(x) =
x

σ2
e−x2/(2σ2), x ≥ 0, σ > 0.

The Rayleigh distribution is used to model lifetimes subject to rapid aging,
because the hazard rate is linearly increasing. The mode of the distribution
is at σ, E[X ] = σ

√
π/2 and V ar(X) = σ2(4 − π)/2.

For the proposal distribution, try the chisquared distribution with degrees
of freedom Xt. Implementation of a Metropolis-Hastings sampler for this
example is as follows. Note that the base of the array in R is 1, so we initialize
the chain at X0 in x[1].

1. Set g(·|X) to the density of χ2(X).

2. Generate X0 from distribution χ2(1) and store in x[1].

3. Repeat for i = 2, . . . , N :

(a) Generate Y from χ2(df = Xt) = χ2(df=x[i-1]).
(b) Generate U from Uniform(0, 1).
(c) With Xt = x[i-1], compute

r(Xt, Y ) =
f(Y )g(Xt|Y )
f(Xt)g(Y |Xt)

,

where f is the Rayleigh density with parameter σ, g(Y |Xt) is the
χ2(df = Xt) density evaluated at Y , and g(Xt|Y ) is the χ2(df = Y )
density evaluated at Xt.
If U ≤ r(Xt, Y ) accept Y and set Xt+1 = Y ; otherwise set Xt+1 =
Xt. Store Xt+1 in x[i].

(d) Increment t.
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The constants in the densities cancel, so

r(xt, y) =
f(y)g(xt|y)
f(xt)g(y|xt)

=
ye−y2/2σ2

xte−x2
t /2σ2 × Γ(xt

2 )2xt/2x
y/2−1
t e−xt/2

Γ(y
2 )2y/2yxt/2−1 e−y/2

.

This ratio can be simplified further, but in the following simulation for clarity
we will evaluate the Rayleigh and chisquare densities separately. The following
function evaluates the Rayleigh(σ) density.

f <- function(x, sigma) {
if (any(x < 0)) return (0)
stopifnot(sigma > 0)
return((x / sigma^2) * exp(-x^2 / (2*sigma^2)))

}

In the simulation below, a Rayleigh(σ = 4) sample is generated using the
chisquare proposal distribution. At each transition, the candidate point Y is
generated from χ2(ν = Xi−1)

xt <- x[i-1]
y <- rchisq(1, df = xt)

and for each y, the numerator and denominator of r(Xi−1, Y ) are computed in
num and den. The counter k records the number of rejected candidate points.

m <- 10000
sigma <- 4
x <- numeric(m)
x[1] <- rchisq(1, df=1)
k <- 0
u <- runif(m)

for (i in 2:m) {
xt <- x[i-1]
y <- rchisq(1, df = xt)
num <- f(y, sigma) * dchisq(xt, df = y)
den <- f(xt, sigma) * dchisq(y, df = xt)
if (u[i] <= num/den) x[i] <- y else {

x[i] <- xt
k <- k+1 #y is rejected
}

}

> print(k)
[1] 4009

In this example, approximately 40% of the candidate points are rejected, so
the chain is somewhat inefficient.



Markov Chain Monte Carlo Methods 251

To see the generated sample as a realization of a stochastic process, we can
plot the sample vs the time index. The following code will display a partial
plot starting at time index 5000.

index <- 5000:5500
y1 <- x[index]
plot(index, y1, type="l", main="", ylab="x")

The plot is shown in Figure 9.1. Note that at times the candidate point is
rejected and the chain does not move at these time points; this corresponds
to the short horizontal paths in the graph. �
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FIGURE 9.1: Part of a chain generated by a Metropolis-Hastings sampler
of a Rayleigh distribution in Example 9.1.

Example 9.1 is a simple example intended to illustrate how to implement
a Metropolis-Hastings sampler. There are better ways to generate samples
from Rayleigh distributions. In fact, an explicit formula for the quantiles of
the Rayleigh distribution are given by

xq = F−1(q) = σ{−2 log(1 − q)}1/2, 0 < q < 1. (9.4)

Using F−1 one could write a simple generator for Rayleigh using the inverse
transform method of Section 3.2.1 with antithetic sampling (Section 5.4).
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Example 9.2 (Example 9.1, cont.)

The following code compares the quantiles of the target Rayleigh(σ = 4)
distribution with the quantiles of the generated chain in a quantile-quantile
plot (QQ plot).

b <- 2001 #discard the burnin sample
y <- x[b:m]
a <- ppoints(100)
QR <- sigma * sqrt(-2 * log(1 - a)) #quantiles of Rayleigh
Q <- quantile(x, a)

qqplot(QR, Q, main="",
xlab="Rayleigh Quantiles", ylab="Sample Quantiles")

hist(y, breaks="scott", main="", xlab="", freq=FALSE)
lines(QR, f(QR, 4))

The histogram of the generated sample with the Rayleigh(σ = 4) density
superimposed is shown in Figure 9.2(a) and the QQ plot is shown in Figure
9.2(b). The QQ plot is an informal approach to assessing the goodness-of-fit of
the generated sample with the target distribution. From the plot, it appears
that the sample quantiles are in approximate agreement with the theoretical
quantiles. �
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FIGURE 9.2: Histogram with target Rayleigh density and QQ plot for a
Metropolis-Hastings chain in Example 9.1.
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9.2.2 The Metropolis Sampler

The Metropolis-Hastings sampler [138, 197] is a generalization of the Metropo-
lis sampler [197]. In the Metropolis algorithm, the proposal distribution is
symmetric. That is, the proposal distribution g(·|Xt) satisfies

g(X |Y ) = g(Y |X),

so that in (9.3) the proposal distribution g cancels from

r(Xt, Y ) =
f(Y )g(Xt|Y )
f(Xt)g(Y |Xt)

,

and the candidate point Y is accepted with probability

α(Xt, Y ) = min
(

1,
f(Y )
f(Xt)

)
.

9.2.3 Random Walk Metropolis

The random walk Metropolis sampler is an example of a Metropolis sam-
pler. Suppose the candidate point Y is generated from a symmetric proposal
distribution g(Y |Xt) = g(|Xt − Y |). Then at each iteration, a random incre-
ment Z is generated from g(·), and Y is defined by Y = Xt +Z. For example,
the random increment might be normal with zero mean, so that the candidate
point is Y |Xt ∼ Normal(Xt, σ

2) for some fixed σ2 > 0.
Convergence of the random walk Metropolis is often sensitive to the choice

of scale parameter. When variance of the increment is too large, most of
the candidate points are rejected and the algorithm is very inefficient. If the
variance of the increment is too small, the candidate points are almost all
accepted, so the random walk Metropolis generates a chain that is almost like
a true random walk, which is also inefficient. One approach to selecting the
scale parameter is to monitor the acceptance rates, which should be in the
range [0.15, 0.5] [230].

Example 9.3 (Random walk Metropolis)

Implement the random walk version of the Metropolis sampler to generate the
target distribution Student t with ν degrees of freedom, using the proposal
distribution Normal(Xt, σ

2). In order to see the effect of different choices
of variance of the proposal distribution, try repeating the simulation with
different choices of σ.

The t(ν) density is proportional to (1 + x2/ν)−(ν+1)/2, so

r(xt, y) =
f(Y )
f(Xt)

=

(
1 + y2

ν

)−(ν+1)/2

(
1 + x2

t

ν

)−(ν+1)/2
.
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In this simulation below, the t densities in r(xi−1, y) will be computed by the
dt function. Then y is accepted or rejected and Xi generated by

if (u[i] <= dt(y, n) / dt(x[i-1], n))
x[i] <- y

else
x[i] <- x[i-1]

These steps are combined into a function to generate the chain, given the
parameters n and σ, initial value X0, and the length of the chain, N .

rw.Metropolis <- function(n, sigma, x0, N) {
x <- numeric(N)
x[1] <- x0
u <- runif(N)
k <- 0
for (i in 2:N) {

y <- rnorm(1, x[i-1], sigma)
if (u[i] <= (dt(y, n) / dt(x[i-1], n)))
x[i] <- y else {

x[i] <- x[i-1]
k <- k + 1

}
}

return(list(x=x, k=k))
}

Four chains are generated for different variances σ2 of the proposal distribu-
tion.

n <- 4 #degrees of freedom for target Student t dist.
N <- 2000
sigma <- c(.05, .5, 2, 16)

x0 <- 25
rw1 <- rw.Metropolis(n, sigma[1], x0, N)
rw2 <- rw.Metropolis(n, sigma[2], x0, N)
rw3 <- rw.Metropolis(n, sigma[3], x0, N)
rw4 <- rw.Metropolis(n, sigma[4], x0, N)

#number of candidate points rejected
> print(c(rw1$k, rw2$k, rw3$k, rw4$k))
[1] 14 136 891 1798

Only the third chain has a rejection rate in the range [0.15, 0.5]. The plots
in Figure 9.3 show that the random walk Metropolis sampler is very sensitive
to the variance of the proposal distribution. Recall that the variance of the
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t(ν) distribution is ν/(ν − 2), ν > 2. Here ν = 4 and the standard deviation
of the target distribution is

√
2.

In the first plot of Figure 9.3 with σ = 0.05, the ratios r(Xt, Y ) tend to be
large and almost every candidate point is accepted. The increments are small
and the chain is almost like a true random walk. Chain 1 has not converged
to the target in 2000 iterations. The chain in the second plot generated with
σ = 0.5 is converging very slowly and requires a much longer burn-in period.
In the third plot (σ = 2) the chain is mixing well and converging to the target
distribution after a short burn-in period of about 500. Finally, in the fourth
plot, where σ = 16, the ratios r(Xt, Y ) are smaller and most of the candidate
points are rejected. The fourth chain converges, but it is inefficient.
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FIGURE 9.3: Random walk Metropolis chains generated by proposal dis-
tributions with different variances in Example 9.3.

�
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Example 9.4 (Example 9.3, cont.)

Usually in MCMC problems one does not have the theoretical quantiles of
the target distribution available for comparison, but in this case the output
of the random walk Metropolis chains in Example 9.3 can be compared with
the theoretical quantiles of the target distribution. Discard the burn-in values
in the first 500 rows of each chain. The quantiles are computed by the apply
function (applying quantile to the columns of the matrix). The quantiles of
the target distribution and the sample quantiles of the four chains rw1, rw2,
rw3, and rw4 are in Table 9.1.

a <- c(.05, seq(.1, .9, .1), .95)
Q <- qt(a, n)
rw <- cbind(rw1$x, rw2$x, rw3$x, rw4$x)
mc <- rw[501:N, ]
Qrw <- apply(mc, 2, function(x) quantile(x, a))
print(round(cbind(Q, Qrw), 3)) #not shown
xtable::xtable(round(cbind(Q, Qrw), 3)) #latex format

�

TABLE 9.1: Quantiles of Target
Distribution and Chains in Example 9.4

Q rw1 rw2 rw3 rw4
5% −2.13 23.66 −1.16 −1.92 −2.40

10% −1.53 23.77 −0.39 −1.47 −1.35
20% −0.94 23.99 0.67 −1.01 −0.90
30% −0.57 24.29 4.15 −0.63 −0.64
40% −0.27 24.68 9.81 −0.25 −0.47
50% 0.00 25.29 17.12 0.01 −0.15
60% 0.27 26.14 18.75 0.27 0.06
70% 0.57 26.52 21.79 0.59 0.25
80% 0.94 26.93 25.42 0.92 0.52
90% 1.53 27.27 28.51 1.55 1.18
95% 2.13 27.39 29.78 2.37 1.90

R note 9.1 Table 9.1 was exported to LATEXformat by the xtable function
in the xtable package [61].

Example 9.5 (Bayesian inference: A simple investment model)

In general, the returns on different investments are not independent. To
reduce risk, portfolios are sometimes selected so that returns of securities are
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negatively correlated. Rather than the correlation of returns, here the daily
performance is ranked. Suppose five stocks are tracked for 250 trading days
(one year), and each day the “winner” is picked based on maximum return
relative to the market. Let Xi be the number of days that security i is a
winner. Then the observed vector of frequencies (x1, . . . , x5) is an observation
from the joint distribution of (X1, . . . , X5). Based on historical data, suppose
that the prior odds of an individual security being a winner on any given day
are [1 : (1−β) : (1−2β) : 2β : β], where β ∈ (0, 0.5) is an unknown parameter.
Update the estimate of β for the current year of winners.

According to this model, the multinomial joint distribution of X1, . . . , X5

has the probability vector

p =
(

1
3
,
(1 − β)

3
,
(1 − 2β)

3
,
2β
3
,
β

3

)
.

The posterior distribution of β given (x1, . . . , x5) is therefore

Pr[β|(x1, . . . , x5)] =
250!

x1!x2!x3!x4!x5!
px1
1 px2

2 px3
3 px4

4 px5
5 .

In this example, we cannot directly simulate random variates from the
posterior distribution. One approach to estimating β is to generate a chain
that converges to the posterior distribution and estimate β from the generated
chain. Use the random walk Metropolis sampler with a uniform proposal
distribution to generate the posterior distribution of β. The candidate point
Y is accepted with probability

α(Xt, Y ) = min
(

1,
f(Y )
f(Xt)

)
.

The multinomial coefficient cancels from the ratio in α(X,Y ), so that

f(Y )
f(X)

=
(1/3)x1((1 − Y )/3)x2((1 − 2Y )/3)x3 ((2Y )/3)x4(Y/3)x5

(1/3)x1((1 −X)/3)x2((1 − 2X)/3)x3 ((2X)/3)x4(X/3)x5
.

The ratio can be further simplified, but the numerator and denominator are
evaluated separately in the implementation below. In order to check the
results, start by generating the observed frequencies from a distribution with
specified β.

b <- .2 #actual value of beta
w <- .25 #width of the uniform support set
m <- 5000 #length of the chain
burn <- 1000 #burn-in time
days <- 250
x <- numeric(m) #the chain
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# generate the observed frequencies of winners
i <- sample(1:5, size=days, replace=TRUE,

prob=c(1, 1-b, 1-2*b, 2*b, b))
win <- tabulate(i)
> print(win)
[1] 82 72 45 34 17

The tabulated frequencies in win are the simulated numbers of trading days
that each of the stocks were the daily winner. Based on this year’s observed
distribution of winners, we want to estimate the parameter β.

The following function prob computes the target density (without the con-
stant).

prob <- function(y, win) {
# computes (without the constant) the target density
if (y < 0 || y >= 0.5)

return (0)
return((1/3)^win[1] *

((1-y)/3)^win[2] * ((1-2*y)/3)^win[3] *
((2*y)/3)^win[4] * (y/3)^win[5])

}

Finally the random walk Metropolis chain is generated. Two sets of uniform
random variates are required; one for generating the proposal distribution and
another for the decision to accept or reject the candidate point.

u <- runif(m) #for accept/reject step
v <- runif(m, -w, w) #proposal distribution
x[1] <- .25
for (i in 2:m) {

y <- x[i-1] + v[i]
if (u[i] <= prob(y, win) / prob(x[i-1], win))

x[i] <- y else
x[i] <- x[i-1]

}

The plot of the chains in Figure 9.4(a) shows that the chain has converged,
approximately, to the target distribution. Now the generated chain provides
an estimate of β, after discarding a burn-in sample. From the histogram of
the sample in Figure 9.4(b) the plausible values for β are close to 0.2.

The original sample table of relative frequencies, and the MCMC estimates
of the multinomial probabilities are given below.

> print(win)
[1] 82 72 45 34 17
> print(round(win/days, 3))
[1] 0.328 0.288 0.180 0.136 0.068
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> print(round(c(1, 1-b, 1-2*b, 2*b, b)/3, 3))
[1] 0.333 0.267 0.200 0.133 0.067
> xb <- x[(burn+1):m]
> print(mean(xb))
[1] 0.2101277

The sample mean of the generated chain is 0.2101277 (the simulated year of
winners table was generated with β = 0.2). �
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FIGURE 9.4: Random walk Metropolis chain for β in Example 9.5.

9.2.4 The Independence Sampler

Another special case of the Metropolis-Hastings sampler is the indepen-
dence sampler [272]. The proposal distribution in the independence sam-
pling algorithm does not depend on the previous value of the chain. Thus,
g(Y |Xt) = g(Y ) and the acceptance probability (9.3) is

α(Xt, Y ) = min
(

1,
f(Y )g(Xt)
f(Xt)g(Y )

)
.

The independence sampler is easy to implement and tends to work well when
the proposal density is a close match to the target density, but otherwise does
not perform well. Roberts [229] discusses convergence of the independence
sampler, and comments that “it is rare for the independence sampler to be
useful as a stand-alone algorithm.” Nevertheless, we illustrate the procedure
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in the following example, because the independence sampler can be useful in
hybrid MCMC methods (see e.g. [119]).

Example 9.6 (Independence sampler)

Assume that a random sample (z1, . . . , zn) from a two-component normal
mixture is observed. The mixture is denoted by

pN(µ1, σ
2
1) + (1 − p)N(µ2, σ

2
2),

and the density of the mixture (see Chapter 3) is

f∗(z) = pf1(z) + (1 − p)f2(z),

where f1 and f2 are the densities of the two normal distributions, respectively.
If the densities f1 and f2 are completely specified, the problem is to estimate
the mixing parameter p given the observed sample. Generate a chain using
an independence sampler that has the posterior distribution of p as the target
distribution.

The proposal distribution should be supported on the set of valid probabil-
ities p; that is, the interval (0, 1). The most obvious choices are the beta dis-
tributions. With no prior information on p, one might consider the Beta(1,1)
proposal distribution (Beta(1,1) is Uniform(0,1)). The candidate point Y is
accepted with probability

α(Xt, Y ) = min
(

1,
f(Y )g(Xt)
f(Xt)g(Y )

)
,

where g(·) is the Beta proposal density. Thus, if the proposal distribution
is Beta(a, b), then g(y) ∝ ya−1(1 − y)b−1 and Y is accepted with probability
min(1, f(y)g(xt)/f(xt)g(y)), where

f(y)g(xt)
f(xt)g(y)

=
xa−1

t (1 − xt)b−1
∏n

j=1[yf1(zj) + (1 − y)f2(zj)]
ya−1(1 − y)b−1

∏n
j=1[xtf1(zj) + (1 − xt)f2(zj)]

.

In the following simulation the proposal distribution is Uniform(0,1). The
simulated data is generated from the normal mixture

0.2N(0, 1) + 0.8N(5, 1).

The first steps are to initialize constants and generate the observed sample.
Then an observed sample is generated. To generate the chain, all random
numbers can be generated in advance because the candidate Y does not de-
pend on Xt.
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m <- 5000 #length of chain
xt <- numeric(m)
a <- 1 #parameter of Beta(a,b) proposal dist.
b <- 1 #parameter of Beta(a,b) proposal dist.
p <- .2 #mixing parameter
n <- 30 #sample size
mu <- c(0, 5) #parameters of the normal densities
sigma <- c(1, 1)

# generate the observed sample
i <- sample(1:2, size=n, replace=TRUE, prob=c(p, 1-p))
x <- rnorm(n, mu[i], sigma[i])

# generate the independence sampler chain
u <- runif(m)
y <- rbeta(m, a, b) #proposal distribution
xt[1] <- .5

for (i in 2:m) {
fy <- y[i] * dnorm(x, mu[1], sigma[1]) +

(1-y[i]) * dnorm(x, mu[2], sigma[2])
fx <- xt[i-1] * dnorm(x, mu[1], sigma[1]) +

(1-xt[i-1]) * dnorm(x, mu[2], sigma[2])

r <- prod(fy / fx) *
(xt[i-1]^(a-1) * (1-xt[i-1])^(b-1)) /
(y[i]^(a-1) * (1-y[i])^(b-1))

if (u[i] <= r) xt[i] <- y[i] else
xt[i] <- xt[i-1]

}

plot(xt, type="l", ylab="p")
hist(xt[101:m], main="", xlab="p", prob=TRUE)
print(mean(xt[101:m]))

The histogram of the generated sample after discarding the first 100 points
is shown in Figure 9.5 on the next page. The mean of the remaining sample is
0.2516. The time plot of the generated chain is shown in Figure 9.6(a), which
mixes well and converges quickly to a stationary distribution.

For comparison, we repeated the simulation with a Beta(5,2) proposal dis-
tribution. In this simulation the sample mean of the chain after discarding
the burn-in sample is 0.2593, but the chain that is generated, shown in Fig-
ure 9.6(b) on the following page, is not very efficient. �
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FIGURE 9.5: Distribution of the independence sampler chain for p with
proposal distribution Beta(1, 1) in Example 9.6, after discarding a burn-in
sample of length 100.

0 1000 2000 3000 4000 5000

0.
1

0.
2

0.
3

0.
4

0.
5

Index

p

(a)

0 1000 2000 3000 4000 5000

0.
2

0.
3

0.
4

0.
5

Index

p

(b)

FIGURE 9.6: Chain generated by independence sampler for p with pro-
posal distribution Beta(1, 1) (left) and Beta(5, 2) (right) in Example 9.6.
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9.3 The Gibbs Sampler

The Gibbs sampler was named by Geman and Geman [111], because of
its application to analysis of Gibbs lattice distributions. However, it is a
general method that can be applied to a much wider class of distributions
[111, 106, 105]. It is another special case of the Metropolis-Hastings sampler.
See the introduction to Gibbs sampling by Casella and George [40].

The Gibbs sampler is often applied when the target is a multivariate distrib-
ution. Suppose that all the univariate conditional densities are fully specified
and it is reasonably easy to sample from them. The chain is generated by
sampling from the marginal distributions of the target distribution, and every
candidate point is therefore accepted.

Let X = (X1, . . . , Xd) be a random vector in Rd. Define the d − 1 dimen-
sional random vectors

X(−j) = (X1, . . . , Xj−1, Xj+1, . . . , Xd),

and denote the corresponding univariate conditional density ofXj givenX(−j)

by f(Xj |X(−j)). The Gibbs sampler generates the chain by sampling from
each of the d conditional densities f(Xj |X(−j)).

In the following algorithm for the Gibbs sampler, we denote Xt by X(t).

1. Initialize X(0) at time t = 0.

2. For each iteration, indexed t = 1, 2, . . . repeat:

(a) Set x1 = X1(t− 1).
(b) For each coordinate j = 1, . . . , d

(a) Generate X∗
j (t) from f(Xj|x(−j)).

(b) Update xj = X∗
j (t).

(c) Set X(t) = (X∗
1 (t), . . . , X∗

d(t)) (every candidate is accepted).
(d) Increment t.

Example 9.7 (Gibbs sampler: Bivariate distribution)

Generate a bivariate normal distribution with mean vector (µ1, µ2), variances
σ2

1 , σ
2
2 , and correlation ρ, using Gibbs sampling.

In the bivariate case, X = (X1, X2), X(−1) = X2, X(−2) = X1. The
conditional densities of a bivariate normal distribution are univariate normal
with parameters

E[X2|x1] = µ1 + ρ
σ2

σ1
(x1 − µ1),

Var(X2|x1) = (1 − ρ2)σ2
2 ,
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and the chain is generated by sampling from

f(x1|x2) ∼ Normal(µ1 +
ρσ1

σ2
(x2 − µ2), (1 − ρ2)σ2

1),

f(x2|x1) ∼ Normal(µ2 +
ρσ2

σ1
(x1 − µ1), (1 − ρ2)σ2

2).

For a bivariate distribution (X1, X2), at each iteration the Gibbs sampler

1. Sets (x1, x2) = X(t− 1);

2. Generates X∗
1 (t) from f(X1|x2);

3. Updates x1 = X∗
1 (t);

4. Generates X∗
2 (t) from f(X2|x1);

5. Sets X(t) = (X∗
1 (t), X∗

2 (t)).

#initialize constants and parameters
N <- 5000 #length of chain
burn <- 1000 #burn-in length
X <- matrix(0, N, 2) #the chain, a bivariate sample

rho <- -.75 #correlation
mu1 <- 0
mu2 <- 2
sigma1 <- 1
sigma2 <- .5
s1 <- sqrt(1-rho^2)*sigma1
s2 <- sqrt(1-rho^2)*sigma2

###### generate the chain #####

X[1, ] <- c(mu1, mu2) #initialize

for (i in 2:N) {
x2 <- X[i-1, 2]
m1 <- mu1 + rho * (x2 - mu2) * sigma1/sigma2
X[i, 1] <- rnorm(1, m1, s1)
x1 <- X[i, 1]
m2 <- mu2 + rho * (x1 - mu1) * sigma2/sigma1
X[i, 2] <- rnorm(1, m2, s2)

}

b <- burn + 1
x <- X[b:N, ]
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The first 1000 observations are discarded from the chain in matrix X and the
remaining observations are in x. Summary statistics for the column means,
the sample covariance, and correlation matrices are shown below.

# compare sample statistics to parameters
> colMeans(x)
[1] -0.03030001 2.01176134
> cov(x)

[,1] [,2]
[1,] 1.0022207 -0.3757518
[2,] -0.3757518 0.2482327
> cor(x)

[,1] [,2]
[1,] 1.0000000 -0.7533379
[2,] -0.7533379 1.0000000

plot(x, main="", cex=.5, xlab=bquote(X[1]),
ylab=bquote(X[2]), ylim=range(x[,2]))

The sample means, variances, and correlation are close to the true parame-
ters, and the plot in Figure 9.7 exhibits the elliptical symmetry of the bivariate
normal, with negative correlation. (The version printed is a randomly selected
subset of 1000 generated variates after discarding the burn-in sample.) �
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FIGURE 9.7: Bivariate normal chain generated by the Gibbs sampler in
Example 9.7.
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9.4 Monitoring Convergence

In several examples using various Metropolis-Hastings algorithms, we have
seen that some generated chains have not converged to the target distribu-
tion. In general, for an arbitrary Metropolis-Hastings sampler the number of
iterations that are sufficient for approximate convergence to the target dis-
tribution or what length burn-in sample is required are unknown. Moreover,
Gelman and Rubin [110] provide examples of slow convergence that cannot
be detected by examining a single chain. A single chain may appear to have
converged because the generated values have a small variance within a local
part of the support set of the target distribution, but in reality the chain
has not explored all of the support set. By examining several parallel chains,
slow convergence should be more evident, particularly if the initial values of
the chain are overdispersed with respect to the target distribution. Meth-
ods have been proposed in the literature for monitoring the convergence of
MCMC chains (see e.g. [33, 54, 116, 138, 227, 219]). In this section we dis-
cuss and illustrate the approach suggested by Gelman and Rubin [107, 109]
for monitoring convergence of Metropolis-Hastings chains.

9.4.1 The Gelman-Rubin Method

The Gelman-Rubin [107, 109] method of monitoring convergence of a M-H
chain is based on comparing the behavior of several generated chains with
respect to the variance of one or more scalar summary statistics. The es-
timates of the variance of the statistic are analogous to estimates based on
between-sample and within-sample mean squared errors in a one-way analysis
of variance (ANOVA).

Let ψ be a scalar summary statistic that estimates some parameter of the
target distribution. Generate k chains {Xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} of length
n. (Here the chains are indexed with initial time t = 1.) Compute {ψin =
ψ(Xi1, . . . , Xin)} for each chain at time n. We expect that if the chains are
converging to the target distribution as n→ ∞, then the sampling distribution
of the statistics {ψin} should be converging to a common distribution.

The Gelman-Rubin method uses the between-sequence variance of ψ and
the within-sequence variance of ψ to estimate an upper bound and a lower
bound for variance of ψ, converging to variance ψ from above and below,
respectively, as the chain converges to the target distribution.

Consider the chains up to time n to represent data from a balanced one-
way ANOVA on k groups with n observations. Compute the estimates of
between-sample and within-sample variance analogous to the sum of squares
for treatments and the sum of squares for error, and the corresponding mean
squared errors as in ANOVA.
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The between-sequence variance is

B =
1

k − 1

k∑
i=1

n∑
j=1

(ψi· − ψ··)
2 =

n

k − 1

k∑
i=1

(ψi· − ψ··)
2,

where

ψi· = (1/n)
n∑

j=1

ψij , ψ·· = (1/(nk))
k∑

i=1

n∑
j=1

ψij .

Within the ith sequence, the sample variance is

s2i =
1
n

n∑
j=1

(ψij − ψi·)
2,

and the pooled estimate of within sample variance is

W =
1

nk − k

k∑
i=1

(n− 1)s2i =
1
k

k∑
i=1

s2i .

The between-sequence and within-sequence estimates of variance are com-
bined to estimate an upper bound for V ar(ψ)

V̂ ar(ψ) =
n− 1
n

W +
1
n
B. (9.5)

If the chains were random samples from the target distribution, (9.5) is an
unbiased estimator of V ar(ψ). In this application (9.5) is positively biased
for the variance of ψ if the initial values of the chain are over-dispersed, but
converges to V ar(ψ) as n → ∞. On the other hand, if the chains have not
converged by time n, the chains have not yet mixed well across the entire
support set of the target distribution so the within-sample variance W under-
estimates the variance of ψ. As n → ∞ we have the expected value of (9.5)
converging to V ar(ψ) from above and W converging to V ar(ψ) from below.
If V̂ ar(ψ) is large relative to W this suggests that the chain has not converged
to the target distribution by time n.

The Gelman-Rubin statistic is the estimated potential scale reduction

√
R̂ =

√
V̂ ar(ψ)
W

, (9.6)

which can be interpreted as measuring the factor by which the standard devi-
ation of ψ could be reduced by extending the chain. The factor

√
R̂ decreases

to 1 as the length of the chain tends to infinity, so
√
R̂ should be close to 1 if

the chains have approximately converged to the target distribution. Gelman
[107] suggests that R̂ should be less than 1.1 or 1.2.
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Example 9.8 (Gelman-Rubin method of monitoring convergence)

This example illustrates the Gelman-Rubin method of monitoring convergence
of a Metropolis chain. The target distribution is Normal(0,1), and the pro-
posal distribution is Normal(Xt, σ

2). The scalar summary statistic ψij is the
mean of the ith chain up to time j. After generating all chains the diagnostic
statistics are computed in the Gelman.Rubin function below.

Gelman.Rubin <- function(psi) {

# psi[i,j] is the statistic psi(X[i,1:j])

# for chain in i-th row of X

psi <- as.matrix(psi)

n <- ncol(psi)

k <- nrow(psi)

psi.means <- rowMeans(psi) #row means

B <- n * var(psi.means) #between variance est.

psi.w <- apply(psi, 1, "var") #within variances

W <- mean(psi.w) #within est.

v.hat <- W*(n-1)/n + (B/n) #upper variance est.

r.hat <- v.hat / W #G-R statistic

return(r.hat)

}

Since several chains are to be generated, the M-H sampler is written as a
function normal.chain.

normal.chain <- function(sigma, N, X1) {
#generates a Metropolis chain for Normal(0,1)
#with Normal(X[t], sigma) proposal distribution
#and starting value X1
x <- rep(0, N)
x[1] <- X1
u <- runif(N)

for (i in 2:N) {
xt <- x[i-1]
y <- rnorm(1, xt, sigma) #candidate point
r1 <- dnorm(y, 0, 1) * dnorm(xt, y, sigma)
r2 <- dnorm(xt, 0, 1) * dnorm(y, xt, sigma)
r <- r1 / r2
if (u[i] <= r) x[i] <- y else

x[i] <- xt
}

return(x)
}
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In the following simulation, the proposal distribution has a small variance
σ2 = 0.04. When the variance is small relative to the target distribution, the
chains are usually converging slowly.

sigma <- .2 #parameter of proposal distribution
k <- 4 #number of chains to generate
n <- 15000 #length of chains
b <- 1000 #burn-in length

#choose overdispersed initial values
x0 <- c(-10, -5, 5, 10)

#generate the chains
X <- matrix(0, nrow=k, ncol=n)
for (i in 1:k)

X[i, ] <- normal.chain(sigma, n, x0[i])

#compute diagnostic statistics
psi <- t(apply(X, 1, cumsum))
for (i in 1:nrow(psi))

psi[i,] <- psi[i,] / (1:ncol(psi))
print(Gelman.Rubin(psi))

#plot psi for the four chains
par(mfrow=c(2,2))
for (i in 1:k)

plot(psi[i, (b+1):n], type="l",
xlab=i, ylab=bquote(psi))

par(mfrow=c(1,1)) #restore default

#plot the sequence of R-hat statistics
rhat <- rep(0, n)
for (j in (b+1):n)

rhat[j] <- Gelman.Rubin(psi[,1:j])
plot(rhat[(b+1):n], type="l", xlab="", ylab="R")
abline(h=1.1, lty=2)

The plots of the four sequences of the summary statistic (the mean) ψ are
shown in Figure 9.8 from time 1001 to 15000. Rather than interpret the plots,
one can refer directly to the value of the factor R̂ to monitor convergence.
The value R̂ = 1.447811 at time n = 5000 suggests that the chain should be
extended. The plot of R̂ (Figure 9.9(a)) over time 1001 to 15000 suggests
that the chain has approximately converged to the target distribution within
approximately 10000 iterations (R̂ = 1.1166). The dashed line on the plot is
at R̂ = 1.1. Some intermediate values are 1.2252, 1.1836, 1.1561, and 1.1337
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at times 6000, 7000, 8000, and 9000, respectively. The value of R̂ is less than
1.1 within time 11200.
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FIGURE 9.8: Sequences of the running means ψ for four Metropolis-
Hastings chains in Example 9.8.

For comparison the simulation is repeated, where the variance of the pro-
posal distribution is σ2 = 4. The plot of R̂ is shown in Figure 9.9(b) for time
1001 to 15000. From this plot it is evident that the chain is converging faster
than when the proposal distribution had a very small variance. The value of
R̂ is below 1.2 within 2000 iterations and below 1.1 within 4000 iterations. �
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FIGURE 9.9: Sequence of the Gelman-Rubin R̂ for four Metropolis-
Hastings chains in Example 9.8 (a) σ = 0.2, (b) σ = 2.

9.5 Application: Change Point Analysis

A Poisson process is often chosen to model the frequency of rare events.
Poisson processes are discussed in Section 3.7. A homogeneous Poisson process
{X(t), t ≥ 0} with constant rate λ is a counting process with independent and
stationary increments, such that X(0) = 0 and the number of events X(t) in
[0, t] has the Poisson(λt) distribution.

Suppose that the parameter λ, which is the expected number of events that
occur in a unit of time, has changed at some point in time k. That is, Xt ∼
Poisson(µt) for 0 < t ≤ k and Xt ∼ Poisson(λt) for k < t. Given a sample of
n observations from this process, the problem is to estimate µ, λ and k.

For a specific application, consider the following well known example. The
coal data in the boot package [34] gives the dates of 191 explosions in coal
mines which resulted in 10 or more fatalities from March 15, 1851 until March
22, 1962. The data are given in [126], originally from [153]. This problem has
been discussed by many authors, including e.g. [36, 37, 63, 121, 171, 192]. A
Bayesian model and Gibbs sampling can be applied to estimate the change
point in the annual number of coal mining disasters.

Example 9.9 (Coal mining disasters)

In the coal data, the date of the disaster is given. The integer part of the
date gives the year. For simplicity truncate the fractional part of the year.
As a first step, tabulate the number of disasters per year and create a time
plot.
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library(boot) #for coal data
data(coal)
year <- floor(coal)
y <- table(year)
plot(y) #a time plot

0
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4
5

6

year

y

1851 1862 1873 1884 1895 1906 1918 1930 1941 1957

FIGURE 9.10: Number of annual coal mining disasters in Example 9.9.

From the plot in Figure 9.10 it appears that a change in the average number
of disasters per year may have occurred somewhere around the turn of the
century. Note that vector of frequencies returned by table omits the years
where there are zero counts, so for the change point analysis tabulate is
applied.

y <- floor(coal[[1]])
y <- tabulate(y)
y <- y[1851:length(y)]

Sequence of annual number of coal mining disasters:

4 5 4 1 0 4 3 4 0 6 3 3 4 0 2 6 3 3 5 4 5 3 1 4 4
1 5 5 3 4 2 5 2 2 3 4 2 1 3 2 2 1 1 1 1 3 0 0 1 0
1 1 0 0 3 1 0 3 2 2 0 1 1 1 0 1 0 1 0 0 0 2 1 0 0
0 1 1 0 2 3 3 1 1 2 1 1 1 1 2 3 3 0 0 0 1 4 0 0 0
1 0 0 0 0 0 1 0 0 1 0 1
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Let Yi be the number of disasters in year i, where 1851 is year 1. Assume
that the change point occurs at year k, and the number of disasters in year i
is a Poisson random variable, where

Yi ∼ Poisson(µ), i = 1, . . . , k,
Yi ∼ Poisson(λ), i = k + 1, . . . , n.

There are n = 112 observations ending with year 1962.
Assume the Bayesian model with independent priors

k ∼ Uniform {1, 2, . . . , n},
µ ∼ Gamma(0.5, b1),
λ ∼ Gamma(0.5, b2),

introducing additional parameters b1 and b2, independently distributed as a
positive multiple of a chisquare random variable. That is,

b1|Y, µ, λ, b2, k ∼ Gamma(0.5, µ+ 1),
b2|Y, µ, λ, b1, k ∼ Gamma(0.5, λ+ 1).

Let Sk =
∑k

i=1 Yi, and S′
k = Sn − Sk To apply the Gibbs sampler, the fully

specified conditional distributions are needed. The conditional distributions
for µ, λ, b1, and b2 are given by

µ | y, λ, b1, b2, k ∼ Gamma(0.5 + Sk, k + b1);
λ | y, µ, b1, b2, k ∼ Gamma(0.5 + S′

k, n− k + b2);
b1 | y, µ, λ, b2, k ∼ Gamma(0.5, µ+ 1);
b2 | y, µ, λ, b1, k ∼ Gamma(0.5, λ+ 1),

and the posterior density of the change point k is

f(k|Y, µ, λ, b1, b2) =
L(Y ; k, µ, λ)∑n
j=1 L(Y ; j, µ, λ)

, (9.7)

where
L(Y ; k, µ, λ) = ek(λ−µ)

(µ
λ

)Sk

is the likelihood function.
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For the change point analysis with the model specified on the previous page,
the Gibbs sampler algorithm is as follows (G(a, b) denotes the Gamma(shape=
a, rate= b) distribution).

1. Initialize k by a random draw from 1:n, and initialize λ, µ, b1, b2 to 1.

2. For each iteration, indexed t = 1, 2, . . . repeat:

(a) Generate µ(t) from G(0.5 + Sk(t−1), k(t− 1) + b1(t− 1)).
(b) Generate λ(t) from G(0.5 + S′

k(t−1), n− k(t− 1) + b2(t− 1)).

(c) Generate b1(t) from G(0.5, µ(t) + 1).
(d) Generate b2(t) from G(0.5, λ(t) + 1).
(e) Generate k(t) from the multinomial distribution defined by (9.7)

using the updated values of λ, µ, b1, b2.
(f) X(t) = (µ(t), λ(t), b1(t), b2(t), k(t)) (every candidate is accepted).
(g) Increment t.

The implementation of the Gibbs sampler for this problem is shown on the
facing page.

From the output of the Gibbs sampler below, the following sample means
are obtained after discarding a burn-in sample of size 200. The estimated
change point is k .= 40. From year k = 1 (1851) to k = 40 (1890) the
estimated Poisson mean is µ̂ .= 3.1, and from year k = 41 (1891) forward the
estimated Poisson mean is λ̂ .= 0.93.

b <- 201
j <- k[b:m]
> print(mean(k[b:m]))
[1] 39.935
> print(mean(lambda[b:m]))
[1] 0.9341033
> print(mean(mu[b:m]))
[1] 3.108575

Histograms and plots of the chains are shown in Figures 9.11 and 9.12. Code
to generate the plots is given on page 279. �
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# Gibbs sampler for the coal mining change point

# initialization
n <- length(y) #length of the data
m <- 1000 #length of the chain
mu <- lambda <- k <- numeric(m)
L <- numeric(n)
k[1] <- sample(1:n, 1)
mu[1] <- 1
lambda[1] <- 1
b1 <- 1
b2 <- 1

# run the Gibbs sampler
for (i in 2:m) {

kt <- k[i-1]

#generate mu
r <- .5 + sum(y[1:kt])
mu[i] <- rgamma(1, shape = r, rate = kt + b1)

#generate lambda
if (kt + 1 > n) r <- .5 + sum(y) else

r <- .5 + sum(y[(kt+1):n])
lambda[i] <- rgamma(1, shape = r, rate = n - kt + b2)

#generate b1 and b2
b1 <- rgamma(1, shape = .5, rate = mu[i]+1)
b2 <- rgamma(1, shape = .5, rate = lambda[i]+1)

for (j in 1:n) {
L[j] <- exp((lambda[i] - mu[i]) * j) *

(mu[i] / lambda[i])^sum(y[1:j])
}

L <- L / sum(L)

#generate k from discrete distribution L on 1:n
k[i] <- sample(1:n, prob=L, size=1)

}
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FIGURE 9.11: Output of the Gibbs sampler in Example 9.9.
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Several contributed packages for R offer implementations of the methods
in this chapter. See, for example, the packages mcmc and MCMCpack [117,
191]. The coda (Convergence Diagnosis and Output Analysis) package [212]
provides utilities that summarize, plot, and diagnose convergence of mcmc
objects created by functions in MCMCpack. Also see mcgibbsit [291]. For
implementation of Bayesian methods in general, see the task view on CRAN
“Bayesian Inference” for a description of several packages.

Exercises

9.1 Repeat Example 9.1 for the target distribution Rayleigh(σ = 2). Compare
the performance of the Metropolis-Hastings sampler for Example 9.1 and this
problem. In particular, what differences are obvious from the plot correspond-
ing to Figure 9.1?

9.2 Repeat Example 9.1 using the proposal distribution Y ∼ Gamma(Xt, 1)
(shape parameter Xt and rate parameter 1).

9.3 Use the Metropolis-Hastings sampler to generate random variables from a
standard Cauchy distribution. Discard the first 1000 of the chain, and com-
pare the deciles of the generated observations with the deciles of the standard
Cauchy distribution (see qcauchy or qt with df=1). Recall that a Cauchy(θ, η)
distribution has density function

f(x) =
1

θπ(1 + [(x− η)/θ]2)
, −∞ < x <∞, θ > 0.

The standard Cauchy has the Cauchy(θ = 1, η = 0) density. (Note that the
standard Cauchy density is equal to the Student t density with one degree of
freedom.)

9.4 Implement a random walk Metropolis sampler for generating the standard
Laplace distribution (see Exercise 3.2). For the increment, simulate from a
normal distribution. Compare the chains generated when different variances
are used for the proposal distribution. Also, compute the acceptance rates of
each chain.

9.5 What effect, if any, does the width w have on the mixing of the chain in
Example 9.5? Repeat the simulation keeping the random number seed fixed,
trying different proposal distributions based on the random increments from
Uniform(−w,w), varying w.

9.6 Rao [220, Sec. 5g] presented an example on genetic linkage of 197 animals
in four categories (also discussed in [67, 106, 171, 266]). The group sizes are
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(125, 18, 20, 34). Assume that the probabilities of the corresponding multino-
mial distribution are (

1
2

+
θ

4
,

1 − θ

4
,

1 − θ

4
,
θ

4

)
.

Estimate the posterior distribution of θ given the observed sample, using one
of the methods in this chapter.

9.7 Implement a Gibbs sampler to generate a bivariate normal chain (Xt, Yt)
with zero means, unit standard deviations, and correlation 0.9. Plot the
generated sample after discarding a suitable burn-in sample. Fit a simple
linear regression model Y = β0 + β1X to the sample and check the residuals
of the model for normality and constant variance.

9.8 This example appears in [40]. Consider the bivariate density

f(x, y) ∝
(
n

x

)
yx+a−1(1 − y)n−x+b−1, x = 0, 1, . . . , n, 0 ≤ y ≤ 1.

It can be shown (see e.g. [23]) that for fixed a, b, n, the conditional distribu-
tions are Binomial(n, y) and Beta(x+ a, n− x+ b). Use the Gibbs sampler to
generate a chain with target joint density f(x, y).

9.9 Modify the Gelman-Rubin convergence monitoring given in Example 9.8 so
that only the final value of R̂ is computed, and repeat the example, omitting
the graphs.

9.10 Refer to Example 9.1. Use the Gelman-Rubin method to monitor convergence
of the chain, and run the chain until the chain has converged approximately to
the target distribution according to R̂ < 1.2. (See Exercise 9.9.) Also use the
coda [212] package to check for convergence of the chain by the Gelman-Rubin
method. Hints: See the help topics for the coda functions gelman.diag,
gelman.plot, as.mcmc, and mcmc.list.

9.11 Refer to Example 9.5. Use the Gelman-Rubin method to monitor convergence
of the chain, and run the chain until the chain has converged approximately to
the target distribution according to R̂ < 1.2. Also use the coda [212] package
to check for convergence of the chain by the Gelman-Rubin method. (See
Exercises 9.9 and 9.10.)

9.12 Refer to Example 9.6. Use the Gelman-Rubin method to monitor convergence
of the chain, and run the chain until the chain has converged approximately to
the target distribution according to R̂ < 1.2. Also use the coda [212] package
to check for convergence of the chain by the Gelman-Rubin method. (See
Exercises 9.9 and 9.10.)
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R Code

Code for Figure 9.3 on page 255

Reference lines are added at the t0.025(ν) and t0.975(ν) quantiles.

par(mfrow=c(2,2)) #display 4 graphs together
refline <- qt(c(.025, .975), df=n)
rw <- cbind(rw1$x, rw2$x, rw3$x, rw4$x)
for (j in 1:4) {

plot(rw)[,j], type="l",
xlab=bquote(sigma == .(round(sigma[j],3))),
ylab="X", ylim=range(rw[,j]))

abline(h=refline)
}
par(mfrow=c(1,1)) #reset to default

Code for Figures 9.4(a) on page 259 and 9.4(b) on page 259

plot(x, type="l")
abline(h=b, v=burn, lty=3)
xb <- x[- (1:burn)]
hist(xb, prob=TRUE, xlab=bquote(beta), ylab="X", main="")
z <- seq(min(xb), max(xb), length=100)
lines(z, dnorm(z, mean(xb), sd(xb)))

Code for Figure 9.11 on page 276

# plots of the chains for Gibbs sampler output

par(mfcol=c(3,1), ask=TRUE)
plot(mu, type="l", ylab="mu")
plot(lambda, type="l", ylab="lambda")
plot(k, type="l", ylab="change point = k")
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Code for Figure 9.12 on page 276

# histograms from the Gibbs sampler output

par(mfrow=c(2,3))
labelk <- "changepoint"
label1 <- paste("mu", round(mean(mu[b:m]), 1))
label2 <- paste("lambda", round(mean(lambda[b:m]), 1))

hist(mu[b:m], main="", xlab=label1,
breaks = "scott", prob=TRUE) #mu posterior

hist(lambda[b:m], main="", xlab=label2,
breaks = "scott", prob=TRUE) #lambda posterior

hist(j, breaks=min(j):max(j), prob=TRUE, main="",
xlab = labelk)

par(mfcol=c(1,1), ask=FALSE) #restore display



Chapter 10

Probability Density Estimation

Density estimation is a collection of methods for constructing an estimate
of a probability density, as a function of an observed sample of data. In
previous chapters, we have used density estimation informally to describe the
distribution of data. A histogram is a type of density estimator. Another type
of density estimator is provided in the R function density. As explained in
the following sections, density computes kernel density estimates.

Several methods of density estimation are discussed in the literature. In
this chapter we restrict attention to nonparametric density estimation. A
density estimation problem requires a nonparametric approach if we have no
information about the target distribution other than the observed data. In
other cases we may have incomplete information about the distribution, so
that traditional estimation methods are not directly applicable. For example,
suppose it is known that the data arise from a location-scale family, but the
family is not specified. Nonparametric density estimation may not always be
the best approach, however. Perhaps the data are assumed to be a sample
from a normal mixture model, which is a type of classification problem; one
can apply EM or other parametric estimation procedures. For problems that
require a nonparametric approach, density estimation provides a flexible and
powerful tool for visualization, exploration, and analysis of data.

Readers are referred to Scott [244], Silverman [252] or Devroye [70] for an
overview of univariate and multivariate density estimation methods including
kernel methods. On multivariate density estimation see Scott [244].

10.1 Univariate Density Estimation

In this section univariate density estimation methods are presented, includ-
ing the histogram, frequency polygon, average shifted histogram, and kernel
density estimators.

281
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10.1.1 Histograms

Several methods for computing the histogram density estimate are pre-
sented and illustrated with examples. These methods include the normal
reference rule, Sturges [257], Scott [241], and Freedman-Diaconis [99] rules for
determining the class boundaries.

Introduced in elementary statistics courses, and available in all popular
statistics packages, the probability histogram is the most widely used den-
sity estimate in descriptive statistics. However, even in the elementary data
analysis projects we are faced with tricky questions such as how to determine
the best number of bins, the boundaries and width of class intervals, or how
to handle unequal class interval widths. In many software packages, these
decisions are made automatically, but sometimes produce undesirable results.
With R software, the user has control over several options described below.

The histogram is a piecewise constant approximation of the density func-
tion. Because data, in general, is contaminated by noise, the estimator that
presents too much detail (fitting more closely with the data) is not necessarily
“better.” The choice of bin width for a histogram is a choice of smoothing
parameter. A narrow bin width may undersmooth the data, presenting too
much detail, while wider bin width may oversmooth the data, obscuring im-
portant features. Several rules are commonly applied that suggest an optimal
choice of bin width. These rules are discussed below. The choice of smoothing
parameter and bin center is a challenging problem that continues to attract
much attention in research.

Suppose that a random sample X1, . . . , Xn is observed. To construct a
frequency or probability histogram of the sample, the data must be sorted
into bins, and the binning operation is determined by the boundaries of the
class intervals. Although in principle any class boundaries can be used, some
choices are more reasonable than others in terms of the quality of information
about the population density.

In this book we only discuss uniform bin width. Among the commonly
applied rules for determining the boundaries of class intervals of a histogram
are Sturges’ rule [257], Scott’s normal reference rule [241], the Freedman-
Diaconis (FD) rule [99], and various modifications of these rules.

Given class intervals of equal width h, the histogram density estimate based
on a sample size n is

f̂(x) =
νk

nh
, tk ≤ x < tk+1, (10.1)

where νk is the number of sample points in the class interval [tk, tk+1). If the
bin width is exactly 1, then the density estimate is the relative frequency of
the class containing the point x.

The bias of a histogram density estimator (10.1) is proportional to the bin
width h. The bias in a histogram density estimate is determined by f ′, the
first order derivative of the density. For other density estimators such as the
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frequency polygon, ASH, and kernel density estimators, the bias is determined
by f ′′, the second order derivative of the density. Estimators of higher order
are not usually applied because the density estimates can be negative.

Sturges’ Rule

Although Sturges’ rule [257] tends to oversmooth the data and either Scott’s
rule or FD are generally preferable, Sturges’ rule is the default in many sta-
tistical packages. In this section we present the motivation for this rule and
also use it to illustrate the behavior of the hist histogram plotting function
and how to change the default behavior. Sturges’ rule is based on the im-
plicit assumption that the sampled population is normally distributed. In
this case, it is natural to choose a family of discrete distributions that con-
verge in distribution to normal as the number of classes (and sample size n)
tend to infinity. The most obvious candidate is the binomial distribution with
probability of success 1/2. For example, if the sample size is n = 64, one could
select seven class intervals such that the frequency histogram corresponding
to a Binomial(6, 1/2) sample has expected class frequencies(

6
0

)
,

(
6
1

)
,

(
6
2

)
, . . .

(
6
6

)
= 1, 6, 15, 20, 15, 6, 1,

which sum to n = 64. Now consider sample sizes n = 2k, k = 1, 2, . . . .
For large k (large n) the distribution of Binomial(k, 1/2) is approximately
Normal(µ = n/2, σ2 = n/4). Here k = log2 n and we have k + 1 bins with
expected class frequencies(

log2 n

j

)
, j = 0, 1, . . . , k.

According to Sturges, the optimal [257] width of class intervals is given by

R

1 + log2 n
,

where R is the sample range. The number of bins depends only on the sample
size n, and not on the distribution. This choice of class interval is designed
for data sampled from symmetric, unimodal populations, but is not a good
choice for skewed distributions or distributions with more than one mode. For
large samples, Sturges’ rule tends to oversmooth (see Table 10.1).

Example 10.1 (Histogram density estimates using Sturges’ Rule)

Although breaks = "Sturges" is the default in the hist function in R, this
default value is a suggestion only unless a vector of class boundaries is given.
For example, compare the following default behavior of hist for number of
classes with Sturges’ Rule.
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n <- 25
x <- rnorm(n)
# calc breaks according to Sturges’ Rule
nclass <- ceiling(1 + log2(n))
cwidth <- diff(range(x) / nclass)
breaks <- min(x) + cwidth * 0:nclass
h.default <- hist(x, freq = FALSE, xlab = "default",

main = "hist: default")
z <- qnorm(ppoints(1000))
lines(z, dnorm(z))
h.sturges <- hist(x, breaks = breaks, freq = FALSE,

main = "hist: Sturges")
lines(z, dnorm(z))

The corresponding numerical values of breaks and counts are shown below,
and the histograms produced by each method are displayed in Figure 10.1(a).
The default method is a modification of Sturges’ Rule that selects “nice” break
points.

> print(h.default$breaks)
[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
> print(h.default$counts)
[1] 3 0 4 6 2 7 2 1
> print(round(h.sturges$breaks, 1))
[1] -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8
> print(h.sturges$counts)
[1] 3 4 6 4 6 2
> print(cwidth)
[1] 0.605878

The bin width according to Sturges’ rule is 0.605878, compared to the bin
width 0.5 applied by hist by default. Note that the function

> nclass.Sturges
function (x) ceiling(log2(length(x)) + 1)

computes the number of classes according to Sturges’ rule.
The density estimate for a point x in interval i is given by the height of the

histogram on the ith bin. In this example we have the following estimates for
the density at the point x = 0.1.

> print(h.default$density[5])
[1] 0.16
> print(h.sturges$density[4])
[1] 0.2640796

For the second estimate, the formula (10.1) is applied with νk = 4 and h =
0.605878. (The standard normal density at x = 0.1 is 0.397.)
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For larger samples of normal data, the default behavior of hist produces
approximately the same density estimate as Sturges’ Rule, as shown in Figure
10.1(b) for sample size n = 1000. �
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FIGURE 10.1: Histogram estimates of normal density in Example 10.1 for
samples of size (a) 25 and (b) 1000 with standard normal density curve.

Example 10.2 (Density estimates from a histogram)

In general, to recover density estimates f̂(x) from a histogram, it is necessary
to locate the bin containing the point x, then compute the relative frequency
(10.1) for that bin. In the previous example with n = 1000, corresponding to
Figure 10.1(b), we have the following estimates.

x0 <- .1
b <- which.min(h.default$breaks <= x0) - 1
print(c(b, h.default$density[b]))
b <- which.min(h.sturges$breaks <= x0) - 1
print(c(b, h.sturges$density[b]))

[1] 7.00 0.38
[1] 6.0000000 0.3889306

In the default histogram f̂1, the point x0 = 0.1 is in bin 7, and f̂1(0.1) = 0.38.
In f̂2 with breaks specified, x0 is in bin 6 and f̂2(0.1) = 0.3889306. Alternately,
the density estimate is the relative frequency weighted by bin width.
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h.default$counts[7] / (n * 0.5)
h.sturges$counts[6] / (n * cwidth)

[1] 0.38
[1] 0.3889306

Both estimates are quite close to the value of the standard normal density
φ(0.1) = 0.3969525. �

Sturges’ Rule is motivated by the normal distribution, which is symmet-
ric. To obtain better density estimates for skewed distributions, Doane [73]
suggested a modification based on the sample skewness coefficient

√
b1 (6.2).

The suggested correction is to add

Ke = log2

(
1 +

|√b1|
σ(
√
b1)

)
, (10.2)

classes, where

σ(
√
b1) =

√
6(n− 2)

(n+ 1)(n+ 3)

is the standard deviation of the sample skewness coefficient for normal data.

Scott’s Normal Reference Rule

To select an optimal (or good) smoothing parameter for density estimation,
one needs to establish a criterion for comparing smoothing parameters. One
approach aims to minimize the squared error in the estimate. Following Scott’s
approach [244], we briefly summarize some of the main ideas on L2 criteria.
The mean squared error (MSE) of a density estimator f̂(x) at x is

MSE(f̂(x)) = E(f̂(x) − f(x))2 = V ar(f̂(x)) + bias2(f̂(x)).

The MSE measures pointwise error. Consider the integrated squared error
(ISE), which is the L2 norm

ISE(f̂(x)) =
∫

(f̂(x) − f(x))2dx.

It is simpler to consider the statistic, mean integrated squared error (MISE),
given by

MISE = E[ISE] = E

[∫
(f̂(x) − f(x))2dx

]
=
∫
E[(f̂(x) − f(x))2]dx

=
∫
MSE(f̂(x)) := IMSE
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(the integrated mean squared error) by Fubini’s Theorem. Under some regu-
larity conditions on f , Scott [241] shows that

MISE =
1
nh

+
h2

12

∫
f ′(x)2dx +O

(
1
n

+ h3

)
,

and the optimal choice of bin width is

h∗n =
(

6n∫
f ′(x)2dx

)1/3

(10.3)

with asymptotic MISE

AMISE∗ =
(

9
16

∫
f ′(x)2dx

)1/3

n−2/3. (10.4)

In density estimation f is unknown, so the optimal h cannot be computed
exactly, but the asymptotically optimal h depends on the unknown density
only through its first derivative.

Scott’s Normal Reference Rule [241], which is calibrated to a normal dis-
tribution with variance σ2, specifies a bin width

ĥ
.= 3.49σ̂n−1/3,

where σ̂ is an estimate of the population standard deviation σ. For normal dis-
tributions with variance σ2, the optimal bin width is h∗n = 2(31/3)π1/6σn−1/3.
Substituting the sample estimate of standard deviation gives the normal ref-
erence rule for optimal bin width

ĥ = 3.490830212 σ̂n−1/3 .= 3.49 σ̂n−1/3, (10.5)

where σ̂2 is the sample variance S2. There remains the choice of the location
of the interval boundaries (bin origins or midpoints). On this subject see
Scott [241] and the ASH density estimates in section 10.1.3 below.

R note 10.1 The truehist (MASS) function [278] uses Scott’s Rule by de-
fault. In hist and truehist the number of classes for Scott’s Rule is com-
puted by the function nclass.scott as

h <- 3.5 * sqrt(stats::var(x)) * length(x)^(-1/3)

ceiling(diff(range(x))/h)

(If the vector breaks of breakpoints is not specified, the number of classes is
adjusted by the pretty function to obtain ‘nice’ breakpoints.)

Example 10.3 (Density estimation for Old Faithful)

This example illustrates Scott’s Normal Reference Rule to determine bin width
for a histogram of data on the eruptions of the Old Faithful geyser. One ver-
sion of the data is faithful in the base distribution of R. Another version [15],
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geyser (MASS), is analyzed by Venables and Ripley [278]. Here the geyser
data set is analyzed. There are 299 observations on 2 variables, duration and
waiting time. A density estimate for the time between eruptions (waiting)
using Scott’s Rule is computed below. For comparison, density estimation
is repeated using breaks = "scott" in the hist function, and truehist
(MASS) with breaks = "Scott".

Scott’s Rule gives the estimate for bin width ĥ = 3.5(13.89032·0.1495465) =
7.27037, and �(108 − 43)/7.27037� = 9 bins.

library(MASS) #for geyser and truehist
waiting <- geyser$waiting
n <- length(waiting)
# rounding the constant in Scott’s rule
# and using sample standard deviation to estimate sigma
h <- 3.5 * sd(waiting) * n^(-1/3)

# number of classes is determined by the range and h
m <- min(waiting)
M <- max(waiting)
nclass <- ceiling((M - m) / h)
breaks <- m + h * 0:nclass

h.scott <- hist(waiting, breaks = breaks, freq = FALSE,
main = "")

truehist(waiting, nbins = "Scott", x0 = 0, prob=TRUE,
col = 0)

hist(waiting, breaks = "scott", prob=TRUE, density=5,
add=TRUE)

The histograms from h.scott1 and h.scott2 are shown in Figures 10.2(a)
and 10.2(b). The histograms suggest that the data are not normally distrib-
uted and that there are possibly two modes at about 55 and 75. �

Freedman-Diaconis Rule

Scott’s normal reference rule above is a member of a class of rules that
select the optimal bin width according to a formula ĥ = Tn−1/3, where T is
a statistic. These n−1/3 rules are related to the fact that the optimal rate of
decay of bin width with respect to Lp norms is n−1/3 (see e.g. [288]). The
Freedman-Diaconis Rule [99] is another member of this class. For the FD
rule, the statistic T is twice the sample interquartile range. That is,

ĥ = 2(IQR)n−1/3,

where IQR denotes the sample interquartile range. Here the estimator σ̂
is proportional to the IQR. The IQR is less sensitive than sample standard
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FIGURE 10.2: Histogram estimate of Old Faithful waiting time density
in Example 10.3. (a) Scott’s Rule suggests 9 bins. (b) hist with breaks =
"scott" uses only 7 bins, after function pretty is applied to the breaks.

deviation to outliers in the data. The number of classes is the sample range
divided by the bin width.

Table 10.1 summarizes results of a simulation experiment comparing Sturges’
Rule, Scott’s Normal Reference Rule, and the Freedman-Diaconis Rule. Each
entry in the table represents a single standard normal or standard exponential
sample. These distributions have equal variance, but each rule produces dif-
ferent optimal numbers of bins, particularly when the sample size is large. It
appears that even for normal data, Sturges’ Rule is oversmoothing the data.

TABLE 10.1: Estimated Best Number of Class Intervals
for Simulated Data According to Three Rules for Histograms

(a) Standard Normal (b) Standard Exponential
n Sturges Scott FD n Sturges Scott FD

10 5 2 3 10 5 2 2
20 6 3 5 20 6 3 3
30 6 4 4 30 6 4 4
50 7 5 7 50 7 6 9

100 8 7 9 100 8 6 7
200 9 9 11 200 9 9 14
500 10 14 20 500 10 16 25

1000 11 19 25 1000 11 23 39
5000 14 40 52 5000 14 37 58

10000 15 46 60 10000 15 54 82
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10.1.2 Frequency Polygon Density Estimate

All histogram density estimates are piecewise continuous but not continuous
over the entire range of the data. A frequency polygon provides a continuous
density estimate from the same frequency distribution used to produce the
histogram. The frequency polygon is constructed by computing the density
estimate at the midpoint of each class interval, and using linear interpolation
for the estimates between consecutive midpoints.

Scott [243] derives the bin width for constructing the optimal frequency
polygon by asymptotically minimizing the IMSE. The optimal frequency poly-
gon bin width is

hfp
n = 2

[
49
15

∫
f ′′(x)2dx

]−1/5

n−1/5 (10.6)

with

IMSEfp =
5
12

[
49
15

∫
f ′′(x)2dx

]1/5

n−4/5 +O(n−1).

Notice that in general (10.6) cannot be computed without the knowledge of
the underlying distribution. In practice, f ′′ is estimated (e.g. a difference
method is often used). For normal densities,

∫
f ′′(x)2dx = 3/(8

√
πσ5) and

the optimal frequency polygon bin width is

hfp
n = 2.15σn−1/5. (10.7)

The normal distribution as a reference distribution will not be optimal if the
distribution is not symmetric. For data that is clearly skewed, a more appro-
priate reference distribution can be selected, such as a lognormal distribution.
A skewness adjustment (Scott [244]) derived using a lognormal distribution
as the reference distribution, is the factor

121/5σ

e7σ2/4(eσ2 − 1)1/2(9σ4 + 20σ2 + 12)1/5
. (10.8)

The adjustment factor should be multiplied times the bin width to obtain
the appropriate smaller bin width. Similarly, if the distribution has heavier
tails than the normal distribution, a kurtosis adjustment can be derived with
reference to a t distribution.

Example 10.4 (Frequency polygon density estimate)

Construct a frequency polygon density estimate of the geyser (MASS) data.
Determine the frequency polygon bin width by the normal reference rule,
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ĥfp
n = 2.15Sn−1/5, substituting the sample standard deviation S for σ. The

calculations are straightforward using the returned value from hist. The
vertices of the polygon are the sequence of points ($mids, $density) of the
returned hist object. Then the histogram with frequency polygon density
estimate is easily constructed by adding lines to the plot connecting these
points. There are a few more steps involved, to close the polygon at the ends
where the density estimate is zero. To draw the polygon there are several
options, such as segments or polygon.

waiting <- geyser$waiting #in MASS
n <- length(waiting)
# freq poly bin width using normal ref rule
h <- 2.15 * sqrt(var(waiting)) * n^(-1/5)

# calculate the sequence of breaks and histogram
br <- pretty(waiting, diff(range(waiting)) / h)
brplus <- c(min(br)-h, max(br+h))
histg <- hist(waiting, breaks = br, freq = FALSE,

main = "", xlim = brplus)

vx <- histg$mids #density est at vertices of polygon
vy <- histg$density
delta <- diff(vx)[1] # h after pretty is applied
k <- length(vx)
vx <- vx + delta # the bins on the ends
vx <- c(vx[1] - 2 * delta, vx[1] - delta, vx)
vy <- c(0, vy, 0)
# add the polygon to the histogram
polygon(vx, vy)

The bin width is h = 9.55029. The frequency polygon is shown in Figure 10.3.
If the density estimates are required for arbitrary points, approxfun can be
applied for the linear interpolation. As a check on the estimate, verify that∫∞
∞ f̂(x)dx = 1.

# check estimates by numerical integration
fpoly <- approxfun(vx, vy)
print(integrate(fpoly, lower=min(vx), upper=max(vx)))
1 with absolute error < 1.1e-14

�

10.1.3 The Averaged Shifted Histogram

In the preceding sections we have considered several rules for determining
the best number of classes or best class interval width. The optimal bin width
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FIGURE 10.3: Frequency polygon estimate of Old Faithful waiting time
density in Example 10.4.

does not determine the location of the center or endpoints of the bin, however.
For example, using truehist (MASS), we can easily shift the bins from left to
right using the argument x0, while keeping the bin width constant. Shifting
the class boundaries changes the density estimates, so several different density
estimates are possible using the same bin width. Figure 10.4 on page 294
illustrates four histogram density estimates of a standard normal sample using
the same number of bins, with bin origins offset by 0.25 from each other.

The Average Shifted Histogram (ASH) proposed by Scott [242] averages
the density estimates. That is, the ASH estimate of density is

f̂ASH(x) =
1
m

m∑
j=1

f̂j(x),

where the class boundaries for estimate f̂j+1(x) are shifted by h/m from the
boundaries for f̂j(x). Here we are viewing the estimates as m histograms with
class width h. Alternately we can view the ASH estimate as a histogram with
widths h/m. The optimal bin width (see [244, Sec. 5.2]) for the naive ASH
estimate of a Normal(µ, σ2) density is

h∗ = 2.576σn−1/5. (10.9)

Example 10.5 (Calculations for ASH estimate)

This numerical example illustrates the method of computing the ASH esti-
mates. Four histogram estimates, each with bin width 1, are computed for a
sample size n = 100. The bin origins for each of the densities are at 0, 0.25,
0.5, and 0.75 respectively. The bin counts and breaks are shown below.
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breaks -4 -3 -2 -1 0 1 2 3 4
counts 0 2 11 27 38 16 6 0

breaks -3.75 -2.75 -1.75 -0.75 0.25 1.25 2.25 3.25 4.25
counts 0 4 17 23 38 16 2 0

breaks -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5
counts 0 7 21 23 34 15 0 0

breaks -3.25 -2.25 -1.25 -0.25 0.75 1.75 2.75 3.75 4.75
counts 2 9 26 30 21 12 0 0

To compute an ASH density estimate at the point x = 0.2, say, locate the
intervals containing x = 0.2 and average these density estimates. The estimate
is

f̂ASH(0.2) =
1
4

4∑
k=1

f̂k(0.2) =
1
4
× 38 + 23 + 23 + 30

100(1)
=

114
400

= 0.285.

Alternately, we can compute this estimate by considering the mesh over the
subintervals with width δ = h/m = 0.25. There are now 36 breakpoints at
−4 + 0.25i, i = 0, 1, . . . , 35, and 35 bin counts, ν1, . . . , ν35. The point x = 0.2
is in the intervals (−.75, .25], (−.5, .5], (−.25, .75], and (0, 1] corresponding to
the 14th through 20th subintervals. The bin counts are

[1:12] 0 0 0 0 0 0 2 0 2 3 4 2
[13:24] 8 7 9 3 4 7 16 11 4 3 3 6
[25:35] 4 2 0 0 0 0 0 0 0 0 0

and the estimate can be computed by rearranging the terms as

7 + 9 + 3 + 4 = 23
9 + 3 + 4 + 7 = 23

3 + 4 + 7 + 16 = 30
4 + 7 + 16 + 11 = 38

= 7 + 2(9) + 3(3) + 4(4) + 3(7) + 2(16) + 11 = 114

or
f̂ASH(0.2) =

ν14 + 2ν15 + 3ν16 + 4ν17 + 3ν18 + 2ν19 + ν20
mnh

.

�

In general, if tk = max{tj : tj < x ≤ tj+1}, we have

f̂ASH(x) =
νk+1−m + 2νk+2−m + · · · +mνk + · · · + 2νk+m−2 + νk+m−1

mnh

=
1
nh

m−1∑
j=1−m

(
1 − |j|

m

)
νk+j . (10.10)
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FIGURE 10.4: Histogram estimates of a normal sample with equal bin
width but different bin origins, and standard normal density curve.

This computing formula requires that there are m− 1 empty bins on the left
and the right. Equation (10.10) provides a formula for computing an ASH
density estimate and shows that this estimate is a weighted average of the bin
counts on the finer mesh. The weights (1 − |j|/m) correspond to a discrete
triangular distribution on [−1, 1], which approaches the triangular density on
[−1, 1] as m→ ∞.

The ASH estimates can be generalized by replacing the weights (1− |j|/m)
in (10.10) with a weight function w(j) = w(j,m) corresponding to a symmetric
density supported on [−1, 1]. The triangular kernel is used in (10.10), which
is

K(t) = 1 − |t|, |t| < 1,

and K(t) = 0 otherwise. For other kernels see e.g. [244, 252] or the examples
of density, and Section 10.2.

Example 10.6 (ASH density estimate)

Construct an ASH density estimate of the Old Faithful waiting time data in
geyser$waiting (MASS) based on 20 histograms. For comparison with the
naive histogram density estimate of this data in Example 10.3, the bin width
is set to h = 7.27037. (The normal reference rule for ASH estimates in (10.9)
gives h = 11.44258.)
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library(MASS)
waiting <- geyser$waiting
n <- length(waiting)
m <- 20
a <- min(waiting) - .5
b <- max(waiting) + .5
h <- 7.27037
delta <- h / m

#get the bin counts on the delta-width mesh.
br <- seq(a - delta*m, b + 2*delta*m, delta)
histg <- hist(waiting, breaks = br, plot = FALSE)
nk <- histg$counts
K <- abs((1-m):(m-1))

fhat <- function(x) {
# locate the leftmost interval containing x
i <- max(which(x > br))
k <- (i - m + 1):(i + m - 1)
# get the 2m-1 bin counts centered at x
vk <- nk[k]
sum((1 - K / m) * vk) / (n * h) #f.hat
}

# density can be computed at any points in range of data
z <- as.matrix(seq(a, b + h, .1))
f.ash <- apply(z, 1, fhat) #density estimates at midpts

# plot ASH density estimate over histogram
br2 <- seq(a, b + h, h)
hist(waiting, breaks = br2, freq = FALSE, main = "",

ylim = c(0, max(f.ash)))
lines(z, f.ash, xlab = "waiting")

Compare the ASH estimate in Figure 10.5 with the histogram estimate in
Figure 10.2(b) and the frequency polygon density estimate in Figure 10.3. �

See the ash package [245] for an implementation of Scott’s univariate and
bivariate ASH routines.
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FIGURE 10.5: ASH density estimate of Old Faithful waiting times in Ex-
ample 10.6.

10.2 Kernel Density Estimation

Kernel density estimation generalizes the idea of a histogram density esti-
mate. If a histogram with bin width h is constructed from a sampleX1, . . . , Xn,
then a density estimate for a point x within the range of the data is

f̂(x) =
1

2hn
× k,

where k is the number of sample points in the interval (x − h, x + h). This
estimator can be written

f̂(x) =
1
n

n∑
i=1

1
h
w

(
x−Xi

h

)
, (10.11)

where w(t) = 1
2I(|t| < 1) is a weight function. The density estimator f̂(x)

in (10.11) with w(t) = 1
2I(|t| < 1) is called the naive density estimator. This

weight function has the property that
∫ 1

−1
w(t)dt = 1, and w(t) ≥ 0, so w(t)

is a probability density supported on the interval [−1, 1].
Kernel density estimation replaces the weight function w(t) in the naive

estimator with a function K(·) called a kernel function, such that∫ ∞

−∞
K(t)dt = 1.

In probability density estimation, K(·) is usually a symmetric probability den-
sity function. The weight function w(t) = 1

2I(|t| < 1) is called the rectangular
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kernel. The rectangular kernel is a symmetric probability density centered at
the origin, and

1
nh
w

(
x−Xi

h

)
,

corresponds to a rectangle of area 1/n centered at Xi. The density estimate
at x is the sum of rectangles located within h units from x.

In this book, we restrict attention to symmetric positive kernel density esti-
mators. Suppose that K(·) is another symmetric probability density centered
at the origin, and define

f̂K(x) =
1
n

n∑
i=1

1
h
K

(
x−Xi

h

)
. (10.12)

Then f̂ is a probability density function. For example, K(x) may be the trian-
gular density on [−1, 1] (the triangular kernel) or the standard normal density
(the Gaussian kernel). In section 10.1.3 we have seen that the ASH density es-
timate converges to a triangular kernel density estimate (see equation (10.10)
for the kernel) as n→ ∞. The triangular kernel estimator corresponds to the
sum of areas of triangles instead of rectangles. The Gaussian kernel estimator
centers a normal density at each data point, as illustrated in Figure 10.6.

From the definition of the kernel density estimator in (10.12) it follows that
certain continuity and differentiability properties of K(x) also hold for f̂K(x).
If K(x) is a probability density, then f̂K(x) is continuous at x if K(x) is
continuous at x, and f̂K(x) has an rth order derivative at x if K(r)(x) exists.
In particular, if K(x) is the Gaussian kernel, then f̂ is continuous and has
derivatives of all orders.

The histogram density estimator corresponds to the rectangular kernel den-
sity estimator. The bin width h is a smoothing parameter; small values
of h reveal local features of the density, while large values of h produce a
smoother density estimate. In kernel density estimation h is called the band-
width, smoothing parameter or window width.

The effect of varying the bandwidth is illustrated in Figure 10.6. The
n = 10 sample points in Figure 10.6,

-0.77 -0.60 -0.25 0.14 0.45 0.64 0.65 1.19 1.71 1.74

were generated from the standard normal distribution. As the window width
h decreases, the density estimate becomes rougher, and larger h corresponds to
smoother density estimates. (This example is presented simply to graphically
illustrate the kernel method; density estimation is not very useful for such a
small sample.)

Table 10.2 gives some kernel functions that are commonly applied in den-
sity estimation, which are also shown in Figure 10.7. The Epanechnikov ker-
nel was first suggested for kernel density estimation by Epanechnikov [85].
The efficiency of a kernel is defined by Silverman [252, p. 42]. The rescaled
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FIGURE 10.6: Kernel density estimates using a Gaussian kernel with
bandwidth h.

Epanechnikov kernel has efficiency 1, which is an optimal kernel in the sense
of MISE (Scott [244, pp. 138–140]). The asymptotic relative efficiencies given
in Table 10.2 in fact show that there is not much difference among the kernels
if the mean integrated squared error criterion is used (see [252, p. 43]). See
the examples of density for a method of calculating the efficiencies (actually
the reciprocal of efficiency in Table 10.2).

For a Gaussian kernel, the bandwidth h that optimizes IMSE is

h = (4/3)1/5σn−1/5 = 1.06σn−1/5. (10.13)

This choice of bandwidth is an optimal (IMSE) choice when the distribution
is normal. If the true density is not unimodal, however, (10.13) will tend to
oversmooth. Alternately, one can use a more robust estimate of dispersion in
(10.13), setting

σ̂ = min(S, IQR/1.34),

where S is the standard deviation of the sample. Silverman [252, p. 48]
indicates that an even better choice for a Gaussian kernel is the reduced
width

h = 0.9σ̂n−1/5 = 0.9 min(S, IQR/1.34)n−1/5, (10.14)

which is a good starting point appropriate for a wide range of distributions
that are not necessarily normal, unimodal, or symmetric.
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FIGURE 10.7: Kernel functions for density estimation.

The R reference manual [217] topic for bandwidth (?bw.nrd) refers to the
rule in (10.14) as Silverman’s “rule-of-thumb,” which is applied unless the
quartiles coincide. Various choices for bandwidth selection are illustrated in
Examples 10.7 and 10.8 below.

TABLE 10.2: Kernel Functions for Density Estimation
Kernel K(t) Support σ2

K Efficiency
Gaussian 1√

2π
exp(− 1

2 t
2) R 1 1.0513

Epanechnikov 3
4 (1 − t2) |t| < 1 1/5 1

Rectangular 1
2 |t| < 1 1/3 1.0758

Triangular 1 − |t| |t| < 1 1/6 1.0143

Biweight 15
16 (1 − t2)2 |t| < 1 1/7 1.0061

Cosine π
4 cos π

2 t R 1 − 8/π2 1.0005

For equivalent kernel rescaling, the bandwidth h1 can be rescaled by setting

h2 ≈ σK1

σK2

h1.

Factors for equivalent smoothing are given by Scott [244, p. 142]. A kernel
can also be scaled to “canonical” form such that the bandwidth is equivalent
to the Gaussian kernel.

The density function in R computes kernel density estimates for seven
kernels. The smoothing parameter is bw (bandwidth), but the kernels are
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scaled so that bw is the standard deviation of the kernel. The “canoni-
cal bandwidth” can be obtained using density with the option give.Rkern
= TRUE. Choices for the kernel are gaussian, epanechnikov, rectangular,
triangular, biweight, cosine, or optcosine. Run example(density) to
see several plots of the corresponding density estimates. The cosine kernel
given in Table 10.2 corresponds to the optcosine choice. The bandwidth ad-
justment for equivalent kernels in density is approximately 1, so the kernels
are approximately equivalent.

Example 10.7 (Kernel density estimate of Old Faithful waiting time)

In this example we look at the result obtained by the default arguments to
density. The default method applies the Gaussian kernel. For details on the
default bandwidth selection see the help topics for bandwidth or bw.nrd0.

library(MASS)

waiting <- geyser$waiting

n <- length(waiting)

h1 <- 1.06 * sd(waiting) * n^(-1/5)

h2 <- .9 * min(c(IQR(waiting)/1.34, sd(waiting))) * n^(-1/5)

plot(density(waiting))

> print(density(waiting))

Call:

density.default(x = waiting)

Data: waiting (299 obs.); Bandwidth ’bw’ = 3.998

x y

Min. : 31.01 Min. :3.762e-06

1st Qu.: 53.25 1st Qu.:4.399e-04

Median : 75.50 Median :1.121e-02

Mean : 75.50 Mean :1.123e-02

3rd Qu.: 97.75 3rd Qu.:1.816e-02

Max. :119.99 Max. :3.342e-02

sdK <- density(kernel = "gaussian", give.Rkern = TRUE)

> print(c(sdK, sdK * sd(waiting)))

[1] 0.2820948 3.9183881

> print(c(sd(waiting), IQR(waiting)))

[1] 13.89032 24.00000

> print(c(h1, h2))

[1] 4.708515 3.997796

The default density estimate applied the Gaussian kernel with the bandwidth
h = 3.998 corresponding to equation (10.14). The default density plot with
bandwidth 3.998 is shown in Figure 10.8. Other choices of bandwidth are also
shown for comparison. �
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FIGURE 10.8: Gaussian kernel density estimates of Old Faithful waiting
time in Example 10.7 using density with different bandwidths.

Example 10.8 (Kernel density estimate of precipitation data)

The dataset precip in R is the average amount of precipitation for 70 United
States cities and Puerto Rico (see [217] for the source). We use the density
function to construct kernel density estimates using the default and other
choices for bandwidth.

n <- length(precip)

h1 <- 1.06 * sd(precip) * n^(-1/5)

h2 <- .9 * min(c(IQR(precip)/1.34, sd(precip))) * n^(-1/5)

h0 <- bw.nrd0(precip)

par(mfrow = c(2, 2))

plot(density(precip)) #default Gaussian (h0)

plot(density(precip, bw = h1)) #Gaussian, bandwidth h1

plot(density(precip, bw = h2)) #Gaussian, bandwidth h2

plot(density(precip, kernel = "cosine"))

par(mfrow = c(1,1))
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FIGURE 10.9: Kernel density estimates of precipitation data in Example
10.8 using density with different bandwidths.

The three values for bandwidth computed are

> print(c(h0, h1, h2))
[1] 3.847892 6.211802 3.847892

and the plots are shown in Figure 10.9. The default density plot applied the
Gaussian kernel with the bandwidth h = 3.848 corresponding to equation
(10.14) and the result of bw.nrd0. �

Example 10.9 (Computing f̂(x) for arbitrary x)

To estimate the density for new points, use approx.

d <- density(precip)
xnew <- seq(0, 70, 10)
approx(d$x, d$y, xout = xnew)

The code above produces the estimates:
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$x
[1] 0 10 20 30 40 50 60 70
$y
[1] 0.000952360 0.010971583 0.010036739
[4] 0.021100536 0.035776120 0.014421428
[7] 0.005478733 0.001172337

For certain applications it is helpful to create a function to return the esti-
mates, which can be accomplished easily with approxfun. Below fhat is a
function returned by approxfun.

> fhat <- approxfun(d$x, d$y)
> fhat(xnew)
[1] 0.000952360 0.010971583 0.010036739
[4] 0.021100536 0.035776120 0.014421428
[7] 0.005478733 0.001172337

�

Boundary kernels

Near the boundaries of the support set of a density, or discontinuity points,
kernel density estimates have larger errors. Kernel density estimates tend to
smooth the probability mass over the discontinuity points or boundary points.
For example, see the kernel density estimates of the precipitation data shown
in Figure 10.9. Note that the density estimates suggest that negative inches
of precipitation are possible.

In the next example, we illustrate the boundary problem with an exponen-
tial density, and compare the kernel estimate with the true density.

Example 10.10 (Exponential density)

A Gaussian kernel density estimate of an Exponential(1) density is shown in
Figure 10.10. The true exponential density is shown with a dashed line.

x <- rexp(1000, 1)
plot(density(x), xlim = c(-1, 6), ylim = c(0, 1), main="")
abline(v = 0)

# add the true density to compare
y <- seq(.001, 6, .01)
lines(y, dexp(y, 1), lty = 2)

Note that the smoothness of the kernel estimate does not fit the discontinuity
of the density at x = 0. �
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FIGURE 10.10: Gaussian kernel density estimate (solid line) of an expo-
nential density in Example 10.10, with true density (dashed line). In the
second plot, the reflection boundary technique is applied on the same data.

Scott [244] discusses boundary kernels, which are finite support kernels
that are applied to obtain the density estimate in the boundary region. A
simple fix is to use a reflection boundary technique if the discontinuity occurs
at the origin. First add the reflection of the entire sample; that is, append
−x1, . . . ,−xn to the data. Then estimate a density g using the 2n points,
but use n to determine the smoothness parameter. Then f̂(x) = 2ĝ(x). This
method is applied below.

Example 10.11 (Reflection boundary technique)

The reflection boundary technique can be applied when the density has a
discontinuity at 0, such as in Example 10.10.

xx <- c(x, -x)
g <- density(xx, bw = bw.nrd0(x))
a <- seq(0, 6, .01)
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ghat <- approx(g$x, g$y, xout = a)
fhat <- 2 * ghat$y # density estimate along a

bw <- paste("Bandwidth = ", round(g$bw, 5))
plot(a, fhat, type="l", xlim=c(-1, 6), ylim=c(0, 1),

main = "", xlab = bw, ylab = "Density")
abline(v = 0)

# add the true density to compare
y <- seq(.001, 6, .01)
lines(y, dexp(y, 1), lty = 2)

The plot of the density estimate with reflection boundary is shown in Figure
10.10. �

See Scott [244] or Wand and Jones [289] for further discussion of methods
for kernel density estimation near boundaries.

10.3 Bivariate and Multivariate Density Estimation

In this section examples are presented that illustrate some of the basic
methods for bivariate and multivariate density estimation. Scott [244] is a
comprehensive reference on multivariate density estimation. Also see Silver-
man [252, Ch. 4].

10.3.1 Bivariate Frequency Polygon

To construct a bivariate density histogram (polygon), it is necessary to
define two-dimensional bins and count the number of observations in each bin.
The bin2d function in the following example computes the two dimensional
frequency table.

Example 10.12 (Bivariate frequency table: bin2d)

The function bin2d bins a bivariate data matrix, based on the univariate
histogram hist in R. See the documentation for hist for an explanation of
how the breakpoints are determined.

The frequencies are computed by constructing a two dimensional contin-
gency table with the marginal breakpoints as the cut points. The return value
of bin2d is a list including the table of bin frequencies, vectors of breakpoints,
and vectors of midpoints.
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bin2d <-
function(x, breaks1 = "Sturges", breaks2 = "Sturges"){
# Data matrix x is n by 2
# breaks1, breaks2: any valid breaks for hist function
# using same defaults as hist
histg1 <- hist(x[,1], breaks = breaks1, plot = FALSE)
histg2 <- hist(x[,2], breaks = breaks2, plot = FALSE)
brx <- histg1$breaks
bry <- histg2$breaks

# bin frequencies
freq <- table(cut(x[,1], brx), cut(x[,2], bry))

return(list(call = match.call(), freq = freq,
breaks1 = brx, breaks2 = bry,
mids1 = histg1$mids, mids2 = histg2$mids))

}

To show the details of the bin2d function, it is applied to bin the bivariate
sepal length and sepal width distribution of iris setosa data. Then in
Example 10.13 bin2d is used to bin data for constructing a bivariate frequency
polygon.

> bin2d(iris[1:50,1:2])

$call bin2d(x = iris[1:50, 1:2])

$freq

(2,2.5] (2.5,3] (3,3.5] (3.5,4] (4,4.5]

(4.2,4.4] 0 3 1 0 0

(4.4,4.6] 1 0 3 1 0

(4.6,4.8] 0 2 5 0 0

(4.8,5] 0 2 8 2 0

(5,5.2] 0 0 6 4 1

(5.2,5.4] 0 0 2 4 0

(5.4,5.6] 0 0 1 0 1

(5.6,5.8] 0 0 0 2 1

$breaks1

[1] 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

$breaks2

[1] 2.0 2.5 3.0 3.5 4.0 4.5

$mids1

[1] 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7

$mids2

[1] 2.25 2.75 3.25 3.75 4.25

�
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Example 10.13 (Bivariate density polygon)

Bivariate data is displayed in a 3D density polygon, using the bin2d function
in Example 10.12 to compute the bivariate frequency table. After binning the
bivariate data, the persp function plots the density polygon.

#generate standard bivariate normal random sample
n <- 2000; d <- 2
x <- matrix(rnorm(n*d), n, d)

# compute the frequency table and density estimates
b <- bin2d(x)
h1 <- diff(b$breaks1)
h2 <- diff(b$breaks2)

# matrix h contains the areas of the bins in b
h <- outer(h1, h2, "*")

Z <- b$freq / (n * h) # the density estimate

persp(x=b$mids1, y=b$mids2, z=Z, shade=TRUE,
xlab="X", ylab="Y", main="",
theta=45, phi=30, ltheta=60)

The perspective plot, a three dimensional density polygon, is shown in Figure
10.11. Also see Figure 4.7 on page 109 for another view of bivariate normal
data, in a “flat” hexagonal histogram. �

See the persp examples for more options, including color. Also see the
wireframe function in the lattice [239] package. Other functions that bin
bivariate data are e.g. bin2 (ash) [245] and hist2d (gplots) [290].

3D Histogram

A 3D histogram can be displayed by functions in the rgl [2] package, an
interactive 3D graphics package. To see a demo, type

library(rgl)
demo(hist3d)

After running the demo, the source code for two functions named hist3d
and binplot.3d that are used in the demo should have appeared in the
console window (scroll up to see it). To apply the rgl demo histogram to
this example, copy the two functions hist3d and binplot.3d into a source
file. These functions are in the file hist3d.r located in the demo directory of
library/rgl.
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library(rgl)
#run demo(hist3d) or
#source binplot.3d and hist3d functions
n <- 1000
d <- 2
x <- matrix(rnorm(n*d), n, d)
rgl.clear()
hist3d(x[,1], x[,2])

As Silverman [252, p. 78] points out, there are serious presentational dif-
ficulties with a 3D histogram. The surface and wireframe plots of bivariate
densities are better, particularly when they are generated from a continuous
density estimator.

10.3.2 Bivariate ASH

The average shifted histogram estimator of density can be extended to
multivariate density estimation. Suppose that bivariate data {(x, y)}, have
been sorted into an nbin1 by nbin2 array of bins with frequencies ν = (νij)
and bin widths h = (h1, h2) (see e.g. the bin2d function in Example 10.12).
The parameter m = (m1,m2) is the number of shifted histograms on each
axis used in the estimate. The histograms are shifted in two directions, so
that there are m1m2 histogram density estimates to be averaged.

X Y

Z

FIGURE 10.11: Density polygon of bivariate normal data in Example
10.13, using normal reference rule (Sturges’ Rule) to determine bin widths.
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The bivariate ASH estimate of the joint density f(x, y) is

f̂ASH(x, y) =
1

m1m2

m1∑
i=1

m2∑
j=1

f̂ij(x, y).

The bin weights are given by

wij =
(

1 − |i|
m1

)(
1 − |j|

m2

)
, i = 1−m1, . . . ,m1−1, j = 1−m2, . . . ,m2−1.

(10.15)
One can apply a similar algorithm for computing the individual estimates
f̂ij(x, y) as in the univariate ASH. See Scott [244, Sec. 5.2] for a bivariate ASH
algorithm. The ASH estimates can be generalized by replacing the weights
(1 − |i|/m1) and (1 − |j|/m2) in (10.15) with other kernels. The triangular
kernel is applied in (10.15). Also note that the bivariate ASH methods can
be generalized to dimension d ≥ 2.

Example 10.14 (Bivariate ASH density estimate)

This example computes a bivariate ASH estimate of a bivariate normal sample,
using Scott’s routines in the ash package [245]. The function ash2 returns a
list containing (among other things) the coordinates of the bin centers and
the density estimates, labeled x, y, z. The generator rmvn.eigen is given in
Example 3.16 on page 71. Alternately, samples can be generated using e.g.
mvrnorm (MASS).

library(ash) # for bivariate ASH density est.
# generate N_2(0,Sigma) data
n <- 2000
d <- 2
nbin <- c(30, 30) # number of bins
m <- c(5, 5) # smoothing parameters

# First example with positive correlation
Sigma <- matrix(c(1, .9, .9, 1), 2, 2)
set.seed(345)
x <- rmvn.eigen(n, c(0, 0), Sigma=Sigma)
b <- bin2(x, nbin = nbin)
# kopt is the kernel type, here triangular
est <- ash2(b, m = m, kopt = c(1,0))

persp(x = est$x, y = est$y, z = est$z, shade=TRUE,
xlab = "X", ylab = "Y", zlab = "", main="",
theta = 30, phi = 75, ltheta = 30, box = FALSE)

contour(x = est$x, y = est$y, z = est$z, main="")
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The perspective and contour plots from the ASH estimates are shown in Fig-
ures 10.12(a) and 10.12(c). The variables in the first example have positive
correlation ρ = 0.9. In the second example, the variables have negative cor-
relation ρ = −0.9.

# Second example with negative correlation
Sigma <- matrix(c(1, -.9, -.9, 1), 2, 2)
set.seed(345)
x <- rmvn.eigen(n, c(0, 0), Sigma=Sigma)
b <- bin2(x, nbin = nbin)
est <- ash2(b, m = m, kopt = c(1,0))

persp(x = est$x, y = est$y, z = est$z, shade=TRUE,
xlab = "X", ylab = "Y", zlab = "", main="",
theta = 30, phi = 75, ltheta = 30, box = FALSE)

contour(x = est$x, y = est$y, z = est$z, main="")
par(ask = FALSE)

The perspective plots and contour plots from the ASH estimates of the den-
sities in the second case are shown in Figures 10.12(b) and 10.12(d). �

10.3.3 Multidimensional kernel methods

Suppose X = (X1, . . . , Xd) is a random vector in Rd, and K(X) : Rd →
R is a kernel function, such that K(X) is a density function on Rd. Let
the n × d matrix (xij) be an observed sample from the distribution of X .
The smoothing parameter is a d-dimensional vector h. If the bandwidth is
equal in all dimensions, the multivariate kernel density estimator of f(X) with
smoothing parameter h1 is

f̂K(X) =
1
nhd

1

n∑
i=1

K

(
X − xi·
h1

)
, (10.16)

where xi· is the ith row of (xij). Usually K(X) will be a symmetric and uni-
modal density on Rd, such as a standard multivariate normal density. The
Gaussian kernels have unbounded support. An example of a kernel with
bounded support is the multivariate version of the Epanechnikov kernel, de-
fined

K(X) =
1

2cd
(d+ 2)(1 −XTX) I(XTX < 1),

where cd = 2πd/2/(dΓ(d/2)) is the volume of the d-dimensional unit sphere.
When d = 1 the constant is c1 = 2 and K(x) = (3/4)(1−x2) I(|x| < 1), which
is the univariate Epanechnikov kernel given in Table 10.2.

In the bivariate case, choosing equal bandwidths h1 = h2 and the stan-
dard Gaussian kernel corresponds to centering identical weight functions like
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FIGURE 10.12: Bivariate ASH density estimates of bivariate normal data
in Example 10.14.

smooth bumps at each sample point and summing the heights of these surfaces
to obtain the density estimate at a given point. For the bivariate Gaussian
kernel, in a graphical representation corresponding to Figure 10.6 the small
bumps will be surfaces (bivariate normal densities) rather than curves.

The product kernel density estimate of f(X) with smoothing parameter
h = (h1, . . . , hd) is

f̂(X) =
1

nh1 · · ·hd

n∑
i=1

d∏
j=1

K

(
Xi − xij

hj

)
. (10.17)

For this estimator and the multivariate frequency polygon, the optimal smooth-
ing parameter has

h∗j = O(n−1/(4+d)), AMISE∗ = O(n−4/(4+d)),
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and for uncorrelated multivariate normal data the optimal bandwidths are

h∗j =
(

4
d+ 2

)1/(d+4)

× σi n
−1/(d+4).

The constant (4/(d + 2))1/(d+4) is close to 1 and converges to 1 as d → ∞,
thus Scott’s multivariate normal reference rule [244] for d-dimensional data is

ĥi = σ̂in
−1/(d+4).

Example 10.15 (Product kernel estimate of a bivariate normal mixture)

This example plots the density estimate for a bivariate normal location mix-
ture using kde2d (MASS). The mixture has three components with different
mean vectors and identical variance Σ = I2. The mean vectors are

µ1 =
[
0
1

]
, µ2 =

[
4
0

]
, µ3 =

[
3

−1

]
,

and the mixing probabilities are p = (0.2, 0.3, 0.5). The code to generate the
mixture data and plots in Figure 10.13 follows.

library(MASS) #for mvrnorm and kde2d
#generate the normal mixture data
n <- 2000
p <- c(.2, .3, .5)
mu <- matrix(c(0, 1, 4, 0, 3, -1), 3, 2)
Sigma <- diag(2)
i <- sample(1:3, replace = TRUE, prob = p, size = n)
k <- table(i)

x1 <- mvrnorm(k[1], mu = mu[1,], Sigma)
x2 <- mvrnorm(k[2], mu = mu[2,], Sigma)
x3 <- mvrnorm(k[3], mu = mu[3,], Sigma)
X <- rbind(x1, x2, x3) #the mixture data
x <- X[,1]
y <- X[,2]
> print(c(bandwidth.nrd(x), bandwidth.nrd(y)))
[1] 1.876510 1.840368

# accepting the default normal reference bandwidth
fhat <- kde2d(x, y)
contour(fhat)
persp(fhat, phi = 30, theta = 20, d = 5, xlab = "x")
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# select bandwidth by unbiased cross-validation
h = c(ucv(x), ucv(y))
fhat <- kde2d(x, y, h = h)
contour(fhat)
persp(fhat, phi = 30, theta = 20, d = 5, xlab = "x")

The bandwidth by normal reference is h
.= (1.877, 1.840), and by cross-

validation h .= (0.556, 1.132). The first choice results in a smoother estimate.
Although in Figure 10.13 three modes are evident for both estimates, it ap-
pears that the density estimate corresponding to unbiased cross-validation
may be too rough in this example. �
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FIGURE 10.13: Product kernel estimates of bivariate normal mixture data
in Example 10.15 (normal reference rule at left.)
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For kernel density estimates for multivariate data also see kde (ks) [76] and
KernSnooth [286]. Readers are referred to the examples of kde2d (MASS) for
a Gaussian kernel density estimate of the bivariate geyser (MASS) data with
default normal reference bandwidth (also see [278, 5.6]).

10.4 Other Methods of Density Estimation

Orthogonal systems provide an alternate approach to density estimation
[244, 252, 285]. Suppose that the random variable X is supported on the
interval [0, 1]. Then one approach to estimation of the density f of X is to
represent f by its Fourier expansion and estimate the Fourier coefficients from
the observed random sample X1, . . . , Xn. Although intuitively appealing, the
resulting estimator is not useful because it will tend to a sum of delta functions
that place probability mass at the individual observations. See [244], [252], or
[285] for an explanation of how this problem is resolved by smoothing to obtain
a more useful density estimator, and how it is generalized to densities with
unbounded support. Scott [244, p. 129] shows that the resulting estimator is
in the form of a fixed kernel estimator. Walter and Shen [285, Sec. 13.3] show
that an estimator based on the Haar wavelets is the traditional histogram
estimator of a density.

Scott [244] and Silverman [252] discuss several other approaches to den-
sity estimation including adaptive kernel methods and cross-validation, near
neighbor estimates, and penalized likelihood methods. An L1 approach to
density estimation is covered by Devroye and Györfi [71]. Many other criteria
have been applied, such as the Kullback-Liebler distance, Hellinger distance,
AIC, etc. Other approaches focus on regression and smoothing [79, 128, 129,
130, 203], splines [86, 284], or generalized additive models [135, 137]. Some
related R packages are ash [245], gam [134], gss [123], KernSmooth [286], ks
[76], locfit [180], MASS [278], sm [29], and splines.

Exercises

10.1 Construct a histogram estimate of density for a random sample of standard
lognormal data using Sturges’ Rule, for sample size n = 100. Repeat the
estimate for the same sample using the correction for skewness proposed by
Doane [73] in equation (10.2). Compare the number of bins and break points
using both methods. Compare the density estimates at the deciles of the
lognormal distribution with the lognormal density at the same points. Does
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the suggested correction give better density estimates in this example?

10.2 Estimate the IMSE for three histogram density estimates of standard normal
data, from a sample size n = 500. Use Sturges’ Rule, Scott’s Normal Reference
Rule, and the FD Rule.

10.3 Construct a frequency polygon density estimate for the precip dataset in R.
Verify that the estimate satisfies

∫∞
−∞ f̂(x)dx .= 1 by numerical integration of

the density estimate.

10.4 Construct a frequency polygon density estimate for the precip dataset, using
a bin width determined by substituting

σ̂ = IQR/1.348

for standard deviation in the usual Normal Reference Rule for a frequency
polygon.

10.5 Construct a frequency polygon density estimate for the precip dataset, using
a bin width determined by the Normal Reference Rule for a frequency polygon
adjusted for skewness. The skewness adjustment factor is given in 10.8.

10.6 Construct an ASH density estimate for the faithful$eruptions dataset in
R, using width h determined by the normal reference rule. Use a weight
function corresponding to the biweight kernel,

K(t) =
15
16

(1 − t2)2 if |t| < 1, K(t) = 0 otherwise.

10.7 Construct an ASH density estimate for the precip dataset in R. Choose the
best value for width h∗ empirically by computing the estimates over a range
of possible values of h and comparing the plots of the densities. Does the
optimal value hfp

n correspond to the optimal value h∗ suggested by comparing
the density plots?

10.8 The buffalo dataset in the gss [123] package contains annual snowfall ac-
cumulations in Buffalo, New York from 1910 to 1973. The 64 observations
are

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25.0 69.3 53.5 39.8

63.6 46.7 72.9 79.6 83.6 80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1

103.9 51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7 110.5 65.4 39.9

40.1 88.7 71.4 83.0 55.9 89.9 84.8 105.2 113.7 124.7 114.5 115.6 102.4

101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

This data was analyzed by Scott [242]. Construct kernel density estimates
of the data using Gaussian and biweight kernels. Compare the estimates for
different choices of bandwidth. Is the estimate more influenced by the type
of kernel or the bandwidth?

10.9 Construct a kernel density estimate for simulated data from the normal lo-
cation mixture 1

2N(0, 1) + 1
2N(3, 1). Compare several choices of bandwidth,

including (10.13) and (10.14). Plot the true density of the mixture over the
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density estimate, for comparison. Which choice of smoothing parameter ap-
pears to be best?

10.10 Apply the reflection boundary technique to obtain a better kernel density
estimate for the precipitation data in Example 10.8. Compare the estimates
in Example 10.8 and the improved estimates in a single graph. Also try setting
from = 0 or cut = 0 in the density function.

10.11 Write a bivariate density polygon plotting function based on Examples 10.12
and 10.13. Use Example 10.13 to check the results, and then apply your
function to display the bivariate faithful data (Old Faithful geyser).

10.12 Plot a bivariate ASH density estimate of the geyser(MASS) data.

10.13 Generalize the bivariate ASH algorithm to compute an ASH density estimate
for a d-dimensional multivariate density, d ≥ 2.

10.14 Write a function to bin three-dimensional data into a three-way contingency
table, following the method in the bin2d function of Example 10.12. Check
the result on simulated N3(0, I) data. Compare the marginal frequencies re-
turned by your function to the expected frequencies from a standard univariate
normal distribution.
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R Code

Code to generate data as shown in Table 10.1 on page 289.

N <- c(10, 20, 30, 50, 100, 200, 500, 1000, 5000, 10000)
m <- length(N)
out <- matrix(0, nrow = m, ncol = 8)
out[ ,1] <- N
out[ ,5] <- N
for (i in 1:m) {

x <- rnorm(N[i])
out[i, 2:4] <- c(nclass.Sturges(x),

nclass.scott(x), nclass.FD(x))
x <- rexp(N[i])
out[i, 6:8] <- c(nclass.Sturges(x),

nclass.scott(x), nclass.FD(x))
}
print(out)

Code to plot the histograms in Figure 10.4 on page 294.

library(MASS) #for truehist
par(mfrow = c(2, 2))
x <- sort(rnorm(1000))
y <- dnorm(x)
o <- (1:4) / 4
h <- .35
for (i in 1:4) {

truehist(x, prob = TRUE, h = .35, x0 = o[i],
xlim = c(-3.5, 3.5), ylim = c(0, 0.45),
ylab = "Density", main = "")

lines(x, y)
}
par(mfrow = c(1, 1))

Code to plot Figure 10.6 on page 298.

To display the type of plot in Figure 10.6, first open a new plot to set up
the plotting window, but use type="n" in the plot command so that nothing
is drawn in the graph window yet. Then add the density curves for each point
inside the loop using lines. Finally, add the density estimate using lines
again.
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for (h in c(.25, .4, .6, 1)) {
x <- seq(-4, 4, .01)
fhat <- rep(0, length(x))
# set up the plot window first
plot(x, fhat, type="n", xlab="", ylab="",

main=paste("h=",h), xlim=c(-4,4), ylim=c(0, .5))
for (i in 1:n) {

# plot a normal density at each sample pt
z <- (x - y[i]) / h
f <- dnorm(z)
lines(x, f / (n * h))
# sum the densities to get the estimates
fhat <- fhat + f / (n * h)

}
lines(x, fhat, lwd=2) # add density estimate to plot

}

Use par(mfrow = c(2, 2)) to display four plots in one screen.

Code to plot kernels in Figure 10.7 on page 299.

#see examples for density, kernels in S parametrization
(kernels <- eval(formals(density.default)$kernel))

plot(density(0, from=-1.2, to=1.2, width=2,
kern="gaussian"), type="l", ylim=c(0, 1),
xlab="", main="")

for(i in 2:5)
lines(density(0, width=2, kern=kernels[i]), lty=i)

legend("topright", legend=kernels[1:5],
lty=1:5, inset=.02)



Chapter 11

Numerical Methods in R

11.1 Introduction

This chapter begins with a review of some concepts that should be un-
derstood by any statistician who will apply numerical methods that are im-
plemented in statistical packages such as R. Following this introduction, a
selection of examples are presented that illustrate the application of numer-
ical methods using functions provided in R. Readers should refer to one or
more of the relevant references for a thorough and rigorous presentation of
the underlying principles.

Many excellent references are available on numerical methods. Two recent
texts written to address the problems of statistical computing in particular are
Monahan [202] and Lange [168]. The Monahan text is an excellent resource
for statisticians with a limited background in numerical analysis. Nocedal
and Wright [206] is a graduate level text on optimization. Lange [169] is
another graduate level optimization text that features statistical applications.
Thisted [269] covers numerical computation for statistics, including numerical
analysis, numerical integration, and smoothing.

Computer representation of real numbers

A positive decimal number x is represented by the ordered coefficients {dj}
in the series

dn10n + dn−110n−1 + · · · + d1101 + d0 + d−110−1 + d−210−2 + . . .

and decimal point separating d0 and d−1, where dj are integers in {0, 1, . . . , 9}.
The same number can be represented in base 2 using the binary digits {0, 1}
by akak−1 . . . a1a0.a−1a−2 . . . , where

x = ak2k + ak−12k−1 + · · · + a12 + a0 + a−12−1 + a−22−2 + . . . ,

aj ∈ {0, 1}. The point separating a0 and a−1 is called the radix point. Simi-
larly, x can be represented in any integer base b > 1 by expanding in powers
of b.

R note 11.1 The function digitsBase in the package sfsmisc [183] returns
the vector of digits that represent a given integer in another base.

319
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Whenever a computer is involved in mathematical calculations, it is very
likely to involve the conversions “from” and “to” decimal, because machines
and humans represent numbers in different bases. Both types of conversions
introduce errors that could be significant in certain cases.

At the lowest level, the computer recognizes exactly two states, like a switch
that is on or off, or a circuit that is open or closed. Therefore, at some level,
the base 2 representation is used in computer arithmetic. Other powers of
2 such as 8 (octal) or 16 (hexadecimal) are also more natural for low level
routines than base 10.

Positive integers can always be represented by a finite sequence of digits,
ending with an implicit radix point. For this reason, integers are called fixed
point numbers. Numbers that require an explicit radix point in the sequence
of digits may be fixed point or floating point (generally treated as floating
point in calculations). Floating point numbers are represented by a sign, a
finite sequence of digits, and an exponent, similar to the representation of
real numbers in scientific notation. In general, this representation of a real
number is approximate, not exact.

Even though the internal representation of numbers is usually transpar-
ent to the user, who conveniently interacts with the software in the decimal
system, it is important in statistical computing to understand that there are
fundamental differences between mathematical calculations and computer cal-
culations. Mathematical ideas such as limit, supremum, infimum, etc. cannot
be exactly reproduced in the computer. No computer has infinite storage
capacity, so only finitely many numbers can be represented in the computer;
there is a smallest and a largest positive number. See Monahan [202, Ch. 2]
for a discussion of fixed point and floating point arithmetic, and inaccuracies
that can occur in algorithms as simple as calculation of sample variance.

R note 11.2 The R variable .Machine holds machine specific constants with
information on the largest integer, smallest number, etc. For example, in
R-2.5.0 for Windows, the largest integer (.Machine$integer.max) is 231 −
1 = 2147483647. Type .Machine at the command prompt for the complete
list. For portability and reusability of code, tolerances or convergence criteria
should be given in terms of machine constants. For example, the uniroot

function, which seeks a root of a univariate function, has a default tolerance
of .Machine$double.eps^0.25.

Occasionally users are surprised to find that some mathematical identities
appear to be contradicted by the software. A typical example is

> (.3 - .1)
[1] 0.2
> (.3 - .1) == .2
[1] FALSE
> .2 - (.3 - .1)
[1] 2.775558e-17
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The base 2 representation of 0.2 is an infinite series of digits 0.00110011 . . . ,
which cannot be represented exactly in the computer. Notice that although
the result above is not exactly equal to 0.2, the error is negligible. Good pro-
gramming practice avoids testing the equality of two floating point numbers.

Example 11.1 (Identical and nearly equal)

R provides the function all.equal to check for near equality of two R objects.
In a logical expression, use isTRUE to obtain a logical value.

> isTRUE(all.equal(.2, .3 - .1))
[1] TRUE
> all.equal(.2, .3) #not a logical value
[1] "Mean relative difference: 0.5"
> isTRUE(all.equal(.2, .3)) #always a logical value
[1] FALSE

The isTRUE function is applied in Example 11.9. The identical function
is available for testing whether two objects are identical. The help topic for
identical gives very clear and explicit advice to programmers: “A call to
identical is the way to test exact equality in if and while statements, as
well as in logical expressions that use && or ||. In all these applications you
need to be assured of getting a single logical value.” Also see the examples
below.

> x <- 1:4
> y <- 2
> y == 2
[1] TRUE
> x == y #not necessarily a single logical value
[1] FALSE TRUE FALSE FALSE
> identical(x, y) #always a single logical value
[1] FALSE
> identical(y, 2)
[1] TRUE

�

Overflow occurs when the result of an arithmetic operation exceeds the
maximum floating point number that can be represented. Underflow occurs
when the result is smaller than the minimum floating point number. In the
case of underflow, the result might unexpectedly be returned as zero. This
could lead to division by zero or other problems that produce unexpected
and possibly inaccurate results – without warning. Overflow is usually more
obvious, but should be avoided. Good algorithms should set underflows to
zero and give a warning if this may produce unexpected results. Programmers
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can avoid many of these problems, however, by carefully coding arithmetic
expressions with the limitations of the machine in mind.

Often the expression to be evaluated is not impossible to compute, but one
needs to be careful about the order of operations. One of the most common,
and easily avoided problems occurs when we need to compute a ratio of two
very large or very small numbers. For example, n!/(n − 2)! = n(n − 1), but
we could easily have trouble computing the numerator or denominator if n
is large. A good approach for this type of problem is to take the logarithm
of the quotient and exponentiate the result. A typical example that arises in
statistical applications is the following.

Example 11.2 (Ratio of two large numbers)

Evaluate
Γ((n− 1)/2)

Γ(1/2)Γ((n− 2)/2)
.

This could be coded using the gamma function in R, but Γ(n) = (n− 1)!, so
when n is large, gamma may return Inf and the arithmetic operations could
return NaN. On the other hand, although numerator and denominator are both
large, the ratio is much smaller. Compute the ratio Γ((n−1)/2)/Γ((n−2)/2)
using the logarithm of the gamma function lgamma. That is, Γ(n)/Γ(m) =
exp(lgamma(n) - lgamma(m)). Also, recall that Γ(1/2) =

√
π.

> n <- 400
> (gamma((n-1)/2) / (sqrt(pi) * gamma((n-2)/2)))
[1] NaN
> exp(lgamma((n-1)/2) - lgamma((n-2)/2)) / sqrt(pi)
[1] 7.953876

�

A thorough discussion of computer arithmetic is beyond the scope of this
text. Among the references, Monahan [202] or Thisted [269] are good starting
points on this topic for statistical computing; on computer arithmetic and
algorithms see e.g. Higham [142] or Knuth [164].

Evaluating Functions

The power series expansion of a function is commonly applied. If f(x) is
analytic, then f(x) can be evaluated in a neighborhood of the point x0 by a
power series

f(x) =
∞∑

k=0

ak(x− x0)k.
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The Taylor series representation of f(x) in a neighborhood of x0 is

f(x) =
∞∑

k=0

f (k)(x0)
k!

(x− x0)k,

also called a Maclaurin series when x0 = 0. The infinite series must be
truncated in order to obtain a numerical approximation. The power series
approximation is thus a (high degree) polynomial approximation. If f has
continuous derivatives up to order (n + 1) in a neighborhood of 0, then the
finite Taylor expansion of f(x) at x0 = 0 is

lim
x→0

f(x) =
n∑

k=0

f (k)(0)
k!

xk +Rn(x),

where Rn(x) = O(xn+1).
Recall that “O” (big oh) and “o” (little oh) describe the order of convergence

of functions. Let f and g be defined on a common interval (a, b) and let
a ≤ x0 ≤ b. Suppose that g(x) = 0 for all x = x0 in a neighborhood of x0.
Then f(x) = O(g(x)) if there exists a constant M such that |f(x)| ≤M |g(x)|
as x→ x0. If limx→x0 f(x)/g(x) = 0 then f(x) = o(g(x)).

If the finite Taylor expansion is computed in a language such as C or fortran,
a method is used that avoids repeated multiplications. That is, if yk = xk/k!
then

1
k!
f (k)(0)xk = ykf

(k)(0) = yk−1(x/k)f (k)(0),

saving many multiplications. Computing in R, however, it will usually be
faster to take advantage of the vectorized operations, provided it is known
how many terms are required.

Example 11.3 (Taylor expansion)

Consider the finite Taylor expansion for the sine function,

sinx =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1.

For example, evaluate sin(π/6) from the Taylor polynomial.
The remainder term Rn(x) = O(xn+1) can be used to determine the ap-

proximate number of terms required in the finite expansion. Suppose that a
24th degree polynomial is sufficiently accurate at x = π/6. Two methods of
computing the Taylor polynomial are compared below.

The following method of calculation is efficient in C or fortran code, but
not in R. The timer measures 1000 calculations of the Taylor polynomial.
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system.time({
for (i in 1:1000) {

a <- rep(0, 24)
a0 <- pi / 6
a2 <- a0 * a0
a[1] <- -a0^3 / 6
for (i in 2:24)

a[i] <- - a2 * a[i-1] / ((2*i+1)*(2*i))
a0 + sum(a)}

})
[1] 0.36 0.01 0.49 NA NA

Compare the version above to the vectorized version below. The vectorized
version appears to be about 5 times faster than the method above. In R code,
vectorized operations like the code below are usually more efficient than loops.

system.time({
for (i in 1:1000) {

K <- 2 * (0:24) + 1
i <- rep(c(1, -1), length=25)
sum(i * (pi/6)^K / factorial(K))}

})
[1] 0.07 0.01 0.08 NA NA

�

Power series expansions are also useful for numerical evaluation of deriva-
tives. Within the common region of the radius of convergence of the power
series and its derivative, one can differentiate the finite expansion term by
term. The next example illustrates this method with a useful function for the
derivative of the zeta function.

Example 11.4 (Derivative of zeta function)

The Riemann zeta function is defined by

ζ(a) =
∞∑

i=1

1
ia
,

which converges for all a > 1. Write a function to evaluate the first derivative
of the zeta function.

It can be shown that

ζ(a) =
1

z − 1
+

∞∑
n=0

(−1)n

n!
γn(z − 1)n,
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where

γn = ζ(n)(z) − (−1)nn!
(z − 1)n+1

∣∣∣∣
z=1

= lim
m→∞

[ m∑
k=1

(log k)n

k
− (logm)n+1

n+ 1

]
are the Stieltjes constants. Differentiating ζ(a) gives

ζ′(a) = − 1
(z − 1)2

− γ1 + γ2(z − 1) − 1
2
γ3(z − 1)2 + . . . , a > 1.

The Stieltjes constants can be evaluated numerically, and tables of the Stielt-
jes constants are available [1]. More terms can be added if greater accuracy
is needed, but to conserve space, only five of the constants are used in the
version below. This “light” version of the zeta derivative gives remarkably
good results over the interval (1, 2) (see the next example).

zeta.deriv <- function(a) {
z <- a - 1
# Stieltjes constants gamma_k for k=1:5
g <- c(

-.7281584548367672e-1,
-.9690363192872318e-2,
.2053834420303346e-2,
.2325370065467300e-2,
.7933238173010627e-3)

i <- c(-1, 1, -1, 1, -1)
n <- 0:4
-1/z^2 + sum(i * g * z^n / factorial(n))

}

�

Another approach to numerical evaluation of the derivative of a function
applies the following central difference formula

f ′(x) �
f(x+ h) − f(x− h)

2h
,

for a small value of h. According to [213], h should be chosen so that x and
x+ h differ by an exactly representable number.

Example 11.5 (Derivative of zeta function, cont.)

Compare the finite series approximation of the numerical derivative in Exam-
ple 11.4 with the central difference formula. That is, for small h, compare

ζ(a+ h) − ζ(a− h)
2h
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with the value returned by zeta.deriv(a) in Example 11.4. The ζ(·) function
is implemented in the GNU scientific library, available in the gsl package
[127].

library(gsl) #for zeta function
z <- c(1.001, 1.01, 1.5, 2, 3, 5)
h <- .Machine$double.eps^0.5
dz <- dq <- rep(0, length(z))
for (i in 1:length(z)) {

v <- z[i] + h
h <- v - z[i]
a0 <- z[i] - h
if (a0 < 1) a0 <- (1 + z[i])/2
a1 <- z[i] + h
dq[i] <- (zeta(a1) - zeta(a0)) / (a1 - a0)
dz[i] <- zeta.deriv(z[i])

}

h
[1] 1.490116e-08

cbind(z, dz, dq)
z dz dq

[1,] 1.001 -9.999999e+05 -9.999999e+05
[2,] 1.010 -9.999927e+03 -9.999927e+03
[3,] 1.500 -3.932240e+00 -3.932240e+00
[4,] 2.000 -9.375469e-01 -9.375482e-01
[5,] 3.000 -1.981009e-01 -1.981262e-01
[6,] 5.000 -2.853446e-02 -2.857378e-02

Values of z are given in the first column, values of ζ′(z) computed by the
finite series approximation are given in column dz, and values of ζ′(z) com-
puted by the central difference formula are given in column dq. Although the
two estimates are quite close, it appears that the difference in the two esti-
mates is increasing with z. The finite series approximation can be improved
by adding more terms. �

11.2 Root-finding in One Dimension

This section will briefly summarize the main ideas behind the Brent min-
imization algorithm [32], on which the R root-finding function uniroot is
based, and illustrate its application with examples. Refer to [32, 169, 213, 206]
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for more details. The source code of the fortran implementation “zeroin.f”
in the GNU Scientific Library (GSL) can be found at the web site http:
//www.gnu.org/software/gsl/.

Let f(x) be a continuous function f : R1 → R1. A root (or zero) of the
equation f(x) = c is a number x such that g(x) = f(x)− c = 0. Thus, we can
restrict attention to solving f(x) = 0.

One can choose from numerical methods that require evaluation of the first
derivative of f(x), and algorithms that do not require the first derivative.
Newtons’s method or Newton-Raphson method are examples of the first type,
while Brent’s algorithm is an example of the second type of method. In either
case, one must bracket the root between two endpoints where f(·) has opposite
signs.

Bisection method

If f(x) is continuous on [a, b], and f(a), f(b) have opposite signs, then by the
intermediate value theorem it follows that f(c) = 0 for some a < c < b. The
bisection method simply checks the sign of f(x) at the midpoint x = (a+b)/2
of the interval at each iteration. If f(a), f(x) have opposite signs, then the
interval is replaced by [a, x] and otherwise it is replaced by [x, b]. At each
iteration, the length of the interval containing the root decreases by half. The
method cannot fail, and the number of iterations needed to achieve a specified
tolerance is known in advance. If the initial interval [a, b] contains more than
one root, then bisection will find one of the roots. The rate of convergence of
the bisection algorithm is linear.

Example 11.6 (Solving f(x) = 0)

Solve
a2 + y2 +

2ay
n− 1

= n− 2,

where a is a specified constant and n > 2 is an integer. Of course, this equation
can be solved directly by elementary algebra, to obtain the exact solution:

y =
−a
n− 1

±
√
n− 2 + a2 +

( a

n− 1
)2
.

Let us compare the exact solution with a numerical solution. Apply the
bisection method to seek a positive solution. If we restate the problem as:
find the solutions of

f(y) = a2 + y2 +
2ay
n− 1

− (n− 2) = 0,

the first step is to code the function f . The next step is to determine an
interval such that f(y) has opposite signs at the endpoints. For example, if
a = 1/2 and n = 20, there will be a positive and a negative root. In the
following, the positive root is found, starting from the interval (0, 5n).
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f <- function(y, a, n) {
a^2 + y^2 + 2*a*y/(n-1) - (n-2)

}

a <- 0.5
n <- 20
b0 <- 0
b1 <- 5*n

#solve using bisection
it <- 0
eps <- .Machine$double.eps^0.25
r <- seq(b0, b1, length=3)
y <- c(f(r[1], a, n), f(r[2], a, n), f(r[3], a, n))
if (y[1] * y[3] > 0)

stop("f does not have opposite sign at endpoints")

while(it < 1000 && abs(y[2]) > eps) {
it <- it + 1
if (y[1]*y[2] < 0) {

r[3] <- r[2]
y[3] <- y[2]

} else {
r[1] <- r[2]
y[1] <- y[2]

}
r[2] <- (r[1] + r[3]) / 2
y[2] <- f(r[2], a=a, n=n)
print(c(r[1], y[1], y[3]-y[2]))

}

The estimate of the root when the stopping condition is satisfied is the value
in r[2] and the value of the function at r[2] is in y[2].

> r[2]
[1] 4.186845
> y[2]
[1] 2.984885e-05
> it
[1] 21

Our exact formula gives the roots y = 4.186841,−4.239473. (Most problems,
including this one, can be solved more efficiently using the uniroot function,
which is shown in Example 11.7 below.) �
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Other methods, such as the secant method, may (formally) converge faster
than the bisection method, but the root may not remain bracketed. These su-
perlinear methods may be faster for many problems, but may fail to converge
to a root. The secant method assumes that f(x) is approximately linear on
the interval bracketing the root. Inverse quadratic interpolation approximates
f(x) with a quadratic function fitted to the three prior points.

Brent’s method

Brent’s method combines the root bracketing and bisection with inverse
quadratic interpolation. It fits x as a quadratic function of y. If the three
points are (a, f(a)), (b, f(b)), (c, f(c)), with b as the current best estimate, the
next estimate for the root is found by interpolation, setting y = 0 in the
Lagrange interpolation polynomial

x =
[y − f(a)][y − f(b)]c

[f(c) − f(a)][f(c) − f(b)]

+
[y − f(b)][y − f(c)]a

[f(a) − f(b)][f(a) − f(c)]
+

[y − f(c)][y − f(a)]b
[f(b) − f(c)][f(b) − f(a)]

.

If this estimate is outside of the interval known to bracket the root, bisec-
tion is used at this step. (For details see [32] or[213] or the zeroin.f fortran
code.) Brent’s method is generally faster than bisection, and it has the sure
convergence of the bisection method.

Brent’s method is implemented in the R function uniroot, which searches
for a zero of a univariate function between two points where the function has
opposite signs.

Example 11.7 (Solving f(x) = 0 with Brent’s method: uniroot)

Solve
a2 + y2 +

2ay
n− 1

= n− 2,

with a = 0.5, n = 20 as in Example 11.6. The first step is to code the function
f . This function is not complicated, so we code this function inline in the
uniroot statement. The next step is to determine an interval such that f(y)
has opposite signs at the endpoints. The call to uniroot and result are shown
below.

a <- 0.5
n <- 20
out <- uniroot(function(y) {

a^2 + y^2 + 2*a*y/(n-1) - (n-2) },
lower = 0, upper = n*5)
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> unlist(out)
root f.root iter estim.prec

4.186870e+00 2.381408e-04 1.400000e+01 6.103516e-05

In the call to uniroot, we can optionally specify the maximum number of iter-
ations (default 1000) or the tolerance (default .Machine$double.eps^0.25).
The positive solution to f(y) = 0 is (approximately) y = 4.186870. To seek
the negative root, we can apply uniroot again. The interval can be specified
as above, or as shown below.

uniroot(function(y) {a^2 + y^2 + 2*a*y/(n-1) - (n-2)},
interval = c(-n*5, 0))$root

[1] -4.239501

Our exact formula (see Example 11.6) gives y = 4.186841,−4.239473. �

R note 11.3 Also see the polyroot function, to find zeroes of a polynomial
with real or complex coefficients. See the help topic Complex for description
of functions in R that support complex arithmetic.

11.3 Numerical Integration

Basic numerical integration using the integrate function is illustrated in
the following examples, where useful functions are developed for the density
and cdf of the sample correlation statistic.

Numerical integration methods can be adaptive or non-adaptive. Non-
adaptive methods apply the same rules over the entire range of integration.
The integrand is evaluated at a finite set of points and a weighted sum of
these function values is used to obtain the estimate. The numerical estimate
of
∫ b

a f(x) is of the form
∑n

i=0 f(xi)wi, where {xi} are points in an interval
containing [a, b] and {wi} are suitable weights.

For example, the trapezoidal rule divides [a, b] into n equal length subinter-
vals length h = (b− a)/n, with endpoints x0, x1, . . . , xn, and uses the area of
the trapezoid to estimate the integral over each subinterval. The estimate on
(xi, xi+1) is (f(xi) + f(xi+1))(h/2). The numerical estimate of

∫ b

a f(x)dx is

h

2
f(a) + h

n−1∑
i=1

f(xi) +
h

2
f(b).

If f(x) is twice continuously differentiable, the error is O(f ′′(x∗)/n2), where
x∗ ∈ (a, b). This is an example of a closed Newton-Cotes integration formula.
See e.g. [269, Ch. 5] for more examples.
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Quadrature methods evaluate the integrand at a finite set of points (nodes),
but these nodes need not be evenly spaced. Suppose that w is a non-negative
function such that

∫ b

a
xkw(x)dx <∞, for all k ≥ 0. Then the integrand f(x)

can be expressed as g(x)w(x).
Note that we have assumed that w(x)/

∫ b

a w(x)dx is a density function with
finite positive moments. For example, we can take w(x) = exp (−x2/2), called
Gauss-Hermite quadrature. In this case,

∫∞
−∞ xkw(x)dx < ∞, for all k ≥ 0,

which applies to arbitrary intervals (a, b) on the real line. In Gaussian quadra-
ture, the nodes {xi} selected are the roots of a set of orthogonal polynomials
with respect to w. The normalized orthogonal polynomials also determine
weights {wi}.

The Gaussian Quadrature Theorem implies that if g(x) is 2n times contin-
uously differentiable, then the error in the numerical estimate

∑n
i=1 wig(xi)

is ∫ b

a

g(x)w(x)dx −
n∑

i=1

wig(xi) =
g(2n)(x∗)
(2n)!k2

n

,

where kn is the leading coefficient of the nth polynomial and x∗ ∈ (a, b).
Quadrature and other approaches to numerical integration are discussed in
more detail in [121, 168, 269].

When an integrand behaves well in one part of the range of integration, but
not so well in another part, it helps to treat each part differently. Adaptive
methods choose the subintervals based on the local behavior of the integrand.

The integrate function provided in R uses an adaptive quadrature method
to find the approximate value of the integral of a one variable function. The
limits of integration can be infinite. The maximum number of subintervals,
the relative error and the absolute error can be specified, but have reasonable
default values for many problems.

Example 11.8 (Numerical integration with integrate)

Compute ∫ ∞

0

dy

(cosh y − ρr)n−1
, (11.1)

where −1 < ρ < 1, −1 < r < 1 are constants and n ≥ 2 is an integer.
The graph of the integrand is shown in Figure 11.1(a). We apply adaptive
quadrature implemented by the integrate function provided in R.

First write a function that returns the value of the integrand. This function
should take as its first argument a vector containing the nodes, and return a
vector of the same length. Additional arguments can also be supplied. This
function or the name of this function is the first argument to integrate.
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FIGURE 11.1: Example 11.8 (n = 10, r = 0.5, ρ = 0.2) (a) Integrand,
(b) Value of the integral as a function of ρ.

A simple way to compute the integral for fixed parameters, say (n = 10,
r = 0.5, ρ = 0.2) is

> integrate(function(y){(cosh(y) - 0.1)^(-9)}, 0, Inf)
1.053305 with absolute error < 2.3e-05

The integral for arbitrary (n, r, ρ) is needed, so write a more general integrand
function with these arguments, and supply the extra arguments in the call to
integrate.

f <- function(y, N, r, rho) {
(cosh(y) - rho * r)^(1 - N)

}
integrate(f, lower=0, upper=Inf,

rel.tol=.Machine$double.eps^0.25,
N=10, r=0.5, rho=0.2)

This version produces the same estimate as above.
To see how the result depends on ρ, fix n = 10 and r = 0.5 and plot the

value of the integral as a function of ρ. The plot is shown in Figure 11.1(b),
as produced by the following code.

ro <- seq(-.99, .99, .01)
v <- rep(0, length(ro))
for (i in 1:length(ro)) {

v[i] <- integrate(f, lower=0, upper=Inf,
rel.tol=.Machine$double.eps^0.25,
N=10, r=0.5, rho=ro[i])$value

}
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plot(ro, v, type="l", xlab=expression(rho),
ylab="Integral Value (n=10, r=0.5)")

�

R note 11.4 Sometimes there is a conflict between named arguments and
optional user-supplied arguments. To avoid the conflict, either choose another
name for the optional argument, or supply both arguments. For example, the
following produces an error, because of apparent ambiguity between argument
rel.tol and r.

> integrate(f, lower=0, upper=Inf, n=10, r=0.5, rho=0.2)

Error in f(x, ...) : argument "r" is missing, with no default

The integral (11.1) appears in a density function in the following example.

Example 11.9 (Density of sample correlation coefficient)

The sample product-moment correlation coefficient measures linear associa-
tion between two variables. The population correlation coefficient of (X,Y )
is

ρ =
E [(X − E(X))(Y − E(Y ))]√

V ar(X)V ar(Y )
.

If {(Xj , Yj), j = 1, . . . , n} are paired sample observations, the sample corre-
lation coefficient is

R =

∑n
j=1(Xj −X)(Yj − Y )[∑n

j=1(Xj −X)2
∑n

j=1(Yj − Y )2
]1/2

.

Assume that {(Xj , Yj), j = 1, . . . , n} are iid with BV N(µ1, µ2, σ1, σ2, ρ) (bi-
variate normal) distribution. If ρ = 0, the density function of R (see e.g. [157,
Ch. 32]) is given by

f(r) =
Γ((n− 1)/2)

Γ(1/2)Γ((n− 2)/2)
(1 − r2)(n−4)/2, −1 < r < 1. (11.2)

For 0 < |ρ| < 1, the density function is more complicated. Several forms of
the density function are given in [157, p. 549], including:

f(r) =
(n− 2)(1 − ρ2)(n−1)/2(1 − r2)(n−4)/2

π

∫ ∞

0

dw

(coshw − ρr)n−1
, (11.3)

for −1 < r < 1.
To evaluate the density function (11.3), the integral must be evaluated. This

is covered in Example 11.8. The case ρ = 0 can be handled separately using
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the simpler formula (11.2). The method for evaluating the constant Γ((n −
1)/2)/Γ((n − 2)/2) was discussed in Example 11.2. The following function
combines these results to evaluate the density of the correlation statistic.

.dcorr <- function(r, N, rho=0) {
# compute the density function of sample correlation
if (abs(r) > 1 || abs(rho) > 1) return (0)
if (N < 4) return (NA)

if (isTRUE(all.equal(rho, 0.0))) {
a <- exp(lgamma((N - 1)/2) - lgamma((N - 2)/2)) /

sqrt(pi)
return (a * (1 - r^2)^((N - 4)/2))

}

# if rho not 0, need to integrate
f <- function(w, R, N, rho)

(cosh(w) - rho * R)^(1 - N)

#need to insert some error checking here
i <- integrate(f, lower=0, upper=Inf,

R=r, N=N, rho=rho)$value
c1 <- (N - 2) * (1 - rho^2)^((N - 1)/2)
c2 <- (1 - r^2)^((N - 4) / 2) / pi
return(c1 * c2 * i)

}

Some error checking should be added to this function in case the numerical
integration fails.

As an informal check on the density calculations, plot the density curve. For
ρ = 0 the density curve should be symmetric about 0 and the shape should
resemble a symmetric beta density. The plot is shown in Figure 11.2.

r <- as.matrix(seq(-1, 1, .01))
d1 <- apply(r, 1, .dcorr, N=10, rho=.0)
d2 <- apply(r, 1, .dcorr, N=10, rho=.5)
d3 <- apply(r, 1, .dcorr, N=10, rho=-.5)
plot(r, d2, type="l", lty=2, lwd=2, ylab="density")
lines(r, d1, lwd=2)
lines(r, d3, lty=4, lwd=2)
legend("top", inset=.02, c("rho = 0", "rho = 0.5",

"rho = -0.5"), lty=c(1,2,4), lwd=2)

�
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FIGURE 11.2: Density of the correlation statistic for sample size 10.

R note 11.5 Density functions in R are vectorized, but the function .dcorr

of Example 11.3 is really expecting a single number r, rather than a vector.
Later this function can be extended to a general version dcorr, like the density
functions dnorm, dgamma, etc. in R that accept vector arguments.

11.4 Maximum Likelihood Problems

Maximum likelihood is a method of estimation of parameters of a distrib-
ution. The abbreviation MLE may refer to maximum likelihood estimation
(the method), to the estimate, or to the estimator. The method finds a value
of the parameter that maximizes the likelihood function. Thus, an important
class of optimization problems in statistics are maximum likelihood problems.

Suppose that X1, . . . , Xn are random variables with parameter θ ∈ Θ (θ
may be a vector). The likelihood function L(θ) of random variablesX1, . . . , Xn

evaluated at x1, . . . , xn is defined as the joint density

L(θ) = f(x1, . . . , xn; θ).

If X1, . . . , Xn are a random sample (so X1, . . . , Xn are iid) with density
f(x; θ), then

L(θ) =
n∏

i=1

f(xi; θ).

A maximum likelihood estimate of θ is a value θ̂ that maximizes L(θ). That
is, θ̂ is a solution (not necessarily unique) to

L(θ̂) = f(x1, . . . , xn; θ̂) = max
θ∈Θ

f(x1, . . . , xn; θ). (11.4)
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If θ̂ is unique, θ̂ is the maximum likelihood estimator (MLE) of θ.
If θ is a scalar, the parameter space Θ is an open interval, and L(θ) is

differentiable and assumes a maximum on Θ, then θ̂ is a solution of

d

dθ
L(θ) = 0. (11.5)

The solutions to (11.5) are solutions to

d

dθ
�(θ) = 0, (11.6)

where �(θ) = logL(θ) is the log-likelihood. In the case where X1, . . . , Xn are
a random sample, we have

�(θ) = log
n∏

i=1

f(xi; θ) =
n∑

i=1

log f(xi; θ),

so (11.6) is often easier to solve than (11.5).

Example 11.10 (MLE using mle)

Suppose Y1, Y2 are iid with density f(y) = θe−θy, y > 0. Find the MLE of θ.
By independence,

L(θ) = (θe−θy1)(θe−θy2) = θ2e−θ(y1+y2).

Thus �(θ) = 2 log θ − θ(y1 + y2) and the log-likelihood equation to be solved
is

d

dθ
�(θ) =

2
θ
− (y1 + y2) = 0, θ > 0.

The unique solution is θ̂ = 2/(y1 + y2), which maximizes L(θ). Therefore the
MLE is the reciprocal of the sample mean in this example.

Although we have the analytical solution, let us see how the problem can
be solved numerically using the mle (stats4) function. The mle function
takes as its first argument the function that evaluates −�(θ) = − log(L(θ)).
The negative log-likelihood is minimized by a call to optim, an optimization
routine.

#the observed sample
y <- c(0.04304550, 0.50263474)

mlogL <- function(theta=1) {
#minus log-likelihood of exp. density, rate 1/theta
return( - (length(y) * log(theta) - theta * sum(y)))

}
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library(stats4)
fit <- mle(mlogL)
summary(fit)

Maximum likelihood estimation

Call: mle(minuslogl = mlogL)

Coefficients:
Estimate Std. Error

theta 3.66515 2.591652

-2 log L: -1.195477

Alternately, the initial value for the optimizer could be supplied in the call to
mle; two examples are

mle(mlogL, start=list(theta=1))
mle(mlogL, start=list(theta=mean(y)))

In this example, the maximum likelihood estimate is θ̂ = 1/Y = 3.66515.
The maximum log-likelihood is �(θ̂) = 2 log(1/ȳ)−(1/ȳ)(y1+y2) = 0.5977386,
or −2 log(L) = −1.195477. The same result was obtained by mle. �

Suppose θ̂ satisfies (11.6). Then θ̂ may be a relative maximum, relative
minimum, or an inflection point of �(θ). If �′′(θ̂) < 0, then θ̂ is a local
maximum of log �(θ).

The second derivative of the log-likelihood also contains information about
the variance of θ̂. The Fisher information (see e.g. [39, 231]) on X at θ is
defined

I(θ) = [−Eθ�
′′(θ)]|θ.

The Fisher information gives a bound on the variance of unbiased estimators
of θ. The larger the information I(θ), the more information the sample con-
tains about the value of θ, and the smaller the variance of the best unbiased
estimator.

If θ is a vector in Rd, Θ is an open subset of Rd, and the first order partial
derivatives of L(θ) exist in all coordinates of θ, then θ̂ must satisfy simulta-
neously the d equations

∂

∂θj
L(θ̂) = 0, j = 1, . . . , d, (11.7)

or the d corresponding log-likelihood equations.
If the log-likelihood is not quadratic, the solution of the likelihood equations

(11.11) is a nonlinear system of d equations in d variables. Thus, maximum
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likelihood estimation and maximum likelihood based inference often require
nonlinear numerical methods.

Note that there are several potential problems to finding a solution: the
derivatives of the likelihood function may not exist, or may not exist on all of
Θ; the optimal θ may not be an interior point of Θ; or the likelihood equation
(11.5) or (11.7) may be difficult to solve. In this case, numerical methods of
optimization may succeed in finding optimal solutions θ̂ satisfying (11.4).

11.5 One-dimensional Optimization

There are several approaches to one-dimensional optimization implemented
in R. Many types of problems can be restated so that the root-finding function
uniroot can be applied. The nlm function implements nonlinear minimiza-
tion with a Newton-type algorithm. The documentation for the optimize
function indicates that it is C translation of Fortran code based on the Algol
60 procedure “localmin” given in [32], which implements a combination of
golden section search and successive parabolic interpolation.

Example 11.11 (One-dimensional optimization with optimize)

Maximize the function

f(x) =
log(1 + log(x))

log(1 + x)

with respect to x. The graph of f(x) in Figure 11.3 shows that the maximum
occurs between 4 and 8.

x <- seq(2, 8, .001)
y <- log(x + log(x))/(log(1+x))
plot(x, y, type = "l")

Apply optimize on the interval (4, 8). The default is to minimize the
function. To maximize f(x), set maximum = TRUE. The default tolerance is
.Machine$double.eps^0.25.

f <- function(x)
log(x + log(x))/log(1+x)

> optimize(f, lower = 4, upper = 8, maximum = TRUE)
$maximum
[1] 5.792299
$objective
[1] 1.055122
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FIGURE 11.3: The function f(x) in Example 11.11.

�

Example 11.12 (MLE: Gamma distribution)

Let x1, . . . , xn be a random sample from a Gamma(r, λ) distribution (r is the
shape parameter and λ is the rate parameter). In this example, θ = (r, λ) ∈ R2

and Θ = R+ × R+. Find the maximum likelihood estimator of θ = (r, λ).
The likelihood function is

L(r, λ) =
λnr

Γ(r)n

n∏
i=1

xr−1
i exp(−λ

n∑
i=1

xi), xi ≥ 0,

and the log-likelihood function is

�(r, λ) = nr logλ− n log Γ(r) + (r − 1)
n∑

i=1

log xi − λ

n∑
i=1

xi. (11.8)

The problem is to maximize (11.8) with respect to r and λ. In this form it
is a two-dimensional optimization problem. This problem can be reduced to
a one-dimensional root-finding problem. Find the simultaneous solution(s)
(r, λ) to

∂

∂λ
�(r, λ) =

nr

λ
−

n∑
i=1

xi = 0; (11.9)

∂

∂r
�(r, λ) = n logλ− n

Γ′(r)
Γ(r)

+
n∑

i=1

log xi = 0. (11.10)
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Equation (11.9) implies λ̂ = r̂/x̄. Substituting λ̂ for λ in (11.10) reduces the
problem to solving

n log
r̂

x̄
+

n∑
i=1

log xi − n
Γ′(r̂)
Γ(r̂)

= 0 (11.11)

for r̂. Thus, the MLE (r̂, λ̂) is the simultaneous solution (r, λ) of

logλ+
1
n

n∑
i=1

log xi = ψ(λx̄); x̄ =
r

λ
,

where ψ(t) = d
dt log Γ(t) = Γ′(t)/Γ(t) (the digamma function in R). A numerical

solution is easily obtained using the uniroot function.
In the following simulation experiment, random samples of size n = 200

are generated from a Gamma(r = 5, λ = 2) distribution, and the parameters
are estimated by optimizing the likelihood equations using uniroot. The
sampling and estimation is repeated 20000 times. Below is a summary of the
estimates obtained by this method.

m <- 20000
est <- matrix(0, m, 2)
n <- 200
r <- 5
lambda <- 2

obj <- function(lambda, xbar, logx.bar) {
digamma(lambda * xbar) - logx.bar - log(lambda)
}

for (i in 1:m) {
x <- rgamma(n, shape=r, rate=lambda)
xbar <- mean(x)
u <- uniroot(obj, lower = .001, upper = 10e5,

xbar = xbar, logx.bar = mean(log(x)))
lambda.hat <- u$root
r.hat <- xbar * lambda.hat
est[i, ] <- c(r.hat, lambda.hat)

}

ML <- colMeans(est)
[1] 5.068116 2.029766

The average estimate for the shape parameter r was 5.068116 and the average
estimate for λ was 2.029766. The estimates are positively biased, but close to
the target parameters (r = 5, λ = 2).
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Recall that a maximum likelihood estimator is asymptotically normal. For
large n, λ̂ ∼ N(λ, σ2

1) and r̂ ∼ N(r, σ2
2) where σ2

1 and σ2
2 are the Cramér-Rao

lower bounds of λ and r, respectively. The histogram of replicates λ̂ is shown
in Figure 11.4(a), and the histogram of replicates r̂ is shown in Figure 11.4(b).
Here n = 200 is not very large, and the histogram of replicates in both cases
is slightly skewed but close to normal.

hist(est[, 1], breaks="scott", freq=FALSE,
xlab="r", main="")

points(ML[1], 0, cex=1.5, pch=20)
hist(est[, 2], breaks="scott", freq=FALSE,

xlab=bquote(lambda), main="")
points(ML[2], 0, cex=1.5, pch=20)

�

λ

D
en

si
ty

1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a)

r

D
en

si
ty

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

(b)

FIGURE 11.4: Replicates of maximum likelihood estimates by numerical
optimization of the likelihood of a Gamma(r = 5, λ = 2) random variable in
Example 11.12.
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11.6 Two-dimensional Optimization

In the gamma MLE problem we seek the maximum of a two parameter like-
lihood function. Although it is possible to simplify the problem and solve it as
in Example 11.12, it serves as a simple example to illustrate the optim general
purpose optimization function in R. It implements Nelder-Mead [205], quasi-
Newton, and conjugate-gradient algorithms [96], and also methods for box-
constrained optimization and simulated annealing. See Nocedal and Wright
[206] and the R manual [217] for reference on these methods and their imple-
mentation. The syntax for optim is

optim(par, fn, gr = NULL, method =
c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE, ...)

The default method is Nelder-Mead. The first argument par is a vector of
initial values of the target parameters, and fn is the objective function. The
first argument to fn is the vector of target parameters and its return value
should be a scalar.

Example 11.13 (Two-dimensional optimization with optim)

The objective function to be maximized is the log-likelihood function

logL(θ|x) = nr logλ+ (r − 1)
n∑

i=1

log xi − λ
n∑

i=1

xi − n log Γ(r),

and the parameters are θ = (r, λ). The log-likelihood function is implemented
as

LL <- function(theta, sx, slogx, n) {
r <- theta[1]
lambda <- theta[2]
loglik <- n * r * log(lambda) + (r - 1) * slogx -

lambda * sx - n * log(gamma(r))
- loglik
}

which avoids some repeated calculation of the sums sx =
∑n

i=1 xi and slogx
=
∑n

i=1 log xi. As optim performs minimization by default, the return value
is − logL(θ). Initial values for the estimates must be chosen carefully. For
this problem, the method of moments estimators could be given for the initial
values of the parameters, but for simplicity r = 1 and λ = 1 are used here as
the initial values. If x is the random sample of size n, the optim call is
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optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)

The return object includes an error code $convergence, which is 0 for success
and otherwise indicates a problem. The MLE is computed for one sample
below.

n <- 200
r <- 5; lambda <- 2
x <- rgamma(n, shape=r, rate=lambda)

optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)

# results from optim
par1 5.278565
par2 2.142059
value 284.550086
counts.function 73.000000
counts.gradient NA
convergence 0.000000

This result indicates that the Nelder-Mead (default) method successfully con-
verged to r̂ = 5.278565 and λ̂ = 2.142059. The precision can be adjusted by
reltol. The algorithm stops if it is unable to reduce the value by a factor
of reltol, which defaults to sqrt(.Machine$double.eps) = 1.490116e-08
in this computation.

The simulation experiment below repeats the estimation procedure for com-
parison with the results in Example 11.12.

mlests <- replicate(20000, expr = {
x <- rgamma(200, shape = 5, rate = 2)
optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)$par
})

colMeans(t(mlests))
[1] 5.068109 2.029763

The estimates obtained by the two-dimensional optimization of (11.8) have
approximately the same average value as the estimates obtained by the one-
dimensional root-finding approach in Example 11.12. �

R note 11.6 When replicating a vector, note that replicate fills a matrix
in column major order. In the example above, the vector in each replicate is
length 2, so the matrix has 2 rows and 20000 columns. The transpose of this
result is the two dimensional sample of replicates.
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Example 11.14 (MLE for a quadratic form)

Consider the problem of estimating the parameters of a quadratic form of
centered Gaussian random variables given by

Y = λ1X
2
1 + λ2X

2
2 + · · · + λkX

2
k ,

where Xj are iid standard normal random variables, j = 1, . . . , k, and λ1 >
· · · > λk > 0. By elementary transformations, each Yj = λjX

2
j has a

gamma distribution with shape parameter 1/2 and rate parameter 1/(2λj),
j = 1, . . . , k. Hence Y can be represented as the mixture of the k independent
gamma variables,

Y
D=

1
k
G

(
1
2
,

1
2λ1

)
+ · · · + 1

k
G

(
1
2
,

1
2λk

)
.

The notation above means that Y can be generated from a two-stage experi-
ment. First a random integer J is observed, where J is uniformly distributed
on the integers 1 to k. Then a random variate Y from the distribution of
YJ ∼ Gamma(1

2 ,
1

2λJ
) is observed.

Assume that
∑k

j=1 λj = 1. Suppose a random sample y1, . . . , ym is observed
from the distribution of Y , and k = 3. Find the maximum likelihood estimate
of the parameters λj , j = 1, 2, 3.

This problem can be approached by numerical optimization of the log-
likelihood function with two unknown parameters λ1 and λ2. The density of
the mixture is

f(y|λ) =
3∑

j=1

fj(y|λ),

where fj(y|λ) is the gamma density with shape parameter 1/2 and rate pa-
rameter 1/(2λj). The log-likelihood can be written in terms of two unknown
parameters λ1 and λ2, with λ3 = 1 − λ1 − λ2.

LL <- function(lambda, y) {
lambda3 <- 1 - sum(lambda)
f1 <- dgamma(y, shape=1/2, rate=1/(2*lambda[1]))
f2 <- dgamma(y, shape=1/2, rate=1/(2*lambda[2]))
f3 <- dgamma(y, shape=1/2, rate=1/(2*lambda3))
f <- f1/3 + f2/3 + f3/3 #density of mixture
#returning -loglikelihood
return( -sum(log(f)))
}

The sample data in this example is generated from the quadratic form with
λ = (0.60, 0.25, 0.15). Then the optim function is applied to search for the
minimum of LL, starting with initial estimates λ = (0.5, 0.3, 0.2).
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set.seed(543)
m <- 2000
lambda <- c(.6, .25, .15) #rate is 1/(2 lambda)
lam <- sample(lambda, size = 2000, replace = TRUE)
y <- rgamma(m, shape = .5, rate = 1/(2*lam))

opt <- optim(c(.5,.3), LL, y=y)
theta <- c(opt$par, 1 - sum(opt$par))

Results are shown below. The return code in opt$convergence is 0, indicating
successful convergence. The optimal value obtained for the log-likelihood was
736.325 at the point (λ1, λ2) = (0.5922404, 0.2414725).

> as.data.frame(unlist(opt))
unlist(opt)

par1 0.5922404
par2 0.2414725
value -736.3250225
counts.function 43.0000000
counts.gradient NA
convergence 0.0000000

> theta
[1] 0.5922404 0.2414725 0.1662871

The maximum likelihood estimate is λ̂ .= (0.592, 0.241, 0.166). The data was
generated with parameter values (0.60, 0.25, 0.15). For another approach to
estimating λ see Example 11.15. �

Remark 11.1 The problem of approximating the distribution of quadratic
forms has received much attention in the literature over the years. Many the-
oretical results and numerical methods have been developed for this important
class of distributions. On numerical approximations for the distribution of
quadratic forms of normal variables see Imhof [150, 151] and Kuonen [166].

11.7 The EM Algorithm

The EM (Expectation–Maximization) algorithm is a general optimization
method that is often applied to find maximum likelihood estimates when data
are incomplete. Following the seminal paper of Dempster, Laird and Rubin
[67] in 1977, the method has been widely applied and extended to solve many
other types of statistical problems. For a recent review of EM methods and
extensions see [178, 194, 292].
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Incompleteness of data may arise from missing data as is often the case
with multivariate samples, or from other types of data such as samples from
censored or truncated distributions, or latent variables. Latent variables are
unobservable variables that are introduced in order to simplify the analysis in
some way.

The main idea of the EM algorithm is simple, and although it may be slow
to converge relative to other available methods, it is reliable at finding a global
maximum. Start with an initial estimate of the target parameter, and then
alternate the E (expectation) step and M (maximization) step. In the E step
compute the conditional expectation of the objective function (usually a log-
likelihood function) given the observed data and current parameter estimates.
In the M step, the conditional expectation is maximized with respect to the
target parameter. Update the estimates and iteratively repeat the E and M
steps until the algorithm converges according to some criterion. Although
the main idea of EM is simple, for some problems computing the conditional
expectation in the E step can be complicated. For incomplete data, the E step
requires computing the conditional expectation of a function of the complete
data, given the missing data.

Example 11.15 (EM algorithm for a mixture model)

In this example the EM algorithm is applied to estimate the parameters of
the quadratic form introduced in Example 11.14. Recall that the problem can
be formulated as estimation of the rate parameters of a mixture of gamma
random variables. Although the EM algorithm is not the best approach for
this problem, as an exercise we repeat the estimation for k = 3 components
(two unknown parameters) as outlined in Example 11.14.

The EM algorithm first updates the posterior probability pij that the ith

sample observation yi was generated from the jth component. At the tth step,

p
(t)
ij =

1
kfj(yi|y, λ(t))∑k

j=1
1
kfj(yj |y, λ(t))

,

where λ(t) is the current estimate of the parameters {λj}, and fj(yi|y, λ(t))
is the Gamma(1/2, 1/(2λ(t)

j )) density evaluated at yi. Note that the mean of
the jth component is λj so the updating equation is

µ
(t+1)
j =

∑m
i=1 p

(t)
ij yi∑

p
(t)
ij

.

In order to compare the estimates, we generate the data from the mixture Y
using the same random number seed as in Example 11.14.
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set.seed(543)
lambda <- c(.6, .25, .15) #rate is 1/(2lambda)
lam <- sample(lambda, size = 2000, replace = TRUE)
y <- rgamma(m, shape = .5, rate = 1/(2*lam))

N <- 10000 #max. number of iterations
L <- c(.5, .4, .1) #initial est. for lambdas
tol <- .Machine$double.eps^0.5
L.old <- L + 1

for (j in 1:N) {
f1 <- dgamma(y, shape=1/2, rate=1/(2*L[1]))
f2 <- dgamma(y, shape=1/2, rate=1/(2*L[2]))
f3 <- dgamma(y, shape=1/2, rate=1/(2*L[3]))
py <- f1 / (f1 + f2 + f3) #posterior prob y from 1
qy <- f2 / (f1 + f2 + f3) #posterior prob y from 2
ry <- f3 / (f1 + f2 + f3) #posterior prob y from 3

mu1 <- sum(y * py) / sum(py) #update means
mu2 <- sum(y * qy) / sum(qy)
mu3 <- sum(y * ry) / sum(ry)
L <- c(mu1, mu2, mu3) #update lambdas
L <- L / sum(L)

if (sum(abs(L - L.old)/L.old) < tol) break
L.old <- L

}

Results are shown below.

print(list(lambda = L/sum(L), iter = j, tol = tol))

$lambda [1] 0.5954759 0.2477745 0.1567496
$iter [1] 592
$tol [1] 1.490116e-08

Here the EM algorithm converged in 592 iterations (within < 1.5e − 8)
to the estimate λ̂

.= (0.595, .248, .157). The data was generated with pa-
rameters (0.60, 0.25, 0.15). Compare this result with the maximum likeli-
hood estimate obtained by two-dimensional numerical optimization of the
log-likelihood function in Example 11.14. �
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11.8 Linear Programming – The Simplex Method

The simplex method is a widely applied optimization method for a special
class of constrained optimization problems with linear objective functions and
linear constraints. The constraints usually include inequalities, and therefore
the region over which the objective function is to be optimized (the feasible
region) can be described by a simplex. Linear programming methods include
the simplex method and interior point methods, but here we illustrate the
simplex method only. See Nocedal and Wright [206, Ch. 13] for a summary
of the simplex method.

Given m linear constraints in n variables, let A be the m × n matrix of
coefficients, so that the constraints are given by Ax ≥ b, where b ∈ Rm. Here
we suppose that m < n. An element x ∈ Rn of the feasible set satisfies the
constraint Ax ≥ b. The objective function is a linear function of n variables
with coefficients given by vector c. Hence, the objective is to minimize cTx
subject to the constraint Ax ≥ b.

The problem as stated above is the primal problem. The dual problem is:
maximize bT y subject to the constraint AT y ≤ c, where y ∈ Rn. The duality
theorem states that if either the primal or the dual problem has an optimal
solution with a finite objective value, then the primal and the dual problems
have the same optimal objective value.

The vertices of the simplex are called the basic feasible points of the fea-
sible set. When the optimal value of the objective function exists, it will be
achieved at one of the basic feasible points. The simplex algorithm evaluates
the objective function at the basic feasible points, but selects the points at
each iteration in such a way that an optimal solution is found in relatively
few iterations. It can be shown (see e.g. [206, Thm. 13.4]) that if the linear
program is bounded and not degenerate, the simplex algorithm will terminate
after finitely many iterations at one of the basic feasible points.

The simplex method is implemented by the simplex function in the boot
package [34]. The simplex function will maximize or minimize the linear
function ax subject to the constraints A1x ≤ b1, A2x ≥ b2, A3x = b3, and
x ≥ 0. Either the primal or dual problem is easily handled by the simplex
function.

Example 11.16 (Simplex algorithm)

Use the simplex algorithm to solve the following problem.
Maximize 2x+ 2y + 3z subject to

−2x+ y + z ≤ 1
4x− y + 3z ≤ 3

x ≥ 0, y ≥ 0, z ≥ 0.
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For such a small problem, it would not be too difficult to solve it directly, be-
cause the theory implies that if there is an optimal solution, it will be achieved
at one of the vertices of the feasible set. Hence, we need only evaluate the
objective function at each of the finitely many vertices. The vertices are de-
termined by the intersection of the linear constraints. The simplex method
also evaluates the objective function as it moves from one vertex to another,
usually changing the coordinates in one vertex only at each step. The trick
is to decide which vertex to check next by moving in the direction of greatest
increase/decrease in the objective function. Eventually, for bounded, nonde-
generate problems, the value of the objective function cannot be improved and
the algorithm terminates with the solution. The simplex function implements
the algorithm.

library(boot) #for simplex function
A1 <- rbind(c(-2, 1, 1), c(4, -1, 3))
b1 <- c(1, 3)
a <- c(2, 2, 3)
simplex(a = a, A1 = A1, b1 = b1, maxi = TRUE)

Optimal solution has the following values
x1 x2 x3
2 5 0
The optimal value of the objective function is 14.

�

11.9 Application: Game Theory

In the linear program of Example 11.16, the constraints are inequalities.
Equality constraints are also possible. Equality constraints might arise if, for
example, the sum of the variables is fixed. If the variables represent a discrete
probability mass function, the sum of the probabilities must equal one. We
solve for a probability mass function in the next problem. It is a classical
problem in game theory.

Example 11.17 (Solving the Morra game)

One of the world’s oldest known games of strategy is the Morra game. In the
3-finger Morra game, each player shows 1, 2, or 3 fingers, and simultaneously
each calls his guess of the number of fingers his opponent will show. If both
players guess correctly, the game is a draw. If exactly one player guesses
correctly, he wins an amount equal to the sum of the fingers shown by both
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players. This example appears in Dresher [74] and in Székely and Rizzo [264].
For more details on methods of solving games, see Owen [208].

The strategies for each player are pairs (d, g), where d is the number of
fingers and g is the guess. Thus, each player has nine pure strategies, (1,1),
(1,2), . . . , (3,3). This is a zero-sum game: the gain of the first player is the
loss of the second player. Player 1 seeks to maximize his winnings, and Player
2 seeks to minimize his losses. The game can be represented by the payoff
matrix in Table 11.1.

TABLE 11.1: Payoff Matrix of the Game of Morra
Strategy 1 2 3 4 5 6 7 8 9

1 0 2 2 −3 0 0 −4 0 0
2 −2 0 0 0 3 3 −4 0 0
3 −2 0 0 −3 0 0 0 4 4
4 3 0 3 0 −4 0 0 −5 0
5 0 −3 0 4 0 4 0 −5 0
6 0 −3 0 0 −4 0 5 0 5
7 4 4 0 0 0 −5 0 0 −6
8 0 0 −4 5 5 0 0 0 −6
9 0 0 −4 0 0 −5 6 6 0

Denote the payoff matrix by A = (aij). By von Neumann’s minimax the-
orem [282], the optimal strategies of both players in this game are mixed
strategies because mini maxj aij > maxj mini aij . A mixed strategy is simply
a probability distribution (x1, . . . , x9) on the set of strategies, where strategy
j is chosen with probability xj .

The minimax theorem implies that if both players apply optimal strategies
x∗ and y∗ respectively, then each player has expected payoff v = x∗TAy∗, the
value of the game. If the first player applies an optimal strategy x∗ against
any strategy y of the other player, his expected gain is at least v. Introduce
the variable x10 = v, and let x = (x1, . . . , x9, x10).

Let A1 be the matrix formed by augmenting A with a column of -1’s. Then
since x∗TAy ≥ v for every pure strategy yj = 1, we have the system of
constraints A1x ≤ 0. The equality constraint is

∑m
i=1 xi = 1. The simplex

function automatically includes the constraints xi ≥ 0. (To be sure that v ≥ 0,
one can translate the payoff matrix by subtracting min(A) from each element.
The set of optimal strategies does not change.)

Define the 1× (n+1) vector A3 = [1, 1, . . . , 1, 0]. Maximize v = x10 subject
to the constraints A1x ≥ 0 and A3x = 1. Keep in mind that the optimal x
returned by simplex will be x∗ = (x1, . . . , xm) and v = xm+1.
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Note that we are interested in optimal solutions of both the primal and
the dual problem, with analogous constraints and objective for the second
player. All two-player zero-sum games have similar representations as linear
programs, so the solution can be obtained for general m× n two-player zero-
sum games. Our function solve.game has the payoff matrix as its single
argument, and returns in a list, the payoff matrix, optimal strategies, and the
value of the game.

solve.game <- function(A) {

#solve the two player zero-sum game by simplex method

#optimize for player 1, then player 2

#maximize v subject to ...

#let x strategies 1:m, and put v as extra variable

#A1, the <= constraints

#

min.A <- min(A)

A <- A - min.A #so that v >= 0

max.A <- max(A)

A <- A / max(A)

m <- nrow(A)

n <- ncol(A)

it <- n^3

a <- c(rep(0, m), 1) #objective function

A1 <- -cbind(t(A), rep(-1, n)) #constraints <=

b1 <- rep(0, n)

A3 <- t(as.matrix(c(rep(1, m), 0))) #constraints sum(x)=1

b3 <- 1

sx <- simplex(a=a, A1=A1, b1=b1, A3=A3, b3=b3,

maxi=TRUE, n.iter=it)

#the ’solution’ is [x1,x2,...,xm | value of game]

#

#minimize v subject to ...

#let y strategies 1:n, with v as extra variable

a <- c(rep(0, n), 1) #objective function

A1 <- cbind(A, rep(-1, m)) #constraints <=

b1 <- rep(0, m)

A3 <- t(as.matrix(c(rep(1, n), 0))) #constraints sum(y)=1

b3 <- 1

sy <- simplex(a=a, A1=A1, b1=b1, A3=A3, b3=b3,

maxi=FALSE, n.iter=it)

soln <- list("A" = A * max.A + min.A,

"x" = sx$soln[1:m],

"y" = sy$soln[1:n],

"v" = sx$soln[m+1] * max.A + min.A)

soln

}
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Although the function solve.game applies in principle to arbitrary m× n
games, it is of course limited in practice to systems that are not too large for
the simplex (boot) function to solve.

Now we apply the function solve.game to solve the Morra game. A list
object is returned that contains optimal strategies for each player and the
value of the game.

#enter the payoff matrix
A <- matrix(c( 0,-2,-2,3,0,0,4,0,0,

2,0,0,0,-3,-3,4,0,0,
2,0,0,3,0,0,0,-4,-4,
-3,0,-3,0,4,0,0,5,0,
0,3,0,-4,0,-4,0,5,0,
0,3,0,0,4,0,-5,0,-5,
-4,-4,0,0,0,5,0,0,6,
0,0,4,-5,-5,0,0,0,6,
0,0,4,0,0,5,-6,-6,0), 9, 9)

library(boot) #needed for simplex function

s <- solve.game(A)

The optimal strategies returned by solve.game are the same for both players
(the game is symmetric).

> round(cbind(s$x, s$y), 7)
[,1] [,2]

x1 0.0000000 0.0000000
x2 0.0000000 0.0000000
x3 0.4098361 0.4098361
x4 0.0000000 0.0000000
x5 0.3278689 0.3278689
x6 0.0000000 0.0000000
x7 0.2622951 0.2622951
x8 0.0000000 0.0000000
x9 0.0000000 0.0000000

Each player should randomize their strategies according to the probability
distributions above.

It can be shown (see e.g. [74]) that the extreme points of the set of optimal
strategies of either player for this Morra game are

(0, 0, 5/12, 0, 4/12, 0, 3/12, 0, 0), (11.12)
(0, 0, 16/37, 0, 12/37, 0, 9/37, 0, 0), (11.13)
(0, 0, 20/47, 0, 15/47, 0, 12/47, 0, 0), (11.14)
(0, 0, 25/61, 0, 20/61, 0, 16/61, 0, 0). (11.15)
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Notice that the solutions obtained by the simplex method in this example
correspond to the extreme point (11.15). �

For linear and integer programming, also see the lp function in the con-
tributed package lpSolve [26].

Exercises

11.1 The natural logarithm and exponential functions are inverses of each other,
so that mathematically log(expx) = exp(log x) = x. Show by example that
this property does not hold exactly in computer arithmetic. Does the identity
hold with near equality? (See all.equal.)

11.2 Suppose that X and Y are independent random variables variables, X ∼
Beta(a, b) and Y ∼ Beta(r, s). Then it can be shown [7] that

P (X < Y ) =
r−1∑

k=max(r−b,0)

(
r+s−1

k

)(
a+b−1

a+r−1−k

)(
a+b+r+s−2

a+r−1

) .

Write a function to compute P (X < Y ) for any a, b, r, s > 0. Compare your
result with a Monte Carlo estimate of P (X < Y ) for (a, b) = (10, 20) and
(r, s) = (5, 5).

11.3 (a) Write a function to compute the kth term in

∞∑
k=0

(−1)k

k! 2k

‖a‖2k+2

(2k + 1)(2k + 2)
Γ
(

d+1
2

)
Γ
(
k + 3

2

)
Γ
(
k + d

2 + 1
) ,

where d ≥ 1 is an integer, a is a vector in Rd, and ‖ · ‖ denotes the Euclidean
norm. Perform the arithmetic so that the coefficients can be computed for
(almost) arbitrarily large k and d. (This sum converges for all a ∈ Rd).
(b) Modify the function so that it computes and returns the sum.
(c) Evaluate the sum when a = (1, 2)T .

11.4 Find the intersection points A(k) in (0,
√
k) of the curves

Sk−1(a) = P

(
t(k − 1) >

√
a2(k − 1)
k − a2

)

and

Sk(a) = P

(
t(k) >

√
a2k

k + 1 − a2

)
,
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for k = 4 : 25, 100, 500, 1000, where t(k) is a Student t random variable with
k degrees of freedom. (These intersection points determine the critical values
for a t-test for scale-mixture errors proposed by Székely [260].)

11.5 Write a function to solve the equation

2Γ(k
2 )√

π(k − 1)Γ(k−1
2 )

∫ ck−1

0

(
1 +

u2

k − 1

)−k/2

du

=
2Γ(k+1

2 )√
πkΓ(k

2 )

∫ ck

0

(
1 +

u2

k

)−(k+1)/2

du

for a, where

ck =

√
a2k

k + 1 − a2
.

Compare the solutions with the points A(k) in Exercise 11.4.

11.6 Write a function to compute the cdf of the Cauchy distribution, which has
density

1
θπ(1 + [(x− η)/θ]2)

, −∞ < x <∞,

where θ > 0. Compare your results to the results from the R function pcauchy.
(Also see the source code in pcauchy.c.)

11.7 Use the simplex algorithm to solve the following problem.
Minimize 4x+ 2y + 9z subject to

2x+ y + z ≤ 2
x− y + 3z ≤ 3
x ≥ 0, y ≥ 0, z ≥ 0.

11.8 In the Morra game, the set of optimal strategies are not changed if a constant
is subtracted from every entry of the payoff matrix, or a positive constant
is multiplied times every entry of the payoff matrix. However, the simplex
algorithm may terminate at a different basic feasible point (also optimal).
Compute B <- A + 2, find the solution of game B, and verify that it is one
of the extreme points (11.12)–(11.15) of the original game A. Also find the
value of game A and game B.



Appendix A

Notation

Selected notation and abbreviations used throughout the text are summarized
here. Notation that is specific to a particular chapter is not included.

Symbol Description

E[X ] Expected value of the ran-
dom variable X

I(A) Indicator function on the
set A: I(x) = 1 if x ∈ A
and I(x) = 0 if x /∈ A

Id The d× d identity matrix
log x Natural logarithm of x
P Transition matrix of a

Markov chain
R The one dimensional field

of real numbers
Rd The d-dimensional real co-

ordinate space
Γ(·) Complete gamma function
Φ(·) cdf of the standard normal

distribution

Φ−1 Inverse cdf of the stan-
dard normal distribution:
Φ−1(α) = z ⇒ Φ(z) = α

D= equal in distribution
.= is approximately equal to
X ∼ X has the distribution

named on right of ∼.
iid∼ Variables on the left

are iid from distribution
named on the right.

‖x‖ Euclidean norm of x
|A| Determinant of matrix A
AT Transpose of A
X Sample mean or vector of

sample means
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Abbreviations

ASL achieved significance level

ASH average shifted histogram (density estimate)

BVN bivariate normal

cdf cumulative distribution function

dCor distance correlation

dCov distance covariance

ecdf, edf empirical cumulative distribution function

GUI graphical user interface

iid independent and identically distributed

IMSE integrated mean squared error

LRT likelihood ratio test

M-H Metropolis-Hastings

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MISE mean integrated squared error

MLE maximum likelihood estimator or estimate

MSE mean squared error

MVN multivariate normal

N(µ, σ2) Normal distribution with mean µ and variance σ2

Nd(µ,Σ) d-dimensional multivariate normal distribution with mean vector µ
and variance-covariance matrix Σ

χ2(ν) Chi-squared distribution with ν degrees of freedom

Wd(Σ, n) Wishart distribution with parameters (Σ, n, d)

se standard error

svd singular value decomposition



Appendix B

Working with Data Frames and
Arrays

B.1 Resampling and Data Partitioning

B.1.1 Using the boot function

Bootstrap is implemented in the boot function (boot package [34]), which
provides functions and arguments for the book [63]. In ordinary bootstrap,
the samples are selected with replacement. The basic syntax for ordinary
bootstrap is

boot(data, statistic, R)

where data is the observed sample and R is the number of bootstrap replicates.
The default is sim = "ordinary", the ordinary bootstrap (sampling with
replacement).

The second argument (statistic) is a function, or the name of a function,
which calculates the statistic to be replicated. Suppose we call this function
f . The boot function generates the random indices i = (i1, . . . , in) for each
bootstrap replicate, and passes to the function f a copy of the data and the
index vector i. The function f then computes the statistic θ̂(b) corresponding
to the resampled observations. Example B.1 discusses how to extract the
samples for the calculations inside f .

Example B.1 (Extracting a bootstrap sample using an index vector)

We have seen that the sample function can be used to sample from a vector
with replacement. Equivalently, if x is a vector of length n, we can sample
with replacement from the vector of indices 1:n, and use the resulting value
to extract the elements of x. Notice that the two methods below generate the
same samples.

357
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> set.seed(123)

> sample(letters[1:10], size = 10, replace = TRUE)

[1] "c" "h" "e" "i" "j" "a" "f" "i" "f" "e"

> set.seed(123)

> i <- sample(1:10, size = 10, replace = TRUE)

> letters[i]

[1] "c" "h" "e" "i" "j" "a" "f" "i" "f" "e"

Similarly, the [ ] operator can be used to extract bootstrap samples from
data frames and matrices using x[i, ].

> x

[,1] [,2] [,3] [,4]

[1,] 16 14 17 12

[2,] 14 13 16 14

[3,] 13 13 14 11

[4,] 19 11 15 11

[5,] 14 10 8 11

> i

[1] 1 3 3 2 1

> x[i, ]

[,1] [,2] [,3] [,4]

[1,] 16 14 17 12

[2,] 13 13 14 11

[3,] 13 13 14 11

[4,] 14 13 16 14

[5,] 16 14 17 12

The boot function will pass a copy of the observed sample x and the bth index
vector i; the user’s function f (statistic) should compute the test statistic
on x[i, ] or x[i]. For example, if x is a bivariate sample, and the statistic
to replicate is correlation, then the function f can be written as follows.

f <- function(x, i) {

cor(x[i, 1], x[i, 2])

}

For a resampling experiment, it is helpful to code the calculations for the
statistic in a function like f above, whether or not the boot function will be
used to run the bootstrap. �

B.1.2 Sampling without replacement

The boot function can also be applied in situations where the resam-
pling should be without replacement. For example, in permutation tests,
the method of resampling should be sim = "permutation".
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If boot is not used, then it is necessary to generate for each replicate a
permutation of the sample observations. To obtain a permutation of the
sample observations in a data frame or matrix x, use x[i, ], where i is a
permutation of the indices of the sample elements. A permutation of the
integers 1:n is generated by sample(1:n).

In situations like the jackknife and cross-validation, it is more convenient to
specify what should not be extracted. To specify which elements to exclude,
use the [ ] operator with a negative argument. For example, to extract all
but row i of a matrix A, use A[-i, ]. In general, i can be a vector and
A[-i, ] extracts a submatrix from A that excludes the rows indexed by i.

Example B.2 (Extracting rows from a matrix)

> A <- matrix(1:25, 5, 5)

> A[-(2:3), ]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 6 11 16 21

[2,] 4 9 14 19 24

[3,] 5 10 15 20 25

> A[-(2:3), 4]

[1] 16 19 20

In the last line, notice that the result has been converted to a vector. To
extract the 3 × 1 matrix use as.matrix(A[-(2:3), 4]). �

A random sample of size k or n − k can be selected without replacement
from a sample x of size n by

i <- sample(1:n, size = k)}

x1 <- x[i, ]}

x2 <- x[-i, ]}

Then { x1, x2 } form a partition of the original sample x.

Some exact tests require that all permutations of a sample be generated.
The permutations function in package e1071 [72] generates a matrix con-
taining all n! permutations of an index set 1:n. Each row of the returned
matrix is a permutation of 1:n.

To generate random two-way contingency tables with given marginals see
the function r2dtable.
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B.2 Subsetting and Reshaping Data

When working with real data, it is often the case that the format or layout
of the data does not match what is required by the methods one would like
to apply, there are missing values, or other issues. R provides several utilities
for reshaping a dataset. The following simple examples illustrate some of
the operations that are possible, such as merging, subsetting or reshaping
data. These operations can be very complicated and difficult in practice.
Refer to the documentation for each of the individual topics for more detailed
explanations and examples.

The examples that follow are provided for convenient reference on a few
special topics only, and readers should refer to one of the references for a
good introduction to data analysis using R, such as Dalgaard [62] or Verzani
[280].

B.2.1 Subsetting Data

Subsets of data frames can be extracted using the operators $, [[ ]], and
array indexing [ ], as shown above. The subset function provides another
approach to subsetting data. The subset function expects the name of the
data set, the condition satisfied (subset) by the desired subset, and/or a list
of variables (select).

Example B.3 (Subsetting data frames)

Means and summary statistics computed for the iris data in Examples 1.1
and 1.4 can also be computed as follows. The first subset uses the condition
that the species is versicolor and selects the variable petal length. The second
subset selects sepal length and width without restricting species.

# versicolor petal length

y <- subset(iris, Species == "versicolor",

select = Petal.Length)

summary(y)

Petal.Length

Min. :3.00

1st Qu.:4.00

Median :4.35

Mean :4.26

3rd Qu.:4.60

Max. :5.10



Working with Data Frames and Arrays 361

# sepal width, all species

y <- subset(iris, select = c(Sepal.Length, Sepal.Width))

mean(y)

Sepal.Length Sepal.Width

5.843333 3.057333

�

B.2.2 Stacking/Unstacking Data

A data frame or list can be stacked or unstacked using the stack (unstack)
function.

Example B.4 (Unstacking data)

The InsectSprays data frame contains two variables, count (an integer) and
spray (a factor). The format is stacked. The first few observations are shown
below.

> attach(InsectSprays)

> InsectSprays

count spray

1 10 A

2 7 A

3 20 A

4 14 A

5 14 A

6 12 A

. . .

The data can be unstacked by the default formula unstack(InsectSprays),
or by explicitly specifying the formula as shown below.

> unstack(count, count ~ spray)

A B C D E F

1 10 11 0 3 3 11

2 7 17 1 5 5 9

3 20 21 7 12 3 15

4 14 11 2 6 5 22

5 14 16 3 4 3 15

6 12 14 1 3 6 16

7 10 17 2 5 1 13

8 23 17 1 5 1 10

9 17 19 3 5 3 26

10 20 21 0 5 2 26

11 14 7 1 2 6 24

12 13 13 4 4 4 13
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If the result is stored in an object u, then the unstacking could be reversed
by stack(u). In the result of stack(u), the counts would then be labeled
“values” and the spray (indices) will be labeled “ind”. �

R note B.1 The formula count ~ spray represents the linear model where
the response is count and the single predictor is the factor spray. An intercept
term is included by default. The default model formula associated with a data
frame is supplied by formula. For example, the default formula associated
with the iris data is the following one, which might not be what is expected.

> formula(iris)

Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species

B.2.3 Merging Data Frames

Two data frames can be merged by common variable (column) names or
common row names, using the merge function.

Example B.5 (Merge by ID)

In this example, we have created two sets of scores, data1 and data2. The
common variable is the ID number in the first column. This example is typical
of repeated measurement data. We wish to merge the two scores into a single
data frame, by ID. The ID is the first variable in data1 and the first variable
in data2, so by=c(1,1) specifies that the merge will match by ID. In the first
version below, only the observations with common ID numbers, labeled “V1”
will be retained in the new data set. This corresponds to a listwise deletion
of any subjects with missing values.

data1

[,1] [,2]

[1,] 1 9

[2,] 2 12

[3,] 3 9

[4,] 4 13

[5,] 5 13

data2

[,1] [,2]

[1,] 3 6

[2,] 4 10

[3,] 5 13

[4,] 6 10

[5,] 7 10



Working with Data Frames and Arrays 363

Now merge the data sets. By default, only the complete cases are included in
the result. In the second version below, all observations are retained in the
new data set. Missing scores are assigned the missing value NA.

The syntax is

merge(x, y) #default

merge(x, y, by = intersect(names(x), names(y)),

by.x = by, by.y = by, all = FALSE, ...)

where ... indicates more arguments (see the help topic).

# keep only the common ID’s

merge(data1, data2, by=c(1,1))

V1 V2.x V2.y

1 3 9 6

2 4 13 10

3 5 13 13

#keep all observations

merge(data1, data2, by=c(1,1), all=TRUE)

V1 V2.x V2.y

1 1 9 NA

2 2 12 NA

3 3 9 6

4 4 13 10

5 5 13 13

6 6 NA 10

7 7 NA 10

�

B.2.4 Reshaping Data

Suppose we need to reshape Example B.5 data into a “long” format, intro-
ducing a time variable. The reshape function is provided to convert between
the “wide” and “long” formats. The syntax is

reshape(data, varying, v.names, timevar, idvar, ids,

times, drop, direction, new.row.names,

split, include))

and all of the parameters except data and direction have default values.
To keep all observations use all=TRUE. The repeated measurements or time-
varying measurements are specified by varying. The direction is “wide” or
“long.”
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Example B.6 (Reshape)

Convert Example B.5 data from “wide” to “long” format.

#keep all observations

a <- merge(data1, data2, by=c(1,1), all=TRUE)

reshape(a, idvar="ID", varying=c(2,3),

direction="long", v.names="Scores")

V1 time Scores ID

1.1 1 1 9 1

2.1 2 1 12 2

3.1 3 1 9 3

4.1 4 1 13 4

5.1 5 1 13 5

6.1 6 1 NA 6

7.1 7 1 NA 7

1.2 1 2 NA 1

2.2 2 2 NA 2

3.2 3 2 6 3

4.2 4 2 10 4

5.2 5 2 13 5

6.2 6 2 10 6

7.2 7 2 10 7

�

B.3 Data Entry and Data Analysis

B.3.1 Manual Data Entry

A spreadsheet-like interface to create a data frame is provided in the edit
function.

mydata <- edit(data.frame())

This command opens a spreadsheet-like editor for data entry. When the editor
is closed, a data frame mydata is created. Then mydata can be edited by
edit(mydata). It is probably easier to enter a large data set in a spreadsheet
and read it into a data frame via read.table, described below.

B.3.2 Recoding Missing Values

The first step in recoding missing values is to find the missing values. The
function is.na tests for missing values, returning logical values. The which
function returns the indices of a logical vector that are TRUE. Applying
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which to the result of is.na gives a vector containing the indices of the
missing values. Then if i contains the indices of the missing data of a vector
x, recoding NA to 0, for example, is as simple as x[i] <- 0.

Example B.7 (Recode)

With the repeated measures data in Example B.6, recode the missing scores
to 0. The function is.na tests for missing values. Extract the row indices of
the missing scores using the which function. Below, which returns the indices
6,7,8,9, indicating that scores with those subscripts are missing.

#store the previous result into b

b <- reshape(a, idvar="ID", varying=c(2,3),

direction="long", v.names="Scores")

i <- which(is.na(b$Scores)) #these are missing

Now the indices stored in i are 6, 7, 8, 9, and we replace the corresponding
NA’s with 0.

b$Scores[i] <- 0 #replace NA with 0

b

V1 time Scores ID

1.1 1 1 9 1

2.1 2 1 12 2

3.1 3 1 9 3

4.1 4 1 13 4

5.1 5 1 13 5

6.1 6 1 0 6

7.1 7 1 0 7

1.2 1 2 0 1

2.2 2 2 0 2

3.2 3 2 6 3

4.2 4 2 10 4

5.2 5 2 13 5

6.2 6 2 10 6

7.2 7 2 10 7

The which function can also be used to extract array indices, by setting
arr.ind=TRUE. From the result of the second version of the merge operation
in Example B.5, we can extract the array indices of the missing values as
follows.

m <- merge(data1, data2, by=c(1,1), all=TRUE)

i <- which(is.na(m), arr.ind=TRUE) #these are missing

>i

row col

[1,] 6 2

[2,] 7 2

[3,] 1 3

[4,] 2 3
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�

B.3.3 Reading and Converting Dates

A time series for financial data usually has a calendar date corresponding to
each observation. In this section we discuss some basic methods for importing
files with dates, converting dates to useful formats, and extracting the day,
month, and year. Date arithmetic and formatting is a complicated subject,
however, and depends in part on the locale. Refer to the R manual [217] for
thorough documentation.

Our first example illustrates how to convert a string format date from
“mm/dd/yyyy” format into “yyyymmdd”. See the help topics for as.Date,
format.Date, and strptime for more details and other examples.

Example B.8 (Date formats)

Convert the string representation of a date into a date object, and display the
result in several formats. The default format is “yyyy-mm-dd”. The date is
printed in four different formats below.

d <- "3/27/1995"

thedate <- as.Date(d, "%m/%d/%Y")

print(thedate)

[1] "1995-03-27"

print(format(thedate, "%Y%m%d"))

[1] "19950327"

print(format(thedate, "%B %d, %Y"))

[1] "March 27, 1995"

print(format(thedate, "%y-%b-%d"))

[1] "95-Mar-27"

�

To extract year, month, day, or other components from the date or time,
we can use the POSIXlt date-time class (?DateTimeClasses).

Example B.9 (Date-time class)

Continuing with the previous example, use the POSIXlt date-time class to
extract the year, month, and day from the date 1995-03-27. The commands
and results are below. Notice that the months Jan., . . . , Dec. are numbered
0, 1, . . . , 11, and year is years since 1900.

> pdate <- as.POSIXlt(thedate)

> print(pdate$year)

[1] 95

> print(pdate$mon)
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[1] 2

> print(pdate$mday)

[1] 27

Type ?DateTimeClasses to see the documentation on the date-time objects
POSIXlt and POSIXct. �

B.3.4 Importing/exporting .csv files

Data is often supplied in comma-separated-values (.csv) format, which is
a text file that separates data with special text characters called delimiters.
Files in .csv format can be opened in most spreadsheet applications. Spread-
sheet data should be saved in .csv format before importing into R. In a .csv
file, the dates are likely to be given as strings, delimited by double quotation
marks.

Example B.10 (Importing/exporting .csv files)

This example illustrates how to export the contents of a data frame to a .csv
file, and how to import the data from a .csv file into an R data frame.

#create a data frame

dates <- c("3/27/1995", "4/3/1995",

"4/10/1995", "4/18/1995")

prices <- c(11.1, 7.9, 1.9, 7.3)

d <- data.frame(dates=dates, prices=prices)

#create the .csv file

filename <- "/Rfiles/temp.csv"

write.table(d, file = filename, sep = ",",

row.names = FALSE)

The new file “temp.csv” can be opened in most spreadsheets. When displayed
in a text editor (not a spreadsheet), the file “temp.csv” contains the following
lines (without the leading spaces).

"dates","prices"

"3/27/1995",11.1

"4/3/1995",7.9

"4/10/1995",1.9

"4/18/1995",7.3

Most .csv format files can be read using read.table. In addition there are
functions read.csv and read.csv2 designed for .csv files.

#read the .csv file

read.table(file = filename, sep = ",", header = TRUE)

read.csv(file = filename) #same thing
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dates prices

1 3/27/1995 11.1

2 4/3/1995 7.9

3 4/10/1995 1.9

4 4/18/1995 7.3

See Example B.8 for converting the character representation of the dates to
date objects. �

B.3.5 Examples of data entry and analysis

Although it is not the subject of this text, users new to R generally need
to know how to analyze typical textbook examples with small data sets. For
Monte Carlo studies, one also may need to extract certain results from a fitted
model. We conclude this section with a few simple examples of this type.

Stacked data entry

Example B.11 (One-way ANOVA)

Weight measurements are collected for two treatment groups of subjects and
a control group. This is a completely randomized design, and we want to
obtain the one-way Analysis of Variance (ANOVA). The layout of the data is
the one-way layout, and for ANOVA we will need stacked data. The factor
has three levels. Here we create a vector for the response variable (weight)
and a vector for the group variable, encoding it as a factor. See Example
B.13 for another approach to stacking the data for the one-way layout.

# One-way ANOVA example

# Completely randomized design

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt1 <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

trt2 <- c(5.19,3.33,3.20,3.13,6.46,5.36,6.95,4.19,3.16,4.95)

group <- factor(rep(1:3, each=10)) #factor

weight <- c(ctl, trt1, trt2) #response

a <- lm(weight ~ group)

Note that encoding the group variable as a factor is important. If group
is not a factor, but simply a vector of integers, then lm will fit a regression
model. The output for anova is the ANOVA table. More detailed output is
available with the summary method.
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> anova(a) #brief summary

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

group 2 1.1200 0.5600 0.5656 0.5746

Residuals 27 26.7344 0.9902

> summary(a) #more detailed summary

Call:

lm(formula = weight ~ group)

Residuals:

Min 1Q Median 3Q Max

-1.4620 -0.5245 0.0685 0.5005 2.3580

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.3147 15.991 2.71e-15 ***

group2 -0.3710 0.4450 -0.834 0.412

group3 -0.4400 0.4450 -0.989 0.332

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.9951 on 27 degrees of freedom

Multiple R-Squared: 0.04021, Adjusted R-squared: -0.03089

F-statistic: 0.5656 on 2 and 27 DF, p-value: 0.5746

�

Extracting statistics and estimates from fitted models

In Monte Carlo studies, we often want to extract the p-values, F statistics,
or R-squared values from the analysis, rather than print a summary of it. The
following example shows how to extract various results from an anova object
or the summary.

Example B.12 (Extract p-values and statistics from ANOVA)

To extract p-values, F statistics and other information from the anova object
or result of summary, we need the names of these values. Then the information
can be extracted by name or by position using square brackets. (This example
continues from the analysis in Example B.11.)

A <- anova(a)

names(A)

[1] "Df" "Sum Sq" "Mean Sq" "F value" "Pr(>F)"

Then, suppose we need the F statistic. It is a vector of length 2, corresponding
to the two rows in the ANOVA table. The F statistic in each row corresponds
to the factor in the same row.
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> A$"F value"

[1] 0.5655666 NA

> A$"F value"[1]

[1] 0.5655666

Similarly, we can use names to find the names of the values in the object
returned by the summary method.

B <- summary(a)

names(B)

[1] "call" "terms" "residuals" "coefficients" "aliased"

[6] "sigma" "df" "r.squared" "adj.r.squared" "fstatistic"

[11] "cov.unscaled"

Now suppose that we want to extract the R-squared, the MSE, and the degrees
of freedom for error from this model.

> B$sigma

[1] 0.9950695

> B$r.squared

[1] 0.0402093

> B$df[2]

[1] 27

�

Create data frame in stacked layout

The next example shows an alternate method for entering data in the one-
way layout. In this case, we create a data frame and use the stack function.

Example B.13 (Stacked data entry)

The small data set in this example is given in Case Study 12.3.1 of Larsen
and Marx [170]. The factor (type of antibiotic) has five levels. The response
variable measures the binding of the drug to serum proteins. The layout of
the data frame must be stacked for the ANOVA.

P <- c(29.6, 24.3, 28.5, 32)

T <- c(27.3, 32.6, 30.8, 34.8)

S <- c(5.8, 6.2, 11, 8.3)

E <- c(21.6, 17.4, 18.3, 19)

C <- c(29.2, 32.8, 25, 24.2)

#glue the columns together in a data frame

x <- data.frame(P, T, S, E, C)

#now stack the data for ANOVA

y <- stack(x)

names(y) <- c("Binding", "Antibiotic")
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The first few rows of the stacked data in y are

Binding Antibiotic

1 29.6 P

2 24.3 P

3 28.5 P

4 32.0 P

5 27.3 T

6 32.6 T

. . .

and this data is in the one-way layout for ANOVA. Now y is a data frame, so
there is a default formula associated with it.

> #check the default formula

> print(formula(y)) #default formula is right one

Binding ~ Antibiotic

As the default formula is the same model that we want to fit, lm can be
applied without specifying the formula.

> lm(y)

Call:

lm(formula = y)

Coefficients:

(Intercept) AntibioticE AntibioticP AntibioticS AntibioticT

27.800 -8.725 0.800 -19.975 3.575

> anova(lm(y))

Analysis of Variance Table

Response: Binding

Df Sum Sq Mean Sq F value Pr(>F)

Antibiotic 4 1480.82 370.21 40.885 6.74e-08 ***

Residuals 15 135.82 9.05

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Statistics, p-values, and estimates can be extracted from the fitted model in
the same way as shown in Example B.12. �

Example B.14 (Two-way ANOVA)

The leafshape (DAAG) [185] data is already in stacked format, with two
factors location and leaf architecture arch.

> data(leafshape, package = "DAAG")

> anova(lm(petiole ~ location * arch))
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Analysis of Variance Table

Response: petiole

Df Sum Sq Mean Sq F value Pr(>F)

location 5 209.9 42.0 1.8107 0.1108

arch 1 1098.5 1098.5 47.3786 3.983e-11 ***

location:arch 5 232.6 46.5 2.0066 0.0779 .

Residuals 274 6352.8 23.2

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Use the formula petiole~location+arch to fit the model without the inter-
action term. �

Example B.15 (Multiple comparisons)

In Example B.13, one can follow up with a multiple comparison procedure to
decide which means are significantly different. One such method is Tukey’s
procedure. The critical value of the studentized range statistic at α = 0.05
can be obtained by

qtukey(p = .95, nmeans = 5, df = 15)

[1] 4.366985

For TukeyHSD use aov to fit the model rather than lm.

#alternately: Tukey Honest Significant Difference

a <- aov(formula(y), data = y)

TukeyHSD(a, conf.level=.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = formula(y), data = y)

$Antibiotic

diff lwr upr p adj

E-C -8.725 -15.295401 -2.154599 0.0071611

P-C 0.800 -5.770401 7.370401 0.9952758

S-C -19.975 -26.545401 -13.404599 0.0000010

T-C 3.575 -2.995401 10.145401 0.4737713

P-E 9.525 2.954599 16.095401 0.0034588

S-E -11.250 -17.820401 -4.679599 0.0007429

T-E 12.300 5.729599 18.870401 0.0003007

S-P -20.775 -27.345401 -14.204599 0.0000006

T-P 2.775 -3.795401 9.345401 0.6928357

T-S 23.550 16.979599 30.120401 0.0000001

�
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Example B.16 (Regression)

Other examples of formula (see e.g. Example 7.17) for regression rather than
ANOVA are the following.

library(DAAG)

attach(ironslag)

# simple linear regression model

lm(magnetic ~ chemical)

# quadratic regression model

lm(magnetic ~ chemical + I(chemical^2))

# exponential regression model

lm(log(magnetic) ~ chemical)

# log-log model

lm(log(magnetic) ~ log(chemical))

# cubic polynomial model

lm(magnetic ~ poly(chemical, degree = 3))

detach(ironslag)

detach(package:DAAG)

In the quadratic model, the “as is” operator I( ) indicates that the exponen-
tiation operator is an arithmetic operator, and should not be interpreted as a
formula operator. Note that poly evaluates an orthogonal polynomial.

> cor(poly(chemical, 2)) #uncorrelated
1 2

1 1.000000e+00 -4.956837e-18
2 -4.956837e-18 1.000000e+00

> cor(chemical, chemical^2) #correlated
[1] 0.9919215

�
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