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Preface

Generalized linear models (GLMs) were introduced over 45 years ago.
They combine the features of regression, analysis of variance (ANOVA)
and Analysis of Covariance (ANCOVA), but allow these methods of
analysis to be extended to a large number of distributions other than
the normal distribution. Many books have been published that either
are specifically devoted to GLMs or include a consideration of GLMs. If
data have been collected that suit the application of a GLM, then you
can probably find information on the features of a statistical analysis
in a widely available book. However, there is very little information to
tell you on how you should collect the data that are to be analysed in
this way.

To the best of my knowledge, this is the first book to be written specif-
ically on the design of experiments for GLMs. There are several hand-
books or monographs that include a chapter or section on the topic.
However, this material is usually brief, requires an advanced knowledge
of mathematics, and provides little help with how one might actually
write a computer program that will find an optimal design. My aim is to
fill the gap by providing explanations of the motivation behind various
techniques, reduce the difficulty of the mathematics or move it to one
side if it cannot be avoided, and give lots of details on how to write
and run computer programs using the popular statistical software R (R
Core Team, 2018). I have also omitted some topics that regularly appear
in other references. If I could not answer “yes” to the question, “Well,
that’s nice — but is it useful?”, the topic was omitted.

This book provides an introduction to the theory of designing experi-
ments for GLMs. It then looks in depth at applications for the binomial
and Poisson distributions. Smaller segments consider the multinomial
and gamma distributions and situations where a specific distribution
is not assumed (quasi-likelihood methods). The final chapter considers
Bayesian experimental designs.

While mathematics provides the fundamental underpinning of the design
of experiments for GLMs, the mathematics required to follow this book
has deliberately been kept light. I am very aware that many researchers

xi
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in the sciences and social sciences do not have an extensive mathematics
training. I assume that the reader has done elementary differentiation
and understands why we are interested in finding a gradient when seek-
ing to maximise or minimise a function. Some minimal matrix algebra is
also required: knowing what a matrix is, understanding the concept of a
matrix inverse, and being able to multiply together two compatible ma-
trices and to find the transpose of a matrix. Of course it will be helpful
if your mathematical skills are deeper than this (there is less that you
will have to take for granted), but you should find that anything more
advanced than this is explained or illustrated.

The R software package is very widely used for statistical work. Prob-
ably its most attractive feature for many users is that it is free, but it
would be a serious mistake to assume that this is its only attraction. New
functions are being added to R all the time. There is a comprehensive
literature available to help use it, and it is easy to obtain help through
chat sites and other online facilities. I have chosen to use this software
because of its accessibility by all potential designers of experiments. I
have incorporated R programs in numerous examples in the text, and
have included a set of R programs in a Web site (doeforglm.com) avail-
able to all readers. This is not an R package. I make no claim for elegance
in my usage of R. For example, the use of loops is frowned upon by R
specialists, but I find it much easier to understand what a program is
doing when I see a loop than when I see a shortcut. I have aimed for
good exposition rather than optimised computing. However, loops have
been replaced in a number of places after the purpose of the loop has
been demonstrated.

I have not attempted to give a detailed Bibliography that covers all
research on the design of experiments for GLMs. I have restricted ref-
erences to those that are essential and (ideally) easily available. Going
through the reference lists provided in these references should provide
the interested reader with a near-complete list of relevant material. I
apologise to any authors who feel slighted by the omission of their work
from this abbreviated Bibliography.

I hope that this book will be of use to researchers who want to run
efficient designs that will collect data to be analysed by GLMs. Profes-
sional statisticians should find that there is enough appropriate material
here to take them to the borders of new statistical research. I trust that
nonstatisticians will find enough here for them to be able to design their
own experiments, by following the examples and using the programs
provided.

I would like to thank the many researchers who have consulted me over
the years. They made it very obvious that a lack of deep mathematical
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understanding does not coincide with a lack of research ability. If I have
got the mathematics, explanations and computer programs at the right
level for you, I will consider myself well satisfied. I would also like to
thank my experimental design colleagues for their assistance in giving
me an understanding of the design of experiments for GLMs. I am in-
debted to the reviewers of the drafts of this manuscript for their helpful
comments and constructive criticisms. Any faults that remain are my
responsibility alone. I extend my sincere thanks to the editorial and pro-
duction staff at CRC Press for their superb support during the writing
and production of this book. Finally, I thank the many people who have
posted answers to questions about LATEX or R on websites. Many was
the time that I wondered how to do something in LATEX or R and found
the answer already on the Web.

Kenneth G. Russell
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Chapter 1

Generalized Linear Models

1.1 Introduction

Numerous books exist on the subject of generalized linear models
(GLMs). They tell you how to analyse data that have already been
collected. Unlike those books, this one does not consider data analysis,
but focusses on how you should design the experiment that will collect
the data. Designing an experiment is beneficial, as it can increase the
information that you obtain from your experiment without increasing
the resources that are required.

Before discussing GLMs, I briefly review the linear models that are being
generalised. The emphasis is on features of linear models that are of
importance for GLMs.

Regression analysis and the analysis of variance (ANOVA) are important
techniques in the statistical toolkits of most users of statistics. Although
often taught as separate procedures, they both belong within the topic of
linear models. These methods of analysis are often used in experimental
situations where a researcher takes several independent observations on
a variable of interest, the response variable Y . This quantity is consid-
ered to come from a normal distribution with an unknown mean, µ, and
an unknown standard deviation, σ. Then one or more explanatory or
predictor variables thought to affect Y are changed in value, and several
independent observations are made on Y again. This time the observa-
tions are considered to come from a normal distribution with a different
(unknown) mean but the same unknown standard deviation.

Regression analysis and ANOVA are used to assess a mathematical
model that purports to explain the variation observed in Y . The math-
ematical model consists of two parts:

• the first seeks to explain the changes in the population mean, µ, as
the values of the explanatory variables are altered,

• the second aims to represent the variability of individual observations
around their means.

The part of the model that explains changes in µ involves a function
of the explanatory variables, and generally contains several parameters.

1



2 GENERALIZED LINEAR MODELS

For example, if it is thought that the relationship between µ and an
explanatory variable, x, is a straight line, this might be written as µ =
β0 + β1x, where β0 (the intercept of the line) and β1 (the line’s slope)
are the two parameters of the model. They are unknown values that we
attempt to estimate from the collected data.

Note that there are two types of parameters being considered here. The
first type is the population parameter whose behaviour we wish to model.
The other type is the collection of those parameters that are in the
function used to explain the population parameter. In this book, the
first type will be described as population parameters, or distribution
parameters, while the second type will be known as model parameters.
In the example above, µ is a population parameter, and β0 and β1 are
model parameters.

Linear regression and ANOVA have the special requirement that the
function of the explanatory variables that is used to model µ must be a
linear combination of the parameters of the model. This is what makes
them linear models. A “linear combination of the parameters of the
model” will now be defined.

Assume that there are p model parameters, denoted here by θ1, . . . , θp.
(When appropriate, other symbols will subsequently be used for the
parameters.) Then

η = a1θ1 + a2θ2 + · · ·+ apθp (1.1)

is a linear combination of the parameters if the multipliers (or “coef-
ficients”) a1, . . . , ap have known numerical values. Thus θ1 = 1 × θ1,
θ1 + θ2 = 1 × θ1 + 1 × θ2, and 2θ3 − θ4 − θ5 = 0 × θ1 + 0 × θ2 + 2 ×
θ3 + (−1) × θ4 + (−1) × θ5 are linear combinations of the parameters.
However, θ1 × θ2 is not a linear combination of the parameters, because
the multiplier of θ2, namely θ1, is a parameter, not a known numerical
value. The known numerical values a1, . . . , ap will come from values of
the explanatory variables.

In linear regression and ANOVA, it is customary to include expressions
for both the mean and the variability around the mean in a model for
the response variable. The mathematical model may be written as

response = (linear combination of parameters) + random error

= η + random error. (1.2)

The random error is intended to explain why two observations on indi-
viduals with the same values of the explanatory variables do not equal
one another. It collects together variation from natural causes, recording
errors, a failure to include all relevant variables in the set of explanatory
variables, etc.
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In early applications of regression analysis and ANOVA, the main dis-
tinction between the two methods was the nature of the explanatory
variables in the model:

• in regression analysis, their values were real numbers;

• in ANOVA, they were “indicator” variables (containing 0s and 1s to
link the appropriate model parameters to the relevant observations).

Example 1.1.1. Box, Hunter, & Hunter (2005, pp. 381–382) considered
data from an investigation on the growth rates of rats that were fed
various doses of a dietary supplement. It had been expected that, over
the range of the supplement that had been used in the experiment, there
would be a straight line relationship between the growth rate and the dose.
However, a plot of the data suggested a curve, and so a quadratic model
was fitted instead. The model was

Yi = β0 + β1xi + β2x
2
i + Ei (i = 1, . . . , 10), (1.3)

where Yi represents the growth rate observed on the ith rat, which had
received an amount xi of the supplement, and Ei represents the random
error associated with the ith observation. By convention, the parameters
in this model are denoted by β0, β1 and β2 rather than the θ1, θ2 and θ3
of (1.1).

The expression

η = β0 + β1xi + β2x
2
i = 1× β0 + xi × β1 + x2i × β2

is clearly a linear combination of the parameters β0, β1 and β2. For
β2 > 0, it takes the shape (concave upwards) illustrated in Figure 1.1; if
β2 < 0, we would obtain a similar curve, but concave downwards. The
actual shape that is seen depends on what domain of x is considered.
If that domain lay entirely to the right of the minimum of the curve in
Figure 1.1, then one would see only an upward-tending curve.

Important note: It is essential to remember that the word “linear” refers
to a linear combination of the parameters, and does not mean that the
model predicts a straight line relationship between Y and x. The model
in Equation (1.3) is a linear model, even though the relationship between
Y and x is a curve, not a straight line.

Example 1.1.2. Kuehl (2000, pp. 264–265) described a randomised
complete block design in which several different timing schedules of
applications of nitrogen fertilizer were to be compared for their effect on
the observed nitrate content from a sample of wheat stems. These timing
schedules represented the “treatments” (six in all). As the experiment
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x

η

η = β0 + β1 x + β2 x2

Figure 1.1 The quadratic curve η = β0 + β1x+ β2x
2 for β2 > 0.

was conducted in a field with a water gradient arising from irrigation,
the field was partitioned into sections that were relatively homogeneous
with regard to moisture. These sections formed the “blocks” (four in all).
Each treatment was randomly allocated to one of six plots within each
block. This ensured that each treatment appeared in both the “wetter”
and “dryer” parts of the field, and was not advantaged or disadvantaged
by being randomly allocated to plots with just one or two water levels.

The statistical model for the response variable (observed nitrate content
from a sample of wheat stems), Yij, from the plot in block j that received
treatment i was

Yij = µ+ τi + ρj +Eij = ηij +Eij , i = 1, . . . , 6; j = 1, . . . , 4, (1.4)

where µ is the overall mean yield for all possible timings in all possible
blocks, τi is the effect of the ith timing, ρj is the effect of the jth block,
and Eij represents the random error term. It is convenient to write ηij
for the linear combination of parameters that is used to model µij, the
mean of Yij.

There are 11 model parameters in (1.4): µ, τ1, . . . , τ6 and ρ1, . . . , ρ4.
These take the place of θ1, . . . , θ11 in (1.1). When there are different
sources of variation, it is customary to use different symbols (e.g., τ and
β) for those different sources, rather than just the θ1, θ2, . . . of (1.1).

Although it is not immediately obvious, each parameter in (1.4) is mul-
tiplied by the value of an indicator variable, and the parameters in the
right-hand side of the model are a linear combination of all 11 param-
eters. For example, the observation on the plot in the first block that
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received treatment 1 may be written as

Y11 = µ+ τ1 + ρ1 + E11 = η11 + E11,

where

η11 = 1×µ+ 1×τ1 + 0×τ2 + · · ·+ 0×τ6 + 1×ρ1 + 0×ρ2 + · · ·+ 0×ρ4.

The 0s and 1s which are multiplied by the parameters are values of the
indicator variables.

Example 1.1.3. The Michaelis-Menten model is often used in biological
situations to explain the behaviour of a response variable Y in terms of
an explanatory variable x. It has two parameters, β1 and β2. The model
says

Yi =
β1xi

1 + β2xi
+ Ei (i = 1, . . . , n).

The function that models the mean, µ, is β1x/(1 +β2x), but this cannot
be written in the form a1β1 + a2β2, so the Michaelis-Menten model is
not a linear model.

Earlier examples described situations where the explanatory variables in
a linear model were all real variables (Example 1.1.1) or were all indicator
variables (Example 1.1.2). However, in some experimental situations, the
explanatory variables in a linear model would include both categorical
or ordinal variables and also “real” variables. The latter variables were
known as covariates, and the analysis of such linear models was called
analysis of covariance (ANCOVA).

Example 1.1.4. Kuehl (2000, pp. 551–553) described an experiment
which examined the effects of exercise on oxygen ventilation. Twelve
healthy males were recruited, and six each were allocated randomly to
two exercise regimes (the two “treatments”). The response variable was
the change in maximal oxygen uptake from the beginning to the end of
the training period. The aim of the experiment was to compare the effects
of the two treatments on this variable. As it was thought that the age of
a subject might influence the response variable, age was also included in
the model. Let Yij denote the change in maximal oxygen uptake of the
jth subject in the ith group. Then the equation that was used to model
the variation in the response variable was

Yij = ηij +Eij = µi +βi(xij − x̄··) +Eij , i = 1, 2; j = 1, . . . , 6, (1.5)

where µi represents the mean effect of the ith treatment, xij is the age
of the jth person in the ith treatment group, x̄·· is the average age of
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x

η

x

slope = β1

slope = β2

µ1

µ2

Figure 1.2 One possible situation for the ANCOVA model in (1.5).

all 12 subjects, and Eij represents the random error associated with the
observation Yij.

Equation (1.5) suggests that the points (xij , ηij) lie around one of two
lines. The line for treatment i (i = 1, 2) has an η-value of µi when
x = x̄··, and has a slope of βi. Figure 1.2 provides one possible example
of this situation.

The ANCOVA model in (1.5) is a linear model involving four model
parameters: µ1, µ2, β1 and β2. For the observation on (say) the third
person in treatment group 2, the model says

Y23 = η23 + E23

= µ2 + β2(x23 − x̄··) + E23

= 0×µ1 + 1×µ2 + 0×(x13−x̄··)×β1 + 1×(x23−x̄··)×β2 + E23.

In the linear combination of the four parameters, the coefficients are
indicator variables or products of indicator variables with real variables.

In earlier years, when statistical analyses were done by hand, or with
a calculator, ANOVA, ANCOVA and regression analysis were treated
as separate types of analyses, to take advantage of simplifications in
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the calculations that arose as a result of this separation. However, with
the advent of sophisticated statistical computing packages, it became
possible to reduce the three methods of analysis to a single common
method, which is often called the general linear model. Regrettably, this
has sometimes been abbreviated as “GLM”, which is also the acronym
of the generalized linear models that are the subject of this book. In
this book, the acronym “GLM” will be reserved for generalized linear
models, and “general linear models” will always be written in full.

1.2 Mathematics of the general linear model

In commonly used notation for a general linear model, a regression model
involving (p− 1) explanatory variables x1, . . . , xp−1 is written as

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βp−1xi,p−1 + Ei (i = 1, . . . , N),

where N is the total number of observations that are made on the re-
sponse variable. There are p model parameters, β0, . . . , βp−1. For nota-
tional convenience, the N model equations

Y1 = β0 + β1x11 + β2x12 + · · ·+ βp−1x1,p−1 + E1

Y2 = β0 + β1x21 + β2x22 + · · ·+ βp−1x2,p−1 + E2

...

YN = β0 + β1xN1 + β2xN2 + · · ·+ βp−1xN,p−1 + EN

are written in matrix and vector form as
Y1
Y2
...
YN

 =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
... · · ·

...
1 xN1 xN2 · · · xN,p−1




β0
β1
...

βp−1

+


E1

E2

...
EN

 ,
or as

Y = Xβ +E. (1.6)

The N × p matrix X is frequently called the design matrix.

If A is an m × n matrix whose (i, j) element is aij , the transpose of A
is the n ×m matrix whose (i, j) element is aji. It is denoted by A> in
this book.

Estimation of the value of β is a major aim of most experiments. Two
common methods of estimating β in a general linear model are least
squares (LS) estimation and maximum likelihood (ML) estimation. To
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prevent a break in continuity of exposition, details of these two methods
will be deferred to Section 1.5.

It is usually assumed that the error terms are independent of one
another and that each has a N(0, σ2) distribution. If these statisti-
cal assumptions are satisfied, then the LS and ML estimators of β,
β̂ = (β̂0, β̂1, . . . , β̂p−1)>, are identical and can be shown (e.g., Guttman,
1982, Chapter 3 or Searle, 1971, Chapter 3) to satisfy the so-called nor-
mal equations

X>Xβ̂ = X>Y . (1.7)

In the regression context, the columns of X are usually of full column
rank, which means that no column of X can be written as a linear
combination of other columns. In this case, the p × p matrix X>X is
nonsingular and has a proper inverse, (X>X)−1. Then β̂ is given by

β̂ = (X>X)−1X>Y .

It can be shown that
E(β̂) = β, (1.8)

and that the covariance matrix of β̂ is equal to

cov(β̂) = σ2(X>X)−1. (1.9)

Example 1.2.1. For the straight line regression model

Yi = β0 + β1xi + Ei (i = 1, . . . , N),

where the single explanatory variable is labelled x for simplicity, there
are two model parameters, β0 and β1, and the N × 2 matrix X satisfies

X =


1 x1
1 x2
...

...
1 xN

 .

It can be shown that

X>X =

[
N

∑N
i=1 xi∑N

i=1 xi
∑N
i=1 x

2
i

]

and

σ2(X>X)−1 =
σ2

∆

[ ∑N
i=1 x

2
i −

∑N
i=1 xi

−
∑N
i=1 xi N

]
, (1.10)
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where

∆ = N
N∑
i=1

x2i − (
N∑
i=1

xi)
2.

The variance of β̂1 is given by the (2, 2) element of σ2(X>X)−1. Using
the standard result that

N
N∑
i=1

x2i − (
N∑
i=1

xi)
2 = N

N∑
i=1

(xi − x̄)2, (1.11)

it follows that

var(β̂1) =
σ2

N
∑N
i=1(xi − x̄)2

×N =
σ2∑N

i=1(xi − x̄)2
.

In an ANOVA context, the ML estimator of the vector of model param-
eters still satisfies (1.7), but the columns of X do not have full column
rank under commonly used statistical models, andX>X is singular. The
matrix (X>X)−1 does not exist, and there is not a unique value of β̂.
This is not the insurmountable problem that it might seem. Consider Ex-
ample 1.1.2, in which several different timing schedules of applications
of nitrogen fertilizer (the treatments) were to be compared. Although
the estimates of the different treatment effects τ̂i are not unique, the
estimates of the differences between pairs of treatment effects, τ̂i − τ̂j ,
are unique in this experiment. For example, see Searle (1971, Chapter
5). This is what is required for comparisons of treatment effects.

1.3 Towards the generalized linear model

The general linear model provides various sub-models that have been
useful in many contexts. Under the assumptions that the response
variable is normally distributed with constant variance, there is well-
developed theory for the estimation of the model parameters and the
testing of hypotheses about appropriate functions of these parameters.
This theory is widely available in many books at various levels of so-
phistication. An additional advantage is that, when the parameters are
regarded as fixed constants, the computation required to perform an
analysis is exact and straightforward.

Probably for these reasons, the use of the general linear model in statisti-
cal analyses continues to be very popular. This is eminently appropriate
when the assumptions underlying the general linear model have been
met (at least to a good approximation). However, if the assumptions
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are violated, then the use of the general linear model becomes problem-
atic. In earlier days, it was common to introduce a transformation of
the response variable, and to analyse the transformed variable in place
of the original variable (e.g., to use

√
Y as the response variable instead

of Y ). If the transformation was applied to data that were not approx-
imately normally distributed, and the new variable was much closer to
being “normal”, and/or if the transformation had the effect of making
the data have essentially a common variance, then it would ease the re-
searcher’s task considerably if standard procedures for the general linear
model could be applied to transformed data.

However, selected transformations do not always produce data that are
both normally-distributed and have a constant variance. At other times,
no sensible transformation could be found that met either of these aims.
It was clear that alternative methods of analysis were needed.

One approach is not to transform the response variable, but instead to
transform the population parameter that is of interest. In the general
linear model, it is µ that we wish to model. So the function of the
population parameter, µ = E(Y ), that we are seeking to estimate is just
the mean itself. Mathematicians say that we are estimating the identity
function of µ: g(µ) = µ (the function that maps any entity onto itself).

If the general linear model is viewed as the first example of transforming
the distribution parameter to something convenient, then the particular
function of µ that is modelled by η is the identity function.

This approach should not cause concern. A linear combination of pa-
rameters,

η = a1θ1 + a2θ2 + · · ·+ apθp,

can potentially take any possible value (positive, negative or zero), as
can the value, µ, of the mean. So the value of the linear combination is
not required to be equal to something that is not possible for the value
of µ. There is no mathematical difficulty here.

You may wish to object that the mean weight of (say) the wheat har-
vested from a field cannot be negative, and so the mean should not be
modelled by a linear combination that can take negative values. You are
correct. However, as stated by Box, Hunter, & Hunter (2005, p. 440),
“The most that can be expected from any model is that it can supply a
useful approximation to reality: All models are wrong; some models are
useful.” The fact that a negative mean might be predicted for some val-
ues of the explanatory variable(s) indicates a deficiency in the model
for this particular example, but it does not rule out the use of a linear
combination of parameters to predict the mean.

A more important difficulty arises when one models a population param-
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eter that always has strong restrictions on its possible values. Consider
the probability, π, that a particular outcome occurs when a phenomenon
is observed. This may be the probability that a rat is killed by the ad-
ministration of a particular dose, x, of a poison. It is reasonable to expect
the value of π to vary as x is altered, and consequently one might wish to
model π by a linear model involving x. However, the value of π must lie
between 0 and 1, not just for this problem but for all situations involving
a probability. So π should not be modelled by a linear combination that
takes values outside this interval. Rather than restrict the value of the
linear combination, we look for some function of π, g(π), that can take
any value at all, and model that function by the linear combination. One
such function is

g(π) = ln

(
π

1− π

)
(0 < π < 1),

which is known as the logit function. As 0 < π < 1, then 0 < 1− π < 1
also, and so π/(1−π) > 0. Then ln[π/(1−π)] < 0 for 0 < π/(1−π) < 1
and ln[π/(1−π)] ≥ 0 for π/(1−π) ≥ 1. So ln[π/(1−π)] can be modelled
by a linear combination that may take any positive or negative value.

Another population parameter with a restricted domain is the rate of
occurrence (often denoted by λ) in a Poisson distribution. The rate can-
not be negative, so λ ≥ 0. This implies that ln(λ) < 0 for 0 ≤ λ < 1,
and ln(λ) ≥ 0 for λ ≥ 1. Thus the natural logarithm function is a pos-
sible function of λ that might be modelled by a linear combination of
parameters that takes positive or negative values.

Irrespective of the distribution of interest, the function of the popu-
lation parameter θ that is modelled by a linear combination of model
parameters is typically denoted by g(θ), and is called the link function.

In a normal distribution, the variance, σ2, is not functionally related to
the mean, µ. In some special circumstance, one might define the vari-
ance to be (say) µ2, but this would be for a reason related to that
situation. There is no general link between µ and σ2. However, this lack
of a relationship between the mean and variance is peculiar to the nor-
mal distribution. For other distributions, there is a formal relationship
between the two. It is common to write

var(Y ) = φV (µ), (1.12)

where φ is a constant and V (µ) is a function of µ. For the normal dis-
tribution, φ = σ2 and V (µ) = 1.

Consider the Poisson distribution, where the population variance is
equal to the population mean. So var(Y ) = φV (µ), where φ = 1 and
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V (µ) = µ. Alternatively, consider the binomial distribution, whose dis-
tribution parameters are n (a known positive integer) and π (the prob-
ability of “success”). The mean of the distribution is µ = nπ, and the
variance is nπ(1 − π), so there is clearly a functional relationship be-
tween them: var(Y ) = φV (µ) where φ = 1 and V (µ) = µ(1−µ/n). The
Bernoulli distribution is a binomial distribution with n = 1; for this
distribution, var(Y ) = φV (µ) where φ = 1 and V (µ) = µ(1− µ).

If one seeks to extend the general linear model to situations beyond the
standard normal distribution, one needs to know what the functional
relationship is between the variance and the mean of the distribution.

An additional requirement is to know the particular distribution from
which data are being taken. Knowledge of this gives a greater mathe-
matical structure on which one can base the estimation of the model
parameters, or the testing of hypotheses about their values.

As outlined above, there are three requirements of a model:

1. An appropriate function (the ‘link’ function) of a population param-
eter can be modelled by a linear combination of model parameters.

2. The response variable has a known distribution.

3. The functional relationship between the variance and the mean of this
distribution is known.

When these three requirements are met, a GLM can be formed. It is
possible to relax requirement 2; see Section 6.4.

1.4 Generalized linear models

Generalized linear models were introduced in Nelder & Wedderburn
(1972). The definitive reference is McCullagh & Nelder (1989), but there
are now numerous books that deal, at least in part, with GLMs. Some of
these books (e.g., Faraway, 2006) address the analysis of GLMs with the
statistical package R (R Core Team, 2018), which will be used in this
book to seek optimal designs. These models have considerably increased
the number of distributions from which data can be analyzed without
violating underlying assumptions. Additionally, they have provided an
umbrella for various methods of analysis that were previously consid-
ered to be unrelated, such as logistic regression, probit regression and
loglinear regression.

A readable introduction to the theory of GLMs is given in Dobson &
Barnett (2008) where, on page 46, the authors consider a single ran-
dom variable Y whose probability (density) function depends on a sin-
gle population parameter, θ. If the function depends on more than one
population parameter (e.g., the normal distribution’s density function,
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which depends on both µ and σ), the second parameter is treated as a
constant. The distribution is said to belong to the exponential family of
distributions if the probability (density) function of Y can be written in
the form

fY (y; θ) = exp[a(y)b(θ) + c(θ) + d(y)]. (1.13)

Other expressions exist for the form of probability functions of distribu-
tions belonging to the exponential family, but they are all equivalent.

Example 1.4.1. The binomial probability function is commonly written
as

fY (y;π) =

(
n

y

)
πy (1− π)n−y, y = 0, 1, . . . , n; 0 < π < 1.

While it has two population parameters, n (the number of trials) and π
(the probability of success on an individual trial), the value of n is gen-
erally known, and π is regarded as the population parameter of interest.
We may write

fY (y;π) =

(
n

y

)
πy (1− π)n−y

= exp[ln

(
n

y

)
+ y lnπ + (n− y) ln(1− π)]

= exp{y[lnπ − ln(1− π)] + n ln(1− π) + ln

(
n

y

)
}

= exp[a(y)b(π) + c(π) + d(y)],

where a(y) = y, b(π) = lnπ − ln(1−π) = ln[π/(1−π)], c(π) = n ln(1−π)
and d(y) = ln

(
n
y

)
. So the binomial probability function takes the form

given in (1.13), and therefore the binomial distribution is a member of
the exponential family of distributions.

Example 1.4.2. The normal distribution with mean µ and variance σ2,
commonly denoted by N(µ, σ2), also depends on two population param-
eters, µ and σ, but interest is generally in estimating µ. The quantity
σ is regarded as a “nuisance parameter” and treated as a constant when
examining whether the normal distribution belongs to the exponential
family. Given Y ∼ N(µ, σ2), the probability density function of Y may
be written as

fY (y;µ) = 1/
√

(2πσ2) exp[−(y − µ)2/(2σ2)]

= exp[−0.5 ln(2πσ2)− (y2 − 2yµ+ µ2)/(2σ2)]

= exp{y(µ/σ2)− µ2/(2σ2)− [0.5 ln(2πσ2) + y2/(2σ2)]}
= exp[a(y)b(µ) + c(µ) + d(y)],
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Distribution θ a(y) b(θ) c(θ) d(y)

Binomial (n, π) π y ln[π/(1−π)] n ln(1−π) ln
(
n
y

)
n known

Poisson (λ) λ y lnλ −λ − ln(y!)

Normal (µ, σ2) µ y µ/σ2 µ2/(2σ2) −[ln(2πσ2) + y2/σ2]/2
σ known

Gamma (α, β) β y −β α lnβ (α− 1) ln y − ln Γ(α)
α known

Table 1.1 Some distributions that are members of the exponential family of
distributions.

where a(y) = y, b(µ) = µ/σ2, c(µ) = −µ2/(2σ2) and d(y) =
−[ln(2πσ2) + y2/σ2]/2. As fY (y;µ) has the form given in (1.13), the
normal distribution belongs to the exponential family of distributions.

Example 1.4.3. The gamma distribution with a scale parameter, β,
and a shape parameter, α, has probability distribution

fY (y) =
βα

Γ(α)
yα−1 exp(−βy), y > 0 (α > 0, β > 0), (1.14)

where Γ(·) is the gamma function. The shape parameter of the gamma
distribution is considered known, and the scale parameter β is the param-
eter in which we are interested. It can easily be shown that the gamma
distribution belongs to the exponential family, and that E(Y ) = µ = α/β
and var(Y ) = α/β2 = (1/α)µ2.

Table 1.1 displays some commonly used distributions belonging to the
exponential family.

If Y is an observation from a distribution belonging to the exponential
family then, from Dobson & Barnett (2008, p. 49),

E[a(Y )] = −c
′(θ)

b′(θ)
and var[a(Y )] =

b′′(θ)c′(θ)− c′′(θ)b′(θ)
[b′(θ)]3

, (1.15)

where b′(θ) and b′′(θ) represent, respectively, the first and second deriva-
tives of b(θ) with respect to θ.

When a(y) = y, the distribution is said to have the canonical (“stan-
dard”) form. For distributions of this form, (1.15) provides expressions
for E(Y ) and var(Y ). Of more importance to this book, for distributions
having the canonical form, we can use a GLM to perform statistical
inference on the model parameters in the linear combination used to
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model the link function, g(θ), of the population parameter θ. When the
distribution has the canonical form, the function b(θ) is said to be the
canonical link function.

It is usual to denote the p model parameters in the linear combination
by β0, . . . , βp−1. That is, we write

g(θ) = η = β0 + β1x1 + · · ·+ βp−1xp−1.

Recall from Section 1.2 that the coefficients of the model parameters in
η for the ith observation form the ith row of the design matrix X.

Although the notation X for the design matrix is fairly standard in
regression analysis, it is less often used when it comes to designing ex-
periments, especially for GLMs. We shall frequently be interested in
maximising or minimising some function (e.g., the determinant – see
page 26) of a matrix of the form X>WX, where W is (usually) a diag-
onal matrix. This will require choosing the rows of X. The X notation
may imply that each element of a row can be individually selected, which
is frequently not true.

Let m be the number of mathematically independent explanatory vari-
ables used in the linear combination of parameters, η. Denote these
variables by x1, . . . , xm. By “mathematically independent,” I mean that
these variables can take values independently of the values taken by other
variables. By contrast, there may be variables used in η whose values are
automatically fixed once the values of x1, . . . , xm are fixed. For example,
if η = β0 +β1x1 +β2x2 +β3x1x2, there are m = 2 mathematically inde-
pendent variables (x1 and x2). We cannot vary the value of x1x2 once
the values of x1 and x2 have been chosen. Denote by x = (x1, . . . , xm)>

a vector of the m explanatory variables.

Write β = (β0, . . . , βp−1)> for the p × 1 vector containing the model
parameters in the linear combination η. In η, the coefficient of each βi
will be a function of one or more of x1, . . . , xm. We will write fi(x) for
the function of x that is the coefficient of βi (i = 0, . . . , p − 1), and
denote by f(x) the vector of these functions. That is,

f(x) = (f0(x), f1(x), . . . , fp−1(x))
>
.

These coefficients will be described as regressors in order to distinguish
them from the individual explanatory variables.

Example 1.4.4. Consider again the model η = β0 + β1x1 + β2x2 +
β3x1x2. There are m = 2 explanatory variables (x1 and x2), p = 4
parameters (β0, . . . , β3) and p = 4 regressors (1, x1, x2 and x1x2). We



16 GENERALIZED LINEAR MODELS

have x = (x1, x2)>, f(x) = (1, x1, x2, x1x2)>, β = (β0, . . . , β3)> and
η = f>(x)β.

Let there be s distinct values of the vector x in the experiment. These
will be denoted by x1, . . . ,xs, and xi will be called the ith support point
of the design. Denote by F the s × p matrix whose ith row is f>(xi)
(sometimes abbreviated to f>i ). That is,

F =

 f>(x1)
...

f>(xs)

 =

 f>1
...
f>s

 .
Note that the matrices F and X are equal only if there is just one
observation made at each support point (and so s = N). If the ith support
point xi has ni observations made on it (i = 1, . . . , s), then f>(xi) will
occur in ni rows of X. It follows that

X>X = F>diag(n1, . . . , ns)F .

Example 1.4.5. Suppose that a design has s = 3 support points x1, x2

and x3, and independent observations are made on these points n1 = 3,
n2 = 2 and n3 = 1 times, respectively. Then

X =


f>1
f>1
f>1
f>2
f>2
f>3

 ,

and

X>X = f1f
>
1 + f1f

>
1 + f1f

>
1 + f2f

>
2 + f2f

>
2 + f3f

>
3

= 3f1f
>
1 + 2f2f

>
2 + f3f

>
3

= [f1,f2,f3] diag(3, 2, 1)

 f>1
f>2
f>3


= F>diag(3, 2, 1)F .

1.5 Estimating the values of the model parameters

Two common methods of estimating β in general linear models are least
squares (LS) estimation and maximum likelihood (ML) estimation. In
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LS estimation, the estimate of β is that value of β that minimises the
sum of squares of the error terms in the model (1.6). That is, the LS
estimator is the value of β that minimises

N∑
i=1

E2
i = E>E = (Y −Xβ)>(Y −Xβ).

However, the assumptions underlying this estimation process are not
generally applicable for distributions from the exponential family other
than the normal, so LS estimation is not usually considered in GLMs.

It is customary to consider the ML estimators of β0, . . . , βp−1. The vec-

tor of ML estimators, β̂ = (β̂0, . . . , β̂p−1)>, consists of those values of
β0, . . . , βp−1 that maximise the likelihood of an observed random sample
y1, . . . , yN from the distribution.

The likelihood is regarded as a function of the elements of β. When the
observations are independent, the likelihood is defined by

L(β; y1, . . . , yN ) = fY (y1; θ1)× . . .×fY (yN ; θN ) =

N∏
i=1

fY (yi; θi). (1.16)

As lnL(β; y1, . . . , yN ) achieves its maximum at the same value of β as
does L(β; y1, . . . , yN ), and as it is usually easier to find derivatives of lnL
than of L, it is customary to seek that value of β for which lnL(β) is
maximised. It is usual to denote lnL(β; y1, . . . , yN ) by `(β; y1, . . . , yN ).

The quantity `(β) will be maximised when its partial derivatives satisfy

∂`

∂βi

∣∣∣∣
β=β̂

= 0 (i = 0, 1, . . . , p− 1), (1.17)

and when the matrix of partial second derivatives, whose (j, k) element is
∂2`/(∂βj∂βk), is negative definite (defined on page 23). Equation (1.17)
can also be written in vector form as

∂`

∂β

∣∣∣∣
β=β̂

= 0. (1.18)

It is customary to write

Uj =
∂`

∂βj
,

where Uj is called the jth score statistic. Define the p × 1 vector U by
U = (U0, . . . , Up−1)>.



18 GENERALIZED LINEAR MODELS

For distributions from the exponential family that have the canonical
form, it can be shown (e.g., Dobson & Barnett, 2008, Eq. (4.18)) that

Uj =
N∑
i=1

[
(Yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)]
, j ∈ {0, . . . , p− 1}, (1.19)

where xij is the (i, j) element of the design matrix X. If the design
matrix is represented by F , where each row of F is unique,

Uj =
s∑
i=1

ni

[
(Yi − µi)
var(Yi)

fij

(
∂µi
∂ηi

)]
, j ∈ {0, . . . , p− 1}, (1.20)

where fij is the (i, j) element of F . Then E(Uj) = 0 for each j, which
implies that E(U) = 0.

In addition, denote by I the p × p covariance matrix of U . Adapt-
ing (4.20) of Dobson & Barnett (2008), the (j, k) element of I, Ijk =
cov(Uj , Uk), is given by

Ijk =

s∑
i=1

ni
fijfik

var(Yi)

(
∂µi
∂ηi

)2

, j, k ∈ {0, . . . , p− 1}. (1.21)

These results are important in calculating the ML estimate β̂. However,
of most relevance to us when considering the design of experiments that
will involve GLMs are the results that, asymptotically (i.e., for very large
values of N),

E(β̂) = β and cov(β̂) = I−1. (1.22)

For an experiment involving normally distributed observations with a
constant variance, the results in (1.22) are exact for all values of N , and
are equivalent to those in (1.8) and (1.9). For any non-normal distribu-
tion, although the equations in (1.22) are asymptotic results only, they
are generally used for all values of N , because it is difficult to obtain
exact expressions for E(β̂) and cov(β̂) for small values of N .

Example 1.5.1. Consider a standard straight line regression model
Yi = β0 + β1xi + Ei (i = 1, . . . , n). The linear combination of model
parameters can be written as η = f>(x)β, where f>(x) = (1, x) and
β = (β0, β1)>. Let the set of possible values of x be X = {x : 0 ≤ x ≤ 1}.
Consider two possible experimental designs, each with n = 10 observa-
tions. Design 1, the “equispaced” design, places one observation at each
of 0, 1/9, 2/9, . . . , 1. Design 2, the “extremities” design, places five ob-
servations at each of 0 and 1. Then the design matrices are
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Design 1

X>1 =

[
1 1 1 1 1 1 1 1 1 1
0 1

9
2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

]
F>1 =

[
1 1 1 1 1 1 1 1 1 1
0 1

9
2
9

3
9

4
9

5
9

6
9

7
9

8
9 1

]>
;

n1 = . . . = n10 = 1;

X>1X1 = F>1 diag(1, 1, . . . , 1)F1 =
1

81

[
810 405
405 285

]
.

Design 2

X>2 =

[
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1

]
F2 =

[
1 0
1 1

]
;

n1 = n2 = 5;

X>2X2 = F>2 diag(5, 5)F2 =

[
10 5
5 5

]
.

Using the result in (1.9) for cov(β̂), it follows that, for Design 1,

cov(β̂) = σ2(X>1X1)−1 =
σ2

55

[
19 −27
−27 54

]
,

while, for Design 2,

cov(β̂) = σ2(X>2X2)−1 =
σ2

5

[
1 −1
−1 2

]
.

For the straight line regression model, g(µ) = µ = η = β0 + β1x =
f>(x)β, where f> = (1, x). Then

∂µi
∂ηi

= 1 and fi0 = 1, fi1 = xi (i = 1, . . . , s).

Recall from (1.21) that the elements of the covariance matrix I are

Ijk =
s∑
i=1

ni
fijfik

var(Yi)

(
∂µi
∂ηi

)2

, j, k ∈ {0, . . . , p− 1}.

As var(Yi) = σ2 for each i = 1, . . . , s, then it follows that

Ijk =
1

σ2

s∑
i=1

nifijfik

(
∂µi
∂ηi

)2

, j, k ∈ {0, . . . , p− 1}.
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For the straight line regression model, the elements of the matrix I are

I00 =
1

σ2

s∑
i=1

ni(1× 1)(1)2,

I01 = I10 =
1

σ2

s∑
i=1

ni(1× xi)(1)2,

I11 =
1

σ2

s∑
i=1

ni(xi × xi)(1)2,

and thus

I =
1

σ2

[ ∑s
i=1 ni

∑s
i=1 nixi∑s

i=1 nixi
∑s
i=1 nix

2
i

]
.

As cov(β̂) = I−1, this gives the same expression for cov(β̂) as from

cov(β̂) = σ2(X>X)−1 in (1.10).

So it has been demonstrated, for the straight line regression model and
a normal distribution with a constant variance, that the asymptotic re-
sult for cov(β̂) from (1.22) is actually an exact result for any value of
N , whether large or small. In fact, it is an exact result for any model
that assumes that the observations are independent and from a nor-
mal distribution with a constant variance. For any other assumption or
distribution, the result is only correct asymptotically.



Chapter 2

Background Material

2.1 Introduction

While the mathematical theory required in this book has been min-
imised as much as possible, one cannot follow the design theory without
a minimal knowledge of calculus and matrix algebra. This chapter in-
cludes a brief overview of the fundamental points needed for the design
of experiments. All calculations are done using a computing package. It
is advantageous to choose one with statistical capabilities.

There are many statistical software packages available to perform data
analysis. Look at the Wikipedia article “List of Statistical Packages”
(Wikimedia, 2018) for a lengthy listing. Be sure that you scroll all the
way to the bottom of the list; it requires more than one screen to see
all the packages. Some of them have specialised uses, while others will
perform many different types of analyses. Some are free, and several are
expensive to purchase.

Some of these packages have features that assist you to design an exper-
iment, but usually only for general linear models with most or all of the
predictor variables being categorical in nature. A subset of packages has
facilities that can be used to design experiments for GLMs with contin-
uous variables, which are the experiments that we will mostly consider
in this book. I am unaware of any package that has built-in facilities to
design experiments involving GLMs. So a package is required that is flex-
ible, and where one can write one’s own commands (as opposed to being
forced to use only the commands provided by the software writers), in
order to produce the designs that will be needed.

The package that will be used in this book is called R (R Core Team,
2018). Its greatest attraction to many people is that it is completely
free. However, this ignores many other favourable features of R. It has
a very large community of users, some of whom are writing additional
commands, and the versatility of the package continues to grow. It can
be programmed by any user and so, if there is a feature that you want
but cannot find, it is possible to write some R code yourself.

The package can be downloaded from www.cran.r-project.org in Win-
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dows, Mac OS or Linux versions. Many books on statistical analyses
using R include some instructions on running the program, and there
are also books available that are solely devoted to using R. The book
by Crawley (2013) provides a vast array of information. Another useful
book is de Micheaux, Drouilhet, & Liquet (2013). Many other books
deal with specialised aspects of R. Help is readily available from online
users groups and the Worldwide Web.

The present book does not aim to train you in the use of R. It assumes
that you have some familiarity with the program, and concentrates on
those features of R that are of specific use to design an experiment for
a GLM. Each possible design will be characterised by a single number
that is a function of various aspects of the design. The most important
uses that we will have for R are

1. the maximisation or minimisation of this individual number;

2. simulation of data, either

(a) as a way of obtaining an idea of the characteristics of the design
for which a maximum or minimum occurs, or

(b) in examining the properties of some allegedly optimal design;

3. analysing some data using a GLM, to help with point 2(b) above.

2.2 Maximisation or minimisation of a function

2.2.1 A function of one variable

Let us briefly revise the notion of finding the maximum or minimum of
a function of one variable; e.g., y = f(x) = x2 − 2x − 3. This requires
a knowledge of elementary calculus. A turning point will occur at val-
ues of x for which (dy)/(dx) = f ′(x) is equal to 0. Suppose that this
occurs at x = a. If (d2y)/(dx2) < 0 at x = a, the turning point is a
maximum. If (d2y)/(dx2) > 0 at x = a, the turning point is a minimum.
If (d2y)/(dx2) = 0 at x = a, the turning point is a point of inflection.
Points of inflection will not be of interest in our work.

Example 2.2.1. Let y = f(x) = x2 − 2x− 3. Then (dy)/(dx) = 2x− 2
and (d2y)/(dx2) = 2. Clearly (dy)/(dx) = 0 when x = 1. Moreover,
(d2y)/(dx2) > 0 for all values of x, so the turning point at x = 1 is a
minimum. A maximum for y = f(x) does not exist if no restriction is
placed on the value of x, as is evident from the graph of y = x2− 2x− 3
in Figure 2.1.

2.2.2 A function of more than one variable

Now consider the case where x is a vector of q mathematically indepen-
dent variables, for some q > 1. Let y be a function of the variables in x,



MAXIMISATION OR MINIMISATION OF A FUNCTION 23

−2 0 2 4

0

5

10

x

y

●

Figure 2.1 A graph of y = x2 − 2x − 3, showing that a minimum occurs at
x = 1. The marked point is at x = 1, y = −4.

y = f(x). A q× 1 vector a is a turning point of y if each of the q partial
derivatives (∂y)/(∂xi) is equal to 0 at x = a. To determine whether a is
a maximum, a minimum, or some other kind of turning point (e.g., a sad-
dle point), one must calculate the matrix of partial second derivatives,
S, whose (i, j) element is (∂2y)/(∂xi∂xj) (i, j = 1, . . . , q) and evaluate
it at x = a. Call this matrix S(a). The turning point will be a minimum
if S(a) is a positive definite matrix, and a maximum if S(a) is a negative
definite matrix. If S(a) is neither negative definite nor positive definite,
the turning point is neither a maximum nor a minimum.

The q × q matrix S(a) is positive definite if, for any q × 1 vector z, the
quantity z>S(a)z is greater than 0 for every z 6= 0. Similarly, S(a) is
negative definite if, for any q × 1 vector z, the quantity z>S(a)z is less
than 0 for every z 6= 0.

Example 2.2.2. Let y be a function of q = 2 mathematically inde-
pendent variables x1 and x2. Write x = (x1, x2)> and let y = f(x) =
x21 + 4x1x2 + 6x22 + 4x1 + 4x2 + 3. Hence (∂y)/(∂x1) = 2x1 + 4x2 + 4 and
(∂y)/(∂x2) = 4x1 + 12x2 + 4, so (∂y)/(∂x1) = 0 and (∂y)/(∂x2) = 0



24 BACKGROUND MATERIAL

imply

2x1 + 4x2 + 4 = 0

4x1 + 12x2 + 4 = 0.

Solving these equations simultaneously gives x1 = −4 and x2 = 1, so the
function y = f(x) has a turning point at a = (−4, 1)>. Additionally,

∂2y

∂x21
= 2,

∂2y

∂x1∂x2
=

∂2y

∂x2∂x1
= 4, and

∂2y

∂x22
= 12,

irrespective of the value of a, so

S(a) =

[
2 4
4 12

]
.

For z = (z1, z2)>, z>S(a)z = 2z21 +8z1z2 +12z22 = 2(z21 +4z1z2 +4z22)+
4z22 = 2(z1 + 2z2)2 + 4z22 . This quantity can be zero only if z1 + 2z2 = 0
and z2 = 0 simultaneously (i.e., if z1 = z2 = 0, or z = 0); otherwise,
z>S(a)z is greater than zero. Hence S(a) is positive definite, and so
the turning point a = (−4, 1)> minimises y = f(x).

In Example 2.2.2, it was easy to demonstrate that S(a) is positive defi-
nite. However, as (i) the number of variables increases, or (ii) the com-
plexity of the function f(x) increases, a simple determination in this
manner of whether S(a) is positive or negative definite becomes very
much more difficult. It is much easier to use the following:

Result 2.2.1. A q × q matrix A is positive (negative) definite if and
only if each of its q eigenvalues is positive (negative).

A detailed discussion of eigenvalues is beyond the scope of this book. The
interested reader should consult an introductory text on linear algebra.
Harville (1997) and Searle (1982) provide more detailed and advanced
discussion. In brief, a q×1 vector u satisfying u 6= 0 is called an eigenvec-
tor (sometimes “characteristic vector”) of the q×q matrixA ifAu = λu
for some λ; that is, the result of post-multiplying A by the vector u is a
multiple of u. The multiple, λ, is called the eigenvalue (“characteristic
value”) of A corresponding to the eigenvector u.

Example 2.2.3. Let q = 2. Consider the q × q matrix

A =

[
2 1
1 2

]
. (2.1)



MAXIMISATION OR MINIMISATION OF A FUNCTION 25

The vector u1 = (1, 1)> is an eigenvector of A with corresponding eigen-
value λ1 = 3, as Au1 = A(1, 1)> = (3, 3)> = 3u1 = λ1u1. The vector
u2 = (1,−1)> is also an eigenvector of A, with corresponding eigenvalue
λ2 = 1, because Au2 = A(1,−1)> = (1,−1)> = 1u2 = λ2u2. As both
eigenvalues of the 2× 2 matrix are positive, then A is positive definite.

If u is an eigenvector of A with corresponding eigenvalue λ, then any
nonzero multiple of u, ku (k 6= 0), is also an eigenvector of A with cor-
responding eigenvalue λ. This follows since A(ku) = k(Au) = k(λu) =
λ(ku). To ensure that we are not regarding two vectors as different eigen-
vectors of A when they are really just multiples of one another, we can
require an eigenvector to have the properties that

(a) it is normalized (i.e., its length, ` =
√

(u>u), is equal to 1, which is
achieved by using the particular multiple (1/`)u), and

(b) its first nonzero element is positive.

Property (b) is not necessarily observed by computer packages, including
R, so an eigenvector given by R might possibly be the negative of the
one obtained by this rule. In Example 2.2.3, `1 =

√
(u>1 u1) =

√
2 =√

(u>2 u2) = `2. So u1 = (1/
√

2, 1/
√

2)> and u2 = (1/
√

2,−1/
√

2)> would
be used as the eigenvectors of A.

The calculation by hand of the eigenvalues and eigenvectors may some-
times be done for 2 × 2 and 3 × 3 matrices, but it is generally much
more difficult for larger matrices. It is better to use a computer. R will
calculate eigenvalues and eigenvectors, using the function eigen.

The following program

amatrix <- matrix(c(2,1,1,2),2,2)

out <- eigen(amatrix)

out$vectors

out$values

defines the matrix A and calculates the eigenvectors and corresponding
eigenvalues of A, then lists them. The output is as follows:

> out$vectors

[,1] [,2]

[1,] 0.7071068 -0.7071068

[2,] 0.7071068 0.7071068

> out$values

[1] 3 1

Each column in out$vectors represents an eigenvector. The eigenvalues
match those specified earlier, and the first eigenvector is equal to u1. The
second eigenvector is equal to −u2, so property (b) of eigenvectors is not
possessed. This discrepancy is not of any importance, as our interest will
lie in the eigenvalues, rather than the eigenvectors, of a matrix.
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As R calculates the eigenvalues and eigenvectors numerically, the results
may differ very slightly from those that would be obtained theoretically.
In particular, if an eigenvalue differs from 0 by a very small amount
(less than 10−6, say), you should probably regard the true value of the
eigenvalue as being 0.

While eigenvalues have been introduced as a means of determining
whether a matrix is positive definite, negative definite, or neither of
these, we will see in Chapter 3 other important uses for eigenvalues.

Several other important considerations involving matrices and their
eigenvalues will be quickly described.

1. In the work here, we will always be concerned with symmetric matri-
ces. A matrixA is symmetric ifA> = A. For a symmetric q×q matrix
A, there are q real eigenvalues λ1, . . . , λq (not necessarily distinct).

2. One number arising from A is called the determinant of A, and is
denoted by det(A) or |A|. Its original definition is beyond the scope
of this book, but see Harville (1997, Chapter 13) or Searle (1982,
Chapter 4) for further information. However, we note here that det(A)
is equal to the product of the eigenvalues of A; i.e.,

det(A) =

q∏
i=1

λi.

The matrix A in (2.1) has eigenvalues 3 and 1, so det(A) = 3×1 = 3.

3. If A = diag(a1, a2, . . . , aq) is a diagonal matrix (all its off-diagonal
elements are zero), then det(A) = a1 × a2 × · · · × aq; i.e.,

det(A) =

q∏
i=1

ai.

4. The determinant of a 2 × 2 matrix can be calculated very simply
without recourse to eigenvalues.

Result 2.2.2. A 2× 2 matrix

A =

[
a b
c d

]
has det(A) = ad− bc.

Thus, for A in (2.1), det(A) = 2× 2− 1× 1 = 3 (as shown above).

5. If A is a q× q matrix and k is a constant, then det(kA) = kq det(A).
For example, if A is 4× 4, then det(3A) = 34 det(A) = 81 det(A).
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6. If det(A) 6= 0, then there exists a matrix, denoted by A−1 and called
the inverse of A, which satisfies AA−1 = A−1A = Iq, where Iq is
the q × q identity matrix. The vector u is an eigenvector of A with
corresponding eigenvalue λ if and only if u is an eigenvector of A−1

with eigenvalue λ−1. [You can see why we require det(A) 6= 0. If
det(A) =

∏
λi = 0, then at least one of the eigenvalues of A equals

zero, and we cannot find the reciprocal of 0.] If det(A) 6= 0, so A−1

exists, the property det(A−1) = [det(A)]
−1

holds.

7. When A and B are both q × q matrices, the result det(AB) =
det(A)× det(B) holds. Also, det(A>) = det(A).

8. If A is a q × q symmetric matrix of constants and x is a q × 1 vector
of variables, then the scalar x>Ax is called a quadratic form. This
name comes because x>Ax is the sum of terms that are all of the form
aijxixj , where aij is the (i, j) element of A and xi is the ith element
of x. A quadratic involves the product of a variable by another (not
necessarily distinct) variable. For example, if q = 3, x = (x1, x2, x3)>

and

A =

 2 1 −1
1 3 −2
−1 −2 4

 ,
then

x>Ax = 2x21 + x1x2−x1x3 + x2x1 + 3x22−2x2x3−x3x1−2x3x2 + 4x23

= 2x21 + 2x1x2 − 2x1x3 + 3x22 − 4x2x3 + 4x23.

Quadratic forms will arise in the selection of optimal designs, and we
will be interested in maximising or minimising terms of the form x>Ax,
subject to the restriction that x>x = 1; i.e., that x is normalized. The
following result is what is needed.

Result 2.2.3. Let A be a q× q symmetric matrix of constants and x be
a normalized q×1 vector of variables; i.e., x>x = 1. Denote by λmax and
λmin the maximum and minimum eigenvalues of A, respectively, and let
umax and umin be the corresponding normalized eigenvectors. Then

• the maximum value of x>Ax is λmax, and occurs when x = umax;

• the minimum value of x>Ax is λmin, and occurs when x = umin.

The proof of Result 2.2.3 is beyond the scope of this book, but it may
be easily demonstrated for the 2×2 matrix A given in (2.1). It is known
from the earlier examination of A that its two eigenvalues are λmax =
3 and λmin = 1, with corresponding normalized eigenvectors umax =
(1/
√

2, 1/
√

2)> and umin = (1/
√

2,−1/
√

2)>. Then Result 2.2.3 says that,
for normalized x, the maximum value of x>Ax is 3, and occurs when
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x = umax. The minimum value is 1, and occurs when x = umin. This
will now be verified.

A normalized 2× 1 vector may be written as x = (
√

(1−z2), z)>, where
−1 ≤ z ≤ 1. It is clear that x is normalized, as x>x = (1− z2) + z2 = 1.
Under this definition, the first component of x is nonnegative, while
the second component may be positive or negative. If you are concerned
that this might be “cheating,” please note that each component could be
replaced by its negative without altering the result, as (−x)>A(−x) =
(−1)2x>Ax = x>Ax.

Then

q = x>Ax =
[√

(1− z2), z
] [ 2 1

1 2

] [ √
(1− z2)
z

]
= 2(1− z2) + 2

√
(1− z2)z + 2z2,

= 2 + 2z
√

(1− z2), so

dq

dz
=

2− 4z2

(1− z2)1/2
, and

d2q

dz2
=

−6z

(1− z2)3/2
.

So (dq)/(dz) = 0 when 2 − 4z2 = 0, or z = ±1/
√

2. When z = 1/
√

2,
(d2q)/(dz2) < 0, so the turning point is a maximum, and direct sub-
stitution shows that q = 3 = λmax and x = (1/

√
2, 1/
√

2)> = umax.
When z = −1/

√
2, (d2q)/(dz2) > 0, so the turning point is a min-

imum; substitution of z = −1/
√

2 shows that q = 1 = λmin and
x = (1/

√
2,−1/

√
2)> = umin. This confirms what was stated in Re-

sult 2.2.3.

Figure 2.2 shows a plot of x>Ax vs. the value of z from which x is
determined. The graph supports the conclusions drawn above for the
values of the maximum and minimum of x>Ax and the values of x that
give these values.

2.3 Restrictions on independent variables

It was shown in Example 2.2.1 that y = x2 − 2x− 3 has a minimum at
x = 1, but that no maximum exists. This is obvious from Figure 2.1:
y →∞ as x→ ±∞. However, if the values of x are restricted to the set
X1 = {x : −1 ≤ x ≤ 3}, it is seen that y has two equal maxima of 0, at
x = −1 and x = 3. If x is required to belong to X2 = {x : 0 ≤ x ≤ 4}, the
global (or “overall”) maximum is y = 5 at x = 4, and a local maximum
is y = 0 at x = 0. None of the points mentioned here (which all lie on
the boundaries of the sets of x-values) is indicated by standard calculus.
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Figure 2.2 A plot of q = x>Ax vs z ∈ {z : −1 ≤ z ≤ 1}, where A is
given in (2.1) and x = (

√
(1− z2), z)>. The marked points are a minimum at

(x, y) = (−1/
√

2, 1) and a maximum at (x, y) = (1/
√

2, 4).

Denote by R the set of real numbers, and by Rq the set of q × 1 vectors
whose every element is a real number; Rq is often called “q-dimensional
space.” For a q × 1 vector of mathematically independent variables, x,
locating a minimum or maximum value of y = f(x) in a restricted
segment of Rq is a nontrivial problem. Finding a maximum or minimum
of a function is often called optimising the function. When this is done
under some restrictions (or constraints) on the possible values that x
can take, the process is called constrained optimisation.

The problem of finding an optimal design for some GLM will generally
reduce to optimising some numerical property of the design with some
constraints in place: constrained optimisation. A preliminary examina-
tion of how this is done in R will be made by examining some properties
of potential designs considered earlier in Chapter 1.

Consider the straight line regression model Yi = β0 + β1x + Ei (i =
1, . . . , N), where the Ei are considered to be independent observations
from a N(0, σ2) distribution. From (1.9), (1.10) and the material imme-

diately below these equations, the vector of ML estimates, β̂ = (β̂0, β̂1)>,
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has covariance matrix

σ2

N
∑N
i=1(xi − x̄)2

[ ∑N
i=1 x

2
i −

∑N
i=1 xi

−
∑N
i=1 xi N

]
. (2.2)

In Example 1.5.1, values of x were constrained to belong to the set
X = {x : 0 ≤ x ≤ 1}. Two experimental designs, each with n = 10
observations, were considered. Design 1, an “equispaced” design, had one
observation at each of 0, 1/9, 2/9, . . . , 1, while Design 2, an “extremities”
design, placed five observations at each of 0 and 1. Denote by V1 and V2

the values of cov(β̂) under Designs 1 and 2, respectively. It was shown
in Example 1.5.1 that

V −11 =
σ2

55

[
19 −27
−27 54

]
and V −12 =

σ2

5

[
1 −1
−1 2

]
.

Suppose that we wish to choose between Designs 1 and 2 by selecting
the one with the smaller value of var(β̂1). Clearly Design 2 is to be

preferred as it gives var(β̂1) = 2σ2/5 = 0.4σ2, while Design 1 gives

var(β̂1) = 54σ2/55 = 0.9818σ2. To facilitate the comparison of the two
designs, it is customary to assume that the value of σ2 is the same for
the two designs.

However, the aim in this book is to find optimal designs, which in this
case would mean the design for 10 observations from X that has the
overall minimum value of var(β̂1). From (2.2), the general equation for

var(β̂1) when N = 10 is

var(β̂1) =
σ2

10
∑10
i=1(xi − x̄)2

× 10 =
σ2∑10

i=1(xi − x̄)2
. (2.3)

This expression is minimised by maximising
∑10
i=1(xi− x̄)2 . It is evident

that this is done by maximising the distance of each xi from x̄, the
average of all 10 xi, and that, for x1, . . . , x10 ∈ X , this is achieved by
setting five of the xi equal to 0 and the remaining five xi equal to 1.
In other words, Design 2 is the optimal design under the criterion of
minimising var(β̂1) for n = 10 observations from X . No computing was
required to find this optimum design.

Of course, the minimisation of var(β̂1) is only one possible criterion for
selecting a design. There are several others that might be considered.
Suppose that we had wanted to minimise var(β̂0) in (2.2).

This is being considered as an example only. It is unlikely that it would
be regarded as more important to minimise var(β̂0) than to minimise
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var(β̂1). Direct evaluation shows that var(β̂0) = 19σ2/55 ≈ 0.34545σ2

for the “equispaced” design, whereas var(β̂0) = 0.2σ2 for the “extrem-
ities” design. So clearly the latter design is also the better of the two
designs for minimising var(β̂0). But is it the optimal design?

Program 1 in the Web site doeforglm.com generates 10 values from the
uniform distribution on the interval from x = 0 to x = 1, then calculates

V =
10∑
i=1

x2i

/
[10

10∑
i=1

(xi − x̄)2] =
10∑
i=1

x2i

/
[10

10∑
i=1

x2i − (
10∑
i=1

xi)
2] (2.4)

The transition from the first expression for V to the second uses (1.11).

The generation of x-values and calculation of V is done repeatedly, the
number of times being determined by the value of the program param-
eter nsimulations. Whenever a smaller value of V is detected, the new
minimum and the corresponding set of 10 x-values are recorded.

A seed for the simulations can be specified. A seed is a numerical input
to a random generation process that starts the process at a specific
(but unknown) random number. The advantage of specifying a seed is
that repeating the calculations using exactly the same data (e.g., if you
modify the program and want to see if you get the same results as before)
can be done by specifying the same seed again. If you have no interest
in using the same randomly generated data a second time, the easiest
thing to do is simply not to specify a seed, and R will generate one
automatically without telling you what it is.

For seed = 1234 and nsimulations = 10000, a value of V = 0.1621958 was
obtained. This shows that neither Design 1 nor Design 2 is optimal for
minimising var(β̂0). Increasing nsimulations and altering the seed gave
further reductions in the value of V , until finally a value of V = 0.123704
was obtained from seed = 2245 and nsimulations = 20 million. After
sorting from smallest to largest, and rounding to four decimal places,
the 10 values of x were 0.0026, 0.0076, 0.0088, 0.0266, 0.0450, 0.0523,
0.0564, 0.0631, 0.1301, and 0.9665. It might not be possible to control x
to four decimal places, so let us investigate the effect on the variance of
rounding each x-value to two decimal places instead. The value of V is
now 0.123958, a slight increase.

Performing twenty million simulations is not really sensible, for two rea-
sons. One is that it is “over-kill,” in the sense that 200 simulations would
be adequate to ascertain that neither of the candidate designs is opti-
mal, as other designs give smaller values of V . The second reason is
that twenty million simulations is insufficient to find the actual optimal
design; the best that it will do is to give a design that is approaching
optimality.
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Instead, we need to use a program that is designed to search for an
optimum (either a minimum or a maximum, as appropriate; here it is
a minimum). Applied mathematicians have devised many optimisation
routines to locate an optimum. However, not all of them are useful in
the present situation. A procedure is required that will minimise the
variance in (2.4) subject to the constraints that 0 ≤ xi ≤ 1 for each
i = 1, . . . , 10. This is an application of constrained optimisation.

2.4 Constrained optimisation in R

2.4.1 The function constrOptim

An R function that will perform constrained optimisation is constrOp-
tim. In this section, the input to constrOptim is denoted by a vector v.
Note that, here, v represents all possible variables that may be of in-
terest, and not just the set of mathematically independent explanatory
variables used to model the link function g(µ). The function constrOptim
is a minimisation routine, but can be used for maximisation by changing
the function to be optimised from f(v) to −f(v), as the value of v that
minimises f(v) will maximise −f(v).

In its simplest form, constrOptim requires you to specify

1. the function of v to be minimised,

2. an initial guess of the value of v where the minimum occurs, and

3. the constraints that the variables in v must satisfy.

Consider these items in turn.

• The argument of f(v) must be the full vector v. You cannot input
just some of the values of v unless you have modified the definition
of f(v).

• An initial guess at the value of v where f(v) is minimised can be any
vector within the region of interest, provided that it does not lie on
the boundary of that region. The optimum may lie on the boundary,
but the initial guess must not.

• Suppose that there are c constraints. These must be specified to con-
strOptim in the matrix form

Cv − u ≥ 0c,

where v is the v×1 vector of variables,C is a c×v matrix of constants,
u is a c×1 vector of constants, and 0c is the c×1 vector whose every
element is zero. The values of C and u form input to constrOptim.

While constrOptim can find minima that lie on the boundary of the
region of interest, be aware that this may be a lengthy process. To quote
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from part of the information obtained by typing help(constrOptim)

into R: Minima in the interior of the feasible region are typically found
quite quickly, but a substantial number of outer iterations may be needed
for a minimum on the boundary.

Example 2.4.1. We return to the task of minimising var(β̂0), and fol-
low the three dot points above.

• As σ2 is assumed to be constant for all designs, it can be removed from
the calculations. So the function of v = (x1, . . . , x10)> to be optimised
is

h(v) =
1

σ2
var(β̂0) =

∑10
i=1 x

2
i

10
∑10
i=1(xi − x̄)2

=
10∑
i=1

x2i

/[
10

10∑
i=1

x2i − (
10∑
i=1

xi)
2

]
. (2.5)

The R function

varbeta0hat <- function(x)

{

a <- sum(x^2)

v <- a/(10*a - (sum(x))^2)

v

}

(which appears online in doeforglm.com as Program 2) takes a vector
x of length 10 and calculates the required function. An R function
that works for a vector of arbitrary length N would require only one
more command, and appears in the online resources as Program 3, but
I have chosen to illustrate the optimisation with a vector of specific
length 10.

• A vector of 10 values selected from the uniform distribution (e.g.,
x <- runif(10)) would provide an acceptable starting point for con-
strOptim. However, you need try only a few starting points generated
this way to discover that constrOptim may sometimes halt at a lo-
cal minimum rather than at the global minimum.(This is like finding
yourself at the bottom of a mine shaft, but not at the bottom of the
deepest mine shaft). Using a good estimate of the value of x that gives
an optimum will save lots of time.

In this case, my excessive zeal in running 20 million simulations has at
least given a guess of the optimal design that should be “good”: 0.0026,
0.0076, 0.0088, 0.0266, 0.0450, 0.0523, 0.0564, 0.0631, 0.1301, and
0.9665. None of these values lies on either boundary of the design
space {x : 0 ≤ x ≤ 10}.
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• Consider the constraint 0 ≤ x1 ≤ 1. This can be broken into two parts:
(i) 0 ≤ x1, which is equivalent to 1 × x1 − 0 ≥ 0, and (ii) x1 ≤ 1,
which is equivalent to −x1 ≥ −1, or (−1)× x1 − (−1) ≥ 0. Applying
this to each of x1, . . . , x10, the constraints are represented by the two
matrix equations I10x− 010 ≥ 010 and −I10x− (−110) ≥ 010, where
I10 is the 10× 10 identity matrix and 110 is the 10× 1 vector whose
every element is one. These two matrix equations may be merged to
one equation of the form Cv − u ≥ 0 by writing[

I10
−I10

]
v −

[
010

−110

]
≥
[

010

010

]
.

Unfortunately, it is easy to make a mistake when calculating a constraint
or entering it to R via the matrix C or the vector u. Getting the sign
wrong with an element of u (e.g., “1” instead of “−1”) is one such
error. Fortunately, this usually results in a warning from R that the
initial value is not in the interior of the feasible region. If you get such
a warning, and the initial guess seems to be satisfactory, it is likely that
you have misspecified one or more of the constraints.

The program that I ran appears below. It can be found in the Web site
doeforglm.com as Program 4. Note that the call to constrOptim mentions
the initial guess, the function to be optimised, the matrix C and the vec-
tor u, but it also contains two items (NULL and method="Nelder-Mead")
that have not yet been discussed. I will return to these items shortly.

¬

diag10 <- diag(1,10)

cmat <- rbind(diag10,-diag10)

uvec <- rep(c(0,-1),each=10)

Segment ¬ creates the identity matrix I10 and the matrix C and vector
u needed to define the constraints on the vector v of variables that are
input to constrOptim.

­

varbeta0hat <- function(x)

{

a <- sum(x^2)

v <- a/(10*a - (sum(x))^2)

v

}

Segment ­ defines the function varbeta0hat (see page 33).

®

start <- c(0.0026,0.0076,0.0088,0.0266,0.0450,0.0523,0.0564,0.0631,
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0.1301,0.9665)

out <- constrOptim(start,varbeta0hat,NULL,cmat,uvec,

method="Nelder-Mead")

out

The starting value of v is defined in Segment ®, then constrOptim is
called and its output is requested.

The output from this set of commands began with the following:
$par
[1] 1.387818e-05 2.283848e-05 3.110337e-05 3.848474e-05 3.484312e-07
[6] 5.247694e-04 3.261214e-06 2.393693e-07 3.483386e-06 9.925468e-01

$value
[1] 0.111127

$counts
function gradient

3006 NA

The output gives the values of x1, . . . , x10 at which constrOptim has cal-
culated that the minimum value of the variance occurs, and suggests that
this minimum value is 0.111127. This minimum is clearly less than the
value V = 0.123704 found earlier, so the program has been useful. At this
stage, we might notice that the first nine values of xi differ from 0 only
by “numerical noise” (my thanks to Rolf Turner for this expression),
and the last value differs from 1 by quite a small amount.

Lots of experience with constrOptim suggests that replacing values very
close to boundaries by the actual boundary values often gives a better
solution, so I tried

v <- c(0,0,0,0,0,0,0,0,0,1)

varbeta0hat(v)

and obtained the value 0.1111111 (i.e., one-ninth, to seven decimal
places). This is such an “elegant” answer that it seems likely to be cor-
rect (and substituting these values of xi into the function shows that the
value is exactly one-ninth).

So it is believed that the minimum value of var(β̂0) is σ2/9, and occurs
for the design x1 = . . . = x9 = 0, x10 = 1. This result will be revisited
in Section 2.4.3.

Of course, the “elegance” of a solution does not justify a claim of op-
timality. We will see in Section 3.9 how to test whether a suspected
optimum is, in fact, an optimum.

Note also in the above output from constrOptim that there were 3006
calls of the function varbeta0hat during the search for the minimum.
There were zero calls of the “gradient.” The gradient has not been men-
tioned yet, but is discussed now.
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2.4.2 Additional features of constrOptim

It was mentioned on page 34 that one feature of constrOptim being used
is "method=Nelder-Mead" . This refers to the algorithmic method used
by constrOptim to find a minimum. The Nelder-Mead algorithm (Nelder
& Mead, 1965) is an all-purpose method that does not require knowledge
of the partial derivatives of f(v) with respect to each of the predictor
variables v1, . . . , vn. The use of NULL in

constrOptim(start,varbeta0hat,NULL,cmat,uvec,method="Nelder-Mead")

tells the algorithm that the vector of “gradients” (partial derivatives)

∂f

∂v
=

(
∂f

∂v1
,
∂f

∂v2
, . . . ,

∂f

∂vn

)>
is not being provided by the user.

Let us examine the effect of providing the vector of partial derivatives. As
there are no variables other than x1, . . . , x, then v = x = (x1, . . . , xn)>.
Given h(v) = h(x) in (2.5), it follows that

∂h

∂xj
=

2
(∑10

i=1 xi

)(∑10
i=1 x

2
i − xj

∑10
i=1 xi

)
[
10
∑10
i=1 x

2
i −

(∑10
i=1 xi

)2]2 j = 1, . . . , 10.

The following R function will calculate the vector of partial derivatives:

gradvar <- function(x)

{

a <- sum(x^2)

b <- sum(x)

num <- 2*b*(a - b*x)

denom <- (10*a - b^2)^2

gradvector <- num/denom

gradvector

}

Then I ran the following program (which, together with gradvar, also appears
in Program 4 in the online resources).

start <- c(0.0026,0.0076,0.0088,0.0266,0.0450,0.0523,0.0564,0.0631,

0.1301,0.9665)

out <- constrOptim(start,varbeta0hat,gradvar,cmat,uvec)

out

(with NULL replaced by the name of the gradient function, and method="Nelder-Mead"

omitted). Compare this with Segment ® on page 33.

The following output was obtained:
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$par

[1] 2.07716e-08 5.74861e-08 4.20601e-07 1.97813e-10 4.62986e-09

[6] 7.22590e-08 1.06816e-08 3.91662e-09 1.73889e-07 9.75805e-01

$value

[1] 0.1111111

$counts

function gradient

714 136

Note that the values of the first nine values of x are smaller numerical noise
than in the previous run of constrOptim, but that the value of x10 is not as
close to 1 as it was previously. However, you might guess that the minimum
occurs at x1 = . . . = x9 = 0 and x10 = a, for some value of a close to
1. Additionally the minimum value of varbeta0hat in the region is given as
0.1111111. Lastly, it can be seen that there were only 714 calls to the function
(as compared with 3006 previously), and 136 calls to the gradient function
gradvec before the algorithm converged. This suggests that it was worthwhile
using the gradient function.

Unfortunately, there will be many occasions in this book when the function
to be minimised is very complicated, and calculating its partial derivatives is
not feasible. In these cases, the Nelder-Mead algorithm will be used.

2.4.3 Constrained optimisation without constrOptim

While the use of constrOptim generally leads to an appropriate solution, it
has some disadvantages:

• Each constraint is of the form c>v− u ≥ 0 for some vector c and scalar u.
In particular, we can specify that δ1 + · · ·+ δs ≤ 1, but we cannot require
δ1 + · · · + δs = 1. I have occasionally received output from constrOptim
where δ1 + · · ·+ δs was about 0.98.

• The need to check that each constraint is satisfied at each new solution slows
down constrOptim. This can be a disadvantage if you need to optimise a
complicated function, particularly if there is a large number of variables in
the problem.

A means of imposing constraints on the values of variables without formally
specifying the constraints is to define the variables in such a way that they
automatically satisfy those constraints. Some of the material here, together
with additional discussion, can be found in Atkinson, Donev, & Tobias (2007,
Section 9.5).

Select variables z1, z2, . . . from either a subset of R, or from anywhere in R
(i.e., without restriction), for input to the optimisation routine. Inside the
function to be optimised, use appropriate transformations v1 = g1(z1), v2 =
g2(z2), . . . so that the variables v1, v2, . . . meet the required constraints. As well
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as determining the appropriate transformations from z1, z2, . . . to v1, v2, . . .,
you need to know how to return from v1, v2, . . . to z1, z2, . . ., in case you wish
to modify the output from the optimisation routine to create a new guess of
the optimum point.

We will consider several different situations:

1. We require vi ≥ 0. Then we select zi ∈ R, and calculate vi = z2i . While
the original zi might be either +

√
vi or −√vi, nothing will be lost if we

consistently use zi =
√
vi to find the inverse.

2. We require 0 ≤ vi ≤ 1. Again we select zi ∈ R, and then calculate either
vi = sin2 zi or vi = cos2 zi (as, for any angle θ, −1 ≤ sin θ ≤ 1 and
−1 ≤ cos θ ≤ 1). Then appropriate inverses are zi = sin−1(

√
vi) (also

known as arcsin(
√
vi)) and zi = cos−1(

√
vi) (also known as arccos(

√
vi)),

respectively. The appropriate R function names are sin, cos, asin and acos.
The input to sin and cos, and the output from asin and acos, are in units of
radians, not of degrees. Note that 2π radians equals 360◦. Thus sin(pi/2)

equals sin 90◦; i.e., sin(π/2) = 1.

3. We require −1 ≤ vi ≤ 1. Here we select zi ∈ R, and then calculate either
vi = sin zi or vi = cos zi. The appropriate inverses are zi = arcsin(vi) and
zi = arccos(vi). One could also choose zi ∈ {z : 0 ≤ z ≤ 1} and calculate
vi = sin(πzi) or vi = cos(πzi), for which the inverses are zi = arcsin(vi)/π
or zi = arccos(vi)/π, respectively.

4. We require a ≤ vi ≤ b for arbitrary b > a. Here we select zi ∈ R, and then
calculate either vi = [(b+a)+(b−a) sin zi]/2 or vi = [(b+a)+(b−a) cos zi]/2.
The appropriate inverses are zi = arcsin{[2vi − (b + a)]/(b− a)} and zi =
arccos{[2vi − (b+ a)]/(b− a)}.

5. We require design weights δ1, . . . , δs to satisfy 0 < δi < 1 (i = 1, . . . , s) and
δ1 + · · ·+ δs = 1. Here we select z1, . . . , zs in R and calculate

δi = z2i

/
s∑
j=1

z2j (i = 1, . . . , s). (2.6)

The set (z1, . . . , zs) giving rise to a set of design weights (δ1, . . . , δs) is
not unique. For any c 6= 0, the set (cz1, . . . , czs) will give the same
(δ1, . . . , δs). To obtain a set (z1, . . . , zs) that generates the set of design
weights δ1, . . . , δs, note that (2.6) implies that

z2`
z2m

=
δ`
δm

for `,m ∈ {1, . . . , s}.

Let m = s and arbitrarily set z2s = 1. This gives z2` = δ`/δs, or

z` =
√
δ`/δs (` = 1, . . . , s).

Let deswts be a set of s design weights in R calculated according to (2.6).
Then the command zvec <- sqrt(deswts/deswts[s]) will calculate that
set of initial weights z1, . . . , zs for which zs = 1.
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6. For case 5 above, Atkinson, Donev, & Tobias (2007, p. 131) provided an
alternative transformation to produce a set of design weights. It is

δ1 = sin2z1

δ2 = sin2z2 cos2z1
...

δi = sin2zi

i−1∏
j=1

cos2zj (i = 2, . . . , s− 1)

...

δs =

s−1∏
j=1

cos2zj .

The design weights can be shown to add to 1 by repeated use of the result
sin2θ + cos2θ = 1. Although s design weights are produced, only (s − 1)
generators z1, . . . , zs−1 are required.

To return from (δ1, . . . , δs) to a non-unique (z1, . . . , zs−1) that could have
generated it, note that δ1 = sin2 z1 and that δi = (sin2 zi)(1 − δ1 − · · · −
δi−1) for i = 2, . . . , (s − 1). From here, it is straightforward to calculate
(z1, . . . , zs−1).

The following two functions (both to be found in Program 5 in the online
resources) will

(i) calculate (δ1, . . . , δs) from a vector (z1, . . . , zs−1), and

(ii) calculate (z1, . . . , zs−1) from a vector (δ1, . . . , δs).

The functions use the R functions cumsum and cumprod (cumulative
sum and cumulative product). For a = (a1, a2, a3, . . .)

>, cumsum(a) gives
(a1, a1 + a2, a1 + a2 + a3, . . .)

>, and cumprod(a) equals (a1, a1 × a2, a1 ×
a2 × a3, . . .)>.

(i) Calculate (δ1, . . . , δs) from (z1, . . . , zs−1)

deswtstrig <- function(zvec)

{

term1 <- (sin(zvec))^2

term2 <- cumprod(1 - term1)

deswts <- c(term1,1)*c(1,term2)

deswts

}

(ii) Calculate (z1, . . . , zs−1) from (δ1, . . . , δs)

zvectrig <- function(deswts)

{

s <- length(deswts)

temp <- c(0,deswts[1:(s-2)])
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ratios <- deswts[1:(s-1)]/(1-cumsum(temp))

z <- asin(sqrt(ratios))

z

}

2.4.4 Notes and examples

Here we consider the six imposed constraints from Section 2.4.3.

1. We require vi ≥ 0. To let a2 be the maximum possible value for vi, use
the R command v <- (a*runif(s))^2. The command runif(s) generates
s values randomly from the uniform distribution between 0 and 1. Multi-
plying them by a gives values between 0 and a, after which the squaring
of the values gives s numbers between 0 and a2. To return to a vector of
values z from which v can be obtained by squaring each element of z, use
z <- sqrt(v).

2. We require 0 ≤ vi ≤ 1. To generate s values of vi randomly, I would
generate values of zi between 0 and π/2 (as sin2 zi can take any pos-
sible value between 0 and 1 for some zi between 0 and π/2) using
zvec <- (pi/2)*runif(s). Inside the R function to be optimised, an

early command should say something like xvec <- (sin(start[i:j])^2

where the ith to jth elements of start contain the elements of zvec.

3. We require −1 ≤ vi ≤ 1. If using vi = cos zi, then an appropriate
initial interval for zi is {z : 0 ≤ z ≤ π}, as cos zi takes all values
between −1 and 1. The vector zvec can be randomly generated from
zvec <- pi*runif(s). If using vi = sin zi, an appropriate interval for zi
is {z : −π/2 ≤ z ≤ π/2}. The vector zvec can be randomly generated by
zvec <- pi*(runif(s)-0.5). The sine transformation is a little messier
than the cosine to use, so I will use only the cosine transformation. Now
suppose that, once the optimisation is completed, the vector vvec contains
the transformed values v1, . . . , vs. Then zvec <- acos(vvec) will produce
the pre-transformed values.

4. We require a ≤ vi ≤ b for arbitrary b > a. Produce zvec by
zvec <- pi*runif(s), and then use

vvec <- (b+a + (b-a)*cos(zvec))/2

to obtain the constrained values. To return from the final value of vvec to
an appropriate zvec, use zvec <- acos((2*vvec - (b+a))/(b-a)).

5. We require design weights δ1, . . . , δs that satisfy 0 < δi < 1 (i = 1, . . . , s)
and δ1 + · · ·+δs = 1. To generate an initial vector (zvec) of values between
0 and 1, and then produce design weights, use

zvec <- runif(s)

zsq <- zvec^2

vvec <- zsq/sum(zsq)

As stated on page 38, the command zvec <- sqrt(vvec/vvec[s]) will
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produce pre-transformed values corresponding to the final constrained vari-
ables in vvec. An important advantage of this command is that it does not
require the elements of vvec to sum to 1. Such an event might arise through
the elements of vvec being rounded to a small number of decimal places, or
if several support points are removed from, or added to, an existing design.

2.4.5 Using the function optim

Suppose that the function to be optimised has z1, z2, . . . as part of its input.
Let the transformations that convert the zi to constrained values form the
initial commands of the function. Then the function may be optimised using
the R function optim rather than constrOptim. This will generally lead to
faster computations.

Invoking optim takes the form

out <- optim(start,functionname,NULL,method="Nelder-Mead")

where the four inputs have exactly the same meaning as they did in con-
strOptim (see Section 2.4.1). However, the matrix C and the vector u from
constrOptim are not required here.

Example 2.4.2. The use of transformations to impose constraints on the
values of a predictor variable is now illustrated. Recall Example 2.4.1, in which
the expression

1

σ2
var(β̂0) =

10∑
i=1

x2i

/[
10∑
i=1

x2i − (

10∑
i=1

xi)
2

]

was to be minimised, subject to 0 ≤ xi ≤ 1, (i = 1, . . . , 10).

One could generate appropriate starting values using start <- runif(10).
However, there is nothing in optim to prevent alternative solutions being pro-
duced that do not lie in the appropriate domain. To prevent this, the modified
function

varbeta0hat <- function(z)

{

x <- (sin(z))^2

a <- sum(x^2)

v <- a/(10*a - (sum(x))^2)

v

}

can be used. It differs from the earlier function varbeta0hat on page 33 through
the addition of the first line (x <- (sin(z))^2). This forces each element
of the vector of x-values to lie between 0 and 1, so the function optim will
automatically perform constrained optimisation. The following commands in
Segment ¬ perform the optimisation:

¬
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set.seed(12345)

start <- (pi/2)*runif(10)

out <- optim(start,varbeta0hat,NULL,method="Nelder-Mead")

After optim has been run, it is necessary to transform the optimal values of
z (which need not lie between 0 and 1) to the corresponding values of x that
do lie between 0 and 1. The commands in Segment ­ do this, and print the
minimised value of the function.

­

xvals <- (sin(out$par))^2

xvals

out$val

On a single run of the program, with the seed set to 12345 so that you can
verify the results if you wish to do so, the following output was obtained:

> xvals

[1] 0.05388945 0.07645511 0.01682182 0.97108745 0.01397726

[6] 0.01275970 0.08584063 0.03176969 0.81508308 0.01135588

> out$val

[1] 0.1367082

So the minimum value of (1/σ2)var(β̂0) found from this single use of optim is
0.1367082.

From Example 2.4.1, it is known that a minimum of 0.1111111 was found. Of
course, this was obtained from a large number of searches for an optimum. At
least two options are available. The first is to specify a value (k, say) for nsim-
ulations (the number of simulations to be run), and then to generate k start-
ing values for (x1, . . . , x10)> and record that design for which (1/σ2)var(β̂0)
is a minimum. The second option is to use, as an initial guess, the solution
0.0026, 0.0076, 0.0088, 0.0266, 0.0450, 0.0523, 0.0564, 0.0631, 0.1301, and
0.9665 that was found from 20 million simulations without any attempt at
optimisation (see page 31).

Option 1 The following program was used:

set.seed(12345)

nsimulations <- 1000

min <- 10

for (i in 1:nsimulations)

{

start <- (pi/2)*runif(10)

out <- optim(start,varbeta0hat,NULL,method="Nelder-Mead")

if(out$val < min) {min <- out$val

solution <- out$par}

}

xvals <- (sin(solution))^2

xvals

min
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This gave the output
> xvals
[1] 1.875476e-05 3.420228e-07 2.451684e-05 5.418596e-05 3.006119e-05
[6] 1.170911e-06 1.644166e-06 8.037705e-01 3.853950e-06 2.021875e-08

> min
[1] 0.1111152

Option 2 This program was used:

start <- sqrt(asin(c(0.0026,0.0076,0.0088,0.0266,0.0450,0.0523,

0.0564,0.0631,0.1301,0.9665)))

out <- optim(start,varbeta0hat,NULL,method="Nelder-Mead")

xvals <- (sin(out$par))^2

xvals

out$val

Note that the tentative solution consisted of x-values, whereas the input to the
function varbeta0hat needs to consist of z-values. So the first of the commands
in Option 2 performs a conversion from x-values to z-values. The result of this
single run of optim was

> xvals
[1] 8.158784e-05 2.111352e-04 3.944535e-05 4.932786e-06 1.701881e-04
[6] 6.968760e-08 2.907663e-06 5.089606e-05 4.432624e-05 9.381707e-01

> out$val
[1] 0.1111271

It is fairly clear from the results of either Option 1 or Option 2 that, as found in
Subsections 2.4.1 and 2.4.2, the optimal solution has x1 = x2 = . . . = x9 = 0
and x10 = a, for some still-to-be-determined value of a satisfying 0 < a ≤ 1.
(The value of a must not equal 0, or else all 10 values of xi would be equal.
One cannot estimate the slope or y-intercept of a line with just one x-value.)

In fact, if one substitutes x1 = . . . = x9 = 0 and x10 = a (> 0) into (2.5), one
obtains an answer of 1/9 = 0.1111111 irrespective of the value of a. It seems
that there is not a unique set of values of x1, . . . , x10 that minimise var(β̂0).

In such circumstances, one could recognise the existence of β̂1 in the estimation
of the parameters. Simply noting that var(β̂1) is minimised when the x-values
are at the extremities would suggest that a = 1 should be chosen. Another
approach would be to ask what is the best design for minimising var(β̂0) when
β1 is in the model. This will be investigated in Sub-section 3.7.5.

2.4.6 Initial values for optimisations

It will be apparent from the examples already seen that an optimisation rou-
tine is not guaranteed to find an optimal value of a function. It depends very
much on the initial value entered into the routine. This should not be sur-
prising. If you were to be dropped at random at some point in the Himalayan
mountains and you were able to reach the peak of the highest mountain in
sight, would you be at the top of Mount Everest? Not necessarily! It would
depend very much on whether you were dropped close to Mount Everest.
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If you have some knowledge of roughly what is the optimal design (the values of
the support points and of their design weights), then certainly you should use
that knowledge to suggest a starting value for the optimisation routine. That
knowledge may arise because you have already performed an optimisation
routine for a similar value of the parameter vector β. However, if you have
no useful knowledge of a starting value, my preference is to generate some
permissible starting values of x1, . . . ,xs and (δ0, . . . , δs)

> at random, find the
‘optimal’ design from amongst those found so far, then use minor adjustments
to this design as a set of starting values for further searches, and so on . . .
This will be demonstrated numerous times in subsequent chapters.

2.5 Numerical integration

In the study of calculus, the topic of differentiation is generally followed by
integration (occasionally called “anti-differentiation”). This is sometimes the
first topic where scientists do not study the mathematics learnt by mathe-
maticians and statisticians, so a brief consideration will be given to it and to
an extension of it. The expression∫ b

a

f(x) dx

is read as “the integral from x = a to x = b of the function f(x) with respect
to x,” and it can be interpreted as the area in the (x, y)-plane that is bounded
by the curve y = f(x), the straight line y = 0, and the two straight lines x = a
and x = b. This is the area of the region that is shaded in Figure 2.3.

For many functions f(x), there is a mathematical expression for the value
of the integral in (2.5), and this value can either be calculated exactly or
to as much precision as is required. However, there are other functions for
which such a value cannot be obtained, either because of the nature of the
function or because there is no simple way to write the function in terms of
x. For these latter functions, the integral must be evaluated by approximate
methods, generally known as numerical integration. A well-known example of
the results of numerical integration is the standard normal tables that appear
at the back of most statistics textbooks; all the probabilities were originally
calculated by numerical integration.

Basic methods of numerical integration, such as Simpson’s rule, are often
taught in high school mathematics. Simpson’s rule says that∫ b

a

f(x) dx ≈ b− a
6

[
f(a) + 4f(

a+ b

2
) + f(b)

]
, (2.7)

which allows the definite integral of a function to be approximated by use of
the values of the function at several values of x.

If f(x) = c0 + c1x + c2x
2 + c3x

3 (with at least one ci being nonzero), the
expression on the right of (2.7) is in fact the exact value of the integral. For
more complicated functions, the expression is just an approximation to the
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0

y = f(x)

Figure 2.3 The area of the shaded region is the value of the integral
∫ b
a
f(x) dx.

value of the integral. The approximation can be improved by splitting the
interval from x = a to x = b into several mutually exclusive and exhaustive
sub-intervals, applying the result to each sub-interval, and then adding the
individual approximations together to give an overall answer.

Suppose that [a, b] is divided into n sub-intervals of equal width. Let x2i−2,
x2i−1 and x2i represent the least value, midpoint and greatest value of x in
the ith interval (i = 1, . . . , n), and let h = (b− a)/(2n) represent the distance
between two consecutive values of x. Note that, for all but the last interval,
the greatest value of an interval is also the least value of the next interval. It
then follows that (2.7) can be generalised to∫ b

a

f(x) dx ≈ h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+ 2f(x2n−2) + 4f(x2n−1) + f(x2n)]. (2.8)

Example 2.5.1. Consider the function

f(x) = e−x[2 + sin(ux) + sin(vx)]/2,

where u and v are constants. The integral

I(u, v) =

∫ 1

0

f(x) dx (2.9)
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can be shown to equal

I(u, v) = 1− e−1 +

[
u− e−1(u cosu+ sinu)

1 + u2
+
v − e−1(v cos v + sin v)

1 + v2

]
/2,

so strictly speaking there is no need to evaluate the integral numerically. How-
ever, it has been chosen as an example of an integral that is not trivial.

(i)
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Figure 2.4 Plots of f(x) in (2.5.1) vs. x ∈ (0, 1) for (i) u = 1, v = 1 and (ii)
u = 40, v = 20.

Figure 2.4 contains plots of f(x) vs. x for (i) u = 1, v = 1 and (ii) u =
40, v = 20. The plot in (i) is smooth, while that in (ii) is quite “wiggly.” The
smoothness of the curve in (i) allows Simpson’s rule in (2.8) to work very
well even when the interval from 0 to 1 is divided into just two sub-intervals,
each of width 0.5. Simpson’s rule gives a value of 0.8777845, which agrees well
with the exact answer of 0.8779576 (to seven decimal places). In case (ii), the
wiggliness means that Simpson’s rule requires a large number of sub-intervals in
order for the curve in any sub-interval to be smooth, and more sub-intervals do
not necessarily give an answer closer to the true value. Table 2.1 contains the
answers given by Simpson’s rule for varying number of sub-intervals of equal
width. The approximation for four sub-intervals is not closer to the true value
of 0.6683673 than the value for two sub-intervals, but a good approximation is
achieved if the number of sub-intervals is increased sufficiently.

Number of sub-intervals of equal width
2 4 10 20 40 50

0.7577521 0.4545241 0.6202149 0.6710641 0.6684748 0.6684094

Table 2.1 Approximations given by the application of Simpson’s rule using
varying numbers of equal-width segments to the integral in (2.9) for u = 40
and v = 20. The true value is 0.6683673.
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The formula in (2.8) can be written more generally as∫ b

a

f(x) dx ≈
2n∑
i=0

wif(xi),

where wi is the “weight” associated with the ith x-value (or “abscissa”). The
use of this formula requires f(x) to be evaluated (2n+ 1) times.

Simpson’s rule can be extended to integrals of more than one variable. Con-
sider the double integral ∫ b

a

∫ d

c

f(x, y) dy dx,

which is the volume of a solid in three dimensions. An understanding of what
this solid represents is not necessary to proceed further in this book. Suppose
that the intervals from a to b and from c to d are divided into n and m sub-
intervals of lengths (b− a)/n and (d− c)/m, respectively. Then the Simpson’s
rule approximation to the above integral is of the form

2n∑
i=0

2m∑
j=0

wijf(xi, yj),

where wij represents a weight. The function f(x, y) must be evaluated a total
of (2n+ 1)(2m+ 1) times.

Some of the calculations in later chapters will require use of numerical inte-
gration. Because the value of the function f(·) will be calculated many times,
it is necessary to try to make the R program as efficient as possible in order
for the computations to be done in an acceptable time period.

2.6 Conclusion

This chapter has given mathematical results needed in the search for an op-
timal design for a GLM. This book uses the freely available software R to
perform the necessary computations. Examples have been given of some of
the programs that will be used.

The function constrOptim may be used to achieve constrained optimisation.
However, it is recommended that the function optim be used in conjunction
with transformations whose results give input variables that satisfy the re-
quired constraints.

The concept of numerical integration has been introduced. It will be used in
Sections 4.8 and 5.4 and in Chapter 7.
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Chapter 3

The Theory Underlying Design

3.1 Introduction

Chapter 3 provides most of the background material for the rest of the book.
It describes various criteria that are in use to select optimal designs, and
emphasises the general equivalence theorem, which enables a researcher to
check whether a design is actually optimal. A problem is discussed that arises
if the total number of observations is small. The material in the chapter is
illustrated by numerous examples.

3.2 Notation

The notation to be used in the remaining chapters is now introduced.

Recall that both general and generalized linear models use a linear predictor,
η, to model the mean of an observation on a random variable, Y . Write m for
the number of mathematically independent explanatory variables used in the
linear combination of parameters, η. Denote these variables by x1, . . . , xm, and
write x = (x1, . . . , xm)>. Let there be p parameters in η. These will generally
be denoted by β0, β1, . . . , βp−1, and will form the elements of the p× 1 vector
β = (β0, . . . , βp−1)>. In η, the coefficient of each βi will be a function (called
a “regressor”) of one or more of x1, . . . , xm. Denote by fi(x) the function that
is the coefficient of βi (i = 0, . . . , p− 1), and write

f(x) = (f0(x), f1(x), . . . , fp−1(x))> .

It follows that

η = f0(x)β0 + · · ·+ fp−1(x)βp−1 = f>(x)β.

3.3 Designing an experiment

3.3.1 Exact and approximate designs

Designing an experiment requires (i) the selection of values of x at which obser-
vations on Y will be made, and (ii) a determination of how many independent
observations on Y will be made at each x.

If x is one of the points used in the design, it will be called a support point of
the design. Denote by s the number of support points. Let ni (> 0) represent
the number of independent observations made at the ith support point, xi.

49
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Write N = n1 + · · · + ns. Then δi = ni/N is the proportion of observations
taken at xi. Clearly δi > 0 (i = 1, . . . , s) and δ1 + · · ·+ δs = 1. The quantities
δ1, . . . , δs are called the design weights of the s support points.

It is convenient to describe a design ξ by the collection of support points
x1, . . . ,xs ∈ Rm and their corresponding design weights. We write

ξ =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
. (3.1)

Example 3.3.1. Recall from page 18 that Design 2 was intended for m = 1
explanatory variable (x1, written as x for simplicity). It had s = 2 support
points, at x = 0 and x = 1, and the 10 observations were allocated five each
to the support points. Then we could write

ξ2 =

{
0 1

5/10 5/10

}
to represent Design 2. This design was intended specifically for N = 10 ob-
servations. If we had designed the experiment for N = 12 observations, the
design would have had six observations at each support point, and the design
weights would have been written as 6/12 and 6/12.

Designs that are created for a specific value of N are called exact designs, and
the design weights are left as fractions (with no cancellation performed) to
indicate the value of N . That is, the design weights of ξ2 are not written as
0.5 for each of x = 0 and x = 1 when the design is an exact design.

In an approximate design, also called a continuous design, the design weights
are usually given as decimals (but not always: design weights that are recurring
decimals are best left as fractions; e.g., 1/3). Approximate designs represent
idealised designs that are rarely exactly achievable. For example, a design
with three support points and design weights 0.25, 0.5 and 0.25 can only be
achieved if N is a multiple of four. If the weights are (say) 0.233, 0.534 and
0.233, an exact design is not achievable for small values of N .

3.3.2 Constructing an exact design from an approximate design

Approximate designs represent a “target” at which we can aim when pro-
ducing an exact design. It is assumed that the values of the support points
xi (i = 1, . . . , s) are left unchanged in the exact design. When the value of N
has been established, then we can investigate designs for which ni ≈ Nδi (i =
1, . . . , s). Unfortunately, the ni produced in this way are rarely integers. If
nonintegral values are rounded to the nearest integer, it often happens that
the resulting sample sizes do not sum to N . Various methods have been sug-
gested to overcome this difficulty. Pukelsheim (1993, Chapter 12) describes
an efficient apportionment that allocates sample sizes ni (i = 1, . . . , s) to the
various support points. These sample sizes satisfy

∑
i ni = N , and the method

of apportionment is shown by Pukelsheim to have optimal properties. Addi-
tionally, the method works if the recording of the values of the δi to a specified
number of decimal places leads to

∑
δi not equalling 1 exactly.
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In some situations, the efficient apportionment does not give a unique set of
sample sizes (n1, . . . , ns). This occurs when several quantities being ranked
from smallest to largest have tied values, and the various apportionments
correspond to different tied values being selected by the procedure. Pukelsheim
(1993, Exhibit 12.2, p. 310) considers the situation where s = 3 and δ1 = 1/6,
δ2 = 1/3 and δ3 = 1/2. Pukelsheim shows that three apportionment sets
occur when N = 6k + 1 or N = 6k + 2 for k = 1, 2, 3, . . ., but that a unique
apportionment occurs for other values of N . For example, when N = 8, the
apportionments (2, 3, 3), (2, 2, 4) and (1, 3, 4) may all be used but, when N = 9,
only (2, 3, 4) is indicated.

Program 6 in doeforglm.com will perform an efficient apportionment when
given the values of N and δ1, . . . , δs. Where more than one efficient apportion-
ment exists, the program will tell you that more than one exists and select
one at random. To see more than one such apportionment, run the program
several times.

Example 3.3.2. Suppose that s = 5 and δ1 = 0.246, δ2 = 0.301, δ3 = 0.109,
δ4 = 0.125 and δ5 = 0.219. For N = 18, Program 6 gives the unique efficient
apportionment

4 5 3 2 4

as compared to the result

4 5 2 2 4

(which does not sum to 18) that occurs with simple rounding of each Nδi.

An exact design constructed from an approximate design will not be optimal
because the proportions of observations taken at the support points have been
altered slightly from the optimal values. However, it is likely to be “close to
optimal.” A comparison of an approximate design with its exact counterpart
will be considered in an example in Section 4.7.

3.3.3 Constructing an exact design directly

One can also construct a “close to optimal” exact design by modifying the
function that is to be optimised by either optim or constrOptim. One first
selects the number of support points desired, remembering that it is necessary
to have s ≥ p. These will have weights 1/s each, although it is possible that the
optimisation procedure may select a support point more than once, thereby
giving it a greater weight. This occurrence will be illustrated in Section 4.7.

The modification of the function is straightforward. Instead of giving v =
(x11, . . . , x1s, x21, . . . , x2s, . . . , xms, δ1, . . . , δm) as the argument of the func-
tion, one gives v = (x11, . . . , x1s, x21, . . . , x2s, . . . , xms) as the argument, and
specifies the values of δ1, . . . , δm either in the global environment or inside the
program where they cannot be altered by the optimisation routine.

Example 3.3.3. A function called detinfomat appears twice in the program
beginning on page 106. The function has z = (z1, . . . , z(m+1)s) as its argu-
ment. Inside the unmodified function, z1, . . . , zms are transformed to values
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x11, . . . , x1s, x21, . . . , x2s, . . . , xms that satisfy the criteria −1 ≤ xij ≤ 1 (i =
1, . . . ,m; j = 1, . . . , s), while zms+1, . . . , z(m+1)s are transformed to δ1, . . . , δs,
with 0 ≤ δi ≤ 1;

∑
i δi = 1. From these constrained values, the information

matrix M(ξ,β) is calculated, followed by −det[M(ξ,β)]. This is achieved by
the following part of the function:

lim1 <- m*s

lim2 <- (m+1)*s

detinfomat <- function(variables)

{

xmat <- matrix(cos(pi*variables[1:lim1]),m,s,byrow=T)

zvec <- variables[(lim1+1):lim2]

deswts <- zvec^2

deltavec <- deswts/sum(deswts)

:

If, instead, the design weights are to be 1/s for each of s support points, the
argument of the function, variables, should have only ms elements. The start
of the program may be reduced to

deltavec <- rep(1/s,s)

detinfomat <- function(variables)

{

xmat <- matrix(cos(pi*variables),m,s,byrow=T)

:

A numerical example appears in Sub-section 4.7.

An alternative method of constructing a “close to optimal” exact design in-
volves the use of a program to construct optimal Bayesian designs, and is
deferred to Section 7.4.

3.4 Selecting the support points

3.4.1 Thinking about criteria for selection

Most work on general and generalized linear models considers the analysis of
data that are thought to follow a particular model that involves m explana-
tory variables x1, x2, . . . , xm and possibly some functions of them (e.g., x1x2).
We postulate a linear model that says that some function of a distribution
parameter is equal to a linear combination of the unknown model parameters
β0, . . . , βp−1. The aim of the analysis is to estimate the values of β0, . . . , βp−1,
and to test hypotheses about their true values, with the aim of refining the
linear combination.

In most textbooks, the data to be analysed are simply presented to us. The
researcher believed that the response variable might be affected by the values
of the explanatory variables. How were the values of the explanatory variables
selected? Does it matter how they were selected? Yes, it does matter.
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A situation already considered is where the mean of the response variable Y
depends on the value of an explanatory variable, x, and the following relation-
ship is specified:

• g(µ) = µ = η = β0 + β1x;

• the variance of Y takes the same value, σ2, for all values of x;

• for a given value of x, the distribution of Y is normal.

If necessary, x has been scaled so that it takes values between 0 and 1, and
we assume that we can afford to take observations on Y at n = 10 values of
x. Where should those values be?

To answer this question requires the formulation of some criteria about what
interests us in the model. We shall shortly see various commonly used criteria
but, for the moment, we shall assume that we simply want to estimate the
value of the slope (β1) “as well as possible.”

What does this mean? Mathematical theory tells us that the LS and ML
estimator of β1 is unbiased. This means that if many samples are taken and the
estimate of β1 is calculated for each sample, the average value will theoretically
equal the true value of β1. This will occur irrespective of what set of ten points
we use. However, the spread of these estimates around the true β1 does depend
on the particular set of ten points chosen, and we would prefer to use the design
that gives the smallest spread (the smallest standard error of the estimator).

Recall Design 1 and Design 2 from Example 1.5.1, where we considered just
the variance of β̂1 for the standard straight line regression. Program 7 in the
online resources generates samples of 10 observations from the two designs.
It uses the arbitrary values β0 = 2, β1 = 0.7 and σ = 0.4 for purposes of
demonstration. By simple changes to the program, you can alter the number
of simulations, and the true values of β0, β1 and σ. To eliminate any concern
that differences between the results from the two designs might depend on the
random errors associated with the observations, the same errors are used for
both designs in any single run of the program. A seed has been specified in the
program so that, if you wish, you can emulate the program exactly and check
that you get the same results as are presented here. If you are not interested
in checking this, just omit the command line that sets the seed.

The following results were obtained from 1000 simulations of conducting the
experiment using each design. Design 1 (the “equispaced” design) has 10 inde-
pendent observations, one each at x = 0, 1/9, 2/9, . . . , 8/9, 9/9, while Design
2 (the “extremities” design) has five independent observations at x = 0 and
five independent observations at x = 1. Table 3.1 contains the average and
standard deviation of the 1000 estimates of β1 obtained from each design, and
Figure 3.1 shows boxplots of the two sets of 1000 estimates of β1.

The value of β1 used in the simulations was 0.7. The average values of β̂1
from the two designs are both very close to 0.7. The standard deviation of the
estimates from the “extremities” design is about 65% of the corresponding
value from the “equispaced” design.
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Design
Equispaced Extremities

Mean 0.7137061 0.7004807
Std. dev. 0.3948611 0.2554848

Table 3.1 Means and standard deviations of 1000 estimates of β1 = 0.7 from
two different designs.

The results of these simulations are consistent with the theoretical results
obtained for the variance of β̂1 under Designs 1 and 2 in Example 1.5.1, where
var(β̂1) was 54σ2/55 for Design 1 and 2σ2/5 for Design 2. With σ = 0.4,
this suggests standard errors of

√
(54 × 0.42/55) = 0.3963 for Design 1 and√

(2× 0.42/5) = 0.2530 for Design 2.

The difference in the distributions of the estimates from the two designs is
shown clearly in Figure 3.1. Using the “extremities” design makes it more
likely that the estimate of β1 will be close to the true value. This suggests
that the “extremities” design is to be preferred to the “equispaced” design.

Equispaced Extremities
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Figure 3.1 Boxplots of 1000 estimates of β1, from the designs with support
points equispaced over, and at the extremities of, the domain of x.

Q: Could this result be influenced by the values chosen for β0, β1 or σ?

A: No. The results agree very well with theory. But you don’t have to trust this
statement. Change the values of β0, β1 and/or σ in Program 7, then run the
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program and check what happens. You can change the number of simulations,
too, if you wish — but don’t make it too small, or sampling error might distort
the results.

There is one situation where the “extremities” design might not be appro-
priate. This is when the relationship between the response variable and the
predictor variable, x, is not a straight line. If the true relationship is quadratic,
or cubic, or . . . , this cannot be detected by a design with only two distinct
values of x. Figure 3.2 shows the unique straight line passing through two
points, and also shows two of the infinitely many parabolas (curves that have
a quadratic relationship between y and x) that also pass through these two
points. The “extremities” design cannot tell you which of these three relation-
ships (or others) is appropriate.

x

y

0 1

●

●

Figure 3.2 The unique straight line and two of the infinitely many parabolas
that pass through the indicated two points.

If you are sure that the true relationship between µ and x is a straight line, use
the “extremities” design. If there is some doubt about whether it is a straight
line, use a design that can detect possible curvature. You might do this by
reducing the number of observations at x = 0 and x = 1 to four each, and
taking two observations at x = 0.5. Is this the “best” design? We will consider
this question in Example 3.7.3.

Choosing between various designs by considering the precision of the estima-
tors that we obtain is effectively the same as looking at the widths of the
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confidence intervals for β0 and β1. Under the usual statistical assumptions
underlying the general linear model, the vector of estimators, β̂ = (β̂0, β̂1)>,
has a bivariate normal distribution with mean β = (β0, β1)> and covariance
matrix σ2V , where V = [F>diag(n1, . . . , ns)F ]−1 (see page 16), written as

β̂ ∼ N2(β, σ2V ). (3.2)

Let vij represent the (i, j) element of V , i = 1, 2; j = 1, 2. It follows that
β0 ∼ N(β0, σ

2v11) and β1 ∼ N(β0, σ
2v22), which implies that

β̂0 − β0√
(σ2v11)

∼ N(0, 1) and
β̂1 − β1√
(σ2v22)

∼ N(0, 1).

As the value of σ2 is unknown, we would replace it by the Residual MS
(ResMS) from the ANOVA table of the analysis. The statistic ResMS has
(N − 2) degrees of freedom. This leads to the results

β̂0 − β0√
(ResMS v11)

∼ tN−2 and
β̂1 − β1√

(ResMS v22)
∼ tN−2.

Then 100(1− α)% confidence intervals for β0 and β1 are respectively(
β̂0 − tN−2,1−α/2

√
(ResMS v11), β̂0 + tN−2,1−α/2

√
(ResMS v11)

)
and (

β̂1 − tN−2,1−α/2
√

(ResMS v22), β̂1 + tN−2,1−α/2
√

(ResMS v22)
)
,

where tN−2,1−α/2 represents the 100(1−α/2)% quantile of the tN−2 distribu-
tion; e.g., t12,0.95 = 1.782.

We have already determined the designs for N = 10 which individually min-
imise the widths of these two intervals.

If these intervals are both plotted on the (β0, β1) plane, they mark out a
rectangular region. See Example 3.4.1 and Figure 3.3. However, the formation
of this region takes no account of the fact that the estimators β̂0 and β̂1
are correlated. Knowledge of the correlation should help to identify values of
(β̂0, β̂1) that are comparatively unlikely to occur. Consequently, we should be
able to replace the rectangular region by an alternative region that is more
informative. This region is called a confidence region. We will now derive a
confidence region for (β0, β1). For this case, where p = 2, the region will be an
ellipse. A confidence region for p = 3 model parameters will be an ellipsoid (of
the general shape of a Rugby football or an Australian or American football).
A confidence region for p > 3 parameters is called a hyperellipsoid; this name
is also used as an all-purpose name for the region for any value of p.

From (3.2), it follows that

(β̂ − β)>(σ2V )−1(β̂ − β) ∼ χ2
2.
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Dividing the expression on the LHS by 2, and replacing the unknown value of
σ2 by ResMS gives the result

(β̂ − β)>(ResMSV )−1(β̂ − β)/2 ∼ F2,N−2.

As V −1 = F>diag(n1, . . . , ns)F , it follows that W ∼ F2,N−2, where

W = (β̂ − β)>[F>diag(n1, . . . , ns)F ](β̂ − β)/(2× ResMS).

Hence a 100(1 − α)% joint confidence region for (β0, β1) is given by W ≤
F2,N−2; 1−α, where F2,N−2; 1−α is the 100(1 − α)% quantile of the F2,N−2

distribution.

Example 3.4.1. Suppose that the “equispaced” design for N = 10 is used,
and an experiment is run in which the value of Y is observed at each of the
10 values of x. Then, from page 18,

V = [F>diag(n1, . . . , ns)F ]−1 =
1

81

[
19 −27
−27 54

]
,

and v11 = 19/55 and v22 = 54/55.

Further suppose that the statistical analysis produced the results β̂0 = 0.74,
β̂1 = 1.28 and ResMS = 4.35. If individual 95% equal-tailed confidence in-
tervals are constructed for β0 and β1, then t10−2,1−0.025 = t8,0.975 = 2.306 is
used, and the confidence intervals are

β0 :
(
β̂0 − t8,0.975

√
(ResMS v11), β̂0 + t8,0.975

√
(ResMS v11)

)
= (0.74− 2.306

√
(4.35× 19/55), 0.74 + 2.306

√
(4.35× 19/55))

= (−2.087, 3.567),

β1 :
(
β̂1 − t8,0.975

√
(ResMS v22), β̂1 + t8,0.975

√
(ResMS v22)

)
= (1.28− 2.306

√
(4.35× 54/55), 1.28 + 2.306

√
(4.35× 54/55))

= (−3.486, 6.046).

As F2,8;0.95 = 4.4590, the joint confidence region for (β0, β1) is

(β̂ − β)>[F>diag(n1, . . . , ns)F ](β̂ − β)/(2× 4.35) ≤ 4.4590

or, equivalently,

(β − β̂)>[F>diag(n1, . . . , ns)F ](β − β̂) ≤ 2× 4.35× 4.4590.

This consists of the boundary and interior of the ellipse given by

(β − β̂)>[F>diag(n1, . . . , ns)F ](β − β̂) = 38.79304.

The centre of the ellipse is at (β̂0, β̂1).
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Figure 3.3 The boundaries (dotted lines) of the individual 95% confidence in-
tervals for β0 and β1, and the joint 95% confidence region for (β0, β1) from
Example 3.4.1. The centre of the ellipse is marked by a solid point.

Figure 3.3 shows the rectangular region whose boundaries are created by the
individual confidence intervals for β0 and β1. The figure also shows the ellipse
that forms the boundary of the joint confidence region.

It can be seen that there are many values of (β0, β1) that lie within both indi-
vidual confidence intervals but do not lie in the joint confidence region. There
are also some values of (β0, β1) that lie in the joint confidence region but are
not within both individual confidence intervals.

The joint confidence region makes use of the fact that β̂0 and β̂1 are negatively
correlated (correlation = −0.843). This means that it is very unlikely that we
would get a “much higher than average” estimate of β0 in conjunction with a
“much higher than average” estimate of β1, or a “much lower than average”
estimate of β0 in conjunction with a “much lower than average” estimate of
β1. This lets us regard some values of (β0, β1) as unlikely to occur (in an
intuitive sense).

Figure 3.3 illustrates the advantage of using a joint confidence region rather
than individual confidence intervals. The region has a smaller area than the
rectangle obtained from the individual intervals. However, as we want to find
a good experimental design, we might wonder: can we get a better confidence
region (one with smaller area) than the one we have? The answer is “yes!”
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We need to use the following fact.

Result 3.4.1. Let x and x0 be p×1 vectors, and let S be a symmetric positive
definite p× p matrix. The volume of the hyperellipsoid

(x− x0)>S−1(x− x0) = r2

is given by
V = Vp [det(S)]1/2 rp, (3.3)

where Vp is the volume of a p-dimensional unit hypersphere.

There are several aspects of Result 3.4.1 that need not concern us. The first
is the value of Vp. There is a formula for this, but all that matters here is
that its value is a constant for a given value of p. (This value is the area of a
circle of radius 1 in p = 2 dimensions, the volume of a sphere of radius 1 in
p = 3 dimensions, . . . .) Secondly, the use of r2 on the right-hand side (RHS)
implies that the RHS must be positive. As our application of the formula
has the RHS equal to 2 × ResMS × Fp,n−p;1−α, the RHS will be positive.
We shall replace x by β, x0 by β̂ and S−1 by F>diag(n1, . . . , ns)F , giving
S = [F>diag(n1, . . . , ns)F ]−1.

In seeking to minimise the volume of the hyperellipsoid in (3.3), the only
quantity that we can alter by selection of the design is [det(S)]1/2 ={

det[F>diag(n1, . . . , ns)F ]−1
}1/2

=
{

det
[
F>diag(n1, . . . , ns)F

]}−1/2
. The

minimisation of this determinant is equivalent to the maximisation of
det
[
F>diag(n1, . . . , ns)F

]
.

For the example of simple linear regression with N = 10 points and p = 2
parameters, we have

F>diag(n1, . . . , ns)F =

[
10

∑10
i=1 xi∑10

i=1 xi
∑10
i=1 x

2
i

]
.

So

det
[
F>diag(n1, . . . , ns)F

]
= 10

10∑
i=1

x2i − (

10∑
i=1

xi)
2 = 10

10∑
i=1

(xi − x̄)2,

and we have already seen that this is maximised by maximising the spread of
the x-values: setting five of the x-values equal to 0 and five of them equal to
1. This is the “extremities” design. It follows (see Example 1.5.1) that

F>diag(n1, . . . , ns)F =

[
10 5
5 5

]
.

You might be wondering whether there is really much difference between the
confidence regions generated by our two candidate designs. Figure 3.4 illus-
trates the 95% confidence regions obtained for the two designs using the earlier
values of β̂0 = 0.74, β̂1 = 1.28 and ResMS = 4.35. (These are kept constant
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Figure 3.4 95% confidence regions for the “equispaced” and “extremities” de-
signs of Example 1.5.1. The point in the centre is (β̂0, β̂1). The “extremities”
design gives an ellipse of lesser area.

so that only the design has changed.) No extra observations have been taken
— the only difference between the designs is the location of the x-values at
which the observations were made. But the confidence region for the optimal
(“extremities”) design has much smaller area than the region for the alterna-
tive (“equispaced”) design. Choosing the optimal design was very worthwhile.

3.4.2 The standardised variance

In straight line regression, the line ŷ = β̂0 + β̂1x is used to predict the value
of y for a specified value of x. Irrespective of the design, the expected value
of β̂0 + β̂1x is β0 + β1x. However, the variability of estimates around the true
value depends upon the design that was chosen. So we might choose between
competing designs on the basis of minimising the variance of β̂0 + β̂1x. This
variance is a function of x, so we could calculate var(β̂0 + β̂1x) for all values
of x in the design space, and choose the design that gives the most desirable
values of the variance.

Note that β̂0 + β̂1x = f>(x)β̂, where f>(x) = (1, x). Then

var(β̂0 + β̂1x) = var
[
f>(x)β̂

]
= f>(x)cov(β̂)f(x).
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From (3.2), it follows that

var(β̂0 + β̂1x) = σ2f>(x)[F>diag(n1, . . . , ns)F ]−1f(x).

A disadvantage of basing a comparison between designs on this variance is
that the variance depends directly on the number of observations being taken
on a design. If the number of observations made at each support point is
doubled, the variance will be halved. In order to ensure that a comparison of
designs is “fair”, we need to take account of the value of N , the total number
of observations used in a design. Similarly, we also need to assume that the
error variance, σ2, is the same for the two designs. These two aims can be met
by considering not var(β̂0 + β̂1x), but instead N × var(β̂0 + β̂1x)/σ2, which is
called the standardised variance. That is,

standardised variance = N f>(x)[F>diag(n1, . . . , ns)F ]−1f(x). (3.4)

This allows a comparison of different designs, irrespective of the values of N
and σ2.

Although the formula for the standardised variance was derived for a stan-
dard straight line regression, it is in fact also true for a quadratic, cubic, . . .
polynomial of x.

Example 3.4.2. Example 1.5.1 considered two designs of N = 10 observa-
tions each: the “equispaced” and “extremities” designs. The designs were in-
tended for the model Yi = β0+β1xi+Ei (i = 1, . . . , 10) for values of x between
0 and 1. Using the values of [F>diag(n1, . . . , ns)F ]−1 for the two designs, as
found in Example 1.5.1, the standardised variances for the two designs have
been calculated for all x between 0 and 1. The standardised variances are plot-
ted in Figure 3.5.
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Figure 3.5 Plots of the standardised variances of the “equispaced” and “ex-
tremities” designs for all x satisfying 0 ≤ x ≤ 1.
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It is evident from Figure 3.5 that the standardised variance for the “extremi-
ties” design is less than the standardised variance for the “equispaced” design
for all values of x except 0.5, where the two standardised variances are equal.
As the aim is to choose the design with the smaller standardised variance, we
would prefer the “extremities” design.

3.5 Generalized linear models

3.5.1 Theory

Recall from (1.21) that the covariance matrix of the estimated parameter
vector, β̂, is I−1, where the (j, k) element of I is

Ijk =

s∑
i=1

ni
fijfik

var(Yi)

(
∂µi
∂ηi

)2

, j, k ∈ {0, . . . , p− 1}.

As fijfik is the (j, k) element of fif
>
i , we can write

I =

s∑
i=1

ni
1

var(Yi)

(
∂µi
∂ηi

)2

fif
>
i .

Recall from (1.12) that it is usual to write var(Y ) as φV (µ). So 1/var(Yi) may
be replaced by 1/[φV (µi)]. It will be convenient to write

ωi = ω(xi) =
1

φV (µi)

(
∂µi
∂ηi

)2

, i = 1, . . . , s, (3.5)

and to call ω(xi) the model weight at the ith support point. Note that ω(xi)
is actually a function of var(Yi) = φV (µi), and of the link function g(·),
β and xi through the relationships g(µi) = ηi = f>(xi)β and var(Y ) =
φV (µ). However, for a given design problem, the functions V (µ), g(µ) and the
quantities φ and β will not vary from support point to support point, so we
write the design weight as ω(xi) for simplicity.

In the discussion of the standardised variance on page 61, we saw the ad-
vantage of removing the effect of the total number of observations, N , from
consideration of an exact design. So the expression for I will be divided by N
to achieve this, giving the matrix

1

N

s∑
i=1

ni ω(xi)f(xi)f
>(xi) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi),

where δi = ni/N is the design weight of the ith support point (see page 50).
This is written as

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi). (3.6)

The matrix M(ξ,β) is called the information matrix. It is a function of the
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design ξ through the design weights and values of the support points, and it is
a function of β through the relationship g(µ) = f>(x)β and var(Y ) = φV (µ).

WhileM(ξ,β) was introduced for exact designs, it is convenient to use exactly
the same definition in (3.6) for approximate designs (see page 50), where the
design weight δi represents an idealised weight, or proportion of observations,
at the ith support point.

Notation: Some writers on designs for GLMs describe both δi and ωi simply
as “weights.” In this book, to avoid confusion, the quantities δi will always be
described as design weights, while the quantities ωi(xi) will be called model
weights. A design is characterised by the values of δi and xi that are selected,
but the model weights for that design may vary according to the model that
is chosen, which depends on the link function g(µ), the distribution of the
observations, and the vector, f(x), that is used in the linear predictor η =
f>(x)β.

3.5.2 Example: a simple logistic regression

Consider a logistic regression. Suppose that it is planned to conduct an ex-
periment with a binary outcome, Y ∈ {0, 1}, and we wish to determine the
relationship between the probability, π, of obtaining a 1 (“success”) and
the value of a single explanatory variable, x. We take ni observations at
x = xi (i = 1, . . . , s), with

∑
i ni = N . Denote by yij the value of the jth

observation at xi (j = 1, . . . , ni; i = 1, . . . , s).

Further suppose that the logit link function is used to predict π in terms of
x, with just p = 2 parameters; i.e., ln[π/(1 − π)] = η = β0 + β1x. Write
ηi = β0 + β1xi (i = 1, . . . , s). This corresponds to

πi =
exp(ηi)

1 + exp(ηi)
× exp(−ηi)

exp(−ηi)
=

1

exp(−ηi) + 1
. (3.7)

We can calculate (∂πi)/(∂ηi) directly from (3.7), giving

∂πi
∂ηi

=
exp(−ηi)

[exp(−ηi) + 1]2
=

1

exp(−ηi) + 1
× exp(−ηi)

exp(−ηi) + 1
= πi(1− πi).

Alternatively, we can start from ηi = ln[πi/(1− πi)], and get

∂ηi
∂πi

=
1

πi(1− πi)
.

Both approaches lead to the result

∂πi
∂ηi

= πi(1− πi). (3.8)

A standard result for the Bernoulli distribution (or a binomial(n, π) dis-
tribution with n = 1) is that var(Yij) = πi(1 − πi). Given the equation
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ηi = β0 + β1xi = f(xi)
>β, then f0(xi) = 1 and f1(xi) = xi. So (1.19) and

(1.21) lead to the score statistics

U0 =

s∑
i=1

ni∑
j=1

(yij − πi)
πi(1− πi)

× 1× πi(1− πi)

=

s∑
i=1

ni∑
j=1

(yij − πi) =

s∑
i=1

ni(ȳi· − πi), (3.9)

and

U1 =

s∑
i=1

ni∑
j=1

(yij − πi)
πi(1− πi)

× xi × πi(1− πi)

=

s∑
i=1

ni∑
j=1

(yij − πi)xi =

s∑
i=1

ni(ȳi· − πi)xi, (3.10)

and to the values of Ijk = cov(Uj , Uk):

I00 =

s∑
i=1

ni∑
j=1

1× 1

πi(1− πi)
× [πi(1− πi)]2

=

s∑
i=1

niπi(1− πi),

I01 = I10 =

s∑
i=1

ni∑
j=1

1× xi
πi(1− πi)

× [πi(1− πi)]2

=

s∑
i=1

niπi(1− πi)xi,

and

I11 =

s∑
i=1

ni∑
j=1

xi × xi
πi(1− πi)

× [πi(1− πi)]2

=

s∑
i=1

niπi(1− πi)x2i .

Let π̂i = 1/[exp(−β̂0 − β̂1xi) + 1] (i = 1, . . . , s), where β̂0 and β̂1 are the ML
estimators of β0 and β1. It follows from (1.17), (3.9) and (3.10) that the ML
estimators satisfy

s∑
i=1

ni(ȳi· − π̂i) = 0,

s∑
i=1

ni(ȳi· − π̂i)xi = 0.

(3.11)
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For s = 2, (3.11) becomes

n1(ȳ1· − π̂1) + n2(ȳ2· − π̂2) = 0

n1(ȳ1· − π̂1)x1 + n2(ȳ2· − π̂2)x2 = 0,

and a solution is

π̂1 = 1/[exp(−β̂0 − β̂1x1) + 1] = ȳ1·, (3.12)

π̂2 = 1/[exp(−β̂0 − β̂1x2) + 1] = ȳ2·. (3.13)

For x1 6= x2, these are two linearly independent equations in two unknowns (β̂1
and β̂2), so the solution will be unique. Equations (3.12) and (3.13) simplify
to

exp(−β̂0 − β̂1x1) =
1

ȳ1·
− 1 and exp(−β̂0 − β̂1x2) =

1

ȳ2·
− 1,

which reduce to

β̂0 + β̂1x1 = ln[ȳ1·/(1− ȳ1·)] = logit(ȳ1·)

β̂0 + β̂1x2 = ln[ȳ2·/(1− ȳ2·)] = logit(ȳ2·).

These equations imply

β̂1 =
logit(ȳ1·)− logit(ȳ2·)

x1 − x2

β̂0 =
x1logit(ȳ2·)− x2logit(ȳ1·)

x1 − x2
,

or equivalently

β̂1 =
ln[y1·/(n1 − y1·)]− ln[y2·/(n2 − y2·)]

x1 − x2
(3.14)

β̂0 =
x1 ln[y2·/(n2 − y2·)]− x2 ln[y1·/(n1 − y1·)]

x1 − x2
. (3.15)

Recall that yi· represents the sum of all yij for j = 1, . . . , ni (i = 1, 2).

For s > 2, the equations that are analogous to (3.12) and (3.13) are

π̂i = 1/[exp(−β̂0 − β̂1xi) + 1] = ȳi· (i = 1, . . . , s).

These s equations do not generally form a solution to (3.11), because the
solution in (3.14) and (3.15) from i = 1 and i = 2 cannot be expected to solve
the additional equations π̂i = 1/[exp(−β̂0 − β̂1xi)] = ȳi· for i > 2. Instead,
an iterative solution to (3.11) must be found. The method of obtaining an
iterative solution is described in Dobson & Barnett (2008, p. 66), but is not
of direct relevance to a consideration of designing the experiment.
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Example 3.5.1. Consider an experiment with s = 3 support points, where
n1 = n2 = n3 = 5, x1 = 0, x2 = 0.5 and x3 = 1. Suppose that analysing the
experiment leads to ȳ1 = 1/5, ȳ2 = 2/5 and ȳ3 = 2/5. A logistic regression
using the glm function in R gives the estimates β̂0 = −1.1752 and β̂1 = 0.9174.
This leads to the estimated probabilities of success at the three support points:
π̂1 = 1/[exp(1.1752 − 0.9174 × x1) + 1] = 0.2359, π̂2 = 0.3282 and π̂3 =
0.4439. Substituting these values into the left-hand sides of the two equations in
(3.11) gives 0 (to within rounding error) in each case. This suggests that β̂0 =
−1.1752 and β̂1 = 0.9174 are the ML estimates of β0 and β1 although, strictly
speaking, one should also check that the matrix of partial second derivatives of
` is negative definite; see the lines immediately below (1.17).

3.6 Difficulties caused by small samples

Consider again the solution in (3.14) and (3.15) for a logistic regression with
s = 2 support points. For n1 = n2 = 5, x1 = 0, x2 = 1 and ȳ1· = 3/5 and ȳ2· =
2/5, the statistical packages R, SAS and SPSS all give (to varying numbers
of decimal places) the same answer as (3.14) and (3.15): β̂0 = 0.4054651 and
β̂1 = −0.8109302. The result from the software agrees with the theory, as one
would expect.

However, as each yij is either 0 or 1, then 0 ≤ ȳi· ≤ 1 for each i, and logit(ȳi·)
will be undefined if the yij (j = 1, . . . , ni) are all 0, or all 1. In this case, β̂0
and β̂1 should be undefined. You might hope that this would produce an error
message from your software, but this does not necessarily occur. For example,
for n1 = n2 = 5, x1 = 0, x2 = 1, ȳ1· = 0/5 and ȳ2· = 3/5, R gives the solution

Estimate Std. Error z value Pr(>|z|)

(Intercept) -24.53650 57729.93 -0.0004250222 0.9996609

x 24.94197 57729.93 0.0004320457 0.9996553

SAS’s proc genmod gives estimates of β̂0 = −27.3633 and β̂1 = 27.7708.
The SPSS generalized linear models command gives the message, “A quasi-
complete separation may exist in the data. The maximum likelihood estimates
do not exist,” but it still provides a solution of β̂0 = −22.566 and β̂1 = 22.972.
To be fair, a researcher who looks at the standard errors of the estimates in
the output from any of these three packages would realise that something is
wrong because the values of the standard errors are very large. However, if
you are simply performing simulations of an experiment and then using the
software to evaluate the estimates, you would be seriously misled.

The problem of infinite values for the estimates β̂0, . . . , β̂p−1 also occurs for
s > 2 support points. Its cause cannot be so easily demonstrated, as explicit
expressions for the estimates do not exist when s > p. However, various authors
have investigated the matter. Albert & Atkinson (1984) considered the set of
n observations (yi,xi) from the experiment, and classified them into three
mutually exclusive and exhaustive categories: ‘complete separation,’ ‘quasi-
complete separation’ and ‘overlap.’ Only if the observations belong to the
‘overlap’ category are the ML estimates finite.
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The UCLA Statistical Consulting Group has a nice article (UCLA: Statistical
Consulting Group, 2015) giving examples of both complete separation and
quasi-complete separation, and showing examples of error messages that it
was able to obtain from the packages SAS, SPSS, and Stata. In the absence
of such error messages, it seems best to look for large values of the standard
errors. If a standard error is greater than 10, it is certainly worth having a
human (and not a computer) look at the output to see if a separation problem
is likely to have occurred.

As separation is a data analysis issue (i.e., it does not arise until after the
data have been collected), you may wonder why it is being considered in a
book on design. The first reason is that a good designer will not consider a
design completely in isolation of the subsequent analysis: if the data from the
design cannot be analysed in some particular circumstance, then the design
is of little value. Secondly, a good designer should try to mitigate the circum-
stances which prevent an analysis. In this case, the problem is the occurrence
of separation, and we know that larger samples will reduce the risk of the
occurrence of this problem.

For logistic regression with the simple model η = β0+β1x, it is straightforward
to calculate the probability that separation occurs when s = 2. Write πi =
1/[1 + exp(−ηi)] (i = 1, 2) for the probability of a “success” occurring when
x = xi, and let ni be the number of observations made at xi. Then the
probability that Yi equals 0 or ni is

pi =

(
ni
0

)
π0
i (1− πi)ni +

(
ni
ni

)
πni
i (1− πi)0 = πni

i + (1− πi)ni ,

and so the probability that Yi is neither 0 nor ni is (1 − pi). The values of
Y1 and Y2 are independent of one another, so the probability that separation
does not occur (neither Y1 nor Y2 take their minimum or maximum possible
values) is (1 − p1) × (1 − p2). Therefore the probability that separation does
occur is

psep = 1− (1− p1)(1− p2)

= 1− {1− [πn1
1 + (1− π1)n1 ]} {1− [πn2

2 + (1− π2)n2 ]} . (3.16)

Example 3.6.1. Assume that β0 = 0 and β1 = 1, and choose x0 = 0, x1 = 1
and n1 = n2 = 4. Then ηi = β0 + β1xi = xi, and πi = 1/[1 + exp(−xi)].
This gives π1 = 0.5 and π2 = 0.7311. So, from (3.16), the probability that
an experiment with these values of n1, n2, x1 and x2 will yield a result that
produces separation is

1− [1− (0.54 + 0.54)][1− (0.73114 + 0.26894)] = 0.3796.

If n1 and n2 are each increased to 10, the probability decreases to

1− [1− (0.510 + 0.510)][1− (0.731110 + 0.268910)] = 0.0455,

while if n1 = n2 = 20, the probability of separation occurring is 0.0019.
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Clearly the probability that the observations will not overlap decreases as each
value of ni (i = 1, . . . , s) increases. For a simple situation such as this one, it
is very easy to calculate in advance of the experiment the risk that separation
occurs, and it would be unwise to conduct the experiment with the planned
values of n1 and n2 if the risk of separation occurring is unacceptably high.

However, as the number of support points increases, it becomes more difficult
to calculate the probability of separation occurring. For example, for the same
values of β0 and β1, three support points at 0, 0.5 and 1, and n1 = n2 =
n3 = 4, you might expect the results Y1 = 0, Y2 = 4 and Y3 = 1 to lead to
separation, but they do not. You can use simulation to estimate the probability
of separation occurring. It is straightforward to simulate the conduct of a
designed experiment for various values of n1, . . . , ns and nominated values of
the parameters β0, . . . , βp−1, although obviously the running time increases
rapidly as the numbers of predictor variables and support points increase.
Program 8 in the online repository is set up to investigate s = 3 points for
p = 2 parameters. I have specified values of β0 and β1, and x1, x2 and x3 for
illustrative purposes only: no claim is made for any optimality of the design.

For β0 = 0 and β1 = 1, x1 = 0, x2 = 0.5 and x3 = 1, and
a seed of 12345, 1000 simulations led to a proportion of 0.072 of data
sets for which at least one of s.e.(β̂0) or s.e.(β̂1) exceeded 10 when
n1 = n2 = n3 = 4. (For each of the relevant simulations, the warn-
ing glm.fit: fitted probabilities numerically 0 or 1 occurred was
given.) Upon increasing the sample sizes to n1 = n2 = n3 = 10 (and changing
the seed to 54321), the proportion of samples with at least one standard error
greater than 1 was 0.

When x1 = −1, x2 = 0 and x3 = 0 were used as the support points, sample
sizes of n1 = n2 = n3 = 4 gave the result that the proportion of samples with
at least one standard error greater than 1 was 0.111; when n1 = n2 = n3 = 10
were used, the proportion of samples with at least one standard error greater
than 1 was 0.001.

There are two points to be drawn from this investigation:

• A sample that contains all zeros or all ones is more likely to occur if ni is
small. If you must use small sample sizes, do not use the standard maximum
likelihood method of estimation. An alternative method (and how to design
an experiment for it) will be described in Section 4.8.

• Any analysis (or a simulated investigation of the properties of the esti-
mators) should not consider only the values of the estimates. You must
consider the values of the standard errors as well.

3.7 Optimality

3.7.1 Number of support points

In seeking an optimal design, an important question is how many support
points are needed?
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The minimum number is p, the number of parameters. This is intuitively ob-
vious. At least two separate points are needed to estimate the two parameters,
β0 and β1, of a straight line, and at least three separate points are required to
estimate the three parameters, β0, β1 and β2, of a quadratic. See Figure 3.2 to
recall the situation that arises when there are only two points for a quadratic.

The maximum number of support points necessary for an optimal design can
be shown to be p(p + 1)/2 + 1, using Carathéodory’s Theorem. The proof is
beyond the scope of this book, but is given in Rockafellar (1970, p. 155) or
Silvey (1980, p. 77). Pukelsheim (1993, p. 190) showed that, if our interest is
in estimating all elements of the parameter vector β, then this upper limit can
be reduced to p(p+ 1)/2.

Comments

1. If the response variable is a real number, the limits of p and p(p + 1)/2
apply without exception.

2. If the response variable is categorical, the limits of p and p(p + 1)/2 are
for experiments where the response variable has only two categories as its
possible values. A Bernoulli random variable is an example of this. It has
two possible values, “success” and “failure,” but by recording the number
of successes (out of one), one automatically knows the number of failures.

In contrast, a multinomial random variable that has k (> 2) possible val-
ues (e.g., an experimental animal that receives a drug may Die, Partially
Recover or Fully Recover) requires the values of (k−1) of the categories to
be recorded before the last category is automatically known. Generalized
linear models are available to predict the outcomes of (k − 1) of the cat-
egories from knowledge of the explanatory variable(s). In such situations,
the values observed on some categories may provide information about the
parameters being used to predict the values of other categories, and the
limits of p and p(p + 1)/2 may be able to be reduced. This is discussed
further in Section 6.3.

The limits of p and p(p + 1)/2 for the number of support points may not
be appropriate for Bayesian designs. See Chapter 7.

3. A design with only p support points uses all the points to estimate the
parameters. There are no points available to check whether the model is
appropriate; e.g., whether a quadratic model should have been fitted instead
of a straight line. This will be considered in Sub-section 3.7.5.

Example 3.7.1. When p = 2, a design will have between p = 2 and p(p +
1)/2 = 3 support points. When p is 4, between p = 4 and p(p + 1)/2 = 10
support points will be required. If there are m explanatory variables, then a
computational search over s possible support points will have v = ms + s
variables whose values are to be found: the m coordinates of each of the s
support points, and the s design weights.

When searching for an optimal design, I would start with p(p+ 1)/2 support
points, and hope to find that the optimisation routine gives several design
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weights that are effectively 0. I would then reduce the number of support
points in the next search.

3.7.2 Optimality criteria

To select a design that is “optimal,” you need to decide what criteria the
design must satisfy for you to consider it optimal. There are numerous criteria
in common use, and a design that is optimal under some criteria need not
necessarily be optimal under others. (If you have ever looked at two people
in a relationship and wondered what one of them sees in the other, then the
previous sentence should not surprise you at all.)

Most criteria come under the heading of “alphabet optimality” because the
criterion’s name is a letter from the alphabet (e.g., D-optimality). An extensive
list of alphabetical optimality criteria are considered in Atkinson & Donev
(1992, Chapter 10). That discussion relates to designs under the general linear
model, and some minor adjustments would need to be made when considering
criteria applying to GLMs.

Table 3.2 provides a list of five commonly used alphabet criteria. There are
numerous other criteria that are used less frequently.

Optimality
Criterion The criterion seeks a design that minimises the

A- average of the variances of the parameter estimates
D- volume of a confidence hyperellipsoid for the parameters
Ds- volume of a confidence hyperellipsoid for a subset of the parameters,

taking into account the presence of the remaining parameters
E- maximum variance of a linear combination of parameter estimates,

a>β̂, where a>a = 1
G- maximum value of the standardised variance that occurs at any

point in the design space

Table 3.2 Common alphabet optimality criteria.

3.7.3 A-optimality

A design ξ∗A is A-optimal amongst a set of designs Ξ if it possesses the minimum
value of the average of the variances of the parameter estimates.

For an experiment in which all the explanatory variables x1, . . . , xm are real
variables, the A-optimality criterion is of little value. For example, if we have
the linear model η = β0 + β1x1 + β2x2 + β3x1x2, then the average of the
variances of the parameter estimates,

1

4

3∑
i=0

var(β̂i),

has little meaning, and so it is unlikely that one would wish to choose a design
that minimises this average.
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However, if some of the variables are indicator variables that show which
level of a treatment factor is associated with a particular observation (as in
Examples 1.1.2 and 1.1.4), then it can be shown that the A-optimality criterion
selects the design for which

1

t(t− 1)

t∑ t∑
i=1 j=1
i6=j

var(τ̂i − τ̂j)2

is a minimum. That is, the A-optimal design minimises the average of the
variances of the effects of the pairwise treatment differences, and this is indeed
a sensible criterion to apply when we wish to compare the effects of the t
different treatments.

As our interest in this book will mostly be with individual model parameters,
rather than with comparisons of parameters, no further consideration will be
given to the A-optimality criterion.

3.7.4 D-optimality

A design ξ∗D is D-optimal amongst a set of designs Ξ if, for an arbitrary value
of α, the design possesses the minimum volume of a 100(1 − α)% confidence
hyperellipsoid for the parameters in β. As we saw on page 59 for the simple
example of data from a normal distribution where the errors have a constant
variance, minimising the volume of the hyperellipsoid is equivalent to max-
imising the determinant of the information matrix. In general, a D-optimal
design, ξ∗D, is that one amongst all ξ ∈ Ξ for which det[M(ξ,β)] is maximised.

The D-optimality criterion receives most attention in this book.

It will sometimes be of interest to compare two designs, ξ1 and ξ2,
from the perspective of D-optimality. As D-optimality seeks the design
for which det[M(ξ,β)] is maximised, then one might examine the ratio
det[M(ξ1,β)]/det[M(ξ2,β)]. Unfortunately, this simple suggestion has a dis-
advantage. It seems intuitive to regard ξ1 as being twice as “good” as ξ2 if
M(ξ1,β) = 2M(ξ2,β), but unfortunately this implies that det[M(ξ1,β)] =
2p det[M(ξ2,β)]; see the result on page 27. This would give a ratio of determi-
nants of 2p, rather than the intuitive 2. To avoid this counterintuitive event,
the D-efficiency of ξ1 relative to ξ2 is given by

D-efficiency of ξ1 relative to ξ2 =

{
det[M(ξ1,β)]

det[M(ξ2,β)]

}1/p

. (3.17)

For D-optimality, there is a special result about the design weights of the
support points when s takes the minimum value of p. In this case, the p points
have equal design weights, namely 1/p. See Silvey (1980, p.42).
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3.7.5 Ds-optimality

Occasions exist when, although the expression for the linear predictor η has p
parameters, our chief interest is in a subset of p1 (< p) of them. We may write

η = f(x)>β = f1(x)>β1 + f2(x)>β2, (3.18)

where β1 is p1×1 and contains the p1 parameters of special interest, while β2

is p2× 1 and contains the remaining p2 = p− p1 parameters of the full model.

Example 3.7.2. Suppose that we are considering the quadratic model η =
β0 + β1x1 + β2x2 + β3x

2
1 + β4x1x2 + β5x

2
2, but are particularly interested in

estimating β3, β4 and β5. Then the full model has m = 2 mathematically inde-
pendent explanatory variables and p = 6 parameters, and (3.18) follows with
p1 = p2 = 3, β1 = (β3, β4, β5)>, f1(x) = (x21, x1x2, x

2
2)>, β2 = (β0, β1, β2)>

and f2(x) = (1, x1, x2)>.

For the general situation, if necessary rearrange the order of the elements of
β and f(x) so that

β =

[
β1

β2

]
and f(x) =

[
f1(x)
f2(x)

]
.

For a design ξ as given in (3.1) and appropriate model weights ω(xi) (i =
1, . . . , s), the information matrix specified in (3.6) is

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi ω(xi)

[
f1(x)
f2(x)

] [
f>1 (x),f>2 (x)

]

=

[ p1 p2

p1 M11(ξ,β) M12(ξ,β)

p2 M21(ξ,β) M22(ξ,β)

]
,

where

Mjk(ξ,β) =

s∑
i=1

δi ω(xi)fj(xi)f
>
k (xi) (j, k ∈ {1, 2}).

Let B(ξ, β) = M−1(ξ,β), and partition B(ξ, β) as

B(ξ, β) =

[ p1 p2

p1 B11(ξ,β) B12(ξ,β)
p2 B21(ξ,β) B22(ξ,β)

]
.

Then B(ξ, β) is the covariance matrix of the p× 1 estimator β̂, B11(ξ,β) is
the covariance matrix of the p1 × 1 estimator β̂1 in the presence of the p2 × 1
estimator β̂2 (i.e., when we fit the full model η = f(x)>β), and M−1

11 (ξ,β) is
the covariance matrix of β̂1 in the absence of β̂2 (i.e., when we fit the reduced
model η = f1(x)>β1). In the present situation, the Ds-optimal design is the
one that minimises det[B11(ξ,β)].
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Important Note

Except in special circumstances, the matrices B11(ξ,β) and M−1
11 (ξ,β) are

not equal. If your experience of matrices is limited, and the previous sentence
seems counterintuitive, consider the example of the matrix

A =

[
1 2
3 4

]
,

where p1 = p2 = 1. The matrices

A−1 =

[
−2 1
1.5 −0.5

]
and

[
1−1 2−1

3−1 4−1

]
=

[
1 0.5

0.3̇ 0.25

]
(and their upper left-hand elements in particular) are not equal.

By Harville (1997, Corollary 8.5.12),

B11(ξ,β) =
[
M11(ξ,β)−M12(ξ,β)M−1

22 (ξ,β)M21(ξ,β)
]−1

.

By adapting Harville (1997, Theorem 13.3.8), it follows further that

det [M(ξ,β)] = det
[
B−1

11 (ξ,β)
]
× det [M22(ξ,β)]

= {det [B11(ξ,β)]}−1 × det [M22(ξ,β)] ,

which implies that

{det [B11(ξ,β)]}−1 = det [M(ξ,β)] /det [M22(ξ,β)] .

As det[B11(ξ,β)] is minimised by maximising det{[B11(ξ,β)]}−1, then the
DS-optimal design is that one which maximises det [M(ξ,β)] /det [M22(ξ,β)] .

Example 3.7.3. Consider the standard quadratic regression, where the link
function is g(µ) = µ, with g(µ) = η = β0+β1x+β2x

2 = f(x)>β, where f(x) =
(1, x, x2)>. We assume that the response variable is normally distributed with
var(Y ) = σ2 for all i = 1, . . . , n. Then the variance function satisfies V (µ) =
1, as shown immediately below (1.12). The model weight was defined in (3.5).
As (∂µ)/(∂η) = 1, the model weight at any support point, x, of a design is
given by ω(x) = 1/σ2, and it follows from (3.6) that the design ξ given by
(3.1) has the information matrix

M(ξ,β) =

s∑
i=1

δi
1

σ2
f(xi)f

>(xi) =
1

σ2

s∑
i=1

δi

 1 xi x2i
xi x2i x3i
x2i x3i x4i

 . (3.19)

Let the design space from which support points are selected be X = {x : −1 ≤
x ≤ 1}. As σ2 is a constant in the definition of M(ξ, β) above, set it equal
to 1. Then it is straightforward, by application of Program 9 from the Web
site doeforglm.com, to find that the D-optimal design for the quadratic model
seems to be

ξ∗D =

{
−1 0 1
1
3

1
3

1
3

}
.
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This design would be used if it was believed that the appropriate relationship
between η and x is quadratic. However, if we were unsure about this, thinking
that the relationship might perhaps be a straight line, we might want to place
more emphasis on the estimation of β2. In this case, it would be appropriate
to use DS-optimality. Following (3.18), write η = f1(x)>β1 +f2(x)>β2, where
β1 = β2, f1(x) = x2, β2 = (β0, β1)> and f2(x) = (1, x)>. Still using σ2 = 1,
it follows that

M22(ξ,β) =

s∑
i=1

δi

[
1 xi
xi x2i

]
. (3.20)

One can use (3.19) and (3.20) to calculate det [M(ξ,β)] /det [M22(ξ,β)] .
Then straightforward application of Program 10 suggests that the DS-optimal
design is

ξ∗Ds
=

{
−1 0 1
0.25 0.5 0.25

}
.

By comparison of this design with ξ∗D above, one sees that Ds-optimality places
greater weight on the central support point when the greatest interest is on
estimating the quadratic coefficient, β2.

A further example of finding a DS-optimal design, for a logistic regression,
appears in Sub-section 4.9.

3.7.6 E-optimality

Amongst all designs in a set Ξ, the E-optimal design ξ∗E is that one that min-
imises the maximum variance of a linear combination of parameter estimates,
a>β̂, where a>a = 1. That is, for a given design, we ask what is the linear
combination of parameters, a>β, that is worst estimated in the sense that
its variance is greater than the variance of any other linear combination of
parameters, and we choose that particular design for which this maximum
variance is least. As it is always possible to find an estimator that has a larger
variance by increasing the values of the coefficients (e.g., var(2β̂0 + 2β̂1 + 4β̂2)
has a value that is four times as great as that of var(β̂0 + β̂1 + 2β̂2)), we need
some way of ensuring that, when we compare variances, we compare “like with
like.” This is done by requiring that a>a =

∑
i a

2
i = 1; that is, we consider

only vectors of coefficients whose sums of squares equal 1. This ensures that
we are not increasing a variance simply by increasing the coefficients in a.

For a given design ξ, cov(β̂) = M−1(ξ,β), and so var(a>β̂) = a>M−1(ξ,β)a,
which is a quadratic form. (See page 27.) We know from the discussion on
quadratic forms that, for a satisfying a>a = 1, the maximum value of the
quadratic form is the maximum eigenvalue of M−1(ξ,β). However, from
page 27 the eigenvalues of M−1(ξ,β) are the reciprocals of the eigenvalues
of M(ξ,β). In all but the most exceptional circumstances, all the eigenvalues
of M(ξ,β) are positive, so the maximum eigenvalue of M−1(ξ,β) is the re-
ciprocal of the minimum eigenvalue of M(ξ,β), λ−1

min. So, for a given design
ξ, the maximum variance is λ−1

min, and E-optimality requires us to select the
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design that minimises λ−1
min. However, minimising a reciprocal is equivalent

to maximising the original quantity, and so E-optimality requires us to select
that design which maximises the minimum eigenvalue of M(ξ,β).

3.7.7 G-optimality

The standardised variance was first introduced in Sub-section 3.4.2. It is a
scaled measure of the variance of the predictor, ŷ, of the value of y at a
specified value of x. So far it has been considered only in the context of the
general linear model, but it will shortly be generalised for use with GLMs. For
a given design ξ, the standardised variance can be calculated for each value of
x in the design space. The maximum of all these standardised variances can
then be found, and this can be used to characterise the design. The particular
design for which this maximum is least is the G-optimal design. This design
can be thought of as minimising the width of the widest confidence interval
for the value of y.

3.8 Example

Suppose that we want to find a D-optimal design for the basic logistic regres-
sion with two model parameters and one explanatory variable:

logit(π) = ln

(
π

1− π

)
= β0 + β1x.

As there are two parameters, the minimum number of support points that
might be required is p = 2, and the maximum number is p(p + 1)/2 = 3.
The D-optimality criterion requires the maximisation of det [M(ξ,β)], which
depends on the vector of parameters, β, that is used in the calculation of
M(ξ,β). The resulting D-optimal design is said to be locally optimal, as it is
applicable only to this particular value of β.

This threatens to require a separate search for a design for each value of β in
which we are interested. To get around this difficulty for this particular model,
we use the transformation

z = β0 + β1x. (3.21)

This was introduced by Ford, Torsney & Wu (1992), who called it the canonical
transformation. Its advantage is that now logit(π) = z, which does not depend
on any model parameters. Then it follows that the model weight is given by

ω(z) = π(z)[1− π(z)] (3.22)

=
1

exp(−z) + 1
× exp(−z)

exp(−z) + 1

=
exp(−z)

[exp(−z) + 1]2
× exp(2z)

exp(2z)
(for simplification purposes)

=
exp(z)

[1 + exp(z)]2
. (3.23)
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The canonical transformation lets us write f(z) = Bf(x), where

f(z) =

[
1
z

]
, B =

[
1 0
β0 β1

]
and f(x) =

[
1
x

]
.

By Result 2.2.2, the determinant of B is det(B) = 1× β1 − β0 × 0 = β1. For
β1 6= 0, det(B) 6= 0, and so B−1 exists. Hence

f(x) = B−1f(z). (3.24)

Consider a design formulated in terms of the variable x:

ξx =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
.

Suppose that the canonical transformation maps xi to zi (i = 1, . . . , s). The
transformation has no effect on the design weight at each point. So, in terms
of the transformed variable z, the design ξx may now be written as

ξz =

{
z1 z2 . . . zs
δ1 δ2 . . . δs

}
.

The information matrix for ξx is given by

M(ξx,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi
exp(β0 + β1xi)

[1 + exp(β0 + β1xi)]2
[
B−1f(zi)

] [
B−1f(zi)

]>
=

s∑
i=1

δi ω(zi)B
−1f(zi)

[
B−1f(zi)

]>
=B−1

s∑
i=1

δi ω(zi)f(zi)f
>(zi)

(
B−1)>

=B−1M(ξz)
(
B−1)> ,

using (3.22) and (3.24), and where M(ξz) is the information matrix corre-
sponding to the transformed design ξz.

Taking determinants of both sides of this equation and using results on page 26
gives

det [M(ξx,β)] = det
[
B−1M(ξz)

(
B−1)>]

= det(B−1)× det [M(ξz)]× det
[(
B−1)>]

= [det(B)]−1 × det [M(ξz)]× [det(B)]−1

= (1/β1)2 det [M(ξz)] .
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So det [M(ξx,β)] is just a constant multiple of det [M(ξz)], and it follows
that maximising det [M(x,β)] over a specified set of x-values is equivalent
to maximising det [M(ξz)] over the set of z-values that correspond to the
transformed x-values. That is, we can find the locally D-optimal design for
β = (β0, β1)> by finding the globally D-optimal design for z.

3.8.1 Using constrOptim

The function below, infodet, has as input a vector (z1, . . . , zs, δ1, . . . , δs) for an
arbitrary value of s. It then calculates −det [M(ξ)] (as maximising det [M(ξ)]
is the same as minimising −det [M(ξ)]). The function can use any values of s,
β0 and β1, which are specified outside the program. To use this program for
z, set β0 = 0 and β1 = 1.

infodet <- function(x)

{

info <- matrix(0,2,2)

for (i in 1:s)

{

pt <- x[i]

delta <- x[i+s]

expeta <- exp(beta0 + beta1*pt)

wt <- expeta/(1+expeta)^2

info <- info + delta*wt*matrix(c(1,pt,pt,pt^2),2,2)

}

-det(info)

}

This version of infodet is specific to this particular problem, and will run rather
slowly because of the presence of the loop. A faster and more general version
of infodet will be provided soon.

If we have absolutely no idea of an appropriate domain for the value of z,
we might choose something like −10 ≤ zi ≤ 10 (i = 1, . . . , s). Additionally,
the design weights must satisfy 0 < δi < 1 and δ1 + · · · + δs = 1. Following
Example 2.4.1, these constraints may be written in the matrix form Cv−u ≥
0, where v = (z1, . . . , zs, δ1, . . . , δs)

>, by choosing

C =


Is 0s×s
−Is 0s×s
0s×s Is
0s×s −Is
0>s −1>s

 and u =


−101s
−101s

0s
−1s

1

 .

There are more block rows in this matrix C than in the matrix on page 34
because there are more types of constraints in the current problem.

As a D-optimal design is sought for p = 2 parameters, I commenced with the
upper bound of p(p+1)/2 = 3 support points. I chose (−1, 0, 1, 0.33, 0.33, 0.33)
as my initial guess of the solution vector. (Remember that the initial guesses
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must not lie on the boundary of the solution set, so I must not choose values
of δ1, . . . , δs that add to 1.) I used the following program:

s <- 3

beta0 <- 0

beta1 <- 1

i3 <- diag(1,3)

cmat1 <- rbind(cbind(i3,0*i3),cbind(-i3,0*i3))

cmat2 <- rbind(cbind(0*i3,i3),cbind(0*i3,-i3))

cmat <- rbind(cmat1,cmat2,c(rep(0,3),rep(-1,3)))

uvec <- c(rep(-10,6),rep(0,3),rep(-1,3),-1)

start <- c(-1,0,1,0.33,0.33,0.33)

out <- constrOptim(start,infodet,NULL,cmat,uvec,

method="Nelder-Mead")

out

Note that I did not attempt to find the derivatives of −det [M(ξ)] with re-
spect to each of z1, . . . , zs and δ1, . . . , δs, but instead used the Nelder-Mead
algorithm. (See page 34.)

The output gave the following for the values of (z1, z2, z3, δ1, δ2, δ3) for the
D-optimal design:

-1.545534e+00 3.236333e-01 1.541277e+00 4.859467e-01

1.423844e-08 5.140533e-01

The minimised value of −det [M(ξ)] was −0.05007884.

The value of δ2 is 1.42× 10−8, which is essentially zero, suggesting that only
two support points are needed. Note that z1 is almost equal to −z3 and δ1
and δ3 are both approximately 0.5. This suggests that an “elegant” solution
might be forthcoming if we try just two support points.

The following commands were introduced to replace the last nine commands
above:

s <- 2

i2 <- diag(1,2)

cmat1 <- rbind(cbind(i2,0*i2),cbind(-i2,0*i2))

cmat2 <- rbind(cbind(0*i2,i2),cbind(0*i2,-i2))

cmat <- rbind(cmat1,cmat2,c(rep(0,2),rep(-1,2)))

uvec <- c(rep(-10,4),rep(0,2),rep(-1,2),-1)

start <- c(-1.5,1.5,0.495,0.495)

out <- constrOptim(start,infodet,NULL,cmat,uvec,

method="Nelder-Mead")

out

This gave z1 = −1.5435353, z2 = 1.5435583, δ1 = 0.5000248, δ2 = 0.4999752,
and the minimised value of −det [M(ξ)] was equal to −0.05011849. The value
of det [M(ξ)] has slightly increased, from 0.05007884 to 0.05011849, as a result
of decreasing the number of support points. Allowing for numerical noise, the
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overall result suggests that the D-optimal design is

ξz =

{
−1.5435 1.5435

0.5 0.5

}
.

This result can be examined mathematically by assuming that the optimal
design is of the form

ξz =

{
−a a
0.5 0.5

}
.

for some value of a still to be determined. Then

M(ξz) =

2∑
i=1

δi
exp(zi)

[1 + exp(zi)]2

[
1 zi
zi z2i

]
=

1

2

{
exp(−a)

[1 + exp(−a)]2

[
1 −a
−a (−a)2

]
+

exp(a)

[1 + exp(a)]2

[
1 a
a a2

]}
=

exp(a)

[1 + exp(a)]2

[
1 0
0 a2

]
. (3.25)

This uses the result that exp(−a)/[1 + exp(−a)]2 = exp(a)/[1 + exp(a)]2, as
illustrated in (3.22).

It now follows directly that

det [M(ξz)] =

{
exp(a)

[1 + exp(a)]2

}2

× a2 =
a2 exp(2a)

[1 + exp(a)]4
.

This determinant is clearly a function, h(a) (say), of a. This function

• satisfies h(a) = h(−a) (i.e., it is an even function), so it is symmetric around
a = 0;

• satisfies lima→∞ h(a) = 0.

Consequently, when exploring the behaviour of this function, we can be con-
fident that there will not be maxima occurring at large values of a. A graph
of h(a) vs a appears in Figure 3.6, and it strongly suggests that h(a) has only
two equal-valued maxima, at approximately a = ±1.55. The following pro-
gram defines the function h(a), and then uses the R function optimise (which
can also be spelled optimize) to find where the maximum of h(a) occurs for
a ∈ {a : 0 ≤ a ≤ 10}.

h <- function(a)

{

expa <- exp(a)

f <- (a^2)*(expa^2)/((1+expa)^4)

f

}

out <- optimise(h,c(0,10),maximum=TRUE)

out

It gave the output
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Figure 3.6 Graph of h(a) = a2 exp(2a)/[1 + exp(a)]4 vs a for −10 ≤ a ≤ 10.

$maximum

[1] 1.543385

$objective

[1] 0.05011849

So we conclude that the D-optimal design for the canonical variable z is

ξz =

{
−1.5434 1.5434

0.5 0.5

}
. (3.26)

3.8.2 Using optim

We can use optim rather than constrOptim by making some small changes
to the function infodet on page 77. These will allow values of z as input,
and by appropriate choice of transformations, the z-values can produce values
x1, . . . , xs and δ1, . . . , δs that satisfy the constraints −10 ≤ xi ≤ 10 and δi >
0; δ1 + · · ·+ δs = 1. To obtain the x-values, I used the fact that 0 < z < 1⇒
−10 < 10 cos(πz) < 10 (a minor modification of Method 3 on page 38). The
vector of weights has been generated directly using Method 5 on page 38.

For the initial z-values, I chose to input 2s values from the distribution that
is uniform on (0, 1). The program is

infodet <- function(z)

{

xvals <- 10*cos(pi*z[1:s])

temp <- (z[(s+1):(2*s)])^2

deltavec <- temp/(sum(temp))

info <- matrix(0,2,2)

for (i in 1:s)

{

pt <- xvals[i]

delta <- deltavec[i]
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expeta <- exp(beta0 + beta1*pt)

wt <- expeta/(1+expeta)^2

info <- info + delta*wt*matrix(c(1,pt,pt,pt^2),2,2)

}

-det(info)

}

beta0 <- 0

beta1 <- 1

s <- 3

start <- runif(2*s)

out <- optim(start,infodet,NULL,method="Nelder-Mead")

z <- out$par

xvals <- 10*cos(pi*z[1:s])

temp <- (z[(s+1):(2*s)])^2

deltavec <- temp/(sum(temp))

rbind(xvals,deltavec)

Remember that the input to, and output from, optim are values of z. Once
an optimal design has been found, the output must be converted into values
of xi and δi (i = 1, . . . , s).

This program runs more quickly than constrOptim. The output that I obtained
from a run of the program was

[,1] [,2] [,3]

xvals -1.543403 1.543407 8.691659e+00

deltavec 0.500000 0.500000 1.420785e-13

As we saw with constrOptim, the very small value of δ3 suggests that only
two support points are needed. One can simply replace s <- 3 by s <- 2 and
run subsequent lines of the program again. (This is much easier than having
to change the specification of the constraints when using constrOptim.)

Running the above program on a different occasion gave the following output:

[,1] [,2] [,3]

xvals -1.5434031 -1.5433998 1.5434069

deltavec 0.2259099 0.2740888 0.5000013

Although this output appears to suggest the need for three support points,
note that z1 and z2 are almost identical, and that δ1 + δ2 ≈ 0.5. So in fact this
leads to the same conclusion as the previous output from this program: that
only s = 2 support points are required.

Running the program for s = 2 gave the output

[,1] [,2]

xvals -1.5434044 1.5434047

deltavec 0.4999998 0.5000002
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which agrees with the results obtained earlier.

3.8.3 How to be sure that you have the right design

By making reasonable assumptions from the results of constrOptim or optim,
we have arrived at what we believe to be the D-optimal design for a logit link
with η = z. However, what if these assumptions are not correct? Or what if we
have a much more complicated problem, with several predictor variables, and
constrOptim or optim gives a solution that does not have any evident pattern
amongst the design weights or support points? How can we then be sure that
a design we obtain is D-optimal? The answer to this question is the topic of
the next section.

3.9 The general equivalence theorem

The mathematics that underlies the results in this section is very much beyond
the scope of this book. References are provided for those who wish to follow
the mathematics. For those who are happy to accept that someone else has
proven the results, the explanation should be sufficient for you to see what
the results say, why they are important, and how they can be applied.

We saw in the sub-sections on A-, D-, Ds- and E-optimality that the opti-
mality criteria involved minimising some function ψ[M(ξ,β)] of the infor-
mation matrix of a design, ξ. For example, A-optimality required the min-
imisation of tr

[
M−1(ξ,β)

]
, while D-optimality required the minimisation of

det
[
M−1(ξ,β)

]
. Although the aim is to find the minimum of ψ [M(ξ,β)],

sometimes ψ is not of an appropriate form, and it is necessary to minimise
a function of ψ. For example, for D-optimality, while the criterion says to
minimise det

[
M−1(ξ,β)

]
, it is better to minimise

ln
{

det
[
M−1(ξ,β)

]}
= ln

(
{det [M(ξ,β)]}−1) = − ln {det [M(ξ,β)]}

instead.

While you will have seen in introductory calculus the notion of a derivative of
a function of one or more variables, you may not have seen the concept of the
derivative of a function of a matrix. Consider the design ξ in (3.1), and now
consider an alternative design

ξ̄1 =

{
x
1

}
that has just the one support point at x. For a given value of β, these two
designs have information matrices M(ξ,β) and M(ξ1,β), respectively. If we
now form a new design

ξα = (1− α)ξ + αξ1

that gives a weighting of (1−α) to ξ and a weighting of α to ξ1 (for 0 ≤ α ≤ 1),
then

ξα =

{
x1 x2 . . . xs x

(1− α)δ1 (1− α)δ2 . . . (1− α)δs α

}
,
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and the information matrix of ξα is

M(ξα,β) =

s∑
i=1

(1− α)δi ω(xi)f(xi)f
>(xi) + αω(x)f(x)f>(x)

= (1− α)×
s∑
i=1

δi ω(xi)f(xi)f
>(xi) + α×1ω(x)f(x)f>(x)

= (1− α)M(ξ,β) + αM(ξ1,β). (3.27)

We want to see how the value of ψ [M(ξ,β)] alters as we move from ξ in the
direction of the design ξ1. Essentially, we want the derivative of ψ [M(ξ,β)]
in the direction of ξ1. The change in values of ψ(·) is

ψ [M(ξα,β)]− ψ [M(ξ,β)]

=ψ [(1− α)M(ξ,β) + αM(ξ1,β)]− ψ [M(ξ,β)] .

Dividing this difference by α will give the gradient of the change resulting from
including a proportion α of ξ1 in the design ξα, and taking the limit of this
ratio as α approaches 0 from the positive side (denoted by α→ 0+) will give
a derivative: the rate of change in ψ [M(ξ,β)] in the direction of ξ1. Denote
this derivative by φ(x, ξ,β). Then

φ(x, ξ,β) = lim
α→0+

1

α
{ψ [(1− α)M(ξ,β) + αM(ξ1,β)]− ψ [M(ξα,β)]} .

The quantity φ(x, ξ,β) is known as the Fréchet derivative. Clearly it depends
on the design ξ and the parameter vector β. However, for the investigation of
a candidate design, ξ, the values of ξ and β are fixed, and the derivative is
regarded as a function of x, the support point of the design ξ1.

Let us consider how we would expect the derivative φ(x, ξ,β) to behave at
different values of x.

1. If x is equal to one of the support points of ξ, we would expect no change
in ψ [M(ξ,β)]; that is, the gradient would be zero. This is true whether or
not ξ is the optimal design.

2. If ξ is the optimal design, i.e., it minimises ψ [M(ξ,β)], then a movement in
the direction of any non-support point would in fact increase ψ [M(ξ,β)];
i.e., the gradient would be positive.

3. If ξ is not the optimal design, so it does not minimise ψ [M(ξ,β)], then
there will be some potential support points x whose inclusion in ξ would
decrease ψ [M(ξ,β)]. Moving in the direction of ξ1 would give a negative
gradient.

This is the rationale behind the general equivalence theorem.

General equivalence theorem (Kiefer & Wolfowitz, 1960)

The following three conditions are equivalent on the optimal design ξ∗.

1. The design ξ∗ minimises ψ(ξ).
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2. The minimum value over X of φ(x, ξ,β) is maximised by the design ξ∗.

3. The minimum value over X of φ(x, ξ∗,β) is 0, and this value occurs at each
of the support points of ξ∗.

The nature of the Fréchet derivative φ(x, ξ,β) depends crucially on the func-
tion ψ(·) of M(ξ,β) that we are trying to minimise.

• For D-optimality, where we seek to minimise det
[
M−1(ξ,β)

]
, or equiv-

alently ln
{

det
[
M−1(ξ,β)

]}
, the derivative satisfies

φ(x, ξ,β) = p− d(x, ξ,β),

where
d(x, ξ,β) = ω(x)f>(x)M−1(ξ,β)f(x)

is the standardised variance of the design ξ and p is the number of param-
eters in β.

It follows from point 3 of the Generalised Equivalence Theorem that
φ(x, ξ∗,β) = p − d(x, ξ∗,β) ≥ 0. So d(x, ξ∗,β) ≤ p everywhere on the
design space X , and d(x, ξ∗,β) = p at each of the support points. We use
this result to test whether a design ξ∗ is D-optimal. If d(x, ξ∗,β) = p at
each support point of ξ∗ (and possibly at other points x ∈ X ) and nowhere
on X is d(x, ξ∗,β) > p, then ξ∗ is D-optimal.

• It can be shown that the minimum value of the maximum standardised
variance for any approximate design is p. We know that the standardised
variance of the D-optimal design does not exceed p, so the D-optimal design
has minimised the maximum value of the standardised variance. Thus an
approximate design which is D-optimal will also be G-optimal.

• For DS-optimality, where we seek to minimise det[B11(ξ,β)],

φ(x, ξ,β) = p1 − d(x, ξ,β),

where

d(x, ξ,β) = ω(x)
[
f>(x)M−1(ξ,β)f(x)− f>2 (x)M−1

22 (ξ,β)f2(x)
]

is the standardised variance of the design ξ and p1 is the number of param-
eters in the subset of β that is of interest. (The notation for DS-optimality
is that used in Subsection 3.7.5.)

By the general equivalence theorem, if d(x, ξ∗,β) = p1 at each support
point of ξ∗ (and possibly at other points x ∈ X ) and nowhere on X is
d(x, ξ∗,β) > p1, then ξ∗ is DS-optimal.

Example 3.9.1. On page 75, it was conjectured that

ξz =

{
−1.5434 1.5434

0.5 0.5

}
is the globally D-optimal design for the canonical variable z = β0 + β1x for a
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logit link and a Bernoulli distribution. It follows from (3.25) that the informa-
tion matrix for this design is

M(ξz) =
exp(1.5434)

[1 + exp(1.5434)]2

[
1 0
0 1.54342

]
.

The standardised variance at an arbitrary point z is

d(z, ξz) = ω(z)f>(z)M−1(ξz)f(z) =
exp(z)

[1 + exp(z)]2
[1, z]M−1(ξz)[1, z]

>.

Note that the standardised variance d(z, ξz) does not have an argument β
because we are dealing with the canonical variable.

The standardised variance is evaluated by the following R commands (that are
also available as Program 11 in doeforglm.com):

¬

beta0 <- 0

beta1 <- 1

s <- 2

­

infomat <- function(x)

{

info <- matrix(0,2,2)

for (i in 1:s)

{

pt <- x[i]

delta <- x[i+s]

expeta <- exp(beta0 + beta1*pt)

wt <- expeta/(1+expeta)^2

info <- info + delta*wt*matrix(c(1,pt,pt,pt^2),2,2)

}

info

}

®

optdesign <- c(-1.5434,1.5434,0.5,0.5)

optmat <- infomat(optdesign)

invmat <- solve(optmat)

¯

stdvar <- function(x)

{

expeta <- exp(x)

wt <- expeta/(1+expeta)^2

fx <- matrix(c(1,x),2,1)

sv <- wt*t(fx)%*%invmat%*%fx
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sv

}

If the design is to be D-optimal, then the standardised variance must equal
p = 2 at the two support points of the design, and must not exceed two any-
where in the design space Z = {z : −10 < z < 10}. The next lines of the
program evaluate the standardised variance at the two support points, and plot
the standardised variance for all z ∈ Z. The final four commands draw the
dotted lines, and mark the support points.

stdvar(-1.5434)

stdvar(1.5434)

x <- seq(from=-10,to=10,by=0.02)

lx <- length(x)

y <- rep(0,lx)

for (i in 1:lx)

{

y[i] <- stdvar(x[i])

}

par(las=1)

plot(x,y,ty="l",xlab="z",ylab="Standardised Variance",lwd=2,xaxt="n")

axis(1,at=c(-10,-5,-1.5434,1.5434,5,10),

label=c("-10","-5","-1.5434","1.5434","5","10"))

lines(c(-10,10),c(2,2),lty=2,lwd=2)

lines(c(-1.5434,-1.5434),c(-0.2,2),lty=2,lwd=2)

lines(c(1.5434,1.5434),c(-0.2,2),lty=2,lwd=2)

points(c(-1.5434,1.5434),c(2,2),pch=16,cex=2)

The standardised variance is given as 2 for both support points. A plot of
the standardised variance for z ∈ Z appears in Figure 3.7, and shows that
the standardised variance does not exceed p anywhere in the design space.
Therefore, by the general equivalence theorem, the design

ξz =

{
−1.5434 1.5434

0.5 0.5

}
is indeed D-optimal.

If you wish to avoid the loop in the plotting of the standardised vari-
ance, the following four commands can replace the commands beginning with
lx <- length(x) and ending with lines(c(-10,10),c(2,2),lty=2):

y <- sapply(x,stdvar)

par(las=1)

plot(x,y,ty="l",ylab="standardised variance")

lines(c(-10,10),c(2,2),lty=2)

Example 3.9.2. On page 74, it was conjectured that

ξ∗DS
=

{
−1 0 1
0.25 0.5 0.25

}
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Figure 3.7 Plot of the standardised variance for the design in Example 3.9.1
believed to be D-optimal on the design space Z = {z:− 10 < z < 10}.

is the DS-optimal design when we are especially interested in the quadratic
term in the general linear model

Yi = β0 + β1xi + β2x
2
i + Ei.

Program 12 calculates the standardised variance, evaluates it at each of the
three support points, and plots the standardised variance for all x ∈ {x : −1 <
x < 1}. The standardised variance was found to equal p1 = 1 at each of the
support points (-1, 0 and 1). A plot of the standardised variance vs. x appears
in Figure 3.8. It can be seen that the standardised variance does not exceed p1 =
1 anywhere in the design space. Thus use of the general equivalence theorem
confirms that the design ξ∗DS

is indeed the DS-optimal design for estimating
β2 in the presence of β0 and β1 under the circumstances described above.

3.10 Where next?

We have now covered the general theory of D- and DS-optimal designs for
GLMs. In the next three chapters, we will look at data from specific distribu-
tions, in particular the Bernoulli and Poisson distributions. These are the two
distributions most often assumed in work on GLMs, and specific attention will
be paid to each distribution in turn.
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Figure 3.8 Plot of the standardised variance for the design in Example 3.9.2
believed to be DS-optimal on the design space X = {x : − 1 ≤ x ≤ 1}.

The dependence of designs on particular values of a parameter vector β is
a distinct disadvantage in designing an experiment. Instead, one might wish
to specify a range of values for some or all of the parameters, and maybe to
specify a statistical distribution for a parameter. For example, rather than
use an estimate of 1 for β0, one might want to say that it lies between 0.5
and 1.5. The ability to design experiments under such broader assumptions
about the values of parameters is a major benefit of a fast-developing area of
Experimental Design known as Bayesian experimental design, which will be
considered in Chapter 7.



Chapter 4

The Binomial Distribution

4.1 Introduction

This chapter contains material on the design of experiments when each obser-
vation is assumed to come from the Bernoulli or binomial distributions. The
three commonly used link functions, the logit, probit and complementary log-
log, will each be considered. Examples will be given of constructing designs
for the cases of m = 1, m = 2 and m > 2 explanatory variables. It will be
shown how to obtain a locally D-optimal design for a specified parameter set
if the locally D-optimal design for a related parameter set is already known.
Obtaining exact designs (see Sub-section 3.3.1) will be discussed. Obtaining
a design when the total number of observations is small will be considered.
Lastly, there will be brief discussion on obtaining a design that is optimal
when there is uncertainty about the appropriate link function to use, or which
predictor variables to use, or the form of the linear predictor.

Only D- and DS-optimality, and a new form (IMSE-optimality) are considered
in this chapter.

4.2 Notation

As always, the optimal experimental design will have s support points, repre-
sented by the m×1 vectors x1, . . . ,xs. In the binomial situation considered in
this chapter, at the ith support point ni independent observations are taken
on a binary response variable, Yi, that has a probability of “success” given
by πi. When each ni is equal to 1, this special case of the binomial distribu-
tion is called the Bernoulli distribution. So each individual observation has a
Bernoulli distribution.

It is a standard statistical result for the Bernoulli distribution that µi =
E(Yi) = πi and var(Yi) = πi(1 − πi), so the relationship var(Yi) = φV (µi)
implies that φ = 1 and V (µ) = µ(1− µ).

We model a function of πi in terms of the explanatory variables in xi by means
of a linear combination of parameters; that is, we have

g(πi) = ηi = f>(xi)β (i = 1, . . . , s).

The aim is to select

89
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(i) the support points from a set, X ∈ Rm, of possible points, and

(ii) the associated design weights δ1, . . . , δs,

so that the design

ξ =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
(4.1)

is “optimal” in some way.

Three commonly used link functions and various models η = f>(x)β will be
considered.

4.3 Link functions

The three most commonly used link functions are the logit, probit and com-
plementary log-log functions. Each is considered below. Atkinson, Donev, &
Tobias (2007, p. 399) briefly mention two other link functions.

4.3.1 The logit link function

The logit function was introduced on page 11 as

g(π) = ln

(
π

1− π

)
, 0 < π < 1.

The logit function is the canonical link function (see page 15) for the Bernoulli
and binomial distributions.

As stated in (3.7), g(πi) = ηi is equivalent to

πi =
1

exp(−ηi) + 1
. (4.2)

Then, from (3.8),
∂πi
∂ηi

= πi(1− πi).

From (3.5), the model weight ω(xi) associated with the ith support point is
given by

ω(xi) =
1

var(Yi)

(
∂πi
∂ηi

)2

.

Hence, for the logit link,

ω(xi) =
1

πi(1− πi)
× [πi(1− πi)]2 = πi(1− πi).

By use of (4.2), ω(xi) may be written in an alternative form as

ω(xi) =
exp(ηi)

[1 + exp(ηi)]2
(4.3)
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in a proof exactly equivalent to (3.8).

Then, for a logit link, the information matrix for the design ξ in (4.1) is

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi
exp(ηi)

[1 + exp(ηi)]2
f(xi)f

>(xi).

The matrix M(ξ,β) clearly depends on ξ through the values of the xi and δi,
but it also depends on the vector of parameters, β, through ηi = f>(xi)β.

4.3.2 The probit link function

First consider the distribution function of the N(0, 1) distribution. This func-
tion is traditionally written as

Φ(z) = Pr(Z < z) (−∞ < z <∞),

where Z has a N(0, 1) distribution. For example, as Pr(Z < 1.96) = 0.975,
then Φ(1.96) = 0.975.

The probit function, which will be used as a link function, is the inverse of
the N(0, 1) distribution function. While Φ gives a cumulative probability that
corresponds to a particular point or “quantile” (e.g., the cumulative probabil-
ity 0.975 corresponds to the point 1.96), its inverse, Φ−1, gives the point that
corresponds to a particular cumulative probability. For example, the point
1.96 corresponds to the cumulative probability 0.975: Φ−1(0.975) = 1.96.

Remember that an inverse function and a reciprocal are not the same: if a
function f is applied to a value a and results in an answer of b, then the
inverse of f , f−1 (if it exists), is applied to b to give an answer of a.

So the probit link function is

g(π) = Φ−1(π), 0 < π < 1.

In R, the function Φ−1 is known as qnorm. Type qnorm(0.975) into R, and
you will get 1.959964 (1.96 to two decimal places). The R function pnorm
represents Φ: pnorm(1.96) gives 0.9750021.

As usual, the link function is equated to the linear combination of parameters:
g(πi) = Φ−1(πi) = ηi. To find the model weight for use in the information
matrix M(ξ,β), the partial derivative ∂πi/∂ηi must be calculated. This may
be done by noting that Φ−1(πi) = ηi implies that

πi = Φ(ηi). (4.4)

Now

Φ(ηi) = P (Z < ηi) =

∫ ηi

−∞
φ(z) dz,
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where φ(z) represents the probability density function of the N(0, 1) distri-
bution, and the integral represents the area beneath the density curve and
to the left of ηi. The R function dnorm gives φ: type dnorm(0) in R to get
φ(0) = 0.3989423.

Returning to the task in hand, we have

πi = Φ(ηi) =

∫ ηi

−∞
φ(z) dz,

and we wish to calculate ∂πi/∂ηi. To differentiate the RHS of this equation
with respect to ηi, one uses the Fundamental Theorem of Integral calculus
(which appears in any reputable calculus textbook). The answer is

∂πi
∂ηi

= φ(ηi).

Hence the model weight (3.5) is given by

ω(xi) =
1

var(Yi)

(
∂πi
∂ηi

)2

=
1

πi(1−πi)
[φ(ηi)]

2 =
[φ(ηi)]

2

Φ(ηi)[1−Φ(ηi)]
. (4.5)

So, for a probit link, the information matrix for the design ξ in (4.1) is

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi
[φ(ηi)]

2

Φ(ηi)[1− Φ(ηi)]
f(xi)f

>(xi).

4.3.3 The complementary log-log link function

The complementary log-log function is

g(π) = ln[− ln(1− π)], 0 < π < 1.

As g(πi) = ηi, then πi is calculated from ηi using

πi = 1− exp[− exp(ηi)]. (4.6)

It follows that
∂πi
∂ηi

= exp(ηi)× exp[− exp(ηi)],

and so the model weight ω(xi) is given by

ω(xi) =
1

var(Yi)

(
∂πi
∂ηi

)2

=
1

πi(1− πi)

(
∂πi
∂ηi

)2

=
1

{1− exp[− exp(ηi)]} exp[− exp(ηi)]
{exp(ηi)× exp[− exp(ηi)]}2

=
exp[2ηi − exp(ηi)]

1− exp[− exp(ηi)]
. (4.7)
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Using a complementary log-log link, the information matrix for the design ξ
in (4.1) is

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi
exp[2ηi − exp(ηi)]

1− exp[− exp(ηi)]
f(xi)f

>(xi).

4.3.4 Comparing the three link functions

For 0 < π < 1, the logit, probit and complementary log-log link functions
map π to any real number. The functions have similar shapes, but they do
differ. Figure 4.1 shows what value of π results from a value of the linear
combination η under each of the three link functions. This uses (4.2), (4.4)
and (4.6). Rewriting g(π) = η as π = g−1(η), where g−1(·) is the inverse
function of g(·), the logit and probit links both satisfy g−1(−η) = 1− g−1(η);
that is, if η = a gives the probability of success for a trial, then η = −a gives
the probability of failure. However, this relationship does not occur if the
complementary log-log link is used. This fact may influence an experimenter’s
choice of link function for Bernoulli or binomial data.

−6 −4 −2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

η

π

logit
probit
complementary log−log

Figure 4.1 Graphs of the relationship of π to η under each of the logit, probit
and complementary log-log link functions.
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4.4 The model η = β0 + β1x

4.4.1 The logit link

On page 86 it was shown that, under the logit link function

g(π) = logit(π) = ln

(
π

1− π

)
,

the global D-optimal design for z = β0 + β1x is

ξ∗L, z =

{
−1.5434 1.5434

0.5 0.5

}
. (4.8)

The subscript “L, z” on ξ∗ indicates that this is a design for a logit link and
is in terms of the canonical variable z. A design in terms of the explanatory
variable x will have z replaced by x. When it is apparent to what link function
and/or variable a design relates, the subscripts will be omitted.

If you find a D-optimal design for z = β0 + β1x, D-optimal designs may be
obtained for any values of β0 and β1. As the support points for ξ∗z are z =
±1.5434, it follows that the support points for arbitrary values of β0 and β1 are
found by solving z = β0 +β1x = ±1.5434, which gives x = (±1.5434−β0)/β1.

That is, provided that each of (−1.5434− β0)/β1 and (1.5434− β0)/β1 lie in
the set of acceptable values for x, the D-optimal design for the logistic model
with η = β0 + β1x is

ξ∗L, x =

{
(−1.5434− β0)/β1 (1.5434− β0)/β1

0.5 0.5

}
. (4.9)

This is a locally optimal design, as its support points depend on the particular
values of β0 and β1 that are used.

Example 4.4.1. Suppose that the values of β0 and β1 are thought to be ap-
proximately 0.55 and 1.6. To investigate how much the locally D-optimal de-
signs vary for parameter values close to 0.55 and 1.6, one may wish to obtain
locally D-optimal designs for (β0, β1) = (0.6, 1.5) and (β0, β1) = (0.5, 1.6). By
substitution of the choices of β0 and β1 into (4.9), one obtains the designs ξ∗1
and ξ∗2 respectively, where

ξ∗1 =

{
−1.4289 0.6289

0.5 0.5

}
and ξ∗2 =

{
−1.2771 0.6521

0.5 0.5

}
.

You could search for the D-optimal designs using constrOptim or optim in R,
but this is a waste of time when you can use the result in (4.9).

However, the results in (4.8) and (4.9) assume that the indicated support
points lie within the sets of acceptable solutions, Z (say) and X . If one or
both of the points do not lie in the solution spaces, these results are of little
value. It will be necessary to use constrained optimisation as described in
Section 3.8.
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4.4.2 The probit link

The procedure to find the globally D-optimal design for z = β0 + β1x for the
probit link is very similar to that described for finding the globally D-optimal
design for z for the logit link. See the Example in Section 3.8. As the probit
model has a different model weight from the logit model, the function used to
calculate M(ξ) is different:

infodet <- function(x)

{

info <- matrix(0,2,2)

for (i in 1:s)

{

pt <- x[i]

delta <- x[i+s]

eta <- beta0 + beta1*pt

Phi <- pnorm(eta)

wt <- (dnorm(eta)^2)/(Phi*(1-Phi))

info <- info + delta*wt*matrix(c(1,pt,pt,pt^2),2,2)

}

-det(info)

}

This definition of infodet is similar to the definition on page 77, with the only
change being that the two lines

expeta <- exp(beta0 + beta1*pt)

wt <- expeta/(1+expeta)^2

in the earlier program are replaced by

eta <- beta0 + beta1*pt

Phi <- pnorm(eta)

wt <- (dnorm(eta)^2)/(Phi*(1-Phi))

because the probit link requires a different model weight from the logit link.
Apart from that, no changes are needed to either program in Section 3.8 in
order to find a globally optimal design.

When searching for an optimal design with s = 3 support points, the following
output was obtained:

$par

[1] -1.13802575147546126 1.13905723115445712 1.13828201610926993

[4] 0.50000045407095395 0.00768851108184589 0.49231103455090852

$value

[1] -0.198683726130048

Note that z2 and z3 are nearly equal, and nearly the negative of z1. Note also
that δ2 + δ3 ≈ 0.5. This suggests trying a design with s = 2 support points
and equal weights. Doing so gives a design with support points z = −1.138
and z2 = 1.138 approximately, and design weights of essentially 0.5. One
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could accept this as a satisfactory answer. Alternatively, one could investigate
further and let the support points be z = −a and z = a with design weights
δ1 = δ2 = 0.5. This gives the information matrix

M(ξ) =

2∑
i=1

δi ω(zi)f(zi)f
>(zi)

=
1

2
ω(−a)

[
1 −a
−a a2

]
+

1

2
ω(a)

[
1 a
a a2

]
.

Now φ(−a) = φ(a) (as the “bell-shaped curve” y = φ(x) is symmetric around
x = 0) and Φ(−a) = 1 − Φ(a); e.g., Φ(−1.96) = P (Z < −1.96) = P (Z >
1.96) = 1− P (Z < 1.96) = 1− Φ(1.96). It follows that

ω(−a) =
[φ(−a)]2

Φ(−a)[1− Φ(−a)]
=

[φ(a)]2

[1− Φ(a)]Φ(a)
= ω(a),

and so

M(ξ) =
1

2
ω(a)

[
1 −a
−a a2

]
+

1

2
ω(a)

[
1 a
a a2

]
.

=
1

2
ω(a)

[
2 0
0 2a2

]
= ω(a)

[
1 0
0 a2

]
. (4.10)

Then the determinant of M(ξ) is a function, h(a), of a, where

h(a) = a2[ω(a)]2 =
a2[φ(a)]4

{Φ(a)[1− Φ(a)]}2 .

The following program seeks the maximum of h(a) (the minimum of −h(a))
for a ∈ {x : 1 ≤ x ≤ 1.5}.
detm <- function(x)

{

num <- x^2*(dnorm(x)^4)

Phix <- pnorm(x)

determ <- num/(Phix*(1 - Phix))^2

-determ

}

optimise(detm,c(1,1.5))

It gives the following output:

$minimum

[1] 1.1381

$objective

[1] -0.1986837
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So the maximum value of h(a) is 0.1986837, and occurs when a = 1.1381. This
suggests that the globally D-optimal design is

ξ∗ =

{
−1.1381 1.1381

0.5 0.5

}
. (4.11)

It is still necessary to verify that ξ∗ is indeed D-optimal, by means of the
general equivalence theorem. Substituting a = 1.1381 into (4.10) gives

M(ξ∗) = ω(1.1381)

[
1 0
0 1.13812

]
=

[
0.2087591 0

0 0.2703997

]
.

The standardised variance

d(x, ξ∗) = ω(x)f>(x)M−1(ξ∗)f(x) =
[φ(x)]2

Φ(x)[1− Φ(x)]
[1, x]M−1(ξ∗)[1, x]>

can be calculated, and then plotted against x for x in the arbitrarily chosen
set {x : −5 ≤ x ≤ 5} using the following program:

optPhi <- pnorm(1.1381)

optwt <- (dnorm(1.1381)^2)/(optPhi*(1-optPhi))

infomat <- optwt*matrix(c(1,0,0,1.1381^2),2,2)

invinfomat <- solve(infomat)

stdvar <- function(x)

{

fx <- matrix(c(1,x),2,1)

Phi <- pnorm(x)

wt <- (dnorm(x)^2)/(Phi*(1-Phi))

sv <- wt*t(fx)%*%invinfomat%*%fx

sv

}

Both stdvar(-1.1381) and stdvar(1.1381) are equal to 2, the value of p, and
stdvar(x) is equal to two or less in the neighbourhood of −1.1381 and 1.1381.
The graph of d(z, ξ) vs. z appears in Figure 4.2. The curve peaks at stdvar = 2,
and shows no indication of exceeding 2. Therefore, the standardised variance
has achieved its maximum value of p = 2 at the two support points. By the
general equivalence theorem, the design ξ is D-optimal.

The globally D-optimal design for z = β0 + β1x is

ξ∗P,z =

{
−1.1381 1.1381

0.5 0.5

}
. (4.12)

It follows that, for specified values of β0 and β1 in the linear predictor η =
β0 + β1x, the locally D-optimal design for the probit link is

ξ∗P,x =

{
(−1.1381− β0)/β1 (1.1381− β0)/β1

0.5 0.5

}
. (4.13)
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Figure 4.2 The standardised variance, d(z, ξ∗), for the design defined in (4.11),
plotted vs. z. Note that d(z, ξ∗) attains a maximum of p = 2 at each of the
support points.

Example 4.4.2. For the linear predictor η = 1+2x, where β0 = 1 and β1 = 2,
the locally D-optimal design is

ξ∗P,x =

{
−1.06905 0.06905

0.5 0.5

}
.

4.4.3 The complementary log-log link

As with the other two link functions, one can search for a globally D-optimal
design for the complementary log-log function using the canonical variable
z = β0 + β1x. The program that was used is similar to the one used for the
other two links, except that the calculation of the weight is different to take
account of the model weight ω(z) given in (4.7). The commands

Phi <- pnorm(eta)

wt <- (dnorm(eta)^2)/(Phi*(1-Phi))

in the function infodet on page 95 are replaced by

expeta <- exp(eta)

wt <- exp(2*eta-expeta)/(1-exp(-expeta))
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The constraints used earlier with constrOptim to search for a design with
s = 3 support points were again used, resulting in the following output:

$par

[1] -1.32143e+00 7.14329e-01 9.83928e-01 4.98706e-01 9.53789e-09

[6] 5.01294e-01

$value

[1] -0.1637711

Recall that the output from $par gives x1, x2, x3, δ1, δ2, δ3. The value
(9.53789e-09) of the design weight δ2 is negligible, suggesting that the D-
optimal design requires only two support points. The other two design weights
are essentially 0.5 each. So we wish to change the value of s to 2, and to give
input that approximates x1 = −1.321 and x2 = 0.984 and δ1 = δ2 = 0.5. Note,
however, that the input to optim requires values of z1, . . . , z4 and constraints
that will ensure that the x-values and δ-values satisfy the required constraints.

Here I plan to use the design region {x : −5 ≤ x ≤ 5}. Setting

zvalues1 <- acos(c(-1.321,0.984)/5)/pi

zvalues2 <- c(0.5,0.5)

zvalues2 <- sqrt(zvalues/zvalues[s])

initial <- c(zvalues1,zvalues2)

would give a vector initial that could be input to the function to be minimised.
To ensure that the values used in the function satisfy the constraints −5 ≤
xi ≤ 5; δi > 0 (i = 1, 2) and δ1 + δ2 = 1, the following commands are needed
at the beginning of the function:

x <- 5*cos(pi*initial[1:s])

temp <- initial[(s+1):(2*s)]

temp2 <- temp^2

delta <- temp2/sum(temp2)

These changes would provide one run of optim, using the output from the
earlier run (for s = 3) but now restricting the search to two support points.
However, it has already been mentioned that different starting points for a
search may lead to different local minima. I favour performing a number of
searches, using slight variations of the initial vector, in the hope that this will
have more success in finding the overall minimum. So I prefer to replace the
line initial <- c(zvalues1,zvalues2) by something like

initial <- c(zvalues1,zvalues2) + 0.1*(runif(2*s)-0.5)

which will add small increments between −0.05 and 0.05 to each result from
the previous run of the program. The overall program for 100 simulations now
is the following:

¬

f <- function(xvec)

{

c(1,xvec)
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}

infodet <- function(initial)

{

xvec <- 5*cos(pi*initial[1:s])

temp <- initial[(s+1):(2*s)]

temp2 <- temp^2

deltavec <- temp2/sum(temp2)

info <- matrix(0,p,p)

for (i in 1:s)

{

fx <- f(xvec[i])

delta <- deltavec[i]

eta <- sum(fx*betavec)

expeta <- exp(eta)

wt <- exp(2*eta-expeta)/(1-exp(-expeta))

info <- info + deltavec[i]*wt*fx%*%t(fx)

}

-det(info)

}

­

s <- 2

m <- 1

p <- 2

betavec <- c(0,1)

lim1 <- m*s

zvalues1 <- acos(c(-1.321,0.984)/5)/pi

zvalues2 <- c(0.5,0.5)

zvalues2 <- sqrt(zvalues2/zvalues2[s])

nsimulations <- 100

mindet <- 100

for (i in 1:nsimulations)

{

initial <- c(zvalues1,zvalues2) + 0.1*(runif(2*s)-0.5)

out <- optim(initial,infodet,NULL,method="Nelder-Mead")

if(out$value < mindet) {mindet <- out$value

bestdesign <- out$par}

}

answer <- bestdesign

ansa <- matrix(5*cos(pi*answer[1:lim1]),m,s,byrow=T)

zvec <- answer[(lim1+1):((m+1)*s)]

deswts <- zvec^2

deswts <- deswts/sum(deswts)

solution <- rbind(ansa,deswts)

mindet
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solution

This program will form a rough template for the programs that follow, so it is
worth explaining in detail how it works. Segment ¬ defines f(x) and calculates
the negative of the determinant of the information matrix; i.e., −det [M(ξ,β)].
The beginning of the second function includes the transformation necessary
to ensure that the values of x and δ satisfy the necessary constraints.

In Segment ­, the values of s, m, p and β are specified. This is followed by the
reverse transformations of the output from the previous search for an optimal
design. Then the number of searches (with separate simulations of the initial
values) is specified, and a large value for the minimum determinant is given.
Then the optimisation is carried out repeatedly, each time using optim. At the
end of each iteration, the design giving the minimum value of the determinant
so far is recorded. At the completion of the simulations, the best design and the
value of its determinant are printed out, after the arguments of the function
have been converted to values satisfying the constraints.

This gave the following output:

> mindet

[1] -0.1637832

> solution

[,1] [,2]

-1.3377372 0.9796459

deswts 0.5000002 0.4999998

The design weights are very close to 0.5 each. However, note that the support
points are not the negative of one another, unlike in the designs for the logit
and probit links. This is not surprising, as the complementary log-log link
does not have the properties that ω(−a) = ω(a) and π̂(−a) + π̂(a) = 1,
where π̂(a) is the predicted value of π at z = a. Without these properties, it
is not possible to write det [M(ξ)] as a function of one variable in a bid to
fine-tune the search for the most accurate values of the two support points.
Instead, the two support points were specified to be z = a and z = b, and the
value of det[M(ξ)] was calculated for each (a, b) combination on a grid around
(−1.3379, 0.9797) using the following program.

beta0 <- 0

beta1 <- 1

infodet2 <- function(x)

{

info <- matrix(0,2,2)

for (i in 1:2)

{

pt <- x[i]

eta <- beta0 + beta1*pt

expeta <- exp(eta)

wt <- exp(2*eta-expeta)/(1-exp(-expeta))

info <- info + wt*matrix(c(1,pt,pt,pt^2),2,2)
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}

info <- info/2

det <- info[1,1]*info[2,2]-info[1,2]^2

det

}

maxi <- 0

for (a in seq(from=-1.3387,to=-1.3367,by=0.0001))

{

for (b in seq(from=0.9787,to=0.9807,by=0.0001))

{

detm <- infodet2(c(a,b))

if(detm > maxi) {maxi <- detm

soln <- c(a,b)}

}

}

maxi

soln

Note that the function infodet2 is very similar to the version of infodet de-
scribed on page 100, except that (i) I am calculating the determinant directly
using Result 2.2.2, and (ii) the determinant (rather than its negative) is cal-
culated, as there is no use of constrOptim or optim since minimisation is not
the aim. The program gave the following output:

> maxi

[1] 0.1637832

> soln

[1] -1.3378 0.9796

The output suggests that the globally D-optimal design for z = β0 + β1x is

ξ1 =

{
−1.3378 0.9796

0.5 0.5

}
. (4.14)

To verify that ξ1 is indeed D-optimal requires the general equivalence theorem.
Using f(z) = (1, z)> and the formula for ω(zi) in (4.7), first calculate

M(ξ1) = 0.5×ω(−1.3378)f(−1.3378)f>(−1.3378)

+ 0.5×ω(0.9796)f(0.9796)f>(0.9976)

=

[
0.3805293 0.1068520
0.1068520 0.4604127

]

and then use
d(z, ξ1) = ω(z)f>(z)M−1(ξ1)f(z)

to calculate the standardised variance. It equals 2 at the two support points
and does not exceed 2 in the vicinity of these two points. Figure 4.3 shows
d(z, ξ1) vs. z for −5 ≤ z ≤ 5, and demonstrates that d(z, ξ1) achieves its
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Figure 4.3 The standardised variance d(z, ξ1) vs z for the design ξ1 given in
(4.14). Note that d(z, ξ1) attains a maximum of p = 2 at each of the support
points.

maximum value of p = 2 at the two support points of ξ1. By the general
equivalence theorem, it may be concluded that

ξ∗C,z =

{
−1.3378 0.9796

0.5 0.5

}
(4.15)

is the globally D-optimal design for the binomial distribution when using the
complementary log-log link and the canonical variable.

Consequently, for specified values of β0 and β1 in the linear predictor η =
β0 + β1x, the locally D-optimal design for the complementary log-log link is

ξ∗C,x =

{
(−1.3378− β0)/β1 (0.9796− β0)/β1

0.5 0.5

}
. (4.16)

Example 4.4.3. For the linear predictor η = 1+2x, where β0 = 1 and β1 = 2,
the locally D-optimal design is

ξ∗C,x =

{
−1.1689 −0.0102

0.5 0.5

}
.
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4.5 The model η = β0 + β1x1 + β2x2

4.5.1 Preliminary comments

The linear model η = β0 + β1x+ β2x2 = f>(x)β may be transformed to the
canonical form η = z1 + z2 by defining z1 = β0 + β1x1 and z2 = β2x2. This is
equivalent to  1

z1
z2

 =

 1 0 0
β0 β1 0
0 0 β2

 1
x1
x2

 ,
or

f(z) = Bf(x).

While globally D-optimal designs were successfully found in Section 4.4 using
the canonical form of the linear predictor, this cannot be achieved for the case
of two or more explanatory variables. Although no constraints were placed on
the value of z in Section 4.4 for the logit link, a constraint effectively occurred
through the model weight ω = π(1−π) becoming very small as π became close
to 0 or 1. Similarly, constraints occurred through the behaviour of the model
weights for the probit and complementary log-log links. However, in the (z1, z2)
plane considered in this section, the entire length of the line η = z1 + z2 = 0
gives π = 0.5 for the logit and probit links, and π = 1 − exp(−1) = 0.6321
for the complementary log-log link (from (4.2), (4.4) and (4.6), respectively).
The model weight is constant along the entire line, so no constraining occurs.

There is nothing “special” about the line z1 + z2 = 0. For a given value of c,
the model weight ω(z) takes a constant value along the line η = z1 + z2 = c.
So in order to restrict the values of the explanatory variables x1 and x2 to
“reasonable” values, constraints must be placed on them.

It has become standard to investigate locally optimal designs for values of x1
and x2 in the region X = {(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. This is not
really restrictive. If an explanatory variable, w, lies between a and b (> a), the
transformation

x =
2w − (a+ b)

b− a (4.17)

gives an explanatory variable x that lies between -1 and 1. Rewriting the linear
predictor η in terms of variables xi instead of variables wi necessitates a change
to the parameter vector β. Once the optimal design has been determined in
terms of x, transform back to w using

w =
1

2
[(a+ b) + (b− a)x].

This is illustrated in Example 4.5.5.

4.5.2 The logit link

Consider a situation where one seeks a locally D-optimal design on the region
X = {(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1} using the logit link and the
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parameter vector β = (1, 1, 1)>. Remember that this is the assumed parameter
vector. One purpose of using the design is to estimate the actual value of β.

The method is a straightforward extension of that demonstrated earlier in
Sub-section 4.4.1. Note first that there are now p = 3 parameters, so that the
required number of support points, s, will lie between p = 3 and p(p+1)/2 = 6.
The values of x1 and x2 are constrained to lie between −1 and 1, and the
design weights must satisfy 0 < δi < 1 (i = 1, . . . , s) and δ1 + · · ·+ δs = 1. If
constrOptim is used, these constraints must be written in the formCv−u ≥ 0;
see page 34. Note here that there are two constraints on each of the s values of
x1, two constraints on each of the s values of x2, two constraints on each of the
s individual values of δi, and then one remaining constraint δ1 + · · ·+ δs = 1;
i.e., a total of 6s + 1 constraints. Denote by xij the value of xj at the ith
support point (i = 1, . . . , s; j = 1, 2).

Let x1 = (x11, x21, . . . , xs1)>, x2 = (x12, x22, . . . , xs2)> and δ = (δ1, . . . , δs)
>.

Then the constraints are written as

Is 0s×s 0s×s
−Is 0s×s 0s×s
. . . . . . . . . . . . . . . . . .
0s×s Is 0s×s
0s×s −Is 0s×s
. . . . . . . . . . . . . . . . . .
0s×s 0s×s Is
0s×s 0s×s −Is
. . . . . . . . . . . . . . . . . .

0>s 0>s −1>s



 x1

x2

δ

−



−1s
−1s
. . . .
−1s
−1s
. . . .
0s
−1s
. . . .
−1


≥



0s
0s
. .
0s
0s
. .
0s
0s
. .
0


.

I elected to start with six support points, and chose (0.9, 0.9)>, (0.9, 0)>,
(0.9,−0.9)>, (−0.9, 0.9)>, (−0.9, 0)> and (−0.9,−0.9)>. I gave each of these
support points a design weight of 0.16. (Remember that the parameter values
that are input to constrOptim must lie inside the region of possible values, so
one must not input weights that add exactly to 1.) The input values consist of
all values of x1, followed by all values of x2, followed by the design weights, so
the following commands were used to run constrOptim and obtain its output.

initial <- c(rep(c(0.9,-0.9),each=3),rep(c(0.9,0,-0.9),2),rep(0.16,6))

out <- constrOptim(initial,detinfomat,NULL,cmat,uvec,method="Nelder-Mead")

out

Excerpts from the output appear below:

$par

[1] 9.737512e-01 9.999900e-01 1.000000e+00 -9.340752e-01 -9.494688e-01

[6] -9.782332e-01 7.396381e-01 1.589130e-01 -9.996839e-01 1.000000e+00

[11] 9.999991e-01 -9.988137e-01 4.828624e-05 1.030472e-01 2.993903e-01

[16] 2.584276e-01 1.394047e-01 1.996819e-01

$value

[1] -0.003549301
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x1 : 0.9738 1.0000 1.0000 −0.9341 −0.9495 −0.9782
x2 : 0.7397 0.1589 −0.9997 1.0000 1.0000 −0.9988
δ : 0.0000 0.1030 0.2994 0.2584 0.1394 0.1997

Table 4.1 The design suggested by the first use of constrOptim.

$counts

function gradient

10014 NA

That is, written to four decimal places, the values of x1, x2 and δ at the six support
points appear in Table 4.1.

The design weight of the first point is 4.828624e-05, which is essentially numerical
noise. This suggests to me that I should delete one support point and try again with
five support points.

It is tedious to change the matrix C and the vector u in the constraints Cv−u ≥ 0
every time that the value of s is altered. As constrOptim is usually slower than optim,
and it is easier to modify input to optim when the value of s is changed, I will use
optim in all future examples. I recommend that you use optim, too.

The following program was run. Segment ¬ defines the function f(x), while Seg-
ment ­ defines a function, detinfomat1, that calculates −det [M(ξ,β)]. Note that
the first four lines of detinfomat1 take the input vector variables, convert its first
ms elements into an m× s matrix whose columns are the s vectors x1, . . . ,xs, and
convert its last s values into δ1, . . . , δs. The vectors xi and design weights δi satisfy
the relevant constraints. It is clear that the next command and the loop calculate

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f
>(xi)

exactly how this formula for M(ξ,β) suggests that it should be calculated. The last
command of the function produces the value of −det[M(ξ,β)].

¬

fx <- function(xvec)

{

fvec <- c(1,xvec)

fvec

}

­

detinfomat1 <- function(variables)

{

xvals <- matrix(cos(pi*variables[1:lim1]),m,s,byrow=T)

zvec <- variables[(lim1+1):((m+1)*s)]

deswts <- zvec^2

deswts <- deswts/sum(deswts)

infomat <- matrix(0,p,p)
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for (i in 1:s)

{

xvec <- xvals[,i]

fvec <- fx(xvec)

eta <- sum(fvec*betavec)

expeta <- exp(eta)

wt <- expeta/((1+expeta)^2)

infomat <- infomat + deswts[i]*wt*fvec%*%t(fvec)

}

-det(infomat)

}

The function detinfomat1 would be used many times in searching for a locally D-
optimal design. It will be worthwhile to make this function as efficient as follows, by
removing the loop. The following alternative is used instead:

detinfomat2 <- function(variables)

{

xvals <- cos(pi*variables[1:lim1])

xmat <- t(matrix(xvals,s,m))

wtvals <- (variables[(lim1+1):((m+1)*s)])^2

deltavec <- wtvals/sum(wtvals)

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*%diag(deltavec*modelwtvec)%*%t(fxmat)

-det(infomat)

}

The following changes have been made. The matrix xmat in the second line is equal
to [x1, . . . ,xs]. Then deltavec uses wtvals to produce the vector of design weights
(δ1, . . . , δs)>. The command apply(xmat,2,fx) applies fx to each column of xmat.
(The columns are the second dimension of the matrix: hence the “2” after xmat.)
That is, from page 16 fxmat is equal to

F> = [f(x1), . . . ,f(xs)].

The next three commands use element-by-element commands to produce the vector
of model weights ω = (ω(x1), . . . , ω(xs))>, and the following command calculates
the information matrix as

M(ξ,β) = F>WF ,

where W = diag [δ1ω(x1), . . . , δsω(xs)].

The second form of the function, detinfomat2, is faster than the first form, detinfo-
mat1. I have not given time comparisons here, because they depend very much on
the speed of your computer and the value of s, but I was sufficiently satisfied by a
comparison that I decided to use detinfomat2 from now on.

Segment ® (below) of the program defines β and the values of s, p and m. It also
says how many simulated starting vectors for optim will be produced, and gives
an initial minimum value of the negative of the determinant. It is hoped that the
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simulations will produce designs that provide lower values of this negative. The last
part of Segment ® produces a vector, start, of starting values of x and of w that
logdetinfo will transform to constrained values of xi and δi. These starting values
have been obtained by “back-transforming” the last five columns of the solution from
the previous search as given in Table 4.1.

®

betavec <- c(1,1,1)

s <- 5

p <- 3

m <- 2

lim1 <- m*s

lim2 <- (m+1)*s

nsims <- 1000

mindet <- 10

startx <- acos(c(1,1,-0.934,-0.946,-0.978,0.159,-1,1,1,-1))/pi

startw <- c(0.103,0.299,0.258,0.139,0.200)

startw <- sqrt(startw/startw[s])

start <- c(startx,startw)

Segment ¯, the last part of the program, follows. Within a loop, each component of
start has a small positive or negative increment added to it, then the result is input
into optim. The resulting ‘optimal’ design is compared with the best found so far,
and details are updated if the new design has a smaller value of −det [M(ξ,β)].

¯

for (i in 1:nsims)

{

initial <- start + 0.1*(runif(lim2)-0.5)

out <- optim(initial,detinfomat2,NULL,method="Nelder-Mead")

if(out$value < mindet) {mindet <- out$value

bestdesign <- out$par}

}

answer <- bestdesign

xvals <- matrix(cos(pi*answer[1:lim1]),m,s,byrow=T)

zvec <- (answer[(lim1+1):((m+1)*s)])^2

deswts <- zvec/sum(zvec)

solution <- rbind(xvals,deswts)

mindet

solution

This gave the output

> mindet

[1] -0.004503855

> solution

[,1] [,2] [,3] [,4] [,5]

5.280236e-01 0.9999981 -0.9999998 -9.946491e-01 -0.9999995

-6.774064e-01 -0.9999987 0.9999998 9.667211e-01 -1.0000000
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deswts 1.179132e-10 0.3335182 0.3334539 8.777945e-06 0.3330191

on one run of the program, and

> mindet

[1] -0.004503852

> solution

[,1] [,2] [,3] [,4] [,5]

9.941936e-01 0.9999992 -0.9999990 -0.99999871 -1.0000000

2.090103e-01 -0.9999988 0.9999973 0.99999774 -0.9999996

deswts 1.583349e-09 0.3330912 0.2905551 0.04267929 0.3336744

on another run. Different results will be obtained from different runs of the program
because the input for optim is randomly generated. Both results can be seen to
suggest that the optimal design is

ξ∗ =

{
(1,−1)> (−1, 1)> (−1,−1)>

1/3 1/3 1/3

}
. (4.18)

Let us examine the behaviour of the standardised variance d(x, ξ∗) over the design
region, X . There are three variables to be considered: the explanatory variables x1
and x2, and d(x, ξ∗,β) = d(x1, x2, ξ∗,β). Contour plots are a convenient way to
display three-dimensional surfaces in two dimensions, and will be used often in this
book when m = 2. The first contour plot appears in Figure 4.4, and will be explained
in detail.

x1

x 2

 1.4 

 2 

 2.6 

 2.6 

 2.
6  3 

 3 

 3 

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

Figure 4.4 Contour plot of d(x1, x2, ξ
∗,β) for β = (1, 1, 1)> over the design

region X = {−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. The design ξ∗ is given in (4.18).
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The plot shows part of the x1-x2 plane. The dotted lines mark the boundaries of
X , and the “bullets” (•) represent the support points of ξ∗. Each curve (“contour”)
connects points (x1, x2) in X that have the same value of d(x1, x2, ξ∗,β). For exam-
ple, the curve marked “2.6” connects points (x1, x2) satisfying d(x1, x2, ξ∗,β) = 2.6.
Contours have been drawn for four values of d(x1, x2, ξ∗,β) : 1.4, 2, 2.6 and 3. More
contours could have been drawn, but I chose to use only four in order to reduce clutter.

By the general equivalence theorem (page 83), ξ∗ is locally D-optimal if the con-
tour d(x1, x2, ξ∗) = p (where here p = 3) passes through each of the support
points, and there is nowhere in X where d(x1, x2, ξ∗,β) > p. In Figure 4.4, the
contour d(x1, x2, ξ∗,β) = 3 is drawn with a thicker line. It is clear that this
contour passes through each of the three support points, and that nowhere in X
is d(x1, x2, ξ∗,β) > 3. Hence ξ∗ is locally D-optimal.

Contrast this with the contour plot in Figure 4.5, which is for the alternative design

ξ+ =

{
(1,−0.8)> (−0.8, 1)> (−1,−1)>

1/3 1/3 1/3

}
. (4.19)
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Figure 4.5 Contour plot of d(x1, x2, ξ
+,β) over the design region X = {−1 ≤

x1 ≤ 1, −1 ≤ x2 ≤ 1}, where ξ+ is given in (4.19).

Contours have been drawn for d(x1, x2, ξ+,β) = 1.4, 2, 2.6, 3 and 3.4. The
contour for d(x1, x2, ξ+,β) = 3 passes through the three support points of
ξ+, but the contour d(x1, x2, ξ+,β) = 3.4 also passes through X , and it is
evident that d(x1, x2, ξ+,β) > 3 for many vectors (x1, x2)> in X . Consequently,
by the general equivalence theorem, the design ξ+ is not locally D-optimal.
The contour plot suggests that, if there are to be no values of d(x1, x2, ξ+,β)
greater than 3 in X , we should move the support points at (1,−0.8)> and
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(−0.8, 1)> towards (1,−1)> and (−1, 1)>, respectively. Of course, this makes ξ+

more like ξ∗. It often happens that looking at the contour plot of d(x1, x2, ξ,β)
for a design ξ will suggest how the support points of ξ should be altered
to give a design that is more D-efficient. Unfortunately, the contour plot can-
not tell you anything about necessary changes to the current design weights
δ1, . . . , δs.

The R program that produced the contour plot in Figure 4.4 appears below, in five
segments:

¬

m <- 2

betavec <- c(1,1,1)

p <- 3

s <- 3

lim1 <- m*s

fx <- function(xvec)

{

fvec <- c(1,xvec)

fvec

}

design <- c(1,-1,-1,-1,1,-1,1/3,1/3,1/3)

Segment ¬ specifies the values of m, β, p, and s. It also calculates the value of ms
(needed subsequently) and defines the function f(x). Lastly it specifies the design for
which the standardised variance is being calculated: the s values of x1 at the support
points, followed by the corresponding s values of x2, and then the corresponding
design weights for these points.

­

xmat <- matrix(design[1:lim1],m,s,byrow=T)

wtvals <- (design[(lim1+1):((m+1)*s)])^2

deltavec <- wtvals/sum(wtvals)

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*%diag(deltavec*modelwtvec)%*%t(fxmat)

invinfo <- solve(infomat)

Segment ­ is based on detinfomat2 from page 107. It calculates the information
matrix M(ξ∗,β) for ξ∗, and then calculates M−1(ξ∗,β). Note that the values of
xi and δi in design satisfy the necessary constraints, so they can be used directly
without any transformations being required.

®

stdvar <- function(x1,x2)

{

fvec <- fx(c(x1,x2))

eta <- sum(fvec*betavec)

expeta <- exp(eta)

wt <- expeta/((1+expeta)^2)
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sv <- wt*as.numeric(t(fvec)%*%invinfo%*%fvec)

sv

}

The function that calculates d(x1, x2, ξ∗,β) is defined in Segment ®.

¯

exp1 <- expression(x[1])

exp2 <- expression(x[2])

x1 <- seq(from=-1.1,to=1.1,by=0.005)

x2 <- seq(from=-1.1,to=1.1,by=0.005)

lenx1 <- length(x1)

lenx2 <- length(x2)

y <- rep(0,lenx1*lenx2)

kount <- 1

for (i in 1:lenx1)

{

for (j in 1:lenx2)

{

y[kount] <- stdvar(x1[i],x2[j])

kount <- kount + 1

}

}

ymat <- matrix(y,lenx1,lenx2,byrow=T)

Segment ¯ defines the labels that are to appear on the x1 and x2 axes. It then
specifies the values of x1 and x2 to be used to create a grid of (x1, x2)-values at each
of which the standardised variance will be calculated. The vector y will store these
values of d(x1, x2, ξ∗,β). The two loops calculate each value of d(x1, x2, ξ∗,β) on the
grid. The contents of y are then stored in a matrix for use in the command contour.

°

par(las=1)

contour(x1,x2,ymat,xlab=exp1,ylab=exp2, levels = c(1.4,2,2.6,3),

lwd = c(1,1,1,3),labcex=1.2)

lines(c(-1.05,1.05),c(1,1),lty=2)

lines(c(-1.05,1.05),c(-1,-1),lty=2)

lines(c(-1,-1),c(-1.05,1.05),lty=2)

lines(c(1,1),c(-1.05,1.05),lty=2)

points(c(1,-1,-1),c(-1,1,-1),pch=16,cex=1.8)

In segment °, the contour command creates the contour plot. The option levels
= c(1.4,2,2.6,3) specifies the values of d(x1, x2, ξ∗,β) for which contours are to be
drawn, while lwd = c(1,1,1,3) specifies the widths of the contours (here the contour
for d(x1, x2, ξ∗,β) = 3 is to be three times the width of the other contours), and
labcex=1.2 specifies the size of the labels on the contours. The lines commands draw
the dotted lines that mark the boundaries of the design space, while the points
command specifies the locations, type and size of the characters that represent the
support points.

As already remarked, it is clear from Figure 4.4 that d(x, ξ∗,β) = 3 = p at each of the
support points, and that d(x, ξ∗,β) does not exceed 3 anywhere on the design space.
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While contour plots are very useful when there are m = 2 explanatory variables,
their use is limited when m > 2. For m = 3 and the design region satisfying
−1 ≤ xi ≤ 1; i = 1, 2, 3, there would be 101 different contour plots showing the
values of d(x1, x2, x3, ξ,β) for −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 and x3 equal to each of
−1.00,−0.98,−0.96, . . . , 1.00. One might also want plots of d(x1, x2, x3, ξ) vs (x1, x3)
for various values of x2, or of d(x1, x2, x3, ξ,β) vs (x2, x3) for various values of x1.
Producing a large number of contour plots becomes infeasible as the value of m
increases.

The real aim is to see whether there are values of d(x, ξ,β) in the design region
that exceed p. It is known from the preliminary discussion of the derivative φ(x, ξ,β)
on page 83 that it will be equal to zero at the support points of the design ξ. For
D-optimality, this means that the standardised variance d(x, ξ∗,β) equals p at each
support point, whether or not ξ∗ is locally D-optimal. If there are values of d(x, ξ∗,β)
greater than p in the design region, we would expect them to be close to the support
points. A reasonable approach to checking that a design ξ∗ is locally D-optimal is
to consider values of d(x, ξ∗,β) in the neighbourhood of each support point, and
to decide that ξ∗ is locally D-optimal if the maximum value of d(x, ξ∗,β) in those
neighbourhoods does not exceed p by an unreasonable amount. (Recall the earlier
remark that, while theory says that values of d(x, ξ∗,β) should not exceed p at all,
we must allow for computational error in performing this check.)

Assume that the function stdvar has been defined similarly to its definition in Seg-

ment ¯ on page 85, but with the argument being x rather than x1 and x2 separately.

For a given design ξ, the following program will examine the value of d(x, ξ,β) at ran-

domly selected points in the neighbourhood of each support point of ξ. The number

of points to be generated in each neighbourhood is controlled by the variable npoints.

The distance parallel to each axis that the neighbourhood extends is equal to the

parameter distance. The program is available in doeforglm.com as Program 13, and

is as follows:

out4 <- matrix(c(1,-1,-1,-1,1,-1),s,m)

s <- 3

m <- 2

npoints <- 1000

total <- npoints*m

distance <- 0.02

for (i in 1:s)

{

maxpoint <- rep(0,m)

supportpt <- out4[i,1:m]

max <- -1

deviation <- 2*distance*(runif(total)-0.5)

j1 <- 1

j2 <- m

for (j in 1:npoints)

{

newpoint <- supportpt + deviation[j1:j2]

newpoint[newpoint < -1] <- -1

newpoint[newpoint > 1] <- 1

sv <- stdvar(newpoint)
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if(sv > max) {max <- sv

maxpoint <- newpoint}

j1 <- j1 + m

j2 <- j2 + m

}

cat("For support point ",i,"\n", "Maximum std var is ",max,

" at \n",maxpoint,"\n")

}

The program follows immediately after the program that finds the allegedly D-
optimal design, so that the output of the optimisation program is available to it.
Running the program for the design for β = (1, 1, 1)> given on page 109 results in
the output

For support point 1

Maximum std var is 3 at

1 -1

For support point 2

Maximum std var is 3 at

-1 1

For support point 3

Maximum std var is 3 at

-1 -1

There is no evidence that the standardised variance exceeds p = 3 anywhere near
the alleged support points, strongly suggesting that the design is indeed locally D-
optimal. Had there been values of d(x, ξ,β) greater than 3, we would deduce that the
design is not locally D-optimal. Consider the non-optimal design ξ+ given in (4.19),
with its contour plot in Figure 4.5. Running the above program gives the output

For support point 1

Maximum std var is 3.037981 at

1 -0.8195613

For support point 2

Maximum std var is 3.038777 at

-0.8199656 1

For support point 3

Maximum std var is 3 at

-1 -1

While the output clearly indicates that ξ+ is not locally D-optimal, it is not as helpful
as the contour plot in indicating where the support points should be. However, it may
be noticed that the maximum values of d(x, ξ+,β) occur at almost the maximum
distance (0.02) from the support points that is allowed by the value of distance in the
program. This suggests that the value of distance should be increased. I increased it
to 0.4, and the following output was obtained:

For support point 1

Maximum std var is 3.433078 at

1 -0.9966062

For support point 2
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Maximum std var is 3.441438 at

-0.9999377 1

For support point 3

Maximum std var is 3 at

-1 -1

In the neighbourhood of the current support points, the two points where the max-
imum values of the standardised variance occur are vertices of the design space. As
this is where the support points of optimal designs are often located, it suggests that
we should try replacing the support points (1,−0.8) and (−0.8, 1) by (1,−1) and
(−1, 1), respectively, and then investigate the new design (which we know from page
110 is actually the locally D-optimal design).

Atkinson, Donev, & Tobias (2007, pp. 402–410) provided D-optimal designs for four
parameter sets: β = (0, 1, 1), (0, 2, 2), (2, 2, 2) and (2.5, 2, 2). For the first three pa-
rameter sets, the D-optimal design has s = 4 support points; for the fourth parameter
set, the D-optimal design has s = 3 support points. So clearly the number of support
points depends on the values of the parameters. Moreover, for β = (0, 2, 2), there
are two possible D-optimal designs with four support points. We shall see in Exam-
ple 4.5.2 that the existence of a second D-optimal design is entirely predictable once
we have found either of the D-optimal designs.

A table has been provided in the Web site doeforglm.com that gives a D-optimal
design for various parameter sets satisfying β0 ∈ {0, 1, 2}, β1 ∈ {1, 2, 3, 4, 5} and
β2 ∈ {1, . . . , β1}. For example, given x ∈ X , the D-optimal design for β = (1, 2, 1)
(i.e., η = f>(x)β = 1 + 2x1 + x2) has s = 4 support points, and is given by

x1 x2 δ
−1.000 1.000 0.301
−0.761 −1.000 0.325
−0.378 1.000 0.049

0.760 −1.000 0.325

.

I have tried to give all values of the explanatory variables and design weights to three
decimal places in the supplementary tables, as anything with more than three deci-
mal places is generally impractical from an experimental perspective. Other slightly
different designs could give the same value of −det [M(ξ,β)]. A contour plot of the
standardised variance d(x1, x2) appears in Figure 4.6. The heavy contour line for
d(x1, x2) = p = 3 does not cross the dotted lines which form the boundary of the
design space X , so the maximum value of d(x1, x2) on the boundary or interior of X
is p = 3. The values of d(x1, x2) at the tabulated support points are given in R as

> stdvar(-1,1)

[1] 3.001838

> stdvar(-0.761,-1)

[1] 2.99879

> stdvar(-0.378,1)

[1] 3.004101

> stdvar(0.760,-1)

[1] 2.99889

These do not equal 3 exactly, despite the general equivalence theorem saying that
they should. You must expect this when the values of the xi and δi are given to three
decimal places. If you find the values of the xi and δi to (say) eight decimal places,
then you might justly expect the values of d(x1, x2) at the support points to be
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Figure 4.6 Contour plot of the standardised variance of the locally D-optimal
design for a logit link and η = 1 + 2x1 + x2. The contour labels were moved to

the edges so that the two “bullets” on the line x2 = −1 would not overlay the labels.

much closer to 3. However, it is quite possible that they still will not equal 3 exactly.
Mathematical results and computational results do not always coincide exactly.

Notwithstanding this, I strongly encourage you to check any design that you take, or
modify, from the tables, to guard against errors on my part or yours. Minor differences
between designs are probably the natural consequence of optimising a complicated
function of numerous variables, but major differences suggest an error by you or me.

The D-optimal designs in the table are meant to provide a rough guide to choosing
an initial guess of the solution for some other value of β. For example, should you
wish to find a D-optimal design for the parameters β = (1.2, 2.1, 1.3), you might say
that this parameter set is similar to β = (1, 2, 1) and use the locally D-optimal design
for β = (1, 2, 1) as your initial guess in a search for the locally D-optimal design for
β = (1.2, 2.1, 1.3).

While this table is useful, it might seem rather limited, as it does not consider values of
β1 less than those of β2, nor does it consider negative values of β0, β1 or β2. However,
the following “Results” will allow these designs to be used for values of β that do
not meet the requirements of the parameter vectors in the table. The “Results” also
apply to more than m = 2 mathematically independent explanatory variables, so
they will be written for the more general model η = β0 + β1x1 + · · · + βmxm. The
design region is written as

Xm = {(x1, x2, . . . , xm) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, . . . ,−1 ≤ xm ≤ 1}.
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It is clear that the design space X that we have been considering is X2, and that the
tabulated locally D-optimal designs are optimal in X2 for the relevant values of β.

Let

ξβ =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
and ξb =

{
u1 u2 . . . us
δ1 δ2 . . . δs

}
(4.20)

be designs on Xm for the parameter vectors β = (β0, β1, . . . , βm)> and b =
(b1, b2, . . . , bm)>, respectively. Note that the sets of design weights for ξβ and ξb
are equal. Let M(ξβ,β) and M(ξb, b) be the information matrices of ξβ and ξb,
respectively.

Result 4.5.1. If b is obtained from β by interchanging βj and βk from {β1, . . . , βm}
(NB: this set does not contain β0), and each support point ui is obtained from the
corresponding xi by interchanging the values of the explanatory variables xj and xk,
then det

[
M(ξβ,β)

]
= det [M(ξb, b)].

Result 4.5.2. If b is obtained from β by changing the sign (+ or −) of βj ∈
{β1, . . . , βm}, and each ui is obtained from the corresponding xi by changing the
sign of the explanatory variable xj , then det

[
M(ξβ,β)

]
= det [M(ξb, b)].

[Acknowledgment of priority: Since formulating Result 4.5.1, I have discovered a
similar statement in Zhang (2006, pp. 50-51).]

Results 4.5.1 and 4.5.2 allow us to obtain locally D-optimal designs for parame-
ter sets related to those for which locally D-optimal designs have already been
tabulated, without doing a constrained optimisation. Note that the design space
Xm is unchanged if we swap the order in which we write some of the coordinates
x1, . . . , xm, and if we replace some xi by −xi (as −1 ≤ xi ≤ 1 ⇔ −1 ≤ −xi ≤ 1).
For example, the linear predictor η = 1 + 2x1 + x2 is equal to η = 1 + 2x1 −
1(−x2) = (1, 2,−1)(1, x1,−x2)>, so finding the design that maximises M(ξβ,β) for

β = (1, 2, 1)> over X2 is the same as finding the design that maximises M(ξb, b)
for b = (1, 2,−1)> over the set of values of (x1,−x2) corresponding to (x1, x2) ∈ X ;
that is, over X2.

Example 4.5.1. From page 115, if x ∈ X2, the locally D-optimal design for β =

(1, 2, 1) for the logic link is given by

x1 x2 δ
−1.000 1.000 0.301
−0.761 −1.000 0.325
−0.378 1.000 0.049

0.760 −1.000 0.325

.

Then the locally D-optimal designs for β = (1, 1, 2), (1, 2,−1) and (1,−1,−2) are

δ
0.301
0.325
0.049
0.325

β = (1, 1, 2)>

x1 x2
1.000 −1.000
−1.000 −0.761

1.000 −0.378
−1.000 0.760

β = (1, 2,−1)>

x1 x2
−1.000 −1.000
−0.761 1.000
−0.378 −1.000

0.760 1.000

β = (1,−1,−2)>

x1 x2
−1.000 1.000

1.000 0.761
−1.000 0.378

1.000 −0.760

.
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Figure 4.7 Plots of the standardised variances of the designs given in Ex-
ample 4.5.1 for the parameter vectors (a) (1, 1, 2)>, (b) (1, 2,−1)> and (c)
(1,−1,−2)>. As the standardised variances for each value of β achieve their
maximum value over the design region of p = 3 at the marked support points,
the designs are each locally D-optimal for the relevant value of β.
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The contour plots of the standardised variances for these three designs appear in
Figure 4.7. For each plot, the standardised variance achieves its maximum value
over the design region of p = 3 at each of the support points. Therefore, by the
general equivalence theorem, each design is locally D-optimal for the relevant value
of β.

Example 4.5.2. From the table, the D-optimal design for β = (0, 2, 2)> is

ξa =

{
(−1.000, 0.118)> (−1.000, 1.000)> (−0.118, 1.000)> (1.000,−1.000)>

0.240 0.193 0.240 0.327

}
,

which agrees within numerical noise with a design given in Atkinson, Donev, &
Tobias (2007, Design B2, p. 403). The authors also find a second D-optimal design,

ξb =

{
(−1.000, 1.000)> (1.000,−1.000)> (1.000,−0.118)> (0.118,−1.000)>

0.327 0.193 0.240 0.240

}
.

The D-optimality of either design implies the D-optimality of the other by a simple
application of Result 4.5.1. Interchanging x1 and x2 in the linear predictor η =
2x1 + 2x2 gives exactly the same model, while interchanging the values of x1 and x2
in the support points of ξa gives ξb and vice versa.

In the discussions so far, some of the parameters β1, . . . , βm in the linear predictor
η = β0 +β1x1 + · · ·+βmxm have had their signs changed, or have been interchanged,
to obtain D-optimal designs based on those in the online documentation. However,
changing the sign of β0 has not yet been considered. For the logit and probit links,
for which π(−ηi) = 1 − π(ηi), one may change the sign of β0 and obtain a locally
D-optimal design by simple modification of a tabulated design. Note that this does
not apply to the complementary log-log link, as π(−ηi) 6= 1− π(ηi).

Result 4.5.3. If the link function satisfies π(−ηi) = 1 − π(ηi), then the locally
D-optimal design on Xm for b = −β, ξ∗b , is identical to the locally D-optimal design
on Xm for β, ξ∗β.

Example 4.5.3. The locally D-optimal design on X for the parameter vector b =
(−1,−2,−1)> is identical to the locally D-optimal design on X for β = (1, 2, 1)>.

Example 4.5.4. The locally D-optimal design on X for the parameter vector b =
(−1, 2, 1)> is identical to the locally D-optimal design on X for β = (1,−2,−1)>.
The latter design is not given in the supplementary tables, but it is known from
Results 4.5.1 and 4.5.2 that it is obtained from the locally D-optimal design for
β = (1, 2, 1)> (which is given in the tables) by changing the sign (+ to −, or vice
versa) of the values of x1 and x2 at each support point of the locally D-optimal design
for β = (1, 2, 1)>.

Example 4.5.5. This example considers a situation where the predictor variables,
w1 and w2, do not lie between −1 and 1. Consider the logit link and let the linear
predictor be η = −4 + 2w1 + w2, where 0 < w1 < 3 and 1 < w2 < 5. From (4.17),
the transformations

x1 = (w1 − 1.5)/1.5 and x2 = (w2 − 3)/2

give new variables x1 and x2 satisfying −1 < xi < 1 (i = 1, 2). The inverse trans-
formations are w1 = 1.5 + 1.5x1 and w2 = 3 + 2x2. Substituting these results into
the equation for η gives

η =− 4 + 2w1 + w2

=− 4 + 2(1.5 + 1.5x1) + (3 + 2x2)

= 2 + 3x1 + 2x2,
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ξx ξw
x1 x2 δ w1 w2

-1.000 -0.232 0.082 0.000 2.536
-1.000 1.000 0.326 0.000 5.000
-0.493 -1.000 0.265 0.761 1.000
0.493 -1.000 0.327 2.240 1.000

Table 4.2 Locally D-optimal designs for the problem in Example 4.5.5. The
three leftmost columns give the design in terms of the transformed explanatory
variables x1 and x2, while the three rightmost columns give the design in terms
of the original explanatory variables w1 and w2.

which has x1 and x2 in the usual design space for a parameter vector β = (2, 3, 2)>.
The locally D-optimal design is obtainable from the optimal designs in the online
resources. It (ξx) appears in the three left-hand columns of Table 4.2, while the
locally D-optimal design in terms of w1 and w2 (ξw) appears in the three right-hand
columns. The support points in terms of w1 and w2 are obtained from those of x1
and x2 using the inverse transformations above.

It is easy to verify that ξw does have a standardised variance satisfying the require-
ments of the general equivalence theorem, and so ξw is indeed locally D-optimal.

Result 4.5.3 occurs because of the following: Write ηb = f>(x)b and ηβ = f>(x)β.
If b = −β, then ηb = −ηβ and, at a support point xi, the model weights for the two
models are equal, because πβ = 1− πb implies that

ωβ(xi) = πβ(1− πβ) = (1− πb)πb = ωb(xi).

Also, we may write η(u) = −f>(x)β = [−f(x)]>β = f>(u)β where f(u) = −f(x).
Then, for an arbitrary design ξ,

M(ξ, b) =

s∑
i=1

δi ω(ui)f(ui)f
>(ui)

=
s∑
i=1

δi ω(xi)[−f(xi)][−f>(xi)]

=
s∑
i=1

δi ω(xi)f(xi)f
>(xi)

= M(ξ,β),

and it follows that M(ξ, b) and M(ξ,β) both achieve their maximum determinants
at the same design.

4.5.3 The probit link

You are referred back to Sub-section 4.5.1 for a quick consideration of the reasons
for working with the design space X = {(x1, x2) : − 1 ≤ x1 ≤ 1; −1 ≤ x2 ≤ 1}.

The only difference between the approach described in Sub-section 4.5.2 for the logit
link and the approach for the probit link is in a change for the formula for the model
weights. In the program that appears on page 107, replace the two commands:
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expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

in the function detinfomat2 by the commands:

Phivec <- pnorm(etavec)

modelwtvec <- (dnorm(etavec)^2)/(Phivec*(1-Phivec))

As with the logit link, a table has been provided in the online material that gives a
locally D-optimal design for the probit link for the parameter sets (β0, β1, β2) that
satisfy β0 ∈ {0, 1, 2}, β1 ∈ {1, 2, 3, 4, 5} and β2 ∈ {1, . . . , β1}. Results 4.5.1, 4.5.2
and 4.5.3 may all be used with this table to obtain D-optimal designs for related
parameter sets. For example, the locally D-optimal design for β = (1, 3, 2)> may be
trivially altered to give locally D-optimal designs for any of β = (±1, ±3, ±2)> or
(±1,±2,±3)> without further computation.

4.5.4 The complementary log-log link

You should re-read Sub-section 4.5.1 before proceeding.

The only necessary change in the program for the logit link that appears on page 107
is to introduce the appropriate model weight for the complementary log-log link.
Replace the command

modelwtvec <- expetavec/((1+expetavec)^2)

in the function detinfomat2 in Segment ­ by the command

modelwtvec <- exp(2*etavec-expetavec)/(1-exp(-expetavec))

A table in the Web site doefoglm.com lists a locally D-optimal design for the
complementary log-log link for the parameter sets (β0, β1, β2) that satisfy β0 ∈
{−2,−1, 0, 1, 2}, β1 ∈ {1, 2, 3, 4, 5} and β2 ∈ {1, . . . , β1}. Results 4.5.1 and 4.5.2 may
be used with this table to obtain D-optimal designs for related parameter sets. How-
ever, Result 4.5.3 cannot be used, as the complementary log-log link function does
not satisfy π(−η) = 1− π(η).

4.5.5 Comparison of designs for different links

The locally D-optimal design for a logit link with m = 2 and β = (1, 2, 1)> was listed
on page 115. It is repeated in Table 4.3, together with the locally D-optimal designs
for the same value of β and the probit and complementary log-log links.

While the designs have the same number of support points, there are considerable
differences between some support points and design weights for each pair of locally
D-optimal designs.

Sometimes the D-optimal designs for the same value of β but with different links
do have different numbers of support points. An example is β = (0, 5, 5)>. The
optimal designs for the three links appear in the online supplementary tables. The
design for the logit link has five support points, while the designs for the probit and
complementary log-log links have four support points each. Fairly sustained attempts
to find a locally D-optimal design with four support points for the logit link have
been unsuccessful. Similarly, attempts to find locally D-optimal optimal designs with
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Logit Probit Complementary log-log
x1 x2 δ x1 x2 δ x1 x2 δ

-1.000 1.000 0.301 -1.000 1.000 0.292 -1.000 1.000 0.179
-0.761 -1.000 0.325 -0.560 -1.000 0.322 -0.644 -1.000 0.305
-0.378 1.000 0.049 -0.523 1.000 0.064 -0.594 1.000 0.195
0.760 -1.000 0.325 0.560 -1.000 0.322 0.478 -1.000 0.321

Table 4.3 Locally D-optimal designs when β = (1, 2, 1)> for the logit, probit
and complementary log-log link functions.

five support points for the probit and complementary log-log links have also been
unsuccessful. The lack of commonality in the number of support points across the
three links is a consequence of the different properties of those links.

4.6 Designs for m > 2 explanatory variables

Most books on the Design of Experiments are declaratory in nature. This sub-section
will be quite different. Finding a locally D-optimal design for a GLM can sometimes
require luck as well as skill, and I aim to illustrate here the various steps that I took in
a long search for the locally D-optimal design for the logit link and a linear predictor
that involves more explanatory variables than we have seen before.

Suppose that there are m = 6 explanatory variables, and the linear predictor is
assumed to be

η = 0.4 + 0.3x1 + 0.4x2 − 0.5x3 − 0.2x4 + 0.3x5 + 0.4x6 + 0.2x1x2 − 0.3x3x4

= f>(x)β.

There are p = 9 parameters in the vector β, so from Sub-section 3.7.1 the number of
support points in the locally D-optimal design will be between p = 9 and p(p+1)/2 =
45. No additional theory is needed to find a locally D-optimal design for this larger
number of support points, but the procedure will take longer and probably be less
straightforward than in previous sections. As well, it is not feasible to draw all the
possible contour plots of the standardised variance, so it becomes necessary to check
the values of the standardised variance near a support point using Program 13 on
page 113.

I chose to begin a search for the locally D-optimal design with s = 15 support points.
While this is not close to the maximum of 45 points, I felt that it was sufficiently
greater than the minimum of nine points to be worth an investigation. The program
used was a simple adaptation of the programs described earlier, commencing with
Segment ¬.

¬

betavec <- c(0.4,0.3,0.4,-0.5,-0.2,0.3,0.4,0.2,-0.3)

p <- length(betavec)

m <- 6

s <- 15

lim1 <- m*s

lim2 <- (m+1)*s

fx <- function(xvec)
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{

fvec <- c(1,xvec,xvec[1]*xvec[2],xvec[3]*xvec[4])

fvec

}

The function detinfomat2 was then defined (see page 107), and Segment ­ (below)
was used to search for an optimal design. The starting values of the input vector
initial were randomly generated 2000 times, and the design with the maximum value
of det[M(ξ,β)] was recorded. Segment ® will print out the selected design.

­

nsims <- 2000

mindet <- 100

for (i in 1:nsims)

{

initial <- runif(lim2)

out <- optim(initial,detinfomat2,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

®

cat("Min value of det\n",mindet,"\n")

output <- design

out1 <- cos(pi*output[1:lim1])

out2 <- (output[(lim1+1):lim2])^2

wts <- out2/sum(out2)

out4 <- cbind(matrix(out1,s,m),wts)

cat("Design\n")

t(out4)

The selected design had a value of 5.945375× 10−10 for det[M(ξ,β)]. As two of the
design weights, δ10 and δ11, were less than 0.01, I decided to reduce the value of s
to 13 and, with this alteration, ran the program again. For input to the program, I
used the design ξ with the 10th and 11th support points deleted. Segment ­ above
was replaced by Segment ¯ below:

¯

spare <- out4

xout <- as.vector(out4[c(1:9,12:15),1:6])

wtout <- as.vector(out4[c(1:9,12:15),7])

betavec <- c(0.4,0.3,0.4,-0.5,-0.2,0.3,0.4,0.2,-0.3)

p <- length(betavec)

m <- 6

s <- 13

lim1 <- m*s

lim2 <- (m+1)*s
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nsims <- 2000

mindet <- 100

initialx <- xout

initialz1 <- acos(initialx)/pi

initialwts <- wtout

initialz2 <- sqrt(initialwts/initialwts[s])

for (i in 1:nsims)

{

initial1 <- initialz1 + 0.1*(runif(lim1)-0.5)

initial2 <- initialz2 + 0.1*(runif(s)-0.5)

initial <- c(initial1,initial2)

out <- optim(initial,detinfomat2,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

The first command of Segment ¯ (spare <- out4) is not needed for the search for
an optimal design but, as I discovered later, it is wise to have a spare copy of the
output, out4, from the previous run of the program.

I ran the program three times, each time using the “best” design from the previous
run as a baseline from which to generate input to optim. This required the second
and third lines of Segment ¯ to be replaced by Segment °:

°

xout <- as.vector(out4[,1:6])

wtout <- as.vector(out4[,7])

Running the program resulted in a design with det[M(ξ,β)] = 1.564124× 10−8 and
δ8 less than 0.01. (All values of δi for the previous two designs were greater than 0.01.)
The final design had the eighth support point deleted, s was changed to 12, and then
the program was run again. After 15 iterations, each time with δmin > 0.033, the
value of det[M(ξ,β)] had increased to 3.299177 × 10−7. The next three iterations
gave designs with lower values of det[M(ξ,β)], and this was where it was important
to have stored a copy of the matrix out4 from the best design so far. Without this, one
would have to use the less optimal matrix from the most recent iteration as a starting
point. Finally I obtained a better design, with det[M(ξ,β)] = 3.368853× 10−7. The
failure of the value of the determinant to steadily increase with recent iterations of
the program made me wonder whether perhaps I was close to the locally D-optimal
design, so I decided to investigate the value of the standardised variance at and near
the support points of the current design using Program 13 (see page 113). However,
the output from this program included the following:

For support point 10

Maximum std var is 9.465257 at

1 1 0.8605391 0.6148241 -0.9906819 -0.6833456

This was disheartening, as one would want the maximum to be essentially p = 9.

I could have continued searching, perhaps after changing to −1 or 1 those coordinates
of each support point that were essentially equal to (say) −0.999 or 0.999. However, in
the interests of demonstrating an alternative approach to locating a locally D-optimal
design, I instead decided to start again, this time from the minimum value of s: nine.
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With this amendment, I used Segments ¬,­ and ® of the program beginning on
page 106. After several iterations, I replaced the last line of Segment ° immediately
above by wtout <- rep(1/9,9) as I knew that, if s = 9 is correct, the values of
δ1, . . . , δ9 must all be 1/9 (see page 71). Keeping this amendment, I ran the program
several times, each time using the current “best” design as the basis for the input
for the next search. However, I could not find a design with a value of det[M(ξ,β)]
greater than 1.728427× 10−7. As this is less than the maximum value of 3.368853×
10−7 found for s = 12, I decided to give up on a search for s = 9.

Six of the support points for the best design for s = 9 had each coordinate equal
to −1 or 1. As my experience is that such points are often part of a locally D-
optimal design, I decided to incorporate these six points in the initial guess of a
design for s = 10. I generated the other four points randomly, and also generated the
design weights randomly. I then followed a similar procedure to that described above,
namely using as an initial search point for optim slight variations around the best
design obtained in 2000 simulations from the previous design. In 18 repeats of this
procedure, the greatest value of det[M(ξ,β)] rose steadily from 8.628362 × 10−11

to 2.159584× 10−7, but would not improve further. Again, this was clearly a worse
situation than for s = 12, so I decided to try s = 11 support points.

For initial searches, I generated the values of variable (to be transformed to 11 6-
dimensional support points with each coordinate satisfying −1 ≤ xij ≤ 1) randomly.
However, I set the design weights equal to 1/11 for each support point, in an attempt
to prevent any support point from “disappearing” on the first search. Two thousand
iterations gave me a design with det[M(ξ,β)] = 1.110171 × 10−9. This value was
greater than the initial values for searches with other values of s, so I decided to use
variations of this design as starting points as input to optim. Twenty repetitions of
this procedure led me to det[M(ξ,β)] = 3.460214×10−7, but then I could not obtain
any greater values of det[M(ξ,β)]. In one sense, this was not too worrying, because I
had now obtained a value greater than the best value obtained for s = 12. The design
weight for the 10th support point of this design was 1.4667× 10−5, suggesting that
this point could be removed. However, simply removing it in the manner described
previously for transitioning from 15 to 13 support points did not lead to an improved
design. I then noticed that the remaining 10 support points from this design had
every coordinate virtually equal to −1 or 1. So I decided to round each coordinate
to −1 or 1, and to use these 10 points as fixed points in a design for s = 10 support
points, and to let only the design weights vary when using optim.

Recall from Segment ® on page 123 that out4 is the s×(m+1) matrix that forms the
output from optim after conversion back to constrained data. Each row represents a
support point, and the first m elements are the values of the m explanatory variables
at that point. The (m+ 1)th element is the value of the design weight.

I created the s ×m matrix of coordinates xmat by rounding each coordinate from
the previous design to −1 or 1. This matrix will not be changed by optim. Then I
modified the function detinfomat to produce detinfomat3, which accepts as input a
vector of s z-values that will be converted to design weights. The function optim will
search for the particular set of z-values (and hence for the design weights) for which
det[M(ξ,β)] is maximised.

out4 <- spare

xmat <- round(out4[c(1:9,11),1:6],1)

detinfomat3 <- function(variables)

{

wtvals <- (variables)^2
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deltavec <- wtvals/sum(wtvals)

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*%diag(deltavec*modelwtvec)%*%t(fxmat)

-det(infomat)

}

nsims <- 2000

mindet <- 100

for (i in 1:nsims)

{

initial <- runif(s)

out <- optim(initial,detinfomat3,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

cat("Min value of det\n",mindet,"\n")

output <- design

out1 <- cos(pi*initialz1)

out2 <- (output)^2

wts <- out2/sum(out2)

out4 <- cbind(matrix(out1,s,m),wts)

cat("Design\n")

t(out4)

The result was gratifying. The maximum value of det[M(ξ,β)] increased to
3.534999×10−7. I did try another search, using minor variations of the design weights
as the input to optim, but the change in det[M(ξ,β)] was negligible, and the design
weights did not change at all when written to three decimal places. So I elected to
stay with the first of the two designs.

I then ran Program 13 (on page 113) to calculate the standardised variance at each
support point of this design, and to investigate the maximum value of the stan-
dardised variance in the neighbourhood of each support point. The output was as
follows:

at support point 1 stdvar = 8.999653

at support point 2 stdvar = 9.001946

at support point 3 stdvar = 9.001332

at support point 4 stdvar = 8.994732

at support point 5 stdvar = 8.997475

at support point 6 stdvar = 8.999568

at support point 7 stdvar = 9.00329

at support point 8 stdvar = 8.998748

at support point 9 stdvar = 8.999784

at support point 10 stdvar = 9.004897
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For support point 1

Maximum std var is 9.002609 at

-1 -1 1 -1 -1 0.9801071

For support point 2

Maximum std var is 9.001946 at

1 -1 -1 -1 1 1

For support point 3

Maximum std var is 9.001332 at

1 1 1 -1 1 -1

For support point 4

Maximum std var is 8.994732 at

1 -1 -1 1 -1 -1

For support point 5

Maximum std var is 8.997475 at

-1 -1 -1 1 1 1

For support point 6

Maximum std var is 8.999568 at

1 1 1 1 -1 1

For support point 7

Maximum std var is 9.00329 at

-1 -1 -1 -1 -1 -1

For support point 8

Maximum std var is 8.998748 at

-1 1 1 1 1 -1

For support point 9

Maximum std var is 8.999784 at

-1 1 1 -1 -1 1

For support point 10

Maximum std var is 9.004897 at

1 -1 1 1 1 1

The values of the standardised variances at each support point are all effectively
equal to p = 9, and nowhere in the neighbourhood of any support point is there a
potential support point with a standardised variance greater than 9. By the general
equivalence theorem, I conclude that this is a locally D-optimal design. The actual
design is given in Table 4.4.

In this section, I have detailed all of the tedium involved in obtaining the locally
D-optimal design, rather than simply present the answer. You need to see this at
least once, so that you know what to expect. While I started my search by checking
carefully the minimum value of the design weights for each design given by 2000 calls
to optim, by the end I had become mesmerised by the value of det[M(ξ,β)] after
each set of searches. This was a mistake. If I had continued to look at the minimum
value of δ1, . . . , δs, I would have recognised much earlier in my search with s = 11
that, in fact, one support point could be dropped and the remaining support points
all essentially had only −1 or 1 as their coordinates. This would have saved time.

I consider that it was just bad luck that my searches for the optimal design with
s = 10 failed to find that design. With hindsight, I became stuck at a local maximum
rather than the overall maximum. How might I have avoided this? Perhaps I could
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Point x1 x2 x3 x4 x5 x6 δ
1 -1 -1 1 -1 -1 1 0.087
2 1 -1 -1 -1 1 1 0.093
3 1 1 1 -1 1 -1 0.109
4 1 -1 -1 1 -1 -1 0.110
5 -1 -1 -1 1 1 1 0.109
6 1 1 1 1 -1 1 0.110
7 -1 -1 -1 -1 -1 -1 0.099
8 -1 1 1 1 1 -1 0.097
9 -1 1 1 -1 -1 1 0.099

10 1 -1 1 1 1 1 0.087

Table 4.4 Locally D-optimal design when there are m = 6 explanatory vari-
ables, there is a logit link, and the linear predictor is η = 0.4 + 0.3x1 + 0.4x2−
0.5x3 − 0.2x4 + 0.3x5 + 0.4x6 + 0.2x1x2 − 0.3x3x4.

have generated still more random initial inputs to optim, and then compensated for
this by running less variations on the “best so far” solution when initiating subse-
quent searches. Or perhaps, when I became stuck with s = 12, I should have gone
to s = 11 instead of choosing to go to s = 9 in order to give a better demonstra-
tion of various techniques. You be the judge. Just remember that, when seeking to
optimise a complicated function of many variables where the solution is likely to in-
corporate values on the boundary of the design space, obtaining the optimal solution
is uncertain, and very likely to be a slow process.

4.7 Obtaining an exact design

All the D-optimal designs found so far in this chapter have been approximate designs;
see page 50. However, practitioners will want exact designs, where the design weights
are a multiple of 1/N , where N is the total number of observations to be taken.
The first way that this may be done is to convert the design weights δ1, . . . , δs of
the approximate design to numbers of observations n1, . . . , ns (with

∑
i ni = N)

using the method of Pukelsheim (1993, Chapter 12), as described and illustrated in
Sub-section 3.3.2. Program 6 in the online resources will do the computations for
you.

For m = 2, consider the logit link and the linear predictor η = 2 + 4x1 + 3x2. From
the online tables, the locally D-optimal (approximate) design is

x1 x2 δ
−1.000 0.213 0.149
−1.000 1.000 0.306
−0.092 −1.000 0.236

0.594 −1.000 0.309

.

Suppose that it is proposed to run the design with N = 6 observations. The first two

commands of Program 6 are

N <- 6

deswts <- c(0.149,0.306,0.236,0.309)
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The unique apportionment given by the program is

[1] 1 2 1 2

meaning that the four support points above are given weights 1/6, 2/6, 1/6 and 2/6,
respectively.

Another approach is to select the value of s and to give a design weight of 1/s to
each point, which will have the effect of making N a multiple of s. One then modifies
the function detinfomat2 so that the design weights are fixed at 1/s each and the ms
elements of the vector that is given as input to detinfomat provide the elements of
the support points x1, . . . ,xs. The procedure was described in Section 3.3.3, and is
now illustrated for s = 6.

The following program was run:

betavec <- c(2,4,3)

p <- length(betavec)

m <- 2

s <- 6

lim1 <- m*s

deltavec <- rep(1/s,s)

fx <- function(xvec)

{

fvec <- c(1,xvec)

fvec

}

detinfomat3 <- function(variables)

{

xmat <- matrix(cos(pi*variables),m,s,byrow=T)

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat%*%diag(deltavec*modelwtvec)%*%t(fxmat)

-det(infomat)

}

#simulations of different initial values

nsims <- 2000

mindet <- 10

for (i in 1:nsims)

{

initial <- runif(lim1)

out <- optim(initial,detinfomat3,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

cat("Min value of det\n",mindet,"\n")



130 THE BINOMIAL DISTRIBUTION

output <- design

out1 <- cos(pi*output[1:lim1])

out4 <- cbind(matrix(out1,s,2),deltavec)

out4 <- out4[order(out4[,1],out4[,2]),]

cat("Design\n")

out4

t(out4)

The function detinfomat3 is very similar to detinfomat2 (see page 107), except that
its input consists of a vector of only ms elements, rather than m(s+1) elements, and
it does not calculate the vector, deltavec, of design weights, because these are fixed
and are defined externally to the program. The output was similar to the following:

Min value of det

-0.0003814488

Design

> t(out4)

[,1] [,2] [,3] [,4] [,5] [,6]

-0.999997 -0.999701 -0.998625 -0.0953040 0.554944 0.565829

0.999037 0.999012 0.161108 -0.9999946 -0.999681 -0.999844

deltavec 0.166667 0.166667 0.166667 0.1666667 0.166667 0.166667

Note that support points x1 and x2 are essentially the same, and x5 and x6 are very

similar. This suggests to me that probably points 1 and 2 will merge to one point

with a weight of 2/6, and that support points 5 and 6 will merge to a second point,

also with a weight of 2/6. However, I decided to use deviations from the current

solution (stored as output), with the same value of deltavec as before, to search for

an improved design. The next search began as follows:

nsims <- 2000

mindet <- 10

initialz1 <- output

for (i in 1:nsims)

{

initial <- initialz1 + 0.1*(runif(lim1)-0.5)

out <- optim(initial,detinfomat3,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

Some of the output appears below:

Min value of det

-0.0003819232

> t(out4)

[,1] [,2] [,3] [,4] [,5] [,6]

-1.000000 -1.000000 -0.999998 -0.102959 0.564502 0.564629

1.000000 1.000000 0.156122 -1.000000 -1.000000 -1.000000

deltavec 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667

This reinforces the conclusion drawn before, that probably x1 = x2 and x5 = x6. So
I did one more search, specifying as an initial estimate a random variation on the four
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distinct support points above, and giving a revised value of deltavec. Remember that
this requires the values of s and ms to be altered! The program begins as follows:

s <- 4

lim1 <- m*s

initialx <- c(-1,-1,-0.103,0.565,1,0.156,-1,-1)

initialz1 <- acos(initialx)/pi

deltavec <- c(2,1,1,2)/6

nsims <- 2000

mindet <- 10

for (i in 1:nsims)

{

initial <- initialz1 + 0.1*(runif(lim1)-0.5)

out <- optim(initial,detinfomat3,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet){mindet <- valuenow

design <- out$par}

}

Segments of the output appear below:

-0.0003819235

> t(out4)

[,1] [,2] [,3] [,4]

-1.0000000 -1.0000000 -0.1027178 0.5645266

1.0000000 0.1558978 -1.0000000 -1.0000000

deltavec 0.3333333 0.1666667 0.1666667 0.3333333

So we have two potential exact designs from this sub-section, one using Pukelsheim’s
method and one fixing the weights and then searching for the best support points.
Let us call them Designs A (ξA) and B (ξB), respectively. They appear below.

Design A Design B
x1 x2 δ x1 x2 δ

−1.000 0.213 1/6 −1.000 0.156 1/6
−1.000 1.000 2/6 −1.000 1.000 2/6
−0.092 −1.000 1/6 −0.103 −1.000 1/6

0.594 −1.000 2/6 0.565 −1.000 2/6

The two designs are not dissimilar. Neither is locally D-optimal, because neither has
been selected through optimising det[M(ξ,β)] with regard to the support points and
the design weights collectively. Which is the better? From (3.17),

D-efficiency of ξA relative to ξB =

{
det[M(ξA,β)]

det[M(ξB ,β)]

}1/p

.

It is straightforward to use detinfomat2 (page 107) to calculate that det[M(ξA,β)] =
3.128805× 10−5 and det[M(ξB ,β)] = 3.872962× 10−5, and so the

D-efficiency of ξA relative to ξB =

[
3.128805× 10−5

3.872962× 10−5

]1/3
= 0.931.

Alternatively, we may say that the D-efficiency of ξB relative to ξA is 1.074.

Consequently, of the two exact designs obtained here, Design B would be preferred.
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4.8 When sample sizes are small

4.8.1 Maximum penalised likelihood estimation

Recall from Section 1.5 that the model parameters β0, . . . , βp−1 are generally esti-
mated by the ML estimators, which maximise the likelihood given in (1.16). For very

large values of N , the vector of estimators, β̂, satisfies E(β̂) = β and cov(β̂) = I−1.

If N is “small,” these results may be inaccurate. In particular, the result for cov(β̂),
on which the calculation of a locally D-optimal design is based, may lead to a design
which is not as desirable as hoped. To reduce the bias of each β̂i (discrepancy between

E(β̂i) and the true value βi), i = 0, . . . , p− 1, Firth (1993) introduced the maximum
penalised likelihood (MPL), L∗(β; y1, . . . , yN ), whose logarithm (denoted by `∗) is
given by

`∗(β; y1, . . . , yN ) = lnL(β; y1, . . . , yN ) +
1

2
det [I(β; y1, . . . , yN )]

= `(β; y1, . . . , yN ) +
1

2
det [I(β; y1, . . . , yN )] . (4.21)

Example 4.8.1. Consider a Bernoulli random variable, Y , with P (Yi = 1) = πi
(i = 1, 2). Model πi using ln[πi/(1− πi)] = ηi = β0 + β1xi. Take ni observations at
x = xi, and write yi for the total of those observations (i = 1, 2). This scenario was
investigated in detail by Russell et al. (2009a).

The MPL estimators of β0 and β1 are the values, β∗0 and β∗1 , that maximise `∗. I
will occasionally write them as β∗0 (y1, y2) and β∗1 (y1, y2) to show their dependence
on y1 and y2. They can be shown to be

β∗1 (y1, y2) =
ln[(y1+0.5)/(n1−y1+0.5)]− ln[(y2+0.5)/(n2−y2+0.5)]

x1 − x2
(4.22)

β∗0 (y1, y2) =
x1 ln[(y2+0.5)/(n2−y2+0.5)]− x2 ln[(y1+0.5)/(n1−y1+0.5)]

x1−x2
. (4.23)

Compare these estimates with the ML estimates given in (3.14) and (3.15). The only
difference is the presence of the “+0.5” in various places in the MPL estimates.
For small values of n1 and n2, they will induce a difference between the ML and
MPL estimates, but as n1 and n2 get larger, their effect diminishes. Asymptotically,
the MPL and ML estimates will be equivalent. So the matrix I−1 serves as the
asymptotic covariance matrix of the MPL estimates as well as the ML estimates,
and M(ξ,β) can be used to determine the locally D-optimal design for small n1 and
n2, provided that one is prepared to risk the occurrence of errors introduced by using
an asymptotic result when it is not appropriate.

Note from (4.22) and (4.23) that β∗0 and β∗1 do not become infinite when yi equals
0 or ni (i.e., when ȳi equals 0 or 1). So the problem of separation (see Section 3.6)
does not prevent us from obtaining finite estimates of β0 and β1.

Just as was noted on page 65 when considering β̂0 and β̂1, it is not possible to find
explicit expressions for β∗0 and β∗1 when s > 2. An iterative solution is required.
The glm function in R cannot be used because it does not cope with the separation
problem, but you can use brglm. It is necessary to install the package and then use the
command library(brglm) before you can use the function, but this is simple to do.
Then use brglm in a similar manner to glm. However, note that it works only for the
binomial distribution. If your work relates only to data from Bernoulli or binomial
distributions, then I suggest that you use brglm. It is easy to download, install, and
run. However, if you may need to perform analyses for data from Poisson, multinomial
or other distributions, the package brglm2 will be more useful. It is described in
Section 5.4.
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Example 4.8.2. Page 66 contained the result of an analysis by glm of an experiment

where n1 = n2 = 5, x1 = 0, x2 = 1, ȳ1 = 0/5 and ȳ2 = 3/5. The output suggested

that a separation exists in the data. Using the commands

library(brglm)

x <- c(0,1)

nvec <- c(5,5)

yvec <- c(0,3)

fail <- nvec - yvec

model <- brglm(cbind(yvec,fail)~x,family=binomial("logit"))

summary.brglm(model)$coefficients

results in the output

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.397895 1.618080 -1.481939 0.1383565

x 2.734368 1.855004 1.474050 0.1404682

This is very different from the output on page 66.

Example 4.8.3. Compare the output from glm and brglm for an experiment with

s = 3 support points, x1 = 0, x2 = 0.5, x3 = 1, n1 = n2 = n3 = 4 and y1· = 0,

y2· = 4 and y3· = 1. With glm, one gets

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8783 0.9881 -0.889 0.374

x 1.0529 1.4856 0.709 0.479

while, with brglm, one obtains

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7277 0.9646 -0.754 0.451

x 0.8604 1.4628 0.588 0.556

Example 4.8.4. Again consider an experiment with s = 3 support points, x1 = 0,
x2 = 0.5, x3 = 1, n1 = n2 = n3 = 4 and now take y1· = 1, y2· = 2 and y3· = 3.
With glm, one obtains

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.098612 1.032796 -1.063727 0.2874525

x 2.197225 1.632993 1.345520 0.1784574

while, with brglm, one gets

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8848655 0.990532 -0.8933235 0.3716839

x 1.7697311 1.554900 1.1381639 0.2550521

Each of Examples 4.8.2 to 4.8.4 illustrates that there are nontrivial differences be-
tween the values of the ML estimates and corresponding MPL estimates, and that
the estimated standard errors of the MPL estimates are less than those of the ML
estimates. This latter relationship is not a coincidence, but is a property of the MPL
procedure.

Example 4.8.5. Suppose that we use the same three support points as in Exam-
ple 4.8.4, but take ni = 40 observations at each point and obtain y1· = 10, y2· = 20
and y3· = 30. That is, each sample size has been increased by a factor of 10, but
the proportions of successes at each support point are exactly as before. The results
from the two analyses are as follows:
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glm

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.098612 0.3265986 -3.363799 7.687739e-04

x 2.197225 0.5163978 4.254907 2.091358e-05

brglm

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.072588 0.3248144 -3.302157 9.594443e-04

x 2.145176 0.5130817 4.180964 2.902761e-05

As might be expected from the proportions of successes at each support point being
unchanged, the ML estimates are unchanged from Example 4.8.4. However, the in-
crease in replication by a factor of 10 has caused their estimated standard errors to
be decreased by a factor of

√
10. The increases in sample size have reduced the bias,

and so the MPL estimates are now closer to the ML estimates than they were for
smaller sample sizes. The estimated standard errors of the ML estimators are now
quite similar to those of the corresponding MPL estimators.

Although the MPL estimates of β0 and β1 have been calculated explicitly for the
logit link only, separation also occurs with the probit and complementary log-log
distributions. The output below shows the results obtained for the same experimental
results considered on page 66, in the experiment where n1 = n2 = 5, x1 = 0, x2 = 1,
ȳ1· = 0/5 and ȳ2· = 3/5. The ML estimates, and then the MPL estimates, for the
probit link are shown first, followed by analogous results for the complementary log-
log link. In each case, one sees very large values of the estimated standard errors for
the ML estimates, and much smaller values for the estimated standard errors of the
MLP estimates.

Probit link

> model <- glm(cbind(yvec,fail)~x,family=binomial("probit"))

> summary.glm(model)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.533657 7290.271 -0.0008962159 0.9992849

x 6.787004 7290.271 0.0009309673 0.9992572

> model2 <- brglm(cbind(yvec,fail)~x,family=binomial("probit"))

> summary.brglm(model2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.466229 0.8450781 -1.735022 0.08273682

x 1.684543 1.0167652 1.656767 0.09756654

Complementary log-log link

> model <- glm(cbind(yvec,fail)~x,family=binomial("cloglog"))

> summary.glm(model)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -24.51075 56991.3 -0.0004300787 0.9996568

x 24.42332 56991.3 0.0004285448 0.9996581

> model2 <- brglm(cbind(yvec,fail)~x,family=binomial("cloglog"))

> summary.brglm(model2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.397895 1.517597 -1.580061 0.1140930

x 2.323253 1.630424 1.424938 0.1541752
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When small values of N are to be used, how do we choose an optimal design? We
could use conventional D-optimality, but there are risks associated with assuming
that E(β̂) = β and that cov(β̂) = M−1(ξ,β), particularly given that separation
may be likely to occur.

Russell et al. (2009a) suggested an alternative approach for small N , where the use
of the MPL estimator β∗ is indicated. They argued that, as the parameters in β are
frequently estimated in order to predict the probability of a “success” on a single
observation at x, π(x) = 1/{1 + exp[−η(x)]}, attention should be concentrated on
properties of the MPL estimator of this probability:

π∗(x) = 1/{1 + exp[−f>(x)β∗]}.

We consider the mean square error (MSE) of π∗(x). It is defined by

MSE[π∗(x)] = E
{

[π∗(x)− π(x)]2
}
, (4.24)

the expected value of the square of the difference between the estimator of π(x) and
the actual value. We would like to minimise this. The MSE is an appropriate measure
to use when N is small and the MPL estimator β∗ may be biased. It is a standard
result in most introductory texts in mathematical statistics that

MSE[π∗(x)] = [bias of π∗(x)]2 + Var[π∗(x)].

Hopefully, minimising the MSE of π∗(x) will give a design with the property that
the estimator has small bias and small variance; choosing a design that minimises
the variance alone may result in an estimator with large bias being produced.

Let us consider how this involves the selection of a design. For a given parameter
vector β = (β0, β1)>, choose two support points x1 and x2, and take n1 observations
at x1 and n2 observations at x2, where n1 + n2 = N . At xi, the probability of a
“success” on an individual observation is πi = 1/{1 + exp[−f>(xi)β]}. If Yi is the
number of successes observed at xi, then Yi ∼ Bin(ni, πi) (i = 1, 2). The observed
values (y1, y2) lead to MPL estimates β∗0 and β∗1 by Equations (4.22) and (4.23).
Then the probability of a success at a point x is

π(x) = 1/{1 + exp[−η(x)]} = 1/[1 + exp(−β0 − β1x)],

and the estimate obtained by using the MPL estimators is

π∗(x, y1, y2) = 1/{1 + exp[−β∗0 (y1, y2)− β∗1 (y1, y2)x]}.

(I have written this probability as π∗(x, y1, y2) because it depends on the values of
y1 and y2 that are used to calculate β∗0 and β∗1 .)

The probability of obtaining this particular value of π∗(x, y1, y2) is the probability
that the particular pair (y1, y2) was observed, namely

P(Y1 = y1, Y2 = y2) = P(Y1 = y1)× P(Y2 = y2)

=
(n1

y1

)
πy11 (1− π1)n1−y1 ×

(n2

y2

)
πy22 (1− π2)n2−y2 .

The value of E
{

[π∗(x)− π(x)]2
}

is calculated by finding [π∗(x, y1, y2)− π(x)]2 for a

given value of (y1, y2), multiplying this by P(Y1 = y1, Y2 = y2), and summing these
products over all possible values of (y1, y2). That is,

MSE[π∗(x)] =

n1∑
y1=0

n2∑
y2=0

[π∗(x, y1, y2)− π(x)]2

×
(n1

y1

)
πy11 (1− π1)n1−y1 ×

(n2

y2

)
πy22 (1− π2)n2−y2 . (4.25)
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For a given value of β and a design which specifies the values of n1, n2, x1 and x2,
MSE[π∗(x)] is a function of x alone. For simplicity, it will be written as MSE(x).

Over what values of x should MSE(x) be considered? It is tempting to say “from
−∞ to ∞”, but this is not feasible, as π∗(x) and π(x) would be expected to become
very small as x approaches these extremities. The approach taken by Russell et al.
(2009a) was to choose values x0.0001 and x0.9999 satisfying π(x0.0001) = 0.0001 and
π(x0.9999) = 0.9999 on the grounds that these cover almost all useful values of x.
Figure 4.8 illustrates this.

x

π(
x)

x0.0001 −5 0 5 x0.9999

0.0001

0.2

0.4

0.6

0.8

0.9999

Figure 4.8 The points x0.0001 and x0.9999 are the x-values for which π(x) equals
0.0001 and 0.9999, respectively.

These points are found as follows: If xq is the value of x for which π(x) = q, then

π(xq) = 1/[1 + exp(−β0 − β1xq)] = q ⇒ exp(−β0 − β1xq) = 1/q − 1

⇒ −β0 − β1xq = ln(1/q − 1) = − ln

[
q

1− q

]
⇒ xq = {ln

[
q

1− q

]
− β0}/β1.

For the case of β0 = 0 and β1 = 1 (which is equivalent to the canonical variable
η = β0 + β1x), it follows that η0.0001 = −9.21024 and η0.9999 = 9.21024.

A consideration of a function to calculate MSE(x) will be deferred until later. Con-
sider first the appearance of a plot of MSE(x) vs x over {x : −9.21024 ≤ x ≤ 9.21024}.
Take β = (0, 1)>, and let the support points be x1 = −1.5434 and x2 = 1.5434, which
are the support points of ξ∗L, z in (4.8).
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Figure 4.9 compares graphs of MSE(x) for n1 = n2 = 3, 6, 9 and 18. A graph for
n1 = n2 = 4, 5, 10 and 20 can be seen in Russell et al. (2009a, Figure 2). It is clear
that the number of observations at each support point influences the value of the
MSE considerably.
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n1 = 6
n1 = 9
n1 = 18

Figure 4.9 For β = (0, 1)> and x1 = −1.5434, x2 = 1.5434, plots of MSE(x)
vs. x for n1 = n2 with n1 = 3, 6, 9 and 18.

Consideration should also be given to the influence of the support points on the value
of MSE(x). For β = (0, 1)> and n1 = n2 = 6, Figure 4.10 repeats the plot of MSE(x)
vs. x for the support points x1 = −1.5434 and x2 = 1.5434, and also shows a plot of
MSE(x) vs. x for the support points x1 = −1.0000 and x2 = 2.0000. The two plots
are very different.

4.8.2 IMSE-optimality

To compare designs on the basis of plots of MSE(x) vs x, it is usual to compare the
areas that are beneath the curves and above the horizontal axis. That is, for each
plot we consider ∫ ∞

−∞
MSE(x) dx ≈

∫ x0.9999

x0.0001

MSE(x) dx, (4.26)

which is known as the integrated mean square error (IMSE) . From amongst a set of
candidate designs, the design for which the IMSE is least is said to be IMSE-optimal.

As it is not possible to write an expression for MSE(x) in terms of x, it becomes
necessary to evaluate the integral in (4.26) using numerical integration. As Figures 4.9
and 4.10 suggest that the curve MSE(x) is reasonably smooth, Simpson’s rule (see
Section 2.5) will be used to evaluate (4.26).
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Figure 4.10 For β = (0, 1)> and n1 = n2 = 6, plots of MSE(x) vs. x for two
sets of support points: (x1, x2) = (−1.5434, 1.5434) and (−1.0000, 2.0000).

Example 4.8.6. Consider the case of n1 = n2 = 6, x1 = −1.5434 and x2 =
1.5434. The following program, which also appears within Program 14 in the Web
site doeforglm.com, will calculate the values of MSE(x) at 101 equally spaced points
between −9.21024 and 9.21024.

¬

fx <- function(x)

{

c(1,x)

}

mse <- function(x,x1,x2)

{#Calculates the MSE at a value x for support points x1 and x2

distx <- x1 - x2

eta1 <- sum(fx(x1)*betavec)

eta2 <- sum(fx(x2)*betavec)

prob1 <- 1/(1+exp(-eta1))

prob2 <- 1/(1+exp(-eta2))

y1probs <- dbinom(y1vals,n1,prob1)

y2probs <- dbinom(y2vals,n2,prob2)
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pix <- 1/(1+exp(-sum(fx(x)*betavec)))

­

sumi <- 0

for (i in 1:(n1+1))

{

sumj <- 0

for (j in 1:(n2+1))

{

beta0star <- (a1star[i]*x1-a2star[j]*x2)/distx

beta1star <- (a2star[j] - a1star[i])/distx

pistarx <- 1/(1+exp(-beta0star - beta1star*x))

sumj <- sumj + ((pistarx-pix)^2)*y2probs[j]

}

sumi <- sumi + sumj*y1probs[i]

}

sumi

}

Segments ¬ and ­ contain the definition of the function mse. The input to mse
consists of the values of x and the support points x1 and x2. If the aim is simply to
calculate MSE(x), there is no need to input x1 and x2, as they can be defined in the
global environment. However, when we come to find an IMSE-optimal design, it will
be necessary to access the values of x1 and x2 from the calling function imse, and
then it will be necessary to pass x1 and x2 to mse.

Segment ¬ calculates ηi and then the probability of success, πi, at each of the two
support points. These are used to calculate vectors of the binomial probabilities for
each of 0, 1, . . . , ni successes from ni trials (i = 1, 2). The true probability of success
at x, π(x), is calculated. In Segment ­, the two loops consider, for each possible value
of (y1, y2), the calculation of β∗0 and β∗1 , and then π∗(x, y1, y2) and [π∗(x, y1, y2)−
π(x)]2. Finally MSE(x) is found from (4.25). The vectors a1star and a2star are
calculated externally of mse; see Segment ® below.

®

betavec <- c(0,1)

xvalues <- seq(from=-9.21024,to=9.21024,length=101)

x1 <- -1.5434

x2 <- 1.5434

n1 <- 6

n2 <- 6

y1vals <- 0:n1

y2vals <- 0:n2

a1star <- log((n1-y1vals+0.5)/(y1vals+0.5))

a2star <- log((n2-y2vals+0.5)/(y2vals+0.5))

Segment ® defines β, the support points x1 and x2 and the values of x at which



140 THE BINOMIAL DISTRIBUTION

MSE(x) will be evaluated. The values of n1 and n2 are declared, and

A∗1 = ln

[
(n1 − y1 + 0.5)

(y1 + 0.5)

]
and A∗2 = ln

[
(n2 − y2 + 0.5)

(y2 + 0.5)

]
(4.27)

(y1 = 0, . . . , n1; y2 = 0, . . . , n2) are evaluated for use in calculating β∗0 and β∗1 via
(4.22) and (4.23).

¯

y <- rep(0,101)

i <- 1

for (x in xvalues)

{

y[i] <- mse(x,x1,x2)

i <- i+1

}

Segment ¯ calculates the vector y that contains the values of the MSE that were used
to draw the curve for n1 = 6 in Figure 4.9.

Suppose that it is desired to consider only support points x1 and x2 satisfying −5 ≤
x1, x2 ≤ 5. Looking ahead to the use of optim to find an IMSE-optimal design, this
suggests that we might choose an initial solution (z1, z2) where zi lies between 0 and
1, and then use the transformation xi = 5 cos(πzi) to ensure that the constraints on
x1 and x2 are met. If Segments ¬ – ® of the program beginning on page 138 have
already been run in the current R session, the following program will calculate the
IMSE:

¬

imse <- function(xvec)

{#Calculates the IMSE when the support points are at xvec[1] and xvec[2]

xvec2 <- 5*cos(pi*xvec)

x1 <- xvec2[1]

x2 <- xvec2[2]

­

msevalues <- rep(0,(nsteps+1))

for (k in 1:(nsteps+1))

{

msevalues[k] <- mse(xvalues[k],x1,x2)

}

summse <- sum(multiplier*msevalues)

integral <- (h/3)*summse

integral

}

®

nsubintervals <- 50

nsteps <- 2*nsubintervals

h <- (9.21024 - (-9.21024))/nsteps
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xvalues <- seq(from=-9.21024,to=9.21024,length=(nsteps+1))

temp <- 2 + 2*(((1:(nsteps-1)) %% 2) == 1)

multiplier <- c(1,temp,1)

initial <- acos(c(-1.5434,1.5434)/5)/pi

out <- imse(initial)

out

Segments ¬ and ­ of the program define the function imse. Segment ® sets up the
use of Simpson’s rule from (2.8) to calculate the integral. There will be n = 50 sub-
intervals. The value of h is calculated. The vector multiplier contains the coefficients
(1, 2 or 4) of each MSE(x). Finally, because the first command of imse will transform
the input vector so as to meet the constraints −5 ≤ x1, x2 ≤ 5, the vector initial
contains back-transformed values of the desired support points.

This program gives the IMSE to be 0.2063553.

With the functions mse and imse created, it is now straightforward to find an IMSE-
optimal design. As before, take β = (0, 1)>, n1 = n2 = 6, and let the initial guess of
the optimal design be (−1.5434, 1.5434) plus or minus small deviations. Under the
assumption that all the preceding R commands of this section have already been run
in the current workspace, the following program will give the best design found by
optim from 100 initial values:

nsims <- 100

minimse <- 100

initialz <- acos(c(-1.5434,1.5434)/5)/pi

for(i in 1:nsims)

{

initialx <- initialz + 0.1*(runif(2)-0.5)

out <- optim(initialx,imse,NULL,method="Nelder-Mead")

if(out$value < minimse) {minimse <- out$value

bestdesign <- out$par}

}

answer <- bestdesign

xvals <- 5*cos(pi*answer)

minimse

xvals

Two runs of this program gave very slightly different answers:

> minimse

[1] 0.1034249

> xvals

[1] -3.301534 3.301550

and

> minimse

[1] 0.1034249

> xvals

[1] -3.301336 3.301339
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The calculated minimum value of the IMSE is the same. If you require so much
accuracy that you cannot accept some doubt about whether to use x1 = −3.302 and
x2 = 3.302 or x1 = −3.301 and x2 = 3.301, my suggestion would be to increase
the number of sub-intervals that you use in approximating the integral in (4.26) by
Simpson’s rule. This may give you a more accurate estimate of the IMSE, and let
you find the IMSE-optimal design more accurately.

The preceding optimisation found an IMSE-optimal design for the canonical variable
z = β0 + β1x (or, equivalently, for β = (0, 1)>). Russell et al. (2009a) showed that
the locally IMSE-optimal design for other values of β could be obtained in terms
of the optimal design for z. For n1 = n2 = 6, the locally IMSE-optimal design has
support points

−3.301− β0
β1

and
3.301− β0

β1
.

Russell et al. (2009a, Table 1) give IMSE-optimal designs for the canonical variable
for various values of n1 = n2 between 4 and 100. These may serve as a guide for
IMSE-optimal designs for other values of n1 = n2, or you may use Program 14 for
quick calculations.

There is also a relationship between the minimised values of the IMSE for the IMSE-
optimal designs for the canonical variable z and for the variable x. If M is the
minimum value of the IMSE for the canonical variable, the minimum value of the
IMSE for x will be M/|β1|.

This sub-section has considered only the case n1 = n2. Russell et al. (2009a, page
90) concluded from various investigations that “a safe general rule is to make n1 and
n2 as equal as possible.”

4.8.3 Speeding up the calculations

Determining an IMSE-optimal design is computationally intensive. In the example
of Sub-section 4.8.2, each calculation of the IMSE required the function mse to be
called 101 times. The two loops in Segment ­ of the program on page 139 slow down
the program considerably. Segment ­ may be replaced by the following commands:

mat1 <- outer(a1star*x1,a2star*x2,"-")

mat2 <- outer((-a1star),a2star,"+")

pistarxmat <- 1/(1+exp((-mat1 - mat2*x)/distx))

mse <- t(y1probs)%*%((pistarxmat-pix)^2)%*%y2probs

mse

}

Recall that yi may take the values 0, . . . , ni, and note the definitions of A1 and A2

given in (4.27). In the above R commands, mat1 and mat2 are each (n1+1)×(n2+1)
matrices. The (i, j) elements of mat1 and mat2 are, respectively,

x1 ln[(j+0.5)/(n2−j+0.5)]− x2 ln[(i+0.5)/(n1−i+0.5)]

and
ln[(i+0.5)/(n1−i+0.5)]− ln[(j+0.5)/(n2−j+0.5)],

or (x1−x2)β∗0 (i, j) and (x1 − x2)β∗1 (i, j), respectively, for i = 0, . . . , n1 and j =
0, . . . , n2.

The (i, j) element of the matrix produced by the command
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pistarxmat <- 1/(1+exp((-mat1 - mat2*x)/distx))

is π∗(i, j) (i = 0, . . . , n1; j = 0, . . . , n2), while the command

mse <- t(y1probs)%*%((pistarxmat-pix)^2)%*%y2probs

performs the sum in (4.25).

The function, beginning on page 140, to calculate the IMSE may also be speeded up.
Segment ­ may be replaced by

msevalues <- sapply(xvalues,mse2,x1=x1,x2=x2)

summse <- sum(multiplier*msevalues)

integral <- (h/3)*summse

integral

}

The instruction sapply(xvalues,mse2,x1=x1,x2=x2) in

msevalues <- sapply(xvalues,mse,x1=x1,x2=x2)

applies mse to each value of x in xvalues while keeping x1 and x2 at their present
values.

Program 14 in the online resources contains the speeded-up version of the programs
used in this section to find an IMSE-optimal design. It contains additional features
that will automatically calculate the two limits of integration in the integral on the
RHS of (4.26). You need to specify the values of β, n1 and n2 and nsubintervals (the
number of sub-intervals used in Simpson’s rule). If you wish to change the design
region from X = {−5 ≤ x ≤ 5}, it will be necessary to change (i) the first line
of imse, (ii) the calculation of the initial values entered into optim, and (iii) the
conversion of the final solution from z-values to x-values.

4.8.4 Extending the previous work on IMSE-optimality

We continue to assume the linear predictor η = β0 +β1x and the logit link. Consider
the case of s (> 2) support points x1, . . . , xs. At xi, let ni independent observations
be taken from a Bernoulli distribution with probability πi = 1/[1+exp(−β0−β1xi)],
and let yi be the number of successes observed.

As s > p, it is not possible to obtain explicit expressions for the MLP estimates of β0
and β1. However, for a given outcome (y1, . . . , ys) with yi ∈ {0, . . . , ni} (i = 1, . . . , s),
the function brglm will give unique estimates β∗0 (y1, . . . , ys) and β∗1 (y1, . . . , ys). The
probability that this particular outcome occurs is

P (Y1 = y1)× . . .× P (Ys = ys) =

s∏
i=1

(ni
yi

)
π
yi
i (1− πi)ni−yi .

The probability of success at an arbitrary point x is

π(x) = 1/[1 + exp(−β0 − β1x)],

while the predicted probability of success at x is

π∗(x, y1, . . . , ys) = 1/{1 + exp[−β∗0 (y1, . . . , ys)− β∗1 (y1, . . . , ys)x]}.

Then

MSE(x) =E
{

[π∗(x, y1, . . . , ys)− π(x)]2
}

=

n1∑
y1=0

. . .

ns∑
ys=0

[π∗(x, y1, . . . , ys)− π(x)]2
s∏
i=1

(ni
yi

)
π
yi
i (1− πi)ni−yi .

(4.28)
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Repeated calculation of (4.28) is simplified by recognising that the values
y1, . . . , ys are not affected by the values of β, x1 and x2, or x. One may set up
a matrix whose (n1 + 1) × . . . × (ns + 1) rows contain the possible values of
(y1, . . . , ys), then calculate and store the corresponding values of β∗0 (y1, . . . , ys)
and β∗1 (y1, . . . , ys) for given (x1, . . . , xs). These are calculated only once for a
given set of support points.

The IMSE is calculated exactly as before:

IMSE(x1, . . . , xs) ≈
∫ x0.9995

x0.0005

MSE(x, x1, . . . , xs) dx.

Then the IMSE-optimal design is found using optim.

In R, the only real change from Program 14 is in altering mse to deal with
an arbitrary number, s, of support points. Program 15 in the online resources
contains this more general function mse, and is set up to find the IMSE-optimal
design for β = (0, 1)>, s = 4, n1 = . . . = n4 = 2, and nsubintervals = 50. To
save space, Program 15 is not displayed here. The output from one run of the
program was as follows:

> minimse

[1] 0.1492024

> solution

[1] 3.178545 -3.178388 3.178408 -3.178674

Note that the support points essentially consist of two points, −3.178 and
3.178, with four observations at each, and that the minimum value of the
MSE is 0.1492024. This agrees with the IMSE-optimal design for n1 = n2 = 4
of Russell et al. (2009a, Table 1).

Program 15 was altered to require s = 3 support points with n1 = 3, n2 = 2
and n3 = 3, and the result from one particular run was

> minimse

[1] 0.1606973

> solution

[1] 2.974777 -3.429114 -3.428742

This suggests two support points, −3.429 and 2.975, with n1 = 5 and n2 = 3.
However, the minimised value of the IMSE, 0.1606973, is greater than the
value of 0.1492024 found above for n1 = n2 = 4. As the aim is to minimise
the IMSE, this supports the remark of Russell et al. (2009a) that it is better
to make n1 and n2 as equal as possible.

The two examples above suggest that IMSE-optimisation will prefer two sup-
port points over more than two. This has not been investigated further. Pro-
gram 15 could be used to do so. For the same value of N , there will be more
(y1, . . . , ys) combinations for s > 2 than for s = 2. Moreover, using brglm to
obtain β∗ is much slower than using exact formulae. So it must be expected
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that the search for an IMSE-optimal design will take much longer when s > 2
than when s = 2.

IMSE-optimality can be used for more than one explanatory variable. Except
when s = p, exact formulae for the elements of β∗ will not be available, and
brglm will need to be used. Simpson’s rule can be extended fairly simply to
more than one variable, so the IMSE can still be calculated, but the time
required for computations will increase considerably.

4.9 DS-optimality

The topic ofDS-optimality was introduced in Sub-section 3.7.5. An application
of it to logistic regression is illustrated here.

Suppose that there are m = 2 explanatory variables, the logit link is to be
used, and we wish to design an experiment to help us choose between the
linear predictors η1 = β0 + β1x1 + β2x2 + β12x1x2 and η2 = β0 + β1x1 + β2x2.
That is, we want to decide whether the crossproduct regressor x1x2 is needed
in the model, which is equivalent to testing H0 : β12 = 0 vs H1 : β12 6= 0. We
seek a design that is optimal for testing H0 vs H1.

As shown in Sub-section 3.7.5, the full model η1 = β0+β1x1+β2x2+β12x1x2 =
f>(x)β may be written as η1 = f>1 (x)β1 + f>2 (x)β2. Here f>1 (x) = (x1x2),
f>2 (x) = (1, x1, x2), β1 = (β12), β2 = (β0, β1, β2)>, p = 4 and p1 = 1. The
information matrix for the full model is

M(ξ,β) =

s∑
i=1

δi ω(xi)f(xi)f(xi)
>,

and the other required matrix is

M22(ξ,β) =

s∑
i=1

δi ω(xi)f2(xi)f2(xi)
>.

Note that the same model weight function, based on the full model, is used
for both matrices. Take ηi = f>(xi)β. Then ω(xi) = exp(ηi)/[1 + exp(ηi)]

2

from (4.3).

The locally DS-optimal design is that design ξ∗ from the design space for
which

det [M(ξ,β)] /det [M22(ξ,β)]

is maximised; see page 73. From page 84,

d(x, ξ,β) = ω(x)
[
f>(x)M−1(ξ,β)f(x)− f>2 (x)M−1

22 (ξ,β)f2(x)
]

is the standardised variance of the design ξ. By the general equivalence theo-
rem, if d(x, ξ∗,β) = p1 (the number of parameters in β1) at each support
point of ξ∗ (and possibly at other points x ∈ X ) and nowhere on X is
d(x, ξ∗,β) > p1, then ξ∗ is DS-optimal.
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Figure 4.11 The standardised variance for the locally DS-optimal design for
comparing η = 1 + x1 + x2 − x1x2 with η2 = 1 + x1 + x2, for a logit link.

The example considered is η = 1+x1 +x2−x1x2 and η2 = 1+x1 +x2. A logit
link was used. The R program used to find the locally DS-optimal design is
Program 16 in the online resources. It first defines functions to calculate f(x)
and f2(x), and then defines the function ratiodets, which calculates the ratio
−det [M(ξ,β)] /det [M22(ξ,β)] that is to be minimised. Then the values of p,
s, m and β (called betavec) are specified. After that, the program simulates
starting values of the support points and design weights to enter into optim,
and the results of the various simulations are compared to find the optimal
one. For this example, the support points of the allegedly DS-optimal design,
ξ∗, were found to be (−1,−1)>, (−1, 1)>, (1,−1)> and (1, 1)>, with design
weights δ1 = . . . = δ4 = 0.25.

The remainder of Program 16 defines a function to calculate d(x, ξ,β) for a
value of x, then calculates d(x, ξ,β) at each support point of ξ∗ and draws
a contour plot of the values of d(x, ξ,β) over the design region. Figure 4.11
displays this contour plot. It can be seen that d(x, ξ,β) = p1 = 1 at each
support point of ξ∗ and does not exceed one anywhere on the design region,
so ξ∗ is indeed the locally DS-optimal design for the problem considered here.

The locally DS-optimal design considered in Example 3.9.2 did not depend
on the values of the parameters in β, as the model weights ω(xi) for a normal
distribution do not depend on β. However, in the example of this sub-section,
the weights do depend on β. One might ask by how much small changes in
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the values of the parameters affect the locally DS-optimal design. In other
words, how robust is the design to small changes in values of the parameters?
To investigate this, slight changes were made to the value of β12 or to β1, and
the locally DS-optimal designs were sought. It was found that the support
points remained unchanged, but that the design weights did vary. Table 4.5
shows the design weights for the locally DS-optimal designs that examine the
term x1x2 when η(x) = f>(x)β and the values of β are as given in the table.

Support points
(−1,−1)> (−1, 1)> (1,−1)> (1, 1)>

β> δ1 δ2 δ3 δ4
(1, 1, 1,−1.2) 0.259 0.259 0.259 0.223
(1, 1, 1,−1.1) 0.254 0.255 0.255 0.236
(1, 1, 1,−1.0) 0.250 0.250 0.250 0.250
(1, 1, 1,−0.9) 0.246 0.245 0.245 0.264
(1, 1, 1,−0.8) 0.240 0.240 0.241 0.279
(1, 0.9, 1,−1) 0.245 0.265 0.245 0.245
(1, 1.1, 1,−1) 0.255 0.235 0.255 0.255

Table 4.5 Locally DS-optimal designs for comparing η1 = β0 + β1x1 + β2x2 +
β12x1x2 and η2 = β0 +β1x1 +β2x2 when the full matrix β = (β0, β1, β2, β12)>

is as given. The various values of β represent (1, 1, 1,−1)> and minor changes
in one element of the vector.

The changes in the locally DS-optimal designs are minor. Nonetheless, there
are changes. This was a simple example, with only minor changes in the value
of β, so one might not expect large changes in the design. However, should you
be considering a locally DS-optimal design, be alert to the need to examine
how the design might vary should the estimate of β be in error.

Note that, although p = s, the design weights for a design in Table 4.5 are
mostly not equal to 1/p. This contradicts the result in Sub-section 3.7.4 that,
when s = p, δ1 = . . . = δs = 1/p. However, that result applies to D-optimality.
There is no reason for the result to apply to DS-optimality.

4.10 Uncertainty over aspects of the model

In all the preceding work, it has been assumed that the link function g(·), the
explanatory variables and the link function to be used are all known. Unfor-
tunately, this often does not reflect the actual situation. Woods et al. (2006)
proposed a method “for finding exact designs . . . that uses a criterion allow-
ing for uncertainty in the link function, the linear predictor, or the model
parameters, together with a design search” (from the Abstract). The details
are beyond the scope of this book. Dror & Steinberg (2006) provided an alter-
native approach to a very similar problem. In this chapter one might wish to
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choose a design that can cater for uncertainty over which of the logit, probit or
complementary log-log link functions is the most appropriate for a particular
Bernoulli random variable. Chapter 7 considers the situation where the link
function and form of the linear predictor are considered known, but there is
uncertainty about the values of the components of the parameter vector β.



Chapter 5

The Poisson Distribution

5.1 Introduction

In this chapter, experimental designs are considered for the situation where
the data are thought to come from Poisson distributions. The chapter starts
with a consideration of the Poisson distribution, and then examines means of
designing experiments. A theorem is given that tells how a locally D-optimal
design can be obtained for many parameter sets. For such parameter sets,
designs can be obtained directly without having to perform any numerical
optimisation. This is a distinct advantage. When the postulated parameter
vector does not meet the requirements of the theorem, numerical optimisation
is required, and several examples are given of this. The problem of separation
that can arise for small designs can occur for the Poisson distribution as well
as the binomial distribution, and the use of MPL estimators to get around this
problem is described. Only D-optimality and IMSE-optimality are considered.

5.2 Modelling the Poisson distribution

If one counts the number of events that occur in a specified length, or area, or
volume, or interval of time, then the variability in the value of the count is often
modelled by a Poisson distribution. Standard examples include the number of
welding faults in a fixed length of pipeline, the number of representatives of a
species of plant in the fixed area of a randomly tossed quadrat, the number of
particles in a fixed volume of a fluid, and the number of accidents that occur
in a fixed length of time on a certain stretch of highway. Rather than regularly
write about lengths, areas, volumes or intervals of time, I will just consider
intervals of time, but this is done solely to simplify the discussion, rather than
to suggest that the other measurements are not of relevance.

An assumption underlying the Poisson distribution is that there is a fixed rate
at which events occur (e.g., 5 per hour). This rate is frequently denoted by λ.
Other assumptions are that the probability of an event occurring in a period
of time is proportional to the length of the time interval, and that the number
of events that occur in any interval is independent of the number of events
that occur in any other nonoverlapping interval.

Let Y be the number of events that occur in a time period of fixed length
t0 (> 0). Then λt0 events are expected in that time and, if Y has a Poisson

149
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distribution, then its probability function is

P (Y = y) = e−λt0
(λt0)y

y!
, y = 0, 1, 2, . . . .

A property of the Poisson distribution is that µ = E(Y ) = λt0 = var(Y ).

Often the circumstances in which different observations are taken on the pro-
cess of interest are not identical. That is, the values of some potential ex-
planatory variables may alter, and it is desired to model the value of λ for a
particular situation in terms of those explanatory variables. In such circum-
stances, a GLM, with the natural logarithm as the link function, is generally
used to model the mean.

As the mean is λt0, and g(µ) = ln(µ) = ln(λt0) = ln(λ)+ln(t0), it is common to
set ln(t0) as an offset variable, which forces the coefficient of ln(t0) in the model
to be 1, and the rest of the model is used to try to explain the behaviour of
ln(λ) in terms of the explanatory variables. If one writes ln(λ) = η = f>(x)β,
then ln(λ) is being modelled by a linear combination of parameters, as in all
the GLMs considered so far, and the full model is

ln(µ) = ln(t0) + η = ln(t0) + f>(x)β. (5.1)

Discussion on fitting a GLM with a log link to data is given in Faraway (2006,
Chapter 3).

Consider obtaining a locally D-optimal design for a GLM with the Poisson
distribution and a log link. In the model in (5.1), the value of t0 provides
no information about the parameter of interest, λ. From the perspective of
designing an experiment, it is sensible to regard the values of t0 for all obser-
vations as being equal, and it is most convenient to take t0 = 1. As ln(1) = 0,
this gives

ln(µ) = η = f>(x)β. (5.2)

The optimal experimental design will have s support points, represented by
the m × 1 vectors x1, . . . ,xs. In this chapter, at the ith support point, a
response variable Yij (j = 1, . . . , ni) is thought to have a Poisson distribution
with rate λi and a known period of observation 1 unit.

As µi = E(Yij) = λi = var(Yij), then the relationship var(Yij) = φV (µi)
implies that φ = 1 and V (µ) = µ.

We model g(µi) = ln(µi) in terms of the explanatory variables in xi by means
of a linear combination of parameters; that is, we have

g(µi) = ln(µi) = ηi = f>(xi)β.

As in other chapters, the aim is to select (i) the support points from a set,
X ⊂ Rm, of possible points, and (ii) the associated design weights δ1, . . . , δs,
so that the design

ξ =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
(5.3)
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is locally D-optimal.

From (5.2), it follows that
µi = exp(ηi)

and hence
∂µi
∂ηi

= exp(ηi) = µi.

Hence the model weights

ω(xi) =
1

φV (µi)

(
∂µi
∂ηi

)2

, i = 1, . . . , s,

are given by

ωi =
1

1× µi
(µi)

2 = µi, i = 1, . . . , s.

5.3 Finding D-optimal designs

5.3.1 The design region

In Chapter 4, the models η = β0 +β1x1 and η = β0 +β1x1 + · · ·+βmxm
(for m > 1) were considered separately, as it was necessary to impose
bounds upon the values of each of the explanatory variables x1, . . . , xm
for m > 1. In the present situation, where the design weights satisfy
ωi = µi = exp(ηi), then even when m = 1, it is possible for η to increase
without bound, meaning that the model weights can approach ∞ much
faster that η does. This can cause difficulty with the calculation of an
information matrix and its determinant. To prevent this difficulty from
occurring, bounds are imposed upon each explanatory variable (even
when there is only one of them), and we look for optimal designs on the
resulting region.

The good news is that, in many cases, the locally D-optimal design for
a Poisson model can be calculated directly from a simple formula.

5.3.2 The model η = β0 + β1x1 + · · ·+ βmxm

In order to obtain the necessary result, again consider canonical variables
(see page 75 for their first mention).

Define z1 = β0 + β1x1, z2 = β2x2, . . . , zm = βmxm. Then clearly
η = β0 + β1x1 + β2x2 + · · · + βmxm = z1 + · · · + zm. As well, one may
write f(z) = Bf(x), where

f(z) =


1
z1
z2
...
zm

, B =


1 0 0 . . . 0
β0 β1 0 . . . 0
0 0 β2 . . . 0
...

...
...

. . .
...

0 0 0 . . . βm

 andf(x) =


1
x1
x2
...
xm

 .
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It can be shown that det (B) = β1 × β2 × · · · × βm, which is nonzero
provided that none of the βi is equal to 0. This is a reasonable assump-
tion: if you think that βi equals zero, why would you include the variable
xi in the model? If none of the βi is equal to 0, then det (B) 6= 0, and
therefore the inverse of B, B−1, exists. Then f(z) = Bf(x) implies
that f(x) = B−1f(z).

The information matrix for the design ξ in (5.3) is

M(ξ,β) =
s∑
i=1

δi ω(xi)f(xi)f
>(xi)

=

s∑
i=1

δi exp(β0 + β1xi1 + · · ·+ βmxim)f(xi)f
>(xi). (5.4)

Let the canonical transformation transform the region X to the region
Z, and let

ξz =

{
z1 z2 . . . zs
δ1 δ2 . . . δs

}
(5.5)

be the transformation of ξ in (5.3). As a result of applying the canonical
transformation, the information matrix for ξz does not depend on β.
Denote this matrix by M(ξz). Applying the transformation to (5.4),
one obtains

M(ξ,β) =
s∑
i=1

δi exp(zi1 + zi2 + · · ·+ zim)B−1f(z)[B−1f(z)]>

= B−1

[
s∑
i=1

δi exp(zi1 + zi2 + · · ·+ zim)f(z)f>(z)

] (
B−1

)>
= B−1M(ξz)

(
B−1

)>
. (5.6)

Taking the determinants of both sides of (5.6) gives

det [M(ξ,β)] = det
[
B−1M(ξz)

(
B−1

)>]
= det

(
B−1

)
det [M(ξz)] det

[(
B−1

)>]
= [det(B)]−2det [M(ξz)] (5.7)

As det (B) = β1 × · · · × βm, then det (B) does not vary over X or Z.
Hence, from (5.7), det [M(ξ,β)] is a constant multiple of det [M(ξz)],
and so the value of ξ for which det [M(ξ,β)] is maximised over X cor-
responds to the value of ξz for which det [M(ξz)] is maximised over Z.
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So a globally D-optimal design ξ∗z over Z can be found, and the design
ξ∗ corresponding to ξz under the inverse of the canonical transformation
will be a locally D-optimal design over X for the parameter vector β.

In many circumstances, the following Lemma by Russell et al. (2009b)
gives the globally D-optimal design over a defined space Z. Let ej be
the jth column vector of the m×m identity matrix, j = 1, . . . ,m.

Lemma 5.1. Let ηi = f(x)>β = [B−1f(z)]>β = zi1 + · · · + zim,
where aj ≤ zij ≤ bj for aj and bj being constants and bj − aj ≥ 2
(j = 1, . . . ,m). A globally D-optimal design for the canonical model
η = z1 + · · ·+ zm has s = p = m+ 1 support points and is given by

ψ∗ =

{
z∗1 z∗2 . . . z∗m+1
1
p

1
p . . . 1

p

}
, (5.8)

where z∗j = b− 2ej (j = 1, . . . ,m) and z∗m+1 = b for b = (b1, . . . , bm)>.

The proof of Lemma 5.1 is outlined in Russell et al. (2009b) but is
beyond the scope of this book. However, the basic concept is very easy
to understand. Formulae for each element of the information matrix of
ψ∗, M(ψ∗), were obtained and, from these, formulae were obtained for
each element of M−1(ψ∗). This enabled a formula to be obtained for
the standardised variance, d(z, ψ∗), at a general point z ∈ Z. Then it
was shown that d(z, ψ∗) = p = (m + 1) at each support point of ψ∗,
and that d(z, ψ∗) does not exceed p for any z ∈ Z. By the Generalised
Equivalence Theorem, this proves that ψ∗ is D-optimal.

Example 5.3.1. Find a D-optimal design when m = 1 and z1 may lie
between a1 = −2 and b1 = 2.

As b1 − a1 ≥ 2, Lemma 5.1 may be used to find the D-optimal design.
As b = b1 = 2 and e1 = 1, then z∗1 = b− 2e1 = 0 and z∗2 = b = b1 = 2.
So the D-optimal design is

ψ∗ =

{
0 2

0.5 0.5

}
.

Example 5.3.2. Find a D-optimal design when m = 3, z1 may lie
between a1 = −2 and b1 = 2, z2 may lie between a2 = 0 and b2 = 3, and
z3 may lie between a3 = −1 and b3 = 1.

As bi−ai ≥ 2 for each of i = 1, 2, 3, one may use Lemma 5.1 to find the
D-optimal design. Now b = (b1, b2, b3)> = (2, 3, 1)>, and e1 = (1, 0, 0)>,
e2 = (0, 1, 0)> and e3 = (0, 0, 1)>. Then z∗1 = b−2e1 = (0, 3, 1)>, z∗2 =
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b− 2e2 = (2, 1, 1)>, z∗3 = b− 2e3 = (2, 3,−1)> and z∗4 = b = (2, 3, 1)>.
So the D-optimal design is

ψ∗ =

{
(0, 3, 1)> (2, 1, 1)> (2, 3,−1)> (2, 3, 1)>

0.25 0.25 0.25 0.25

}
.

Example 5.3.3. Find a D-optimal design when m = 3, z1 may lie
between a1 = −2 and b1 = 2, z2 may lie between a2 = 0 and b2 = 3, and
z3 may lie between a3 = 0 and b3 = 1.

As b3 − a3 6≥ 2, the conditions of Lemma 5.1 are not satisfied, and so
the Lemma cannot be used to find the D-optimal design. Obtaining a D-
optimal design when the conditions of the Lemma are not satisfied will
be considered in Sub-section 5.3.3.

The values which each canonical variable zi can take depend on the
values that each explanatory variable may take and on the values of the
parameters in β. Clearly these values must be known (or assumed, in the
case of β) in order to calculate the zi. Having obtained the D-optimal
design ψ∗, one must calculate the values of the xi that correspond to
the zi in order to obtain the locally D-optimal design ξ∗ over X . This
design is given by the following theorem, from Russell et al. (2009b).

Theorem 5.1. Let ηi = β0+β1xi1+· · ·+βmxim = β>f(xi), `j ≤ xji ≤
uj and |βj(uj−`j)| ≥ 2 (j = 1, . . . ,m). Then the locally D-optimal design
has (m + 1) support points with equal design weights 1/(m + 1) = 1/p,
and the support points are given by

x∗j = c−
(

2

βj

)
ej (j = 1, . . . ,m)

x∗m+1 = c,

for c = (c1, . . . , cm)>, where cj = uj if βj > 0 and cj = `j if βj < 0.

Example 5.3.4. Suppose that we wish to find a locally D-optimal design
for Poisson observations and a logarithmic link when we have m = 2
explanatory variables, x1 and x2, and it is required that x1 lies between
`1 = −1 and u1 = 1 and x2 lies between `2 = −1 and u2 = 1. Let
the best guess of η be η = 1 + 2x1 − 2x2; i.e., β = (1, 2,−2)>. As
|β1(u1−`1)| = |2[1−(−1)]| = 4 and |β2(u2−`2)| = |(−2)[1−(−1)]| = 4,
the explanatory variables satisfy the requirement that |βj(uj − `j)| ≥ 2
(j = 1, . . . ,m), and so the result of Theorem 5.1 may be used to give the
locally D-optimal design.

First consider the vector c. As β1 = 2 > 0, then c1 = u1 = 1; β2 = −2 <
0 implies that c2 = `2 = −1. So c = (1,−1)>. As e1 is the first column
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of the 2 × 2 identity matrix, then e1 = (1, 0)>; similarly, e2 = (0, 1)>.
Hence the support points of the design are x∗1 = c− (2/β1)e1 = c−e1 =
(0,−1)>, x∗2 = c − (2/β2)e2 = c + e2 = (1, 0)>, and x∗3 = (1,−1)>.
That is, the locally D-optimal design is

ξ∗ =

{
(0,−1)> (1, 0)> (1,−1)>

1
3

1
3

1
3

}
.

A contour plot of the standardised variance for this design appears in
Figure 5.1. It is clear that the standardised variance equals 3 at the
support points, and does not exceed 3 anywhere on the set X = {(x1, x2) :
−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}, which supports the Theorem’s statement
that this is the locally D-optimal design.
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x 2
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Figure 5.1 A contour plot for the standardised variance d(x, ξ∗,β) for ξ∗ given
in (5.3.4) and β = (1, 2,−2)>.

When m > 2, it becomes difficult or impossible to show easily a graph of
the values of the standardised variance. So the method (see Program 13
on page 113) of examining the values of the standardised variance in the
neighbourhood of each alleged support point is used instead.

The R program Program 17 constructs the design given by Theorem 5.1,
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and will print a warning if the set of values permitted for an explanatory
variable is not wide enough for the theorem to hold. You need to specify
the parameter vector β (called betavec), the vector of lower bounds lvec
= (`1, . . . , `m) and the vector of upper bounds uvec = (u1, . . . , um).

Example 5.3.5. The following input and output show the result of the
construction for m = 4 when each of x1, . . . , x4 is restricted to lie between
-1 and 1, and the parameter vector is β = (1, 2, 1,−1,−2)>.

> m <- 4

> betavec <- c(1,2,1,-1,-2)

> lvec <- c(-1,-1,-1,-1)

> uvec <- c(1,1,1,1)

> construct_Poisson_Dopt()

weights

1 0 1 -1 -1 0.2

2 1 -1 -1 -1 0.2

3 1 1 1 -1 0.2

4 1 1 -1 0 0.2

5 1 1 -1 -1 0.2

That is, the locally D-optimal design is{
(0,1,−1,−1)> (1,−1,−1,−1)> (1,1,1,−1)> (1,1,−1,0)> (1,1,−1,−1)>

0.2 0.2 0.2 0.2 0.2

}
.

As this design has been found using the theorem, it is not necessary to
check that the standardised variance achieves a maximum of p = 5 at
each support point, as the proof of the theorem has established this.

5.3.3 When Theorem 5.1 cannot be used

Suppose that you want to construct a locally D-optimal design for m
explanatory variables that are all required to lie between -1 and 1 and
the conditions of the theorem are not satisfied. An example is when the
parameter vector is β = (1, 2, 0.5)>, as |β2(u2−`2)| = |0.5[1−(−1)]| = 1
is less than 2. Russell et al. (2009b, Remark 3) consider the canonical
model. They state that, if the D-optimal design has p support points
(which will have equal design weights; see Sub-section 3.7.1), then they
are given by the following formula:

zi = b+ max(−2, ai − bi)ei, i = 1, . . . , p− 1 (5.9)

zp = b, (5.10)

where the notation is the same as in Lemma 5.1.

Example 5.3.6. Consider again the case of β = (1, 2, 0.5)>, where
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−1 ≤ xi ≤ 1 for i = 1, 2. One must find the proposed support points of
the locally D-optimal design for β. Now

z1 = β0 + β1x1 = 1 + 2x1 ⇒ −1 ≤ zi ≤ 3 (5.11)

z2 = β2x2 = 0.5x2 ⇒ −0.5 ≤ z2 ≤ 0.5. (5.12)

So a1 = −1, b1 = 3, a2 = −0.5 , b2 = 0.5 and z3 = b = (b1, b2)> =
(3, 0.5)>. Then z1 = b+max(−2, a1− b1)e1 = b+max(−2,−1−3)e1 =
b−2e1 = (1, 0.5)> and z2 = b+max(−2, a2−b2)e2 = b+max(−2,−0.5−
0.5)e1 = b−1e1 = (3,−0.5)>. Now transforming back from the canonical
variables to the original x1 and x2, the proposed locally D-optimal design
is

ξ =

{
(0, 1)> (1,−1)> (1, 1)>

1/3 1/3 1/3

}
.

The procedure just followed gives a locally D-optimal design only if there
are just s = 3 support points in the design. To check that the design is
indeed locally D-optimal, the standardised variance d(x, ξ,β) must be
considered for all x ∈ X . A contour plot of the standardised variance
can be obtained in exactly the same way as has been done before, and
it shows that the maximum value of d(x, ξ,β) over x ∈ X is 3, and that
it occurs at each of the support points. So the design ξ is indeed locally
D-optimal over X for β = (1, 2, 0.5)>.

Example 5.3.7. Now suppose that there are m = 3 explanatory
variables, and the assumed value of the parameter vector is β =
(1, 0.6, 0.5, 0.4)>. Following the procedure outlined above, the conjectured
locally D-optimal design is

ξ =

{
(−1, 1, 1)> (1,−1, 1)> (1, 1,−1)> (1, 1, 1)

0.25 0.25 0.25 0.25

}
.

It is easy to verify that the standardised variance takes the value 4 at
each of the support points, but one must check that the maximum value
of d(x, ξ,β) for any x ∈ X is 4.

Applying Program 13 from the Web site doeforglm.com results in the
following output:

For support point 1

Maximum std var is 4 at

-1 1 1

For support point 2

Maximum std var is 4 at

1 -1 1

For support point 3
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Maximum std var is 4 at

1 1 -1

For support point 4

Maximum std var is 4 at

1 1 1

This tells us that the maximum value of the standardised variance in the
neighbourhood of any support point is p = 4, which is the value taken at
each support point. It is reasonable to conclude that we do indeed have
the locally D-optimal design.

If the conjectured design is not locally D-optimal, then it is necessary
to find the locally D-optimal design using optimisation. One proceeds
exactly as in Chapter 4, except that the model weights are now given
by ω(xi) = exp(ηi) = exp(x>i β).

Russell et al. (2009b, Remark 3) provided the example of m = 2 and
β = (−0.91, 0.04,−0.69)>. For x ∈ X , the conjectured locally D-optimal
design has the support points (1, 1)>, (−1, 1)> and (1,−1)>, each with a
design weight of 1/3. However, it is clear from the contour plot of values
of d(x, ξ,β) in Figure 5.2 that the maximum value of d(x, ξ,β) over X
is greater than p = 3. By the general equivalence theorem, the present
design is not locally D-optimal.

Figure 5.2 suggests that another support point is needed in the vicinity
of (−1,−1)>. As there are p = 3 parameters in β, the maximum number
of support points is p(p + 1)/2 = 6. So one could begin a search for an
optimal design with s = 6 support points and decrease the value of s if
this seems appropriate. It is easily verified that, as claimed by Russell
et al. (2009b), the locally D-optimal design is

ξ =

{
(1, 1)> (1,−1)> (−1, 1)> (−1,−1)>

0.213 0.313 0.163 0.311

}
.

A contour plot of d(x, ξ,β) is shown in Figure 5.3. The maximum value
of d(x,β) for x ∈ X is p = 3, and is achieved at each of the four support
points of ξ.

Theorem 5.1 can be applied only when η is of the form β0 +β1x1 + · · ·+
βp−1xp−1. Should a more complicated linear predictor (e.g., where some
of the regressors are squares, or cross-products, of explanatory variables)
be conjectured, one must use constrained optimisation to find a design.
The only difference between the R commands required here and those
used in Chapter 4 is that the model weight w(xi) = exp(ηi) must be
used.
Example 5.3.8. For m = 2 explanatory variables x1 and x2, consider
the linear predictor η = f(x)>β = (1, x1, x2, x1x2)(1,−1, 2,−0.5)> =
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Figure 5.2 Contour plot of the standardised variance of the incorrectly con-
jectured locally D-optimal design for β = (−0.91, 0.04,−0.69)>. The values of
d(x, ξ,β) exceed p = 3 in the lower left-hand region.

1 − x1 + 2x2 − 0.5x1x2. There are p = 4 parameters, so the maximum
required number of support points is p(p + 1)/2 = 10. It required only
a couple of runs of the program to reduce s to four. Then, “tweaking”
the output from one run to give starting values for each simulation of
another run quickly led to the design

ξ
∗
=

{
(−1.000, 0.200)> (−1.000, 1.000)> (0.334, 1.000)> (1.000,−0.334)>

0.25 0.25 0.25 0.25

}
.

The standardised variance achieves its maximum value over the design
space of p = 4 at the support points of ξ∗, as shown in Figure 5.4. It
follows from the general equivalence theorem that ξ∗ is locally D-optimal
for a Poisson distribution with log link and η = 1− x1 + 2x2 − 0.5x1x2.

5.4 Small values of the total sample size, N

Sections 3.6 and 4.8 considered the situation of small sample sizes for
data from a Bernoulli distribution. Here, suppose that, at the ith sup-
port point xi (i = 1, . . . , s), ni observations are taken from a Poisson
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Figure 5.3 Contour plot of the standardised variance of the locally D-optimal
design for β = (0.91, 0.04, 0.69)>. The standardised variance achieves its max-
imum value of p = 3 at each of the four indicated support points.

distribution with mean λi = exp(ηi) = exp(x>i β). If yij denotes the jth
observation at xi, then the likelihood of the overall sample is

L(β; y11, . . . , ysns) = e−λ1
λy111

y11!
× . . .× e−λ1

λ
y1n1
1

y1n1 !
× . . .× e−λs

λ
ysns
s

ysns !

= exp

(
−

s∑
i=1

niλi

)
s∏
i=1

λyi·i

/ s∏
i=1

ni∏
j=1

yij !

 ,

which implies that the log likelihood, `(β; y11, . . . , ysns
), is given by

`(β; y11, . . . , ysns
) = −

s∑
i=1

niλi +
s∑
i=1

yi· ln(λi)−
s∑
i=1

ni∑
j=1

ln(yij !). (5.13)

In addition, by (1.21), the (j, k) element of the matrix I equals

Ijk =
s∑
i=1

ni
fijfik

var(Yi)

(
∂µi
∂ηi

)2

=

s∑
i=1

ni
fijfik
λi

λ2i j, k ∈ {0, . . . , p− 1}.

(5.14)
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Figure 5.4 A contour plot of the standardised variance for the design ξ∗ of
Example 5.3.8. The standardised variance achieves its maximum value of p = 4
at each of the four indicated support points.

Consider the simple two-parameter model ηi = β0 + β1xi, and let Yij
denote the jth observation at xi (i = 1, . . . , s). Then

I =

[ ∑s
i=1 niλi

∑s
i=1 niλixi∑s

i=1 niλixi
∑s
i=1 niλix

2
i

]
. (5.15)

The ML estimates of β0 and β1 are the values, β̂0 and β̂1, that maximise
the log-likelihood, and which satisfy the equations

U0|β=β̂ = 0 U1|β=β̂ = 0,

where U0 and U1 are the score statistics given in (1.20). Note that
var(Yij) = λi and that (∂µi)/(∂ηi) = (∂λi)/(∂ηi) = λi also.

Let y1 and y2 represent the totals of the observations taken at the sup-
port points x1 and x2, respectively. It follows that β̂0 and β̂1 satisfy

[y1 − n1 exp(β̂0 + β̂1x1)] + [y2 − n2 exp(β̂0 + β̂1x2)] = 0,

x1[y1 − n1 exp(β̂0 + β̂1x1)] + x2[y2 − n2 exp(β̂0 + β̂1x2)] = 0,
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and are therefore equal to

β̂0 = [x1 ln(y2/n2)− x2 ln(y1/n1)]/(x1 − x2) (5.16)

β̂1 = [ln(y1/n1)− ln(y2/n2)]/(x1 − x2). (5.17)

These may also be written as

β̂0 = [x1 ln(ȳ2)− x2 ln(ȳ1)]/(x1 − x2),

β̂1 = [ln(ȳ1)− ln(ȳ2)]/(x1 − x2).

These estimates will be undefined if either or both of y1 and y2 are zero.
As with undefined estimates in a logistic regression, R does not warn of
a problem when performing an analysis, but the fact that a problem has
occurred is shown by the occurrence of very large estimated standard
errors.

Example 5.4.1. Consider the case where n1 = n2 = 4, and observa-
tions are taken at x1 = −1 and x2 = 1. The results that are obtained give
y1 = 0 and y2 = 4. An example of an analysis and its output appears
below.

> yvec <- c(0,0,0,0,0,1,1,2)

> xvec <- c(-1,-1,-1,-1,1,1,1,1)

> out <- glm(yvec ~ xvec,family="poisson")

> summary.glm(out)$coeff

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.15129 3885.466 -0.002612632 0.9979154

xvec 10.15129 3885.466 0.002612632 0.9979154

The values of the standard error are both very large, suggesting that there
is a problem with the estimation.

The probability that y1 = 0 or y2 = 0 is

1− [1− exp(−n1λ1)][1− exp(−n2λ2)], (5.18)

where λ1 = exp(β0 + β1x1) and λ2 = exp(β0 + β1x2). This probability
tends to 0 as n1 and n2 get larger.

If you are planning to use small samples and only two support points,
you should calculate the probability of obtaining undefined estimates
early in the design of the experiment.

Example 5.4.2. Suppose that the estimates of the parameters are β0 =
1 and β1 = 2, and the design space is X = {x : −1 ≤ x ≤ 1}. The design
space for the canonical variable z = β0 + β1x = 1 + 2x is Z = {z : −1 ≤
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n Probability
1 6.599× 10−2

2 4.354× 10−3

3 2.873× 10−4

4 1.896× 10−5

5 1.251× 10−6

Table 5.1 Probability of undefined parameter estimates when each support
point has n observations made at it for the locally D-optimal design ξ∗x in
(5.19).

z ≤ 3}, and so Theorem 5.1 implies that the globally D-optimal design
and locally D-optimal designs are, respectively,

ξ∗z =

{
1 3

0.5 0.5

}
and ξ∗x =

{
0 1

0.5 0.5

}
. (5.19)

Then λ1 = exp(1 + 2 × 0) = e1 and λ2 = exp(1 + 2 × 1) = e3. As the
locally D-optimal design has δ1 = δ2, one would choose n1 = n2 where
possible. Then Table 5.1 shows the value of the probability of undefined
estimates, as given in (5.18), for small values of n1 = n2.

In addition,

I =

[
n1λ1 + n2λ2 n1λ1x1 + n2λ2x2

n1λ1x1 + n2λ2x2 n1λ1x
2
1 + n2λ2x

2
2

]
,

so, from the Result on page 26 for the determinant of a 2× 2 matrix,

det(I) = (n1λ1 + n2λ2)(n1λ1x
2
1 + n2λ2x

2
2)− (n1λ1x1 + n2λ2x2)2

= n1n2λ1λ2(x2 − x1)2. (5.20)

As with the binomial distribution (see Section 4.8), we investigate the
MPL estimates of the parameters. Recall from (4.21) that the penalised
log-likelihood is equal to

`∗(β; y11, . . . , ysns) = `(β; y11, . . . , ysns) + 0.5× ln[det(I)].

As

ln[det(I)] = {ln[n1n2(x1 − x2)2] + ln(λ1) + ln(λ2)}
= ln[n1n2(x1 − x2)2] + (β0 + β1x1) + (β0 + β1x2),
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then the MPL estimators, β∗0 and β∗1 , satisfy

∂`∗

∂βj

∣∣∣∣
β=β∗

= 0, (j = 0, 1),

where

∂`∗

∂βj

∣∣∣∣
β=β∗

= U∗j
∣∣
β=β∗

+0.5
∂

∂βj
{K + (β0 + β1x1) + (β0 + β1x2)}

∣∣∣∣
β=β∗

,

and K = ln[n1n2(x1 − x2)2].

That is,

[y1 − n1π∗(x1)] + [y2 − n2π∗(x2)] + 0.5(1 + 1) = 0,

x1[y1 − n1π∗(x1)] + x2[y2 − n2π∗(x2)] + 0.5(x1 + x2) = 0,

where π∗(x1) = exp(β∗0 + β∗1x1) and π∗(x2) = exp(β∗0 + β∗1x2).

Hence the MPL estimators are equal to

β∗0(y1, y2) = {x1ln[(y2 + 0.5)/n2]−x2ln[(y1 + 0.5)/n1]]}/(x1−x2)
(5.21)

β∗1(y1, y2) = {ln[(y1 + 0.5)/n1]− ln[(y2 + 0.5)/n2]]}/(x1−x2), (5.22)

where here the dependence of β∗0 and β∗1 on y1 and y2 is made explicit.

The MPL estimates differ from the ML estimates in (5.16) and (5.17)
only by the addition of 0.5 to each of y1 and y2. As in logistic regression,
it is impossible for the MPL estimates to be undefined.

Example 5.4.3. In Example 5.4.1, where n1 = n2 = 4, x1 = −1
and x2 = 1, and y1 = 0 and y2 = 4, the ML estimates are undefined.
From (5.21) and (5.22), the MPL estimates are β∗0 = −0.980829 and
β∗1 = 1.098612.

If one has only small sample sizes, and the possibility of undefined ML
estimates needs to be considered, one should again consider the use
of bias reduced estimates of the parameters. While the package brglm

cannot be used, as it is written only for binomial distributions, at least
one other package exists, called brglm2. It is based on reducing the bias
of the ML estimators, as outlined above, which uses the work of Firth
(1993) and Kosmidis & Firth (2009).

The package brglm2 can be installed in R as simply as brglm was. Once
it has been installed, you need only type library(brglm2) in an R
session to load brglm2 to your workspace.
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Example 5.4.4. Consider again the data from Example 5.4.1, where it
was found that separation occurred. Application of brglm2 to these data
occurs using the following commands, with the output shown also.

> yvec <- c(0,0,0,0,0,1,1,2)

> xvec <- c(-1,-1,-1,-1,1,1,1,1)

> # The maximum likelihood fit with log link

> outML <- glm(yvec ~ xvec,family=poisson(link="log"))

> summary(outML)$coeff

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.15129 3885.466 -0.002612632 0.9979154

xvec 10.15129 3885.466 0.002612632 0.9979154

> # The bias-reduced fit

> outBR <- update(outML, method = "brglmFit")

> summary(outBR)$coeff

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9808293 0.745356 -1.315921 0.1882007

xvec 1.0986123 0.745356 1.473943 0.1404969

It can be seen that the “bias reduced” estimates match those obtained
from (5.21) and (5.22) in Example 5.4.3.

The estimation of β0 and β1 is frequently done in order to estimate
the rate λ(x) = exp[η(x)] at a given value of x. A measure of how
effectively this is done is the MSE of λ∗(x, y1, y2) = exp[β∗0(y1, y2) +
β∗1(y1, y2)x]. See Section 4.8 for a consideration of this for the probability
of success in a Bernoulli distribution. The development below follows
that in Section 4.8. We have

MSE[λ∗(x)] =E
{

[λ∗(x)− λ(x)]
2
}

=
∞∑
y1=0

∞∑
y2=0

[λ∗(x, y1, y2)−λ(x)]
2
P (Y1 =y1)P (Y2 =y2)

(5.23)

=

∞∑
y1=0

∞∑
y2=0

[λ∗(x, y1, y2)−λ(x)]
2

e−λ1
λy11
y1!

e−λ2
λy22
y2!

.

A complication in evaluating this expression is that there are infinite
numbers of values over which to sum for each of y1 and y2. A pragmatic
approach to this problem will be suggested shortly.

For an appropriate choice of bounds xlo and xhi for the integral that
follows, the IMSE is defined as

IMSE =

∫ ∞
−∞

MSE(x) dx ≈
∫ xhi

xlo

MSE(x) dx. (5.24)
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For the situation here, the IMSE-optimal design is defined as the values
x1 and x2 of the support points which, for fixed numbers of observations
n1 and n2, minimises the value of the IMSE over all potential designs.

Important note: When calculating an IMSE-optimal design with s = 2,
one can use Equations (5.21) and (5.22) to calculate β∗0 and β∗1 . However,
it is not necessary to consider the individual observations Yi1, . . . , Yini

at the ith support point xi (i = 1, 2). Instead, one may use a result
from most introductory textbooks on mathematical statistics that, if
Yi1, . . . , Yini

are ni independent observations from a Poisson distribution
with mean λi, then the sum Yi = Yi1+· · ·+Yini

has a Poisson distribution
with mean niλi. That is, one may simply consider the various values of
the sum Yi, rather than all the possible sets of values that give this sum.
That simplifies the calculations considerably, and is used in Program 18
(described below).

However, this cannot be done (even for s = 2) if you use brglm2 to calcu-
late β∗0 and β∗1 , as there is no way to tell R upon how many observations
each sum is based except by giving it the individual observations and
letting R count them.

My approach to dealing with sums of the form

∞∑
yi=0

. . . P (Yi = yi) (5.25)

is to sum only over those values of yi for which P (Yi = yi) ≥ `, where `
is 0.001 or 0.0001. (You may, of course, choose some other lower limit.)
I first use the R function qpois(k, lambda) which gives the smallest
integer y such that P (Y ≤ y) ≥ k when Y has a Poisson distribution
with mean lambda. I use this to choose the values of y that lie between
qpois(0.0005, lambda) and qpois(0.9995, lambda) or else between
qpois(0.0001, lambda) and qpois(0.9999, lambda), and then I se-
lect the subset of these values for which P (Y = y) ≥ `.

Example 5.4.5. The following program finds those values of y for which
P (Y = y) ≥ 0.001 when Y has a Poisson distribution with mean λ = 10.
First it is found that ylo = 2 and yhi = 22 are the smallest integers
satisfying P (Y ≤ ylo) ≥ 0.0005 and P (Y ≤ yhi) ≥ 0.9995. The program
then scans the values of P (Y = y) for each y ∈ {2, . . . , 22} to see which
probabilities are at least 0.001, and records those values of y and their
corresponding probabilities. The values of y are 2, . . . , 20. Consequently,
if this situation applied to the sum in (5.25), I would sum from y = 2 to
y = 20 rather than from y = 0 to y =∞.

> lambda <- 10

> ylo <- qpois(0.0005,lambda)

> yhi <- qpois(0.9995,lambda)
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> ylo

[1] 2

> yhi

[1] 22

> y1values <- ylo:yhi

> prob1 <- dpois(y1values,lambda)

> indic <- prob1 >= 0.001

> y1values <- y1values[indic]

> prob1 <- prob1[indic]

> sum(prob1)

[1] 0.9979123

> ylo

[1] 2

> yhi

[1] 22

> y1values

[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

>

As the sum of the probabilities that have been considered is 0.9979, which
is very close to 1, I conclude that my choice of qpois(0.0005,lambda)
and qpois(0.9995,lambda) for ylo and yhi, and of 0.001 for the lower
bound for probabilities, is satisfactory. If sum(prob1) had been (say)
0.95 or less, I would have included more values of y in the sum by using
qpois(0.0001,lambda) and qpois(0.9999,lambda) for ylo and yhi,
and would have used 0.0001 for the lower bound for probabilities.

The procedure for determining an IMSE-optimal design in this situation
is not dissimilar to that in Section 4.8. However, an important difference
is the need to place lower and upper limits on the values of the explana-
tory variable x, as discussed in the first paragraph of Sub-section 2.4.2.
Recall that, for a Bernoulli variable, 0 ≤ π(η) ≤ 1. However, for a Pois-
son random variable, 0 < λ(η) <∞. A 10% discrepancy between π∗(η)
and π(η) cannot exceed 0.1, whereas a 10% discrepancy between λ∗(η)
and λ(η) can approach ∞ as λ(η) approaches ∞.

Example 5.4.6. Suppose that one wished to restrict the canonical vari-
able z = β0 + β1x to the range −2 ≤ z ≤ 8, and therefore decided in
evaluating the integral for IMSE(z) in (5.24) that zlo = −2 and zhi = 8.
It was decided that the design would have two support points, z1 and
z2, with n1 = n2 = 4. The MSE was calculated and plotted against z
for several values of (z1, z2) to get a feel for what an appropriate initial
guess might be for (z1, z2) when using optim. Figure 5.5 shows the plots
for (z1, z2) equal to (6.5, 8.0), (7.0, 8.0) and (7.5, 8.0). It can be seen that
the area beneath the curve MSE(z) and above MSE(z) = 0 is least when



168 THE POISSON DISTRIBUTION

−2 0 2 4 6 8

0

200

400

600

z

M
S

E
(z

)

(6.5,8)
(7,8)
(7.5,8)

Figure 5.5 Plots of MSE(z) vs z when n1 = n2 = 4 and the support points are
at (i) (6.5, 8.0), (ii) (7.0, 8.0) and (iii) (7.5, 8.0).

the support points are 6.5 and 8.0. This suggested that a search for the
IMSE-optimal design could be given the starting points 6.5 and 8.0.

A search was performed to find the IMSE-optimal design for the
canonical variable z on the domain −2 ≤ z ≤ 8 using limits of
qpois(0.0001,lambda) and qpois(0.9999,lambda) for ylo and yhi,
and 0.0001 for the lower bound for probabilities. To force z to lie between
-2 and 8, values w1 and w2 were generated from the uniform distribution
on (0, 1), and then the transformation z = 3 + 5 cos(πw) was used. The
inverse of this transformation is w = arccos[(z − 3)/5]/π. Other than
the restrictions on the values of y1 and y2, the program is similar to
Program 14, which was described in Sub-section 4.8.3. The program to
find the IMSE-optimal two-point design for the Poisson distribution is
labelled Program 18, and appears in the online resources. As the slope of
MSE(z) vs z is very steep near z = 8, the optimal design that you obtain
and the minimum value of the MSE seem to depend on the value of the
greater support point (which will frequently differ from 8 only in the fifth
decimal place) found by optim. Notwithstanding this, the IMSE-optimal
design for n1 = n2 = 4 is approximately z1 = 6.271 and z2 = 8, with an
IMSE of 542.28.
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Let the values of n1, . . . , ns be given. If z1, . . . , zs form the support points
of the IMSE-optimal design for η = z, the support points for the model
η = β0 + β1x will be at

xi =
zi − β0
β1

(i = 1, . . . , s).

The minimum value of the IMSE, achieved for this design, will be
M/|β1|, where M is the value of the IMSE obtained for the design for
the canonical variable.

Example 5.4.7. For β = (1, 2)>, the IMSE-optimal design for s = 2
and n1 = n2 = 4 when (−2−1)/2 < x < (8−1)/2 (i.e., −1.5 < x < 3.5)
has support points at x1 = (6.271− 1)/2 = 2.636 and x2 = (8− 1)/2 =
3.5.

It is possible to extend the principle of IMSE-optimality for linear pre-
dictors η = β0+β1x to s > 2 support points (as was done in the binomial
situation in Section 4.8.2). However, the number of possible sampling re-
sults (y1, . . . , ys) becomes very large as s increases (even with the most
“pragmatic” approach) and makes the required computational time al-
most impractical.
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Chapter 6

Several Other Distributions

6.1 Introduction

This chapter first describes how to apply a GLM to the multinomial
distribution, even though the distribution does not belong to the ex-
ponential family of distributions. Then it considers how to find locally
D-optimal designs for the multinomial distribution for various vectors of
parameters.

After that, it provides a brief description of the considerations of de-
signing an experiment when the response variable is thought to have a
gamma distribution.

Finally, it considers situations where the nature of the distribution of the
response variable is unknown, but it is believed that the link function
and variance function can be specified. Analyses in this situation are
often called quasi-likelihood analyses.

6.2 The multinomial distribution

6.2.1 Modelling data from a multinomial distribution

In a multinomial experiment, the response variable Y takes a value from
one of a fixed number of categories. These categories may be nominal
in nature (the categories are labels that cannot be put in a meaning-
ful order), or ordinal (where there is a meaningful ordering). Examples
of nominal categories are the political parties for which a person may
vote. These parties may be listed in alphabetical order, but this is not
a meaningful order with regard to (say) the parties’ policies. If it were
possible to order these parties from “most extreme left-wing views” to
“most extreme right-wing views,” this could be a meaningful ordering.
Examples of ordinal categories are the severities of a disease suffered by
patients attending an out-patient clinic: mild, moderate, and severe.

If there are k categories, they are frequently numbered from 1 to k,
whether or not this ordering is meaningful.

Suppose that an experiment is carried out independently n times and
that, on each occasion, the result will be exactly one of these k categories.

171
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Let Yi (i = 1, . . . , k) be the number of times that an observation in
category i is observed. The random variables Y1, . . . , Yk are said to have
a multinomial distribution

(Y1, . . . , Yk) ∼ Multinomial(n;π1, . . . , πk)

where πi (i = 1, . . . , k) is the probability that an outcome is in category
i. The observed values y1, . . . , yk sum to n. The πi satisfy

πi > 0 (i = 1, . . . , k) and
k∑
i=1

πi = 1.

The probability function for (Y1, . . . , Yk) is

f(y1, . . . , yk; n, π1, . . . , πk) = Pr(Y1 = y1, Y2 = y2, . . . , Yk = yk)

=
n!

y1!y2! . . . yk!
πy11 π

y2
2 × . . .× π

yk
k . (6.1)

The binomial distribution is a multinomial distribution with k = 2.

For k > 2, (6.1) does not take the form in (1.13) required for it to be
a member of the exponential family of distributions. However, it can be
shown that GLMs can be used to model a multinomial situation. For
example, see Dobson & Barnett (2008, Section 8.2) or Faraway (2006,
Section 5.1).

The multinomial distribution differs from those distributions studied
earlier in this book, as it has a multivariate random variable, and the
individual components of Y = (Y1, . . . , Yk)> are not independent of
one another. (While the numbers of successes and failures in a binomial
distribution are not independent of one another, that complication is
avoided by considering only the number of successes.) The components
of Y = (Y1, . . . , Yk)> satisfy E(Yi) = nπi, var(Yi) = nπi(1 − πi) and
cov(Yi, Yj) = −nπiπj for i, j ∈ {1, . . . , k} and i 6= j. The covariances are
all negative because, for a fixed value of n, an increase in some Yi means
that another component Yj (j 6= i) must decrease.

As in previous chapters, it is assumed that there are m mathematically
independent explanatory variables x1, . . . , xm that may influence the val-
ues of the probabilities π1, . . . , πk. We wish to model π1, . . . , πk in terms
of x1, . . . , xm. As π1, . . . , πk add to 1, their values are not independent
of one another, so we do not use k linear predictors to model their indi-
vidual values. It is customary to regard one of the probabilities (usually
π1 or πk) as a baseline probability, and to express the remaining (k − 1)
probabilities in terms of the baseline probability using linear predictors.
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For notational convenience, πk will be treated as the baseline probability
in this book.

Write

ηj = ln

(
πj
πk

)
(j = 1, . . . , k − 1) (6.2)

for the jth linear predictor. Note that this is just a simple extension of
the binomial model with a logit link: in that situation of two categories,
if categories 1 and 2 represent “success” and “failure,” respectively, then

η1 = ln

(
π1
π2

)
= ln

(
π1

1− π1

)
is just the standard logit link that was used in Chapter 4.

It is convenient to extend (6.2) to the case j = k. It follows that ηk =
ln(1) = 0, and we may write

ηj = ln

(
πj
πk

)
(j = 1, . . . , k) (6.3)

As in previous chapters, each ηj will be written as a linear combination
of parameters, f>j (x)β.

From (6.3),
exp(ηj) = πj/πk, (j = 1, . . . , k) (6.4)

and so

1 +
k−1∑
`=1

exp(η`) = 1 + π1/πk + · · ·+ πk−1/πk

= (π1 + π2 + · · ·+ πk)/πk

= 1/πk. (6.5)

As (6.4) gives πj = exp(ηj)× πk and (6.5) gives an expression for πk, it
may be deduced that

πj =
exp(ηj)

1 +
∑k−1
`=1 exp(η`)

(j = 1, . . . , k). (6.6)

Thus the k probabilites π1, . . . , πk may be expressed in terms of the
(k − 1) linear predictors η1, . . . , ηk−1 and ηk = 0.

Denote by x = (x1, . . . , xm)> the vector of explanatory variables. Fol-
lowing Zocchi & Atkinson (1999), the vector of parameters, β, and each
fi(x) (i = 1, . . . , k− 1) are augmented by the addition of a zero as their
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last element, making them (p+ 1)× 1 vectors. In addition, define fk(x)
to be the (p + 1) × 1 vector (0, . . . , 0, 1)>. Then the linear predictors
η1, . . . , ηk may be written as

ηi = f>i (x)β (i = 1, . . . , k). (6.7)

Example 6.2.1. A very simple model has k = 3 categories and m = 1
explanatory variable x, and the two linear predictors are η1 = β1 + β2x
and η2 = β3 +β4x. Then β = (β1, β2, β3, β4, 0)>, f1(x) = (1, x, 0, 0, 0)>,
f2(x) = (0, 0, 1, x, 0)> and f3(x) = (0, 0, 0, 0, 1)>.

Example 6.2.2. For k = 3 categories and m = 1 explanatory vari-
able x, Zocchi & Atkinson (1999) considered the model η1 = β0 + β1x+
β2x

2 and η2 = β3 + β4x. It follows that β = (β0, β1, β2, β3, β4, 0)>,
f1(x) = (1, x, x2, 0, 0, 0)>, f2(x) = (0, 0, 0, 1, x, 0)>, and f3(x) =
(0, 0, 0, 0, 0, 1)>.

Example 6.2.3. A simple model when there are k = 3 categories
and m = 2 explanatory variables x1 and x2 has the linear predic-
tors η1 = β1 + β2x1 + β3x2 and η2 = β4 + β5x1 + β6x2. Then
β = (β1, β2, β3, β4, β5, β6, 0)>, f1(x) = (1, x1, x2, 0, 0, 0, 0)>, f2(x) =
(0, 0, 0, 1, x1, x2, 0)> and f3(x) = (0, 0, 0, 0, 0, 0, 1)>.

Let η denote the k× 1 vector and F the k× p matrix given respectively
by

η =


η1
η2
...
ηk

 and F =


f>1 (x)
f>2 (x)

...
f>k (x)

 .
Then (6.7) may be written as

η = Fβ. (6.8)

6.2.2 Estimating the parameter vector β

For the multinomial distribution, the existence of several link functions
and the relationship in (6.6) between πj and the various ηi make esti-
mation of β more complicated than it is for the binomial distribution.
Consequently, it is more difficult to derive the equations that the ML es-
timate, β̂, must satisfy, and to obtain an expression for the information
matrix M(ξ,β), than it was for the binomial distribution. It is easier
to use formulae obtained by Zocchi & Atkinson (1999), on which the
following development is based.

Equation (6.3) may be written in matrix notation as

η = C>ln(Lπ), (6.9)
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where L is a matrix that selects the appropriate elements of π and
the matrix C> selects appropriate multiples of each ln(·). This notation
is best explained through an example. Let k = 3. Then, noting that
ln(a/b) = ln(a)− ln(b) and that ln(π1 + π2 + π3) = ln(1) = 0, (6.3) says
that  η1

η2
η3

 =

 ln(π1)− ln(π3)
ln(π2)− ln(π3)

0


=

 ln(π1)− ln(π3)
ln(π2)− ln(π3)

ln(π1 + π2 + π3)



=

 1 0 −1 0
0 1 −1 0
0 0 0 1

 ln




1 0 0
0 1 0
0 0 1
1 1 1


 π1
π2
π3


 ;

that is, η = C>ln(Lπ) as in (6.9).

Consider the standard notation for an approximate design:

ξ =

{
x1 x2 . . . xs
δ1 δ2 . . . δs

}
. (6.10)

For a given value of β, denote by π(xi) the vector of probabilities
(π1(xi), . . . , πk(xi))

> calculated from (6.7) and (6.6) at the ith support
point, xi (i = 1, . . . , s).

From Zocchi & Atkinson (1999, p. 439), the k × k matrix whose (i, j)
element is (∂ηi)/(∂πj) (i, j = 1, . . . , k) is found from (6.9) to be

∂η

∂π
= C>D−1L, (6.11)

where
D = diag(Lπ).

It is clear from (6.8) that
∂η

∂β
= F . (6.12)

Consequently, for π(xi), it follows from (6.12) and (6.11) that the matrix
G(xi), whose (i, j) element is (∂πi)/(∂βj), is given by

G(xi) =

(
∂η

∂π

)−1(
∂η

∂β

)
=
(
C>D−1L

)−1
F . (6.13)
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Consider an exact design for which ni observations are taken at the ith
support point (n1 + · · ·+ns = N). Let yi denote the k× 1 vector whose
jth element shows how many of the ni observations taken at the ith
support point fall into the jth category (j = 1, . . . , k). Then the ML

estimate β̂ satisfies the equation

s∑
i=1

G>(xi)diag[π−11 (xi), . . . , π
−1
k (xi)]yi

∣∣∣∣∣
β=β̂

= 0. (6.14)

If you wish to use R to fit the model to some multinomial data, see
Faraway (2006, Chapter 6).

The information matrix for the design in (6.10) and the parameter vector
β is given by

M(ξ,β) =
s∑
i=1

G>(xi)diag[π−11 (xi), . . . , π
−1
k (xi)]G(xi). (6.15)

As always, the locally D-optimal design is that design ξ in the design
space for which det[M(ξ,β)] is maximised.

For an approximate design ξ, the standardised variance required for
the general equivalence theorem is given (Zocchi & Atkinson, 1999, Ap-
pendix) by

d(x, ξ,β) = tr
[
V−1(x)G>(x)M−1(ξ,β)G>(x)

]
, (6.16)

where V(x), G(x), and M(ξ,β) represent, respectively, the matrices
V (x), G(x) and M(ξ,β) after their last row and column have been
removed.

A design ξ∗ is locally D-optimal if, for a given value of β, the maximum
value of d(x, ξ∗,β) is p for any x in the design region X , and d(x, ξ∗,β)
equals p at each support point xi of ξ∗.

6.2.3 Some designs

Example 6.2.4. First consider one explanatory variable. For k = 3
categories, and m = 1 and s = 3, consider the parameter vector β =
(0, 1, 0, 1, 0)>. This gives the model η1 = η2 = 0+1×x = x, which implies
that π1 = π2 for each value of x in the design space, X . Consider the
standard situation where X = [−1, 1]. The program below may be used
to search for a locally D-optimal design.

Segment ¬ specifies the number of categories (k), defines the matrices
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C> and L introduced in (6.9), and defines the matrix F introduced im-
mediately above (6.8). It also specifies the number of parameters, p, and
creates the function that will calculate the negative of the determinant
of the information matrix for a specified design.

¬

betavec <- c(0,1,0,1,0)

k <- 3

ctrans <- matrix(c(1,0,-1,0,0,1,-1,0,0,0,0,1),3,4,byrow=T)

lmat <- matrix(c(1,0,0,0,1,0,0,0,1,1,1,1),4,3,byrow=T)

fmat <- function(x)

{

mat <- matrix(c(1,x,0,0,0,0,0,1,x,0,0,0,0,0,1),3,5,byrow=T)

mat

}

p <- 4

detinfomat <- function(variables)

{

infomat <- matrix(0,(p+1),(p+1))

xvals <- cos(pi*variables[1:lim1])

deltavec <- (variables[(lim1+1):lim2])^2

deltavec <- deltavec/sum(deltavec)

for (i in 1:s)

{

fmatx <- fmat(xvals[i])

etavec <- as.vector(fmatx%*%betavec)

temp <- exp(etavec)

pivec <- temp/sum(temp)

temp2 <- as.vector(lmat%*%pivec)

dmatinv <- diag(1/temp2)

temp3 <- ctrans%*%dmatinv%*%lmat

temp3inv <- solve(temp3)

gmat <- temp3inv%*%fmatx

infomat <- infomat + deltavec[i]*t(gmat)%*%diag(1/pivec)%*%gmat

}

-det(infomat)

}

Segment ­ of the program defines the values of m and s, specifies the
number of starting values to be generated for searches of optimal de-
signs, then generates initial values of z that can be transformed into
values of the support points and design weights using the techniques de-
scribed in Sub-section 2.4.3. The design ξ with the minimum value of
−det[M(ξ,β)] (corresponding to the design with the maximum value of
det[M(ξ,β)]) is stored and printed out.
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­

m <- 1

s <- 3

lim1 <- m*s

lim2 <- (m+1)*s

#simulations of different initial values

nsims <- 200

mindet <- 10

#set.seed(123)

for (i in 1:nsims)

{

initial <- runif(2*s)

out <- optim(initial,detinfomat,NULL,method="Nelder-Mead")

valuenow <- out$val

if(valuenow < mindet) {mindet <- valuenow

design <- out$par}

}

cat("Min value of det\n",mindet,"\n")

output <- design

out1 <- cos(pi*output[1:lim1])

out2 <- (output[(lim1+1):lim2])^2

wts <- out2/sum(out2)

out4 <- cbind(matrix(out1,s,1),wts)

out4 <- out4[order(out4[,1],out4[,2]),]

cat("Design\n")

t(out4)

If Segments ¬ and ­ of the program are run as listed above, the result
suggests that the locally D-optimal design is

ξ1 =

{
−1.000 1.000

0.500 0.500

}
.

The following program calculates the standardised variance d(x, ξ1,β)
for this design. It assumes that the preceding program has already been
run, so that the values of β, p, C> etc. are already in the workspace. The
program begins by constructing the information matrix for ξ1. Then it
defines a function that calculates d(x, ξ1,β). Then d(x, ξ1,β) is evaluated
at each support point of ξ1, and finally d(x, ξ1,β) is plotted against x for
x ∈ [−1, 1]. The last four commands draw dotted lines and mark the
support points.

s <- 2

info <- matrix(0,(p+1),(p+1))

xvals <- c(-1,1)

deltavec <- c(0.5,0.5)

for (i in 1:s)

{
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fmatx <- fmat(xvals[i])

etavec <- as.vector(fmatx%*%betavec)

temp <- exp(etavec)

pivec <- temp/sum(temp)

temp2 <- as.vector(lmat%*%pivec)

dmatinv <- diag(1/temp2)

temp3 <- ctrans%*%dmatinv%*%lmat

temp3inv <- solve(temp3)

gmat <- temp3inv%*%fmatx

info <- info + deltavec[i]*t(gmat)%*%diag(1/pivec)%*%gmat

}

-det(info)

infosmall <- info[1:p,1:p]

invinfosmall <- solve(infosmall)

stdvar <- function(x)

{

fmatx <- fmat(x)

etavec <- as.vector(fmatx%*%betavec)

temp <- exp(etavec)

pivec <- temp/sum(temp)

vmat <- diag(pivec) - pivec%*%t(pivec)

temp2 <- as.vector(lmat%*%pivec)

dmatinv <- diag(1/temp2)

temp3 <- ctrans%*%dmatinv%*%lmat

temp3inv <- solve(temp3)

gmat <- temp3inv%*%fmatx

vmatsmall <- vmat[1:(k-1),1:(k-1)]

invvmatsmall <- solve(vmatsmall)

gmatsmall <- gmat[1:(k-1),1:p]

product <- invvmatsmall%*%gmatsmall%*%invinfosmall%*%t(gmatsmall)

product

sum(diag(product))

}

stdvar(-1)

stdvar(1)

#Plot the standardised variance

xvec <- seq(from=-1,to=1,by=0.01)#seq(from=-3,to=3,by=0.01)

yvec <- sapply(xvec,stdvar)

par(las=1)

plot(xvec,yvec,type="l",xlab="x",ylab="Standardised variance",lwd=2)

lines(c(-1.02,1.02),c(4,4),lty=2,lwd=2)

lines(c(-1,-1),c(2.45,4),lty=2,lwd=2)

lines(c(1,1),c(2.45,4),lty=2,lwd=2)

points(c(-1,1),c(4,4),pch=16,cex=2)

It is found that d(−1, ξ1,β) = d(1, ξ1,β) = 4 = p. A plot of the standard-
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ised variance appears in Figure 6.1. It is evident that, over the domain
[−1, 1], d(x, ξ1,β) achieves its maximum value of p = 4 at the two sup-
port points of ξ1. Consequently, by the general equivalence theorem, the
design ξ1 is locally D-optimal.
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Figure 6.1 Plot of d(x, ξ1,β) vs. x for x ∈ [−1, 1]. The maximum value of
d(x, ξ1,β) is p = 4 and is achieved at the two support points (-1 and 1) of ξ1.

If the parameter vector is changed to (0, 3, 0, 3, 0)>, minor modifications
to the preceding program will show that the locally D-optimal design is

ξ2 =

{
−0.562 0.183 1.000

0.418 0.217 0.365

}
.

That is, it has three support points where the earlier design had two. A
plot of the standardised variance appears in Figure 6.2.

Important note

Designs ξ1 and ξ2 both have less support points (two and three, respec-
tively) than the value of p (four). This demonstrates a point made in the
Comments on page 69. In both cases considered here, we have η1 = η2, so
the information obtained from observations on category 1 contributes to
estimating exactly the same quantity as the information from category



THE MULTINOMIAL DISTRIBUTION 181

3.4

3.5

3.6

3.7

3.8

3.9

4.0

x

S
ta

nd
ar

di
se

d 
va

ria
nc

e

−1 −0.562 0.183 1

● ● ●

Figure 6.2 Plot of d(x, ξ2,β) vs. x for x ∈ [−1, 1]. The maximum value of
d(x, ξ2,β) is p = 4 and is achieved at the three support points of ξ2.

2. With additional information available to estimate the parameters, it
should not be surprising that fewer support points are required.

We now consider m = 2 explanatory variables.

Example 6.2.5. Let the parameter vector be β = (0, 1, 1, 1, 1,−1, 0)>;
i.e., η1 = x1 + x2 and η2 = 1 + x1 − x2. Only minor modifications are
required to the R program beginning on page 177 in order to search for
a locally D-optimal design.

The following design, ξ3, seems to be locally D-optimal. A contour plot of
the standardised variance, d(x, ξ3,β), appears in Figure 6.3. The support
points of ξ3 have standardised variances of p = 6, and the standardised
variance does not take a value greater than 6 in the design space. We
may conclude that ξ3 is the locally D-optimal design for the given model.

ξ3 =

{
(−1.000,−1.000)> (−1.000, 1.000)> (1.000,−0.135)> (1.000, 1.000)>

0.262 0.312 0.207 0.219

}
.

Example 6.2.6. Consider the design for the parameter set β =
(1, 2,−1,−1,−1, 2, 0)>. Computations using R suggest that the locally
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Figure 6.3 Contour plot of d(x, ξ3,β) for x ∈ [−1, 1]2. The maximum value of
d(x, ξ3,β) is p = 6 and is achieved at the support points of ξ3.

D-optimal design is

ξ4 =

 x1 : −1.000 −1.000 −1.000 −0.192 0.005 0.764
x2 : −1.000 −0.264 0.542 −1.000 1.000 1.000
ω : 0.259 0.083 0.232 0.059 0.067 0.300

 .

It was quite challenging to find the design ξ4, as the R program would
repeatedly produce designs with less than six support points. However,
the contour plot of the relevant standardised variance would show that
there were other points in the design space with greater values of the
standardised variance than the support points, meaning that the design
could not be locally D-optimal. It cannot be stressed too many times that
a design should not be concluded to be locally D-optimal until after the
standardised variance has been examined.

Figure 6.4 displays the contour plot of d(x, ξ4,β). There are no values
of the standardised variance greater than p = 6, and d(x, ξ4,β) = 6 at
each of the support points. It may therefore be concluded that ξ4 is the
locally D-optimal design for the model under consideration.

Further work on designs for the multinomial distribution, including a
chapter on IMSE-optimality, may be found in Thompson (2010).
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Figure 6.4 Contour plot of d(x, ξ4,β) for x ∈ [−1, 1]2. The maximum value of
d(x, ξ4,β) is p = 6 and is achieved at the support points of ξ4.

6.3 The gamma distribution

The gamma distribution was introduced in Example 1.4.3, where it was
shown to be a member of the exponential family of distributions. Unlike
the Bernoulli, Poisson, and multinomial distributions, it is a continuous
distribution. It has applications in areas such as insurance and queueing
models, as it can model the time between events (contiguous or other-
wise) that occur in accordance with a Poisson process.

The form of the probability function given in (1.14) is not always the
most convenient for the purposes of a GLM (Faraway, 2006, p. 135). On
page 14, it was stated that µ = α/β and Var(Y ) = (1/α)µ2. As µ = α/β
implies that β = α/µ, β can be replaced by α/µ in (1.14) to give the
alternative probability function

fY (y) =
1

Γ(α)

(
α

µ

)α
yα−1 exp(−αy/µ), y > 0 (α > 0, µ > 0).

(6.17)

The gamma distribution has the canonical form (page 14), so the canoni-
cal link is g(µ) = −β = −α/µ from Table 1.1. However, as −α is a known
constant, it is acceptable to remove −α and to use the reciprocal func-
tion g(µ) = 1/µ as the link function. This is the default link function
used by the function glm in R when the gamma family is specified. This
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link function is not entirely satisfactory. The model requires that µ > 0,
but η = g(µ) = 1/µ implies that µ = 1/η, which might be negative. An
alternative link function is the logarithmic function g(µ) = ln(µ), and
η = g(µ) implies that µ = exp(η), which is always nonnegative.

Consider the model weights ωr(xi) and ω`(xi) at a point xi for the
reciprocal and logarithmic links, respectively. Note that η = g(µ) = 1/µ
implies that (∂η)/(∂µ) = −1/µ2 or (∂µ)/(∂η) = −µ2. Hence, for the
reciprocal link function,

ωr(xi) =
1

Var(Yi)

(
∂µi
∂ηi

)2

=
a

µ2
µ4 = αµ2.

The link function η = g(µ) = ln(µ) implies that (∂η)/(∂µ) = 1/µ or
(∂µ)/(∂η) = µ. With the log link function, the model weight is

ω`(xi) =
1

Var(Yi)

(
∂µi
∂ηi

)2

=
a

µ2
µ2 = α.

Note that ω`(xi) does not depend on β at all, so that any D-optimal
design for the gamma distribution found with the logarithmic link will
be globally optimal.

When comparing the determinants of the p× p information matrices of
competing designs, the term α in each of ωr(xi) and ω`(xi) may be ig-
nored, as it is a constant common multiplier for all information matrices
considered. This is equivalent to the approach for a normal distribution
with the identity link, where ω(xi) = 1/σ2. D-optimal designs for the
normal distribution are discussed in many books, including Atkinson,
Donev, & Tobias (2007) and Box, Hunter, & Hunter (2005).

To find a locally D-optimal design using the reciprocal link, you may
use the program described for the binomial distribution on pages 106 to
108 but with the following minor change. In the function detinfomat2,
replace the two lines

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

by the one line

modelwtvec <- 1/etavec^2

When calculating the standardised variance, the same changes must be
made in the commands to determine the information matrix for the
design thought to be locally D-optimal, and in the function stdvar which
calculates the standardised variance at an individual value of x.

To find a locally D-optimal design using the logarithmic link, use the
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same program on pages 106 to 108. However, in the function detinfo-
mat2, replace the three lines

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

by the one line

modelwtvec <- rep(1,s)

As above, when calculating the standardised variance, the same changes
must be made in the commands to determine the information matrix for
the design thought to be locally D-optimal, and in the function stdvar
which calculates the standardised variance at an individual value of x.

Example 6.3.1. Suppose that there are m = 2 predictor variables x1
and x2 that satisfy the usual constraints −1 ≤ xi ≤ 1 (i = 1, 2). We
consider the linear predictor η = 4 + 2x1 +x2; i.e., the parameter vector
is β = (4, 2, 1)>. I sought D-optimal designs for both the reciprocal and
log links. As there are p = 3 parameters, the number of support points
for the optimal design will lie between p = 3 and p(p + 1)/2 = 6. I
started my search with s = 6 support points, and reduced the value of s
if this was indicated. For each link, the search proceeded smoothly, and
the following designs were found:

reciprocal link:

ξr =

{
(−1,−1)> (−1, 1)> (1,−1)>

1
3

1
3

1
3

}
, (6.18)

logarithmic link:

ξ` =

{
(−1,−1)> (−1, 1)> (1,−1)> (1, 1)>

0.25 0.25 0.25 0.25

}
, (6.19)

The contour plots of the standardised variances of ξr and ξ` appear in
Figure 6.5. It is evident that the standardised variances achieve their
maximum value of p = 3 at the support points of the relevant design,
confirming that the designs are locally and globally D-optimal respec-
tively.

Please note that the linear predictor η = 4 + 2x1 + x2 is always greater
than 0 in the design region. This ensures that µ > 0 for the reciprocal
link everywhere in the region. However, should β be such that the line
η = 0 passes through the design region, then the region will contain a
sub-space where µ < 0. As well, ωr(xi) = 1/η2 will be infinite whenever
η = 0, and this will cause the maximisation of det[M(ξ,β)] to yield
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Figure 6.5 Contour plot of (a) d(x, ξr,β) and (b) d(x, ξ`,β) for x ∈ [−1, 1]2.
The designs are given in (6.18) and (6.19). The maximum values of d(x, ξr,β)
and d(x, ξ`,β) are p = 3 and are achieved at the support points of the relevant
design.

nonsensical answers. If there is any chance that the linear predictor will
yield values of zero, it would be advisable to select another link function.

Atkinson, Donev, & Tobias (2007, p. 410) recommend the Box and Cox
family

g(µ) =

{
(µλ − 1)/λ (λ 6= 0)

lnµ (λ = 0)
(6.20)

as a “useful, flexible family of links.” The quantity λ is a constant to be
selected. For all values of λ, the model weights for this family satisfy

ω(xi) = µ−2λi .
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If η = g(µ), then we have

µ =

{
(λη + 1)1/λ (λ 6= 0)

exp(η) (λ = 0).
(6.21)

Remember that we require µ > 0 for the gamma distribution. Do not
choose a nonzero value of λ that will cause (λη + 1) to be negative over
the design region.

Finding a locally D-optimal design for a GLM with a gamma distribution
and this link function requires minimal modifications to the program on
pages 106 to 108. After assigning a value to λ (e.g., lambda <- 2),
replace the lines

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

by the three lines

if(lambda == 0) {muvec <- exp(etavec)} else

{muvec <- (lambda*etavec + 1)^(1/lambda)}

modelwtvec <- muvec^(-2*lambda)

and remember to make the same change in the calculation of M(ξ,β) for the
design, ξ, thought to be locally D-optimal, and in the function stdvar which
calculates the standardised variance at an individual value of x.

Example 6.3.2. Example 6.3.1 considered the reciprocal and logarithmic links
for use with a gamma distribution. These correspond to λ = −1 (roughly) and
λ = 0 in the Box and Cox transformations. I decided to use λ = −0.5 as an
intermediate value, which from (6.21) requires (−0.5η + 1) to be nonnegative
over the design range, or η ≤ 2. So I chose β = (−3, 2, 1)>, as η = −3+2x1 +
x2 is not positive over the design region. I found the locally D-optimal design
to be

ξBC =

{
(−1, 1)> (1,−1)> (1, 1)>

1
3

1
3

1
3

}
. (6.22)

Note that it has three support points, like the design for the reciprocal link, but
that the support points are not identical to those of the design in (6.18).

A plot of the standardised variance of ξBC over the design region appears in
Figure 6.6. This makes it clear that ξBC is indeed locally D-optimal for the
particular link.

Note that the Box and Cox link functions are not standard options for link

functions in glm in R. If you decide to use a Box and Cox link function in

a data analysis using glm, be sure to consult an expert R programmer in

advance, so that a way of using this link function can be devised.
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Figure 6.6 Contour plot of d(x, ξBC ,β) for x ∈ [−1, 1]2. The design is given
in (6.22). The maximum value of d(x, ξBC ,β) is p = 3 and is achieved at the
support points of the design.

6.4 No specified distribution

There are occasions when the distribution of the response variable is
unknown, but the experimenter believes that the link function g(·) and
variance function V (µ) can be specified. Without knowledge of the distri-
bution, the log likelihood function `(β) cannot be constructed. However,
a quasi-likelihood may be formulated. The mathematical details are pro-
vided in McCullagh & Nelder (1989, Chapter 9). To perform an analysis
in R, one needs to make some modifications to the arguments of the glm
function in R. An example is given in Faraway (2006, Section 7.4).

Faraway (2006, Section 3.1) contains the analysis of data from a dataset
called gala (for Galapagos Islands) under the assumption that the re-
sponse variable has a Poisson distribution. Running the commands

data(gala)

gala <- gala[,-2]

modp <- glm(Species~.,family = poisson,data = gala)

summary(modp)

gives the output

Deviance Residuals:
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Min 1Q Median 3Q Max

-8.2752 -4.4966 -0.9443 1.9168 10.1849

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***

Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***

Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***

Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***

Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***

Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3510.73 on 29 degrees of freedom

Residual deviance: 716.85 on 24 degrees of freedom

AIC: 889.68

Number of Fisher Scoring iterations: 5

If, instead, the Poisson distribution is not specified, but it is still assumed
that the link function is g(η) = ln(η) and the variance function is of the
form var(Y ) = φV (µ) for V (µ) = µ, any of the following three sets of
commands

modq1 <- glm(Species~.,family = quasipoisson(link = "log"),gala)

summary(modq1)

modq2 <- glm(Species~.,family = quasipoisson,gala)

summary(modq2)

modr <- glm(Species~.,family = quasi(link = "log",

variance = "mu"),gala)

summary(modr)

will give the output

Deviance Residuals:

Min 1Q Median 3Q Max

-8.2752 -4.4966 -0.9443 1.9168 10.1849

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.1548079 0.2915901 10.819 1.03e-10 ***

Area -0.0005799 0.0001480 -3.918 0.000649 ***

Elevation 0.0035406 0.0004925 7.189 1.98e-07 ***

Nearest 0.0088256 0.0102622 0.860 0.398292

Scruz -0.0057094 0.0035251 -1.620 0.118380



190 SEVERAL OTHER DISTRIBUTIONS

Adjacent -0.0006630 0.0001653 -4.012 0.000511 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 31.74921)

Null deviance: 3510.73 on 29 degrees of freedom

Residual deviance: 716.85 on 24 degrees of freedom

AIC: NA

(with the word “quasipoisson” replaced by “quasi” in Dispersion pa-
rameter for . . . in the output from the fourth set of commands). The
only numerical differences between the first table and subsequent ta-
bles occur in the values of Pr(> |t|) and the dispersion parameter, φ,
in var(Y ) = φV (µ) = φµ. In the standard Poisson analysis, the value
of φ is set equal to 1; in a quasi-likelihood analysis, the value of φ is
estimated from the data.

The important thing to notice from the analyses is that only g(η) and
V (µ) are required. Given that the form of f(x) in η = f>(x)β has been
selected, then g(η) and V (µ) are the only other pieces of information
needed to calculate the information matrix M(ξ,β) in (3.6).

It follows that we need no additional procedures in finding a D- or DS-
optimal design for a quasi-likelihood situation. For example, a design
that is locally D-optimal for a Poisson family will also be D-optimal for
a design whose distribution is unknown but which has the same functions
g(η) and V (µ) as the Poisson distribution.



Chapter 7

Bayesian Experimental Design

7.1 Introduction

Bayesian analysis is a large and rapidly growing field of statistics. An
oversimplified description is to say that, when estimating some parame-
ter(s), one begins with an expression of prior knowledge or belief about
the value of the parameters. This is combined with empirical knowledge
about the value of the parameters that is gained by conducting an exper-
iment. The result is a posterior description of the statistical behaviour of
the parameters. Many books, including Carlin & Louis (2009), provide
a coverage of Bayesian analysis.

Estimation of parameter values does not occur in the determination of an
optimal design. However, the expression Bayesian experimental design
is often used for the procedure about to be described because we use
prior belief about the value of the vector of parameters, β, to assist us
in the determination of the design.

Of course, we have been expressing prior belief about the value of β in
previous chapters, when using the nominated value of β as though we
are certain that it is correct. In what follows, we recognise some uncer-
tainty about our knowledge of β. Many people who feel uncomfortable
specifying the value of the parameter vector β in the methods considered
in previous chapters may feel happier using Bayesian design methods.

An approach that is fully Bayesian, often referred to as a decision-
theoretic approach, was reviewed by Chaloner & Verdinelli (1995), and
is addressed by Overstall & Woods (2017). Consult either of these refer-
ences for more information. The aim of this approach is to maximise the
experimenter’s gain from using one of a collection of designs if given one
of a collection of vectors of response variables when the parameter vector
is one from a collection of such vectors. It requires the maximisation of
an expected utility function (Overstall & Woods, 2017, eq. 1)

U(δ) =

∫ ∫
Ψ,Y

u(δ,ψ,y)π(y,ψ|δ) dy dψ, (7.1)

where the symbols are defined in Overstall & Woods (2017, p. 458).

191
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You will not be surprised that Overstall & Woods (2017) say (p. 458)
that “Selection of a fully Bayesian optimal design . . . has traditionally
been challenging for all but the most straightforward utility functions
and models due to the high-dimensional and, typically, analytically in-
tractable integrals” in (7.1).

To avoid the challenges of the “full Bayesian” decision-theoretic ap-
proach, we take a “pseudo-Bayesian” approach which is much less com-
putationally demanding.

7.2 A discrete prior distribution for β

7.2.1 Finding the D-optimal design

Suppose that h different values, β1, . . . ,βh, are believed to be possible
values of the parameter vector β. Associated with these values are h
probabilities ψ1, . . . , ψh, respectively, satisfying ψi > 0 (i = 1, . . . , h)
and ψ1 + · · ·+ ψh = 1. These represent the strength of belief that each
particular βi is the true value of β. These quantities can be written as
a probability function

Parameter vector β1 β2 . . . βh
Prior probability ψ1 ψ2 . . . ψh

,

which is called the prior probability distribution of β. The work in previ-
ous chapters, when locally D-optimal designs were calculated, represents
the special case h = 1 and ψ1 = 1 of Bayesian experimental design.

An important reference for Bayesian experimental design is Chaloner &
Verdinelli (1995) which, in Section 4, considers nonlinear design prob-
lems. These include the designs for GLMs that we are considering.
Chaloner & Larntz (1989) and Woods et al. (2006) have used Bayesian
D-optimality to find designs for GLMs.

Adaptation of Chaloner & Verdinelli (1995, eq. 15) to the notation used
here shows that a design ξ will be Bayesian D-optimal amongst a set of
designs Ξ if it is the particular design that maximises the utility function

φ(ξ) =
h∑
i=1

ψi ln{det[M(ξ,βi)]}. (7.2)

By adapting a result from Chaloner & Verdinelli (1995, p. 289), the
standardised variance to be used in checking whether a candidate design
ξ∗ is indeed Bayesian D-optimal is

d(x, ξ∗) =
h∑
i=1

ψi ω(x,βi)f
>(x)M−1(ξ∗,βi)f(x). (7.3)
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Note that (7.2) and (7.3) both involve the calculation of h information
matrices. This necessitates careful programming if the determination of
a Bayesian D-optimal design and checking that it is indeed D-optimal
(by use of the general equivalence theorem) are not to be unnecessarily
repetitive.

Example 7.2.1. Consider a single explanatory variable, x. For a logis-
tic regression with η = β0 + β1x and β = (0, 1)>, it was given in (3.26)
that the locally D-optimal design is

ξ =

{
−1.5434 1.5434

0.5 0.5

}
. (7.4)

Suppose that the experimenter is uncertain about using β = (0, 1)>,
and instead wishes to consider h = 4 alternatives β1 = (−0.2, 0.8)>,
β2 = (−0.2, 1.2)>, β3 = (0.2, 0.8)> and β4 = (0.2, 1.2)>, with equal
prior probabilities; i.e., ψ1 = . . . = ψ4 = 0.25. In the absence of other
information, she uses X = {x : −10 ≤ x ≤ 10} as the design space.

The following program for m = 1 appears in the Web site doeforglm.com
as Program 19:

f <- function(x)

{

f <- c(1,x)

f

}

infomat <- function(betavec,xvec,deswts)

{

xmat <- t(matrix(xvec,s,m))

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*% diag(deswts*modelwtvec) %*% t(fxmat)

infomat

}

combine <- function(values)

{ #This function calculates the NEGATIVE of the sum of

#log(determinant(infomat)) over all the potential beta vectors

xvec <- 10*cos(pi*values[1:lim1])

temp <- (values[(lim1+1):lim2])^2

deltavec <- temp/sum(temp)

sum <- 0

for (m in 1:h)

{

betavec <- betamat[m,]
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logdetinfo <- log(det(infomat(betavec,xvec,deltavec)))

sum <- sum - psivec[m]*logdetinfo

}

sum

}

The h values of β are entered as the rows of the h× p matrix betamat.

betamat <- matrix(c(-0.2,-0.2,0.2,0.2,0.8,1.2,0.8,1.2),4,2)

psivec <- rep(0.25,4)

h <- (dim(betamat))[1]

s <- 2

m <- 1

p <- 2

lim1 <- m*s

lim2 <- (m+1)*s

nsims <- 10000

min <- 100

for (isim in 1:nsims)

{

values <- runif(lim2)

out <- optim(values,combine,NULL,method="Nelder-Mead")

temp <- out$val

if (temp < min) {min <- temp

design <- out$par}

}

points <- 10*cos(pi*(design[1:lim1]))

weights <- (design[(lim1+1):lim2])^2

weights <- weights/sum(weights)

display <- rbind(points,weights)

display

cat("min value of (-logdeterminant)",min,"\n")

The program’s output suggests that the following design is D-optimal:

ξ1 =

{
−1.5356 1.5357

0.5 0.5

}
.

The changes from the earlier design in (7.4) to this one are minimal,
which is not surprising, given that β1, . . . ,β4 surround β = (0, 1)>.

If the prior probabilities of β1, . . . ,β4 are changed from ψ1 = . . . = ψ4 =
0.25 to ψ1 = 0.1, ψ2 = 0.2, ψ3 = 0.3 and ψ4 = 0.4, the program suggests
that the locally D-optimal Bayesian design is

ξ2 =

{
−1.5529 1.4004

0.5 0.5

}
.
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The following program is Program 20 in the online resources, and can be
easily generalised. It will calculate the standardised variance d(x, ξ2) at
the support points x1 = −1.5529 and x2 = 1.4004, and then plot d(x, ξ2)
vs. x for all values of x between −5 and 5:

xvec <- c(-1.5529,1.4004)

deltavec <- c(0.5,0.5)

invinfomatrices <- rep(0,p*p*h)

dim(invinfomatrices) <- c(p,p,h)

for (m in 1:h)

{

betavec <- betamat[m,]

invinfomatrices[,,m] <- solve(infomat(betavec,xvec,deltavec))

}

invinfomatrices

stdvar <- function(x)

{

sv <- 0

fx <- f(x)

for (m in 1:h)

{

betavec <- betamat[m,]

eta <- sum(f(x)*betavec)

expeta <- exp(eta)

wt <- expeta/((1+expeta)^2)

matinv <- invinfomatrices[,,m]

sv <- sv + psivec[m]*wt*t(fx)%*%matinv%*%fx

}

sv

}

stdvar(-1.5529)

stdvar(1.4004)

xvec <- seq(from=-5,to=5,by=0.01)

yvec <- sapply(xvec,stdvar)

plot(xvec,yvec,ty="l",xlab="x",ylab="Standardised variance")

lines(c(-5,5),c(2,2),lty=2)

It is assumed that this program runs in R immediately after the program
on page 193; i.e., it uses all the functions defined, and output produced, in
that program. In order to avoid calculating M−1(ξ,β1), . . . ,M−1(ξ,βh)
afresh for every value of x, I have created a p × p × h array invinfo-
matrices, in which invinfomatrices[,,j] contains the p × p matrix
M−1(ξ,βj). Each of the h matrices M−1(ξ,βi) is calculated only once,
no matter for how many values of x the value of d(x, ξ) is calculated.

The values of d(−1.5529, ξ2) and d(1.4004, ξ2) are each 2. A plot of
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d(x, ξ2) vs. x for x ∈ {x : −5 ≤ x ≤ 5} appears in Figure 7.1. It shows
only two peaks, with values of two. This supports the belief that d(x, ξ2)
achieves its maximum value of p = 2 at the two support points of ξ2,
and that therefore ξ2 is the Bayesian D-optimal experimental design for
the specified values of βi and their prior probabilities ψi, (i = 1, . . . , 4).
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Figure 7.1 Plot of the standardised variance d(x, ξ2) vs. x for −5 ≤ x ≤ 5.

Example 7.2.2. Consider a situation with m = 2 predictor variables,
where the linear predictor is η = β0 + β1x1 + β2x2, and both x1 and
x2 are restricted to lie in the interval {x : −1 ≤ x ≤ 1}. Suppose
that h = 4 values are specified for β, namely β1 = (−0.2, 0.8, 0.8)>,
β2 = (−0.2, 1.2, 1.2)>, β3 = (0.2, 0.8, 1.2)> and β4 = (0.2, 1.2, 0.8)>,
with prior probabilities ψ1 = 0.1, ψ2 = 0.2, ψ3 = 0.3 and ψ4 = 0.4,
respectively.

The program on page 193 is modified by changing the definition of the
function f, the value of p, and the values of the matrix of β vectors
and the vector of probabilities ψi. I initially started with s = 8 support
points, but was able to reduce this to s = 4 in successive searches for the
Bayesian D-optimal design. I eventually obtained the following design:

ξ3 =

{
(−1,−1)> (−1, 1)> (0.9689, 1)> (1,−1)>

0.2243 0.2958 0.1832 0.2967

}
. (7.5)
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Note that I have not followed my usual practice of recording the values
of the support points and design weights to three decimal places. This is
because, when three decimal places were used, the plot of the standard-
ised variance suggested that d(x, ξ3) was greater than 3 at x = (1, 1)>,
which implies that ξ3 is not D-optimal. However, when the matrices
M(ξ3,β1), . . . ,M(ξ3,β4) were calculated using the four decimal places
given in (7.5), the plot of the standardised variance was as shown in
Figure 7.2. In this figure, it is clear that the maximum value of d(x, ξ3)
is p = 3, and occurs at the support points of the design. Hence it is
concluded that ξ3 is the Bayesian D-optimal experimental design.
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Figure 7.2 Plot of the standardised variance d(x, ξ3) for the Bayesian D-
optimal design ξ3 given in (7.5). Within the design space, d(x, ξ3) achieves
the required maximum value of p = 3 at each of the support points.

7.2.2 Next steps

Having found the Bayesian D-optimal design, the next step is to run an
experiment and collect some data that will permit the estimation of β
and allow other aspects of data analysis to be done.

Example 7.2.3. Suppose that we wish to take n = 30 observations
overall. The approximate design in (7.5) may be converted to an exact
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design using Program 6 in the online repository. Running the program
seven times produced three different allocations of observations to support
points: (6, 9, 6, 9), (7, 8, 6, 9) and (7, 9, 5, 9). I shall use the third of these,
namely n1 = 7, n2 = 9, n3 = 5 and n4 = 9. Further suppose that y1 = 2,
y2 = 2, y3 = 4 and y4 = 4 successes are observed at the four support
points. The following program was run and the edited output appears
below. [Recall that rep(a,n) means that a is repeated n times.]

> x1 <- c(rep(-1,16),rep(0.9689,5),rep(1,9))

> x2 <- c(rep(-1,7),rep(1,14),rep(-1,9))

> y <- c(1,1,rep(0,5),1,1,rep(0,7),rep(1,4),0,rep(1,4),rep(0,5))

> out <- glm(y~x1+x2, family = binomial(link = "logit"))

> summary(out)

Call:

glm(formula = y ~ x1 + x2, family = binomial(link = "logit"))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3846 0.3986 -0.965 0.3346

x1 0.7717 0.4217 1.830 0.0673 .

x2 0.3057 0.4192 0.729 0.4658

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

To do further experimentation, one could refine the choice of values of
β and their prior probabilities. Possible choices of βi would be β̂i ±
ki× std.error(β̂i), for some values of ki. For example, use eight values of

β :
(
β̂0 ± k0 std.error(β̂0), β̂1 ± k1 std.error(β̂1), β̂2 ± k2 std.error(β̂2)

)>
.

A subject matter expert could allocate prior probabilities to the various
values of β.

7.2.3 Updating the probability distribution for β1, . . . ,βh

An alternative approach to that in Sub-section 7.2.2 is to retain the ini-
tial set of h parameter vectors β1, . . . ,βh and to use the results of the
experiment to update their associated prior probabilities. This would
be done if one had considerable confidence in the proposed values of
β1, . . . ,βh and simply felt that the prior probabilities needed refining.
Alternatively, you could use the estimate of β obtained from the exper-
iment to guide the selection of a further design.

Updating the prior probabilities ψi for unchanged values of β1, . . . ,βh
is done using Bayes’ theorem, also known as Bayes’ Rule, which can be
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found in most introductory books on probability and statistics. It may
be stated as follows:

Bayes’ theorem:

Let A represent an event of interest, and let B1, . . . , Bh represent a set of
mutually exclusive and exhaustive events. (This means that exactly one
of B1, . . . , Bh must occur.) Then the conditional probability that event
Bj occurs when we are told that A happens, denoted by Pr(Bj |A), is
given by

Pr(Bj |A) =
Pr(A|Bj) Pr(Bj)∑h
i=1 Pr(A|Bi) Pr(Bi)

(j = 1, . . . , h). (7.6)

This statement of Bayes’ theorem follows closely the notation used in
Carlin & Louis (2009, p. 16).

In updating a Bayesian experimental design, let A represent the outcome
from the experiment: that is, on taking ni observations at the ith support
point, xi, a response Yi (i = 1, . . . , s) is obtained. The event Bj is the
event that βj is the true value of the parameter vector, and Pr(Bj)
represents the prior probability that we have assigned to the event Bj ;
i.e., Pr(Bj) = ψj . Thus (7.6) becomes

Pr(Bj |A) =
Pr(A|Bj)ψj∑h
i=1 Pr(A|Bi)ψi

(j = 1, . . . , h).

Then Pr(Bj |A) is the posterior probability that βj is the true value of
β given that the outcome A was obtained in the experiment. This will
be illustrated by an example.

Example 7.2.4. Consider Example 7.2.3. For m = 2 and h = 4,
Bj is the event that β = βj, where β1 = (−0.2, 0.8, 0.8)>, β2 =
(−0.2, 1.2, 1.2)>, β3 = (0.2, 0.8, 1.2)> and β4 = (0.2, 1.2, 0.8)>, with
prior probabilities ψ1 = 0.1, ψ2 = 0.2, ψ3 = 0.3 and ψ4 = 0.4, re-
spectively. The numbers of observations at the four support points were
n1 = 7, n2 = 9, n3 = 5 and n4 = 9, leading to y1 = 2, y2 = 2, y3 = 4
and y4 = 4 successes, respectively.

Let pij represent the probability of a “success” on a single trial at the
ith support point when the parameter vector βj is used. Then

pij = 1/[1 + exp(−f>(xi)βj)], i = 1, . . . , s; j = 1, . . . , h,

and the probability that yi successes are observed in the ni trials is

Pr(Yi = yi|Bj) =

(
ni
yi

)
pyiij (1− pij)ni−yi .
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Recall that A is the event that yi successes are observed from ni trials
at the ith support point for each i = 1, . . . , h. As the results at different
support points are assumed to be independent of one another, then

Pr(A|Bj) =
s∏
i=1

Pr(Yi = yi|Bj)

=
s∏
i=1

(
ni
yi

)
pyiij (1− pij)ni−yi (j = 1, . . . , h).

This result, together with the prior probabilities ψj = Pr(Bj), may be
substituted into (7.6) and the posterior probabilities of β1, . . . ,β4 can be
calculated.

Suppose that the experiment is conducted as described (i.e., n1 = 7 obser-
vations at x1 = (−1,−1)>, . . . , n4 = 9 observations at x4 = (1,−1)>),
and that y1 = 2, y2 = 2, y3 = 4 and y4 = 4 successes are observed. Then

p11 = 1/[1 + exp(−f>(x1)β1)]

= 1/[1 + exp{−(1,−1,−1)(−0.2, 0.8, 0.8)>}]
= 1/[1 + exp(1.8)]

= 0.14185,

p21 = 1/[1 + exp{−(1,−1, 1)(−0.2, 0.8, 0.8)>}] = 1/[1 + exp(0.2)] =
0.45017, p31 = 1/[1 + exp(−1.37512)] = 0.79821 and p41 = 1/[1 +
exp(0.2)] = 0.45017. Note that p11, . . . , p41 are the probabilities of a
“success” at four different values of x. There is no reason that the prob-
abilities should sum to 1.

So the event A is {Y1 = 2, Y2 = 2, Y3 = 4, Y4 = 4} and

Pr(A|B1) = Pr(Y1 = 2|B1)× . . .× P (Y4 = 4|B1)

=

(
7

2

)
p211(1−p11)5 ×

(
9

2

)
p221(1−p21)7 ×

(
5

4

)
p431(1−p31)1

×
(

9

4

)
p441(1−p41)5

= 0.0.0023212629,

and similarly Pr(A|B2) = 0.0006746766, Pr(A|B3) = 0.0001785202
and Pr(A|B4) = 0.0008895905. Substitution of these values, and those
of P (Bi) = ψi, into (7.6) gives the results P (B1|A) = 0.29895696,
P (B2|A) = 0.17378407, P (B3|A) = 0.06897519 and P (B4|A) =
0.45828377.

Calculation of the posterior probabilities can be done using Program 21
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in the online repository. Here Pr(B1|A), . . . ,Pr(B4|A) are the condi-
tional probabilities (given that the event A has occurred) that the four
mutually exclusive and exhaustive events B1, . . . , B4 occur, and the prob-
abilities must sum to one.

These posterior probabilities are quite different from the prior probabil-
ities ψ1, . . . , ψ4. The value of each ψi may now be replaced by the new
value P (Bi|A) and the new values may be used to search for an updated
Bayesian D-optimal design. Details of the calculations are not given as
they follow those already displayed in Example 7.2.2. The Bayesian D-
optimal design is found to be

ξ∗ =

{
(−1,−1)> (−1, 1)> (1,−1)> (1, 1)>

0.210 0.294 0.293 0.203

}
.

7.3 A continuous prior distribution for β

7.3.1 Finding the D-optimal design

Sub-sections 7.2.1 to 7.2.3 considered the situation where the possible
values postulated for each parameter formed a discrete set. For exam-
ple, a researcher might choose the values −0.2 and 0.2 with equal prob-
abilities of 0.5 as the prior distribution for β0. However, an alterna-
tive approach is to postulate that the value of β0 lies on an interval.
For example, one might choose β0 ∈ {β0 : −0.2 < β0 < 0.2} as the
domain for β0. If there are p = 3 parameters, one might also choose
β1 ∈ {β1 : 0 < β1 < 1} and β2 ∈ {β2 : 0 < β2 < 2}.
Denote by P the parameter space; that is, the subset of Rp in which we
believe that the parameter vector β lies. In the present example,

P = {(β0, β1, β2)> : − 0.2 < β0 < 0.2, 0 < β1 < 1, 0 < β2 < 2}. (7.7)

Suppose that one has selected a continuous probability density function
for the elements of β over P. Denote this by ψ(β). It is the contin-
uous analogue of the discrete prior distribution that was given in Sub-
section 7.2. Instead of summing over the discrete values of β as was done
in that sub-section, appropriate functions are integrated over the space
P. This gives the following multivariate integrals, analogous to (7.2) and
(7.3), respectively, for the utility function and standardised variance:

φ(ξ) =

∫
P

ln [det (M(ξ,β))]ψ(β) dβ (7.8)

and

d(x, ξ∗) =

∫
P
ω(x,β)f>(x)M−1(ξ∗,β)f(x)ψ(β) dβ. (7.9)
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Example: For P in (7.7), the utility function in (7.8) may also be written
as

φ(ξ) =

∫ 2

0

∫ 1

0

∫ 0.2

−0.2
ln {det [M(ξ, β0, β1, β2)]}ψ(β0, β1, β2) dβ0 dβ1 dβ2.

Except in trivial situations, it is not possible to find exact expressions
for the values of the integrals in (7.8) and (7.9).

As the number of variables in a multiple integral increases, the number
of evaluations of the function being integrated increases very consid-
erably. In the integrals of (7.8) and (7.9), there are p variables (the
p parameters in β). The integral in (7.8) needs to be approximated for
each candidate design considered in the process of maximising φ(ξ). The
time required for the necessary computations using (say) Simpson’s rule
(see Section 2.5) quickly becomes prohibitive.

Researchers have sought alternative methods of numerical integration
that require greatly reduced numbers of function evaluations. I will use
results arising from Monahan & Genz (1997) and Gotwalt, Jones, &
Steinberg (2009), who found methods to approximate the values of in-
tegrals of the form (7.8) when ψ(β) is (i) a multivariate normal density
function, or (ii) the probability density function for p independent vari-
ables βi, the ith having a uniform distribution on the interval [ai, bi].
We will consider the second case.

The mathematics underlying the method is very much beyond the scope
of this book, but a simple summary is that, for case (ii), we can write

φ(ξ) =

∫
P

ln [det (M(ξ,β))]ψ(β) dβ

≈
N∑
i=1

wi ln [det (M(ξ,βi))] (7.10)

and

d(x, ξ∗) ≈
N∑
i=1

wi ω(x,βi)f
>(x)M−1(ξ∗,βi)f(x) (7.11)

for a comparatively small value of N using values of w1, . . . , wN and
β1, . . . ,βN that can be given to us by an R program. Equations (7.10)
and (7.11) are very similar to (7.2) and (7.3), which were used for discrete
prior distributions for the parameters. The problem for continuous prior
distributions has been reduced to one for discrete distributions.

Program 22 in the online resources contains a function RSquadra-
ture.uniform that will generate the weights wi and abscissae βi needed in
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(7.10) and (7.11). The function calls on several other functions that are
also given in Program 22. As well, the function RSquadrature.uniform
needs a function, halton, that is in the package randtoolbox that is
available on the CRAN website. On its first use, you will need to in-
stall randtoolbox. Subsequently, each time that you run R and need a
function from this package, it will be necessary to issue the command

library(randtoolbox)

before running RSquadrature.uniform. The functions in Program 22 are
incorporated in the R package acebayes (Overstall, Woods & Adamou,
2017), as described in Overstall & Woods (2017). I acknowledge with
gratitude the generosity of Antony Overstall and David Woods in allow-
ing them to be used.

The arguments for RSquadrature.uniform are the value of p, values of Nr
and Nq (which alter the total number, N , of abscissae in the approxima-
tion), and a p× 2 matrix limits that contains the limits for the uniform
distributions for β1, . . . , βp (lower limits in column 1, upper limits in
column 2). The output consists of an N -element vector of weights wi,
and an N × p matrix whose ith row contains the ith abscissa βi. These
are used in (7.10) and (7.11).

Example 7.3.1. Consider a logistic regression with η = β0 + β1x1 +
β2x2 (implying p = 3 and m = 2), and let the design space be X =
{(x1, x2) : − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. The prior distributions for
the parameters are β0 ∼ U [−1, 1], β1 ∼ U [−3, 3] and β2 ∼ U [−3, 3].
Program 23 below will generate the weights and abscissae for (7.10) and
(7.11).

p <- 3

Nr <- 3

Nq <- 4

#lower limits for parameters in column 1, upper limits in column 2

limits <- matrix(c(-1,-3,-3,1,3,3),p,2)

out <- RSquadrature.uniform(p, limits, Nr, Nq)

wts <- out$w

abscissae <- out$a

cbind(wts,abscissae)

[1,] 1.523810e-01 0.0000000 0.00000000 0.00000000

[2,] 1.266647e-02 0.0000000 1.46143658 -2.19215487

[3,] 1.266647e-02 -0.8542417 0.62601014 -0.93901521

[4,] 1.266647e-02 -0.6497583 1.57429131 -0.30493892

:

:
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[241,] 3.602581e-05 -0.9999351 1.03599293 -1.55398939

There are 241 values of wi (in the first column of the output) and of βi
(in the rows spanning the second to fourth columns of the output). The
values of wi will be the same for two different runs of the program, but
the values of βi will vary from run to run. Consequently you will not
necessarily get exactly the same answers from two evaluations of (7.10)
or (7.11).

This program used Nr = 3 and Nq = 4, which are typical values to use. It
is not advised that you decrease them, but you may increase them if you
wish, although probably only by small amounts. (They must be integers.)

Program 24 directly follows Program 23, and uses the values of p, Nr,
Nq, wts and abscissae. The program is very similar to other programs
used earlier to search for optimal designs. The first thing necessary to
decide is what value of s (the number of support points) to specify. The
upper bound for non-Bayesian designs was p(p+ 1)/2, which is six here.
However, it has already been mentioned (see page 69) that this upper
bound does not apply for Bayesian experimental designs. I decided to try
s = 10. Program 24 appears below:

m <- 2

s <- 10

lim1 <- m*s

npts <- length(wts)

fx <- function(xvec)

{

fvec <- c(1,xvec)

fvec

}

detinfomatrix <- function(betavec,xvec,deswts)

{#calculates the determinant of the information matrix for

#a logistic regression in m variables.

#The input consists of the values of betavec, xvec and deswts

xmat <- t(matrix(xvec,s,m))

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*% diag(deswts*modelwtvec) %*% t(fxmat)

det(infomat)

}

#calculate an approximation to the utility function
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utility <- function(variables)

{

xvec <- matrix(cos(pi*variables[1:lim1]),m,s,byrow=T)

zvec <- variables[(lim1+1):((m+1)*s)]

deswts <- zvec^2

deswts <- deswts/sum(deswts)

approx <- 0

for (i in 1:npts)

{

temp <- detinfomatrix(abscissae[i,],xvec,deswts)

approx <- approx + wts[i]*log(temp)

}

-approx

}

nsims <- 100

mindet <- 1000000

for (i in 1:nsims)

{

initial <- c(runif(lim1),runif(s))

out <- optim(initial,utility,NULL,method="Nelder-Mead")

if(out$value < mindet) {mindet <- out$value

bestdesign <- out$par

}

}

answer <- bestdesign

ansa <- matrix(cos(pi*answer[1:lim1]),m,s,byrow=T)

zvec <- answer[(lim1+1):((m+1)*s)]

deswts <- zvec^2

deswts <- deswts/sum(deswts)

solution <- rbind(ansa,deswts)

solution

mindet

This gave me the following results:

> solution

[,1] [,2] [,3] [,4] [,5]

-0.9987306 0.49410543 0.813505263 -0.20380411 -0.9999459

-0.9956823 -0.96642698 -0.044382187 0.98666153 0.9694254

deswts 0.1547635 0.03001811 0.005799606 0.06232621 0.2171716

[,6] [,7] [,8] [,9] [,10]

0.12643142 -0.8839328280 0.9998190 0.9998968 -0.92863089

-0.99802302 -0.5546368670 0.9968296 -0.8854396 -0.93142622

deswts 0.08822189 0.0003809722 0.2315761 0.1673043 0.04243773

> mindet

[1] 6.952569
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I noted that support points 3 and 7 had very small design weights, so
I decided to reduce the number of support points to s = 8 and ran the
program again. The result was:

Design 7.1

> solution

[,1] [,2] [,3] [,4] [,5]

0.19219806 0.9588416 -0.96742452 -0.9979431 0.05633035

0.99722036 -0.9934035 0.08369226 -0.9915185 -0.98810442

deswts 0.04173645 0.2071158 0.04759107 0.1915722 0.06426095

[,6] [,7] [,8]

0.99592141 0.9992664 -0.9883234

0.22692883 0.9998860 0.9981643

deswts 0.08112878 0.1645251 0.2020696

> mindet

[1] 6.926874

I decided to base the starting values for the next search on the answers
immediately above, and used the commands

oldx <- c(0.192,0.959,-0.967,-0.998,0.056,0.996,1,-0.988,0.997,

-0.993,0.084,-0.992,-0.988,0.227,1,0.998)

olddel <- c(0.042,0.207,0.048,0.192,0.064,0.081,0.164,0.202)

startx <- acos(oldx)/pi

startdel <- sqrt(olddel/olddel[s])

mindet <- 1000000

for (i in 1:nsims)

{

initial <- c(startx,startdel) + 0.1*(runif(lim1+s) - 0.5)

out <- optim(initial,objective,NULL,method="Nelder-Mead")

if(out$value < mindet) {mindet <- out$value

bestdesign <- out$par

}

}

These commands back-transform the output values from the previous run
to unconstrained values that can lie anywhere in R. The first command
inside the loop adds small positive or negative increments to each of these
values, and then the first commands in the function utility transform the
input to values that satisfy the required constraints.

After taking the output from the next lot of simulations, “tweaking” that
output, and running the simulations again, the following output was ob-
tained:

Design 7.2

> solution

[,1] [,2] [,3] [,4] [,5]

-0.04156896 1.0000000 -0.99996500 -0.9999940 0.05173776
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0.99999417 -0.9999997 0.07833031 -0.9999998 -0.99998262

deswts 0.07349709 0.1799858 0.07134747 0.1827745 0.07094532

[,6] [,7] [,8]

1.0000000 0.9999939 -0.9999913

-0.0571310 0.9999954 0.9999878

deswts 0.0670904 0.1833768 0.1709826

> mindet

[1] 6.904864

Written another way, the suspected locally D-optimal design is

deltavec

[1,] -0.042 1.000 0.074

[2,] 1.000 -1.000 0.180

[3,] -1.000 0.078 0.071

[4,] -1.000 -1.000 0.183

[5,] 0.052 -1.000 0.071

[6,] 1.000 -0.057 0.067

[7,] 1.000 1.000 0.183

[8,] -1.000 1.000 0.171

Denote this design by ξ∗. The following commands come from Pro-
gram 25 and calculate M−1(ξ∗,βi) for each of the N (here N = 241)
values of β generated by RSquadrature.uniform, and then store them in
the array invinfomatrices.

infomat <- function(betavec,xvec,deswts)

{

xmat <- t(matrix(xvec,s,m))

fxmat <- apply(xmat,2,fx)

etavec <- as.vector(t(betavec)%*%fxmat)

expetavec <- exp(etavec)

modelwtvec <- expetavec/((1+expetavec)^2)

infomat <- fxmat %*% diag(deswts*modelwtvec) %*% t(fxmat)

infomat

}

invinfomatrices <- rep(0,p*p*npts)

dim(invinfomatrices) <- c(p,p,npts)

optxvec <- c(-0.042,1,-1,-1,0.052,1,1,-1,1,-1,0.078,-1,-1,-0.057,1,1)

deltavec <- c(0.074,0.180,0.071,0.183,0.071,0.067,0.183,0.171)

for (h in 1:npts)

{

betavec <- abscissae[h,]

invinfomatrices[,,h] <- solve(infomat(betavec,optxvec,deltavec))

}
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It is important to store these matrix inverses because this ensures that
each inverse is calculated only once. The alternative is to calculate each
matrix inverse every time that the standardised variance is calculated,
which would be very wasteful from a computational perspective.

The remaining commands in Program 25 calculate the standardised vari-
ance d(x, ξ∗) at each support point of Design 7.2, and then draw a con-
tour plot of d(x, ξ∗). The standardised variance is equal to p = 3 at each
support point, and d(x, ξ∗) ≤ 3 everywhere on the design space. (See
Figure 7.3.) I am confident that Design 7.2 represents the Bayesian D-
optimal design.
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Figure 7.3 Contour plot of the standardised variance for Design 7.2, the locally
D-optimal design with s = 8 support points.

The journey from the initial search for a design to the final conclu-
sion that an optimal design has been obtained can be long and tortuous,
as it depends very much on the initial starting point and the randomly
generated alternatives to an intermediate answer. On another attempt
to find the locally D-optimal design for the present situation, I quickly
reached s = 8 support points, and was then tempted by the low value of
one design weight to try a design with s = 7 support points. This led
to an apparent D-optimal design. However, a plot of the standardised
variance, given in Figure 7.4, shows that its maximum value over the
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design space is greater than 3, so the design cannot be D-optimal. The
plot strongly suggests that the support points should be approximately
x = (−1,−1)>, (−1, 0)>, (−1, 1)>, (0,−1)>, (0, 1)>, (1,−1)>, (1, 0)>,
(1, 1)>; i.e., s = 8 points that are not too different from those of De-
sign 7.2. This emphasises the importance of examining the standardised
variance whenever searching for a D-optimal design.
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Figure 7.4 Contour plot of the standardised variance for an apparent D-
optimal design with s = 7 support points. Note that the value of the stan-
dardised variance exceeds p = 3 along most of the right-hand boundary.

7.3.2 Using results from a previous experiment

Sub-section 7.2.2 described running an experiment and obtaining the
results of a GLM analysis, including the parameter estimates and
their estimated standard errors. In considering a discrete distribution
for the values of the parameter vector β for use in finding a sub-
sequent Bayesian D-optimal design, it was suggested that vectors of

the form
(
β̂0 ± k0 std. error(β̂0), . . . , β̂p−1 ± kp−1 std. error(β̂p−1)

)>
be

used, with appropriate prior probabilities assigned by a knowledgeable
researcher. However, now a continuous distribution for β is being con-
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sidered. In particular, it is assumed that the individual parameters are
statistically independent of one another, and have uniform distributions.

A reasonable approach is to assume that the βi are statistically inde-
pendent, and that

βi ∼ U
[
β̂i − ki std. error(β̂i), β̂i + ki std. error(β̂i)

]
(i = 0, 1, . . . , p−1),

where the values of k0, . . . , kp−1 are chosen by someone with knowl-
edge of the experimental material. Having obtained a prior distribution
for each parameter, one may then follow the example given in Sub-
section 7.3 that uses the results of the function RSquadrature.uniform
to obtain a locally D-optimal Bayesian design.

The reader might prefer not to assume a “flat” (uniform) prior distri-
bution for each parameter, but instead to select a distribution that has
a peak at the ML estimate, and which tapers off on each side. normal
distributions have such a shape, and the software is available if you wish
to use a normal prior distribution for each parameter. However, if you
would like another distribution (e.g., one with a triangular shape), I am
not aware of any software that will allow you to do this and approximate
the quantities in either (7.8) or (7.9).

The process to use normal prior distributions is fairly similar to that
demonstrated in Example 7.3.1. The function that generates weights
and abscissae to be used in numerical integration is called RSquadra-
ture.normal, and is also made available by the kindness of Antony Over-
stall and David Woods. This program is stored as Program 26 in the
Web site doeforglm.com. Like RSquadrature.uniform, three of the argu-
ments for RSquadrature.normal are the values of p, Nr and Nq, which
have the same meanings as they had in Example 7.3.1. The other two
arguments for RSquadrature.normal are mu and sigma, respectively the
mean vector and covariance matrix of the prior distribution of β.

Example 7.3.2. Let us pretend that the output in Sub-section 7.2.2
is what will be used to produce a prior distribution for β. The relevant
section of the output is

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3846 0.3986 -0.965 0.3346

x1 0.7717 0.4217 1.830 0.0673 .

x2 0.3057 0.4192 0.729 0.4658
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Figure 7.5 A plot of the standardised variance d(x, ξ∗6). Over the design space,
d(x, ξ∗6) achieves its maximum value of p = 3 at the four support points of ξ∗6 .

If it is assumed that the parameters have independent distributions, then
their covariances are zero, and it follows that

mu =

 −0.3846
0.7717
0.3057

 and sigma =

 0.39862 0 0
0 0.42172 0
0 0 0.41922

 .
Provided that all necessary functions are present, a program that will
search for a locally D-optimal design is very similar to the one on
page 203, the only changes being the replacement of limits by mu and
sigma in the argument of the function, and using RSquadrature.normal
instead of RSquadrature.uniform. Initially I used s = 10 support points,
but was able to reduce it to s = 4. The locally D-optimal Bayesian de-
sign is

ξ∗6 =

{
(−1,−1)> (−1, 1)> (1,−1)> (1, 1)>

0.208 0.257 0.272 0.263

}
.

The design’s optimality was verified by a plot of the standardised vari-
ance, which appears in Figure 7.5.
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Sub-section 7.2.3 used Bayes’ theorem and the results of an experiment
to obtain a posterior distribution for initially specified discrete values
of β. However, a warning was given that this should only be done if
one had confidence in the initial values of β and wished to update the
probabilities associated with those values. An equivalent procedure can
be done when the prior distribution of β is continuous, but a similar
warning is given here.

Let ψ(β) and f(y|β) denote, respectively, the prior probability density
function of β and the conditional distribution of the observations y for
a given value of β. The continuous analogue of (7.6) is

p(β|y) =
f(y|β)ψ(β)∫

P f(y|β)ψ(β) dβ
; (7.12)

e.g., see Carlin & Louis (2009, p.15). The quantity p(β|y) is the poste-
rior distribution of β. An approximation of the denominator of (7.12)
would again be calculated (for normal or uniform distributions) using
the output of either RSquadrature.normal or RSquadrature.uniform.

If you do decide to use the result in (7.12), please consult a specialist in
Bayesian procedures first. He or she may be able to suggest alternative
computational procedures to help you, as there are several packages to
help with calculations of this nature.

7.4 Exact Bayesian design

Recall that exact designs specify the support points of a design, and the
design weight for each design is a multiple of 1/N . A recent R package
acebayes (Overstall, Woods & Adamou, 2017) will generate exact designs
for designs of several variables and a large number of support points.
The mathematics underlying the method is beyond the scope of this
book, but the program is easy to apply. Install the package acebayes
in the usual manner, and remember to issue the library(acebayes)

command at the beginning of any R session that will use the program.
The use of the package is illustrated by several examples:

Example 7.4.1. Consider a logistic model in which the linear predictor
η = β0 + β1x1 + . . . + β4x4 is a linear combination of m = 4 predictor
variables, each assumed to lie on the interval [−1, 1]. The p = 5 param-
eters are assumed to have uniform prior distributions: β0 ∼ U [−3, 3],
β1 ∼ U [4, 10], β2 ∼ U [5, 11], β3 ∼ U [−6, 0] and β4 ∼ U [−2.5, 3.5]. Sup-
pose that we desire a Bayesian design of s = 6 support points with equal
design weights δ1 = . . . = δ6 = 1/6. The following program is based on
an example given by Overstall & Woods (2017, Section 3.3). First, a
seed is set so that you can duplicate this program. Then, the values of
the parameters s, p and m are specified.
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> set.seed(1)

> n <- s <- 6

> p <- 5

> m <- 4

Create a starting matrix (a design) that has a row for each support point
and a column for each predictor variable. Give a name to each variable.
Each entry of the matrix has an entry that comes from the U[−1, 1]
distribution. (The design represents a Latin hypercube sample — if you
wish to know that!)

> start.d1 <- matrix(2 * randomLHS(n=n,k=m) - 1,nrow=s,ncol=m,

dimnames = list(as.character(1:n), c("x1", "x2", "x3", "x4")))

Vectors of the lower and upper bounds of the uniform prior distributions
are specified. Then a function, prior1, is defined which will return a
B × p matrix, each of whose rows contains a sample of possible values
of β0, . . . , βp−1.

> low <- c(-3, 4, 5, -6, -2.5)

> upp <- c(3, 10, 11, 0, 3.5)

> prior1 <- function(B){

t(t(matrix(runif(n = p * B),ncol = p)%*%diag(upp-low,p)) + low)}

Use the function aceglm to generate the design. Arguments for the func-
tion include

• the right-hand side of the formula specifying the linear model for η,

• the starting matrix,

• the distribution (the canonical link being assumed),

• specification of the name of the B × p matrix,

• the method to use in the calculations (“MC” for Monte Carlo, or the
default of “quadrature”),

• the numbers of iterations in each of the first and second phases of the
calculations (leave these as N1 = 1 and N2 = 0 unless you have read
Overstall & Woods (2017) and know what you are doing),

• and the values of B for the two phases (leave these as c(1000, 1000)
unless . . . ).

Typing example1$phase2.d will give you the suggested design (s support
points, each with design weight 1/s).

> example1 <- aceglm(formula=~x1+x2+x3+x4, start.d = start.d1,

family = binomial, prior = prior1, method = "MC", N1 = 1,

N2 = 0, B = c(1000, 1000))

> example1
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Generalised Linear Model

Criterion = Bayesian D-optimality

Formula: ~x1 + x2 + x3 + x4

Family: binomial

Link function: logit

Method: MC

B: 1000 1000

Number of runs = 6

Number of factors = 4

Number of Phase I iterations = 1

Number of Phase II iterations = 0

Computer time = 00:00:01

> example1$phase2.d

x1 x2 x3 x4

1 -0.3571245 0.16069337 -0.61325375 0.9276443

2 -0.9167309 0.91411512 0.69842151 0.2605092

3 -0.8843699 0.42863930 -1.00000000 -0.9679402

4 0.3696224 -0.27126080 0.65284076 0.1850767

5 0.7172267 -0.34743402 -0.05968457 -0.6588896

6 0.7469636 0.05854029 1.00000000 -0.1742566

This second application of aceglm defines the prior distribution through
specification of the lower and upper limits of each uniform prior distribu-
tion, then uses the default method of “Quadrature” (as it is not specified)
to find a design. The resulting design is printed out.

> prior2 <- list(support = rbind(low, upp))

> example2 <- aceglm(formula = ~ x1 + x2 + x3 + x4,

start.d = start.d1, family = binomial, prior = prior2,

N1 = 1, N2 = 0)

> example2$phase2.d

x1 x2 x3 x4

1 -0.3269814 0.08697755 -0.7583228 1.00000000

2 -0.8322237 0.86652194 0.5747066 0.51442169

3 -0.8987852 0.48881387 -0.8554894 -1.00000000

4 0.3441093 -0.29050147 0.4704248 0.07628932

5 0.8371670 -0.42361888 0.1429862 -0.95080251

6 0.6802119 0.10853163 1.0000000 0.75421678



EXACT BAYESIAN DESIGN 215

The remaining two commands (below) perform 20,000 simulations of the
weights and abscissae in order to use (7.10) to estimate the utilities of the
two designs that have been produced. Why do we do these simulations? It
is because the values of β in (7.10) may be randomly generated (see the
comment on page 204), resulting in the estimate of the utility function
varying from simulation to simulation.

Recall that we wish to find a design that maximises the utility. In this
case, the design produced as example2 would be selected, as its utility is
greater.

> mean(example1$utility(d = example1$phase2.d, B = 20000))

[1] -11.55139

mean(example2$utility(d = example2$phase2.d, B = 20000))

[1] -11.19838

Suppose that you wanted a design with s = 8 equally weighted support
points. Change the seed to 2 (if desired), replace s <- 6 by s <- 8, and
run the whole program again. In a matter of a second or so, you obtain
the following output.

> example1$phase2.d

x1 x2 x3 x4

1 -0.57935559 0.48889067 -0.1252828 1.0000000

2 0.36068797 -0.17574732 1.0000000 -0.5815204

3 -0.87202905 0.47172578 -0.8397567 -1.0000000

4 1.00000000 -1.00000000 0.2536735 0.9275464

5 0.48711174 -0.51398955 -1.0000000 -1.0000000

6 -0.02739129 -0.30128404 -0.3181002 1.0000000

7 0.29561906 0.24367197 0.9547421 -0.3048681

8 -0.82325960 0.01640478 -1.0000000 -1.0000000

> prior2 <- list(support = rbind(low, upp))

>

> example2 <- aceglm(formula = ~ x1 + x2 + x3 + x4,

+ start.d = start.d, family = binomial, prior = prior2,

+ N1 = 1, N2 = 0)

>

> example2$phase2.d

x1 x2 x3 x4

1 -0.59098376 0.49543197 -0.063874594 1.0000000

2 0.36815759 -0.12925704 1.000000000 -0.5050266

3 -0.88789143 0.50487774 -0.964392629 -1.0000000

4 0.97268747 -0.95919978 -0.008130879 0.2815559

5 0.16463809 -0.51398955 -1.000000000 -1.0000000

6 0.01527268 -0.27162117 0.169227869 1.0000000

7 0.33383668 0.23257864 0.706116963 -0.3855793
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8 -0.81859188 0.02673269 -0.737791431 -1.0000000

> mean(example1$utility(d = example1$phase2.d, B = 20000))

[1] -8.629215

> mean(example2$utility(d = example2$phase2.d, B = 20000))

[1] -8.769524

>

A comparison of the two average utilities suggests that the first of the
two designs is to be preferred.

This description of the use of aceglm presents it like a “black box.”
This is because the underlying theory is beyond the scope of this book.
However, I trust that the example makes it clear how to use the function.
You need only specify the values of s, p, m, low and upp, the names
of the m variables, and the family (e.g., binomial), and you can run
the program exactly as it is. If you have the theoretical background
to understand Overstall & Woods (2017) and the references mentioned
therein, you should certainly use the program. If not, then be aware that
the method provides an extremely fast way to generate a Bayesian design
by two methods when each parameter has a uniform prior distribution
and the distributions of the parameters are statistically independent. It
does not give an approximate design that can be shown to be Bayesian
D-optimal, but often it will give a design that is clearly good, as the
following example shows.

Example 7.4.2. Recall Example 5.3.5, where a locally D-optimal design
was found for a Poisson regression with m = 4, p = 5, s = 5 and
β = (1, 2, 1,−1,−2)>. The support points have equal design weights. If
instead we consider a Bayesian design, and choose prior distributions
β0 ∼ U [0.8, 1.2], β1 ∼ U [1.6, 2.4], β2 ∼ U [0.8, 1.2], β3 ∼ U [−1.3,−0.7]
and β4 ∼ U [−2.2,−1.8], which restrict the values of the parameters to be
close to those in β = (1, 2, 1,−1,−2)>, what design does aceglm yield?

> example1$phase2.d

x1 x2 x3 x4

1 1.00000000 0.8999860 -1.0000000 -1.00000000

2 1.00000000 -0.9114759 -1.0000000 -1.00000000

3 0.97299720 1.0000000 -1.0000000 -0.02606028

4 1.00000000 1.0000000 0.8572299 -1.00000000

5 -0.05462328 1.0000000 -1.0000000 -1.00000000

> example2$phase2.d

x1 x2 x3 x4

1 -0.3258347 0.8401790 0.2923183 0.73158736

2 -0.1692818 -0.8846324 -0.9234802 -0.03759992
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3 -0.8442510 -0.8376870 0.6645709 -1.00000000

4 -0.1520863 -0.9490834 -0.5390256 0.89899266

5 0.8892828 -1.0000000 1.0000000 0.28930294

> mean(example1$utility(d = example1$phase2.d, B = 20000))

[1] 29.48662

> mean(example2$utility(d = example2$phase2.d, B = 20000))

[1] -4.370936

The design from example1 would be preferred over that from example2
because of a greater mean utility function. The selected example agrees
very well with the locally D-optimal design from Example 5.3.5, suggest-
ing that — in a comparable situation — acebayes will give an acceptable
design.

7.5 Final comments

Bayesian experimental design removes from researchers the burden of
having to design an experiment for a GLM with the design being cru-
cially dependent on what may be a very unreliable guess of the value of
the parameter vector, β. Being able to provide an interval of possible
values, and an associated probability distribution, for each parameter
eases that dependence.

Theoretical and computational developments in Bayesian experimental
design are progressing rapidly. It seems very likely that Bayesian exper-
imental design will continue to become more common, and convenient.
You are encouraged to monitor the literature for new developments.
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