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Preface

Innovations in computing technologies have revolutionized healthcare in recent years. The analyt-
ical style of reasoning has not only changed the way in which information is collected and stored
but has also played an increasingly important role in the management and delivery of healthcare. In
particular, data analytics has emerged as a promising tool for solving problems in various healthcare-
related disciplines. This book will present a comprehensive review of data analytics in the field of
healthcare. The goal is to provide a platform for interdisciplinary researchers to learn about the
fundamental principles, algorithms, and applications of intelligent data acquisition, processing, and
analysis of healthcare data. This book will provide readers with an understanding of the vast num-
ber of analytical techniques for healthcare problems and their relationships with one another. This
understanding includes details of specific techniques and required combinations of tools to design
effective ways of handling, retrieving, analyzing, and making use of healthcare data. This book
will provide a unique perspective of healthcare related opportunities for developing new computing
technologies.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdis-
ciplinary nature. The field of healthcare has often seen advances coming from diverse disciplines
such as databases, data mining, information retrieval, image processing, medical researchers, and
healthcare practitioners. While this interdisciplinary nature adds to the richness of the field, it also
adds to the challenges in making significant advances. Computer scientists are usually not trained in
domain-specific medical concepts, whereas medical practitioners and researchers also have limited
exposure to the data analytics area. This has added to the difficulty in creating a coherent body of
work in this field. The result has often been independent lines of work from completely different
perspectives. This book is an attempt to bring together these diverse communities by carefully and
comprehensively discussing the most relevant contributions from each domain.

The book provides a comprehensive overview of the healthcare data analytics field as it stands
today, and to educate the community about future research challenges and opportunities. Even
though the book is structured as an edited collection of chapters, special care was taken during the
creation of the book to cover healthcare topics exhaustively by coordinating the contributions from
various authors. Focus was also placed on reviews and surveys rather than individual research results
in order to emphasize comprehensiveness in coverage. Each book chapter is written by prominent
researchers and experts working in the healthcare domain. The chapters in the book are divided into
three major categories:

* Healthcare Data Sources and Basic Analytics: These chapters discuss the details about
the various healthcare data sources and the analytical techniques that are widely used in the
processing and analysis of such data. The various forms of patient data include electronic
health records, biomedical images, sensor data, biomedical signals, genomic data, clinical
text, biomedical literature, and data gathered from social media.

* Advanced Data Analytics for Healthcare: These chapters deal with the advanced data ana-
Iytical methods focused on healthcare. These include the clinical prediction models, temporal
pattern mining methods, and visual analytics. In addition, other advanced methods such as
data integration, information retrieval, and privacy-preserving data publishing will also be
discussed.

XX Vil
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XXViii Healthcare Data Analytics

» Applications and Practical Systems for Healthcare: These chapters focus on the applica-
tions of data analytics and the relevant practical systems. It will cover the applications of data
analytics to pervasive healthcare, fraud detection, and drug discovery. In terms of the practi-
cal systems, it covers clinical decision support systems, computer assisted medical imaging
systems, and mobile imaging systems.

It is hoped that this comprehensive book will serve as a compendium to students, researchers,
and practitioners. Each chapter is structured as a “survey-style” article discussing the prominent
research issues and the advances made on that research topic. Special effort was taken in ensuring
that each chapter is self-contained and the background required from other chapters is minimal.
Finally, we hope that the topics discussed in this book will lead to further developments in the field
of healthcare data analytics that can help in improving the health and well-being of people. We be-
lieve that research in the field of healthcare data analytics will continue to grow in the years to come.

Acknowledgment: This work was supported in part by National Science Foundation grant
No. 1231742.
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2 Healthcare Data Analytics

1.1 Introduction

While the healthcare costs have been constantly rising, the quality of care provided to the pa-
tients in the United States have not seen considerable improvements. Recently, several researchers
have conducted studies which showed that by incorporating the current healthcare technologies, they
are able to reduce mortality rates, healthcare costs, and medical complications at various hospitals.
In 2009, the US government enacted the Health Information Technology for Economic and Clinical
Health Act (HITECH) that includes an incentive program (around $27 billion) for the adoption and
meaningful use of Electronic Health Records (EHRs).

The recent advances in information technology have led to an increasing ease in the ability to
collect various forms of healthcare data. In this digital world, data becomes an integral part of health-
care. A recent report on Big Data suggests that the overall potential of healthcare data will be around
$300 billion [12]. Due to the rapid advancements in the data sensing and acquisition technologies,
hospitals and healthcare institutions have started collecting vast amounts of healthcare data about
their patients. Effectively understanding and building knowledge from healthcare data requires de-
veloping advanced analytical techniques that can effectively transform data into meaningful and
actionable information. General computing technologies have started revolutionizing the manner in
which medical care is available to the patients. Data analytics, in particular, forms a critical com-
ponent of these computing technologies. The analytical solutions when applied to healthcare data
have an immense potential to transform healthcare delivery from being reactive to more proactive.
The impact of analytics in the healthcare domain is only going to grow more in the next several
years. Typically, analyzing health data will allow us to understand the patterns that are hidden in
the data. Also, it will help the clinicians to build an individualized patient profile and can accurately
compute the likelihood of an individual patient to suffer from a medical complication in the near
future.

Healthcare data is particularly rich and it is derived from a wide variety of sources such as
sensors, images, text in the form of biomedical literature/clinical notes, and traditional electronic
records. This heterogeneity in the data collection and representation process leads to numerous
challenges in both the processing and analysis of the underlying data. There is a wide diversity in the
techniques that are required to analyze these different forms of data. In addition, the heterogeneity
of the data naturally creates various data integration and data analysis challenges. In many cases,
insights can be obtained from diverse data types, which are otherwise not possible from a single
source of the data. It is only recently that the vast potential of such integrated data analysis methods
is being realized.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdisci-
plinary nature. The field of healthcare has often seen advances coming from diverse disciplines such
as databases, data mining, information retrieval, medical researchers, and healthcare practitioners.
While this interdisciplinary nature adds to the richness of the field, it also adds to the challenges in
making significant advances. Computer scientists are usually not trained in domain-specific medical
concepts, whereas medical practitioners and researchers also have limited exposure to the mathe-
matical and statistical background required in the data analytics area. This has added to the difficulty
in creating a coherent body of work in this field even though it is evident that much of the available
data can benefit from such advanced analysis techniques. The result of such a diversity has often led
to independent lines of work from completely different perspectives. Researchers in the field of data
analytics are particularly susceptible to becoming isolated from real domain-specific problems, and
may often propose problem formulations with excellent technique but with no practical use. This
book is an attempt to bring together these diverse communities by carefully and comprehensively
discussing the most relevant contributions from each domain. It is only by bringing together these
diverse communities that the vast potential of data analysis methods can be harnessed.
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4 Healthcare Data Analytics

Another major challenge that exists in the healthcare domain is the “data privacy gap” between
medical researchers and computer scientists. Healthcare data is obviously very sensitive because it
can reveal compromising information about individuals. Several laws in various countries, such as
the Health Insurance Portability and Accountability Act (HIPAA) in the United States, explicitly
forbid the release of medical information about individuals for any purpose, unless safeguards are
used to preserve privacy. Medical researchers have natural access to healthcare data because their
research is often paired with an actual medical practice. Furthermore, various mechanisms exist in
the medical domain to conduct research studies with voluntary participants. Such data collection is
almost always paired with anonymity and confidentiality agreements.

On the other hand, acquiring data is not quite as simple for computer scientists without a proper
collaboration with a medical practitioner. Even then, there are barriers in the acquisition of data.
Clearly, many of these challenges can be avoided if accepted protocols, privacy technologies, and
safeguards are in place. Therefore, this book will also address these issues. Figure 1.1 provides an
overview of the organization of the book’s contents. This book is organized into three parts:

1. Healthcare Data Sources and Basic Analytics: This part discusses the details of various
healthcare data sources and the basic analytical methods that are widely used in the pro-
cessing and analysis of such data. The various forms of patient data that is currently being
collected in both clinical and non-clinical environments will be studied. The clinical data will
have the structured electronic health records and biomedical images. Sensor data has been
receiving a lot attention recently. Techniques for mining sensor data and biomedical signal
analysis will be presented. Personalized medicine has gained a lot of importance due to the
advancements in genomic data. Genomic data analysis involves several statistical techniques.
These will also be elaborated. Patients’ in-hospital clinical data will also include a lot of un-
structured data in the form of clinical notes. In addition, the domain knowledge that can be
extracted by mining the biomedical literature, will also be discussed. The fundamental data
mining, machine learning, information retrieval, and natural language processing techniques
for processing these data types will be extensively discussed. Finally, behavioral data captured
through social media will also be discussed.

2. Advanced Data Analytics for Healthcare: This part deals with the advanced analytical meth-
ods focused on healthcare. This includes the clinical prediction models, temporal data mining
methods, and visual analytics. Integrating heterogeneous data such as clinical and genomic
data is essential for improving the predictive power of the data that will also be discussed.
Information retrieval techniques that can enhance the quality of biomedical search will be
presented. Data privacy is an extremely important concern in healthcare. Privacy-preserving
data publishing techniques will therefore be presented.

3. Applications and Practical Systems for Healthcare: This part focuses on the practical ap-
plications of data analytics and the systems developed using data analytics for healthcare
and clinical practice. Examples include applications of data analytics to pervasive healthcare,
fraud detection, and drug discovery. In terms of the practical systems, we will discuss the de-
tails about the clinical decision support systems, computer assisted medical imaging systems,
and mobile imaging systems.

These different aspects of healthcare are related to one another. Therefore, the chapters in each
of the aforementioned topics are interconnected. Where necessary, pointers are provided across
different chapters, depending on the underlying relevance. This chapter is organized as follows.
Section 1.2 discusses the main data sources that are commonly used and the basic techniques for
processing them. Section 1.3 discusses advanced techniques in the field of healthcare data analytics.
Section 1.4 discusses a number of applications of healthcare analysis techniques. An overview of
resources in the field of healthcare data analytics is presented in Section 1.5. Section 1.6 presents
the conclusions.
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An Introduction to Healthcare Data Analytics 5

1.2 Healthcare Data Sources and Basic Analytics

In this section, the various data sources and their impact on analytical algorithms will be dis-
cussed. The heterogeneity of the sources for medical data mining is rather broad, and this creates
the need for a wide variety of techniques drawn from different domains of data analytics.

1.2.1 Electronic Health Records

Electronic health records (EHRs) contain a digitized version of a patient’s medical history. It
encompasses a full range of data relevant to a patient’s care such as demographics, problems, med-
ications, physician’s observations, vital signs, medical history, laboratory data, radiology reports,
progress notes, and billing data. Many EHRs go beyond a patient’s medical or treatment history and
may contain additional broader perspectives of a patient’s care. An important property of EHRs is
that they provide an effective and efficient way for healthcare providers and organizations to share
with one another. In this context, EHRs are inherently designed to be in real time and they can in-
stantly be accessed and edited by authorized users. This can be very useful in practical settings. For
example, a hospital or specialist may wish to access the medical records of the primary provider. An
electronic health record streamlines the workflow by allowing direct access to the updated records in
real time [30]. It can generate a complete record of a patient’s clinical encounter, and support other
care-related activities such as evidence-based decision support, quality management, and outcomes
reporting. The storage and retrieval of health-related data is more efficient using EHRs. It helps
to improve quality and convenience of patient care, increase patient participation in the healthcare
process, improve accuracy of diagnoses and health outcomes, and improve care coordination [29].
Various components of EHRs along with the advantages, barriers, and challenges of using EHRs
are discussed in Chapter 2.

1.2.2 Biomedical Image Analysis

Medical imaging plays an important role in modern-day healthcare due to its immense capability
in providing high-quality images of anatomical structures in human beings. Effectively analyzing
such images can be useful for clinicians and medical researchers since it can aid disease monitoring,
treatment planning, and prognosis [31]. The most popular imaging modalities used to acquire a
biomedical image are magnetic resonance imaging (MRI), computed tomography (CT), positron
emission tomography (PET), and ultrasound (U/S). Being able to look inside of the body without
hurting the patient and being able to view the human organs has tremendous implications on human
health. Such capabilities allow the physicians to better understand the cause of an illness or other
adverse conditions without cutting open the patient.

However, merely viewing such organs with the help of images is just the first step of the pro-
cess. The final goal of biomedical image analysis is to be able to generate quantitative information
and make inferences from the images that can provide far more insights into a medical condition.
Such analysis has major societal significance since it is the key to understanding biological systems
and solving health problems. However, it includes many challenges since the images are varied,
complex, and can contain irregular shapes with noisy values. A number of general categories of
research problems that arise in analyzing images are object detection, image segmentation, image
registration, and feature extraction. All these challenges when resolved will enable the generation
of meaningful analytic measurements that can serve as inputs to other areas of healthcare data ana-
Iytics. Chapter 3 discusses a broad overview of the main medical imaging modalities along with a
wide range of image analysis approaches.
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6 Healthcare Data Analytics

1.2.3 Sensor Data Analysis

Sensor data [2] is ubiquitous in the medical domain both for real time and for retrospective
analysis. Several forms of medical data collection instruments such as electrocardiogram (ECG),
and electroencaphalogram (EEG) are essentially sensors that collect signals from various parts of the
human body [32]. These collected data instruments are sometimes used for retrospective analysis,
but more often for real-time analysis. Perhaps, the most important use-case of real-time analysis
is in the context of intensive care units (ICUs) and real-time remote monitoring of patients with
specific medical conditions. In all these cases, the volume of the data to the processed can be rather
large. For example, in an ICU, it is not uncommon for the sensor to receive input from hundreds of
data sources, and alarms need to be triggered in real time. Such applications necessitate the use of
big-data frameworks and specialized hardware platforms. In remote-monitoring applications, both
the real-time events and a long-term analysis of various trends and treatment alternatives is of great
interest.

While rapid growth in sensor data offers significant promise to impact healthcare, it also intro-
duces a data overload challenge. Hence, it becomes extremely important to develop novel data ana-
Iytical tools that can process such large volumes of collected data into meaningful and interpretable
knowledge. Such analytical methods will not only allow for better observing patients’ physiological
signals and help provide situational awareness to the bedside, but also provide better insights into
the inefficiencies in the healthcare system that may be the root cause of surging costs. The research
challenges associated with the mining of sensor data in healthcare settings and the sensor mining
applications and systems in both clinical and non-clinical settings is discussed in Chapter 4.

1.2.4 Biomedical Signal Analysis

Biomedical Signal Analysis consists of measuring signals from biological sources, the origin
of which lies in various physiological processes. Examples of such signals include the electroneu-
rogram (ENG), electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG),
electrogastrogram (EGG), phonocardiogram (PCG), and so on. The analysis of these signals is vital
in diagnosing the pathological conditions and in deciding an appropriate care pathway. The mea-
surement of physiological signals gives some form of quantitative or relative assessment of the state
of the human body. These signals are acquired from various kinds of sensors and transducers either
invasively or non-invasively.

These signals can be either discrete or continuous depending on the kind of care or severity
of a particular pathological condition. The processing and interpretation of physiological signals is
challenging due to the low signal-to-noise ratio (SNR) and the interdependency of the physiological
systems. The signal data obtained from the corresponding medical instruments can be copiously
noisy, and may sometimes require a significant amount of preprocessing. Several signal processing
algorithms have been developed that have significantly enhanced the understanding of the physi-
ological processes. A wide variety of methods are used for filtering, noise removal, and compact
methods [36]. More sophisticated analysis methods including dimensionality reduction techniques
such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), and wavelet
transformation have also been widely investigated in the literature. A broader overview of many of
these techniques may also be found in [1, 2]. Time-series analysis methods are discussed in [37, 40].
Chapter 5 presents an overview of various signal processing techniques used for processing biomed-
ical signals.

1.2.5 Genomic Data Analysis

A significant number of diseases are genetic in nature, but the nature of the causality between
the genetic markers and the diseases has not been fully established. For example, diabetes is well
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An Introduction to Healthcare Data Analytics 7

known to be a genetic disease; however, the full set of genetic markers that make an individual
prone to diabetes are unknown. In some other cases, such as the blindness caused by Stargardt
disease, the relevant genes are known but all the possible mutations have not been exhaustively
isolated. Clearly, a broader understanding of the relationships between various genetic markers,
mutations, and disease conditions has significant potential in assisting the development of various
gene therapies to cure these conditions. One will be mostly interested in understanding what kind
of health-related questions can be addressed through in-silico analysis of the genomic data through
typical data-driven studies. Moreover, translating genetic discoveries into personalized medicine
practice is a highly non-trivial task with a lot of unresolved challenges. For example, the genomic
landscapes in complex diseases such as cancers are overwhelmingly complicated, revealing a high
order of heterogeneity among different individuals. Solving these issues will be fitting a major piece
of the puzzle and it will bring the concept of personalized medicine much more closer to reality.

Recent advancements made in the biotechnologies have led to the rapid generation of large
volumes of biological and medical information and advanced genomic research. This has also led
to unprecedented opportunities and hopes for genome scale study of challenging problems in life
science. For example, advances in genomic technology made it possible to study the complete ge-
nomic landscape of healthy individuals for complex diseases [16]. Many of these research directions
have already shown promising results in terms of generating new insights into the biology of hu-
man disease and to predict the personalized response of the individual to a particular treatment.
Also, genetic data are often modeled either as sequences or as networks. Therefore, the work in
this field requires a good understanding of sequence and network mining techniques. Various data
analytics-based solutions are being developed for tackling key research problems in medicine such
as identification of disease biomarkers and therapeutic targets and prediction of clinical outcome.
More details about the fundamental computational algorithms and bioinformatics tools for genomic
data analysis along with genomic data resources are discussed in Chapter 6.

1.2.6 Clinical Text Mining

Most of the information about patients is encoded in the form of clinical notes. These notes
are typically stored in an unstructured data format and is the backbone of much of healthcare data.
These contain the clinical information from the transcription of dictations, direct entry by providers,
or use of speech recognition applications. These are perhaps the richest source of unexploited in-
formation. It is needless to say that the manual encoding of this free-text form on a broad range of
clinical information is too costly and time consuming, though it is limited to primary and secondary
diagnoses, and procedures for billing purposes. Such notes are notoriously challenging to analyze
automatically due to the complexity involved in converting clinical text that is available in free-text
to a structured format. It becomes hard mainly because of their unstructured nature, heterogeneity,
diverse formats, and varying context across different patients and practitioners.

Natural language processing (NLP) and entity extraction play an important part in inferring
useful knowledge from large volumes of clinical text to automatically encoding clinical information
in a timely manner [22]. In general, data preprocessing methods are more important in these contexts
as compared to the actual mining techniques. The processing of clinical text using NLP methods is
more challenging when compared to the processing of other texts due to the ungrammatical nature
of short and telegraphic phrases, dictations, shorthand lexicons such as abbreviations and acronym:s,
and often misspelled clinical terms. All these problems will have a direct impact on the various
standard NLP tasks such as shallow or full parsing, sentence segmentation, text categorization, etc.,
thus making the clinical text processing highly challenging. A wide range of NLP methods and data
mining techniques for extracting information from the clinical text are discussed in Chapter 7.
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8 Healthcare Data Analytics

1.2.7 Mining Biomedical Literature

A significant number of applications rely on evidence from the biomedical literature. The latter
is copious and has grown significantly over time. The use of text mining methods for the long-term
preservation, accessibility, and usability of digitally available resources is important in biomedical
applications relying on evidence from scientific literature. Text mining methods and tools offer novel
ways of applying new knowledge discovery methods in the biomedical field [21][20]. Such tools
offer efficient ways to search, extract, combine, analyze and summarize textual data, thus supporting
researchers in knowledge discovery and generation. One of the major challenges in biomedical text
mining is the multidisciplinary nature of the field. For example, biologists describe chemical com-
pounds using brand names, while chemists often use less ambiguous ITUPAC-compliant names or
unambiguous descriptors such as International Chemical Identifiers. While the latter can be handled
with cheminformatics tools, text mining techniques are required to extract less precisely defined
entities and their relations from the literature. In this context, entity and event extraction methods
play a key role in discovering useful knowledge from unstructured databases. Because the cost
of curating such databases is too high, text mining methods offer new opportunities for their ef-
fective population, update, and integration. Text mining brings about other benefits to biomedical
research by linking textual evidence to biomedical pathways, reducing the cost of expert knowledge
validation, and generating hypotheses. The approach provides a general methodology to discover
previously unknown links and enhance the way in which biomedical knowledge is organized. More
details about the challenges and algorithms for biomedical text mining are discussed in Chapter 8.

1.2.8 Social Media Analysis

The rapid emergence of various social media resources such as social networking sites,
blogs/microblogs, forums, question answering services, and online communities provides a wealth
of information about public opinion on various aspects of healthcare. Social media data can be
mined for patterns and knowledge that can be leveraged to make useful inferences about popula-
tion health and public health monitoring. A significant amount of public health information can
be gleaned from the inputs of various participants at social media sites. Although most individ-
ual social media posts and messages contain little informational value, aggregation of millions of
such messages can generate important knowledge [4, 19]. Effectively analyzing these vast pieces of
knowledge can significantly reduce the latency in collecting such complex information.

Previous research on social media analytics for healthcare has focused on capturing aggregate
health trends such as outbreaks of infectious diseases, detecting reports of adverse drug interactions,
and improving interventional capabilities for health-related activities. Disease outbreak detection is
often strongly reflected in the content of social media and an analysis of the history of the content
provides valuable insights about disease outbreaks. Topic models are frequently used for high-level
analysis of such health-related content. An additional source of information in social media sites
is obtained from online doctor and patient communities. Since medical conditions recur across
different individuals, the online communities provide a valuable source of knowledge about various
medical conditions. A major challenge in social media analysis is that the data is often unreliable,
and therefore the results must be interpreted with caution. More discussion about the impact of
social media analytics in improving healthcare is given in Chapter 9.
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1.3 Advanced Data Analytics for Healthcare

This section will discuss a number of advanced data analytics methods for healthcare. These
techniques include various data mining and machine learning models that need to be adapted to the
healthcare domain.

1.3.1 Clinical Prediction Models

Clinical prediction forms a critical component of modern-day healthcare. Several prediction
models have been extensively investigated and have been successfully deployed in clinical practice
[26]. Such models have made a tremendous impact in terms of diagnosis and treatment of diseases.
Most successful supervised learning methods that have been employed for clinical prediction tasks
fall into three categories: (i) Statistical methods such as linear regression, logistic regression, and
Bayesian models; (ii) Sophisticated methods in machine learning and data mining such as decision
trees and artificial neural networks; and (iii) Survival models that aim to predict survival outcomes.
All of these techniques focus on discovering the underlying relationship between covariate variables,
which are also known as attributes and features, and a dependent outcome variable.

The choice of the model to be used for a particular healthcare problem primarily depends on
the outcomes to be predicted. There are various kinds of prediction models that are proposed in the
literature for handling such a diverse variety of outcomes. Some of the most common outcomes in-
clude binary and continuous forms. Other less common forms are categorical and ordinal outcomes.
In addition, there are also different models proposed to handle survival outcomes where the goal
is to predict the time of occurrence of a particular event of interest. These survival models are also
widely studied in the context of clinical data analysis in terms of predicting the patient’s survival
time. There are different ways of evaluating and validating the performance of these prediction mod-
els. Different prediction models along with various kinds of evaluation mechanisms in the context
of healthcare data analytics will be discussed in Chapter 10.

1.3.2 Temporal Data Mining

Healthcare data almost always contain time information and it is inconceivable to reason and
mine these data without incorporating the temporal dimension. There are two major sources of
temporal data generated in the healthcare domain. The first is the electronic health records (EHR)
data and the second is the sensor data. Mining the temporal dimension of EHR data is extremely
promising as it may reveal patterns that enable a more precise understanding of disease manifesta-
tion, progression and response to therapy. Some of the unique characteristics of EHR data (such as
of heterogeneous, sparse, high-dimensional, irregular time intervals) makes conventional methods
inadequate to handle them. Unlike EHR data, sensor data are usually represented as numeric time
series that are regularly measured in time at a high frequency. Examples of these data are phys-
iological data obtained by monitoring the patients on a regular basis and other electrical activity
recordings such as electrocardiogram (ECG), electroencephalogram (EEG), etc. Sensor data for a
specific subject are measured over a much shorter period of time (usually several minutes to several
days) compared to the longitudinal EHR data (usually collected across the entire lifespan of the
patient).

Given the different natures of EHR data and sensor data, the choice of appropriate temporal data
mining methods for these types of data are often different. EHR data are usually mined using tem-
poral pattern mining methods, which represent data instances (e.g., patients’ records) as sequences
of discrete events (e.g., diagnosis codes, procedures, etc.) and then try to find and enumerate sta-
tistically relevant patterns that are embedded in the data. On the other hand, sensor data are often
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analyzed using signal processing and time-series analysis techniques (e.g., wavelet transform, inde-
pendent component analysis, etc.) [37, 40]. Chapter 11 presents a detailed survey and summarizes
the literature on temporal data mining for healthcare data.

1.3.3 Visual Analytics

The ability to analyze and identify meaningful patterns in multimodal clinical data must be ad-
dressed in order to provide a better understanding of diseases and to identify patterns that could
be affecting the clinical workflow. Visual analytics provides a way to combine the strengths of hu-
man cognition with interactive interfaces and data analytics that can facilitate the exploration of
complex datasets. Visual analytics is a science that involves the integration of interactive visual
interfaces with analytical techniques to develop systems that facilitate reasoning over, and interpre-
tation of, complex data [23]. Visual analytics is popular in many aspects of healthcare data analysis
because of the wide variety of insights that such an analysis provides. Due to the rapid increase of
health-related information, it becomes critical to build effective ways of analyzing large amounts
of data by leveraging human—computer interaction and graphical interfaces. In general, providing
easily understandable summaries of complex healthcare data is useful for a human in gaining novel
insights.

In the evaluation of many diseases, clinicians are presented with datasets that often contain hun-
dreds of clinical variables. The multimodal, noisy, heterogeneous, and temporal characteristics of
the clinical data pose significant challenges to the users while synthesizing the information and ob-
taining insights from the data [24]. The amount of information being produced by healthcare organi-
zations opens up opportunities to design new interactive interfaces to explore large-scale databases,
to validate clinical data and coding techniques, and to increase transparency within different depart-
ments, hospitals, and organizations. While many of the visual methods can be directly adopted from
the data mining literature [11], a number of methods, which are specific to the healthcare domain,
have also been designed. A detailed discussion on the popular data visualization techniques used
in clinical settings and the areas in healthcare that benefit from visual analytics are discussed in
Chapter 12.

1.3.4 Clinico-Genomic Data Integration

Human diseases are inherently complex in nature and are usually governed by a complicated in-
terplay of several diverse underlying factors, including different genomic, clinical, behavioral, and
environmental factors. Clinico—pathological and genomic datasets capture the different effects of
these diverse factors in a complementary manner. It is essential to build integrative models consid-
ering both genomic and clinical variables simultaneously so that they can combine the vital infor-
mation that is present in both clinical and genomic data [27]. Such models can help in the design
of effective diagnostics, new therapeutics, and novel drugs, which will lead us one step closer to
personalized medicine [17].

This opportunity has led to an emerging area of integrative predictive models that can be built
by combining clinical and genomic data, which is called clinico—genomic data integration. Clinical
data refers to a broad category of a patient’s pathological, behavioral, demographic, familial, en-
vironmental and medication history, while genomic data refers to a patient’s genomic information
including SNPs, gene expression, protein and metabolite profiles. In most of the cases, the goal of
the integrative study is biomarker discovery which is to find the clinical and genomic factors related
to a particular disease phenotype such as cancer vs. no cancer, tumor vs. normal tissue samples, or
continuous variables such as the survival time after a particular treatment. Chapter 13 provides a
comprehensive survey of different challenges with clinico—genomic data integration along with the
different approaches that aim to address these challenges with an emphasis on biomarker discovery.
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1.3.5 Information Retrieval

Although most work in healthcare data analytics focuses on mining and analyzing patient-related
data, additional information for use in this process includes scientific data and literature. The tech-
niques most commonly used to access this data include those from the field of information retrieval
(IR). IR is the field concerned with the acquisition, organization, and searching of knowledge-based
information, which is usually defined as information derived and organized from observational or
experimental research [14]. The use of IR systems has become essentially ubiquitous. It is estimated
that among individuals who use the Internet in the United States, over 80 percent have used it to
search for personal health information and virtually all physicians use the Internet.

Information retrieval models are closely related to the problems of clinical and biomedical text
mining. The basic objective of using information retrieval is to find the content that a user wanted
based on his requirements. This typically begins with the posing of a query to the IR system. A
search engine matches the query to content items through metadata. The two key components of
IR are: Indexing, which is the process of assigning metadata to the content, and retrieval, which
is the process of the user entering the query and retrieving relevant content. The most well-known
data structure used for efficient information retrieval is the inverted index where each document
is associated with an identifier. Each word then points to a list of document identifiers. This kind
of representation is particularly useful for a keyword search. Furthermore, once a search has been
conducted, mechanisms are required to rank the possibly large number of results, which might have
been retrieved. A number of user-oriented evaluations have been performed over the years looking
at users of biomedical information and measuring the search performance in clinical settings [15].
Chapter 14 discusses a number of information retrieval models for healthcare along with evaluation
of such retrieval models.

1.3.6 Privacy-Preserving Data Publishing

In the healthcare domain, the definition of privacy is commonly accepted as “a person’s right and
desire to control the disclosure of their personal health information” [25]. Patients’ health-related
data is highly sensitive because of the potentially compromising information about individual partic-
ipants. Various forms of data such as disease information or genomic information may be sensitive
for different reasons. To enable research in the field of medicine, it is often important for medical or-
ganizations to be able to share their data with statistical experts. Sharing personal health information
can bring enormous economical benefits. This naturally leads to concerns about the privacy of in-
dividuals being compromised. The data privacy problem is one of the most important challenges in
the field of healthcare data analytics. Most privacy preservation methods reduce the representation
accuracy of the data so that the identification of sensitive attributes of an individual is compromised.
This can be achieved by either perturbing the sensitive attribute, perturbing attributes that serve as
identification mechanisms, or a combination of the two. Clearly, this process required the reduction
in the accuracy of data representation. Therefore, privacy preservation almost always incurs the cost
of losing some data utility. Therefore, the goal of privacy preservation methods is to optimize the
trade-off between utility and privacy. This ensures that the amount of utility loss at a given level of
privacy is as little as possible.

The major steps in privacy-preserving data publication algorithms [5][18] are the identification
of an appropriate privacy metric and level for a given access setting and data characteristics, ap-
plication of one or multiple privacy-preserving algorithm(s) to achieve the desired privacy level,
and postanalyzing the utility of the processed data. These three steps are repeated until the desired
utility and privacy levels are jointly met. Chapter 15 focuses on applying privacy-preserving algo-
rithms to healthcare data for secondary-use data publishing and interpretation of the usefulness and
implications of the processed data.
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1.4 Applications and Practical Systems for Healthcare

In the final set of chapters in this book, we will discuss the practical healthcare applications and
systems that heavily utilize data analytics. These topics have evolved significantly in the past few
years and are continuing to gain a lot of momentum and interest. Some of these methods, such as
fraud detection, are not directly related to medical diagnosis, but are nevertheless important in this
domain.

1.4.1 Data Analytics for Pervasive Health

Pervasive health refers to the process of tracking medical well-being and providing long-term
medical care with the use of advanced technologies such as wearable sensors. For example, wearable
monitors are often used for measuring the long-term effectiveness of various treatment mechanisms.
These methods, however, face a number of challenges, such as knowledge extraction from the large
volumes of data collected and real-time processing. However, recent advances in both hardware
and software technologies (data analytics in particular) have made such systems a reality. These
advances have made low cost intelligent health systems embedded within the home and living envi-
ronments a reality [33].

A wide variety of sensor modalities can be used when developing intelligent health systems,
including wearable and ambient sensors [28]. In the case of wearable sensors, sensors are attached
to the body or woven into garments. For example, 3-axis accelerometers distributed over an individ-
ual’s body can provide information about the orientation and movement of the corresponding body
part. In addition to these advancements in sensing modalities, there has been an increasing interest
in applying analytics techniques to data collected from such equipment. Several practical healthcare
systems have started using analytical solutions. Some examples include cognitive health monitor-
ing systems based on activity recognition, persuasive systems for motivating users to change their
health and wellness habits, and abnormal health condition detection systems. A detailed discussion
on how various analytics can be used for supporting the development of intelligent health systems
along with supporting infrastructure and applications in different healthcare domains is presented in
Chapter 16.

1.4.2 Healthcare Fraud Detection

Healthcare fraud has been one of the biggest problems faced by the United States and costs sev-
eral billions of dollars every year. With growing healthcare costs, the threat of healthcare fraud is
increasing at an alarming pace. Given the recent scrutiny of the inefficiencies in the US healthcare
system, identifying fraud has been on the forefront of the efforts towards reducing the healthcare
costs. One could analyze the healthcare claims data along different dimensions to identify fraud. The
complexity of the healthcare domain, which includes multiple sets of participants, including health-
care providers, beneficiaries (patients), and insurance companies, makes the problem of detecting
healthcare fraud equally challenging and makes it different from other domains such as credit card
fraud detection and auto insurance fraud detection. In these other domains, the methods rely on con-
structing profiles for the users based on the historical data and they typically monitor deviations in
the behavior of the user from the profile [7]. However, in healthcare fraud, such approaches are not
usually applicable, because the users in the healthcare setting are the beneficiaries, who typically are
not the fraud perpetrators. Hence, more sophisticated analysis is required in the healthcare sector to
identify fraud.

Several solutions based on data analytics have been investigated for solving the problem of
healthcare fraud. The primary advantages of data-driven fraud detection are automatic extraction
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of fraud patterns and prioritization of suspicious cases [3]. Most of such analysis is performed
with respect to an episode of care, which is essentially a collection of healthcare provided to a
patient under the same health issue. Data-driven methods for healthcare fraud detection can be
employed to answer the following questions: Is a given episode of care fraudulent or unnecessary?
Is a given claim within an episode fraudulent or unnecessary? Is a provider or a network of providers
fraudulent? We discuss the problem of fraud in healthcare and existing data-driven methods for fraud
detection in Chapter 17.

1.4.3 Data Analytics for Pharmaceutical Discoveries

The cost of successful novel chemistry-based drug development often reaches millions of dol-
lars, and the time to introduce the drug to market often comes close to a decade [34]. The high failure
rate of drugs during this process, make the trial phases known as the “valley of death.” Most new
compounds fail during the FDA approval process in clinical trials or cause adverse side effects.
Interdisciplinary computational approaches that combine statistics, computer science, medicine,
chemoinformatics, and biology are becoming highly valuable for drug discovery and development.
In the context of pharmaceutical discoveries, data analytics can potentially limit the search space
and provide recommendations to the domain experts for hypothesis generation and further analysis
and experiments.

Data analytics can be used in several stages of drug discovery and development to achieve dif-
ferent goals. In this domain, one way to categorize data analytical approaches is based on their
application to pre-marketing and post-marketing stages of the drug discovery and development pro-
cess. In the pre-marketing stage, data analytics focus on discovery activities such as finding signals
that indicate relations between drugs and targets, drugs and drugs, genes and diseases, protein and
diseases, and finding biomarkers. In the post-marketing stage an important application of data an-
alytics is to find indications of adverse side effects for approved drugs. These methods provide a
list of potential drug side effect associations that can be used for further studies. Chapter 18 pro-
vides more discussion of the applications of data analytics for pharmaceutical discoveries including
drug-target interaction prediction and pharmacovigilance.

1.4.4 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) are computer systems designed to assist clinicians
with patient-related decision making, such as diagnosis and treatment [6]. CDSS have become a
crucial component in the evaluation and improvement of patient treatment since they have shown to
improve both patient outcomes and cost of care [35]. They can help in minimizing analytical errors
by notifying the physician of potentially harmful drug interactions, and their diagnostic procedures
have been shown to enable more accurate diagnoses. Some of the main advantages of CDSS are
their ability in decision making and determining optimal treatment strategies, aiding general health
policies by estimating the clinical and economic outcomes of different treatment methods and even
estimating treatment outcomes under certain conditions. The main reason for the success of CDSS
are their electronic nature, seemless integration with clinical workflows, providing decision support
at the appropriate time/location. Two particular fields of healthcare where CDSS have been ex-
tremely influential are pharmacy and billing. CDSS can help pharmacies to look for negative drug
interactions and then report them to the corresponding patient’s ordering professional. In the billing
departments, CDSS have been used to devise treatment plans that provide an optimal balance of
patient care and financial expense [9]. A detailed survey of different aspects of CDSS along with
various challenges associated with their usage in clinical practice is discussed in Chapter 19.
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1.4.5 Computer-Aided Diagnosis

Computer-aided diagnosis/detection (CAD) is a procedure in radiology that supports radiolo-
gists in reading medical images [13]. CAD tools in general refer to fully automated second reader
tools designed to assist the radiologist in the detection of lesions. There is a growing consensus
among clinical experts that the use of CAD tools can improve the performance of the radiologist.
The radiologist first performs an interpretation of the images as usual, while the CAD algorithms
is running in the background or has already been precomputed. Structures identified by the CAD
algorithm are then highlighted as regions of interest to the radiologist. The principal value of CAD
tools is determined not by its stand-alone performance, but rather by carefully measuring the incre-
mental value of CAD in normal clinical practice, such as the number of additional lesions detected
using CAD. Secondly, CAD systems must not have a negative impact on patient management (for
instance, false positives that cause the radiologist to recommend unnecessary biopsies and follow-
ups).

From the data analytics perspective, new CAD algorithms aim at extracting key quantitative
features, summarizing vast volumes of data, and/or enhancing the visualization of potentially ma-
lignant nodules, tumors, or lesions in medical images. The three important stages in the CAD data
processing are candidate generation (identifying suspicious regions of interest), feature extraction
(computing descriptive morphological or texture features), and classification (differentiating can-
didates that are true lesions from the rest of the candidates based on candidate feature vectors).
A detailed overview of some CAD approaches to different diseases emphasizing the specific chal-
lenges in diagnosis and detection, and a series of case studies that apply advanced data analytics in
medical imaging applications is presented in Chapter 20.

1.4.6 Mobile Imaging for Biomedical Applications

Mobile imaging refers to the application of portable computers such as smartphones or tablet
computers to store, visualize, and process images with and without connections to servers, the In-
ternet, or the cloud. Today, portable devices provide sufficient computational power for biomedical
image processing and smart devices have been introduced in the operation theater. While many tech-
niques for biomedical image acquisition will always require special equipment, the regular camera
is one of the most widely used imaging modality in hospitals. Mobile technology and smart devices,
especially smartphones, allows new ways of easier imaging at the patient’s bedside and possess the
possibility to be made into a diagnostic tool that can be used by medical professionals. Smartphones
usually contain at least one high-resolution camera that can be used for image formation. Several
challenges arise during the acquisition, visualization, analysis, and management of images in mo-
bile environments. A more detailed discussion about mobile imaging and its challenges is given in
Chapter 21.

1.5 Resources for Healthcare Data Analytics

There are several resources available in this field. We will now discuss the various books, jour-
nals, and organizations that provide further information on this exciting area of healthcare infor-
matics. A classical book in the field of healthcare informatics is [39]. There are several other books
that target a specific topic of work (in the context of healthcare) such as information retrieval [10],
statistical methods [38], evaluation methods [8], and clinical decision support systems [6, 9].

There are a few popular organizations that are primarily involved with medical informatics re-
search. They are American Medical Informatics Association (AMIA) [49], International Medical
Informatics Association (IMIA) [50], and the European Federation for Medical Informatics (EFMI)
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[51]. These organizations usually conduct annual conferences and meetings that are well attended
by researchers working in healthcare informatics. The meetings typically discuss new technologies
for capturing, processing, and analyzing medical data. It is a good meeting place for new researchers
who would like to start research in this area.

The following are some of the well-reputed journals that publish top-quality research works in
healthcare data analytics: Journal of the American Medical Informatics Association (JAMIA) [41],
Journal of Biomedical Informatics (JBI) [42], Journal of Medical Internet Research [43], IEEE
Journal of Biomedical and Health Informatics [44], Medical Decision Making [45), International
Journal of Medical Informatics (IJMI) [46], and Artificial Intelligence in Medicine [47]. A more
comprehensive list of journals in the field of healthcare and biomedical informatics along with
details is available here [48].

Due to the privacy of the medical data that typically contains highly sensitive patient informa-
tion, the research work in the healthcare data analytics has been fragmented into various places.
Many researchers work with a specific hospital or a healthcare facility that are usually not willing
to share their data due to obvious privacy concerns. However, there are a wide variety of public
repositories available for researchers to design and apply their own models and algorithms. Due
to the diversity in healthcare research, it will be a cumbersome task to compile all the healthcare
repositories at a single location. Specific health data repositories dealing with a particular healthcare
problem and data sources are listed in the corresponding chapters where the data is discussed. We
hope that these repositories will be useful for both existing and upcoming researchers who do not
have access to the health data from hospitals and healthcare facilities.

1.6 Conclusions

The field of healthcare data analytics has seen significant strides in recent years because of hard-
ware and software technologies, which have increased the ease of the data collection process. The
advancement of the field has, however, faced a number of challenges because of its interdisciplinary
nature, privacy constraints in data collection and dissemination mechanisms, and the inherently un-
structured nature of the data. In some cases, the data may have very high volume, which requires
real-time analysis and insights. In some cases, the data may be complex, which may require special-
ized retrieval and analytical techniques. The advances in data collection technologies, which have
enabled the field of analytics, also pose new challenges because of their efficiency in collecting
large amounts of data. The techniques used in the healthcare domain are also very diverse because
of the inherent variations in the underlying data type. This book provides a comprehensive overview
of these different aspects of healthcare data analytics, and the various research challenges that still
need to be addressed.
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2.1 Introduction

An Electronic Health Record (EHR) is a digital version of a patient’s medical history. It is a
longitudinal record of patient health information generated by one or several encounters in any
healthcare providing setting. The term is often used interchangeably with EMR (Electronic Med-
ical Record) and CPR (Computer-based Patient Record). It encompasses a full range of data rel-
evant to a patient’s care such as demographics, problems, medications, physician’s observations,
vital signs, medical history, immunizations, laboratory data, radiology reports, personal statistics,
progress notes, and billing data. The EHR system automates the data management process of com-
plex clinical environments and has the potential to streamline the clinician’s workflow. It can gener-
ate a complete record of a patient’s clinical encounter, and support other care-related activities such
as evidence-based decision support, quality management, and outcomes reporting. An EHR sys-
tem integrates data for different purposes. It enables the administrator to utilize the data for billing
purposes, the physician to analyze patient diagnostics information and treatment effectiveness, the
nurse to report adverse conditions, and the researcher to discover new knowledge.

EHR has several advantages over paper-based systems. Storage and retrieval of data is obviously
more efficient using EHRs. It helps to improve quality and convenience of patient care, increase
patient participation in the healthcare process, improve accuracy of diagnoses and health outcomes,
and improve care coordination. It also reduces cost by eliminating the need for paper and other
storage media. It provides the opportunity for research in different disciplines. In 2011, 54% of
physicians had adopted an EHR system, and about three-quarters of adopters reported that using an
EHR system resulted in enhanced patient care [1].

Usually, EHR is maintained within an institution, such as a hospital, clinic, or physician’s office.
An institution will contain the longitudinal records of a particular patient that have been collected
at their end. The institution will not contain the records of all the care provided to the patient at
other venues. Information regarding the general population may be kept in a nationwide or regional
health information system. Depending on the goal, service, venue, and role of the user, EHR can
have different data formats, presentations, and level of detail.

The remainder of this chapter is organized as follows. Section 2.2 discusses a brief history
of EHR development and Section 2.3 provides the components of EHRs. Section 2.4 presents a
comprehensive review of existing coding systems in EHR. The benefits of using EHRs are explained
in more detail in Section 2.5, while the barriers for the widespread adoption of EHRs are discussed
in Section 2.6. Section 2.7 briefly explains some of the challenges of using EHR data. The prominent
phenotyping algorithms are described in Section 2.8 and our discussion is concluded in Section 2.9.

2.2 History of EHR

The first known medical record can be traced back to the fifth century B.C. when Hippocrates
prescribed two goals for medical records [2]:

* A medical record should accurately reflect the course of disease.
¢ A medical record should indicate the probable cause of disease.

Although these two goals are still appropriate, EHR has a lot more to offer. Modern EHR can
provide additional functionalities that could not be performed using paper-based systems.
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Modern-day EHR first began to appear in the 1960s. Early EHRs were developed due to physi-
cians’ concerns about the increasing complexity and size of medical data. Data retrieval was much
faster using digital format. In 1967, Latter Day Saints Hospitals in Utah started using Health Eval-
uation through Logical Programming (HELP) software. HELP is notable for its pioneering logical
decision support features. In 1969, Harvard Medical School developed its own software Computer
Stored Ambulatory Record (COASTER) and Duke University began to develop The Medical Record
(TMR).

In 1970, Lockheed unveiled the Technicon Medical Information Management System/ Techni-
con Data System (TDS). It was implemented at El Camion Hospital in California. It came with a
groundbreaking Computer Provided Order Entry (CPOE) system. In 1979, Judith Faulkner, a com-
puter programmer established Human Services Computing Inc., which developed the Chronicles
data repository. The company later became Epic Systems. It was initially based on a single longi-
tudinal patient record and designed to handle enterprise-wide data from inpatient, ambulatory, and
payer environments.

In 1985, The Department of Veterans Affairs launched the automated data processing system,
Decentralized Hospital Computer Program (DHCP), which includes extensive clinical and admin-
istrative capabilities within its medical facilities. It received the Smithsonian Award for best use
of Information Technology in Medicine in 1995. The current variant of DHCP is VistA (Veterans
Health Information Systems and Technology Architecture). By providing care to over 8 million vet-
erans operating in 163 hospitals, 800 clinics, and 135 nursing homes, VistA manages one of the
largest medical system in the United States [4]. In 1983, Epic Systems launched a patient schedul-
ing software program called Cadence. This application helped clients to improve resource utiliza-
tion and manage patient access. In 1988, Science Application International Corporation (SAIC)
secured a $1.02 billion dollar contract from the U.S. Government to develop a composite healthcare
system. In 1992, Epic Systems introduced the first Windows-based EHR software named Epic-
Care. Allscripts released the first software with an electronic prescribing solution for physicians in
1998.

From 2000 and beyond, EHR software has been increasingly trying to incorporate other func-
tionalities to become an interactive companion for physicians and professionals. In January 2004,
President George W. Bush launched an initiative for the widespread adaptation of EHRs within the
next 10 years. He said in his State of the Union Address, “By computerizing health records, we can
avoid dangerous medical mistakes, reduce costs, and improve care” [5]. In January 2009, in a speech
at George Mason University, President Barack Obama said “[EHRs] will cut waste, eliminate red
tape, and reduce the need to repeat expensive medical tests. It just won’t save billions of dollars
and thousands of jobs — it will save lives by reducing the deadly but preventable medical errors that
pervade our health care system” [6]. The data from a National Ambulatory Medical Care Survey
(NAMCS) and Physicians Workflow mail survey shows that in the year 2011, 54% of the physicians
had adopted an EHR system. About three-quarters of the adopters reported that their system meets
the federal “meaningful use” criteria. Almost half (47%) of the physicians said they were some-
what satisfied, and 38% reported being very satisfied with their system. About three-quarters of the
adopters reported that EHR has resulted in enhanced patient care. Nearly one-half of physicians
without an EHR system at the time of the survey said they had plans for purchasing one within the
next year [1].
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2.3 Components of EHR

The main purpose of EHR is to support clinical care and billing. This also includes other func-
tionalities, such as improving the quality and convenience of patient care, improving the accuracy
of diagnoses and health outcomes, improving care coordination and patient participation, improving
cost savings, and finally, improving the general health of the population. Most modern EHR systems
are designed to integrate data from different components such as administrative, nursing, pharmacy,
laboratory, radiology, and physician’ entries, etc. Electronic records may be generated from any de-
partment. Hospitals and clinics may have a number of different ancillary system providers; in that
case, these systems are not necessarily integrated to the main EHR system. It is possible that these
systems are stand-alone, and different standards of vocabularies have been used. If appropriate inter-
faces are provided, data from these systems can be incorporated in a consolidated fashion; otherwise
a clinician has to open and log into a series of applications to get the complete patient record. The
number of components present may also vary depending on the service provided. Figure 2.1 shows
different components of an EHR system.

2.3.1 Administrative System Components

Administrative data such as patient registration, admission, discharge, and transfer data are key
components of the EHR. It also includes name, demographics, employer history, chief compli-
ant, patient disposition, etc., along with the patient billing information. Social history data such
as marital status, home environment, daily routine, dietary patterns, sleep patterns, exercise pat-
terns, tobacco use, alcohol use, drug use and family history data such as personal health history,
hereditary diseases, father, mother and sibling(s) health status, age, and cause of death can also be
a part of it. Apart from the fields like “comments” or “description,” these data generally contain
<name-value> pairs. This information is used to identify and assess a patient, and for all other
administrative purposes. During the registration process, a patient is generally assigned a unique
identification key comprising of a numeric or alphanumeric sequence. This key helps to link all the
components across different platforms. For example, lab test data can create an electronic record;
and another record is created from radiology results. Both records will have the same identifier key
to represent a single patient. Records of a previous encounter are also pulled up using this key. It is
often referred to as the medical record number or master patient index (MPI). Administrative data
allows the aggregation of a person’s health information for clinical analysis and research.

2.3.2 Laboratory System Components & Vital Signs

Generally, laboratory systems are stand-alone systems that are interfaced to the central EHR sys-
tem. It is a structured data that can be expressed using standard terminology and stored in the form of
aname-value pair. Lab data plays an extremely important part in the clinical care process, providing
professionals the information needed for prevention, diagnosis, treatment, and health management.
About 60% to 70% of medical decisions are based on laboratory test results [7]. Electronic lab data
has several benefits including improved presentation and reduction of error due to manual data en-
try. A physician can easily compare the results from previous tests. If the options are provided, he
can also analyze automatically whether data results fall within normal range or not.

The most common coding system used to represent the laboratory test data is Logical Obser-
vation Identifiers Names and Codes (LOINC). Many hospitals use their local dictionaries as well
to encode variables. A 2009-2010 Vanderbilt University Medical Center data standardization study
found that for simple concepts such as “weight” and “height,” there were more than five internal rep-
resentations. In different places there are different field names for the same feature and the values
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FIGURE 2.1: Various components of EHR.

are stored with different units (e.g., kilograms, grams, and pounds for weight; centimeters, meters,
inches, and feet for height).

Vital signs are the indicators of a patient’s general physical condition. It includes pulse, respi-
ratory rate, blood pressure, body temperature, body mass index (BMI), etc. A typical EHR system
must provide the option to accommodate these kinds of variables.

2.3.3 Radiology System Components

In hospital radiology departments, radiology information systems (RIS) are used for managing
medical imagery and associated data. RIS is the core database to store, manipulate, and distribute pa-
tient radiological data. It uses Current Procedural Terminology (CPT) or International Classification
of Diseases (ICD) coding systems to identify procedures and resources. Generally, an RIS consists
of patient tracking, scheduling, result reporting, and image tracking capabilities. RIS is usually used
along with a picture archiving communications system (PACS), which is a medical technology for
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providing economical storage and convenient access to the digital images. An RIS can generate an
entire patient’s imagery history and statistical reports for patients or procedures. Although many
hospitals are using RIS, it may or may not be integrated with the central EHR system.

2.3.4 Pharmacy System Components

In hospitals and clinics, the pharmacy department’s responsibility is to maintain the inventory,
prescription management, billing, and dispensing medications. The pharmacy component in EHR
will hold the complete medication history of a patient such as drug name, dosage, route, quantity,
frequency, start and stop date, prescribed by, allergic reaction to medications, source of medication,
etc. Pharmacists serve an important public health role by administering immunizations and must
have the capabilities to document these services and share this information with other healthcare
providers and public health organizations. They assure safe and effective medication and support-
ing patient-centered care. Pharmacies are highly automated in large hospitals. Again, it may be
independent of central EHRs. The Food and Drug Administration (FDA) requires all the drugs to
be registered and reported using a National Drug Code (NDC). Coding systems used are NDC,
SNOMED, and RxNorm.

2.3.5 Computerized Physician Order Entry (CPOE)

Computerized Physician Order Entry (CPOE) is a very important part of EHRs. It is a system
that allows a medical practitioner to enter medical orders and instructions for the treatment of a
patient. For example, a doctor can electronically order services to laboratory, pharmacy, and radi-
ology services through CPOE. Then it gets propagated over a network to the person responsible
for carrying out these orders. As a digital system, CPOE has the potential to reduce medication-
related errors. It is possible to add intelligent rules for checking allergies, contradictions, and other
alerts. The primary advantages of CPOE are the following: overcomes the issue of illegibility, fewer
errors associated with ordering drugs with similar names, more easily integrated with decision sup-
port systems, easily linked to drug-drug interaction warning, more likely to identify the prescribing
physician, able to link the adverse drug event (ADE) reporting systems, able to avoid medication
errors like trailing zeros, create data that is available for analysis, point out treatment and drug of
choice, reduce under- and overprescribing, and finally, the prescriptions can reach the pharmacy
quicker. While ordering, a professional can view the medical history, current status report from a
different module, and evidence-based clinical guidelines. Thus, CPOE can help in patient-centered
clinical decision support.

If used properly, CPOE decreases delay in order completion, reduces errors related to hand-
writing or transcriptions, allows order entry at point-of-care or off-site, provides error checking for
duplicate or incorrect doses or tests, and simplifies inventory and positing of charges. Studies have
shown that CPOE can contribute to shortened length of stay and reduction of cost [8]. There are
some risks involved in adopting CPOE as well. It may slow down interpersonal communication in
an emergency situation. If each group of professionals (e.g., physicians and nurses) works alone in
their workstations, it may create ambiguity about the instructions. These factors led an increase in
mortality rate by 2.8%—6.5% in the Children’s Hospital of Pittsburgh’s Pediatric ICU when a CPOE
system was introduced [8]. Frequent alerts and warnings may also interrupt workflow. The adapta-
tion rate of CPOE is slow. It may be partly due to physicians’ doubt about the value of CPOE and
clinical decision support.
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2.3.6 Clinical Documentation

A clinical document contains the information related to the care and services provided to the
patient. It increases the value of EHR by allowing electronic capture of clinical reports, patient
assessments, and progress reports. A clinical document may include [9]

Physician, nurse, and other clinician notes

Relevant dates and times associated with the document

The performers of the care described

Flow sheets (vital signs, input and output, and problems lists)
Perioperative notes

Discharge summaries

Transcription document management

Medical records abstracts

Advance directives or living wills

Durable powers or attorney for healthcare decisions

Consents (procedural)

Medical record/chart tracking

Release of information (including authorizations)

Staff credentialing/staff qualification and appointments documentations
Chart deficiency tracking

Utilization management

The intended recipient of the information and the time the document was written

The sources of information contained within the document

Clinical documents are important because documentation is critical for patient care, serves as a
legal document, quality reviews, and validates the patient care provided. Well-documented medical
records reduce the re-work of claims processing, compliance with CMS (Centers for Medicare and
Medicaid Services), Tricare and other payer’s regulations and guidelines, and finally impacts coding,
billing, and reimbursement. A clinical document is intended for better communication with the
providers. It helps physicians to demonstrate accountability and may ensure quality care provided
to the patient. A clinical document needs to be patient centered, accurate, complete, concise, and
timely to serve these purposes.

The clinical document architecture (CDA) [10] is an XML-based electronic standard developed
by the Health Level 7 International (HL7) to define the structure. It can be both read by human eyes
and processed by automatic software.
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2.4 Coding Systems

Standards play an important role in enhancing the interoperability of health information systems
and the purposeful use of EHR systems. Collecting and storing information following standard cod-
ing systems provide better and accurate analysis of the data, seamless exchange of information,
improved workflow, and reduced ambiguity. A complete healthcare system is complex and requires
various EHR products. Different vendors have implemented standards in their own way. This prac-
tice has resulted in a significant variation in the coding practices and implemented methods for
which systems cannot interoperate. To create an interoperable EHR, standardization is critical in
the following four major areas:

* Applications interaction with the users

* System communication with each other

* Information processing and management

» Consumer device integration with other systems and application

Interoperability between the different EHR systems is a crucial requirement in the “meaningful use
of certified EHR technology” to receive incentives. That is why conforming to a standard coding
system is very important. In a practical EHR, we need standards for

¢ Clinical vocabularies
¢ Healthcare message exchanges
* EHR ontologies

There are three organizations mainly responsible for developing the related standards: Health Level
Seven (HL7), Comité Europeen de Normalisation-Technical Committee (CEN-TC), and the Amer-
ican Society of Testing and Materials (ASTM). HL7 develops healthcare-related standards that are
widely used in North America. CEN-TC is a prominent standard developing organization working
in 19 member states in Europe. Both HL7 and CEN-TC collaborate with ASTM. Along with the
standards developed by these organizations, EHR systems must comply with the Health Insurance
Portability and Accountability (HIPAA) Act [11] to conserve the security and privacy of patient
information.

2.4.1 International Classification of Diseases (ICD)

ICD stands for International Classification of Diseases, which is the United Nations-sponsored
World Health Organization’s (WHO) official coding standard for diseases, diagnoses, health man-
agement, and clinical purposes [12]. It first appeared as the International List of Causes of Death
in 1893, adopted by the International Statistical Institute. Since then it has been revised according
to advancements in medical science and healthcare. Since the creation of WHO in 1948, WHO has
maintained ICD. WHO published ICD-6 in 1949, and it was the first coding system in which mor-
bidity was incorporated [13]. It also included mental disorders for the first time. The U.S. Public
Health Services issued International Classification of Diseases, Adapted for Indexing of Hospitals
Records and Operation Classification (ICDA) in 1959. It was revised regularly and used to classify
diseases and mortality until WHO published the ninth revision of ICD.

The 1967 WHO Nomenclature Regulations specified that the member nations should use the
most recent ICD version for mortality and morbidity statistics. Along with the storage and retrieval
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of epidemiological and clinical information, it allows for the compilation of morbidity statistics for
more than 100 WHO member nations. About 70% of the world’s health expenditure in reimburse-
ment and resource allocation is also done using ICD codes [14]. It is used to classify diseases and
related problems, and provides a system of codes for a wide variety of diseases, signs, symptoms,
abnormal findings, complaints, social circumstances, and external causes of injury or disease. It
is the global foundation for providing common language in disease and health-related information
and statistics exchange. ICD is comprehensive and organizes information into standard groups that
allows for the following [15]:

* Easy storage, retrieval, and analysis of health information for evidence-based decision-
making.

» Sharing and comparing health information between hospitals, regions, and countries.

» Data comparison in the same location across different time periods.

24.1.1 ICD-9

ICD ninth revision is the most popular coding system published by WHO in 1978. It was de-
signed to promote comparability of classification, collection, processing, and presentation of mortal-
ity statistics. Its clinical modification, ICD-9-CM, was published by the U.S. Public Health Services
in the following year to meet the statistical needs. The modified version had expanded the number
of diagnostic codes and developed a procedure coding system. It has more than 13,000 codes and
uses more digits representing the codes compared to ICD-9. It is the system that is used to encode
all the diagnoses for healthcare services in the United States. It is maintained by the National Center
for Health Statistics (NCHS) and the Center for Medicare and Medicaid Services (CMS). Both the
departments are part of the federal department of Health and Human Services. The ICD-9-CM code
set is organized in three volumes and consists of tabular lists and alphabetical indices.

e Volume 1: Disease and Injuries Tabular List
* Volume 2: Disease and Injuries Alphabetical Index
* Volume 3: Procedures Tabular List and Alphabetic Index

ICD-9-CM is updated every year to keep up-to-date with medical trends and diseases. NCHS has
the responsibility to update Volumes 1 and 2, and CMS maintains Volume 3. Concerned parties
from both the public and private sectors can propose changes to it. The major updates take effect
on October 1 every year and minor updates occur on April 1. It is a statistical tool that converts the
diagnoses and procedures into number codes. Its primary applications are

* Reporting and research

* Monitoring the quality of patient care
¢ Communication and transactions

¢ Reimbursement

¢ Administrative uses
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24.1.2 ICD-10

The tenth version was endorsed by WHO in 1990 during the 43rd World Health Assembly.
The first full version of ICD-10 was released in 1994. The first step of implementing ICD-10 was
taken by NCHS awarding a contract to the Center for Health Policy Studies (CHPS) to evaluate
ICD-10 for morbidity purposes within the United States. A prototype of clinically modified ICD-10
was developed after a thorough evaluation of ICD-10 by a technical advisory panel. After strong
recommendations, NCHS proceeded with implementing a revised version of ICD-10-CM. During
1995-1996, further work on the enhancement of ICD-10-CM was done incorporating experiences
from ICD-9-CM and through collaborating with many speciality groups like American Association
of Dermatology, American Academy of Neurology, American Association of Oral and Maxillo-
facial Surgeons, American Academy of Orthopedic Surgeons, American Academy of Pediatrics,
American College of Obstetricians and Gynecologists, American Urology Institution, and National
Association of Children hospitals and other related institutions. In 1999, ICD-10 was implemented
in the United States for mortality reporting. Death statistics and data regarding leading causes of
death for the years 1999 and 2000 were published using ICD-10 [16]. In October 2002, ICD-10
was published in 42 languages. In June/July 2003, the American Health Information Management
Association (AHIMA) and American Hospital Association (AHA) jointly conducted a pilot study
to test ICD-10-CM. In their study, they have compared ICD-9-CM and ICD-10-CM and the initial
results indicated ICD-10-CM is an improvement over ICD-9-CM; and ICD-10-CM is more applica-
ble in non-hospital environments compared to ICD-9-CM. Canada, Australia, Germany, and others
countries have their own revision of ICD-10 by adding country specific codes. The revisions are
ICD-10-CA, ICD-10-AM, ICD-10-GM, and so on. The standard for procedure codes ICD-10-PCS
was also developed during the same time frame to replace the Volume 3 of ICD-9-CM. The first
revision of it was released in 1998.

ICD-9-CM is around thirty years old. Many of its categories are full, and there have been
changes in technology. Some of them are also not descriptive enough. A newer coding system is
needed, which would enhance reimbursement, better facilitate evaluation of medical processes and
outcomes, and be flexible enough to incorporate emerging diagnoses and procedures. For exam-
ple, in a scenario where a patient had a fractured left wrist and, after a month a fractured right
wrist, ICD-9-CM cannot identify left versus right; additional information is required. However,
ICD-10-CM can report distinguishing left from right. It can also characterize initial and subsequent
encounters. Further, it can describe routine healing, delayed healing, nonunion, or malunion.

The major differences between ICD-10 and ICD-9-CM are [17]

L]

ICD-10 has 21 categories of diseases; while ICD-9-CM has only 19 categories.
* ICD-10 codes are alphanumeric; while ICD-9-CM codes are only numeric.

* ICD-9-CM diagnoses codes are 3-5 digits in length, while ICD-10-CM codes are 3-7 char-
acters in length.

* Total diagnoses codes in ICD-9-CM is over 14,000; while ICD-10-CM has 68,000.

* ICD-10-PCS procedure codes are 7 characters in length; while ICD-9-CM procedure codes
are 3—4 numbers in length.

¢ ICD-10-PCS total number of codes is approximately 87,000. The number of procedure codes
in ICD-9-CM is approximately 4,400.

The Center for Medicare and Medicaid Services (CMS) guidelines mandated a conversion from
ICD-9-CM to ICD-10-CM by October 1, 2014 in the United States. Adopting a new coding system
will have the following benefits:
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* Improve patient care. The increased detail in the coding system will improve the measurement
of quality, safety, and efficacy of care, which will ultimately lead to improved patient care.

* Determine the severity of illness and prove medical necessity. ICD-10 codes are more granular
and provide option to input the level of sickness along with complexity of disease of a patient
in a code-based system.

* Improve research. The better and more accurate organization of code will be able to more
precisely classify diseases and injuries, and correlate them with the cause, treatment, and out-
come. The collected data will be less ambiguous and such a better-defined structure of the
information will make data analysis easier. Information processing will be easier with newer
coding system and it will open new opportunities for developing an intelligent prediction sys-
tem. It will also allow the United States. to conduct comparative research with other countries
that are already using ICD-10.

e Lend insight to the setting of health policy. With improved data analytics made possible
through ICD-10, policy makers will be able to make informed policy decisions.

 Facilitate improved public health reporting and tracking. The comprehensive coding structure
will allow concerned agencies to track public health risks and trends in greater detail.

* Improve clinical, financial, and administrative performance and resource allocation. The qual-
ity of data can reveal essential insights. It will allow the administrators to track time and work-
force spent for procedures. This will help administrators to allocate resources more efficiently
and achieve positive financial and managerial outcomes.

¢ Increase the accuracy of payment and reduce the risk that claims will be rejected for incorrect
coding. Reduced number of claim denials is expected due to higher specificity of ICD-10. It
will also create a better electronic record of evidence to receive proper payment from govern-
ment payers, insurers, hospitals, health systems, and others.

* Make room for new procedures and techniques. The adaptation ability of ICD-9-CM is lim-
ited, where all the codes are already utilized and has no more room for new codes. The ex-
panded coding of ICD-10 will be able to accommodate new procedures.

* It will have other facilities like reduced hassle of audits, help preventing and detecting health-
care fraud and abuse.

24.1.3 ICD-11

The World Health Organization is currently working on the eleventh revision of ICD. The final
publication of ICD-11 is expected by 2017 [18]. The beta draft [19] was made public online for
initial comments and feedback in May 2012. This development of ICD-11 revisions is taking place
in a web-based platform called iCAT, where all the concerned parties collaborate. For interested
groups or people, there are options to give structured input and field testing of revised editions. It
will be available in multiple languages and free to download for personal use. In ICD-11, disease
entries will have definitions and descriptions of the entry and category in human readable forms.
The current version ICD-10 has only the title headings. There are 2,400 codes in ICD-11 that are
different in the ICD-10 code set, where 1,100 codes are related to external causes and injury [20].

Although the beta version does not support any social network platforms, the support of web-
sites such as Wikipedia, Facebook, Social Reader, LinkedIn, etc. is in the plan. The structure of
definitions and other contents related to diseases and procedures will be defined more accurately. It
will be more compatible with EHRs and other technologies.
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2.4.2 Current Procedural Terminology (CPT)

Current Procedural Terminology (CPT) is a set of medical codes developed, maintained, and
copyrighted by the American Medical Association (AMA). CPT codes are a list of descriptive terms,
guidelines, and identifying codes of medical, surgical, and diagnostic services designed to provide
uniform communication language among physicians, coders, patients, accreditation organizations,
and payers for administrative, financial, and analytic purposes.

It was first created by the AMA in 1966. The first edition contained mainly surgical codes. A
significant development took place for the second edition, which was published in 1970. The sec-
ond edition contained 5 digits instead of 4 digits, and it included lab procedures. In 1983, the Health
Claim Financial Administration (HCFA), which is now known as the Center for Medicine and Med-
icaid Services (CMS), merged its own Common Procedure Coding System (HCPCS) with CPT and
mandated CPT would be used for all Medicare billing. Every year the new version is released in
October. The Healthcare Common Procedures Coding System (HCPCS, often pronounced as ‘“hick
picks”) is another set of codes developed by AMA based on CPT. Although the CPT coding system
is similar to ICD-9 and ICD-10, it describes the treatment and diagnostic services provided while
ICD codes describe the condition or the disease being treated. CPT is used only in inpatient settings.

2.4.3 Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT)

Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) is a comprehensive,
computer-processible, multilingual clinical and healthcare terminology, originally created by the
College of American Pathologists (CAP). SNOMED was started as Systematic Nomenclature of
Pathology (SNOP) in 1965 [21]. It was enhanced further and SNOMED was created in 1974. It
had two major revisions in 1979 and 1993. In 1999, SNOMED-CT was created by the merger of
SNOMED Reference Terminology (SNOMED-RT) developed by the CAP and Clinical Terms Ver-
sion 3 (CTV3) developed by the National Health Services of the United Kingdom. This merged
version was first released in 2002. SNOMED-RT had a vast coverage of medical specialities with
over 12,000 concepts. It was designed for the retrieval and aggregation of healthcare information
produced by multiple organizations or professionals. The strong suit of CTV3 was its coverage
of terminologies for general practice. With more than 200,000 concepts, it was used to store pri-
mary care encounter information and patient-based records [22]. Currently SNOMED has more
than 311,000 concepts with logic-based definitions organized into a hierarchy. In July 2003, the
National Library of Medicine (NLM) on behalf of the U.S. Department of Health and Human Ser-
vices signed a contract with CAP to make SNOMED-CT available for users. Since April 2007, it
has been owned, maintained, and distributed by a newly formed Denmark-based nonprofit organiza-
tion named International Health Terminology Standards Development Organization (IHTSDO) [9].
CAP collaborates with IHTSDO and continues to provide support for SNOMED-CT operations.
More than 50 countries use SNOMED-CT.

SNOMED-CT is a valuable part of EHR. Its main purpose is to encode medical and healthcare-
related concepts and support recording of data. It provides a consistent way to store, index, retrieve,
and aggregate clinical data across different sites. It also helps to organize data in a more meaningful
way and reduce the variability of the data collection and management process. Its extensive coverage
includes clinical findings, symptoms, diagnoses, procedures, body structures, organisms and other
etiologies, substances, pharmaceuticals, devices, and specimens [23].

SNOMED-CT has a logical and semantic relationship between concepts. It has a multiaxial
hierarchy, which allows different level of details of information. Its extensible design permits the
integration of national, local, and vendor specific requirements. It primarily consists of four compo-
nents.

* Concept Codes: numerical codes to identify terms
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* Descriptions: textual descriptions of the concept codes
* Relationships: represents relationships between the concept codes

* Reference Sets: used for grouping concept codes or descriptions. Supports cross mapping to
other classification standards.

SNOMED-CT can be mapped to other well-known terminologies like ICD-9-CM, ICD-10, and
LOINC. Renowned standards like ANSI, DICOM, HL7, and ISO are supported by it. In a joint
project with WHO, it is providing insights for the upcoming ICD-11.

SNOMED-CT has some fundamental differences from ICD. It is mainly a terminology system
while ICD is a classification system. SNOMED-CT is designed to encode and represent data for
clinical purposes [24]. Information coded with ICD is used for statistical analysis, epidemiology,
reimbursement, and resource allocation. SNOMED-CT facilitates the information input into the
EHR and provides standardization for primary data purposes while ICD codes enable retrieval for
secondary data purposes.

2.4.4 Logical Observation Identifiers Names and Codes (LOINC)

Logical Observation Identifiers Names and Codes (LOINC) is a universal code system for iden-
tifying laboratory observations and clinical test results. In response to the demand for electronic
clinical data, it was created in 1994 by Regenstrief Institute Inc., an Indianapolis-based nonprofit
research organization affiliated with Indiana University. It was originally called Laboratory Ob-
servations, Identifiers, Names, and Codes and the development was sponsored by NLM and other
government and private agencies. Original sources of information include the following [25]:

* Silver book for International Union of Pure and Applied Chemistry
¢ International Federation of Clinical Chemistry

» Textbooks of Pathology

L]

EuCliD (European Clinical Database)
» Expertise and work of the LOINC members

LOINC coding system helps to improve the communication of information. In January 2009, Re-
genstrief Institute released a Windows operating system-based mapping software called Regenstrief
LOINC Mapping Assistant (RELMA) where codes can be searched and local codes can be mapped
to a LOINC database. The current version of LOINC is LOINC 2.46 released in December 2013.
With more than 600 new users per month, it has 27,000 users from 158 different countries. LOINC
vocabulary continues to grow till today.

Each LOINC record represents a single test result. A record consists of six fields [26].

* Component: what is measured and evaluated (e.g., glucose, hemoglobin)

 Kind of property: characteristics of the component that is measured (e.g., mass, length, con-
centration, volume, time stamp, etc.)

» Time: observation period of the measurement

» System: the specimen or the substance, in context of which the measurement was done (e.g.,
blood, urine)

¢ Scale: the measurement scale (e.g., quantitative, nominal, ordinal, or narrative)
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¢ Method (optional): the procedure performed for measurement

Certain parameters and descriptors related to the test are explicitly excluded in LOINC from obser-
vation name. They are made as fields of test/observation report message [25]. These fields are

¢ The instrument used for testing

¢ Fine details of the sample or the site of collection
* The priority of the test

* Who verified the result

* Size of the sample

¢ Place of testing

LONIC’s overall organization is divided into four categories: laboratory, clinical, attachments, and
surveys. The laboratory component is further divided into subcategories such as chemistry, hema-
tology, serology, microbiology (includes parasitology and virology), and toxicology. The clinical
attributes are vital signs, hemodynamics, intake/output, EKG, obstetric ultrasound, cardiac echo,
urologic imaging, gastroendoscopic procedures, pulmonary ventilator management, and other clin-
ical observations [25]. It also contains information about nursing diagnoses and nursing interven-
tions.

2.4.5 RxNorm

RxNorm is a drug vocabulary maintained and distributed by the National Library of Medicine
[27]. It assigns standard names to the clinical drugs and drug delivery devices available in the United
States. It is used as a basis for the capture and presentation of drug-related information in EHRs. In
2001, NLM started to develop RxNorm for modeling clinical drugs in the Unified Medical Language
System (UMLS) in consultation with the HL7 vocabulary technical committee and the Veterans
Administration [28]. It was developed to standardize the medication terminology that would reduce
the missed synonymy in clinical drugs [29]. Additional goals were to facilitate electronic capture
of related data, improve interoperability by supporting information exchange across platforms and
systems, develop clinical decision support, and provide opportunity for research.

RxNorm follows a standard for naming drugs. The normalized name of a drug include the fol-
lowing components [28]:

¢ IN: Ingredient of the drug.

* DF: Dose form of the drug.

¢ SCDC: Semantic clinical drug component. It represents the ingredients and strength.
¢ SCDF: Semantic clinical drug form. It represents the ingredient and dose form.

¢ SCD: Semantic clinical drug. It represents the ingredient, strength, and dose form.

e BN: Brand name. This is the formal name for a group of drugs containing a specific active
ingredient.

* SDBC: Semantic branded drug component. It represents the branded ingredient and strength.
¢ SBDF: Semantic branded drug form. It represents the branded ingredient and dose form.

* SDB: Semantic branded drug. It represents the branded ingredient, strength, and dose form.

© 2015 Taylor & Francis Group, LLC



Electronic Health Records: A Survey 35

RxNorm organizes drugs by concept. A concept is a set of names with similar meaning at a specific
level of abstraction. It can distinguish similar drugs from different providers using concepts. The
concepts and relationships between each other form a semantic network.

2.4.6 International Classification of Functioning, Disability, and Health (ICF)

The International Classification of Functioning, Disability, and Health, commonly known as
ICE is a classification of health-related components of function and disability. ICF concentrates on
the functionality and body structure of people with a given health condition or disability rather than
diagnosis or diseases. It does not account for the cause of disability. It is a unified and standard
framework first developed by the World Health Organization (WHO) in 1980 [30]; initially it was
known as International Classification of Impairments, Disabilities, and Handicaps (ICIDH). After
years of coordinated revision, in May 2001, the 191 member states of WHO agreed to adopt ICF
as the standard coding method of functioning and disability. In June 2008, the American Physical
Therapy Association (APTA) joined WHO for endorsing ICF. ICF is the only method of its kind. It
has been developed and tested for applicability in more than 40 countries.

Body functions and disability can be viewed as interactions between health condition and per-
sonal and environmental factors. ICF has mainly two parts: Functioning and disability, and Con-
textual factors. It can be categorized into further subparts. The components of ICF are listed below
[31]:

* Functioning and disability

— Body functions

+ Mental functions
% Sensory functions and pain
* Voice and speech functions

+ Functions of the cardiovascular, hematological, immunological, and respiratory
systems

+ (Genitourinary and reproductive functions
+ Neuromusculoskeletal and movement-related functions
+ Functions of the skin and related structures

— Body structures

% Structure of the nervous system

+ The eye, ear, and related structures

% Structures involved in voice and speech

# Structures related to cardiovascular, immunological, and respiratory systems
+ Structures related to digestive, metabolic, and endocrine systems

% Structures related to genitourinary and reproductive systems

% Structures related to movement

% Skin and related structures

— Activities and participation
+ Learning and applying knowledge
General tasks and demands

*

% Communication
Self-care

*

* Domestic life
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+ Interpersonal interactions and relationships
* Major life areas
+* Community, social, and civic life

¢ Contextual factors

— Environmental factors

*

Products of technology
% Natural environment and human-made changes to the environment
% Support and relationships
+ Attitudes
* Service, systems, and policies
— Personal factors

+ Gender

* Age

* Coping styles

# Social background

+ Education

* Profession

+ Past and current experience
% Qverall behavior pattern

% Character and other factors

ICF complements WHO’s classification of disease scheme, ICD-10. ICD contains diagnosis and
health condition-related information, but not functional status. Together they constitute the WHO
Family of International Classifications (WHO-FIC) shown in Figure 2.2.

Interventions IC D ‘1 0

procedures International
Statistics
Classification of Primary care
Diseases & Related .
Health Problems adaptatlons
Reasons for
encounter
IND ICF Speciality
nomenclature . adaptations
of diseases International

Classification of
Functioning,
Disability,and Health

FIGURE 2.2: WHO Family of International Classifications taken from [32].
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Diagnosis is used to define cause and prognosis of diseases, but by itself it does not predict
service needs, length of hospitalization, or level of care of functional outcomes. Nor can it accurately
provide support for disability. ICF allows incorporating all aspects of a person’s life. The current
ICF creates a more understandable and comprehensive profile of health forming of a person instead
of focusing on a health condition [33]. It is used as a clinical, statistical, research, social policy, and
educational tool. A common misconception about ICF is that it deals with only the disabled people.
However, ICF has some limitations regarding the ability to classify the functional characteristics of
developing children [34].

2.4.7 Diagnosis-Related Groups (DRG)

Diagnosis-Related Groups (DRG) are a patient classification scheme that group related patients
and relate these groups with the costs incurred by the hospital. DRGs divide diagnosis and illness
into 467 categories identified in ICD-9-CM [35]. The 467th group is “ungroupable.” The classifica-
tion is based on a patient’s principal diagnosis, ICD diagnoses, gender, age, sex, treatment proce-
dure, discharge status, and the presence of complications or comorbidities. The goals of developing
DRGs were to reduce healthcare cost, and improve quality of care and efficiency of the hospitals.
DRGs are by far the most important cost control and quality improvement tool developed [36].

It was first created at Yale University with the support from the Health Care Financing Admin-
istration, now known as the Center for Medicine and Medicaid Service (CMS). In 1980, it was first
implemented in a small number of hospitals in New Jersey [37]. It is used to define the reimburse-
ment amount of hospitals from Medicare. Medicare pays hospitals per patient and efficient hospitals
receive better incentives. DRGs help to decide the efficiency of the hospital.

2.4.8 Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS) is a collection of comprehensive biomedical
concepts and ontologies. It was developed by the U.S. National Library of Medicine (NLM) in 1986.
It provides the development of computer-based systems that can behave as through they understand
the biomedical and health concepts [38]. It is intended to be mainly used by medical informat-
ics professionals. NLM maintains and distributes UMLS knowledge sources (database) and related
software tools for developers to build enhanced electronic information system that can create pro-
cess, retrieve, integrate, and/or aggregate health and biomedical-related information. The knowledge
sources of UMLS are as follows [39]:

¢ Metathesaurus

— Source Vocabularies

— Concepts
* Relationships, Attributes

— Semantic Network
— Semantic Types (categories)

— Semantic Relationships
¢ Lexical Resources

— SPECIALIST Lexicon

— Lexical Tools
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Metathesaurus is a very large, multipurpose, and multilingual vocabulary database. It contains health
and biomedical-related concepts of their various names and the relationships among them. It has
126 vocabularies in 17 languages [27]. It clusters similar terms into a concept. The semantic net-
work provides consistent categorization of concepts defined in Metathesaurus. The network contains
information regarding basic semantic types/categories that may be assigned to concepts and rela-
tionships between semantic types. In the semantic network, the semantic types are nodes and the
relationships are links between them. In the current version of semantic network, there are 135 se-
mantic types and 54 relationships [38]. The SPECIALIST Lexicon provides the lexical information
needed for the SPECIALIST natural language processing tool.

2.4.9 Digital Imaging and Communications in Medicine (DICOM)

The Digital Imaging and Communications in Medicine (DICOM) is a medical imaging standard.
It determines the data exchange protocol, digital image format, and file structure for biomedical
images and related information [40]. DICOM was developed by the American College of Radiology
(ACR) and National Electric Manufacturers Association (NEMA). The first version ACR/NEMA
300 was released in 1985. DICOM is generally used in the following application areas [40]

* Network image management

» Network image interpretation management
* Network print management

* Imaging procedure management

* Offline storage media management

DICOM allows the integration of scanners, servers, workstations, printers, and network hardware
into a Picture Archiving and Communication Systems (PACS). It has been extensively used by the
hospitals and other organizations. It provides a widely accepted foundation for medical imaging
standards. It promotes interoperability between radiology systems.

2.5 Benefits of EHR

EHRs are transformational tools. The scope of paper-based systems is severely limited. We
need EHRs to improve the quality of patient care and increase productivity and efficiency. In terms
of the overall management and costs, EHRs are a better choice. They also help in complying with
government regulations and other legal issues. The benefits of EHRs are described in this section.

2.5.1 Enhanced Revenue

An EHR system can capture the charges and bills for clinical services provided, laboratory tests,
and medications more accurately. Utilization of electronic systems decrease billing errors [41]. They
also provide a better documentation opportunity for these services that can be used to resolve fi-
nancial disputes. Better management of information yield more accurate evaluation and increase
reimbursements. According to experts, due to inaccurate coding systems, 3%—15% of a healthcare
provider’s total revenue is lost [42]. An EHR system can be programmed or configured to generate
alerts for both patients and doctors when a healthcare service is due. This can aid better manage-
ment of collecting revenue. It can be used to garner more revenues by incorporating services like
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telemedicine, e-visits, virtual office visits, etc. It is true that all kinds of services are not possible
over the Internet or telephone network, but not all diseases will require extensive diagnosis and lab-
oratory testing. Diseases commonly treated through telemedicine include acne, allergies, cold and
flu, constipation, diabetes, fever, gout, headache, joint aches and pains, nausea and vomiting, pink
eye, rashes, sinus infection, sore throat, sunburn and urinary tract infections, anxiety and depression,
etc.

2.5.2 Averted Costs

After adopting electronic systems, some costs associated with the previous way of operating a
business are eliminated. The Center for Information Technology leadership suggested that the use
of EHRs will save a total of $44 billion each year [43]. Adopting EHR has the following averted
costs [44].

* Reduced paper and supply cost: To maintain paper-based health records an organization
will require a lot of paper, printing materials, and other supplies. Adopting EHR will reduce
these costs. After adopting EHRs, one organization estimated a reduction of 90% of paper
usage within a few months [45].

e Improved utilization of tests: In electronic systems, test results are better organized. A
healthcare staff no longer needs to carry the reports from one place to another. Identifying
redundancy or unnecessary tests is easier. This can reduce the loss of information and ensure
improved utilization of tests. A study by Wang et al. [41] reports better utilization of radiology
tests after adopting EHRs.

* Reduced transcription costs: An EHR can reduce transcription costs for manual administra-
tive processes [46, 47]. It utilizes structured flow sheets, clinical templates, and point-of-care
documentation. In a typical outpatient setting, physicians generate about 40 lines of tran-
scription per encounter. For a group of three practicing physicians, treating 12,000 patients
annually at the cost of $0.11 for each transcription line results in over $50,000 per year [46].
A study of fourteen solo or small-group primary care practices in twelve U.S. states reports
the median transcription cost saving to be $10,800, where a minimum saving was $8,500
and a maximum was $12,000 for the year 20042005 [47]. Other related research work also
describes saving $1,000-$3,000 per physician, per month [48].

* Improved productivity: EHR helps to improve workflows by utilizing resources more ef-
ficiently and reducing redundancies. As a result, the overall productivity of individuals in-
creases.

¢ Better availability of information and elimination of chart: In EHR, all the charts are in
digital format. It eliminates the need to pull, route, and re-file paper charts [46]. A significant
amount of effort is spent on creating, filing, searching, and transporting paper charts [49]. A
study estimated that the elimination of paper charts can save $5 per chart pull [41]. It is also
comparatively easier to manage digital charts.

* Improved clinician satisfaction: Electronic technology can save time by reducing the pa-
perwork burden, which can create additional time for patient encounters and delivery of care
[3]. A study reports the use of EHR has reduced the physician’s office visit time by 13%
and a nurse’s pre-exam interview time by 1 minute [50]. This can improve satisfaction for
professionals, which can indirectly enhance revenue.
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2.5.3 Additional Benefits
EHR offers many additional benefits that are discussed in more detail below.

* Improved accuracy of diagnosis and care: EHR provides comprehensive and accurate pa-
tient information to physicians that can help to quickly and systematically identify the correct
problem to treat. EHRs do not just contain the patient information; they have the capability to
perform computation and make suggestions. They can also present comparative results of the
standard measurements. A U.S. national survey of doctors demonstrates the following [51]:

— 94% of the providers report EHR makes records readily available at the point of care.
— 88% report that EHR produces clinical benefits for their practice.
— 75% report that EHR allowed them to deliver better patient care.

The gathered information can guide a physician in the emergency department to take prudent
and safer actions. Such services are unimaginable with paper-based systems. Diagnostic er-
rors are difficult to detect and can be fatal to a patient. A new study suggests that EHR can
help to identify potential diagnostic errors in primary care by using certain types of queries
(triggers) [52].

* Improved quality and convenience of care: EHRs have the potential to improve the qual-
ity of care by embedding options such as Clinical Decision Support (CDS), clinical alerts,
reminders, etc. Research suggests that EHRs are linked to better infection control [53], im-
proved prescribing practices [12], and improved disease management [42] in hospitals. In
such applications, convenience is also an important measure. EHRs greatly reduce the need
for patients to fill out similar (or even sometimes the same) forms at each visit. Patients can
have their e-prescriptions ready even before they leave the facility and can be electronically
sent to a pharmacy. Physicians and staff can process claims insurance immediately. Following
are the results of a study on the effects of e-prescribing reports [54].

92% patients were happy with their doctor using e-prescribing.

90% reported rarely or only occasionally having prescriptions not ready after going to
the pharmacy.

76% reported e-prescribing made obtaining medications easier.

— 63% reported fewer medication errors.

* Improved patient safety: Just like improving the quality of care, clinical decision support
systems (CDSS) and computerized physician order entry (CPOE) have the potential to im-
prove patient safety. Medication errors are common medical mistakes and in the United States
it is responsible for the death of a person every day on average as well as injuring more than a
million annually [55]. Research shows that utilization of CPOE can reduce medication errors
[56, 57]. Medication errors can occur at any stage of the medication administration process
from a physician ordering the drug, followed by the dispensing of the drug by the pharma-
cist, and finally the actual administration of the drug by the nurse. CPOE is a technology
that allows physicians to act on a computerized system that introduces structure and control.
Along with patient information, EHR holds the medication records for a patient. Whenever
a new medication is prescribed, it can check for potential conflicts and allergies related to
the particular medication and alert the physician. The system also can provide the chemi-
cal entities present in the drug and cross-reference allergies, interactions, and other possible
problems related to the specific drug. Introducing technologies such as Barcode Medication
Administration can make the system even more accurate. The Institute of Medicine (IOM)
recommends CPOE and CDS as main information technology mechanisms for increasing
patient safety in the future [58].
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e Improved patient education and participation: In an EHR system, certain features can
provide simplified patient education [42]. EHRs can be used by the provider as a tool to
illustrate procedures and explain a patient’s conditions. It can increase a patient’s participation
by offering follow-up information, self-care instructions, reminders for other follow-up care,
and links to necessary resources. Information technology affects every part of our life. In this
digital era, patients may feel more comfortable with an electronic system.

e Improved coordination of care: EHRs are considered essential elements of care coordi-
nation. The National Quality Forum defines care coordination as the following [59]: “Care
coordination is a function that helps ensure that the patient’s needs and preferences for health
services and information sharing across people, functions, and sites are met over time. Coordi-
nation maximizes the value of services delivered to patients by facilitating beneficial, efficient,
safe and high-quality patient experiences and improved healthcare outcomes.” For a patient
with multiple morbidities, a physician is responsible for providing primary care services and
coordinating the actions of multiple subspecialists [60]. According to a Gallup poll [61], it is
a common scenario for older patients to have multiple doctors: no physician 3%, one physi-
cian 16%, two physicians 26%, three physicians 23%, four physicians 15%, five physicians
6%, and six or more physicians 11%. EHRs allow all clinicians to document services provided
and access up-to-date information about their patient. It streamlines the transition process and
knowledge sharing between different care settings. This facilitates an improved level of com-
munication and coordination [62]. Research suggests that the clinicians having 6+ months use
of EHRSs reported better accessing and completeness of information than clinicians without
EHRs. Clinicians having EHRs have also reported to be in agreement on treatment goals with
other involved clinicians [63].

* Improved legal and regulatory compliance: As organizations develop their systems, it is
important to understand and comply with many federal, state, accreditation, and other reg-
ulatory requirements. A health record is the most important legal and business record for a
healthcare organization. The use of an EHR system will provide more security and confiden-
tiality of a patient’s information and thus, comply with regulations like HIPAA, Consumer
Credit Act, etc. Moreover, the Center for Medicare and Medicaid Services (CMS) has fi-
nancial incentive programs for hospitals regarding the meaningful use of health information
technology. To receive the financial reimbursement, professionals have to meet a certain cri-
teria and can get up to $44,000 through Medicare EHR Incentive Program and up to $63,750
through the Medicaid EHR Incentive Program [64]. Adaptation of certified EHR can help
providers get reimbursed.

* Improved ability to conduct research and surveillance: In conjunction with the direct use
of EHR in primary patient care, there is an increasing recognition that secondary use of EHR
data can provide significant insights [65]. Using quantitative analysis of functional values, it
has the potential to identify abnormalities and predict phenotypes. Pakhomov et al. demon-
strated the use of text processing and NLP to identify heart failure patients [66]. EHR data can
be used to predict survival time of patients [67]. Data from different EHRs can be integrated
into a larger database and geo-location specific surveillance is also possible.

* Improved aggregation of data and interoperability: Standards play a crucial role in data
aggregation and interoperability between different systems. EHRs maintain standard proce-
dure and follow defined coding system while collecting data. This accommodates easier ag-
gregation of data and greater interoperability, which offer the following benefits [68].

— Manage increasingly complex clinical care

— Connect multiple locations of care delivery
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Support team-based care

Deliver evidence-based care

Reduce errors, duplications, and delay

Support ubiquitous care

— Empower and involve citizens

Enable the move to the Personal Health Paradigm

Underpin population health and research

Protect patient privacy

We need high-quality aggregated data from multiple sources in order to make evidence-
based decisions. The level of achievable interoperability using EHRs is unthinkable from
paper-based systems. The American Medical Association recognizes that enhanced interop-
erability of EHRs will further help to attain the nation’s goal of a high-performing healthcare
system.

e Improved business relationships: A healthcare provider organization equipped a with su-
perior EHR system can be in a better bargaining position with insurers and payers compared
with less equipped ones. The next generation of business professionals will expect and de-
mand a state-of-the-art information healthcare technology system.

* Improved reliability: Data is more reliable in a digital format. Due to the reduction of storage
costs, having multiple copies of data is possible.

2.6 Barriers to Adopting EHR

Despite of having great potential of EHRs in medical practice, the adoption rate is quite slow
and faces a range of various obstacles. Many other developed countries are doing far better than
the United States. Four nations (United Kingdom, the Netherlands, Australia, and New Zealand)
have almost universal use (each ~90%) of EHRs among the general practitioners. In contrast, the
United States and Canada have only around 10-30% of the ambulatory care physicians using EHRs
[69]. Health informatics has been a high priority in other developed nations, while until recently,
the degree of involvement and investment by the U.S. government in EHRs has not been significant.
Major barriers to adopting EHRs are discussed below.

» Financial barriers: Although there are studies that demonstrate financial savings after adopt-
ing EHRs, the reality is that the EHR systems are expensive. Several surveys report that the
monetary aspect is one of the major barriers of adopting EHRs [70, 71, 72, 73, 74, 75, 76].
There are mainly two types of financial costs, start-up and ongoing. A 2005 study suggests
that the average initial cost of setting up an EHR is $44,000 (ranging from a minimum of
$14,000 to a maximum of $63,000) and ongoing costs average about $8,500 per provider per
year [47]. Major start-up costs include purchasing hardware and software. In addition, a sig-
nificant amount of money is also required for system administration, control, maintenance,
and support. Long-term costs include monitoring, modifying, and upgrading the system as
well as storage and maintenance of health records. Besides, after the substantial amount of
investment, physicians are worried that it could take up to several years for the return on the
investment.
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An EHR is not the only electronic system that exists in any healthcare provider like practice
management. There might be other old systems that also need integration into the new system.
It is important that an EHR system is integrated into other systems, and this integration can
sometimes be very expensive. Surveys show that due to the high financial investment required,
EHR adaptation was far higher in large physician practices and hospitals [77].

* Physician’s resistance: To adopt EHRs, physicians have to be shown that new technology
can return financial profits, saves time, and is good for their patients’ well-being. Although
research-based evidence is available, it is difficult to provide concrete proof of those benefits.
As given in a report by Kemper et al. [76], 58% of physicians are without any doubt that EHR
can improve patient care or clinical outcomes. Finally, adopting EHRs in a medical practice
will significantly change the work processes that physicians have developed for years.

Besides, physicians and staffs might have insufficient technical knowledge to deal with EHRs,
which leads them to think EHR systems are overly complex. Many physicians complain about
poor follow-up services regarding technical issues and a general lack of training and support
from EHR system vendors [72]. A study reports that two-thirds of physicians expressed in-
adequate technical support as a barrier to adopting EHRs [75]. Some physicians are also
concerned about the limitation of EHR capabilities. Under certain circumstances or as time
passes, the system may no longer be useful [71, 74]. Besides, all physicians do not perform
the same operations. EHR systems have to be customizable to best serve each purpose. Sur-
veys suggest that one of the reasons for not adopting EHRs is that the physicians cannot find
a system that meets their special requirements [71, 72, 73, 75, 78, 76]. However, an increased
effort and support from vendors may play a role in motivating physicians towards adopting
EHRs.

* Loss of productivity: Adoption of an EHR system is a time-consuming process. It requires
a notable amount of time to select, purchase, and implement the system into clinical practice.
During this period physicians have to work at a reduced capacity. Also, a significant amount
of time has to be spent on learning the system. The improvement will depend on the quality
of training, aptitude, etc. The fluent workflow will be disrupted during the transition period,
and there will be a temporary loss of productivity [79].

 Usability issues: EHR software needs to be user-friendly. The contents of the software must
be well-organized so that a user can perform a necessary operation with a minimal number
of mouse clicks or keyboard actions. The interface of software workflow has to be intuitive
enough. In terms of usability, a comprehensive EHR system may be more complex than ex-
pected. It has to support all the functionalities in a provider’s setting. There might be a number
of modules and submodules, so the user might get lost and not find what he is looking for. This
has the potential to hamper clinical productivity as well as to increase user fatigue, error rate,
and user dissatisfaction. Usability and intuitiveness in the system do not necessarily correlate
to the amount of money spent. The Healthcare Information and Management Systems Soci-
ety (HIMSS) has an EHR usability task force. A 2009 survey by the task force reported 1,237
usability problems, and the severity of 80% of them was rated “High” or “Medium” [80].
Apart from the workflow usability issue, other related issues are configuration, integration,
presentation, data integrity, and performance. The task force defined the following principles
to follow for effective usability [81]: simplicity, naturalness, consistency, minimizing cogni-
tive load, efficient interactions, forgiveness and feedback, effective use of language, effective
information presentation, and preservation of context.

e Lack of standards: Lack of uniform and consistent standards hinders the EHR adoption.
Standards play an integral role in enabling interoperability. CMS reimbursement for mean-
ingful use requires EHR systems to demonstrate the ability to exchange information. Many
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of the currently used systems have utility only for certain specific circumstances. Different
vendors have developed systems in different programming languages and database systems.
They do not have any defined best practice or design patterns. This makes the data exchange
difficult or impossible between the systems [73, 74, 78]. This lack of standardization limits
the proliferation of EHRs [82]. While large hospital systems have moved to EHRs, many
others are skeptical about the available systems. They fear that the EHR software they buy
now might not work with standards adopted by the healthcare industry or mandated by the
government later on.

e Privacy and security concerns: Health records contain personal, diagnostics, procedures,
and other healthcare related sensitive information. Due to the immense importance of this
information, an EHR system may be subjected to attack. Some of the medical diagnoses are
considered socially stigmatized, like sexually transmitted disease. Some information relates
to direct life threats, like allergies. Employers as well as insurance companies may be inter-
ested to know more about a patient to make unethical decisions whether to cover a patient
and/or his specific diagnosis. It can also influence some of the hiring decisions. EHRs contain
information like social security numbers, credit card numbers, telephone numbers, home ad-
dresses, etc., which makes EHRs attractive target for attackers and hackers. A patient might
even be motivated to alter his or her medical records to get worker’s compensation or to obtain
access to narcotics. Therefore, it is important that the privacy and security of EHRs are well
maintained. The most used certification for privacy and security is given by the Certification
Commission for Healthcare Information Technology (CCHIT). The CCHIT website claims
that by mid-2009, 75% of EHR products in the marketplace were certified [83]. In addition
to that, the Health Information Technology for Economic and Clinical Health (HITECH) Act
introduced a new certification process sponsored by the Office of the National Coordina-
tion for Health Information Technology (ONC) in 2009. In January 2010, the ONC released
the interim final rule that provides an initial set of standards, implementation specifications,
and certification criteria of EHR technology. Its requirement includes database encryption,
encryption of transmitted data, authentication, data integrity, audit logs, automatic log off,
emergency access, access control, and account of HIPPA release of information [84]. Physi-
cians doubt the level of security of patients’ information and records. According to Simon
et al. [74], physicians are more concerned about this issue than patients. The inappropri-
ate disclosure of information might lead to legal consequences. Testing the security of EHR
products, a group of researchers showed that they were able to exploit a range of common
code-level and design-level vulnerabilities of a proprietary and an open source EHR [85].
These common vulnerabilities could not be detected by 2011 security certification test scripts
used by CCHIT. EHRs pose new challenges and threats to the privacy and security of patient
data. This is a considerable barrier to EHRs proliferation. However, this risk can be mitigated
by proper technology, and maintaining certified standards with the software and hardware
components.

* Legal aspects: Electronic records of medical information should be treated as private and
confidential. Various legal and ethical questions obstruct adoption and use of EHRs. The le-
gal system that relies on the paper-era regulations does not offer proper guidance regarding
the transition to EHRs. EHRs may increase the physicians’ legal responsibility and account-
ability [86]. With computer-based sophisticated auditing, it is easy to track what individuals
have done. The documentation is comprehensive and detailed in EHRs. It can both defend and
expose physicians regarding malpractice. According to a Health Affairs article, malpractice
costs around $55 billion in the United States, which is 2.4% of total healthcare spending [87].
A 2010 research reveals that it was unable to determine whether the use of EHR increases or
decreases malpractice liability overall [86]. HIPAA’s privacy standards also present reason-
able barriers to EHR adaptation.
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2.7 Challenges of Using EHR Data

The primary purpose of EHR data is to support healthcare-related functionalities. As a vast
amount of data is being collected every day, the secondary use of EHR data is gaining increased
attention in research community to discover new knowledge. The main areas of use are clinical
and transitional research, public health, and quality measurement and improvement. Using the EHR
data, we can conduct both patient-oriented and public health research. EHR data can be used for
the early detection of epidemics and spread of diseases, environmental hazards, promotes healthy
behaviors, and policy development. The integration of genetic data with EHRs can open even wider
horizons. But the data does not automatically provide us the knowledge. The quality and accuracy
of the data is an issue to be taken care of. Beyley et al. [88] presents an excellent survey of the
challenges posed by the data quality.

* Incompleteness: Data incompleteness or missingness is a widespread problem while using
EHR data for secondary purpose [88, 89, 90]. Missing data can limit the outcomes to be
studied, the number of explanatory factors to be considered, and even the size of population
included [88]. Incompleteness can occur due to a lack of collection or lack of documentation
[91]. Hersh [92] reports the following reasons for inaccurate reporting by professionals.

Unaware of legal requirements

Lack of knowledge of which diseases are reportable

Do not understand how to report

Assumption that someone else will report

Intentional failure for privacy reasons

A pancreatic malignancies study using ICD-9-CM code at the Columbia University Medical
Center found that 48% of the patients had corresponding diagnoses or disease documenta-
tion missing in their pathology reports [93]. Authors also report a significant amount of key
variables missing (see Table 2.1).

Patients’ irregularity of communicating with the health system can also produce incomplete-
ness. Based on the application in hand, type of data and proportion of data that is missing,
certain strategies can be followed to reduce the missingness of data [91].

TABLE 2.1: Percentage of Incompleteness of Variables in a Pancreatic Malignancies Study

Variables Endocrine
Necrosis 20%
Number of Mitoses 21%
Lymph Node Metastasis 28%
Perineural/Lymphovascula Invasion | 15%
Differentiation 38%

Size 6%
Chronic Pancreatitis 14%
Smoking—Alcohol 27%—-29%
History of Other Cancer 35%
Family History of Cancer 39%
Tumor Markers 46%

Source: Taken from Botsis et al. [93].
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* Erroneous Data: EHR data can be erroneous as well. Data is collected from different service
areas, conditions, and geographic locations. Data is collected by busy practitioners and staff.
Therefore, the data can be erroneous due to human errors. Faulty equipment can also produce
erroneous data. Validation techniques should be used to both identify and correct erroneous
data. Both internal and external validation measures can be applied. Internal validation is a
way to check the believability of the data, e.g., unrealistic blood pressure, BMI values, etc.
Dates can be used to check whether the result generated before a test has taken place. External
validation includes comparing the data with other patients or historical values.

* Uninterpretable Data: The captured EHR data might be uninterpretable to a certain extent.
Itis closely related with data incompleteness. It may occur when some part of the data is cap-
tured but the rest is missing. For example, if a specific quantitative or qualitative measurement
unit is not provided with the result value, it will be difficult to interpret.

* Inconsistency: Data inconsistency can heavily affect the analysis or result. Data collection
technologies, coding rules, and standards may change over time and across institutions, which
may contribute to inconsistency. For multi-institutional studies this issue might be common,
especially because different healthcare centers use different vendors for providing apparatus,
softwares, and other technologies [88]. A study in Massachusetts of 3.7 million patients found
that 31% of patients have visited two or more hospitals in the course of five years [94].

¢ Unstructured Text: In spite of having many defined structures for collecting the data, a large
portion of the EHR data contain unstructured text. These data are present in the form of
documentation and explanation. It is easy to understand them for humans, but in terms of
automatic computational methods, detecting the right information is difficult. Sophisticated
data extraction techniques like Natural Language Processing (NLP) are being used to identify
information from text notes [95].

* Selection Bias: In any hospital, the patient group will mostly be a random collection. It varies
depending on the nature of practice, care unit, and the geographical location of the institution.
It will not contain the diversity of demography. This is an important challenge to overcome.
Therefore, EHR data mining findings will not be generalizable. This problem must be ad-
dressed while working with the secondary use of data.

 Interoperability: Lack of EHR interoperability is a major impediment towards improved
healthcare, innovation, and lowering costs. There are various reasons behind it. EHR software
from commercial vendors are proprietary and closed systems. Most software were not built
to support communication with a third party and developing new interfaces for that purpose
might be a costly undertaking. Absence of standard also contributes to the problem. Many
patients are not lenient towards sharing their information. Besides EHR systems must comply
with the HIPAA Act [11] to ensure the security and privacy of the data.

In a recent JAMIA (Journal of the American Medical Informatics Association) article, the
authors have specified 11 specific areas that present barriers to interoperability of C-CDA
documents by inspecting 91 C-CDA documents from 21 technologies [96]. In June 2014, the
office of the National Coordinator for Health Information Technology (ONC) unveiled a plan
for robust healthcare information sharing and aggregation and interoperability increase by
2024 [97]. Its three-year agenda includes “Send, Receive, Find, and Use Health Information to
Improve Health Care Quality.” Its six-year agenda states “Use Information to Improve Health
Care Quality and Lower Cost,” and finally, its 10-year agenda proposes to achieve a “Learning
Health System.” The mentioned building blocks for attaining the goals are the following:

— Core technical standards and functions

— Certification to support adoption and optimization of health IT products and services
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— Privacy and security protections for health information
— Supportive business, clinical, cultural, and regulatory environments

— Rules of engagement and governance

2.8 Phenotyping Algorithms

Phenotyping algorithms are combinations of multiple types of data and their logical relations to
accurately identify cases (disease samples) and controls (non-disease samples) from EHR as illus-
trated in Figure 2.3 [98]. Based on the structure, EHR data can be broadly divided into two parts,
structured and unstructured data. Structured data exists in a name—value pair while unstructured
data contains narrative and semi-narrative texts regarding descriptions, explanation, comments, etc.
Structured data include billing data, lab values, vital signs, and medication information. Billing and
diagnosis-related data are collected using various coding systems like ICD, CPT, and SNOMED-
CT. These codes are important parts of the phenotyping process. ICD codes generally have high
specificity but low sensitivity [99]. Table 2.2 lists different characteristics of EHR data.

The primary purpose of EHR data is to support healthcare and administrative services. Infor-
mation is produced as a byproduct of routine clinical services. They are not a suitable format for
performing research tasks. They often require further processing to be used for phenotyping al-
gorithms. Within existing EHR systems, querying for a particular diagnosis or lab test across all
patients can be a not-trivial task. An EHR can quickly pull the information related to a patient’s
current medications, and easily find any test results. But combining different data with a temporal
relationship might require manual processing of data. From clinical operational settings, data are
often extracted and reformatted to make them more convenient and suitable for doing research, typ-
ically storing them in relational databases. Researchers have created a number of Enterprise Data
Warehouses (EDWs) for EHR data. Examples include Informatics for Integrating Biology and the
Bedside (i2b2) [100], the Utah Population Database [101], Vanderbilt’s Synthetic Derivative [102],
etc. Commercial EHR vendors are also developing research repositories. For example, EPIC users
can add the “Clarity” module to their system, which will convert the EHR data into SQL-based
database for research purposes.

To build a phenotype algorithm, first we need to select the phenotype of interest, followed by the
identification of key clinical elements that define the phenotype. It may contain billing codes, lab-
oratory and test results, radiology reports, medication history, and NLP-extracted information. The
gathered information may be combined with a machine learning method. For example, in [103], the
authors have applied Support Vector Machine (SVM) to a both naive and well-defined collection of
EHR features to identify rheumatoid arthritis cases. A medication record can be used to increase the
accuracy of case and control identification of phenotyping algorithms. Patients who are believed to
be controls must be having a different medication profile. They may not even have any medications
prescribed to them at all. Sufficient dosage of a particular medication serves the confirmation that a
person is having the disease of interest. For example, a patient treated with either oral or injectable
hypoglycemic agents will be having diabetes. These medications are highly sensitive and specific
for treating diabetes.

Studies have shown that CPT codes can accurately predict an occurrence of a given procedure
[104]. The standard terminology codes for lab tests are LOINC. On the other hand, clinical notes
are in free-text format. To be used for phenotyping algorithms, it has to undergo subsequent text
processing. Certain procedures and test results may also exist in a combination of structured and
unstructured form. For example, an electrocardiogram report typically contains structured interval
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(2)Has Cataract
Surgery?

(3)Has Cataract

DX? (8)How many DX?

(4)Any exclusion
Dx found?

(9)NLP or ICR (10)Age >= 50 at
Cataract found? event

(5)NLP or ICR
Cataract Found?

(6)Has Optical
Exam < 5 Yrs?

(7)Age >= 50 at
event

Yes

FIGURE 2.3: Flowchart for cataracts phenotyping algorithm taken from [98].

durations, heart rates, and overall categorization, along with a narrative text of cardiologist’s inter-
pretation of the result [105].

Recently, researchers have been linking EHR data with biological databanks (biobanks). The
most popular biobanks are the collection of DNA samples. Hospitals and clinics can collect DNA
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TABLE 2.2: Characteristics of Different EHR Data
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ICD CPT Lab Medication Clinical notes
Availability High High High Medium Medium
Recall Medium Poor Medium Inpatient: High Medium
Outpatient:
Variable
Precision Medium High High Inpatient: High Medium/High
Outpatient:
Variable
Format Structured Structured Mostly Structured Structured
Pros Easy to work Easy to work | High data | High data validity More details
with, good with, high validity about the
approximation | precision doctors’
of disease thoughts
status
Cons Disease code Missing data | Data nor- Prescribed not Difficult to
often used for malization | necessarily taken process
screening, and ranges
therefore
disease might
not be there

Source: Taken from Denny [106].

samples from a patient’s blood sample that is used in routine tests. The Personalized Medicine
Research Population (PMRP) project in Marshfield Clinic has a biobank of 20,000 individuals [107].
Similar DNA biobanks exist at eMERGE Network sites, Northwestern University, Geisinger Health
System, Mount Sinai School of Medicine, and at other places. The eMERGE network is funded
and organized by the National Human Genome Research Institute (NHGRI) and until today it has
created and validated twenty-one EHR-derived phenotyping algorithms (see Table 2.3). Its mission
is to develop, disseminate, and apply methods to combine DNA biorepositories and EHR systems
for large scale and high throughput genetic research [108]. But the phenotype information extracted
from EHRs may be challenging. Validation of phenotypes is important before integration of EHRs
into genetic studies. By validating EHR-derived phenotypes from eMERGE network, Newton et al.
report the following points [109]:

» Multisite validation improves phenotype algorithm accuracy
* Targets for validation should be carefully considered and defined
» Specifying time frames for review of variables eases validation time and improves accuracy

» Using repeated measures requires defining the relevant time period and specifying the most
meaningful value to be studied

¢ Patient movement in and out of the health plan (transience) can result in incomplete or frag-
mented data

* The review scope should be defined carefully
e Particular care is required in combining EMR and research data

* Medication data can be assessed using claims, medications dispensed, or medications pre-
scribed

* Algorithm development and validation will work best as an iterative process

* Validation by content experts or structured chart review can provide accurate results
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TABLE 2.3: Phenotyping Algorithms Developed by eMERGE Network

Laboratories, Medications, Natural
Language Processing

Phenotype EHR data used to characterize Institution
phenotype

Atrial Fibrillation — CPT Codes, ICD 9 Codes, Natural Vanderbilt University

Demonstration Project Language Processing

Cardiac Conduction(QRS) CPT Codes, ICD 9 Codes, Vanderbilt University

Cataracts

CPT Codes, ICD 9 Codes,
Medications, Natural Language
Processing

Marshfield Clinic Research Foundation

Clopidogrel Poor
Metabolizers

CPT Codes, ICD 9 Codes,
Laboratories, Medications, Natural
Language Processing

Denny’s Group at Vanderbilt, VESPA
— Vanderbilt Electronic Systems for
Pharmacogenomic Assessment

Crohn’s Disease —
Demonstration Project

ICD 9 Codes, Medications, Natural
Language Processing

Vanderbilt University

Dementia

ICD 9 Codes, Medications

Group Health Cooperative

Diabetic Retionapathy

CPT Codes, ICD 9 Codes,
Laboratories, Medications, Natural
Language Processing

Marshfield Clinic Research Foundation

Drug Induced Liver Injury

ICD 9 Codes, Laboratories,
Medications, Natural Language
Processing

Columbia University

Height

ICD 9 Codes, Laboratories,
Medications

Northwestern University

High-Density Lipoproteins
(HDL)

ICD 9 Codes, Laboratories,
Medications, Natural Language
Processing

Marshfield Clinic Research Foundation

Hypothyroidism CPT Codes, ICD 9 Codes, Vanderbilt University, Group Health
Laboratories, Medications, Natural Cooperative, Northwestern University
Language Processing
Lipids ICD 9 Codes, Laboratories, Northwestern University
Medications
Multiple Sclerosis — ICD 9 Codes, Medications, Natural Vanderbilt University
Demonstration Project Language Processing
Peripheral Arterial Disease CPT Codes, ICD 9 Codes, Mayo Clinic
Laboratories, Medications, Natural
Language Processing
Red Blood Cell Indices CPT Codes, ICD 9 Codes, Mayo Clinic
Laboratories, Medications, Natural
Language Processing
Rheumatoid Arthritis — ICD 9 Codes, Medications, Natural Vanderbilt University
Demonstration Project Language Processing
Severe Early Childhood ICD 9 Codes, Medications, Natural Cincinnati Children’s Hospital Medical
Obesity Language Processing, Vital Signs Center

Type 2 Diabetes —
Demonstration Project

ICD 9 Codes, Laboratories,
Medications, Natural Language
Processing

Vanderbilt University

Type 2 Diabetes Mellitus

ICD 9 Codes, Laboratories,
Medications

Northwestern University

Warfarin dose/response

Laboratories, Natural Language
Processing

Vanderbilt University

White Blood Cell Indices

CPT Codes, ICD 9 Codes,
Laboratories, Medications

Group Health Cooperative

Source: Taken from [110].
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Before the use of a phenotyping algorithm, data has to be normalized to standard representation.
Natural Language Processing (NLP) based tools have gained much popularity to extract structured
information from free text. Several studies have shown that coded data are not sufficient or accurate
to identify disease cohorts [111, 112]. Information from narrative text complements the structured
data. There are studies that report NLP-processed notes provide more valuable data sources. For
example, Penz et al. reports ICD-9 and CPT codes identified less than 11% cases in detecting ad-
verse events related to central venous catheters, while NLP methods achieved a specificity of 0.80
and sensitivity of 0.72 [113]. Widely used general-purpose NLP tools include MedLEE (Medical
Language Extraction and Encoding System) [114], cTAKES (clinical Text Analysis and Knowledge
Extraction System) [115], MetaMap [116], and KnowledgeMap [117]. All of them have been suc-
cessfully applied to phenotyping using EHR data. Task-specific NLP methods are available that aim
to extract specific concepts from clinical text.

The DNA sequence of a person can be huge in size (ranging from hundreds of gigabytes to
terabytes) in raw format that exceeds the capability for using the current EHR systems. Storing,
managing, and transferring a repository of such a large volume of data is difficult. Efficient data
compression techniques can be applied to solve this problem. Genome Wide Association Study
(GWAS) became the mainstay of genetic analysis over the last decade. In general, GWAS investi-
gates around 500,000 genetic variants (Single Nucleotide Polymorphisms) or more to see the asso-
ciation of variations with observable traits. It compares the SNPs of cases versus controls to find
meaningful knowledge. Besides traits, we can also identify SNPs that determine a particular drug
response. One individual might react adversely to a particular drug while others might not. The ge-
netic profile of an individual can be used for personalized medicine. One big advantage of genetic
data is that the SNPs are the same for that individual and do not change based on a given/suspected
disease. The same set of data can be used for different phenotype investigations as well. Researchers
are working to integrate genetic information for enhanced clinical decision support. For example,
researchers in Vanderbilt University are working on implementing Pharmacogenomic Resource for
Enhanced Decisions in Care and Treatment (PREDICT) [118]. St. Jude Children’s Research Hospi-
tal also has a multiplexed genotyping platform for providing decision support [119].

2.9 Conclusions

Electronic health records are the obvious and inevitable future of patient care in hospitals and
medical practices. This chapter discusses several aspects of the EHRs. EHR systems are gaining
nationwide popularity in the United States recently due to “Meaningful use legislation and reim-
bursement [120]. It is being widely installed in hospitals, academic medical centers,” and outpatient
clinics throughout the nation. Besides healthcare benefits like improved patient care, safety and
reduced costs, it creates great opportunity for clinical and translational research. Widespread adop-
tion of EHRs can foster the improvement of quality in healthcare services, safety and efficiency,
and most importantly, public health. Having great potential for benefits, successful deployment of
EHRs has several challenges to overcome. There are notable limitations of the use of EHR data
in research purposes. In the era of technology, the necessary laws lag far behind. While other de-
veloped countries have showed widespread adoption, in the United States, the overall adoption is
considerably low. Bigger Government initiatives and enhanced standardization today can lead to a
brighter healthcare tomorrow.
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3.1 Introduction

In its broadest sense, an image is a spatial map of one or more physical properties of a sub-
ject where the pixel intensity represents the value of a physical property of the subject at that point.
Imaging the subject is a way to record spatial information, structure, and context information. In this
context, the subject could be almost anything: your family sitting for a family photo taken with your
smartphone, the constellations of orion’s belt viewed from a telescope, the roads of your neighbor-
hood imaged from a satellite, a child growing inside of its mother viewed using an ultrasound probe.
The list of possible subjects is endless, and the list of possible imaging methods is long and ever-
expanding. But the idea of imaging is simple and straightforward: convert some scene of the world
into some sort of array of pixels that represents that scene and that can be stored on a computer.

Naturally, if we wanted to describe all of the possible subjects and modalities, that would be
an entire book of its own. But, for our purposes, we are interested in biomedical images, which
are a subset of images that pertain to some form of biological specimen, which is generally some
part of human or animal anatomy. The imaging modality used to acquire an image of that specimen
generally falls into one of the categories of magnetic resonance imaging (MRI), computed tomog-
raphy (CT), positron emission tomography (PET), ultrasound (U/S), or a wide range of microscopy
modalities such as fluorescence, brightfield, and electron microscopy. Such modalities have various
purposes: to image inside of the body without harming the body or to image specimens that are too
small to be viewed with the naked eye. These modalities enable us to image biological structure,
function, and processes.

While we often think of images as 2D arrays of pixels, this is an overly restrictive conception,
especially as it pertains to biomedical images. For example, if you broke a bone in your leg, you
might get a 3D MRI scan of the region, which would be stored as a three-dimensional array of
pixel values on a disk. If that leg needed to be observed over time, there might be multiple MRI
scans at different time intervals, thus leading to the fourth dimension of time. A fifth dimension of
modality would be added if different types of MRI scans were used or if CT, PET, U/S, or biological
images were added. When all of these time-lapse datasets of different modalities are registered to
each other, a rich set of five-dimensional information becomes available for every pixel representing
a physical region in the real world. Such information can lead to deeper insight into the problem
and could help physicians figure out how to heal your leg faster.

Another multidimensional example is common in the area of microscopy. To visualize cellular
dynamics and reactions to drugs (for example, for the purpose of discovering targets for treating
cancer), a group of cells could be imaged in their 3D context using confocal microscopy, which
enables optical sectioning of a region without harming the structure. This region could have multiple
markers for different regions of the cell such as the nucleus, cytoplasm, membrane, mitochondria,
endoplasmic reticulum, and so forth. If these are live cells moving over time, they can be imaged
every few seconds, minutes, hours, or days, leading to time-lapse datasets. Such five-dimensional
datasets are common and can elucidate structure-structure relationships of intracellular or extra-
cellular phenomena over time in their natural 3D environment.

If we were to stop at this point in the description, we would be left in a rather frustrating position:
having the ability to image complex structures and processes, to store them on a computer, and to
visualize them but without any ability to generate any real quantitative information. Indeed, as the
number of imaging modalities increases and the use of such modalities becomes ubiquitous coupled
with increasing data size and complexity, it is becoming impossible for all such datasets to be
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carefully viewed to find structures or functions of interest. How is a physician supposed to find
every single cancerous lesion in the CT scans of hundreds of patients every day? How is a biologist
supposed to identify the one cell acting unusually in a field of thousands of cells moving around
randomly? At the same time, would you want such events to be missed if you are the patient?

Being able to look inside of the body without hurting the subject and being able to view bi-
ological objects that are normally too small to see has tremendous implications on human health.
These capabilities mean that there is no longer a need to cut open a patient in order to figure out
the cause of an illness and that we can view the mechanisms of the building block of our system,
the cell. But being able to view these phenomena is not sufficient, and generating quantitative infor-
mation through image analysis has the capability of providing far more insight into large-scale and
time-lapse studies. With these concepts in mind, the need for computationally efficient quantitative
measurements becomes clear.

Biomedical image analysis is the solution to this problem of too much data. Such analysis meth-
ods enable the extraction of quantitative measurements and inferences from images. Hence, it is
possible to detect and monitor certain biological processes and extract information about them. As
one example, more than 50 years after the discovery of DNA, we have access to the comprehensive
sequence of the human genome. But, while the chemical structure of DNA is now well understood,
much work remains to understand its function. We need to understand how genome-encoded com-
ponents function in an integrated manner to perform cellular and organismal functions. For example,
much can be learned by understanding the function of mitosis in generating cellular hierarchies and
its reaction to drugs: Can we arrest a cancer cell as it tries to replicate?

Such analysis has major societal significance since it is the key to understanding biological
systems and solving health problems. At the same time, it includes many challenges since the images
are varied, complex, and can contain irregular shapes. Furthermore, the analysis techniques need to
account for multidimensional datasets /(x,y,z,A,t,...), and imaging conditions (e.g., illumination)
cannot always be optimized.

In this chapter, we will provide a definition for biomedical image analysis and explore a range
of analysis approaches and demonstrate how they have been and continue to be applied to a range of
health-related applications. We will provide a broad overview of the main medical imaging modal-
ities (Section 3.2) and a number of general categories for analyzing images including object de-
tection, image segmentation, image registration, and feature extraction. Algorithms that fall in the
category of object detection are used to detect objects of interest in images by designing a model
for the object and then searching for regions of the image that fit that model (Section 3.3). The
output of this step provides probable locations for the detected objects although it doesn’t neces-
sarily provide the segmented outline of the objects themselves. Such an output feeds directly into
segmentation algorithms (Section 3.4), which often require some seeding from which to grow and
segment the object borders. While some segmentation algorithms do not require seeding, accurate
locations of the objects provides useful information for removing segmented regions that may be ar-
tifacts. Whereas detection and segmentation provide detailed information about individual objects,
image registration (Section 3.5) provides the alignment of two or more images of either similar or
different modalities. In this way, image registration enables information from different modalities
to be combined together or the time-lapse monitoring of objects imaged using the same modality
(such as monitoring tumor size over time). Feature extraction combines object detection, image
segmentation, and image registration together by extracting meaningful quantitative measurements
from the output of those steps (Section 3.6). Taken as a whole, these approaches enable the genera-
tion of meaningful analytic measurements that can serve as inputs to other areas of healthcare data
analytics.
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FIGURE 3.1 (See color insert.): Representative images from various medial modalities.

3.2 Biomedical Imaging Modalities

In this section, we provide a brief introduction to several biomedical imaging modalities with
emphasis on unique considerations regarding image formation and interpretation. Understanding
the appearance of images resulting from the different modalities aids in designing effective image
analysis algorithms targeted to their various features. Representative images from the modalities
discussed in this section are shown in Figure 3.1.

3.2.1 Computed Tomography

Computed Tomography (CT) creates 2D axial cross-section images of the body by collecting
several 1D projections of conventional X-ray data using an X-ray source on one side and a detec-
tor on the other side. The 1D projection data are then reconstructed into a 2D image. Modern CT
systems are capable of acquiring a large volume of data extremely fast by increasing the axial cov-
erage. A CT image displays a quantitative CT number usually reported in Hounsfield units, which is
a measure of the attenuation property of the underlying material at that image location. This makes
CT inherently amenable to quantification. CT has become the mainstay of diagnostic imaging due
to the very large number of conditions that are visible on CT images. A recent development has been
the advent of so-called Dual Energy CT systems, where CT images are acquired at two different en-
ergy levels. This makes it possible to do a very rich characterization of material composition using
differential attenuation of materials at two different energy levels. The simplest form of CT image
reconstruction algorithms use variations of the filtered back-projection method, but modern iterative
model-based methods are able to achieve excellent reconstruction while limiting doses to a patient.
Common artifacts associated with CT images including aliasing, streaking, and beam hardening.
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3.2.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear imaging modality that uses radioactively
labeled tracers to create activity maps inside the body based on uptake of a compound based on
metabolic function. PET measures the location of a line on which a positron annihilation event
occurs and as a result two simultaneous 511 keV photons are produced and detected co-linearly
using co-incidence detection. PET allows assessment of important physiological and biochemical
processes in vivo. Before meaningful and quantitatively accurate activity uptake images can be
generated, corrections for scatter and attenuation must be applied to the data. Newer iterative recon-
struction methods model attenuation, scatter, and blur and have sophisticated methods of dealing
with motion that may take place during the image acquisition window.

3.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a high resolution, high contrast, noninvasive imaging
modality with extremely rich and versatile contrast mechanisms that make it the modality of choice
for looking at soft tissue contrast. In conventional MRI, signals are formed from nuclear mag-
netic response properties of water molecules that are manipulated using external static and varying
magnetic fields and radio-frequency pulses. In addition to looking at anatomy and structure, im-
age acquisition methods can be tailored to yield functional information such as blood flow. Images
with very different contrasts can be created to selectively highlight and/or suppress specific tissue
types. Spatially varying gradients of magnetic fields are used to localize the received signal from
known anatomic locations and form 2D or 3D images. Received data is typically reconstructed us-
ing Fourier methods. Some common artifacts in MRI images are geometric distortion (warping) due
to gradient nonlinearities, wraparound and aliasing, streaking, ghosts, chemical shift, and truncation
artifacts.

3.2.4 Ultrasound

Ultrasound is one of the most ubiquitous imaging modalities due in large part to its low cost and
completely noninvasive nature. Ultrasound imaging transmits high frequency sound waves using
specialized ultrasound transducers, and then collects the reflected ultrasound waves from the body
using specialized probes. The variable reflectance of the sound waves by different body tissues forms
the basis of an ultrasound image. Ultrasound can also depict velocities of moving structures such
as blood using Doppler imaging. Imaging a growing fetus in the womb and cardiovascular imaging
are two of the most common ultrasound imaging procedures. Due to very fast acquisition times, it
is possible to get excellent real-time images using ultrasound to see functioning organs such as the
beating heart. Modern ultrasound systems employ sophisticated electronics for beam forming and
beam steering, and have algorithms for pre-processing the received signals to help mitigate noise
and speckle artifacts.

3.2.5 Microscopy

In addition to in vivo radiological imaging, clinical diagnosis as well as research frequently
makes uses of in vitro imaging of biological samples such as tissues obtained from biopsy speci-
mens. These samples are typically examined under a microscope for evidence of pathology. Tradi-
tional brightfield microscopy imaging systems utilize staining with markers that highlight individual
cells or cellular compartments or metabolic processes in live or fixed cells. More rich proteomics
can be captured by techniques such as fluorescence-based immunohistochemistry and images can
be acquired that show expression of desired proteins in the sample. Images from such microscopy
systems are traditionally read visually and scored manually. However, newer digital pathology plat-

© 2015 Taylor & Francis Group, LLC



66 Healthcare Data Analytics

forms are emerging and new methods of automated analysis and analytics of microscopy data are
enabling more high-content, high-throughput applications. Using image analysis algorithms, a mul-
titude of features can be quantified and automatically extracted and can be used in data-analytic
pipelines for clinical decision making and biomarker discovery.

3.2.6 Biomedical Imaging Standards and Systems

Development of image analytics and quantification methods is founded upon common standards
associated with image formats, data representation, and capturing of meta-data required for down-
stream analysis. It would be extremely challenging to develop general-purpose solutions if the data
produced by systems across platforms and manufacturers did not conform to standard formats and
data elements. Digital Imaging and Communications in Medicine (DICOM, dicom.nema.org) is a
widely used standard that helps achieve this for the purposes of handling, storing, printing, and
transmitting medical imaging data. It defines a file format and a network communications protocol
for these data types. Every device that deals with medical imaging data comes with a DICOM con-
formance statement which clearly states the DICOM classes that it supports and how it implements
them. As an example, all the GE Healthcare devices DICOM conformance statements can be found
in http://www3.gehealthcare.com/en/Products/Interoperability/ DICOM.

While DICOM is the most commonly adopted industry wide standard for medical imaging data,
HL7 (http://www.hl7.org) is a more general standard used for exchange, integration, sharing, and
retrieval of electronic healthcare information. It defines standards not just for data but also appli-
cation interfaces that use electronic healthcare data. The IHE (http://www.ihe.net) initiative drives
the promotion and adoption of DICOM and HL7 standard for improved clinical care and better
integration of the healthcare enterprise.

Medical imaging data is commonly stored and managed using specialized systems known as
Picture Archiving and Communications System (PACS). PACS systems house medical images from
most imaging modalities and in addition can also contain electronic reports and radiologist annota-
tions in encapsulated form. Commercial PACS systems not only allow the ability to search, query-
retrieve, and display and visualize imaging data, but often also contain sophisticated post-processing
and analysis tools for image data exploration, analysis, and interpretation.

In this section, we have presented a number of the most common biomedical imaging modal-
ities and described their key features. In the following sections, we will show how image analysis
algorithms are applied to quantify these types of images.

3.3 Object Detection

We begin our discussion of image analysis algorithms with the topic of object detection. De-
tection is the process through which regions of potential interest, such as anatomical structures or
localized pathological areas, are identified. Often associated with detection is the localization of the
targeted structures. In the absence of such association, the problem of detecting a region of interest
has a strong overlap with the problem of classification, in which the goal is simply to flag the pres-
ence (or absence) of an abnormal region. In this section the word “detection” is used specifically to
designate the joint detection and localization of a structure of interest.
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3.3.1 Template Matching

An often-used method to detect objects of interest in an image is to choose a representative
template and apply some variant of template matching to find similar regions in the image of interest.
Using an approach such as normalized cross-correlation (NCC) measures the similarity between the
two signals f} and f>. This yields an output map showing the magnitude of the match, and this can
be thresholded to find the best detections in the image. If we define f| as the fixed image and f, as
the moving image or template image, the normalized cross-correlation between images f; and f; at
a given (u,v) is defined as

Z [(fl (x,y) 7%) <f2(x7 uayfv) 7f2,u,v }
\/Z (f] (x7y) _fl,u,v)z\/z (fZ(x_ MJ—V) _f2,u,v 2

Here fi,, and f>,, are the mean intensity of fi and f», respectively in the overlap region. The
region of overlap is constantly shifting and represents the overlapping region of the correlation
operation.

It is not difficult to see that such processing can become extremely computationally intensive
as the size of the template grows because the sum of the product of the overlapping pixels must be
computed for every location of the template relative to every pixel in the input image. Therefore, it
is common to represent all terms of NCC in the Fourier domain, which leads not only to faster pro-
cessing, but also enables a compact mathematical representation of the computation. The derivation
of the following equation from Equation 3.1 can be found in [45, 44] along with an extension to
masked regions.

3.1

FUR-M3)-F (M- F)

.{}dfl(FLFz*)_ j:—l(Ml.M;) 32)
2 1 o 2
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Here, Fi = ¥ (f1) and F; = F (f}), where 7 (-) represents the FFT operation and F* is the complex
conjugate of the Fourier transform, which, by definition, is the Fourier transform of the rotated
image ( fz’ in this case) for real-valued images. Also, if m; and m; are images of ones the same size
as fi and f>, respectively, we define My = ¥ (i1) and M; = F (i}).

An example of the effectiveness of this approach can be seen in Figure 3.2, where a small
template is matched with an entire image of cells imaged with differential interference contrast
(DIC) microscopy, and the resulting NCC map is thresholding to yield strong detections in almost
all of the cells.

3.3.2 Model-Based Detection

Model-based detection methods are a generalization of template matching, obtained by replac-
ing the template and the NCC function with arbitrary models and figures of merit for the matching
between the model and the data. In such methods, an arbitrary statistical model of features presum-
ably found in the structure of interest is produced, often through the application of expert knowledge.
When presented with an image, such methods compute the selected features throughout the image
and evaluate a figure of merit that indicates whether the computed features are consistent with the
presence of the structure of interest at any given location. If confounding structures, i.e., regions that
could potentially be mistaken for the structure of interest, are also modeled, the figure of merit can
be derived from a comparison of the output of different models as to their suitability as explanations
for the observed data. Formally, we have a set of parametric models {;,i = 1,...,N}, where each
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(a) (b) Inputimage (c) NCC map (d) Thresholded detections
Template

FIGURE 3.2: Normalized cross-correlation (NCC) example for template matching. The thresh-
olded NCC map serves as the detections for the cells in this DIC image.

M; has parameters m; in the domain M;. Given a choice of M, if D can be assumed to be a set
D={Dj,j=1,...,M} of independent features D; computed at or in the vicinity of image location
X, we have, using Bayes’ law and marginalizing over the model parameters,

_ P(Mi[x) ,|x) - P(x) 4 s
Z%' / (D, s, M, x) p(m| M, x) dm;, (3.3)

an expression valid under the independence assumption.

Under this general framework for model-based detection, the development of different applica-
tions consists in identifying adequate parametric models 94; establishing adequate distributions for
the prior distributions p(m;|2;,x) and P(M;|x), and solving (3.3). Two practical examples of these
steps are sketched in the next paragraphs.

Lung-nodule detection. The detection of lung-nodules is a significant clinical problem. However,
it has now been firmly established that mortality rates can be significantly reduced through CT
screening [35]. Exploring curvature as an image feature and by developing knowledge-based priors
for nodule, vessel, and vessel-junction modules, the work in [33] provides a canonical example for
a model-based approach for lung nodule detection. Details of the algorithm can be found in that
reference, but the central elements of the method are the use of geometric models built from ellip-
soids and tori to represent the structure of interest (nodules) and the potential confounding structures
(vessels and vessel junctions). The curvature of isosurfaces of the CT image at each location x was
selected as the discriminative feature for detection. Probability distributions p(D;m;, M;,x) for the
curvature were computed using elementary methods of differential geometry, and full exploitation
of expert medical knowledge available in the literature was used in the derivation of the priors
p(m;|M;, x) for each model. The result was, essentially, a nonlinear filter that produced as output
the ratio between the probability that a nodule is present at location x and the probability that either
a vessel or a vessel junction is present at that same location. Qualitative and quantitative results for
the algorithm are shown in Figure 3.3.

Colonic-polyp detection. Early detection of colonic polyps has been associated with reduction in
the incidence of colorectal cancer [63], and optical colonoscopy has been shown to be an effective
tool for polyp detection [59]. However, optical colonoscopy is an invasive procedure, and discom-
fort to the patient, in particular due to pre-examination colonic cleansing, has a negative impact on
compliance [11]. In [32] the model-based method was applied to the detection of colonic polyps de-
picted in CT imaging. The use of cleansing materials and colonic fluids produces severe alterations

© 2015 Taylor & Francis Group, LLC



Biomedical Image Analysis

69

Non-—calcified solid parenchyma nodules > 4 mm
1 T - r
................ K —
___________________ RS
# !
L, | SRR N SN, BRSO
Z
| S e A T
=] '
iy : : .
3 ;
£ 0.4f-f--of-mnn-- e fomnmasesnsnad
= [ ¢ -
& | }
0.2} fi------ -k czzroeedi oo
°d ===Non-Bayesian (Mendonca et al)
i Bayesian framework (this paper)
(l X . -
0 5 10 15 20
False positives/case
(b) (c)

FIGURE 3.3 (See color insert.): Lung-nodule detection. (a) A 2D slice of a high-resolution CT
scan with nodule labels overlaid in green on the intensity image. (b) A 3D rendering of the voxel
labeling for a small region from the same case showing nodules (green), vessels (red), and junctions
(blue). (c¢) fROC curves comparing performance of the Bayesian voxel labeling framework to a
curvature-based non-probabilistic approach given in [31].

in the appearance of the image, and this poses a challenge to methods solely based on geometry,
such as the one in [33]. Therefore, a joint modeling of shape and appearance was applied in [32]. In
particular, the likelihood term p(x|Mjz,x) for the probability distribution of curvatures of the colon
wall contained terms that were dependent on the amplitude of image noise, the image point-spread
function, and the magnitude of the air-tissue or fluid-tissue gradient along the colon wall. The other
elements of (3.3) were obtained using the same methods as in [33], i.e., through the judicious use of
expert knowledge available in the medical literature. Results for the algorithm are shown in Figure
3.4.

3.3.3 Data-Driven Detection Methods

Model-based methods, although powerful, are difficult to apply when expert knowledge is not
available or is not in a format that can be easily encoded in algorithmic form. To address this prob-
lem, data-driven methods apply machine learning techniques to automatically extract from labeled
data the features and models relevant to the detection problem at hand. An additional difficulty of
model-based methods is the need for explicit models for the structure or anatomical region of in-
terest. Data-driven methods, on the other hand, can be used to construct models of normal regions,
which are hopefully more common, and the detection problem is then translated into anomaly de-
tection, where the objective is simply to locate structures or regions that do not conform to the
norm, without explicit modeling of non-conforming structures. Unsupervised learning methods,
such as PCA, can be used to discover and retain the more relevant modes of variation of the input,
capturing the regularity of the input training data. When non-conforming data is presented to the
algorithm, deviations from such regularity will become apparent, and abnormalities can therefore be
detected.
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FIGURE 3.4 (See color insert.): Colonic-polyp detection. Examples of correctly detected polyps
in air (a) and fluid (b) regions. The image in (c) shows a protruding tip on a fold incorrectly marked
by the algorithm (a false positive), as shown in (c). (d) depicts a flat sessile polyp missed by the
algorithm. Figure (e) is the fROC curve showing the performance of the algorithm for the WRAMC
(http://imaging.nci.nih.gov) dataset.

Detection of carotid plaques. An example of an unsupervised data-driven method is found in the
detection of carotid plaques. The availability of treatments that slow the progression of cardiovas-
cular disease (CVD) increases the impact of early diagnosis in patient survival [4], and the presence
of carotid plaque has been identified as a significant risk factor in the prognosis of CVD [37]. In
[20], a data-driven detection method was applied to the problem of detecting carotid plaques de-
picted in ultrasound images. Seven hundred images of the cross sections of healthy carotids were
used to build a normalcy model, from which an average image was extracted, as well as the first
one-hundred modes of variation, obtained through PCA, as show in Figure 3.5. When a new image
was presented to the algorithm, a reconstruction algorithm was applied to recover the image as a
linear combination of the “eigencarotid” images obtained through PCA. The difference between the
original and reconstructed images produced an anomaly map; the rationale for this is that normal
images are well represented by the eigencarotids, whereas images containing plaque are not. Results
of this operation are shown in Figure 3.6.

The detection methods and algorithms described in this section enable the detection and lo-
calization of objects of interest in images. The next section on segmentation will demonstrate
how such detections can serve as seeds to enable accurate delineation of the borders of objects of
interest.

3.4 Image Segmentation

The goal of image segmentation is to divide a digital image into separate parts or regions (sets
of pixels) in such a manner that the regions have a strong correlation with objects or areas of the
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(b)

FIGURE 3.5: Eigencarotids. (a) Sample US cross-sectional images of healthy carotids, selected
from over a dataset with 700 thousand images. (b) Average image after registration of data sampled
in (a). (c) First 100 modes of variation of the complete dataset. Images courtesy of Shubao Liu.

FIGURE 3.6: Detection of anomalies in the carotid. The top row shows input images of five dif-
ferent carotid cross sections. The middle row shows the reconstruction of the input images using
the high-energy modes of variation of the input, as captured by PCA. The bottom row shows the
residual image produced by the magnitude of the difference between each input image and its re-
construction. In each case, local peaks in the residual image correspond to plaque regions. Images
courtesy of Shubao Liu.

real world contained in the image. This is used to locate objects and boundaries in images. Dividing
the image into meaningful regions simplifies the representation of an image into something that is
more meaningful and easier to analyze. Segmentation is one of the most important steps leading
to the analysis of image data because it enables the further analysis of individual objects. While
important, in general image segmentation is not well defined and is very challenging because of the
difficulty of defining and identifying the particular shapes of the segmented objects. A large number
of different segmentation algorithms exist in the literature and continue to be developed that fall
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into the broad categories of thresholding, watershed, region-growing, classification, wavelets, and
level-sets. This section discusses a selection of these methods that are commonly used.

3.4.1 Thresholding

The most simple and intuitive segmentation approach is thresholding, which separates an image
into foreground/background using a cutoff value, 7. This can be accomplished through one simple
loop over the image with the following operation: if a pixel value x; is greater than 7, set the new
value to a foreground value (such as 255), and if it is less than 7, set the new value to a background
value (such as 0). The point is that the pixels are divided into two groups (creating a binary image)
depending on their value relative to ¢. It is easy to see that increasing ¢ increases the number of
background pixels and vice versa.

Many thresholding approaches are based on the image histogram, which is a simple transfor-
mation of the image whereby pixels with the same or similar intensities are grouped together into
a one-dimensional array. In this array, the index represents an intensity value (or a small range of
intensity values), and the value at each index represents the count of the number of pixels with that
intensity (or range of intensities). We can use the image statistics to separate the image background
from the foreground. For certain types of images this will provide good results.

One effective method of finding a statistically optimal global threshold is using the Otsu algo-
rithm [43], which is arguably the most common thresholding approach and certainly the baseline
for comparison with other approaches. In Otsu’s method, we exhaustively search the histogram for
a threshold that maximizes the between-class variance, which is defined as the variance of the two
classes. Maximizing the between-class variance is equivalent to minimizing the intraclass variance,
and the algorithm can be structured using either of these formulations. Algorithm 1 outlines how
the algorithm operates.

Algorithm 1 Otsu Thresholding
1: Create a histogram of the grayscale values.
2: for Threshold set to each bin of the histogram do
3 Compute the between-class variance 6% for this threshold
4: end for
5: Set the optimal threshold as the one that maximizes the between class variance 6%

The core of the approach is the computation of the between-class variance

op =wi(u — pr)* +wa (i, — pr)? 3.4

where m; and m, are the percentage contribution (probability) of each class, |; and p, are the means
of each class, and uy is the mean gray level of the entire image. Figure 3.7 shows an example of
segmenting the lungs in a CT image using the Otsu thresholding algorithm.

In case more than one threshold is needed, the Otsu algorithm can be easily extended to handle
multiple classes [19, 38]. For the multiclass problem, the between-class variance is defined as

op = Z k(b — 1r)’ (3.5)

where M is the number of classes (number of thresholds + 1), ®y is the probability of class k, p is
the mean of class k, and py is the overall mean of the entire histogram.

These and many other global and local thresholding algorithms can be readily accessed in im-
age analysis tools. For example in Imagel [56] or FIJI [55], they are accessed from the “Image”-
“Adjust”-“Auto Threshold” or “Image”-“Adjust”-“Auto Local Threshold.”
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FIGURE 3.7: Segmenting the lungs in a CT image using Otsu thresholding.

The advantages of thresholding are speed, simplicity, and the ability to specify multiple thresh-
olds. The disadvantages are that the objects must have similar appearance, it does not take into
account any spatial information, it results in holes in objects, and it only works for simple tasks.
Despite the simplicity of image thresholding approaches, they are widely used in image processing.
The general rule is: Try thresholding first and only move on to more complicated approaches if it
does not work.

3.4.2 Watershed Transform

The watershed transform [60] is an algorithm/solution framework that is very commonly used
for image segmentation and for binary shape separation. It derives its name from the analogy to a
topological watershed from nature where valleys flood progressively higher and eventually merge
together as rain falls. Using this analogy, any grayscale image can be considered as a topographic
surface where the gray level of a pixel is interpreted as its altitude in the relief. A drop of water
falling on this topographic relief will first fill the local minima. If we flood this surface from its
minima and, if we prevent the merging of the water coming from different sources, we partition the
image into two different sets: the catchment basins and the watershed lines. Then, the watershed
of the relief correspond to the limits of the adjacent catchment basins. From this standpoint, the
watershed solution is related to Voronoi partitions.

The most difficult aspect of using the watershed transform is determining an appropriate speed
image. Because the watershed transform is simply a solution framework, all of the work goes into
creating an appropriate speed image. For example, the speed image could be based on image edges,
or it could be based on object shape.

To segment based on image edges, watershed can be applied on a transformed image such as the
image gradient. Ideally, the catchment basins should correspond to homogeneous gray level regions
of image. However, in practice, this transform often produces oversegmentation due to noise or
local irregularities in the gradient image. One of the most popular ways to correct this is the marker-
controlled watershed, where seeds are selected in the image, and the watershed grows only from
these seeds. For example, in [62], marker-controlled watershed is used for segmenting nuclei, where
the seeds are defined using the H-maxima operation on the smoothed intensity image. The operation
of the marker-controlled watershed is illustrated in the top part of Figure 3.8. The input image is
transformed to an edge image by taking the gradient, which yields high intensities at the edges of
the objects of interest. The watershed algorithm with a input height parameter is run on the gradient
image using markers derived from the thresholded image. The height parameter can be adjusted
to tradeoff between oversegmentation (objects broken into many pieces) and under-segmentation
(objects merged or missing). This figure shows that some objects are missed for the chosen
height value because the watershed algorithm floods into regions whose edge intensity is not high
enough.
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FIGURE 3.8 (See color insert.): Watershed segmentation examples. Top row: segmentation by
marker-controlled watershed. Bottom row: segmentation by shape watershed.

To segment based on shape, the watershed can be applied to a distance transform instead. In
particular, given an input image and a rough foreground/background segmentation, we can compute
the distance map to the inside of each object and apply the watershed transform to this distance map.
This is illustrated in the bottom left images of Figure 3.8, where the two overlapping circles in (a)
are separated in (c) by running watershed on the distance map (b). Because this type of processing
depends on the shape of the objects, it can be referred to as shape watershed. The bottom row of
Figure 3.8 demonstrates the operation of shape watershed using a thresholded image. Notice that
some objects are split into pieces; this can be avoided by merging together local maxima in the
distance map at the risk of merging together some clustered objects.

The advantages of watershed are that it is an intuitive concept, it can be computed very quickly,
and it is flexible since it can be applied to shape, intensity, gradient, etc. The disadvantages are that
oversegmentation is common, it is difficult to incorporate any shape constraints, and its effectiveness
depends on the preprocessed distance map.

3.4.3 Region Growing

Another class of segmentation algorithms involves choosing an initial seeded region and evolv-
ing some contour or region under given constraints that define the region of interest with the goal
of obtaining more accurate region boundaries. Approaches like level-sets, active contours, and re-
gion growing algorithms fall under this general category, and all of these classes of approaches
have been applied effectively to medical and biological image analysis problems. This class of al-
gorithms depends on initial seeds, which can be derived from the detection algorithms from Section
3.3. Here we will discuss region growing as it forms the general intuitive framework for this class
of algorithms. Algorithm 2 outlines the steps of the algorithm.

Region growing algorithms vary depending on the criteria used to decide whether a pixel should
be included in the region. A broad range of options already exist (and many remain to be invented),
but the simplest form is some kind of “threshold connected” approach. In such an approach, the
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Algorithm 2 Region Growing
1: Choose one or many seeds inside of the object or objects to be segmented
. Set the initial region to be the seeds and the neighbors to be the seed neighbors
while There exist neighbors to be processed do
Add neighbor pixels to the region if they fulfill some criteria
Set the new neighbors to be any not yet processed neighbors of the new region
end while

AU

MR brain image Ground truth Region growing

FIGURE 3.9: MR brain image segmented using confidence connected region growing by placing
two seeds: one in the white matter and one in the gray matter. Adapted from Padfield and Ross [52].

user chooses a lower threshold and an upper threshold, and the algorithm starts from the seeds and
grows as long as the neighbors of those seeds fall within the bounds of the threshold. This intuitively
is similar to thresholding with the exception that only those regions that have a path to a seed are
included in the segmentation.

Often, the lower and upper thresholds are not known beforehand, and a significant amount of
experimentation is needed to determine them. To assist with this, one popular choice for automating
the process is the “confidence connected” algorithm from the Insight Toolkit [15]. This algorithm
is more intuitive and enables more robust parameter setting than global threshold based methods
because it computes the thresholds from the region as it evolves. It computes the mean and standard
deviation of the pixel values currently labeled as foreground and multiplies the standard deviation
by a chosen factor in order to define a new interval as outlined in Algorithm 3. An example segmen-
tation result image is shown in Figure 3.9 taken from [52].

Algorithm 3 Confidence Connected Region Growing

1: Set a multiplier k and the number of iterations n
2: Set the initial region to be a region around the seeds
3: fori=0;1i < n;i++ do

4 Measure the mean p and standard deviation ¢ of the region

5: Compute the lower threshold #; = pL — k6 and upper threshold 7, = p+ ko

6: Add all neighbor pixels of the original seeds that have intensities between #; and #,,
7: end for

3.4.4 Clustering

Another category of segmentation algorithms falls into the broad category of clustering or clas-
sification approaches. Clustering techniques are algorithms that separate the data into a set of differ-
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ent classes. They are broadly divided into two categories: supervised and unsupervised. Supervised
classification approaches are ones that require training of some sort where the algorithm is fed a
number of cases along with the labeled ground truth corresponding to those cases. The model re-
sulting from the training of the classifier is then applied to unseen test data where labels are not
known to the classifier. On the other hand, unsupervised classification approaches do not require a
training step, and they instead seek to automatically find patterns and clusters in the data. This has
the advantage that is removes the need for user training, but the results are generally not as accurate
as supervised approaches, and there is less control over the output clusters.

A common unsupervised clustering algorithm is called K-means clustering [23, 61, 21]. Given
an input parameter k and a set of points in a N-dimensional space, K-means seeks to divide the
points into k clusters so as to minimize a cost function. In particular, the objective is to partition a
set of observations x1,x2,...,xy into k groups S = S1,52, ..., Sy so as to minimize the within-cluster
sum of squares:

k
argminz Z [lxj — w2 (3.6)

s i=lx;€S;

where p1; is the mean of cluster j. Obviously this is an iterative process since we don’t know the
clusters upfront and therefore cannot compute their means ;. To do this, we first randomly seed the
centers, and then they are updated at each iteration using Algorithm 4, which is illustrated visually
in Figure 3.10.

Algorithm 4 K-Means Clustering
1: procedure INITIALIZATION

2 Randomly select k data points as cluster centers
3 Sett=0

4 Determine Sy and ]

5. end procedure
6
7
8
9

. . t 1—1 .
: while i # ;" for all i do
procedure ASSIGNMENT
Assign each observation x; to the closest cluster mean using min; ||x; — p||
Determine S

10: end procedure

11: procedure UPDATE

12: Compute the new cluster means u§+1
13: t=1t+1

14: end procedure

15: end while

From this description it is clear that the accuracy of the algorithm depends heavily on the ran-
dom initialization of the seeds: If this step yields seeds that poorly represent the true clusters, then
the final clusters will not be accurate. To correct for this, the algorithm is generally run many times
(perhaps 100), and each time the minimum within-cluster sum measure from Equation 3.6 is com-
puted. The run that gives the best (lowest) score is chosen as the answer. The k must be decided
beforehand, and it can be difficult to determine the best number of clusters k for some applications.

There are many ways to apply clustering algorithms to image data. Generally, several discrim-
inative features can be computed on an image, and each pixel can be represented as a point in an
N-dimensional space, where the number of dimensions corresponds to the number of features cho-
sen. Figure 3.11 shows an illustrative approach that clusters the pixels using only the feature of
intensity and using k = 3 intensity levels. Using such a feature yields results that are very similar to
an Otsu threshold on intensity using 2 thresholds (2 thresholds leads to 3 regions). By calculating
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FIGURE 3.10 (See color insert.): K-means example. Three clusters are randomly initialized, and
all points are assigned to one of these clusters. In each iteration, the cluster centers are recomputed
and then the point assignments are recomputed. These steps are repeated until convergence. The
data points are shown as colored dots, and the cluster centers are shown as stars.

Original image K-means segmentation
FIGURE 3.11: K-means segmentation of an image of cells where some cells undergoing mitosis
are much brighter than others. Here K is set to 3, and the feature is intensity.

multiple features for each object (such as intensity, edges, texture) it is often easier to separate the
different classes.

In this section, we discussed a number of common segmentation approaches including thresh-
olding, watershed, region growing, and classification. There are myriads of variants of the use of
these general approaches for segmenting specific image types and conditions, and there are many
other common approaches such as wavelets, level-sets, and graph cuts. For example, [1, 36] intro-
duce segmentation based on cost functions, [13] demonstrate a perceptual grouping approach, and
the effectiveness of normalized cuts is shown in [26]. Level set methods [42, 57, 41] have been
used for segmentation in [27], in [2] an edge attracting force was added to the formulation, and in
[3], Chan and Vese present a model that can detect contours both with and without gradient. Such
approaches have been applied to segmenting cells in 2D and 3D such as in [50, 51].

Wavelets are an effective tool for decomposing an image in the frequency and spatial domain.
The underlying math for wavelets is described in [34], and the application of wavelets to signal
processing is given by Mallat in [28, 29]. Statistical models for the wavelet distributions are given in
[58], and Donoho introduced a de-noising approach using soft-thresholding in [7]. In [8, 40, 47, 48],
a different wavelet variant called the a trous wavelet transform is used to combine coefficients at
different decomposition levels to segment blob-like cells effectively.

Given that an extensive coverage of the segmentation topic could easily fill volumes of books,
this section instead provided some examples of how some of these methods can be applied to the
analysis of biomedical images.
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FIGURE 3.12: Schematic showing the components of an image registration problem.

transform

3.5 Image Registration

Image registration is the task of aligning or bringing into spatial correspondence two different
images or volumes. Image registration problems are encountered in the following types of applica-
tions among others:

* For motion correction or motion estimation, where two images contain the same anatomy but
with some motion or deformation due to time difference between the two images.

* For multimodality registration, where two or more images represent different acquisition
modalities for the same subject such as registering a CT image of a subject with an MRI
image of the same subject. This is sometimes referred to as “Fusion.”

* For intersubject comparisons, where images from two different subjects are registered to es-
tablish a spatial correspondence between the two images.

Image registration is often a critical step in biomedical data analytics since any kind of quanti-
tative comparisons or analytics between images rely on image features or measurements being ex-
tracted from relevant, meaningful regions of the image that correspond to the same desired anatomic
region of interest. In a mathematical sense, image registration can be considered as the problem of
finding a transformation that maps the second image (often referred to as the “moving image”) to
a first image (referred to as the “fixed image”). Registration is treated as an optimization problem
where we wish to find a transform that maps the moving image to the fixed image, yielding a trans-
formed image that maximizes some similarity metric (or minimizes a distance metric) with respect
to the original true fixed image. This is depicted in Figure 3.12. The following subsections describe
some of the components of image registration and discuss some commonly used approaches. A
more detailed description of image registration techniques can be found in [15, 25, 39].
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3.5.1 Registration Transforms

The transform T is a function that maps physical points between the fixed and the moving image.
The choice of the transform constrains the type of deformation that the image is allowed to undergo.
Commonly used transforms are:

* Rigid Body Transform: A rigid body transform is comprised of image translation and ro-
tation, and is represented by 7(x) = R*x+t, where R and t are the rotation matrix and
translation vector respectively. In a rigid body transformation, distances, and angles between
points and lines are preserved.

* Similarity Transform: A similarity transform consists of an isotropic scaling factor in ad-
dition to the rigid body transformation of a rotation and translation. In a similarity tranfor-
mation, angles between lines are preserved, and objects change size proportionately in all
dimensions.

* Affine Transform: An affine transform is a general linear transform in which straight lines
remain straight lines after transformation but distances and angles may not be preserved,
although ratios of distances between points are preserved. An affine transform is represented
by the more general form 7'(x) = M xx+t, where M is any matrix and t is a vector.

* B-spline Deformable Transform: B-spline deformable transform is used for solving de-
formable registration problems where the image undergoes local deformations, and different
parts of the image do not all obey the same transformation. In this case, one of the above trans-
forms is assigned at a coarse set of grid points, and B-spline interpolation is used between the
grid points to yield a deformable transform. Free form deformable transforms have very large
degrees of freedom and result in very ill-posed problems. B-spline based interpolation makes
the problem tractable by using basis functions of compact support.

3.5.2 Similarity and Distance Metrics

Perhaps the most important part of a registration problem is the image similarity metric that
defines the “goodness” of registration. There are a wide variety of similarity or distance metrics
with advantages and disadvantages. We describe here some representative metric examples:

* Mean Squares Metric: The mean squares metric is a distance metric that computes the mean-
squared pixel-wise difference between two images A and B as follows

=

1

d(A,B) = N (A; — B;)? (3.7

1

where N is the number of pixels and A; and B; are the i-th pixels in images A and B, respec-
tively. This metric is zero when the two images are identical and perfectly aligned, and has
high values the more dissimilar the images are. This metric is easy to compute, but it assumes
that image intensities do not change as pixel patches move from one image to the next. This
metric does not handle intensity changes and is therefore not a good choice for multimodality
registration.

* Normalized Cross-Correlation Metric: Normalized cross correlation, already described for
object detection in Section 3.3.1, is a similarity metric that computes the pixel-wise cross-
correlation of images and normalizes it using the autocorrelation of the two images as
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where 1,4 and [ are the pixel-wise means of images A and B, respectively. This metric has
a value of 1 when the two images are perfectly aligned, has smaller values as the images
are increasingly mismatched, and has a minimum of —1 for perfectly uncorrelated images.
Subtracting image means gives this metric robustness to intensity scaling between images, and
it can handle a linear intensity variation model between images. The computational burden
for this metric is also low. Cross-correlation based approaches have been used for addressing
motion correction in medical image data [9].

¢ Mutual Information Metric: The mutual information (MI) metric between two images com-
putes their similarity in an information theoretic sense and measures how much intensity
information in one image informs the intensity information of the second image. Treating
images A and B as random variables, with marginal probability distributions p4(a) and pg(b)
and joint probability distribution psg(a,b), the mutual information /(A, B) is given by

I(A,B) :ZpAB(a,b)logM (3.9)

s pa(a)ps(b)

and it measures the difference in the joint distribution of A and B from the distribution in
case of complete independence of A and B. The joint and marginal probability distributions
can be estimated from the joint and marginal histograms of the two images. Because the
MI metric does not make any assumptions about image intensity relationships in the two
images and only requires that the two images explain each other well, this metric is very well
suited for handling registration across modalities with very different intensity distributions
and characteristics [24]. A detailed review of mutual information-based registration can be
found in [53].

3.5.3 Registration Optimizers

After suitable choice of a registration similarity metric and registration transform, registration
is solved as an optimization problem where the similarity metric is maximized (or a distance metric
minimized) using an iterative optimization method. Optimizer method selection depends on several
factors such as computational efficiency, robustness to local minima, and initialization, and may
also depend on whether a fully automated registration method is desired or a semi-automated, user-
guidance-based method is acceptable. Optimizers take as input a cost function and initialization of
optimization parameters, and return optimized values of the parameters. Single-valued optimizers
are used when working with single-valued cost functions. Conjugate gradient method and gradient
descent method are among the most common single-valued optimizers. Multivalued cost functions
generally employ non-linear least squares minimization techniques, and the Levenberg-Marquardt
optimizer is one of the most widely used nonlinear optimization methods. The Insight Toolkit [15]
contains a well-established and modular framework for testing different combinations of transforms,
metrics, and optimizers.

Figure 3.13 shows results of registering two MRI brain images using rigid registration, affine
registration, and deformable registration transforms. The mutual information similarity metric was
used in all cases. The color images in the bottom row are shown using green for the registered
image and red for the fixed image. Thus, the color image is yellow in the overlay, and areas of
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FIGURE 3.13 (See color insert.): Example showing registration of a moving image to a fixed
image using various transforms (a single slice from a 3D volume is shown). Top row: fixed image,
moving image, registered images using rigid body, affine, and deformable registration, respectively.
Bottom row: image showing registered images and fixed image respectively to show accuracy of
registration. Images courtesy of Xiaofeng Liu, GE Global Research.

incorrect registration are green or red. It is evident that the accuracy improves from rigid to affine to
deformable registration. More examples of free-form deformable registration methods for medical
imaging applications can be found in [30, 54].

Aligning images is a core requirement in many processing pipelines, and this section has out-
lined the main components of a registration framework. In combination with object detection and
image segmentation, this leads to a powerful set of tools for analyzing images and for extracting
features as demonstrated in the next section.

3.6 Feature Extraction

When a biological phenomenon is observed through an imaging device, the data collected con-
tains a mix of effects, the most important of which are the characteristic biological phenomenon
or object observed and the physical process that produces the images. For example, PET systems
collect information about coinciding photon detections, which is the physical process that produces
PET images. The underlying biological process of interest is the higher rate of consumption of glu-
cose by cancer cells. The tagging of the glucose with a radioactive tracer initiates a chain of events
that results in the emission of photons pairs with opposite moments, which reach the PET detectors
virtually at the same time, producing the required coincident photon detections.

In a similar manner, feature extraction is the process of summarizing or converting raw im-
age data into expressive representations that are more informative or show better association with
an underlying biological phenomenon. The objective of such conversion is to highlight or make
explicit in the data their most relevant elements with regard to a given task. For example, certain
algorithms [18] rely on the extraction and matching of landmarks, e.g., SIFT features [22], for the
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purpose of image registration. Texture features such as Minkowski functionals [17] have been used
for classification and detection tasks.

These examples demonstrate applications of carefully crafted features, with properties that are
guaranteed by the feature design. Frequently, the design of such features is not feasible, since the
most relevant elements of the data are not known a priori. In such cases, methods such as deep
learning can reduce the burden of having to carefully design features and learn the most appropriate
features for a given task from labeled data.

3.6.1 Object Features

In order to compute object features, a definition of an object must first be determined. Given
a segmentation step such as those described earlier, the output is a set of foreground regions that
are separated from the background. An algorithm such as connected components can be used to
separate the foreground regions into individually labeled regions where each unique label indicates
a unique object in the image.

Given individually segmented objects, a feature is a number that describes some aspect of an
object. There are a large number of features that are defined in the literature, but they generally fall
into the basic categories of shape, size, brightness, and texture. For example, in [10, 16] cells are
classified into four phases of the cell life cycle using a number of extracted features followed by
feature classification, and in [49] biologically relevant features are extracted that enable a range of
biological studies based on these quantitative measures. We can use a function of one or more such
features to model objects.

Table 3.1, adapted from [46], lists a number of common features and their mathematical def-
initions. In constructing features, it is convenient to first compute the image moments, which are
particular averages of either binary objects (unweighted) or their pixel intensities (weighted). They
are useful to describe objects and form the building blocks of many useful features of the objects.
For example, they can be used to compute a variety of shape features such as volume and centroid,
and they can also be used to compute the eigenvalues and eigenvectors of shapes, which can then
be used to compute additional features such as eccentricity, elongation, and orientation.

For a discrete image f(x,y), the discrete raw moment of order (p + g) is defined as

Y—-1X-1

Myo(f) =Y, Y xPyif(xy) (3.10)

y=0 x=0

where x and y are indices of the first and second dimensions of the function and f(x,y) is either a
weighted (intensity) or unweighted (binary) image. For example, the volume (number of pixels or
voxels) of an object can be computed as My o when f(x,y) in Equation 3.10 is a binary image. And
when f(x,y) represents the intensity image itself, Mo o becomes the integrated intensity (sum of the
intensities of an object). The mean of the intensity is simply the integrated intensity divided by the
number of pixels, and other features of image intensity can also be easily computed such as standard
deviation, min, max, median, and mode as well as features based on the intensity histogram.

The pixel locations of the object can be used to compute various bounding boxes as shown in
Table 3.1. The bounding box is the smallest rectangle oriented along the x,y axes enclosing the
object and is directly computed from the min and max locations of the image pixels. The oriented
bounding box is the smallest rectangle (oriented along any direction) that encloses the shape. A brute
force way to compute this would be to rotate the shape for a large number of angles and compute the
angle that provides the smallest bounding box. But a much faster way is to use the eigenvectors and
eigenvalues to compute the orientation of the object’s major axis and then compute the bounding
box along that axis.

Many other features, such as texture features, can be computed on objects and on full images,
and new features continue to be designed and applied to problems in healthcare data analytics.
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TABLE 3.1: Definitions of Several Features Derived from Image Moments

Feature Name | Definition
Shape Features (f is a binary image in Equation 3.10)
Volume M()’()
Mo M
Centroid [ﬁ7 ﬁ}
Moo Moo
Axes length 44/N;,1=0,...,.D-1
A — A
Eccentricity =0
L
Elongation adl
Ao
(1
Orientation tan~! <v_1( )>
vi(0)
Intensity Features (f is an intensity image in Equation 3.10)
Integrated intensity Moo
I . My
ntensity mean
X||Y|
. . Mo Mo
Weighted centroid —_— —
Moo~ Moo
Bounding Boxes
Bounding box [min(X), max(X), min(Y), max(Y), ... ]
Bounding box size [(max(X)-min(X)+1), (max(Y)-min(Y)+1), ...]
Oriented bounding box vertices | Bounding box along the major axis of the object
Oriented bounding box size Bounding box size in rotated space
Notes: X and Y are the set of coordinates of the pixels inside of an object, M, , are the image
moments, Aj, A2,...,Ay are the eigenvalues, and [vg Vi ... V| are the eigenvectors. Further de-

scriptions are given in the text.

3.6.2 Feature Selection and Dimensionality Reduction

Given that a large number of size, shape, texture, and other features can be measured, this can
result in an explosion of features and begs the question: How many features should be used? For
example, if we can get 90% accuracy in separating various classes of objects (such as tumor versus
benign nodules) with 3 features, it is worth using 4, 5, or 1,000 features? This depends on whether
the additional features provide additional discriminatory value.

A good feature is (1) discriminatory: significantly different for each class, (2) information rich:
has a small variance/spread within each class, (3) easy to compute, and (4) statistically independent:
not correlated with another feature in use. The last point that features should be statistically inde-
pendent is important because correlated features are redundant and increase dimensionality without
adding value. Each feature increases the dimensionality of the features space, which increases the
complexity of the search and the need for additional samples, known as the “curse of dimensional-
ity.” Thus, redundant and useless features unnecessarily add to the complexity. The dimensionality
of the features and the complexity of the model can thus be viewed in light of Occam’s Razor, which
states that, when in doubt, choose the simpler model. For example, Figure 3.14 shows two classes
of points and three different models for separating those points. While the more convoluted curve is
more accurate than the line, it also may be overfitting the data.

The best approach for reducing the dimensionality of the features while retaining the most sig-
nificant ones is to use an exhaustive approach that considers all subsets of features and picks the
best one. While this yields the best approach, it is computationally expensive, especially for large
numbers of features. A method referred to as a top-down approach that is much faster but not guar-
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o
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FIGURE 3.14: Two classes of points are shown in two different colors/shapes. The three curves
show different models of increasing complexity.

anteed to be optimal is to start off with all features, remove one feature at a time (the feature that
contributes the least to the discriminatory function), and continue until the performance is still ac-
ceptable or until the desired number of features have been removed. A bottom-up approach works
in the opposite direction by sequentially adding features. A better approach is stepwise discrimi-
nant analysis, which is a method that combines the top-down and bottom-up approaches with the
goal of selecting the most important features while keeping a high discrimination score. While this
approach may work well, it is not guaranteed to find the optimal combination of features.

3.6.3 Principal Component Analysis

The goal of feature selection described in the last section is to reduce the complexity and di-
mensionality of the feature space in order to decrease the computational burden of the algorithms.
It also enables the computation to focus on the most meaningful features while ignoring those that
contribute little to the discriminatory power of the classifier. Another approach that has the same
goal of dimensionality reduction is Principal Component Analysis (PCA) [14], which seeks to rep-
resent the underlying structure and variance of the data with as few dimensions as possible. It is the
simplest of a class of eigenvector-based analysis approaches and has a simple closed-form analytical
solution. It is an orthogonal transform of the data to a coordinate system where the coordinates are
in descending order of importance.

A simple way to conceptualize the approach is to consider a 2D plot of points forming an ellipse
that is oriented off the major x- and y-axes. If we fit an ellipse to the data and find its major and
minor axes, the first principal component is the axis aligned with the major axis, and the second is
that aligned with the minor axis. If we discard the minor axis by projecting the data on the major
axis, we have preserved the largest variance of the data since the major axis of the ellipse is the
widest part of the ellipse. This analogy can be extended to points in N-dimensions (although difficult
to visualize), where the user can decide to keep k of the N principal components, where k < N. As
fewer principal components are chosen, the complexity of the model is reduced but the accuracy of
the representation also suffers. Such dimensionality reduction can be used to aid visualization since
a high-dimensional space can be reduced to, for example, 2D or 3D which are easier to interpret
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visually while retaining the maximum variance of the original data. It is clear that PCA is sensitive
to scaling of the features because if some features are naturally much larger than others, they will
dominate the computation of the variances.

PCA can be computed using the eigenvalue decomposition of the covariance matrix of the data
or using the singular-value decomposition (SVD). Consider the data as a matrix X with the rows
representing the samples and the columns representing the features of each sample. When the means
of each feature are subtracted from this matrix, then XTX is proportional to the sample covariance
of the data. If the eigenvectors of this covariance matrix are computed and stored as columns in
a matrix W, then the principal component decomposition is given by T = XW. At this point, the
transformation still has the same dimension as the original data. But the structure of W is such
that the eigenvectors are stored in decreasing order of the magnitude of their eigenvalues, which
means that each additional eigenvector contributes a decreasing amount of variance to the total.
Thus, if only the first k£ eigenvectors are chosen, the dimensionality of the problem is reduced to
k dimensions, and the data is then approximated as Tx = XWk. There is a tradeoff between the
number of dimensions to remove versus the accuracy, and this tradeoff depends on the application
and data.

In this section, we discussed the importance of feature extraction and showed how these features
are computed from the output of detection and segmentation algorithms. We demonstrated a number
of features and how they are computed, and also described the problem of feature selection and
dimensionality reduction and showed some ways to approach this. The resulting features can then
be used in machine learning algorithms for classification problems and for other applications in
healthcare data analytics.

3.7 Conclusion and Future Work

In this chapter we have provided a broad overview of the main biomedical imaging modalities
and a number of approaches for quantifying such images. We presented object detection algorithms
that provide accurate location information for objects of interest. This lead into image segmenta-
tion algorithms that provide extraction of the borders of the objects and often rely on the object
detection outputs for seeding the algorithms. We then demonstrated how image registration can be
used to align intra- and intermodality images in order to enable combination of information across
modalities or to provide time-lapse information. All of these algorithms culminated in the feature
extraction algorithms, which compute meaningful analytics from these approaches that can serve as
inputs to approaches such as machine learning algorithms. Thus, biomedical image analysis algo-
rithms serve as valuable inputs to other approaches for healthcare data analytics.

The future of biomedical image analysis is looking bright. Given the broad range of modalities
spanned by the topic, there is significant room for specific algorithm implementations and innova-
tions to meet the needs of particular applications. At the same time, there are broad categories of
algorithms that are being developed, such as deformable registration or model-based object detec-
tion methods, that span across modalities and can be applied to numerous applications by tuning the
parameters. A theme that has permeated the algorithm developments over the years is model-based
approaches, which seek to model the underlying acquisition physics and object appearance. Some
examples are the applications discussed in the object detection section and many of the segmen-
tation approaches, especially those in the literature that include shape models. However, another
theme that has been rising in importance and influence is based on learning. With the emergence of
machine learning topics such as big data [5], data science [6], and deep learning [12], much of the
algorithm development community is increasingly investing in feature extraction methods, classifi-

© 2015 Taylor & Francis Group, LLC



86 Healthcare Data Analytics

cation approaches, and data wrangling to be able to automatically extract meaningful patterns and
insights out of images and data without explicitly modeling the objects of interest. This shows great
promise for avoiding the bias that may be introduced by experts who miss important patterns in
favor of finding the expected patterns from past experience. But at the same time, it has the poten-
tial to detect irrelevant patterns that may not be of clinical value. As the communities of engineers,
computer scientists, statisticians, physicians, and biologists continue to integrate, this holds great
promise for the development of methods that combine the best elements of modeling and learning
approaches for solving new technical challenges. The future of the field is very promising, and it is
ultimately the patient that will benefit.
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With progress in sensor technologies, the instrumentation of the world is offering unique opportu-
nities to obtain fine grain data on patients and their environment. Turning this data into information
is having a profound impact in healthcare. It not only facilitates design of sophisticated clinical de-
cision support systems capable of better observing patients’ physiological signals and helps provide
situational awareness to the bedside, but also promotes insight on the inefficiencies in the healthcare
system that may be the root cause of surging costs. To turn this data into information, it is essential
to be able to analyze patient data and turn it into actionable information using data mining. This
chapter surveys existing applications of sensor data mining technologies in healthcare. It starts with
a description of healthcare data mining challenges before presenting an overview of applications of
data mining in both clinical and nonclinical settings.

4.1 Introduction

Healthcare includes “efforts made to maintain or restore health, especially by trained and li-
censed professionals” [1]. These efforts are performed by various entities within a large ecosystem
composed of patients, physicians, payers, health providers, pharmaceutical companies and more re-
cently, IT companies. Medical informatics [2] is the science that deals with health information, its
structure, acquisition, and use. A fundamental goal [3] of medical informatics is the improvement
of healthcare by acquiring and transmitting knowledge for applications in a broad range of settings,
across computational platforms, and in a timely fashion.

Reaching this goal can have far-reaching consequences on society. Historically, healthcare has
been provided in a reactive manner that limits its effectiveness. A major issue with this is the inabil-
ity to detect early or predict that a patient may be prone to develop complications associated with
chronic diseases like cancer or diabetes. Even in an intensive care environment, care is often pro-
vided in response to the adverse events typically detected after the emergence of clinical symptom:s,
or after the interpretation of a lab test. In many cases, reacting after the detection of such events
reduces the ability of physicians to drive patient trajectories towards good outcomes. As a result,
there is an increasing push to transform medical care delivery from reactive to proactive.

This transformation necessitates better monitoring and understanding of patients, their physio-
logical signals, and their context. Medical institutions and healthcare providers are collecting large
amounts of data on their patients, and organizing this data into Electronic Medical Records (EMR)
and Patient Health Records (PHR). Recently, with advances in sensor and wearable technologies,
several new data sources are available to provide insights on patients. For instance, Bluetooth en-
abled scales, blood pressure cuffs, heart rate monitors, and even portable electrocardiogram moni-
tors are now available off the shelves for the collection of important vitals that can be interpreted
for early diagnosis. Using these advances in sensor technologies, several remote health monitoring
solutions for chronic disease management, and wellness management have been proposed [4].

While rapid growth in healthcare sensor data offers significant promise to impact care delivery,
it also introduces a data overload problem, for both systems and stakeholders that need to consume
this data. It is, therefore necessary to complement such sensing capabilities with data mining and
analytical capabilities to transform the large volumes of collected data into meaningful and action-
able information. In this chapter, we survey the application of sensor data mining technologies in
medical informatics. We divide this application space into two parts: clinical and nonclinical appli-
cations. Clinical applications are essentially clinical decision support applications for both in- and
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outpatient scenarios. Nonclinical applications include wellness management, activity monitoring,
the use of smart environments (e.g., smart home scenarios) and reality mining. We provide a de-
tailed survey of the sensors, systems, analytic techniques, and applications and challenges in these
different areas, in this chapter.

This chapter is a revision of previously published work [120]. It is organized as follows. In
Section 4.2, we present research challenges associated with the mining of sensor data in medical
informatics. In Section 4.3, we consider the several challenges to obtaining and analyzing health-
care data. In Section 4.4, we review sensor mining applications and systems in clinical healthcare
settings, while in Section 4.5 we describe several applications in nonclinical settings. We conclude
in Section 4.6.

4.2 Mining Sensor Data in Medical Informatics: Scope and Challenges

Sensors measure physical attributes of the world and produce signals, i.e., time series consisting
of ordered measurements of the form (timestamps, data elements). For example, in intensive care,
respiration rates are estimated from measurements of the chest impedance of the patient. The result-
ing time series signals are consumed either by a human or by other sensors and computing systems.
For instance, the output of the chest impedance sensor can be consumed by an apnea detection sys-
tem to produce a signal measuring apnea episodes. The data elements produced by sensors range
from simple scalar (numerical or categorical) values, to complex data structures. Examples of sim-
ple data elements include measures such as hourly average of temperature in a given geographical
location, output by a temperature sensor. Examples of more complex data elements include sum-
maries of vital signs and alerts measured by a patient monitor sensor in a medical institution. In this
chapter, we focus on sensing challenges for medical informatics applications.

4.2.1 Taxonomy of Sensors Used in Medical Informatics
As shown in Figure 4.1, we categorize sensors in medical informatics as follows:

* Physiological sensors: These sensors measure patient vital signs or physiological statistics.
They were first used to measure vitals on astronauts before appearing in medical institutions,
at the bedside in the 1960s. Today, physiological sensors are also available outside medical
institutions, even on pervasive devices (e.g., iPhone heart rate monitor applications that make
use of smartphone cameras [5]).

e Wearable activity sensors: These sensors measure attributes of gross user activity, different
from narrowly focused vital sign sensors. Good examples are accelerometers used for gait
monitoring. Shoe manufacturers like Nike have enabled many of their running shoes with sen-
sors capable of tracking walking or jogging activities [6]. Most smartphones are also equipped
with accelerometers and several wellness management applications leverage these sensors.

* Human sensors: Humans play an integral role in the sensing process. For instance, physicians
introduce important events that relate to the patient health status during examinations. Lab
technicians follow rigorous processes to provide blood content information. Self-reporting
(i.e., patients monitoring their health parameters) is also used in the management of chronic
illnesses like diabetes. More recently, with the emergence of social media and pervasive com-
puting, people use mechanisms like Web searches and Twitter to generate reports on important
health-related events.
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FIGURE 4.1: The sensor data mining process.

e Contextual sensors: These sensors are embedded in the environment around the user to mea-
sure different contextual properties. Examples include motion detection sensors, audio and
video sensors, temperature sensors, weather sensors, etc.

4.2.2 Challenges in Mining Medical Informatics Sensor Data

As with standard data mining procedures [7] [8], healthcare mining is typically performed in
five stages:

1. Data Acquisition: This includes operations involved in collecting data from external sensor
data sources.

2. Data Preprocessing: This includes operations applied to the data to prepare it for further anal-
ysis. Typical preprocessing operations include data cleaning to filter out noisy data elements,
data interpolation to cope with missing values, data normalization to cope with heterogeneous
sources, temporal alignment, and data formatting.

3. Data Transformation: The includes operations for representing the data appropriately and
selecting specific features from this representation. This stage is often called feature extraction
and selection.

4. Modeling: This stage, also called mining applies knowledge discovery algorithms to iden-
tify patterns in the data. Modeling problems can be classified into six broad categories: (1)
anomaly detection to identify statistically deviant data, (2) association rules to find dependen-
cies and correlations in the data, (3) clustering models to group data elements according to
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various notions of similarity, (4) classification models to group data elements into predefined
classes, (5) regression models to fit mathematical functions to data, and (6) summarization
models to summarize or compress data into interesting pieces of information.

5. Evaluation: This stage includes operations for evaluation and interpretation of the results of
the modeling process.

There are several analytical challenges associated with each of these stages — specific to healthcare
mining — that are listed in Table 4.1.

TABLE 4.1: Sensor Data Mining Analytical Challenges at Each Stage of the Data Mining Process

(1) Acquisition (II) Pre-processing

lack of data standards data formatting

lack of data protocols data normalization

data privacy data synchronization

(I1I) Transformation (IV) Modeling

physiological feature extraction sequential mining

feature time scales distributed mining
unstructured data privacy preserving modeling

obtaining ground truth
exploration-exploitation trade-offs

(V) Evaluation and Interpretation
Model expressiveness
Process and data provenance

We present these analytical challenges in more detail in the rest of this chapter.

4.3 Challenges in Healthcare Data Analysis

Despite several standardization efforts, medical sensor manufacturers tend to design proprietary
data models and protocols to externalize sensed signals. In healthcare, standard bodies like HL7 [9]
and the Continua Health Alliance [10] address data modeling issues while several IEEE standard
protocols address device interoperability issues [11]. However, there is a lack of incentives for sensor
data manufacturers to adhere to these standards. With this lack of adherence to standards, mining
medical sensor data across multiple data sources involves several nontrivial engineering challenges,
and the design of custom solutions specific to each sensor data mining application.

Another key challenge in the acquisition process is related to the protection of user privacy. In the
United States, the Health Insurance Portability and Accountability Act (HIPAA) defines regulations
on access to health data. By law, data mining applications that leverage this data must comply
with these regulations. Data de-identification and de-anonymization techniques are often required
to comply with HIPAA. Privacy preserving data mining techniques [12], [13] may also be used to
extract information from sensor data while preserving the anonymity of the data.

4.3.1 Acquisition Challenges

As discussed earlier, there are four different classes of sensors that generate and collect health-
care relevant information. In a clinical setting such as the ICU, these include different types of phys-
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iological sensors (e.g., ECG sensors, SpO2, Temperature sensors), contextual sensors (e.g., RFID
sensors linked with care providers, video and cameras) and human sensors (e.g., care-provider notes,
entries in the Electronic Medical Records). More recently, with the emergence of wearable devices,
and network connectivity, additional information is provided (even in nonclinical settings) by ac-
tivity sensors (e.g., wearable devices such as cell phones) and completely nontraditional sources
of information (e.g., community discussions in healthcare-related sites, aggregated views of user
searches, etc.).

Acquiring and integrating this data is nontrivial because of the inherent heterogeneity and lack
of standards and protocols. Physiological sensor manufacturers have mostly designed proprietary
data models and protocols to externalize sensed signals, despite the efforts of standard bodies like
HL7 [9] and the Continua Health Alliance [10] to address data modeling issues, and IEEE standard
protocols to address device interoperability issues [11]. Additionally, there is little standardization
or interoperability studies of contextual and activity sensors, and data from healthcare providers is
captured poorly, often requiring manual entry and transcription — all making the data acquisition
task extremely complex. This has led to the emergence of data aggregators [121, 122, 123, 124] in
ICU and EHRs for general clinical settings, however these aggregator solutions operate only on a
narrow set of sources, and often do not interoperate with each other. Hence, mining medical sensor
data across multiple data sources has involved several nontrivial engineering challenges, and the
design of custom solutions specific to each sensor data mining application.

These acquisition challenges are compounded by the need to provide privacy protection for this
often very sensitive personal information. This includes conforming with regulations such as the
Health Insurance Portability and Accountability Act (HIPAA) act and providing appropriate controls
with mechanisms for authentication, authorization, anonymization, and data de-identification. This
also requires the design of privacy preserving data mining and analysis techniques [12], [13]. There
are also several open, unresolved questions related to the privacy protection of data generated using
nontraditional, contextual, and activity sensors.

4.3.2 Preprocessing Challenges

Data in the real world is inherently noisy. The preprocessing stage needs to address this prob-
lem with sophisticated data filtering, sampling, interpolation, and summarization techniques (such
as sketches, descriptive statistics to minimize the effects of noise. The preprocessing also needs to
account for the heterogeneity of data, and the lack of standards adoption by medical sensor manu-
facturers. Indeed, data generated in different formats needs to be syntactically aligned and synchro-
nized before any analysis can take place. Sensors report data with timestamps based on their internal
clocks. Given that clocks across sensors are often not synchronized, aligning the data across sensors
can be quite challenging. In addition, sensors may report data at different rates. For instance while
the ECG signal is generated at several 100s of Hz, the EMR may only be updated hourly. Aligning
these datasets requires a careful design of strategies. These preprocessing techniques need to han-
dle different types of structured data such as transactions, numeric measurements, and completely
unstructured data such as text and images, often jointly. It is critical that the preprocessing of these
sources retains the appropriate correlation structures across sources, so that meaningful and subtle
indicators of patient health can be detected.

Furthermore, a semantic normalization is often required to cope with differences in the sensing
process. As an illustration, a daily reported heart rate measure may correspond to a daily average
heart rate in some cases, while in other cases it may represent a heart rate average measured every
morning when the subject wakes up. Comparing these values in a data mining application can yield
incorrect conclusions, especially if they are not semantically distinguished. All of these issues make
the preprocessing task very complex.

© 2015 Taylor & Francis Group, LLC



Mining of Sensor Data in Healthcare: A Survey 97

4.3.3 Transformation Challenges

Data transformation involves taking the normalized and cleaned input data and converting it to
a representation such that attributes or features relevant to the mining process can be extracted. This
may include applying different types of linear (e.g., Fourier Transform, Wavelet Transform) and
nonlinear transformations to numeric data, converting unstructured data such as text and images
into numeric representations (e.g., using a bag of words representations, or extracting color, shape,
and texture properties), and applying dimensionality reduction and de-correlation techniques (e.g.,
Principal Component Analysis), and finally summarizing the result with a set of representative fea-
tures that can then be used for analysis and modeling. The choice of the appropriate transformations
and representations for the features is heavily dependent on the task that needs to be performed. For
instance a different set of features may be required for an anomaly detection task, as opposed to a
clustering or classification task.

Additionally, the choice of appropriate features requires understanding of the healthcare problem
at hand (e.g., the underlying physiology of the patient) and often requires inputs from domain ex-
perts. For instance, in neurological intensive care environments, spectral decomposition techniques
for feature extraction have been defined, in conjunction with domain experts, to aid the interpretation
of electroencephalograms (EEG) signals for brain activity monitoring and diagnosis of conditions
such as seizures [14].

In addition to such signals, human sensing adds different types of unstructured data that need to
be effectively integrated. This includes textual reports from examinations (by physicians or nurses)
that need to be transformed into relevant features, and aligned with the rest of the physiological
measurements. These inputs are important to the data mining process as they provide expert data,
personalized to the patients. However, these inputs can be biased by physician experiences, or other
diagnosis and prognosis techniques they use [15]. Capturing some of these aspects during the mining
process is extremely challenging. Finally, there is a lot of external domain knowledge in open source
repositories, medical journals, and patient guidelines that can be relevant to patient care, and features
should be placed in context of this knowledge for appropriate interpretation.

4.3.4 Modeling Challenges

There are several challenges that need to be overcome in the modeling stage of the data min-
ing process for medical sensor data. First of all, the time series nature of the data often requires
the application of sequential mining algorithms that are often more complex than conventional ma-
chine learning techniques (e.g., standard supervised and unsupervised learning approaches). Non-
stationarities in time series data necessitate the use of modeling techniques that can capture the
dynamic nature of the state of the underlying processes that generate the data. Known techniques
for such problems, including discrete state estimation approaches (e.g., dynamic Bayesian networks
and hidden Markov models) and continuous state estimation approaches (e.g., Kalman filters or
recurrent neural networks) have been used only in limited settings.

Another challenge arises due to the inherent distributed nature of these applications. In many
cases, communication and computational costs, as well as sharing restrictions for patient privacy
prevent the aggregation of the data in a central repository. As a result, the modeling stage needs to
use complex distributed mining algorithms. In remote settings, there is limited control on the data
acquisition at the sensor. Sensors may be disconnected for privacy reasons or for resource manage-
ment reasons (e.g., power constraints), thereby affecting the data available for analysis. Modeling
in these conditions may also require the distribution of analytic approaches between the central
repository and the sensors. Optimizing the modeling process becomes a challenging distributed
data mining problem that has received only limited attention in the data mining community.

Modeling in healthcare mining is also hindered by the ability to obtain ground truth on the data.
Labels are often imprecise and noisy in the medical setting. For instance, a supervised learning
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approach for the early detection of a chronic disease requires well-labeled training data. However,
domain experts do not always know exactly when a disease has started to manifest itself in a body,
and can only approximate this time. Additionally, there are instances of misdiagnosis that can lead
to incorrect or noisy labels that can degrade the quality of any predictive models.

In clinical settings, physicians do not have the luxury of being able to try different treatment
options on their patients for exploration purposes. As a result, historical data sets used in the mining
process tend to be quite sparse and include natural biases driven by the way care was delivered to the
patient. Standard approaches are not well-equipped to cope with this bias in the data, especially as
it is hard to quantify precisely. Furthermore, most studies in medical informatics are retrospective.
Well-done prospective studies are hard to do, and are often done on small populations, limiting the
statistical significance of any derived results.

4.3.5 Evaluation and Interpretation Challenges

Data mining results consist of models and predictions that need to be interpreted by domain
experts. Many modeling techniques produce models that are not easily interpretable. For example,
the weights of a neural network may be difficult to grasp for a domain expert. But for such a model
to be adopted for clinical use, it needs to be validated with existing medical knowledge. It becomes
imperative to track provenance metadata describing the process used to derive any results from data
mining to help domain expert interpret these results. Furthermore, the provenance of the data sets,
and analysis decisions used during the modeling are also required by the experts to evaluate the
validity of the results. This imposes several additional requirements on the selected models and
analysis.

4.3.6 Generic Systems Challenges

Beyond analytical challenges, sensor data mining also comes with a set of systems challenges
that apply to medical informatics applications. The mining of sensor data typically requires more
than conventional data management (database or data warehousing) technologies for the following
reasons:

* The temporal aspect of the data produced by sensors sometimes generate large amounts of
data that can overwhelm a relational database system. For example, a large population moni-
toring solution requiring the real-time analysis of physiological readings, activity sensor read-
ings and social media interactions, cannot be supported with relational database technologies
alone.

» Sensor mining applications often have real-time requirements. A conventional store-then-
analyze paradigm leveraging relational database technologies may not be appropriate for such
time-sensitive applications.

* The unstructured nature of some of the data produced by sensors coupled with the real-time
requirements imposes requirements on the programming and analysis models used by devel-
opers of sensor data mining applications.

Hence, sensor mining in healthcare requires the use of emerging stream processing system technol-
ogy in conjunction with database and data warehousing technologies. Stream processing systems are
designed to cope with large amounts of real-time data, and their programming models are geared
towards the analysis of structured and unstructured sensor data. They are also time sensitive and
analyze data within small latency bounds. Figure 4.2 presents an extended architecture for sensor
data mining that illustrates this integration. The rationale behind this architecture is to use a stream
processing system for the real-time analysis of sensor data, including the preprocessing and trans-
formation stages of the analytical data mining process. The sensor data acquisition is performed by
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a layer of software that interfaces with sensors and feeds into the stream processing system. The
results of the transformation stage may be persisted in a data warehouse for offline modeling with
machine learning techniques. The resulting models may be interpreted by analysts and redeployed
on the stream processing platform for real-time scoring. In some cases, online learning algorithms
may be implemented on the stream processing system. This integration of stream processing with
data warehousing technologies creates a powerful architecture that addresses the system challenges
outlined above.

4.4 Sensor Data Mining Applications

Most systems supporting clinical applications of data mining technologies in healthcare fall into
the general class of Clinical Decision Support Systems (CDSS). Broadly speaking, CDSSs pro-
vide medical practitioners with knowledge and patient-specific information, intelligently filtered
and presented at appropriate times, to improve the delivery of care [16]. As Robert Hayward from
the Centre for Health Evidence says, “Clinical Decision Support systems link health observations
with health knowledge to influence health choices by clinicians for improved health care.”! Estab-
lishing links between observations or data and knowledge is one of the fundamental aspects of Data
Mining. CDSS are either completely knowledge-driven, or completely data-driven or hybrid. Pure
knowledge driven CDSS reason on a fix amount of existing knowledge represented in various ways
(e.g., rules, state transition diagrams) to provide decision support. Data driven CDSS rely of data

Uhttp://en.wikipedia.org/wiki/clinical - decision_support_system
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mining and machine learning technologies to build inferencing models providing decision supports.
Hybrid CDSS leverage existing knowledge and further enrich it using data driven techniques.

CDSSs have been used in both inpatient and outpatient scenarios.” In this section, we survey
such systems with a focus on the ones that make extensive use of data mining to aid physicians in
their decision-making process. We survey applications in intensive care, operating rooms, and in
general clinical settings.

4.4.1 Intensive Care Data Mining

In 2003, it has been reported that intensivists have to handle over 200 variables, some of them
being temporal, on a per patient basis to provide care. Anecdotal evidence tells us that this num-
ber has increased significantly since 2003 with the emergence of more and more sensing devices
in critical care. Today, critically ill patients are often attached to large numbers of body sensors
connected to sophisticated monitoring devices producing these large volumes of physiological data.
These data streams originate from medical devices that include electrocardiogram, pulse oximetry,
electroencephalogram, and ventilators, resulting in several kilobits of data each second. While these
monitoring systems aim at improving situational awareness to provide better patient care with in-
creased staff productivity, they clearly have introduced a data explosion problem. In fact, the vast
majority of data collected by these monitoring systems in Intensive Care Units (ICUs) is transient.
In talking with medical professionals, we learned that the typical practice in ICUs is for a nurse to
eyeball representative readings and record summaries of these readings in the patient record once
every 30-60 minutes. The rest of the data remains on the device for 72-96 hours (depending on the
device’s memory capacity) before it times out and is lost forever. Hospitals are simply not equipped
with the right tools to cope with most of the data collected on their patients, prompting many to
state that medical institutions are data rich but information poor.

The potential of data mining in this area has been recognized by many. Several efforts are under-
way to develop systems and analytics able for the modeling of patient states and the early detection
of complications. In general, early detection of complications can lead to earlier interventions or
prophylactic strategies to improve patient outcomes. Early detection rests on the ability to extract
subtle yet clinically meaningful correlations that are often buried within several multimodal data
streams and static patient information, spanning long periods of time.

4.4.1.1 Systems for Data Mining in Intensive Care

Modern patient monitors have evolved into complex system that not only measure physiologi-
cal signals but also produce alerts when the physiological state of the patient appears to be out of
range. State-of-the-art patient monitors allow physicians to program thresholds defining normality
ranges for physiological systems. For example, one can program a patient monitor to produce an au-
dible alert if the oxygen saturation level of the blood is below 85%. The values of these thresholds
are typically obtained from general guidelines or from data mining processes. Such simple alert-
ing schemes are well known to produce very large numbers of false alarms. In [17], it is reported
that more than 92% of alarms generated in an ICU are of no consequence. Furthermore, there are
many complex physiological patterns of interest to physicians that cannot be represented by a set
of thresholds on sensor data streams. Several research initiatives [125] are addressing this prob-
lem with the design of platforms facilitating analysis beyond the simple thresholding capabilities of
existing patient monitoring systems.

One example is BioStream [18], a system that performs real-time processing and analysis of
physiological streams on a general purpose streaming infrastructure. The authors use ECG data
along with temperature, oxygen saturation, blood pressure, and glucose levels as inputs into patient-

2Inpatient scenarios refer to scenarios for patients that are hospitalized for more than 24 hours. Outpatient scenarios refer
to the rest of the clinical use-cases.
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specific analytic applications. The system supports a different processing graph (for analysis) per
patient, where the graph can be composed of system supplied operators (functions) and user im-
plemented operators. The authors also state that BioStreams can be used to discover new patterns
and hypotheses from the data and test them, however, there is limited discussion of the underlying
analytics and use cases.

In [19] the authors describe an architecture for a system whose goals are data mining, fusion, and
management of data streams for intensive care patients. The proposed system has online components
for capture of physiological data streams and program execution along with offline components for
data mining.

The SIMON (Signal Interpretation and MONitoring) platform [20] developed at Vanderbilt is
a data acquisition system that continuously collects and processes bedside patient monitoring data.
SIMON collects typical ICU monitoring vital signs including heart rate, blood pressures, oxygen
saturations, intracranial and cerebral perfusion pressures, and EKG/ECG waveforms. This data col-
lection is intended to support clinical research by enabling further analysis and mining. The sys-
tem is also capable of producing alarms and has reporting capabilities though a Web interface and
through event notification mechanisms.

The Online Healthcare Analytics infrastructure, also known as Artemis [22], is a programmable
framework for real-time analysis of intensive care sensor data leveraging the IBM InfoSphere
Streams (Streams) real-time high-performance stream analysis engine. OHA interfaces Streams
with an open set of data collection systems (e.g., Excel Medical Electronics BedMasterEX sys-
tem, the CapsuleTech data collection system), and leverages different data mining technologies and
machine learning algorithms for the generation of models for prediction of the onset of complica-
tions in intensive care. OHA leverages Streams interface with well-known analytic software such
as SPSS, SAS and R to provide data mining capabilities. Models learned with these data mining
systems can be scored in real time, thus giving the analyst/physician the ability to test clinical
hypotheses prospectively. This analytical loop is abstracted in Figure 4.2. It constitutes a general
architecture for sensor data mining applications leveraging both at rest analytics for modeling and
in motion analytics for the scoring of models in real time. The OHA system has been in use in live
environments for the monitoring of neonates [22]. Its exploration capabilities are also used for the
mining of sensor data for the early detection of complications in neurological ICUs [23].

OHA has been extended with patient similarity concepts to help physicians make decisions
while leveraging past experiences gathered from similar patients who have been monitored in the
past [24]. In [25], the MITRA system, introduced as an extension of OHA, allows physicians to
query for similar patients and use records from these similar patients to make predictions on the
health evolution of a patient of interest. An in-silico study using physiological sensor data streams
from 1,500 ICU patients obtained from physionet [26] shows how MITRA may be used to forecast
the trajectory of blood pressure streams and help predict acute hypotensive episodes in ICUs. In
[27], similar approaches to time-series forecasting with applications to intensive care are also re-
ported. Patient similarity techniques are described in this thesis as a way to extract robust features
for forecasting purposes. Sequential learning techniques with Linear Dynamical Systems and Hid-
den Markov Models are proposed for the modeling stages.

4.4.1.2 State-of-the-Art Analytics for Intensive Care Sensor Data Mining

State-of-the-art analytics and mining approaches for in-hospital sensor data monitoring (Figure
4.3) tend to generate innovations on data preprocessing and transformation. Modeling is typically
done with well-known families of machine learning techniques such as classification, clustering,
and dynamic system modeling with sequential learning. These analytical techniques often attempt
to derive features from physiological time series to model the inflammatory response of the body,
as it is known to be highly correlated with early sign of complications in general. The inflammatory
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FIGURE 4.3 (See color insert.): Sensing in intensive care environments.

response is a reaction from the body to different harmful stimuli such as pathogens, various irritants,
or even damaged cells. Hence, accurate modeling of it enables a wide range of early detection
applications in intensive care. In particular, devastating complications such as sepsis are known to
produce an inflammatory response well before the appearance of clinical symptoms [28].

The inflammatory response is controlled by the autonomic nervous system, consisting of the
sympathetic and parasympathetic nervous systems [29]. These systems regulate several involuntary
actions such heart beats, respiration, salivation, transpiration, etc. Inflammation results in poor regu-
lation of these systems, and is often correlated with the Systemic Inflammatory Response Syndrome
(SIRS) [30], [31]. The poor regulation manifests itself in loss of signal variability associated with
physiological sensor streams. As a result, several researchers have attempted to model the inflam-
matory response using various measures estimating the signal variability of heart rate observations.>
Monitoring reductions in Heart Rate Variability (HRV) has been a successful strategy for the early
detection of disorders of the central and peripheral nervous system that induce a pro-inflammatory
response [32].

Existing efforts to model the inflammatory response are focused primarily on the one-
dimensional HRV analysis, due to a large body of work on ECG waveform processing. The Society
for Complexity in Acute Illness (SCAI) [33] has devoted many efforts to model complexity and
variability in the human body from ECG signals, as a way to model ICU patients and derive models
predicting complications in ICUs. Variability metrics [34] typically used include spectral analysis
techniques [35], approximations to uncomputable notions of randomness with the approximate and
sample entropy [36],[37], and fractal analysis techniques like the Detrended Fluctuation Analysis
(DFA) [38]. Surprisingly, classical information theoretic approaches to measure complexity with
well understood concepts of compressibility and predictability [39] have received a modest amount
of attention in acute care.

The success of variability analysis has been reported by many researchers. In [28], the authors
perform a spectral analysis of heart rate measurements to show a relationship between heart rate

3Reductions in the variability of other vital signs such as respiration may also be correlated with the inflammatory
response.
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variability and sepsis. In [34], the potential of this approach is highlighted with a description of
multiple clinical applications that use such complexity analysis. In [35] the authors derive several
empirical links between heart rate variability and mortality in intensive care units. In [40], the prog-
nostic potential of heart rate variability measures in intensive care is proposed. The authors in [41]
have shown that reductions of heart rate variability are correlated with outcomes in pediatric inten-
sive care. At the University of Virginia, Lake et al. [42] have used the sample entropy on heart rate
measurements to predict the onset of sepsis in neonates. In [43] the predictive capability of heart
rate variability on the prognosis of a large population of trauma patients is described.

Heart rate variability has also been used to determine when to extubate or remove patients from
mechanical ventilation in intensive care [44]. A clinical trial is currently underway in Canada test-
ing whether maintaining stable heart rate and respiratory rate variability throughout the spontaneous
breathing trials, administered to patients before extubation, may predict subsequent successful ex-
tubation [44].

Besides heart rate variability analysis, there are many other applications of sensor data mining
intensive care. Analysis of the dynamics of the ECG signal has enabled researchers to build systems
for arrhythmia detection using standard machine learning and classification techniques. The work
presented in [45] is illustrative of these systems.

Respiratory complications have also received a significant amount of attention in the intensive
care community. In [46] the authors describe the use of sensor data from brain activity measured
with electroencephalograms (EEG), eye movements measured with electrooculogram (EOG), mus-
cle activity measured with electromyogram (EMG), and heart rhythm measured with ECGs during
sleep, to detect obstructive sleep apnea episodes, that are known to be correlated with poor patient
outcomes.

EEG signals have also been used beyond sleep apnea studies. In [47], EEG spectral analysis is
performed to detect epileptic seizures with machine learning techniques, while in [48], continuous
EEG spectral analysis for brain ischemia prediction is illustrated.

General predictive models for patient instability in intensive care have also been proposed in
the literature. A notable example is the work in [49], where the authors extract several time se-
ries trending features from heart rate and blood pressure measurements collected every minute and
build predictive models using a multivariable logistic regression modeling algorithm. This simple
approach proves the ability to generate predictive alerts for hemodynamically unstable patients with
high accuracy from trends computed on physiological signals.

In [50], a Bayesian belief network is developed to model ICU data and help caregivers interpret
the measurements collected by patient monitors. The belief-network model represents knowledge of
pathophysiologic or disease states in a causal probabilistic framework. The model is able to derive
a quantitative description of the patient’s physiological states as they progress through a disease by
combining the information from both qualitative and quantitative or numerical inputs.

Another relevant body of work on sensor mining in intensive care environments has focused
on the identification and removal of undesirable artifacts from sensor data streams. This includes
mitigating the impact of missing and noisy events, as well as clinical interventions (e.g., drawing
blood, medications) that complicate the data mining process (Section 13.2). In [51], a factorial
switching Kalman Filtering approach is proposed to correct for artifacts in neonatal intensive care
environments. In [52] the authors develop clever techniques leveraging dynamic Bayesian networks
to analyze time-series sensor data in the presence of such artifacts.

4.4.2 Sensor Data Mining in Operating Rooms

Data mining applications that relate to operating rooms tend to focus on the analysis of Elec-
tronic Medical Record data where most sensor data inputs are filtered and summarized. For example,
in [53], EMR data is used to improve the efficiency of operating rooms, in terms of scheduling (start
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times, turnover times) and utilization. In [54], knowledge management and data mining techniques
are used to improve orthopedic operating room processes, yielding more effective decision making.

A few researchers have reported applications directly mining physiological sensor data pro-
duced by operating room monitoring systems. Exceptions are presented in [55] where the authors
correlate EEG signals with cerebral blood flow measurements for patients undergoing carotid en-
darterectomy. This finding is quite valuable as it proves that EEG signals can be used to monitor
complex mechanisms including cerebral blood flow for this patient population. In [56], machine
learning techniques are proposed for the closed-loop control of anesthesia procedures. In [57], the
authors present a prototype of a context-aware system able to analyze patient data streams collected
in an operating room during surgical procedures, to detect medically significant events, and apply
them in specific EMR systems.

4.4.3 General Mining of Clinical Sensor Data

Recent stimuli from the federal government and the increased ease of adoption of electronic
health records system has led to widespread use of EHR in clinical practice. Large providers such
as EPIC and McKesson have essentially unified the elements of data entry by having common plat-
forms, although the use of free text and contextual rather than templated data is more common. EHR
systems are a unique healthcare sensor, since real-time data and vast data troves are similar to other
sensors, yet the relatively unstructured data makes it difficult to view this as a typical sensor. They
typically contained structured and unstructured comprising of all the key administrative clinical data
relevant to patients, demographics, progress notes, problems, medications, vital signs, past medical
history, immunizations, laboratory data, diverse test results, and radiology reports [58]. Further-
more, there are no widely accepted standards for the representation of all these data points stored
in EHR systems. Several code systems (e.g., ICD-9, ICD-10, CPT-4, SNOWMED-CT [59]) and
interoperability standards (e.g., HL7, HIE) are in use by many systems but there are no overarching
standards that EHR vendors are adhering to. Despite this lack of global standardization that is hin-
dering the realization of very large-scale data mining, many researchers are spending considerable
efforts to analyze these data sets to improve healthcare in general.

Mining of such sensors have been undertaken by various groups. The use of EHR mining to
detect delays in cancer diagnosis, hospital-acquired complications, and the ability for groups to
develop high throughput phenotyping to identify patient cohorts based on modular and consistent
resources has been reported [127, 128, 129].

Demonstration of successful implementation of big data analytics in the Internet era coupled
with the emergence of EHRs, has suddenly forced the healthcare industry to notice the use of
large data in predicting patient outcomes, examining the effectiveness of policies and measures
and healthcare prevention and improvement. Large cohorts maintained by insurance companies and
in particular Medicare Claims data are easily accessible sources of data for researchers. The ad-
vantages of claims data include higher fidelity than EHR records given the emphasis on accuracy.
Nevertheless, the lack of relevant clinical information and lower validity especially with bundling
based on ICD-10 codes or Current Procedural Terminology (CPT) codes can lead to loss of granu-
larity. While clinical trials remain the gold standard for the determination of efficacy of a form of
treatment, the true effectiveness in the population is often unstudied. The use of a claims database
lends itself to easy inclusion in Comparative Effectiveness Research (CER), which is a fairly inno-
vative way of examining current evidence to detect best possible treatments.

For instance, Hospital Readmissions are an extremely important measure especially with the
current pay for performance climate. An example of a claim-based algorithm developed at Johns
Hopkins looks at patient specific risk factors to predict readmissions that they were able to perform
with an AUC greater than 0.75 [133]. Similarly, a Bayesian Multi-Item Gamma Poisson Shrinkage
algorithm applied to the Medicare Data examining the safety of the coxib class of drugs was able
to confirm the association of these drugs with cardiac events and could be applied on a concurrent
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basis to identify and prevent harmful practices [134]. The lag time between the release of claims
data and actual application can interfere with real-time interventions, although with improving EHR
systems that can capture claims immediately, this may be avoided.

In [58], EHR data are mined to derive relationships between diabetic patients’ usage of health-
care resources (e.g., medical facilities, physicians) and the severity of their diseases. In [60], Re-
constructability Analysis (RA) is applied to EHR data to find risk factors for various complications
of diabetes including myocardial infarction and microalbuminuria. RA is an information-theoretic
technique used for mining of data sets of large dimensionality. In this setting, RA is used to in-
duce relationships and correlations between EHR variables by identifying strongly related subsets
of variables and to representing this knowledge in simplified models while eliminating the con-
nections between all other weakly correlated subsets of variables. In [126], the authors propose an
interesting framework for the mining of EHR data that models explicitly the temporal and sequential
aspects present in longitudinal patient records.

In [61], data quality issues are reported while attempting to analyze EHR data for a survival
analysis study on records of pancreatic cancer patients. Incomplete pathology reports for most of
these patients forced the authors to exclude them from their study. The authors conclude this paper
by suggesting complementing EHR data with more generic patient-related data to produce more
complete patient representations where such data mining studies can be performed.

Batal et. al. present in [62] an approach to find temporal patterns in EHR data. At the core
of their technique is the representation of longitudinal patient records with temporal abstractions.
These abstractions are essentially summaries of intervals of time-series data. For example, patient
body mass indices may be abstracted by increasing/decreasing/steady trend qualifiers. The authors
also propose techniques for mining such EHR temporal abstraction using standard data mining
schemes (e.g., apriori algorithm).

Neuvirth and his colleagues [63] proposed an interesting application of data mining techniques
on EHR data for the management of chronic diseases. This application is able to predict patient
future health states and identify high-risk patients for specific diseases where risk is a function of
the likelihood of needing emergency care and the likelihood of receiving suboptimal treatments.
They further explore the links between physicians treating these patient populations and outcomes
to design a system that optimizes the matching between individual patients and physicians for better
outcomes. Their analysis makes heavy use of standard machine learning techniques (e.g., logistic
regression, K-Nearest Neighbor classification) and survival analysis (Cox modeling) and has gener-
ated interesting results for the management of diabetic patients.

The concept of patient similarity described above in Section 4.4.1 has also been on EHR data
with the AALIM system [64], which uses content-based search techniques on different modality
data to extract disease-specific patient information and find groups of similar patients. AALIM uses
data from similar patients to help physicians make prognosis for a given patient and design care
management strategies. Sensor data inputs into AALIM includes ECGs, videos, echocardiograms,
MRIs, and text notes.

Social media is becoming more and more pervasive and the use of platforms such as Facebook
(social networks), Twitter (microblogging sites), LinkedIn/Doximity (professional networks) and
media platforms such as YouTube/Vimeo is also used extensively in healthcare. Social media has
typically been a vehicle for dissemination of information, although the use of social media as a
healthcare sensor is a very powerful tool. Recent use of an influenza surveillance system implented
in the 2012-13 season demonstrated the use of social media as a healthcare sensor in detecting
epidemics, which could then interface with public health efforts to contain them [130]. While the
first three days of an epidemic are likely the most critical, the use of intelligent algorithms to mine
this source of information can be critical to the successful implementation of strategies although
there are no formal strategies in place currently [131, 132]. This media has also been used as a
sensor to detect effectiveness of clinical trials, chronic disease control such as obesity, tobacco
control, and sexual diseases among others.
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With the emergence of question answering systems like IBM Watson [65], the potential to design
systems able to ingest very large amounts of structured and unstructured clinical data to support
clinical diagnosis and prognosis is emerging. Watson’s ability to analyze the meaning and context
of human language, and quickly process vast amounts of information to answer questions has wide
applicability in healthcare. One can imagine applications where a properly trained Watson system
can assist decision makers, such as physicians and nurses, in identifying the most likely diagnosis
and treatment options for their patients. IBM and Wellpoint have partnered to develop such a system
with applications to patient diagnosis [66]. A similar partnership with Memorial Sloan Kettering is
in place for the diagnosis and management of cancer [67].

4.5 Nonclinical Healthcare Applications

The world is experiencing a rapid increase in its aging population, and a corresponding increase
in the prevalence of chronic diseases and healthcare expenditure. For instance, the total Medicare
expenditure in the United States has risen from $239.5 billion in 2000 to $524 billion in 2010. It is
projected to be around $600 billion in 2014 and over a trillion by 2022. To react to these unprece-
dented rising costs, Aging in place has been proposed as one method to reduce costs and maintain
quality of life for the aging population. The concept is to support older adults in the environment
of their choice as opposed to placing them in traditional clinical settings or or nursing home en-
vironments. These initiatives also require city-wide technology allowing the elderly population to
be mobile and live effectively in the society. Healthcare is being looked at as a continuum expand-
ing outside of traditional clinical settings with goals to make it more proactive to reduce stress on
medical institutions. Providing healthcare support outside of clinical environments with smart mon-
itoring devices and e-health technology has been the focus of much research recently, especially in
the ubiquitous computing research community.

Ubiquitous healthcare [68] is an emerging field of research that uses a large number of envi-
ronmental and body sensors and actuators combined with sensor mining and analytic techniques to
monitor and improve health of people in these types of settings. Ubiquitous healthcare approaches
often employ several distributed and wireless sensors to gather information on bodily conditions
such as temperature, heart rate, blood pressure, blood and urine chemical levels, breathing rate and
volume, activity levels (derived from activity sensors such as pedometers, accelerometers, audio,
and video cameras), and several other physiological characteristics that allow diagnosis of health
problems. These sensors are either worn on or implanted in the body, or installed in the environ-
ment. Additionally, a subset of these sensors also include actuators that can trigger actions such
as the release of small quantities of pharmaceutical drugs into the bloodstream, or the electrical
stimulation of brain areas (e.g., those implicated in conditions such as Alzheimer’s disease and
Parkinson’s disease or those associated with depression).

Ubiquitous healthcare has also relied heavily on the construction of smart environments where
the environment itself is instrumented to capture the user behavior and their interaction with the ex-
ternal world. This includes several Radio Frequency Identification (RFID) tags and readers because
of their durability, small size, and low costs. There is significant use of infrared sensors as well as
video cameras and other sensors for motion detection, image processing, and control of in-home
devices. Some environments also employ ultrasonic location tracking sensors, pressure sensors (de-
ployed in various surfaces such as floors, etc.), and smart displays for information dissemination.
These sensors are embedded in different parts of the home and workplace environment including on
doors, beds, mirrors, bathrooms, mailboxes, in appliances such as microwaves and allow determin-
ing a comprehensive picture of user activities (Figure 4.4).
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FIGURE 4.4: Sensing in home environments.

There are several trade-offs that need to be considered when deciding how many smart environ-
ment sensors are needed and where they should be placed in order to provide enough information
for the analysis to accurately recognize activities. While a greater density of sensors provides more
accurate information on the person position and their interactions with the environment, this comes
with increased energy consumption, cost constraints, and intrusiveness. In addition, increasing sen-
sors lead to increasing complexity, thus requiring a greater amount of data, large-scale algorithms,
and systems to accurately learn activity models.

Reality mining [69] is also an emerging field complementing ubiquitous healthcare and lever-
aging data mining technologies. Reality mining processes all digital information available in the
daily environments in which we evolve these days. Many of the daily activities we perform, such as
checking our email, making phone calls, making a purchase, commuting, etc., leave digital traces
and can be mined to capture records of our daily experiences. These human physical and social
activity traces are captured by the multitude of sensors in mobile phones, cars, security cameras,
RFID (smart card) readers, road-transport sensors, etc. Reality mining [69], is an emerging field of
research that uses statistical analysis and machine learning methods on these digital traces to de-
velop comprehensive pictures of our lives, both individually and collectively. Computational models
based on this data, combined with any physiological information collected from body sensors and
smart environments, can dramatically transform both individual as well as community health.

The different healthcare applications in nonclinical settings that we address in this chapter may
be broadly categorized into:

* Chronic Disease and Wellness Management Applications that facilitate preventive care
and chronic disease management and treatment, along with user programs to motivate happy
and healthy behavior

» Activity Monitoring Applications that capture activities of daily living especially for elderly
users, in remote healthcare settings

* Reality Mining Applied to Healthcare that applies machine learning techniques to data
typically sensed with mobile phones to study complex social systems, including the study
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of the distribution and patterns of health events, health characteristics, and their causes or
influences in specific populations

4.5.1 Chronic Disease and Wellness Management

Several researchers have reported on remote patient monitoring systems with sensor mining ca-
pabilities for chronic disease and wellness management. In [70] the authors report on an interesting
prototype streaming system called T2. T2 is designed to monitor remotely mobile patients’ ECGs
and accelerometers data streams. Using streaming analysis, the application is able to report periods
of elevated heart rate to the clinician. The accelerometer data points are used to detect periods of
physical activity during which the ECG data is filtered to account for different activity levels.

Holter Monitors constitute another class of sensors commonly used by patients with suspected
cardiovascular problems. They are prescribed by physicians for several days during which a pa-
tient continuously wear them to have his/her ECG data continuously analyzed. The analysis of the
recorded data is done offline to detect cardiac conditions of interest. The use of Holter Monitors is
expanding as researchers seek ways to detect conditions and treat patients who have multiple dis-
eases. In [71], researchers record both glucose and cardiac readings in diabetes patients with cardiac
conditions to detect correlations between high glucose readings and ECG patterns.

A remote monitoring platform called Personal Care Connect (PCC) [72] has been extended
with advanced distributed analytical capabilities. The resulting Harmoni platform allows for the
distribution of analysis from back-end servers to remote devices located near the patient. Harmoni
follows a three-tiered architecture with wearable sensors collecting data from the physical world,
a data hub (typically a phone) aggregating and filtering the sensed data and a back-end server.
Harmoni allows for the distribution and instantiation of monitoring rules on the data hub, triggered
by changes in the context of the user being monitored. For example, while monitoring the heart rate
of a user, thresholds for what constitute a normal heart rate are adjusted by inferring the activity of
the user (e.g., sitting down vs. walking). Consequently, the system only reports contextually relevant
information and the battery power of the sensors and the phone hub are extended with analytical
rules requiring sensors to report measurement in a more granular way only in specific situations
such as emergencies or during abnormal physiological episodes [73].

Several wireless Body Sensor Networks (BSNs) [74] [75] have been used in pilot applications
for monitoring elderly patients with chronic conditions in outpatient settings. Using medical sensors
such as ECG, several cardiovascular-related illnesses can be detected early by simply monitoring
heartbeat rhythm (arrhythmias). Multiple heterogeneous sensor architecture can help, expanding the
boundaries of BSNs application ranges. For instance, the DexterNet BSNs [76] use motion sensors
(motes), GPS, and airborne particulate matter (PM) sensors to monitor as well as prevent asthma.
Motion sensors (Accelerometer) combined with with Electromyogram (EMG) sensors that capture
human motion balancing and muscular actives have been used to build postural stability and subject-
independent classification models.

In the myHealthAssistant project [77], motion sensors data are integrated with general body
sensors data to provide wellness and preventive healthcare services. This project focuses on the
development of a system that helps reduce physical inactivity. The system captures individual user’s
activity throughout the day, and motivates users by calculating and suggesting new workout plans
based on historical data on completed workouts.* In the base setup for daily activity monitoring, a
single customized accelerometer, a smartphone, and a heart rate sensor are used together to identify
five different activities, monitor the heart rate, and calculate the calorie expenditure. The system
also allows the user to wear two additional accelerometers (strapped around the torso, and attached
to the right weightlifting glove) while exercising in order to get a more accurate identification of 16

“4Several studies [78] have shown that the Internet and phone-based user motivation systems can significantly increase the
level of physical activity.
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activities, and calorific expenditure. The analysis is performed at a local computer using a Gaussian
model-based classifier.

Many other body sensor applications have been designed to monitor physical activities® as it is
critical to maintain physical and psychological health, and reduce the risk of premature mortality,
coronary heart disease, type II diabetes, colon cancer, and osteoporosis, and symptoms associated
with mental health conditions such as depression and anxiety. Researchers [79] have developed
the UbiFit Garden, which uses on-body sensing, activity inference, and a novel personal, mobile
display to encourage physical activity. The UbiFit Garden system consists of three components: a
fitness device, an interactive application, and a glanceable display. The fitness device automatically
infers and communicates information about several types of physical activities to the glanceable
display and interactive application. The interactive application includes detailed information about
the individuals physical activities. The glanceable display, that resides on the background screen of
a mobile phone uses a nonliteral, aesthetic representation of physical activities and goal attainment
to motivate behavior. The UbiFit application includes the continuous monitoring of different fitness
parameters and building statistical models of these to compute and project trends, and provide better
information to users. Several other such fitness and physical activity monitoring applications are
presented in [74].

The authors in [80] have shown how sensing body movements and eye movements can be used
to generate data that provides contextual information to an adaptive hearing instrument. This in-
strument helps distinguishing different hearing needs in various acoustic environments. The authors
record body movements, eye movements (using electrooculography), and hearing instrument sound
in different simulated acoustic environments. They then use a Support Vector Machine (SVM) based
classifier and person-independent training to show that these different sensor readings can accu-
rately (in some cases up to 92%) determine the acoustic environment characteristics, and modify
the settings of the hearing instrument appropriately.

Novel ways of correlating different body sensors to monitor dietary activities has been demon-
strated in [81]. The authors’ records include dietary parameters such as the rate of intake (in
grams/sec), the number of chews for a food piece, etc., that capture palatability, satiety, and speed
of eating. In particular, three core aspects of dietary activities were investigated using sensors: char-
acteristic arm and trunk movement capture using inertial sensors, chewing of foods and food break-
down sounds using an ear microphone, and swallowing activity using a sensor-collar containing
surface Electromyography (EMG) electrodes and a stethoscope microphone. The authors then build
a recognition algorithm using time and frequency-domain features that addresses multiple chal-
lenges of continuous activity recognition, including the dynamic adaptability for variable-length
activities and flexible deployment by supporting one to many independent classes. The approach
uses a sensitive activity event search followed by a selective refinement of the detection using dif-
ferent information fusion schemes. The authors use selective fusion of detection results exploiting
independent sources of error to filter out false positives and obtain an event classification in the
same step, and achieve highly accurate activity recognition.

Recent work [82] has also focused on the use of body sensors for patient authentication.
Credential-based authentication methods (e.g., passwords, certificates) are not well-suited for re-
mote healthcare as these may be compromised. One-time authentication using credentials or trait-
based biometrics (e.g., face, fingerprints, iris) do not cover the entire monitoring period and may lead
to unauthorized postauthentication usage. Recent studies have shown that the human electrocardio-
gram (ECG) exhibits unique patterns that can be used to discriminate and authenticate individuals.
However, perturbations of the ECG signal due to physical activity and other artifacts in real-world
situations can lead to authentication failures. Sriram and Shin et al. [82] build an activity-aware bio-

SCommercial systems to encourage physical activity are used only while performing the target activity and are not trying
to disambiguate that activity. Such technologies include Dance Dance Revolution, the Nintendo Wii Fit, the Nike+ system,
Garmins Forerunner, Bones in Motions Active Mobile and Active Online, bike computers, heart rate monitors, MPTrain
[17], Jogging over a distance [15], and mixed- and virtual-reality sports games [13, 14]
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metric authentication system that combines ECG information with accelerometer data to handle the
variability that arises from physical activity. The authors use the SHIMMER [83] sensing platform
(with an integrated 3-axis accelerometer) developed by Intel Digital Health Advanced Technol-
ogy Group to combine the motion and activity data with the ECG signal using a direct cable to a
commercially available Polar WearLink Plus ECG chest strap. The sensor data is transmitted via a
Bluetooth device to a computer running the BloMOBIOUS software for analysis. The mining uses
different types of feature cleaning and preprocessing (beat-based linear interpolation) combined
with K-Nearest Neighbor (KNN) and Bayesian network (BN) classification to obtain accurate user
authentication under different activity levels.

The MIThril [84] project has focused on developing a next-generation wearable sensor research
platform. The project includes the development and prototyping of new techniques of human-
computer interaction (HCI) for body-worn applications, through the application of human factors,
machine learning, hardware engineering, and software engineering. The MIThril project also in-
volves research into constructing a new computing environment and developing prototype applica-
tions for health, communications, and just-in-time information delivery. The MIThril LiveNet [85]
is a flexible distributed mobile platform that can be deployed for a variety of proactive healthcare ap-
plications. The LiveNet system allows people to receive real-time feedback from their continuously
monitored and analyzed health state, as well as communicate health information with caregivers
and other members of an individual’s social network for support and interaction. Key components
of this system include a PDA-centric mobile-wearable platform, the Enchantment software network
and resource discovery API, and the MIThril real-time machine learning inference infrastructure.
The LiveNet system is currently in use for multiple studies: capturing the effects of medication on
the dyskinesia state of Parkinson’s patients [86], a pilot epilepsy classifier study with the University
of Rochester Center for Future Health, a depression medication study with the MGH Department
of Neuroscience, and a hypothermia study with the Advanced Research in Environmental Medicine
(ARIEM) at the Natick Army Labs [87].

The MyHeart [88] project funded by the IST program of the European Commission is a con-
certed effort aimed at developing intelligent systems for the prevention and monitoring of cardiovas-
cular diseases using smart electronic and textile systems based wearable sensors, and appropriate
services that empower the users to take control of their own health status. The MyHeart project
integrates functional clothes with on-body sensors (textile and nontextile) and electronics to ac-
quire, process, and evaluate physiological data. It also includes a wireless personal area network
to transmit results to a mobile phone or PDA and from there to a server farm, to request profes-
sional medical services. Recently, there have also been several developments that combine on-body
sensors with implantable sensors. The Healthy Aims [89] project of the European Commission fo-
cuses on developing a range of medical implants (Cochlear implant, retina implant and glaucoma
sensor, implantable pressure sensor to monitor intracranial pressure, Sphincter sensor, and Inertial
Measurement Unit) to assist aging people with disabilities.

The Wealthy [90] consortium was also established by the European Commission to fulfill the
need to continuously monitor patient vital signs through novel-woven sensing interfaces that could
be worn without any discomfort for the user. The focus of the project is on the development of smart
material in fiber and yarn form endowed with a wide range of electrophysical properties (conducting,
piezoresistive, etc.) for use as basic elements. The Alert Portable Telemedical Monitor (AMON),
is another project whose aim is to develop a wrist-worn device encapsulating many sensors. Cur-
rently, blood pressure, pulse oximetry, ECG, accelerometer, and skin temperature are available. The
device communicates directly to a telemedicine center via a GSM network, allowing direct contact
with the patient if necessary. AMON enables patients that are not confined to a hospital to monitor
continuously and analyze their vital signs.

The Motion Analysis Lab [91] is focused on researching rehabilitative tools in the treatment
of mobility-limiting conditions in people with cerebral palsy, stroke, traumatic brain injury, spinal
cord injury, Parkinson’s Disease, and other neuromuscular disorders. In pursuit of this goal, the
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MAL focuses on the rehabilitative possibilities of robotics and wearable sensor technology. The
lab adopts these technologies for the purposes of retraining the gait in children with cerebral palsy
and is leading research into development better prosthetics for amputees, interactive technology for
stroke survivors, and traumatic brain injuries and people with burn-related contractures.

There is emerging interest in building Body Area Sensor Networks—large-scale BSNs across a
public healthcare system such as a hospital. The miTag system [92] is a pilot public healthcare BSN
deployed in the Baltimore Washington Metropolitan region. This system includes a wireless multi-
sensor platform that collects information from GPS receivers, pulse oximeters, blood pressure cuffs,
temperature sensors, and ECG sensors. The system supports two-way communication between pa-
tients and healthcare providers, to allow for feedback based on the monitored health and context
information. Body Area Sensor Networks are also being developed to support disaster management
in emergency response systems.

The maturity of sensor networks has allowed the development of smart environments for well-
ness and chronic disease management. For example, some researchers have used smart environ-
ments with combinations of wearable devices (RFID bracelets) and RFID tagged objects to detect
indications of cognitive impairments such as dementia and traumatic brain injury (TBI) by monitor-
ing individuals performing a well-defined routine task—making coffee [93]. The researchers define
and compute a set of four domain specific features from the sensor data, that are increasingly rep-
resentative of the task, and correlate with severity of cognitive impairment. These features include
the Trial Duration, Action Gaps, Object Misuse, and Edit Distance. Trial Duration captures the to-
tal time taken for the activity while Action Gaps represent periods during which subjects were not
interacting with any objects on the assumption that during those periods they are considering what
step to take next. Object Misuse captures the number of times a subject interacts with each object
used in the task—with failure to interact with a required object, or an excessive number of interac-
tions indicates problems. Finally, the researchers manually define a representative plan® for the task,
that represents a partial order (to allow alternate reasonable task executions) over object interaction.
The Edit Distance, as used in natural language processing then captures deviations from this plan.
Finally, these features are analyzed using Principal Component Analysis (PCA) to examine corre-
lations between computed features and larger trends in the assessment data. They show that the first
principal component includes a diverse set of measures of general intelligence, and appears to be a
good proxy for general neuropsychological integrity, including measures of intellectual functioning,
verbal and nonverbal reasoning, memory, and complex attention.

Researchers are developing several other techniques for the automatic detection of cognitive im-
pairments, including automatically observing users play modified versions of different games. For
instance, a modified version of the game FreeCell [94] is used in many studies. One study focuses
on mouse movement during the game while others focus on the subject performance over time,
comparing it to the performance of an automated solver. Using the results, it was possible to differ-
entiate the three mildly cognitively impaired subjects from the six others. Work with several other
computer games, specially created to perform assessments of cognitive impairments is underway
with some promising early results. Researchers have also studied automatically monitoring mobil-
ity because slowed mobility may be a predictor of future cognitive decline. The time to answer a
phone call was used to measure mobility, as were passive infrared detectors and several models to
infer the mobility of subjects more directly as they move about a residence. More details on these
may be obtained from [93].

Mining data from smart environments has also been used for sleep research [95] on a long-term
basis, in a comfortable setting.7 Inertial, ambient light, and time data are tracked from a wrist-

5Other research on activity recognition has addressed the question of automatically constructing plans for everyday
activities by mining the Web for descriptions of these activities.

"The golden standard for observing sleep/wake patterns is polysomnography (PSG) that captures relevant sleep informa-
tion with typically 20, mostly wired sensors attached to the patient’s face, torso and limbs, making it costly, uncomfortable,
and less feasible over longer periods.
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worn sensor, and additional night vision footage is used for later expert inspection. The authors
use two different classification techniques to monitor and classify the night sleep. Classifier 1 uses
threshold-based segmentation on a Gaussian model-based classifier that calculates the variance and
mean parameters for the light intensity and motion data from the training data, and uses a likelihood
per minute of the awake state from the time-use database. Classifier 2 uses HMM-based segmen-
tation to capture changes in sleep habits and state, and differentiate the awake state from the sleep
state. The authors have shown that these techniques can be used for accurate sleep studies while
minimizing the intrusiveness of the sensing environment for patients suffering from sleep disorders
and psychiatric illnesses.

There has been a fair amount of work on using smart environments combined with body sensors
for personal cardiac monitoring. This includes projects like Mobihealth [97] and PhMon [96]. Many
of these solutions collect the physiological signals, but ECG analysis is performed remotely after
transmission over a GPRS network. Recent work in multiple projects has enabled the processing of
ECG data on a local device. MOLEC [98] analyses the ECG locally on a PDA and generates alarms
to the hospital in case of high-risk arrhythmias. The authors in [99] develop an application whereby
a heart patient is monitored using various types of sensors (ECG, accelerometer, Oxygen), and
analyzed locally on a smartphone. The solution can be personalized by capturing location context,
and includes rehabilitation applications for individual patients.

Additional efforts for wellness management include the Greenolive [100] platform, which is an
open platform for a wellness management ecosystem. This platform provides a hosting environ-
ment for essential wellness management services using an elastic infrastructure to deal with scala-
bility issues. Greenolive includes open APIs that allow new value-added services to be developed
rapidly. The core platform consists of four components: Data Transformation and Routing Services,
Wellness Monitoring Services, Wellness Analytic Services, and Wellness Record and Knowledge
Repository. With these components, using a cloud-based computer infrastructure, developers can
create different portals targeted towards both care assistants as well as portals that connect with the
devices/sensors and provide end users wellness services based on the collected data. More details
on the platform and the included mining and analytic capabilities can be obtained from [100].

4.5.2 Activity Monitoring

Several smart environments [101] have been built, deployed, and tested for pervasive health-
care applications focusing on activity monitoring. These applications, also called smart homes or
offices, include combinations of environmental sensors—embedded in the home or the external
environment—and body sensors for improved monitoring of people with different conditions and
healthcare requirements.

One of the key roles of smart environments is to help researchers in this field monitor Activities
of Daily Living (ADL), especially for the elderly population. In order to function independently
at home, individuals need to be able to complete several ADLs such as eating, dressing, bathing,
cooking, drinking, taking medicine, etc. Automating the recognition of these activities is an impor-
tant step toward monitoring the functional health of a smart home resident. In addition to the ADL,
researchers are also very interested in the interactions of users with the physical and social envi-
ronment. This includes another set of activities such as using a telephone, shopping, housekeeping,
doing laundry, transportation, handling finances, etc. These are collectively labeled Instrumental
Activities of Daily Living (IADL) and also indicate different aspects of the functional health. In
the absence of smart environments, the assessment of ADLs/IADLs has mostly been done manually
through interviews and questionnaires. This is often a very time-consuming and error-prone process,
and hence there is a strong need to automate the monitoring and recognition of these ADL/IADLs
continuously via smart environments.

Some smart homes with healthcare technology for older adults have been developed as part of
laboratory settings. The Smart Medical Home at the University of Rochester’s Center for Future
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Health [102] is one such example. The five-room house has infrared sensors, computers, biosen-
sors, and video cameras. A large part of the research involves interactions of the research subjects
(patients) with a medication advisor who provides advice on medication management and dietary
adherence, memory assistance, and assistance with Smart Bandage. Smart Bandage is a program
designed to decrease the burdens of chronic wound care at home. Future applications of this lab-
oratory environment include gait monitoring, and observation of behavior and sleep. The Smart
Medical Home is designed for adults of all ages, but it is not meant for actual habitation.

As described in [101], the Gator Tech Smart House at the University of Florida-Gainesville Mo-
bile and Pervasive Computing Laboratory [103] is a laboratory-house created to assist older adults
in maximizing independence. The house is equipped with (a) smart cameras for motion detection,
image processing, and control of other in-home devices, (b) smart blinds that automatically close to
block sunlight when the air conditioner is on, (c) ultrasonic location tracking transceivers that are
installed on the ceiling corners of each room to detect movement, location, and orientation of the
resident, (d) smart floor that uses pressure sensors embedded into each tile to detect falls and reports
to emergency services, and (f) smart displays for entertainment media and information residents
can follow from room to room. The house also includes a smart mailbox that senses and notifies the
arrival of mail, a smart front door that identifies residents, using a radio-frequency identification tag
among others, a smart bed that monitors sleeping patterns, a smart mirror that displays important
messages or reminders such as when to take medication, and a smart bathroom that includes a toilet
paper dispenser, a flush detector, and a water temperature regulating shower. The Gator Tech Smart
House is adding healthcare technologies to assist diabetes management.

A set of smart home environments called CASAS has been setup in Washington State University.
The CASAS home has five different testbed environments. The first, referred to as Kyoto [104], is
a two-bedroom apartment that is equipped with motion sensors (positioned on the ceiling 1 m apart
throughout the space), sensors to provide ambient temperature readings, and custom-built analog
sensors to provide readings for hot water, cold water, and stove burner use. Voice-over IP captures
phone usage, contact switch Q4 sensors monitor the open/closed status of doors and cabinets, and
pressure sensors monitor usage of key items such as the medicine container, cooking tools, and tele-
phone. The second testbed, referred to as Cairo is a two-bedroom, two-story home. There are three
additional environments configured as single-resident apartments (Boschl, Bosch2, and Bosch3)
that are part of a single assisted-care facility. All of these environments contain motion sensors
throughout the space as well as door contact sensors in key areas. Sensor data for each of the en-
vironments are captured using a sensor network and stored in a database. The data is analyzed for
automatic ADL recognition, monitoring of a diabetic patient’s diet, and exercise adherence. These
environments also allow the presence of pets along with humans to simulate realistic settings. Re-
searchers employ Hidden Markov Models (HMMs) to recognize possibly interleaved activities from
a stream of sensor events, with the hidden states representing activities. There is also strong empha-
sis on questions pertaining to the selection, placement, and focus of sensors in a smart environment.
In several studies conducted by researchers [104], they have employed mutual information (MI)
based measures to rank sensors, and quantify the mutual dependence between the sensor reading
and the activity of interest. They then use a filter-based sensor selection strategy to systematically
evaluate the effect of removing sensors with low MI values on activity recognition performance.
They also use hierarchical clustering to identify sensors with overlaps in the field of view in order
to remove unnecessary sensors, and determine appropriate placements for the deployed sensors us-
ing a decision tree learner. They have shown that reductions on average of 20% of the sensors are
possible for different types of activities and different configurations of the smart home.

Other laboratory smart environments include a two-story single-family house called Aware
Home developed by the Georgia Institute of Technology. This is a living laboratory house designed
primarily to assist adults with cognitive impairment [105]. For instance, the home includes a cap-
ture system on the kitchen countertop with a wall display that shows visual snapshots arranged as a
series of panels to enable review of activities for users. A similar system can be used to support safe
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and complete medication adherence. This technology has also been used for diabetes management
using a mobile phone to which a glucose meter can be connected via Bluetooth.

Besides these laboratory settings, there are also several smart homes that have been implemented
in actual community settings, apartment complexes, and retirement housing units. These include a
smart home in Vinson Hall Retirement Community in Missouri that is dedicated to serving for-
mer U.S. military officers and their families. Eskaton, Ltd. has created the National Demonstration
Home in California with a range of technologies. The University of Missouri-Columbia has inte-
grated sensor networks into privately owned apartments called TigerPlace II. A community-wide
comprehensive smart home deployment is under development in McKeesport, Pennsylvania. The
University at Buffalo, State University of New York, has utilized X10 devices to retrofit SO homes
for older adults with chronic conditions living alone in their own home. More details on these and
other such smart home projects can be obtained from [101].

Researchers have recently investigated the use of domestic robots as a promising technology for
persuasive telehealth [106]. Domestic robots have several unique features as compared against other
devices in smart environments. One reason some technologies are difficult to use in persuasive tele-
health systems is because they require the user to spend effort learning and becoming familiar with
the technologies. Domestic robots are easier to use through their natural human-like communica-
tion, which can provide a pleasant experience for the user. Their friendliness can create an emotional
bond that helps users, such as the elderly, feel more comfortable using them. Domestic robots are in
fact effective informers, educators, reminders, and even readers of the users feelings and thoughts,
which are hard to detect using other devices. While this effort is preliminary, and requires several
technological advances, it is likely of significant interest for effective pervasive healthcare.

Multiple sensor mining technologies have been combined with such smart environment data
gathering infrastructures to build healthcare applications targeting different requirements. The work
in [107] uses frequent pattern mining to identify repeating structures in the routine patterns of hu-
man activity from environmental sensor data and detect changes in these patterns. This is important
as the onset or complication of a life-threatening episode may be marked by changes in behavior
and activity patterns. This has been shown to be true for several conditions including prostatism, de-
generative joint disease, bursitis, and gastro-esophageal reflux, along with congestive heart failure,
coronary artery disease, and chronic obstructive pulmonary disease.

Sensor mining, on data collected from a combination of body sensors and smart environments,
has been used successfully for automatic assessment of ADL/IADL activities. In [108] RFID tags
are attached to different key objects with which a person interacts for a specific set of activities.
The data from these tags is augmented by accelerometers placed at diffrent strategic locations on
the person (such as wrist, hip, and thigh). The combined dataset is analyzed using different feature
extraction and mining and classification techniques. The computed features include statistical prop-
erties such mean, variance, energy, spectral entropy, pairwise correlation between the three axes, and
the first ten FFT coefficients and exponential FFT bands, computed over sliding windows shifted in
increments of 0.5 seconds. For classification of activities the authors use three different approaches,
namely Naive Bayes, Hidden Markov Models (HMMs), and Joint Boosting. They show that Naive
Bayes and HMM classifiers are well suited for low-level activities such as sitting, standing, walking,
or woodworking activities. The Joint Boosting method is successfully applied to overcome limita-
tions of the sensing and feature extraction. The results show that combined recognition helps in
cases when tagged objects are being shared among the activities, as well as in periods when the
RFID reader cannot detect interactions with objects due to its short range. The authors also con-
sider extensions of this work to include techniques for accurate activity recognition with reduced
supervision.

Researchers from the Imperial College [109] have developed an ear-based Activity Recognition
(e-AR) sensor that identifies four different levels of activity ranging from almost no activity (during
sleeping or sitting for example) to activities involving a lot of movement (running, exercising). The
activity level is continuously detected using a classifier applied to the accelerometer measurements
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and streamed from the e-AR device every 4 seconds. While some activities may be described by a
single activity level, many activities produce a sequence of activity levels. The work in [107] uses
the output of the e-AR sensor to efficiently mine and update a concise variable-resolution synopsis
routine for efficient behavior profiling in a home healthcare environment. The authors use the FP-
Stream [110] and Closet+ [111] mining algorithms to describe behavior patterns using a routine tree
data structure. The authors demonstrate that using this technique they can identify frequent patterns
to describe the structure present in an individual’s daily activity, and can then analyze both routine
behavior as well as deviations.

4.5.3 Reality Mining

Reality mining [69] has recently been identified as one of 10 emerging technologies that could
change the world. The scope of reality mining is very broad. It promises to allow us to build com-
prehensive pictures of our lives, with the potential of transforming our understanding of ourselves,
our organizations, and our society. To reach this goal, reality mining pulls together any form of
digital trace data that we generate as part of our daily activities. It then uses data mining and ma-
chine learning techniques on these data points to enable new nonintrusive applications in diagnosis,
patient and treatment monitoring, health services use, surveillance of disease and risk factors, and
public health investigation and disease control.

One of the key sensors employed by reality mining techniques is the mobile phone—that has
become ubiquitous and a central part of our lives. Mobile phones being always carried by their
users, they are able today to capture a lot of contextual information about them, including location
(communication between the device and towers or GPS sensors) as well as data about their so-
cial connections (call and duration information). In addition, newer smartphones, e.g., the iPhone,
include special sensors such as microphones, heart rate monitor, or accelerometers that allow the
capture of important diagnostic and health-related data. These devices now also have the processing
power of low-end desktop computers, allowing the deployment of several local analytics in support
of healthcare applications.

Reality mining of these behavior signals may be correlated to the function of some major brain
systems. It has been shown that arousal of the autonomic nervous system produces changes in ac-
tivity levels. Hence, recent pilot projects have shown that it may be possible to diagnose depression
from the way a person talks — depressed people tend to speak more slowly, a change that speech
analysis software on a phone might recognize more readily than friends or family do [112]. Simi-
larly, monitoring a phone with motion sensors can also reveal small changes in gait, which could be
an early indicator of ailments such as Parkinson’s disease.

The phone sensors may be used to measure time-coupling between people’s speech and their
movement, to capture indications of attention and screen for language development problems.
The sensors can potentially capture the unconscious mimicry between people (e.g., reciprocated
head nods, posture changes, etc.) as reliable predictors of trust and empathy, and improve compli-
ance [113]. Similarly, the sensors can also be used to measure consistency or fluidity of movement
or speech production to capture cognitive load. These different types of measurements of brain func-
tion have been shown to be predictive measures of human behavior [114], and play an important role
in human social interactions thereby supporting new methods of diagnosis, treatment monitoring,
and population health assessments.

In addition to these automated measurement streams from the phone sensors, these devices may
also be used to collect self-reported data. Self-reported data from individuals during the course
of their daily lives includes information such as symptoms, schedule, substance use, and mood
that offer direct assessments of their cognitive and emotional states, perceptions of events, and
general contextual information. By gathering self-reported data jointly with other reality mining
data streams, accurate and dynamic aspects of various health phenomena can be revealed.

Besides information on individual health, cell phones can be also used to capture information
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about social relationships and social networks. Several pilot studies have shown how combined in-
formation on user location, proximity to other users, call and SMS patterns, and (with phones that
have accelerometers) user motion can identify different patterns of behavior depending upon the
social relationship between people. In [69] it has been shown that self-reported reciprocal friends
(both persons report the other as a friend), nonreciprocal friends (only one of a pair reports the other
as a friend), and reciprocal nonfriends (neither of a pair reports the other as a friend) exhibit very
different patterns. It has been shown that coupled with appropriate statistical analysis, user social
networks of friends and co-workers can be identified with average accuracies of up to 96% [115].
Such information has been shown to be useful for several healthcare applications including reinforc-
ing active learning. In [116] the authors describe DiaBetNet, a computer game for young diabetics
that leverages smartphone functionality to encourage young diabetics to keep track of their food
intake, activity, and blood sugar level.

Several government health services rely on demographic data to guide service delivery. Reality
mining also provides a way to characterize behavior, and thus provides a classification framework
that is more directly relevant to health outcomes [114]. Reality mining research has shown that most
people have only a small repertoire of behavior patterns, and that this small set of behavior patterns
accounts for the vast majority of an individual’s activity. Understanding the behavior patterns of
different subpopulations and the mixing between them is critical to the delivery of public health
services, because different subpopulations have different risk profiles and different attitudes about
health-related choices. The use of reality mining to discover these behavior patterns can potentially
provide great improvements in health education efforts and behavioral interventions.

Other attempts to model large-scale population health include Google Flu Trends [117] to detect
influenza outbreaks indirectly by tracking the frequency of World Wide Web searches for terms re-
lated to influenza-like illnesses. For geographic areas as small as states in the United States, Google
researchers have demonstrated that such search frequencies correlate strongly with estimated in-
fluenza incidence based on conventional surveillance of cases detected in a Centers for Disease
Control and Prevention (CDC) network of sentinel laboratories and physicians. Similarly, the Au-
tomated Epidemiologic Geotemporal Integrated Surveillance System (AEGIS), developed by Chil-
dren’s Hospital Boston, involves Internet-based data collection, management, and analysis systems
to produce timely estimates of incidence. Almost 30,000 residents of Belgium, the Netherlands,
and Portugal voluntarily report on their influenza symptoms on a weekly basis at the Gripenet web-
sites [118].

Reality mining can also have a significant impact on epidemiologic investigations that capture
the impact of exposures to different types of environments and pathogens on population health.® For
instance, traditional investigations attempting to find links between individual exposures to airborne
pollutants (particulate matter, carbon monoxide, and nitric oxide) and health conditions have relied
on comparisons of aggregates of persons, or static measures and snapshots of exposure. This has
impacted the effectiveness of such studies, and the associated costs. As opposed to these aggregate or
static approaches, reality mining can be used to capture dynamic measures of time-activity patterns
in relation to exposures. The cell phone location data can be combined with existing air quality
monitoring stations and/or inferred from vehicle traffic patterns and locations of industrial facilities
to yield spatially precise measures of exposure suitable for studying large samples of individuals.

While the discussion on reality mining in this chapter has been dominated by information cap-
tured from individual mobile phones, additional data points can be obtained from several aspects of
our cities that are getting more and more instrumented. This includes our transportation infrastruc-
tures, security infrastructures, energy and utility systems, food production and distribution. Combin-
ing all of this information at scale, overcoming the associated data ownership, privacy, and connec-
tivity challenges, and analyzing it can provide significant benefits towards improving the delivery

8The Spatio-Temporal Epidemiological Modeler (STEM) [119] activity tool has recently been proposed as an open source
application designed to help scientists and public health officials create and use models of emerging infectious diseases.
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and advancement of healthcare both for personal healthcare as well as population health manage-
ment.

4.6 Summary and Concluding Remarks

This chapter surveys the application of sensor data mining in medical informatics. With the
general increased instrumentation of the world with sensors, the need to make healthcare delivery
more proactive, the ability to mine sensor data in healthcare is receiving a significant amount of
attention. Despite these efforts, several challenges both technical and nontechnical remain to be
solved. We have surveyed these challenges in this chapter, before presenting illustrative applications
of sensor data mining technologies, both for clinical and nonclinical applications.
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5.1 Introduction

Biomedical Signal Analysis consists of measuring signals from biological sources, the origin

of which lies in various physiological processes. These signals based on their origin are classified
into different types, for instance, physiological signals originating because of electrical activity in
the heart are called electrocardiogram (ECG), while those originating because of electrical activity
in the brain are called electroencephalogram (EEG). Biological signals manifest themselves into
different forms such as electrical, acoustic, chemical, and many others. The analysis of these signals
is vital in diagnosing the pathological conditions and in deciding an appropriate care pathway. Many
times the underlying pathological processes result in different signatures and a good understanding
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of the physiological system is necessary to understand the status of the system. For instance, a rise
in the temperature of the human body can convey infections in the body. Sometimes it can be a
consequence of a blood clot, which is good if it helps in stopping the bleeding but carries a risk of
heart attack or stroke.

The measurement of physiological signals gives some form of quantitative or relative assessment
of the state of the human body. The use of appropriate sensor and transducer is necessary to acquire
these signals, which are acquired either invasively or non-invasively, are discrete or continuous, de-
pending on the kind of care or severity of a particular pathological condition. The noteworthy point
here is that many times the signals acquired from the sensor need to be teased out from the raw data
so that meaningful information or features could be extracted. For instance, in case of ECG signals,
measurement of the QT interval can reveal the condition of heart. Sometimes, the QT interval can
get prolonged due to the induction of a drug, resulting in abnormal heart rhythm known as forsade
de pointes, which is typically followed by sudden cardiac death. Thus, automatically processing
of the ECG data by segmenting the electrocardiogram waveform is necessary so that appropriate
features could be extracted. This needs the application of signal processing algorithms so that a
constituent waveform feature could be separated in the presence of noise. In case of a fetal ECG
signal, if a condition of fetal hypoxia (a condition in which the fetus has difficulty in breathing) is to
be determined, then the ratio of amplitude of T segment to amplitude of QRS segment, commonly
known as T/QRS ratio from PQRST waveform is considered as one of the useful indicators for this
acute hypoxic situation.

The processing and interpretation of physiological signals sometimes exhibit challenges because
of the low signal-to-noise ratio (SNR) or because of interdependency of the physiological systems.
The human body system shows remarkable interaction between its constituents and is a classic
example of a control system where various phenomena such as feedback, compensation, cause-
and-effect, redundancy, and loading is working towards the most optimum performance. However,
under pathological conditions, interpretation needs understanding of the complex interactions of the
system to diagnose a particular condition. One classical example can be seen in the case of heart
sound measurement. For a normal human subject, the second heart sound (S2), which is created
by the closing of the aortic valve followed by the closing of the pulmonic valve, shows a split
during inspiration but not during expiration; however, splitting of the second heart sound during
both inspiration and expiration could indicate cardiac abnormalities. These interrelationships should
be factored during the design of a feature extraction algorithm, which is sometimes a step after the
signal has been processed.

Over the years several signal processing algorithms have been developed that have significantly
enhanced the understanding of the physiological processes, which otherwise would have gone unno-
ticed if perceived by the naked eye. For instance, certain indications such as alternating changes in
the amplitude of T-wave for the PQRST complex of an ECG waveform can indicate life-threatening
arrhythmias. The challenge here is to detect a beat-to-beat T-wave alternans variance as small as
25uV2. The application of an appropriate signal processing algorithm is the key to estimating the
signal of such a small magnitude [37].

The goal of this chapter is to present an overview of various signal processing techniques used
for processing biomedical signals. This chapter first introduces the readers to a few biomedical
signals in Section 5.2 and then focuses on various signal processing approaches commonly encoun-
tered in processing them. It is beyond the scope of this chapter to delve in depth into the myriads
of signal processing frameworks that have been proposed over several decades to process signals
originating from a particular system in the human body. Since several of the processing steps are
common for many of the different kinds of physiological signals, the examples will primarily focus
around ECG signals in Section 5.3. The reader will encounter classical filtering techniques, adap-
tive filtering, and non-stationary filtering in this section. In Section 5.4, we present a few denoising
techniques based on principal component analysis, wavelet filtering, and wavelet-Wiener filtering.
In Section 5.5, the readers are introduced to a source separation problem commonly seen during
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fetal health monitoring. Cross-correlation analysis is routinely applied in biomedical signal pro-
cessing, and Section 5.6 presents its application to the resting state functional magnetic resonance
imaging (fMRI) technique. Towards the end of this chapter in Section 5.7, a special emphasis on
future trends in biomedical signal analysis will be presented.

5.2 Types of Biomedical Signals

This section discusses in brief a few types of biomedical signals, their origins and importance for
diagnosis purpose [54]. The most basic form of measurement is body temperature, which although
quite simplistic to measure can convey the well-being of the human system. This section looks
into the signals originating from the cellular level, such as the action potential, to the macro level,
for instance the heart sound, which is produced as a consequence of contractile activity of the
cardiohemic system [104].

5.2.1 Action Potentials

A nerve impulse, or an action potential, is a series of electrical responses that occur in the cell as
a consequence of mechanical contraction of a single cell, when stimulated by an electrical current
[9]. Action potential is caused by the flow of certain ions such as sodium (Na*), potassium (K*),
and chloride (CI") along with other ions across the cell membrane. A cell in its resting state has a
potential of —60 mV to —100 mV until some external stimulus or disturbance upsets the equilib-
rium. With the appropriate stimulation, the voltage in the dendrite of the neuron becomes somewhat
less negative. This change in the membrane potential, known as depolarization, causes the voltage-
gated sodium channels to open. As soon as the channels open, sodium ions flow inside the cell,
resulting in a rapid change in the charge. At the peak of the action potential, that area of the neu-
ron is about 40 mV positive. As the voltage becomes positive, the sodium channels close, and the
voltage-gated potassium channels open, causing the potassium ions to rush out of the cell. As the
potassium ions move out, the voltage becomes negative again. The potassium channels remain open
until the membrane potential becomes at least as negative as the resting potential. In many cases,
the membrane potential becomes even more negative than the resting potential for a brief period;
this is called hyperpolarization. An action potential typically lasts a few milliseconds. Recording of
the action potential needs a single cell to be isolated and a microelectrode with tips of the order of a
few micrometers to stimulate the cell [9]. The action potential is the basic of all bioelectrical com-
ponents in the human body. Next subsections discuss a few electrical signals such as the electroneu-
rogram (ENG), electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG),
event-related potentials (ERPs), and electrogastrogram (EGG). This section also discusses the mea-
surement of sound signals produced by the contractile activity of the heart and blood together, using
highly sensitive microphones.

5.2.2 Electroneurogram (ENG)

The active potential propagates along an unmyelinated nerve fiber or a muscle fiber. When a fiber
is stimulated by an electrical current, the electrical current or action potential flows along the length
of a fiber without attenuation by progressive depolarization of the membrane. Thus, the ENG is an
electrical signal that is observed when the nerve is stimulated. The action potential propagates over
the length of time and the velocity of propagation in a peripheral nerve is measured by stimulating
a motor nerve at two points with a known distance apart along its course. Subtraction of the shorter
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latency from the longer latency gives the conduction time. ENGs are recorded at the surface of the
body using two concentric needle electrodes or silver-silver chloride electrodes [30].

Typically, a pulse of 100 V and 100 ps to 300 ps duration is applied at a known separation
distance between the stimulus sites. With the knowledge of the distance between the two stimulus
sites, the conduction velocity is determined. ENG signals measured are of the order of 10 uV. These
signals are susceptible to power line interference and instrumentation noise. Also, care needs to be
taken to minimize the muscle contraction. For this, the limb is held in a relaxed posture. Neural
diseases could cause a decrease in the conduction velocity. Nominal conduction velocities are 40—
70 m/s in nerve fibers, 0.2—0.4 m/s in heart muscle, and 0.03—0.05 m/s in time-delay fibers between
the atria and ventricles [56, 2, 31].

5.2.3 Electromyogram (EMG)

The basic functional unit for excitation and contraction in vertebrate skeletal muscle is the motor
unit, whose activity can be controlled voluntarily by the brain. A motor unit is a single motor neuron
plus all the muscle fibers to which it connects. When a motor neuron fires, all muscle fibers in the
unit are simultaneously excited and produce an action potential, resulting in a brief, twitch-like
contraction of the fibers. Skeletal muscles are made up of a collection of motor units, each of which
contains an anterior horn cell or motor neuron, its axon extending peripherally from the spinal cord
to a particular muscle, and all the muscle fibers innervated by that motor axon. The terminals of
the motor axon are connected to this set of fibers by a chemical synapse. This synapse is usually
referred to as the neuromuscular junction or motor end-plate. An electrical activity in a motor unit
consists of a rhythmic series of action potentials [56].

When an action potential occurs simultaneously in all muscle fibers in one motor unit, the result-
ing external electrical effect is small, which can be detected with electrodes placed on the surface
of the muscle. Each skeletal muscle is composed of many motor units. A large and powerful limb
muscle, such as the gastrocnemius, may be composed of hundreds of motor units. Spatio-temporal
summation of the motor unit action potentials of all the active motor units gives rise to an elec-
tromyogram (EMG) of the muscle, which can be recorded by placing needle electrodes on the sur-
face of the body (Figure 5.1). EMG can assist in distinguishing myopathic from neurogenic muscle
wasting and weakness. It can detect abnormalities such as chronic denervation or fasciculations in
clinically normal muscle. By determining the distribution of neurogenic abnormalities, EMG can
differentiate the focal nerve, plexus, or radicular pathology [90].

5.2.4 Electrocardiogram (ECG)

Electrocardiogram signals are generated as a consequence of electrical activity of the heart.
These signals are typically recorded on the skin of the human body. However, there are instances
when these electrical activities could be recorded directly on the epicardial surface [124, 105, 50].
Typically, 12 electrodes are placed at well-defined locations for the purpose of measuring the heart’s
conduction system, which is used to diagnose and monitor various cardiac conditions, including ar-
rhythmias (irregularities of cardiac rhythm) and myocardial damage (such as myocardial infarction).
The contraction of heart muscles results in the discharge of electrical charges known as “depolar-
ization” and follows a standard pathway. The initiation of electrical discharge is at the sino-atrial
(SA) node in the right atrium. This node acts as a natural pacemaker and discharges about 60—
80 times per minute, resulting in a typical heart rate of 60-80 beats per minute (bpm) in adults.
The depolarization spreads throughout the atrial muscle fibers and reaches the atrioventricular (AV)
node, where its conduction to the ventricles in slightly delayed. Conduction then occurs rapidly
down the “bundle of His” and its two branches, the left and right bundle branches. The left bun-
dle further divides into anterior and posterior fascicles and conduction occurs more slowly through
Purkinje fibers, resulting in ventricular muscle depolarization. During ventricular muscle depolar-
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FIGURE 5.1: The figure shows abnormal spontaneous activity measured using EMG. (a) Fibrilla-
tions (*) and positive sharp waves (**) in an acutely denervated hand muscle. (b) Single, doublet,
triplet, and multiplet motor unit neuromyotonic discharges. Bursts of discharge are irregular in fre-
quency and the intra-burst frequency of discharge is up to 200 Hz. (c) Fasciculations in the tongue
in a patient with amyotrophic lateral sclerosis. The single discharges are irregular and occur on
a background of ongoing EMG activity caused by poor relaxation. (d) Myotonic discharges in a
patient with dystrophia myotonica. Source: KR Mills, Journal of Neurol. Neurosurg. Psychiatry
76:1132-ii35, 2005.

ization, atrial repolarization, i.e., a resting electrical state occurs. Ventricular repolarization occurs
following ventricular depolarization and before the next cycle of SA discharge.

Conduction cycle abnormalities manifests with cardiac diseases and needs to be captured either
through a 12-lead ECG, individual rhythm strips, or specialized ECGs that look at different parts of
the heart. The placement of a 12-lead ECG is shown in Figure 5.2(a) and a typical ECG waveform
is shown in Figure 5.2(b) along with the depolarization and repolarization cycle in the heart. Of the
12 leads, six are referred to as “limb leads.” The limb leads are leads I, II, III, aVR, aVL, and aVF.
The other six are referred to as “chest” or “precordial” leads. These leads are called V1, V2, V3,
V4, V5, and V6. The signals recorded from these electrodes consist of a repeated PQRST segment
along with a sometimes inverted U segment. The cycle of depolarization and repolarization of the
electrical activity in the heart is embedded in this complex waveform.

In the PQRST complex, a P-waveform, representing atrial depolarization, lasts typically for
0.06 to 0.11 seconds, and its presence indicates “sinus rhythm” or the heart’s normal rhythm. A
P-R interval, representing conduction through the AV node and the “bundle of His,” lasts for about
0.12 to 0.2 seconds. In the QRS complex, representing the depolarization of the ventricles, a Q wave
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FIGURE 5.2: (a) Typical placement of 12-lead ECG is shown in Figure 5.2(a). Only the chest elec-
trodes are shown in the figure. (b) ECG waveform along with the depolarization and repolarization
cycle in the heart.

shows a negative deflection at the beginning of the QRS segment. The noteworthy point is that small
Q waves in some leads are normal, but large Q waves may be tagged as abnormal. The R wave is
the first positive deflection, followed by an S wave that has a negative deflection. The QRS segment
lasts less than 0.12 seconds. The ST segment, which is marked as the end of an S wave and the
beginning of a T wave, is around 0.12 seconds in duration and should be isoelectric, i.e., at the same
level as the part between the T wave and the next P wave. The T wave represents the repolarization
of the ventricles.

5.2.5 Electroencephalogram (EEG)

The electroencephalogram (EEG) represents the electrical activity occurring at the surface of
the brain. The organization of the brain is as follows (see Figure 5.3(a)): The main parts of the
brain are the cerebrum, the cerebellum, the spinal cord, and the limbic system. The cerebrum is the
largest portion of the brain, and contains tools that are responsible for most of the brain’s function.
It is divided into four sections: the temporal lobe, the occipital lobe, the parietal lobe, and the
frontal lobe. The cerebrum is divided into two hemispheres, a right and a left hemisphere, which
are separated by a connective band of fibers known as the corpus callosum. The outer surface of the
cerebral hemisphere, known as cerebral cortex is made of nerve cells. Beneath the cortex lie nerve
fibers that lead to other parts of the brain and the body.

EEG recorded from the surface of the scalp is in major part generated by the synchronous activ-
ity of neurons on the cerebral cortex. The main generators of the EEG are the postsynaptic potentials
in the dendrites of large pyramidal neurons. Since several neurons activate synchronously through
superposition, they generate a dipole moment, resulting in a measurable potential difference on the
surface of the scalp. Nunez and Srinivasan in their study showed that approximately 6¢cm? of the
cortical gyri tissue is necessary to activate synchronously to produce such a measurable potential at
the scalp surface that can be detected without averaging [96]. The scalp EEG is an average of the
multifarious activities of many small regions of the cortical surface beneath the electrode. EEG is
characterized by a good temporal resolution on a submillisecond scale, but is poor in terms of spatial
resolution. The reason for poor spatial resolution is blurring, which occurs as the EEG signals are
volume conducted through the different tissues of the head. Typically, the number of electrodes is
increased, followed by a spatial enhancement method to improve the spatial resolution.

The 10-20 system used to record the EEG is shown in Figure 5.3(b). The system contains 21
electrode locations positioned around four reference points, namely, the inion, the nasion, and the
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FIGURE 5.3: (a) The function parts of human brain, (b) The 10-20 arrangement of electrode place-
ment for EEG recording. In the figure, the labels are as follows: pg- naso-pharyngeal, a-auricular
(Ear lobes), fp-pre-frontal, f-frontal, p-pareital, c-central, o-occipital, t-temporal, cb-cerebellar, z-
midline. Odd numbers and even numbers are on the left and the right side of the subject [70].

right and the left preauricular points. The reason why the system is called 10-20 is the fact that
the actual distances between adjacent electrodes are either 10% or 20% of the total front-back or
right-left distance of the skull. Recently, the trend has been to use over 100 electrodes for research
purposes [42]. Oostenveld and Praamstra suggested a 10-5 electrode system that includes up to 345
electrode locations [100]. One of the aspects regarding spatial resolution with different electrode
systems is the average interelectrode distance. According to study by Gevins et al., the typical
average interelectrode distances are 6 cm in a standard 10-20 system, 3.3 cm with 64 electrodes,
and 2.25 cm with 128 electrodes [43].

The signals measured using the electrode systems have a relevant frequency band of 0.1 Hz to
100 Hz. Amplitudes measured from the surface of the cortex can vary between 500 uV and 1500
1V peak-to-peak. However, because of strong attenuations when they are volume-conducted to the
surface of the scalp, the amplitudes fall down to a range of a 10 uV to 100 uV peak-to-peak. The
measurements are sensitive to the location of electrodes and inter-electrode distances [108].

EEG signals exhibit several patterns that occupy different frequency bands. Some of the com-
monly used terms for bands are: Delta (8) 0.5 Hz to 4 Hz, Theta () 4 Hz to 8 Hz, Alpha (o) 8 Hz to
13 Hz, and Beta () greater than 13 Hz. The EEG carries a signature of the level of consciousness
of a person. As the activity increases, the EEG shifts to a higher dominating frequency and lower
amplitude. When the eyes are closed, the alpha waves begin to dominate the EEG. When the person
falls asleep, the dominant EEG frequency decreases. In a certain phase of sleep, rapid eye move-
ment called (REM) sleep, the person dreams and has active movements of the eyes, which can be
seen as a characteristic EEG signal. In deep sleep, the EEG has large and slow deflections called
delta waves. The depression or absence of the normal response in a certain state of the subject could
indicate abnormality. Sharp waves or spikes could indicate the presence of epileptogenic regions in
the corresponding parts of the brain [83].

5.2.6 Electrogastrogram (EGG)

An EGG is a technique of recording gastric myoelectrical activity using cutaneous electrodes
placed on the anterior abdominal wall [102]. The activity originates on the greater curvature at
the junction between the proximal and distal stomach, and exhibits sinusoidal waveforms with a
predominant frequency of 3 cycles per minute. Clinical studies have shown good correlation of
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FIGURE 5.4: The figure shows simulated representation of simultaneous recordings of PCG, ECG,
and carotid pulse signals for a normal male adult.

the cutaneous recordings with those acquired from serosally implanted electrodes [102]. The EGG
recorded from the abdomen is supposed to reflect the electrical control activity and the electrical
response activity of the stomach.

EGG signals are recorded with a patient in supine position and remaining motionless. Two
main steps involved in EGG recordings are amplification and filtering. A typical EGG signal is in
the range of 50-500 uV and needs adequate amplification. The signal is in the range of 0.0083
to 0.15 Hz and needs to be appropriately filtered, since the frequency range of the signal is much
lower than that of most extracellular recordings. A wrong selection of filtering range may lead to a
severe distortion or even disappearance of gastric slow waves in the EGG. Finally, since there are
conflicting or inconclusive outcome-based investigations into the clinical utility of gastric motor and
myoelectric testing, the performance of EGG for its clinical indication is still a subject of debate
[128].

5.2.7 Phonocardiogram (PCG)

PCG is the measurement of a vibration or sound signal produced by the contractile activity of
the heart and blood together. The PCG signal is recorded by placing a transducer (microphone) on
the thorax. Heart sounds are an indicator of the general state of the heart in terms of rhythm and con-
tractility. Variations or changes in the sound and murmurs could assist in diagnosing cardiovascular
diseases.

Initially, it was believed that heart sounds are caused by valve leaflet movements, but it is now
an accepted fact that recorded heart sounds are caused by vibrations of the whole cardiovascular
system triggered by pressure gradients [104].

The origin of a heart sound in brief is as follows [104]: The heart sound contains two major
components, the S1 and S2 as shown in Figure 5.4. When the first myocardial contractions in the
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ventricles move the blood towards the atria, the first vibrations in S1 occurs. The atrioventricular
valves (AV) closes during this stage. When the AV valves closes, it results in a sudden increase in
tension at the valves, resulting in deceleration of the blood. This is the point at which the second
component of S1 occurs. The next stage is the opening of the aortic and pulmonary valves, resulting
in ejection of blood out of the ventricles. Thus, the third component of S1 is attributed to the oscilla-
tions of blood between the root of the aorta and the ventricular walls. Finally, the fourth component
of S1 may occur because of vibrations caused by turbulence in the ejected blood flowing rapidly
through the ascending aorta and the pulmonary artery.

Similar signatures of sounds originating because of closure of semilunar (aortic and pulmonary)
valves can be seen in the S2 component. S2 has two components: one because of closing of aortic
valves, and two because of closing of pulmonary valves. The aortic valve closes before the pul-
monary valves. The first heart sound is at the nearby position of the vertex of S wave of ECG. The
time interval between the first and the second heart sound is from 0.280s to 0.300s [131]. Finally,
the intervals between S1 and S2 and then S2 and S1 of the next cycle are typically silent. Certain
defects in cardiovascular activity or disease may result in murmurs. The murmurs are characterized
by high-frequency sounds. Extracting features from heart sounds and murmurs, such as intensity,
frequency content, and timings can provide insight into the condition of the heart.

5.2.8 Other Biomedical Signals

Apart from the signals mentioned in the previous subsections, there are several other biomedical
signals such as the carotid pulse (CP), the speech signals, signals recorded using catheter-tip sensors
(signals such as left ventricular pressure, right atrial pressure, aortic pressure), the vibromyogram
(vibration signals that accompanies EMG), and many others that are not discussed in this chapter.
The reader is referred to reference [104] for a brief introduction to these signals. In the subsequent
sections, the reader will be introduced to various signal processing tools that are commonly applied
to process the biomedical signals. Since, the basic signal processing steps such as acquisition, fil-
tering, and feature extraction or analysis remains the same for most of the biomedical signals, the
objective of this chapter is not to deal with these signals in isolation, but rather to familiarize the
reader with various signal processing algorithms that are applied in different scenarios. For instance,
in case of denoising of signals, tools such as principal component analysis (second-order statistics)
and independent component analysis (fourth-order statistics) can be applied, but there are certain
cases where not only denoising is the objective, but also signal separation is the requirement. By
the end of this chapter, the reader will have a good understanding of tools that could be applied for
processing the biomedical signals.

5.3 ECG Signal Analysis

The recorded PQRST complex of the ECG waveform contains substantial information and cer-
tain features such as cardiac rate, rhythm, PR interval, QRS duration, ST segment, QT interval, and
T waves indicate the underlying pathological condition of the patient. However, the ECG waveform
is corrupted with several sources of noise and before any feature could be extracted, a proper signal
conditioning is necessary. Various kinds of noise that affect the ECG signals are [40]:

(a) Power line interference
(b) Electrode contact noise

(c) Motion artifacts
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FIGURE 5.5: Algorithm for processing ECG signal. The heart rate is estimated from successive
QRS beats. Other features, for instance T-wave alternans, are estimated once the waves are delin-
eated.

(d) Muscle contraction (electromyographic, EMG)
(e) Baseline drift and ECG amplitude modulation with respiration
(f) Instrumentation noise generated during signal acquisition

(g) Electrosurgical noises, and many other less significant noises

Common to all kinds of means by which an ECG signal is recorded, whether in an ambulatory or
resting state or during a stress test, is the processing of an ECG signal. Figure 5.5 shows a frequently
used signal processing routine deployed on ECG machines to minimize the interference due to the
above-mentioned sources of noise. Signal processing has contributed immensely in deciphering
information from an ECG signal and has substantially improved our understanding of the ECG
signal and its dynamic properties as expressed by changes in rhythm and beat morphology (PQRST
complex). For instance, detection of alternating changes in a T wave from one PQRST complex to
another in the form of oscillations, an indicator of life-threatening arrhythmias cannot be perceived
by the naked eye or from a standard ECG printout, but needs careful signal processing to unmask
the information buried in noise.

While designing signal processing algorithms for reducing noises in the measurement, it is im-
portant to note that an electrocardiograph should meet or exceed the requirement of IEC 60601-2-51
(2003) and the ECG measuring devices should be programmed in accordance with American Heart
Association (AHA) specifications [8]. For instance, according to the guidelines, the low frequency
filter should be set no higher than 0.05 Hz to avoid distortion of the ST segment and the high fre-
quency filter should be set no lower than 100 Hz to prevent loss of high frequency information.

The following subsections discuss various signal processing approaches applied to remove the
noises affecting the ECG measurement and also the approaches commonly used for extracting cer-
tain morphological features from ECG, such as QRS detection, QT interval, etc.

5.3.1 Power Line Interference

Power line interference consists of 60 Hz/50 Hz pick up, depending upon where the instrument
is operated (United States or Europe/Asia). Sometimes the harmonics also interfere with the mea-
surements and the amplitudes can be up to 50 percent of peak-to-peak ECG amplitude. There are
many sources of interference pick ups and alternating currents (AC) that are inherently present in
the recording room can be a problem for many biopotential measurements. By properly shielding
the cables as well as the device, effects due to AC interference can be minimized to a certain extent.
However, these alternating currents still manage to interfere with the signals of interest by flowing
through the system ground, thereby getting picked by the tissue or electrode [64].

In literature there are several approaches that mention reducing the effect of power line inter-
ference and could be broadly classified into adaptive and nonadaptive filtering. The first mention
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of adaptive filtering by using the external reference signal was proposed by Widrow et al. [125].
Ider and Koymen have also proposed a system for adaptive elimination of line interference using an
external reference [67]. A different approach of using an internally generated reference signal on an
adaptive 60-Hz filter for an ECG signal was proposed by Ahlstrom and Tompkins [5]. Interestingly,
Glover [5] showed that Ahlstrom and Tompkins’ filter of using an adaptive 60-Hz notch filter with
an internally generated reference is approximately equivalent to a nonadaptive, second order, notch
filter. The following section summarizes adaptive and nonadaptive filters for removal of power line
pick up.

5.3.1.1 Adaptive 60-Hz Notch Filter

The algorithm proposed by Ahlstrom and Tompkins’ maintains a running estimate of the 60-
Hz noise [5]. At time ¢, the present noise estimate can be generated from the previous two noise
estimates according to the equation

e(t) =ee(t —nT)—e(t —2nT), (5.1

where, T is the sample period and € = 2cos(2w60T). The error in the noise estimate is

f(t) = [x(1) —e(r)] = [x(t —nT) —e(t —nT)], (5.2)

where, the second term is an estimate of DC offset. If f(¢)<0, the present noise estimate e(t),

is decreased by an increment d, whose units is in volts. If f(z)>0, the present noise estimate is

decreased by d. The output of the filter is generated by subtracting the noise estimate e(¢) from the

input ECG signal x(¢). Note that as d decreases, the filter adapts more slowly and exhibits a smaller

bandwidth, however, as d increases the filter adapts more quickly and exhibits a larger bandwidth.

In its simplest case of implementation, a sampling rate of 360 samples per second requires no
multiplication because € = 1 and all equation coefficients are equal to 1.

5.3.1.2 Nonadaptive 60-Hz Notch Filter

Design of a nonadaptive filter requires a transfer function H(z) that has zero on the unit circle at
60 Hz and a pole at the same angle with a radius r. Such a transfer function that has notch at 60 Hz
can be represented in the z domain as

1 —2cos(2m-60-T)z! +772

H(z) = - -
1 —2rcos(2r-60-T)z! + r2z2
In Equation 5.3, as r increases, the pole approaches the unit circle, the bandwidth of the notch de-
creases, and transient response time of the filter increases. The DC gain of the filter in Equation 5.3
is 1 — r+ 2 and can be implemented using the following difference equation where € has been de-
fined previously. The adaptive and nonadaptive 60-Hz notch filters described by Equations. 5.2 and
5.3 have a similar frequency response but a different transient response. The nonadaptive filter con-
tinues to exhibit a similar transient response for signals of different amplitudes. On the contrary, the
adaptive filter approach proposed by Ahlstrom and Tompkins is linearly related to input amplitudes
and adapts more quickly to small amplitude signals and more slowly to large amplitude signals. The
response of the filter to a QRS complex, which acts like an impulse input to filter, thus varies based
on whether the filter is adaptive or nonadaptive. Noticeably, the adaptive filter produces less ringing
and thus distortion of the ECG waveform to an input of the QRS complex, which has large ampli-
tude and small pulse width, as compared to a nonadaptive filter, which tends to produce significant
distortion in the ECG signal. Finally, the implementation of both of these filters is optimum for a

sampling rate of 360 Hz, since the computational complexity is substantially reduced [51].

(5.3)

y(t) = re-y(t —nT) — r*y(t — 2nT) +x(t) — & - x(t — nT) + x(t — 2nT), 5.4
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5.3.1.3 Empirical Mode Decomposition

ECG signals are highly nonstationary, and use of an adaptive approach such as the empirical
mode decomposition (EMD) has shown promise in reducing the effect of power line interference
[14]. The EMD method was first presented by Huang et al. [63], and is an effective algorithm for
time-frequency analysis of real-world signals. EMD is a fully data driven, unsupervised signal de-
composition approach, and does not require any a priori-defined basis function, unlike the Fourier
and wavelet-based methods that require predefined basis functions to represent a signal. The algo-
rithm functions by decomposing the signal into finite and often small number of its intrinsic mode
functions (IMF), which represents zero-mean amplitude and frequency modulated components. The
Hilbert transform of intrinsic mode functions provide meaningful instantaneous frequency esti-
mates. The EMD algorithm is as follows [14, 63]:

For a signal x(z), the first step is to identify all local maxima and minima. All the local maxima
are then connected by a cubic spline curve to form an upper envelope Ey (). A similar operation is
performed on all the local minima to obtain E(¢). Given the envelope of upper and lower envelope,
the next stage is to obtain the mean, denoted as m;(t) = 0.5 % [Ey(¢) + E)(¢)]. This mean m; (¢) is
subtracted from the signal x(¢). Thus, the first proto-IMF £ (¢) is obtained as

Iy (t) = x(t) —my () (5.5)

The process explained above is referred to as the sifting process. Note that & () still contains
multiple extremes between the zero crossings, and the sifting process is applied again to it. The
process is repeated to the proto-IMF 7y (¢) until the first IMF ¢y (¢), is obtained after satisfying a
stopping criteria. The commonly used criteria is the sum of difference 3, given by

- i () — hn(n)
=) ——F—7F—— (5.6)
t;() h2k 1 ([)

When § is smaller than some threshold value, the first IMF ¢;(¢) is obtained. The next step
involves computing the residual signal r| (¢), which is

ri(t) =x(t) —c1 (1) (5.7

The residual signal still contains vital information, and is now treated as a new signal, i.e.,
r1(t) — x(¢). All the operations described above for processing x(¢) are applied again until the next
IMF c¢,(t) is obtained. This process is repeatedly performed until r,(¢) is either a constant, or a
monotonic slope, or a function with only one extreme. A Hilbert transform can be applied to each
of the IMFs to get a series of instantaneous frequency ;(¢) and amplitude a;(7), where the subscript
i corresponds to the i IMF.

A Hilbert transform of each IMF ¢;(¢) is given by:

L e
ci
i(t)=— dat 5.8
uilt) = o / -1 ©-8)
One can reconstruct an analytic signal z;(¢) from u;(¢) obtained in Equation 5.8 and ¢;(¢).
zi(1) = ci(t) + jui(t) = a;(1)%© (5.9)
where,
(1) = 12 200) 0:(f) = (1)
ai(t) = 1/ ¢i?(t) + u?(¢),0;(t) = arctan( (t)) (5.10)
¢i

The instantaneous frequency of ¢;(¢) is defined as
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d6;
i(t) = — 5.11
The original signal can be expressed in the form
x(1) =Y ci(t) +ra(r) (5.12)

i=1

where, () is the residual component. The other form of representation of signal x(¢) is
n
x(0) = Re Y ai(expl) [ wi(o)dr} (5.13)
i=1

where, Re stands for the real part of the signal. Equation 5.13 allows us to represent signal x(¢)
by the amplitude and the instantaneous frequency as a function of time in a three-dimensional
plot: {#,®;(),a;(¢)}, in which usually the amplitude is contoured on the time-frequency plane. This
three-dimensional distribution on the time-frequency plane is called the Hilbert amplitude spectrum:
H(w,t) or simply the Hilbert spectrum. One measure that is often useful is the marginal spectrum
h(®) in which the total amplitude contributed from each frequency value is summed up over time,
given by:

T
h(®) = / H(w,1)di (5.14)
0

Figure 5.6 shows a synthetic ECG signal processed using an EMD framework. The sampling
frequency is 360 Hz. The figure shows thirteen different intrinsic modes. A 60-Hz power line hum
is added to the signal. Clearly, the mode (IMF1) shows the signature of 60-Hz frequency and by
removing this particular intrinsic mode and recombining all the other intrinsic modes using the
equation shown below, one can get rid of this particular source of error.

)4
xin(t) =Y, en(t)+rp(0) (5.15)
n=1;n#k
where, in Equation 5.15, xgy() is the filtered signal and n = £ is the intrinsic mode, we do not wish
to consider reconstruction of the original signal.

5.3.2 Electrode Contact Noise and Motion Artifacts

Measurement of ECG depends to a certain extent on the placement of electrodes and how well
the skin is prepared. The objective of good skin preparation involves using a medical grade abrasive
pad to clean up the skin surface so that the impedance between the electrode (typically Ag/AgCl)
and the skin’s surface is minimized. Impedance is the measure of resistance to the flow of current
in the electrical circuit. Notable reasons for the presence of high impedance are dry skin, dirt, long
hair, or sometimes loss of skin tissues. Presence of high impedance invariably adds noise to the
measured signal and thus skin preparation is necessary to reduce the impedance. In most of the
ECG measurements, electrode gel is applied to the electrode to further reduce the impedance and
increase the performance of ECG measurement. Most of the devices require impedance levels to be
as low as 2 kQ to 5 kQ.

In spite of good skin preparation or other precautions during the ECG measurement, many
times because of dryness of electrode gel with time, the contact between the electrode and skin
loosens, causing transient interference with measurement. Figure 5.7 shows an example of ECG
signal with loose electrode contact and respiratory movement, and also because of motion artifacts.
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FIGURE 5.6: (a) ECG signal corrupted with 60-Hz powerline noise, (b) The processed signal is
reconstructed by removing the IMF1 from the signal separated using EMD, and (c) EMD decom-
position for noisy ECG signal.

During measurement, the electrode contact either can be permanent or can be intermittent, resulting
in switching-like behavior. This switching action to the measurement system input causes large
artifacts because the ECG signal is capacitively coupled to the system. Electrode contact noise
manifests as a randomly occurring rapid baseline transition or step, which decays exponentially to
the baseline value and has 60-Hz power line interference. The amplitude of the ECG signal during
such a source of noise could be as large as the saturation level of the recorder. Most of the devices
raise an alarm or indicate the condition of saturation so that an operator could intervene and ensure
that such a source of noise is mitigated.

Unlike the electrode contact noise that shows a steep response, the motion artifact noise though
transient in nature does not show a step-like behavior. Motion artifacts are baseline transitory be-
havior caused by changes in electrode—skin impedance with electrode motion. There can be several
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FIGURE 5.7: (a) An illustration of an ECG signal corrupted with slow varying respiration move-
ment. The saturation of the ECG signal shows poor or open electrode contact with the skin, and (b)
an ECG signal corrupted with motion artifact.

reasons for electrode motion apart from the one described in the previous paragraphs, such as am-
bulatory settings, vibrations, movement of the subject during the stress test or Holter recording. The
baseline disturbance caused because of motion artifacts can be considered as a biphasic signal that
resembles one cycle of a sine wave. The amplitudes of signals affected by motion artifacts can be as
high as 500 percent of the peak-to-peak amplitude of the ECG signal, and could last as long as 100
to 500 ms [40].

5.3.2.1 The Least-Mean Squares (LMS) Algorithm

Adaptive filtering technique has been shown in the previous sections to be useful for removing
the power line interference. One of the variants in the above-described method is the use of a refer-
ence signal representing power line interference tapped from some part of the body (not the region
where ECG is recorded) and using the same to cancel the power line interference from the ECG
signal. In case of motion artifact or to minimize the effect of electrode motion, the basic adaptive
framework shown in Figure 5.8 can be employed.

In this framework, there are two ways by which the noise could be minimized. Figure 5.8(a)
shows a filter implementation in which the main signal is the noise corrupted ECG signal (x; +ny),
where n; is the additive noise, and n; is the reference signal, which in this particular case is a noise
generated from some source. The requirement is that the noise n; is correlated in some way to noise
n1. In Figure 5.8(a), the desired signal x| is obtained by minimizing the objective function using the
following formulation:

g’ = (x1 +n])2 —2y(x1 +mp) erz =(m fy)2+x]2+2x]n1 — 2ynx; (5.16)

where, €; is the error signal. Since the signal and noise are assumed to be uncorrelated, the mean-
squared error &, in Equation 5.16 simplifies to

E[&*) = E(n) —y)* + E[x?] (5.17)

Minimizing the mean squared error (MSE) in Equation 5.17 results in a filter error output €, that
is the best least-squares estimate of the signal x;. In this formulation, the adaptive filter is able to
extract the signal from noise by iteratively minimizing the mean squared error between the input
signal (x| 4+ n;) and the reference noisy signal n;.

There exists another scenario in which the ECG signal is recorded at several leads. One of the
electrodes is considered as a reference electrode and also noise free. Thus, x| 4+ n; is the primary
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FIGURE 5.8: Basic adaptive filter structures. In (a), the reference input is noise n,, which is corre-
lated with noise n, the desired signal appears at E, in (b), the reference input is signal x; correlated
with signal x;. In this case, the desired signal appears at xy.

input signal and x; is the signal from the reference electrode, as shown in Figure 5.8(b). The ob-
jective now is to extract x; from these two signals. This is accomplished by minimizing the MSE
between the primary input signal and the reference signal. Using the formulations mentioned in
Equation 5.17, we can show that

E[e*) = E(x; —y)* +E[n?] (5.18)

The next step involves estimating the filter coefficients so that the signal of interest could be
extracted from the noise. For this different cost functions as a function of filter coefficients are
possible. Let us consider a case shown in Figure 5.8(a) and obtain the filter coefficients using one
of the MSE criterions. The following cost function can be written:

J = E{e2[t]} = (x1[t] + m[t] — y[t])* — min (5.19)

Considering a filter with order N, this results in a quadratic cost function that has a global
minimum. There are several methods to solve the minimization problem and due to the simplic-
ity of implementation, the least-mean squares (LMS) algorithm will be explained here. The LMS
algorithm [125] is an iterative algorithm, which minimizes the MSE between the primary and the
reference signals, and results in filter coefficients or weights. The LMS algorithm can be written as:

Wi = Wi+ 2 e X (5.20)

where, Wy = [wly w2 ...wji ...wNi]T is a set of filter weights and Xy = [x1y X2k ...xjk ...xNy]T
is the input vector at time k of the reference sample. The parameter €y is the difference between the
input ECG and the filtered output yi. Recall that the reference samples in this particular formulation
is the noise signal. The parameter | is empirically selected to produce a convergence at a desired
rate. The larger its value, the faster is the convergence.

The time constant for the convergence is 1/(4pot), where a is the largest eigenvalue of the auto-
correlation matrix of the reference signal [117]. The LMS algorithm does not converge to the exact
solution but to a sufficiently good approximation. Therefore, the selection of . becomes critical as
a very large amplitude results in instability. The bound on o to ensure stability is 1/ot > pu > 0.
Figure 5.9(b) shows the application of the LMS algorithm for the denoising signal. The ECG signal
is corrupted with respiration artifacts, which manifests as a slow-moving component in the mea-
sured signal. The parameter i = 1 is selected. The filter starts adapting to the original signal after a
few initial oscillations as could be seen from the denoised signal in Figure 5.9(b). The formulation
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FIGURE 5.9: (a) Original ECG signal with baseline wander (b) filtered ECG signal using adaptive
filter.

shown in Figure 5.8(b) is applied in which the reference input signal is derived from other lead so
that the noise in the original signal can be minimized.

5.3.2.2 The Adaptive Recurrent Filter (ARF)

The other variants of adaptive filtering employed for ECG signal processing is the ARF tech-
nique [117], in which the objective is to adapt the filter coefficients or weights so that the impulse
response of the desired signal is obtained. The ARF structure is shown in Figure 5.10. From the
ECG signal, select the P-QRS-T signal that spans k =0----(J — 1) samples. The transversal filter
will require J coefficients. Thus, the ARF is implemented by first identifying a reference impulse
train that is coincident with the QRS complexes. The reference impulse is implemented in such a
way that the filter coefficients span the entire QRS-T complexes. The practical implementation for
the QRS detection can be done through hardware or in software. The detection of the QRS complex
will be discussed in the next section. The impulse is placed at the very beginning of the QRS com-
plex. Thus, the reference signal is an impulse coincident in time with the first samples of the signal
complex. Each recurrence of the ECG signal i = 1,2, - - -- results in a new reference impulse and the
new update for the filter coefficients. The desired impulse response is obtained by minimizing the
MSE between the noise-inflicted ECG signal and the reference inputs. For the ARF, the reference
input vector is, Xi = [0,0,1,---,0]T. Therefore, at each time step only one weight is adapted, and
can be written as, w+1) = Wk + 2ug. All the filter weights are adapted once at each recurring cycle
of P-QRS-T complex i.

5.3.3 QRS Detection Algorithm

The QRS complex is the most prominent part in the ECG because of its high amplitude com-
pared to the P and T waves. The QRS complex represents the depolarization of the ventricles of
the heart and its presence or detection is most important for the calculation of heart rate. The de-
sign of QRS detector is critical because poor detection or no detection at all may severely limit
the performance of the system as the error can propagate to the subsequent processing steps. One
of the challenges while designing the QRS detector is its ability to not only detect a large num-
ber of different QRS morphologies, which are clinically relevant, but also to follow the sudden or
gradual changes of the prevailing QRS morphology. The other difficulties associated with QRS de-
tection is sometimes negative QRS polarities (because of extrasystoles, especially the ventricular
extrasystole leading to a sudden polarity change), low SNR, nonstationarity, low QRS amplitudes,
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FIGURE 5.10: Schematic of adaptive recurrent filter. The input signal S = §o® ;@ ...§5® _..§ -1 ®
is the vector for P-QRS-T signal complex that spans J samples. The reference input is an impulse
sequence (indicated as 0, 0,1, ,0,0), which is coincident with the recurrence of the QRS complexes.
Filter output Y} is the desired output and error E is the used to adapt filter weights W [117].

and ventricular ectopics. Furthermore, the detector should not lock onto certain types of rhythm and
be prepared to treat the next possible episode as if it could occur at almost any time after the most
recently detected episode. The following subsection describes some of the common approaches for
the detection of QRS complexes.

Pan-Tompkins Algorithm The real time detection of QRS was proposed by Pan and Tompkins
[101], consisting of a bandpass filter, which is composed of a low pass filter followed by a high pass
integer filter. Figure 5.11 shows different stages of a QRS detector algorithm proposed by Pan and
Tompkins. Note that having integer coefficients in a digital filter allows real-time processing speed.
Subsequent stages are differentiation, squaring, and time averaging.

(i) Bandpass filter
Before designing a bandpass filter it is important to analyze the power spectrum of various
signal components in the ECG signal. Figure 5.12 shows the relative power spectra of ECG,
P and T waves, motion artifact, QRS complex, and muscle noise [118]. From the figure,
one can observe that a bandpass filter which has a pass band of approximately 5 to 15 Hz
can maximize the QRS energy and reduce noise from other components of ECG signals by
matching the spectrum of an average QRS complex.

The filters used in the algorithm are recursive filters that have poles located to cancel the zeros
on the unit circle of the z-plane. The transfer function of a second-order low-pass filter is

(1 _ Z-6)2

1O~ =y

(5.21)
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FIGURE 5.11: Different stages of Pan—Tompkins algorithm for QRS detection [101]. z(n) is the
time-averaged signal, y(n) is the bandpassed signal, and x(n) is the differentiated ECG.
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FIGURE 5.12: Typical relative power spectra of different components of ECG complex beats. A
synthetic ECG is considered for spectral analysis.

The cut-off frequency of the filter is 11 Hz, the delay is 5 samples, and the gain is 36. The
difference equation for this filter is

y(nT) =2y(nT —T) —y(nT —2T) +x(nT) — 2x(nT — 6T) + x(nT — 127T) (5.22)

In the above equation x(7') is the input signal, 7 is the sampling period. The high-pass filter
is implemented by subtracting a first-order low-pass filter from an all-pass filter with delay.
The transfer function for a low-pass filter is

(1-2%)
H =-—- 5.23
Ip (Z) (1 — Z—l) ( )
The transfer function of a high-pass filter is
1-232%)
H _ 6 (1=27) 5.24
np(2) =2 B0 (5.24)
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The difference equation for the high-pass filter is

q(nT) =x(nT —16T) —0.0313[y(nT — T) + x(nT) — x(nT — 32T)] (5.25)

The low cut-off frequency of the filter is about 5 Hz and the delay is 80 ms. The gain of the
filter is unity.

(i) Derivative
This stage provides the slope of the QRS complex in which a five-point derivative is imple-
mented using the following transfer function

H(z) =012+z'—7%-27% (5.26)
The difference equation for this transfer function is given by
y(nT) = (1/8)[2x(nT) +x(nT — T) —x(nT —3T) — 2x(nT — 4T )] (5.27)

The fraction (1/8) is an approximation for 0.1, since power-of-two facilitates real-time oper-
ation. This derivative approximates the ideal derivative in the DC through a 30-Hz frequency
range, and it has a filter delay of 10 ms. The P and T waves are attenuated while the peak-to-
peak amplitude of the QRS is further enhanced at the end of the derivative stage.

(iii) Squaring
The squaring is a nonlinear process and performed to get all the positive values so that once
these samples are processed a square wave can be obtained. Also this step emphasizes the
higher frequencies of the ECG signal, which are due to the presence of the QRS complexes.
The point-by-point squaring of the samples is given by y(nT) = [x(nT)]%.

(iv) Moving Window Integral
The slope of R wave only is not a definite way to detect QRS complexes in an ECG. There
might be instances of abnormal QRS complexes that have large amplitudes and long dura-
tions. Thus, additional information from the signal needs to be extracted to reliably detect a
QRS event. A moving average integrator extracts features apart from the slope of the R wave.
The difference equation for the integrator with N samples is given by

y(nT) = (1/N)x(nT — (N—1)T)+x(nT — (N —2)T)+ - - +x(nT)] (5.28)

Selection of N is crucial and needs careful consideration. It is usually chosen from experi-
mental observations. If the window is too large, then the integration waveform will merge the
QRS and T complexes. If the window is too small then chances are that several peaks will
result for a QRS complex. A typical time period for the window is about 150 ms.

(v) Threshold Selection

Pan and Tompkins have proposed a set of thresholds such that only the appropriate QRS
complexes are detected. Two sets of thresholds—one corresponding to the signal and the
other to the noise—are set. The peaks correspond to T wave, muscle artifact corresponds to
the noise peaks, while the peaks corresponding to QRS correspond to signal peaks. Thus, the
task narrows down to setting up the thresholds that are just above the noise peaks. The reader
is referred to Hamilton and Tompkins [52] for more details on the formulation for setting
up the threshold. Subsequently, the R to R interval is computed so that the heart rate can be
determined.

A large number of QRS detection algorithms are described in the literature [93, 39, 58, 4, 35,
99, 126, 121, 88, 36, 47, 113, 45, 46, 97, 89, 17, 116, 16, 92] and it is beyond the scope of
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this chapter to discuss them in detail. However, these detection algorithms could be broadly
classified into two categories, namely the performance and the complexity. Friesen et al. [40]
have quantified the noise sensitivity of nine QRS detection algorithms. In their study, syn-
thesized normal ECG data were used as a gold standard and different levels and types of
noises were added to it. The noise types were electromyographic interference, 60-Hz power
line interference, baseline drift due to respiration, abrupt baseline shift, and composite noise
constructed from all the other noise types. They concluded that none of the algorithms was
able to detect all QRS complexes without any false positives for all of the noise types at the
highest noise level. Algorithms based on the amplitude and slope of the QRS complex are
most immune to EMG noise. In practice, this type of noise is most common and likes to pose
the greatest challenges; these algorithms have an advantage over the algorithms considered
for the evaluation.

Apart from the standard threshold-based methods for the detection of QRS complexes, the
other variants reported in the literature for QRS detection are based on adaptive matched
filtering based on neural networks [127], wavelet transforms [77], continuous spline wavelet
transforms using local maxima of the continuous wavelet transform (CWT) at different scales
[6], CWT using fixed thresholds [129], first derivatives with adaptive quantized thresholds
[25], and the filter banks approach [3] .

5.4 Denoising of Signals

The aim of signal denoising is to improve the measurement accuracy and reproducibility, which
is otherwise not readily available from the signal through visual assessment. This section presents
various denoising approaches commonly applied for processing biomedical signals. The ECG signal
is considered for illustration; however, these techniques could be well applied for other signals too.
Note that in the previous section a classical filtering approach was presented. This section introduces
a statistical approach (principal component analysis), a nonstationary filtering technique (wavelet),
and an optimum filter in wavelet domain (wavelet-Wiener).

The most common interference that occurs in ECG recording is the signal from the myopo-
tentials, which arise in skeletal muscles. Since the frequency spectrum of ECGs coincides with the
spectrum of myopotentials, a simple frequency selective filtering mentioned in the previous sections
cannot be applied to remove the noise. Instead, approaches like principal component analysis (PCA)
and filtering using wavelet transform are more preferable for denoising. Significant improvements
in SNR could be achieved if these techniques are coupled, for instance wavelet and Wiener filtering.
Finally a denoising approach known as the pilot estimation method will be presented.

5.4.1 Principal Component Analysis

For multivariate signal analysis, principal components analysis (PCA) is one of the oldest can-
didates in literature [71]. For electrocardiogram (ECG) signal enhancement, a robust extension of
classical PCA is suggested [72] by analyzing shorter signal segments. PCA has been applied for
data reduction, beat detection, classification, signal separation, and feature extraction [75, 71]. PCA
can be used for the separation of respiratory and nonrespiratory segments in an ECG signal [75].
Noise reduction and data compression are closely related, as both require PCA to concentrate the
original signal information within a few eigenvectors whose noise level is low. Classification of
waveform morphologies in arrhythmia monitoring is another early application of PCA, in which a
subset of the principal components serves as features, which are used to distinguish between normal
sinus beats and abnormal waveforms, such as premature ventricular beats. A recent application of
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PCA in ECG signal processing is robust feature extraction of various waveform properties for the
purpose of tracking temporal changes due to myocardial ischemia. Historically, such tracking has
been based on local measurements derived from the ST-T segment, however, such measurements are
unreliable when the analyzed signal is noisy. With correlation as the fundamental signal processing
operation, it has become clear that the use of principal components offer a more robust and global
approach to the characterization of the ST-T segment [21].

In the following subsection, we present PCA-based denoising for single-channel and multichan-
nel ECG signals. The methods are explained with some examples. We also present singular value
decomposition (SVD) based method for ECG noise reduction.

5.4.1.1 Denoising for a Single-Channel ECG

Let us suppose that x(n) is a mixture of noise-free single-lead ECG signal s(n) corrupted with
noise w(n), where n represents n = 0,1,2,...N — I, N.

x(n) =s(n) +w(n) (5.29)

Both signals s(n) and w(n) are assumed to be uncorrelated. The first step in a single-channel
ECG denoising is division of the beat data into time segments and accurate alignment of the different
time segments. For this, the R peaks are first detected from the QRS complex and the Pan and
Tompkins’s method [101] mentioned in the previous section could be applied. The identification
of R peaks is followed by measurement of all the R-R intervals (Rinf) and the mean R-R interval
for the selected time segment. Then the ECG signals with that particular time segment are aligned
with the R peak locations as the centers with the range of +Rint. Any redundancy in the data is
not a problem since in most cases the redundant data constitute isoelectric lines, which carry no
significant information. The segmented signal of a beat is represented by a column vector given as
(21]

X = [X1,%2, oo, Xp T (5.30)
where, P is the number of samples of the segment. The segments from several successive beats
(say M beats) are ensembled to form a P x M data matrix X,
X = [X],Xg, ..... 7XM] (531)
The beats x1,X», .....,Xm can be viewed as M observations of a random process x. Assuming the
signal X is a zero-mean random process, the correlation matrix Ry can be obtained by
Ry = E{xx"} (5.32)

Since Ry is rarely known in experiments, a sample correlation matrix Ry of size PX P is obtained
using the data matrix X as

S |
Ry = MXXT (5.33)

Next, the eigenvalue decomposition of the matrix Ry yields matrices E and D where E is the
orthogonal matrix of eigenvectors of Ry and D is the diagonal matrix of its eigenvalues, represented
as D =diag(dy,d>,...,dy). Now the principal components of the matrix X are obtained by applying
orthonormal linear transformation to X.

W =ETX (5.34)

The principal components, W reflects the degree of morphologic beat-to-beat variability: When
the eigenvalue d| associated to the first principal component is much larger than those associated
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FIGURE 5.13: An example of PCA for ECG signal denoising. The signal is denoised by retaining
only the first principal component.

to other components, the ensemble exhibits a low morphologic variability, whereas a slow fall-off
of the principal component values indicates a large variability. Since there exists a correlation from
one part of the signal X to another, the PCs with higher eigenvalues consists more of ECG and less
of noise. Hence, the PCs that have significant eigenvalues are assumed to be part of the signal while
the rest are assumed to be part of the noise. Therefore, by retaining only the higher eigenvalue PCs,
it is possible to reduce most of the noise.

Let K principal components wi,wy,...wk, where K < P is required to condense the information
of X while retaining the physiological information. The choice of K may be guided by various
statistical performance indices [71], of which one index is the degree of variation Rk, reflecting
how well the subset of K principal components approximates the ensemble in energy terms, given

by

Rg = Nl (5.35)
Y dx
k=1

In practice, K is usually chosen so that the performance is clinically acceptable and no vital
signal information is lost. The signal part of the ECG (without noise) can now be reconstructed

from the selected PCs using
X=EW (5.36)

where, E and W are the eigenvectors and PCs corresponding to the noise free signal, respectively.
Finally a noise-reduced ECG signal is obtained by concatenating the columns of X. Figure 5.13
shows the application of PCA for signal denoising.

5.4.1.2 Denoising for a Multichannel ECG

Since considerable correlation exists between different ECG leads, for instance in 12-lead ECG,
certain applications such as data compression and denoising of multichannel ECGs can benefit
from exploring interlead information rather than just processing one lead at a time. In this section,
a single-lead ECG signal of Equation 5.30 is extended to a multilead case by introducing the vector
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xi |, where the indices i and / denote beat and lead numbers, respectively. Then, a straightforward
approach to applying PCA on multichannel ECGs is to pile up the leads X; 1,X;2,...,X; of the i
beat into a LP x 1 vector X, defined by [21]

2= | . (5.37)

For the ensemble of beats, M, the multichannel data matrix X is represented by a LP x M matrix,
which is written as

X = [X1...Xm] (5.38)

Accordingly, X replaces X in the above calculations. The formulation of X discussed in the pre-
vious section for a single-channel ECG denoising is applied again for determining the eigenvectors
of the sample correlation matrix. Once PCA has been performed on the piled vector, the resulting
eigenvectors are “depiled” so that the desired principal components coefficients can be determined
for each lead.

5.4.1.3 Denoising Using Truncated Singular Value Decomposition

Instead of performing PCA on data matrix X, one can find the singular value decomposition of
the P x M matrix X, which is defined as

X =USVT (5.39)

where, U is an P x P orthonormal matrix whose columns are the left singular vectors, and V
is an M x M orthonormal matrix whose columns are the right singular vectors. The matrix S is a
P x M nonnegative diagonal matrix containing the singular values 61,02, ...G}, such that 6; > 6, >
...0p > 0. Singular values of the signal preserve the information like noise level, the amount of
signal energy, and the number of elements that make up the signal. The greater the singular values
are, the more important the corresponding singular vectors are in representing the matrix X.

Since the segments of observed ECG signal are highly correlated, in the SVD domain, generally
(for high SNR cases) higher valued singular values conserve the signal energy, whereas the lower
singular values conserve the noise energy. Hence, by truncating the lower singular values, the ef-
fect of noise components in the signal reconstruction can be minimized. This technique is called
the truncated singular value decomposition (TSVD) method [53]. The TSVD method involves the
following steps.

1. Perform SVD on matrix X, and identify the nonsignificant singular values in the matrix S.
2. Set the nonsignificant singular values to zero and form a new diagonal matrix S.

3. Reconstruct a denoised matrix X = USVT, which approximates matrix X in least squares
sense.

4. Reconstruct a denoised ECG signal by concatenating the time segments.

One important aspect while applying the TSVD is the selection of singular values that belong
to signal and noise subspace. For the lower SNR cases, the singular values of the signal and noise
cannot be perfectly separated from each other (slow varying singular values). Assume that M1
singular values clearly belong to the signal subspace, next M2 singular values belong to both signal
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FIGURE 5.14: An example of SVD for ECG signal denoising. The signal is denoised by retaining
only the first two singular values.

and noise subspaces, and the remaining N — (M1 4 M?2) singular values belong to the noise subspace.
In such cases a filter f is designed in such a way that the singular values in the SVD mapping are
modified. The expression for the filter function fj,i = 1,2,.., P is defined as [91]

1 i<MI1
fi=Le@PB Ml <i<M2 (5.40)
0, i>MI1+M2

is applied to the singular values, 6; = f; *G; , to obtain modified singular value matrix S. Here
B is a weighting coefficient. Finally, the S matrix is used to reconstruct the noise-free matrix X by
X = USVT. Figure 5.14 shows an application of SVD for signal denoising.

5.4.2 Wavelet Filtering

Discrete Wavelet Transform (DWT) is a method, which has the ability to represent a large class
of well-behaved functions with a sparse representation in wavelet space. So, when DWT is applied
to a noisy ECG signal, the noise-free component of the signal (true signal) will be concentrated
in a small number of larger coefficients, while the noise will be distributed as smaller coefficients.
So by applying simple threshold to the smaller coefficients and by performing the inverse wavelet
transform (IDWT), noise-free ECG reconstruction can be obtained (Figure 5.14). However, choice
of the threshold value and the thresholding scheme play a crucial role in denoising the ECG signal.

Let ym(n) = um(n) + vin(n) be the wavelet coefficients obtained by performing DWT on the
noisy signal, x(n), in which un (n) are the coefficients of the noise-free signal and vy, (n) are the co-
efficients of the noise, m being the level of decomposition that denotes the m™ frequency band. The
threshold levels for modification of the wavelet coefficient should be set for each decomposition
level m with respect to the noise level vy, (its standard deviation Gy, ). When the noise level is low,
the threshold values are low, and the risk of corrupting the true signal, s(n) is low. Donoho [34] has
proposed a universal thresholding method where the threshold value is given by /2logG, where G
is the number of wavelet coefficients. Universal threshold yields near-optimal mean-squared error
(MSE) rates over a range of signal smoothness classes, and produces visually appealing reconstruc-
tion irrespective of the size of the samples, G. However, it is well known that universal threshold
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FIGURE 5.15: A typical block diagram for filtering ECG signal using wavelets.
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FIGURE 5.16: Wavelet thresholding methods (a) Actual signal (b) Hard thresholding (c) Soft
thresholding.

oversmoothes the signal, x(n), as it is often observed, and too much of signal components are killed
in the process of thresholding. The reader is referred to [69] for methods for estimating the optimal
threshold values.

The selection of a thresholding scheme is a problem of significant interest in wavelet threshold-
ing. In general, the thresholding methods are categorized into two types, namely the hard threshold-
ing and the soft thresholding, as shown in Figure 5.16. Performance of thresholding depends on the
type of thresholding method and the rule used for a given application. The hard threshold function
(ym™) defined in Equation 5.41 tends to have bigger variance and is unstable (sensitive to even small
changes in the signal), where yp, are the wavelet coefficients; Thr is a threshold value that is applied
on the wavelet coefficients.

(5.41)

ht _ 07 Iyl < Thr
" 1, |y|>Thr

In contrary, soft thresholding function (ys) is much more stable than hard thresholding and tends
to have a bigger bias due to the shrinkage of larger wavelet coefficients described in Equation 5.42.
In addition to these methods, the hypertrim shrinkage with a-trim thresholding is proposed for
signal denoising [103]. In general, most of the researchers have proved that the soft thresholding
method gives the best results with other methods on denoising the ECG signal [103].

0 Th
Om®) =4 A< Thr (5.42)
(y—=Thr), |y|>Thr

Finally, the steps of the denoising algorithm by wavelet thresholding are as follows:
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FIGURE 5.17: The noisy ECG signal is filtered using a wavelet filtering technique. A soft threshold
is applied so that the morphology of the original signal is preserved.

(a) Transform the signal into a wavelet domain with a predefined level of decomposition using
any standard orthogonal wavelet bases.

(b) Estimate the noise in the each subband.
(c) Calculate the soft threshold value for each subband.

(d) Apply the soft thresholding scheme to the wavelet coefficients with the subband level depen-
dent threshold.

(e) Reconstruct the signal using IDWT.

The framework presented for denoising the signal using wavelet filtering is applied to the noisy
ECG signal. Figure 5.17 shows the denoised signal using the wavelet filtering technique. A soft
thresholding is applied so that the morphology of the original signal is maintained. Note that apply-
ing a hard threshold often results in altering the magnitudes of the PQRST complexes.

5.4.3 Wavelet Wiener Filtering

The technique is based on applying the Wiener filtering theory in the wavelet domain. As in
traditional Wiener filtering, the signal in the wavelet domain yy () has to be modified using a form
factor Hp(n) to obtain filtered signal HF (n), which is defined as [24]

HF n(n) = Hy(n) *ym(n) = Hyn(n) * [um(n) + vm(n)] (5.43)

The selection of the filter Hp, () should be such a way that, the mean-squared error between the
filtered signal HF(n) and the actual signal to be reconstructed, uy(n) is minimum. The MSE is
given by en2(n) = [HF (1) — um(n)]%. The solution for minimum MSE gives an equation for the
form factor, Hp, (n) that

tm? ()

H) = 2200 & v ) 49

In the above expression both noise-free signal coefficients up (n) and the noise coefficients vy, (n)
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are unknown. For noise coefficients vy, (n) , the values vy,%(n) are replaced by the noise variance in
the m™ level. Now, the expression for Hy,(n) gets modified to

2
Um"(n)
H =5 5.45
m(n) umz(n> +Gm2(n) ( )
For low noise cases, umy>(1) >> 6> (n) such that the filter Hy,(n) &~ 1 and |[HFp(n)| & [ym(n)|.
On other hand, for high noise cases um,?(n) << 6>(n) and Hy(n) << 1 and [HF (n)| < [ym(n)).

Hybrid Thresholding Literature [95] has shown that the noise-free coefficients upm(n) can be
estimated from signal yy(n), and noise variance 6% (n) in the form um?(n) = max| kym>(n) —
Om’(n),0 ] where k is a constant chosen as k = 1/3.

The result leads to form factor,

Ym® (1) —30m*(n) 30m*(n)
ym*(n) ym?(n)
Now expressing HF ,(n) using Equation 5.46, we can conclude that filtering is nothing but

thresholding of the coefficients yn (n) with the threshold given by Thr(m) = /36, (n). The filtered
output HF,(n) can be defined as

Hn(n) = max| ,0] (5.46)

,0] = max[1 —

3 Thr?(m)
HFw(n) ="
0, Ym(n)| < Thr(m)

From Equation 5.47, it can be deduced that filtering is a combination of soft and hard thresh-
olding: It is approached to soft thresholding for values |ym (7)| approximately equal to Thr(m) and
hard thresholding for values |y (r)| much higher than 7hr(m). Therefore, this method is named the
hybrid thresholding method.

However, an efficient alternative approach called the pilot estimation method can be used to
estimate the noise-free signal coefficients up, (n). The next subsection discusses the method in brief.

5.4.4 Pilot Estimation Method

The pilot estimation method [24] has two denoising blocks as shown in the block diagram in
Figure 5.18. The first block of denoising is a wavelet filtering block that is discussed in Section 5.4.2.
In brief, the DWT1 block performs the wavelet transform, followed by modifying the wavelet co-
efficients by wavelet thresholding. The modified coefficients are then fed to the inverse wavelet
transform, IDWT] to get an estimate §(n), which is a pilot signal that approximates the noise-free
signal, s(n). The pilot signal enters the DWT2 block and results in coefficients i,,(n).

The coefficients now form an estimate of u,, (n) for the Wiener filtering block that is discussed in
Section 5.4.3. The signal from DWT3 and #,,(n), and noise variance are fed to the wiener filtering
block. The modified coefficients from the Wiener filter are then inverse transformed using IDWT2
to obtain noise-free reconstruction s(n).

The choice of decomposition and reconstruction filters for WT1/WT2 and the method of thresh-
olding and threshold value used in the first block have a large impact on the results. Analyses
have proved that hybrid thresholding with the threshold value v/36y, is optimal for the wavelet
thresholding block in the pilot estimation method. Figure 5.19 shows one particular example of
wavelet-Wiener filtering for signal denoising.
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FIGURE 5.18: Pilot estimation method for wavelet-Wiener filtering.
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FIGURE 5.19: The noisy ECG signal is filtered using the wavelet-Wiener filtering technique.

5.5 Multivariate Biomedical Signal Analysis

Biomedical signal analysis of multivariate data has benefited immensely from the advances in
research in other disciplines, for instance in neural network research, where the fundamental prob-
lem is to find a suitable representation of multivariate data, i.e., random vectors. Many times, for
the sake of computational simplicity, a representation is desired that is a linear combination of the
original data. Linear transformation allows each representation of data to be a linear combination of
the original variables. Some of the well-known linear transformation methods are principal compo-
nent analysis, factor analysis, projection pursuit, and independent component analysis. Independent
component analysis (ICA) is a special class of blind source separation (BSS) techniques, in which
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FIGURE 5.20: Multichannel recording of ECG from a maternal abdomen. The recorded signals
contain maternal as well as fetal ECG along with other sources of noise.

the objective is to find a linear representation of non-Gaussian data so that each component is as
independent as possible [57].

In the previous section, we discussed the use of principal component analysis to extract a
statistical-based model of the signal and noise. This statistical technique allowed the removal of
in-band noise by discarding the dimensions corresponding to noise. Independent component anal-
ysis has in recent times caught the imagination of several researchers to handle multiple channel
data, where the features of interest overlap in bands but are statistically independent sources.

One of the applications of ICA is the separation of artifacts in magnetoencephalography (MEG)
data. Magnetoencephalography (MEG) is a functional neuroimaging noninvasive technique for
mapping brain activity by recording magnetic fields produced by electrical currents occurring natu-
rally in the brain, using very sensitive magnetometers. Applications of MEG include basic research
into perceptual and cognitive brain processes, localizing regions affected by pathology before sur-
gical removal, determining the function of various parts of the brain, and neurofeedback. MEG can
aid in finding locations of abnormalities by simply measuring the brain activity [28]. One of the
issues while extracting the essential features from the brain signals is the presence of artifacts. To
exacerbate the problem, the amplitude of disturbances can be higher than that of the signals from the
brain, and also resemble pathological signals in shape. The artifacts commonly encountered during
MEG recordings are eye movements or blinks, myographic or muscle artifacts, cardiac signals, or
sensor noise. ICA techniques have been used successfully to isolate each sources of error and also
to decompose evoked fields, enabling direct access to the underlying brain functioning [123].

Other area where ICA has been widely applied in the literature is the separation of fetal ECG
from maternal ECG that is obtained through multiple sensor recordings from the maternal abdomen
(Figure 5.20). This class of problem has become amenable with the fact that the signals originating
from the mother and the fetus are statistically independent. In this particular case, a large set of
multivariate data is measured from sensors placed on the abdomen. Each individual component is
assumed to be mixed, either linearly or nonlinearly, and the components themselves along with
the mixing system are assumed to be unknown. The task of ICA is now to demix or extract each
individual component by exploiting the independence of sources. This technique is more powerful
that classical methods such as principal component analysis. Figure 5.21 shows the ICA process
involved in source separation of each individual component.

Essentially, the task of ICA is to recover N unknown underlying sources S(¢) =
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FIGURE 5.21: The extraction of individual components using ICA. The picture shows the individ-
ual components S(¢), the mixing matrix A, the data recorded at the sensor X(¢), and the demixing
matrix W. In this model the inherent assumptions are linear mixing of the sources, a stationarity
of mixing matrix and noiseless mixing [68]. In the figure, one particular example consisting of
measurements from maternal abdomen is shown. The independent sources are maternal ECG, fetal
ECG, motion artifacts, respiratory movement from the mother, and other noise sources.

[s1(t) s2(t) s3(t) ... sn(¢)]T from a set of M measured data points at time instant ¢, X(¢) =
[x1(¢) x2(t) x3(¢) ... xm(2)]T. Some of the assumptions during the mixing of the sources are the
linearity and the stationarity of the mixing process, and the mixing matrix A to be full rank of
dimension NXM, such that

X(r) = AS(1) (5.48)

It is also assumed that the number of sources is less than or equal to the number of measurement
channels N < M. The task now reduces to recover the individual sources s;(¢) from the observations
X(¢) and this essentially means finding a demixing or separating matrix W such that

S(r) = WX(r) (5.49)

where, S(t) is the estimate of the underlying sources S(¢). For estimating the demixing matrix
W, various ICA algorithms based on higher-order statistics have been proposed and can be found in
the literature [81, 27, 11, 66], though the list is not exhaustive.

The preprocessing step for estimating the S(t) is centering and whitening the measured data
X(#). Centering involves subtracting the signal with its mean value so as to make a zero mean vari-
able. Whitening or decorrelation involves transforming the observed vector X(¢) linearly so that
one obtains a new vector X(z), which is white, i.e., its components are uncorrelated and their vari-
ances equal unity. This implies that the covariance matrix E{X(r)X ()T} = L, is an identity matrix.
Whitening could be performed by performing the eigenvalue decomposition of the covariance ma-
trix E{X(t)X(r)"} = EDE", where E is the orthogonal matrix of eigenvectors of E{X(r)X(r)T}
and D is the diagonal matrix of it eigenvalues D = diag(d, d,, ... ,dn.1, dn). Whitening can be
done by X = ED'2ETX, where the matrix D2 is computed by a simple component-wise operation
on the diagonal matrix D2 = diag(d,"?, d>'?, ..., dn.1""?, dn'V?). Decorrelation is essentially
what a principal component analysis does.
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Estimating the sources S(t) is possible if and only if the sources are non-Gaussian. In theory
the objective is now to make the estimates S(t) as non-Gaussian as possible, as according to the
central limit theorem, the sum of non-Gaussian random variables are closer to Gaussian than the
original signals. One constraint that this formulation poses is that at most only one source with
Gaussian distribution is possible [65]. The following paragraphs discuss three most commonly used
approaches for implementing ICA using higher-order statistics.

5.5.1 Non-Gaussianity through Kurtosis: FastiICA

Kurtosis or the fourth-order cumulant is the measure of non-Gaussianity of a signal. For a signal
with Gaussian distribution the kurtosis is zero. FastICA works on the premise that the fast fixed
point-iterative algorithm undertakes to find projections that maximize the non-Gaussianity of com-
ponents by their kurtosis. Thus, the ICA formulation narrows down to an optimization problem with
the sources as its solution. The kurtosis is used to describe the distribution of a zero mean random
variable X and is defined as kurt(X) = E{X*} —3(E{X?})?, where E{-} is the expectation operator.
The reader is referred to the formulation by Hyvérinen amd Oja [66] for further details on FastICA.

5.5.2 Non-Gaussianity through Negentropy: Infomax

Bell and Sejnowski [11] have proposed an algorithm, which attempts to measure non-
Gaussianity of the sources using negentropy. Entropy is the concept widely used in Information
Theory. The entropy of a random variable is the degree of information that the observation variable
gives. The more random or unpredictable the observation is, the larger is its entropy. The entropy
H for a discrete random variable Y is defined as H(Y) = Y P(Y = aj)log P(Y = a;), where q; is the

largest possible value of Y. The differential entropy H forl a continuous-valued random vector y, is
defined with density f(y) as H(Y) = — [ f(y)logf(y)dy. It is a well-established fact in Information
Theory that a Gaussian variable has the largest entropy among all random variables of equal vari-
ance [73]. Entropy is very small for a variable that is clearly clustered or has a probability density
function that is very spiky. A slight variation of differential entropy called negentropy is often used
as a measure of non-Gaussianity. Negentropy is defined as the difference between the entropy of a
Gaussian random variable with the same variance as the observed random variable and the entropy
of the random variable. This could be represented as J(y) = H(Y gauss) — H(y), Where Y gaugs is a
Gaussian random variable of the same covariance matrix as y.

The algorithm is a neural network gradient-based framework whose learning rule is based on the
principle of information maximization (infomax), and it maximizes the output entropy of a neural
network with nonlinear outputs. The learning criterion is the maximization likelihood estimation
of an ICA model. In effect, it can be proved that ICA estimation by this criterion reduces to the
maximization of the non-Gaussiantiy of the sources, and hence the separation of the sources s;.

5.5.3 Joint Approximate Diagonalization of Eigenmatrices: JADE

The JADE algorithm [19] is slightly different to both the infomax and fixed-point algorithm
in that the latter algorithms optimize a particular transform of the input data, whereas JADE op-
timizes a transform of a particular set of statistics about the data. The foundation for the JADE
algorithm is the realization that blind source separation algorithms generally require an estimation
of the distributions of the independent sources or have such an assumption built into the algorithm.
Jean-Francgois Cardoso [19] pointed out that optimizing cumulant approximations of data implicitly
performs this.

The first step for the JADE-based ICA is prewhitening of X(t). Assume that the singular value
decomposition of the mixing matrix A in Equation 5.48 is = V(¢oU, where V( and U are the unitary

© 2015 Taylor & Francis Group, LLC



160 Healthcare Data Analytics

matrices, and ¢ is the diagonal matrix of full column rank. The dimension of ¢y can be made square
if it is not a square matrix by pruning a few singular values that are either zero or are close to zero.
Let the pruned matrix ¢¢ be denoted as ¢. Accordingly, the corresponding columns of Vy needs
to be pruned. Let the pruned version of Vi be V. Thus, the truncated matrix A can be written as
A = VU, where ¢ is the n x n dimension matrix and V is the m x n dimension matrix. Substituting
matrix A into Equation 5.48 results in

X(t) = VOUS(1) = Voz(t) (5.50)

where

z(t) = US(1), (5.51)

is the whitened mixed signals and ¢! VT is the whitening matrix. The problem now reduces to
solve Equation 5.51 using a following JADE criterion

N
JADE(U) =Y |cum[si(t), 5" (t),0(t),5m (£)][* (5.52)

km,n=1

Equation 5.52 can be further simplified to

N? N N2

JADE (U Z||d1agUHQZ JU) |2 = ZZ|uk Q. (B )uy | (5.53)

where, uy is the k-th column of U, B, with » = 1,2,...,N? constitute a set of orthonormal bases
for the space of N x N matrices, Q,(B;) is the cumulant matrix defined element-wise as

N
B,)]ij = Z cum[sk(t),sk*(t),sn(t) Sm ( )bpq" (5.54)
Pg=1

In Equation 5.54, cum(-) denotes cumulant, * denotes complex conjugate, and bpq" the (p,q)-th
element of B;. Making the cumulant as diagonal as possible is making the data as independent as
possible. The matrix that performs the diagonalization on cumulants can be translated to perform
separation of the mixed data. Thus, if R is the rotation matrix that makes the cumulant matrices as
diagonal as possible, then a demixing matrix can be estimated as R’ -z [78].

As a case study, let us see how the JADE algorithm can be applied for the separation of fetal ECG
from maternal ECG. For this the data sets from the Daisy database [62] was used. The raw channel
consists of eight-channel raw data measured from a pregnant woman for 10 seconds. Channels
1 to 5 correspond to abdomen measurements, while Channels 6 to 8 are thoracic measurements.
The data is sampled at 250 Hz. Figure 5.22 shows the raw channel mixed data. Note that the data
shows clearly that the maternal and fetal ECG are mixed and needs to be separated in the presence
of other sources of noises such as baseline wander. After initial preprocessing such as removal of
baseline wander, which is a slow respiratory component dominating the measurement, Channels 1
to 5 are fed to the JADE algorithm. Figure 5.23 shows the separation of individual components,
with maternal ECG and fetal ECG in Channels 1 and 3, respectively. The other channels consist of
noise components. Some of the researchers have used the noise separation characteristics of ICA
for signal denoising [1, 115].
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FIGURE 5.22: The eight-channel raw data measured from a pregnant woman for 10 seconds [62].
Channels 1 to 5 correspond to abdomen measurements, while Channels 6 to 8 are thoracic measure-
ments. The data is sampled at 250 Hz.
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FIGURE 5.23: Extracted fetal and maternal ECG from the raw data shown in Figure 5.22. The
algorithm applied for the extraction of fetal ECG is JADE. The magnitudes of original signals are not
retained because of scaling ambiguity during separation. There also exists permutation ambiguity
and each block of data processed might show fetal and maternal ECGs in different channels.
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5.6 Cross-Correlation Analysis

This chapter until now focused on various signal processing approaches for processing biomed-
ical signals, from basic filtering techniques, to exploiting the orthognality in a signal subspace to
reduce noise, to source separation algorithms. However, in certain instances the signals originating
from some physiological processes need to be compared so that certain features could be extracted.
Cross-correlation analysis is sometimes a very useful tool to quantify the underlying relationship
between two biosignals or for detecting a deterministic signal in a noisy environment. This analysis
is also performed when one needs to estimate delay between two-signal propagation. This section
describes one particular example involving resting state functional magnetic resonance imaging
(rs-fMRI) as a case study and discusses various steps involved in processing the brain signals. The
next few paragraphs introduces the reader to MRI, the resting state fMRI, and the various processing
steps involved in fMRI. The noteworthy point is that several intermediate steps need to be performed
before two biosignals are correlated. Thus, this section will first discuss a typical preprocessing step
in fMRI and then show cross-correlation analysis.

Magnetic resonance imaging (MRI) is a medical imaging method to measure nuclear magnetic
properties of tissues. MRI helps us noninvasively view internal parts of the human body using the
difference in the magnetic properties of tissues. MRI is quite powerful since it can measure many
different magnetic properties (such as T1, T2, and T2" relaxation) of several elements. In functional
MRI (fMRI), magnetic resonance is used to indirectly measure the neuronal activity. Neuronal ac-
tivity in one part of the brain changes local blood flow and blood oxygenation, which in turn changes
the magnetic property of the area. This change in magnetic property is used to measure neuronal
activity in fMRI. Since its discovery in the early 90s [98, 74], fMRI has dramatically increased our
understanding of the brain in health and disease.

The simplest fMRI experiment is to measure blood oxygenation of the brain in two states: (a)
while performing an explicit task (may be an active task such as tapping fingers or may be passive
such as viewing a reverse checkerboard or a combination of both) and (b) while not performing the
explicit task. By statistically contrasting the signal amplitude measured during the task and nontask,
we can infer which regions in the brain were used to perform the task. It can be seen from this
experiment that the baseline signal amplitude is not very important but the contrast between the
two states is very important. Hence, in fMRI experiments, contrast to noise ratio (CNR) is very
important.

A recently popular method of an fMRI experiment, known as resting state fMRI (rs-fMRI),
involves measuring blood oxygenation while not performing any explicit task. This method was
first described by Biswal et al. [13], in which he explored the relationships between brain regions
rather than the application of explicit tasks to find regions associated with those tasks.

The signal strength in fMRI is low and requires elaborate processing to be able to extract use-
ful information from the recorded data from an MR machine. Similar to any measurement system,
there is system noise in the recorded signal. This includes thermal noise, RF-induced noise, noise
introduced while signal amplification and other system-related processes that cause system insta-
bility. In addition to the system noise, there is also a physiological noise induced by changes in the
physiology of the human (or animal) subject. This includes noise introduced due to motion (of the
human) during scanning, signal fluctuations induced by cardiac pulsation, signal fluctuations due
to magnetic field change induced by the amount of air in the lungs (respiration), and fluctuations
in hematocrit content in the blood that influences the magnetic properties of the tissue and several
others. While it is difficult to entirely eliminate noise, the attempt is to maximize sensitivity and
specificity by reducing the effects of noise.

© 2015 Taylor & Francis Group, LLC



Biomedical Signal Analysis

rs-fMRI
(4D functional
image series)

Slice time correction

]

Motion correction

163

(@)
C L]
- — Rigid registration High resolution
& to T1image structural image
T
8 Rigid registration Atlas
o) to Atlas image (from population)
]
| -
O | Physiological noise
removal
= )
Q.

Spatial smoothing
i

Temporal filtering
|
| ! | 1
Seed-based Clustering-based Graph Theoretical Independent
Correlation Analysis Analysis Analysis Component Analysis

FIGURE 5.24: Typical processing pipeline for rs-fMRI processing.

5.6.1 Preprocessing of rs-fMRI

The overall processing pipeline for rs-fMRI analysis is shown in Figure 5.24. Each step in the
preprocessing and the analysis stage will be discussed in subsequent subsections.

5.6.1.1 Slice Acquisition Time Correction

In rs-fMRI, a series of whole-brain 3D images are obtained over a period of 5 to 15 minutes,
with each 3D brain image acquired with an approximate duration of 2 seconds. Each 3D brain image
in turn is acquired as a stack of 2D images, i.e., the 3D image is not acquired in one instant but slice
by slice over 2 seconds. Depending on the order of slices during acquisition, each slice will have a
time shift relative to the other slices. This lag can be compensated by shifting the time courses by
the difference in acquisition times with respect to a reference slice as shown in Figure 5.25. A fast
implementation of shift in time domain is achieved by multiplication in the Fourier domain. A shift
of d in a signal x is achieved by transforming the signal to the Fourier domain, multiplying with a
constant 3% and transforming it back to the time domain.

x(n—8) = F1{X(w)e®%} (5.55)

Boundary effects are minimized by making the signal circular by adding a linear trend of length
(2M — N) from the initial to the final sample, where M is the n-point FFT used.

5.6.1.2 Motion Correction

Since the acquisition of multiple 3D images occurs over several minutes, the participant in the
scanner is likely to move, introducing motion artifacts. Submillimeter motion can have profound
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FIGURE 5.25: Slice time correction: (a) Time course acquired from Slice B (black solid line) is
resampled at the same time as Slice A (reference slice) to produce the new shifted time course (black
dotted line). In (b) BOLD corresponds to blood oxygen level dependent.

effects in estimating brain activation, especially near the edges. Even when the participant is very
compliant, small motions can occur while breathing. In addition, since the brain is bathed in CSF
within the skull, certain regions in the brain move with every cardiac pulse. Motion effects are
worsened in pediatric participants, participants with motor problems (such as Parkinson’s disease,
epilepsy), and participants with psychiatric problems. The typical method to compensate for motion
is to register every 3D brain image to the first brain image (or any one reference image). Registration
is a process that finds the best match between two images by translations, rotations, shear, and warp
(detailed discussion of registration is beyond the scope of this text). Since we expect motion to not
cause shear or warp, rigid registration (allowing position shifting with only translation and rotations
to find the best match) is performed between every image and the reference image to compensate
for motion. Motion correction for a typical scan is shown in Figure 5.26. It can be seen from panels
(c) and (d), that the residuals after motion correction are reduced. The six parameters of registration
(3 rotations and 3 translations) are shown in panels (d) and (e). Registration-based motion correc-
tion only compensates for motion that occurs between acquisitions of two 3D brain images and
does not correct for motion that occurs within acquisition of a single brain volume, which is not
uncommon.

5.6.1.3 Registration to High Resolution Image

Since fMRI acquisitions are low resolution in space, it is often registered to a high-resolution T1-
weighted image of the same subject. This aids to map anatomical landmarks onto the fMRI data and
also map functional activation and connectivity onto the higher-resolution image. This registration is
again using a rigid constraint (only position shifting with translation and rotation) since the images
are from the same subject and hence do not have any shape or size difference. (There may be
minor differences in shape due to distortion of fMRI acquisitions but these differences are typically
ignored or corrected using methodologies that are irrelevant to the current scope.) An example of
registration to a high-resolution image is shown in Figure 5.27.
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FIGURE 5.26: Motion correction: Raw images of the first time point (a) and the last time point (b)
in an example acquisition. Though the raw images show little difference, the difference in the two
images is large as seen in (c) before motion correction and this difference is reduced after motion

correction (d). An example of estimated translations and rotations of the images over time is shown
in (d) and (e).

(a) (b) (c)

FIGURE 5.27: Registration to high resolution structural image. EPI image (a) is not always ac-
quired with the same orientation as the high resolution structural image (b). Rigid registration be-

tween the two brings the rs-fMRI images in register with high resolution structural image as shown
in (c).

5.6.1.4 Registration to Atlas

Labeling a region in the brain for each participant becomes tedious. To aid automated labeling,
atlases (labeled average or typical brains) are available. Once the participant’s brain is registered to
an atlas brain, all the labels available on the atlas can be projected on the participant’s brain. The
registration in this case will be nonlinear and include shear and warp. A typical registration to an
atlas is shown in Figure 5.28. Accurate registration is difficult since morphology and landmarks may
not match between the participant and the atlas. Several registration methods have been proposed
and it is an area of active research. It is to be noted at this point that anatomical registration does
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FIGURE 5.28: Registration of high resolution structural image (a) to atlas image (b) to produce a
transformed structural image in atlas space (c). The same transformation can be applied to rs-fMRI
images as shown in (d), thus taking the individual functional image to atlas space.

not mean functional registration, i.e., even when there is a perfect anatomical match in the spatial
location between two subjects, the functional characteristic may be different for the two subjects at
that location.

5.6.1.5 Physiological Noise Removal

Besides neuronal activity, signal fluctuations in fMRI data is caused by several noise sources.
System noise is introduced by the electronics used to measure the magnetic signals. Several non-
neuronal physiological activities such as cardiac activity and breathing give rise to altered magnetic
tissue property in the brain, which in turn adds noise to the fMRI signal. Though physiological noise
also plays a role in task-based fMRI, its effects are more pronounced in resting state fMRI. Noise
introduced by cardiac activity includes a small motion of the brain induced by the pulsation. These
motions are more pronounced in certain regions of the brain including the brain stem. Indirect ef-
fects of cardiac activity include modulation of blood flow over time that may appear as activation
or connectivity. Respiration also influences fMRI signals measured in the brain. Changes in lung
volume during the inhalation and exhalation of air change the magnetic field of the brain. End tidal
volume of the lung has been shown to have large effects in fMRI signals [12, 22]. In addition to
these, breathing patterns have also been shown to have significant effects. Breathing patterns may
directly influence the lung air volume or may indirectly affect the amount of carbon dioxide in the
blood. Small changes in carbon dioxide have been shown to have profound effects in fMRI signal
fluctuations [119]. Indeed, breath holding has been proposed as a method to calibrate fMRI sig-
nals [76]. In addition to this, fMRI signals are modulated by other physiological factors including
hematocrit content in the blood [29], neurovascular modifications due to certain drugs including
caffeine [107], cocaine [79], alcohol [44], and a whole spectrum of prescription drugs. Motion ef-
fects that are not accounted for by motion correction using registration also fall under physiological
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nuisances. There are several methods proposed and used in the field to reduce the effects of these
physiological artefacts. Two most popular methods are RETROICOR [10] and a COMPCOR [112].
In RETROICOR, the noise is assumed to be additive. Respiration and cardiac signals are con-
currently recorded using a chest/abdomen strap and pulse oximeter, respectively. The phase of both
of the signals are resampled at the same rate as the fMRI signal and then regressed out. The additive
physiological noise component can be expressed as a Fourier series expansion given by

N
ys(t) =Y {am® cos(m@c) + b sin(m.) + am" cos(m@;) + am"sin(me;) } (5.56)

m=1
N = 2 was found to sufficiently capture most of the noise. The cardiac phase can be written as

_2m(t—1t1)
B I —1h

o (1) (5.57)

where, t| and ¢, are the times of the preceding and the succeeding R-wave peak (or any uniquely
identifiable phase of the cardiac cycle). The respiratory phase is obtained using a histogram (H(b))
of the normalized respiratory signal, R(¢) normalized to a range of 0 to Rpax.-

R(7)

max>
H(b)
Or(t) = Ry ————sign{— (5.58)

round

The coefficients of Equation 5.56 can be calculated for every voxel using

X [3(1)  5)cos(m (1)

an” = N (5.59)
Y cos2(m@y(ty))

n=1

=

L [¥(tn) — 3] sin(mex (tn))
me _ n=1

N
L sin?(m@y(tn))
n=1

where, x is either r or ¢, and y is the mean of the time series of the voxel.

In a COMPCOR, no extra physiological recording is performed. The physiological noise-related
signals are extracted out of specific regions in the data itself and regressed out of the data. Deep
white matter regions and deep lying cerebrospinal fluid (CSF) is assumed to have no neurovascular
contribution to their signal, and hence the signals measured in these regions are exclusively noise.
These nuisance anatomical regions can be identified using the high-resolution T1-weighted image
and the signals from these regions can be extracted as nuisance signals. The set of time courses from
these “nuisance” regions can be dimensionality reduced using PCA (or simply mean) and creating
representative nuisance signals. These nuisance signals can regress out all regions in the brain using
the general linear model, where if Y is the original signal and X is the nuisance signal, we can
compute Y’ after removing contributions by X, written as Y/ =Y — XB , where p = (XTX) +XT +Y.
In literature, a COMPCOR is shown to perform at least as well as a RETROICOR without having
to record respiration and cardiac waveforms [10].

In the nuisance signals, several other signals that are known to be associated with a noise source
can be added. For example, the motion parameters (3 translations and 3 rotations per time point)
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(a) (b)

FIGURE 5.29: Spatial smoothing of rs-fMRI data (a) to increase SNR. As can be seen in the
smoothed image (b), this comes at a loss in spatial resolution.

estimated by motion correction is typically added as a nuisance signal. In addition, to account for
nonlinear effects of motion, squares of motion parameters and differentials of the motion parameters
are also added as nuisance signals. The mean signal of the whole brain is also commonly used as
a nuisance and is commonly termed as a global signal. Regressing out the global signal is contro-
versial and the appropriateness of its usage is often debated. For each nuisance signal regressed, a
degree of freedom is lost from the data. Hence, it is preferable to use fewer signals to accomplish
maximal noise reduction.

5.6.1.6 Spatial Smoothing

Since the MR signal is proportional to the number of protons present in the voxel, a larger
(homogenous) voxel would produce a larger signal. However, higher resolution provides tissue
specificity that increases contrast to noise ratio. The spatial resolution of fMRI is set to maximize
contrast to noise in the temporal domain, i.e., a maximal amplitude difference between task state and
nontask state. In addition to selecting an optimal spatial resolution, typically fMRI signals are spa-
tially smoothed to increase SNR and CNR. Typically, Gaussian smoothing in 3D is used to smooth
fMRI data as shown in Figure 5.29.

Given noisy 4D fMRI data I : Q x [0,7] — R, we can denoise the data by smoothing the signal

)yZW(x,y)I (1)

Lw(x,y)
y

It is also possible to incorporate anatomical priors (from a T1-weighted image) to the smoothing
window to smooth only within tissue types [112] or to use functional priors from the data itself
while smoothing [109]. Given noisy 4D fMRI data, 7 : Q x [0,7] — R, we can denoise / using a
modified version of bilateral filtering [120],

at each voxel, u(x,r) = , where w(x,y) = Gs(|x —y|), and G5(0,0) is a Gaussian.

Yw(x,y)I(y.1)
u(x,t) = =

R 5.60
Ew(e) 60

where w(x,y) = Go(|x —y|)Gv(R(x,y)). Here, G5(0,0), and Gy (0,v), are Gaussians, and R(x,y)
is the connectivity between x and y computed as the correlation coefficient.
5.6.1.7 Temporal Filtering

In rs-fMRI, functional connectivity in the brain has been found to be primarily contributed by
signals between the frequencies of 0.01 and 0.1 Hz. The range has been experimentally found for
the current state of the technology for investigating neuronal activity. This is not a theoretical limit
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FIGURE 5.30: Raw time course (gray) and time course after nuisance removal, smoothing, and
temporal band pass filtering (black).The Y-axis is in arbitrary units.

and a signal outside this band may play a significant role if sampled at better resolutions in time and
space. A simple zero-phase bandpass filter is typically used to band-limit rs-fMRI signals. A zero-
phase effect in the filter is obtained by filtering the signal in a forward direction once and filtering the
signal in the reverse direction, essentially offsetting any phase effects caused by the forward filter.
Transient effects at boundaries are minimized by using the mirror technique (padding the reverse
signal at the boundaries). A typical signal after nuisance removal, smoothing, and temporal filtering
is shown in Figure 5.30.

At this point, the fMRI signals are “preprocessed” and ready for estimating connectivity or
correlation between signals from different regions.

5.6.2 Methods to Study Connectivity

Two regions in the brain are assumed to be functionally connected, if the temporal synchrony
between the neural signals is high. In rs-fMRI, connectivity is measured as the synchrony of a
BOLD signal between regions. Synchrony can be estimated by several methods including correla-
tion and coherence. The most popular method to compute synchrony in fMRI is using the Pearsons
correlation coefficient (PCC). PCC between two signals x and y is given by

Clry) = Lx—%)-(—7) (5.61)
VEIE-*VEQ-5)?

PCC is 1 between two signals that are identical; —1 between two signals that are identical
but sign reversed and 0 between two signals that are purely unrelated. Figure 5.31 shows example
signals for each of the above cases.

Several properties of this correlation coefficient need to be considered for appropriate usage

1. Origin invariant, PCC(x,y) = PCC(x + ¢,y + c1).
2. Scale invariant, PCC(x,y) = PCC(cx, c2y).
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FIGURE 5.31: Examples of correlation coefficient between pairs of time courses. PCC between
identical pairs of time courses (a) and (b) is 1; PCC between identical pairs but with opposite signs
(a) and (c) is —1 and PCC between two unrelated time courses (a) and (d) is approximately 0.

3. Order insensitive, PCC(x(¢),y(¢)) = PCC(x(u),y(u)), where t # u.

4. Lag sensitive, PCC(x(t),y(¢)) # PCC(x(t +n),y(t)), where n is nonzero and x(¢) and y(¢) is
time varying.

5. Measures only linear synchrony, i.e., PCC(x,y) # PCC(x?,y?).

6. For any two random signals, PCC is uniformly distributed between —1 and 1. Normality
cannot be assumed.

7. Reliability or significance of PCC is dependent on several factors including the number of
samples in the signals.

8. Independent variables are uncorrelated but uncorrelated variables are not always independent.

In some cases where linear synchrony cannot be assumed, Spearman’s ranked correlation co-
efficient can be used. In this case, the samples of each signal are ranked and then correlation is

computed for the ranks. If statistical tests that assume normality have to be used, PCC can be nor-

1 1
malized using the Fisher transform [114]. Normal score, z = Eln( I_Jrr) is where r is the PCC.
—r

5.6.2.1 Connectivity between Two Regions

A small functionally homogeneous region is defined anatomically by drawing a region in the
brain or by selecting a region from a brain atlas. The mean time course for this region is extracted
as the mean of all the voxels within this region. PCC between time courses from two such regions
provide a measure of functional connectivity between these regions.

© 2015 Taylor & Francis Group, LLC



Biomedical Signal Analysis 171

5.6.2.2 Functional Connectivity Maps

A region in the brain (similar to the regions selected above) is selected as the seed region. Con-
nectivity of this region with every voxel in the brain is computed using PCC and a map of connec-
tivity is obtained [13]. This map is thresholded with statistically or empirically derived thresholds.
These thresholded maps are called functional connectivity maps of the specified seed. By selecting
seeds in specific locations in the brain, physiologically relevant functional brain networks that are
associated with specific brain function can be extracted. For example, a seed in the primary visual
region in the brain will show connections with several visual regions in the brain and a seed in
the primary motor regions will reveal as connected several motor function-related areas such as the
supplementary motor area, putamen, thalamus, and cerebellum. Functional connectivity maps so
derived have been widely used to study brain function in healthy volunteers and changes during
disease. Examples of a few typical functional connectivity maps are shown in Figure 5.32.

Motor Netwaork

(b)

FIGURE 5.32 (See color insert.): Functional connectivity between two points, A and B shown
in panel (a), is computed using correlation coefficient between their time courses. Connectivity to
seed locations (shown as green dots in (b) can be computed for all voxels using Pearson correlation
coefficient and converted to Z-scores. Functional networks can be extracted by placing the seeds at
appropriate locations.

5.6.2.3 Graphs (Connectivity between Multiple Nodes)

In cases where interactions of specific brain regions need to be investigated, connectivity be-
tween each pair of these regions is computed. For example, PCC between pairs of time courses
from several regions in the motor network can be computed. Networks thus formed can be viewed
as a graph and graph theoretical methods can be applied to study these networks. In these networks,
the regions become the nodes and the connectivity between the regions becomes the edge weights. A
network formed using nodes placed in 264 functional locations in the brain is shown in Figure 5.33.

The edges are sometimes binarized (connected or unconnected) by applying a threshold and
thus converting the graphs into binary graphs. Weighted graphs are also used where the edges are
not binarized. Interesting organization of the brain networks have been revealed by studying it as
a graph. The networks of the brain appear to be organized and are very similar to social networks,
termed small world networks. Several properties of these graphs can be extracted as metrics such as
centrality, degree, clustering coefficient, shortest path length, etc. Investigation of the disruption or
deviation of brain function in diseases using these metrics is an area of active research [18].
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FIGURE 5.33: A graph-based depiction of brain functional connectivity. Nodes are select regions
in the brain and edge weights are the correlation coefficient between the time courses of the nodes.
The thickness of the weight is proportional to the correlation coefficient and the size of the nodes is
representative of the degree (number of connections) of that node.

5.6.2.4 Effective Connectivity

Functional connectivity in the brain is typically studied as being nondirectional, though the un-
derlying connections may be directional. This is due to the limitations in the functional MR imag-
ing technology. Since we indirectly measure a neuronal signal using a (varyingly) lagged vascular
response, the temporal lag between different regions between the neuronal signals is difficult to as-
certain. With certain assumptions and physiological constraints, claims have been made about the
ability to find neuronal lags as short as 100 ms using Granger causality. Using Granger causality,
activity in region A is said to be caused by region B when region B’s current value can be predicted
from the previous values of region A and region B. If x and y are the signals from region A and B
respectively, x is caused by y when

n—1

x(n) =Y laix(i) + biy(i)] (5.62)
= —oa

where, a; and b; are constants.

Despite several reports on how effective connectivity using Granger causality is more sensitive
to differences between diseases than conventional functional connectivity [32], the field is contro-
versial and active. The primary controversy arises from the theoretical inability to measure Granger
causality from a signal whose delay is uncertain.

5.6.2.5 Parcellation (Clustering)

For rs-fMRI, since the correlation coefficient is computed for every pair of voxel independently,
no spatial priors are used while using it in 3D functional imaging data. The relationship of the con-
nectivity with spatial neighbors can be used to find functionally homogenous regions and functional
boundaries. This method provides a way to functionally parcellate the brain. The parcellation itself
has been shown to be changed over development and different in diseases [94].
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5.6.2.6 Independent Component Analysis for rs-fMRI

ICA has already been discussed in previous sections. In fMRI, spatial ICA, sICA, has been
shown to separate different networks in the brain. However, in fMRI, the dimension along which
ICA is performed is not measured as illustrated in Section 5.5 for separating the fetal ECG signal
from the maternal ECG signal. In spatial ICA (sICA), spatial patterns are decomposed based on
their spatial independence. Consider the signal S(x, ) at voxel x and time #; similar to temporal ICA,
S can be decomposed using ICA as

S(o0) = 3 ex (M0 569
k=1

where M is the mixing matrix and Cy are the spatial independent maps or spatial sources. It has
been well established that these sources are neurologically meaningful functional networks or noise
sources. SICA was introduced for task-based fMRI [87] but was later used to extract networks in
rs-fMRI [122]. A few typical brain networks obtained from ICA are shown in Figure 5.34.

Comp #3 Comp #14 Comp #20 Comp #29

Auditory Noise Ventral Attn Sys  Primary Visual

FIGURE 5.34 (See color insert.): Select subset of typical ICA components from rs-fMRI. ICA
separates rs-fMRI signals to separate neuro-physiologically meaningful networks (sources). Some
components are of neuronal origin (Comp 3, 20, 29) and some are noise related (Comp 14). Red
and blue regions in the components have opposite directions of signal modulations.

One of the limitations of ICA is the difficulty in estimating the number of networks or sources,
which is a common problem in dimensionality estimation of any data. ICA also produces compo-
nents that are scale and sign ambiguous, i.e., C and M can be scaled by a and 1/a with no effect
on S. This makes it difficult to estimate the amplitude of each network relative to others. This also
implies no specific ordering of the components. In rs-fMRI, it is a significant problem to separate
components of noise origin (such as physiological noise and system noise) from neurologically rel-
evant components. Recently machine learning has been applied with reasonable success to address
this problem [49, 7].

5.6.3 Dynamics of Networks

Conventionally rs-fMRI signals were measured over a period of several minutes and connectiv-
ity was computed assuming stationarity of the signals, even though nonstationarity of brain signals
is well known. More recently, sliding window techniques have been applied to study the dynamics of
brain networks and the dynamics of their interactions [23]. The difficultly to extract dynamics from
a highly variable signal has made it an active area of research. Several methods of time-frequency
analysis including wavelets and coherence have been used to study the dynamics of brain signals
[23].
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To summarize, data acquired from the MRI scanner needs rigorous preprocessing to be able to
extract maximal information. The order of processing methods and the validity of the processing
itself is an active area of research. The steps and order described above are accepted by the field for
the current acquisition technology. Increasing field strengths of MR magnets and newer methods
to measure neuronal activity will change the need for many of the processes above and may also
introduce additional processing. Despite the complicated processing pipeline, there is little doubt
that cross-correlation analysis in rs-fMRI has increased our understanding of brain function in health
and disease.

5.7 Recent Trends in Biomedical Signal Analysis

Over the last two decades, there have been significant advancements in biomedical signal anal-
ysis with the growth of availability and access of biomedical data from a variety of devices ranging
from medical devices in acute and intensive care areas in hospitals to wearable monitors such as
heart rate monitor watches connecting to smartphones. The recent trends in biomedical signal anal-
ysis are across a variety of fundamental challenges and opportunities on processing and analysis of
massive amounts of biomedical signals included but not limited to structured and robust time-series
data such as waveforms and vitals and unstructured and disparate time-series data such as medica-
tion and laboratory tests as well as pervasive wearable sensor penetrating every aspect of our lives.
It is a rather daunting task to confine the advancements in signal processing at the dawn of the “big
biomedical data explosion” into a few pages. Our goal, in the following, is to provide a glimpse of
recent trends in biomedical signal analysis within the fundamental construct of the signal processing
field of study. More interested readers are recommended to refer to additional resources for a more
comprehensive and in-depth coverage.

The theoretical foundations for “big biomedical data analysis and processing” include but are not
limited to compressive sensing and dimensionality reduction, signal processing on graphs, robust-
ness to outliers and missing data and imputation, scalability, convergence, and complexity issues,
learning from very large (and sparse) matrix and graph data. Today, the massive volume of data
processing often requires distributed processing with parallelized multiprocessors, and in general,
the data is stored in a database over the cloud or is generated in real-time (streaming) and needs
to be processed rapidly and accurately in a robust manner. Thus, there has been a growing need to
develop theoretical foundations and algorithms for signal processing of “big biomedical data” as
well as architecture and applications for large-scale data analysis and signal processing.

Compressive sensing theory has emerged recently to address the issue of simpler encoding and
reconstruction of a sparse signal from fewer samples or measurements than the number of samples
utilized by traditional methods. Compressive sensing can also be considered as part of a larger set of
problems under dimensionality reduction, which is discussed next. One way to overcome challenges
in analysis of large volumes of rapidly changing structured, unstructured, or semistructured data is to
compress data fast and in large quantities while preserving its significant features to extract desired
information and convert to actionable knowledge. The emerging compressive sensing theory had
been successfully applied in acquisition and compression [84, 33] as well as noise and artifact
reduction [41] of biomedical signals.

Dimensionality reduction can be combined into two groups: (1) unsupervised dimension reduc-
tion that includes principal component analysis (PCA) and singular value decomposition, and (2)
supervised dimension reduction that includes Fisher linear discriminant analysis and hidden layers
of neural networks to either select or extract features. One of the recent variants of these most com-
monly used methods include Latent Semantic Analysis that is a variant of PCA, which was first
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introduced as a text analysis technique but had been applied to image, video, music, audio, gene
expression data, and biomedical signals [106, 111, 55]. Another recent variant is to include kernel
functions to apply nonlinear transformations that may be more appropriate for the biomedical data.
Recent trends also include extensions of deterministic methods to probabilistic approaches such as
CUR matric decompositions that choose columns and rows that exhibit high “statistical leverage”
and exert a large “influence” on the best low rank fit of the data matrix [80], random projection that
is related to the compressed sensing and its computational complexity scales linearly with the prob-
lem size [38], the Latent Dirichlet Allocation (LDA) model that is a hierarchical Bayesian model
where each item of a collection is modeled as a finite mixture over an underlying set of topics and
each topic is modeled as an infinite mixture over an underlying set of topic probability [15]. It is
worthwhile to note that in some cases the opposite of dimensionality reduction becomes critical in
analysis, that is, one wishes to infer the high-dimensional structure from low-dimensional struc-
ture because the spaces are high-dimensional or too twisted to all allow projections to represent
the features of the point cloud. One of the emerging approaches to address this issue is topological
data analysis [20] that has been applied to several applications in various domains successfully. An-
other emerging analysis technique is signal processing on graphs that merges algebraic and spectral
graph theoretic concepts with computational harmonic analysis to process such signals on graphs in
application areas ranging from transportation to neuronal networks [110].

The statistical learning community contributes significantly to the signal processing research.
The statistical learning theory and modeling are two complementary fields of study for analyzing
signals, specifically, in the context of classification algorithms where a noisy signal or artifact is
needed to be separated from the original biomedical signal (see [82] and references therein). Funda-
mental issues in statistical signal processing include the nature of basic probabilistic description, and
the derivation of the probabilistic description of the output signal given that of the input signal and
particular operation performed [48]. Recent trends in statistical learning theory include the study
of a semisupervised learning problem where the objective is to classify unknown data with few la-
belled samples [e.g., [130]]. Recent trends in statistical learning and modeling theory expands into
analysis and processing massive amounts of data including but not limited to a variety of biomedical
signal data that requires learning from large incomplete data [e.g., [86, 26]].

One of the challenges in signal processing of “big data” originating from streaming sensors in
various environments is that the data may be missing, contain outliers, or too noisy. In general,
for the case of massive data from wearable sensors, the noise components may not fit into well-
studied noise models such as Gaussian. Recent trends in accommodating for missing data, outliers,
and untraditional noise components in biomedical signal processing include classical methods such
as simple linear regression, trimmed means, and imputation of outliers with the neighboring high
or low values as well as more advanced methods such as Kohonin self-organizing maps. Recent
trends include identifying periods of low-quality data by designing signal quality indicators that
merges domain knowledge with statistical measures to determine good signal quality periods and
utilized the metric to drive high level decision making or incorporating auxiliary sensors such as
accelerometer for adaptive filtering of the biomedical signal. Recent trends in imputation have been
shaping around applying well-known techniques in single processing to massive streaming signals
[e.g., [85]].

Real-time signal processing is a relatively mature field of signal processing while the main
objective is to design and implement a variety of signal processing algorithms for real-word appli-
cations, the processing platform has been limited to single or a few digital signal processors (DSPs).
In general, the analysis of the algorithms such as filtering is performed in MATLAB®, and the im-
plementation is written in C, yet, for fast software development and maintenance, the mixing of C
and assembly programs are recommended. The most recent focus of real-time signal processing is
on massive amounts of streaming data collected at various velocities from a variety of data sources
including but not limited to wearable sensors. Hadoop and its derivatives provide means to handle
the volume and variety but not necessarily the rapid processing of the data. The rapid processing of
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the data can be critical in biomedical signal processing especially in clinical decision support. The
real-time system should be a low-latency fault-tolerant system leveraging a distributed platform with
near real-time response capability. Two popular open-source technologies to address these issues are
Apache Kafka [59], which is a distributed messaging system and Storm [60], which is a distributed
stream processing engines. The commercial technologies include but not limited to InfoSphere by
IBM [61].

5.8 Discussions

Signal processing is an important step in analyzing and interpreting biomedical signals. The
added advantage of processing a signal is an improvement in measurement accuracy when com-
pared to the manual measurement and reproducibility. Certain signals or features that are not read-
ily discernable using the naked eye have been made possible through various signal processing
tools presented in this chapter. This chapter presented the origin of biomedical signals in the human
body and demonstrated various signal processing approaches for ECG signals. These techniques are
however, very generic and could be used in a wide variety of instances, provided there is a basic
understanding of the nature of the signal and knowledge about the features one is looking for. The
selection of algorithm depends upon the accuracy required and the complexity of the system, which
varies for different applications.

Broadly, the chapter also discussed two different approaches through which a signal could be
denoised. In one approach, various signal processing algorithms such as adaptive filtering and em-
pirical mode decomposition were directly applied on the signal for denoising. In another instance,
the signal was first transformed to a domain and denoised in another domain and then transformed
back to the original domain. Principal component analysis is one such instance when such a transfor-
mation was applied. A few signal processing approaches such as JADE, INFOMAX, and FastICA
based on blind source separation formulation showed that independent sources can be separated
from composite signals using higher-order statistical techniques.

The chapter discussed future emerging trends in signal processing. One of the areas that are
evolving in biomedical signal processing and not discussed in the chapter is data compression and
transmission. Sometimes the data is not required immediately for assessment and needs to be stored
for later use. In this case there is a need for the data to be stored and retrieved whenever required.
Since some measurements can be performed over several hours and the data size can run into huge
bytes, the data needs to be compressed efficiently so that the signal integrity is retained in subsequent
analyses. In data compression, the overall goal is to accurately represent the data with a minimum
number of bits, by applying either lossless compression in which the signal is reconstructed accu-
rately or lossy compression, in which the signal is distorted. Many times the kind of compression
required is dictated by the diagnostic value associated with a particular representation of the sig-
nal and distortion in the signal is accepted if it does not result in clinically altered diagnosis. Data
transmission from a remote location to a central hub is another aspect that needs efficient data com-
pression and data transfer network. Since huge amounts of data sometimes need to be transferred
over the network, usually the data is first compressed and then transferred, since the transmission
bandwidth is limited in low-income setting countries.

To summarize, the reader is encouraged to use these methods for processing various biomedical
signals and care needs to be exercised to understand the nature of the signal and its diagnostic value
so that an appropriate method can be used to deduce clinically relevant information.
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6.1 Introduction

Empowered by newly emerging biotechnologies and hence the fast generation of biological and
medical information, advanced genomic research promises the whole field unprecedented oppor-
tunities and hopes for genome scale study of challenging problems in life science. For example,
advances in genomic technology made it possible to study the complete genomic landscapes of
healthy individuals or of any complex diseases [21, 20, 136], the genome-wide responses to certain
genetic and chemical perturbations [72, 68, 92] or drug treatment [9], and the large-scale molecular
changes that are associated to various disease phenotypes [54]. Many of such research efforts have
proven to be highly promising to generate new insights into the biology of human disease and to
predict the individual response to treatment, which therefore could enhances our understanding of
the underlying mechanisms, promote the knowledge exchange between doctors and patients, and
facilitate clinical decision making.
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With increasingly rich data generated in recent years, our human ability of understanding the
data has been outgrown in its entirety. While the whole community is still striving for better inter-
pretation of these data, computational biologists have offered a suite of promising computational
methods and information mining tools for analyzing the data, particularly focusing on elucidating
novel connections between various biological entities and phenotypes. More often such data analy-
ses will lead to novel discoveries and testable hypotheses. In the following sections of this chapter,
we will introduce different kinds of computational approaches for tackling key research problems
in life science such as identification of disease biomarkers and therapeutic targets and prediction of
clinical outcomes. First, we use the analysis of genomic mutation to showcase how such data-driven
approaches facilitate the generation of new discoveries and insights into biology. For instance, the
genomic landscapes in complex diseases such as cancers are overwhelmingly complicated, reveal-
ing a high order of heterogeneity among different individuals. Then the natural questions wonder if
any of these mutations are indeed responsible for the development of the diseases; if the answer is
yes, how to identify these real contributors; when multiple mutations are involved, can we infer the
evolutionary relation they may have against each other? To address such questions, a very simple
and straightforward approach that has been used in cancer research during the past decade is to cat-
alog all the genetic changes in many samples so that one can identify the common changes across
individuals with the same or different cancers. With the common mutations, research focuses spread
out subsequently from identifying the genetic changes linking to onset or progress of the disease
to determining if the changes reflect genomic regions that are associated with clinical responses or
can be targeted by a specific drug. The evolutionary patterns among these changes can be therefore
studied based on the diverging lineages among different genetic populations.

With many decades of efforts in biomedical research, a substantial amount of knowledge has
been gained about molecular- and cellular-level mechanisms of complex human diseases like can-
cers, typically accomplished using model systems. This rich background of knowledge serves as the
foundation for computational biologists to study human diseases as evolving systems in their full
complexity. It is the availability of the wide range of omic data collected on both model systems
and human samples that makes such studies possible. More details about the genomic data gener-
ation along with some of the most popular and publicly available genomic data resources will be
discussed in Section 6.2. The most fundamental computational algorithms and bioinformatics tools
used for genomic data analysis is detailed out in Section 6.3. The author then illustrates in Section
6.4 what sort of health-related questions can be addressed through in-silico analysis of the genomic
data through four typical data-driven studies and closes the chapter with the outlook of translating
genetic discoveries into personalized medicine practice.

6.2 Genomic Data Generation

Different types of omics data including genomics, epigenetics, proteomics, and metabolomics
data are generated by the state-of-the-art high throughput technologies as well as conventional bio-
logical experiments.

6.2.1 Microarray Data Era

During the past decade, microarray (also known as gene/protein-chips) and mass spectrometry
(MS) are widely used to determine the presence and abundance of genes, proteins, and metabolites
in biological samples including tissues, cells, blood, and urine. For example, Figure 6.1 shows the
scanned image data generated from standard DNA microarray protocols, e.g., gene array platform
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Stepl: mRNA sample

Step: RT and coupling

Step3: hybndiration and washes
Stepd: scanning

FIGURE 6.1: Scanned image data generated from standard DNA microarray protocols, e.g., gene
array platform from Affymetrix, Agilent and ALMAC, where the signals extracted from the scanned
array image reflect the gene abundance, after four major processes in the protocol including sample
purification, Reverse-transcription (RT) and coupling, hybridization and wash, and scanning.

from Affymetrix, Agilent and ALMAC, where the signals extracted from the scanned array reflect
the gene abundance.

Information about DNA replication timing and epigenetics such as DNA methylation can be
derived through array-based assay as well. The comparative analyses of the qualitative data collected
from samples of different conditions such as diseased versus healthy, early-stage disease versus
late-stage disease, treated versus untreated, and others, allow researchers to identify abnormalities
at different molecular levels that may be related to disease phenotypes, which in turn advances the
discovery of biomarkers and therapeutic targets and improves health management in many different
aspects including diagnosis, prognosis, treatment, and prevention. The microarray technology, for
the first time, introduces to life science researchers a truly large amount of data and the need for
quantitative training [6, 113, 76]. Many sophisticated computational tools have been developed for
different analytical purposes, which have shown profound influences on the interpretation of array-
based genomic data.

6.2.2 Next-Generation Sequencing Era

Since the advent of capillary electrophoresis (CE)-based Sanger sequencing, scientists have
gained the ability to elucidate genetic information from any given biological system. The new
technology-Next-Generation Sequencing (NGS) was introduced to overcome the inherent limita-
tions of the previous techniques in throughput, scalability, speed, and resolution and then widely
adopted in laboratories. Figure 6.2 illustrates how NGS works: Any given single genomics DNA is
first fragmented into a library of small segments that can be uniformly and accurately sequenced
in millions of parallel reactions. The identified strings of bases, called reads, are then assembled
through aligning to a known reference genome (resequencing), or in the absence of a reference
genome (de novo sequencing). The full set of aligned reads then reveals the entire sequence of the
given gDNA sample.

Nowadays, with the increasingly mature NGS technologies, our understanding about diseased
genomes has been revolutionized; however, the faster data generation makes the quantitative analy-
sis more challenging. The “big data” generated by the sequencing experiments covers much broader
molecular information including DNA genetic changes (using whole genome/exome sequencing
[10]), quantification of protein-DNA binding or histone modifications (using chromatin immunopre-
cipitation followed by high-throughput sequencing (ChIPseq) [108]), transcript levels (using RNA
sequencing (RNA-seq) [138]) and spatial interactions (using Hi-C [90]), allowing more applicable
functional analysis than what microarray experiments can provide. Currently it becomes the norm
that a single genome study can analyze a large set of genomes up to a few hundreds, even using
combined sequencing techniques [113], and therefore, data interpretation, as well as data storage
and management, particularly about how to organize this massive information into the database and
share them in the public domain, becomes extraordinarily challenging than ever before.
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FIGURE 6.2: Conceptual overview of genome sequencing. The extracted gDNA is fragmented
into a library of small segments that are each sequenced in parallel; individual sequence reads are
reassembled by aligning to a reference genome; the whole-genome sequence is derived from the
consensus of aligned reads.

6.2.3 Public Repositories for Genomic Data

Repositories of biological information are so essential for biomedical or bioinformatics stud-
ies as they organize a large variety of biological data and enable researchers to get access to
the structured information and utilize them in their respective researches. Other than the most
popular genomic databases for sequences and annotation such as the NCBI database (http:
//www.ncbi.nlm.nih.gov/) and GeneCards (http://www.genecards.org/), we will intro-
duce in this section some other genomics databases that are broadly used, publicly available, and
covering information of genetic mutations, sequences, expression and biological pathways.

Human genomes, mutations and epigenome databases: Two general genomic mutation
databases on the Internet are HGMD (Human Genome Mutation Database) [27] that contains
141,161 germline mutations associated with human inheritable diseases and dbSNP database (Sin-
gle Nucleotide Polymorphism Database) [126] that archives comprehensive genetic variation data
across different species. TCGA (The Cancer Genome Atlas) [22] and ICGC (International Cancer
Genome Consortium) [74] are two of the largest cancer genome projects to sequence thousands of
whole genomes, along with other types of omic data, for many cancer types. Another highly useful
large cancer genomic database is COSMIC (Catalog of Somatic Mutations In human Cancer) [47],
which currently contains 1,592,109 gene mutations identified on 947,213 tumor samples. Other
similar databases include the Cancer Gene Census database Census [49], CanProVar [88], and more
specific ones such as the [ARC TP53 database [101], CDKN2A [97], and the Androgen Recep-
tor Gene Mutation database [104]. In Table 6.1, there are also a few epigenome databases such as
MethyCancer [65] and the PubMeth database [102], which are at smaller scales.

Gene expression databases: Compared to other omics databases, there is a much larger collec-
tion of transcriptomic data on the Internet. Two of the most popular ones are GEO (Gene Expres-
sion Omnibus) at the NCBI that has more than 32,000 sets of gene-expression data collected from
800,000 samples of 1,600 organisms [12] and Arrayexpress at the EBI that consists of 1,245,005

© 2015 Taylor & Francis Group, LLC


http://www.ncbi.nlm.nih.gov/
http://www.genecards.org/
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-8&iName=master.img-036.jpg&w=355&h=206

Genomic Data Analysis for Personalized Medicine

191

TABLE 6.1: Human Genome, Mutation, and Epigenome Databases
Database Content URL
HGMD A database for germline mutations that are | www.hgmd.org/
associated with heritable diseases
dbSNP A catalog for genome variations www.ncbi.nlm.nih.gov/
projects/SNP/
TCGA A cancer omic data resource containing | https://tcga-data.
genomic, epigenomic, and transcriptomic | nci.nih.gov/tcga/
data sponsored by NIH
ICGC A cancer omic data resource containing ge- | http://icgc.org/
nomic, epigenomic and transcriptomic data
sponsored by ICGC
COSMIC A catalog of somatic mutations in human | http://www.sanger.ac.
cancers containing > 50,000 mutations uk/perl/genetics/CGP/
cosmic
Cancer gene | A catalog of mutations in more than 400 | www.sanger.ac.uk/
census cancer-related genes genetics/CGP/Census/
CanProVar A database for single amino-acid alter- | http://bioinfo.
ations including both germline and somatic | vanderbilt.edu/
variations canprovar/
IARC TP53 A database for sequence-level variations in | http://p53.1iarc.fr
P53 identified in human population and tu-
mor samples
CDKN2A A database for variants of CDKN2A iden- | https://biodesktop.
tified in human disease samples uvm. edu/perl/pl6
Androgen A dataset of 374 mutations identified in | http://androgendb.
receptor gene | patients with androgen insensitivity syn- | mcgill.ca
mutations drome
NIH roadmap | A database for human epigemomes now | http://www.
epigenomics | covering at least 23 cell types roadmapepigenomics.
program org/data
Human A database for genome-wide DNA methy- | http://www.epigenome.
epigenome lation patterns of all human genes in all | org/
project major tissues
MethyCancer | A database for DNA methylation informa- | http://methycancer.
tion in cancer-related genes, collected from | genomics.org.cn
public resource

sets of gene-expression data collected through 43,947 experiments using microarray and RNA se-
quencing. Table 6.2 lists some of such gene expression databases.

MicroRNAs and target databases: With intimate interaction with human mRNAs, micro
RNAs have shown their important roles in regulating many major cellular processes such as
cell growth, differentiation, and apoptosis [13, 7], as well as disease development [18, 144, 15,
121, 51, 142, 8, 30]. Many earlier researches in this field are focused on microRNA identi-
fication and targets prediction. MiRecords (http://mirecords.biolead.org) and miRBase
(http://www.mirbase.org) are two databases archiving validated microRNAs with sequence,
structure, and interaction information (Table 6.3). For example, MiRecords hosts, 2705 records of
interactions between 644 microRNAs and, 1901 target genes in 9 animal species. TargetScan [83],
Miranda [95] and MirTarBase [70] databases provide information of validated gene targets as well
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TABLE 6.2: Gene Expression Databases

Database Content URL
NCBI GEO A comprehensive collection of gene ex- | http://www.ncbi.nlm.
pression data nih.gov/gds
Arrayexpress | A database of functional genomics includ- | http://www.ebi.ac.uk/
ing gene expression data in both microar- | arrayexpress/
ray and RNA-seq forms
SMD Stanford microarray database for gene ex- | http://smd.stanford.
pression data covering multiple organisms | edu/
Oncomine A commercial database for cancer tran- | https://www.oncomine.
(research scriptomic and genomic data, with a free | org/resource/login.
edition) edition to academic and nonprofit organi- | html
zations
ASTD A database for human gene-expression | http://drcat.
data and derived alternatively spliced iso- | sourceforge.net/astd.
forms of human genes html
TABLE 6.3: MicroRNA Databases
Database Content URL
miRecords A database for animal microRNA-target | http://mirecords.
interactions biolead.org
miRBase A database for published microRNA se- | http://www.mirbase.
quences and annotations covering numer- | org
ous species
TargetScan A database for microRNA targets http://www.
targetscan.org
MiRanda A databases for predicted microRNA tar- | http://www.microrna.
gets org/microrna/home.do
MirTarBase A database for experimentally validated | http://mirtarbase.
microRNA-target interactions mbc.nctu.edu.tw

as the ones from the computational perdition. Please note that microRNA expression data, although
limited, are archived in GEO databases and TCGA.

6.3 Methods and Standards for Genomic Data Analysis

A big collection of different methods and algorithms have been developed for genomic data
analysis, each serving a specific analytic step within the standard bioinformatics workflow (Fig-
ure 6.3) and are generally categorized into three groups including data preprocess, data analysis,
and result interpretation. For example, microarray, sequencing slides, or phenotyping screening will
have to be analyzed through the scanner using appropriate algorithms to quantify the raw signal, fol-
lowed by data normalization to improve the signal-to-noise ratio. The quality of the data is checked
at the level of both the image analysis and the normalization steps. After the preprocess, mean-
ingful biological information will be extracted from the data and then subjected to further analysis
using clinical statistics, classification or the systems biology approach, followed by the validation
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FIGURE 6.3: The standard bioinformatics workflow to analyze the genomic data.

and interpretation of the results. The next section will cover some methodologies used for the most

fundamental analyses of the genomic data.

6.3.1 Normalization and Quality Control

Normalization is generally designed for correcting the systematic source of variability, first used
in mRNA expression arrays to improve the signal-to-noise ratio for better gene expression extraction
and thus more accurate biological interpretation. The first methods such as the Lowess normaliza-
tion (for two-color microarrays), RMA, GC-RMA, MASS, and PLIER (devoted to Affymetrix gene
array and exon array) are still the most common methods used on microarray data. It is noted that
normalization can be discussed at different levels other than the correction of the batch effect. For
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FIGURE 6.4: Gene expression profiles of four mice samples measured by Affymetrix chips. Box-
plot of the top-left panel shows the raw expression of all the genes in these samples, which is
then scaled into range [—1, 1] (top-right), centered by the medium gene expression on the chip
(bottom-left), and normalized using quartile normalization (bottom-right). R packages such as re-
shape, scales, and preprocess are used.

example, each experiment is singular and shows certain systematic variability that needs to be cor-
rected, such as signal and spatial biases. Figure 6.4 shows the results of processing data using sim-
ple scaling and normalization approaches. Spatial normalization methods like MANOR [100] have
been developed to correct spatial artifacts for gene expression, Comparative Genomic Hybridization
(CGH) and DNA methylation microarrays. Similarly to GC-RMA, methods are designed to adjust
the bias of GC-content, another major parameter that affects the signal measurement in microarray
and NGS, among which ITALICS [115] represents one using multiple regression to correct the ef-
fect of GC-content for the Affymetrix SNP array. Overall, normalization is noted to be one of the
most critical steps that needs to be considered carefully, as it will affect reliability, accuracy, and
validity of the downstream analysis [129].

Also due to the experimental bias or uncontrolled variation that might be involved during
high-throughput experiments, data quality control has to be performed adequately. The well-
known MicroArray Quality Control (MAQC) project by the FDA (http://www.fda.gov/
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FIGURE 6.5: PCA analysis on a set of microarray data reported in Friedlin and McDonald [31].
Samples are from control ovarian cancer cells (LHR-), followed by LH-receptor expression (LHR+)
and LH treatment in 1h (LH1), 4h (LH4), 8h (LHS), and 20h (LH20), which fall into six groups with
three replicates for each.

ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/) aims to
provide QC tools to the microarray and sequencing community to avoid procedural failure and also
establish QC metrics and thresholds for objectively assessing the performance achievable by vari-
ous platforms. Outlier detection is one major step of QC, which aims to identify observations that
are significantly different from the rest of the data and discard them. Statistical methods such as
principal component analysis (PCA) (Figure 6.5) and hierarchical clustering [40] (discussed in the
next section) can be used for this purpose.

6.3.2 Differential Expression Detection

For microarray analysis, one basic goal is to identify genes that show differential expression
between two biological groups. Statistics such as the Student z-test and Mann-Whitney test can be
used on each individual gene to test the null hypothesis that the means of two normally distributed
populations (of the two biological groups) are equal; the latter one is more suitable for small sample
size without requiring a normal distribution. Equal variance is normally considered if there are no
evidential clues showing the two distributions are different. For those with multiple groups involved,
ANOVA [2] can be used to examine if the gene expression is altered in any of the transition points
when compared against others. Normally, only genes with a differential expression change more
than 1.5- or 2-fold, with the P-value < 0.05 adjusted for multiple test or FDR < 0.1 were accepted
for further analysis. Other approaches include bootstrap analysis, rank product, significance anal-
ysis of microarrays (SAM), and linear models of microarray (LMMA). Overall, the experimental
design, coupled with the statistical significance and fold-change criteria employed, engenders high
confidence in selecting reliable differential expressions.
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6.3.3 Clustering and Classification

In order to identify meaningful expression patterns from the microarray, clustering methods can
be applied to identify if some genes shows correlated expression across the given set of biological
groups or if some samples share similar gene expression profiles. While an in-depth coverage of
such clustering algorithms can be found in many publications and textbooks [57, 78], we briefly
introduce the following techniques that are most popularly used.

* Hierarchical clustering: produce a gene/condition tree where the most similar expression
profiles are joined together (Figure 6.6(a)). Strategies generally fall into two types:

1. agglomerative approach, where each observation (expression profile for one gene or one
sample) starts in its own cluster and pairs of clusters are merged as one moves up the
hierarchy and

2. divisive approach, where all observations start in one cluster and splits are performed
recursively as one moves dow