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Preface

“ If it is true that there is always more than one way of construing a text, it is
not true that all interpretations are equal.” — Paul Ricoeur

The rich area of text analytics draws ideas from information retrieval, machine learning,
and natural language processing. Each of these areas is an active and vibrant field in its
own right, and numerous books have been written in each of these different areas. As a
result, many of these books have covered some aspects of text analytics, but they have not
covered all the areas that a book on learning from text is expected to cover.

At this point, a need exists for a focussed book on machine learning from text. This
book is a first attempt to integrate all the complexities in the areas of machine learning,
information retrieval, and natural language processing in a holistic way, in order to create
a coherent and integrated book in the area. Therefore, the chapters are divided into three
categories:

1. Fundamental algorithms and models: Many fundamental applications in text analyt-
ics, such as matrix factorization, clustering, and classification, have uses in domains
beyond text. Nevertheless, these methods need to be tailored to the specialized char-
acteristics of text. Chapters 1 through 8 will discuss core analytical methods in the
context of machine learning from text.

2. Information retrieval and ranking: Many aspects of information retrieval and rank-
ing are closely related to text analytics. For example, ranking SVMs and link-based
ranking are often used for learning from text. Chapter 9 will provide an overview of
information retrieval methods from the point of view of text mining.

3. Sequence- and natural language-centric text mining: Although multidimensional rep-
resentations can be used for basic applications in text analytics, the true richness of
the text representation can be leveraged by treating text as sequences. Chapters 10
through 14 will discuss these advanced topics like sequence embedding, deep learning,
information extraction, summarization, opinion mining, text segmentation, and event
extraction.

Because of the diversity of topics covered in this book, some careful decisions have been made
on the scope of coverage. A complicating factor is that many machine learning techniques



depend on the use of basic natural language processing and information retrieval method-
ologies. This is particularly true of the sequence-centric approaches discussed in Chaps. 10
through 14 that are more closely related to natural language processing. Examples of an-
alytical methods that rely on natural language processing include information extraction,
event extraction, opinion mining, and text summarization, which frequently leverage basic
natural language processing tools like linguistic parsing or part-of-speech tagging. Needless
to say, natural language processing is a full fledged field in its own right (with excellent
books dedicated to it). Therefore, a question arises on how much discussion should be pro-
vided on techniques that lie on the interface of natural language processing and text mining
without deviating from the primary scope of this book. Our general principle in making
these choices has been to focus on mining and machine learning aspects. If a specific nat-
ural language or information retrieval method (e.g., part-of-speech tagging) is not directly
about text analytics, we have illustrated how to use such techniques (as black-boxes) rather
than discussing the internal algorithmic details of these methods. Basic techniques like part-
of-speech tagging have matured in algorithmic development, and have been commoditized
to the extent that many open-source tools are available with little difference in relative
performance. Therefore, we only provide working definitions of such concepts in the book,
and the primary focus will be on their utility as off-the-shelf tools in mining-centric settings.
The book provides pointers to the relevant books and open-source software in each chapter
in order to enable additional help to the student and practitioner.

The book is written for graduate students, researchers, and practitioners. The exposition
has been simplified to a large extent, so that a graduate student with a reasonable under-
standing of linear algebra and probability theory can understand the book easily. Numerous
exercises are available along with a solution manual to aid in classroom teaching.

Throughout this book, a vector or a multidimensional data point is annotated with a bar,
such as X or 7. A vector or multidimensional point may be denoted by either small letters
or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots,
such as X - Y. A matrix is denoted in capital letters without a bar, such as R. Throughout
the book, the n x d document-term matrix is denoted by D, with n documents and d
dimensions. The individual documents in D are therefore represented as d-dimensional row
vectors, which are the bag-of-words representations. On the other hand, vectors with one
component for each data point are usually n-dimensional column vectors. An example is
the n-dimensional column vector 3 of class variables of n data points.

Yorktown Heights, NY, USA Charu C. Aggarwal
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Chapter 1

Machine Learning for Text: An
Introduction

“The first forty years of life give us the text; the next thirty supply the
commentary on it.”—Arthur Schopenhauer

1.1 Introduction

The extraction of useful insights from text with various types of statistical algorithms is
referred to as text mining, text analytics, or machine learning from text. The choice of
terminology largely depends on the base community of the practitioner. This book will use
these terms interchangeably. Text analytics has become increasingly popular in recent years
because of the ubiquity of text data on the Web, social networks, emails, digital libraries,
and chat sites. Some common examples of sources of text are as follows:

1. Digital libraries: Electronic content has outstripped the production of printed books
and research papers in recent years. This phenomenon has led to the proliferation of
digital libraries, which can be mined for useful insights. Some areas of research such
as biomedical text mining specifically leverage the content of such libraries.

2. Electronic news: An increasing trend in recent years has been the de-emphasis of
printed newspapers and a move towards electronic news dissemination. This trend
creates a massive stream of news documents that can be analyzed for important
events and insights. In some cases, such as Google news, the articles are indexed by
topic and recommended to readers based on past behavior or specified interests.

3. Web and Web-enabled applications: The Web is a vast repository of documents that
is further enriched with links and other types of side information. Web documents are
also referred to as hypertext. The additional side information available with hypertext
can be useful in the knowledge discovery process. In addition, many Web-enabled



applications, such as social networks, chat boards, and bulletin boards, are a significant
source of text for analysis.

e Social media: Social media is a particularly prolific source of text because of the
open nature of the platform in which any user can contribute. Social media posts
are unique in that they often contain short and non-standard acronyms, which
merit specialized mining techniques.

Numerous applications exist in the context of the types of insights one of trying to discover
from a text collection. Some examples are as follows:

Search engines are used to index the Web and enable users to discover Web pages
of interest. A significant amount of work has been done on crawling, indexing, and
ranking tools for text data.

Text mining tools are often used to filter spam or identify interests of users in particular
topics. In some cases, email providers might use the information mined from text data
for advertising purposes.

Text mining is used by news portals to organize news items into relevant categories.
Large collections of documents are often analyzed to discover relevant topics of inter-
est. These learned categories are then used to categorize incoming streams of docu-
ments into relevant categories.

Recommender systems use text mining techniques to infer interests of users in specific
items, news articles, or other content. These learned interests are used to recommend
news articles or other content to users.

The Web enables users to express their interests, opinions, and sentiments in various
ways. This has led to the important area of opinion mining and sentiment analy-
sis. Such opinion mining and sentiment analysis techniques are used by marketing
companies to make business decisions.

The area of text mining is closely related to that of information retrieval, although the latter
topic focuses on the database management issues rather than the mining issues. Because
of the close relationship between the two areas, this book will also discuss some of the
information retrieval aspects that are either considered seminal or are closely related to
text mining.

The ordering of words in a document provides a semantic meaning that cannot be
inferred from a representation based on only the frequencies of words in that document.
Nevertheless, it is still possible to make many types of useful predictions without inferring
the semantic meaning. There are two feature representations that are popularly used in
mining applications:

1.

Text as a bag-of-words: This is the most commonly used representation for text min-
ing. In this case, the ordering of the words is not used in the mining process. The set
of words in a document is converted into a sparse multidimensional representation,
which is leveraged for mining purposes. Therefore, the universe of words (or terms)
corresponds to the dimensions (or features) in this representation. For many appli-
cations such as classification, topic-modeling, and recommender systems, this type of
representation is sufficient.



2. Text as a set of sequences: In this case, the individual sentences in a document are
extracted as strings or sequences. Therefore, the ordering of words matters in this
representation, although the ordering is often localized within sentence or paragraph
boundaries. A document is often treated as a set of independent and smaller units (e.g.,
sentences or paragraphs). This approach is used by applications that require greater
semantic interpretation of the document content. This area is closely related to that
of language modeling and natural language processing. The latter is often treated as a
distinct field in its own right.

Text mining has traditionally focused on the first type of representation, although recent
years have seen an increasing amount of attention on the second representation. This is
primarily because of the increasing importance of artificial intelligence applications in which
the language semantics, reasoning, and understanding are required. For example, question-
answering systems have become increasingly popular in recent years, which require a greater
degree of understanding and reasoning.

It is important to be cognizant of the sparse and high-dimensional characteristics of text
when treating it as a multidimensional data set. This is because the dimensionality of the
data depends on the number of words which is typically large. Furthermore, most of the word
frequencies (i.e., feature values) are zero because documents contain small subsets of the
vocabulary. Therefore, multidimensional mining methods need to be cognizant of the sparse
and high-dimensional nature of the text representation for best results. The sparsity is not
always a disadvantage. In fact, some models, such as the linear support vector machines
discussed in Chap. 6, are inherently suited to sparse and high-dimensional data.

This book will cover a wide variety of text mining algorithms, such as latent factor
modeling, clustering, classification, retrieval, and various Web applications. The discussion
in most of the chapters is self-sufficient, and it does not assume a background in data mining
or machine learning other than a basic understanding of linear algebra and probability. In
this chapter, we will provide an overview of the various topics covered in this book, and
also provide a mapping of these topics to the different chapters.

1.1.1 Chapter Organization

This chapter is organized as follows. In the next section, we will discuss the special properties
of text data that are relevant to the design of text mining applications. Section 1.3 discusses
various applications for text mining. The conclusions are discussed in Sect. 1.4.

1.2 What Is Special About Learning from Text?

Most machine learning applications in the text domain work with the bag-of-words repre-
sentation in which the words are treated as dimensions with values corresponding to word
frequencies. A data set corresponds to a collection of documents, which is also referred to as
a corpus. The complete and distinct set of words used to define the corpus is also referred
to as the lexicon. Dimensions are also referred to as terms or features. Some applications
of text work with a binary representation in which the presence of a term in a document
corresponds to a value of 1, and 0, otherwise. Other applications use a normalized function
of the word frequencies as the values of the dimensions. In each of these cases, the dimen-
sionality of data is very large, and may be of the order of 10° or even 10°. Furthermore,
most values of the dimensions are 0s, and only a few dimensions take on positive values. In
other words, text is a high-dimensional, sparse, and non-negative representation.



These properties of text create both challenges and opportunities. The sparsity of text
implies that the positive word frequencies are more informative than the zeros. There is also
wide variation in the relative frequencies of words, which leads to differential importance
of the different words in mining applications. For example, a commonly occurring word like
“the” is often less significant and needs to be down-weighted (or completely removed) with
normalization. In other words, it is often more important to statistically normalize the rela-
tive importance of the dimensions (based on frequency of presence) compared to traditional
multidimensional data. One also needs to normalize for the varying lengths of different
documents while computing distances between them. Furthermore, although most multidi-
mensional mining methods can be generalized to text, the sparsity of the representation has
an impact on the relative effectiveness of different types of mining and learning methods. For
example, linear support-vector machines are relatively effective on sparse representations,
whereas methods like decision trees need to be designed and tuned with some caution to
enable their accurate use. All these observations suggest that the sparsity of text can either
be a blessing or a curse depending on the methodology at hand. In fact, some techniques
such as sparse coding sometimes convert non-textual data to text-like representations in
order to enable efficient and effective learning methods like support-vector machines [355].

The nonnegativity of text is also used explicitly and implicitly by many applications.
Nonnegative feature representations often lead to more interpretable mining techniques, an
example of which is nonnegative matriz factorization (see Chap. 3). Furthermore, many topic
modeling and clustering techniques implicitly use nonnegativity in one form or the other.
Such methods enable intuitive and highly interpretable “sum-of-parts” decompositions of
text data, which are not possible with other types of data matrices.

In the case where text documents are treated as sequences, a data-driven language model
is used to create a probabilistic representation of the text. The rudimentary special case of
a language model is the unigram model, which defaults to the bag-of-words representation.
However, higher-order language models like bigram or trigram models are able to capture
sequential properties of text. In other words, a language model is a data-driven approach
to representing text, which is more general than the traditional bag-of-words model. Such
methods share many similarities with other sequential data types like biological data. There
are significant methodological parallels in the algorithms used for clustering and dimension-
ality reduction of (sequential) text and biological data. For example, just as Markovian
models are used to create probabilistic models of sequences, they can also be used to create
language models.

Text requires a lot of preprocessing because it is extracted from platforms such as
the Web that contain many misspellings, nonstandard words, anchor text, or other meta-
attributes. The simplest representation of cleaned text is a multidimensional bag-of-words
representation, but complex structural representations are able to create fields for different
types of entities and events in the text. This book will therefore discuss several aspects
of text mining, including preprocessing, representation, similarity computation, and the
different types of learning algorithms or applications.

1.3 Analytical Models for Text

The section will provide a comprehensive overview of text mining algorithms and applica-
tions. The next chapter of this book primarily focuses on data preparation and similarity
computation. Issues related to preprocessing issues of data representation are also discussed
in this chapter. Aside from the first two introductory chapters, the topics covered in this
book fall into three primary categories:



1. Fundamental mining applications: Many data mining applications like matrix factor-
ization, clustering, and classification, can be used for any type of multidimensional
data. Nevertheless, the uses of these methods in the text domain has specialized
characteristics. These represent the core building blocks of the vast majority of text
mining applications. Chapters 3 through 8 will discuss core data mining methods. The
interaction of text with other data types will be covered in Chap. 8.

2. Information retrieval and ranking: Many aspects of information retrieval and ranking
are closely related to text mining. For example, ranking methods like ranking SVM
and link-based ranking are often used in text mining applications. Chapter 9 will
provide an overview of information retrieval methods from the point of view of text
mining.

3. Sequence- and natural language-centric text mining: Although multidimensional min-
ing methods can be used for basic applications, the true power of mining text can be
leveraged in more complex applications by treating text as sequences. Chapters 10
through 14 will discuss these advanced topics like sequence embedding, neural learn-
ing, information extraction, summarization, opinion mining, text segmentation, and
event extraction. Many of these methods are closely related to natural language pro-
cessing. Although this book is not focused on natural language processing, the basic
building blocks of natural language processing will be used as off-the-shelf tools for
text mining applications.

In the following, we will provide an overview of the different text mining models covered
in this book. In cases where the multidimensional representation of text is used for mining
purposes, it is relatively easy to use a consistent notation. In such cases, we assume that a
document corpus with n documents and d different terms can be represented as a sparse
n X d document-term matriz, which is typically very sparse. The ith row of D is represented
by the d-dimensional row vector X;. One can also represent a document corpus as a set of
these d-dimensional vectors, which is denoted by D = {X ... X, }. This terminology will be
used consistently throughout the book. Many information retrieval books prefer the use of
a term-document matrix, which is the transpose of the document-term matrix and the rows
correspond to the frequencies of terms. However, using a document-term matrix, in which
data instances are rows, is consistent with the notations used in books on multidimensional
data mining and machine learning. Therefore, we have chosen to use a document-term
matrix in order to consistent with the broader literature on machine learning.

Much of the book will be devoted to data mining and machine learning rather than the
database management issues of information retrieval. Nevertheless, there is some overlap
between the two areas, as they are both related to problems of ranking and search engines.
Therefore, a comprehensive chapter is devoted to information retrieval and search engines.
Throughout this book, we will use the term “learning algorithm” as a broad umbrella term
to describe any algorithm that discovers patterns from the data or discovers how such
patterns may be used for predicting specific values in the data.

1.3.1 Text Preprocessing and Similarity Computation

Text preprocessing is required to convert the unstructured format into a structured and
multidimensional representation. Text often co-occurs with a lot of extraneous data such as
tags, anchor text, and other irrelevant features. Furthermore, different words have different

significance in the text domain. For example, commonly occurring words such as “a,” “an,”



and “the,” have little significance for text mining purposes. In many cases, words are variants
of one another because of the choice of tense or plurality. Some words are simply misspellings.
The process of converting a character sequence into a sequence of words (or tokens) is
referred to as tokenization. Note that each occurrence of a word in a document is a token,
even if it occurs more than once in the document. Therefore, the occurrence of the same word
three times will create three corresponding tokens. The process of tokenization often requires
a substantial amount of domain knowledge about the specific language at hand, because the
word boundaries have ambiguities caused by vagaries of punctuation in different languages.
Some common steps for preprocessing raw text are as follows:

1. Text extraction: In cases where the source of the text is the Web, it occurs in combi-
nation with various other types of data such as anchors, tags, and so on. Furthermore,
in the Web-centric setting, a specific page may contain a (useful) primary block and
other blocks that contain advertisements or unrelated content. Extracting the use-
ful text from the primary block is important for high-quality mining. These types of
settings require specialized parsing and extraction techniques.

2. Stop-word removal: Stop words are commonly occurring words that have little discrim-
inative power for the mining process. Common pronouns, articles, and prepositions
are considered stop words. Such words need to be removed to improve the mining
process.

3. Stemming, case-folding, and punctuation: Words with common roots are consolidated
into a single representative. For example, words like “sinking” and “sank” are consol-
idated into the single token “sink.” The case (i.e., capitalization) of the first alphabet
of a word may or may not be important to its semantic interpretation. For example,
the word “Rose” might either be a flower or the name of a person depending on the
case. In other settings, the case may not be important to the semantic interpretation
of the word because it is caused by grammar-specific constraints like the beginning
of a sentence. Therefore, language-specific heuristics are required in order to make
decisions on how the case is treated. Punctuation marks such as hyphens need to be
parsed carefully in order to ensure proper tokenization.

4. Frequency-based normalization: Low-frequency words are often more discriminative
than high-frequency words. Frequency-based normalization therefore weights words
by the logarithm of the inverse relative-frequency of their presence in the collection.
Specifically, if n; is the number of documents in which the ¢th word occurs in the
corpus, and n is the number of documents in the corpus, then the frequency of a
word in a document is multiplied by log(n/n;). This type of normalization is also
referred to as inverse-document frequency (idf) normalization. The final normalized
representation multiplies the term frequencies with the inverse document frequencies
to create a tf-idf representation.

When computing similarities between documents, one must perform an additional normal-
ization associated with the length of a document. For example, Euclidean distances are
commonly used for distance computation in multidimensional data, but they would not
work very well in a text corpus containing documents of varying lengths. The distance be-
tween two short documents will always be very small, whereas the distance between two
long documents will typically be much larger. It is undesirable for pairwise similarities to
be dominated so completely by the lengths of the documents. This type of length-wise bias
also occurs in the case of the dot-product similarity function. Therefore, it is important



to use a similarity computation process that is appropriately normalized. A normalized
measure is the cosine measure, which normalizes the dot product with the product of the
Lo-norms of the two documents. The cosine between a pair of d-dimensional document
vectors X = (z1...24) and Y = (y; ...yq) is defined as follows:
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Note the presence of document norms in the denominator for normalization purposes. The
cosine between a pair of documents always lies in the range (0, 1). More details on document
preparation and similarity computation are provided in Chap. 2.

cosine(X,Y) =

(1.1)

1.3.2 Dimensionality Reduction and Matrix Factorization

Dimensionality reduction and matrix factorization fall in the general category of methods
that are also referred to as latent factor models. Sparse and high-dimensional representations
like text work well with some learning methods but not with others. Therefore, a natural
question arises as whether one can somehow compress the data representation to express it
in a smaller number of features. Since these features are not observed in the original data
but represent hidden properties of the data, they are also referred to as latent features.
Dimensionality reduction is intimately related to matrix factorization. Most types of
dimensionality reduction transform the data matrices into factorized form. In other words,
the original data matrix D can be approximately represented as a product of two or more
matrices, so that the total number of entries in the factorized matrices is far fewer than
the number of entries in the original data matrix. A common way of representing an n x d
document-term matrix as the product of an n x k matrix U and a dx k matrix V is as follows:

D~UVT (1.2)

The value of £ is typically much smaller than n and d. The total number of entries in D is
n - d, whereas the total number of entries in U and V' is only (n + d) - k. For small values of
k, the representation of D in terms of U and V is much more compact. The n x k& matrix
U contains the k-dimensional reduced representation of each document in its rows, and
the d x k matrix V contains the k basis vectors in its columns. In other words, matrix
factorization methods create reduced representations of the data with (approximate) linear
transforms. Note that Eq. 1.2 is represented as an approximate equality. In fact, all forms
of dimensionality reduction and matrix factorization are expressed as optimization models
in which the error of this approximation is minimized. Therefore, dimensionality reduction
effectively compresses the large number of entries in a data matrix into a smaller number
of entries with the lowest possible error.

Popular methods for dimensionality reduction in text include latent semantic analysis,
non-negative matrix factorization, probabilistic latent semantic analysis, and latent Dirichlet
allocation. We will address most of these methods for dimensionality reduction and matrix
factorization in Chap. 3. Latent semantic analysis is the text-centric avatar of singular value
decomposition.

Dimensionality reduction and matrix factorization are extremely important because they
are intimately connected to the representational issues associated with text data. In data
mining and machine learning applications, the representation of the data is the key in
designing an effective learning method. In this sense, singular value decomposition methods



enable high-quality retrieval, whereas certain types of non-negative matrix factorization
methods enable high-quality clustering. In fact, clustering is an important application of
dimensionality reduction, and some of its probabilistic variants are also referred to as topic
models. Similarly, certain types of decision trees for classification show better performance
with reduced representations. Furthermore, one can use dimensionality reduction and matrix
factorization to convert a heterogeneous combination of text and another data type into
multidimensional format (cf. Chap. 8).

1.3.3 Text Clustering

Text clustering methods partition the corpus into groups of related documents belonging
to particular topics or categories. However, these categories are not known a priori, be-
cause specific examples of desired categories (e.g., politics) of documents are not provided
up front. Such learning problems are also referred to as unsupervised, because no guidance
is provided to the learning problem. In supervised applications, one might provide examples
of news articles belonging to several natural categories like sports, politics, and so on. In
the unsupervised setting, the documents are partitioned into similar groups, which is some-
times achieved with a domain-specific similarity function like the cosine measure. In most
cases, an optimization model can be formulated, so that some direct or indirect measure
of similarity within a cluster is maximized. A detailed discussion of clustering methods is
provided in Chap. 4.

Many matrix factorization methods like probabilistic latent semantic analysis and latent
Dirichlet allocation also achieve a similar goal of assigning documents to topics, albeit in
a soft and probabilistic way. A soft assignment refers to the fact that the probability of
assignment of each document to a cluster is determined rather than a hard partitioning of
the data into clusters. Such methods not only assign documents to topics but also infer the
significance of the words to various topics. In the following, we provide a brief overview of
various clustering methods.

1.3.3.1 Deterministic and Probabilistic Matrix Factorization Methods

Most forms of non-negative matrix factorization methods can be used for clustering text
data. Therefore, certain types of matrix factorization methods play the dual role of clustering
and dimensionality reduction, although this is not true across every matrix factorization
method. Many forms of non-negative matrix factorization are probabilistic mixture models, in
which the entries of the document-term matrix are assumed to be generated by a probabilistic
process. The parameters of this random process can then be estimated in order to create
a factorization of the data, which has a natural probabilistic interpretation. This type of
model is also referred to as a generative model because it assumes that the document-term
matrix is created by a hidden generative process, and the data are used to estimate the
parameters of this process.

1.3.3.2 Probabilistic Mixture Models of Documents

Probabilistic matrix factorization methods use generative models over the entries of the
document-term matrix, whereas probabilistic models of documents generate the rows (doc-
uments) from a generative process. The basic idea is that the rows are generated by a mizture
of different probability distributions. In each iteration, one of the mixture components is
selected with a certain a prior: probability and the word vector is generated based on the



distribution of that mixture component. Each mixture component is therefore analogous to
a cluster. The goal of the clustering process is to estimate the parameters of this generative
process. Once the parameters have been estimated, one can then estimate the a posteriori
probability that the point was generated by a particular mixture component. We refer to
this probability as “posterior” because it can only be estimated after observing the attribute
values in the data point (e.g., word frequencies). For example, a document containing the
word “basketball” will be more likely to belong to the mixture component (cluster) that is
generating many sports documents. The resulting clustering is a soft assignment in which
the probability of assignment of each document to a cluster is determined. Probabilistic
mixture models of documents are often simpler to understand than probabilistic matrix
factorization methods, and are the text analogs of Gaussian mixture models for clustering
numerical data.

1.3.3.3 Similarity-Based Algorithms

Similarity-based algorithms are typically either representative-based methods or hierarchical
methods, In all these cases, a distance or similarity function between points is used to
partition them into clusters in a deterministic way. Representative-based algorithms use
representatives in combination with similarity functions in order to perform the clustering.
The basic idea is that each cluster is represented by a multi-dimensional vector, which
represents the “typical” frequency of words in that cluster. For example, the centroid of
a set of documents can be used as its representative. Similarly, clusters can be created
by assigning documents to their closest representatives such as the cosine similarity. Such
algorithms often use iterative techniques in which the cluster representatives are extracted
as central points of clusters, whereas the clusters are created from these representatives by
using cosine similarity-based assignment. This two-step process is repeated to convergence,
and the corresponding algorithm is also referred to as the k-means algorithm. There are
many variations of representative-based algorithms although only a small subset of them
work with the sparse and high-dimensional representation of text. Nevertheless, one can
use a broader variety of methods if one is willing to transform the text data to a reduced
representation with dimensionality reduction techniques.

In hierarchical clustering algorithms, similar pairs of clusters are aggregated into larger
clusters using an iterative approach. The approach starts by assigning each document to its
own cluster and then merges the closest pair of clusters together. There are many variations
in terms of how the pairwise similarity between clusters is computed, which has a direct
impact on the type of clusters discovered by the algorithm. In many cases, hierarchical
clustering algorithms can be combined with representative clustering methods to create
more robust methods.

1.3.3.4 Advanced Methods

All text clustering methods can be transformed into graph partitioning methods by using a
variety of transformations. One can transform a document corpus into node-node similarity
graphs or node-word occurrence graphs. The latter type of graph is bipartite and clustering
it is very similar to the process of nonnegative matrix factorization.

There are several ways in which the accuracy of clustering methods can be enhanced
with the use of either external information or with ensembles. In the former case, external
information in the form of labels is leveraged in order to guide the clustering process towards
specific categories that are known to the expert. However, the guidance is not too strict, as



a result of which the clustering algorithm has the flexibility to learn good clusters that are
not indicated solely by the supervision. Because of this flexible approach, such an approach
is referred to as semi-supervised clustering, because there are a small number of examples
of representatives from different clusters that are labeled with their topic. However, it is still
not a full supervision because there is considerable flexibility in how the clusters might be
created using a combination of these labeled examples and other unlabeled documents.

A second technique is to use ensemble methods in order to improve clustering quality.
Ensemble methods combine the results from multiple executions of one or more learning
algorithms to improve prediction quality. Clustering methods are often unstable because
the results may vary significantly from one run to the next by making small algorithmic
changes or even changing the initialization. This type of variability is an indicator of a
suboptimal learning algorithm in expectation over the different runs, because many of these
runs are often poor clusterings of the data. Nevertheless, most of these runs do contains some
useful information about the clustering structure. Therefore, by repeating the clustering in
multiple ways and combining the results from the different executions, more robust results
can be obtained.

1.3.4 Text Classification and Regression Modeling

Text classification is closely related to text clustering. One can view the problem of text clas-
sification as that of partitioning the data into pre-defined groups. These pre-defined groups
are identified by their labels. For example, in an email classification application, the two
groups might correspond to “spam” and “not spam.” In general, we might have k different
categories, and there is no inherent ordering among these categories. Unlike clustering, a
training data set is provided with examples of emails belonging to both categories. Then, for
an unlabeled test data set, it is desired to categorize them into one of these two pre-defined
groups.

Note that both classification and clustering partition the data into groups; however, the
partitioning in the former case is highly controlled with a pre-conceived notion of partitioning
defined by the training data. The training data provides the algorithm guidance, just as a
teacher supervises her student towards a specific goal. This is the reason that classification
is referred to as supervised learning.

One can also view the prediction of the categorical label y; for data instance X; as that
of learning a function f(-):

yi = f(Xi) (1.3)

In classification, the range of the function f(-) is a discrete set of values like
{spam, not spam }. Often the labels are assumed to be drawn from the discrete and un-
ordered set of values {1,2,...,k}. In the specific case of binary classification, the value
of y; can be assumed to be drawn from {—1,+1}, although some algorithms find it more
convenient to use the notation {0,1}. Binary classification is slightly easier than the case
of multilabel classification because it is possible to order the two classes unlike multi-label
classes such as {Blue, Red, Green}. Nevertheless, multilabel classification can be reduced
to multiple applications of binary classification with simple meta-algorithms.

It is noteworthy that the function f(-) need not always map to the categorical domain,
but it can also map to a numerical value. In other words, we can generally refer to y; as the
dependent variable, which may be numerical in some settings. This problem is referred to as
regression modeling, and it no longer partitions the data into discrete groups like classifica-
tion. Regression modeling occurs commonly in many settings such as sales forecasting where



the dependent variables of interest are numerical. Note that the terminology “dependent
variable” applies to both classification and regression, whereas the term “label” is generally
used only in classification. The dependent variable in regression modeling is also referred
to as a regressand. The values of the features in X; are referred to as feature variables, or
independent variables in both classification and regression modeling. In the specific case of
regression modeling, they are also referred to as regressors. Many algorithms for regression
modeling can be generalized to classification and vice versa. Various classification algo-
rithms are discussed in Chaps. 5, 6, and 7. In the following, we will provide an overview of
the classification and regression modeling algorithms that are discussed in these chapters.

1.3.4.1 Decision Trees

Decision trees partition the training data hierarchically by imposing conditions over at-
tributes so that documents belonging to each class are predominantly placed in a single
node. In a univariate split, this condition is imposed over a single attribute, whereas a
multivariate split imposes this split condition over multiple attributes. For example, a
univariate split could correspond to the presence or absence of a particular word in the
document. In a binary decision tree, a training instance is assigned to one or two children
nodes depending on whether it satisfies the split condition. The process of splitting the
training data is repeated recursively in tree-like fashion until most of the training instances
in that node belong to the same class. Such a node is treated as the leaf node. These split
conditions are then used to assign test instances with unknown labels to leaf nodes. The
majority class of the leaf node is used to predict the label of the test instance. Combina-
tions of multiple decision trees can be used to create random forests, which are among the
best-performing classifiers in the literature.

1.3.4.2 Rule-Based Classifiers

Rule-based classifiers relate conditions on subsets of attributes to specific class labels. Thus,
the antecedent of a rule contains a set of conditions, which typically correspond to the
presence of a subset of words in the document. The consequent of the rule contains a class
label. For a given test instance, the rules whose antecedents match the test instance are
discovered. The (possibly conflicting) predictions of the discovered rules are used to predict
the labels of test instances.

1.3.4.3 Naive Bayes Classifier

The naive Bayes classifier can be viewed as the supervised analog of mixture models in
clustering. The basic idea here is that the data is generated by a mixture of k£ components,
where k is the number of classes in the data. The words in each class are defined by a
specific distribution. Therefore, the parameters of each mixture component-specific distri-
bution need to be estimated in order to maximize the likelihood of these training instances
being generated by the component. These probabilities can then be used to estimate the
probability of a test instance belonging to a particular class. This classifier is referred to as
“naive” because it makes some simplifying assumptions about the independence of attribute
values in test instances.



1.3.4.4 Nearest Neighbor Classifiers

Nearest neighbor classifiers are also referred to as instance-based learners, lazy learners,
or memory-based learners. The basic idea in a nearest neighbor classifier is to retrieve
the k-nearest training examples to a test instance and report the dominant label of these
examples. In other words, it works by memorizing training instances, and leaves all the work
of classification to the very end (in a lazy way) without doing any training up front. Nearest
neighbor classifiers have some interesting properties, in that they show probabilistically
optimal behavior if an infinite amount of data is available. However, in practice, we rarely
have infinite data. For finite data sets, nearest neighbor classifiers are usually outperformed
by a variety of eager learning methods that perform training up front. Nevertheless, these
theoretical aspects of nearest-neighbor classifiers are important because some of the best-
performing classifiers such as random forests and support-vector machines can be shown to
be eager variants of nearest-neighbor classifiers under the covers.

1.3.4.5 Linear Classifiers

Linear classifiers are among the most popular methods for text classification. This is par-
tially because linear methods work particularly well for high-dimensional and sparse data
domains.

First, we will discuss the natural case of regression modeling in which the dependent
variable is numeric. The basic idea is to assume that the prediction function of Eq.1.3 is in
the following linear form:

yi~W-X;+0b (1.4)

Here, W is a d-dimensional vector of coefficients and b is a scalar value, which is also referred
to as the bias. The coefficients and the bias need to learned from the training examples, so
that the error in Eq. 1.4 is minimized. Therefore, most linear classifiers can be expressed in
as the following optimization model:

Minimize Y, Loss[y; — W - X; — b] + Regularizer (1.5)

The function Loss[y; —W - X; —b] quantifies the error of the prediction, whereas the regularizer
is a term that is added to prevent overfitting for smaller data sets. The former is also
referred to as the loss function. A wide variety of combinations of error functions and
regularizers are available in literature, which result in methods like Tikhonov regularization
and LASSO. Tikhonov regularization uses the squared norm of the vector W to discourage
large coefficients. Such problems are often solved with gradient-descent methods, which are
well-known tools in optimization.

For the classification problem with a binary dependent variable y; € {—1,+1}, the
classification function is often of the following form:

yi = sign{W - X; + b} (1.6)

Interestingly, the objective function is still in the same form as Eq. 1.5, except that the loss
function now needs to be designed for a categorical variable rather than a numerical one.
A variety of loss functions such as hinge loss function, the logistic loss function, and the
quadratic loss function are used. The first of these loss functions leads to a method known
as the support vector machine, whereas the second one leads to a method referred to as
logistic regression. These methods can be generalized to the nonlinear case with the use of
kernel methods. Linear models are discussed in Chap. 6.



1.3.4.6 Broader Topics in Classification

Chapter 7 discusses topics such as the theory of supervised learning, classifier evaluation,
and classification ensembles. These topics are important because they illustrate the use of
methods that can enhance a wide variety of classification applications.

1.3.5 Joint Analysis of Text with Heterogeneous Data

Much of text mining occurs in network-centric, Web-centric, social media, and other settings
in which heterogenous types of data such as hyperlinks, images, and multimedia are present.
These types of data can often be mined for rich insights. Chapter 8 provides a study of the
typical methods that are used for mining text in combination with other data types such
as multimedia and Web linkages. Some common tricks will be studied such as the use of
shared matrix factorization and factorization machines for representation learning.

Many forms of text in social media are short in nature because of the fact that these
forums are naturally suited to short snippets. For example, Twitter imposes an explicit
constraint on the length of a tweet, which naturally leads to shorter snippets of documents.
Similarly, the comments on Web forums are naturally short. When mining short documents,
the problems of sparsity are often extraordinarily high. These settings necessitate special-
ized mining methods for such documents. For example, such methods need to be able to
effectively address the overfitting caused by sparsity when the vector-space representation
is used. The factorization machines discussed in Chap. 8 are useful for short text mining.
In many cases, it is desirable to use sequential and linguistic models for short-text mining
because the vector-space representation is not sufficient to capture the complexity required
for the mining process. Several methods discussed in Chap. 10 can be used to create multi-
dimensional representations from sequential snippets of short text.

1.3.6 Information Retrieval and Web Search

Text data has found increasing interest in recent years because of the greater importance of
Web-enabled applications. One of the most important applications is that of search in which
it is desired to retrieve Web pages of interest based on specified keywords. The problem is
an extension of the notion of search used in traditional information retrieval applications.
In search applications, data structures such as inverted indices are very useful. Therefore,
significant discussion will be devoted in Chap. 9 to traditional aspects of document retrieval.

In the Web context, several unique factors such as the citation structure of the Web
also play an important role in enabling effective retrieval. For example, the well-known
PageRank algorithm uses the citation structure of the Web in order to make judgements
about the importance of Web pages. The importance of Web crawlers at the back-end is also
significant for the discovery of relevant resources. Web crawlers collect and store documents
from the Web at a centralized location to enable effective search. Chapter 9 will provide
an integrated discussion of information retrieval and search engines. The chapter will also
discuss recent methods for search that leverage learning techniques like ranking support
vector machines.

1.3.7 Sequential Language Modeling and Embeddings

Although the vector space representation of text is useful for solving many problems, there
are applications in which the sequential representation of text is very important. In partic-
ular, any application that requires a semantic understanding of text requires the treatment



of text as a sequence rather than as a bag of words. One useful approach in such cases
is to transform the sequential representation of text to a multidimensional representation.
Therefore, numerous methods have been designed to transform documents and words into
a multidimensional representation. In particular, kernel methods and neural network meth-
ods like word2vec are very popular. These methods leverage sequential language models in
order to engineer multidimensional features which are also referred to as embeddings. This
type of feature engineering is very useful because it can be used in conjunction with any
type of mining application. Chapter 10 will provide an overview of the different types of
sequence-centric models for text data, with a primary focus on feature engineering.

1.3.8 Text Summarization

In many applications, it is useful to create short summaries of text in order to enable users
to get an idea of the primary subject matter of a document without having to read it
in its entirety. Such summarization methods are often used in search engines in which an
abstract of the returned result is included along the title and link to the relevant document.
Chapter 11 provides an overview of various text summarization techniques.

1.3.9 Information Extraction

The problem of information extraction discovers different types of entities from text such as
names, places, and organizations. It also discovers the relations between entities. An example
of a relation is that the person entity John Doe works for the organization entity IBM.
Information extraction is a very key step in converting unstructured text into a structured
representation that is far more informative than a bag of words. As a result, more powerful
applications can be built on top of this type of extracted data. Information extraction
is sometimes considered a first step towards truly intelligent applications like question-
answering systems and entity-oriented search. For example, searching for a pizza location
near a particular place on the Google search engines usually returns organization entities.
Search engines have become powerful enough today to recognize entity-oriented search from
keyword phrases. Furthermore, many other applications of text mining such as opinion
mining and event detection use information extraction techniques. Methods for information
extraction are discussed in Chap. 12.

1.3.10 Opinion Mining and Sentiment Analysis

The Web provides a forum to individuals to express their opinions and sentiments. For
example, the product reviews in a Web site might contain text beyond the numerical ratings
provided by the user. The textual content of these reviews provides useful information that
is not available in numerical ratings. From this point of view, opinion mining can be viewed
as the text-centric analog of the rating-centric techniques used in recommender systems. For
example, product reviews are often used by both types of methods. Whereas recommender
systems analyze the numerical ratings for prediction, opinion mining methods analyze the
text of the opinions. It is noteworthy that opinions are often mined from information settings
like social media and blogs where ratings are not available. Chapter 13 will discuss the
problem of opinion mining and sentiment analysis of text data. The use of information
extraction methods for opinion mining is also discussed.



1.3.11 Text Segmentation and Event Detection

Text segmentation and event detection are very different topics from an application-centric
point of view; yet, they share many similarities in terms of the basic principle of detecting
sequential change either within a document, or across multiple documents. Many long docu-
ments contain multiple topics, and it is desirable to detect changes in topic from one part of
the document to another. This problem is referred to as text segmentation. In unsupervised
text segmentation, one is only looking for topical change in the context. In supervised seg-
mentation, one is looking for specific types of segments (e.g., politics and sports segments
in a news article). Both types of methods are discussed in Chap. 14. The problem of text
segmentation is closely related to stream mining and event detection. In event detection,
one is looking for topical changes across multiple documents in streaming fashion. These
topics are also discussed in Chap. 14.

1.4 Summary

Text mining has become increasingly important in recent years because of the preponderance
of text on the Web, social media, and other network-centric platforms. Text requires a
significant amount of preprocessing in order to clean it, remove irrelevant words, and perform
the normalization. Numerous text applications such as dimensionality reduction and topic
modeling form key building blocks of other text applications. In fact, various dimensionality
reduction methods are used to enable methods for clustering and classification. Methods
for querying and retrieving documents form the key building blocks of search engines. The
Web also enables a wide variety of more complex mining scenarios containing links, images,
and heterogeneous data.

More challenging applications with text can be solved only be treating text as sequences
rather than as multidimensional bags of words. From this point of view, sequence embed-
ding and information extraction are key building blocks. Such methods are often used in
specialized applications like event detection, opinion mining, and sentiment analysis. Other
sequence-centric applications of text mining include text summarization and segmentation.

1.5 Bibliographic Notes

Text mining can be viewed as a specialized offshoot of the broader field of data mining [2,
204, 469] and machine learning [50, 206, 349]. Numerous books have been written on the
topic of information retrieval [31, 71, 120, 321, 424] although the focus of these books is
primarily on the search engines, database management, and retrieval aspect. The book by
Manning et al. [321] does discuss several mining aspects, although this is not the primary
focus. An edited collection on text mining, which contains several surveys on many topics,
may be found in [14]. A number of books covering various aspects of text mining are
also available [168, 491]. The most recent book by Zhai and Massung [529] provides an
application-oriented overview of text management and mining applications. The natural
language focus on text understanding is covered in some recent books [249, 322]. A discussion
of text mining, as it relates to Web data, may be found in [79, 303].



1.5.1 Software Resources

The Bow toolkit is a classical library available for classification, clustering, and information
retrieval [325]. The library is written in C, and supports several popular classification and
clustering tools. Furthermore, it also supports a lot of software for text preprocessing, such as
finding document boundaries and tokenization. Several useful data sets for text mining may
be found in the “text” section of the UCI Machine Learning Repository [549]. The scikit-
learn library also supports several off-the-shelf tools for mining text data in Python [550],
and is freely usable. Another Python library that is more focused towards natural language
processing is the NLTK toolkit [556]. The tm package in R [551] is publicly available and it
supports significant text mining functionality. Furthermore, significant functionality for text
mining is also supported in the MATLAB programming language [36]. Weka provides a Java-
based platform for text mining [553]. Stanford NLP [554] is a somewhat more academically-
oriented system, but it provides many advanced tools that are not available elsewhere.

1.6 Exercises

1. Consider a text corpus with 10 documents, a lexicon of size 10°, and 100 distinct
words per document, which is represented as a bag of words with frequencies.

(a) What is the amount of space required to store the entire data matrix without
any optimization?

(b) Suggest a sparse data format to store the matrix and compute the space required.

2. In Exercise 1, let us represent the documents in 0-1 format depending on whether or
not a word is present in the document. Compute the expected dot product between
a pair of documents in each of which 100 words are included completely at random.
What is the expected dot product between a pair with 50,000 words each? What
does this tell you about the effect of document length on the computation of the dot
product?

3. Suppose that a news portal has a stream of incoming news and they asked you to
organize the news into about ten reasonable categories of your choice. Which problem
discussed in this chapter would you use to accomplish this goal?

4. In Exercise 3, consider the case in which examples of ten pre-defined categories are
available. Which problem discussed in this chapter would you use to determine the
category of an incoming news article.

5. Suppose that you have popularity data on the number of clicks (per hour) associated
with each news article in Exercise 3. Which problem discussed in this chapter would
you use to decide the article that is likely to be the most popular among a group of
100 incoming articles (not included in the group with associated click data).

6. Suppose that you want to find the articles that are strongly critical of some issue in
Exercise 3. Which problem discussed in this chapter would you use?

7. Consider a news article that discusses multiple topics. You want to obtain the portions
of contiguous text associated with each topic. Which problem discussed in this chapter
would you use in order to identify these segments?



Chapter 2

Text Preparation and Similarity
Computation

“Life is a long preparation for something that never happens.”—William
B. Yeats

2.1 Introduction

Text data is often found in highly unstructured environments, and is frequently created by
human participants. In many cases, text is embedded within Web documents, which is con-
taminated with elements such as HyperText Markup Language (HTML) tags, misspellings,
ambiguous words, and so on. Furthermore, a single Web page may contain multiple blocks,
most of which might be advertisements or other unrelated content. These effects can be
ameliorated with proper preprocessing. Common preprocessing methods are as follows:

1. Platform-centric extraction and parsing: Text can contain platform-specific content
such as HTML tags. Such documents need to cleansed of platform-centric content and
parsed. The parsing of the text extracts the individual tokens from the documents.
A token is a sequence of characters from a text that is treated as an indivisible unit
for processing. Each mention of the same word in a document is treated as a separate
token.

2. Preprocessing of tokens: The parsed text contains tokens that are further processed
to convert them into the terms that will be used in the collection. Words such as
“a,” “an,” and “the” that occur very frequently in the collection can be removed.

These words are typically not discriminative for most mining applications, and they

only add a large amount of noise. Such words are also referred to as stop words.

Common prepositions, conjunctions, pronouns, and articles are considered stop words.

In general, language-specific dictionaries of stop words are often available. The words

are stemmed so that words with the same root (e.g., different tenses of a word) are



consolidated. Issues involving punctuation and capitalization are addressed. At this
point, one can create a vector space representation, which is a sparse, multidimensional
representation containing the frequencies of the individual words.

3. Normalization: As our discussion above shows, not all words are equally important in
analytical tasks. Stop words represent a rather extreme case of very frequent words
at one end of the spectrum that must be removed from consideration. What does one
do about the varying frequencies of the remaining words? It turns out that one can
weight them a little differently by modifying their document-specific term frequencies
based on their corpus-specific frequencies. Terms with greater corpus-specific frequen-
cies are down-weighted. This technique is referred to as inverse document frequency
normalization.

Pre-processing creates a sparse, multidimensional representation. Let D be the n x d
document-term matrix. The number of documents is denoted by n and the number of
terms is denoted by d. This notation will be used consistently in this chapter and the book.

Most text mining and retrieval methods require similarity computation between pairs of
documents. This computation is sensitive to the underlying document representation. For
example, when the binary representation is used, the Jaccard coefficient is an effective way
of computing similarities. On the other hand, the cosine similarity is appropriate for cases
in which term frequencies are explicitly tracked.

2.1.1 Chapter Organization

This chapter is organized as follows. The next section discusses the conversion of a character
sequence into a set of tokens. The postprocessing of the tokens into terms is discussed in
Sect. 2.3. Issues related to document normalization and representation are introduced in
Sect. 2.4. Similarity computation is discussed in Sect. 2.5. Section 2.6 presents the summary.

2.2 Raw Text Extraction and Tokenization

The first step is to convert the raw text into a character sequence. The plain text representa-
tion of the English language is already a character sequence, although text sometimes occurs
in binary formats such as Microsoft Word or Adobe portable document format (PDF). In
other words, we need to convert a set of bytes into a sequence of characters based on the
following factors:

1. The specific text document may be represented in a particular type of encoding,
depending on the type of format such as a Microsoft Word file, an Adobe portable
document format, or a zip file.

2. The language of the document defines its character set and encoding.

When a document is written in a particular language such as Chinese, it will use a differ-
ent character set than in the case where it is written in English. English and many other
European languages are based on the Latin character set. This character set can be repre-
sented easily in the American Standard Code for Information Interchange, which is short
for ASCII. This set of characters roughly corresponds to the symbols you will see on the
keyboard of a modern computer sold in an English speaking country. The specific encoding
system is highly sensitive to the character set at hand. Not all encoding systems can handle
all character sets equally well.



A standard code created by the Unicode Consortium is the Unicode. In this case, each
character is represented by a unique identifier. Furthermore, almost all symbols known to us
from various languages (including mathematical symbols and many ancient characters) can
be represented in Unicode. This is the reason that the Unicode is the default standard for
representing all languages. The different variations of Unicode use different numbers of bytes
for representation. For example UTF-8 uses one byte, UTF-16 uses two bytes and so on.
UTF-8 is particularly suitable for ASCII, and is often the default representation on many
systems. Although it is possible to use UTF-8 encoding for virtually any language (and is
a dominant standard), many languages are represented in other codes. For example, it is
common to use UTF-16 for various Asian languages. Similarly, other codes like ASMO 708
are used for Arabic, GBK for Chinese, and ISCII for various Indian languages, although one
can represent any of these languages in the Unicode. The nature of the code used therefore
depends on the language, the whims of the creator of the document, and the platform on
which it is found. In some cases, where the documents are represented in other formats like
Microsoft Word, the underlying binary representation has to be converted into a character
sequence. In many cases, the document meta-data provides useful information about the
nature of its encoding up front without having to infer it by examining the document
content. In some cases, it might make sense to separately store the meta-data about the
encoding because it can be useful for some machine learning applications. The key takeaway
from the above discussion is that irrespective of how the text is originally available, it is
always converted into a character sequence.

In many cases, the character sequence contains a significant amount of meta-information
depending on its source. For example, an HTML document will contain various tags and
anchor text, and an XML document will contain meta-information about various fields.
Here, the analyst has to make a judgement about the importance of the text in various
fields to the specific application at hand, and remove all the irrelevant meta-information. As
discussed in Sect. 2.2.1 on Web-specific processing, some types of fields such as the headers of
an HTML document may be even more relevant than the body of the text. Therefore, there is
a cleaning phase is often required for the character sequence. This character sequence needs
to be expressed in terms of the distinct terms in the vocabulary, which comprise the base
dictionary of words. These terms are often created by consolidating multiple occurrences
and tenses of the same word. However, before finding the base terms, the character sequence
needs to be parsed into tokens.

A token is a contiguous sequence of characters with a semantic meaning, and is very
similar to a “term,” except that it allows repetitions, and no additional processing (such
as stemming and stop word removal) has been done. For example, consider the following
sentence:

After sleeping for four hours, he decided to sleep for another four.
In this case, the tokens are as follows:

{ “After” “sleeping” “for” “four” “hours” “he’ “decided’ “to” “sleep” “for”
“another” “four” }.

Note that the words “for” and “four” are repeated twice, and the words “sleep” and “sleep-
ing” are also not consolidated. Furthermore, the word “After” is capitalized. These aspects
are addressed in the process of converting tokens into terms with specific frequencies. In
some situations, the capitalization is retained, and in others, it is not.

Tokenization presents some challenging issues from the perspective of deciding word
boundaries. A very simple and primitive rule for tokenization is that white spaces can be



used as separators after removing punctuation. White spaces refer to the character space,
the tab, and the newline. However, this primitive rule is rather inadequate to address many
language-specific issues. For example, how do we deal with a pair of words like “Las Vegas”
that describe a city? Separating them out completely loses the semantic meaning. Should
“Abraham Lincoln” be one token or two tokens? Some pairs of words like “a priori” occur
together naturally, and therefore they cannot be separated on the basis of white spaces. In
many cases, dictionaries of semantically co-occurring words can be used. Furthermore, com-
mon phrases can be stored and extracted from the character sequence. It is possible to not
create a strict segmentation of the character sequence, but also extract overlapping char-
acter sequences. It is noteworthy that one must distinguish between low-level tokenization
and high-level tokenization in this respect. Recognizing linguistically coherent phrases is an
example of high-level tokenization and it requires a minimum level of linguistic processing.
In many cases, the low-level phase of basic tokenization is followed up by a high-level phase
of recreating semantically more meaningful tokens from the initial tokenization.

Removing punctuation marks and treating white spaces as separators will not work if
a document creator has forgotten to leave a white space after a punctuation mark such as
a comma. Commas, colons, and periods are therefore treated as separators, although there
are some exceptions. For example, a comma or period often occurs within a number (e.g.,
decimal), and a colon appears between numbers when time is being represented (e.g., “8:20
PM”). Therefore, they are not treated as separators when they appear between numbers. A
similar rule applies to the character ¢/’ because it can be a separator between two words, but
might be a part of a date (e.g., “06/20,/2003”) when it occurs between two numbers. A period
has many other uses such as within an acronym, and therefore it requires special handling.
Typically a list of acronyms such as “Dr.” or “M.D.” is stored up front by the preprocessor
and compared to the character sequence as it is processed. A sequence of two dashes is
treated as a separator, although a single occurrence might be a hyphen and is treated
differently as discussed in a later section. Hyphens can also occur within phone numbers or
social security numbers, and therefore the tokenizer should be trained to recognize them.
In general, the tokenizer should be trained to recognize email addresses, Uniform Resource
Locators (URLs), telephone numbers, dates, times, measures, vehicle license plate numbers,
paper citations, and so on. As we can see, the process is rather tedious in the sense that we
have to take care of lots of little details.

Apostrophes need to treated specially during tokenization, although some aspects are
handled during the stemming phase as well. An apostrophe at the beginning of a word,
at the end of a word, or ending in ‘s’ is removed. This is because these apostrophes are
often present for grammatical reasons such as a quotation or the expression of a possessive
noun. Other apostrophes within the middle of the word such as “o’clock” have semantic
significance, and are therefore retained within the token. In such cases, the apostrophe is
simply treated as a letter within the integrated token.

In some cases, there is no unique way of performing the best tokenization. As humans,
we tokenize accurately without much thought, but the task turns out to be far more ambigu-
ous to a computer program. Therefore, different tokenizers will create a slightly different
segmentation. The main rule is to use the tokenization consistently across the application
at hand, when it is used at different places. An excellent off-the-shelf tokenizer is available
from the Apache OpenNLP effort [548].



2.2.1 Web-Specific Issues in Text Extraction

Several aspects of text extraction are highly platform-specific. Since the Web is the most
common source of text that is used in various applications, it is worthwhile examining the
specific issues that arise in extracting text from the Web.

HTML documents have numerous fields in them, such as the title, the meta-data, and the
body of the document. Typically, analytical algorithms treat these fields with different levels
of importance, and therefore weight them differently. For example, the title of a document
is considered more important than the body and is weighted more heavily. Another example
is the anchor text in Web documents. Anchor text contains a description of the Web page
pointed to by a link. Because of its descriptive nature, it is considered important, but it is
sometimes not relevant to the topic of the page itself. Therefore, it is often removed from
the text of the document. In some cases, where possible, anchor text could even be added to
the text of the document to which it points. This is because anchor text is often a summary
description of the document to which it points.

A Web page may often be organized into content blocks that are not related to the
primary subject matter of the page. A typical Web page will have many irrelevant blocks,
such as advertisements, disclaimers, or notices, that are not very helpful for mining. It has
been shown that the quality of mining results improve when only the text in the main block
is used. However, the (automated) determination of main blocks from Web-scale collections
is itself a data mining problem of interest. While it is relatively easy to decompose the
Web page into blocks, it is sometimes difficult to identify the main block. Most automated
methods for determining main blocks rely on the fact that a particular site will typically
utilize a similar layout for the documents on the site. Therefore, if a collection of documents
is available from the site, two types of automated methods can be used:

1. Block labeling as a classification problem: The idea in this case is to create a new train-
ing data set that extracts visual rendering features for each block in the training data.
This can be achieved using Web browsers such as Internet Explorer. Many browsers
provide an API that can be used to extract the coordinates for each block. The main
block is then manually labeled for some examples. This results in a training data set.
The resulting training data set is used to build a classification model. This model is
used to identify the main block in the remaining (unlabeled) documents of the site.

2. Tree matching approach: Most Web sites generate the documents using a fixed tem-
plate. Therefore, if the template can be extracted, then the main block can be
identified relatively easily. The first step is to extract tag trees from the HTML pages.
These represent the frequent tree patterns in the Website. The tree-matching algo-
rithm, discussed in the bibliographic section, can be used to determine such templates
from these tag trees. After the templates have been found, the main block in each
Web page is found using the extracted template. Many of the peripheral blocks often
have similar content in different pages and can therefore be eliminated.

The tree-matching algorithm is discussed in [303, 530].

2.3 Extracting Terms from Tokens

Once the tokens have been extracted from the document collection, they are transformed
into terms with specific frequencies. Note that a document may have many repetitions of a
token, and these repetitions are consolidated into a single occurrence with an appropriate
frequency. Furthermore, highly frequent tokens are often not discriminative, and variants



of the same token need to be consolidated. We discuss these aspects in the following sub-
sections.

2.3.1 Stop-Word Removal

Stop words are common words of a language that do not carry much discriminative content.
For example, in a classification task of news articles, we would expect a word such as “the”
to occur at roughly the same frequency in a sports-related article, as it would in a politics-
related article. Therefore, it makes sense to remove such poorly discriminating words. The
following strategies are commonly used:

1. All articles, prepositions, and conjunctions are stop words. Pronouns are sometimes
considered stop words.

2. Language-specific dictionaries of stop words are available.

3. The frequent tokens in any particular collection can be identified, and a threshold on
the frequency can be set in order to remove the stop words.

Stop-word removal is a hard wariant of the softer approach of down-weighting frequent
words with inverse document frequency normalization. In some cases, there is some loss of
information associated with the hard removal of stop words. Therefore, many search and
mining systems do not remove stop words, but simply rely on the approach of reducing the
weight of frequent words.

2.3.2 Hyphens

Dealing with hyphens can sometimes be tricky, because in some cases they can define word
boundaries, whereas in other cases they should be considered individual words. For example,
compound adjectives such as “state-of-the-art” are always hyphenated, irrespective of their
position in a sentence. In such a case, we can create a single term for this token. Some
systems may represent this term as “stateoftheart”. In other cases, two or more words
might modify a noun, and therefore they might get hyphenated as a compound adjective.
Depending on the usage and semantic intent, it may or may not be desirable to break it up
for mining purposes. For example, consider the sentence:

He has a dead-end job.

In such a case, the word “dead-end” naturally defines a single semantic idea, and it should
probably be retained as a single term. On the other hand, consider the sentence:

The five-year-old girl was playing with the cat.

In this case, the word “five” should probably be separated from “year-old.” One can see that
these decisions seem to be harder than they seem at first sight. Dictionaries of commonly
hyphenated words are often available and it is possible to create automated, language-
specific rules about deciding when hyphenated words should be broken up. The default rule
is to retain the hyphenated word as a single term, because breaking it up leads to a change
in the semantic meaning in most cases.

The other issue is that of consistency. Some writers may choose to use a hyphen between
one or more words, whereas other writers might not. For example, consider the sentence:

This road leads to a dead end.



In this usage, “dead end” is not a compound adjective and therefore it is not hyphenated.
However, it might still make sense to be consistent within the semantic representation to
treat “dead-end” as a single hyphenated word, because it refers to the same basic idea. In
such cases, dictionaries of commonly adjacent words that (1) should be hyphenated, and
(2) should not be hyphenated, can be used in order to decide whether a pair of adjacent
words should be treated as a unit. This step can be implemented in the same way as the
usage-based consolidation step discussed in Sect. 2.3.4.

2.3.3 Case Folding

The case of a term often defines its semantic interpretation, which is relevant to the mining
task at hand. Words get capitalized for various reasons, such as for beginning a sentence,
for being part of a title, or for being proper nouns. In some cases, the same word could get
capitalized for different reasons. For example, the word “Bob” could be a person name or
a verb. In the latter case, it might be capitalized for beginning a sentence, and therefore it
should be converted to lower case. On the other hand, if “Bob” is a person, then the upper
case should be retained. Therefore, “Bob” and “bob” will be different terms in the lexicon.

How to decide on the specific usage of a particular term? The entire process of converting
to the proper case is referred to as truecasing [300], and it is a machine learning problem.
However, there are limits to what a machine learning model can achieve in such cases because
of the ambiguities in usage and various other factors. In many cases, it is possible to use
simplified heuristics. Although these are not perfect rules, their simplicity enables efficient
processing. For example, words at the beginning of a sentence can always be converted to
lower case, and words in titles or section headers can also be converted to lower case. The
case of all other words is retained.

2.3.4 Usage-Based Consolidation

The notion of usage-based consolidation is quite similar to that of stemming, except that
it is a much simpler process and is done up front during tokenization using lookup tables.
The basic idea is that small variations of the same token often refer to the same word.
For example, the words “color” and “colour” are just different spellings of the same word
in American and British English, respectively. Similarly, usage of accents, hyphens, and
white spaces may vary not only across geographical regions but also over individual writers.
Different writers might use “naive” and “naive” to refer to the same concept. In all such
cases, it is important to consolidate these variations into a single term. For example, one
could maintain a hash table (or other) data structure of all the possible variations of the
tokens with their standardized forms. For example, hashing on either “naive” or “naive”
might return the same standardized form in both cases.

2.3.5 Stemming

Stemming is the process of consolidating related words with the same root. For example, a
text document might contain the singular or plural form of the same word, various tenses,
and other variations. In such cases, it makes sense to consolidate these words into a single
one. After all, changing the tense of a word does not change its semantic interpretation from
a mining point of view. For example, words such as “eat,” “eats,” “eating,” and “ate” all
belong to the same stem corresponding to “eat” and should therefore be consolidated into
a single term.



More generally, stemming refers to the process of extracting the morphological root of a
word, and various crude heuristics are used to achieve this goal. The common techniques
are as follows:

1. Semi-automatic lookup tables: The lookup table of a stemmer is created up front in
a semi-automatic way with various heuristics. For example, in the case of the token
“eat”, the variants “eats,” “eated,” “eatly,” and “eating” may be stored in the table.
Therefore, if the token “eating” is encountered at the time of text extraction, one
can proceed to replace it with the word “eat.” Note that not all of these are valid
words, and in some cases, the constructed word could easily have a different semantic
interpretation.

2. Suffix stripping: A small list of rules is stored in order to find the root form of a given
word. For example, common suffixes such as “ing,” “ed,” and “ly,” should be removed.
Rules can also strip prefixes, although it is more common to strip suffixes.

Sometimes, suffix stripping leads to changes in the semantic meaning. For example,
the word “hoping” might get chopped to “hop,” which has a completely different
meaning. Similarly, this type of approach would not work with word pairs like “eat”
and “ate.”

3. Lemmatization: Lemmatization is a more sophisticated approach because it uses the
specific part of speech in order to determine the root form of a word. The normalization
rules depend on the part of speech and therefore, they are highly language specific.

Lemmatization is sometimes considered different from stemming, in that it goes beyond the
simple stripping rules and uses the morphological roots of the words. Such an approach yields
the dictionary form of the word, known as the lemma. For example, when the word “ate” is
encountered, the approach would be able to discover that the proper root is “eat.” A lem-
matizer needs a significant amount of vocabulary and language-specific domain knowledge
to carry out its task compared to other stemmers. The classical algorithm for lemmatization
is the Porter’s algorithm [481]. The latest version of Porter’s algorithm is also referred to
as Snowball. We omit the specific details of this method as it is outside the scope of this
book, and packages to perform this task are readily available to the practitioner [481, 547].

2.4 Vector Space Representation and Normalization

This section will describe the vector space representation, which is the sparse, multidimen-
sional representation of text used in most applications. Once the terms have been extracted
we have a dictionary or lexicon as the base set of dimensions. For most mining applications,
a sparse, multidimensional representation is preferred. This representation contains one di-
mension (feature) for each word and the value of the dimension is strictly positive only
when the word is present in the document. Otherwise the value is set to 0. The positive
value could either be a normalized term frequency or a binary indicator value of 1. Since
a given document contains a tiny subset of the lexicon, this representation is extremely
sparse. It is not uncommon for document collections of have lexicons significantly greater
than a hundred-thousand words, and the average number of words in each document may
only be a few hundred. Note that the entire process of conversion into this representation
loses all the ordering information among words. Therefore, this model is also referred to as
the bag-of-words model. There are two commonly used multidimensional representations of
text data, corresponding to the binary model and the tf-idf model.



In some applications, it is sufficient to use a 0-1 representation corresponding to whether
or not a word is present in the document. Certain types of machine learning applications such
as the Bernoulli variant of the Bayes classifier only need the binary representation. However,
the binary representation does lose a lot of information because it does not contain the
frequencies of the individual terms, and it is also not normalized for the relative importance
of words. However, the main advantages of the binary representation are that it is compact
and it enables the use of many applications that would otherwise be hard to use on a
representation containing the frequencies of words. For example, consider a setting in which
we wish to find frequently co-occurring groups of k words, irrespective of their placement
in the document. In such a case, one can leverage the binary representation and apply
an off-the-shelf frequent pattern mining algorithm on the multidimensional representation.
Another interesting aspect of text data is that the presence or absence of a particular word
in a document is more informative than its precise frequency. Therefore, reasonable results
can be achieved with the binary representation in some cases. It is certainly worthwhile to
use the binary representation in cases where the application at hand allows only binary input
data. The binary model is also sometimes referred to as the Bernoulli or the boolean model.

Most representations of text do not work with the boolean model. Rather, they use
normalized frequencies of the terms. This model is referred to as the tf-idf, where tf stands
for the term frequency and idf stands for the inverse document frequency. During the term
extraction phase, the additional task of keeping track of the consolidated and stemmed
terms is also accomplished.

Consider a document collection containing n documents in d dimensions. Let X =
(z1...24) be the d-dimensional representation of a document after the term extraction
phase. Note that x; represents the unnormalized frequency of a document. Therefore, all
the values of x; are nonnegative and most are zero. Since word frequencies in a long doc-
ument can sometimes vary significantly, it makes sense to use damping functions on these
frequencies. The square-root or the logarithm function may be applied to the frequencies
to reduce the effect of spam. In other words, one might replace each x; with either /x; or
log(1+ ;). Although the use of such damping functions is not universal, there is significant
evidence to suggest that the wide variation in word frequencies makes damping extremely
important in at some applications. Damping also reduces the effect of (repeated) spam
words.

It is also common to normalize term frequencies based on their presence in the entire
collection. The first step in normalization is to compute the inverse document frequency of
each term. The inverse document frequency id; of the ith term is a decreasing function of
the number of documents n; in which it occurs:

id; = log(n/n;) (2.1)

Note that the value of id; is always nonnegative. In the limiting cases in which a term occurs
in every document of the collection, the value of id; is 0. The term frequency is normalized
by multiplying it with the inverse document frequency:

Although the use of inverse document frequency normalization is almost ubiquitous in
commercial implementations of search applications, it is noteworthy that some mining algo-
rithms have reported the use of better results with the use of raw frequencies. For example,
the work in [438] reported that higher quality of clustering was obtained by not using
the inverse document frequency normalization. One issue with inverse document frequency



normalization is that even though it might help by de-emphasizing stop words, it might
occasionally hurt in an inadvertent way by increasing the frequencies of misspellings and
other errors that were not properly handled at preprocessing time. Therefore, the effect
can be corpus-sensitive and application-sensitive. If one chooses not to use inverse docu-
ment frequency normalization in a particular application, it becomes more important to be
aggressive about removing stop words.

2.5 Similarity Computation in Text

Many multidimensional data mining applications use the Euclidean distance to measure
the distances between pairs of points. The Euclidean distance between X = (x1...24) and

Y = (y1...yq) is defined as follows:

Distance(X,Y) =

It would seem at first sight that one should simply use the Euclidean distances to com-
pute distances between pairs of points, since text is a special case of the multidimensional
representation. However, the Euclidean distance is not good in computing distances in
multidimensional representations that are very sparse and the number of zero values vary
significantly over different points. This occurs frequently in the case of text because of the
varying lengths of different documents.

In order to understand this point, consider the following four sentences:

1. She sat down.

2. She drank coffee.

3. She spent much time in learning text mining.

4. She invested significant efforts in learning text mining.

For simplicity in discussion, assume that stop words are not removed, and the text is
represented in boolean form without normalization. Note that the first pair of sentences is
virtually unrelated, but the two sentences are very short. Therefore, only five distinct words
in the sentence have nonzero frequencies. The Euclidean distance is only v/4 = 2. In the
case of the third and fourth sentences, there are many words in common. However, these
sentences are also longer, and therefore they also have many words that are present in only
one of the two sentences. As a result, the Euclidean distance between the second pair is
V6, which is larger than the first case. This clearly does not seem to be correct because
the second pair of sentences is obviously related in a semantic way, and they even share a
larger fraction of their sentences in common.

This problem was caused by the varying lengths of the documents. The Euclidean dis-
tance will consistently report higher values for distances between longer pairs of documents
even if large fractions of those documents are in common. For example, if exactly half of
the terms in a pair of documents containing more than a thousand distinct words each are
exactly identical, the Euclidean distance will still be more than 1/1000 when the documents
are represented in boolean form. This distance will always be more than that between any
pair of documents with less than 500 distinct words each, even if they do not share a single
word in common. This type of distance function can lead to poor mining results in which
longer and shorter documents are not treated with an even hand.



This suggests that we need distance (or similarity) functions that strongly normalize for
the varying lengths of documents. A natural solution to this problem is to use the cosine of
the angle between the multidimensional vectors representing the two documents. Note that
the cosine between a pair of vectors does not depend on the length of the vectors but only
on the angle between them. In other words, the cosine similarity between a pair of vectors,
denoted by X = (z1...24) and Y = (y1...ya), is defined as follows:

d
cosine(X,Y) = L1 T (2.4)
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We can already see why this representation normalizes so well for the document length— the
denominator contains the norms of the documents and therefore the effect of the varying
length is blunted. The normalization also ensures that the cosine always lies in the range
(0,1). Although we did not perform any idf normalization here, it is often (but not always)
performed in text mining applications.

A more intuitive interpretation of the cosine can be obtained in the special case when
each X and Y is a binary vectors (rather than a vector of tf-idf values). Let S, and S, be
the indices of the words that take on the value of 1 in X and Y, respectively. In such a case,
the set-based variant of the cosine can be computed as follows:
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In other words, the cosine is the geometric mean of the fraction of shared words contained in
each of the pair of documents (for the case of the binary representation of text). Even in the
case where tf-idf values are used instead of the binary values, this factor plays a dominant
role in the cosine computation. Since the cosine computation is so largely dependent on the
fraction of common words in each of the documents, it is largely impervious to the lengths
of the documents.

As an example, consider a pair of documents with representations X =
(2,3,0,5,0,...,0) and Y = (0,1,2,2,0,...,0). Then, the cosine between the two is as
follows:
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The cosine can also be viewed as a normalized dot product; in other words, it is the dot
product obtained after normalizing each vector to unit norm. Consider a collection in which
we have normalized each vector. Therefore, for any vector X, we have Zle 2? = 1. Then,
the cosine can be expressed as the dot product:

cosine(X,Y) =

(2.5)
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Interestingly, if we normalize each document in the corpus to unit norm, the Euclidean
distance is not very different from the cosine except that it is a distance function instead of
a similarity function. The two can be shown to be related as follows:
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The normalized Euclidean distance always lies in the range (0,2) because of the up front,
length-wise normalization. Therefore, if we normalize each vector in the corpus to unit
norm, we could easily use the Euclidean distance for various mining applications instead of
the cosine similarity. In other words, one could obtain the same length-wise normalization
advantage of the cosine by normalizing the documents up front and using the Euclidean
distance. In fact, there is no difference between the use of the Euclidean distance, the dot
product, or the cosine similarity for retrieval applications, once a normalization has been
performed.

In the special case where the boolean representation of text is used, another commonly
used measure is the Jaccard similarity. Let S, and S, be the set of words in a pair of
documents that are represented in boolean form. Then, the Jaccard similarity is defined as
follows:

_ |52 N8y
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#Common terms in S, and Sy,

Jaccard(S;, Sy)

- #Distinct terms in union of S, and Sy

The Jaccard coefficient always lies in the range (0, 1) just like the cosine coefficient. It is also
possible to define the Jaccard coefficient for the case where the documents X = (z1...z4)
and Y = (y1,...,yq) are represented in tf-idf form:

d
Jaccard(X,Y) = — . fol x; Yi y (2.10)
Dlim1 T+ i Y D1 T Vi

The Jaccard coefficient is especially useful for the case where the boolean representation of
text is used. For the tf-idf representation, it is more common to use the cosine measure,
although similar results are obtained with the Jaccard and cosine coefficients [231, 461].

2.5.1 Is idf Normalization and Stemming Always Useful?

The use of idf normalization owes its origin to information retrieval applications in which
stop-words have an obviously confounding effect on the quality of the results. However, in
several text mining applications, it is been observed that idf normalization actually has
a detrimental effect. For example, in text segmentation (cf. Sect.14.2 of Chap.14), it was
observed in implementations of the TextTiling algorithm [213] that the use of idf normal-
ization in similarity computation worsened the results. Similarly, several implementations
and variations of the k-means clustering algorithm have been shown to work better without
idf normalization [438]. Furthermore, in many probabilistic methods for topic modeling,
clustering, and classification, the underlying generative assumption implies that one should
use raw term frequencies rather than idf-normalized frequencies. Methods like k-means are
deterministic avatars of such probabilistic models. In linear models for classification, idf
normalization is almost! equivalent to the use of raw term frequencies.

1Small differences are caused by regularization effects. Without regularization, the same results will be
obtained in a method like linear regression, no matter how one scales the attributes.



Issues such as stemming also have similar effects in mining applications. While the effect
of stemming is significant? in IR applications (because users specify a small number of key-
words), the issue is not quite as critical when mining larger collections containing documents
of reasonable length. Stemming may still be useful when mining very small documents like
discussion board posts or tweets. In fact, it has been stated in [321] that techniques like
stemming can sometimes degrade classification accuracy when working with larger docu-
ments. All these observations suggest that one should be careful when using different types
of normalization and preprocessing methods, because they are legacy methods inherited
from traditional information retrieval settings. The constraints of typical settings in mining
are not always the same as those in information retrieval.

2.6 Summary

Text data requires a significant amount of preprocessing because of the unstructured nature
of the environments in which it is often found. The most important phases of text processing
include tokenization, term extraction, and normalization. The phases of tokenization and
term extraction are highly language-specific and may often require some domain knowledge
about the language at hand. After extracting the term frequencies from a collection, they
are normalized so that very frequent terms receive lower weights. This type of normalization
is referred to as the inverse document frequency normalization.

Similarity computation in text is highly sensitive to the length of the documents. Using
the Euclidean distance on a length-unnormalized text collection can lead to disastrous
results. Therefore, the common approach is to use the cosine similarity between pairs of
documents. The implicit effect of the cosine similarity is to normalize each document in the
corpus to unit Euclidean norm before computing the dot product. Several other similarity
functions such as the Jaccard coefficient are often used, when the text is represented in
boolean form.

2.7 Bibliographic Notes

A discussion of several aspects of text preprocessing may be found in several textbooks [31,
303, 321, 491]. Web-specific issues to text extraction may be found in [79, 303]. Several
aspects of text preprocessing are related to information extraction of text and part-of-
speech tagging. A discussion of information extraction for text data may be found in [430].
Some aspects of text preprocessing are also related to language modeling methods that are
discussed in [322].

A discussion on character encoding methods may be found in [316]. Some practical sug-
gestions on tokenization may be found in [552]. Discussions on conversions of tokens to terms
may be found in [303, 321]. A variety of recent stemming algorithms are discussed in [481,
547]. Issues related to text representation and frequency-based normalization are discussed
in [31, 303, 321, 424, 491]. Experimental results and theoretical justifications of various
weighting schemes may be found in [119, 423, 411, 453]. A discussion of how search engines
implement similarity measures efficiently is provided in [545]. An interesting method, re-
ferred to as pivoted document length normalization was proposed by Singhal et al. [450]. Sim-
ilarity measures for short segments of text are discussed in Metzler et al. [337]. A Web-based

2When a user queries for “eat’, documents containing “eating” are also useful. The main issue here is
that a set of query keywords is an extremely small document, and stemming helps in reducing the effect of
sparsity.



kernel similarity function was studied in [418], in which queries to a search engine are used
to evaluate the similarities between short text snippets. The works in [231, 461] compared
several similarity measures in the context of text clustering, such as the Euclidean, cosine,
Jaccard, and the Pearson correlation coefficient. The Euclidean distance performed poorly
because it did not normalize for the lengths of the documents. On the other hand, compa-
rable results were obtained with the cosine, Jaccard, and Pearson correlation coefficients.

2.7.1 Software Resources

The Bow toolkit contains a tokenizer [325] written in C, which is distributed under the GNU
public license. A high-quality tokenizer may also be found from the Apache OpenNLP ef-
fort [548]. The Stanford NLP [554] and NLTK site [556] also contain several natural language
processing tools that can be used for tokenizing and other term extraction operations. The
latest version of the Porter stemmer may be available at [547]. The scikit-learn [550] and
R-based tm library [551] also have preprocessing and tokenization functionalities built into
them. A Java-based tokenizer and preprocessor may be found at the Weka library [553].

2.8 Exercises

1. Tokenize the following sentence:
After sleeping for 2 h, he decided to sleep for another two.

2. Assume that all article, pronouns, and prepositions are stop words. Perform a sensible
stemming and case folding in the example of Exercise 1, and convert to a vector-
space representation. Express your representation as a set of words with associated
frequencies but no normalization.

3. Consider a collection in which the words “after,” “decided,” and “another,” each occur
in 16% of the documents. All other words occur in 4% of the documents. Create an
idf-normalized representation of your answer in Exercise 2.

4. Show that the Jaccard similarity between a pair of documents can never be larger than
the cosine similarity between them. What are the special cases in which the Jaccard
similarity is exactly equal to the cosine similarity?

5. Compute the cosine similarity between the vector pair (1,2,3,4,0,1,0) and
(4,3,2,1,1,0,0). Repeat the same computation with the Jaccard coefficient.

6. Normalize each of the vectors in Exercise 5 to unit norm. Compute the Euclidean
distance between the pair of normalized vectors. What is the relationship between
this Euclidean distance and the cosine similarity computed in Exercise 57

7. Repeat Exercise 5 with the boolean representations of the two documents.

8. Write a computer program to evaluate the cosine similarity between a pair of vectors.



Chapter 3

Matrix Factorization and Topic
Modeling

“Nobody can be told what the matrix is—you have to see it for
yourself.”—The fictional character Morpheus in the movie Matriz

3.1 Introduction

Most document collections are defined by document-term matrices in which the rows (or
columns) are highly correlated with one another. These correlations can be leveraged to
create a low-dimensional representation of the data, and this process is referred to as di-
mensionality reduction. Almost all dimensionality reductions of this type can be expressed
as low-rank factorizations of the document-term matriz. In order to understand this point,
consider a toy corpus defined on a lexicon of seven words:

lion, lioness, cheetah, jaguar, porsche, ferrari, maserati

The first three words in the lexicon are related to the topic of cats and the last three are
related to cars. The (middle) word, which is “jaguar,” could be related to either topic. This
because the word “jaguar” is polysemous, and its meaning might depend on its usage and
context.

The words in a document will often be predominantly related to a particular topic,
which will cause inter-attribute correlations. Therefore, consider a case where most docu-
ments contain a majority of their words from either the set { lion, lioness, cheetah, jaguar }
or they contain a majority of the words from the set { jaguar, porsche, ferrari, maserati}.
Intuitively speaking, these two sets define new features in terms of which the entire col-
lection is expressed. In other words, a document containing most words from the first set
can be expressed as (a,0), a document containing most words from the second set can be
approximately expressed as (0,b), and a document containing many words from both sets



can be expressed as (¢, d). One can view this new set of coordinates as a reduced represen-
tation of the data. Although it might seem that dimensionality reduction loses information,
it is often possible to choose a representation dimensionality in which most of the semantic
knowledge in the corpus is retained, and only noise is lost.

The reduction in noise can even improve representation quality. For example, in the
original collection the words “lion” and “lioness” are (almost) synonymous but will not be
recognized as similar words in a cosine similarity computation on the original representation.
The different usages of “jaguar” to refer to either cats or to cars will also not be properly
disambiguated. On the other hand, a reduced representation is often able to improve the
semantic closeness of related words and disambiguate multiple uses of the same word. As
a result, many retrieval and mining algorithms show improved accuracy when the reduced
representation is used in lieu of the original representation. When a feature transformation
improves the accuracy of an algorithm, it can be viewed as a feature engineering method.
The goals of feature engineering are subtly different from those of dimensionality reduc-
tion. Feature engineering is focussed on improving performance accuracy of a particular
algorithm by changing the data representation, and it might sometimes even increase the
dimensionality of the representation to achieve these goals. This chapter primarily discusses
dimensionality reduction methods, but it also discusses some feature engineering methods.

It is noteworthy that the new representation in the aforementioned example of cats and
cars is able to pull out the hidden semantic concepts in the data, and express any document
in the collection as a combination of these hidden (or latent) concepts. One will often see the
use of the word “latent” to describe many of these techniques, which refers to the fact that
these concepts are hidden in the aggregate statistics of the data. It is not difficult to observe
that the notions of semantic concepts, topics, and clusters are closely related. In fact, some
forms of nonnegative dimensionality reduction are also referred to as topic modeling, and
they have dual use in clustering applications.

How do the notions of dimensionality reduction and latent semantic analysis relate
to matrix factorization? The basic idea is that any n x d document-term matrix can be
expressed in terms of k < min{n,d} d-dimensional basis vectors. The value of k defines
the number of semantic concepts in the data. In our previous example of cats and cars, the
value of k is 2, whereas the value of d is 7. Typically, one expresses the basis vector as a d X k
matrix V' = [v;5], in which the columns represent the basis vectors. In the example of cats
and cars, one column of V' (i.e., basis vector) corresponds to cats and the other corresponds
to cars. If we assume that the features are ordered in the same way as shown on page 31,
the basis vector for the cat concept might! have strongly positive components on the first
four (out of seven) word components, and the car concept might have strongly positive
values on the last four. Other values might be nearly zero. Furthermore, the k-dimensional
reduced representations of the n documents can be expressed as the rows of an n x k matrix
U = [uy;], which is also the reduced representation of the corpus. The rows in U provide the
document coordinates (i.e., transformed representation) with respect to the basis system in
V. In our previous example, the rows of U will contain the two coordinates corresponding to
the strength of association of the document with cats and/or cars. Therefore, the document-
term matrix can be represented in the following factorized form:

D~UVT (3.1)

IHere, we are assuming a specific type of factorization, referred to as non-negative matrix factorization,
because of its interpretability. Other factorizations might not obey these properties.



The right-hand side is simply a matrix multiplication of a embedding matrix U with the
(transpose of the) basis matrix V in order to transform the reduced representation into
the original feature space. This type of matrix multiplication is used in all types of basis
transformations in linear algebra. However, one needs to find the best basis representation
V (and corresponding reduction U) in which the error of the approximate equality “~” in
Eq. 3.1 is low. Therefore, one can also view this problem as that of approximate factorization
of the n x d document-term matrix D into two low-rank matrices of size n X k and d X k,
respectively. The value of k defines the rank of the factorization. This factorization is referred
to as low-rank because the ranks of each of U, V, and UVT are at most k < d, whereas
the rank of D might be d. The remaining (d — k)-dimensional subspace does not have
significant representation in the corpus at hand, and it can be captured by the approximate
equality “a~” in Eq.3.1. Note that there will always be some residual error (D — UV'T)
from the factorization. In fact, the entries in U and V are often discovered by solving an
optimization problem in which the sum of squares (or other aggregate function) of the
residual errors in (D —UV7T) are minimized. A low-error factorization is possible only when
the underlying matrix exhibits high correlations among its different columns.

Almost all forms of dimensionality reduction and matrix factorization are special cases
of the following optimization model over matrices U and V:

Maximize similarity between entries of D and UV™
subject to:

Constraints on U and V

By varying the objective function and constraints, dimensionality reductions with different
properties are obtained. The most commonly used objective function is the sum of the
squares of the entries in (D —UVT), which is also defined as the (squared) Frobenius norm
of the matrix (D — UVT). The (squared) Frobenius norm of a matrix is also referred to as
its energy, because it is the sum of the second moments of all data points about the origin.
However, some forms of factorizations with probabilistic interpretations use a mazimum-
likelihood objective function. Similarly, the constraints imposed on U and V enable different
properties of the factorization. For example, if we impose orthogonality constraints on the
columns of U and V/, this leads to a model known as singular value decomposition (SVD) or
latent semantic analysis (LSA). The orthogonality of the basis vectors is particularly helpful
in mapping new documents to the transformed space in a simple way. On the other hand,
better semantic interpretability can be obtained by imposing nonnegativity constraints on
U and V. In this chapter, we will discuss different types of reductions and their relative
advantages.

3.1.1 Chapter Organization

This chapter is organized as follows. The remainder of this section discusses some conven-
tions for representing the reduced representation. Section 3.2 introduces the singular value
decomposition model, which is also referred to as latent semantic analysis. Nonnegative ma-
trix factorization is introduced in Sect. 3.3. Probabilistic latent semantic analysis is discussed
in Sect. 3.4. Latent Dirichlet Allocation is introduced in Sect. 3.5. Nonlinear dimensionality
reduction methods are introduced in Sect. 3.6. A summary is given in Sect. 3.7.



3.1.2 Normalizing a Two-Way Factorization into a Standardized
Three-Way Factorization

The aforementioned optimization model factorizes D into two matrices U and V. One can
immediately notice that the factorization is not unique. For example, if we multiply each
entry of U by 2, then we can divide each entry of V by 2 to get the same product UV”.
Furthermore, we can apply this trick to just a particular (say, rth) column of each of U and
V to get the same result. In other words, different normalization factors for the columns of
U and V lead to the same product.

Therefore, some forms of dimensionality reduction convert the two-way matrix factor-
ization into a three-way matrix factorization in which each of the matrices satisfies certain
normalization conventions. This additional matrix is typically a k x k diagonal matrix of
nonnegative entries, in which the (r,7)th entry contains a scaling factor for the rth column.
Specifically, for any two-way matrix factorization D ~ UV into n x k and d x k matrices
U and V, respectively, we can convert it into a unique? three-way matrix factorization of
the following form:

D~ QxpPT (3.2)

Here, @ is a normalized n x k matrix (derived from U), P is a normalized d X k matrix
(derived from V), and ¥ is a k x k diagonal matrix in which the diagonal entries contain
the nonnegative normalization factors for the k& concepts. Each of the columns of @) and
P satisty the constraint that its Lo-norm (or Li-norm) is one unit. It is common to use
Lo-normalization in methods like singular value decomposition and Lj-normalization in
methods like probabilistic latent semantic analysis. For the purpose of discussion, let us
assume that we use Ly-normalization. Then, the conversion from two-way factorization to
three-way factorization can be achieved as follows:

1. For each 7 € {1...k}, divide the rth column U, of U with its Ls-norm ||U,||. The
resulting matrix is denoted by Q.

2. For each r € {1...k}, divide the rth column V. of V with its Ly-norm ||V,||. The
resulting matrix is denoted by P.

3. Create a kxk diagonal matrix X, in which the (r,7)th diagonal entry is the nonnegative
value ||U,|] - ||Vr]].

It is easy to show that the newly created matrices @, X, and P satisfy the following rela-
tionship:
QxpPT =yuvT (3.3)

It is noteworthy that all diagonal entries of ¥ are always nonnegative because of how the nor-
malization is done. The three-way factorized representation is used by many dimensionality
reduction methods because of its normalized properties. An example of L;-normalization
is shown later in this chapter (cf. Fig.3.2). The entries in the diagonal matrix intuitively
represent the relative dominance of the different latent concepts. For example, in our pre-
vious example with the car- and cat-related documents, if car documents are more copious
than cat documents and also have higher term frequencies, this will be reflected in a higher
diagonal value of ¥,.,. for the car-related entry. In a sense, X, reflects the relative frequency
of the rth latent concept in the collection. The varying frequencies of different concepts also
provide a rationale for dimensionality reduction. If we use k = d, then many of the values

2The factorization is unique up to multiplication by —1 of any particular column of P and Q.



of ¥, of the infrequent latent concepts would be very small. Such concepts can be dropped
without affecting the accuracy of the approximation inherent in matrix factorization. This
is the reason that one can typically use values of the rank k that are much less than the
dimensionality d. In text collections, it is possible for the value of d (i.e., number of terms)
to be of the order of a few hundred thousand, whereas the value of k is only of the order of
a few hundred.

In some of the following discussions, we will pose the optimization problem for dimen-
sionality reduction in terms of a two-way factorization, whereas in others we will pose it as a
three-way factorization. This is because different choices are provide better interpretability
in different settings, although they are mathematically equivalent.

3.2 Singular Value Decomposition

Singular value decomposition (SVD) is used in all forms of multidimensional data, and its
instantiation in the text domain is referred to as latent semantic analysis (LSA). Consider
the simplest possible factorization of the n x d matrix D into an n x k matrix U = [u;;] and
the d x k matrix V' = [v;;] as an unconstrained matriz factorization problem:

Minimize ;v ||D — UVT||%
subject to:

No constraints on U and V'

Here || - [|% refers to the (squared) Frobenius norm of a matrix, which is the sum of squares
of its entries. The matrix (D — UV7T) is also referred to as the residual matriz, because
its entries contain the residual errors obtained from a low-rank factorization of the orig-
inal matrix D. This optimization problem is the most basic form of matrix factorization
with a popular objective function and no constraints. This formulation has infinitely many
alternative optimal solutions (see Exercises 2 and 3). However, one® of them is such that
the columns of V' are orthonormal, which allows transformations of new documents (not in-
cluded in D) with simple axis rotations (i.e., matrix multiplication). A remarkable property
of the unconstrained optimization problem above is that imposing orthogonality constraints
does not worsen the optimal solution. The following constrained optimization problem shares
at least one optimal solution as the unconstrained version [149, 460):

Minimize ;v ||D — UVT||%
subject to:
Columns of U are mutually orthogonal

Columns of V' are mutually orthonormal

In other words, one of the alternative optima to the unconstrained problem also satisfies
orthogonality constraints. It is noteworthy that only the solution satisfying the orthogonality
constraint is considered SVD because of its interesting properties, even though other optima
do exist (see Exercises 2 and 3).

Another remarkable property of the solution (satisfying orthogonality) is that it can be
computed using eigen-decomposition of either of the positive semi-definite matrices D™ D or
DDT. The following properties of the solution can be shown (see Exercises 3[a], 5, and 6):

3This solution is unique up to multiplication of any column of U or V with —1.



1. The columns of V' are defined by the top-k unit eigenvectors of the d x d positive
semi-definite and symmetric matrix DT D. The diagonalization of a symmetric and
positive semi-definite matrix results in orthonormal eigenvectors with non-negative
eigenvalues. After V' has been determined, we can also compute the reduced represen-
tation U as DV, which is simply an axis rotation operation on the rows (documents)
in the original data matrix. This is caused by the orthogonality of the columns of V,
which results in DV ~ U(VTV) = U. One can also use this approach to compute the
reduced representation XV of any row-vector X that was not included in D.

2. The columns of U are also defined by the top-k scaled eigenvectors of the n x n dot-
product matriz DDT in which the (i, j)th entry is the dot-product similarity between
the ith and jth documents. The scaling factor is defined so that each eigenvector is
multiplied with the square-root of its eigenvalue. In other words, the scaled eigenvec-
tors of the dot-product matriz can be used to directly generate the reduced represen-
tation. This fact has some interesting consequences for the nonlinear dimensionality
reduction methods, which replace the dot product matrix with another similarity ma-
trix (cf. Sect.3.6). This approach is also efficient for linear SVD when n <« d, and
therefore the n x n matrix DD7 is relatively small. In such cases, U is extracted first
by eigen-decomposition of DD, and then V is extracted as DTU.

3. Even though the n eigenvectors of DD and d eigenvectors of DT D are different, the
top min{n, d} eigenvalues of DDT and DT D are the same values. All other eigenvalues
are zero.

4. The total squared error of the approximate matrix factorization of SVD is equal to the
sum of the eigenvalues of DT D that are not included among the top-k eigenvectors. If
we set the rank of the factorization k to min{n, d}, we can obtain an ezact factorization
into orthogonal basis spaces with zero error.

This factorization of rank & = min{n, d} with zero error is of particular interest. We convert
the two-way factorization (of zero error) into a three-way factorization according to the
methodology of Sect. 3.1.2, which results in a standard form of SVD:

_ T _ T
D=QXP" =(Q%) P
v V7T

(3.4)

Here, Q is an n x k matrix containing all the k = min{n, d} non-zero eigenvectors of DDT
and P is a d x k matrix containing all the k¥ = min{n,d} non-zero eigenvectors of D D.
The columns of @ are referred to as the left singular vectors, whereas the columns of P are
referred to as the right singular vectors. Furthermore, ¥ is a (nonnegative) diagonal matrix
in which the (r,7)th value is equal to the square-root of the rth largest eigenvalue of DT D
(which is the same as the rth largest eigenvalue of DD?). The diagonal entries of ¥ are
also referred to as singular values. Note that the singular values are always nonnegative by
convention. The sets of columns of P and @ are each orthonormal because they are the unit
eigenvectors of symmetric matrices. It is easy to verify (using Eq. 3.4) that DT D = P¥2pPT
and that DDT = QX2Q7, where £2? is a diagonal matrix containing the top-k non-negative
eigenvalues of DT D and DDT (which are the same).

SVD is formally defined as the exact decomposition with zero error. What about the
approzimate variant of SVD, which is the primary goal of matrix factorization? In practice,
one always uses values of k < min{n, d} to obtain approximate or truncated SVD:

D~ QxpPT (3.5)
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Figure 3.1: Dual interpretation of SVD in terms of the basis vectors of both D and DT

Using truncated SVD is the standard use-case in practical settings. Throughout this book,
our use of the term “SVD” always refers to truncated SVD.

Just as the matrix P contains the d-dimensional basis vectors of D in its columns, the
matrix @) contains the n-dimensional basis vectors of DT in its columns. In other words,
SVD simultaneously finds approximate bases of both documents and terms. This ability of
SVD to simultaneously find approximate bases for the row space and column space is shown
in Fig. 3.1. Furthermore, the diagonal entries of the matrix ¥ provide a quantification of
the relative dominance of the different semantic concepts.

One can express SVD as a weighted sum of rank-1 matrices. Let @); be the n x 1 matrix
corresponding to the ith column of QQ and P; be the d x 1 matrix corresponding to the
1th column of P. Then, the SVD product can be decomposed in spectral form using simple
matrix-multiplication laws as follows:

k
QP = Z SuQi P (3.6)

i=1

Note that each @Q;P; is a rank-1 matrix of size n x d and a Frobenius norm of 1. Furthermore,
it is possible to show that the Frobenius norm of QX PT is given by Zle Y2 which is the
amount of energy retained in the representation. Maximizing the retained energy is the same
as minimizing the loss defined by the sum of squares of the truncated singular values (which
are small), because the sum of the two is always equal to ||D||%. The energy retained in
the approximated matrix is the same as that in the transformed representation, because
squared distances do not change with axis rotation. Therefore, the sum of the squares of
the retained singular values provides the energy in the transformed representation DP. An
important consequence of this observation is that the projection Dp of D on any column p
of P has an Lo-norm, which is equal to the corresponding singular value. In other words,
SVD naturally selects the orthogonal directions along which the transformed data exhibits
the largest scatter.

3.2.1 Example of SVD

An example of SVD helps in illustrating its inner workings. Consider a 6 x 6 matrix D
defined over the lexicon of size 6 as follows:

lion, tiger, cheetah, jaguar, porsche, ferrari



The data matrix D is illustrated below:

lion tiger cheetah jaguar porsche ferrari

Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0

D = Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

Note that this matrix represents topics related to both cars and cats. The first three doc-
uments are primarily related to cats, the fourth is related to both, and the last two are
primarily related to cars. The word “jaguar” is polysemous because it could correspond
to either a car or a cat. Therefore, it is often present in documents of both categories
and presents itself as a confounding word. We would like to perform an SVD of rank-2 to
capture the two dominant concepts corresponding to cats and cars, respectively. Then, on
performing the SVD of this matrix, we obtain the following decomposition:

D~ QxPT
—0.41  0.17
—0.65  0.31
| 023 o013 84 0 —0.41 —0.49 —0.44 —0.61 —0.10 —0.12
|1 —0.56 —0.20 ( 0 33)( 021 031 026 —-037 —0.44 —0.68)
—0.10 —0.46
—0.19 —0.78
1.55 1.87  1.67 1.91 0.10 0.04
246 298 266 295 0.10 —0.03
| 089 108 096 1.04 001 —0.04
| 181 211 191 314 0.77 1.03
0.02 —0.05 —0.02 1.06 0.74 1.11
0.10 —0.02 0.04 1.89 1.28 1.92

The reconstructed matrix is a very good approximation of the original document-term ma-
trix. Furthermore, each point gets a 2-dimensional embedding corresponding to the rows
of QY. It is clear that the reduced representations of the first three documents are quite
similar, and so are the reduced representations of the last two. The reduced representa-
tion of the fourth document seems to be somewhere in the middle of the representations
of the other documents. This is logical because the fourth document corresponds to both
cars and cats. From this point of view, the reduced representation seems to satisfy the
basic intuitions one would expect in terms of relative coordinates. However, one annoy-
ing characteristic of this representation is that it is hard to get any absolute semantic
interpretation from the embedding. For example, it is difficult to match up the two la-
tent vectors in P with the original concepts of cats and cars. The dominant latent vector
in P is [—0.41,—0.49, —0.44, —0.61, —0.10, —0.12], in which all components are negative.
The second latent vector contains both positive and negative components. Therefore, the
correspondence between the topics and the latent vectors is not very clear. A part of the
problem is that the vectors have both positive and negative components, which reduces their
interpretability. The lack of interpretability of singular value decomposition is its primary
weakness, as a result of which other nonnegative forms of factorization are sometimes pre-
ferred. Furthermore, forcing orthogonality of the vectors in P is not very natural, especially



when the two topics have overlapping and confounding words like “jaguar.” As a result,
SVD does a relatively poor job at handling polysemy compared to many other forms of
matrix factorization. However, it is not completely unsuccessful either, and it can handle
the problem of synonymy relatively well.

3.2.2 The Power Method of Implementing SVD

The power method is an efficient way of finding the d x k basis matrix P. Note that the
reduced representation QX can be obtained by post-multiplying the document-term matrix
D with P, because we have DP =~ QX. The power method can find the dominant eigenvector
of any matrix (like DT D) by first initializing it to a random d-dimensional column vector
p and then repeatedly pre-multiplying with D™ D and scaling to unit norm. To reduce the
number of operations, it makes sense to compute the operations in the order dictated by
the brackets in [DT (Dp)]. Therefore, we repeat the following step to convergence:

[DT(Dp)]
I[DT(Dp)]|

P <=

The projection of the data matrix D on the vector p has an energy that is equal to the square
of the first singular value. Therefore, the first singular value o is obtained by using the Lo-
norm of the vector Dp. Since Dp contains the n different coordinates of the n documents
along the first latent direction p, the first column g of Q) is obtained by a single execution
of the following step:
7<= Dp (3.7
o
This completes the determination of the first set of singular vectors and singular values. The
next eigenvector and eigenvalue pair is obtained by making use of the spectral decomposition
of Eq. 3.6. First, we remove the rank-1 component contributed by the first set of singular
vectors by adjusting the data matrix as follows:

D<= D —ogp’ (3.8)

Note that even though g and p are vectors, we treat them as n x 1 and d x 1 matrices in
the expression oGp’ to obtain a rank-1 matrix of size n x d. Once the impact of the first
component has been removed, we repeat the process to obtain the second set of singular
vectors. The entire process is repeated k times to obtain the rank-k singular value decom-
position. It is noteworthy that the matrix D is sparse in the case of document data, and
therefore other efficient implementations such as the Lanczos algorithm are used [145, 146].

3.2.3 Applications of SVD/LSA

Singular value decomposition (also known as latent semantic indexing in its text-centric
implementations) is used for dimensionality reduction of sparse and extremely high-
dimensional text into a more traditional multidimensional format of a few hundred di-
mensions. A side effect of the reduction is to reduce the noise effects of synonymy and
polysemy. As in the case of document-term matrix, one can use the cosine similarity to
compute similarity with the reduced representations of the documents. If the rank & is cho-
sen carefully, it is possible to improve both precision and recall, although the former often
degrades if the value of k is chosen incorrectly. The improvement in both precision and
recall occurs because of the reduction in noise effects of synonymy and polysemy. Typically,



for collections containing a few hundred thousand terms, it is often sufficient to use values
of k between 200 and 400. Therefore, the reduction in dimensionality is very significant, but
the new representation is no longer sparse.

SVD can also be used to enable other data mining applications that do not work well with
sparsity. For example, univariate decision trees work poorly with the original sparse rep-
resentation of the document-term matrix. However, the transformed representation works
somewhat better, especially if combinations of multiple decision trees (i.e., random forests)
are used. Refer to Sect. 5.5 of Chap.5 for a detailed discussion of decision trees.

Aside from providing a k-dimensional representation of the documents, SVD also pro-
vides a k-dimensional representation of the words. This k-dimensional representation may
be extracted as the rows on the matrix PY. Words that are semantically similar will tend
to be closer to one another in this multidimensional space. For example, the words “movie”
and “film” are likely to be closer to another than the words “movie” and “song.” Further-
more, the words “movie” and “song” will typically be closer to one another than “movie”
and “carrot.” This type of dual embedding is not exclusive to SVD, but it can be achieved
in any form of matrix factorization.

The orthogonal basis representation of SVD has numerous other applications in solving
systems of linear equations and other matrix operations. It also provides the mathematical
framework required for generalizing SVD to nonlinear dimensionality reduction, as discussed
in Sect. 3.6.

3.2.4 Advantages and Disadvantages of SVD/LSA

Singular value decomposition has several advantages and disadvantages compared to other
matrix factorization methods. These advantages and disadvantages are as follows:

1. The orthogonal basis representation of SVD is useful for folding in the reduced rep-
resentation of new documents not included in the data matrix D. For example, if
X is a row vector of a new document, then its reduced representation is given by
the k-dimensional vector X V. This type of out-of-sample embedding is harder (albeit
possible) with other forms of matrix factorization.

2. The SVD solution provides the same error as unconstrained matrix factorization prob-
lem. Since most other forms of dimensionality reduction are constrained matrix fac-
torization problems, one can typically achieve a lower residual error with SVD at the
same value of the rank k.

3. The topics of a text collection are often highly overlapping in terms of their vocab-
ulary. As a result, the directions represented by the various topics are naturally not
orthogonal, which matches poorly with orthogonal basis vectors. SVD does a poor
job at revealing the actual semantic topics (or clusters) in the underlying data. Most
forms of nonnegative matrix factorization that do not use orthogonal basis vectors are
more adept at representing the clustering structure in the underlying data.

4. The representation provided by SVD is not very interpretable and it is hard to match
with the semantic concepts in the collection. A key part of the problem is that the

eigenvectors contain both positive and negative components that are hard to interpret.

The specific use of a particular method depends on the scenario or the application at hand.



3.3 Nonnegative Matrix Factorization

Nonnegative matrix factorization is a highly interpretable type of matrix factorization in
which nonnegativity constraints are imposed on U and V. Therefore, this optimization
problem is defined as follows:

Minimize ¢ v||D — UVT|%
subject to:

U>0,V=0

As in the case of SVD, U = [u;;] is an n x k matrix and V' = [v;5] is a d x k matrix of opti-
mization parameters. Note that the optimization objective is the same but the constraints
are different.

This type of constrained problem is often solved using Lagrangian relaxation. For the
(i, 8)th entry u;s in U, we introduce the Lagrange multiplier «;s < 0, whereas for the (j, s)th
entry vj, in V, we introduce the Lagrange multiplier 5,5 < 0. One can create a vector (@, B)
of dimensionality (n+d)-k by putting together all the Lagrangian parameters into a vector.
Instead of using hard constraints on nonnegativity, Lagrangian relaxation uses penalties in
order to relax the constraints into a softer version of the problem, which is defined by the

augmented objective function L:

n k d k
L=[D=UVT|E 4 wirai + > > 0juBir (3.9)
i=1r=1 j=1r=1
Note that violation of the nonnegativity constraints always lead to a positive penalty be-
cause the Lagrangian parameters cannot be positive. According to the methodology of
Lagrangian optimization, this augmented problem is really a minimax problem because
we need to minimize L over all U and V at any particular value of the (vector of) La-
grangian parameters, but we then need to maximize these solutions over all valid values of
the Lagrangian parameters «;, and ;5. In other words, we have:

MaXESO,ESOMin vaL (310)

Here, @ and 3 represent the vectors of optimization parameters in a;s and Bjs, respectively.
This is a tricky optimization problem because of the way in which it is formulated with
simultaneous maximization and minimization over different sets of parameters. The first step
is to compute the gradient of the Lagrangian relaxation with respect to the (minimization)
optimization variables u;s and vjs. Therefore, we have:

L

8‘1_ — (DV)is + (UV V)i + s Vie {1,...nhse{l,.. k) (3.11)

oL

S = —(DTU)js + (VUTU) s + Bjs Vie{l,...,d},se{l,... k} (3.12)
js

The optimal value of the (relaxed) objective function at any particular value of the La-
grangian parameters is obtained by setting these partial derivatives to 0. As a result, we
obtain the following conditions:

—(DV)is + (UVTV)is + s = 0 Vie{l,...,n},s€{l,...,k} (3.13)
— (DTU)js + (VUTU)js + Bjs =0 vie{l,...,d},se{l,....k} (3.14)



We would like to eliminate the Lagrangian parameters and set up the optimization condi-
tions purely in terms of U and V. It turns out the Kuhn-Tucker optimality conditions [48]
are very helpful. These conditions are u;sc;s = 0 and v;,3;5s = 0 over all parameters. By
multiplying Eq.3.13 with u;; and multiplying Eq.3.14 with v;,, we can use the Kuhn-
Tucker conditions to get rid of these pesky Lagrangian parameters from the aforementioned
equations. In other words, we have:

— (DV)istiis + (UVIV)isuis + qiguis = 0 Vie{l,...,n},s€{l,....k 3.15
(DV)isuis + ( Jistis + Qisth iefl,...,n}sef o315
0
— (DTU)jsvjs + (VUTU) jsvjs + Bjsvjs =0 Vi€ {l,...,d},s€{l,....,k} (3.16)
N——
0

One can rewrite these optimality conditions, so that a single parameter occurs on one side
of the condition:

(DV)iSuis .
Uis:m Vie{l,...,n},s€{1,...,k} (3.17)
(DTU)jSUjS 3
P et 1,....d}, 1,....k 1
Vs (VUTU)jS Vj € { } s € { } (3 8)

Even though these conditions are circular in nature (because the optimization parameters
occur on both sides), they are natural candidates for iterative updates.

Therefore, the iterative approach starts by initializing the parameters in U and V to
nonnegative random values in (0,1) and then uses the following updates derived from the
aforementioned optimality conditions:

(DV)isuis .
u15<:m Vie{l,...,n},s€{l,...,k} (3.19)
(DTU)jsvjs ,
is < T 1,...,d}, 1,...,k 2
e = T Vie{l..dhse{lo. K (320)

These iterations are then repeated to convergence. Improved initialization provides signifi-
cant advantages, and the reader is referred to [272] for such methods. Numerical stability
can be improved by adding a small value € > 0 to the denominator during the updates:

DV )i .

uw<:m VZG{I,,n},SG{l,,k} (321)
T T

vy <= AL Uisss Vie{l,...,d},se{l,....k} (3.22)

(VUTU)js + €

One can also view € as a type of regularization parameter whose primary goal is to avoid
overfitting. Regularization is particularly helpful in small document collections.

As in all other forms of matrix factorization, it is possible to convert the factorization
UVT into the three-way factorization QX PT by using the approach discussed in Sect. 3.1.2.
It is common to use Li-normalization on each column of U and V', or that the columns of the
resulting matrices @) and P each sum to 1. Interestingly, this type of normalization makes
nonnegative factorization similar to a closely related factorization known as Probabilistic
Semantic Analysis (PLSA). The main difference between PLSA and nonnegative matrix
factorization is that the former uses a maximum likelihood optimization function whereas
nonnegative matrix factorization (typically) uses the Frobenius norm. However, some forms
of nonnegative matrix factorization use the I-divergence objective, which has been shown
to be identical to PLSA [137, 185, 276].



3.3.1 Interpretability of Nonnegative Matrix Factorization

An important property of nonnegative matrix factorization is that it is highly interpretable
in terms of the clusters in the underlying data. The rth columns U, and V;. of each of U and
V' respectively contain document- and word-membership information about the rth topic
(or cluster) in the data. The n entries in U, correspond to the nonnegative components
(coordinates) of the n documents along the rth topic. If a document strongly belongs to
topic r, then it will have a very positive coordinate in U,.. Otherwise, its coordinate will be
zero or mildly positive (representing noise). Similarly, the rth column V, of V' provides the
frequent vocabulary of the rth cluster. Terms that are highly related to a particular topic
will have large components in V.. The k-dimensional representation of each document is
provided by the corresponding row of U. This approach allows a document to belong to
multiple clusters, because a given row in U might have multiple positive coordinates. For
example, if a document discusses both science and history, it will have components along
latent components with science-related and history-related vocabularies. This provides a
more realistic “sum-of-parts” decomposition of the corpus along various topics, which is
primarily enabled by the nonnegativity of U and V. In fact, one can create a decomposition
of the document-term matrix into k£ different rank-1 document-term matrices corresponding
to the k topics captured by the decomposition. Let us treat U, as an nx 1 matrix and V,. as a
d x 1 matrix. If the 7th component is related to science, then U,.V,' is an n x d document-term
matrix containing the science-related portion of the original corpus. Then the decomposition
of the document-term matrix is defined as the sum of the following components:

k
DY UVT (3.23)

ka
=1
This decomposition is analogous to the spectral decomposition of SVD, except that its
nonnegativity often gives it much better correspondence to semantically related topics.

3.3.2 Example of Nonnegative Matrix Factorization

In order to illustrate the semantic interpretability of nonnegative matrix factorization, let
us revisit the same example used in Sect.3.2.1, and create a decomposition in terms of
nonnegative matrix factorization:

lion tiger cheetah jaguar porsche ferrari

Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0
D= Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

This matrix represents topics related to both cars and cats. The first three documents are
primarily related to cats, the fourth is related to both, and the last two are primarily related
to cars. The word “jaguar” is polysemous because it could correspond to either a car or a
cat and is present in documents of both topics.

A highly interpretable nonnegative factorization of rank-2 is shown in Fig. 3.2a. We have
shown an approximate decomposition containing only integers for simplicity, although the
optimal solution would (almost always) be dominated by floating point numbers in practice.
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Figure 3.2: The highly interpretable decomposition of nonnegative matrix factorization

It is clear that the first latent concept is related to cats and the second latent concept is
related to cars. Furthermore, documents are represented by two non-negative coordinates
indicating their affinity to the two topics. Correspondingly, the first three documents have
strong positive coordinates for cats, the fourth has strong positive coordinates in both, and
the last two belong only to cars. The matrix V tells us that the vocabularies of the various
topics are as follows:

Cats: lion, tiger, cheetah, jaguar
Cars: jaguar, porsche, ferrari

It is noteworthy that the polysemous word “jaguar” is included in the vocabulary of both
topics, and its usage is automatically inferred from its context (i.e., other words in doc-
ument) during the factorization process. This fact becomes especially evident when we
decompose the original matrix into two rank-1 matrices according to Eq. 3.23. This decom-
position is shown in Fig.3.3 in which the rank-1 matrices for cats and cars are shown. It
is particularly interesting that the occurrences of the polysemous word “jaguar” are nicely
divided up into the two topics, which roughly correspond with their usage in these topics.

As discussed in Sect.3.1.2, any two-way matrix factorization can be converted into a
standardized three-way factorization. The three-way normalized representation is shown in
Fig.3.2b, and it tells us a little bit more about the relative frequencies of the two topics.
Since the diagonal entry in ¥ is 32 for cats in comparison with 12 for cars, it indicates
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Figure 3.3: The highly interpretable “sum-of-parts” decomposition of the document-term
matrix into rank-1 matrices representing different topics

that the topic of cats is more dominant than cars. This is consistent with the observation

that more documents and terms in the collection are associated with cats as compared to
cars.

3.3.3 Folding in New Documents

The process of folding in refers to the fact that one wants to represent the out-of-sample
documents using the same basis system as the in-sample documents. It is not as easy as
SVD to fold in new documents with nonnegative matrix factorization. Let D; be a new
ng X d test data matrix with rows not included in the original matrix D. Let U; be the
ny X k matrix containing the k-dimensional representations of the new documents. Since
the basis has rank k& < d, it is possible to determine only an approximate representation
of the d-dimensional data matrix D; in a k-dimensional basis. This can be achieved by
minimizing the objective function ||D; — U;V||% over fized V and varying U;. The matrix V
is fixed because it was already estimated using the in-sample matrix D. This optimization
problem can be decomposed into n; least-squares regression problems for each of the ny,
rows (documents) in U;. As discussed in Sect. 6.2 of Chap. 6, the optimal solution is given
by the following:

Ui =D,V (VTy)~! (3.24)

This approach can be used for any basis system, whether it is orthogonal or not. For
orthonormal basis systems like SVD, we have VTV = I, and therefore Eq. 3.24 simplifies
to Uy = D;V. The main problem with this solution in the specific context of nonnegative
matrix factorization is that U; might have negative components. Nonnegativity can be
forced only by fixing V' after in-sample learning on D, and then learning U; by performing



the same gradient-descent updates (cf. Eq.3.19) on D;. Note that V' is not updated using
out-of-sample data. This process is, of course, not as simple as the straightforward fold-in
of SVD using matrix multiplication.

3.3.4 Advantages and Disadvantages of Nonnegative Matrix
Factorization

Nonnegative matrix factorization has several advantages and disadvantages:

1. Nonnegativity enables a highly interpretable decomposition because of ability to rep-
resent the factorization as a sum of parts.

2. The semantic clusters (or topics) are often captured more accurately by allowing non-
orthogonality in the basis vectors. This is because semantic topics are often related.

3. Nonnegative matrix factorization can better address polysemy than SVD.

4. One disadvantage of nonnegative matrix factorization is that it is harder (than SVD)
to compute the reduced representations of documents that were not included in the
original data matrix D. SVD is able to fold in such documents more easily as a simple
projection because of its orthogonal basis system.

The advantages and disadvantages of this approach are exactly shared by PLSA, because
the latter is simply a different form of nonnegative matrix factorization.

3.4 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis creates a normalized three-way factorization of the
document-term matrix of the following form:

D x QxPT (3.25)

Here, @ is an n X k matrix, 3 is a k x k diagonal matrix, and P is a d X k matrix. Furthermore,
each of the columns of () and P sum to 1, the entries in ¥ sum to 1, and the individual
entries are interpreted as probabilities. The use of proportionality (instead of equality) in
Eq. 3.25 is necessitated by the strict probability-centric scaling of @, P, and X, although
scaling down the entries of D to sum to 1 yields an equality relationship. The matrices P,
Q, and X define the parameters of a generative process that is used to create the observed
matrix D. These parameters are learned in order to maximize the likelihood of the observed
data for this generative process. What is this generative process?

The basic idea is to assume that the frequencies in the document-term matrix are gen-
erated by a mixture of latent components G ... G, sequentially incrementing entries of the
document-term matrix. These mixture components are hidden variables, also known as la-
tent variables, because they are not observed in the data, but have an explanatory role in



modeling the data. A mixture component is also referred to as an aspect or topic, which leads
to it being considered a topic modeling method. Therefore, if a given mixture component is
selected, it is likely to increment topic-relevant entries. As we will see later, the number of
mixture components k defines the rank of the factorization. The basic generative process
may be described in terms of repeatedly selecting a position from the document-term matrix
and incrementing its frequency:

1. Select a mixture component (topic) G, with probability X, where r € {1...k}.

2. Select the index i of a document X; with probability Q;,. = P(X;|G,) and the index
j of a term t; with probability P;, = P(t;|G,). It is assumed that the two selections
are conditionally independent. Increment the (4, j)th entry of D by 1.

The generative process of incrementing matrix entries will need to be repeated as many
times as the number of tokens in the corpus (including document-specific repetitions of term
occurrences). A plate diagram (see explanation in Fig.3.4a) of this symmetric generative
process is described in Fig. 3.4b.

P(A) P(A) P(B) P(A|B)
GENERATE HIDDEN GENERATE OBSERVED GENERATE HIDDEN VARIABLE B
VARIABLE A VARIABLE A FOLLOWED BY CONDITIONAL
GENERATION OF OBSERVED A
P(A|B)

P(B)

P(AI B,C)
m—

INDEPENDENTLY GENERATE HIDDEN
B,C FOLLOWED BY OBSERVED A GENERATE HIDDEN VARIABLE B FOLLOWED BY N CONDITIONALLY

INDEPENDENT INSTANCES OF OBSERVED VARIABLE A
(PLATE SUMMARIZES MULTIPLE INSTANCES)

P(B) P(A|B)

OT®

(a) Examples of plate diagrams showing generative dependencies

DOC. TOPIC TERM

ID \l_D/ ID

NUMBER OF NUMBER OF
TOKENS IN CORPUS TOKENS IN CORPUS
(b) Symmetric PLSA model (¢) Asymmetric PLSA model

Figure 3.4: Examples of plate diagrams and two equivalent generative models for PLSA



One must formulate an optimization problem that maximizes the log-likelihood of the
document-term matrix being generated by this model. In other words, the optimization
problem for PLSA may be stated as follows:

Maximize (p,g 5 [Log likelihood of generating D using parameters in matrices (P, Q, ¥)]

= log H P(Adding one occurrence of term j in document i)D“

0,J
n d
=YY Dy log(P(Xi.1y)
=t Parametrized by p,Q,=
subject to:
PQ,X>0

Entries in each column of P sum to 1
Entries in each column of () sum to 1

Y. is a diagonal matrix that sums to 1

A key point here is that the entries in P, @), and X are interpreted as probabilities and the
generative process creates the observed matrix D on this basis. This is the reason for the
normalization constraints on P, @, and X.

The conditional probability P(X;,¢;|G,) of selecting a particular document-term pair
(X;,t;) in the generative process follows the conditional independence assumption:

P(X;,t;1G,) = P(X,|G,) - P(t;]G) (3.26)

The main challenge in solving this optimization problem is that we do not know which
mixture component generated which token. The problem would have been easy to solve,
had there been only one mixture component (i.e., k = 1). Therefore, we need to simulta-
neously compute the mixture memberships and optimization parameters. This is achieved
by using the expectation-mazimization (EM) algorithm, which optimizes parameters and
probabilistic assignments alternately in iterative fashion. The algorithm starts with random
nonnegative parameters in Q, ¥, and P, which are normalized* so that they can be inter-
preted as probabilities. In the E-step, we compute the posterior probability P(G,|X;, t;)
that each observed document-term pair (X, ;) (i.e., token) was generated by a particular
mixture component. Therefore, the E-step determines memberships in expectation. These
probabilities are treated as “membership weights” of that token for the various mixture com-
ponents. The M-step uses these membership weights to compute the maximum-likelihood
values of all parameters in each mixture component. The M-step is referred to as the maz-
imization step, because it is really solving a simplified optimization problem in which the
membership weights of the tokens for various mixture components have been fixed. The
specific details of the E- and M-steps are as follows:

4In other words, the columns of P, the columns of @, and the diagonal of ¥ each sum to 1.



1. (E-step): Estimate the posterior probabilities P(G,|X;, t;) for each document-term
pair (X;,t;) occurring in the corpus. The Bayes rule is used with the current state of
the parameters:

P(gr‘yi,tj) _ kp(gr) : P(Y'LE’I") ! P(tj|gr) _ k(zrr) : (Ql’r) i (Pjr) Vi,j, r
>os=1 P(Gs) - P(XilGs) - P(t1Gs)  2om1(Bss) - (Qis) - (Pis) 27)

2. (M-step): Estimate the current parameters in @}, P and ¥ by using the conditional
probabilities in the first step as weights for entries belonging to each generative com-
ponent. This is achieved as follows:

_ CP(X;,t5) - P(Gr| Xt _
Qir = P(X,|G,) = EE JJD)(Q )( | 2 X ZDijP(gr|Xiatj) Vi, r
" J
CP(X;.t5) - P(Gr| X, t; - ‘
Pj = P(t;|Gr) = 2 ]ﬁ)(g )(g Xioti) o Y DisP(Ge[Xist;) Vi,r
Y = P(G,) = ZP(Yiatj) - P(Gr| X, t5) o ZDijP(gAyntj) vr
0, J %,

The constants of proportionality are set by ensuring that the probabilities in the
columns of P, @) and the diagonal of ¥ each sum to 1.

As in all applications of the expectation-maximization algorithm, these steps are iterated to
convergence. Convergence can be checked by computing the likelihood function at the end
of each iteration, and checking if it has improved by a minimum amount over its average
value in the last few iterations.

Why can we express the estimated parameters in the factorized form of D o« QX PT? The
reasoning for this follows directly from the probabilistic interpretation of the parameters:

D;; o P(yiv tj) = Z P(G,) - w [Generative probability of incrementing (i, j)]
Select 7 Select X, t;

r=1
k
= Z P(G,) - P(Xi|G,) - P(tj|G,) [Conditional independence]
r=1
k
= Z P(X,|G,) - P(G) - P(t;|G,) [Rearranging product]
r=1
k
= Z Qir - Xpr - Pjr= (QEPT)M [The factorized form we are familiar with]
r=1

PLSA is very similar to nonnegative matrix factorization except that we are optimizing
a maximum likelihood model (equivalent to I-divergence objective in non-negative matrix
factorization) rather than the Frobenius norm.



3.4.1 Connections with Nonnegative Matrix Factorization

The original paper on nonnegative matrix factorization [276] proposed an alternative for-
mulation that uses an I-divergence objective rather than the Frobenius norm:

n d
o D;;
Minimize ¢y ; ; (Dijlog {(UV;)U} - D;; + (UVT)ij>
subject to:
U=0,V=0

This formulation is identical to PLSA and requires the following iterative solution for U =
[uis] and V' = [v]:

d T n
> i=11Dijvjs/(UV™)i4] vi. 5 o <:vjsZizl[Dijuis/(UVT)z'j]

S v D ey Uis

Ujs < Ujs

Vi, s

The two-way factorization can be converted into a normalized three-way factorization
like PLSA using the normalization approach discussed in Sect.3.1.2. The aforementioned
gradient-descent steps provide an alternative way of solving PLSA. Since a different com-
putational algorithm is used, the resulting solution may not exactly be the same as that
obtained with the expectation-maximization method. However, the quality of the solutions
will be quite similar in the two cases since the same objective function is used.

3.4.2 Comparison with SVD

The three-way factorization of PLSA is shown in Fig. 3.5, and it is similar to the correspond-
ing factorization of SVD (cf. Fig. 3.1). However, unlike SVD, the basis vectors in P and Q
are not mutually orthogonal but have a probabilistic interpretation. Just as the matrix X
in SVD contains the singular values indicating dominance of different latent concepts, the
matrix ¥ in PLSA contains the prior probabilities. As in SVD, the matrix @ provides a
reduced representation of the documents and the matrix P provides the reduced represen-
tations of the words. The decomposition is highly interpretable. Highly positive entries in
each column of P provide the lexicon for a specific topic, whereas highly positive entries in
each row of P provide the most relevant topics for a particular word.
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Figure 3.5: The decomposition of PLSA is similar to that of SVD (see Fig.3.1) except that
the basis vectors are nonorthogonal and have a probabilistic interpretation



3.4.3 Example of PLSA

Let us revisit the same example used in Sects.3.2.1 and 3.3.2, respectively, to create a
decomposition:

lion tiger cheetah jaguar porsche ferrari

Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0
D= Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

A possible factorization is shown in Fig. 3.6. We have intentionally used the same factoriza-
tion as Fig. 3.2b to show the analogy, although they might be slightly different in practice
because of the difference in objective functions. The main difference between Figs. 3.2b and
3.6 is that the diagonal matrix ¥ has been scaled down to a (prior) probability in the lat-
ter, and therefore the factorization is observed to within a constant of proportionality in
PLSA. If we scale down the document-term matrix so that its entries sum to 1, then the
factorization will be observed to approximate equality in PLSA.

3.4.4 Advantages and Disadvantages of PLSA

Since PLSA is a form of nonnegative matrix factorization, it inherits all the advantages and
disadvantages discussed in Sect. 3.3.4. However, one can also view PLSA as a probabilistic
model rather than a factorization model. From the probabilistic point of view, it has the
following advantages and disadvantages:

1. The parameter estimation process is simple, intuitive and easy to understand. The
parameters have multiple interpretations from a probabilistic or factorization point of
view. This type of interpretability is often helpful to a practitioner.

2. The number of parameters estimated in PLSA grows linearly with the size of the
collection, because the matrix @ has O(n-k) parameters. As a result, there is inability
to take sufficient advantage of increasing corpus size. However, since it does not make
any assumption on the distribution of topics in a document, it has the advantage of
greater generality of modeling for large collections.
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Figure 3.6: Example of PLSA (compare with Fig. 3.2)



3. PLSA is not a fully generative model and it faces the same challenges as nonnegative
matrix factorization in folding in new documents. Typically, one re-estimates P(G,|X)
for a new document X.

Some of these challenges are addressed using a different model that is referred to as Latent
Dirichlet Allocation.

3.5 A Bird’s Eye View of Latent Dirichlet Allocation

We use this section to provide an understanding of the basic principles underlying LDA
and also an understanding of its advantages and pitfalls over its cousin, PLSA, from the
point of view of the practitioner. In the following, we first describe a simplified LDA model
with a single Dirichlet assumption on the topic distribution of documents. Subsequently, we
smooth the model with a second Dirichlet distribution on the term occurrences.

3.5.1 Simplified LDA Model

The parameter space increases proportionally with corpus size in PLSA, because the matrix
@ contains n - k parameters and the matrix P contains d - k parameters. The matrix @ is
particularly troublesome because it blows up the parameter space with increasing corpus size
and we somehow need to find a way to get rid of it by changing the generative mechanism.
Furthermore, it is not a fully generative model because new documents are difficult to fold
in after parameter estimation (although heuristic fixes are possible).

A part of the problem is that PLSA tries to independently generate the different tokens
of the document-term matrix rather than generating one document at a time (as is common
with most mixture models in clustering). Latent Dirichlet allocation solves this problem
by deciding the composition of topics in a document up front with the Dirichlet distribu-
tion, and then generating all the entries in a row of the document-term matrix in one shot.
Therefore, a prior structure is imposed on each document with the Dirichlet distribution.
Before discussing the generative process of LDA, we first discuss a slightly different asym-
metric generative process of PLSA. This generative process is mathematical identical to the
symmetric generative process of Sect.3.4, but it is useful in relating PLSA to LDA. The
asymmetric generative process of PLSA is as follows:

1. Select the ith document, X;, with probability P(X;) = >, P(Gs)P(X;|Gs) =
ZS(ZSS)(QZ’S)-

2. Select the topic r with probability P(G,|X;) = P(PQ(T%))T:) = Z(E(gs)(gé)s)

3. Select the jth term, t;, with probability P(¢,|G,) = P,

Once the document-term pair has been selected, the corresponding entry in the document-
term matrix is incremented by 1. The plate diagram for this asymmetric model is shown in
Fig. 3.4c. This process increments entries of the document-term matrix. How can we gener-
ate the entire row (document) at a time? In order to do so, we need to make some kind of
assumption on how the ith row of D is defined as a mixture of different topic distributions.
This is achieved by using the Dirichlet distribution (with only k parameters) to implicitly
generate P(G,|X;) for the ith document. In a sense, we are imposing a Dirichlet prior on
the topic distribution in order to generate the relative topic frequencies in a document.
The relative topic frequencies in each document are different because they are defined by



drawing a different instantiation of the k relative frequencies from the Dirichlet distribution.
Therefore, the document-specific parameters of the generative process are themselves gen-
erated by using another set of (compact) Dirichlet parameters. This reduces the parameter
space. Subsequently, all the terms in the ith document are generated. We still need the
matrix Pj, = P(t;|G,) to decide the word distribution of different topics. Therefore, the
fully generative process of LDA for the ith document is as follows:

1. Generate the number n; of tokens (counting repetitions) in the ith document from a
Poisson distribution.

2. Generate the relative frequencies © = (0y,0s,...,0;) of different topics in the ith
document from a Dirichlet® distribution. This step is like generating 6, = P(G,|X;)
from the Dirichlet distribution for all topics r in the document in order to generate
the document in one shot.

3. For each of the n; tokens in the ith document, first select the rth latent component
with probability P(G,|X;) and then generate the jth term with probability P(t;|G,).
As in PLSA, we still need the d x k matrix of parameters P, which retain the same
interpretation of containing the values P(¢;|G,).

The plate diagram for the simplified LDA model is shown in Fig.3.7a. This generative
process requires only O(d - k + k) parameters, which reduces overfitting. Furthermore, the
process is fully generative because of its document-at-a-time generative mechanism that
is fully described by document-independent parameters. The probabilities of the terms of
a new document being generated by any particular topic can therefore be estimated in a
natural way, and can be used to create its reduced representation.

We need to use an order-k Dirichlet distribution to generate the k relative frequen-
cies of the topics in each document in each sample. The multivariate probability density
f(z1,...,xp) of the order-k Dirichlet distribution uses k positive concentration parameters
denoted by aj ... ag:

Fxr...ap) = %( T r=1 ) 1;[ (3.28)

Multivariate density function in k-dimensional topic space

Here, I" denotes® the Gamma function, which is the natural extension of the factorial func-
tion on integer numbers to the domain of real numbers. The Dirichlet distribution takes on
positive probability densities only for positive variables x; that sum to 1 (i.e., Zf,:l x, =1).

5The Dirichlet is selected because it is the posterior distribution of multinomial parameters, if the prior
distribution of these parameters is a Dirichlet (although the parameters of the prior and posterior Dirichlet
may be different). If we throw a loaded dice repeatedly with its faces showing various topics, the resulting
observations are referred to as multinomial. In LDA, the selection of the latent components of the different
tokens in a document is achieved by throwing such a dice repeatedly. Formally, the Dirichlet distribution
is a conjugate prior to the multinomial distribution. The use of conjugate priors is widespread in Bayesian
statistics because of this property.

SFor a positive integer n, the value of I'(n) is (n — 1)!. For a positive real value x, the value of I'(x) is
defined by interpolating the values at integer points with a smooth curve, which works out to an interpolated
value of I'(z) = fooo y®~le~¥dy. More details of an exact definition and a specific functional form may be
found at http://mathworld.wolfram.com/GammaFunction.html.
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Figure 3.7: Plate diagrams for simplified and smoothed LDA models

This is quite convenient because each generated tuple of k£ values can be interpreted as the
probabilities of the k topics. Values of 0 < a; < 1 lead to sparse outcomes of the random
process in which only a small number of topics will have large probabilities. This type of
sparsity is natural in real settings because a given document might contain only a couple
of topics out of hundreds of topics. Furthermore, the relative presence of the ith topic will
be proportional to «;. Fixing each a; = 1 leads to a uniform and rather non-informative
prior, which gives solutions similar to PLSA [190]. Therefore, learning appropriate values of
these priors will lead to more natural models of higher quality. The topic-word parameters
in matrix P need to be estimated in a data-driven manner like any other generative model.
The prior parameters g . ..« can either be fixed up front, or they can be tuned/estimated
in a data-driven manner. The default approach is to treat the prior parameters as inputs
provided by the user. One can also view the priors in LDA as a clever form of regularization
that reduces overfitting.

The process of parameter estimation in Latent Dirichlet Allocation is quite complex.
The EM algorithm is used for parameter estimation (as in all generative models) along with
techniques from variational inference for computing posterior probabilities in the E-step.
In PLSA, it is a simple matter to compute the posterior probabilities in the E-step. In
LDA, these posterior probabilities take on the form P(G,,O|a;...ax,t;). This type of



estimation is far more difficult, and it requires the use of methods from variational inference.
Interested readers are referred to [54] for details. Several excellent off-the-shelf softwares
are available for LDA, which are introduced in the software section of the bibliographic
notes.

3.5.2 Smoothed LDA Model

Although the simplified LDA model reduces the number of parameters significantly, this
can still be a problem when some of the terms are contained in only a small number of
documents. When a new document contains a term that was not seen earlier, it would end
up getting assigned zero probability in the simplified model. This is a common problem of
sparsity in all types of probabilistic parameter estimations, and we will see several examples
of this phenomenon in probabilistic classification/clustering models. A natural solution in
such settings is to use Laplacian smoothing. The LDA model uses an additional Dirichlet
distribution to perform the smoothing.

What does smoothing mean? Implicitly, smoothing is a prior assumption on the distri-
bution of parameters in a mixture model to reduce the overfitting caused by sparsity. In
this case, we have O(d - k) parameters of the form P(t;|G,), which we are treating as the
d x k matrix P. It is therefore assumed that each of the k columns of P is an instantiation
that is generated by the same order-d exchangeable Dirichlet distribution. Unlike the case
of the Dirichlet distribution in Eq. 3.28, which uses as many parameters as the order of the
distribution, the exchangeable Dirichlet distribution uses a single parameter 5 to generate
all the d-dimensions of the multivariate instantiation. The use of this special case of the
Dirichlet distribution is important because using d parameters to describe the Dirichlet
would defeat the purpose of smoothing in the first place. Therefore, the d terms in each
topic are assumed to be generated according to the following order-d Dirichlet distribution,
which is parameterized by a single value 3:

flrr...zq) = M H(xj)ﬁ_l (3.29)

Multivariate density function in d-dimensional term space

The generative process of the simplified LDA model is now modified in only one respect. As a
very first step, before generating any of the documents, it is assumed that the d-dimensional
columns of the d x k matrix P = [P(t;|G,)] are generated using the exchangeable Dirichlet
distribution. After an up front generation of the matrix P, the individual documents are
generated according to the same approach discussed in the previous section. The plate
diagram for the smoothed LDA model is shown in Fig.3.7b. It is noteworthy that the
two Dirichlet distributions are used in somewhat different ways. The k parameters of the
asymmetric topic-specific Dirichlet distribution (Eq. 3.28) control the relative frequencies of
various topics in documents as well as topic-specific smoothing effects, whereas the single
parameter of the symmetric term-specific Dirichlet distribution (Eq.3.29) only controls the
term-specific smoothing. Since the second Dirichlet distribution uses only a single parameter,
all term-topic interactions are treated identically by it, and it does not regulate any detailed
variabilities in term-topic distributions beyond smoothing. It is also possible [29] to use a
single parameter, «, for the document-topic distributions, although this is not recommended
for getting the most out of LDA [488]. It is noteworthy that many off-the-shelf software
packages do use symmetric choices for both distributions as the default setting. In such



cases, the main purpose of LDA is to use values of o, < 1 to encourage individual
documents to each have a small number of topics and the vocabulary of each topic to be
compact (i.e., sparse outcomes).

The changes in the generative process also lead to some changes in the parameter esti-
mation process. In particular, the inference procedures are changed to treat the entries of
the matrix P as random variables that are endowed with a posterior distribution. Note that
this type of approach is used commonly in many probabilistic algorithms that use Laplacian
smoothing.

3.6 Nonlinear Transformations and Feature
Engineering

SVD provides an interesting relationship between document-document similarity matrices
and dimensionality reduction. As discussed in Sect. 3.2, one of the ways of directly generating
a reduced representation Q3 of the n x d data matrix D is to extract the eigenvectors of the
nxn dot-product similarity matriz DDT without generating a basis representation P in the
word space. The d-dimensional columns of P, which correspond to the basis representation,
are usually obtained by diagonalizing the d x d matrix DT D instead of DDT. Note that
the matrix S = DD7T contains all n? pairwise dot products between documents. We can
generate an embedding from this similarity matrix by using SVD of D:

§=DDT = (QEPT)(QLPT)T = QL (PTP)2QT = Q2Q" = (QX)(@%)"  (3.30)
I

The columns of matrix ) contain the eigenvectors of the similarity matrix S, and the
diagonal matrix 3 contains the square-root of the eigenvalues of S. In other words, if we
generate the n x n dot-product similarities S = DD? between the n documents of the
corpus, then we can construct the reduced representation QY from its scaled eigenvectors.
This approach is an unusual way of performing SVD, because we generally use the d x d
matrix DT D to generate the basis matrix P and then derive the reduced representation by
the projection QX ~ DP. Although the alternative similarity-matrix approach to SVD is
computationally challenging for large values of n, its advantage is that we no longer have to
care about the basis representation P. By using similarity matrices, we are able to escape
from the need to generate these non-existent basis representations in a case where we use
something other than the dot product as the similarity. This general principle forms the
motivating idea of nonlinear dimensionality reduction in which we replace the dot-product
similarity matrix with a different and more cleverly chosen similarity matrix of possibly
higher quality. This principle is so important that we highlight it below:

The large eigenvectors of high-quality similarity matrices can be used to generate
useful multidimensional representations of the corpus that encode the knowledge
inside the similarity matrix.

The basic assumption is that the similarity matrix represents the dot products ®(X;)-®(X;)
in some (unknown) transformation ®(-) of the data that is more informative for particular
data mining applications. We want to find this transformed representation. Virtually all non-
linear dimensionality reduction methods such as spectral methods [314], kernel SVD [436],
and ISOMAP [473] use this broad approach to generate the reduced representations. Such
dimensionality “reductions” are implicit transformations of the original data representation
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Figure 3.8: Explaining the rationale for nonlinear dimensionality reduction

because a linear basis system for this new representation no longer exists in the original
input space. Therefore, they are also referred to as embeddings. In fact, in some cases, em-
beddings do not reduce the input dimensionality at all because the final transformed and
reduced representation might have a higher dimensionality than the original input space.
Note that more than d eigenvectors of the n x n similarity matrix S can have nonzero
eigenvalues; it is only in the case of the dot-product similarity that we are guaranteed at
most d nonzero eigenvalues. Furthermore, if the similarity function encodes the details of
a highly complex distribution, it is possible for more than d eigenvalues to be sufficiently
large so that they cannot be dropped. The goal of the embedding in such cases is often to
leverage a better similarity function (than the dot product) and obtain a more expressive
feature representation of the complex data distribution than the overly simple dot prod-
uct will provide. In a sense, nonlinear dimensionality reduction is inherently an exercise in
unsupervised feature engineering.

The power of such embeddings is significantly greater than linear SVD and matrix
factorization methods that are married to the original input space. For example, consider a
setting in which we have three clusters of related topics corresponding to Arts, Crafts, and
Music. A conceptual rendering of these clusters in two dimensions is shown in Fig. 3.8. It is
evident that dot-product similarity (which is similar to using the Euclidean distance) will
have a hard time distinguishing between different clusters because of the non-convex shapes
of the clusters. Fuclidean distances and dot products implicitly favor spherical clusters. If
we applied any simple clustering algorithm like k-means on the representation, it would
not work well because such clustering algorithms are biased towards discovering spherical
clusters. Similarly, a supervised learning method that uses linear separators to distinguish
between the classes would perform very poorly.



Now imagine that we could somehow define a similarity matrix in which most of the
similarities between documents of different topics are close to zero, whereas most of the
similarities between documents of the same topic are nearly 1s. This similarity matrix S is
shown in Fig. 3.8 with a natural block structure. What type of embedding U will yield the
factorization S ~ UUT? First let us consider the absolutely perfect similarity function in
which the entries in all the shaded blocks are 1s and all the entries outside shaded blocks are
0s. In such a case, it can be shown (after ignoring zero eigenvalues) that every document
in Arts will receive an embedding of (1,0,0), every document in Music will receive an
embedding of (0,1,0), and every document in Crafts will receive an embedding of (0,0, 1).
Of course, in practice, we will never have a precise block structure of 1s and 0s, and there
will be significant noise/finer trends within the block structure. These variations will be
captured by the lower-order eigenvectors shown in Fig.3.8. Even with these additional
noise dimensions, this new representation will perform much better with many learning
algorithms for clustering and classification. Where is the magic? The key idea here is that
dot product similarities are sometimes not very good at capturing the detailed structure
of the data, which other similarity functions with sharper locality-centric variations can
sometimes capture. In a later section, we will also provide an intuitive illustration of how
distance-exponentiated similarity functions can sometimes capture more detailed trends
because of the sharper drop off in similarity values with distances.

One can even use this approach to work with richer representations of text than the
multidimensional representation, without losing the convenience of a multidimensional rep-
resentation. For example, imagine a setting in which we want a multidimensional embedding
that preserves information about the ordering of words in documents. For example, consider
the following pair of sentences:

The cat chased the mouse.
The mouse chased the cat.

From a semantic point of view, the second sentence is very different from the first, but this
fact is not reflected in the bag-of-words representation. Only the sequence representation
can distinguish between these two sentences. However, it is more challenging to design
data mining algorithms with sequence representations because of the implicit constraints
between data items (i.e., sequential ordering of tokens). A multidimensional embedding has
the advantage that one does not have to worry about constraints between the individual
dimensions while designing algorithms. Furthermore, the simplest and most generic setting
for off-the-shelf machine learning and data mining algorithms is multidimensional data.

In such a case, we can use sequence-based similarity functions to generate the similarity
matrix S. Such a similarity matrix will encode the fact that the two sentences above are
different. The large eigenvectors of S will therefore also encode information about the or-
dering of words. As a result, mining algorithms that use this embedding will also be able to
distinguish between documents based on the ordering of the words without losing the con-
venience of working with a multidimensional representation. The power of the embedding is
limited only by how clever we can be in designing a good similarity function. As we will see
in Chap. 10, there are other methods like neural networks to perform feature engineering,
which have powerful applications like machine translation and image captioning.

Are there any restrictions on the types of similarity matrices one can use? As you might
have noticed, it is necessary to diagonalize S with nonnegative eigenvalues:

S=Q¥'Q"=0Q.A Q" (3.31)

>0



Since A = %2 contains only nonnegative eigenvalues, it implies that the similarity matrix
must be positive semi-definite. As a practical matter, however, one can make any similarity
matrix positive semi-definite by adding a sufficient amount A > 0 to each diagonal entry.

S+ M =Q(A+ANQT (3.32)

For large enough A, the entries of the diagonal matrix A + Al will be nonnegative as well.
Therefore, S + AI will be positive semi-definite. Note that we are only perturbing the (less
important) self-similarity values on the diagonal to achieve this goal, and all the other
(critical) pairwise similarity information is preserved.

3.6.1 Choosing a Similarity Function

The choice of a proper similarity function is critical in generating an insightful embedding. In
the following, commonly used similarity functions are reviewed along with their suitability
to the text domain.

3.6.1.1 Traditional Kernel Similarity Functions

Traditional kernel similarity functions are positive semi-definite similarity functions that
(typically) improve the performance of data mining applications by implicitly transforming
the data to a higher-dimensional space before applying SVD on it. A kernel function is
denoted by K (X, Yj) indicating the similarity between the multidimensional vectors X;
and X;. We list the commonly used kernel functions in the table below:

H Function \ Form H
Linear kernel K(X;, X;) =
(Defaults to SV )
Gaussian radial basis kernel | K(X;, X;) = e~ IIXi=X[[/(2:0%)
Polynomial kernel K(X;, X;)=(X;- X +c)
Sigmoid kernel K(X;,X;) = tanh(kX; - X; — 0)

><\
3%\

Many of these kernel function have parameters associated with them, which have a critical
effect on the type of feature transformation and reduction achieved by the approach.
With some commonly used kernels like the Gaussian kernel, each dimension often rep-
resents a small, densely populated locality of the input space. For example, consider a
situation in which the bandwidth parameter o of the Gaussian kernel is relatively small.
In such a situation, two points that are located at a distance more than 4 - o will have
a similarity value of virtually 0. Therefore, if o is chosen so that the similarities between
points of different clusters are close to zero, but a sufficient number of pairwise similarities
within each cluster is nonzero, then each cluster will dominate a subset of the features of the
embedding. This situation is shown in Fig. 3.9a in which pairwise similarities do not have a
precise block structure like Fig. 3.8. Nevertheless. most of the non-zero entries reside inside
the block structure with some residual variations. As a result, the embedding created by
the similarity matrix of Fig. 3.9a will be at least somewhat similar to that of Fig.3.8. The
main difference is that each cluster will be represented by multiple eigenvectors, and the
lower-order features will capture the residual variations from the block structure. However,
the overall embedding will still be quite useful. The expression of each cluster with a subset
of eigenvectors can sometimes expand the dimensionality of the transformed representation
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for low-dimensional input data even after dropping low-eigenvalue features (although text
usually does not fall in this category). The basic idea here is that the (highly sensitive)
distance-exponentiated similarity function creates a transformed representation that is able
to better able to capture key local characteristics of the data distribution within smaller
subsets of dimensions than the original representation (which locks up this information in
data localities of complex shapes). Such an unlocking also makes the different dense regions
of the space more clearly separable. For example, if we apply a simple clustering algorithm
like k-means on the new representation in Fig. 3.9a, it will be able to nicely separate out the
different high-level topics. This advantage comes at the price that the dimensionality of the
transformed representation typically expands to accommodate detailed local information in
individual features. For a corpus with n documents, the dimensionality of the transformed
data can be as large as n when all eigenvectors are significantly nonzero. For example, if we
reduce the bandwidth ¢ too much, each n-dimensional point will have a positive coordinate
in only one dimension that is different from the dimensions chosen by any of the other
(n — 1) points. This situation is shown in Fig.3.9b. Such a transformation is completely
useless and is a manifestation of overfitting. Therefore, the choice of the parameters of the
kernel is crucial. Kernel transformations like the Gaussian radial basis function (RBF) are
particularly useful in supervised settings like classification in which one can measure the
algorithm performance on the labeled data to tune parameters like the bandwidth. For un-
supervised settings, the rule of thumb is to set the kernel bandwidth to the median pairwise
distance between points, although the exact value also depends on the data distribution and
size. The bandwidth should be set to larger values for small data sets and smaller values
for large data sets.

In the high-dimensional domain of text data, kernel functions like the Gaussian work
poorly unless one chooses large values of o. Text data has too many irrelevant features
(terms), as a result of which the Gaussian similarity computations are noisy. Note that the
irrelevant input features will be included in the exponent of the Gaussian kernel, and will
become so tightly integrated with all the different transformed features of the embedding
that it becomes difficult to remove their detrimental effect on data mining applications with
feature selection and regularization tricks (see Chaps.b5 and 6). This effect is particularly
pronounced at smaller values of the bandwidth o. Using large values of ¢ is similar to using
the linear kernel, and the additional accuracy gains” over the linear kernel in such cases
are small compared to the significant increase in computational complexity. Although the
Gaussian kernel is one of the most successful kernels with other types of multidimensional
data, the linear kernel often provides almost equally accurate results in the specific case of
text, while retaining its computational efficiency in most application-centric settings. Some
(mildly) encouraging results have been shown [88] for text data with the use of the second-
order polynomial kernel K(X;, X;) = (X; - X; + ¢). In general, the success of traditional
multidimensional kernels has been quite limited in the text domain. The main use-case of
nonlinear dimensionality reduction methods in the text domain occurs in cases in which one
wants to use the positioning information between words rather than using the bag-of-words
approach. These methods will be discussed in the following sections.

"There does not seem to be a clear consensus on this issue. For the classification problem, slightly better
results have been claimed in [519] for the linear kernel. On the other hand, the work in [88] shows that
slightly better results are obtained with the Gaussian kernel method with proper tuning. Theoretically, the
latter claim seems to be a better justified because linear kernels can be roughly simulated by the Gaussian
by using a large bandwidth.



3.6.1.2 Generalizing Bag-of-Words to N-Grams

A bag-of-words kernel is the same as using linear SVD, because it uses the dot product
on the tf-idf representation. However, it is possible to enrich this approach by adding the
N-grams to the representation of the document. The N-grams represent the groups of IV
words, corresponding to the sequence of N consecutively occurring words in a document.
In an N-gram, this sequence of N words is treated as an indivisible entity, and becomes a
pseudo-term in its own right. It is possible to discover N-grams at the time of tokenizing
a text collection by allowing up to (N — 1) white spaces within a token. The N-grams can
often discriminate to some extent between different semantic ideas that are defined on the
same bag of words. For example, consider the following three short documents:

Document-1: The cat chased a mouse.
Document-2: The mouse chased a cat.
Document-3: The cat chased a rat.

Clearly, the first and third documents convey similar ideas, which can be captured only by
the sequence information. A bag-of-words kernel gives a perfect similarity score of 1 between
the first and second documents, even though the second document sounds quite different
compared to the first. However, when we examine® the 2-grams of the first document, we
obtain “the cat,” “cat chased,” “chased a,” and “a mouse.” The majority of the 2-grams
are different from those of the second sentence. On the other hand, the first and third
documents will share many 2-grams in common, which is what we want. Adding 3-grams
will further enrich the representation.

One could address this situation by simply adding N-grams to the feature represen-
tation and using linear SVD. However, in such a case, the enriched dimensionality might
expand significantly enough to exceed the number of documents in the collection. In such
a case, the complexity of SVD becomes prohibitive. Therefore, it is more efficient to first
compute the similarity matrix on the extended representation and then extract the reduced
representation directly. The maximum number of nonzero eigenvectors of such a matrix is
equal to the number of documents, although one can also drop very small eigenvectors.
Other than N-grams, one can also use skip-grams, which are generalizations of N-grams.
Both N-grams and skip-grams are discussed in detail in Sect. 10.2 of Chap. 10.

3.6.1.3 String Subsequence Kernels

String subsequence kernels [308] generalize the notion of k-grams to allow gaps inside them.
We can view them as k-subsequences in which all subsequences of length k& in the document
are considered. A decay parameter A < 1 is used to weight the importance of gaps in the
subsequence. If the first and last words are r units apart, the weight of that k-subsequence
is A" < 1. For example, consider the following sentence:

The hungry lion ran after the rabbit, who was too clever for the lion.

Just like k-grams, we can extract k-subsequences and add them to the representation, but
with appropriate weights. In this case, the weight of “the hungry” is A\, whereas that of “the
lion” is A%+ \. Note that “the lion” has two occurrences with different gaps, which accounts

8For simplicity, we are including stop words in the 2-grams.



for the two terms in its weight. Let the document containing the single sentence above be
denoted by A. Consider a different document B that has a weight of A2 for “the lion” in its
subsequence-based representation. Then, the kernel similarity between A and B contributed
by this particular subsequence will be A%(A\2 +\) = A* 4+ 3. This contribution is aggregated
over all the subsequences in the pair of documents at hand to create an unnormalized kernel
similarity value. The unnormalized kernel similarity is divided by the geometric mean of the
self-similarities (computed in the same manner) of the pairs of documents being concerned.
This type of normalization is similar to the cosine similarity, and it yields a similarity value
in (0,1).

As in the case of N-grams, ezplicit feature engineering can cause an explosion in the
dimensionality of the representation. In fact, in the case of subsequence-based representa-
tions, the problem is so much more severe than in the case N-grams, that it is impractical to
create an engineered representation even as an intermediate step for similarity computation.
In the case of k-subsequences, the interesting cases are those in which the value of k is at
least 4. Interestingly, it can be shown that this type of similarity can be computed using a
dynamic programming approach between the pair of documents without explicitly comput-
ing the engineered features. Before introducing this dynamic programming approach, we
will formalize the definition of the engineered representation.

Let X represent the set of all d terms in the lexicon. Then, this type of feature engineering
implicitly creates a representation over the feature space 2, which has d* possible values.
Let T = x1x2 . ..z, be a sequence corresponding to a sentence or a full document in which
cach z; is a token from the lexicon. Let @ = uq...u; € £* be a k-dimensional sequence
of words. Note that each possible k-dimensional sequence @ has a single dimension (and
corresponding coordinate value) in the engineered representation. Then, ®#(T) represents
the coordinate value of the dimension corresponding to @ in the engineered representation.
The value of ®7z(F) is obtained by determining all occurrences of the subsequence @ in
and adding the credit of this subsequence over these occurrences. The credit of a particular
occurrence of this subsequence is A, where [ > k is the length of the substring of Z that
matches T as a subsequence. Let i(1) < i(2) < ... < i(k) represent the indices of the tokens
in S so that u, = ;).

a(T) = > Aik) =)+ (3.33)

(1) <6(2) <. <i(k) it =)

Note that if one were to compute the engineered representation explicitly, then one would
have to compute ®3(Z) for each @ € ¥*. This is computationally infeasible even from a
storage point of view. However, one can use this definition in order to define the kernel
similarity between two sequences T = z1Z2...%y and ¥ = y1¥2...yp. Note that T and ¥
need not be of the same length (i.e., m # p). The kernel similarity K (Z,7) is computed as
follows:

K(z,y) = Z 7 (7)=(Y)

uexk

— Z Z A (F)+i(R)—i(1)—7(1)+2

[@exk]  [i(1)<...<i(k)ur=zim] [(1)<...<j(k)ur=y;()]

One would also need to normalize the above with the geometric mean of K(Z,T) and K (7,7)
in order to map the similarity to a value in (0,1). Since these values can be computed



in a similar way, we will focus only on the computation of K(Z,7). The aforementioned
summation has an exponential number of terms. Therefore, it would seem at first sight that
one has gained nothing over explicit feature engineering by directly computing the kernel
similarity rather than creating the engineered features. However, it turns out that this
similarity function can be computed efficiently using dynamic programming. To aid a proper
description of the dynamic programming computation, we subscript the kernel function with
the length of the matching subsequence. In other words, let K}, (Z,7) represents the kernel
similarity between T and ¥ using matching subsequences of length h. In order to compute the
kernel similarity over subsequences of length k, our goal is to compute K (Z,7). Therefore,
we have:

Ky®9) = Y, ®u(T)®a(y)

uexh

Z Z Z AR +5 () =i(1) =5 (1)+2

@esh] ()< ..<i(h)u=ai(y]  [H(1)<...<G(h):ur=(r)]

An additional function K} (Z,7) is defined that aids the recursive computation of the kernel
forall h e {1,2,...,k—1}:

K;,(7,9) = Z Z Z Amp—i(1) =i (1)+2

[@esh] [i(1)<...<i(h)upr=t,m]  [H(1)<...<j(R)ur=y;(m]

The main difference between K}, (Z,7) and K}, (%, y) is that i(h)+j(h) is replaced with m+p
in the exponent of \. In other words, the latter replaces the indices of the last matching
elements of T and 7 with the lengths of the two strings.

To facilitate a more general discussion in which different types of matchings between the
tokens of the two strings are allowed, we define a match function between a pair of tokens.
In the simplest definition, the match function, M (w,v), is 1 when w and v are the same,
and 0, otherwise:

M(w,v) = {é ii ;Z (3.34)

Although we have defined the match function in a rudimentary way here (to be consistent
with our earlier definition of ®(-) [308]), it is possible to define more general match functions
in which we have features associated with tokens (e.g., part-of-speech tag). In such cases,
the match function can be defined to be the similarity between the corresponding features.
Such methods are used in more complex applications like information extraction [68].

The dynamic programming approach uses recursive computation in which the kernel
similarity function is computed for subsequences of increasing length h from 0 to k. The
similarity functions over subsequences of length (h—1) are helpful in computing the similar-
ities over subsequences of length h. Let @ v denote the sequence obtained by concatenating
the token v at the end of sequence . The boundary initialization is as follows:

v,y
v

h(f’ )

=
=

0

S

[

N —

0  [if either T or 7 has less than h tokens]



Let yg denote the substring of ¥ from position a to position b. The recursive computations
based on this initialization are as follows:
1(®) _ o
K@ ow,g) = AK,(Z,9) + Y K (@7 ONO T2 M (w,y;) Vh=1,2... k-1
j=2

Denote by k' (zow.7)
1(y) )
K}g(f@ ’LU>§) = Kk(fay) + ZK;;,l(f, y{_l))‘gM(w’yj)
j=2

Here, I(y) denotes the number of tokens in 7. Furthermore, we have defined an additional
notation K;/(-,-) in the equation above, which we will use later to improve the efficiency of
this recursion. An immediate observation about this recursion is that the kernel similarity
computation over subsequences of length k can also be easily used to compute all the
similarities over subsequences of length 1...k — 1 as byproducts. Therefore, it is relatively
easy to create a composite kernel over subsequences over all lengths up to k by adding them
without much additional effort. This recursion requires O(kmp?) time.

3.6.1.4 Speeding Up the Recursion

One can reduce the running time further by defining an additional function K} (Z ¢ w, ),
which is one of the terms on the right-hand side of the above recursion:

1(m)
K}(T & w,7) ZKh V(@ T HNO TN (w, ;) (3.35)

By defining this function, one can modify the aforementioned recursive equations as follows:

Kl(T@wg®v) = K (T w,7) + NK,_(T,7) M(w,v) Yh=1,2...k—1
K,Z®w,y) =K}, (Z,79) + K (Z®w,y) Vh=1,2...k—1

1)
K@@ w,g) = Kp(®@9) + Y K (@7 A - M(w,y;)

j=2

This variant of the computation requires O(kmp) time.

One nice characteristic of this kernel function is that it is possible to change the match
function in order to incorporate complex linguistic features associated with tokens. For ex-
ample, consider a situation in which each token in T and 7 is associated with discrete features
like the token value itself, the part-of-speech, whether the token is an entity (cf. Chap. 12),
and so on. In such a case, one can change M (w,v) to be the number of features in which
the discrete feature value is the same. In fact, such an approach is used in the relation
extraction problem (cf. Sect. 12.3.3.2 of Chap. 12).

3.6.1.5 Language-Dependent Kernels

It is possible to encode the rules of the grammar of the specific language into the kernel
function by using the notion of probabilistic context free grammars. A context-free grammar
is a set of rules that encodes the rules of a specific language such as the following:



Sentence — NounPhrase VerbPhrase

NounPhrase — Determiner Noun
VerbPhrase — Verb NounPhrase

Noun — “lion”

Typically, thousands of rules may be required to encode a specific language. Given a sen-
tence, it is possible to parse the sentence into a hierarchical tree-like structure with the
above rules. This results in a constituency-based parse tree. Given two sentences, one can
compute the similarity between their parse trees with the use of convolution tree kernels.
Since the discussion of this kernel requires a deeper understanding of parse trees, it will be
deferred to Sect. 12.3.3.3 of Chap. 12.

3.6.2 Nystrom Approximation

One of the main problems with nonlinear dimensionality reduction is that the eigenvectors
of an n x n similarity matrix need to be determined. The space requirement is O(n?) and
the running time requirement is O(n?), which can be computationally prohibitive even for
modestly large values of n such as 1,000,000. A corpus containing 1,000,000 documents is
not considered extraordinarily large by modern standards.

It is possible to greatly speed up the dimensionality reduction process by subsampling
the rows of the document-term matrix, and then approximating the reduced kernel repre-
sentation with the Nystrom technique [501]. The basic idea is to first estimate the reduced
representation of the in-sample points and then fold-in the out-of-sample points on the
learned embedding. Although this will lead to inaccuracy in the randomized approximation,
the randomization can be turned into an advantage by using ensembles. The approach can
be extremely effective in a predictive setting where the predictive learning is repeated mul-
tiple times on different subsamples, and the predictions are averaged in an ensemble-centric
manner [9]. Repeated engineering of features with different samples actually improves the
averaged results of a predictive modeling algorithm because of the ensemble-centric effect
of variance reduction (see Sect. 7.2 of Chap. 7).

The first step is to sample a set of s rows from the corpus. The value of s is typically
determined by computational and space constraints. However, it is generally dependent on
the corpus distribution and is independent of the size of the corpus. In other words, one
can view s as a constant, although it is usually a large one like 2000. The dimensionality
k of the embedding (selected by the user) can be no larger than s. An in-sample similarity
matrix S;, of size s X s is constructed in which the (7, j)the entry is the similarity between
the ¢th and jth in-sample points. Similarly, an n X s similarity matrix S, is constructed in
which the (4, j)th entry is the similarity between the ith point with the jth in-sample point.
Then, the following pair of steps is used to first generate the embeddings of the in-sample
points and then generalize the in-sample embeddings to all points (including out-of-sample
points):

e (In-sample embedding): Diagonalize S;, = Q¥2QT. Retain the top-k eigenvectors
to create the matrices @y and X. The resulting k-dimensional representation of the
s in-sample points is available in the rows of QY. If there are fewer than k& nonzero
eigenvectors, then reduce the value of k to the number of nonzero eigenvectors. This
step requires O(s? - k) time and O(s?) space. Since s is a constant, this step requires
constant time and space.



e (Universal embedding): Let Uy denote the unknown n x k matrix containing the
k-dimensional representation of the all n points in its rows. Although we already know
the embeddings of the in-sample points, we will use the properties of the similarity
matrix in transformed space to derive all rows in a uniform way. Since the dot products
of the n points in Uy and in-sample points in QX are (approximately) contained in
the matrix S,, we have the following:

S, ~ Up(Qrp)” (3.36)
———
Transformed Dot Products

By postmultiplying each side with QkEgl and using Q{Qk = I, we obtain the
following:
Ur ~ S,QiE; (3.37)

Therefore, we have an embedding of all n points in k-dimensional space. This step
requires a simple matrix multiplication in time O(n - s - k), which is linear in the size
of the corpus.

It is noteworthy that the s in-sample rows in Uy are approximately the same as the s rows in
QrXr but not quite the same because of the approximation inherent in the dimensionality
reduction process. Therefore, it is preferable to use the in-sample rows from Uy, (rather than
QrXk) so that out-of-sample and in-sample rows are approximated in a similar way.

This approach can even be used for linear SVD. In linear SVD, the conventional approach
(see Sect. 3.2.2) is to use the d x d matrix DT D to discover the basis vectors, rather than
using the similarity matrix DDT to directly extract the embedding. However, the similarity
matrices are quite small when we use subsampling. The reason is that the sample size s
can be selected to around 20 times the target dimensionality of the reduced representation
rather than the input dimensionality of the lexicon. The typical target dimensionality of the
reduced representation in linear SVD for text is often of the order of 200. This means that
we can work with a sample size of about 4000 in many cases. Text can have a dimensionality
of a few hundred thousand words, which makes it costly to diagonalize the d x d matrix
DT D in comparison with diagonalizing the 4000 x 4000 similarity matrix.

Note that the entire reduction requires linear time in the size of the corpus, and it will
execute reasonably fast at sample sizes of the order of 4000 even for large collections. Typ-
ically, this type of dimensionality reduction is coupled with an ensemble-centric setting to
make repeated predictions with different transformations and then averaging the results [9].
High-quality predictive results can be obtained with such methods in both supervised and
unsupervised settings because of the ensemble-centric approach. In many cases, these re-
sults are not only more accurate but also more efficient in spite of the repeated executions
of an ensemble-centric approach. This is because each ensemble-centric run is often several
orders of magnitude faster than using a single run on a very large corpus, and averaging
the results over 20-25 runs still retains a computational advantage. An example of its use
in the unsupervised setting is provided in Sect. 4.8 of Chap. 4, and a discussion in the case
of the supervised setting is provided at the end of Sect.6.5.1 of Chap. 6.

3.6.3 Partial Availability of the Similarity Matrix

Nonlinear dimensionality reduction methods can be viewed as clever ways of converting
high-quality similarity functions into engineered features that are friendly to learning algo-
rithms. In many cases, such similarity functions are challenging to compute, which makes



their availability limited on a de facto basis. For example, the string subsequence kernels
require dynamic programming methods to compute similarities between pairs of strings.
Such methods are computationally expensive. In such cases, it is not realistic to assume
that the entire similarity matrix can be computed. For a corpus containing 10® documents,
one cannot expect to compute 10'2 pairwise similarities, which might require a few days.
However, it is possible to learn the embedding from only a subset of the entries. In cases,
where there is wide variation in the similarities across different parts of the matrix, it might
make sense to spread out the similarity computations randomly over the similarity matrix
S in order to learn as much as possible about the structure of the embedding. In other
cases, a domain expert might provide pre-specified similarities between pairs of documents,
and one has no control over which pairs were selected. In such cases, it is desired to engi-
neer a multidimensional feature representation that leverages partial information about the
similarity matrix. This is a more challenging setting than the Nystrom approximation of
the previous section, because entries of the similarity matrix have been subsampled, rather
than specific rows or columns.

Let S = [s;;] be an n x n similarity matrix, in which only a subset O of entries are
observed:

O = {(i,7) : si; is observed} (3.38)

One can assume that the matrix S is symmetric, and therefore the observed set of similarities
O can be grouped into symmetric pairs of entries satisfying s;; = s;;. It is desired to learn
an n X k embedding U for user-specified rank k, so that for any observed entry (i,7) the
dot product of the ith row of U and the jth row of U is as close as possible to the (i, j)th
entry, s;;, of S. In other words, the value of ||S — UUT||% should be as small as possible for
the observed entries in S. This problem can be formulated only over the observed entries
in O as follows:

k

Minimize J = E (sij — E Uiptjp)?

ij ipUijp
(i,5)€0 p=1

This problem is similar to the determination of factors in recommendation problems, and is
a natural candidate for gradient-descent methods. Let e;; = s;; — Z’;Zl UipUjp be the error
of any observed entry (i, ) from set O at a particular value of the parameter matrix U. On
computing the partial derivative with respect to w;,,, one obtains the following:

0.7 a ‘
G =2 Z (sij + 550 — 2> uipujp)(—tjm)  Vi€{l..n}me{l.. k}
j:(3,5)€0 p=1
=2 Y (e + i) (~ujm) Vie{l...n},me{l...k}
j:(¢,7)€0
=—4 > eijum Vie{l...n},me{l...k}
7:(4,7)€0

Note that s;; and sj; are either both present or both absent from the observed entries
because of the symmetric assumption. It is possible to express these partial derivatives in
matrix form. Let E = [e;;] be an error matrix, in which (i, j)th entry is set to the error
for any observed entry (4,7) in O, and 0, otherwise. When a small number of entries are
observed, this matrix is a sparse matrix. It is not difficult to see that the entire n x k matrix



of partial derivatives {32‘]

} i is given by —4FEU. This suggests that one should randomly
X

im

initialize the matrix U of parameters, and use the following gradient-descent steps:
U<U+aEU (3.39)

Here, a > 0 is the step size, which one can follow through to convergence or another stopping
criterion (discussed later). Note that the error matrix E is sparse, and therefore it makes
sense to compute only those entries that are present in O before converting to a sparse data
structure. To improve stability of the learner, a small amount of regularization can also be
used.

U<=U(l—-Xa)+aEU (3.40)

Here, A > 0 is a small regularization parameter.

When working with a sparsely specified similarity matrix, it is possible to determine only
the most dominant features accurately. In general, the use of any rank k > |O|/n will cause
overfitting. For example, if we have a corpus in which the number of specified similarities is
15 times the number of documents, we can realistically learn an embedding of (much) less
than 15 dimensions. To determine the optimal rank k of the factorization, one can hold out
a small subset O; C O of the observed entries, which are not used for learning U. These
entries are used to test the squared error Z(z} J)eo e?j of the matrix U learned using various
values of k. The value of k at which the error of the held out entries is minimized is used.
Furthermore, one can also use the held out entries to determine the stopping criterion for
the gradient-descent approach. The gradient-descent is terminated when the error on the
held out entries begins to rise. The recovered matrix U provides a k-dimensional embedding
of the data, which can be used in conjunction with machine learning algorithms.

3.7 Summary

Many forms of dimensionality reduction can be viewed as matrix factorization methods.
Singular value decomposition, nonnegative matrix factorization and PLSA fall in the cate-
gory of low-rank approximation methods. Singular value decomposition has the geometric
advantage of orthogonal eigenvectors, which enables out-of-sample embeddings more effec-
tively. It can also address the problem of synonymy well and that of polysemy to a limited
extent. On the other hand, it is not semantically interpretable. Nonnegative matrix fac-
torization and PLSA, which are almost equivalent, are semantically interpretable and can
handle both synonymy and polysemy very well. On the other hand, they cannot fold-in
out-of-sample documents. Latent Dirichlet Allocation is a generalization of PLSA that uses
a Dirichlet prior on the topic distribution of documents in order to create a fully generative
model that can fold-in new documents quite as effectively.

Nonlinear dimensionality reduction methods can be viewed as generalizations of SVD
that use similarity functions other than the dot product to embed the points in a trans-
formed space. By choosing the right type of similarity function, one can often engineer more
expressive features such as those that incorporate sequential word ordering information in
the documents. In this sense, nonlinear dimensionality reduction is often an exercise in fea-
ture engineering. Although nonlinear dimensionality reduction methods are computationally
inefficient, one can often speed them up with the use of subsampling methods.



3.8 Bibliographic Notes

Singular value decomposition has been in use in various forms since the 1800s, although
some of the key proofs of the underlying results are contained in the seminal work of Eckart
and Young [149]. The linear algebra book by Strang [460] is an excellent resource on the
topic. The effectiveness of SVD in removing noise from high-dimensional similarity search
was discussed in [5]. In the text domain, singular value decomposition is referred to as
Latent Semantic Analysis (LSA). The use of LSA in text data was pioneered in the work
by Deerwester et al. [148]. Subsequent experiments on TREC data sets were reported by
Dumais [145, 146].

Nonnegative matrix factorization was proposed in [276]. Projected gradient-descent
methods for nonnegative matrix factorization are proposed in [294]. An excellent expo-
sition on the interpretability of nonnegative matrix factorization is provided in [277]. There
are several generalizations of nonnegative matrix factorization, such as the use of orthogo-
nal factors [138], semi-nonnegativity [136], and convexity [136]. Probabilistic latent semantic
analysis is discussed in [224, 225]. The relationship of PLSA to nonnegative matrix factoriza-
tion was shown in [137, 185, 276]. Latent Dirichlet Allocation was proposed independently
in the fields of population genetics [388] and text mining [54]. The approach was also gener-
alized to the dynamic setting [55]. Detailed evaluations of Latent Dirichlet Allocation may
be found in [29, 493]. The work in [29] investigates the effect of hyper-parameters, when
two symmetric Dirichlet distributions are used to model the document-topic and topic-term
distributions. The work in [488] provides insights on the effects of using either a symmetric
or asymmetric Dirichlet distribution for document-topic and topic-term distributions. An
edited book on text mining [14] contains a dedicated chapter on dimensionality reduction
and topic modeling techniques. A review of probabilistic topic models may be found in [52].

Nonlinear dimensionality reduction methods have a rich history in multidimensional
data and include methods like Kernel PCA [436], ISOMAP [473], Local Linear Embedding
(LLE) [417] and spectral clustering [314]. The Nystrom technique for kernel dimensionality
reduction was proposed in [501]. Local linear embedding has been used to learn semantic rep-
resentations of words in text [417]. In recent years, neural networks and autoencoders have
also seen an increased amount of interest for nonlinear dimensionality reduction [218]. The
word2vec [341] and doc2vec [275] techniques are specific neural network-based embedding
methods that retain the linguistic context of words in the embedding. In text applications,
structured kernels are very useful when text is interpreted as a sequence. Details of the
dynamic programming algorithm for string subsequence kernels may be found in [308]. A
survey of structured kernels may be found in [180]. Similarity measures for short segments
of text are discussed in [337]. A Web-based kernel similarity function was studied in [418],
in which queries to a search engine are used to evaluate the similarities between short text
snippets. The Nystrom method was proposed in [501], and its use in the ensemble-centric
setting is advocated in [9].

3.8.1 Software Resources

An R package for LSA may be found in [557], whereas a Python implementation from scikit-
learn [550] may be found at [558]. Both implementations can handle sparse representations
of text. A Java implementation of LSA may be found at Weka [559]. Several efficient imple-
mentations of SVD/LSA with the Lanczos algorithm in ANSI Fortran-77 and ANSI C may
be found in the SVDPACK library [567]. Python implementations of various types of matrix
factorization methods may be found at scikit-learn [560]. A Python implementation of La-



tent Dirichlet Allocation may also be found at that site [561]. Another free Python library of
topic modeling techniques is gensim [401], which includes representation learning methods
like word2vec and doc2vec. CRAN [562] also contains several packages for topic modeling.
In particular, the packages topicmodels and lda are noteworthy. Many of these packages
build on the text mining package tm at CRAN. A detailed discussion of the topicmodels
package may be found in [226]. The C code from the original authors of the LDA paper is
also available [563]. The MALLET toolkit [605] provides several fast implementations of
topic models. The kernlab package in R [255] from CRAN provides the ability to perform
nonlinear dimensionality reduction. Numerous manifold learning packages in Python are
also available from scikit-learn [564]. The Nystrom method of kernel approximation is also
available [568]. However, the kernel functions available are designed for multidimensional
data rather than sequence data. Since mining of sequential data is the primary use-case
of kernels in the text domain, one would need to augment and modify this (open-source)
Nystrém implementation with a separate implementation of substring kernels in order to
use it. The word2vec tool is available [565] under the terms of the Apache license. The
TensorFlow version of the software is available at [566].

3.9 Exercises

1. Consider the following matrix:

car truck carrot apple

Document-1 1 1 1 1
D= Document-2 1 1 1 1
Document-3 0 0 1 1
Document-4 0 0 1 1

(a) Construct a rank-2 SVD of this matrix. You can use any off-the-shelf software
you like. What is the error of the decomposition?

(b) Perform a rank-2 nonnegative matrix factorization of this matrix with the Frobe-
nius norm. What is the error of the decomposition?

(c) Which of the factorizations is more easily interpretable? Can you put names
to the topics of the two latent components in the case of SVD? How about
nonnegative matrix factorization?

2. Let U and V be n x k and d x k matrices, respectively. Consider the unconstrained
optimization problem of minimizing the Frobenius norm ||D—UVT||%,, which is equiv-
alent to SVD. Show that an infinite number of alternative optimal solutions for U and
V exist in which the columns of U and V' are mutually non-orthogonal.

3. Consider the unconstrained optimization problem of minimizing the Frobenius norm
||D — UVT|2, which is equivalent to SVD. Here, D is an n x d data matrix, U is an
n X k matrix, and V is a d x k matrix.

(a) Use differential calculus to show that the optimal solution satisfies the following
conditions:

DV =U0vTv
DU =vUTU
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(b) Let E = D — UVT be a matrix of errors from the current solutions U and V.
Show that an alternative way to solve this optimization problem is by using the
following gradient-descent updates:

U<U-+aEV
V <V +4+aETU

Here, a > 0 is the step-size.

(¢) Will the resulting solution necessarily contain mutually orthogonal columns in
U and V?

Suppose that you change the objective function of SVD in Exercise 3 to add penalties
on large values of the parameters. This is often done to reduce overfitting and improve
generalization power of the solution. The new objective function to be minimized is
as follows:
T2 2 2
J =D = UV g + AUl + V)

Here, A > 0 defines the penalty. How would your answers to Exercise 3 change?

. Without using SVD, show that the nonzero eigenvalues of DT D and DD are the

same for any matrix D. [Hint: The proof is no more than three or four lines.]

. Suppose that you are allowed to assume that at least one of the optimal solutions of

the objective function in Exercise 3 must have mutually orthogonal columns in each
of U and V, and in which each column of V' is normalized to unit norm.

(a) Use the optimality conditions of Exercise 3(a) to show that U must contain
the largest eigenvectors of DD in its columns and V must contain the largest
eigenvectors of DT D in its columns. What is the value of the optimal objective
function?

(b) Show that the (length-normalized) optimal value for V that maximizes ||[DVT]||%
also contains the largest eigenvectors of DT D like (a) above. You are allowed to
use the same assumption of orthonormal columns in V' as above. What is the
value of this optimal objective function? What does this tell you about the energy
preserved by the SVD projection?

(¢) Show that the sum of the optimal objective function values in (a) and (b) is a
constant that is independent of the rank k of the factorization but dependent
only on D. How would you (most simply) describe this constant in terms of the
data matrix D?

Suppose that you are given an n X n matrix containing the squared Euclidean dis-
tances between n data points rather than the similarities. However, you do not know
the coordinates of these data points. How would you use this matrix to generate an
embedding of these n data points into multidimensional space?

. Implement the algorithms for SVD and nonnegative matrix factorization introduced

in the chapter.

. Convert the solution to Exercise 1(b) into a three-way factorization with L;-

normalization. What is the significance of the diagonal matrix?

Suppose you have a string kernel in which objects ¢ and j have similarity s;;. Show
that the Euclidean distance between embedded objects i and j is /si + 555 — 25;5.



Chapter 4

Text Clustering

“Taxonomy is described sometimes as a science and sometimes as an art, but
really it’s a battleground.”—Bill Bryson in A Short History of Nearly Everything

4.1 Introduction

The problem of text clustering is that of partitioning a corpus into groups of similar docu-
ments. Clustering is an unsupervised learning application because no data-driven guidance
is provided about specific types of groups (e.g., sports, politics, and so on) with the use of
training data. Clustering has numerous applications because of its ability to organize large
collections of documents into topical groups:

1. Web portals: Web portals often organize documents into clusters based on content
similarity, which helps the users in navigating Web pages of interest. In many cases,
this organization is hierarchical, in which the higher-level clusters cover broader topics,
whereas the lower-level clusters cover fine-grained topics. Such hierarchical organiza-
tions are also referred to as tazonomies.

2. News portals: Many providers of news content need to organize the documents by
topic, so that users are able to find news articles of their interest. As in the case of
Web portals, the organization is often hierarchical.

3. Intermediary for other applications: Clustering is often used as an intermediate step
in other applications like outlier analysis and classification. Clustering is a type of
summarization that helps in building compact predictive models for various problems.

In many settings such as that of news wire services, examples of specific groups (e.g., sports
or politics) may be available. This data is then used to categorize other documents into
these pre-defined groups. This setting is referred to as supervised learning, and the examples
of categorized documents are collectively referred to as training data. These methods are



introduced in Chap.5. The terminology “supervised” refers to the fact that one can use
the training examples to guide the grouping process, just as a teacher guides her students
towards a specific goal. However, clustering is useful in applications in which no prior
training examples are available, and is therefore an unsupervised method.

Clustering methods are either flat or hierarchical. In flat clustering, documents are par-
titioned into a set of clusters in one shot, and no hierarchical relationships exist between
clusters. In hierarchical clustering, the clusters are organized in tree-like fashion as a taxon-
omy. For example, the sports-related documents could be at a higher-level cluster and the
basketball/baseball clusters could be among the many children of the sports-related cluster.
The basketball cluster could have further children containing documents related to basket-
ball items, tournaments, clubs, and so on. Hierarchical clustering is of special importance
in the text domain because of its ability to enable intuitive browsing in Web applications.

It is often useful to perform various types of feature selection and feature engineering
tricks to improve the clustering process. Feature selection refers to removal of irrelevant
words, whereas feature engineering refers to the transformation of text into a representation
that is more amenable for clustering. This chapter will discuss several such techniques.

Clustering methods are closely related to dimensionality reduction. In particular, most
nonnegative matrix factorization methods and topic models can be leveraged for clustering
both words and documents. Many of these models are mized membership models in which
the documents are assumed to be generated by multiple mixture components containing
the various topics. The basic assumption is that the corpus is defined by certain core top-
ics (e.g., Arts, Politics, Sports), and a document may contain components associated with
multiple topics. Many matrix factorization methods (like PLSA) exhibit these characteris-
tics. However, if an application demands a hard partitioning of the documents into clusters,
this creates some additional requirements for disambiguation of cluster membership during
post-processing. The natural solution in such cases is to modify topic models with more
constraints that force this type of disambiguation early on in the modeling. Such methods
are also referred to as co-clustering. This chapter will discuss matrix factorization methods,
the k-means method, hierarchical methods, and probabilistic methods for clustering. Clus-
tering is closely related to the design of similarity functions, because most deterministic
methods like k-means leverage similarity functions to construct clusters.

The effectiveness of clustering algorithms can be significantly improved with the use
of ensemble methods. In some cases, it may be useful to cluster the text as sequences,
particularly when the documents are short. In such cases, kernel methods can be used for
feature engineering in an implicit or explicit way. Such sequence-centric methods can also
be combined with subsampled ensembles to improve clustering quality. Furthermore, the
clustering and classification problems are closely related, and one can use this fact in order
to leverage classification algorithms for clustering.

4.1.1 Chapter Organization

This chapter is organized as follows. The next section studies several feature selection and
feature engineering methods for text clustering. Section 4.3 studies the use of topic models
for text clustering. Section 4.4 introduces the traditional mixture model for clustering. The
k-means algorithm is discussed in Sect. 4.5. Hierarchical clustering algorithms are discussed
in Sect. 4.6. Clustering ensemble methods are discussed in Sect.4.7. The clustering of text
as sequences is discussed in Sect. 4.8. The use of classification algorithms for clustering is ex-
plored in Sect. 4.9. Section 4.10 introduces techniques for clustering evaluation. Section 4.11
gives a summary.



4.2 Feature Selection and Engineering

Text data is high dimensional, and many words are irrelevant for clustering. The removal of
such words is referred to as feature selection. Furthermore, the vector-space representation
does not incorporate information about the sequential ordering of words. Such information
is incorporated by using feature engineering techniques. We distinguish between these two
classes of techniques as follows:

1. In feature selection techniques, the irrelevant features are dropped before applying
the clustering algorithm. Such an approach improves clustering quality because a
significant amount of noise is removed. Feature selection methods always reduce the
dimensionality of the data.

2. In feature engineering techniques, the features are transformed to a new representation
in which simple clustering algorithms like the k-means method can work much more
effectively. In some cases, the representation of the data might change in a fundamental
way (e.g., sequences to vector-space representation).

Methods like singular value decomposition (SVD) and latent semantic analysis (LSA) are
somewhere in the middle, because they use only linear transformations on the features,
and the primary advantage of the representation is obtained by dropping the lower-order
(transformed) features. In the following, we will provide an overview of the different feature
selection and engineering techniques.

4.2.1 Feature Selection

Feature selection methods remove the irrelevant words in the document collection in order to
improve the effectiveness of the clustering process. Note that the removal of stop words and
the inverse document weighting frequency (idf) of words is also a form of feature selection.
However, these are rather rudimentary techniques that only use the raw frequencies of
words in order to make judgements about their relevance. It is possible to improve on
these methods by carefully evaluating the consistency of the features with intra-document
similarities. One can also use any of the following feature selection methods as feature
weighting methods.

4.2.1.1 Term Strength

The basic idea underlying term strength [498] is that a term is semantically relevant when 4t
has a higher probability of co-occurrence in similar pairs of documents. Two documents are
considered to be sufficiently similar, if the cosine similarity between them is greater than a
pre-defined similarity threshold ¢. Then, the term strength of ¢; is defined as the fraction of
such pairs in which the term occurs in the second member of the pair, given that it occurs
in the first member. Therefore, the term strength S(¢;) for a term t; between documents
X and Y is defined as follows:

S(tj) = P(t; € X|t; € Y,cosine(X,Y) > 9) (4.1)

It is relatively straightforward to compute the term strength by sampling pairs of documents,
selecting those that satisfy the similarity threshold, and then estimating the conditional
probability in a data-driven manner. Features with low term strength are removed. The
aforementioned computation includes the impact of the (evaluated) term ¢; in the similarity



calculations, which favors high-frequency terms. However, some minor changes [498] can
remove the impact of the evaluated term.

4.2.1.2 Supervised Modeling for Unsupervised Feature Selection

Supervised modeling techniques are sometimes used for feature selection in unsupervised
problems like clustering and outlier detection. Although the following technique was pro-
posed [379] for unsupervised feature selection and weighting in traditional multidimensional
data, it can also be used for text. We present a slight adaptation of the original idea [379]
to account for the sparse representation of text.

The basic idea is to decompose the feature selection into d different prediction problems,
where d is the dimensionality of the data. A feature that is largely unrelated to the remaining
data set cannot be meaningfully predicted by the other (d—1) features. Therefore, we create
a classification problem (see Chap.5) in which the presence of absence of the jth term ¢;
in a document is a binary class variable. The performance of an off-the-shelf classifier can
be used to compute the relevance of this feature because relevant features can be predicted
more accurately from other features. The vector space representation of the remaining
terms is used to represent the document. This type of classification problem is typically
an imbalanced learning problem because the term ¢; is unlikely to be present in most
of the documents. In imbalanced settings, many classifiers rank instances based on their
propensity to belong to the minority class, and the ranking quality is evaluated using a
measure referred to as the Area under Curve (AUC) of the Receiver Operating Characteristic
(ROC) (see Chap. 7). The AUC lies in (0, 1), and a classifier that ranks instances randomly
would be expected to receive an AUC of 0.5. Such a scenario would occur for a feature
that is poorly related to the remaining features and is unlikely to help in creating coherent
clusters. Therefore, the feature relevance R(t;) is given by the additional AUC beyond the
random performance of 0.5:

R(t;) = max{AUC(t,) — 0.5,0} (4.2)

Here, AUC(t;) is the AUC of the classifier that uses term t; as the target class. Features
with low relevance are removed.

The main problem with this technique is that it requires the training of one classification
model for each feature. Therefore, if the data contains a large number of features, as in the
text domain, it becomes rather difficult to use this approach. A more efficient alternative
is to divide the data into K random subsets of features, where K is a user parameter. We
use (K — 1) subsets of features for training, and the remaining subset for prediction. Such
an approach requires only K applications of the classifier.

4.2.1.3 TUnsupervised Wrappers with Supervised Feature Selection

The aforementioned methods are filter methods because the quality of a feature is evaluated
independently of the specific clustering algorithm being used. In wrapper methods, we wrap
a clustering algorithm around the feature selection process. Therefore, the feature selec-
tion is tightly integrated with the clustering method at hand. Furthermore, the approach
transforms unsupervised feature selection to supervised feature selection (cf. Sect.5.2 of
Chap. 5). The basic approach combines unsupervised clustering and supervised feature se-
lection method with the following two steps:

1. Use clustering algorithm with current feature set F' to partition corpus into k clusters.



2. Treat the cluster label of a document as its class. Apply any of the supervised feature
selection algorithms discussed in Chap. 5 on feature set F' and prune it if needed.

It is also possible to iterate on these steps, although a single application of these steps
is often sufficient. A specific example of such an algorithm that combines the expectation-
maximization (EM) clustering algorithm with the supervised x?-statistic is provided in [291].
This work also shows how such methods can also be used for feature weighting.

4.2.2 Feature Engineering

In contrast to feature selection, feature engineering methods transform the data to get the
most out of clustering methods. Matrix factorization methods are linear feature engineering
methods that work well in practice. In the unsupervised setting, the primary goal of such
methods is to reduce the noise effects of synonymy and polysemy. In cases where it is desired
to also add linguistic knowledge (i.e., word ordering knowledge) into the engineered features,
nonlinear dimensionality reduction methods are required.

Many feature engineering methods exhibit a duality in the sense that they can be used
to either transform documents into multidimensional space, or they can be used to trans-
form words in the same way. For example, all matrix factorization methods simultaneously
produce an embedding of documents and an embedding of words with the factor matri-
ces. In nonlinear embedding methods, the ability to create a word embedding or document
embedding depends on the specific model that is used. Nonlinear dimensionality reduction
can be achieved either with kernels or with neural networks. Examples of the latter include
word2vec [341] and doc2vec [275]. Such methods are discussed in Chap. 10.

4.2.2.1 Matrix Factorization Methods

Matrix factorization methods perform an approximate decomposition of an n X d document-
term matrix D into two n x k and d x k matrices U and V, respectively, so that the following
condition is satisfied:

D~UVT (4.3)

The rank k is typically chosen to be much smaller than both n and d. Numerous matrix
factorization methods are discussed in detail in Chap. 3. The matrix factorization problem
is typically posed as an optimization problem over minimizing the aggregate squared error
of the entries in (D — UVT). In addition, different types of constraints on U and V can
be used to regulate the properties of these matrices. Examples of various forms of matrix
factorization include singular value decomposition, nonnegative matrix factorization, and
probabilistic latent semantic analysis. The rows of the matrix U can be used as the document
embeddings and the rows of the matrix V can be treated as the word embeddings. When
using the factorization to create document embeddings, one scales the columns of V' to unit
norm and adjusts the columns of U accordingly (see Sect. 3.1.2 of Chap. 3). Similarly, when
using the factorization to create word embeddings, one scales the columns of U to unit norm
and adjusts the columns of V' accordingly. Using this approach makes the corresponding
embeddings sensitive to their frequencies in the collection.

The primary gain from these feature engineering methods is achieved by using a rank k
that is much less than min{n,d}. The typical value of k used in most matrix factorization
methods is in the low hundreds, whereas the value of d is often in the range of hundreds
of thousands. Furthermore, the value of & may vary with the collection at hand; for small
collections or lexicon sizes, the value of k£ will be smaller. The low-rank factorization creates



a residual error in Eq.4.3, which is observed only as an approrimate equality. In such
cases, the noise effects of synonymy and polysemy are removed from the collection, and
the clustering tendency of the corpus improves. In other words, the approximation actually
improves the representation quality. A detailed discussion of this phenomenon is provided
in Chap. 3. One can apply a k-means algorithm on the rows of U to cluster documents and
a k-means algorithm on the rows of V' to cluster words.

Different types of matrix factorizations have different advantages from a feature engi-
neering point of view. SVD is good at efficiently representing out-of-sample documents by
a simple projection operation. Nonnegative matrix factorization and PLSA provide seman-
tically interpretable representations, which can be directly used for soft clustering in which
each document is associated with a set of probabilities of belonging to various clusters. Such
methods are useful in collections with highly overlapping clusters. These issues are discussed
in Sect. 4.3.

4.2.2.2 Nonlinear Dimensionality Reduction

Nonlinear dimensionality reduction methods are particularly well suited to creating em-
beddings from short texts in which linguistic/sequence knowledge is incorporated in the
embedding. It is particularly important to use knowledge about the sequential ordering
of words when working with short texts because the data is too sparse to be used effec-
tively with a vector-space representation. However, unlike linear dimensionality reduction
methods, which simultaneously provide word embeddings and document embeddings, these
methods are optimized for either document embeddings or word embeddings. Kernel meth-
ods are best suited to the creation of document embeddings although these methods can
also be generalized to create word embeddings, if suitable similarity functions can be defined
between words with the use of sequence information. In all these cases, the key is to create
a high-quality similarity matrix between the objects.

Nonlinear dimensionality reduction methods are discussed in Sect. 3.6 of Chap.3. The
basic idea is to perform an approximate rank-k diagonalization of the nm X m similarity
matrix S as § = QkEng and then extract QX as the embedding. When the size n of
the corpus is large, such an approach can be space- and time-prohibitive. In such cases, The
Nystrom sampling method of Sect. 3.6.2 can be used. Although this type of sampling method
loses some accuracy, these methods become extremely powerful when they are combined
with sampling-based clustering ensembles. A specific example of such an approach in the
clustering context is provided in Sect. 4.8.

4.2.2.3 Word Embeddings

For word-clustering applications, word embeddings are required that require some knowl-
edge of the positioning information between words. The simplest approach is to use an 2-
gram embedding. For each pair of terms ¢; and ¢; the probability P(t;|t;) that term ¢; occurs
just after ¢; is computed. A matrix S is created in which S;; is equal to [P(t;|t;)+P(t;|t:)]/2.
Values of S;; below a certain threshold are removed. The diagonal entries are set to be equal
to the sum of the remaining entries in that row. This is done in order to ensure that the
matrix is positive semi-definite. The top-k eigenvectors of this matrix can be used to gen-
erate a word embedding. Since the word space is large, the sampling technique (discussed
above) may need to be leveraged. One can generalize this approach by using skip-grams
with varying gaps in the modeling process. The linguistic power in the embedding depends
almost completely on the type of word-word similarity function that is leveraged. The gen-



erality of the approach arises from the fact that one can even incorporate linguistic prior
knowledge by using semantic databases like WordNet [347] to further refine the similarity
matrix S. In recent years, neural network methods [47, 275, 341] like word2vec and doc2vec
have also become increasingly popular for creating word embeddings (cf. Chap. 10).

4.3 Topic Modeling and Matrix Factorization

Chapter 3 introduces topic models from the perspective of matrix factorization and latent
semantic analysis. In this section, we introduce the relationship between these models and
clustering. All forms of nonnegative matrix factorization and Latent Dirichlet Allocation
(LDA) can be used to generate overlapping clusters from the collection.

4.3.1 Mixed Membership Models and Overlapping Clusters

Topic models are inherently mixed membership models in which each document is gen-
erated by one or more topics or aspects. Although one can treat an aspect as a cluster,
this point of view leads to clusters that are highly overlapping both in terms of document
membership and vocabulary. One possible solution is to use the matrix U from the fac-
torization D ~ UV to assign each document (row of U) to the topic that has the largest
positive coordinate value in U. However, documents (rows of U) that contain multiple topics
(strictly positive coordinates) do logically belong to multiple clusters and it is not fair to
force a disambiguation under such circumstances. For example, consider a document col-
lection containing 100 documents about cats, another 100 about cars, and 30 documents
discussing both cats and cars. From the perspective of topic models, this collection naturally
contains two topics and the final set of 30 documents can be expressed as a combination of
two topics. However, if each document is forced to be in a single cluster, a larger number of
clusters are required to express the same collection, because the final set of 30 documents
can be viewed as a completely distinct cluster. Therefore, there are two options in leveraging
methods like nonnegative matrix factorization for clustering:

1. One can use the highly positive coordinates in U to report overlapping membership of
documents in clusters as well as the topical vocabulary from the columns of V. This
point of view inherently accepts mixed membership of documents in clusters.

2. If a single-membership clustering is required, can treat the matrix factorization pro-
cess as a feature engineering step and apply a k-means algorithm on the engineered
representation. The rationale for this view is explained in Sect.4.2.2.1. Typically, the
number of clusters would be larger than the rank of the factorization because of the
additional clusters created by combinations of topics.

One good property of topic modeling techniques is that they allow the simultaneous dis-
covery of word clusters and document clusters, even if they are highly overlapping.

4.3.2 Non-overlapping Clusters and Co-clustering: A Matrix
Factorization View

Even though most clustering methods assign each document to one cluster, they do allow
heavy term overlap across clusters. For example, a k-means algorithm assigns each document
to only one cluster, but the frequent terms in the centroids might contain heavy overlaps
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Figure 4.1: Mixed-membership versus single-membership models

across multiple clusters. An extreme view at the other end of the spectrum is that of co-
clustering in which each cluster of a matrix is defined as a subset of rows and columns.
Furthermore, no overlap is allowed among the different row sets and column sets. One
can view co-clustering as the process of re-arranging the rows and columns of a matrix so
that most of the positive entries lie on blocks around the diagonal. In fact, the overlaps
among documents/terms in different types of clustering methods can be understood in
terms of this re-arranged structure. In Fig.4.1, we have shown three common cases of
clustering with varying levels of overlap between document clusters and word clusters. Even
though most clustering methods strictly partition the data, they do allow overlap in the
cluster vocabulary. In most of these cases of Fig.4.1b, the cluster vocabulary is derived as
a secondary output of the clustering process. However, in cases of Fig.4.1a, c, the cluster
vocabularies are recovered as first-class citizens along with clusters.

One can also modify nonnegative matrix factorization to also handle cases shown in
Fig.4.1b, c. Let D be an n x d document-term matrix, and let U and V be the n x k
document factors and d x k term factors, respectively. In order to force the clusters to
be non-overlapping but not the terms (Fig.4.1b), the non-negative matrix factorization
formulation of Sect. 3.3 can be modified as follows:

Minimize v ||D — UVT|%
subject to:
UV >0
Ut =1

Most clustering algorithms implicitly try to optimize an objective function of this type. In
fact, it has been shown [138] that this objective function is equivalent to that used by the
k-means algorithm! One can view each of the factors in an analogous way to a cluster. The
rows of matrix U contain the cluster memberships and the columns of matrix V contain
the cluster representatives (centroids). By forcing orthonormality and non-negativity at the
same time, we are ensuring that only a single coordinate in each row of U has a value of



1, which corresponds to the membership of that point in the corresponding cluster. Fur-
thermore, the k& columns of V' contain the k nonnegative cluster representatives. Therefore,
the factorization represents each point by its closest cluster representative, and the objec-
tive function minimizes the sum of squared errors of this approximation. As discussed in
Sect. 4.5, this objective function is equivalent to that of the k-means algorithm. Although
the k-means algorithm does not impose a nonnegativity constraint on the cluster represen-
tatives, this constraint is redundant, because the optimal cluster representative can never
have a negative component if the data matrix is nonnegative.

If one wishes to force the terms of each cluster to be non-overlapping, then orthogonality
can also be forced on the columns of V:

Minimize yv||D — UVT|%
subject to:
U,V >0
Columns of U are mutually orthogonal

Columns of V' are mutually orthogonal

SVD also forces orthogonality on the factors. However, this optimization problem is different
from SVD because of the nonnegativity of the factors, which makes it more difficult. The
combination of orthogonality and nonnegativity implies that each row of both U and V
has at most a single positive value. This type of mutually exclusive membership of both
documents and words in clusters is shown in Fig.4.1c.

One can equivalently formulate this problem in standardized three-way factorization by
normalizing U and V according to the approach discussed in Sect. 3.1.2 of Chap. 3:

UVT = Q2 PT (Q and P have normalized columns and ¥ is diagonal)
The equivalent optimization problem (with normalized matrices) is as follows:

Minimize ¢ px||D — QEP"||%
subject to:
P,Q, x>0
QTQ =1
PTP=1]
Y is diagonal

Here, the diagonal matrix plays the role of pulling out the scaling factors from the columns
of U and V according to the approach discussed in Sect. 3.1.2.

This problem can be solved [138] even in the case where ¥ is not diagonal or is not a
square matrix, and is referred to as tri-factorization. This generalization allows a different
number k, of document clusters (captured by the n x k; matrix @) and word clusters
(captured by the d x k, matrix P). The interactions among the document clusters and
word clusters are captured by the k, x k, matrix ¥. Tri-factorization is a variation of topic
modeling, and is more general than strict co-clustering. In tri-factorization, an exact one-to-
one correspondence does not exist between the document clusters and word clusters because
it is regulated by X.

We will first provide a solution for the (more general) optimization problem of tri-
factorization in which X is neither diagonal nor square. Later, we will see that the special



case of diagonal factors can be solved simply by using a different initialization. In such a
case, () is an n x k, matrix, ¥ is a kg x k, matrix, and P is a d x k, matrix. The optimization
parameters of this problem can be obtained by using the following iterative steps:

DPYT), _

Qiq <= Qig M Vie{l...n},Vge{l...ks}
DTQY);

Pjp<:Pjp (‘P}IDT‘DQ,Z& VJE{ld},VPE{lkp}
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These steps are iterated to convergence. The matrices are all initialized to random nonneg-
ative values in (0,1), although it is possible for a particular initialization point to arrive
at a local minimum. For example, it is possible to solve the constrained problem in which
Y is square and diagonal by choosing an initialization point in which ¥ is diagonal. The
orthogonality constraints tend to make this approach sensitive to the presence of local min-
ima. Better results can be achieved by relaxing the orthogonality constraints slightly [189]
or by incorporating them as constraints in the objective function. Another approach, which
is discussed in the next section, is to transform the problem into that of graph partitioning.

4.3.2.1 Co-clustering by Bipartite Graph Partitioning

One can pose the problem of co-clustering as a bipartite graph partitioning problem. The
basic idea is to create a bipartite document-term graph in which a node exists for each
document and also for each term. Edges exist only between document nodes and term
nodes. An undirected edge is added to the graph between a term node and document node
if and only if that term occurs between the document. The weight of the edge is equal to
the normalized frequency of the term. Then, it is easy to see that a partitioning of this
graph simultaneously yields both document clusters and word clusters. This situation is
shown in Fig. 4.2 in which each demarcated community contains both document clusters and
word clusters. Therefore, this approach transforms the problem of co-clustering to that of
community detection in graphs. The reader is referred to [2] for several community detection
methods in graphs. A commonly used method is that of spectral graph partitioning [132],
which turns out to be closely related to singular value decomposition in the special case of
bipartite graphs. The following description of spectral clustering is atypical and is applicable
only to the case of bipartite graphs. A more general description for all types of graphs may
be found in [361].

The basic idea is to treat the n x d document-term matrix D as the adjacency matrix of
the bipartite graph in which the relevant n x d portion with edges is used rather than the
full (n+ d) x (n+ d) adjacency matrix. Let the sum of the term frequencies in document ¢
be d;, and let the aggregate frequency of term j be f;. Then, the matrix D is normalized
by dividing its (i, j)th entry with /d; - f;, and the normalized matrix be denoted by Dy.
This matrix is approximately decomposed with rank-p SVD as follows:

Dy ~ QxPT (4.4)

Here, @ is an n X p matrix and P is a d X p matrix. The value of p is much less than
min{n, d}. The original work [132] recommends using p = log, (k) +1 for a k-way clustering,



Figure 4.2: Transforming co-clustering to graph partitioning

although this can turn out to be too conservative in practice. The two matrices @) and P
are stacked! to create a single (n + d) x p matrix as follows:

Z:( g) (4.5)

Note that the matrix Z has one p-dimensional row for each document or term. Furthermore,
it can be shown that the rows of Z are not comparable in terms of their scaling because
of the varying frequencies of words and documents. In order to remedy this issue, each
row in Z is divided by the square-root of the aggregate frequency? of the corresponding
document /term in the corpus. These frequencies are the same as d; or f; computed above.
Subsequently, a k-means algorithm is applied to cluster the rows of Z in order to extract
the simultaneous partitioning of documents and words. Note that each cluster will typically
contain a subset of documents and words, depending on which rows of Z are grouped into
that cluster. Therefore, this partitioning turns out to be a co-clustering.

4.4 Generative Mixture Models for Clustering

Generative models assume that the corpus is generated by a mixture of distributions, and
estimate the parameters of these distributions based on the observed corpus. The k clusters
in the mixture are denoted by G ... Gy, where k is an input parameter. The terms in each
document of a mixture component are modeled by a distribution specific to that mixture
component. These assumptions provide the analyst the ability to incorporate some domain
knowledge into the modeling process by selecting a particular type of distribution. The most
commonly used assumptions correspond to the Bernoulli and the multinomial models. The
Bernoulli model is appropriate when the text documents are represented as vectors of 0-1

IThe first eigenvector is not discriminative in terms of the clustering structure and can be dropped.
Its value can be shown to depend only on the square-root of the frequency of the corresponding term or
document.

2The general form of symmetric spectral clustering [361] (cf. Sect. 4.8.2), which is applicable to all types
of bipartite and non-bipartite graphs, normalizes each row to unit norm. This choice is a worthy alternative.



values, corresponding to the presence or absence of terms. The multinomial model is used to
model arbitrary word frequencies. The generative process of mixture modeling is as follows:

1. Select the rth mixture component G, with prior probability «,. = P(G,).

2. Generate the vector space representation of a document using the probability distri-
bution of G,.. The common choices are Bernoulli or multinomial distributions.

For a given corpus, the goal of the expectation-maximization algorithm is to estimate the pa-
rameters of the distributions, so that the observed data has the maximum likelihood of being
generated by this model. One can compactly denote the entire vector of mixture distribu-
tion parameters and prior probabilities a; ... ay by ©. The probablhtzf of a single document
X; being generated by the model is Zfﬁzl P(Gm) - P(Xi|Gm) = >or 1 0 P(X;|Gr). We
want to learn the entire vector © of parameters, so as to maximize the product of these
probabilities over all documents in the corpus:

Maximize o { (Corpus|®) = H (Z am P(X; |gm)>} (4.6)

i=1

In practice, one uses the logarithm of this value to create a log-likelihood objective function,
which is then maximized.

The main challenge in estimating these parameters is that it is not known which mix-
ture component generated which document; if we knew which mixture component generated
which document, then parameter estimation would be a very simple matter by fitting the rel-
evant subset of documents to that mixture component in an optimal way. The expectation-
maximization algorithm therefore uses an iterative approach, in which the expected proba-
bility of membership is estimated based on the current state of the parameters (i.e., expec-
tation step). Then, the parameters are optimized by holding this membership probability
fixed. This step is simplified because the membership probabilities can be viewed as (fixed)
weights on points and we can optimally estimate the parameters of each mixture compo-
nent without worrying about the other components (i.e., mazimization step). The two-step
iterative approach is then executed to convergence. In the following, we will describe the
steps of the expectation-maximization algorithm for the Bernoulli and multinomial models.

4.4.1 The Bernoulli Model

In the Bernoulli model, it is assumed that the jth term, ¢;, in the lexicon is present in
a document generated from the rth mixture component with probability pgr). Then, the

probability P(X;|G,) of the generation of the document X; from mixture component G, is
given® by the product of the d different Bernoulli probabilities corresponding to presence
or absence of various terms:

PGy = [ »” T] a-»") (4.7)

t;€X; tiEX;

An important assumption here is that the presence or absence of the various terms are
conditionally independent with respect to the choice of mixture component. Therefore, one
can express the joint probability of the attributes in X; as the product of the corresponding

3Althﬂlgh X, is a binary vector, we are treating it like a set when we use a set-membership notation
like t; € X;. Any binary vector can also be viewed as a set of the 1s in it.



values on individual attributes. This assumption is also referred to as the naive Bayes
assumption, and is commonly used for clustering and classification with the Bernoulli model.

Then, the expectation-maximization algorithm starts by randomly assigning documents
to clusters, and estimates the initial parameters by applying the M-step (see below) with
respect to this random assignment. Subsequently, it uses the following two steps iteratively:

1. (E-step): In the expectation step, the probabilistic assignments of documents to
clusters are computed using the Bayes rule of posterior probabilities. The probability of
a document X; belonging to the rth cluster can be viewed as the posterior probability
that the rth mixture component, G,., was used to generate it. This posterior probability
is computed as follows:

X (r) (r)
P(G|X;) = P(Gr) P(XilGr)  _ o [Ty expy e (L—p57)
r|Ai) = % = — = _
Zm:l P(gm) . P(Xz|gm) Zfﬂ,:l Oy - HtjEXj, pj ) HthXi(l _ p§ ))
(4.8)
The right-most expression above is a result of substitution of P(X;|g) from Eq.4.7

in the above equation.

2. (M-step): The soft assignment probability w;,. = P(G,|X;) above is used to enable
the estimation of parameters by treating it as a “membership weight.” The value of
a, = P(G,) is estimated as the fraction of membership weights assigned to cluster r.

One can estimate this value as ) ;" | w;,/n. One also needs to estimate the parameters
(r)

of the Bernoulli distribution for various mixture components. One can estimate p;

as the weighted fraction of documents in component r containing term ¢;:

) _ ij ex; Wir

Pl = ZEteX T 4.9
; ST (4.9)

The two aforementioned steps are iterated to convergence. Convergence is checked by eval-
uating whether the (log-likelihood) objective function has improved by a minimum amount
over its average value in the previous few iterations. Laplacian smoothing is used in the
estimation of the M-step. Let d, be the average number of 1s in each (binary representa-
tion of a) document and d be the size of the lexicon. The basic idea is to add a Laplacian
smoothing parameter v > 0 to the numerator of Eq.4.9 and d - v/d, to the denominator.
Similarly, one can smooth the estimation of «, by adding £ > 0 to the numerator and k- 3
to the denominator.

It is noteworthy that the posterior probability P(G,|X;) provides the probability of as-
signment of document X; to cluster G,.. The k posterior probabilities specific to a document
will always sum to 1, as is expected in a probabilistic assignment of a document to clusters.
If desired, one can also convert this soft assignment to a hard assignment by assigning each
document to the cluster to which it has the largest posterior probability. For any particular
cluster r, the terms with large values of py) are assumed to be the topical vocabulary of the
cluster. Therefore, the approach returns (overlapping) word clusters along with document
clusters. The initialization can be performed randomly, although improved results can be
obtained by using another simple clustering algorithm in lieu of the first E-step to assign
documents to clusters (corresponding to 0-1 posteriors).



4.4.2 The Multinomial Model

The multinomial model is designed to handle arbitrary term frequencies. The parameters
of the k mixture components are defined by a d x k matrix of multinomial probability
parameters ) = [g;r], in which (g1,, gar, . . . ¢4r) represent the d parameters of a multinomial
distribution of terms for the rth mixture component. The different values of g; sum to 1
for a particular mixture component, G,, over all terms (i.e., Z?zl g;r =1).

The generative process first selects the rth mixture component G, with probability
a, = P(G,) and then throws a loaded die (owned by the rth component) L times to
generate a document with L tokens (counting repetitions). The loaded die has as many
faces as the number of terms d, and the probability of the jth face showing up is given
by gj for the die owned by the rth mixture component. Therefore, if the die is thrown L
times, then the number of times each face shows up provides the number of times each term
shows up in the document. If we assume that the frequency vector of the document X; is
given by (2 ... x;q), then the generative probability of the ith document is defined by the
multinomial distribution:

x“!xigl o Xgd- 1
J_

d4 Tij ! d d
PG, = == T g, o0 o [T (410)

The constant of proportionality holds for fixed X; and varying mixture component, because
it depends only on X; and is independent of the mixture component G,..
One can now perform the E-step by using this new probability instead:

1. (E-step): Compute the posterior probability of document X; using Eq. 4.10 as follows:

PG.)-P(XiG,) oIl (g)™

P(QT\Z) = — =
Vs PGon) - Pl Yo o T1 1 (am)

(4.11)

2. (M-step): The soft assignment probability w;, = P(G,|X;) above is used to enable the
estimation of parameters by treating it as a “membership weight.” As in the Bernoulli
model, the value of o, = P(G,) is estimated as .| w;-/n. One also needs to estimate
the parameters of the multinomial distribution for various mixture components. One
can estimate g;- as the weighted fraction of tokens in mixture component r that
correspond to term t;:

D iy Wir - Tij
d
It is also possible to use Laplacian smoothing to improve the estimation of the pa-

rameters for sparse data. In such a case, we add y to the numerator and ~y - d to the
denominator for a small value of v > 0.

djr = (4.12)

As in the case of the Bernoulli model, these steps are iterated to convergence. One can use
the estimated value of P(G,|X;) as the probability of assignment of document X; to cluster
r. The soft assignment can also be converted to a hard assignment by selecting the value of
r for which this probability is as large as possible. For any particular cluster r, the terms
with large values of g;, are assumed to be the topical vocabulary of the cluster.
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Figure 4.3: Plate diagrams for Bernoulli and multinomial clustering models

4.4.3 Comparison with Mixed Membership Topic Models

The topic models of Chap.3 are referred to as mized membership models, whereas the
clustering models of this section are single membership models. Here, it is important to
understand that the generative process in (mixed-membership) topic models is quite differ-
ent from (single-membership) clustering models. Although both the PLSA model and the
clustering models discussed above yield a cluster assignment probability for each document
(i.e., P(G.|X;)), this value should be interpreted differently in the two cases:

Clustering: P(G,|X;) = P( G, given entire document X; ) o
Topic Models: P(G.|X;) = P( G, given a randomly chosen token from X)

This difference is crucial because a single-membership model will always generate a docu-
ment about cars and cats from a single mixture component, whereas topic models might
generate different tokens of that document from different mixture components.

In this context, we present the plate diagrams for the single membership clustering
models in Fig.4.3. Note that the cluster identifier is always generated exactly once for
each document. However, in the plate diagrams for topic models (cf. Figs.3.4 and 3.7 of
Chap. 3), it is evident that the topic identifiers are generated once for every token. These
differences are crucial while trying to convert soft probabilities into a hard assignment. In a
single membership model, it is theoretically justified to assign each document to the cluster
with the highest probability of assignment because it was assumed to be generated from a
single component. The soft nature of the assignment is simply caused by the uncertainty
of the statistical estimation process. In a topic model, the actual generation could be truly
overlapping across multiple topics even after accounting for the estimation uncertainty.



Therefore, in the case of topic models, it makes more sense to either accept the overlapping
nature of the clustering, or to treat the soft probabilities as engineered features on top of
which a k-means algorithm is applied.

4.4.4 Connections with Naive Bayes Model for Classification

The naive Bayes model? for classification (cf. Sect.5.3 of Chap.5) is a rudimentary special
case of the expectation-maximization (EM) algorithm in which a single iteration of the
E-step and M-step is sufficient. Imagine that you were given labeled training data in which
the labels indicate which mixture component generated which point. How could you use the
EM algorithm to create probabilistic assignments for unlabeled test points? The basic idea
is to apply the M-step only to the labeled training data and estimate all the parameters.
This step is greatly simplified because the posterior probabilities of the labeled points are
all pre-defined to be either 0 or 1 rather than soft “membership weights.” Furthermore, the
M-step does not need to be iteratively repeated because the labeling is assumed to be an
unquestioned ground truth, which cannot be improved upon. Subsequently, these estimated
parameters are used with the unlabeled points to assign probabilities in one execution of the
E-step. This process we have just described is the same as the naive Bayes algorithm.

The naive Bayes classification algorithm is a rudimentary special case of the
expectation-maximization algorithm in which the M-step is applied once to the
labeled training data and the E-step is applied once to the unlabeled test data.

This connection between clustering and classification can be extended to any type of clas-
sifier (cf. Sect.4.9) and not just naive Bayes.

Is it also possible to use the unlabeled data in the M-step? If we choose to do so, the al-
gorithm remains iterative, and the resulting algorithm [364] is referred to as semi-supervised
classification. This type of algorithm can sometimes perform more accurate classification
than the naive Bayes algorithm, particularly if the amount of available labeled data is small.
This algorithm is discussed in Sect. 5.3.6 of Chap. 5.

4.5 The k-Means Algorithm

The k-means algorithm is a very simple clustering algorithm that identifies a strict parti-
tioning of the data into k clusters. The value of k is an input parameter to the algorithm.
Consider an n x d data matrix in which the ith row vector (document) is denoted by X;. The
k-means problem is that of finding the k d-dimensional representatives Y; ...Y}, such that
the sum of squared distances of each document to its closest centroid is as low as possible.
In other words, we wish to determine Y7 ...Y}, so that the following objective function is
minimized: .
J =Y minf_,[|X; - Y;|]? (4.13)
i=1
Note that this objective function uses the Euclidean distance, which is unusual for text
data. However, for the purpose of the following discussion, assume that the document-term

matrix is normalized as a preprocessing step, so that the Ly-norm || X;|| of each document
is one unit. As discussed in Sect. 2.5 of Chap.2 (cf. Eq.2.9), there is no difference between

4This model is discussed only in later chapters. The uninitiated reader may choose to skip over this
section in the first reading.



Algorithm KMeans(Documents: X7 ... X,, Number of clusters: k)
begin
Initialize each of Y7 ...Y}, to random points from X ... Xn;
repeat
Create partitioning Cy ...Cj, by assigning each X; to
its closest representative (i.e., largest cosine) from Y7 ... Yy;
for each cluster C, set Y, to the centroid of Cy;
until convergence;
return C; ...Cy;
end

Figure 4.4: The k-means algorithm

the use of the Euclidean distance, cosine similarity, or the dot product similarity, after such
a normalization has been performed. We will first discuss a simple k-means algorithm with
this length-wise normalization assumption, and then discuss the heuristic variations utilized
for text data.

The main obstacle to solving Eq.4.13 is that the optimal assignments of data points to
representatives depend on the values of the representatives, and the representatives them-
selves depend on these assignments in a circular way. This circularity naturally suggests
an iterative approach, in which we alternately determine the best assignments (while fixing
the representatives) and determine the best representatives (while fixing the assignments)
until convergence is achieved. Therefore, the k-means algorithm starts by initializing a set
of k seed representatives Yj ...Y}, as k randomly chosen documents, and improves them by
using the following pair of iterative steps:

1. Optimal assignments with fixed representatives: Each document is assigned to
the representative to which it has the largest cosine measure. For normalized data,
maximization of the cosine is the same as the minimization of the Euclidean distance,
and therefore this assignment provides the lowest objective function for Eq.4.13. As-
sume that the n points are partitioned into & clusters denoted by Cj . .. Cy, where each

cluster C; contains a subset of points in {X; ... X,}.

2. Optimal representatives with fixed assignments: If the assignments are fixed
then one can separately determine the optimal value of Y,. for the rth cluster C,., which
turns out to be the centroid of that cluster:

Sva ZZGCT Xi
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The proof of this result is provided in Lemma 4.5.1 and its intuitive explanation is
that a cluster is best represented by its most central point for minimizing error.

The two steps are then iterated to convergence. Typically, the convergence criterion is that
the objective function does not change by a certain minimum amount. Furthermore, there
is typically also a bound on the maximum number of iterations in order to prevent very
long running times.

We now show that the contribution of the rth cluster to objective function J with
assigned points in C, if the representative 7] is chosen to be the centroid of C,..

Lemma 4.5.1 Let the contribution J,. of the rth cluster C, to the objective function value



of Eq. 4.13 be defined as follows:

Jr= Y X =Y (4.15)
X;€eC,

Then, the value of J, is minimized when Y, is chosen to be the centroid of C,.

Proof: The gradient of the objective function with respect to Y, needs to be set to 0 as the
optimality condition. Setting the gradient to 0 leads to the following optimality condition:

S 2w -X) -0 (4.16)
X;ec,
This condition simplifies to the following:
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(4.17)

In other words, the gradient-based optimality condition implies that Y, is the centroid of
C,. ]
The aforementioned discussion provides a mathematical description of using normalized
vectors that is theoretically optimal. However, for text data, a few practical changes are
made that deviate from this presentation in the following ways:

1. We do not normalize the documents length-wise to unit norm up front. Note that the
cosine function is insensitive to the length-wise normalization step and therefore the
similarity computation is not affected. Furthermore, the use of cosine ensures that
we can drop the factor of |C,| in the denominator of Eq.4.14 without changing the
similarity computation. However, if the documents are not normalized to unit norm
up front, the solution will no longer be exactly the same because longer documents will
have more influence on the centroids. The practical effect of this change is, however,
not significant in most reasonable settings.

2. The infrequent terms in the centroid of a cluster can be dropped [438]. Dropping
infrequent terms has the dual advantage of improving the quality of computation
(by removing noise) and efficiency (by reducing the number of computations). It was
suggested in [438] that as few as 200-400 of the most frequent words can be retained
in the centroid of each cluster.

The frequent words in the centroid of each cluster provide a cluster digest that summarizes
the topical content of the cluster. A partial example [6] of a cluster digest containing a
cluster of documents related to American history is as follows:

history (183), lincoln (122), washington (23), abolition (38), constitution (95),
bill (124), independence (165), columbus (63), settlers (44), civil (91), presi-
dent (105), war (83), treaty (36), jefferson (23), confederate (43), union (29),
british (61), ...

The numbers in the brackets represent the term weights in the truncated centroid. Because
of truncation, only large term weights are retained. Thus, by examining the frequent words
in each cluster, it is often possible to get an idea of the semantic content of the cluster. A
pseudo-code of the k-means algorithm is provided in Fig. 4.4.



4.5.1 Convergence and Initialization

It is noteworthy that each execution of the aforementioned steps is guaranteed to not worsen
the objective function J of Eq.4.13, and therefore the objective function changes mono-
tonically with algorithm progression. Since the number of possible clusterings is finite, a
monotonically changing objective function is usually a recipe for convergence after a finite
number of iterations. One needs to be careful that ties in assignment are broken using a
consistent rule (e.g., using the lowest cluster index), so that the algorithm will never cycle
to the same solution unless it has converged to a fixed point. Although convergence of the
k-means algorithm is guaranteed, it is not guaranteed to converge to a global optimum so-
lution. In particular, the algorithm can be sensitive to the choice of seeds that are selected
up front. If outliers are selected as the initial seeds, the quality of the approach can be poor.
In fact, it is often better to use completely randomly generated vectors as initialization
points, rather than the use of a document from the collection. The k-means algorithm is
often combined with other hierarchical algorithms [124] to provide a high-quality starting
point. Such an approach is described in Sect. 4.6.2.

4.5.2 Computational Complexity

The k-means typically requires a relatively small number of iterations. It is not uncommon
to require less than ten iterations for the algorithm to give high-quality solutions, provided
that a reasonable starting point is used. In this sense, the use of a proper starting point
with other algorithms becomes even more important. For all practical purposes, the number
of iterations is assumed to be a constant.

In each iteration, the similarities of n documents to k clusters is computed. This process
requires O(n-k) similarity computations. If the number of words in each centroid is restricted
to maximum value d; < d, the time complexity of each similarity computation is O(d}).
Therefore, the overall computational complexity is given by O(n - k - d;).

4.5.3 Connection with Probabilistic Models

The k-means algorithm can be viewed as the deterministic avatar of the expectation-
maximization (EM) algorithm. Just as EM algorithms determine a probabilistic assign-
ment of documents to clusters (E-step), the k-means algorithm computes a deterministic
assignment in each iteration. The EM algorithm optimizes the parameters of its mixture
component in the M-step, whereas the k-means algorithm determines the optimal repre-
sentative (i.e., centroid) in each iteration. Just as the EM-algorithm optimizes the mean-
squared error, the EM algorithm maximizes a log-likelihood criterion. In fact, with mixture
distributions like the Gaussian, the log-likelihood of a Gaussian simplifies to the Euclidean
distance! Of course, one rarely uses the Gaussian modeling assumption in the text domain.
Nevertheless, the connections between the two methods are useful to keep in mind. The
expectation-maximization algorithm flexibility of incorporating domain-specific knowledge
about the corpus by choosing a particular mixture distribution (e.g., Bernoulli or multino-
mial). On the other hand, the k-means algorithm has the advantage of greater simplicity.
The benefits of simplicity should not be underestimated, because it makes the k-means
approach more robust and less likely to get stuck in local minima.
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Figure 4.5: The similarity between the two sets of documents is expressed as a function of
the similarities between individual document pairs

4.6 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms naturally create a tree-like structure (or tazonomy) of
the documents. The creation of the taxonomies has a special place in document clustering
because of its ability to enable intuitive browsing of large collections. The taxonomy can be
created in either top-down or bottom-up fashion. The bottom-up technique can be viewed
as a standalone clustering method, whereas the top-down approach can be viewed as a
meta-algorithm that uses another clustering algorithm as a subroutine. This makes the
bottom-up approach inherently more interesting, and it is the primary focus of this section.

Bottom-up methods start with individual documents in each cluster and successively ag-
glomerate them into higher-level clusters by merging similar pairs of clusters. This successive
merging leads to a natural hierarchical relationship among the clusters, where clusters in
later stages are supersets of clusters in earlier stages. The main differences among differ-
ent hierarchical methods arise because of the differences in the criteria with which clusters
are successively merged. The basic framework for a hierarchical clustering algorithm is to
always work with a current cluster set (or model) M = {C;...Cy,} of clusters and reduce
the size of this set by 1 by using the following iterative step:

Determine the most similar pair of clusters (C;,C;) from M = {C;...Cp,} and
replace them with a single larger cluster containing the points in both clusters
as follows:

MM -— {CHC]} U {Cl U Cj} (418)
——— ———

Remove similar pair Add larger cluster

Therefore, each step of this clustering process reduces the number of clusters by 1, until one
arrives at the desired number of clusters. In the initialization step, each document lies in its
own cluster and therefore there are n clusters. After the first merge of the most similar pair
of singleton clusters, a single cluster will contain two documents, and therefore there will be
(n — 1) clusters. In general, the hierarchical clustering process will require us to determine
the similarity between sets of documents, C; and C;, in order to determine which pair to
select for merging.

How can one determine the similarity between two sets, C; and C;, of documents? It turns
out that there is no single way to do this. There are |C;| x |C;| possible pairwise similarity
computations between the documents in these sets and one must somehow combine these



similarity values to create a global measure of the similarity between these sets. For example,
there are 4 x 2 = 8 possible similarity computations between the sets of points shown in
Fig.4.5. There are several natural criteria for combining the similarities, which lead to the
different variations of this family of bottom-up clustering algorithms:

1. Single-linkage clustering: In single-linkage clustering, the similarity between the closest
pair of documents from C; and C; is used to quantify the similarity between C; and
C;. Therefore, if s;; is the similarity between clusters C; and C;, then we have:

8ij = MAXYeci yec, cosine(X,Y) (4.19)

2. Group-average linkage clustering: In group-average linkage the average of the similar-
ities between all documents in C; and all documents in C; is computed. Therefore, if
s;; is the similarity between clusters C; and C;, we have:

Sij = MEANYEC.L ,7661_ cosine(Y, ?) (420)

3. Complete linkage clustering: In complete linkage clustering, the similarity between the
most dissimilar pair is used as the relevant criterion. Therefore, the similarity between
the cluster pairs C; and C; is defined as follows:

sij = MINxcc, yec, cosine(X,Y) (4.21)

4. Centroid similarity: In centroid similarity, the cosine similarity between the centroids
of C; and C; is used as the merging criterion.

Both the single-linkage and the complete-linkage criteria have weaknesses that are caused by
the fact that they depend on a single pair of documents in order to compute the similarity
criterion. In the case of single-linkage clustering, the main problem is that of chaining where
a sequence of successive merges caused by individual pairs of documents eventually leads to
the merging of unrelated groups of documents. For example, consider a set of four clusters,
which contain the following representative documents:

Cluster 1 contains: “The sergeant looked at the platoon.”
Cluster 2 contains: “The sergeant looked at the moon.”
Cluster 3 contains: “The dog looked at the moon.”
Cluster 4 contains: “The dog howled at the moon.”

It is easy to see that successive clusters contain very similar documents although there
is no relationship between the documents in clusters 1 and 4. It is quite conceivable that
successive merges might eventually lead to the merging of these clusters because of the
presence of a chain of similar documents between the pair. An example of such a chain of
undesirable merges is shown in Fig. 4.6a. Indeed, this situation occurs annoyingly often with
single-linkage clustering algorithms. The complete-linkage method also performs poorly at
later stages of the merging. When the clusters are large, they will often contain pairs of
outlier documents between which the similarity is quite low. In general, complete-linkage
similarity computation is often dominated by the outliers in these clusters. Clearly, making
merging decisions about clusters based on the properties of outliers (i.e., atypical points)
inside them does not seem to be a wise choice. Therefore, group-average linkage and centroid
clustering are more desirable choices.
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Figure 4.6: Different dendrograms of the same set of six documents

This successive clustering process leads to a natural hierarchy of the clusters, which is
referred to as a dendrogram. A dendrogram is a binary tree in which each merge is an internal
node of the tree, and its two children nodes correspond to the sets of clusters that have
been merged. Therefore, lower nodes of the tree are more fine grained, and the leaf nodes
contain individual documents. An example of two possible dendrograms based on a different
sequence of merges from the same set of documents is shown in Fig.4.6. In one case, the
dendrogram is well balanced. whereas in another it is not. In general, one has little control
on the shape of the dendrogram in bottom-up clustering methods, and exercising good
judgement in the choice of merging function is crucial. For example, a poorly structured
dendrogram like that in Fig. 4.6a can be caused by single linkage clustering. One can obtain
a flat clustering from this dendrogram by cutting it at a higher level of the tree. The default
approach of hierarchical clustering cuts the dendrogram in a specific way, which depends
on the order in which the merges are performed. To create a flat clustering with & clusters,
one can omit the last set of (k — 1) merges. However, it is also possible to construct the
dendrogram up to the root and then use the hindsight gained from the structure in the
dendrogram. In such a case, the dendrogram can be cut so as to obtain a clustering that
seems semantically appealing to a domain expert (on manual inspection) or to obtain a
more balanced clustering structure.

4.6.1 Efficient Implementation and Computational Complexity

It is important to implement the approach properly in order to obtain fast performance.
For example, a naive implementation might compute m X m similarities in each step, when
m clusters remain in the data. This is obviously not optimal because most of the pairwise
similarities between clusters can be carried over from one step to the next without re-
computation. At any given moment in time, when m clusters remain in the data, an m xm



similarity matrix S is maintained. This similarity matrix is updated (and shrinks in size)
as the clusters are successively merged over the course of algorithm progression.

At the very beginning of the algorithm, an n x n similarity matrix S = [s;;] is computed
between all pairs of documents, in which the (4, j)th entry s;; corresponds to the similarity
between the ith and jth documents. As the algorithm progresses and clusters are merged,
the indices of the clusters are updated, and the entry s;; corresponds to the similarity
between the ith and jth cluster in the data. During a merge of C; and C;, the rows/columns
for the ith and jth clusters need to be removed and a new row/column needs to be added
to the similarity matrix for the merged cluster. Therefore, we need a way to compute the
similarity between this new cluster and every other cluster in the data. For the case of
centroid similarity, this re-computation is a simple matter of just recomputing the centroid
of the new cluster, and computing its similarity with respect to the centroids of the remaining
clusters. However, even for the other cases, this re-computation is generally quite simple.
Let Sim(C; UC;,Ck) be the similarity of any other cluster C, with the merged cluster C;UC;.
Then, one can compute the new similarities in terms of the current entries of the similarity
matrix S as follows:

max{s;x,s;x} (Single-Linkage Clustering)

Sim(C; UCj,Ck) = %ﬁéjllcj‘ (Group-Average Linkage Clustering) (4.22)

min{s;s, s;x} (Complete Linkage Clustering)

Therefore, when a cluster is merged, one only has to drop the rows/columns for clusters
C; and C; from the similarity matrix, and add a single row/column for the merged cluster.
Therefore, the number of rows and number of columns both reduce by 1.

For a corpus containing n documents, the space complexity of the approach is O(n?),
which is the size of the similarity matrix at the very beginning of the algorithm. The
computation of the similarity matrix requires O(n?) cosine similarity computations at the
very beginning of the algorithm. Let d, be the average document size. Since the cosine
similarity computation is linearly related to average document size, the initialization of the
similarity matrix requires O(n?d,) time. In addition, the algorithm contains O(n) merges.
However, other than in the case of centroid merging (see Exercise 7), this step is independent
of document size. This is because each similarity re-computation in Eq. 4.22 requires only
O(1) time rather than O(d,) time and there are O(n) such computations for the various
clusters. Therefore, the total time for similarity re-computation is O(n?). In addition, one
must determine the similarity of the highest quality among O(n) possible values, which
requires O(n? - log(n)) time over the course of the algorithm is a heap data structure is
maintained. Therefore, the overall computational complexity is O(n? - d, + n?log(n)), of
which O(n? - d,) turns out to be running time of the initialization step. For values of d, of
the order of a couple of hundred words, it is possible for the initialization time to become
both the running time and space bottleneck for the algorithm.

The space complexity is particularly problematic even for data sets of modest size.
For example, if the corpus contains a million documents, the space complexity is of the
order of 10'2 bytes, which is about a terabyte. In the modern age, it is not uncommon to
encounter collections of such sizes. This space complexity increases by a factor of 100 for
every ten-fold increase in corpus size. In cases, where the similarities cannot be maintained
in main memory, they may need to be recomputed from scratch in each iteration. This would
dramatically increase the time-complexity to O(n?), which is unmanageable even for small
data sets containing a few thousand documents. Luckily, one good property of hierarchical
methods is that they provide excellent clusterings even on small samples of the data. In



such cases, they can be combined with k-means methods to obtain the best of both worlds.
This approach is described in the next section.

4.6.2 The Natural Marriage with k-Means

Hierarchical algorithms and k-means algorithms have strengths and weaknesses that are
complementary in terms of running time and accuracy. The k-means algorithm is efficient
and generally accurate on large data sets, unless the seed set is very poor. On the other
hand, a hierarchical clustering algorithm is expensive, but it is quite robust even when
applied to a small sample of the data. This observation suggests that a hierarchical method
can be used to merge a relatively small sample of documents to a robust set of & clusters,
whose centroids can be used to create an excellent seed set for the k-means algorithm. This
results in a two-phase approach in which the first phase uses hierarchical clustering and the
second phase uses k-means.

The size of the sample used in the first phase should be such that the running times of
the two phases are balanced. The running time of the k-means algorithm is O(k-n-d;), where
d is the average lexicon size retained in each centroid. The running time of the hierarchical
approach for a sample of size s is roughly given by O(s%d; + s%log(s)) ~ O(s?d,), if we
assume that d; is larger than log(s). These are reasonable assumptions to make in practical
settings. In order for the running time to be balanced between the phases of k-means and
hierarchical clustering, the following condition must hold:

2 di=Fk-n-d (4.23)

Therefore, we have s = vk - n. In such a case, the running time of the two-phase approach
is given by O(s?d;) = O(k - n - d;), which is linear in the corpus size and the number
of clusters. This is generally the best running time that one can hope to achieve with a
clustering algorithm.

The above description of the hierarchical phase is (roughly) that of a technique, referred
to as buckshot [124]. Another alternative for the hierarchical phase is referred to as frac-
tionation [124]. The fractionation method is the more robust one, but the buckshot method
is faster in many practical settings. Unlike the buckshot method, which uses a sample of
Vk - n documents, the fractionation method works with all the documents in the corpus.
The fractionation algorithm initially breaks up the corpus into n/m buckets, each of size
m > k documents. An agglomerative algorithm is applied to each of these buckets to reduce
them by a factor v € (0,1). This step creates v - m agglomerated documents in each bucket,
and therefore v - n agglomerated documents over all buckets. An “agglomerated document”
is defined as the concatenation of the documents in a cluster. The entire process (including
the creation of m buckets) is repeated by treating each of these agglomerated documents
as a single document. The approach terminates when a total of k£ seeds remains.

It remains to be explained how the documents are partitioned into buckets. One possi-
bility is to use a random partitioning of the documents. However, a more carefully designed
procedure sorts the documents by the index of the jth most common word in the document.
Here, j is chosen to be a small number, such as 3, that corresponds to medium frequency
words in the documents. Contiguous groups of m documents in this sort order are mapped
to clusters. This approach ensures that the resulting groups have at least a few common
words in them and are therefore not completely random.

The agglomerative clustering of m documents in the first iteration of the fractionation
algorithm requires O(m?) time for each group, and sums to O(n-m) over the n/m different
groups. Because the number of individuals reduces geometrically by a factor of v in each



iteration, the total running time over all iterations is O(n-m-(1+v+v?+...)). For v < 1,
the running time over all iterations is still O(n - m). By selecting m = O(k), one still ensure
a running time of O(n - k) for the initialization procedure.

4.7 Clustering Ensembles

Clustering is an unsupervised problem and therefore it is possible for specific parameter
or algorithmic choices to perform poorly in an individual run. However, by combining the
results from multiple runs, the results are more robust. Such methods are referred to as
ensembles. It is common for the combined result to be better than the results obtained
from most of the individual runs. This effect is observed because of the impact of variance
reduction (cf. Sect.7.2 of Chap.7). The basic idea of a clustering ensemble is to use the
following two steps:

1. Apply clustering on the data set D for m times to obtain m different partitions by
either using a randomized variant of the algorithm, or by using different clustering
algorithms/parameter choices in each run. Each such run is referred to as an ensemble
component or base method.

2. Merge the results from the m runs in the first step to obtain a single (more robust)
clustering. This step is referred to as the consensus step, and it usually requires the
application of a (simple) clustering algorithm on the point-to-cluster assignment in-
formation obtained in the first phase. The basic idea of the consensus phase is that
pairs of points that repeatedly get assigned to the same cluster over different ensemble
components should be grouped in the same cluster at the very end.

The following sections will describe each of these steps in detail.

4.7.1 Choosing the Ensemble Component

The specific ensemble component chosen will have different effects on the overall accuracy
and efficiency of the clustering approach. The most common ways of choosing the different
ensemble components are as follows:

1. One can choose to use different clustering algorithms such as the k-means, hierarchical,
and the EM-methods in different ensemble components.

2. One can use a randomized approach such as k-means with different choices of initial-
ized seeds. This will result in different outputs from different ensemble components.

3. One can run a clustering algorithm on a derived data set containing a subset of fea-
tures. This approach is referred to as feature bagging or multiview clustering.

4. One can apply the computationally intensive parts of the clustering algorithm to only
a subsample of the data set. A useful example is the pairing of Nystrom sampling
with ensemble methods. Kernel methods are often used in the text domain to incor-
porate the sequential ordering information between the words, although the primary
impediment in their use is their high computational complexity. Subsampling methods
have great power when paired with base methods of super-linear complexity, because
they can improve both the accuracy and the efficiency of the approach. In such cases,
running many ensemble components on subsamples is faster than a single application



of the base method on the full data set. The leveraging of the Nystrom ensemble
for incorporating sequence knowledge into text clustering methods is described in
Sect. 4.8.

In general, it is advisable to use base methods with high diversity in order to get the most
out of an ensemble method.

4.7.2 Combining the Results from Different Components

The final step in an ensemble method is to combine the results from different components.
It turns out that the final step of combining the results is also a clustering problem on
the outputs of the results. However, this new clustering problem is much simpler because
the outputs have a more natural tendency to cluster. Therefore, very simple clustering
methods like k-means can be used effectively in these cases. In the final phase, each point is
represented in m keywords, where m is the number of ensemble components. Each keyword
in this new pseudo-document corresponds to an ensemble component, and it contains a
concatenation of its cluster identifier and ensemble component identifier. For example, if
a document was assigned to cluster identifier 23 in the 45th ensemble component, then
the keyword “23#45” is created and added to the new representation of that document.
Therefore, each document will have exactly as many keywords as the number of ensemble
components. Two documents that co-occur in the same cluster frequently will have many
keywords in common. One can view this new representation as a kind of feature engineering
like the stacking ensemble in classification [2]. The new features will have an extremely high
tendency to cluster because of the fact that they are cluster identifiers from obtained from
various base clustering methods. Therefore, a simple application of a k-means approach on
this new representation will provide high-quality results.

4.8 Clustering Text as Sequences

Most mining methods use the bag-of-words model when working with text. However, a lot of
knowledge in the collection is hidden in the sequential and positioning information between
words. For short documents, the use of sequential information becomes more critical, because
a bag of words is often too sparse to be used robustly with conventional mining techniques.

Almost all the successful learning methods that treat text as sequences use represen-
tation learning and feature engineering in one form or the other. Typically, the sequential
representation of text is converted into a multidimensional representation that encodes in-
formation about sequential word ordering. This multidimensional representation may often
be quite high-dimensional, because sequence information is inherently complex. The com-
mon feature engineering methods are as follows:

1. Enriching with phrases and k-grams: Frequent phrases in the corpus can be used as
features to enrich the representation. It has been shown [525] that using frequent
phrases improves the quality of clustering of Web documents. One can also add fre-
quent k-grams to the vector-space representation to use the bag-of-words model.

2. Kernel methods: Kernel methods provide a natural approach for incorporating se-
quence information into text mining applications by using string-based kernel func-
tions in order to perform nonlinear dimensionality reduction. Refer to Sect. 3.6 of
Chap. 3.
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Figure 4.7: Representation learning for converting sequences to semantically knowledgeable
embeddings

3. Neural networks: In recent years, a number of neural network techniques such as
word2vec [341] and doc2vec [275] have been proposed that incorporate sequence infor-
mation in creating word and document embeddings. These methods are discussed in
detail in Chap. 10.

All these methods achieve the same task of creating a multidimensional representation that
can be leveraged with existing off-the-shelf methods for clustering. This overall framework
is shown in Fig.4.7.

4.8.1 Kernel Methods for Clustering

As discussed in Sect.3.6 of Chap. 3, string kernels can be used to incorporate sequence
information into kernel representations. The basic idea is that these methods work with
similarity matrices (defined on the string representations) rather than the document-term
representations. The most common algorithms for kernel-based clustering include kernel
k-means and spectral clustering. The former performs implicit feature engineering with the
kernel trick, whereas the latter performs explicit feature transformation with only a small
number of eigenvectors. In the following, we describe both these methods.

4.8.1.1 Kernel k-Means

The kernel k-means approach can be implemented in various ways, the most convenient
of which is with the use of a normalized similarity matrix. Let S = [s;;] be an n x n
similarity matrix, which contains the pairwise similarity information between the string
representations of the documents. The matrix is normalized as follows:

sij

Sij &= ——— 4.24

VRN (424
The effect of the normalization is that every data point lies on the unit sphere in (trans-
formed) kernel space. As discussed in Sect. 2.5 of Chap.2, it is equivalent to use the dot
product, the Euclidean distance, or the cosine with such a normalization. Therefore, one can
use the dot product for simplicity. Assume that the transformation implied by the kernel

similarity matrix is denoted by ®(-) so that s;; = ®(X;) - (X;).



The kernel k-means algorithm proceeds as follows. We start with a random assignment
of points to the k clusters, denoted by Cj ...Ck. The usual implementation of the k-means
algorithm determines the centroids of the clusters as the representatives of the next iteration.
The kernel k-means algorithm computes the dot product of each point to the various clusters
in transformed space and re-assigns each point to its closest centroid in the next iteration.

How can one compute the dot product between a transformed point ®(X;) and the centroid
Y; of C; (in transformed space)? This can be achieved as follows:

— — ce. O(X, Jec, O(X0) - ©(X, 5
S(X0) -7, = 0(X) - 2 Cﬂcj( ) _ T, <|Cj|> ( )=ZC_

Therefore, for any given point X;, we only need to compute its average kernel similarity
to all points in that cluster. The basic idea of being able to perform such operations in
transformed space without explicitly performing the transformation is referred to as the
kernel trick.

Instead of the centroids, the approach does require the explicit maintenance of assign-
ments of each point to various clusters in order to recompute the assignments for the next
iteration. As in all k-means algorithms, the approach is iterated to convergence. For a data
set containing n points, the approach requires O(n?) time in each iteration of the k-means
algorithm, which can be quite costly for large data sets. The approach also requires the
computation of the entire kernel matrix, which might require O(n?) storage. However, if
the similarity function can be computed efficiently, then one does not need to store the
kernel matrix a priori, but simply recompute individual entries on the fly when they are
needed. The main problem is that many substring similarity functions require dynamic pro-
gramming, which are not particularly efficient to compute. In such cases, one must consider
the fact that the approach will require as many as O(n?) similarity computations in each
iteration of the k-means method. Another disadvantage of the kernel trick is that it can be
paired with only a restricted subset of clustering algorithms (e.g., k-means) that use simi-
larity functions between points. Not all clustering algorithms are equally friendly to the use
of the kernel trick. Furthermore, one can perform no further engineering or normalization
of the extracted features, if they are being used only indirectly via the kernel trick.

4.8.1.2 Explicit Feature Engineering

Explicit feature engineering works by actually materializing the kernel SVD transformation
and applying an off-the-shelf algorithm on the transformed data. This is a more flexible
approach of enabling arbitrary clustering algorithms to work with kernel transformations,
rather than simply algorithms (like k-means) that can be expressed in terms of pairwise
similarities. The broader approach of explicit feature engineering works by diagonalizing
an n x n similarity matrix S = QX2Q7 as follows:

Diagonalize S = Q%2Q7T;

Extract the n-dimensional embeddings in rows of Q;
Drop any zero eigenvectors from QX to create QoXo;
Apply any existing clustering algorithm on rows of QoXo;

The columns of @y contain the non-zero eigenvectors, and the n rows of Qy¥y contain
the embeddings of the n points. It is noteworthy that all n eigenvectors are extracted and
only the zero eigenvectors are dropped. Such zero eigenvectors show up as zero columns
in QX. Explicit feature engineering is exactly equivalent to the use of the kernel trick
only when all non-zero eigenvectors (no matter how small) are retained. The embedding



dimensionality can be as large as the number of points n, if no dimensions are dropped. The
space requirements of such an approach can therefore be O(n?). Furthermore, the running
time requirement for extracting all n eigenvectors is O(n?), which can be prohibitive.

A natural question arises as to whether one can drop the lower-order eigenvectors to im-
prove the space requirements and computational efficiency. Indeed, many implementations
of kernel methods such as spectral clustering do drop lower-order eigenvectors. However,
dropping lower-order eigenvectors is not without its pitfalls. Often, a complex data set will
require a large number of dimensions to express the complex variations in the local shapes
of the data distribution. An example is provided in Sect.3.6, in which a large number of
eigenvectors are required to express non-convex clusters (cf. Fig. 3.9a). In this sense, nonlin-
ear dimensionality reduction methods should be viewed as feature engineering techniques
(unlike linear dimensionality reduction methods where the primary goal is feature space
compression). The main problem in unsupervised settings is that it is hard to know the cor-
rect number of dimensions to use, and even extremely low-order eigenvectors are sometimes
informative in complex distributions. The safest solution is to keep all nonzero eigenvectors
(or drop only a small percentage of them). However, this might result in an n-dimensional
data set with n points, which requires O(n?) space.

A solution to this computational dilemma is the use of Nystrom sampling, which sub-
samples a set of s documents in order to create an s-dimensional representation. Typically,
the value of s is independent of the corpus size, although it depends on the complexity of
the underlying data distribution (e.g., number of clusters). Then, the approach proceeds as
follows:

Draw a subsample of s documents from the corpus;

Use the Nystrom method (cf. Sect. 3.6.2) to create an s-dimensional
representation of all documents denoted by the n X s matrix Us;

Apply any existing clustering algorithm on Us;

In order to improve robustness, the approach can be used in the ensemble-centric setting

discussed in Sect. 4.7. The clustering is repeated m times, and the results are integrated into
a single robust clustering using the methodology discussed in Sect. 4.7.2.

4.8.1.3 Kernel Trick or Explicit Feature Engineering?

A natural question arises as whether one should use the kernel trick or explicit feature
engineering. When using explicit feature engineering with the full data, the kernel trick
provides equivalent results (with k-means), but will require O(n?) similarity computations,
whereas feature engineering will require not only these similarity computations, but also
an additional O(n3) time required for eigenvector extraction. The kernel trick will also
require only O(n) space, if one is willing to recompute kernel similarities every time they
are required. Therefore, it would make sense to use the kernel trick.

On the other hand, the choice is not quite as simple, if one uses Nystrom sampling with
m ensemble components. In terms of accuracy, the ensembles will almost always provide
higher quality results because of variance reduction effects. The comparisons in computa-
tional time and space requirements are more interesting. The Nystrom method requires
O(n - s) similarity computations and O(n - s?) time to extract the eigenvectors for each en-
semble component. The time required for k-means clustering in each ensemble component
is O(n - k - s) with the s-dimensional engineered representation. Since there are m ensemble
components, the overall time required is O(n - s - m(k + T + s)), which strictly dominates
the O(n - k-m) time required for the post-processing phase of the ensemble-centric method.



Here, T is the time required for each similarity computation. The running time of kernel
k-means is always O(n? - T).

Which is larger? For substring kernels that use dynamic programming, the value of
T can be quite large. However, even if we ignore this factor and set it to 1, it seems
that the sampling approach has an advantage. If the corpus has a very large number of
documents, it is possible for s% - m to be less than n. For example, if the corpus contains
100 million documents, then one would do better with Nystrom sampling at m = 20 and
s = 2000. This does not yet include the effect of expensive kernel computation. Increasing T’
to 1000 results in a break-even corpus size of a few hundred thousand documents. The only
advantage of the kernel k-means approach is that the Nystrom method requires O(n - s)
space, whereas one can choose to compute all similarities on the fly with kernel k-means
and reduce the space requirements to O(n). However, this saving comes at the expense
of repeated computation of the same kernel similarity value across different iterations of
k-means. Explicit feature engineering also provides the opportunity to further enhance the
extracted feature representation by normalization, or by using any of the feature selection
methods discussed earlier in this chapter. These methods are not available by using the
kernel trick. One can also use an arbitrary clustering algorithm, and not be restricted to
the use of k-means. Therefore, explicit feature engineering has significant advantages, which
are often not recognized when the kernel trick is used.

4.8.2 Data-Dependent Kernels: Spectral Clustering

Explicit feature engineering is useful in cases where data-dependent kernels are used. A
data-dependent kernel adjusts the similarity matrix with local or global data statistics, and
therefore the computation of any particular similarity value requires knowledge of the entire
data distribution rather than just a pair of points. Spectral clustering is an instantiation
of kernel k-means in which one is compelled to use explicit feature engineering rather than
the kernel trick. This compulsion is caused by the data-dependent nature of the kernel and
subsequent feature selection/normalization. Spectral clustering uses the following steps,
which are refinements of those used in kernel k-means with explicit feature engineering;:

1. (Breaking inter-cluster links): Let S = [s;;] be a symmetric n x n similarity
matrix defined over n documents, in which s;; is the similarity between documents
i and j. The similarity matrix might be created with the use of a domain-specific
similarity function such as a string subsequence kernel (cf. Sect. 3.6.1.3). The diagonal
entries of S are set to 0. All pairs (¢, j) are identified such that documents i and j are
mutual k-nearest neighbors of each other according to the similarity matrix S. Such
similarity values, s;;, are retained in S. Otherwise, the value of s;; is set to 0. This
step sparsifies the similarity matrix, and intuitively tries to “break” the inter-cluster
links, so that the resulting points are less likely to be close to one another in the
engineered representation. The number of nearest neighbors, k, regulates the sparsity
of the similarity matrix.

2. (Normalizing for dense and sparse regions): For each row i, the sum of each
row in the symmetric matrix S is computed as follows:

Si = Zsij
J



Intuitively, the value of S; quantifies the “density” in the locality of document ¢. Then,
each similarity value is normalized using the following relation:
Sij Sij

/Si-S;  GEOMETRIC-MEAN(S;, S))

Sij <~

The basic idea is to normalize the similarities between documents with the geometric
mean of the “densities” at their end points. Therefore, the similarity is relative to
the local data distribution. For example, the similarity between two modestly similar
documents in a local region belonging to a rare topic (e.g., beetle fighting) becomes
magnified, whereas the similarity between two documents on a popular topic (e.g.,
stock market) is de-emphasized. This type of adjustment makes the similarity function
more adaptive to the statistics of data locality. For example, if a document is in a very
dense region, it facilitates the creation of a larger number of fine-grained clusters in
that region. At the same time, it becomes possible to create fewer clusters with more
widely separated points in sparse regions. An intuitive way of understanding this (in
the context of a spatial application) is that population clusters in sparsely-populated
Alaska would be geographically larger than those in densely-populated California.

3. (Explicit feature engineering): The resulting similarity matrix S is diagonalized
to S = QAQT, where the columns of @ contain the eigenvectors, and A is a diagonal
matrix containing the eigenvalues. Only the largest r < n eigenvectors (columns) of
Q@ need to be computed to create a smaller n X r matrix QQg. Furthermore, each row
of Qo is scaled to unit norm, so that all engineered points (i.e., rows of Q) lie on
the unit sphere. This type of normalization ensures that the use of Euclidean distance
between points is identical to the use of cosine similarity (cf. Eq.2.9 of Chap.2). At
this point, the k-means algorithm is applied on the normalized and engineered points
with the Euclidean distance.

The first two steps change the kernel matrix in a data-dependent way because aggregated
statistics from multiple points are used to change the entries. As in the case of spectral
clustering, a data-dependent kernel often cannot be computed without materializing the
similarity matrix first. Materializing the similarity matrix loses the space-efficiency advan-
tage of the kernel trick over explicit feature engineering, which is one of the reasons that
the kernel trick is not used in this case. Furthermore, the various adjustments to the en-
gineered representation such as the dropping of lower-order eigenvectors cannot be exactly
replicated with the kernel trick. Therefore, spectral clustering is a good example of the
numerous advantages of explicit feature engineering over the kernel trick.

One quirk with spectral clustering is that the diagonal entries of S are set to 0, which
will always® allow negative eigenvalues in QAQ7. From this point of view, the spectral
kernel S is not positive semi-definite, as is required in kernel methods. However, increasing
all diagonal entries of S by an amount equal to the most negative eigenvalue does not change
the eigenvectors (embedding), and also makes the matrix positive semi-definite. It is much
easier to interpret spectral clustering as a kernel technique with this cosmetic change. The
main difference is that one uses @ as the embedding in spectral clustering (rather than
QVA), and the former is invariant to translation of the diagonal entries of S. Because of
these types of minor quirks, it is often forgotten that the spectral method is an approximate
instantiation of kernel k-means after data-dependent modification of the kernel matrix.

5Fach of the respective sums of the diagonal entries of S and A are the same because the trace of a
matrix is invariant under similarity transformation [460]. Therefore, the eigenvalues sum to 0. Unless all
eigenvalues are 0 (i.e., S = 0), at least one negative eigenvalue will exist.



4.9 Transforming Clustering into Supervised Learning

A neat connection exists between unsupervised and supervised® learning, because of which
clustering problems can be solved by repeated execution of any classification algorithm. This
is a useful result, because it unlocks the use of hundreds of off-the-shelf classifiers for clus-
tering. The expectation-maximization algorithm discussed in this chapter is a special case
of this approach, which uses a repeated application of the naive Bayes classifier. Similarly,
the k-means algorithm can be viewed as a repeated application of the centroid classifier.
In spite of the wide popularity of expectation-maximization and k-means, it is surprising
that the notion of using an arbitrary classifier for clustering is rarely explored. Such an
approach offers modeling choices with more interesting properties than the naive Bayes or
the centroid classifier. For example, numerous deep learning methods like long short-term
memory (cf. Sect.10.7.5 of Chap. 10) are designed for text classification. These classifiers
treat text as sequences and their use as subroutines also results in the incorporation of se-
mantic properties of text in clustering. In general, any classifier that works at the sequence
level is potentially interesting.

The basic idea is to assume that each of the k clusters corresponds to a “class” in the
data. We have a classification algorithm A available, which can be trained on a labeled data
set, and it returns scores associated with each of the k different classes when applied to
a test instance (i.e., unlabeled instance). Without loss” of generality, we can assume that
the scores are non-negative and sum to 1. Furthermore, it is assumed that classifier A can
be used in cases where the training instances are weighted, and the classifier gives propor-
tional importance to instances in accordance with their weight. One can always convert an
unweighted classifier to a weighted classifier by repeatedly sampling training instances in
proportion to their weights, training the classifiers, and averaging the predictions over these
models.

The approach starts by randomly assigning the n documents in the corpus to the k
clusters (or, preferably, by using a simple algorithm like k-means), and estimates the initial
parameters of algorithm .4 by applying the training step (see below) with respect to this
“class” labeling. Subsequently, it uses the following two steps iteratively:

1. (Prediction step): Use currently trained algorithm A to predict scores of each class
(i.e., cluster) for each document in the data set. For each document-class pair, create
a training instance with weight equal to the corresponding score. This process will
create a training data set with O(n - k) instances in which each document takes on all
the labels, albeit with different weights.

2. (Training step): Train the algorithm A on the weighted training data set from the
prediction step to create an updated model.

These steps are repeated to convergence. The reader is strongly encouraged to compare the
iterative approach above with the expectation-maximization method discussed in Sect. 4.4.
One issue in the training step is that the training data set contains k copies of the same
instance, albeit with different weights and class labels. Some classifiers can cause problems
with such data sets. One way of avoiding this problem is to sample only one of the duplicate
instances in proportion to its weight while creating the training model.

6This section requires an understanding of the classification problem. We recommend the uninitiated
reader to skip this section at the first reading of the book, and return to it only after covering the material
in the next chapter. The notations and terminologies used in this section assume such an understanding.

"The sigmoid function 1/(1 4+ e~**) can be used to convert an arbitrary score s to the range (0, 1),
which is followed by normalizing the scores to sum to 1 over all classes.



4.9.1 Practical Issues

As in the case of expectation-maximization, a pervasive risk with the use of this approach
is that it can get stuck in local minima. Local minima become particularly likely when a
complex classifier with an over-fitting tendency is used. The approach depends crucially on
generalizing and smoothing out the (initial) random variations in cluster identifier distribu-
tion into a more coherent distribution over many iterations. This is not possible with com-
plex classifiers that are too ready to fit to any non-smooth class distribution. For example,
one of the reasons that k-means gets stuck in local minima less often than expectation-
maximization is because it uses a relatively simple centroid classifier. Larger data sets allow
the use of more complex classifiers including neural networks. Furthermore, it might some-
times be advisable to use simpler classifiers in the first few iterations and gradually increase
the complexity of the classifier. For example, one can use a neural network with a smaller
number of parameters in the initial iterations, and increase the number of parameters in
later iterations. Creating the model on sampled data (in proportion to weights) in each
training iteration is also helpful in avoiding overfitting and local minima. Other options
include the use of different classification algorithms in different iterations, or the use of
different random subsets of features for training/prediction in different iterations.

4.10 Clustering Evaluation

Clustering algorithms can be evaluated using either internal validity measures, or by using
external validity measures.

4.10.1 The Pitfalls of Internal Validity Measures

Internal validity measures use a criterion, such as the average cosine similarity to the nearest
cluster centroid, to evaluate a clustering. It is not difficult to see that this criterion is used
within the objective function optimized by clustering algorithms like k-means. In fact, most
internal validity measures use the criteria derived from the objective functions of various
clustering algorithms or are at least related to these criteria in some way. This creates a
problem in using internal validity measures to fairly compare two clustering algorithms with
very different objective functions. For example, if we use the average cosine similarity to
the nearest cluster centroid as an internal validity criterion, it is virtually impossible for
any other clustering algorithm to outperform k-means for the same number of clusters. The
main problem is that the measure does not tell us anything about the inherent goodness
of a particular clustering, but more about how well the criterion of a particular clustering
algorithm matches with the evaluation criterion. In other words, internal validity measures
are often inherently biased towards specific algorithms or specific parameter settings of the
same algorithm, and are dangerous to use because they can lead to misleading views on the
accuracy of particular clustering algorithms. This book will, therefore, pointedly, omit the
discussion of internal validity measures.

4.10.2 External Validity Measures

External validity measures use the dependent variables (or labels) from supervised learning
problems to evaluate the clustering. The dependent variable is not used by the clustering
algorithm, and therefore the criterion is inherently external both to the algorithm and the
data set used for clustering. For example, consider a classification problem from the domain



of earth science in which the features describe characteristics of trees, and the class labels
correspond to the forest cover type. In such a case, the clustering algorithm would only use
the features to create the clusters without using the feature cover type. Subsequently, it is
measured whether the class labels are spread out randomly over the different clusters or
whether each cluster is dominated by a single class label. It is generally desirable for the
individual clusters to be dominated by particular class labels.

The main assumption in external validity measures is that the external class labels
respect the inherent clustering structure of the data to a large degree. Although this might
not be a perfect assumption, it is still a better choice than the use of internal validity
measures. After all, class labels are often selected on the basis of natural semantic groupings
in the corpus. Over a large number of data sets, any particular external validity measure
can provide a very good indicator of the quality of the results in real settings.

The following will provide an overview of the key validity measures that are used fre-
quently. Therefore, we introduce the notation that will be used consistently in this section.
Consider a situation in which a particular clustering algorithm finds k4 clusters from a
corpus of n documents containing n; ...ny, documents. Furthermore, the number of class
labels (or ground-truth clusters) in the underlying data set is denoted by k;, and the num-
bers of documents belonging to the different ground-truth clusters are denoted by g ... g,
The number of algorithm-determined clusters, k4, may not be the same as the number,
ks, of class labels/ground-truth clusters. The number of documents in the ith algorithm-
determined cluster that belong to the jth class label is denoted by m;;. Then, the following
relationships become immediately evident:
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One of the simplest validity measures used is the cluster purity. The basic idea in cluster
purity is to determine the level of dominance of the class labels in the algorithm-determined
clusters. This purity, P, can be computed as follows:
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An equivalent way of computing the cluster purity is to compute the purity of the ith cluster
as (max;{m;; }/n;) and compute its weighted average over all clusters. The weight of the ith
cluster is proportional to the number of documents in it. A different way of understanding
purity is by viewing the clustering method as a classifier. Each document is labeled with
the dominant label of the algorithm-determined cluster it belongs to. The accuracy of such
a prediction with respect to the external ground-truth is the cluster purity. Therefore, the
cluster purity always lies between 0 and 1. It is noteworthy that most external validity
measures are related to various quantifications used in supervised learning in one form or
the other. This fact is not a co-incidence because external validity measures use a supervised
setting to test the effectiveness of an unsupervised algorithm.

p_ (4.25)



The main advantage of the cluster purity measure is that it is simple and easy to
understand in an intuitive way. However, it pays too much attention to only the most
dominant label in a particular cluster, and it ignores the relative distribution of other labels.
Consider a setting in which we have three algorithm-determined clusters and ten class labels.
The data set is clustered in two different ways, which are referred to as partitioning A and
partitioning B, respectively. Suppose that each of the three clusters have 70% presence of a
unique label in both A and B in an identical way. However, in partitioning A, the remaining
seven labels are randomly distributed across the different clusters. In partitioning B, the
remaining seven labels are neatly segmented across the three clusters in a mutually exclusive
way. Clearly, one would prefer partitioning B over partitioning A. However, cluster purity
is unable to distinguish between partitioning A and partitioning B because it ignores the
non-dominant labels in the clusters. Such clusterings can be distinguished using two other
measures, which are referred to as Gini index and entropy. As in the case of cluster purity,
these measures are also borrowed from the supervised learning domain.

Let p;j = m;j/n; be the fraction of the points in cluster i that belong to class (ground-
truth cluster) j. Therefore, we have th:l pij = 1. Both the Gini index and entropy are
defined in terms of p;;. For Gini index, we first define the Gini index G(7) that is specific
to cluster ¢ as follows:
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The Gini index lies between 0 and 1—1/k;, in which a perfectly homogeneous cluster receives
a Gini index of 0, whereas a cluster with equally distributed class labels receives a value of
1 — 1/k;. Therefore, smaller values of the Gini index are indicative of superior clustering.
The overall Gini index G is the weighted average of the Gini index of the individual clusters:
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A second measure that is commonly used is that of conditional entropy, which is very
similar to the Gini index. Let E(i) be the conditional entropy specific to cluster i. Then,
the value of E(i) is defined as follows:

e
E(i) = - Zpijlog(;vij) (4.28)

As in the case of the Gini index, lower values of the conditional entropy are indicative
of a clustering of higher quality, and it always lies in the range (0,log(k:)). The overall
conditional entropy E is obtained by computing the weighted average of the cluster-specific

values: .

E = Zlil n; - E(i) (4.29)
n
The conditional entropy measures how much uncertainty remains in predicting the class
labels, if one were given the clustering. For example, if one sets k; = n, the clusters would
be singleton points containing only one class, and there would be no uncertainty in predicting
the class label. This is consistent with the fact that the conditional entropy of this case can
be shown to be 0. It is noteworthy that all of the aforementioned measures will generally
give better values of clustering quality when the number of algorithm-determined clusters kg
is increased. Therefore, they cannot be used to compare clusterings of varying granularity.



A measure related to conditional entropy is the normalized mutual information, which is
better normalized for the number of clusters in the data. First, we define the notion of
mutual information between the algorithm-determined clusters and class labels:

MI = i ﬁ: (”””) (4.30)
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The mutual information is always nonnegative, and higher values are desirable. For a partic-
ular data set and class labeling, the sum of the conditional entropy and mutual information
can be shown to be a constant that depends only on the entropy of the class labeling, ir-
respective of the algorithm used for clustering. Therefore, the mutual information can be
viewed as an information gain over the original class labeling, and it conveys almost the
same information about the quality of clustering as conditional entropy. The only difference
is that larger values are more desirable in this case, with a value of 0 indicating independence
between clustering and class labels. These relationships are also discussed in Sect. 5.2.4 of
Chap. 5 in the context of feature selection. However, one advantage of the mutual informa-
tion is that it can be normalized to a value in (0,1) that is less sensitive to the number
of algorithm-determined clusters. The normalized mutual information, NM1I, is defined as

follows: T
NMI = 2 (4.31)
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The denominator is simply the sum of the entropies in the ground-truth labels and
algorithm-determined clusters, and is at least equal to twice the mutual information. The
normalized mutual information can take on a value of 1, when k; = k; and the clusters
match up exactly with the class labels. Therefore, the measure is biased in favor of cluster-
ings where the number of algorithm-determined clusters is close to the number of classes in
the data. This can sometimes be a problem if the number of natural clusters in the data is
not equal to the number of classes in the data. However, if we assume that the ground-truth
classes reflect the true number of clusters in the data, then the measure is a reasonable one
to use to compare between clusters of varying granularities. After all, not picking the correct
number of clusters should also be considered a mistake made by the algorithm-determined
clustering in such a case.

Finally, a number of measures sample pairs at objects and quantify the agreement be-
tween the algorithm-determined cluster indices and class labels. The Rand Index samples
pairs of documents and computes the fraction of pairs in which the algorithm-determined
cluster indices and class labels come to the same conclusion about whether or not they
should belong to the same cluster. Therefore, the Rand Index lies in the range (0,1), and
higher values are better. The Fowlkes-Mallows measure computes the geometric mean be-
tween the precision and recall. The precision is defined as the average fraction of pairs in
an algorithm-determined cluster that belong to the same ground-truth label. The recall
is defined as the average fraction of the pairs in a ground-truth cluster that belong to
the same algorithm-determined cluster. The geometric mean of these two quantities is the
Fowlkes-Mallows measure. For large data sets, the precision and recall must be estimated
by sampling because the total number of pairs is large. One advantage of measures like the
Rand Index and Fowlkes-Mallows is that it is possible (to a limited extent) to compare two
clusterings with a varying number of algorithm-determined clusters k4, which is not possible
with other measures like purity that improve with increasing kg. This is because the preci-
sion and recall are affected in opposite directions by varying k4. However, these measures




would still be biased towards values of k4 that are close to k;, because the assumption is
that the class labeling reflects the true number of clusters in the data. Note that the best
possible value of 1 can only be achieved by these measures when kg = k;.

4.10.2.1 Relationship of Clustering Evaluation to Supervised Learning

Clustering evaluation measures are closely related to supervised learning in two ways:

1. Supervised accuracy measures: The cluster purity measure can be viewed as a gen-
eralization of the accuracy measure in classification, where the clustering is used to
perform classification. Similarly, the Fowlkes-Mallows measure generalizes the preci-
sion/recall measures used in supervised learning. A discussion of classification evalu-
ation is provided in Sect. 7.5 of Chap. 7.

2. Categorical feature selection measures: All feature selection measures used in super-
vised learning for categorical attributes can be generalized easily to clustering eval-
uation. This is because feature selection methods effectively use the discrete values
of a categorical attribute in an analogous way to a cluster of repeated values, when
measuring the discriminative power of that categorical attribute. As a result, mea-
sures like the Gini index and entropy are also used for feature selection in supervised
learning. Therefore, many supervised feature selection measures like the y2-statistic
can also be used for clustering evaluation. A discussion of feature selection measures
in supervised learning is provided in Sect. 5.2 of Chap. 5.

This relationship between clustering and supervised evaluation measures is useful, because
one can use it to design many high-quality evaluation measures for clustering.

4.10.2.2 Common Mistakes in Evaluation

There are several common mistakes made by practitioners while bench-marking clustering
algorithms:

1. Most clustering measures cannot evaluate the relative quality of clusterings of different
granularities in an unbiased way. For example, increasing the value of k£ will usually
improve the cluster purity, Gini index, and the entropy. When each point is in its own
cluster, a perfect value of the measure will be achieved. Although the Fowlkes-Mallows
measure is less sensitive, it is biased in favor of clusterings in which the number of
algorithm-determined and ground-truth clusters match.

2. A common temptation for a practitioner is to evaluate different variations of a clus-
tering algorithm using some external validity measure and then select the best option.
However, by using an external validity measure for tuning, the analyst has unwittingly
incorporated supervision in the algorithm. To ensure that the clustering is truly un-
supervised, one must assume that the ground-truth labels do not exist while setting
the algorithm parameters.

Clustering is a hard problem to evaluate because of its unsupervised nature. Often, the only
true evaluation of a clustering is its utility in an application-centric setting.



4.11 Summary

The problem of clustering is that of unsupervised learning in which no guidance is provided
to a learner about the natural groupings in the data. Feature selection methods typically
evaluate the consistency in the similarities over individual features with those over other fea-
tures. Most matrix factorization and topic modeling methods can be used to discover over-
lapping document clusters and word clusters from the corpus. Traditional mixture models
use a specific model of generation of a document from each mixture component. Similarity-
based methods such as the k-means algorithm are closely related to mixture models, but
are less likely to be stuck in local minima because of their simplicity. Hierarchical meth-
ods are more expensive than k-means methods but they often provide clusterings of better
quality. Therefore, it sometimes makes sense to combine hierarchical and k-means methods
to obtain high-quality results.

Clustering ensembles are useful for combining the results of different clustering algo-
rithms and in obtaining a single more robust clustering. Such methods also have utility
in improving the efficiency of clustering methods when they are combined with methods
like subsampling. Clustering methods that use the sequence information inside text are al-
most always feature engineering methods. Methods like kernel k-means and explicit feature
engineering can both prove useful when combined with string-based kernels. Feature engi-
neering has the advantage that one can obtain high-quality results with ensembles, and also
use algorithms other than the k-means approach. Clustering evaluation measures are either
internal or external. Internal evaluation measures are often misleading and generally not
recommended. External measures use class labels as the ground-truth and typically adapt
classification accuracy measures in order to quantify the quality of a clustering.

4.12 Bibliographic Notes

Surveys on text clustering may be found in [8, 14]. A feature selection survey for cluster-
ing may also be found in [8], and some of the these methods are also applicable to text
data. Term strength was one of the earliest unsupervised methods [498] proposed for text
feature selection. The use of unsupervised models for supervised feature selection was pro-
posed in [379] in the context of outlier detection. A wrapper method that combines the
x?-statistic with probabilistic clustering is proposed in [291]. Most of the matrix factoriza-
tion and dimensionality reduction techniques discussed in Chap.3 can be used as feature
engineering methods for improving clustering applications, because they reduce the effects
of synonymy and polysemy and bring out the key latent concepts in the data. Interestingly,
it is also possible to use clustering to engineer such types of concept decompositions for
other applications like similarity search [12, 133].

Nonnegative matrix factorization was proposed in [276], and PLSA was proposed in [224,
225]. The equivalence between the two was shown in [137]. The use of nonnegative matrix
factorization for clustering is advocated in several works [135, 138, 443, 508]. Among these
works, the work in [138] discusses how different types of constraints within the nonnegative
matrix factorization lead to clusterings with varying levels of overlaps among the rows and
the columns. A chapter on nonnegative matrix factorization methods for clustering may be
found in [8]. A survey on co-clustering for biological data may be found in [317].

The earliest works on probabilistic clustering [289, 381] were focused on distributional
clustering of words based on co-occurrence. These ideas were generalized to the supervised
setting in [33]. The multinomial version of unsupervised clustering may be found in [91]. The



work in [364] is a semi-supervised variant of the expectation-maximization algorithm. This
work illuminates the entire spectrum of possibilities between the unsupervised expectation-
maximization algorithm and the fully supervised naive Bayes algorithm.

The k-means algorithm has been explored extensively by several researchers. The
projection-based approach discussed in this book is based on [438]. The basic ideas in
k-means clustering have been generalized to the streaming setting [13, 537]. Numerous hi-
erarchical methods have also been proposed for clustering, and a comprehensive overview
may be found in [8]. In the text domain, a single-linkage implementations are discussed
in [19, 118], and the centroid clustering method is discussed in [486]. The combination of
hierarchical and k-means clustering (cf. Sect. 4.6.2) is discussed in the Scatter/Gather work
in [124]. This approach also discusses alternatives to using hierarchical methods, such as
buckshot and fractionation in order to make the algorithms more efficient. A semi-supervised
variant of k-means is found in [6], and this paper also illuminates the connections between
semi-supervised clustering and classification. A detailed comparison of various clustering
algorithms may be found in [536].

A survey on ensemble methods for clustering may be found in [187]. Sequential knowl-
edge can be incorporated into text clustering methods by using frequent phrases [525].
Representation learning methods have found much interest in the text community for em-
bedding sequential relationships among words into multidimensional representations. In
particular, neural network methods like word2vec [341] and doc2vec [275] are used to embed
text sequences into multidimensional methods. The Nystrom sampling method is discussed
in [501], and its use for unsupervised learning is discussed in [9]. Numerous clustering va-
lidity measures are discussed in detail in [8, 524].

4.12.1 Software Resources

One of the earliest libraries for clustering is the Bow toolkit [325], which is written in C.
The Python library scikit-learn [550] contains several text clustering tools [569]. The R-
based tm library [551] can be used for preprocessing the documents. Most R distributions
contain the stats package, which contains the kmeans and hclust functions by default.
These functions perform k-means and hierarchical clustering, respectively. However, since
these implementations use the Euclidean distance function rather than the cosine function,
it is important to normalize each vector-space representation up front to unit norm, so that
using the cosine, dot product, or the Euclidean distances create the same result (cf. Sect. 2.5
of Chap. 2). The Weka library also contains several Java implementations of clustering algo-
rithms [553]. The statistics and machine learning toolbox in MATLAB has functions [570]
for k-means and hierarchical clustering. It also provides the ability to automatically compute
the dendrogram from a data set. In many of these packages, it is important to normalize
the documents up front to unit length, because they use the Euclidean distance under the
covers.

4.13 Exercises

1. The Gini index criterion is discussed in this chapter (for cluster validity). Show how
you can pair this criterion with the k-means algorithm to perform unsupervised fea-
ture selection. Which other cluster validity criterion (or criteria) can you use for
unsupervised feature selection in this manner?

2. Implement the feature selection criterion for term strength.
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. Consider the nonnegative tri-factorization D = QXPT of rank-k, in which ¥ is con-

strained to be diagonal/nonnegative. Furthermore P and @ are constrained to satisfy
QTQ = PTP = I. The optimization formulation of this problem is discussed in the
chapter. Show how you can use the k-means algorithm to create an initialization point
for the gradient-descent steps of this optimization formulation.

. Suppose your text documents have a representation in which you only know about the

presence or absence of words in half the lexicon and you know the exact frequencies of
words in the remaining half. Show how you can combine the Bernoulli and multivariate
models to perform text clustering.

. Implement the k-means algorithm for clustering.

. Suppose that you represent your corpus as a graph in which each document is a

node, and the weight of the edge between a pair of nodes is equal to the cosine
similarity between them. Interpret the single-linkage clustering algorithm in terms of
this similarity graph.

. Suppose you were given only the similarity graph of Exercise 5 and not the actual

documents. How would you perform k-means clustering with this input?

. For the case of hierarchical clustering algorithms, what is the complexity of centroid

merging? How would you make it efficient?

. What is the number of possible clusterings of a data set of n points into k groups?

What does this imply about the convergence behavior of algorithms whose objective
function is guaranteed not to worsen from one iteration to the next?

Implement the group-average linkage clustering algorithm.

As discussed in the chapter, explicit feature engineering methods can be made faster
and more accurate with Nystrom sampling. Spectral clustering has also been presented
as a special case of kernel methods with explicit feature engineering in this chapter.
Discuss the difficulties in using Nystrom sampling with spectral clustering. Can you
think of any way of providing a reasonable approximation? [The second part of the
question is open-ended without a crisp answer.|



Chapter 5

Text Classification: Basic Models

“Science is the systematic classification of experience.”—George Henry Lewes

5.1 Introduction

In classification, the corpus is partitioned into classes that are typically defined by
application-specific criteria. Therefore, training examples are provided that associate data
points with labels indicating their class membership. For example, the training examples
extracted from a news portal on political matters might attach one of three labels associ-
ated with each of the documents, such as “senate,” “congress,” and “legislation.” Then, for
a given set of test examples in which labels are not available, the goal is to place them in
one of these categories with the use of a supervised model that was constructed using the
training examples. The process of learning a categorization model from the training data,
and then applying it to the test data is referred to as generalization. The basic principle here
is that we are generalizing our experiences from (specific) training examples with known
labels to arbitrary test data with unknown labels.

Text classification and clustering are closely related problems. One can view each class in
an analogous way to a cluster. Unlike clustering, the problem of classification distinguishes
between training examples and test examples, and labels are observed only for training ex-
amples. Therefore, the supervised model from the training data is used to predict the labels
of the test examples. For example, the model might learn that the word “representative”
is related to the label “congress” and it might use this fact to assign test documents con-
taining this word to the label “congress.” A key observation is that the training instances
inherently fix the nature of these “clusters” (i.e., classes) with the use of labels. Therefore,
the test examples are always assigned to one of the pre-defined training labels (groupings)
in classification, whereas clustering has a more open-ended view in which it uses the simi-
larity structure of the data to define its own groupings (which can eventually be manually
labeled by a domain expert). This is the reason that classification is referred to as supervised
learning, because the training examples play the role of a teacher who guides the students



towards a specific goal of finding a particular type of grouping. This type of guided grouping
provides significant control in many application-centric settings:

1. News portals: News portals often organize incoming documents on the basis of a
specific topic such as politics, sports, entertainment, and so on. In many cases, the
topical categorization needs to be done in real time, as new articles are received
continuously. This process is also referred to as mews filtering. A similar principle
applies to the organization of large groups of document collections such as digital
libraries or scientific literature.

2. Email and spam filtering: Many email providers allow the ability to filter spam in an
automated way. This is a classification application in which each email is labeled as
either “spam” or “not spam.”

3. Opinion mining and sentiment analysis: In opinion mining and sentiment analysis,
the basic idea is to use the text of reviews, blogs, or social posts in order to make
judgements about the opinions and sentiments of users. As discussed in Chap. 13, this
problem is a direct application of classification.

The problem of text classification is formally defined as follows. Consider an n X d training
data matrix D, whose n rows are the tf-idf representations of the n documents. These
rows contain the d-dimensional row vectors X; ... X,. In addition, the ith document X; is
associated with the class label y;. We can assume that the column vector 7 = [y; ... yn]7
contains all the class labels associated with the n training instances. It is assumed that
the class label of each training instance is drawn from the set of k label values denoted by
L ={1,...k}, although there are some special conventions for binary classes (which will be
discussed later). Therefore, the pair (D,g) represents the training data, and a one-to-one
correspondence exists between rows of D and entries of 7. This data matrix is used to create
a model for classifying each unlabeled test instance Z:

Definition 5.1.1 (Data Classification) Given an n x d document-term matriz D asso-
ciated with the n-dimensional vector of class labels y, predict the class label for an unlabeled
test document Z.

More generally, one can create a test matriz D; of size n; x d. Therefore, there are ny
test instances, Z ... Zn,, which are rows of this matrix. Each such test instance needs to
be independently classified using the above model. The aforementioned definition is the
simplest model formulation. In some cases, instead of predicting the labels of each instance
independently, one might want to sort all the test instances in D; in order of their propensity
to belong to a particularly important class. For example, in a spam-detection application,
one might want to rank all the emails in order of their propensity to be spam.

5.1.1 Types of Labels and Regression Modeling

For k-way classification, it is assumed that the label set is denoted by £ = {1...k}. Note
that the values 1...k represent only discrete identifiers without any ordering among them.
For example, the semantic interpretation of the labels in a color-prediction application
could correspond to £ = {Blue, Red, Green}. The only case in which one might impose an
arbitrary ordering between labels (and use them as numeric quantities) is the binary case in
which the value of k is 2. Many binary classification algorithms use either the convention £ =
{0, 1}, or they work with the convention £ = {—1,+41}. The binary classification problem is



particularly common in practical settings, and some classification models (cf. Chap. 6) are
naturally designed to solve only the binary case. Nevertheless, these classifiers can also be
used for k-way classification with some algorithmic tricks.

So far, we have viewed the class label only from the point of view of partitioning the data,
and therefore it is defined as a categorical label. A more general view is that this label could
be an arbitrary numerical quantity, such as a decimal value drawn from the real domain.
In such a case, we use the term dependent variable to refer to this quantity rather than as a
class variable. The entries in each row (document) of D are referred to as the independent
variables of that instance. The problem in which the dependent variable is numerical is
also referred to as regression modeling. It is easy to see that binary classification can be
considered a rudimentary special case of regression modeling. The dependent variable is
also referred to as the response variable or regressand. The independent variables are also
referred to as the explanatory variables, input variables, feature variables, predictor variables,
or regressors. All the models discussed in this chapter can be used for both classification
and regression, although our primary focus will be on classification.

5.1.2 Training and Testing

Most classifiers have an up front training phase in which only the labeled training data is
used to build a summarized model that relates the characteristics of the documents (e.g.,
term distributions) to the classes. This phase is referred to as training or learning. The
summarized model essentially generalizes the knowledge gained from the training data to
unseen test instances. This prediction of the labels of unseen test instances is referred to as
the testing or prediction phase. It is noteworthy that the accuracy of a trained classifier will
typically be much higher if it is used to “predict” the (known) labels of the (seen) instances
that it was trained on than on the unseen test instances. This is because the trained model
“remembers” some of the specific and unimportant nuances about the training instances
within the summarized model, which improves the accuracy only on these specific instances.
Classifiers that have small gaps in their training and test data accuracy are said to have
good generalization power. It is easy! to construct classifiers in which the accuracy on the
training data is very high, but that on the test data is extremely poor. This phenomenon is
referred to as overfitting. Overfitting is undesirable, because the only utility of a classifier
arises from correctly predicting instances for which labels are not already available (i.e.,
test data). As a general rule, classifiers with a concise summary model will have better
generalization power, although the overall accuracy depends on several other factors. These
issues will be discussed in Sect. 7.2 of Chap. 7.

The training phase might include a phase of model selection, which corresponds to the
tuning of parameters or other design choices in the algorithm. A very simple way to im-
plement model selection is by hiding (i.e., holding out) a part of the labeled training data
during model construction and then evaluating the accuracy of using various values of the
parameters (or training design choices) on the held out data. This set is referred to as the
validation set, and it is distinct from the test set on which the predictions are finally applied.
After the phase of model selection, the unlabeled instances are predicted with the optimized
design choices.

LConsider a classifier that memorizes the training examples as follows. For any test instance, it is
determined whether a training instance has zero distance to it (which is guaranteed when the test instance
is drawn from the training data). If such an instance is found, the label of that training instance is returned.
Otherwise a random label is returned. Such a classifier will have 100% accuracy on the training data, but
will perform randomly on unseen test instances. The key point is that generalization is about extrapolating
predictions from known instances of the data space (i.e., training points) to all regions of the data space.
Memorizing only the known instances is the worst possible way to achieve this.



Finally, a decision boundary is a hyperplane or hyper-surface in the data space that
partitions the data into various classes. All classification algorithms attempt to model this
decision boundary directly or indirectly using the training data. It is noteworthy that the
hyper-surface might not be contiguous when a class is not contiguously located in the data
space. Furthermore, a real data set may not contain a sharply defined decision boundary
because there might be regions where the classes are overlapping. As a result, the decision
boundary is sometimes viewed as a region of the data space in which the classification is
ambiguous, and the predicted decision boundary by a particular model is often chosen some-
where in this region to provide the best performance on unseen data. Simplified modeling
assumptions (e.g., linear shape of boundary) are often made during learning, and therefore
it is common for classifiers to make mistakes near the modeled decision boundary.

5.1.3 Inductive, Transductive, and Deductive Learners

Not all classifiers have a clear separation between the training and testing phase. Classifiers
that do create a summarized model up front from the training data are said to be inductive
learners, and their primary goal is to generalize the observation from training data to unseen
instances. These classifiers generalize easily to any unlabeled test instance. However, if more
training data is received, then it could invalidate the model because of the presence of
additional data that conflicts with the currently available summarized model. After all, the
currently available model is only a hypothesis about unseen instances. Most of the classifiers
discussed in this chapter are inductive learners.

In transductive learners, the (unlabeled) test data is included with the labeled training
data in the training phase, and the predictions can be specific only to that particular set
of unlabeled data. Therefore, the generalization achieved with a transductive learner is less
than that achieved with an inductive learner because the resulting models may not generalize
to unseen test instances. However, this specificity also (often) provides the advantage that
the predictions for those specific test instances are more accurate. Such methods are closely
related to semi-supervised methods, because they use both labeled and unlabeled data.

Finally, a fundamentally different way of classifying data is by using deductive learners.
Deductive learners use rules of logic to capture fundamental properties of the instances.
These rules are often obtained using knowledge of the world or other domain characteristics.
In a sense, these rules are considered absolute truth that cannot be invalidated by future
observations. For example, consider the following pair of rules: “Bald men do not have hair.
Only people with hair need combs.” Now if you had a feature in your instance containing
information about whether or not someone was bald, you could use it to predict whether
they will need a comb. A human-centric analogy would be that deductive learning comprises
the lessons you learned from your parents, whereas inductive learning comprises the lessons
you learned from your own life experiences. The latter is known to more effective both in
real life and in machine learning, although one should not discount the guidance provided by
deductive learning where it is available. Inductive learners that encode domain knowledge
about the data within the classification process can be viewed to have some characteristics
of deductive learners, and are therefore hybrid models [378]. The power of deductive learning
is often incorporated indirectly in inductive models by incorporating mild constraints (or
bias) into the model with domain-specific insights. One needs to be careful when using such
methods because strong levels of bias suffocate the ability of the learner to benefit from more
examples. Most of machine learning focuses on inductive learning, because of its emphasis
on observation-driven inference. This chapter will primarily focus on inductive learners.



5.1.4 The Basic Models

This chapter will discuss the four basic models for text classification, which are the naive
Bayes classifier, the nearest-neighbor classifier, decision trees, and rule-based classifiers.
These four classifiers are selected because they are among the oldest methods in the lit-
erature, and are related in fundamental ways to other learning models. For example, the
nalve Bayes classifier can be shown to be a supervised variant of the probabilistic clustering
model discussed in Chap. 4. Similarly, some of the most powerful classifiers in the super-
vised domain like random forests and support-vector machines can be shown to be adaptive
variants of nearest-neighbor classifiers (cf. Sects. 5.5.6 and 6.3.6).

5.1.5 Text-Specific Challenges in Classifiers

Text is extremely sparse and high-dimensional, which causes off-the-shelf, multidimensional
models to behave in unexpected ways. The frequency of a single term often contains little
predictive power, and it is only by using combinations of many features that robust classi-
fication can be achieved. If a classifier uses sequential decisions that prioritizes one feature
strictly before another, this can affect the accuracy of classification negatively because of
overfitting. This observation has implications in the design of classifiers like univariate de-
cision trees that use sequential decisions over individual attributes. In fact, if all features
are used simultaneously, then some simple models like linear classification work better than
in other domains without the need for sophisticated nonlinear transformations of the data
(cf. Sect. 6.5.3 of Chap.6).

Another consequence of sparsity is that the presence of a particular term in a document
is much more informative than its absence for inferring the class label. This is because the
presence of a term is statistically rare in a sparse document and thereby more informative.
Some classifiers that use excessive information about absent terms perform poorly because
of overfitting. Furthermore, the precise frequency of a term contains much less incremental
information compared to that obtained by knowing that the term is present in the docu-
ment. This asymmetry in the relative importance of different values of the term frequencies
is important to keep in mind while attempting to adapt classifiers from the traditional
multidimensional domain (which tend to treat all values in a symmetric way).

5.1.5.1 Chapter Organization

This chapter is organized as follows. The next section introduces feature selection methods
for classification. The naive Bayes model is introduced in Sect.5.3. Section 5.4 discusses
nearest-neighbor methods. Decision trees are discussed in Sect.5.5. Rule-based classifiers
are introduced in Sect. 5.6. A summary is given in Sect. 5.7.

5.2 Feature Selection and Engineering

Text data is often extracted from sources like the Web in which the authorship varies widely,
with many misspellings and use of non-standard vocabulary and acronyms. Many features
are irrelevant, and including them leads to overfitting, particularly when labeled data are
limited. The discriminative features can be identified by examining the co-occurrence statis-
tics of the various terms with respect to the classes. For example, an undiscriminating term
will be randomly distributed across all classes. On the other hand, a highly relevant term
will be concentrated in a smaller subset of the classes. A number of measures such as the



Gini index, conditional entropy, and the x?-statistic are used to measure this type of as-
sociation. Such models are referred to as filter models because a single quantification is
used up front to filter features. All the models discussed in this section, other than those
in Sect. 5.2.6, are filter models. In wrapper models, an iterative feature selection process is
tied to a particular classification model, and the effect of a particular term on the accuracy
of that model is used for feature selection. We will omit a detailed discussion of wrapper
models because they are rarely used in the text domain. Finally, in embedded models (cf.
Sect. 5.2.6), the feature discrimination can be quantified using the intermediate outputs of
a particular classification algorithm.

5.2.1 Gini Index

The Gini index measures the imbalance in the class distribution of a set of instances that
include a particular term. The basic idea is that discriminative features tend to increase
this imbalance. From all instances that contain the term ¢;, let P(c,|t;) be the fraction (i.e.,
observed probability) that belong to the class r. Therefore, for a k-class problem we have:

k
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When the term ¢; is poorly discriminative of the class label, all the values of P(c,|t;) for
varying r and fixed j will be similar and close to 1/k. On the other hand, if the feature is
extremely discriminative, then all documents containing that term will belong to a single
class. As a result, only one of these fractions will be 1, and others will be 0s. How can
we provide a single measure of goodness that captures the desirability of greater skew? A
simple measure is the Gini index G(t;), which is defined as follows:

k
G(t;) =1-> [P(c,|t;)] (5.2)
r=1

When all documents containing a term belong to a single class, the Gini index takes its
minimum value of 0. On the other hand, if documents containing the term are evenly
distributed across different classes, the Gini index takes on its maximum value of 1 — 1/k.
In other words, the Gini index always lies in the range (0,1 — 1/k), and smaller values are
desirable. Features with large values of the Gini index can be removed. One issue with this
measure is that it does not work very well when the class distributions are imbalanced in
the original data [6]. Therefore, one has to compute a re-normalized value of P(c,|t;) with
respect to the numbers of instances ni ...ny in various classes:

P(CT'|tj)/n7'

fr(tj) = A (53)
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Then, the normalized value of the Gini index may be computed as follows:
k
Gulty) =1 £(t)? (5.4)
r=1

The re-normalization is a way of forcing the original class distribution to be an even dis-
tribution, and examining how much the addition of term ¢; changes the class distribution.
Unlike most other measures, the absence of the term in not used in the Gini coefficient
computation. In the text domain, it is sometimes desirable to not use the absence of terms
too strongly, because it is noisy information.



5.2.2 Conditional Entropy

Let n(t;) be the number of documents containing term ¢; out of a corpus of size n > n(t;).
Among all these instances that contain the term ¢;, let P(c,|t;) be the fraction (i.e., observed
probability) of documents belonging to the class r. Furthermore, among the (n — n(t;))
documents that do not contain ¢;, let P(c.|—t;) be the fraction that belong to class r.
Then, the conditional entropy E(t;) is defined as follows:
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(5.5)
The conditional entropy lies between (0,log(k)) and it measures how much the presence
or absence of a term affects our certainty of being able to determine the class label. For
example, if all documents containing a term belong to one class, and all documents not
containing that term belong to another class, then the conditional entropy will be 0. Lower
values are indicative of more discriminative features. The features can be ranked in order
of conditional entropy and the ones with the largest values can be pruned.

5.2.3 Pointwise Mutual Information

First, the point-wise mutual information with respect to a single class is defined. Sub-
sequently, the idea is generalized to multiple classes. The point-wise mutual information
PMI,(t;) with respect to class r is defined as follows:

PMI,(t;) = log [PJ(DC(Jt)J)}

The notions used in this section are the same as those used above in the discussions on the
Gini index and conditional entropy. The overall point-wise mutual information across all
classes can be defined in two different ways:

PMI,4(t5) = MI,.(t;)
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PMIpa.(t;) = maerMIr(tj)

The point-wise mutual information is positive when the presence of the term is positively
correlated with respect to a particular class. Larger values of the point-wise mutual infor-
mation are more desirable.

5.2.4 Closely Related Measures

Many authors and practitioners use closely related measures like mutual information (dif-
ferent from pointwise mutual information) and information gain, which turn out to give
identical results to conditional entropy. Therefore, it is useful to know these relationships to
avoid redundancy in usage. Note that point-wise mutual information uses only information
about the presence of terms but not about the absence of terms. A different measure is
the mutual information, which uses both the presence and absence of terms to compute
pointwise mutual information values such as {PMI,.(t;), PMI,.(—t;)}, and then computes



a weighted average over all possibilities. Let P(c, N¢;) represent the fraction of all docu-
ments from the corpus that both belong to class r and contain term ¢;. Then, the mutual
information MI(t;) is computed as follows:

k
MI(t;) =Y [Pler Nt;)PMI(t;) + P(c, N =t ) PMI(~t;)] (5.6)
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The mutual information measures the amount of information that the term ¢; has with
respect to the class distribution. The mutual information is always nonnegative and takes
on the minimum value of 0 when the two terms are statistically independent. Either positive
or negative correlation between the term and a particular class increases mutual informa-
tion. As discussed in Sect. 4.10.2 of Chap. 4, a normalized variant of mutual information is
also used in measuring clustering validity. The mutual information is also referred to the
information gain. Interestingly, one can compute the mutual information (i.e., information
gain) I(¢;) in terms of the aforementioned measure of conditional entropy and the entropy
of the original class frequencies ny ...ng:

k
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Information Gain I(t;) of t; = - g_l ;log (;) - E(t;)
Same as Mutual Information — Conditional Entropy

Entropy in class distribution

(5.7)
In other words, information gain tells us the gain in conditional entropy (after knowing
occurrence data of term t¢;) with respect to base entropy of class distribution. Since the
first term in the RHS above is independent of ¢;, the use of information gain only flips the
ordering of the different features in relation to conditional entropy. The information gain is
always a nonnegative value with higher values indicating a greater degree of discrimination.
The fact that the information gain I(t;) is the same as the mutual information MI(t;)
is left as an exercise for the reader (see Exercise 2). It makes sense to use only one of
the three measures of conditional entropy, mutual information, and information gain, while
performing feature selection, because they will provide the same results. However, point-
wise mutual information will provide different results, because it does not use the absence
of terms. The normalized Gini index also does not use the absence of terms.

5.2.5 The y2-Statistic

The basic idea of the x2-statistic is to treat the co-occurrence between the term and class
as a contingency table. For example, consider a scenario where we are trying to determine
whether the term “elections” is relevant to the class Politics. Consider a collection of 1000
documents in which 10% of the documents belong to the Politics category, and the term
“elections” occurs in about 20% of the documents. Then, the ezpected number of occur-
rences of each possible combination of word occurrence and class contingency is as follows:

H H Term “elections” € document \ Term “elections” ¢ document H

Document € Politics 1000 % 0.1 x 0.2 = 20 1000 % 0.1 % 0.8 = 80
Document ¢ Politics 1000 % 0.9 % 0.2 = 180 1000 * 0.9 x 0.8 = 720

The aforementioned expected values are computed under the assumption that the occur-
rence of the term in the document and the occurrence of a document in the Politics class are



independent events. If these two events are truly independent, then clearly the term will be
irrelevant to the learning process. Therefore, the goal of the x2-computation is to evaluate
how far the observed quantities in the contingency table different from the aforementioned
expected quantities. For example, consider a scenario where the contingency table deviates
from expected values and the term “elections” and class label Politics are related. In such
a case, the observed contingency table may appear as follows:

H H Term “elections” € document \ Term “elections” ¢ document H

Document € Politics 01 =60 05 =40
Document ¢ Politics O3 = 140 O4 = 760

The y2-statistic measures the normalized deviation between observed and expected values
across the various cells of the contingency table. In this case, the contingency table contains
p =2 x 2 =4 cells. Let O; be the observed value of the ith cell and F; be the expected
value of the ith cell. Then, the y2-statistic is computed as follows:

p 2
2 (0i — Ey)
- _ 5.8
X ; E (5.8)
Therefore, in the particular example of this table, the x?-statistic evaluates to the following:
60 — 20)2 40 — 80)2 140 — 180)2 760 — 720)2
,_ (6020 (4080 2 )

) 80 180 720
— 80 +20+8.89+2.22 =111.11

It is also possible to compute the y2-statistic as a function of the observed values in the
contingency table without explicitly computing expected values. This is possible because
the expected values are also functions of these observed values. The arithmetic formula to
compute the y2-statistic in a 2 x 2 contingency table is as follows:

X2 _ (01 4+ 02+ O3+ 04) : (0104 - 0203)2 (5 9)
(O1+02) - (034 Oy4) - (O1 + 03) - (O2 4 Oy4) ‘

Here, O; ... O4 are the observed frequencies according to the table above. It is easy to verify
that this formula yields the same y2-statistic of 111.11. Note that if the observed values
are exactly equal to the expected values, then it implies that the corresponding term is
irrelevant to the class at hand. In such a case, the y2-statistic will evaluate to its least
possible value of 0. Therefore, the top-k features with the largest y2-statistic are retained.
The x2-test can also be probabilistically interpreted in terms of a x? distribution.

One can extend the y2-statistic for binary classification (as discussed above) to the k-way
setting by combining the class-wise results [520]. Then, if x2(¢;) represents the x>-statistic
for term t; and occurrence/non-occurrence of class r, the integrated values are as follows:

k
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Here, n; ... ng represent the number of documents in the & classes, and n is the total number
of documents.



5.2.6 Embedded Feature Selection Models

Many classification and regression models provide the ability to perform embedded feature
selection by leveraging the output of intermediate steps. Feature selection is accomplished
with the use of regularization in order to reduce overfitting, which is similar in principle
to the goals of feature selection. As a result, the intermediate outputs of these regularized
algorithms provide useful insights for feature selection. For example, consider the follow-
ing linear regression model (see Sect.6.2.2 of Chap.6), in which the numerical dependent
variable y; is predicted using the following linear relationship to the feature variables X;:

y~W-X; Vie{l...n} (5.10)

The notation W represents a d-dimensional vector of coefficients that is learned by the
training model. This vector is computed by solving the following optimization model:

n d
Minimize Z(W-E—yi)2+ )\Z|wl|
i=1 i=1

Prediction Error  Penalty for using features

Here, A > 0 is a regularization parameter, which controls the severity of the penalty. Such
a penalty ensures that the optimization will not assign a large non-zero coefficient for that
feature, unless the feature conveys important and irreplaceable information about the de-
pendent variable. Feature penalization is referred to as regularization. The type of penalty
discussed above is referred to as the Lj-penalty, and it has the remarkable property of
favoring a coefficient vector W in which many values of w; are zero. Such features are
effectively dropped because they will have no influence on prediction of test instances ac-
cording to Eq. 5.10. The natural idea in embedded feature selection is that it leverages on
built-in (regularization) mechanisms by many algorithms to avoid overfitting. After all, the
main goal of feature selection is also the prevention of overfitting. A detailed discussion of
L-regularization is provided in Sect. 6.2.2 of Chap. 6.

5.2.7 Feature Engineering Tricks

Two types of feature engineering tricks are commonly used in the text domain. The first trick
is done to get rid of sparsity, which can be a problem for some classifiers such as decision
trees. The second technique uses representation mining techniques to embed sequential
representations of text to multidimensional representations. The latter approach is able to
leverage the sequential ordering information among words to incorporate greater semantic
knowledge in learning. Since the second approach will be discussed in Chap. 10, the following
will discuss only the feature engineering methods used to address sparsity.

Sparsity can cause challenges with certain types of classifiers like decision trees, which
use attributes one at a time in the modeling process. Since each term contains informa-
tion relevant to only a small subset of documents in which it is present, and the absence
of terms is noisy information, it often causes overfitting when classifiers make important
decisions with individual attributes. Therefore, in such cases, methods like latent semantic
analysis (LSA) are not just useful for dimensionality reduction, but they can be viewed as
feature engineering methods that enable the use of certain types of classifiers. A particular
variant of LSA, known as a Rotation Ensemble is particularly useful for ensemble-centric
implementations. The basic idea is to use the following approach:



Randomly split the d terms into K disjoint subsets of size d/K to
create K projected data sets;

Perform LSA on each projected data set to extract r < d/K features;

Pool all extracted features to create a (K - r)-dimensional data set;

Apply a classifier on the new representation;

This approach can be applied multiple times, and the prediction of a test instance
can be averaged over multiple such transformations. A particularly common classifier that
is used with this approach is the decision tree, and the resulting classifier is referred to
as the Rotation Forest [413]. Another feature engineering method is the Fisher’s linear
discriminant (cf. Sect.6.2.3 of Chap.6), which provides discriminative directions in the
space. Such methods have also been used in conjunction with decision trees [82].

5.3 The Naive Bayes Model

The naive Bayes classifier uses a probabilistic generative model that is identical to the
mixture model used for clustering (cf. Sect.4.4 of Chap.4). The model assumes that the
corpus is generated from a mixture of different classes. The generative process, which is
applied once for each observed document, is as follows:

1. Select the rth class (mixture component) C, with prior probability a, = P(C,).

2. Generate the next document from the probability distribution for C,.. The most com-
mon choices are the Bernoulli and multinomial distributions.

The observed (training and test) data are assumed to be outcomes of this generative process,
and the parameters of this generating process are estimated so that the log-likelihood of this
data set being created by the generative process is maximized. Generally, only the training
data is used to estimate the parameters, because the training data contains additional
information about the identity of the mixture component that generated each document.
Subsequently, these parameters are used to estimate the probability of the generation of each
unlabeled test document from each mixture component (class). This results in a probabilistic
classification of unlabeled documents.

Each cluster G, in the expectation-maximization algorithm of Sect. 4.4 is analogous to
a class C, in this setting. One can view naive Bayes as a simplification of the iterative
expectation-maximization algorithm in which the presence of labels allows the execution of
the approach in a single iteration. Unlike clustering, the training process in classification uses
a single application of the M-step (on labeled data), and the probabilistic prediction of test
instances is a single application of the E-step on the unlabeled test instances (to estimate
posterior probabilities). Furthermore, the naive Bayes classifier has analogous Bernoulli and
multinomial models to those used in clustering.

5.3.1 The Bernoulli Model

In the Bernoulli model, it is assumed that only the presence or absence of each term in the
document is observed. Therefore, the frequencies of the terms are ignored, and the vector-
space representation of a document is a sparse binary vector. The Bernoulli model assumes
that the jth term, ¢;, in the lexicon is present in a document generated from the rth class

(mixture component) with probability pg-r). Then, the probability P(Z|C,) of the generation



of the document Z from mixture component C, is given? by the product of the d different
Bernoulli probabilities corresponding to presence of absence of various terms:

pPic,) = I #” [ a - (5.11)
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An important assumption here is that the presence or absence of the various terms are
conditionally independent with respect to the choice of class. Therefore, one can express
the joint probability of the attributes in Z as the product of the corresponding values on
individual attributes. This assumption is also referred to as the naive Bayes assumption,
which is also the reason that the method is referred to as a naive Bayes classifier. The term
“naive” is used because this type of approximation is generally not true in real settings.

The main task in the training phase of the Bayes classifier is to estimate the (maximum
likelihood) values of the prior probabilities a,. and class-specific generative probabilities pg-r).
These parameters are estimated so that the observed data has the maximum likelihood of
being generated by the model, and are then used to perform the prediction of the labels of
unseen test instances. One can summarize this process as follows:

e Training phase: Estimate the maximume-likelihood values of the parameters py) and
a,- using only the training data.

e Prediction phase: Use the estimated values of the parameters to predict the class
of each unlabeled test instance.

The training phase is executed first, which is followed by the prediction phase. However,
since the prediction phase of a naive Bayes classifier is the key to understanding it, we will
present the prediction phase before the training phase. Therefore, the following section will
assume that the model parameters have already been learned in the training phase.

5.3.1.1 Prediction Phase

The prediction phase uses the Bayes rule of posterior probabilities to predict an instance.
The basic idea is that the learner uses the aggregate frequency of each class in the training
data to learn a prior probability o, = P(C,), of each class. Subsequently, it needs to
estimate the posterior probability P(C,.|Z) after observing a specific document (with binary
representation Z = (2; ... z4)) for which the label is not known. This estimation provides a
probabilistic prediction for the test instance Z of belonging to a particular class.
According to the Bayes rule of posterior probabilities, the posterior probability of Z
being generated by the mixture component C, of the rth class can be estimated as follows:

x P(C,) - P(Z|C,) (5.12)

A constant of proportionality® is used instead of the P(Z) in the denominator, because the
estimated probability is only compared between multiple classes to determine the predicted
class, and P(Z) is independent of the class.

2Although X; is a binary vector, we are treating it like a set when we use a set-membership notation
like t; € X;. Any binary vector can also be viewed as a set of the 1s in it.

3The constant of proportionality can be easily inferred by ensuring that the sum of the posterior prob-
abilities across all classes is 1. As we will see later, there are scenarios associated with ranking instances to
belong to specific classes, where the constant of proportionality does matter.



An important observation here is that all the parameters on the right-hand side of the
conditional can be estimated using the Bernoulli model. We further expand the relationship
in Eq. 5.12 using the Bernoulli distribution of Eq.5.11 as follows:

P(C,|Z) < P(C) - P(ZIC,) = ar ] 27 T (1 =) (5.13)
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Note that all the parameters on the right-hand side are estimated during the training
phase discussed below. Therefore, one now has an estimated probability of each class being
predicted up to a constant factor of proportionality. The class with the highest posterior
probability is predicted as the relevant one, although the output is sometimes provided in
the form of probabilities. It is noteworthy that this step is identical to the E-step used
for mixture modeling in clustering (cf. Sect.4.4.1), except that it is applied only to the
unlabeled test instances.

5.3.1.2 Training Phase

The training phase of the Bayes classifier uses the labeled training data to estimate the max-
imum likelihood values of the parameters in Eq. 5.13. It is evident that we need to estimate
two sets of parameters, which are the prior probabilities «, and the Bernoulli generative

parameters, pg-r), for each mixture component. The statistics available for parameter esti-
mation include the number of labeled documents n, belonging to the rth class C,, and the
number, my), of the documents belonging to class C, that contain term ¢;. The maximum
likelihood estimates of these parameters can be shown to be the following:

1. Estimation of prior probabilities: Since the training data contains n, documents for
the rth class in a corpus size of n, the natural estimate for the prior probability of the
class is as follows: n

a, = ?T (5.14)

If the corpus size is small, it is helpful to perform Laplacian smoothing by adding a
small value 8 > 0 to the numerator and S - k to the denominator:

n, + 3

The precise value of 8 contains the amount of smoothing, and it is often set to 1 in
practice. When the amount of data is very small, this results in the prior probabili-

ties being estimated closer to 1/k, which is a sensible assumption in the absence of
sufficient data.

2. Estimation of class-conditioned mizture parameters: The class-conditioned mixture
(r)

parameters, p; ’, are estimated as follows:

(r)
T m;
p\) =~ (5.16)

ny

It is particularly important to use Laplacian smoothing on the class-conditioned prob-
abilities because a particular term ¢; might not even be present in the training doc-

uments of the rth class, particularly when the corpus is small. In such a case, one
(

would estimate the corresponding value of pjr) to 0. As a result of the multiplicative



nature of Eq. 5.13, the presence of term t; in an unseen document will always lead to
an estimated probability of 0 for the rth class. Such predictions are often erroneous,
and are caused by overfitting to the small training data size.

Laplacian smoothing of class-conditioned probability estimation is performed as fol-
lows. Let d, be the average number of 1s in the binary representation of each training
document and d be the size of the lexicon. The basic idea is to add a Laplacian smooth-
ing parameter v > 0 to the numerator of Eq.5.16 and d~y/d, to the denominator:
o my

N 5.17
P dnd (5.17)

The value of v is often set to 1 in practice. When the amount of training data is very

small, this choice leads to a default value of d,/d for py), which reflects the level of
sparsity in the document collection.

It is noteworthy that the training phase in the Bayes classifier is a simplified variant of
the M-step used in the mixture model for clustering (cf. Sect.4.4.1). This simplification is
because labeled training data is available to infer the membership of documents in mixture
components.

5.3.2 Multinomial Model

While the Bernoulli model uses only the presence of absence of terms in documents, the

multinomial model explicitly uses their term frequencies. Just as the parameter p( 7
the Bernoulli model denotes the probability whether a term is observed in a partlcular
component, the parameter g;, in the multinomial model denotes the fractional presence of
term t; in the rth mixture component, including the effect of repetitions. The values of g;,
sum to 1 for a particular mixture component r over all terms (i.e., Z?Zl gr = 1).

The generative process for the multinomial mixture model first selects the rth class
(mixture component) with probability o.. = P(C,.). Then, it throws a loaded die (owned by
the rth class) L times to generate a document with L tokens (counting repetitions). The
loaded die has as many faces as the number of terms d, and the probability of the jth face
showing up is given by g, for the die owned by the rth class. Therefore, if the die is thrown
L times, then the number of times each face shows up provides the number of times each
term shows up in the observed document. If we assume that the frequency vector of the
document Z is given by (21 ...zq), then the generative probability of the ith document is
given by the following multinomial distribution:

d
P(Z|C,) = (, H 0r)” <><H ar)* (5.18)

The constant of proportionality holds for fixed Z and varying class, because it depends only
on Z and is independent of the class C,..

The overall process of both prediction and training in the multinomial model is very
similar to that of the Bernoulli model. As in the case of the Bernoulli model, one can
use the Bayes rule and Eq.5.18 to derive the following values for the estimated posterior
probability that the test instance Z belongs to class C,.:

d
P(C.|Z) x P(C,) - P(ZC.) x a, [ (ajr)™ (5.19)

j=1



If needed, the constant of proportionality can be inferred by ensuring the posterior prob-
abilities over all classes sum to 1. The class with the largest posterior probability can be
predicted as the relevant one for the test instance Z.

In order to compute the values on the right-hand side of Eq.5.19, one only needs to
estimate the parameters o, and g¢;, during the training phase. The fractional presence of
each class in the training data is used as the estimate of «,. Laplacian smoothing can be
used if needed. Furthermore, if v(j,7) is the number of times that the term t; shows up
in the documents belonging to class r (with proportionate credit given to repetitions in a
single document), then the estimate g;, can be computed as follows:

- v(j,r)

=

T v
One can also view this estimate as the fraction of the number of tokens (i.e., positions)
in a class that correspond to a particular term. This is different from the Bernoulli model
that estimates the class-conditioned probabilities as the fraction of class-specific documents
containing a particular term. It is also possible to use Laplacian smoothing in order to
smooth the estimation. In this case, we add a small value v > 0 to the numerator, and - - d
to the denominator. This results in the following estimation:

(5.20)

- v(j,r) +v
ir = ~d )

Zj:l v(j,r)+v-d
It is common to set v to 1. This type of smoothing biases the estimation of the probability
of each of the d faces in the multinomial die roll towards 1/d, which implies that all terms
are equally favored. This is a reasonable assumption in the absence of sufficient data.

(5.21)

5.3.3 Practical Observations

The nalve assumption of conditional independence is never really true in practical settings.
In spite of this fact, the actual predictions are surprisingly robust. Using more complicated
assumptions often end up overfitting the data. Several insights are provided in [140] about
why the naive assumption works so well in practice.

A natural question arises as to when it is preferable to use either the Bernoulli or the
multinomial models. Note that the Bernoulli model uses both the presence and the absence
of terms in a document, but it does not use the term frequencies. The two main factors
are (1) the typical length of each document and, (2) the size of the lexicon from which the
terms are drawn. For short documents that have a non-sparse representation with respect
to a small lexicon, it makes sense to use the Bernoulli model. In short documents, there are
a limited number of repetitions of terms, which reduces the gain obtained from including
frequency information. Furthermore, if the lexicon size is very small and the vector-space
representation is non-sparse, then even the absence of a term in a document is informative.
When the document representation is sparse, information about absence of terms is noisy,
which hurts the Bernoulli model. Furthermore, the ignoring of frequency information will
also increase the inaccuracy of the Bernoulli model. Therefore, it makes sense to use the
multinomial model in such cases.

5.3.4 Ranking Outputs with Naive Bayes

The prediction problem of classification is not always posed in terms of selecting the class
of a single test instance. In many cases, a set of test instances Z; ... Z,, is provided, and



it is desired to rank them in order of their propensity to belong to a particularly valuable
class of interest. This problem is closely related to that of ranking in search engines.

Consider a situation where an aficionado in automobiles is interested in the rth class
for which the label is Cars. How would one use the trained Bayes model to rank the test
documents Z; ... Zy, for this user? The aforementioned discussion already shows how one
can estimate P(C,|Z;) for each test instance Z; up to a constant of proportionality. This
scaling factor is not relevant when comparing the probabilities across different classes, but it
is relevant when comparing the prediction across different instances because it varies across
instances. The scaling factor for each test instance can be easily estimated by using the fact
that the posterior probabilities of all classes must always sum to 1:

k

> PEC|Zi) =1 (5.22)

r=1
After scaling, the normalized value of the posterior probabilities of the rth class are com-
pared across different instances, and the documents are ranked in order of decreasing prob-
ability.
5.3.5 Example of Naive Bayes

In the following, we will provide a numerical example of the naive Bayes model. A simi-
lar example will be provided for both the Bernoulli and the multinomial model, in which
documents are categorized either as Cars or as Cats.

5.3.5.1 Bernoulli Model

Consider the following corpus containing four training documents and two test documents.
The corpus is represented in binary form in which the frequencies of the terms are ignored:

lion tiger cheetah jaguar porsche ferrari Label

Trainl 1 1 1 1 0 0 Cats
Train2 1 1 1 1 0 0 Cats
Train3 0 0 0 1 1 1 Cars
Train4 0 0 0 1 1 1 Cars
Test1 1 1 1 1 1 1 -
Test2 1 1 1 1 0 0 -

For illustrative purposes, the lexicon contains only six terms. The class label of each instance
is shown in the final column. The first four documents are the training documents, and the
labels shown for them in the final column are Cats and Cars. However, the last two rows
correspond to test instances, and therefore their labels are missing.

In the following, it is only shown how to use the training data to predict the probability
of the two labels for the document Testl. The prediction of Test2 is left as an exercise for
the reader (see Exercise 4). The steps for the training and prediction phase are as follows.
Training: In order to perform the training, the prior probabilities and the class conditioned
probabilities need to be estimated. Laplacian smoothing is used with § =y = 1. The prior
probabilities are estimated as:

248 1 248 1

4+28 2 P(Cat) = 32

P(Car) =



Next, we need to estimate the parameters for the Bernoulli distribution. We first show how
to estimate P(lion|Cats). The average number d, of terms in the four training documents
is 14/4, and the total size of lexicon is d = 6. Therefore, the sparsity factor required for
Laplacian smoothing is 6 x 4/14 = 12/7. In order to estimate P(lion|Cats) note that the
term is present in both of the two training documents on cats. Therefore, the estimation of
this Bernoulli parameter is as follows:

. 247 241
P(lion|Cats) = =
(lion| Cats) " 1277 oy 172
2
26
By using an identical argument, we can show the following:
21 21 21 21
(lion| Cats) 56’ (tiger| Cats) 56" (cheetah| Cats) 56’ (jaguar| Cats) 56
7 7
P =, P ' ==
(porsche| Cats) 56" (ferrari| Cats) o
Similarly, one can compute the parameters of the Bernoulli distribution for Cars as follows:
. 7 . 7 7 ) 21
P(lion|Cars) = %6 P(tiger| Cars) = %6 P(cheetah|Cars) = % P(jaguar|Cars) = %

P(porsche| Cars) = E’ P(ferrari| Cars) = 2
26 26

Note that “jaguar” is the only term to get a high probability for both classes. These

estimated probabilities represent the entire training model used by a naive Bayes classifier.

Next, we show how these estimated probabilities can be used for prediction of Test1.

Prediction: The prediction phase of Test! is particularly simple because it contains all
the terms of the lexicon. Therefore, the class conditional probabilities may be computed as
follows:

P(Cats|Test1) < P(Cats) - P(lion|Cats) - P(tiger| Cats) - P(cheetah| Cats)-
P(jaguar|Cats) - P(porsche|Cats) - P(ferrari| Cats)

121\ [ 7\?
“2(x) (x)
P(Cars|Testl) < P(Cars) - P(lion|Cars) - P(tiger| Cars) - P(cheetah|Cars)-
P(jaguar| Cars) - P(porsche|Cars) - P(ferrari| Cars)

() ()

These computations only provide the inference to a constant of proportionality. One can
also compute the exact probabilities of each class by ensuring that the corresponding prob-
abilities sum to 1. Using that relationship, we obtain the fact that P(Cats| Testl) = 2 and
P(Cars| Test1) = ;. Therefore, the test instance is more likely to belong to the Cat category.
This is a logical conclusion because a larger number of terms in the document belong to
the category of Cats. It is noteworthy that Laplacian smoothing is essential for obtaining
reasonable results. If Laplacian smoothing had not been used, then one would have arrived
at a probability of 0 for both outcomes, which would have lead to an indefinite prediction.



5.3.5.2 Multinomial Model

In the case of the multinomial model, the document-term matrix is assumed to contain
frequencies. Therefore a very similar matrix is used as in the previous case, except that it
also contains frequencies. The corresponding matrix is shown below:

lion tiger cheetah jaguar porsche ferrari Label

Trainl 2 2 1 2 0 0 Cats
Train2 2 3 3 3 0 0 Cats
Train3 0 0 0 1 1 1 Cars
Train4 0 0 0 2 1 2  Cars
Test1 2 2 2 3 1 1 -
Test2 1 1 1 1 0 0 -

The prior probabilities are computed in exactly the same way as before. Therefore,
the prior probabilities can be estimated to (1/2) for each class. In order to compute the
multinomial parameters, the number of occurrences of each term in the various classes are
computed (including the effect of repetitions in the same document). This is summarized
in the table below:

lion tiger cheetah jaguar porsche ferrari Total
Cats 4 5 4 5 0 0 18
Cars 0 0 0 3 2 3 8

The last column contains the total number of tokens in that class over all its documents.
Now we need to compute the probabilities of each multinomial parameter g;.. Without
Laplacian smoothing, one can derive these parameters from the above counts by simply
dividing each row with the total at the very end. However, with smoothing, we need to add
1 to each numerator and 6 to each denominator, since there are six terms in the lexicon.
The corresponding values of g;, are provided in the matrix below:

lion tiger cheetah jaguar porsche ferrari
6 5

5 6 1 1
Cats 57 35 21 21 3 51
Cars - L < X = 4

14 14 14 14 14 14

Note that each row sums to 1, because it represents the probabilities of the different faces
of the die in a multinomial event of selecting a word at a particular position.

One can use these estimated parameters to perform the prediction. Since, the frequency
vector of Test! is (2,2,2,3,1,1), these frequencies are the exponents of the probabilistic
parameters for each term:

st () () () (2 () G
s (o) (i) () () () ()

On simplification and normalization, it can be shown that the probabilities of Cats and Cars
are around 0.94 and 0.06, respectively. Therefore, one arrives at the same conclusion, except
that the predictions are more definitive in this case. This is because of the greater frequency
of the cat-related words in the test document. It is noteworthy that Laplacian smoothing is



essential for obtaining reasonable results. If Laplacian smoothing had not been used, then
one would have arrived at a probability of 0 for both outcomes, which would have lead to
an indefinite prediction. The multinomial model also does not use terms absent from the
test document. Although Test! contains all the terms, the document Test2 does not. If the
multinomial model is used to classify Test2, both P(Cats| Test2) and P(Cars| Test2) can be
expressed in terms of only the conditional probability estimates of “lion,” “tiger,” “cheetah,”
and “jaguar.” The conditional estimates of “porsche” and “ferrar?’ will be ignored (see
Exercise 5).

5.3.6 Semi-Supervised Naive Bayes

The Bayes model provides a remarkably clear picture of the connections between supervised
and unsupervised models of learning. It is noteworthy that the mixture-modeling algorithm
for clustering in Sect.4.4 of Chap.4 uses ezactly the same generative model as the naive
Bayes model. A mixture component represents a cluster in unsupervised learning, whereas
a mixture component represents a class in supervised learning. The differences in their
computational procedures are explained by the fact that unsupervised mixture modeling is
handicapped by the absence of labels. Labels are useful in identifying the mixture component
that generates each training point so that the parameters of each mixture component can
be estimated easily. In the absence of labels, one is forced to use an iterative approach of
probabilistically predicting the mixture component associated with each data point (E-step)
and estimating mixture parameters (M-step). The presence of labels simplifies the learning
process to a single M-step in naive Bayes classification, because the unlabeled data is not
used in parameter estimation. Furthermore, the unlabeled instances are classified with a
single application of the E-step using the learned parameters.

Semi-supervised learning is useful when the amount of labeled data is limited, and
therefore the unlabeled data is incorporated in the parameter estimation process in order
to improve classification accuracy. The use of unlabeled data in parameter estimation [364]
causes semi-supervised methods to be iterative like the expectation-maximization algorithm
of Sect.4.4. The semi-supervised approach assumes that each mixture component is asso-
ciated with a class. The labeled and unlabeled points of each class are generated by its
mixture component. At initialization, the parameters of each mixture component and the
prior probabilities are estimated with an application of the naive Bayes algorithm on the
labeled instances. Subsequently, the following pair of steps is iteratively used:

1. (E-step): The E-step estimates the probabilities of the unlabeled instances using the
Bayes rule of posterior probabilities. Therefore, the first iteration of the E-step would
yield exactly the same probabilities as computed by the naive Bayes algorithm. There-
fore, the E-step remains the same but it is applied only to the unlabeled data during
the iterations in order to predict their class memberships. As in the EM-algorithm of
Sect. 4.4, we use the soft membership probabilities derived in the E-step to associate
membership weights with unlabeled instances. The membership weights of a point
across different clusters sum to 1 because they represent posterior probabilities. An
important modification to the E-step in the semi-supervised setting is that the labeled
instances are also associated with a membership weight X > 0 to the class/cluster it
belongs to and 0 to all other classes. The value of A is a user-driven parameter in
(0, 00), which regulates the level of supervision.

2. (M-step): The M-step remains identical to what is discussed in the mixture-modeling
algorithm of Sect. 4.4, except that it is executed with the help of the modified mem-
bership weights in which labeled instances are given the user-defined weight of .



The two steps are iterated to convergence. The probabilistic predictions of the E-step in
the final iteration can be used to predict the class labels. Therefore, the modifications to
the expectation-maximization algorithm of Sect. 4.4 are relatively minor, and involve the
incorporation of labeled data within the parameter estimation step. The degree of impact
of this change depends on the value of .

The parameter A controls the trade-off between the importance of labeled and unlabeled
data. Setting A = 0 results in the EM-algorithm of Sect. 4.4, and setting A = co results in
the nalve Bayes algorithm of this section. All other positive values of A provide varying
levels of supervision in which the iterative approach is still needed. It is generally sensible
to choose A > 1 in semi-supervised classification applications, because one should weight
each labeled point to a greater degree than each unlabeled point.

Note that such intermediate values of A can often outperform the naive Bayes method
in cases where the amount of labeled data is very small. With limited labeled data, the
conditional probabilities of absent terms from the labeled data will be estimated poorly
by the fully supervised naive Bayes method. Such probabilities will be estimated far more
robustly in the semi-supervised setting because the unlabeled documents in the relevant
mixture component can be leveraged for robust estimation. A different way of understanding
this is that unlabeled data can learn the shape of the underlying data distribution and ensure
that the labeled data is required only to map the learned clusters of this data distribution
to the different labels. Therefore, most of the “heavy-lifting” of learning the shape of the
data distribution is done with unlabeled data, and only a small amount of data is needed to
map the dense segments (mixture components) of this data distribution to different classes.
The natural assumption here is that class labels do not change abruptly within contiguous,
dense, and clustered regions of the data. This situation occurs often in real data sets due
to the natural smoothness and clustered properties of real-world class distributions [90].
It is also possible to construct semi-supervised models in which the number of mixture
components is larger than the number of labeled classes to learn class distributions that are
locally contiguous in specific regions (see Exercises 6 and 7).

Another advantage of semi-supervision is that the learning process is specific to the
test instances we are interested in. Purely supervised methods build models that are more
general than what we really need. This provides semi-supervision an advantage based on
Vapnik’s principle [90]:

“When trying to solve some problem, one should not solve a more difficult
problem as an intermediate step.”

One can get better results by solving the narrower problem and tuning the learning process
to the specific test instances at hand. For example, if a small training data set contains
only a couple of instances of each class, the number of instances is too small to robustly
estimate the prior probabilities. On the other hand, if a large test data contains these
classes in the proportion of 9:1, then the semi-supervised parameter estimation process will
use this additional information to assign more robust prior probabilities. If a different test
data set contains these classes in the reverse proportion of 1:9, it will assign different prior
probabilities.

This approach can be used for both semi-supervised clustering and semi-supervised clas-
sification. Semi-supervised clustering has slightly different applications from semi-supervised
classification, because the supervision is gentler in the former and the goal is to create a
semantically meaningful partition with external input rather than to label instances. For
semi-supervised clustering applications, it makes sense to use smaller values of A to give
more importance to the clustering structure inherent in the unlabeled data.



5.4 Nearest Neighbor Classifier

Nearest-neighbor classifiers use the following principle:
Similar instances have similar labels.

A natural way of implementing this principle is to use a x-nearest-neighbor classifier. The
basic idea is to identify? the x-nearest neighbors of a test point, and compute the number of
points that belong to each class. The class with the largest number of points is reported as
the relevant one. The cosine similarity is used to compute the nearest neighbors, although
one can use advanced methods like the substring kernel in order to incorporate sequence
information in the classification process. Nearest-neighbor classification can be used for both
binary classes and multi-way classes, as long as the class with the largest vote is used. If
the dependent variable is numeric, the average value of the dependent variable among the
nearest neighbors can be reported.

Nearest-neighbor classifiers are also referred to as lazy learners, memory-based learners,
and instance-based learners. They are referred to as lazy learners because most of the
work of classification is postponed to the very end. In a sense, these methods memorize
all the training examples, and use the best matching ones to the instance at hand. Unlike
model-based methods, less generalization and learning is done up front, and most of the
work of classification is left to the very end in a lazy way. However, there are many natural
variations of nearest-neighbor classifiers in which some of the work of learning is brought
up front. Such classifiers are referred to as adaptive nearest-neighbor classifiers.

A straightforward implementation of the nearest-neighbor method requires no training,
but it requires O(n) similarity computations for classifying each test instance. One can
speed this process up using a data structure called an inverted index. This data structure is
discussed in detail in Sect.9.2.2 of Chap. 9. An inverted index contains a list of document
identifiers associated with each term. For a given test document, one needs to access as
many inverted lists as the number of terms in it, and access only those documents whose
identifiers are included in one of these inverted lists.

The number of nearest neighbors, k, is a parameter for the algorithm. Its value can
be set by trying different values of k on the training data. The value of k¥ at which the
highest accuracy is achieved on the training data is used. While computing accuracy on the
training data, a leave-one-out approach is used, in which the point to which the x-nearest
neighbors are computed is not included among the nearest neighbors. For example, if we
did not take this precaution, every point with be its own nearest neighbor, and a value of
k = 1 would always be deemed as optimal. This is a manifestation of overfitting, which is
avoided with the leave-one-out approach. The classification accuracy is computed by using
a validation sample of size s. For each point in the sample, the similarities with respect to
the entire data are computed in a leave-one-out manner. These computed similarities are
used to rank the n — 1 training points for each sample, and test various values of k. This
process requires O(n - s) similarity computations and O(n - s - log(n)) time for sorting the
points. For a validation sample size of s, the time required is O(s - n - (T + log(n))) for
tuning the parameter . Here, T is the time required for each similarity computation. One
can reduce this running time with an inverted index.

4Most of the literature uses the notation of k instead of k to denote the number of nearest neighbors.
We use k instead of k for notational disambiguation, since the latter variable has been used consistently in
this chapter to denote the number of classes. Using k to denote both the number of classes and the number
of neighbors would cause confusion.
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Figure 5.1: Example of how the noise in a data set affects error

5.4.1 Properties of 1-Nearest Neighbor Classifiers

A special case of nearest-neighbor classifiers is one in which the value of & is set to 1. Such
classifiers are not very robust in practice because they are sensitive to the specific data
set at hand. This lack of robustness is caused by the fact that the predictions can overfit
the vagaries of the particular training sample at hand. Whenever the classification of the
same test instance varies significantly with the choice of training sample, it contributes
to increased classifier error, and this portion of the error is referred to as the wariance
(cf. Sect. 7.2 of Chap. 7). As the size of the training sample increases, the accuracy of the
1-nearest neighbor classifier increases as well. In fact, it can be shown that with an infinite
amount of data, the error of a 1-nearest-neighbor classifier is at most twice the Bayes optimal
error rate. The Bayes optimal error rate refers to the minimum achievable error rate of a
particular data distribution. In order to understand this point, consider a 1-dimensional
data set with two normally distributed classes as shown in Fig.5.1. It is noteworthy that
the class distribution is overlapping in a particular region of the data. Even if a learner
were given the extraordinary advantage of being told the (true) generative distribution of
the two classes, it would still make mistakes on some of these ambiguous instances in this
overlapping region. The Bayes error rate quantifies this intrinsic error from a probabilistic
point of view. This notion is closely related to that of intrinsic noise in a data set, which is
a fundamental component of the error in any classifier (cf. Sect. 7.2 of Chap. 7).

The boundary between various classes is also referred to as the decision boundary in
classification. In general, boundaries of complex nonlinear shapes are considered more chal-
lenging for classification. The aforementioned observation of the error rate of a 1-nearest-
neighbor classifier implies that it can approximate any nonlinear boundary very well, given a
“sufficient” amount of data. This point can be better understood with the Voronoi diagram
induced by the training data.

Given a set of training points, one can divide the data space into a set of Voronoi regions
or cells induced by these points. A Voronoi region or cell is a portion of the data space that
is closest to the single point inside it as compared to all the other training points. From a
1-nearest neighbor classifier point of view, each Voronoi region “belongs” to a single training
point, and all test instances within that cell will take on the same class label as that training
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Figure 5.2: Increasing the number of training points improves the accuracy of 1-
nearest neighbor classification. The shaded region approximates the (true) elliptical bound-
ary between classes A and B more closely with increasing number of training points. With
an infinite amount of data, only the error caused by intrinsic noise (e.g., overlapping regions
and mislabeled training points) will remain. The cumulative effect of the noise contributed
by both training and test points is equal to twice the Bayes error rate.

point. This situation is shown in Fig.5.2a, in which the class A is enclosed by an elliptical
decision boundary. However, only 25 training points are used, and therefore test points in
only two Voronoi regions will be assigned class A. Note that the shapes of the Voronoi
cells are jagged, and therefore if the decision boundary between the two classes is smooth,
the 1-nearest-neighbor classifier will try to approximate this boundary with jagged edges,
which increases its error. As shown in Fig.5.2b, the 1-nearest neighbor classifier tries to
approximate the elliptical region for class A with the shaded region, which causes a rather
poor decision boundary. This approximation varies with random choice of training data,
which increases classification error in expectation. However, if the number of training points
is increased, the size of each Voronoi region reduces, and therefore the jagged approximation



of the 1-nearest-neighbor classifier improves, as shown in Fig. 5.2¢, and d in which 100 and
1000 points are respectively used. With an infinite amount of data, any arbitrary boundary
can be approximated very well, and only the ambigous/overlapping regions of the decision
boundary will be incorrectly classified. This portion of the error is a result of the specific
noise or mislabeling in the data set. There is little that most classifiers to do to handle such
instances, and they contribute to the portion of the error referred to as the Bayes error rate.

The main problem with the l-nearest neighbor classifier is that the amount of data
required to achieve this error rate depends exponentially on the intrinsic dimensionality
of the data set. Text data may have hundreds of thousands of terms, and the intrinsic
dimensionality may often be on the order of hundreds. As a result, the required amount of
data is too large for a 1-nearest-neighbor classifier to achieve an error anywhere close the
Bayes error rate. Using a k-nearest neighbor classifier with larger values of k is a way of
smoothing the aforementioned jagged boundary to improve the error rate with a limited
amount of data. There are several other ways of smoothing this boundary, such as the use of
clustering, the use of weighted nearest neighbors, or the use of some level of supervision in
determining the nearest neighbors. The last of these is also referred to as adaptive nearest-
neighbor classification, and it provides a family of the most powerful classifiers in machine
learning. Two of the most powerful classifiers in machine learning, which are random forests
and kernel support vector machines, can be shown to be adaptive nearest-neighbor classifiers.
These points will be discussed in Sects. 5.5.6 and 6.3.6. This section will provide an overview
of methods for smoothing the predicted decision boundary, such as the Rocchio method,
the weighted nearest-neighbor method, and adaptive nearest-neighbor method.

5.4.2 Rocchio and Nearest Centroid Classification

The Rocchio classifier can be viewed as a modification of the nearest-neighbor classifier. In
Rocchio classification, the centroids of each of the classes is computed up front. For a given
test instance, the nearest class centroid is computed with cosine similarity. The label of the
closest centroid is reported as the classification of the test instance. The Rocchio classifier
is extremely efficient in both training and prediction. The training step requires only the
computation of the centroid of each class, which scales linearly with training data size. The
testing step requires only the computation of k cosine similarities for a k-class problem.

The Rocchio method provides stable predictions over different choices of training data
sets. However, it shows significant bias in the predictions. For example, Rocchio’s method
would not work very well if documents of the same class were separated into distinct clusters.
In such cases, the centroid of a class of documents may not be representative of that class. A
bad case for Rocchio’s method is illustrated in Fig. 5.3, in which each class is associated with
two distinct clusters. Furthermore, the centroid of each class is similar, and therefore, the
Rocchio method would have difficulty in distinguishing between the classes. On the other
hand, a 1l-nearest-neighbor classifier would perform quite well in this case. The Rocchio
method does not adjust well to the varying frequencies of different classes. By using one
centroid for each class, it effectively sets an equal prior probability of each class.

A natural trade-off between the two extremes of a 1-nearest neighbor classifier and the
Rocchio method is to use centroid-based classification. The basic idea is to use an off-the-
shelf clustering algorithm to partition the documents of each class into clusters. Class labels
are associated with clusters rather than documents. The number of clusters in each class
is proportional to the number of documents in that class. This ensures that the clusters in
each class are of approximately the same granularity.
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Figure 5.3: A bad case for the Rocchio method

The cluster digests from the centroids are extracted by retaining only the most frequent
words in that centroid. Typically, about 200-400 words are retained in each centroid. The
lexicon in each of these centroids provides a stable and topical representation of the subjects
in each class. An example of the (weighted) word vectors for two classes corresponding to
the labels “Business schools” and “Law schools” could be as follows:

1. Business schools: business (35), management (31), school (22), university (11), cam-
pus (15), presentation (12), student (17), market (11), ...

2. Law schools: law (22), university (11), school (13), examination (15), justice (17),
campus (10), courts (15), prosecutor (22), student (15), ...

Typically, most of the noisy words have been truncated from the cluster digest. Similar words
are represented in the same centroid, and words with multiple meanings can be represented
in contextually different centroids. Therefore, this approach also indirectly addresses the
issues of synonymy and polysemy, with the additional advantage that the nearest-neighbor
classification can be performed more efficiently with a smaller number of centroids. The
dominant label from the top-x matching centroids, based on cosine similarity, is reported.
Such an approach can provide comparable or better accuracy than the vanilla x-nearest
neighbor classifier in many cases.

5.4.3 Weighted Nearest Neighbors

A k-nearest neighbor classifier can be viewed through the lens of a similarity weighted
classifier. Such a view helps in generalizing the k-nearest neighbor classifier to a surprisingly
powerful family of methods (e.g., adaptive nearest neighbor methods), and also illustrates
how a proper choice of weight balances robustness (resistance to overfitting) and reduction in
bias. Consider a training data set with documents X7 ... X,, with labels y; ...v,. Although
we assume binary labels y; € {—1,+1} for notational simplicity and closed-form expressions,
the basic ideas underlying these arguments can be generalized to multi-way classification
and regression modeling with minor modifications. Then, for any test instance Z, one can
view a k-nearest neighbor classifier as a similarity weighted classifier, where the similarity




between test instance Z and training instance X, is denoted® by K(Z, X;). The prediction
F(Z) of the test instance Z can be expressed as a similarity weighted classifier as follows:

F(Z) = sign {Z K(Z, )Q)y,;} (5.23)

i=1

Here, the function “sign” returns either —1 or +1, depending on the sign of its argument.
One can view the r-nearest neighbor classifier as a weighted nearest-neighbor classifier in
which the value of K(Z, X;) is defined as follows:

1 X, is among the x-nearest neighbors of Z (5.24)
0 otherwise '

The similarity function K(Z,X;) can be viewed as a weight that decays with reducing
similarity of X; to the test point Z. For infinitely large data sets, it is desirable to choose
the sharpest possible decay in weight, which is achieved by the 1-nearest neighbor classifier.
Such a classifier yields an error of at most twice the Bayes optimal rate for infinite data but
very poor results for small data sets. Choosing k = n results in a (relatively stable) majority-
vote classifier even for minuscule data sets, but the predictions are unable to take advantage
of more data. In particular, the predictions are not very discriminating in different regions
of the space because every test point gets the same prediction. This is a manifestation of
excessive bias in predictions. Clearly, a trade-off needs to be selected that works well for
the data set at hand.

Setting K(Z,X;) to the dot product Z - X; (after scaling the training and test vectors
to unit norm) results in the use of the cosine similarity as the weight. One can also use
Gaussian kernel similarity (with normalized documents), which exponentiates the negative
(squared) distances D(Z, X;) to create similarity values:

K(Z,X;) = e P@X)*/@0%) _ ~lIZ-Xil*/(20%) (5.25)

The choice of the bandwidth o controls the rate of decay of the weight with increasing
distance of training points to the test point. If we have a small data set, we should use
a large value of o to encourage slow decay. On the other hand, for a larger data set, we
can use a smaller value of ¢ to encourage sharper decay. The value of o can be tuned by
using a leave-one-out validation approach. The weighted nearest-neighbor method can also
be used for regression. The only difference is that one does not need to use the sign function
in Eq.5.23, and one must normalize the similarities to sum to 1 over all points. In other
words, the values of K(Z, X;) should be proportionately scaled to sum to 1 for fixed Z and

5.4.3.1 Bagged and Subsampled 1-Nearest Neighbors as Weighted Nearest
Neighbor Classifiers

A 1-nearest neighbor classifier makes unstable predictions over different choices of the train-
ing data. It stands to reason that the classifier is making mistakes in at least some of the
training data instantiations, and therefore the instability contributes to higher expected er-
ror. A weighted nearest-neighbor classifier has less variability than a 1-nearest neighbor

5We intentionally use the seemingly unusual notation K(-,-) for a similarity function, as we will later
connect this principle with the kernel similarity function used by support vector machines.



classifier. Interestingly, one can show that combining some ensemble methods like bagging
or subsampling with the 1-nearest neighbor classifier can simulate the effect of a weighted
nearest-neighbor classifier, and reduce the variability of the base predictor.

Bagging works as follows. In each iteration, a sample of size s < n is selected from the
training data of size n. The sample is selected with replacement so that it might contain
duplicates. The 1-nearest neighbor classifier is used on each test point to make a prediction
of that point in each ensemble component. The predictions of that point over all ensemble
components are averaged. For a regression model, the average prediction is returned. For a
binary classifier model with class labels in {—1,+1}, the sign of the average (or aggregate)
prediction is returned. Subsampling is similar to bagging, except that the sampling is done
without replacement.

A bagged nearest-neighbor classifier is a weighted nearest-neighbor classifier in which
the weight of each training point is the probability that it is the 1-nearest neighbor of the
test instance in a sample of size s. Let P(X;|Z) be the probability that X; is the 1-nearest
neighbor of Z in the bagged sample of size s. Furthermore, let R(Z, X;) € {1...n} represent
the rank of the nearest neighbor distance of X; to Z. Then, the probability that the point
X is the nearest neighbor of Z in a bagged sample of size s is as follows:

P(X;|Z) = P[Not sampling nearest (R(Z, X;) — 1)] — P[Not sampling nearest R(Z, X;)]
(5.26)

:<1_Bﬂifﬂ—1>s_(l_ﬁmaxﬁ>s (5.27)

n

Then, the effect of the bagged 1-nearest neighbor classifier is to create a weighted prediction
of the form of Eq. 5.23, where K(Z,X;) is set to P(X;|Z). The sample size s regulates the
rate of decay. Using a sample size of s = 1 is equivalent to using the k-nearest neighbor
classifier with k = n, and using a sample size of s = n is equivalent to the 1-nearest neighbor
classifier on all the points with a single ensemble component. In general, increasing the
sample size makes the weight decay sharper. Another observation is that one does not need
to implement a bagged 1-nearest neighbor classifier with Monte Carlo sampling. One can
directly use Eq. 5.23 and set K (Z, X;) = P(X;|Z) according to Eq. 5.27. One can also derive
a similar result for the case of subsampling without replacement:

5.28
,Xi)>n—s+1 (5.28)

P(X:|Z) {0 R
We leave the proof of this result as an exercise for the reader (see Exercise 8).

These results show that weighted nearest-neighbor classifiers are connected to well-
known techniques in ensemble-learning, and their use can provide robust results. It is par-
ticularly noteworthy that the weights decay exponentially with the rank of the distances of
the training points to the test point in the bagged and subsampled 1-nearest neighbor meth-
ods. This is similar to using Gaussian decay (cf. Eq.5.25), except that the weights decay
exponentially with the raw distances in Eq. 5.25 (rather than the rank). Bagged /subsampled
1-nearest neighbors are known to give good results, and this also suggests that one can get
good results with Gaussian decay. In fact, combining Gaussian decay with supervised impor-
tance weighting of points can be shown to be equivalent to kernel support vector machines
(cf. Chap. 6). Such methods are referred to as adaptive nearest neighbor methods.



5.4.4 Adaptive Nearest Neighbors: A Powerful Family

Nearest-neighbor methods are sensitive to several factors, which add to the error:
1. Noisy and irrelevant points add to the error of the nearest-neighbor classifier.

2. Irrelevant features add to the instability of the computations, which can further in-
crease the variability in predictions.

Is there any way to modify the nearest-neighbor classifier to make it less sensitive to these
effects? It turns out that this is indeed possible by using one of the following two strategies
either in isolation or in combination:

1. It can be learned up front which points are more important for improving classification
accuracy. Such points can be weighted to a greater degree.

2. It can learned up front, which dimensions (or directions) are more important, and
the similarity function K(Z, X;) can be modified to give greater importance to the
discriminative directions.

One can now augment the weighted nearest-neighbor classification prediction function with
an additional weight \; with point Xj:

F(Z) = sign {z”: N K(Z,X;) yl} (5.29)

i=1

The value of \; needs to be learned up front in a data-driven manner. Furthermore, the
similarity function K(Z, X;) might be data-driven and learned in a supervised manner based
on the labeled training data. It is often overlooked that some of the most powerful classifiers
in all of machine learning are adaptive nearest-neighbor classifiers:

The kernel support vector machine and the random forest, which are known
to be extremely powerful classifiers [169], are special cases of adaptive nearest-
neighbor classifiers. Specifically, their prediction function can be reduced to the
form of Equation 5.29.

In the case of the support vector machine, the prediction function is almost identically of
the form of Eq. 5.29, whereas a random forest uses A; = 1 but uses a data-driven similarity
function, which is defined algorithmically (i.e., not in closed form) [62]. These points will be
explained in greater detail in the sections on random forests and support vector machines
(cf. Sects.5.5.6 and 6.3.6).

In this section, we will provide a specific example of an adaptive method in which
K(Z,X;) is designed in a supervised way. We describe the discriminant adaptive nearest-
neighbor classifier [207], which weights specific directions in the data in order to make the
distance function more sensitive to the distribution of classes. This makes the classifier
less sensitive to noise, and able to perform better classification with a small amount of
data. In order to understand this point, consider a two-class data distribution shown in
Fig. 5.4, which contains two classes denoted by A and B. For the purpose of the following
discussion, assume that the documents have been normalized to unit norm, so that using
the Euclidean is equivalent to using the cosine similarity (cf. Sect. 2.5 of Chap. 2). Although
the test instance belongs to class A, the spherical distance contour of the Euclidean distance
finds a larger number of points belonging to class B. This is caused by the fact that the
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Figure 5.4: Increasing sensitivity of distance function towards discriminating directions re-
duces impact of noise

data set is very small, and only one of the two directions in the data is discriminating (see
direction of arrow shown in Fig. 5.4). As a result, the noisy direction contributes to the error
caused by the vagaries inherent in a small data set.

One can improve the Euclidean distance function by incorporating information about
the class distribution. Consider the Euclidean distance D(Z, X;), which is defined as follows:

D(ZX) = Z-Xil} = (Z-X)(Z - X"
One can augment this distance function with a d x d distortion matriz A, which contains
all the useful knowledge in the training data about the discriminating directions:

D(Z.X) = (Z - X)AZ - X)" (5.30)

How is A learned from the training data? Basically, the matrix A is set to the linear
discriminant analysis metric that implicitly scales the directions in the data, so that less
discriminating directions are given less importance.

Let ¥; be the covariance matrix of the ith class, so that the (4, k)th entry of ¥; is equal
to the covariance between the jth and kth dimensions in the ith class. Let n; be the number
of points in the ith class. Let 7z be the d-dimensional row vector representing the mean of
the entire data set, and @; be the d-dimensional row vector representing the mean of the
1th class. Then, the d x d within-class scatter matrix is defined as follows:

k
Sw = Znizi (5.31)
i=1

The d x d between-class scatter matrix is defined as the sum of the following rank-1 matrices:

k
Sp = Z ni(m — )" (5 — 1) (5.32)

Note that each term in the above summation is a d x d matrix, because it is the product of
a d x 1 matrix with a 1 X d matrix. Then, the distortion matrix A is defined as follows:

A=5"8,8," (5.33)



This matrix A is used to compute the distance function of Eq.5.30 and the corresponding
nearest neighbors. The dominant class among the s nearest neighbors is reported as the
relevant one.

It is also possible to exponentiate the (negative of the) squared distance function to
create a similarity value like Eq.5.25, and then substitute in the prediction function of
Eq.5.29. The value of A; in Eq.5.29 is set to 1. This is an adaptive approach because the
similarity function has been learned up front with the use of labeling information.

This approach requires the inversion of matrices of size d x d in the original space,
which might be computationally onerous. Therefore, latent semantic analysis can be used
to transform all the training and test documents to a space of less than 500 dimensions. The
operations in the transformed space are far more efficient and computationally tractable.

5.5 Decision Trees and Random Forests

As the name implies, a decision tree is a tree-like (i.e., hierarchical) partitioning of the data
space, in which the partitioning is achieved with a series of split conditions (i.e., decisions)
on the attributes. The idea is to partition the data space into attribute regions that are
heavily biased towards a particular class during the training phase. Therefore, partitions are
associated with their favored class labels. During the testing phase, the relevant partition of
the data space is identified for the test instance, and the label of the partition is returned.
Note that each node in the decision tree corresponds to a region of the data space defined
by the split conditions at its ancestor nodes, and the root node corresponds to the entire
data space. Random forests are ensemble-centric implementations of decision trees, which
are known to be highly robust and accurate.

5.5.1 Basic Procedure for Decision Tree Construction

Decision trees partition the data space recursively in top-down fashion using split conditions
or predicates. The basic idea is to choose the split conditions in such a way that the subdi-
vided portions are dominated by one or more classes. The evaluation criteria for such split
predicates are often similar to feature selection criteria in classification. The split criteria
typically correspond to constraints on the frequencies of one or more words. A split that
uses a single attribute is referred to as a univariate split, whereas a split using multiple at-
tributes is referred to as a multivariate split. It is common for each node in the decision tree
to have only two children. For example, if the split predicate corresponds to the presence of
absence of a word, then all documents containing the word will be contained in one child
and the remaining documents will be in the other child. The splits are applied recursively
in top-down fashion, until each node in the tree contains a single class. These nodes are
the leaf nodes, and are labeled with the classes of their instances. In order to classify a test
instance for which the label is unknown, the split predicates are used in top-down fashion
over various nodes of the tree in order to identify the branch to follow down the tree until the
leaf node is reached. For example, if the split predicates correspond to presence or absence
of words, it is checked whether the test document contains the word or not to determine the
relevant branch to follow. This process is repeated until the relevant leaf node is identified,
and its label is reported as the prediction of the test instance.

This type of extreme way of creating a tree until each leaf contains instances of only a
single class is referred to as growing a tree to full height. Such a fully-grown tree will provide
100% accuracy on the training data even for a data set in which class labels are generated



randomly and independently of the features in the training instances. This is clearly the
result of overfitting, because one cannot expect to learn anything from a data set with
random labels. A fully-grown tree will often misinterpret random nuances in the training
data as indicative of discriminative power, and these types of overfitted choices will cause
the predictions of the same test instance to vary significantly between trees constructed on
different training samples. This type of variability is usually a sign of a poor classifier in
expectation, because at least some of these diverse predictions are bound to be incorrect.
As a result, the performance on the test data of such a tree will be poor even for those data
sets in which the feature values are related to the class labels. This problem is addressed
by pruning the nodes at the lower levels of the tree that do not contribute in a positive way
to the generalization power on unseen test instances. As a result, the leaves of the pruned
tree may no longer contain a single class, and are therefore labeled with the majority class
(or dominant class for k-way classification).

Pruning is accomplished by holding out a part of the training data, which is not used in
the (initial) decision-tree construction. For each internal node, it is tested whether or not the
accuracy improves on the held out data by removing the subtree rooted at that node (and
converting that internal node to a leaf). Depending on whether or not the accuracy improves,
the pruning is performed. Internal nodes are selected for testing in bottom-up order, until all
of them have been tested once. It is also noteworthy that pruning is not required in ensemble-
centric implementations of decision trees like random forests, because such implementations
avoid overfitting by other mechanisms. The overall procedure of decision-tree construction
is shown in Fig. 5.5. Note that the specific split criterion is not spelled out in these generic
pseudo-code. This is an issue that will be discussed in the next section. The notion of
eligibility of a node to be split is also not specified in the pseudo-code. Since bottom nodes
are pruned anyway, it is possible to stop early using other criteria than growing the tree to
full height. Various stopping criteria make nodes ineligible for splitting, such as a maximum
threshold on the number of instances, or a minimum percentage threshold on the dominant
class.

5.5.2 Splitting a Node

The split criteria can use any of the feature selection criteria discussed in Sect. 5.2. Common
choices are the Gini index (cf. Eq. 5.2) and conditional entropy (cf. Eq. 5.5). In the following,
conditional entropy is used as an example because of its popularity.

Consider the case of univariate splits, in which only the presence or absence of a term
in a document is used as the split criterion. In other words, the frequency of the term is
ignored. For a given node L, let L1(j) and L2(j) be the respective sets of documents that
contain or do not contain the jth term ¢;. Then, the conditional entropy values, E1(t;) and
Es(t;), are computed for Li(j) and La(j), respectively, using Eq. 5.5. The overall entropy
Oj of the split with term t; is defined as the weighted average of these two values, where
the weight is defined by the number of data points in L;(j) and La(j), respectively:

o 1L1(5)]
T L)+ [L2(5))]

L2 (5)!

B TG+ 12.0)

Bs(t)) (5.34)

The split is tested for each term t;, and the one providing the lowest conditional entropy
is selected. The identity of the term ¢; is also stored at node L, so that it can be used at
prediction time, when a test instance is classified with the decision tree.



Algorithm ConstructDecisionTree(Labeled Training Document Set: D)
begin
Hold out a document subset H from Dy to create Dy = Dy — H;
Initialize decision tree 7 to a single root node containing D?’J;
{ Tree Construction Phase }
repeat
Select any eligible leaf node from 7 with data set L;
Use split criteria of section 5.5.2 to partition L into subsets Li and Lo;
Store split condition at L and make {Li, L2} children of L in 7;
until no more eligible nodes in 7T;
{ Tree Pruning Phase }
repeat
Select an untested internal node N in 7 in bottom-up order;
Create 7, obtained by pruning subtree of 7 at N;
Compare accuracy of 7 and 7, on held out set H;
if 7,, has better accuracy then replace 7 with 7,,;
until no untested internal nodes remain in 7
Label each leaf node of 7 with its dominant class;
return 7
end

Figure 5.5: Training process in a decision tree

5.5.2.1 Prediction

Once the decision tree has been set up, it is relatively easy to use it for prediction. The
split criterion associated with each node is always stored with that node during decision
tree construction. For a test instance, the split criterion at the root node is tested (e.g.,
presence or absence of a word) to decide which branch to follow. This process is repeated
recursively until the leaf node is reached. The label of the leaf node is returned as the
prediction. A confidence is associated with the prediction, corresponding to the fraction of
the labels belonging to the predicted class in the relevant leaf node.

5.5.3 Multivariate Splits

In the case of multivariate splits, more than one attribute is used for making splitting
decisions. The vector-space representation of documents is used for implementing the split.
The basic idea is to sample r directions Y; ...Y, in the d-dimensional vector space and
project all the documents in L along each of these r directions. Here, r is user-defined
parameter. The projection of the document X; along the gth direction is given by X; - Y.
The projection of each document (contained in node L) along the gth direction creates
an ordering among these documents, which is used to test |L| — 1 possible split points.
Furthermore, since there are r directions, one can test a total of 7(|L| — 1) possible split
points by repeating the process along each of the directions. The quantification of Eq. 5.34 is
used to evaluate the quality of each split, and the best one is selected. How are the directions
Y7 ...Y, selected? One possibility is to choose random directions in the space. However, it
is often helpful to use biased directions [432], where ?q is a vector joining the centroids
of random samples drawn from documents in L, and each of the centroids is defined by
documents of only a single randomly chosen class. Such a direction is more likely to yield a
good split that discriminates well between two classes.




A special case of this setting [432] is one in which a pair of documents (X,,, X,,) belonging
to different classes is chosen to define ?q = X, — X,. In such a case, the projection of data
point X; on the direction Tq is given by X+ X;— X, X; = Sui—Svi. Here, s,,; and s,; represent
dot-product similarities between corresponding training pairs. Instead of the dot product,
we can use any type of similarity function, even if the multidimensional representation
of the document is not used. For example, we can use string kernel similarities in cases
where we want to use the sequence information. In other words, it is possible to build
multivariate decision trees only with similarities to make decision trees sensitive to word
ordering. This notion is referred to as similarity forests, when used with an ensemble-centric
implementation [432], and is an adaptation of kernel methods to decision trees (see Chap. 6
for kernel methods).

5.5.4 Problematic Issues with Decision Trees in Text Classification

Because of the high-dimensional and sparse nature of text, off-the-shelf implementations
of decision trees do not always work well. However, with the proper implementation, it is
possible to obtain high-quality results with decision trees. In the following, some practical
guidance is provided.

Like nearest-neighbor classifiers, decision trees have the capability to approximate arbi-
trary decision boundaries, given an infinite amount of data. This is because the successive
localization of small regions of the data with splits is similar® to the implicit Voronoi-based
partitioning of the data space in nearest-neighbor classifiers. However, with a finite amount
of data, the predictions of a decision tree are not only inaccurate, but they are also heavily
biased in favor of specific classes in particular regions of the data. In other words, if training
data samples of small size are drawn from a large base data set, the predictions will all be
biased towards favoring particular classes in specific regions of the data. This bias is caused
by the split criteria at the top levels of the tree, which have a disproportionately large effect
on the final prediction. Often, the split criteria at the top levels of the tree are relatively
stable with choice of training sample. Note that this correlated behavior is quite different
from a 1-nearest neighbor classifier in which the predictions of different training samples
are quite diverse. It is easy to make mistakes in the split criteria at the top levels because
they are made in myopic way without an understanding of the interactions between various
attributes. The problem starts becoming particularly severe with increasing dimensionality
of the data set. Text collections often contain hundreds of thousands of dimensions.

One observation about univariate splits is that they lead to imbalanced decision trees
in which the paths dominated by absence of terms are much longer than paths dominated
by presence of terms. Univariate splits are generally best for classification of short text,
or text documents drawn from a smaller lexicon. For longer documents, multivariate split
criteria can often provide better results. This is because univariate split criteria give too
much importance to the absence of terms in many long paths of the tree. Such paths might
lead to noisy decisions. When working with long documents, it is particularly important
to use models that use many terms simultaneously at key decision points in the learning
process, and also to give greater importance to presence of terms (rather than absence).

Another issue is that multi-way classification tends to work poorly in text if one con-
structs a single tree to explain all classes. This is because the terms relevant to various
classes are largely disjoint, which increases the size of the relevant vocabulary. Since deci-
sion trees use sequential decisions on individual attributes, the small number of terms used

6In Sect. 5.5.6, we show further connections between nearest-neighbor classifiers and randomized variants
of decision trees.



for splitting at the higher levels of the tree assume a disproportionately high importance.
Therefore, a multi-way classification problem is usually decomposed into multiple binary,
one-against-all classification problems, and the results from these different classifiers are
integrated by reporting the most confident prediction.

5.5.5 Random Forests

Even though decision trees can capture arbitrary decision boundaries with an infinite
amount of data, they can capture only piecewise linear approximations of these bound-
aries with a finite amount of data. These approximations are particularly inaccurate in
smaller data sets. Another problem with decision trees is that the bagging and subsampling
tricks used for 1-nearest neighbors do not work quite as well because the splits at the higher
levels of the tree are highly correlated. In other words, the expected prediction of a decision
tree with randomly chosen training data sets of small size has a bias in terms of consistently
classifying certain test examples incorrectly. One cannot correct the predictions of such test
instances by using bagging or subsampling.

A more effective approach is to randomize the tree construction process by allowing the
splits at the higher levels of the tree to use the best feature selected out of a restricted
subset of features. In other words, r features are randomly selected at each node, and the
best splitting feature is selected only out of these features. Furthermore, different nodes
use different subsets of randomly selected features. Using smaller values of r results in an
increasing amount of randomization in tree construction. At first sight, it would seem that
using such a randomized tree construction should impact the prediction in a detrimental
way. However, the key is that multiple such randomized trees are grown, and the predictions
of each test point over different trees are averaged to yield the final result. By averaging, we
mean that the number of times a class is predicted by a randomized tree for a test instance
is counted. The class receiving the most number of votes is predicted for the test instance.
This averaging process improves the quality of the predictions significantly over a single tree
by effectively using diverse terms at higher levels of the different trees in various ensemble
components. This results in more robust predictions. The individual trees are grown to
full height without pruning because the averaged predictions do not have the overfitting
problem of the predictions of individual trees.

The approach can be generalized easily to the multivariate case, which is already ran-
domized to some extent. The multivariate case uses r randomized directions in the data
Y1 ...Y,, in which each direction Y is defined as the vector joining documents belonging
to two randomly chosen classes. It is helpful to use a small value of r in order to optimize
the split with respect to a smaller number of directions (thereby increasing randomization).
This approach can even be made to work when only similarities between documents are
available, such as with the use of string kernels [432]. A pair of documents (X,, X,) be-
longing to different classes is chosen to define Y; = X,, — X,. In such a case, the projection
of data point X; on the direction Yq is given by X, - X; — X, - X; = Sui — Svi. Here, sy;
and s,; represent dot-product similarities between corresponding training pairs (which can
be replaced with string kernel similarities during the split). This notion is referred to as
similarity forests [432], and is an adaptation of kernel methods to decision trees (see Chap. 6
for kernel methods).

The random forest can also be constructed by building a conventional (deterministic)
decision tree on a randomized feature engineering of the data set. This is a slightly different
approach to randomization than the one obtained by using a bag of features at a node. In
particular, the LSA-based feature extraction trick discussed in Sect.5.2.7 is used to build



each decision tree. The resulting forest is referred to as a Rotation Forest [413], and it is
particularly well suited to text because the new representation is able to get rid of the
sparsity in the original representation.

5.5.6 Random Forests as Adaptive Nearest Neighbor Methods

Random forests are adaptive nearest neighbor methods. The intuitive similarity between
a decision tree and a l-nearest neighbor method is easy to see by treating a l-nearest
neighbor method as a technique that performs a Voronoi partitioning of the space with
singleton training points (cf. Fig. 5.2). Each Voronoi region is labeled with the class of its
training instance. A decision tree also partitions the space into hypercubes (in the case of
univariate splits), but the hypercubes are constructed more carefully by the hierarchical
tree construction process. This supervision in hypercube-based partitioning is what gives
the decision tree its adaptivity. The forest adds robust weights to the neighbors, just as an
ensemble of 1-nearest neighbors results in weighted nearest neighbors (cf. Sect.5.4.3.1).

In the following, we will show this result more formally for a random forest. It is assumed
that each decision tree in the random forest is grown to full height without pruning (which
is common in the random forest setting). Let I;(X,Y) be a binary 0-1 indicator function
that takes on the value of 1 when X and Y are mapped to the same node in the tth
randomized decision tree from a forest containing m > t trees. Let N(i,t) be number of
training instances in the node containing X; for the tth randomized decision tree. Consider
the following similarity function between the test instance Z and training instance X;.

K(Z,X;) = Em: Wz, X;) (5.35)

Then, it can be shown (see Exercise 12) that the prediction F(Z) of a random forest for
binary classification of test instance Z with labels 7; € {—1, +1} takes on the following form
of weighted nearest-neighbor classification over all n training instances:

F(Z) =si {ZKZX} (5.36)

Note that this form is exactly the same of that of adaptive nearest-neighbor prediction in
Eq.5.29, except that the value of \; has been set to 1. The classification is still adaptive
because the similarity function K(Z, X;) needs to be learned up front in a supervised way
with the construction of the random forest.

5.6 Rule-Based Classifiers

Rule-based classifiers use a set of “if then” rules R = {R; ... Ry} to match conditions on
features on the left-hand side of the rule to the class labels on the right-hand side. The
expression on the left-hand side of the rule is referred to as the antecedent and that on the
right-hand side of the rule is referred to as the consequent. A rule is typically expressed in
the following form:

IF Condition THEN Conclusion



The condition on the left-hand side of the rule, also referred to as the antecedent, often
contains conditions of the form (t; € X) AND (¢, € X) AND (...). In other words, all
terms included in the antecedent, such as ¢; and ¢;, must be present in the document for the
rule to be triggered. Each condition (¢; € X) is referred to as a conjunct. The right-hand
side of the rule is referred to as the consequent, and it contains the class variable. Therefore,
a rule R; is of the form @; = ¢ where @; is the antecedent, and c is the class variable. The
“=" symbol denotes the “THEN” condition. In other words, the rules relate the presence
of terms like ¢; and ¢; in the document to the class variable c¢. Although it is possible for
more general conditions to be used on the left-hand side, this is often not done in practice.
For example, it is possible to include conditions like (¢; ¢ X) corresponding to absence of
terms, although this is not recommended in sparse domains like text because such conditions
are noisy and could lead to overfitting [104]. Therefore, throughout this section, it will be
assumed that only rules corresponding to the presence of terms are generated.

As in all inductive classifiers, rule-based methods have a training phase and a prediction
phase. The training phase of a rule-based algorithm creates a set of rules. The prediction
phase for a test instance discovers some or all rules that are triggered or fired by the test
instance. A rule is said to be triggered by a training or test instance when the logical
condition in the antecedent is satisfied by the features in the instance. Alternatively, for the
specific case of training instances, it is said that such a rule covers the training instance.
In some algorithms, the rules are ordered by priority and therefore, the first rule fired by
the test instance is used to predict the class label in the consequent. In some algorithms,
the rules are unordered, and multiple rules with (possibly) conflicting consequent values are
triggered by the test instance. In such cases, methods are required to resolve the conflicts in
class label prediction. Rules generated from sequential covering algorithms are ordered. On
the other hand, rules that are generated from association pattern mining are unordered.

5.6.1 Sequential Covering Algorithms

The basic idea in sequential covering algorithms is to generate the rules for each class at
one time, by treating the class of interest as the positive class, and the union of all other
classes as the negative class. Each generated rule always contains the positive class as the
consequent. In each iteration, a single rule is generated using a Learn-One-Rule procedure
and training examples that are covered by the class are removed. The generated rule is
added to the bottom of the rule list. This procedure is continued until at least a certain
minimum fraction of the instances of that class have been covered. Other termination
criteria are often used. For example, the procedure can be terminated when the error of the
next generated rule exceeds a certain pre-determined threshold on a separate validation set.
A minimum description length (MDL) criterion is sometimes used when further addition
of a rule increases the minimum description length of the model by more than a certain
amount. The procedure is repeated for all classes. Note that less prioritized classes start
with a smaller training data set because many instances have already been removed in the
rule generation of higher priority classes. The RIPPER algorithm orders the rules belonging
to the rare classes before those of more frequent classes, although other criteria are used
by other algorithms, whereas C4.5rules uses various accuracy and information-theoretic
measures to order the classes. The broad framework of the sequential covering algorithm is
as follows:



for each class ¢ in a particular order do
repeat
Extract the next rule R = c using Learn-One-Rule on training data V;
Remove examples covered by R = ¢ from training data V;
Add extracted rule to bottom of rule list;
until class ¢ has been sufficiently covered

The procedure for learning a single rule is described in Sect. 5.6.1.1. Only rules for (k—1)
classes are grown, and the final class is assumed to be a default catch-all class. One can
also view the final rule for the remaining class ¢; as the catch-all rule {} = ¢;. This rule
is added to the very bottom of the entire rule list. This type of ordered approach to rule
generation makes the prediction process a relatively simple matter. For any test instance,
the first triggered rule is identified. The consequent of that rule is reported as the class label.
Note that the catch-all rule is guaranteed to be triggered when no other rule is triggered.
One criticism of this approach is that the ordered rule generation mechanism might favor
some classes more than others. However, since multiple criteria exist to order the different
classes, it is possible to repeat the entire learning process with these different orderings, and
report an averaged prediction.

5.6.1.1 Learn-One-Rule

It remains to be explained how the rule for a single class is generated. Although the orig-
inal RIPPER algorithm allows antecedent conditions corresponding to both presence and
absence of terms in documents, the absence of terms is a noisy indicator. As a result, their in-
clusion often causes overfitting [104]. Therefore, the following description will only consider
the case in which rules corresponding to presence of terms in a document are used in the
antecedent. For brevity, we will concisely denote a rule such as (t; € X) AND (t, € X) = ¢
by {t;,t;} = c. When the rules for class ¢ are generated, each term is sequentially added to
the antecedent. The approach starts with the empty rule {} = ¢ for the class ¢, and then
adds terms one by one to the antecedent. What should be the criterion for adding a term
to the antecedent of the current rule R = ¢?

1. The simplest criterion is to add the term to the antecedent that increases the accuracy
of the rule as much as possible. In other words, if n, is the number of training examples
covered by the rule (after addition of a candidate term ¢; to antecedent), and ny is
the number of positive examples among these instances, then the accuracy of the rule
is given by ny /n.. However, such an approach can sometimes favor rare terms or
misspellings if the small number of training examples covered by the corresponding
rule all belong to the positive category (by random chance). This is a manifestation of
overfitting. To address this issue, the accuracy of adding the term ¢; to the antecedent
of the current rule R = ¢ is computed as follows:

ﬂ++1
ne +k

AR = c,t;) = (5.37)

Here, k is the total number of classes.

2. Another criterion is FOIL’s information gain. The term “FOIL” stands for First Order
Inductive Learner. Consider the case where a rule covers ni” positive examples and n
negative examples, where positive examples are defined as training examples matching
the class in the consequent. Furthermore, assume that the addition of a term to the



antecedent changes the number of positive examples and negative examples to n; and
n, , respectively. Then, FOIL’s information gain F'G is defined as follows:

+ ny ny
FG = Ty 10g2m — 10g2m (538)
2 2 1 1

This measure tends to select rules with high coverage because nj is a multiplicative
factor in F'G. At the same time, the information gain increases with higher accuracy
because of the term inside the parentheses. This particular measure is used by the
RIPPER algorithm.

Several other measures are often used, such as the likelihood ratio and entropy. Terms can
be successively added to the antecedent of the rule, until 100% accuracy is achieved by the
rule on the training data or when the addition of a term cannot improve the accuracy of
a rule. In many cases, this point of termination leads to overfitting. Just as node pruning
is done in a decision tree, antecedent pruning is necessary in rule-based learners to avoid
overfitting. Another modification to improve generalization power is to grow the r best rules
simultaneously at a given time, and only select one of them at the very end based on the
performance on a held-out set. This approach is also referred to as beam search.

5.6.1.2 Rule Pruning

Overfitting may result from the presence of too many conjuncts. As in decision-tree pruning,
the Minimum Description Length principle can be used for pruning. For example, for each
conjunct in the rule, one can add a penalty term ¢ to the quality criterion in the rule-growth
phase. This will result in a pessimistic error rate. Rules with many conjuncts will therefore
have larger aggregate penalties to account for their greater model complexity. A simpler
approach for computing pessimistic error rates is to use a separate holdout validation set
that is used for computing the error rate (without a penalty). However, this type of approach
is not used by Learn-One-Rule.

The conjuncts successively added during rule growth (in sequential covering) are then
tested for pruning in reverse order. If pruning reduces the pessimistic error rate on the train-
ing examples covered by the rule, then the generalized rule is used. While some algorithms
such as RIPPER test the most recently added conjunct first for rule pruning, it is not a
strict requirement to do so. It is possible to test the conjuncts for removal in any order, or
in greedy fashion, to reduce the pessimistic error rate as much as possible. Rule pruning
may result in some of the rules becoming identical. Duplicate rules are removed from the
rule set before classification.

5.6.2 Generating Rules from Decision Trees

Decision trees can also be used to generate rules because each path in a decision tree
corresponds to a rule. Generally, rules are generated from univariate decision trees because
of their interpretability although it is possible, in principle, possible to also generate rules
from multivariate decision trees. For each path in a decision tree, a rule can be generated
corresponding to the conjuncts of the conditions required to reach a leaf. One difference
between the rules generated from decision trees and other methods is that many paths in
a (univariate) decision tree correspond to absence of attributes. Therefore, the rules may
contain conjuncts corresponding to absence of attributes. Since all the paths in a decision
tree represent non-overlapping regions of the space, the initial set of rules generated from



a decision tree are mutually exclusive in terms of coverage. However, this situation changes
with further processing of this initial set of rules with rule pruning.

Rules are processed one by one, and conjuncts are pruned from them in greedy fashion
to improve the accuracy as much as possible on the covered examples in a separate holdout
validation set. This approach is similar to decision-tree pruning except that one is no longer
restricted to pruning the conjuncts at the lower levels of the decision tree. Therefore, the
pruning process is more flexible than that of a decision tree, because it is not restricted by
an underlying tree structure. Duplicate rules may result from pruning of conjuncts. These
rules are removed. The rule-pruning phase increases the coverage of the individual rules and,
therefore, the mutually exclusive nature of the rules is lost. A single test instance might fire
multiple rules. As a result, it again becomes necessary to order the rules.

In C4.5rules [395], all rules that belong to the class whose rule set has the smallest
description length are prioritized over other rules. The total description length of a rule set
is a weighted sum of the number of bits required to encode the size of the model (rule set)
and the number of examples covered by the class-specific rule set in the training data, which
belong to a different class. Typically, classes with a smaller number of training examples
are favored by this approach. A second approach is to order the class first whose rule set
has the least number of false-positive errors on a separate holdout set. A rule-based version
of a decision tree generally allows the construction of a more flexible decision boundary
with limited training data than the base tree from which the rules are generated. This is
primarily because of the greater flexibility in the model, which is no longer restrained by
the straitjacket of an exhaustive and mutually exclusive rule set. As a result, the approach
generalizes better to unseen test instances.

5.6.3 Associative Classifiers

Associative classifiers [306] leverage association rule mining techniques [1, 2] in order to
perform text classification. Such methods are particularly well suited to the text domain
because associative classifiers were originally designed for sparse domains like market basket
data, which are similar to text. The basic idea of such classifiers is to relate a bag of terms
in the antecedent of the rules to a class label in the consequent of the rule. Therefore, a rule
is of the following form:

S=c

Here, S is a set of terms, and ¢ is a class label (identifier) drawn from {1...k} The bags of
terms, S, in the antecedent of the rule always correspond to the presence of all terms in S
in a document. Therefore, absence of terms in a document is never used. Furthermore, this
approach borrows ideas from association rule mining to define the rule set. A rule S = cis
mined from the training data, if it satisfies two conditions:

1. At least a minimum fraction minsup of the training documents both contain S and
belong to class c¢. The value of minsup is a user-defined parameter, which is referred to
as the minimum support. In general, the support of the rule is defined as the fraction
of documents that contain S and belong to class c.

2. Among all documents that contain S, at least a minimum fraction minconf of the
documents belong to class c. The value of minconf is a user-defined parameter, which
is referred to as the minimum confidence. In general, the confidence of the rule is the
conditional probability of a document belonging to class ¢, given that it contains .S.



Imposing a minimum support requirement prevents overfitting by only selecting rules with
significant presence, whereas imposing a minimum confidence requirement ensures that
predictive rules are selected.

Associative classifiers are easy to implement in an efficient way because many off-the-
shelf association pattern mining techniques are available to mine the rules from the under-
lying data in an efficient way. We refer the reader to [1, 2] for a review of various rule mining
techniques. Significant amount of rule pruning is often used in order to reduce redundancy.
Rule pruning is a heuristic process in which the different factors are integrated to create
the final rule set [26]. For example, for two rules S; = ¢ and Se = ¢, in which S; C So,
the second rule is redundant with respect to the first. However, if the confidence of the
second rule is significantly higher, then it does convey additional information. Therefore,
the rule S = ¢ can be pruned, only if it has lower confidence. All such rules are removed.
Subsequently, the rules are ordered by decreasing confidence, with ties broken by successive
criteria of decreasing support and increasing number of terms in antecedent. The rules are
processed in this order and documents that fire a rule are marked, if they have not already
been marked. A rule is considered non-redundant only if it is fired by at least one unmarked
document during the aforementioned processing. At the end of the process, the majority
class of those training instances that do not fire any rule is treated as the default class.

5.6.4 Prediction

For any given test instance, those rules that are fired by the test instance are identified. If
no rules are fired, then the default class is predicted. If all fired rules predict the same class,
then the corresponding class is reported. The main challenge arises in cases where the fired
rules conflict with one another. The simplest approach is to use the sum of the confidences
of all the fired rules for a particular class as its prediction propensity. The class with the
highest propensity is reported. However, more complex prediction mechanisms are used by
various rule-based methods. Refer to the bibliographic notes.

5.7 Summary

The sparsity of text causes a number of unique challenges for classification. For example,
the absence of words conveys noisier information as compared to the presence of words.
The chapter studies numerous feature selection methods such as the Gini index, conditional
entropy, mutual information, and the y2-statistic. The four most fundamental classification
methods, which are the naive Bayes classifier, the k-nearest neighbor method, the decision
tree, and rule-based methods are studied in this chapter. The naive Bayes classifier is closely
related to mixture models for clustering. Nearest-neighbor classifiers are theoretically very
accurate if an infinite amount of data is available, although their accuracy is limited by the
finiteness of the data and the noise in the features. A powerful family of nearest-neighbor
classifiers is that of adaptive methods, of which random forests and support vector machines
are special cases. Decision trees face many challenges for effective implementation in text
data; however, with the proper implementation, they can provide good results. Rule-based
classifiers are closely connected to decision trees, because rules can also be extracted from
decision trees. Numerous methods like sequential covering and association pattern mining
have been developed for extracting rules from text documents.



5.8 Bibliographic Notes

Surveys on text classification may be found in [1, 14, 439]. A comparative study of several
feature selection methods for text categorization may be found in [520]. The use of word
clusters for dimensionality reduction is explored in [12, 33, 258, 285, 451]. Many classifiers
in the text domain have been compared in [147, 240, 519].

The basic ideas of the naive Bayes classifier for text are discussed in [243, 286, 327]. The
differences between the Bernoulli and multinomial models are discussed in [327]. Discussions
on the independence assumption in naive Bayes are provided in [113, 140]. A hierarchical
classifier with the naive Bayes method is discussed in [80]. The semi-supervised method
for probabilistic classification is based on the ideas in [364]. The work in [289] also uses
supervised clustering with a mixture model, which is then leveraged for categorization. A
variety of semi-supervised methods for learning are discussed in [56, 57, 350]. A book on
semi-supervised learning [90] provides an excellent overview.

The k-nearest neighbor classifier and its variants have been studied extensively in the lit-
erature [116]. Early studies on the effectiveness of k-nearest neighbor methods are provided
in [516, 517, 519]. A nearest-neighbor classifier that weights words is discussed in [202].
The Rocchio classifier is based on the relevance feedback ideas developed in [414]. A prob-
abilistic variant of the Rocchio algorithm for text classification is provided in [243]. Several
centroid classifiers are studied in [6, 58, 203, 258]. The work in [271] uses ideas from linear
classifiers to create generalized instance sets for nearest-neighbor classification. The ideas
of bagging were presented in [61] and those of subsampling are presented in [65]. The proof
of Bayes optimality of the 1-nearest neighbor classifier is available in [144]. The connections
between bagged/subsampled 1-nearest neighbors and weighted nearest-neighbor classifiers
are explored in [428]. The discriminant metric-based distance function is presented in [207].
The work in [207] introduces a local variation of this approach as well.

The well-known C4.5 decision tree classifier was proposed in [395] and ID3 was proposed
in [396]. Decision trees were generalized to random forests in [60, 62]. DT-min10 [287] was
an early decision-tree algorithm for building the tree for each category. The algorithm
derives its name from the fact that the tree construction was stopped when fewer than
10 examples were mapped to a leaf node. No pruning was done. Several recommendations
on the construction of decision trees on sparse data like text are provided in [246]. Early
studies on the advantages of ensemble-centric implementations of decision trees for text
categorization are provided in [28, 492]. The work in [92] provides some of the earliest
proposals on decision tree construction, and also suggested that a separate decision tree
should be grown for each category. The use of Fisher’s linear discriminant for constructing
decision trees is presented in [82], and rotation forests are presented in [413]. The work
in [203] highlights some of the problems associated with decision-tree classification in sparse
domains like text. The work in [290] also does not show encouraging results of decision trees
in comparison with methods like naive Bayes. There is, however, not a clear consensus on
this issue. For example, the work in [147] reports relatively good results with the decision
tree proposed in [92], especially in comparison with the naive Bayes classifier. Independent
results in [240] suggest that the decision tree does not work as well as the support vector
machine, but it works approximately as well as k-nearest neighbor and Rocchio, and (much)
better than the naive Bayes classifier. Indeed, the repeated under-performance of the (widely
revered) naive Bayes classifier in independent experiments [147, 240, 519] would make this
classifier a more questionable choice. It is also noteworthy that none of the compared results
use the random forest implementation of a decision tree, which should provide better results.
Therefore, it would seem that even though decision trees have sparsity-centric challenges



in the text domain, their true potential might be widely underestimated and that of the
nalve Bayes might be widely overestimated. In fact, most of the sparsity-based drawbacks
of random forests vanish, when splits in arbitrary directions are used. In such cases, one
can even use kernelized variants of random forests [432].

The earliest methods for rule-based text classification were proposed in [27]. Many key
ideas for sequential covering algorithms were laid by Furkranz and Widmer [178] in the
IREP algorithm. The RIPPER method [102] for rule-induction, which is a popular method
for text classification, is closely related to IREP. Its use in email classification was studied
in [103]. It was shown in [104] that it is inadvisable to use the absence of words in rule-based
classification for text. The use of context-sensitive methods for improving the classification
accuracy of rule-based methods is studied in [106]. The foundation for classification based on
associations was laid in the seminal work of [306]. The description of the associative classifier
in this chapter is roughly based on [26], although several portions have been simplified.

5.8.1 Software Resources

The Bow toolkit [325], which is written in C, contains many basic algorithms for text classi-
fication. Several text classification tools are included in the Python library scikit-learn [550].
The most well known library for classification in R is the caret package [267]. Although
this package is not specifically designed for text data, many of the core predictive modeling
techniques can be adapted easily to the text domain with appropriate text preprocessing
tools. The R-based tm library [551] can be used for preprocessing and tokenization in com-
bination with the caret package. The package RTextTools [571] in R also has numerous
categorization methods, which are specifically designed for text. The primary focus on this
package is on ensemble methods, although it also contains standalone classifiers like decision
trees. In addition, the rotationForest package [572] in R, which is available from CRAN,
can be used to address the sparsity challenges associated with text. An implementation of
this method is also available in Weka [553]. The Weka library [553] in Java contains nu-
merous text classification tools, and it is particularly rich in conventional tools like decision
trees and rule-based methods. The MALLET toolkit [605] supports many classifiers like
naive Bayes and decision trees.

5.9 Exercises

1. Consider the term “elections” which is present in only 50 documents in a corpus
of 1000 documents. Furthermore, assume that the corpus contains 100 documents
belonging to the Politics category, and 900 documents belonging to the Not-Politics
category. The term “election” is contained in 25 documents belonging to the Politics
category.

(a) Compute the unnormalized Gini index and the normalized Gini index G, (-) of
the term “elections.”
(b) Compute the entropy of the class distribution with respect to the entire data set.

(¢) Compute the conditional entropy of the class distribution with respect to the
term “elections.”

(d) Compute the mutual information of the term “elections” according to Eq.5.6.
How are your answers to (b), (c), and (d) related?



(e) Compute the information gain of the term “elections” according to Eq.5.7. How
are your answers to (d) and (e) related?

. Show that the sum of (1) the mutual information between a class and term (Eq. 5.6),
and (2) the conditional entropy of the class distribution with respect to the same
term, is equal to the total entropy of the class distribution.

. The 2 distribution is defined by the following formula, as discussed in the chapter:

p 2
2\~ (0i— Ei)
Show that for a 2 x 2 contingency table, the aforementioned formula can be rewritten
as follows:

X2 _ (Ol 4+ 02+ 03+ 04) . (0104 — 0203)2
(01 + 02) . (03 + 04) . (01 + 03) . (02 + 04)
Here, O; ... Oy are defined in the same way as in the tabular example in the text.

. Predict the probabilities of categories Cat and Car of Test2 on the toy corpus example
in Sect.5.3.5.1. You can use the Bernoulli naive Bayes model with the same level of
smoothing as used in the example in the book. Return normalized probabilities that
sum to 1 over the two categories.

. Predict the probabilities of categories Cat and Car of Test2 on the toy corpus example
in Sect. 5.3.5.2. You can use the multinomial naive Bayes model with the same level of
smoothing as used in the example in the book. Return normalized probabilities that
sum to 1 over the two categories.

. Naive Bayes is a generative model in which each class corresponds to one mixture
component. Design a fully supervised generalization of the naiive Bayes model in which
each of the k classes contains exactly b > 1 mixture components for a total of b- k
mixture components. How would you perform parameter estimation in this model?

. Naive Bayes is a generative model in which each class corresponds to one mixture
component. Design a semi-supervised generalization of the naiive Bayes model in which
each of the k classes contains exactly b > 1 mixture components for a total of b - k
mixture components. How would you perform parameter estimation in this model?

. Provide a proof of Eq.5.28 on subsampling. Specifically, show that if the 1-nearest
neighbor algorithm is used with a subsample of size s out of n points, then the predic-

tion F(Z) is equivalent to that of a weighted nearest-neighbor classifier of the following

form:
F(Z) = sign {Z P(Xl-IZ)yz}
i=1

Here, the ith training point and its label are denoted by (X;,y;) in a training data
set of n points. The value of P(X;|Z) is defined as follows:

o n—R(Z,X;)\ /() 7 X)) <n—
P(Xi|Z) = (") /() #R({,&)_n s+1

0 it R(Z,X;)>n—s+1
The notation R(Z, X;) € {1,...,n} denotes the rank of the distance of the ith training
point X; in sorted order from Z.



9.

10.

11.

12.

The adaptive nearest-neighbor method discussed in the chapter uses a single distortion
metric over the entire data space in order to compute the nearest neighbor of a point.
Propose a training algorithm to make this metric locally adaptive, so that an optimized
distortion metric is used for each test instance based on the local class patterns in the
data. What are the possible advantages and disadvantages of using such an approach?

Consider a bagged 1-nearest neighbor classifier in which a bagged sample of size s is
selected out of 1000 training points repeatedly in order to create a prediction. You
have two different data sets with the following types of (binary) class distributions:

e Distribution A: Class 1 is linearly separable from class 2 with a hyperplane
although there might be some mixing of the classes near the boundary. Both
classes have 50% presence in the data.

e Distribution B: There are 10 spherical clusters of each of class A and class B
containing exactly 50 points each, and there is also some overlap of the clusters
of different classes.

How would you choose the optimal size of the sample s in each training data set.
Would this optimal sample size be the same in the two data sets? In which data set
do you think that the optimal sample size will be larger?

Imagine a document data set in which the class label is generated by the following
hidden function (which is unknown to the analyst and therefore has to be learned by
a supervised learner):

If a term has an odd number of consonants, then the term is of type 1.
Otherwise the term is of type 2. The class label of a document is of type 1,
if the majority of the tokens in it are of type 1. Otherwise, the class label
is of type 2.

For a document collection of this type, would you prefer to use (1) a Bernoulli naive
Bayes classifier, (2) a multinomial naive Bayes classifier, (3) a nearest-neighbor clas-
sifier, or (4) a univariate decision tree? What is the impact of the lexicon size and
average document size on various classifiers?

Show that the prediction F(Z) of the test instance Z by a random forest with m
ensemble components is given by the following:

b s {3 HET

i=1 t=1

\/



Here, X, ... X, are the training instances, y; ..., are the binary labels drawn from
{—1,41}, N(i,t) is the number of instances in the same leaf as X; in the tth ensemble
component, and I(i,t) is an indicator function that tells us whether or not Z and X;
end up in the same leaf in the tth ensemble component.

13. Discuss the advantages of rule-based learners over decision trees, when the amount of
data is limited.

14. Discuss how one might integrate domain knowledge with rule-based learners.



Chapter 6

Linear Classification and Regression for
Text

“When the solution is simple, God is answering.”—Albert Einstein

6.1 Introduction

Linear models for classification and regression express the dependent variable (or class
variable) as a linear function of the independent variables (or feature variables). Specifically,
consider the case in which 3; is the dependent variable of the ith document, and X; =
(241 ...x;q) are the d-dimensional feature variables of this document. In the case of text,
these feature variables correspond to the term frequencies of a lexicon with d terms. The
value of y; is a numerical quantity in the case of regression, and it is a binary value drawn
from {—1,+1} in the case of classification. Then, linear models for both classification and
regression assume that the dependence between y; and X; is expressed in terms of d linear
coefficients W = (w; ... wq), and a bias term b as follows:

d
Yi = Z w;Ti; +b= W-X;+b Linear Regression (Numerical Dependent Variable)
j=1
d
Y = sign{z wjz; + b} =sign{W - X; + b} Classification (Binary Dependent Variable)

j=1

If the coefficients W and bias b can be learned, so that they are satisfied for the training
data, then the aforementioned prediction function can be used to predict the dependent
variable of any (unlabeled) test document. An important point here is that it may not be
possible to find a coefficient vector W and bias b, so that these conditions are ezactly satisfied
for all training data points. After all, the modeling assumption is only a rough hypothesis
about the true function relating X; and y;. In particular, for any data set in which the



number of training records n is greater than d, the aforementioned system of equations is
over-determined. Therefore, a set of coefficients wy ... wy and bias b will usually not exist in
which the aforementioned equations are ezactly satisfied. In such a case, it makes sense to
learn W and b, so that the equations are satisfied with the least possible cumulative error.
For the case of numeric dependent variables, one could set up an optimization objective
function of the following form:

Zn:(yz‘ -W-X; -b)?
=1

N | =

d
1 n
Minimize J = 5 Z(y, — Z’LUjZIJij - b)2 =
i=1 j=1
Note that the objective function punishes violations of the linear condition y; =
E?Zl w;xi; + b with a squared penalty. Of course, the penalty for binary dependent vari-
ables is different from that used for numeric dependent variables. Furthermore, there are
many other ways in which one can penalize errors, which will lead to subtle variations in
the properties of the model. Therefore, it is important to view all these choices as being
part of a larger family of linear models with many subtle distinguishing characteristics. This
chapter will discuss many such variations.

6.1.1 Geometric Interpretation of Linear Models

Both classification and regression have a neat geometric interpretation in terms of linear
hyperplanes. In the case of classification, one can view the hyperplane W - X +b =0 as a
(d — 1)-dimensional separating hyperplane between the two classes in d-dimensional feature
space. A two-class example is shown in Fig.6.1a, in which the first class is marked by ‘o’
and the second class is denoted by ‘*’. The best linear separator x; + x2 = 1 between the
two classes is shown, although four points do occur on the wrong side of the separator.
Such training instances are penalized by the optimization model used to learn W and b.
The aggregate errors of such points are minimized by the linear model. Points are typically
penalized as a function of how far they are from the separating hyperplane on the “wrong”
side. Typically, only training points on the wrong side of the separator are penalized by the
linear model, although some linear models also penalize points for being “close enough” to
the separator even when they are on the correct side. The specific choice of the penalty
is a key distinguishing characteristic between different members of the family of linear
models. The bias is proportional to the distance of the hyperplane from the origin, and the
proportionality factor is equal to 1 when W and b are proportionately scaled so that the
former is normalized to unit length.

Linear regression models can also be interpreted in terms of linear hyperplanes. In the
case of regression, a d-dimensional hyperplane is constructed in (d + 1)-dimensional space
including the dependent variable. The corresponding hyperplane is y = W - X + b, which is
shown in Fig. 6.1b. As in the case of Fig. 6.1a, there are two independent variables, although
the hyperplane needs to be drawn in three dimensions to include the dependent variable. For
any given training point (X;,v;), deviations in the observed value of y; from the predicted
value W - X; 4+ b are penalized. Unlike the case of classification, most training points will be
penalized to some extent (and not just the misclassified points) unless they lie ezactly on
the linear hyperplane that is learned by the algorithm. There are numerous relationships
between the models used for linear classification and regression. For example, the linear
regression model can also be used to directly solve linear classification by treating the
binary class variables as numerical response values. This particular special case is referred
to as the regularized least-squares classification.
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Figure 6.1: Geometric interpretation of linear classification and regression

For both classification and regression, the bias is shown in Fig. 6.1 as a kind of offset of
the learned hyperplane from the origin. Although the effect of bias is important, it can be
incorporated indirectly without explicitly introducing a bias variable. The following section
discusses such an algebraic simplification to reduce notational complexity.

6.1.2 Do We Need the Bias Variable?

The bias variable b captures the invariant portion of the prediction y; that is unrelated to
the values of the feature variables. For example, consider a regression setting in which all
dependent variables y; are drawn from [99.99,100.01], and all feature values correspond to
relatively modest term frequencies, which are less than 10. Since the dependent variable does
not vary much over different training instances, one can simply set the coefficient vector
W to a d-dimensional vector of Os, and set the value of b to 100 to obtain a reasonable
prediction. Note that it would be hard to obtain an accurate prediction without a bias
variable b, especially if different documents contain very different terms. In other words,
the bias variable captures the invariant portion of the prediction over different documents,
which is difficult to model using highly varying features.

It is also possible to model the bias variable as one of the coefficients of a feature
variable by using a simple feature engineering trick of incorporating an invariant feature.
The basic idea is to add a single dummy feature to each training record with a value of 1.
The coefficient of the newly added dummy variable is the bias. This approach is equivalent
to inventing a single dummy pseudo-word, and adding it to every document in the corpus.
Therefore, if we change the notation to assume (without loss of generality) that the lexicon
contains d — 1 terms (instead of d terms), and the dth term is the dummy term, then one
can set b = wy. Therefore, one can write the aforementioned linear model as follows:

d—1
Yi = ijxij fwg =W X, Linear Regression (Numerical Dependent Variable)
j=1
d—1
Y = sign{z w;xi; +wq} = sign{W - X;} Classification (Binary Dependent Variable)
j=1



The addition of a single dummy term with an invariant frequency naturally captures the
invariant part of the dependent variable within its coefficient (which is the bias). This way
of modeling the bias is helpful in promoting algebraic simplicity without losing anything in
terms of modeling generality. Depending on algebraic convenience, some of the models in
this chapter will use the bias term, whereas others may not. In cases where the bias term
is not used, it is important to keep in mind that the derived algorithms are based on the
assumption of adding a dummy feature, and one must actually perform this preprocessing
on the data set when using these algorithms. The corresponding optimization model for
numeric dependent variables now becomes the following:

n

o 1 — —o
Minimize J = §Z(ylfWX1)

i=1

This model is the classical objective function for linear regression, although other optimiza-
tion criteria are used for binary dependent variables.

Another heuristic way of getting rid of the bias in the case of numeric dependent variables
(i-e., regression) is by mean centering all independent and dependent variables. The intuition
is that the bias is caused by the offset of the data distribution from the origin along the
dependent variable (cf. Fig. 6.1b). In the special case of the least-squares objective function
for regression, mean-centering all variables and then using a bias-free model can be shown
to be mathematically identical to the use of a bias-inclusive model on the original data (see
Exercise 2).

6.1.3 A General Definition of Linear Models with Regularization

All forms of supervised learning emphasize the ability to generalize a learned model from
(seen) training data to (unseen) test data. Unfortunately, the coefficients learned from the
training data may not always generalize very well to making predictions on the test data,
particularly if the size of the training data is small. In order to understand this point,
consider a situation in which number of features d is greater than the number of training
instances n. Furthermore, the dependent variable y; is always twice the value of the first
feature in document X;, and the remaining (d — 1) feature values are completely unrelated
to the dependent variable. In such a case, it is evident that the optimal coefficient vector
would be w; = 2, and wy = w3 = ... = wg = 0. Setting a coefficient value of a feature to
0 has the same effect as discarding the feature, and it may be viewed as a type of feature
selection. Unfortunately, however, when the number of features d is greater than n, the
system of equations above is an under-determined system with infinitely many solutions
with zero error. In other words, an optimization model might easily discover solutions in
which irrelevant features are used. This will inevitably lead to overfitting, and therefore
poor generalization on the unseen test data. Note that the problem of overfitting occurs
not only in the case when d > n, but also in cases where the number of instances is larger
than the number of features only to a modest degree. This is because every data set is
bound to have random nuances, which can cause freak correlations between features and
the dependent variable. The optimization model is bound to assign non-zero coefficients to
such features as well. In general, the larger the amount of data available, the better the
coefficients that can be learned by optimizing the squared error of the prediction in terms
of their generalization power to unseen test instances.

How can we encourage the linear model to use only relevant features and discard the
irrelevant ones by setting zero (or small) coefficient values for such features? One possibility



is to use feature selection up front. Although such a solution does help to some extent, it
creates several problems in terms of accounting for the specific effect of redundant features
and predicting the precise effect of removing features on the optimization process. A more
natural solution is to try to impose a budget on the number of features that are used. In
other words, one might try to optimize the following problem:

n

o 1 — =2
Minimize J = 3 Zl(yl -W-X;)
subject to:

At most r coefficients from W have non-zero values

Such an optimization problem is hard to solve in practice. A more natural solution is to
impose a penalty for using large values of coefficients. This is a soft form of feature selection,
because it encourages the absolute values of coefficients to be small (thereby de-emphasizing
the impact of weakly correlated features). Therefore, one uses a regularization parameter
A > 0 to create the following regularized linear regression model:

1< . P
Minimize J = = i — W X;)? Siiidls
tmimize J = 3" (y 7+ g
i=1 N——
Penalty for using features

Prediction Error

The penalty term on the coefficients, which is ||W]|? = Z?Zl w?, is also referred to as the
regularizer. This particular form of regularization is also referred to as Lo-reqularization,
since the Lg-norm of the coefficients is used. Other types of regularization, such as L;-
regularization, are commonly used. The various linear models differ in terms of the choice
of the objective function quantifying the prediction error (which is different between classi-
fication and regression) and the choice of the regularizer. More generally, almost all linear
models for both classification and regression can be shown to be special cases of the following

optimization problem:

Minimize J = E Ly, W- X))+ AQ(W)
— ——
= Regularization

Loss Function

The function L(-, -) denotes the loss function that tries to quantify the error penalty of trying
to predict y; with the linear function W - X;, and the function Q(-) is the regularization
term to prevent overfitting. The properties of the learned model depend in several interesting
ways on these choices. This chapter will study the most common choices, which result in
models such as linear regression, linear least-squares fit (LLSF), Fisher’s linear discriminant,
support vector machines, and logistic regression.

6.1.4 Generalizing Binary Predictions to Multiple Classes

You might have noticed that the class label y; is often assumed to be binary in the case
of linear models. What do we do when the data contains k£ > 2 classes? It is common to
use generic meta-algorithms, which can take a binary classification algorithm A as input
and use it to make multilabel predictions. Several strategies are possible to convert binary
classifiers into multilabel classifiers.



The first strategy is the one-against-rest approach, which is also referred to as the
one-against-all approach. In this approach, k different binary classification problems are
created, such that one problem corresponds to each class. In the ith problem, the ith class
is considered the set of positive examples whereas all the remaining examples are considered
negative examples. The binary classifier A is applied to each of these training data sets.
This creates a total of £ models. If the positive class is predicted in the i¢th problem, then
the ith class is rewarded with a vote that is proportional to the confidence of prediction.
One may also use the numeric output of a classifier (e.g., a function of the distance of
instance from separator) to weight the corresponding vote. The highest numeric score for
a particular class is selected to predict the label. Note that the choice of the numeric score
for weighting the votes depends on the classifier at hand.

The second strategy is the one-against-one approach. In this strategy, a training data set
is constructed for each of the (’;) pairs of classes. The algorithm A is applied to each training
data set. This results in a total of k(k—1)/2 models. For each model, the prediction provides
a vote to the winner. The class label with the most votes is declared as the winner at the
end. At first sight, it seems that this approach is computationally more expensive, because
it requires us to train k(k — 1)/2 classifiers, rather than training k classifiers, as in the
one-against-rest approach. However, the computational cost is ameliorated by the smaller
size of the training data in the one-against-one approach. Specifically, the training data size
in the latter case is approximately 2/k of the training data size used in the one-against-rest
approach on the average. If the running time of each individual classifier scales super-
linearly with the number of training points, then the overall running time of this approach
may actually be lower than the first approach that requires us to train only k classifiers.
This can be the case with many nonlinear classifiers. The one-against-one approach may
also result in ties between different classes that receive the same number of votes. In such
cases, the numeric scores output by the classifier may be used to weight the votes for the
different classes. As in the previous case, the choice of the numeric score depends on the
choice of the base classifier model.

There are also some optimized methods for converting the binary classifier into a mul-
tilabel classifier by changing the problem formulation. The change in the formulation is
specific to the linear model at hand, and it is not designed as a meta-algorithm (like
one-against-rest). Examples include multinomial logistic regression (cf. Sect.6.4.4) and the
Weston- Watkins multi-class SVM [496].

6.1.5 Characteristics of Linear Models for Text

The sparse and high-dimensional representation of text is particularly suitable for linear
models. Several independent evaluations have shown that linear models are among the best
performing classifiers in the text domain. Furthermore, linear models are very efficient, and
can be implemented in time that is linear to corpus size.

Linear models can be extended to modeling nonlinear relationships by using feature en-
gineering tricks in which the documents are implicitly transformed into a new space before
applying a linear model. In fact, it is even possible to use these models in cases where one
only has access to similarities between pairs of documents rather than the actual feature
representation. Such methods are particularly helpful when one wants to use the sequence
representation of text in mining algorithms by leveraging sequence-centric similarity func-
tions. Therefore, linear models present a broad class of highly flexible algorithms that are
considered state-of-the-art in the text domain.



6.1.5.1 Chapter Notations

The following notations will be used in this chapter. The training data is defined by the n xd
data matrix D, whose rows are the documents denoted by the d-dimensional row vectors
X1...X,. Let X; be a d-dimensional tuple denoted by (41, X42, . .. T4q) corresponding to
the d term frequencies in the document. In addition, the ith document X; is associated
with the class label y;. We can assume that the column vector i = [y ...y,]7 contains
the class labels (or dependent variables in regression) for the n training instances. In the
context of classification, this chapter only considers binary class labels, which are drawn
from {—1,+1}. Therefore, the pair (D,y) represents the training data, and a one-to-one
correspondence exists between the n rows (documents) of D and the n entries of 7. In
addition to the training data, we have a test matriz D; of size n; x d. Therefore, there are
ny test instances, denoted by Z; ... Z,,, and the class label (or numeric dependent variable)
is not observed for these instances.

6.1.5.2 Chapter Organization

This chapter is organized as follows. The next section will introduce the least-squares family
of regression and classification models, which includes the Fisher discriminant. The support
vector machine is introduced in Sect. 6.3. Logistic regression is introduced in Sect. 6.4. Non-
linear models are discussed in Sect. 6.5. The summary is given in Sect. 6.6.

6.2 Least-Squares Regression and Classification

The least-squares family is one of the most fundamental ones for classification and regression.
Although this particular family is inherently designed for regression, it can also be adapted
to classification. In fact, many important classification models used in the text domain,
such as the linear least-squares fit and the Fisher discriminant are applications of this
basic model to categorical dependent variables. There are also some important properties
of models based on the type of regularization that is used. So far, we have only considered
a regularization penalty in which the sum of squares of the coefficients is penalized. This
type of regularization is referred to as Lo-reqularization or Tikhonov reqularization.

6.2.1 Least-Squares Regression with L;-Regularization

Consider an n x d document-term matrix D (training data), for which the n-dimensional
column vector containing the numeric dependent variables is denoted by y = (Y1, Y2, - - yn]T.

Then, the ith row (i.e., document) of D, denoted by X;, is approximately related to the
class variable using a d-dimensional row vector W of coefficients as follows:

yi~W-X; Vie{l...n} (6.1)

Therefore, the least-squares formulation, which includes a regularization term (i.e., penalty
on coefficients) is as follows:

n d
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Prediction Error Lo-Regularization



We have already seen this form of the objective function in the previous section. One can
express this objective function in terms of the n x d document-term matrix D, dependent
variable vector 7, and coefficient vector W as follows:

1, — D
Minimize J = §||DWT —7l*+ §||VV||2

The optimality condition for this problem is obtained by setting the partial derivative of J
with respect to each element of the vector W' to 0. The partial derivative across all elements
of the vector W can be expressed in an integrated way using matrix calculus notation:

I _
ow

By re-arranging the aforementioned condition, we obtain the following:

DT(DW' — )+ AW =0 (6.2)

(DTD + M)W =D"5 (6.3)

The matrix D7D is positive semi-definite, and the regularization with A > 0 makes the
matrix DT D 4+ M positive definite. Any positive definite matrix is always invertible, and
therefore the coefficient vector W can be obtained as follows:

W' = (D7D +A)"'DTy (6.4)

Here, I is the d x d identity matrix. Once theﬁcoefﬁcient vector has been determined, the
dependent variable of an unseen test instance Z; can be predicted as the dot product of the
coefficient vector and the test instance:

F(Zi) =W Z; (6.5)

In fact, one can predict the labels of the entire n; x d test data matrix D; in one shot as

7L . . .. .
ye = D:W . Note that 7 is a column vector of n; entries containing the predicted values of
the dependent variable of each of the n; rows in D;. The value of A can be tuned by holding
out of a part of the data, and testing the accuracy of using various values of A for training.

6.2.1.1 Efficient Implementation

The solution of Eq. 6.4 requires the inversion of a d x d matrix. The value of d can be greater
than 10° for the text domain, which can create significant challenges. One possibility is to
use a gradient-descent method for more efficient prediction.

Instead of setting the gradient vector 5—% to 0 to obtain the solution in closed form, one

can choose to use it for gradient descent. The approach initializes the vector W randomly.
In each iteration, the coefficient vector W can be updated using a step-size a > 0 as follows:

&7]
ow
W' (1—a)) —aD? (DW' —7)

————

WT<:WT—a[

Current Errors

The gradient-descent steps are repeated to convergence. Note that the last term contains

an error vector (DW  —7), which is computed first, and then D7 is pre-multiplied with it
to create the update. Such an ordering of matrix/vector computations ensures efficiency.



6.2.1.2 Approximate Estimation with Singular Value Decomposition

Singular value decomposition provides an efficient way to perform approximate matrix inver-
sion of (DT D + \I). Furthermore, this approximation actually helps the prediction because
it is an indirect form of regularization. In other words, we can set A to 0 and use this alter-
native form of regularization instead. Therefore, we will discuss the following by assuming
that A is set to 0. Truncated singular value decomposition of rank-k approximately decom-
poses the n x d document-term matrix D into a n X k matrix @, a k x k diagonal matrix
¥, and a d x k matrix P as follows:

D~ QxpPT (6.6)

The rank k should always be chosen small enough that each entry of X is strictly positive.
A key observation is that it is often possible to set k <« min{d,n}, and the “loss” resulting
from such a truncation actually improves the representation by reducing the noise effects
of synonymy and polysemy. This is what improves the generalizability of the learned coef-
ficients to unseen test instances. By substituting Eq.6.6 in Eq. 6.4 and setting A = 0, one
obtains the following:

W' = (Ps2PT)L(QPT)Ty

= (PX2PTYPEQ"y [Using P~! = PT]
= Py 22Q"y [Using PTP = I
=Py 'Q"y

The key point here is that one only needs to compute the top-k singular vectors/values of
D using Lanczos algorithm [145, 146]. Even the power method of Sect. 3.2.2 can be used for
document collections of modest size. Since the value of k ~ [200, 500] is often much smaller
than the dimensionality d > 100,000 of a typical collection, such an approach turns out to be
very efficient. The value of k now serves the same role as the regularization parameter A, in
which small values of k indicate a higher level of regularization. The benefits of such a noise
reduction approach have also been shown [515] in the context of the linear least-squares fit
method for classification (cf. Sect.6.2.3.3).

In order to understand why the approach improves generalizability of the approach to
unseen test instances, one can view this approach as a way of building concise models
with fewer parameters. It is noteworthy that one could transform the training matrix D
to k-dimensional space using the transformation Dy = DP. Each test instance Z can be
transformed to k-dimensional space using Z(k) = ZP. Then, one can perform the linear
regression in this new lower-dimensional space (without any need for regularization) and
predict the dependent variable. It can be shown that the SVD-truncated prediction in the
original space is exactly equivalent to the prediction in this transformed problem. Note
that the transformed problem needs to compute only k coefficients on a non-redundant
set of variables, and is therefore far more concise. Furthermore, much of the noise in the
lower-order singular vectors (which is a source of overfitting) has been removed by the
transformation to a semantically coherent space. As a result, the overall accuracy of the
results improves using this approach on unseen test instances.

6.2.1.3 Relationship with Principal Components Regression

The aforementioned use of truncated singular value decomposition is closely related to
principal components regression [248]. In principal components regression, the data is trans-



formed to a lower-dimensional space using principal component analysis (PCA) [247]. The
data is then regressed in this new space by treating the transformed attributes as the
explanatory variables. This approach is very similar to the truncated singular value decom-
position discussed above, except that PCA is used instead of SVD for the transformation.
The SVD of a data matrix after centering it to zero mean will result in the same solution
as that obtained with the use of PCA. For sparse data matrices like text, the means of
the attributes (term frequencies) are close to zero anyway, and centering the data does not
make a large difference to the final predictions. It is better to not center the data matrix,
because doing so destroys the sparsity of the data matrix. Sparsity is very desirable from a
computational and space-efficiency point of view with such decompositions.

6.2.1.4 The Path to Kernel Regression

The prediction of test point Z of linear regression (cf. Eq. 6.5) can be equivalently expressed
purely in terms of dot products between training instances, as well the dot products between
Z and the training instances. Let K(Z, X;) = Z - X; represent the dot product between the
test instance Z and the training instance X;. Let S be the n x n matrix representing the
dot-product similarities between the n training points and gy represent the n-dimensional
column vector of response variables. Then, the prediction F(Z) of test point Z can be

expressed in terms of an n-dimensional row vector [K(Z,X1),... K(Z,X,)] of similarities
between training points and the test instance:

F(Z)=[K(Z,X1),K(Z,X3) ... K(Z,X,)|(S + A\) "'y (6.7)

Test-Training Similarities

We leave the proof of this result as an exercise to the reader (see Exercise 3). Note that
we cannot derive the coefficient vector W without using the features of the training points,
but we can still express the predictions of test instances purely in terms of the dot prod-
ucts in matrix S. If one chooses to use similarity functions other than the dot product
for K(Z,X;), then the approach becomes least-squares kernel regression, which is able to
capture nonlinear relationships’ between the regressors and regressand. In fact, a multi-
dimensional representation of the data is not even needed, and one can use string kernels
(cf. Chap. 3) as similarities. There are two useful applications of this form of the prediction:

1. If the number of documents n is far less than the size of the lexicon d, then it is
easier to invert an n X n matrix S + Al than to invert a d X d matrix. Therefore, the
aforementioned solution may be preferable.

2. Consider a setting in which one wishes to use the sequential relationships among
the terms in the documents as salient information for predicting the regressand. In
such a case, one can use string kernels in conjunction with Eq.6.7. A string kernel
effectively incorporates the linguistic and semantic information in sentences, which is
not available from the bag-of-words representation. As a result, this approach leverages
deeper semantic knowledge embedded in the documents.

In general, it is hard to invert an n x n similarity matrix in large collections. Therefore, it
makes sense to use the SVD-based low-rank trick discussed in Sect.6.2.1.2.

IWhen using kernel methods, it is customary to add a small constant amount to every entry in the
similarity matrix between points to account for the effect of the dummy variable representing the bias
term [319] (see Exercise 5).



6.2.2 LASSO: Least-Squares Regression with L;-Regularization

The acronym LASSO stands for Least Absolute Shrinkage and Selection Operator, and it
uses Li-regularization instead of Ls-regularization for least-squares regression. As in the
case of all least-squares problems, it is assumed that the ith training instance X; is related
to the dependent variable as follows:

yir W-X; (6.8)
In order to learn the regression coefficients, the least-squares error of the prediction needs
to be minimized as follows:
1 n d
Minimize J = - Z(yl -W-X;)?+ )\Z |w;|
j=1
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Note that the regularization term now uses the Li-norm of the coefficient vector rather
than the Ly-norm. One can write this objective function in terms of the n x d training data
matrix D and the n-dimensional column vector 7 of dependent variables as follows:

1 o N
Minimize J = §||DWT =7+ AW

Here, ||W||; represents the L;-norm of the vector W. This optimization problem cannot
be solved in closed form like the case of Lo-regularization. An important point here is that
the function .J is non-differentiable for any W in which even a single component wj is 0.
Specifically, if w; is infinitesimally larger than 0, then the partial derivative of |w;| is +1,
whereas if w; is infinitesimally smaller than 0, then the partial derivative of |w,| is —1. This
makes the derivative of w; undefined exactly at 0. For such non-differentiable objective
functions, subgradients are often used. In these methods, the partial derivative of w; at 0
is selected randomly from {—1,41}, whereas the derivative at values different from 0 is
computed in the same way as the gradient. Let the subgradient of w; be denoted by s;.
Then, for step-size a > 0, the update is as follows:

W oew' —aX[s1,s2,...,547 —aD” (DWT -7)
—_——
Error

Here, each s; is the subgradient of w; and is defined as follows:

-1 w; < 0
sj =14 +1 w; >0 (6.9)
Any of {—1,+1} w; =0

One issue here is that the random choice of s; from {—1,+1} can sometimes cause the
objective function to worsen. Therefore, this method is not a gradient-descent method be-
cause some iterations will cause the objective function value to worsen. Nevertheless, it can
be shown that the approach has guaranteed convergence properties for convex objective
functions. However, the fact that the objective function can worsen is important from the
point of view of using the best possible value of W, that was obtained in any iteration. At
the beginning of the process, both W and W, are initialized to the same random vector.



After each update of W, the objective function value is evaluated with respect to W, and
Whest is set to the recently updated W if the objective function value provided by W is
better than that obtained by the stored value of W, At the end of the process, the vector
West is returned by the algorithm as the final solution. One issue with this solution is that
it can be slow in practice, and therefore another technique called least-angle regression [151]
is often used. Another option is to use s; = 0 at w; = 0, which often turns out to be a more
practical choice.

6.2.2.1 Interpreting LASSO as a Feature Selector

Almost all Lj-regularization methods, including LASSO, always lead to sparse solutions
in which most values of w; are exactly zero. This is different from L-regularization, in
which the penalty reduces the size of the coefficients but most of them are non-zero. From a
prediction point of view, a zero coefficient has no influence on the prediction, and therefore
such a feature can be dropped. In Ls-regularization, the feature selection is softer in the
sense that the influence of each feature is reduced by shrinking its coefficient, but most of
them still have non-zero influence on the prediction. This observation provides LASSO a very
nice interpretability and also dual use as a feature selector. In fact, such feature selectors
are referred to as embedded models because they embed the feature selection within the
modeling process. From a semantic point of view, one gets to learn which terms are relevant
or irrelevant for the modeling process. LASSO is particularly useful in very high-dimensional
domains like text in which a small number of features can have a high level of explanatory
power.

A natural question arises as to when one should choose Li- or Ls-regularization.
In terms of prediction accuracy, Lo-regularization almost always performs better than
Lq-regularization, and is the safe option over arbitrary data sets. For sparse and high-
dimensional domains like text, L;-regularization can sometimes provide comparable per-
formance, but is almost always outperformed by combining L- and Lo-regularization with
the elastic net [546]. The real utility of pure L;-regularization is in providing highly inter-
pretable feature selection, and that should also be viewed as its primary use case. Combining
with Ls-regularization provides high-quality solution with good interpretability. However, if
prediction accuracy is the primary goal and one does not want to use the more complicated
optimization algorithms to combine L- and Ly-regularization, the simple and safe choice is
to use only Lao-regularization. Although this chapter primarily focuses on Lo-regularization
for classification, it is noteworthy that all the linear classification models in this chapter
have Li-variants, which have similar sparsity properties to the LASSO for regression. A
detailed discussion of many of these generalizations is provided in [208].

6.2.3 Fisher’s Linear Discriminant and Least-Squares Classifica-
tion

The Fisher’s linear discriminant can be shown to be a special case of least-squares regression
on appropriately coded response variables, although this is not how the discriminant is
defined. Rather, the linear discriminant is defined as the direction that maximizes the ratio
of the inter-class variance to the intra-class variance, if all points were to be projected along
that direction.

One can view the Fisher’s discriminant as a supervised cousin of principal component
analysis (PCA). The latter finds a direction in the data space that maximizes the variance of
all points along that direction irrespective of class. On the other hand, the Fisher’s discrim-
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Figure 6.2: Sensitivity of Fisher’s discriminant to class distribution

inant focuses on maximizing the ratio of inter-class to intra-class variance, and therefore
discovers very different solutions. A two-class example is illustrated in Fig. 6.2, in which the
effect of using different labeling of classes on the same data set is shown. The directions in
Fig.6.2a, b are very different because the ratio of inter-class to intra-class variance is max-
imized in different directions in the two cases. Let the discovered direction be W. Then,
the projection of any data point X; along this direction is given by W - X;. In each case,
it is a relatively simple matter to classify the data set by using an appropriately chosen
threshold with respect to the 1-dimensional coordinate from the projection. The negative
of this threshold can be used to define the bias b. The value of b can be estimated on a
held-out set using cross-validation. Therefore, the prediction y; € {—1,41} of the ith data
point can be computed as follows:

gi = sign{W - X; + b}

This is the well-known prediction function used in linear classification. However, as we
will discuss later, the Fisher’s method is also used as a feature engineering method, and
particularly so in multiclass settings.

Next, we discuss the derivation of the Fisher direction W. For a d-dimensional data
set, let Tig be the row vector denoting the d-dimensional mean of the negative class (i.e.,
class with label —1), and @7 be the row vector denoting the d-dimensional mean of the
positive class (i.e., class with label +1). Similarly, let Xy be the d x d covariance matrix of
only the points belonging to the negative class in which the (j, k)th entry is the covariance
between the jth and kth attributes of the points in this class. The corresponding covariance
matrix for the positive class is ;. Furthermore, let ny and n; be the number of training
examples, respectively, belonging to the negative and positive class, so that the total number
of training examples n is given by ng + n.

The squared distance between the means of the two classes along W is given by (W -
71, — W - Jig)?. This quantity is proportional to the inter-class variance? (or between-class

scatter) B(W):

BW) o (W - (i ~ )2 =W [n(fiy — Tip) (7 — )] W' = WSW'

d x d matrix S of rank-1

2The notions of scatter and variance are different only in terms of scaling. The scatter of a set of n
values is equal to n times their variance. Therefore, it does not matter whether the scatter or variance is
used within a constant of proportionality.



The above relationships introduce an additional notation Sp by replacing the d x d rank-1
matrix [n(f; — fy)7 (7, — Fy)] with a between-class scatter matrix® S

In order to compute the scatter within each class along direction W, we make use of
the well-known fact [247] that the scatter of a set of n points along a direction W can be
expressed in terms of the covariance matrix X as nWZWT. Then, we compute the scatter
within each class along W and compute their sum in I(W) as follows:

(W) = ng (WS ) + no(WSeW )

W (Tl121 —l-noZo) w
—_—

d X d matrix Sy,
— =T
= WS, W
An additional notation, S,,, corresponding to the within-class scatter matrix is introduced

above. Then, the objective function of the Fisher discriminant maximizes the ratio of the
interclass to intra-class scatter along W as follows:

B(W) Ws,W
Iw)  ws,w"
Note that only the direction of W matters in the above solution, and its scaling (i.e., norm)

does not affect J. Therefore, in order to make the optimal solution unique, one can choose
a scaling in which the denominator is 1. This creates a constrained optimization problem:

Maximize J =

Maximize J = WS’bWT
subject to:
WS, W =1

Setting the gradient of the Lagrangian relaxation WS, W — a(WSwWT — 1) to 0 yields
the generalized eigenvector condition SbWT = OLSMWT. Therefore, WT is the only nonzero

eigenvector of the rank-1 matrix S,'S,. Because Sy W = @F —al) {n(ﬁl fﬁO)WT}

w

always points in the direction of (¥ — 71l ), it follows that SU,WT o i1 — @d . Therefore,
we have the following:

W o Sy (1, — i) " (6.10)
= (M1 +noXo) H(F — Tig) T (6.11)

It is also common to use a variant of this methodology in which a parameter ~ is introduced
to give differential weight to the various classes:

—T 1l —
W o« (21 +~%0) (g — )" (6.12)

One can choose v by optimizing a desired cost function on held out portion of the data.
Equal weighting to the classes irrespective of their relative population is achieved by setting
~v = 1. However, the “official” Fisher discriminant is defined only by Eq.6.11, which is what
will be used in this chapter.

3This two-class variant of the scatter matrix Sp is not exactly the same as defined in the multi-class
version Sp, of Sect. 6.2.3.1. Nevertheless, all entries in the two matrices are related with the proportionality
factor of 120 which turns out to be inconsequential to the direction of the Fisher discriminant. In other
words, the use of the multi-class formulas in Sect. 6.2.3.1 will yield the same result in the binary case.



6.2.3.1 Linear Discriminant with Multiple Classes

The aforementioned solution can be generalized to multiple classes in two ways. One can
perform the classification using a one-against-all approach in which one class is selected
as the positive class and the remaining classes are selected as the negative classes. This
process is repeated k times, and the most confident prediction is returned for a test instance.
This approach is used frequently in the text domain [82, 515, 518]. Although the approach
can be reasonably used for prediction, a more powerful approach is to use all the classes
simultaneously to derive the & — 1 directions.

First, we need to compute the scatter matrices S,, and S, for the multi-class setting.
The scatter matrices are computed in a similar way to the linear discriminant metric of
Sect.5.4.4 in Chap. 5. Let X; be the covariance matrix of the ith class, so that the (j, k)th
entry of 3; is equal to the covariance between the jth and kth dimensions in the ith class.
Let n; be the number of points in the ith class, and n = ZZ n; be the total number of
points. Let & be the d-dimensional row vector representing the mean of the entire data set,
and @; be the d-dimensional row vector representing the mean of the ith class. Then, the
d x d within-class scatter matrix is defined as follows:

k
Sw =Y _ ni%; (6.13)
i=1
The dxd between-class scatter matrix* is defined as the sum of the following rank-1 matrices:

k
Sy = Zm(m*ﬁ)T(m*ﬁ) (6.14)

Note that each product above is the product of a d x 1 matrix with a 1 x d matrix. The
matrix Sy is n times the covariance matrix of a data set containing the means of the classes
in which the mean of the ith class is repeated n; times. Then, the top-(k — 1) eigenvectors
of the rank-(k — 1) matrix S;;1S, provides a low-dimensional space of data representation.
Other classifiers like decision trees can be constructed in this space. The multiclass variant of
linear discriminant analysis is often used to perform feature engineering for other classifiers.
It is sometimes also used for soft feature scaling as shown in Sect. 5.4.4.

An immediate observation is that the approach is computationally expensive for high
dimensional data sets. It requires O(n - d?) time to compute each scatter matrix, and O(d?)
time to invert the within-class scatter matrix. The value of d is usually greater than 10°
in text. To improve efficiency, one can first preprocess the feature variables of both the
training and test data with latent semantic analysis, and reduce the dimensionality to less
than 500. It is much easier to compute a 500 x 500 matrix and invert it.

6.2.3.2 Equivalence of Fisher Discriminant and Least-Squares Regression

The binary Fisher’s discriminant classifier is the same as least-squares regression with re-
spect to the (binary) class indicator variable [50]. This is an important result, because
it enables the use of many of the efficient techniques for least-squares regression, such as
gradient-descent and SVD-based approximation. Furthermore, this equivalence also enables
the use of kernel methods presented for the case of least-squares regression.

4Note that this matrix is different from the one introduced for the two-class case only by a proportionality
factor, which does not affect the final solution.



This result is algebraically easiest to show by mean-centering both the data matrix and
the response variable in a particular way and setting® the bias to 0. Therefore, the following
will not assume the use of a dummy column to adjust for bias. Consider the following case in
which the n x d document-term matrix D and the n-dimensional column vector ¥ containing
the class variables have been preprocessed as follows. The matrix D is mean-centered by
simply subtracting the mean of each column from the corresponding variable. Similarly,
the column vector g of class variables in {—1,+1} has been mean-centered by setting its

- . . . . =1
positive entries to ng/n and negative entries to —nq/n. Then, the coefficient vector W~ of
least-squares regression without regularization satisfies the following;

(DTD)W' = D7y (6.15)

Because of the special way in which the response variable has been coded, the right-hand
side of the above expression simplifies as follows (convince yourself why this is true):

(DTDYW" o (i) — Fig)” (6.16)

A key relationship between the within-class scatter matrix S, the between-class scatter
matrix Sj, and the full scatter matrix DT D is as follows:

DTD =8, + ”1n'2"° S (6.17)
= Sw + K (7, — 7o) " (51 — Tio)] (6.18)

Here, K is a suitably chosen scalar. Note that this relationship holds when the matrix D
is mean-centered. Here, we simply assume this relationship, and leave it as an exercise for
the reader to show its correctness (see Exercise 4).

By substituting Eq. 6.18 in Eq. 6.16, one obtains the following:

(Sw + K [(71y — 7o) (7 = 710)]) W ¢ (12 — Tip)” (6.19)

Now, a key point here is that the vector [(fz; — )" (Fy — Tio)] w always points in the

direction of (fi; — 7iy)T because we can write this vector as (fi; — fig)? [(ﬁl - ﬁO)WT]

This means that the second term on the left-hand side of Eq.6.19 can be dropped without
affecting the proportionality relationship of vectors:

—T
SuW" o< (1 — )"
7’1" _ _ _
W x Swl(/h - MO)T

Note that the vector on the right-hand side is the same as that provided by the Fisher
discriminant. In other words, with the proper preprocessing of the data matrix and response
variable, one obtains the same result with least-squares regression as the Fisher discriminant.

The aforementioned result uses mean-centered matrices to obtain the equivalence with
algebraic simplicity. Centering both the data matrix and the response variable is simply a
way of ensuring that the bias is 0 in the optimal solution of least-squares regression, and
one does not have to worry about an (uncentered) dummy column of 1s in D. One can also
show more general equivalence by allowing for a bias variable and adding a dummy column

50ne can also show more general equivalence by allowing for bias.



of 1s to the data matrix to absorb the bias coefficient. This result has considerable practical
significance because it shows that one can use any of the efficient solution methods discussed
earlier in this section for least-squares regression in the case of Fisher discriminant with two
classes. The equivalence between least-squares regression and the Fisher discriminant also
means that one can extend the kernel regression methods discussed in Sect.6.2.1.4 to the
Fisher discriminant.

Although the Fisher discriminant can be simulated with least-squares regression, this
does not mean that the entire family of discriminant methods is subsumed by the least-
squares family. Fisher’s discriminant is only one member of a larger family of linear discrim-
inators. The objective functions of linear discriminators and least-squares regression try to
capture geometrically different notions but turn out to be equivalent in special cases like the
Fisher discriminant with binary data. Furthermore, the multi-class treatment is different in
the two cases.

6.2.3.3 Regularized Least-Squares Classification and LLSF

When regularization is combined with linear regression on binary class variables drawn
from {—1, 41}, the formulation is referred to as reqularized least-squares classification. The
formulation for least-squares classification can be written as follows:

Minimize J =

e~ (7 - X0 + 11T (6.20)

DN | =
I

q
Il
_

(1= (W - X + 5 W (6.21)

Il
DN =
INgE

Il
N

7

Note that the second relationship of Eq. 6.21 is only true when the class variable is coded to
{—1,+1} because the value of y7 is always 1. As we will see later, this form of the objective
function is very closely related to that of a support-vector machine. A test instance Z is
classified using the following prediction function with the learned value of W:

F(Z) = sign{W - Z} (6.22)

At a learning rate of 1, the stochastic gradient-descent update of least-squares classifica-
tion is exactly the same as the one shown earlier for least-squares regression with numeric
responses (cf. Sect.6.2.1.1):

W<W(I—n\)+ny(l—y(W- - X)X

The equivalence to the updates in Sect. 6.2.1.1 follow from using y? = 1. Furthermore, the
above updates represent stochastic gradient descent because the gradients are computed
with respect to a single training point (X,y) that is randomly sampled from the training
data. We use this form of the updates to relate them better with other types of linear
classification models.

This formulation is also referred to as the linear least-squares fit (LLSF) method in
the text domain [515, 518]. However, the original formulation in [515, 518] does not use Lo-
regularization, and it uses truncated singular value decomposition instead (cf. Sect. 6.2.1.2).
A formulation was also proposed for the multiclass case [515], although it can be shown
that it is equivalently decomposable into a one-against-all approach applied to the binary
formulation.



The LLSF and least-squares classification methods are equivalent to the Fisher discrimi-
nant, when regularization is not used. The LLSF method does not center the document-term
matrix and uses binary variables as the responses to learn the regressors. In contrast, the
results in Sect.6.2.3.2 show that Fisher’s discriminant performs the same regression on
centered variables. Is this difference significant? It turns out that these differences are not
significant because they can be adjusted for by simply adding a bias variable in the form
of a dummy column of 1s to D when running LLSF. Note that a binary indicator response
variable can be obtained from the response variable of Sect. 6.2.3.2 by adding n1 /n to each
response value. Furthermore, each column of a mean-centered data matrix D is different
from the uncentered matrix only in terms of translation of each column by its mean. These
differences in translation can be fully absorbed with the use of different values of the bias
variable (dummy-column coefficient) without changing the non-trivial regression coefficients
(i.e., those belonging to observed variables). The LLSF implementation does have the ad-
vantage of working with the original sparse data matrices, which is particularly useful in
the text domain.

As a historical note, it should be pointed out that the regularized least-squares family has
been re-invented several times. The Fisher discriminant was proposed in 1936 as a method
for finding class-sensitive directions. Least-squares classification and regression date back to
Widrow-Hoff learning in the sixties [497] and Tikhonov-Arsenin’s seminal work [474] in the
seventies. The remarkable relationship between the Fisher discriminant and these methods
was eventually discovered [50]. Another closely related variation is the perceptron algorithm
(cf. Sect.10.6.1.1 of Chap. 10), which (also remarkably) is a shifted version of the support
vector machine loss function (page 323). As discussed in the next section, the support
vector machine is itself a repaired version of the least-squares classification loss function.
In fact, Hinton [217] repaired the Widrow-Hoff avatar of the least-squares classification loss
function to create the Ls-loss of the support vector machine, 3 years before Cortes and
Vapnik’s seminal work [115] on support vector machines. The first application of least-
squares methods to text categorization was proposed in [515, 518].

6.2.3.4 The Achilles Heel of Least-Squares Classification

The least-squares classification family (including the Fisher discriminant), has an important
weakness in the nature of its loss function. By directly penalizing the squared difference be-
tween the indicator variable y; and the prediction W-X;, one not only penalizes misclassified
points but also the “easy” points that are correctly classified by W - X; in a very strong way.
For example, consider an instance X; belonging to the positive class for which the value of
W - X; turns out to be 10. Even though this prediction is correct in a very confident way,
this confidence will be penalized by the least-squares objective function, in which the coded
value of y; is 1. Such points typically correspond to well-separated points from the decision
boundary, and their influence on the learned value of W often has a detrimental effect on
the classification of points that are close to the decision boundary.

In order to illustrate this point, a two-class distribution is illustrated in Fig.6.3. It is
noteworthy that the points that are far away from the decision boundary (on the correct
side) skew the direction of the Fisher discriminant, which results in two misclassified regions
near the true decision boundary. If the well-separated points in Fig. 6.3 were to be thrown
away, the Fisher discriminant does much better in approximating the true boundary. This
observation is intriguing in the sense that one expects a classification model to be punished
by the presence of “delinquent” (i.e., mislabeled) training points on the wrong side of the
decision boundary, but one rarely expects to be penalized for having outstanding citizens
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Figure 6.3: Well-separated points have a detrimental effect on the Fisher discriminant

in the training datal!

The Fisher discriminant often lags behind another linear classifier, referred to as the
support vector machine. The support vector machine removes the well-separated points,
and keeps only the points near the decision boundary, which are referred to as “support
vectors” for learning. Interestingly, it has been shown [445] that the Fisher discriminant is
similar® to the support vector machine, if the well-separated points were to be discarded.

The difference in accuracy performance of the support-vector machine and the
Fisher discriminant/least-squares classification can be primarily explained by
the differences in their treatment of the well-separated points.

Of course, since the problem of finding the well-separated points is the most difficult part of
a support-vector machine, this observation does not help us much from an algorithmic point
of view. This observation is, nevertheless, helpful from a heuristic point of view because one
can discard well-separated points by using various heuristic tricks [82, 112]. Such heuristics
can often boost the accuracy of the Fisher discriminant significantly.

While the superiority of SVMs over least-squares classification is generally accepted,
some researchers have also pointed out that the differences are not large enough to be
considered significant [407, 519]. Furthermore, points near the decision boundary can also
be noisy points on the wrong side of the boundary, and therefore their primacy over the
well-separated points is not guaranteed. Not all real-world settings are as neat as that shown
in Fig. 6.3. One can easily construct examples of toy data sets to make the counter-argument
that well-separated examples are more informative than points near the boundary. Support-
vector machines also require greater care and computational effort in parameter tuning. In
particular, the work in [407] shows several examples in which least-squares methods are
less sensitive to parameter choice (such as the regularization parameter) as compared to
support vector machines.

6.3 Support Vector Machines

A support vector machine (SVM) has a special geometric interpretation of its regularizer,
which leads to the notion of margin-based separation of the points belonging to the two

6The SVM generally uses the hinge loss rather than the quadratic loss. The use of quadratic loss is
possible in an SVM but it is less common. This is another key difference between the Fisher discriminant
and the (most common implementation of the) SVM.



classes. The basic idea here is that an SVM creates two parallel hyperplanes symmetrically
on each side of the decision boundary, so that most points lie on either side of these two
margin hyperplanes on the correct side. Although most textbooks introduce SVMs with this
geometric interpretation, we believe that the regularized optimization view of a support vec-
tor machine is more helpful in understanding its true origins, and relating it to other linear
models like least-squares classification. Therefore, we will first start with the regularized
optimization view, and introduce the geometric interpretation later.

Some expositions of SVMs explicitly use a bias variable b, whereas others do not. The
bias variable can be absorbed by addition of a single columns of 1s to the document-term
matrix D. The coefficient of this dummy term is the bias variable (cf. Sect. 6.1.2). This does
lead to a small change in the final predictions when regularization is used. This is because
only the coefficients of the feature variables are regularized but an explicit bias variable is
not. However, when the bias variable is treated as a coefficient of a dummy feature, it is
regularized as well. Although the use of a dummy variable changes the optimization model
slightly, the effect on the final predictions is quite small. The following exposition will work
with the assumption of a dummy column like the other models of this chapter.

6.3.1 The Regularized Optimization Interpretation

Consider a data set with n training point-class variable pairs (X1,y1) ... (Xn, ¥n), in which
the class variable y; is always drawn from {—1,+1}. We start with the optimization formu-
lation of least-squares classification in Eq.6.21, which is treated as the “parent problem”
throughout this chapter:

1 — 0 A —
Minimize J = 3 2:[1—yi(I/V~X,-)]2—¢-§||I/V\|2 [Regularized Least-Squares Classification]

i=1

The primary criticism of the least-squares classification model (cf. Sect.6.2.3.4) is the fact
that it not only penalizes the points for being on the incorrect side of the decision boundary,
but it also penalizes them for being too far on the correct side. In particular, any point X;
for which y;(W - X;) > 1 is actually being classified in a comfortable way on the correct
side, and it should not be penalized. How can we remove this weakness of the least-squares
classification model? The simplest way is to modify the aforementioned objective function
so that points with y;(W - X;) > 1 are not penalized. We present two such modifications
below corresponding to different variations of the SVM objective function:

I — A —
Minimize J = 3 Z max{0, [l — y;(W - X))} + §||VV||2 [Quadratic-Loss SVM]

i=1

Minimize J = Zmax{o, 1—y(W-X;)]}+ %HWW [Hinge-Loss SVM]
i=1

As in the case of regularized least-squares regression, the prediction F(Z) for test point Z
is as follows: B o
F(Z) = sign{W - Z} (6.23)

The linear separator W -X = 0 therefore defines the decision boundary between the positive
and negative classes. Therefore, the support vector machine is a modification of the least-
squares classification model, which addresses the latter’s weakness in handling well-separated
training points.



The quadratic-loss SVM is more closely related to the regularized least-squares classi-
fication as compared to hinge loss. However, since the hinge-loss SVM is more common,
the following description will primarily focus on this setting. One notational quirk used by
the SVM community is that the optimization formulation is (equivalently) parameterized
with the slack penalty C = 1/X rather than the regularization parameter A. Therefore, for
greater consistency with widely accepted notations, we use a similar form:

1 — < —
Minimize J = §HW|\2 +C- Zmax{o, 1—y(W- X))} [Hinge-Loss SVM]

i=1

From an intuitive point of view, the slack penalty C' quantifies the amount by which each
point is penalized for “slacking off” from its target value of y; in a one-sided way. For
example, a positive point (i.e., y; = 1) with W - X; = 0.7 will be penalized by 0.3C, whereas
a point with W - X; = 1.3 will not be penalized. Note that the former point will be classified
correctly by Eq. 6.23, but it is still penalized for being “too close” to the decision boundary.
After all, such a point could be on the correct side of the decision boundary simply by virtue
of overfitting. One can immediately see that the optimization formulation of the support
vector machine is naturally designed to discourage overfitting.

6.3.2 The Maximum Margin Interpretation

Support vector machines also have an interesting geometric interpretation, which often helps
in visualizing their solutions and motivating several solution methodologies. Note that the
decision surface W - X = 0 lies in the middle of the two hyperplanes W - X = 1 and
W -X = —1. The two parallel hyperplanes to the decision boundary are shown in Fig. 6.4a.
These hyperplanes are key because the distance between them is referred to as the margin,
and the region between them reflects the zone of “uncertainty” near the decision boundary. It
is undesirable to have too many points in this region, and therefore a training point X; lying
in this region is always penalized, even when it is correctly classified by virtue of satisfying
y; = sign{W - X;} [or, equivalently y;(W - X;) > 0]. Such correctly classified training points
in the uncertain margin region satisfy y;(W - X;) € (0,1), and the corresponding penalty
will be at most C. Other points on the incorrect side of the decision boundary can have
arbitrarily large values of the penalty depending on their distance to the (relevant) margin
hyperplane. The quantity (1 —y;(W - X;)) > 0 captures this “slack,” and will be explicitly
represented as a slack variable &; later in this section. Four examples of penalized points
are shown in Fig. 6.4a, all of which are circled. Note that the point A will be penalized even
though it lies on the correct side of the decision boundary.

The contribution of the regularizer has a more interesting interpretation. The distance
between the two hyperplanes W-X =1 and W-X = —1 can be shown’ to be 2/||W]|| using
elementary rules of coordinate geometry. Note that the regularizer is the squared inverse
of this quantity, and therefore minimizing the regularizer is equivalent to increasing the
distance between the two hyperplanes. Increasing the distance between the two hyperplanes
is a natural way of achieving the goals of a regularizer because it discourages correctly
classified training points from being too close to the decision boundary, which might be a
result of overfitting. Therefore, one can recast the goals of the regularization and prediction

"http://mathworld.wolfram.com /Point- PlaneDistance.html.
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Figure 6.4: Illustrating the notions of support vectors and margins in SVMs

errors in terms of the margin maximization principle as follows:

1, — - —
Minimize J = §||VV\|2 +C- Zmax{O, 1 —y(W-X;)]}
—_—— i=1
Encourage Greater Margin

Discourage Margin Violation

As in all regularized problems, there is a trade-off between the loss function and the reg-
ularizer. For example, in Fig. 6.4b, two possible sets of decision boundaries are shown. In
one of them, the margin is undesirably thin, but there are only two penalties for margin
violation. In the other case, the margins are thicker, but there are four penalties for margin
violation. Which of these would the SVM optimization formulation select? If C' is small,
then it would go for the thick margin with increased regularization. If C' is large, then the
SVM would go for the thin margin with less regularization. In practice, parameters like C
are chosen in a data-driven way by holding out a portion of the training data and selecting
them in order to maximize the accuracy.

A key concept in SVM optimization is the notion of support vectors, based on which
the SVM derives its name. An important point about SVM optimization is that each of
the two separating hyperplanes on either side of the decision boundary could touch one
or more training points at optimality. Such training data points are referred to as free
support vectors. There are three free support vectors in the example of Fig. 6.4a. The notion
of support vector naturally conveys the geometric interpretation of these training points
“supporting” the hyperplanes on either side of the decision boundary. The training data
points that are explicitly penalized for margin violation are also considered support vectors,
but they are considered bounded support vectors. Since four points are penalized in Fig. 6.4a,
there are four bounded support vectors. Note that a bounded support vector could either be
a correctly classified training point within the margin region, or it could be a misclassified
point inside/outside the margin region.

6.3.3 Pegasos: Solving SVMs in the Primal

Although dual formulations of SVMs are common, linear SVMs can be solved quite effi-
ciently in the primal. As in the least-squares models, the first line of attack should be to



examine if gradient-descent methods can be used on the original (i.e., primal) objective
function. Unfortunately, the hinge-loss objective is not differentiable at a particular value of
the vector W, because of the presence of points satisfying the condition y;(W - X;) = 1
in the training data. This problem is caused by the maximization function inside the
loss term, max{0, [1 — y;(W - X;)]}, of each point. For margin-violating points satisfying
y;(W - X;) < 1, the portion of the gradient contributed by these points is —yX;. For points
satisfying y;(W - X;) > 1 the contribution to the gradient is 0. The main uncertainty arises
for points where the condition is exactly satisfied with equality, where the gradient is non-
differentiable. In spite of this fact, a particular form of mini-batch stochastic gradient descent
works very well, in which such non-differentiable points are dropped from the sampled set.

One such solution is Pegasos [444], which also has a sub-gradient interpretation. The
approach randomly samples training points of batch-size s, and retains only those points
in the batch violating the margin (i.e., satisfying y;(W - X;) < 1). The gradient is updated
with respect to only these retained points in each iteration. Since the points are selected
based on margin violation, the differentiability of the objective function with respect
to these points is guaranteed. The learning rate 7; in the tth iteration is set to 1/¢. The
Pegasos algorithm starts by initializing W to a vector of Os and then uses the following steps:

fort=1 to T dojegin
ne=1/t; W <= W(1 —n); o
A¢ = Random sample of s training pairs (Xj, y;);
Af ={X,v) ECAt cy(W-X) < 1}
W T/ L ntmne <.
W<«W+ Z(Y,y)eAjva

S

W < min {1, ﬁ%ﬁ } W; { Optional }

endfor

Aside from the stochastic gradient update® step, the approach has an additional param-
eter shrinking step before the end of the iterative loop, which is optional. Another notable
characteristic of Pegasos is in the bold nature of the step sizes, which are shown to converge
fast. Aside from the step-size and shrinking innovations, these updates are almost identical
to those of a regularized perceptron (cf. Eq.10.23 of Chap. 10), except that a perceptron
defines A; as the set of all misclassified points satisfying y(W - X) < 0 (without including
the marginally correct points near the decision boundary). It has been shown in [444] that
the number of iterations required depends on O(Cy/e), where € is the desired accuracy and
Cy = n - C is the relative weight of the slack penalty term compared to the regularization
term after accounting for the effect of training data size. With careful handling of sparsity
in the update process, the complexity of each update is O(s - ¢) where s is the (typically
small) mini-batch size, and ¢ is the average number of terms with non-zero frequency in
each training example. In other words, the running time of the approach is independent of
the training sample size, because one can assume that the relative weight Cj is chosen in
an insensitive way to training data size. The implementation of each update requires some
care in handling sparsity.

6.3.3.1 Sparsity-Friendly Updates

This method is also particularly suitable for sparse domains like text, in which most entries
of each X; are 0s. Note that W might be a dense vector, whereas the vector added to it in

80n the surface, these steps look different from [444]. However, they are mathematically the same,
except that the objective function uses different parametrizations and notations. The parameter X in [444]
is equivalent to 1/(n - C) in this book.



each iteration from a small batch of s entries might be sparse. One wants the update time to
be proportional to the number of non-zero entries in the sparse vector rather than the dense
vector. A part of the problem is that some of the updates on W are multiplicative with
respect to all the entries, which might require O(d) time at first sight. One does not want
to perform the multiplicative updates on each of the d elements of W explicitly because
the value of d could easily be greater than 10°. An important point is that multiplicative
updates only affect a proportional scaling of the vector, which can be maintained separately
from the relative values of its entries. In other words, one maintains two scalars 6 and
«~, and an unnormalized vector V. The vector W is equal to 8V, and the norm of W is
maintained in v = ||[W/||. Note that this is a redundant representation of W (because one
is using d + 2 values instead of d values to represent W), but it helps in performing the
additive and multiplicative portions of the update on different parts of the representation.
An update is implemented as follows. First, 8 and ~ are multiplied with (1 — ;) to account
for the multiplicative part of the update. Then, the relevant entries of V are updated with
the additive quantity %< Z(?,y) car yX;. Note the use of # in the denominator of the

S-

additive quantity so that W = 6 -V is appropriately updated. This additive update changes
the value of v, which can be updated? in time proportional to the sparsity level in the added
quantity. Then, the multiplicative updates caused by the final shrinking step are used to
update 6 and . The final shrinking step is able to avoid the expensive computation of the
norm of W because it is readily available in ~.

6.3.4 Dual SVM Formulation

The dual formulation of SVMs has been the dominant methodology for solving SVMs by
historical accident [89], although there is no special reason to prefer the dual over the primal.
In order to formulate the dual SVM, one first needs to explicitly introduce slack variables
& in order to get rid of the maximization function in the objective. Such a restatement of
the objective function results in the following constrained optimization problem:

n
Minimize J = %HWH? +C- Z;g
subject to:
&>1—y;(W-X;) Vie{l...n} [Satisfied tightly for poorly separated points]
& >0 Vie{l...n} [Satisfied tightly for well-separated points]

Intuitively, the slack variables &; represent the amount by which the margin rules are vi-
olated, and they are penalized with C'. The objective function therefore naturally tries to
minimize each &;. As a result, at least one of the two constraints involving &; will be satisfied
to equality (at optimality) depending on whether the training point is poorly separated (i.e.,
a support vector) or well separated (i.e., correctly classified outside margin hyperplanes).
A Lagrangian relaxation methodology is commonly used to solve such constrained opti-
mization problems. We introduce two sets of Lagrangian parameters corresponding to the
two sets of constraints. The margin violation constraints are assigned the Lagrangian pa-

9When a sparse vector @ is added to a dense vector b, the change in the squared norm of b is ||@||? +2a-b.
This can be computed in time proportional to the number of nonzero entries in the sparse vector a.



rameters «;, whereas the nonnegativity constraints are assigned the Lagrangian parameters
~;. The Lagrangian relaxation Jp, is as follows:

o 1 ) n n o n

Lp = Minimize Jg, = §HWH + {C§§i} - Zlai(fi —1+y(W-X;)) - Z%{i
— - -

Relax margin rule Relax & > 0

subject to:

a; > 0,7 >0 Vie{l...n} [Since relaxed constraints are inequalities]

In Lagrangian optimization, one wants to minimize the optimization problem at fixed values
of the Lagrangian parameters, and then maximize this objective function with respect to
all values of the Lagrangian parameters. Such a problem is referred to as the dual problem
of the Lagrangian. In other words, we have:

* J— Tt
Lp = maxa, 5 >0Lp = MaXa, ;>0 Mingg ¢ J1

For convex optimization problems like support vector machines, the solution of this rather
odd optimization problem can be shown to be the same as the optimal solution of the
original problem. Such a solution is referred to as the saddle point of the Lagrangian. The
first step in finding the saddle point is to get rid of the minimization variables, so that we are
left with a pure maximization problem in terms of the Lagrangian parameters. Therefore,
one must set the partial derivatives with respect to the W = (w; ...wg) and & to 0.

VI, =W — Z a;y; X; = 0 [Gradient with respect to W is 0] (6.24)
oJ

L—C—ai—v=0Vie{l...n} (6.25)
23

The first of these two constraints is particularly interesting because it shows that the co-
efficients of the separating hyperplane can be fully expressed in terms of the training data
points. Therefore, solving for «; is sufficient to derive the separating hyperplane. Further-
more, one can even use a; to directly provide a prediction F(Z) of the test instance Z in
terms of pairwise dot products between points:

n

F(Z) = sign{W - Z} =sign{>_ a5, X; - Z} (6.26)

i=1

In order to eliminate the minimization variables, we substitute for W in the objective func-
tion. As an added bonus, we can also get rid of 7; by substituting v; = C' — «; (based on
Eq. 6.25) to derive an objective function (and constraints) purely in terms of a;. On substi-
tuting for these variables and simplifying, one can write the dual problem in maximization
form as follows:

Maximize Lp = {Z 041} - = Zzalajyzyj 77])

1=1 j=1
subject to:
0<a; <C VYie{l...n}



Once we solve for «;, the prediction function of Eq.6.26 can be used to classify a test
instance. For linear SVMs, one can also derive the coefficient vector W using Eq. 6.24. The
dual formulation has the following properties:

1. The dual objective function and the prediction of Eq.6.26 can be expressed purely in
terms of dot products without knowing the feature representations of the points. As
we will see later, this fact has important consequences in order to use the approach
for arbitrary data types.

2. The Kuhn-Tucker optimality conditions of the Lagrangian dual are obtained by setting
the penalty terms in the Lagrangian relaxation to 0:

oi(& — 14+ (W - X;)) =0
(C — Ckz)fl =0

Based on the Kuhn-Tucker optimality conditions, one can derive the following:

e Any point satisfying y; (W - X;) > 1 (i.e., non-support vector) must satisfy a; = 0
because of the first Kuhn-Tucker condition and the nonnegativity of &;. Further-
more, the second Kuhn-Tucker condition (C' — 0)¢; = 0 ensures that & = 0 for
non-support vectors. Such well-separated points are not penalized in the primal.

e Any point satisfying y;(W - X;) < 1 (i.e., bounded/margin-violating support vec-
tor) must satisfy (i) & > 0, (ii) o; = C. These points are penalized in the primal
objective function, because they are either too close to the decision boundary
(on the correct side), or are on the incorrect side of the decision boundary.

e Points with 0 < a; < C are free support vectors and satisfy (i) § = 0, (ii)
yi(W - X;) = 1. These points are not penalized in the primal objective function,
since slacks are 0. These points lie on the margin hyperplanes.

Points that are not support vectors do not contribute to either the primal or dual objective
function value at optimality. This means that the well-separated points are redundant with
respect to both the optimization objective and the constraints, and can be thrown away
without affecting the optimal solution. This observation is often used in SVM optimization
algorithms.

6.3.5 Learning Algorithms for Dual SVMs

In the following, we provide a generalized description of the dual solution by replacing dot
products X; - X; with kernel similarity values K(X;, X;). This generalized description will
be helpful in using support vector machines in the context of kernel methods.

Maximize Lp = {iai} — %iiaiajyiyjff(fmyj)
i=1

i=1 j=1

subject to:
0<a; <C Vie{l...n}



A natural solution is to use gradient ascent in which the n-dimensional vector of Lagrangian
parameters is updated according to a gradient direction. The partial derivative of L with
respect to ay, is as follows:

OLp - -

o Lw ;ysasK(Xk, X5) (6.27)
This direction is used to update «y. However, an update might lead to «aj violating the
feasibility constraints. One possible solution to address this problem is reset the value
of ay to 0 if it becomes negative, and to reset it to C if it exceeds C. Therefore, one
starts by setting the vector of Lagrangian parameters @ = [« ... ay] to an n-dimensional

vector of Os and uses the following update steps with learning rate n; for the kth component:

repeat
for each k € {1...n} do begin o
Update oy < ai + nx [1 — Yk 22:1 ysasK(Xkst)?

dLp }

Update is equivalent to aj < ar + 1 Do

ak < min{ayg, C};
ap < max{ay, 0};
endfor;

until convergence

The learning rate 7, for the kth component is set to 1/K (X}, X), because it causes
the partial derivative of the objective with respect to ay to fall to 0 after making this step.
This result can be shown by replacing ay with o), = oy + (1 — ys ZZ=1 ysas K (Xp, X))
in Eq.6.27 (see Exercise 19). In the pseudo-code above, the values of all the oy are not
updated simultaneously, and the updated value of «y is allowed to influence the updates of
other components of @. This results in faster convergence.

The aforementioned algorithm is not optimized for efficiency. Efficiency can be improved
by leveraging decomposition techniques that optimize with respect to only an active subset
of Lagrangian variables at any given time [368, 241]. In such cases, the ideas on Sequential
Minimal Optimization (SMO) [165, 382] restrict the working set of variables to a minimal
value of 2. Some cutting plane algorithms like SVMPerf [242] are focused on constructing
only linear models in sparse domains like text. The algorithm scales linearly with the number
of non-zero entries in the document-term matrix.

6.3.6 Adaptive Nearest Neighbor Interpretation of Dual SVMs

The dual formulation of an SVM has an adaptive nearest-nearest interpretation. Consider
the prediction function F'(Z) of test instance Z (which is introduced in Eq. 6.26 and repeated
below):

n
F(Z) =sign{W - Z} = sign{z oy X Z} (6.28)

i=1
It is useful to compare this equation with the adaptive nearest-neighbor prediction of
Eq.5.29 in Chap.5. The two prediction functions are identical because the weight \; in
Eq. 5.29 is analogous to the Lagrangian parameter «;, and the similarity function K(Z, X;)
of Eq. 5.29 is the dot product X; - Z. Well-separated data points are not support vectors,
and therefore have o; = 0. Such points have no influence on the objective function. In other
words, the SVM learns the relative importance of points using the Lagrangian parameters
a;, which results in throwing away the unimportant points (i.e., well-separated points). Af-
ter throwing away the unimportant points, the SVM performs a weighted nearest-neighbor



prediction on the remaining points, in which the weights correspond to the learned La-
grangian parameters. This is the basic principle of adaptive nearest neighbors in which
some of the work in identifying “important” points or dimensions is done up front, rather
than in a purely lazy fashion. Is there a way in which one can interpret the nature of the
adaptivity learned by the dual? To understand this point, consider the only data-dependent
term — 377, >0 @iy (X - Xj) in the dual objective Lp. This term is maximized
when the weights of pairs of points (X;, X;) that belong to opposite classes (i.e., y;y; = —1)
and are located close to one another (i.e., high (X; - X;)) also have large weights («;, o). In
other words, points in “mixed-class regions” should have large weights, and these are pre-
cisely the uncertain points near the decision boundary. Furthermore, well-separated points
have no influence at all. As we will see later, the shape of the decision boundary can be
nonlinear (like a nearest-neighbor classifier) if we use something other than dot products as
the similarity in the dual objective function. Consider, what happens when instead of using
X; - YJ as the similarity in the dual, we use a 0-1 similarity K (X, E) defining neighbors,
which is 1 only if the similarity is greater than a threshold and 0, otherwise. In such a case,
one can interpret the dual as roughly'® solving the following problem:

Maximize,, Z oy -0 — Z o -0y
Opposite class neighbor pairs Same class neighbor pairs
subject to:

Each nonnegative weight «; is less than C'

This optimization formulation will try to maximize the weights of points located in regions
near other classes and will set of weights of points fully surrounded by same-class neighbors
to 0. This will result in a subset of “uncertain” points together with point-specific weights.
The basic idea is that giving greater importance to uncertain points in the boundary region for
nearest-neighbor prediction is more accurate than using a naive implementation of nearest-
neighbor classification. This “importance weight” is learned in the dual parameters. We
summarize this point below.

A support vector machine is an adaptive nearest-neighbor method.

The equivalence between a support-vector machine and an adaptive nearest-neighbor
method is illustrated in Fig.6.5. The fact that most of the training points can be thrown
away without changing the prediction means that SVMs have a more concise model com-
pared to lazy nearest-neighbor methods. This type of model compression is how an adaptive
nearest-neighbor classifier sometimes expresses itself. Compressed learning algorithms al-
ways have good generalization power to unseen test data because they do not have sufficient
memory to remember irrelevant training data nuances.

This equivalence between the SVMs and nearest-neighbor methods also provides an
intuitive explanation why one can capture nonlinear decision boundaries by changing the
dot product X; - Z in both the optimization formulation and the prediction function to a
weight that decays more sharply with distance than the dot product (e.g., Gaussian kernel).
After all, weighted nearest-neighbor methods are also able to capture nonlinear boundaries
when the weights are sharply decaying (cf. Sect. 5.4 of Chap.5). Such kernel methods will
be discussed in more detail in Sect. 6.5.

10We say “roughly” because we are ignoring the data-independent term S o
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Figure 6.5: Support vector machines are adaptive nearest-neighbor methods. A support
vector machine summarizes the data in a small number of support vectors, which contributes
to its generalization power.

6.4 Logistic Regression

Logistic regression falls in a class of probabilistic models referred to as discriminative models.
Such models assume that the dependent variable is an observed value generated from a
probabilistic distribution defined by a function of the feature variables. First, we present
a regularized optimization interpretation in order to relate it better to the other models
discussed in this chapter.

6.4.1 The Regularized Optimization Interpretation

Consider a classification problem with training-test pairs (Xi,¥1)... X, ¥n). Each class
variables y; is drawn from {—1,+1}. We start with the optimization formulation of least-
squares classification in Eq. 6.21 (which is treated as the “parent problem” throughout this
chapter):

1 0 A
Minimize J = 3 Z[l—yi(W~Xi)]2+§||WH2 [Regularized Least-Squares Classification]
i=1

SVMs address an important criticism of the least-squares classification model
(cf. Sect.6.2.3.4), which is the fact that least-squares not only penalizes the points for
being on the incorrect side of the decision boundary, but it also penalizes them for being
too far on the correct side. SVMs do not penalize such points by setting negative values of
the slack [1 —y;(W - X;)] to 0. However, one unusual effect of this change is that there is no
variation in the value of the objective for points that are sufficiently well separated. Logistic
regression uses a smooth log loss, in which there is still some variation in the objective
function value of such points. It is a debatable matter whether or not such a change will
help the model; this is an issue that we will explore in Sect. 6.4.5.
One can write the objective function for logistic regression as follows:

n - )\ o
Minimize J =3 log[l + exp{—y;(W - X;)}] + §|\W|\2 (6.29)
=1

Here, the exponentiation function is denoted by “exp(+).” A key point here is that an increas-
ing level of distance of a training point X; from the decision boundary on the correct side,
which is captured by increasingly positive values of y;(W - X;), is penalized less by logistic



- - - -LEAST SQUARES|
-—».~ SVM HINGE : LINEAR REGRESSION
LOGISTIC ; (v 1S NUMERIC)

' LOSS = (y-We X )2

'
DECISION !
BOUNDARY| SETy € {-1,+1}
’

>
x
Z‘ :
2 K OVER- LEAST-SQUARES CLASSIFICATION
& /! PERFORMANCE (LLSF)
- g PENALIZED L0SS = (y-T+ K2 = (1y WeX 2
=T ~ N ,l'
ol IS e INDIFFERENT TO SLIGHTLY REWARD
OVER-PERFORMANCE OVER-PERFORMANCE
-0.51 INCORRECT CORRECT
PREDICTIONS| [ (PREDICTIONS SVM LOGISTIC REGRESSION
13 -2 - 0 1 2 3 LOSS = max {0, 1-y W* X} LOSS = log [1+exp (-y (W *X))]
PREDICTION= W.X FOR X IN POSITIVE CLASS
(a) Loss functions of various linear models (b) Relationships among linear models

Figure 6.6: (a) The loss for a training instance X belonging to the positive class at varying
values of W - X. Logistic regression and SVM are similar except that the former is smooth,
whereas the latter abruptly flattens out beyond the margin point with W - X > 1. Least-
squares classification is the only case in which the penalty increases in some regions with
increasing W - X for the (positive) class training instance. (b) All linear models in classifica-
tion derive their motivation from the parent problem of linear regression, which historically
precedes the classification formulations. The modifications treat the well-separated (i.e.,
over-performing) points in different ways.

regression (albeit with smoothly diminishing returns). This is the opposite of least-squares
classification, where it is increasingly penalized beyond a particular point. In support-vector
machines, increasing distance in the correct direction from the decision boundary beyond a
particular point (i.e., margin boundary) is neither rewarded nor penalized.

To show the differences between the various loss functions, we have plotted (cf. Fig. 6.6)
the penalty at varying values of W - X of a positive training point X with label y =
+1. The three loss functions of regularized least-squares classification, SVM, and logistic
regression are shown. The loss functions of logistic regression and the support vector machine
look strikingly similar, except that the former is a smooth function, and the SVM sharply
bottoms at zero loss beyond W - X > 1. This similarity in loss functions is important,
because it explains why the two models seem to provide similar results in many practical
cases. The regularized least-squares model, which is equivalent to the Fisher discriminant,
provides a very different loss function. In fact, this is the only loss function where there is a
region of the space in which increasing W-X actually increases the penalty on the point. One
consequence of the smooth objective function of logistic regression is that it considers all
points including well-separated points relevant to the model, albeit to a smaller degree. As a
result, the model no longer throws away most of the points (like SVMs). Furthermore, unlike
SVMs, logistic regression is commonly used in the linear setting. This is not a problem in the
specific case of the text domain, where linear models are recommended anyway. Although it
is possible to design nonlinear variants of logistic regression, SVMs are generally preferable
in those settings.

As logistic regression also has a probabilistic interpretation, it turns out that one can per-

form the prediction F'(Z) of a test instance both deterministically as well as in a probabilistic



sense. The deterministic prediction is identical to an SVM, but the probabilistic prediction
is unique!! to logistic regression.

F(Z) = sign{W - Z} [Deterministic Prediction]

— 1
PF(Z)=1)= —— [Probabilistic Prediction]
1+exp(—W-2)

It is noteworthy that points on the decision boundary satisfying W - Z = 0 will be predicted
to a probability of 1/(1 + exp(0)) = 0.5, which is a reasonable prediction. The probabilistic
predictions in logistic regression can be learned using stochastic gradient descent.

6.4.2 Training Algorithms for Logistic Regression

In order to derive the stochastic gradient-descent iterations for logistic regression, let us
consider the gradient VJ of its objective function J with respect to W:

“~ yiexp{—y: (W - X;)} X;

VJ =W — U
o L+ep{-u(V - Xi)}

(6.30)

For mini-batch stochastic gradient descent, only the gradient with respect to a subset A of s
randomly chosen training instances is considered. We can write the corresponding gradient
as follows:

AS—— exp{—y; (W - X;)} X;
vi="w- Y} yiexpi=y:(W - X.)}. (6.31)
n - 1+ exp{—y:(W - X;)}
(Xi,yi)€A

Choosing s = 1 leads to pure stochastic gradient descent. One can use these updates to
design the mini-batch stochastic gradient-descent algorithm for logistic regression, starting
with W = 0 and updating for T iterations with learning rate n as follows:

for t =1 to T do begin
A¢ = Random sample of s training pairs (Xj, y;);

T — T nAs _ yexp{—y(W-X)}X .
WeW(1-22) + 1T x, e, Lol aL,

endfor

The reader is encouraged to examine the similarity of this update process to the Pegasos al-
gorithm described in Sect. 6.3.3. The main differences arise in the handling of well-separated
points and choice of learning rate. For simplicity, we have used a constant learning rate 7.
There are several other techniques like the Newton method that are used for fast convergence
in logistic regression.

6.4.3 Probabilistic Interpretation of Logistic Regression

Logistic regression is a member of the family of generalized linear models, which have a
natural probabilistic interpretation. Although logistic regression is designed to deal with
binary dependent variables, the family of generalized linear models can handle dependent
variables of all types like ordinal data (ratings), categorical data, and count occurrence data.
Both SVMs and logistic regression use different ways of modifying least-squares regression
to the binary nature of the dependent variable. Logistic regression is more systematic in
the sense that the ideas can be adapted to other types of target variables.

11Tt has been shown [383] how one can derive heuristic probability estimates with an SVM.



In essence, logistic regression assumes that the target variable y; € {—1,+1} is the
observed value generated from a hidden Bernoulli probability distribution that is parame-
terized by W - X;. Since W - X; might be an arbitrary quantity (unlike the parameters of
a Bernoulli distribution), we need to apply some type of function to it in order to bring it
to the range (0, 1). The specific function chosen is the sigmoid function. In other words, we
have:

y; ~ Bernoulli distribution parametrized by sigmoid of W - X;

It is this probabilistic interpretation because of which we get our prediction function F (2)
for a given data point Z:
— 1
PF(Z)=1)= —
1+exp(-W-2)

One can write this prediction function more generally for any target y € {—1,+1}.

— 1
PER) =) = T 2)

(6.32)

It is easy to verify that the sum of the probabilities over both outcomes of y is 1.

The key here is that if we have another type of target variable (e.g., categorical, multi-
nomial, or ordinal), we can choose to use a different type of distribution and a different
function of W - X; to define the parametrization of the hidden probabilistic process. The
ability to handle arbitrary types of target variables is where the real power of this family
of generalized linear models is derived.

Probabilistic models learn the parameters of the probabilistic process in order to maxi-
mize the likelihood of the data. The likelihood of the entire training data set with n pairs
of the form (X;,y;) is as follows:

L(Training Data|W) = [[ P(F(X:) = y;) =

i=1 i

n . n 1

One must maximize the likelihood and minimize the negative log-likelihood. Therefore, the
minimization objective function £L of the log-likelihood can be expressed by using the
negative logarithm of the aforementioned expression:

LL =" log[l + exp{—y:(W - X;)}] (6.33)
=1

After adding the regularization'? term, this (negative) log-likelihood function is identical
to the objective function of logistic regression in Eq. 6.29. Therefore, logistic regression is
essentially a (negative) log-likelihood minimization algorithm.

6.4.3.1 Probabilistic Interpretation of Stochastic Gradient Descent Steps

Most gradient-descent models are mistake-driven methods, in that the update step is often a
function of the errors made on the training data. In order to understand this point, note that
the gradient-descent steps for least-squares regression in Sect.6.2.1.1 are direct functions

12Regularization is equivalent to assuming that the parameters in W are drawn from a Gaussian prior
and it results in the addition of the term A||W]|2/2 to the log-likelihood to incorporate this prior assumption.



of errors made on the training data. How do the updates in logistic regression compare to
this characteristic of other methods? Let us examine an update made by stochastic gradient
descent on a subset of points A; in the ¢th iteration (see pseudocode on page 189):

(s yexp{=y(W - X)}X
Wew <1— n) T Z 1+ exp{—y(W - X)}

(X,y)€A:
_ A ~ b'd
:W<1—77ns>+n > y{P(F(X)=-y}X
(X,y)eA;
e NAS : X X
_W<1_n>_|_77 72 y { P [Mistake on (X,y)]} X
(X,y)EA,:

Therefore, logistic regression is also a mistake-driven method, and the probabilities of the
mistakes are used. This is in consonance with the fact that logistic regression is a proba-
bilistic method.

6.4.3.2 Relationships Among Primal Updates of Linear Models

SVMs replace P [Mistake on (X, y)] with a 0/1 value in the probabilistic update of the pre-
vious section, depending on whether or not the point (X,y) meets the margin requirement.
In fact, it is possible to write a unified form of the update for least-squares classification,
SVM, and logistic regression. This form of the update is as follows:

W =W —n\) +nyl6(X, y)]X

Here, the mistake function 6(X,y) is an error value for least-squares classification, an indi-
cator variable for SVMs, and a probability for logistic regression (see Exercise 15). The close
relationships among the updates mirror the close relationships among their loss functions
(cf. Fig. 6.6). Remarkably, the perceptron update is identical to the SVM update, but with
a different definition of the indicator variable (cf. page 323).

6.4.4 Multinomial Logistic Regression and Other Generalizations

The probabilistic interpretation of logistic regression is particularly convenient because it
provides a path to modeling target variables of other types with the use of generalized
linear models. After all, the whole point of the probabilistic process in logistic regression
is to convert the continuous value W - X; into a binary prediction y; with a probabilistic
interpretation. In the case of the k-class problem, the target variable y; is generated as
follows:

y; ~ Target-sensitive distribution parametrized by functions of Wy - X; ... W}, - X;

The choice of the distribution above depends on the type of target variable (i.e., dependent
variable) one is trying to learn. In the aforementioned setting, the target variable has k
categorical values denoted by {1...k}. Therefore, the classes have probability distributions
defined by the following:
P(y; = r|X;) = keXp(W’"g’)i Vre {1...k} (6.34)
Zm:l exp(Wm : Xz)




As in the case of logistic regression one learns the parameters in Wy ... Wy by maximizing
the likelihood of the observed targets on the training data. Specifically, the loss function is
also referred to as the cross-entropy loss:

n k
ZZ yi,r) - log [P(y; = r[X;)] (6.35)
i=1r=1

Here, the indicator function I(y;,r) is 1 when the observed value of y; is r, and 0, otherwise.
Therefore, the approach for learning the multiclass parameters is different only in the specific
details of the maximum-likelihood function, and the principles of the overall framework
remain unchanged from logistic regression. One can use the following stochastic gradient-
descent steps for each W,., when trained on (X;,;):

W, <= Wo(1 =) +0X; [I(yi,7) = P(yi = r|X;)] vre{l...k} (6.36)

Here, n is the step size and A is the regularization parameter. The reader should convince
herself that the special case of the multinomial objective function (Eq.6.35) for binary
classes turns out to be identical to logistic regression (see Exercise 13).

In essence, the approach is learning k different linear separators simultaneously, and
each separator tries to discriminate a particular class from the remaining data. This bears
some resemblance to a one-against-all approach (see Sect.6.1.4), which is often used to
convert binary classifiers like support vector machines to multi-way classifiers by voting on
different predictions obtained by building such models separately. However, the difference is
that the separators are learned simultaneously in multinomial logistic regression by jointly
optimizing training log-likelihood with respect to all k classes at once. This results in a
more flexible model rather than a decomposable one-against-all approach, which is done se-
quentially after learning each W,. individually. This model is also referred to as multinomial
logistic regression, mazimum entropy (MazEnt), or the softmaz model. One can also use
appropriate distributions to model count-occurrence data (with a multinomial distribution),
or ratings data (with an ordered probit model). Refer to the bibliographic notes for pointers
on generalized linear models. It is noteworthy that using different linear separators simulta-
neously can also be achieved in other binary models like SVMs. For example, it is possible
to design a multi-class SVM loss function, known as the Weston- Watkins SVM [496], that
learns k different separators simultaneously (see Exercise 14). However, the SVM is not
quite as flexible as the family of generalized linear models in handling different types of
target variables.

6.4.5 Comments on the Performance of Logistic Regression

Logistic regression has very similar performance to that of support vector machines. This is
because the loss functions of the two methods are very similar. In fact, in highly noisy data
sets with overlapping class distributions, linear logistic regression may slightly outperform
a linear support vector machine. Support vector machines tend to do well when the classes
are well separated. One reason for this is that support vector machines always include
misclassified training points among the support vectors. Therefore, if the data set contains a
large number of mislabeled points or other intrinsic noise, it can affect the SVM classification
to a larger extent. This is caused by the fact that the SVM throws away a lot of the correctly
labeled points for not being support vectors. Therefore, the misclassified training points
occupy an even larger proportion of the support vectors retained by the SVM model. In



these specific cases, the smooth objective function of logistic regression might provide some
protection because it gives some weight to all correctly labeled points in the loss function
(albeit a small amount to the well separated ones) to balance out the noise. However, even
in these cases, the performance of the SVM is often statistically comparable to logistic
regression, provided that the regularization parameters are properly tuned.

A difficult case for logistic regression is that of well-separated classes in which support
vector machines generally provide superior performance. In such cases, logistic regression
methods tend to become unstable in terms of their probability estimates. However, they can
usually be used to reasonably classify the test instances even if the probability estimates
are poor. Note that well separated classes are an easy case, and many classifiers can be
used to solve such cases. In summary, it is often difficult to choose between SVMs and
logistic regression. Multinomial variations of logistic regression often have an advantage in
multi-way classification because of the ability to build a more powerful model with multiple
classes. If nonlinear models are desired, then the support vector machine is the method of
choice. This will be the subject of discussion in the next section.

6.5 Nonlinear Generalizations of Linear Models

Nonlinear methods for classification use linear models on a transformation of the data that
is defined by kernel singular value decomposition (SVD). Therefore, a simplistic way to
implement nonlinear models is as follows:

1. Transform the n training data points in d-dimensional space to a new representation
D’. For a finite data set of n points, a data-specific representation of at most n
dimensions can always be found. The n-dimensional representation is contained in
the n rows of the n x n matrix U by diagonalizing an appropriately chosen n x n
similarity matrix S between the points to express it in the form S = UU7.

2. Apply any linear model (e.g., Fisher discriminant, SVM, or logistic regression) on the
transformed representation of the training data in the rows of U to create a model.

3. For any test point, transform it to the same space as the training data, and apply the
learned model on the transformed representation to predict its class label.

The basic idea is that a linear separator in the transformed space maps to a nonlinear
separator in the original space. Although this crude way of implementing kernel classification
is not what is done in practice, it is identical to what is achieved using methods like the kernel
trick, which will be discussed later. Before reading further, the reader is advised to revisit
the material in Sect. 3.6 of Chap.3 on kernel SVD. Kernel SVMs are direct applications of
this transformation.

Singular value decomposition can recover'® the original data representation from an nxn
similarity (i.e., dot product) matrix by computing its top eigenvectors. Any data matrix D
can be recovered (in a rotated and de-correlated axis system) using the eigenvectors of its
n x n dot product matrix S = DD’ One can diagonalize S as follows:

S =QxQ" = @(QE)T (6.37)
U T

13The data will typically be rotated and reflected in particular directions.



The matrix U will have at most d nonzero columns when S contains dot products, because
at most min{n, d} entries (SVD singular values) of the diagonal matrix ¥ are non-zero. The
remaining (n — d) dimensions of U can be dropped. In such a case, the matrix U contains
the d-dimensional embedding of all n points, which are returned by traditional SVD. Now
imagine that you replaced the dot product in the (i, j)th entry of S = DDT with another
kernel similarity value K (X;, X;) such as one of the following:

H Function \ Form H
Linear kernel KX, Xj) =X X;
(Defaults to rotated/reflected version
of original data as in SVD)
Gaussian radial basis kernel | K(X;, X;) = exp(—||X; — X;[|*/(2- 0?))
Polynomial kernel K(X;, Xj) = (Xi- X; + )"
Sigmoid kernel K(X;,X;) = tanh(kX; - X; — 6)

The basic idea is that these kernel similarities represent the dot products between data
points in transformed space with unknown transformation ®(-):

K(Xi, Xj) = (X;) - 2(X;) (6.38)

The extraction of the nonzero eigenvectors of any of the similarity matrices above will yield
an n-dimensional representation ®4(X) of the transformed data. Consider the case, where
for any of the n x n similarity matrices above, if we extract all nonzero eigenvectors using

the same approach as above:

S =Qx2Q" = (Q%) (%) (6.39)
U uT

In this case, the n rows of U provide the data-specific'* transformed representation ®(X),
and it is possible for U to have more than d nonzero columns. In other words, the transfor-
mation can have higher dimensionality than the original data. The linear kernel is a special
case in which we obtain a rotated and reflected version of the original data with at most d
nonzero dimensions. For many kernels, this higher-dimensional representation unlocks the
local clustering characteristics of the data along the different transformed dimensions, and
the clusters (or classes) now become linearly separable. Therefore, it would make sense to

use linear SVM on ®,(X) rather than the original data.

1G¢trictly speaking, the transformation ®(X) would need to be infinite dimensional to adequately rep-
resent the universe of all possible data points for Gaussian kernels. However, the relative positions of n
points (and the origin) in any dimensionality can always be projected on an n-dimensional plane, just as a
set of a two 3-dimensional points (with the origin) can always be projected on a 2-dimensional plane. The
eigenvectors of the n X n similarity matrix of these points provide precisely this projection. This is referred
to as the data-specific Mercer kernel map. Therefore, even though one often hears of the impossibility of
extracting infinite dimensional points from a Gaussian kernel, this makes the nature of the transformation
sound more abstract and impossible than it really is (as a practical matter). The reality is that we can
always work with the data-specific n-dimensional transformation. As long as the similarity matrix is posi-
tive semi-definite, a finite dimensional transformation always exists for a finite data set, which is adequate
for the learning algorithm. We use the notation ®(-) instead of ®(-) to represent the fact that this is a
data-specific transformation.



6.5.1 Kernel SVMs with Explicit Transformation

Even though it is uncommon to implement kernel SVMs with explicit transformation, it is
possible to do so. For the purpose of discussion, assume that the eigenvectors and eigenvalues
of the nxn kernel similarity matrix S are denoted by @ and 3 (see previous section). One can
drop the zero eigenvectors (columns) of ¥ and @ to yield the n x r matrix Uy = QpX( with
r < n dimensions. The rows of Uy contain the ezplicit transformations of the training points.
Any out-of-sample test point Z can also be projected into this 7-dimensional representation
by observing that its dot products with training points must evaluate to the corresponding
kernel similarities between the test and training points:

o, (2) (QOZO)T =[K(Z,X1),K(Z,X3),...K(Z,X,,)] (6.40)
S——
1xr rn 1 x n row vector of similarities

Multiplying both sides with Qo2 ! and using Q¥ Qo = I on the left-hand side, we obtain:

0,(7) = [K(Z. %), K(Z,%0), ... K(Z, %) Q055! (6.41)
The point ®,(Z) contains the r-dimensional data-specific transformation of the test point in
the same r-dimensional space as the training data was transformed. Therefore, we present
the algorithm for kernel SVMs (with explicit transformation starting from the training data
similarity matrix S) as follows:

Diagonalize S = Q¥2QT;

Extract the n-dimensional embedding in rows of QX;

Drop any zero eigenvectors from QX to create QoXo;

{ The n rows of QoXo and their class labels constitute training data }
Apply linear SVM on Qo¥o and class labels to learn model M;
Convert test point Z to ®5(Z) using Eq. 6.41;

Apply M on ®4(Z) to yield prediction;

In other words, kernel SVMs can be implemented with ezplicit transformation. Furthermore,
one can substitute the SVM with any learning algorithm like logistic regression or Fisher
discriminant. Note that this approach is applicable across the entire spectrum of supervised
and unsupervised learning algorithms. An unsupervised example of kernel-based k-means
clustering algorithm (with explicit feature transformation) is described in Sect.4.8.1.2 of
Chap. 4. In the form described above, the explicit transformation approach is highly in-
efficient, because the extracted representation might require O(n?) space for the matrix
Uy = QoXo. This is the (practical) reason that one resorts to the kernel trick, which is dis-
cussed later in this chapter. The kernel trick provides an equivalent solution to that provided
by the pseudo-code above.

However, explicit transformations with kernels have a worse reputation than they de-
serve. It is noteworthy that one can use Nystrom sampling (cf. Sect.3.6.2 of Chap.3) in
combination with ensemble tricks to improve the efficiency and the accuracy of this ap-
proach. In fact, this type of sampling approach (explicit transformation) has many benefits,
but is often underappreciated by researchers and practitioners alike. Such a sampling-based
approach is described for clustering in Sects. 4.7 and 4.8.1.2. We leave the implementation
for classification to the reader (see Exercise 12). It is also useful to explore the explicit
transformation approach, because it provides an understanding of how kernels improve the
separability of the different classes in transformed space. This will be the topic of the dis-
cussion in the next section.



6.5.2 Why Do Conventional Kernels Promote Linear Separability?

Conventional kernels like the Gaussian kernel transform the data into a higher-dimensional
space in which the points of different classes become linear separable. As discussed in the
previous section, these transformations actually expand the dimensionality of the embedded
data over the representation in the input space. An expanded dimensionality leads to a
greater number of ways to separate two sets of points, and therefore a linear separator is
easier to find. Even better insight might be obtained by examining the way in which this
larger number of dimensions is used. The key point is that embedded kernel can capture the
local clustering (i.e., class) structure of the data in dedicated subsets of engineered features
that are often disjoint from one another. In order to understand this point, consider a case in
which the text documents are all normalized to unit norm. Then, the dot product between
any pair of documents (X, Yj) can be expressed in terms of the squared Euclidean distance
R? between them:

— X, |12 X2 - |IX - Y12
Xi,Xj:H "+ ]II2 I I
_1+1-R?

_ 1 _ P2
5 =1-R?/2

Conventional kernels can therefore be expressed in terms of R? as follows:

X;-X;=1-R*/2 [Linear Kernel]

(X;- X;)? = (1-R?*/2)*> [Quadratic Kernel]
exp(—||X; — 7]||2/(2 -0?)) = exp(—R?/20°) [Exponential Kernel]

In each case, it is evident that higher-order kernel similarities in the transformed space
decay much more sharply than the dot product with increasing distance in the input space.
In Fig. 6.7, it is shown how the similarity values of the Gaussian kernel (i.e., dot products in
transformed space) vary with different values of the squared distance R? in the input space.
For the Gaussian kernel, two different values of o at 0.25 and 0.5 are used. It is immediately
evident that the drop is much sharper with higher-order kernels and small bandwidths. In
such cases, the similarity is almost zero between many pairs of points. Since nonnegative
kernels like the Gaussian can always be assumed!® to create a nonnegative embedding in a
single orthant, the only way in which the similarity between a pair of transformed points
is zero if they take positive components along different dimensions. In other words, kernels
like the Gaussian map distant points in the input space to different dimensions, and they
map closely clustered points (typically belonging to the same class) to a dedicated subset of
dimensions. With the right choice of the bandwidth o, different classes will be dominated by
different subsets of dimensions in the transformed space, which promotes linear separability.
However, this linear separator in the transformed space maps to a nonlinear separator in
the original input space.

In order to explain this point, we revisit an example from Chap.3 in Fig.6.8. In this
case, the data is segmented into three classes, corresponding to Arts, Crafts, and Music.
Suppose, we want to separate Arts from the other classes. It is evident that a linear sepa-
rator cannot separate out this class, because it is tightly integrated with the other classes.
Now imagine that you use a Gaussian kernel to transform the data. If a sufficiently small

15When all entries in the kernel matrix are nonnegative, it means that all pairwise angles between points
are less than 90°. One can always reflect the points to the nonnegative orthant without loss of generality.
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Figure 6.7: Similarities between pairs of points in the transformed space are very sensitive
to the squared distances in the input space, when a small bandwidth of the Gaussian kernel
is used.

bandwidth is chosen, the similarity between pairs of points belonging to different classes
will be close to zero, although there will always be pairs of points within the same class
that have high similarity to one another. As a result, the populated entries in the similarity
matrix might look like the ones shown in Fig.6.8. The only way in which such a matrix
can be represented as dot products of points is the case in which different dimensions of
this embedding are dominated by the different classes. In such a case, a linear separator
will be able to separate the Arts class from the other classes. Note that this linear sepa-
rator in the transformed space corresponds to a nonlinear separator in the original input
space. In essence, such transformation methods are designed to unlock the local information
captured by combinations of (input) dimensions into individual (transformed) dimensions.
A key point is that it is crucial to tune the parameters of the kernel (e.g., bandwidth o)
appropriately in order to get the best classification performance.

6.5.3 Strengths and Weaknesses of Different Kernels

Conventional kernels like the Gaussian kernel and the polynomial kernel have had only lim-
ited success in the text domain. One issue is that text data is sparse and high-dimensional,
and such data domains are often linearly separable to a large degree. Note that the Gaus-
sian kernel and polynomial kernels will usually provide slightly better performance than
linear classifiers with sufficient tuning, because choosing a large bandwidth in the Gaussian
kernel is (almost) equivalent to the linear kernel. Therefore, with sufficient tuning of band-
width an operating point can usually be found where the nonlinear kernel wins over the
linear kernel. The main problem is that the nonlinear variations of most SVM algorithms
are computationally expensive compared to the linear variations, and the small accuracy
advantages may not be worth the additional effort. The other point to keep in mind is that
one now needs to tune two parameters (corresponding to regularization and kernel param-
eters), which requires a more expensive grid search!'® for parameter tuning. This further

16Suppose one has p; . ..p: different possibilities for ¢ different parameters. One now has to evaluate the
algorithm at each combination of p; X p2... X pt possibilities over a held out set.
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Figure 6.8: Linear separators in transformed space often serve the purpose of nonlinear
separators in the input space. Refer to Fig. 3.9 of Chap. 3 to relate the approach to kernel
SVD.

increases computational costs. If the grid search is not exhaustive enough, it is possible for
the nonlinear kernel method to perform worse than the linear kernel in which it is easier
to tune effectively. Second-order polynomial kernels can provide modest improvements [88]
in accuracy because they capture the interactions between pairs of terms, although the
advantages are still quite limited.

6.5.3.1 Capturing Linguistic Knowledge with Kernels

The main potential of kernels lies in its ability to incorporate the linguistic knowledge
in the corpus for classification. In this context, substring kernels [308] use the sequential
positioning of words in order to capture deeper semantic concepts from the data than are
available from the bag-of-words representation. A number of such kernels are discussed
in Chap.3. The ability to incorporate semantic and linguistic concepts directly into the
model by using string kernels is a powerful notion. In the longer run, such settings may
be the primary use case for kernel methods in text, although much research needs to be
done on linguistically-sensitive similarity learning in this domain. Truly cognitive forms of
artificial intelligence require the ability to integrate sequence-based learning models into the
classification process.

6.5.4 The Kernel Trick

As discussed earlier, the transformation ®(X) is obtained by using an n X n similarity matrix
S containing all pair-wise similarities ®(X;) - ®(X;) in transformed space. One way of using
kernel methods is to extract the data-specific Mercer kernel map ®,(X) by diagonalizing the
n X n similarity matrix S and then building a linear model on the extracted representation.

However, in many cases, if the solutions to a linear model can be expressed in terms of



dot products, it is not necessary to explicitly perform this feature engineering. In such
cases, replacing dot products with similarities provide identical results to explicit feature
engineering. So, the essence of the kernel trick is as follows:

Create a closed-form solution or optimization formulation that is defined in
terms of dot products. Also derive a form of the test instance prediction function
in terms of the dot products of the test instance with other training instances.
Now replace all dot products with entries of the similarity matrix S.

Several sections of this chapter show how the training as well as prediction of many linear
models can be expressed in terms of dot products. For example, consider the dual of the
support vector machine introduced earlier in this chapter. The dual can be expressed as
follows:

) ) n 1 n n -
Maximize Lp = {Z al} ~3 ZZaiajyiyj(Xi - Xj)
i=1 i=1 j=1

subject to:
0<a; <C Vie{l...n}

It is evident that this dual only contains dot products like YZYJ between training data pairs.
We can replace this dot product with kernel similarity (e.g., the similarity obtained from a
string kernel) and solve for the various values of «;. Note that the gradient-ascent update
for the dual problem (cf. Sect.6.3.5) is already expressed in terms of kernel similarities
K(X;, X;) rather than dot products.

How can we use this similarity to return the prediction for a test document (say, in
string form)? In order to understand this point, consider the prediction function of kernel
SVMs for test point Z:

F(Z) =sign{W - Z} = sign{z aiyi X Z} (6.42)

i=1

One can replace each X; z with the corresponding string kernel similarity between training
point X; and test point Z in order to yield the final prediction.

6.5.5 Systematic Application of the Kernel Trick

The use of the kernel trick with the dual of an SVM almost seems like a serendipitous
observation in retrospect. However, there are large numbers of possible variations of linear
models, each of which might have its own objective function and its own set of constraints.
The techniques of least-squares regression, Fisher’s discriminant, and logistic regression are
examples from a large family of possibilities. Given a linear problem, how can we kernelize
it? Would the dual of an optimization problem always work for kernelization? Is there a
systematic way to do it?

Although several methods have been proposed in recent years for using the kernel trick
with the primal, the use of the kernel trick on the dual is more well known. Using primal
methods in conjunction with the kernel trick is far more systematic, and even has several
efficiency advantages. However, this (more) useful and systematic technique has always
toiled in relative obscurity compared to its more famous dual cousin because of historical
reasons, such as the fact that the very first paper on this topic used the dual optimization



method [115]. In this context, the following observation was made in an insightful paper
written about a decade back [89]:

“The vast majority of text books and articles introducing support vector ma-
chines (SVMs) first state the primal optimization problem, and then go directly
to the dual formulation. A reader could easily obtain the impression that this is
the only possible way to train an SVM.”

An important idea that can be used in order to solve nonlinear SVMs in the primal is the
representer theorem. Consider the Lo-regularized form of all linear models discussed in this
chapter, in which the loss function is L(y;, W - X;):

n
Minimize J = > Llys, W - X0) + 5[] (6.43)
i=1
Consider a situation in which the training data points have dimensionality d, but all of them
lie on a 2-dimensional plane. Note that the optimal linear separation of points on this plane
can always be achieved with the use of a 1-dimensional line on this 2-dimensional plane.
Furthermore, this separator is more concise than any higher dimensional separator and will
therefore be preferred by the Lo-regularizer. A 1-dimensional separator of training points
lying on a 2-dimensional plane is shown in Fig. 6.9a. Although it is also possible to get the
same separation of training points using any 2-dimensional plane (e.g., Fig. 6.9b) passing
through the 1-dimensional separator of Fig.6.9a, such a separator would not be preferred
by an Lo-regularizer because of its lack of conciseness. In other words, given a set of training
data points X; ... X,, the separator W always lies in the space spanned by these vectors.
We state this result below, which is a very simplified version of the representer theorem,
and is specific to linear models with Ls-regularizers.

Theorem 6.5.1 (Simplified Representer Theorem) Let J be any optimization prob-
lem of the following form:

n
S = A
Minimize J = E;L(yi, W-X;)+ §||VV||2
i—
Then, any optimum solution W™ to the aforementioned problem lies in the subspace spanned

by the training points X1 ...X,. In other words, there must exist real values Bi ..., such
that the following is true:

Proof: Suppose that w" cannot be expressed in the subspace spanned by the training
points. Then, let us decompose W into the portion W = >, BiX; spanned by the
training points and an additional orthogonal residual W, . In other words, we have:

W= WH +W, (6.44)
Then, it suffices to show that W™ can be optimal only when W | is the zero vector.

Each (W, - X;) has to be 0, because W, is orthogonal to the subspace spanned by the
various training points. The optimal objective J* can be written as follows:

R D) \ TR - WD) |-
T =Y Ly WX + SR = D7 Lye, (W) + 1) - X5) + S + W2
i=1

=1
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= Ly, Wy - Xi + W1 - X))+ S|[W) P+ S|[Wo|?
i=1 — 2 2
- 0
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= > Lo, Wy - X0) + S 12+ SIW LI
i=1

It is noteworthy that || . ||? must be 0, or else W) will be a better solution than W .

Therefore, W= W” lies in the subspace spanned by the training points. [ |
Intuitively, the representer theorem states that for a particular family of loss functions, one
can always find an optimal linear separator within the subspace spanned by the training
points (see Fig.6.9), and the regularizer ensures that this is the concise way to do it.

The representer theorem provides a boilerplate method to create an optimization model
that is expressed as a function of dot products:

For any given optimization model of the form of Equation 6.43 plug in W =
Z?:l $; X; to obtain a new optimization problem parameterized by f; . .. ,, and
expressed only in terms of dot products between training points. Furthermore,
the same approach is also used while evaluating W - Z for test instance Z.

=

Consider what happens when one evaluates W - X; in order to plug it into the loss function:

WX =

BpXyp - Xi (6.45)

NE

ki
L

Furthermore, the regularizer ||[IW||? can be expressed as follows:

WP =Y 88X - X; (6.46)

i=1j=1



In order to kernelize the problem, all we have to do is to substitute the dot product with

the similarity value s;; = K(X;, X;) = ®(X;) - ®(X;) from the n x n similarity matrix S.
Therefore, one obtains the following optimization objective function:

= Z L(y;, Zﬁpspi) + %Z Z i0jsij [General form]
i=1 p=1 i=1 j=1

In other words, all we need to do is to substitute each W - X; in the loss function with
Zp Bpspi- Therefore, one obtains the following form for least-squares regression:

J = Bpsm é Y BiBjsi; [Least-squares regression]
1 2 o £ ]

The aforementioned formulation provides an alternative way of proving the closed-form
solution of kernel regression in Sect.6.2.1.4 (see Exercise 18).

By substituting W - X; = Zp Bpspi into the loss functions of linear classification, one
can obtain corresponding optimization formulations:

J = Zmax{Ol yzZﬂpsm}—i— ZZBZBJS’J [SVM]

=1 j=1

J = Z log(1 + exp(—y; Z BpSpi)) + ) Z Z BiBjsij [Logistic Regression]
i=1 p=1

i=1 j=1

These unconstrained optimization problems are conveniently expressed in terms of pairwise
similarities, and parameterized by B ... 3,. In order to classify a test instance Z, one only
needs to compute W - Z = Y, B;K(X;, Z) after B ... /3, have been learned.

In SVMs, the primal variables 3; ..., can be related to the dual variables g ... a, at
optimality. At least one optimal solution pair (a*, ﬁ ) will exist in which we have 3 = y;af
because W' = 37, aty;®(X;) = 32, B ®(X;). However, this relationship does not hold over
all points in the solution space, and the corresponding non-optimal objective function value
of the primal at 5; = ayy; is always larger than that of the dual at «;. Any optimal solution
to the dual can be used to derive an optimal solution 8} = y;a; for the primal, although the
converse is not true because dual variables are bounded. Furthermore, an “almost” optimal
solution for the dual problem can map to a much poorer solution for the primal (which is
a potential drawback of dual optimization).

The unconstrained variables 8y ... 3, in the primal (in contrast to the bounded variables
Q1 ..., in the dual) allow easier optimization. Furthermore, a neat re-parametrization
trick is available with the primal. One can perform stochastic gradient descent with re-
spect to W (as in Sect.6.3.3), while updating W only indirectly using 3 ...3, via the
representer theorem. We describe the kernelized variant of Pegasos for SVMs using C' = 1/\:

Initialize 81 ... Bn to 0;
for t =1 to T do begin

ne=1/t; B <= (1 —ne)B;
Select (X, ,yi,) randomly;
n

if (yi, Y BpK (X, Xp) < 1) then B;, < Bi, +ne-n-C - yy,;
p=1

Update W indirectly
yitW»Xiit<1
endfor



Note that this algorithm is almost identical to that discussed in Sect.6.3.3 except that
we are indirectly updating W = S B; X; by updating j3; instead of W. The batch-size
selected is 1, and the optional projection step has been omitted to simplify the updates.
An algorithm like the above can be derived for many linear methods with the use of the
representer theorem (see Exercise 9).

The learning rate of n; = 1/t is convenient because it allows some optimizations in
Pegasos. At the tth iteration, the amount added to the coefficient 5;, for a margin-violating
point X;, is n - C - y;, /t, which is proportional to 1/¢t. This proportionality is maintained
for all ¥ > t iterations because of successive scaling down of 8 by (r — 1)/r in the rth
iteration for each r € (t,t']. This property allows us to simply add 1 to the unnormalized
value of B;, in the tth iteration, drop the regularization scaling, and multiply each (i.e.,
ith) coefficient at the end with n - C - y; /T after the final (i.e., T'th) iteration. The checking
of the margin condition is modified to y;, Zzzl Bpyp K (Xi,, Xp) < t/nC, which is the only
potentially expensive step. The time for this check depends on the number of nonzero entries
in the vector B. At most one nonzero §; is introduced in each iteration, and S is sparse if
there is early generalization accuracy. It is sometimes beneficial to initialize 3 to a sparse
and “almost optimal” vector by deriving it from execution on a smaller data sample. The
Pegasos algorithm is considered a state-of-the-art method because of its efficiency. What
this algorithm shows is that after more than two decades of complex research in optimizing
dual SVMs, one can do as well or better with primal optimization in a few lines of code.

6.6 Summary

All linear models for classification are closely related, as they optimize a loss function that is
expressed in terms of a linear combination of the feature variables. Linear classification prob-
lems adapt the loss function from linear regression in various ways in order to address the
binary nature of the class variable. Methods like the Fisher discriminant are straightforward
adaptations of linear regression in this respect. The SVM varies on the Fisher discriminant
in terms of its handling of the well-separated points in the data. Logistic regression uses a
loss function that is a smooth variation on the one used in support vector machines and it
provides similar results. All of these models can be generalized to the nonlinear setting by
using kernel transformations.

6.7 Bibliographic Notes

Least-squares regression and classification dates back to the Widrow-Hoff algorithm [497]
and Tikhonov-Arsenin’s seminal work [474]. Lo-regularization is sometimes referred to as
Tikhonov regularization. A detailed discussion of regression analysis may be found in [142],
and regression with L;-regularization is discussed in [208]. Neural networks like percep-
trons [51] are also based on a modified version of least-squares regression, which is much
closer to a support vector machine. A discussion of these methods may be found in [191].
Several independent works [177, 466] re-derived these methods in terms of their relation-
ship with support-vector machines. The first application of least-squares methods to text
categorization is provided in [515, 518]. All these methods are straightforward applica-
tions of regularized least-squares regression on the training data by treating the binary
response variable as a numeric response. The Fisher discriminant was proposed by Ronald
Fisher [167] in 1936, and is a specific case of the family of linear discriminant analysis meth-
ods [330]. The kernel version of Fisher discriminant is discussed in [340]. Even though the



Fisher discriminant uses a different looking objective function that least-squares regression,
it turns out to be a special case of least-squares regression in which the binary response
variable is used as the regressand [50]. The relationship of the Fisher discriminant with
the support-vector machine was shown in [445] in terms of the treatment of well-separated
points. A variation [112] of the Fisher discriminant has also been proposed that removes
the well-separated points in order to improve its performance.

The support-vector machine is generally credited to Cortes and Vapnik [115], although
the primal method for Ls-loss SVMs was proposed several years earlier by Hinton [217]. This
approach repairs the loss function in least-squares classification by keeping only one-half of
the quadratic loss curve and setting the remaining to zero, so that it looks like a smooth
version of hinge loss (try this on Fig. 6.6a). The specific significance of this contribution was
lost within the broader literature on neural networks. Hinton’s work also does not focus on
the importance of regularization in SVMs, although the general notion of adding shrinkage
to gradient-descent steps in neural networks was well known. The hinge-loss SVM [115] is
heavily presented from the perspective of duality and the maximum-margin interpretation,
which makes its relationship to regularized least-squares classification somewhat opaque.
The relationship of SVMs to least-squares classification is more evident from other related
works [407, 445], where it becomes evident that quadratic and hinge-loss SVMs are natural
variations of regularized Lo-loss (i.e., Fisher discriminant) and L;-loss classification that use
the binary class variables as the regression responses [191]. The main differences account
for the fact that binary responses should be treated differently than numerical responses,
and points with y;(W - X;) > 1 should not be penalized because they represent correct
classification of training instances (see Fig. 6.6). All these variations of the objective function
can be kernelized in the same way using the representer theorem [487]. The margin-centric
interpretation has been used to create a different variant of linear regression for numeric
targets, referred to as support-vector regression [143, 482].

The decomposition methods for the dual were pioneered by Osuna et al. [368] and
adapted in SVMLight [241] and the Sequential Minimal Optimization (SMO) [382] algo-
rithms. An optimized version of this algorithm [165] is implemented in LIBLINEAR [164],
which is a software library for many linear learning algorithms. A cutting plane algorithm
for text data was proposed in SVMPerf [242]. Primal optimization of kernel SVMs was
advocated in [89]. The Pegasos algorithm was proposed in [444], and the approach was
based on primal optimization. General material on support vector machines is available
in [69, 117, 482]. String kernels are discussed in [308]. The logistic regression model smooths
the hinge-loss in a support vector machine, and it belongs to the broader family of gener-
alized linear models. A detailed discussion of generalized linear models is provides in [328].
The use of maximum entropy models for text classification is explored in [363]. A variety
of procedures such as generalized iterative scaling, iteratively reweighted least-squares, and
gradient descent for multinomial logistic regression are discussed in [209].

6.7.1 Software Resources

Two important libraries for large-scale SVMs and linear classification are LIBSVM [87] and
LIBLINEAR [164]. Both these libraries are implemented in C++. These libraries implement
many of the linear classification algorithms discussed in this chapter, and also contain
specialized implementations for sparse data like text. The former library is focused more
on SVMs, whereas the latter library has various linear algorithms like SVMs and logistic
regression. Interfaces in several languages like Python, Java, and MATLAB have been made
available by the creators of LIBSVM and LIBLINEAR. Furthermore, many other third-party



platforms use LIBLINEAR or LIBSVM’s implementations under the covers. Therefore,
many of the tools mentioned below also use these implementations, but it is important to
discuss them as they use different programming language platforms to provide the user
interface. The Python library scikit-learn [550] contains many tools for linear classification
and regression. The kernlab package [255] from CRAN can be used to perform linear and
nonlinear classification in R. The caret package [267] is a good choice for those working in
the R programming language, although it sources the implementations of specific algorithms
from other packages and constructs a wrapper around them. The R-based tm library [551]
can be used for preprocessing and tokenization in combination with the caret package.
The package RTextTools [571] in R also has numerous categorization methods, which
are specifically designed for text. The Weka library [553] in Java has also implemented
various tools for text classification and regression. The MALLET toolkit [605] supports
an implementation of the MaxEnt classifier, which uses multinomial logistic regression.

6.8 Exercises

1. The bias variable is often addressed in least-squares classification and regression by
adding an additional column of 1s to the data. Discuss the differences with the use of
an explicit bias term when regularized forms of the model are used.

2. Write the optimization formulation for least-squares regression of the form y = W -
X + b with a bias term b. Do not use regularization. Show that the optimal value of
the bias term b always evaluates to 0 when the data matrix D and response variable
vector § are both mean-centered.

3. For any n x d data matrix D, use singular value decomposition to show the following
for any value of A > 0:

(DTD +AI)"'DT = DT(DDT + A1)~!

Note that the two identity matrices on either side of the equation are of sizes d x d
and n X n, respectively. What you showed is a special case of the Sherman-Morrison-
Woodbury identity in matrix algebra. Explain the consequences of this identity for
kernel least-squares regression.

4. Suppose that the within-class scatter matrix .S, is defined as in Sect.6.2.3, and the
between-class scatter matrix Sy is defined as S, = n [(11; — 75p) T (77, — Hp)]. Assume
that the data matrix D is mean-centered. Show that the full scatter matrix can be
expressed as follows:

DTD =S, + %Sb (6.47)

Here, i, and [, are the means of the positive and negative classes in the training
data. Furthermore, n, and ng are the number of positive and negative examples in
the training data.

5. Show that the effect of the bias term can be accounted for by adding a constant
amount to each entry of the n x n kernel similarity matrix when using kernels with
linear models.



10.

11.

12.

13.

14.

. Formulate a variation of regularized least-squares classification in which L;-loss is

used instead of Lo-loss. How would you expect each of these methods to behave in
the presence of outliers? Which of these methods is more similar to SVMs with hinge
loss? Discuss the challenges of using gradient-descent with this problem as compared
to the regularized least-squares formulation.

Derive stochastic gradient-descent steps for the variation of L1-loss classification in-
troduced in Exercise 6. You can use a constant step size.

. Derive stochastic gradient-descent steps for SVMs with quadratic loss instead of hinge

loss. You can use a constant step size.

. Consider loss functions of the following form:

n o A
Minimize J = ZL(yi7W - Xi) + §||VV||2
i=1

Derive stochastic gradient-descent steps for this general loss function. You can use a
constant step size.

Consider loss functions of the following form:

n o A
Minimize J = ZL(yi7W - Xi) + §||VV||2
i=1

Use the representer theorem to derive stochastic gradient-descent steps for this general
loss function in the kernel setting, where the gradient is computed with respect to 3.
Here, 8 defines the n-dimensional vector of representer-theorem coefficients.

Consider loss functions of the following form:

n
A
Minimize J = L(yi, W - X3) + |7

=1

Use the representer theorem to derive stochastic gradient-descent steps for this gen-
eral loss function in the kernel setting, where the gradient is computed with respect
to W. Here, W defines the linear hyperplane in the transformed space of unknown di-
mensionality. Your gradient-descent steps should update the hyperplane W indirectly
via the representer theorem. Discuss the difference from the previous exercise.

Provide an algorithm to perform classification with explicit kernel feature transfor-
mation and the Nystrom approximation. How would you use ensembles to make the
algorithm efficient and accurate?

Multinomial logistic regression: Show that the special case of Eq.6.35 for binary
classes is identical to the objective function of logistic regression.

Multi-class SVMs: Consider a k-class problem for & > 2. An alternative to the one-
against-all approach for learning multi-class SVMs is to learn the coefficient vectors
Wi ... W, of the k separators simultaneously like the multinomial logistic regression
model. Set up a loss function and an optimization model for multi-class SVMs. Discuss
the advantages and disadvantages of this approach versus the one-against-all approach.



15.

16.

17.

18.

19.

Show that the stochastic gradient-descent updates of least-squares classification, SVM,
and logistic regression are all of the form W < W (1 —nA) + ny[6(X,y)] X. Here, the
mistake function §(X,y) is 1 — y(W - X) for least-squares classification, an indicator
variable for SVMs, and a probability value for logistic regression. Assume that 7 is
the learning rate, and y € {—1,+1}. Write the specific forms of §(X,y) in each case.

Consider an SVM with properly optimized parameters. Provide an intuitive argument
as to why the out-of-sample error rate of the SVM will be usually less than the fraction
of support vectors in the training data.

Suppose that you perform least-squares regression without regularization with the loss
function Y i (y; — W - X;)?, but you add spherical Gaussian noise with variance A
to each feature. Show that the expected loss with the perturbed features provides a
loss function that is identical to that of Ls-regularization. Use this result to provide
an intuitive explanation of the connection between regularization and noise addition.

Show how to use the representer theorem to derive the closed-form solution of kernel
least-squares regression.

Show that the partial derivative of the Lagrangian dual Lp falls to zero in Eq.6.27,
when the step-size n;, in Sect. 6.3.5 is set to 1/ K (X, Xk).



Chapter 7

Classifier Performance and Evaluation

“All models are wrong, but some are useful.”—George E. P. Box

7.1 Introduction

Among all machine learning problems, classification is the most well studied, and has the
most number of solution methodologies. This embarrassment of riches also leads to the
natural problems of model selection and evaluation. In particular, some natural questions
that arise are as follows:

1. Given a classifier, what are the causes for its error? Is there a theoretical way in which
one might decompose the error into intuitively interpretable components?

2. Can one use the insights from the aforementioned analysis to choose a particular clas-
sifier in a domain in general, and text in particular? Are there specific design criteria
that one should be aware of while using a particular supervised learning algorithm?
Are there ways in which the performance of off-the-shelf classifiers can be enhanced
with these insights?

3. Given a set of learning algorithms, is there an empirical way to evaluate their perfor-
mance and choose the best performer among them?

The theoretical analysis of classification models is closely related to their evaluation, model
design, and selection. Therefore, this chapter will discuss these issues in an integrated way.

Classification models are often designed to maximize accuracy on the training data
either directly or indirectly. Although the maximization of accuracy on the training data
is desirable in general, it does not always translate to increased accuracy on the test data
(i.e., better generalizability), particularly when the training data is small. For example,
decision trees prune nodes, rule-based classifiers prune rules, and almost all optimization-
based learning models use regularizers that are designed to make the model concise at the
expense of training accuracy. Concise models have better generalizability to (unseen) test



data, even though they may be unable to take sufficient advantage of an increasing amount
of training data. The natural trade-off between these goals is quantified with the use of the
bias-variance trade-off.

The theoretical analysis of classifier performance is useful because it provides some
guidance about classifier design and other tricks such as the use of ensembles. Previous
chapters have already discussed some ensemble methods like bagging and random forests.
This chapter will revisit these methods and introduce other methods like boosting. Finally,
this chapter will discuss classifier evaluation, model selection, and parameter tuning.

7.1.1 Chapter Organization

This chapter is organized as follows. The bias-variance trade-off is introduced in Sect. 7.2.
The implications of the bias-variance trade-off on text classification performance are dis-
cussed in Sect. 7.3. Classification ensemble methods are introduced in Sect. 7.4. Methods for
classifier evaluation are introduced in Sect.7.5. A summary is given in Sect. 7.6.

7.2 The Bias-Variance Trade-Off

The bias-variance trade-off provides theoretical insights into the varying causes of modeling
error. All classifiers attempt to learn the shape of the decision boundary separating different
classes in one form or another. Classifiers like linear support vector machines impose strong
prior assumptions on the shape of the decision boundary and are therefore inherently less
powerful than nonlinear classifiers like kernel support vector machines that can learn an ar-
bitrary shape of the boundary. From a conceptual point of view, a nonlinear model is more
“correct” because it does not make as many assumptions (i.e., does not have predefined
biases) about the shape of the decision boundary. However, the fact that more powerful
models do not always win with a finite data set is the most important takeaway from the
bias-variance trade-off. A key point is that the prediction of a model is not only dependent
on the correctness of the model used but also on the specific nuances of the training data set
at hand, which may cause accidental relationships between the feature and target variables
from a particular training data set. A complex model may result in more opportunities
for these accidental relationships to influence the final prediction, particularly if the train-
ing data set is small. This sensitivity in prediction to the specific nuances of the training
data contributes to the error and makes the comparison in accuracy between different mod-
els more subtle than it seems at first sight. In particular, the error of a classifier can be
decomposed into the following three components:

1. Bias: Loosely speaking, the bias can be viewed as an error caused by erroneous as-
sumptions made in the model. For example, consider a situation in which the two
classes are separated by a nonlinear decision boundary. However, if we choose to use a
linear support vector machine (SVM) in this setting, the classifier will be consistently
incorrect over different choices of training data sets. Bias often results in consistently
incorrect classification of particular test instances. Another example of a highly bi-
ased classifier is an n-nearest neighbor classifier for a training data set of size n. This
classifier is essentially a majority vote classifier over the full data set, and will (almost
always) predict minority class examples incorrectly irrespective of the specific draw
of the training data one receives, as long as the draw is of reasonable size.

2. Variance: The variance of a learning algorithm is a measure of its stability over differ-
ent choices of training data sets. For example, a 1-nearest neighbor classifier is highly



unstable with respect to the choice of the specific training data set that is used. When
the variance is high, the same test point might receive inconsistent predictions over
different choices of the training data. This inconsistency is a result of overfitting, in
which the classifier learns the specific nuances of the training data that do not gen-
eralize well to test instances. As a result, changing the training data set changes the
prediction on the same test instance, and the classifier predictions become less stable.
Clearly, variance always adds to the error in ezpectation because at least some of the
training instantiations in which the same test point is predicted differently must be
incorrect. Therefore, variance causes inconsistency in classification of the same test
instance over different choices of training data sets, which naturally adds to the error.

3. Noise: The intrinsic noise is a property of the specific data set at hand. Any data
set will have regions of the space in which the two classes overlap or in which the
points are mislabeled. There is little that any classifier can do to reduce this type of
noise. While bias and variance are specific to a particular learning model, the intrinsic
noise is considered a property of the data, and is independent of the model at hand.
Noise is considered an irreducible part of the error that cannot be addressed by a
learning algorithm. For example, even if a learning algorithm were to be seeded with
the extraordinary advantage of being told the distribution of each class, the noise
would still be a part of the error.

As shown above with the example of the nearest neighbor classifier, different choices of
parameters in the same model may lead to different levels of bias and variance, which
typically (but not always) exhibit in the form of a trade-off between the two. The goal of
a supervised learning algorithm is to attain an optimal point of this trade-off in which the
overall error is minimized.

7.2.1 A Formal View

We assume that the base distribution from which the training data set is generated is
denoted by B. One can generate a data set D from this base distribution:

D~B (7.1)
One could draw the training data in many different ways, such as selecting only data sets
of a particular size. For now, assume that we have some well defined generative process
according to which training data sets are drawn from B. The analysis below does not rely
on the specific mechanism with which training data sets are drawn from B.

Access to the base distribution B is equivalent to having access to an infinite resource
of training data, because one can use the base distribution an unlimited number of times
to generate training data sets. In practice, such base distributions (i.e., infinite resources of
data) are not available. As a practical matter, an analyst uses some data collection mech-
anism to collect only one finite instance of D. However, the conceptual existence of a base
distribution from which other training data sets can be generated is useful in theoretically
quantifying the sources of error in training on this finite data set.

Now imagine that the analyst had a set of ¢ test instances in d dimensions, denoted by
Z1 ... Z;. The dependent variables of these test instances are denoted by y1 ...y For clarity
in discussion, let us assume that the test instances and their dependent variables were also
generated from the same base distribution B by a third party, but the analyst was provided
access only to the feature representations Z ... Z;, and no access to the dependent variables
Y1 .- .Y:. Therefore, the analyst is tasked with job of using the single finite instance of the
training data set D in order to predict the dependent variables of Z; ... Z;.



Now assume that the relationship between the dependent variable y and its feature
representation Z; is defined by the unknown function f(-) as follows:

yi = f(Zi) + & (7.2)

Here, the notation ¢; denotes the intrinsic noise, which is independent of the model being
used. The value of €; might be positive or negative, although it is assumed that E[e;] = 0. If
the analyst knew what the function f(-) corresponding to this relationship was, then they
could simply apply the function to each test point Z; in order to approximate the dependent
variable y;, with the only remaining uncertainty being caused by the intrinsic noise.

The problem is that the analyst does not know what the function f(-) is in practice.
Note that this function is used within the generative process of the base distribution B, and
the entire generating process is like an oracle that is unavailable to the analyst. The analyst
only has examples of the input and output of this function. Clearly, the analyst would need
to develop some type of model g(Z;, D) using the training data in order to approzimate this
function in a data-driven way.

i = 9(Z;, D) (7.3)

Note the use of the circumflex (i.e., the symbol *’) on the variable g; to indicate that it is
a predicted value by a specific algorithm rather than the observed (true) value of y;.

All prediction functions of supervised learning models such as Bayes classifiers, SVMs,
and decision trees are examples of the estimated function g(-,-). Some algorithms (such as
linear regression and SVMs) can even be expressed in a concise and understandable way:

9(Z;,D) = wW-Z [Linear Regression]
—
Learn W with D

9(Z;,D) = sign{W -Z;} [SVMs]
—
Learn W with D

Other models like decision trees are expressed algorithmically as computational functions.
The choice of computational function includes the effect of its specific parameter setting,
such as the number of nearest neighbors in a k-nearest neighbor classifier.

The goal of the bias-variance trade-off is to quantify the expected error of the learning
algorithm in terms of its bias, variance, and the (data-specific) noise. For generality in
discussion, we assume a numeric form of the target variable, so that the error can be
intuitively quantified by the mean-squared error between the predicted values ¢; and the
observed values y;. This is a natural form of error quantification in regression, although
one can also use it in classification by using probabilistic predictions of test instances. The
mean squared error, M SE, of the learning algorithm g(-, D) is defined over the set of test
instances Z; ... Z; as follows:

t t
1 1 _ _
MSE = - g —yi)? = = Zi,D) — f(Z;) — &)?
=) = D0 D) 1)~ e
The best way to estimate the error in a way that is independent of the specific choice of
training data set is to compute the ezxpected error over different choices of training data sets:
1
EIMSE] =+ 3" Bl(9(Z.D) - f(Z) - )"

i=1
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The second relationship is obtained by expanding the quadratic expression on the right-hand
side of the first equation.
The right-hand side of the above expression can be further decomposed by adding and
subtracting F[g(Z;, D)] within the squared term on the right-hand side:
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One can expand the quadratic polynomial on the right-hand side to obtain the following:
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The second term on the right-hand side of the aforementioned expression evaluates to 0
because one of the multiplicative factors is E[g(Z;, D)] — E[g(Z;, D)]. On simplification, we
obtain the following:

t
—_———

Noise

E[MSE)] = Z{f 9(Z:, D)} + ZE{g Z:,D) - Blg(Z:, D))}’ +

Bias® Variance

We examine each of the aforementioned terms to understand the parts of the error they rep-
resent. Consider the (squared) bias term corresponding to the expression 1 25:1 E{f(Z;)—
E[g(Z;,D)]}?]. This measure computes the difference between the true value of the function
f(Z;), and the expected prediction by the model, which is denoted by E[g(Z;, D)]. For ex-
ample, a 1-nearest neighbor classifier is known to have very low bias because the averaged
prediction over a large number of training data sets will be close to the true prediction. Sim-
ilarly, a nonlinear classifier will often have low bias because of the ability to model complex
decision boundaries.

However, these excellent bias characteristics do not always result in low values of the
expected mean-squared error (MSE). This is because of the additional variance term, which
is generally irreducible to 0. The main problem is that one only has access to a single finite
instance of the training data set D, and therefore it is not possible to exactly compute
E[g(Z;,D)], which remains only a theoretical prediction. As we will see later, ensemble
methods try to approximate this prediction using some tricks, albeit in an imperfect way.

The variance term is exacerbated by the use of powerful classifiers on small data sets.
For example, the powerful 1-nearest neighbor classifier is almost Bayes optimal for infinitely
large data. Now consider a tiny data set in which all points belonging to the positive class
are enclosed inside the following ellipse:

25

jxf + 1623 =1
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Figure 7.1: Hlustration of high variance in prediction of 1-nearest neighbor classifier
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Figure 7.2: The point of optimal model complexity

Two examples of the Voronoi regions (cf. Chap. 5) induced by different samples of 25 training
points are shown in Fig. 7.1a and b, respectively. Test instances lying in the shaded region
are predicted to the positive class in each case, and this shaded region is very different
from the true elliptical boundary. This high level of inaccuracy is caused by the inherent
instability (i.e., variance) of the model on a small training data set.

Using a very powerful model on a tiny data set is like using a sledgehammer to swat a
fly, which causes unpredictability in controlling it properly (i.e., increased variance). The
optimal model complexity depends on the delicate trade-off between bias and variance.
Although bias reduces with increasing model complexity, the variance increases. Therefore,
the optimal error is reached at some intermediate model complexity (cf. Fig. 7.2).

7.2.2 Telltale Signs of Bias and Variance

For a given data set and learning algorithm, how can an analyst tell whether the main
causative factor in the error is the bias or the variance? This is a useful piece of information
to have in order to make appropriate adjustments to the algorithm at hand. In general,
it is impossible to exactly estimate the bias and the variance without access to an infinite
resource of data. However, there are some telltale signs that an analyst can use in order to
make decisions on the source of the error. High-variance algorithms are particularly easy
to identify because they will often overfit the data, and there will be large gaps between
the accuracy on the training data and a held-out portion of the labeled data (which is not
used for training). Furthermore, it is also possible to run the algorithm on multiple samples
to estimate the variance term on an out-of-sample test data set, although the estimate will
only be a very approximate one.



Bias is generally harder to identify. Although algorithms with small gaps between train-
ing and test accuracy (and large error) might have high bias, one cannot be certain whether
the errors are caused by intrinsic noise in the training data. One way to check if the errors
are caused by intrinsic noise is to use other types of the models on the data set to check if
the same test instances are being classified incorrectly by very different models. The noisy
instances will cause problems for all models, and will tend to be misclassified in a more
consistent way. On the other hand, since the bias of different models is different, it will be
reflected in the fact that each model is consistently incorrect on its own specific set of test
instances which is somewhat different from that of others. Although this approach can pro-
vide rough hints about the nature of the bias and noise, one should not view this approach
as a formal methodology. An important issue to always keep in mind is that an analyst only
sees the integrated form of the error on a particular data set, which is usually not possible
to precisely decompose into different components with the use of a finite data resource.

7.3 Implications of Bias-Variance Trade-Off on Perfor-
mance

This section will discuss the implications of the bias-variance trade-off on classifier perfor-
mance. The discussion will be specifically focussed on text data, which is high-dimensional
and sparse.

7.3.1 Impact of Training Data Size

Increased training data size almost always reduces the variance of a classifier because of
the robustness of using a larger amount of data. It is common for classifiers to overfit the
specific characteristics of a particular data distribution when a small training data set is
used. The expected value E[V] of the variance V in the bias-variance trade-off is as follows:
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Note that if the expectation is computed conditionally over data sets D of small size, the
value of g(Z;, D) will vary more significantly with choice of D for most reasonable models.
Examples of this drastic variation in the case of a 1-nearest neighbor classifier on data sets of
size 25 are shown in Fig. 7.1. Furthermore, if the size of the training data is increased beyond
25, then examples of predicted regions are shown in Fig.5.2 of Chap.5. It is immediately
evident that the use of larger training data sets leads to more stable predictions.

Increasing data size also reduces bias in many classifiers, although the effect is usually
less pronounced and can sometimes be reversed if the parameters of the algorithm are fixed
at values that are suitable to small data sets. In the case of the 1-nearest neighbor classifier,
increases in data size lead to reduction in both bias and variance. With an infinite amount
of data, the only remaining effect is that of intrinsic noise. In particular, the accuracy of a
1-nearest neighbor classifier is that of twice the Bayes optimal rate (cf. Sect. 5.4 of Chap. 5).
The factor of two is because the noise in the training data and the test instance contribute
equally to the error.

Another interesting example of the effect of data size on bias is that in a decision tree.
A decision tree can model arbitrary decision boundaries with an infinite amount of data.
However, when a small amount of data is used, piecewise linear boundaries are created.
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Figure 7.3: Even though a decision tree can model an arbitrary decision boundary with
an infinite amount of data, it has a consistent bias with a small amount of data. This is
reflected in its piecewise linear boundaries that do not change significantly with choice in
training data. Randomizing the tree construction is a way of reducing this data-centric
bias by forcibly inducing model-centric diversity and averaging the predictions. A random
forest can be viewed either as a bias reduction method or as a variance-reduction method,
depending on the specific choice of bias-variance decomposition that one uses for analysis.

Such piecewise linear boundaries do not necessarily imply a high level of bias if they vary
significantly over different choices of the training data. However, since a decision tree is
heavily influenced by the splits at the top level of the tree, which do not change significantly
with different choices of training data, the result is that the predictions of the decision tree
could be very stable to different choices of training data sets. This situation is shown in
Fig.7.3a, in which the coarse and piece-wise linear approximations of the true decision
boundary are shown. This type of coarse approximation would often result in greater bias
when the bias is estimated only over training data sets of small size. In other words, the
value of E[g(Z;, D)] is often further away from f(Z;), when the expectation computation
is restricted to training data sets of small size. A key issue is that the bias of a decision
tree depends on its height. Smaller trees are more biased, and small data sets prevent the
creation of deep trees. On the other hand, the random forest has better bias performance
over smaller training data sets because it averages the predictions from trees constructed
using different choices of splits. The averaging process leads to smoother decision boundaries
like Fig. 7.3b that approximate the true decision boundary more accurately, which results
in lower bias. Although the random forest is often viewed as a variance-reduction method,
that point of view needs a non-traditional definition' of the bias-variance trade-off in which
the expected bias, variance, and error are computed using a random process defined by the
choice of model at hand. The traditional view of the bias-variance trade-off is one in which
the expectation is computed over randomized choices of training data sets [9]. A detailed
discussion of the random forest is provided in Sect.5.5.5 of Chap. 5.

Hnstead of computing the expected values of the bias-variance trade-off over different choices of training
data sets, one can compute it over different randomized choices of models. This approach is referred to as
the model-centric view of the bias-variance trade-off [9]. The traditional view of the bias-variance trade-off
is a data-centric view in which the randomized process to describe the bias-variance trade-off is defined by
using different choices of training data sets. From the data-centric view, a random forest is really a bias
reduction method over training data sets of small size.



7.3.2 Impact of Data Dimensionality

Increased data dimensionality almost always leads to an increase in the error because of
the presence of irrelevant attributes. This issue is particularly important in the text domain
because of the high dimensionality of text data. However, the increased error may be either
reflected in the bias or the variance, depending on the choice of classifier. Classifiers like
linear regression, in which the parameter space increases with dimensionality, tend to show
increased variance with dimensionality if regularization is not used. Regularization in linear
models can be viewed as an indirect form of feature selection. Feature selection improves
the accuracy of a complex model by reducing variance. This is the reason that using regu-
larization is crucial when using linear models with text data. Interestingly, even though the
increased dimensionality increases the variance of linear models, it has a beneficial effect on
the bias. In high-dimensional cases like text, the different classes are often (almost) linearly
separable. Therefore, even though linear models can have high bias in many data sets, they
seem to work well in the text domain. This is a ringing endorsement of linear SVMs for
text, because linear SVMs have lower variance than nonlinear SVMs, and they also seem
to have low bias in the specific case of the text domain.

On the other hand, classifiers in which the contributions from different dimensions are
pre-aggregated before prediction tend to show increased bias. An example is the nearest
neighbor classifier in which the contributions from different dimensions are aggregated in
the distance function. In such cases, increased dimensionality actually tends to make the
predictions of the classifier more stable (albeit with increased bias because of the aggregated
impact of irrelevant dimensions). Just as a random forest works well because of randomized
choices of splits, one of the tricks that is used with nearest neighbor classifiers in high di-
mensions is to build classifiers on random subsets of dimensions, and average the predictions
from various subsets. This approach is referred to as feature bagging. In fact, the idea of
feature bagging was a precursor to the idea of random forests in classification [220, 221].

7.3.3 Implications for Model Choice in Text

There are several implications of the high-dimensional and sparse nature of text on classifier
design. Although many of these issues are discussed in Chaps. 5 and 6, this chapter will also
provide an analytical explanation of these behaviors in terms of the bias-variance trade-off.
Such explanations also provide guidance in designing models for text.

Linear versus nonlinear models: Although linear models often have high bias because
of strong prior assumptions, this is not the case in the text domain in which the sparse, high-
dimensional nature of text tends to make the different classes (almost) linearly separable. As
a result, linear models often have low bias in the text domain. Although nonlinear models
like the Gaussian kernels can also simulate (or slightly improve) linear performance by using
a large bandwidth, the additional accuracy advantages are often not worth the increased
computational effort. A key point is that tuning kernel parameters becomes exceedingly
important with a nonlinear model, and it is easy to be less than exhaustive in searching the
space of parameter choices with a nonlinear method (because of the computational cost).
In such cases, it is actually possible for a nonlinear model to deliver poorer performance
than a linear model as a practical matter. The use of nonlinear methods should be largely
restricted to cases in which linguistic or sequencing information inside the text is used with
string kernels. It makes little sense to use a nonlinear kernel with the vector space (i.e.,
multidimensional) representation of text.



Importance of feature selection: Text is a high-dimensional domain with many irrele-
vant attributes. Such attributes increase the error of the classifier in terms of either bias or
variance, depending on the choice of model used. Models in which the number of parameters
increase with data dimensionality tend to show increased variance with dimensionality. In
such cases, feature selection is an effective way of reducing variance. The regularization of
parameters in a linear model is a form of feature selection.

Presence versus absence of words: In Chaps.5 and 6, several examples have been
provided in which classifiers using presence of words generally perform better than those
using absence of words. For example, this is an important reason why the multinomial
model often performs better than the Bernoulli model in text classification. A category can
often be expressed using thousands of words, and most of the topical words of the category
may be missing from a small document purely as a matter of chance. If a classifier uses the
absence of these words as conclusive evidence of a particular document belonging to that
class, it is likely to have poor generalization power to unseen test documents. This will lead
to overfitting, which is a manifestation of high variance. In general, imbalanced frequencies
of categorical features are important to account for in classification models because the
presence of a feature is far more informative than its absence.

7.4 Systematic Performance Enhancement with En-
sembles

From the aforementioned discussion, it is evident that key choices in the design of an algo-
rithm can optimize the error by choosing the bias-variance trade-off appropriately. Ensem-
bles provide a natural way to use the bias-variance theory in a judicious way to optimize
performance. These methods are meta-algorithms that take a base method as input and
improve its performance by applying it repeatedly over different modifications of the data
or with different variants of the same model. The results from the different models are then
combined to yield a single robust prediction. The specific choice of the model and the way
in which the outputs of different models are combined regulate how an ensemble method
reduces the bias or variance.

7.4.1 Bagging and Subsampling

Bagging and subsampling are two methods to reduce the variance of an ensemble method.
A brief description of these methods in the context of the 1-nearest neighbor detector is
provided in Sect. 5.4.3.1 of Chap. 5. The basic ideas in these methods are as follows:

1. In the case of bagging, the training data is sampled with replacement. The sample size
s may be different from the size of the training data size n, although it is common to
set s to n. In the latter case, the resampled data will contain duplicates, and about a
fraction 1/e of the original data set will not be included at all (see Exercise 6). Here,
the notation e denotes the base of the natural logarithm. A model is constructed on
the resampled training data set, and each test instance is predicted with the resampled
data. The entire process of resampling and model building is repeated m times. For a
given test instance, each of these m models is applied to the test data. The predictions
from different models are then averaged to yield a single robust prediction. Although
it is customary to choose s = n in bagging, the best results are often obtained by
choosing values of s much less than n.



2. Subsampling is similar to bagging, except that the different models are constructed
on the samples of the data created without replacement. The predictions from the
different models are averaged. In this case, it is essential to choose s < n, because
choosing s = n yields the same training data set and identical results across different
ensemble components.

Both bagging and subsampling are variance-reduction methods. In order to understand this
point, consider the variance term in the bias-variance trade-off:
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If the analyst had access to an infinite resource of data (i.e., the base distribution B), she
could go back to it as many times as she wanted in order to draw different training data
sets D, estimate the value of E[g(Z;, D)] with an averaged prediction of Z;, and report it as
the final result instead of g(Z;, D) on a single finite instance of D. Such an approach would
result in a variance of 0, which will provide lower error.

The main problem with this approach is that the analyst does not have access to such
an infinite resource of data. Bagging is an imperfect way of performing the same simulation
by drawing D from the original instance of the finite data. Of course, such a simulation is
imperfect because of two reasons:

1. The different instances of D drawn from the same base data are correlated with one
another because of overlaps in instances. This limits the amount of variance reduction,
and a part of it is érreducible in a way that is hidden from the analyst (without
knowledge of the base distribution). This irreducible variance is a consequence of the
fact that one cannot hope to determine the expected values over draws from a base
distribution with a single finite instance. Nevertheless, if unstable configurations of
the detector are used (e.g., a 1-nearest neighbor detector), then the variance-reduction
effects are very significant.

2. The samples from the original data set do not provide as accurate results as using
the original data. For example, a bagged sample contains repetitions, which are not
naturally reflective of the original distribution. Similarly a subsample is smaller in size
than the original instance, as a result of which some useful pattern for modeling will
be irretrievably lost. All these effects will lead to a slight increase in bias.

The heuristic simulation above can either improve or worsen the accuracy, depending on
the choice and configuration of the detector at hand. For example, if an extremely stable
detector is used, then the variance reduction will not be sufficient to compensate for the loss
in bias. However, in practice, the overall effect of the simulation is to improve the accuracy
of most reasonable configurations of the base detector.

Methods like bagging and subsampling help unstable configurations of detectors to
achieve their full potential. The unstable configuration of a detector has inherently higher
potential for improvement because of fewer prior assumptions than a stable configuration
and the fact that its base performance is impeded by variance to a greater degree. The
overall error at very stable configurations (i.e., large number of nearest neighbors) actually
increases slightly because of bagging, and therefore this choice is inappropriate for bagging.



7.4.2 Boosting

In boosting, a weight is associated with each training instance, and the different classifiers
are trained with the use of these weights. The weights are modified iteratively based on
classifier performance. In other words, the future models constructed are dependent on the
results from previous models. Thus, each classifier in this model is constructed using a
the same algorithm A on a weighted training data set. The basic idea is to focus on the
incorrectly classified instances in future iterations by increasing the relative weight of these
instances. The hypothesis is that the errors in these misclassified instances are caused by
classifier bias. Therefore, increasing the instance weight of misclassified instances will result
in a new classifier that corrects for the bias on these particular instances. By iteratively
using this approach and creating a weighted combination of the various classifiers, it is
possible to create a classifier with lower overall bias.

The most well-known approach to boosting is the AdaBoost algorithm. For simplicity,
the following discussion will assume the binary class scenario. It is assumed that the class
labels are drawn from {—1,41}. This algorithm works by associating each training example
with a weight that is updated in each iteration, depending on the results of the classification
in the last iteration. The base classifiers therefore need to be able to work with weighted
instances. Weights can be incorporated either by direct modification of training models, or
by (biased) bootstrap sampling of the training data. The reader should revisit the section
on rare class learning for a discussion on this topic. Instances that are misclassified are given
higher weights in successive iterations. Note that this corresponds to intentionally biasing
the classifier in later iterations with respect to the global training data, but reducing the
bias in certain local regions that are deemed “difficult” to classify by the specific model A.

In the tth round, the weight of the ith instance is W(7). The algorithm starts with
equal weight of 1/n for each of the n instances, and updates them in each iteration. In
the event that the ith instance is misclassified, then its (relative) weight is increased to
Wi1(2) = Wi(i)e™, whereas in the case of a correct classification, the weight is decreased
to Wiy1(i) = Wy(i)e™ . Here oy is chosen as the function $log,((1—€;)/e;), where ¢ is the
fraction of incorrectly predicted training instances (computed after weighting with W, (4))
by the model in the tth iteration. The approach terminates when the classifier achieves
100% accuracy on the training data (e; = 0), or it performs worse than a random (binary)
classifier (e; > 0.5). An additional termination criterion is that the number of boosting
rounds is bounded above by a user-defined parameter T'. The overall training portion of the
algorithm is illustrated in Fig. 7.4.

It remains to be explained how a particular test instance is classified with the ensemble
learner. Each of the models induced in the different rounds of boosting is applied to the test
instance. The prediction p; € {—1,+1} of the test instance for the tth round is weighted
with oy and these weighted predictions are aggregated. The sign of this aggregation ), piay
provides the class label prediction of the test instance. Note that less accurate components
are weighted less by this approach.

An error rate of ¢, > 0.5 is as bad or worse than the expected error rate of a random
(binary) classifier. This is the reason that this case is also used as a termination criterion.
In some implementations of boosting, the weights W, (i) are reset to 1/n whenever ¢, > 0.5,
and the boosting process is continued with the reset weights. In other implementations, €;
is allowed to increase beyond 0.5, and therefore some of the prediction results p; for a test
instance are effectively inverted with negative values of the weight oy = log,((1 — €;)/€t).

Boosting primarily focuses on reducing the bias. The bias component of the error is re-
duced because of the greater focus on misclassified instances. The ensemble decision bound-



Algorithm AdaBoost(Data Set: D, Base Classifier: A, Maximum Rounds: T')
begin
t=0;
for each ¢ initialize W1 (i) = 1/n;
repeat
t=1t+1;
Determine weighted error rate €; on D when base algorithm A
is applied to weighted data set with weights W;(-);
ar = 3log, (1 — e)/er);
for each misclassified X; € D do W41 (i) = We(i)et;
else (correctly classified instance) do Wi41(2) = We(i)e™ @t
for each instance X; do normalize W1 (i) = Wi (8)/ 2271 Werr ()]s
until ((¢ > T) OR (et = 0) OR (¢ > 0.5));
Use ensemble components with weights a; for test instance classification;
end

Figure 7.4: The AdaBoost algorithm

ary is a complex combination of the simpler decision boundaries, which are each optimized
to specific parts of the training data. For example, if the AdaBoost algorithm uses a linear
SVM on a data set with a nonlinear decision boundary, it will be able to learn this boundary
by using different stages of the boosting to learn the classification of different portions of
the data. Because of its focus on reducing the bias of classifier models, such an approach is
capable of combining many weak (high bias) learners to create a strong learner. Therefore,
the approach should generally be used with simpler (high bias) learners with low variance
in the individual ensemble components. In spite of its focus on bias, boosting can occa-
sionally reduce the variance slightly when re-weighting is implemented with sampling. This
reduction is because of the repeated construction of models on randomly sampled, albeit re-
weighted, instances. The amount of variance reduction depends on the re-weighting scheme
used. Modifying the weights less aggressively between rounds will lead to better variance
reduction. For example, if the weights are not modified at all between boosting rounds,
then the boosting approach defaults to bagging, which only reduces variance. Therefore, it
is possible to leverage variants of boosting to explore the bias-variance trade-off in various
ways. However, if one attempts to use the vanilla AdaBoost algorithm with a high-variance
learner, severe overfitting is likely to occur.

Boosting is vulnerable to data sets with significant noise in them. This is because boost-
ing assumes that misclassification is caused by the bias component of instances near the
incorrectly modeled decision boundary, whereas it might simply be a result of the misla-
beling of the data. This is the noise component that is intrinsic to the data, rather than
the model. In such cases, boosting inappropriately overtrains the classifier to low-quality
portions of the data. Indeed, there are many noisy real-world data sets where boosting does
not perform well. Its accuracy is typically superior to bagging in scenarios where the data
sets are not excessively noisy.

7.5 Classifier Evaluation

Evaluation algorithms are important not only from the perspective of understanding the
performance characteristics of a learning algorithm, but also from the point of view of opti-
mizing algorithm performance via model selection. Given a particular data set, how can we
know which algorithm to use? Should we use a support vector machine or a random forest?
Therefore, the notions of model evaluation and model selection are closely intertwined.



Given a labeled data set, one cannot use all of it for model building. This is because the
main goal of classification is to generalize a model of labeled data to unseen test instances.
Therefore, using the same data set for both model building and testing grossly overestimates
the accuracy. Furthermore, the portion of the data set used for model selection and parameter
tuning also needs to be different from that used for model building. A common mistake is
to use the same data set for both parameter tuning and final evaluation (testing). Such an
approach partially mixes the training and test data, and the resulting accuracy is overly
optimistic. Given a data set, it should always be divided into three parts.

1. Training data: This part of the data is used to build the training model such as a
decision tree or a support vector machine. The training data may be used multiple
times over different choices of the parameters or completely different algorithms to
build the models in multiple ways. This process sets up the stage for model selection,
in which the best algorithm is selected out of these different models. However, the
actual evaluation of these algorithms for selecting the best model is not done on the
training data but on a separate validation data set to avoid favoring overfitted models.

2. Validation data: This part of the data is used for model selection and parameter tuning.
For example, the choice of the kernel bandwidth and the regularization parameters
may be tuned by constructing the model multiple times on the first part of the data
set (i.e., training data), and then using the validation set to estimate the accuracy
of these different models. The best choice of the parameters is determined by using
this accuracy. In a sense, validation data should be viewed as a kind of test data set
to tune the parameters of the algorithm, or to select the best choice of the algorithm
(e.g., decision tree versus support vector machine).

3. Testing data: This part of the data is used to test the accuracy of the final (tuned)
model. It is important that the testing data are not even looked at during the process
of parameter tuning and model selection to prevent overfitting. The testing data are
used only once at the very end of the process. Furthermore, if the analyst uses the
results on the test data to adjust the model in some way, then the results will be
contaminated with knowledge from the testing data. The idea that one is allowed
to look at a test data set only once is an extraordinarily strict requirement (and an
important one). Yet, it is frequently violated in real-life benchmarks. The temptation
to use what one has learned from the final accuracy evaluation is simply too high.

The division of the labeled data set into training data, validation data, and test data is shown
in Fig. 7.5. Strictly speaking, the validation data is also a part of the training data, because
it influences the final model (although only the model building portion is often referred to
as the training data). The division in the ratio of 2:1:1 is quite common. However, it should
not be viewed as a strict rule. For very large labeled data sets, one needs only a modest
number of examples to estimate accuracy. When a very large data set is available, it makes
sense to use as much of it for model building as possible, because the variance induced
by the validation and evaluation stage is often quite low. A constant number of examples
(e.g., less than a few thousand) in the validation and test data sets are sufficient to provide
accurate estimates.

7.5.1 Segmenting into Training and Testing Portions

The aforementioned description of partitioning the labeled data into three segments is an
implicit description of a method referred to as hold-out for segmenting the labeled data into
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Figure 7.5: Partitioning a labeled data set for evaluation design
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various portions. However, the division into three parts is not done in one shot. Rather, the
training data is first divided into two parts for training and testing. The testing part is then
carefully hidden away from any further analysis until the very end where it can be used only
once. The remainder of the data set is then divided again into the training and validation
portions. This type of recursive division is shown in Fig. 7.6.

A key point is that the types of division at both levels of the hierarchy are conceptually
identical. In the following, we will consistently use the terminology of the first level of
division in Fig. 7.6 into “training” and “testing” data, even though the same approach can
also be used for the second-level division into model building and validation portions. This
consistency in terminology allows us to provide a common description for both levels of the
division.

7.5.1.1 Hold-Out

In the hold-out method, a fraction of the instances are used to build the training model.
The remaining instances, which are also referred to as the held out instances, are used for
testing. The accuracy of predicting the labels of the held out instances is then reported as
the overall accuracy. Such an approach ensures that the reported accuracy is not a result
of overfitting to the specific data set, because different instances are used for training and
testing. The approach, however, underestimates the true accuracy. Consider the case where
the held-out examples have a higher presence of a particular class than the labeled data
set. This means that the held-in examples have a lower average presence of the same class,
which will cause a mismatch between the training and test data. Furthermore, the class-wise
frequency of the held-in examples will always be inversely related to that of the held-out
examples. This will lead to a consistent pessimistic bias in the evaluation.



7.5.1.2 Cross-Validation

In the cross-validation method, the labeled data is divided into g equal segments. One
of the ¢ segments is used for testing, and the remaining (¢ — 1) segments are used for
training. This process is repeated ¢ times by using each of the ¢ segments as the test set.
The average accuracy over the ¢ different test sets is reported. Note that this approach
can closely estimate the true accuracy when the value of ¢ is large. A special case is one
where ¢ is chosen to be equal to the number of labeled documents and therefore a single
document is used for testing. Since this single document is left out from the training data,
this approach is referred to as leave-one-out cross-validation. Although such an approach
can closely approximate the accuracy, it is usually too expensive to train the model a large
number of times. Nevertheless, leave-one-out cross-validation is the method of choice for
lazy learning algorithms like nearest neighbor classifiers.

7.5.2 Absolute Accuracy Measures

Once the data have been segmented between training and testing, a natural question arises
about the type of accuracy measure that one can use in classification and regression.

7.5.2.1 Accuracy of Classification

When the output is presented in the form of class labels, the ground-truth labels are com-
pared to the predicted labels to yield the following measures:

1. Accuracy: The accuracy is the fraction of test instances in which the predicted value
matches the ground-truth value.

2. Cost-sensitive accuracy: Not all classes are equally important in all scenarios, while
comparing the accuracy. This is particularly important in imbalanced class problems,
in which one of the classes is much rarer than the other. For example, consider an
application in which it is desirable to classify tumors as malignant or non-malignant
where the former is much rarer than the latter. In such cases, the misclassification
of the former is often much less desirable than misclassification of the latter. This is
frequently quantified by imposing differential costs c; ... ¢, on the misclassification of
the different classes. Let nj ...ng; be the number of test instances belonging to each
class. Furthermore, let a; ...ar be the accuracies (expressed as a fraction) on the
subset of test instances belonging to each class. Then, the overall accuracy A can be
computed as a weighted combination of the accuracies over the individual labels.
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The cost sensitive accuracy is the same as the unweighted accuracy when all costs
c1...c are the same.

Aside from the accuracy, the statistical robustness of a model is also an important issue. For
example, if two classifiers are trained over a small number of test instances and compared,
the difference in accuracy may be a result of random variations, rather than a truly statisti-
cally significant difference between the two classifiers. This measure is related to that of the
variance of a classifier that was discussed earlier in this chapter. When the variance of two
classifiers is high, it is often difficult to assess whether one is truly better than the other. One



way of testing the robustness is to repeat the aforementioned process of cross-validation (or
hold-out) in many different ways (or ¢rials) by repeating the randomized process of creating
the folds in many different ways. The difference da; in accuracy between the ith pair of
classifiers (constructed on the same folds) is computed, and the standard deviation o of this
difference is computed as well. The overall difference in accuracy over s trials is computed

as follows: .
AA— iz 90 (7.5)

s
Note that AA might be positive or negative, depending on which classifier is winning. The
standard deviation is computed as follows:

o= \/Zf—l(éa’i - AA)Q (76)
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Then, the overall statistical level of significance by which one classifier wins over the other
is given by the following:
AAs

g
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The factor /s accounts for the fact that we are using the sample mean AA, which is
more stable that the individual accuracy differences §a;. The standard deviation of AA is a
factor 1/4/s of the standard deviation of individual accuracy differences. Values of Z that
are significantly greater than 3, are strongly indicative of one classifier being better than
the other in a statistically significant way.

7.5.2.2 Accuracy of Regression

The effectiveness of linear regression models can be evaluated with a measure known as
the Mean Squared Error (MSE), or the Root Mean Squared Error, which is the RMSE.
Let y; ...y, be the observed values over r test instances, and let ¢ ...y, be the predicted
values. Then, the mean-squared error, denoted by MSE is defined as follows:

T LA 2
MSE = lel(+yl) (7.8)
The Root-Mean-Squared Error (RMSE) is defined as the square root of this value:
T PRY
RMSE = M (7.9)

r

Another measure is the R2-statistic, or the coefficient of determination, which provides a
better idea of the relative performance of a particular model. In order to compute the R2-
statistic, we first compute the variance o2 of the observed values. Let u = Z;:1 y;/r be
the mean of the dependent variable. Then, the variance o2 of the r observed values of the
test instances is computed as follows:

T L 2
o2 = Zazm (Vi = 1) (7.10)
T
Then, the R2-statistic is as follows:
R*=1- M‘ZE (7.11)




Larger values of the R? statistic are desirable, and the maximum value of 1 corresponds
to an MSE of 0. It is possible for the R2-statistic to be negative, when it is applied on an
out-of-sample test data set, or even when it is used in conjunction with a nonlinear model.

Although we have described the computation of the R2-statistic for the test data, this
measure is often used on the training data in order to compute the fraction of unexplained
variance in the model. In such cases, linear regression models always return an R2-statistic
in the range (0, 1). This is because the mean value p of the dependent variable in the training
data can be predicted by a linear regression model, when the coefficients of the features are
set to 0 and only the bias term (or coefficient of dummy column) is set to the mean. Since
the linear regression model will always provide a solution with a lower objective function
value on the training data, it follows that the value of MSE is no larger than 2. As a result,
the value of the R2-statistic on the training data always lies in the range (0,1). In other
words, a training data set can never be predicted better using its mean than by using the
predictions of linear regression. However, an out-of-sample test data set can be modeled
better by using its mean than by using the predictions of linear regression.

One can increase the R2-statistic on the training data simply by increasing the number
of regressors, as the MSE reduces with increased overfitting. When the dimensionality is
large, and it is desirable to compute the RZ-statistic on the training data, the adjusted
R2-statistic provides a more accurate measure. In such cases, the use of a larger number of
features for regression is penalized. The adjusted R2-statistic for a training data set with n
documents and d dimensions is computed as follows:

R2_1_ (n—d) MSE
(n—=1) o2
The R2-statistic is generally used only for linear models. For nonlinear models, it more
common to use the MSE as a measure of the error.

(7.12)

7.5.3 Ranking Measures for Classification and Information Re-
trieval

The classification problem is posed in different ways, depending on the setting in which
it is used. The absolute accuracy measures discussed in the previous section are useful in
cases where the labels or numerical dependent variables are predicted as the final output.
However, in some settings, a particular target class is of special interest, and all the test
instances are ranked in order of their propensity to belong to the target class. A particular
example is that of classifying email as “spam” or “not spam.” When one has a large number
of documents with a high imbalance in relative proportion of classes, it makes little sense
to directly return binary predictions. In such cases, only the top-ranked emails will be
returned based on the probability of belonging to the “spam” category, which is the target
class. Ranking-based evaluation measures are often used in imbalanced class settings in
which one of the classes (i.e., the rare class) is considered more relevant from a detection
point of view.

Ranking-based evaluations are also useful in information retrieval settings, in which a
keyword query is entered by a user, and a ranked list of documents is returned based on their
relevance. Such methods are also used for Web search, which will be discussed in Chap. 9. All
such information retrieval problems can implicitly be considered two-class problems in which
the documents belong to either the “relevant” class or “not relevant’ class, and the ranking
is returned based on the propensity to belong to the former. Therefore, the evaluation
discussion in this section is not only relevant to classification, but is also useful from the
broader point of view of information retrieval, Web search, and some other applications:



1. In outlier analysis, one often returns a ranked list of anomalies. Although outlier
detection is an unsupervised problem, a binary ground truth is often available for
evaluation.

2. In recommender systems with implicit feedback, binary ground truth may be available
about which items have been consumed. A ranked list of recommendations can be
evaluated against this ground truth.

3. In information retrieval and search, the ground-truth set of relevant documents may
be available. The ranked list of retrieved documents can be evaluated against this
binary ground truth.

Discussions of some of these different ranking measures is also provided in different con-
texts [3, 4].

7.5.3.1 Receiver Operating Characteristic

Ranking methods are used frequently in cases where a ranked list of a particular class of
interest is returned. The ground-truth is assumed to be binary in which the class of interest
corresponds to the positive class, and the remaining documents belong to the negative class.
In most such settings, the relative frequencies of the two classes are heavily imbalanced, so
that the discovery of (rare) positive class instances is more desirable. This situation is also
true in information retrieval and search, in which the set of documents returned in response
to a keyword search can be viewed as belonging to the “relevant” class.

The instances that belong to the positive class in the observed data are ground-truth pos-
itives or true positives. It is noteworthy that when information retrieval, search, or classifi-
cation applications are used, the algorithm can predict any number of instances as positives,
which might be different from the number of observed positives (i.e., true positives). When
a larger number of instances are predicted as positives, one would recover a larger number
of the true positives, but a smaller percentage of the predicted list would be correct. This
type of trade-off can be visualized with the use of a precision-recall or a receiver operating
characteristic (ROC) curve. Such trade-off plots are commonly used in rare class detection,
outlier analysis evaluation, recommender systems, and information retrieval. In fact, such
trade-off plots can be used in any application where a binary ground truth is compared to
a ranked list discovered by an algorithm.

The basic assumption is that it is possible to rank all the test instances using a numerical
score, which is the output of the algorithm at hand. This numerical score is often available
from classification algorithms in the form of a probability of belonging to the positive class
in methods like the naive Bayes classifier or logistic regression. For methods like SVMs, one
can report the (signed) distance of a point from the separating class instead of converting
it into a binary prediction. A threshold on the numerical score creates a predicted list
of positives. By varying the threshold (i.e., size of predicted list), one can quantify the
fraction of relevant (ground-truth positive) instances in the list, and the fraction of relevant
instances that are missed by the list. If the predicted list is too small, the algorithm will miss
relevant instances (false-negatives). On the other hand, if a very large list is recommended,
there will be too many spuriously predicted instances (i.e., false-positives). This leads to a
trade-off between the false-positives and false-negatives, which can be visualized with the
precision-recall curve or the receiver operating characteristic (ROC) curve.
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Figure 7.7: ROC curve and precision-recall curves

Table 7.1: Rank of ground-truth positive instances

Algorithm Rank of ground-truth positives
(ground-truth positives)
Algorithm A 1, 5, 8, 15, 20
Algorithm B 3,7,11, 13, 15
Random algorithm 17, 36, 45, 59, 66
Perfect Oracle 1,2,3,4,5

Assume that one selects the top-t set of ranked instances and predicted them to belong
to the positive class. For any given value t of the size of the positively predicted list, the
set of instances predicted to belong to the positive class is denoted by S(t). Note that
|S(t)| = t. Therefore, as ¢ changes, the size of S(t) changes as well. Let G represent the
true set of relevant documents (ground-truth positives). Then, for any given size ¢ of the
predicted list, the precision is defined as the percentage of percentage of instances predicted
to belong to the positive class that truly turn out to belong to the positive class in the

predicted labels:
St)n
Precision(t) = 100 - s®ag|
S()]
The value of Precision(t) is not necessarily monotonic in ¢ because both the numerator
and denominator may change with ¢ differently. The recall is correspondingly defined as the

percentage of ground-truth positives that have been recommended as positive for a list of

size t.
IS(t) NG|
4

While a natural trade-off exists between precision and recall, this trade-off is not necessarily
monotonic. In other words, an increase in recall does not always lead to a reduction in
precision. One way of creating a single measure that summarizes both precision and recall
is the Fi-measure, which is the harmonic mean between the precision and the recall.

Recall(t) = 100 -

Fut) = 2 - Precision(t) - Recall(t)
e Precision(t) + Recall(t)

(7.13)



While the Fj(t) measure provides a better quantification than either precision or recall,
it is still dependent on the size t of the number of instances predicted to belong to the
positive class, and is therefore still not a complete representation of the trade-off between
precision and recall. It is possible to visually examine the entire trade-off between precision
and recall by varying the value of ¢ and plotting the precision versus the recall. The lack of
monotonicity of the precision makes the results hard to interpret.

A second way of generating the trade-off in a more intuitive way is through the use of
the ROC curve. The true-positive rate, which is the same as the recall, is defined as the
percentage of ground-truth positives that have been included in the predicted list of size ¢.

[S(t) NG|

The false-positive rate FPR(t) is the percentage of the falsely reported positives in the
predicted list out of the ground-truth negatives (i.e., irrelevant documents belonging to the
negative class in the observed labels). Therefore, if U represents the universe of all test
instances, the ground-truth negative set is given by (U — G), and the falsely reported part
in the predicted list is (S(¢) — G). Therefore, the false-positive rate is defined as follows:

S(t) - gl

FPR(t) =100 - 2 — 1
R(t) = 100 T

(7.14)

The false-positive rate can be viewed as a kind of “bad” recall, in which the fraction of the
ground-truth negatives (i.e., test instances with observed labels in the negative class), which
are incorrectly captured in the predicted list S(t), is reported. The ROC curve is defined
by plotting the FPR(t) on the X-axis and TPR(t) on the Y-axis for varying values of ¢. In
other words, the ROC curve plots the “good” recall against the “bad” recall. Note that both
forms of recall will be at 100% when S(t) is set to the entire universe of test documents (or
entire universe of documents to return in response to a query). Therefore, the end points
of the ROC curve are always at (0,0) and (100, 100), and a random method is expected to
exhibit performance along the diagonal line connecting these points. The lift obtained above
this diagonal line provides an idea of the accuracy of the approach. The area under the ROC
curve provides a concrete quantitative evaluation of the effectiveness of a particular method.
Although one can directly use the area shown in Fig. 7.7a, the staircase-like ROC curve is
often modified to use local linear segments which are not parallel to either the X-axis or the
Y-axis. The trapezoidal rule [166] is then used to compute the area slightly more accurately.
From a practical point of view, this change often makes very little difference to the final
computation.

To illustrate the insights gained from these different graphical representations, consider
an example of a scenario with 100 test instances, in which 5 documents truly belong to
the positive class. Two algorithms A and B are applied to this data set that rank all test
instances from 1 to 100 to belong to the positive class, with lower ranks being selected first in
the predicted list. Thus, the true-positive rate and false-positive rate values can be generated
from the ranks of the five test instances in the positive class. In Table 7.1, some hypothetical
ranks for the five truly positive instances have been illustrated for the different algorithms.
In addition, the ranks of the ground-truth positive instances for a random algorithm have
been indicated. This algorithm ranks all the test instances randomly. Similarly, the ranks
for a “perfect oracle” algorithm are such that the correct positive instances are placed
as the top five instances in the ranked list. The resulting ROC curves are illustrated in
Fig.7.7a. The corresponding precision-recall curves are illustrated in Fig.7.7b. Note that



the ROC curves are always increasing monotonically, whereas the precision-recall curves
are not monotonic. While the precision-recall curves are not quite as nicely interpretable as
the ROC curves, it is easy to see that the relative trends between different algorithms are
the same in both cases. In general, ROC curves are used more frequently because of greater
ease in interpretability.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms and that the
random algorithm is inferior to all the other algorithms. On the other hand, algorithms A
and B show domination at different parts of the ROC curve. In such cases, it is hard to say
that one algorithm is strictly superior. From Table 7.1, it is clear that Algorithm A ranks
three positive instances very highly, but the remaining two positive instances are ranked
poorly. In the case of Algorithm B, the highest ranked positive instances are not as well
ranked as Algorithm A, though all five positive instances are determined much earlier in
terms of rank threshold. Correspondingly, Algorithm A dominates on the earlier part of the
ROC curve, whereas Algorithm B dominates on the later part. It is possible to use the area
under the ROC curve as a proxy for the overall effectiveness of the algorithm. However, not
all parts of the ROC curve are equally important because there are usually practical limits
on the size of the predicted list.

Application to information retrieval and search: The ROC can also be used for
evaluation in information retrieval and search. The only difference is that instead of a single
prediction problem, we have a set @ of multiple queries. Each such query has its own ROC,
and the AUCs of the different queries are averaged to provide a final result.

Intuitive interpretation of Area under Curve (AUC): The area under the curve has
a natural intuitive interpretation. If one samples two random test instances, such that one
of them belongs to the positive class and the other belongs to the negative class, the AUC
provides the probability that the two instances are ranked correctly with respect to each
other by the ranking algorithm. When the algorithm returns random rankings, each of these
instances is equally likely to occur ahead of the other in the ranked list. As a result, the
AUC of a random algorithm is 0.5.

Average precision and mean-average precision (MAP): The average precision is
defined in the single-query setting (like classification), whereas the mean average precision
is defined in a multi-query setting like information retrieval where multiple queries are used.
In the context of information retrieval applications, the precision is also referred to as the
hit rate. Let L be the maximum size of the recommended list in an information retrieval
setting, and Precision(t) be the precision, when the size of the predicted list is ¢. Then, the
average precision AP is computed as follows:

Zthl Precision(t)
L

This defines the average precision over a single query. However, if we have a query set @,
and AP; corresponds to the precision of the ith query, then the mean average precision is
defined as the mean of these values over the |@Q| different queries.

Z|Q| AP;
Q)

It is possible to set the value of L to the size of the universe of documents, although this is
often not done in practice. In practice, a maximum “reasonable” size of the recommended
list is used to set the value of L.

AP =

(7.15)

MAP = (7.16)



7.5.3.2 Top-Heavy Measures for Ranked Lists

One disadvantage of the receiver operating characteristic is that it places an equal level
of importance on the top-ranked instances versus the lower-ranked instances. For example,
moving an instance belonging to the positive class in the ranking below ten additional
negative instances has the same incremental effect on the AUC, irrespective of whether
that instance was originally at the top of the list or whether that instance was in the
middle of the list. However, from an application-centric point of view, the user often pays
much more attention to the top of the list. Therefore, it is useful to design performance
measures that pay greater attention to the top of the ranked list. These types of measures
are particularly important in information retrieval and search, in which the returned list of
results is an extremely small fraction of the universe of documents, and it is not realistic
to use measures such as the AUC that require the entire ranked list. Top-heavy measures
provide decreasing importance to the instances ranked lower in the list, so that the effect of
changing the list lower down the order has little effect on the performance metric. From a
practical point of view, this approach truncates the ranked list of predicted positive instances
because the vast majority of items that are very low down the list have little effect on the
overall evaluation.

In utility-based ranking, the basic idea is that each positive instance in the recommended
list contributes a utility value that depends on its position in the list. If a positive item is
ranked higher in the recommended list, then it has greater utility to the user, because it
is more likely to be noticed by virtue of its position. This is a somewhat different concept
from the AUC, which only uses the relative positions of the positive and negative instances,
and pays little attention to their absolute position.

Let v; be the position of the jth test instance in the recommended list. Furthermore, let
y; € {0,1} be its label corresponding to whether it is relevant or not. A value of 1 indicates
that it is relevant. In the classification? setting, a value of 0 corresponds to the negative
class, whereas a value of 1 corresponds to the positive class.

An example of such a measure is the discounted cumulative gain (DCG). In this case,
the discount factor of the jth test instance is set to log,(v; + 1), where v; is the rank of this
instance in the recommended list. Then, the discounted cumulative gain for a single query

is defined as follows: l
2rels — |
DCG = _ (7.17)
j:;L log, (v; + 1)

Here, rel; is the ground-truth relevance of test instance j. In the classification setting,
the value of rel; might simply be set to y;. In information retrieval settings, the value
of rel; is set to the numerical score that a human evaluator gives to the document. Note
that the discounted cumulative gain only gets credit for those test instances in which the
value of v; is at most L. In some settings like classification, the value of L is set to the total
number of test instances. However, in other settings, the value of L is set to some reasonably
large value beyond which it does not make sense to examine the recommended list. The
above description is for the case of single query setting like classification. In the multi-query
setting, the value of the DCG is averaged over the different queries. Note that each query
would have its own ground truth set, and corresponding values of rel;, and therefore the
discounted cumulative gain needs to be computed independently for each query.

2Throughout this book, we have used y; € {—1,+1} in the classification setting. However, we switch to
the notation {0, 1} here for greater conformity with the information retrieval literature.



Then, the normalized discounted cumulative gain (NDCG) is defined as ratio of the
discounted cumulative gain to its ideal value, which is also referred to as ideal discounted
cumulative gain (IDCG).

DCG

I1DCG
The ideal discounted cumulative gain is computed by repeating the computation for DCG,
except that the ground-truth rankings are used in the computation. The basic idea in the
computation is that it is assumed that the ranking system can correctly place the ground-
truth positive instances at the top of the ranked list. The ideal score is computed under
this assumption.

NDCG = (7.18)

7.6 Summary

This chapter discusses the theoretical aspects of text classification performance and its
applications in improve the accuracy of text classifiers. In particular, the use of ensem-
ble methods in improving classifier accuracy was discussed. In addition, the evaluation of
classification algorithms was discussed. Text classifier evaluation is closely related to that
of evaluation of search engines, particularly when ranking-based measures are used. The
receiver operating characteristic is commonly used for evaluating the accuracy of classifiers.
In addition, a number of top-heavy measures such as the use of normalized discounted
cumulative gain are introduced in this chapter.

7.7 Bibliographic Notes

A detailed discussion of the bias-variance trade-off may be found in [206]. The bias-variance
trade-off was originally proposed for regression, though it was eventually generalized for
binary loss functions in classification [264, 265]. The bias-variance trade-off has also been
studied from the perspective of unsupervised problems such as outlier analysis [9]. A dis-
cussion of ensemble methods for classification may be found in [441, 539], and a discussion
for outlier detection is found in [9]. Bagging and random forest methods for classification
are discussed in [60, 61, 65]. In addition, feature begging methods for classification were
introduced in [220, 221]. These methods were precursors to the random forest technique.
The use of bagging for 1-nearest neighbor detectors is studied in [428]. The AdaBoost algo-
rithm was introduced in [173], and a ranking variant for information retrieval, referred to as
AdaRank, is discussed in [510]. Stochastic gradient boosting methods are proposed in [174].

7.7.1 Connection of Boosting to Logistic Regression

Although boosting methods may sometimes seem mysterious in their ability to consistently
improve accuracy, they can be understood better when viewed from the perspective of
iterative variations of linear regression that fit linear models to nonlinear data with the use
of example re-weighting. Such models are referred to as generalized additive models [209]
that attempt to fit a (simpler) linear model to a complex data distribution by applying
multiple instantiations of the linear model on re-weighted or modified instances of the
training data. An example of such a model with numerical data is to apply linear regression
iteratively with the residuals as new response variables and also reweighting instances. This
is a classical form of generalized additive models that was known long before the advent of
the boosting algorithm [209].



However, iterative linear regression with residuals is suited to numerical response vari-
ables. Logistic regression is a probabilistic approach that uses the logistic function to convert
the numerical response in linear regression to a binary response with a Bernoulli assumption
on the response variable. For the two-class problem, boosting can be viewed as an approxi-
mation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a
criterion [175]. Note that the use of the logistic scale is a standard way to convert numerical
regression responses to the binary case. The exponential re-weighting in boosting can be
explained on the basis of this assumption. In essence, AdaBoost adapts the loss function
from the approach used in generalized additive models in a suitable form for classification,
and then uses an iterative approach to optimize it. Furthermore, AdaBoost is applied as
an ensemble method with any classification algorithm rather than as a generalized variant
of a specific classification (i.e., logistic regression) model. This historical connection is also
consistent with the fact that AdaBoost should only be used in combination with simple
models with low variance (like linear models). Like AdaBoost, generalized linear models are
susceptible to overfitting.

7.7.2 Classifier Evaluation

Evaluation methods for classification, recommender systems, regression, information re-
trieval, and outlier analysis are closely related. In fact, many techniques like the precision-
recall measures and the receiver operating characteristic are used in all these cases. A
detailed discussion of evaluation methods in recommender systems may be found in [3].
Such evaluation measures have significant usefulness in the context of information retrieval
applications. The receiver operating characteristic curve is discussed in detail in [166]. A
detailed discussion of several evaluation methods for classification and information retrieval
may also be found in [321].

7.7.3 Software Resources

Ensemble methods are available in many of the libraries such as the Python library scikit-
learn [550], the caret package in R [267], and the package RTextTools [571]. The ro-
tationForest package [572] in R, which is available from CRAN, can be used to address
the sparsity challenges associated with text. The Weka library [553] in Java contains nu-
merous ensemble methods for classification. Most of the aforementioned libraries contain
built-in tools for classifier evaluation, such as the accuracy, precision, recall, and the receiver
operating characteristic.

7.7.4 Data Sets for Evaluation

Many data sets are available for the evaluation of classification algorithms. Any discussion
of data sets for text is incomplete without the discussion of the pioneering 20 Newsgroups
and Reuters data sets. The 20-Newsgroups data set [576] contains about 1000 articles from
twenty different Usenet groups. Therefore, this is a multiclass problem, which is used com-
monly in many classification settings. The Reuters data set has two variations corresponding
to Reuters-21578 [577] and (the larger) Reuters Corpus Volume 1 (RCV1) [578]. The for-
mer data set derives its name from the back that it contains 21,578 news articles from the
Reuters newswire service. The latter collection contains more than 800,000 articles. The
University of California at Irvine Machine Learning Repository [549] contains several la-
beled text data sets. The Europeana Linked Open Data initiative [579] has a collection of



text data sets, which includes other types of rich data such as links, images, videos, and
other metadata. The ICWSM 2009 data set challenge [580] has also published a very large
data set of 44 million blog posts. Although the data set is not specific to classification, it
can be used for a variety of supervised applications with the appropriate annotation. In
addition, Stanford University NLP [555] contains a large number of text corpora, albeit for
linguistically focused applications.

A number of data sets are also available for evaluating search and retrieval relevance,
which is related to but not quite the same as classification. Among them, the Text Retrieval
Conference (TREC) collections are among the most well known for information retrieval
evaluation [573]. The data sets also contain relevance judgements that are useful for evalu-
ation purposes. The NII Test Collection for IR Systems (NTCIR) focuses on cross-language
retrieval and may be found in [574]. The cross-language evaluation forum (CLEF) also
provides a similar source of data sets [575].

7.8 Exercises

1. Discuss the effect on the bias and variance by making the following changes to a clas-
sification algorithm: (a) Increasing the regularization parameter in a support vector
machine, (b) Increasing the Laplacian smoothing parameter in a nive Bayes classifier,
(c) Increasing the depth of a decision tree, (d) Increasing the number of antecedents in
a rule, (e) Reducing the bandwidth o, when using the Gaussian kernel in conjunction
with a support vector machine.

2. Suppose you found the optimal setting of the Gaussian kernel in and SVM for a
data set. Now you were given additional training data to use for your SVM, which is
identically distributed to your previous data set. Given the larger data set, would the
optimal value of the kernel bandwidth increase or decrease in most settings?

3. A key parameter while designing a subsampling ensemble is the size of the subsample.
Discuss the effect of this choice from the point of view of the bias-variance trade-off.

4. Implement a subsampling ensemble in combination with a 1-nearest neighbor classifier.

5. Suppose you used a l-nearest neighbor classifier in combination with an ensemble
method, and you are guaranteed that each application gets you the correct answer
for a test instance with 60% probability. What is the probability that you get the
correct answer using a majority vote of three tries, each of which are guaranteed to
be independent and identically distributed?

6. Suppose that a data set is sampled without replacement to create a bagged sample
of the same size as the original data set. Show that he probability that a point will
not be included in the re-sampled data set is given by 1/e, where e is the base of the
natural logarithm.



Chapter 8

Joint Text Mining with Heterogeneous
Data

“We become not a melting pot but a beautiful mosaic. Different people, different
beliefs, different yearnings, different hopes, different dreams.”—Jimmy Carter

8.1 Introduction

Text documents often occur in combination with other heterogeneous data such as images,
Web links, social media, ratings, and so on. Examples of such settings are as follows:

1. Web and social media links: In Web and social media networks, the text documents
are often associated with nodes. For example, the Web can be a viewed as a graph in
which each node contains a Web page and also connects to other nodes via hyperlinks.
Similarly, a social network is a friendship graph of user-to-user linkages in which each
node contains the textual posting activity of the user. Therefore, one can associate a
node with a list of terms as well as a list of other nodes.

2. Image data: Many images on the Web and from other sources are associated with
textual captions and other content. One can therefore conceptualize two sepa-
rate collections of text and images, which are connected to one another with co-
occurrence/captioning links.

3. Cross-lingual data: Cross-lingual data contains a separate corpus for each language,
and associations might exist between the two collections. These associations might be
based on either cross-lingual dictionaries or pairs of similar documents. The goal is to
discover a joint representation for text mining.

The heterogeneous nature of the features creates numerous challenges for algorithm design.
Although researchers and practitioners have often studied these different problem domains
independently, there are surprising similarities in the underlying techniques. Therefore, this
chapter will provide a unified presentation of these heterogeneous settings.



The aforementioned problems arise in both supervised (e.g., classification) and unsu-
pervised settings (e.g., clustering and topic modeling). The resulting methods are fairly
general, and they cover nontraditional variations of these problems such as transfer learn-
ing. In transfer learning, labeled data (e.g., documents) in one domain are used to perform
classification in another domain (e.g., images), when the amount of labeled data in the first
domain is significantly greater than the second. Transfer learning is also used in the unsuper-
vised context, in which the unlabeled data in the text domain is used to learn semantically
coherent features for a domain like image data.

The main challenge in all these cases is that the input feature spaces of the different
domains are different. Machine learning methods can be best implemented when the data
from the different modalities are embedded in a single feature space. This opens the door
to latent modeling techniques, which can take on one of three forms:

1. Shared matriz factorization: In these case, the various types of data are represented
as matrices, and the relationships among these matrices are expressed in the form
of a factorization graph, which expresses a set of factorization relationships among
matrices. This terminology should not be confused with the notion of a factor graph
used in probabilistic graphical models. Each vertex corresponds to the latent variables
of a row (e.g., document, image, social network node) or a column (e.g., term, visual
feature, social network node). Each edge corresponds to a factorization relationship
by multiplying the latent variable matrices at its end points, and therefore the edge is
labeled with the relevant matrix that is factorized by these latent variables. Therefore,
given a problem with heterogeneous data, all that the analyst has to do is to set up
an appropriate factorization graph, which is followed by setting up its corresponding
optimization problem and gradient-descent steps. It is noteworthy that even though
this approach has implicitly been used by many researchers repeatedly across many
data domains, this book will formalize the approach as a more systematic framework.
It is hoped that such a systematic framework will reduce the burden on a practitioner
and researcher who is faced with a new setting involving heterogeneous data.

2. Factorization machines: Factorization machines were recently proposed in the context
of heterogeneous data in recommender systems. The approach can be extended to all
types of heterogeneous settings beyond recommender systems. Many special cases
of factorization machines are identical to shared matrix factorization methods. One
advantage of using factorization machines is that the problem can be reduced to
the systematic process of feature engineering. Furthermore, off-the-shelf software for
factorization machines is available. On the other hand, factorization machines are
better suited to supervised problems like regression and classification, whereas shared
matrix factorization methods can be applied to broader settings.

3. Joint probabilistic modeling: In joint probabilistic modeling, a generative process is
assumed to create the documents and other data types based on a hidden variable.
Each data type is drawn from its own probability distribution.

Another common approach is to convert the heterogeneous data to a relationship graph
on which network mining algorithms are directly applied. In such cases, each data item
(document) or feature corresponds to a node in the graph and the edges represent the
relationships among them (e.g., presence of a term in a document). One can view the
relationship graph as an expanded representation of the factorization graph in which one
does not attempt to summarize the data with latent variables. This approach is different



from the aforementioned methods in that it does not directly try to find to a compressed
(latent) representation of the data, but it explicitly tries to model structural relationships
between the individual data items and/or features of various domains, and represent them
as a network. The resulting network is often quite large because each data item (e.g.,
document) or feature (e.g., term) corresponds to a distinct node in the resulting network.
This type of modeling allows the use of off-the-shelf structural mining algorithms.

Finally, a general comment about the goals of this chapter is in order. While it is
possible to create separate chapters for text-image mining, text-link mining, or cross-lingual
mining, such an approach does not help one grasp the main ideas behind the common
principles of the corresponding mathematical techniques. Therefore, if one is faced with a
new setting involving a different type of data, one has to start from scratch in designing
a suitable methodology for the mining process without being able to generalize the ideas
already available from known settings. The goal of this chapter is not to teach the reader
about a specific type of heterogeneous setting such as text, images, links, or cross-lingual
data. Rather, it is to point out the common threads that run through these (seemingly
independent) lines of research and educate the reader to use them in a systematic way.
This book therefore summarizes this commonly used “bag of tricks” from various domains
(and independent threads of work) in the context of a unified framework for the first time.
In addition, for each specific approach, examples from various application domains will be
provided to compare and contrast the different tricks.

8.1.1 Chapter Organization

This chapter is organized as follows. The next section introduces shared matrix factorization.
Factorization machines are introduced in Sect. 8.3. Joint probabilistic modeling techniques
are introduced in Sect.8.4. The use of graph mining techniques for mining heterogeneous
data domains is discussed in Sect.8.5. A summary is given in Sect. 8.6.

8.2 The Shared Matrix Factorization Trick

The main challenge while dealing with heterogeneous data is the fact that the different data
domains use completely different feature spaces to represent their data. For example, while
documents are represented as document-word matrices, images are represented as image-
(visual word) matrices. Furthermore, indirect relationships between documents and images
such as captioning and user tagging may also be expressed in the form of matrices. Note that
the document-term matrix shares the document modality with the document-image matrix.
In general, we have a set of matrices in which some of the modalities are shared, and we
wish to extract latent representations of the shared relationships implicit in these matrices.
These latent representations are typically expressed in the form of low-rank matrices, which
can be used for any application such as clustering, classification, and so on. The key in this
entire process is to use shared latent factors between different modalities so that they are
able to incorporate the impact of these relationships in an indirect (i.e., latent) way within
the extracted embedding. A key aspect of this approach is to create a factorization graph
that expresses the latent relationships between the different data modalities.

8.2.1 The Factorization Graph

The factorization graph is a way of expressing how different data matrices are created
by different features and data items. The simplest possible factorization graph is that of
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Figure 8.1: Simplest possible examples of factorization graphs

factorizing the n x d document-term matrix D into the n x k latent factor U and the d x k
latent factor V. The corresponding document-term matrix D is factorized as follows:

D~UVT (8.1)

Note that the matrix U contains the latent factors (i.e., embedding coordinates) of
each document in its rows, and the matrix V contains the latent factors (i.e., embedding
coordinates) of each term in its rows. This factorization can be expressed as a directed graph
shown in Fig. 8.1a. The nodes and edges of this factorization graph are defined as follows:

1. Each node corresponds to a matrix of latent factors. These latent factors might either
correspond to the rows of a data matrix or the columns of a data matrix. For example,
the node on the left in Fig.8.1a corresponds to the document embedding U, and the
node on the right corresponds to the term embedding V. Each of these latent factor
matrices is defined in such a way that the number of columns is equal to the rank of
the factorization.

2. A directed edge from U to V is defined for the factorization D ~ UVT. The edge is
labeled with the matrix D that is factorized. It is noteworthy that the direction of
the edge defines the fact that U occurs first in the factorization. Furthermore, even
though the node at the arrow-head of the edge is labeled with V| its transpose is used
in the factorization.

It is possible for the edges in the factorization graph to be self-loops. For example,
a factorization of an n x n symmetric matrix A (e.g., adjacency relations of a social
network) can be of the form UU?. Such an example is shown in Fig.8.1b. In such a
case, the factorization is expressed with a single node in the factorization graph.

All the factorizations discussed in Chap. 3 are two-node or single-node factorizations. It is
also possible to add other constraints to the factorization, such a orthogonality, nonnega-
tivity, and so on. Such constraints are optional, and are not included in the factorization
graph. Therefore, a given factorization graph could represent many possible factorizations,
depending on the constraints that are added to the factorization process. Although the
two-node factorization graph does not seem to convey much information, this graphical
representation is more useful in complex types of multi-modal settings.

8.2.2 Application: Shared Factorization with Text and Web Links

Consider a setting in which one wants to factorize a Web graph using both the text content
and links. In this case, we have two data matrices. The first data matrix D is an n x d



document-term matrix corresponding to the textual content of all the Web pages. The other
matrix A is an n X n directed adjacency matrix, which is not symmetric. Furthermore, the
structural and textual information are intimately connected. Therefore, the latent factors
of a node should be regulated by both the text and linkage structure.

The n x k document factors are denoted by the matrix U = [u;;] (with rows containing
k-dimensional document factors) and the term factors are contained in the matrix V' = [v;]
(with rows containing k-dimensional term factors). Since there is a one-to-one correspon-
dence between documents and the vertices of the Web graph, one of the factors of the
adjacency matrix A should be U. However, there are two modeling options as to whether to
use U as the outgoing factors of the adjacency matrix or to use U as the incoming factors of
the adjacency matrix. With these options the corresponding factorizations are as follows:

1. When U is used as an outgoing factor of the adjacency matrix, the semantic inter-
pretation is that the low-rank representation of a Web document is closely related to
the types of Web pages that it points towards. In such a case, one must introduce an
additional n x k incoming factor matrix H = [h,;], and try to find U, V, and H, such
that the following conditions are satisfied:

D~UVT A~UHT (8.2)
The corresponding factorization graph is illustrated in Fig. 8.2a.

2. When U is used as an incoming factor of the adjacency matrix, the semantic interpre-
tation is that the low-rank representation of Web document are closely related to the
types of Web pages that point to it. In such a case, one must introduce an additional
n X k outgoing factor matrix H, and try to find U, V, and H, such that the following
conditions are satisfied:

D~UVT A~ HUT (8.3)

The corresponding factorization graph is illustrated in Fig. 8.2b.

3. An additional option is to treat the outgoing and incoming link factors in a symmetric
way by using the following set of conditions:

D~UVT D~HVT, Ax~UH" (8.4)

Note that in this case, it does not matter whether the last condition is used as A =
UHT or whether we use A ~ HU7T, although only one of these two conditions is
imposed for an asymmetric matrix A. The two equivalent factorizations are shown in
Fig. 8.2c.

The specific choice of the shared factorization depends on which semantic interpretation is
considered more likely by the analyst. For now, let us consider the case in which the content
of documents is more closely related to their outgoing links (cf. Fig.8.2a). In such a case,
the optimization model should enforce the following factorizations:

D~UVT A~UHT (8.5)

One can, therefore, define the following optimization problem in order to learn the matrices
U, V,and H as follows:

Minimize J = ||D — UVT|[% + BllA = UHT|[3 + MU|IE + [|VI[E + || H][%)

Regularization
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Here, the notation ||- || denotes the Frobenius norm of a matrix, the parameter 8 regulates

the relative importance of the structure versus the content, and A controls the amount of
regularization. It is also possible to use different regularization weights for each of U, V,
and W. Such optimization problems are solved with the use of gradient-descent methods
(cf. Sect. 8.2.2.1). It is relatively straightforward to formulate the optimization problem for
the case of Fig. 8.2b by changing the term 3||A—UH7||% in the aforementioned optimization
problem to 8||A — HUT||%. In the case of the factorization graph in Fig.8.2c, it would
suffice to add the term ~||D — HVT||% to either of the aforementioned two formulations.
This particular family of optimization problems is designed for the unsupervised setting.
The resulting factors can be used for clustering either documents or terms by applying
the k-means algorithm to the k-dimensional rows of U and V, respectively. Although these
embeddings can be directly used for classification, one can also make enhancements to the
optimization model for supervised settings (cf. Sect. 8.2.2.2).

8.2.2.1 Solving the Optimization Problem

We compute the gradient of J with respect to the entries in U, V', and H to update them
in the direction of the (negative) gradient. For any current values of U, V', and H, let eg-
represent the (4, j)th entry of the error matrix (D — UVT), and e;é- represent the (i,7)th
entry of the error matrix (A —UHT). The relevant partial derivatives of J can be expressed
as follows:

d n
aJ
:—Zegvjq—ﬂZef;hpq—i—)\uiq Vie{l...n}, Vge{l...k}
j=1

8uiq =1

aJ -

W:—Zefguiq—i—)\vm Vie{l...d}, YVge {1...k}
Jq i=1

aJ =

o =B emuiqg+Npg Vj€{l...d}, Vg€ {1...k}
Pq

i=1



For notational simplicity, a factor of 2 is omitted from the aforementioned gradients because
it can be absorbed by the step-size in the gradient-descent method. These gradients can be
used to update the entire set of (2-n+d)k parameters with a step-size of ae. However, such an
approach can sometimes be slow to converge. It can also be impractical because it requires
the computation of large error matrices corresponding to (D —UVT) and (A—UHT). The
latter is particularly large when n is large.

A more effective approach is to use stochastic gradient descent, which effectively com-
putes the gradients with respect to residual errors in randomly sampled entries of the
matrices. One can sample any entry in either the document-term matrix or the adjacency
matrix, and then perform the gradient-descent step with respect to the error in this single
entry. In other words, one performs the following steps:

Randomly sample any entry from either D or A;
Perform a gradient-descent step with respect to entry-specific loss;

Consider a case in which the (4, j)th entry in the document-term matrix is sampled with
error ei[j)» . Then, the following updates are executed for each ¢ € {1...k} and step-size «:

Uiqg <= Uig(1 —a- A/2) + aegvjq
Vjg <= Vjg(1 —a- ) + aeguiq

On the other hand, if the (7, p)th entry in the adjacency matrix is sampled, then the following
updates are performed for each ¢ € {1...k} and step-size «:

Uiqg <= Uig(L — - N/2) + ozﬁe;;‘)hpq
hpg <= hpg(1 —a - A) + aﬂef;)uiq

These steps are repeated to convergence. The main advantage of stochastic gradient descent
is the fast update and the ability to deal with large matrices.

The aforementioned updates are designed for the case of the factorization of Fig.8.2a.
It is also possible to derive the stochastic gradient-descent steps for the case of Fig.8.2b in
an analogous way.

8.2.2.2 Supervised Embeddings

It is possible to extract better embeddings in supervised settings by incorporating infor-
mation available from the dependent variable within the optimization model. Consider the
case in which some of the rows of the n x d data matrix D are associated with class labels
y; drawn from {—1,+1}. Therefore, we define the set S of observed labels as follows:

S = {i : Label y; of ith row of D is observed} (8.6)

In such a case, one can create a k-dimensional coefficient (row) vector W, and assume that
the class label is related to features by regression. Let @; be the k-dimensional row vector
corresponding to the ith row of U. Then, the linear-regression condition is as follows:

yi~Tu; - W VieS (8.7)
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In such a case, the optimization problem is modified as follows:
Minimize J = ||D — UV"||% + B|A = UH"[|% +~ > _(yi — @ - W)?

€S
+MUIE +IVIIE + [ H[F + W)

Regularization

Note that the added term is derived from the optimization formulation of least-squares
classification (cf. Chap.6). Therefore, the approach can also be used in cases where the
dependent variables are real-valued. One can then use gradient-descent methods in order to

learn the supervised embeddings U, V, and H. In such a case, the vector UWT yields the
predicted values of y; for both the training and the test data. Using supervised embeddings
can sometimes yield better quality results for classification than unsupervised embeddings.
The derivation of the gradient-descent steps uses the same broad approach as in the case
of Sect.8.2.2.1.

8.2.3 Application: Text with Undirected Social Networks

Many graphs like social networks are undirected, which raises the possibility of symmetric
matrix factorization. We have a set of n documents, such that each document corresponds to
a node (or actor) in the social network. Therefore, we have an n x d document-term matrix
D, and an nxn symmetric and undirected adjacency matrix of the social friendship network.
Furthermore, it is assumed that a one-to-one correspondence exists between documents and
social actors, representing the content (e.g., summary of all Facebook wall posts) associated
with that actor. In such a case, we have an n x k node-linkage factor matrix U, and a d X k
term factor matrix V. The relevant factorizations are as follows:

D~UVT A~UUT (8.8)

The corresponding factorization graph is illustrated in Fig.8.3. It is noteworthy that the
adjacency matrix can be factorized with a single matrix because of the fact that it is
symmetric. However, it is important to set the diagonal entries of A to the degrees of
the nodes in order to ensure that the matrix A is positive semi-definite. Otherwise, the
diagonal entries might increase the error of factorization UU? (which is always positive
semi-definite). The optimization formulation is as follows:

Minimize J = ||D — UVT|[% + Bl|A = UUT|[% + MIU||E + ||V [[7)

Regularization



One can use similar stochastic gradient-descent steps as in Sect. 8.2.2.1. At any particular
values of U and V, the error of the (4, 7)th entry of the document-term matrix is denoted
by ei[; = (D—UVT);; and the error of the (i, j)th entry of the adjacency matrix is denoted
by eZ-Aj =(A-UU T)ij. In stochastic gradient-descent approach, the gradients are computed
with respect to the loss in a single entry. Consider a case in which the (7, j)th entry in the
document-term matrix has been sampled with error 65 =(D-U VT)Z-J-. Then, the following
updates are performed for each ¢ € {1...k} and step-size a:

Uig <= Uig(L — - N/2) + aegvjq
Vjg = vjg(l—a- X))+ aeguiq

On the other hand, if the (7, p)th entry in the adjacency matrix is sampled, then the following
updates are performed for each ¢ € {1...k} and step-size a:

Uig <= Uig(l — - A/2) + 2aﬁef;,upq
Upg <= Upg(l —a - A) + 2aﬂeﬁ,uiq

These steps are repeated to convergence. One can also perform a supervised factorization
of the matrix by adapting the approach discussed in Sect.8.2.2.2.

8.2.3.1 Application to Link Prediction with Text Content

The link prediction problem in social networks is that of finding pairs of actors, who are
not currently connected but are likely to become connected in the future [292]. The afore-
mentioned factorization can used easily for link prediction in social networks. In particular,
consider any pair of nodes (¢, j), between which a link does not currently exist. Then, the
(i,4)th entry of UUT will provide a numerical propensity of a link existing between nodes
i and j. Therefore, the entries of UUT provide link-prediction scores.

8.2.4 Application: Transfer Learning in Images with Text

Text documents have the advantages of having a semantically coherent feature space, which
is often closely related to the semantic nature of clusters and classes in real-world appli-
cations. In other words, text has a data representation, which is often application-friendly
because of the natural way in which its features are extracted. This is not quite the case in
image data in which the features are semantically less informative. Is there any way in which
one can use the higher-quality features of text data in order to engineer better features for
image mining? This problem is referred to as that of “closing the semantic gap” in image
classification. One way of achieving this goal is the use of transfer learning, in which knowl-
edge is transferred from the text to the image domain. The key idea here is that images
often co-occur with various types of text such as tags or captions. This co-occurrence can
be used to map the images into a new latent semantic space in which the feedback from
the co-occurrence information is incorporated. The new multidimensional representation is
semantically more coherent, because it incorporates knowledge from the text modality. As
a result, the classification is significantly improved when off-the-shelf classifiers are used on
the representation. There are two distinct settings in which transfer learning is used. The
first is one in which the text is unlabeled and the only purpose of transfer learning is to
engineer better quality features with the use of co-occurrence information. This approach is
a kind of semi-supervision, except that the unlabeled data belongs to a different (text) do-
main from that in which the classification is performed. The second setting is one in which
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Figure 8.4: Joint factorization with document-tag and (visual feature)-tag matrix

the text data are already labeled and one also uses the labeling to perform the classification
in the image domain. Unlike the first setting, the text also helps in compensating for the
paucity of labels associated with the images.

8.2.4.1 Transfer Learning with Unlabeled Text

Consider the case in which we have an m x d’ image-(visual feature) matrix denoted by M
in d’ dimensions (corresponding to visual words), and each of the m rows in this matrix is
denoted by a class label. It is noteworthy that visual words correspond to image features,
they are often semantically a lot less friendly than textual words. Therefore, transfer learning
methods are used [540] in order to extract a semantically coherent representation of the
images. One can view this approach as a kind of semi-supervised learning with unlabeled
data, except that the semi-supervision is performed with data from a different (text) domain
in order to classify image data [540].

Where does one obtain the semantic knowledge about the visual features? This is ex-
tracted from tagging data. In many social media sites like Flickr, images are often tagged
and each tag can be viewed as a short set of keywords. Fach tag typically contains less
than two or three words, and rarely more than ten words. As a practical matter, one can
consider a tag set as new and informal lexicon, which is semantically very descriptive. Con-
sider the case in which we have a vocabulary of d tags, and each tag can be applied to one
or more of a set of p images. Therefore, we have a tagged set of p images, with a p x d’
representation (denoted by Z) in visual-word space, and a corresponding tag matrix T,
which has a p x d binary representation. In other words, the matrix T contains 0-1 entries
corresponding to which tag is applied to which image. This matrix is extremely sparse. The
matrix G = Z7T is then a d’ x d mapping between visual words and tags. In other words,
it provides knowledge about which visual word corresponds with which tag frequently, and
is a kind of mapping of the (semantically obscure) visual words to the space of (semanti-
cally coherent) tags. In addition, it is assumed that we have a set of n documents that are
expressed in terms of the informal vocabulary of d tags. Although a document collection
might originally be expressed using a conventional lexicon of English words, it is not very
difficult to express it in terms of a tag vocabulary by setting the value of the jth tag for the
ith document to 1 if at least one conventional word is shared between the document and the
tag. In other words, we have an n x d document-tag matrix in terms of this non-traditional
tag-vocabulary of size d. This document-tag matrix is denoted by D and it provides useful
co-occurrence information between the different tags, which is further useful for extracting
a semantic representation of the images. One can view D as the unlabeled collection that
is used for semi-supervision.

Let H be a d’ x k matrix and V be a d x k matrix, where k is the rank of the fac-
torization process. Note that the factorization of the matrix G = HVT provides a latent
representation H of each visual word, although it is unable to account for the co-occurrences



and relationships among different tags. This is particularly important because the matrix
G is often sparse, which makes it difficult to extract reliable factor matrices. Therefore, we
propose to use a shared factorization with an additional n x k factor matrix U of the n
documents in D:

D~UVT, G~HVT
The corresponding factorization graph is illustrated in Fig. 8.4, and its associated optimiza-
tion problem is as follows:

Minimize J = ||D — UVT|[5 + BIIG = HVT|[E + (U5 + [|VIIE + [|H||F)

Here, (8 is the balancing parameter that regulates the relative importance of the different
terms. This optimization problem is very similar to that discussed in Sect. 8.2.2.1. Therefore,
the gradient-descent steps of that section can be used for this problem, although other types
of optimization methods are also discussed in [540].

The matrix H can be viewed as a kind of translator matrix to transform data points from
visual-word space to a latent semantic space in which the representation quality is improved.
Given the labeled m x d’ matrix M, one can transform it to k-dimensional space by using
the new representation M’ = MH. The classification is performed on this transformed
representation of the data.

8.2.4.2 Transfer Learning with Labeled Text

A second setting is one in which have a labeled n x d document-term matrix, and also a set
of images for which very few labels are observed. In the case of the documents, the labels
are available as an n-dimensional column vector § = [y; ...yn|T. It is assumed that each
y; is drawn from {—1,41}. In addition, we have an m x d' image-(visual word) matrix M,
which is defined over a lexicon of d’ visual words. The labels for a subset S of images in M
is observed, and these labels are drawn from the same base set as the documents. Therefore,
we have:
S = {i: Label of ith row of M is observed}

In the event that the label of the ith row of M is observed, it is denoted by z;. Each z; is
also drawn from {—1, +1}. It is noteworthy that the size of the set S may be quite small in
many real settings, which is why transfer learning is required in the first place. It is assumed
that the documents and images may co-occur in various ways through either Web links, or
through the use of inline placement of images within Web pages. Therefore, we assume that
we have an m X n co-occurrence matrix C between the images and the Web pages.

In order to perform the factorization, both the images and the documents are mapped
into a k-dimensional latent space, with corresponding factors denoted by Ujp; and Up,
respectively. Here Uys is an m X k matrix because there are m images, and Up is an n X k
matrix because there are n documents. In addition, the d’ x k latent-factor matrix of the
visual words is denoted by H and the d x k latent-factor matrix of the (textual) words is
denoted by V. Then, in order to force Uy; and Up to be the relevant embeddings of the
image and text domains, respectively, we have the following:

M~UyHY, D=UpVT

The key point is that the matrices Ups and Up are in the same k-dimensional space and the
dot products between their rows correspond to similarities, which are also reflected in the
co-occurrence matrix C'. This condition can be enforced by using the following factorization:

C~UpyUL (8.9)
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Figure 8.5: Joint factorization with text, images, and co-occurrence matrix

The corresponding factorization graph is illustrated in Fig. 8.5.

Without considering the labels, it is possible to create an unsupervised embedding for
the documents and images within a joint latent space. The corresponding optimization
problem is as follows:

Minimize J = ||D — UpVT||% + B||M — UprHT ||3 +4||C — UnUB||% + X - Regularizer

As in all the previous cases, the regularizer is defined by the sum of the squares of the
Frobenius norms of the various parameter matrices. Furthermore, 5 and  are balancing
parameters that regulate the relative importance of various terms.

However, when additional labels y; are available for documents and z; for images, it is
possible to add supervision by forcing documents and images with the same labels to be
somewhat similar. Because the labels are drawn from {—1, 41}, the value of 1+y;2; will be
2 when y; = z;, and it will be 0, otherwise. Let ﬂiD be the ith row of the document factor
matrix Up, and let ﬂJM be the jth row of the image factor matrix Uj;. Both these rows are
k-dimensional row vectors and the difference between them provides the distance between
the relevant embeddings of these rows. A label-agreement term, Jp, is defined by penalizing
distances between embeddings with the same label:

Jo=)Y (A +yz)lul —a)|f

i=1jes

Nonzero when y; = z;

In order to construct a supervised embedding, an additional term of §.J;, needs to be added
to the objective function J of the unsupervised embedding, where 6 regulates the importance
of supervision.

Once the embeddings have been learned (with a gradient-descent method), the sign of
each of the m entries in the column vector Uy UL% provides the label prediction of the m
images (including the originally labeled ones). The basic idea is that Uy U2 provides pair-
wise similarity between image-document pairs. By post-multiplying with 7, one is classifying
each image by using a similarity-weighted linear combination of the labels of documents.
Hyper-parameters like 3, v, and 6 can be tuned in order to maximize accuracy on a held-out
set. This discussion is broadly based on the ideas presented in [391].

8.2.5 Application: Recommender Systems with Ratings and Text

Content-based recommender systems use the textual descriptions of items to learn user
propensities about particular items. Ratings indicate the degree of like or dislike of users
towards items. In such cases, the data for each user is converted into a user-specific text
classification problem. The training documents for each user-specific classification problem
correspond to the descriptions of items rated by that user, and the dependent variable is its
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Figure 8.6: Joint factorization with users, items, and item descriptions

item-specific rating from that user. This training data can be used to learn a user-specific
classification or regression model for rating prediction.

However, content-based systems do not use the collaborative power of like-mined users to
make predictions. A different class of recommendation methods, referred to as collaborative
filtering methods, use the similarities in rating patterns between users and items to make
predictions. Let R be an m X n ratings matrix R over m users and n items. The matrix
R = [r;;] is massively incomplete, and only a small subset O of the ratings in R are observed:

O ={(4,7) : r;j is observed}

In addition, we have an n x d document-term matrix D, in which each of the n rows contains
the descriptions of the n items over a lexicon of size d.

Collaborative filtering problems are often solved using matrix factorization methods in
which the ratings matrix R is decomposed into user and item factors. A key complica-
tion with recommender systems is that the ratings matrix is only partial observed and
therefore, one can only define the optimization problem in matrix factorization over the
observed ratings in O. Let U be the m x k matrix representing the factors of the users, V'
be the n x k matrix representing the factors of the items, and let H = [h;;] be the d x k
matrix representing the factors of the textual words (terms). Then, we have the following
relationships:

R~UVY | D~VHT
—_——
Observed entries
The corresponding factorization graph is illustrated in Fig. 8.6.

Note that the first factorization is defined only over the observed entries in O. Therefore,
the corresponding optimization problem also needs to be formulated over the observed
entries as follows:

k
Minimize J = 3 (1 = 3 tssvy)? + 81D = VAT |3 + AU + [VI[E + 1H][3)
(4,7)€0 s=1

Here, 3 is the balancing parameter. The gradient-descent steps for this optimization problem
are similar to those discussed in Sect.8.2.2.1, except that only the observed entries are used
to compute the gradients. Setting 5 to 0 results in traditional recommender system updates
(see Exercise 5). Furthermore, almost the same optimization problem is used in the following
related settings:

1. One can combine user-user trust matrices with ratings matrices instead of combining
text with ratings matrices. This approach is described in Chapter 11 of [3].

2. One can combine social tagging matrices with ratings matrices. Such an approach
is similar to the technique discussed above, except that the tags are used as the
“lexicon” to represent the items. Furthermore, since tags are related to the users, it
is also possible to create a user-tag matrix, which can be factorized.
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Figure 8.7: Joint factorization of English and Spanish documents with feature co-occurrence

It is noteworthy that shared matrix factorization methods form the backbone of a wide
variety of hybrid techniques for recommender systems.

8.2.6 Application: Cross-Lingual Text Mining

Cross-lingual text mining shares a number of similarities with the case in which images and
text are mined together. However, in the case of the image/text mining, the co-occurrence
matrices are created using instances of images and documents. In the case of cross-lingual
text mining, sufficient domain knowledge is available to create cross-lingual matrices at the
feature level.

Consider a setting in which we have two document collections in English and Spanish,
respectively. The n x d document-term matrix for the English collection is denoted by Dpg,
whereas the m x d’ document-term matrix for the Spanish collection is denoted by Dg. In
addition, we have a dx d’ feature-level co-occurrence matrix C' between English and Spanish.
The feature-level co-occurrence matrix between English and Spanish can be extracted in a
variety of ways. For example, one can use a cross-lingual dictionary [34] or thesaurus [338]
in order to create the co-occurrence matrix. Each entry (4,7) in C takes on the value of
1 if the ith English term is related to the jth Spanish term. It is relatively easy to use a
dictionary to create a co-occurrence matrix. It is also possible to create co-occurring feature
matrix from document pairs that are translations of one another. For example, let Cr and
Cs be two ¢ X d and ¢ x d’ document-term matrices containing ¢ documents in English
and Spanish, respectively, so that the ith rows in Cg and Cg are translations of the same
sentence in English and Spanish, respectively. Then, one can derive d x d’ the feature-level
co-occurrence matrix as follows:

C =CpC% (8.10)

Unlike image-text mining, the co-occurrence matrices are specified at the feature level rather
than the instance level. Let Ug and Vg be the respective n x k and d x k document-factor and
term-factor matrices for the English documents. Similarly, let Ug and Vg be the respective
n x k and d X k document-factor and term-factor matrices for the Spanish documents. Then,
the corresponding factorizations are as follows:

D ~UgVy, Ds=UsVd, C=VgVd

The corresponding factorization graph is illustrated in Fig. 8.7. This particular factorization
is similar to the case of image/text mining except that the co-occurrence matrix is defined
as the product of the term-factor matrices in the two languages (rather than the instance
factors). The optimization problem can be formulated in a similar way, and the gradient-
descent steps can be obtained by computing the derivative of the squared error.



8.3 Factorization Machines

Factorization machines are closely related to shared matrix factorization methods, and are
particularly suitable under the following conditions:

1. Each data instance contains features from multiple domains. For example, consider
an item that is tagged with particular keywords by a user and also rated by that
user. In such a case, the feature set corresponds to all the item identifiers, all the
possible keywords, and the user identifiers. The feature values of the user identifier,
item identifier, and the relevant keywords are set to 1, whereas all other feature values
are set to 0. The dependent variable is equal to the value of the rating.

2. The feature representation is often sparse, which contains a large number of 0s. Many
homogeneous text domains, such as short text snippets can also be used in conjunc-
tion with factorization machines. For example, a tweet in Twitter is limited to 140
characters, which imposes natural constraints on the number of words in each such
“document.” Traditional classification and regression methods, such as support vec-
tor machines, work poorly in this setting. In many natural applications, the feature
representation is sparse and binary, although this is not always necessary.

Factorization machines are polynomial regression techniques, in which strong regularization
conditions are imposed on the regression coefficients in order to handle the challenges of
sparsity. Sparsity is common in short-text domains, such as the social content on bulletin
boards, social network datasets, and chat messengers. It is also common in recommender
systems.

An example of a data set drawn from the recommendation domain is illustrated in
Fig.8.8. It is evident that there are three types of attributes corresponding to user at-
tributes, item attributes, and tagging keywords. Furthermore, the rating corresponds to
the dependent variable, which is also the regressand. At first sight, this data set seems
to be no different from a traditional multidimensional data set to which one might apply
least-squares regression in order to model the rating as a linear function of the regressors.

Unfortunately, the sparsity of the data in Fig. 8.8 ensures that a least-squares regression
method does rather poorly. For example, each row might contain only three or four non-zero
entries. In such cases, linear regression may not be able to model the dependent variable very
well, because the presence of a small number of non-zero entries provides little information.
Therefore, a second possibility is to use higher-order interactions between the attributes
in which we use the simultaneous presence of multiple entries for modeling. As a practical
matter, one typically chooses to use second-order interactions between attributes, which
corresponds to second-order polynomial regression. One possibility is to use a second-order
polynomial kernel in order to perform kernel regression with the use of the kernel trick
(cf. Chap.6). However, as we will discuss below, an attempt to do so leads to overfitting,
which is exacerbated by the sparse data representation.

Let dy ...d,, be the number of attributes in each of the r» data modalities such as text,
images, network data and so on. Therefore, the total number of attributes is given by
p= 22:1 dy.. We represent the variables of the row by x; ...x,, most of which are 0s, and
a few might be nonzero. In many natural applications in the recommendation domain, the
values of x; might be binary. Furthermore, it is assumed that a target variable is available
for each row. In the example of Fig. 8.8, the target variable is the rating associated with
each row, although it could be any type of dependent variable in principle.
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Figure 8.8: An example of a sparse regression modeling problem with heterogeneous at-
tributes

Consider the use of a regression methodology in this setting. For example, the simplest
possible prediction would be use linear regression with the variables z; ... z,.

§@) =b+ Y wim (8.11)
i=1

Here, b is the bias variable and w; is the regression coefficient of the ith attribute. This
is in an almost identical form to the linear regression discussed in Sect.6.2 of Chap. 6,
except that we have explicitly used a global bias variable b. Although this form can provide
reasonable results in some cases, it is often not sufficient for sparse data in which a lot of
information is captured by the correlations between various attributes. For example, in a
recommender system, the co-occurrence of a user-item pair is far more informative than
the separate coefficients of users and items. Therefore, the key is to use a second-order
regression coeflicient s;;, which captures the coeflicient of the interaction between the ith
and jth attribute.

P p P
9(T) =b+ Zwil‘z‘ + Z Z Sij LT (8.12)
i=1

i=1 j=i+1

Note that one could also include the second-order term % _; six?, although x; is often

drawn from sparse domains with little variation in nonzero values of x;, and the addition of
such a term is not always helpful. For example, if the value of z; is binary (as is common),
the coefficient of 22 would be redundant with respect to that of x;.

One observation is that the above model is very similar to what one would obtain with
the use of kernel regression with a second-order polynomial kernel. In sparse domains like
text, such kernels often overfit the data, especially when the dimensionality is large and the
data is sparse. Even for an application in a single domain (e.g., short-text tweets), the value
of d is greater than 10°, and therefore the number of second-order coefficients is more than
10'°. With any training data set containing less than 10'° points, one would perform quite



poorly. This problem is exacerbated by sparsity, in which pairs of attributes co-occur rarely
in the training data, and may not generalize to the test data. For example, in a recommender
application, a particular user-item pair may occur only once in the entire training data, and
it will not occur in the test data if it occurs in the training data. In fact, all the user-item
pairs that occur in the test data will not have occurred in the training data. How, then,
does one learn the interaction coefficients s;; for such user-item pairs? Similarly, in a short-
text mining application, the words “movie” and “film” may occur together, and the words
“comedy” and “film” may also occur together, but the words “comedy” and “movie” might
never have occurred together in the training data. What does one do, if the last pair occurs
in the test data?

A key observation is that one can use the learned values of s;; for the other two pairs
(i.e., “comedy”/“film” and “movie”/“‘film”) in order to make some inferences about the
interaction coefficient for the pair “comedy” and “movie.” How does one achieve this goal?
The key idea is to assume that the d x d matrix S = [s;;] of second-order coefficients has a
low-rank structure for some d x k matrix V' = [v;4]:

S=vvT (8.13)

Here, k is the rank of the factorization. Intuitively, one can view Eq. 8.13 as a kind of regular-
ization constraint on the (massive number of) second-order coefficients in order to prevent
overfitting. Therefore, if U; = [v;1 ... v is the k-dimensional row vector representing the
ith row of V', we have:

By substituting Eq. 8.14 in the prediction function of Eq.8.12, one obtains the following:

—b—l—Zw xl—i—z Z - T;) X (8.15)

=1 j=i+1

The variables to be learned are b, the different values of w;, and each of the vectors vj;.
Although the number of interaction terms might seem large, most of them will evaluate to
zero in sparse settings in Eq.8.15. This is one of the reasons that factorization machines
are designed to be used only in sparse settings where most of the terms of Eq. 8.15 evaluate
to 0. A crucial point is that we only need to learn the O(d - k) parameters represented by
U7 ... in lieu of the O(d?) parameters in [sijlaxa-

A natural approach to solve this problem is to use the stochastic gradient-descent
method, in which one cycles through the observed values of the dependent variable to
compute the gradients with respect to the error in the observed entry. The update step
with respect to any particular model parameter 6 € {b,w;,v;s} depends on the error
e(Z) = y(T) — §(T) between the predicted and observed values:

99 ()

0<=01—a-A)+a-e@) 50

(8.16)

Here, a > 0 is the learning rate, and A > 0 is the regularization parameter. The partial
derivative in the update equation is defined as follows:

1 if 0is b
=<z if 0 is w; (8.17)

p 2 . .
Li Zj:l Vjs - Tj — Vi - T if 0 is vy




The term L, = Z§:1 vjs - T; in the third case is noteworthy. To avoid redundant effort,

this term can be pre-stored while evaluating §(Z) for computation of the error term e(Z) =

y(T) — y(T). This is because Eq. 8.15 can be algebraically rearranged as follows:

P k P P
g}(f):b—i—Zwixi—&-%Z [Zvjs-xj]Q—Zv?Sm?
i=1 s=1 \ j=1 j=1
P 1k
:b+Zwixi+§Z L?—ZU?S.:E?
=1 s=1

Furthermore, the parameters 7; and w; do not need to be updated when x; = 0. This allows
for an efficient update process in sparse settings, which is linear in both the number of
nonzero entries and the value of k.

Factorization machines can be used for any (massively sparse) classification or regression
task; ratings prediction in recommender systems is only one example of a natural applica-
tion. Although the model is inherently designed for regression, binary classification can be
handled by applying the logistic function on the numerical predictions to derive the proba-
bility whether §(Z) is +1 or —1. The prediction function of Eq. 8.15 is modified to a form
used in logistic regression:

1
1+ exp(—[b+ >0y wiwi + >0y Y0y (7 - 05) i)

Note that this form is identical to that used in Eq.6.32 of Chap.6. The main difference
is that we are also using second-order interactions within the prediction function. A log-
likelihood criterion can be optimized to learn the underlying model parameters with a
gradient-descent approach [172, 403, 404].

The description in this section is based on second-order factorization machines that
are popularly used in practice. In third-order polynomial regression, we would have O(p?)
additional regression coefficients of the form wj;, which correspond to interaction terms of
the form z;z;x). These coefficients would define a massive third-order tensor, which can
be compressed with tensor factorization. Although higher-order factorization machines have
also been developed, they are often impractical because of greater computational complexity
and overfitting. A software library, referred to as libFM [404], provides an excellent set of
factorization machine implementations. The main task in using libFM is an initial feature
engineering effort, and the effectiveness of the model mainly depends on the skill of the
analyst in extracting the correct set of features. Other useful libraries include fastFM [42]
and! libMF [581], which have some fast learning methods for factorization machines.

Ply@) =1 =

(8.18)

8.4 Joint Probabilistic Modeling Techniques

Probabilistic modeling techniques like expectation-maximization and naive Bayes can be
naturally used with heterogeneous data, because different data modalities are generated by
different distributions. In other words, the individual data instances contain elements from
all the different domains, which are generated from different domain-specific distributions.
In fact, methods like collective topic modeling [130, 131] can be viewed as probabilistic
variants of shared matrix factorization.

IThe libraries libFM and libMF are different.



For ease in discussion, consider a setting in which each data instance contains attributes
corresponding to the text, numerical, and categorical domains. Therefore, we will assume

that there are a total of n data instances denoted by the vectors X;...X,. Each data
instance X; can be segmented into three parts X; = (ED,EC,EN). Here, X;” contains
the values of the d attributes (word frequencies) for the text portion of the data instances,
EC contains the values of the attributes for the categorical portion of the data instances,
and ZN contains the values of the attributes for the numerical portion of the data instances.

8.4.1 Joint Probabilistic Models for Clustering

It is relatively easy to create generative models for clustering data instances with attributes
of different types. Consider the case in which we wish to use a mixture modeling approach in
order to determine the clusters. Therefore, we will discuss a generalized form of the mixture
modeling approach discussed in Sect. 4.4 of Chap. 4.

We assume that the mixture contains k hidden components (clusters) denoted by
G1...Gg. The value of k is an input parameter to the algorithm. Each iteration of the
generative process creates a particular data instance X; = (ED,EC,EN). Therefore,
the text, categorical, and numerical components of each instance need to be generated at
the same time. An important assumption made in the generative process is that once the
mixture component has been selected, the text, categorical, and numerical components are
generated in a conditionally independent way by a distribution that is most suitable for
that particular data modality. For example, the following assumptions could be made:

<D . . . C o .
1. The term-frequency component X; is generated from a multinomial distribution.
. —C . . C . .
2. The categorial component X; is generated from a categorical distribution.

. <N . . C . .
3. The numerical component X; is generated rom a Gaussian distribution.

It is noteworthy that the relevant parameters of each distribution are specific to the mixture
component at hand. Therefore, by selecting a particular component, the shape and location
of the relevant cluster is fixed across all data modalities in the form of relevant probability
distributions. Therefore, by independently generating the instances from these three dif-
ferent probability distributions, one can generate the entire data instance. The generative
process uses the following steps:

1. Select the rth mixture component G, with prior probability «,. = P(G,.).

2. Independently generate ED from the multinomial distribution of the rth compo-

~ . . . . N
nent, X; from the categorical distribution of the rth component, and X;  from the
Gaussian distribution of the rth component.

It is relatively easy to adapt the expectation maximization algorithm to this setting. The
key differences lie in the E-step. In the E-step, the goal is to estimate P(G,.|X;), which is
expressed in the following way using Bayes theorem:

P(gr) i P(YJgr)
St P(G) - P(Xi|Gm)




The key point here is that one can express P(X;|G,) in terms of the product of the corre-
sponding values over the different data modalities because of conditional independence:

P(X,|G,) = P(X."1G.) - P(X:°16,)P(X." |G, (8.20)

Since each of these quantities has its own (discrete or continuous) probability distribution,
one can compute these values using the current values of the corresponding parameters.
Furthermore, the M-step remains the same as the case of homogeneous data, except that the
parameters of each data modality are estimated independently for each mixture component.
Methods for estimating the parameters of the multinomial distribution for the text modality
are discussed in Sect.4.4. The estimation of parameters for the numerical and categorical
distributions are discussed in [2].

8.4.2 Naive Bayes Classifier

It is natural to generalize the naive Bayes classifier to heterogeneous data using the same
approach as the expectation-maximization algorithm for clustering. This is because the
nalve Bayes classifier can be viewed as a supervised variant of the expectation-maximization
algorithm, in which a single iteration of the M-step is applied to the labeled data in order to
estimate the parameters of each mixture component (class). Furthermore, these estimated
parameters are used to estimate the probability of each class for unlabeled data points with
the Bayes rule, as in the E-step:

P(gr) ! P(E‘gr)

P(GrX;) = Sk P(Gm) - P(Xi|Gm)

(8.21)

As in the case of the expectation-maximization algorithm, the quantities on the right-hand
side can be estimated using the product of the corresponding values over the different data
modalities (cf. Eq. 8.20).

8.5 Transformation to Graph Mining Techniques

Many of the heterogeneous text mining problems can be transformed to graph mining
problems. This opens the door to the use of a vast variety of graph mining techniques
like community detection and collective classification [2]. Virtually all the shared matrix
factorization methods discussed in Sect. 8.2 can be addressed with transformation to graph
mining techniques. This is because the factorization graphs discussed in Sect.8.2 can be
expanded into more detailed relationship graphs.

Consider an undirected social network, in which we have a set of n documents, such
that each document corresponds to a node in the social network. Therefore, we have an
n X d document-term matrix D, and an n X n symmetric and undirectedadjacency matrix of
the social friendship network. Furthermore, it is assumed that a one-to-one correspondence
exists between documents and social actors, representing the content (e.g., summary of all
Facebook wall posts) associated with that actor. This case is discussed in Sect.8.2.3. In
such a case, we have an n X k node-linkage factor matrix U, and a d x k term factor matrix
V. The relevant factorizations are as follows:

D~UVT A~UU" (8.22)
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Figure 8.9: Expanding a factorization graph into a relationship graph with undirected social
networks

The corresponding factorization graph is illustrated in Fig. 8.3, which is repeated above in
Fig. 8.9a. Furthermore, the corresponding relationship graph is illustrated in Fig. 8.9b. Note
that the document factor node in Fig. 8.9a is now replaced by the actual nodes in the social
network (containing the documents) in Fig.8.9b. Similarly, the self-loop (labeled by A) in
Fig. 8.9 is replaced by the corresponding links in the adjacency matrix A. The term factor
node in Fig. 8.9a is replaced by the actual terms in Fig. 8.9b. The document-term matrix
is now replaced by links between documents and nodes. It is possible for these edges to
be weighted corresponding to the term-frequencies. It is noteworthy that the relationship
graph is generally undirected, whereas the factorization graph is always directed.

The entire process creates a semi-bipartite network, which can be used in conjunction
with many graph mining algorithms [2] for clustering and classification. The area of graph
mining contains a rich variety of combinatorial algorithms that can be used to gain various
insights. For example, the PageRank techniques discussed in Chap. 9 can also be used with
these network mining algorithms to discover various insights about the relationships between
documents and terms. The broad approach is to use the following steps:

1. Create nodes for the various data instance identifiers (e.g., document identifiers) and
attribute values (e.g., terms) in the data.

2. Create undirected, weighted links depending on the available data matrices across
different domains. These matrices may correspond to document-term matrices, image-
(visual word) matrices, or co-occurrence matrices.

Consider the cross-lingual mining application discussed in Sect. 8.2.6. In this case, we assume
that English and Spanish documents are available as respective document-term matrices Dg
and Dg. In addition, an explicit mapping between English terms and Spanish terms is avail-
able in a co-occurrence matrix C', where the rows of C' correspond to English terms and the
columns correspond to Spanish terms. The factorization graph and a possible relationship
graph are illustrated in Fig.8.10. In this case, we have used an exact mapping between
the terms of the two languages, although it is also possible to construct the co-occurrence



matrix with matching pairs of sentences in the two languages. In such a case, a nonzero
entry is placed between an English and Spanish term in C' when they co-occur in a matching
pair of sentences. Although such an approach creates noisy co-occurrence links, it can also
capture useful semantic relationships between terms without exact equivalence.

It is evident from Fig.8.10 that a one-to-one relationship exists between nodes in the
factorization graph, and the various types of nodes in the relationship graph. Furthermore,
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Figure 8.10: Comparing factorization and relationship graphs in cross-lingual text mining

the data matrices in the factorization graph have been expanded into explicit links in
the relationship graph. Once such a network has been constructed, it can be used in the
conjunction with a variety of graph mining algorithms such as the following:

1. Node clustering methods can be used to partition the nodes into disjoint groups and
create a segmentation of both the data instances and terms in all modalities.

2. Collective classification methods can be used to leverage a subset of labeled nodes
(in any modality) to propagate the labels to other nodes with label propagation meth-
ods [2]. A specific approach that uses label propagation with PageRank-like random
walk methods for social networks is discussed in [7].

The main advantage of graph-based transformation techniques is that they allow the use
of broader classes of discrete combinatorial techniques, which are inherently different from
the continuous optimization methods used by techniques like matrix factorization. In many
cases, off-the-shelf graph mining techniques can be used.



8.6 Summary

Text mining applications arise frequently in combination with various types of heteroge-
neous data such as Web links,; social links, images, recommender systems, and cross-lingual
data. Shared matrix factorization methods are among the most flexible methods for mining
heterogeneous data sources, and they can be used in both supervised and unsupervised
settings. Factorization machines are closely related to shared matrix factorization meth-
ods, and are particularly suitable for supervised modeling of sparse data. Many mixture
models and their supervised variants like the naive Bayes classifier can be extended easily
to heterogeneous data domains by modeling a heterogeneous data instance with the use
of conditionally independent data distributions. Finally, many heterogeneous data mining
problems can be transformed to graph mining techniques.

8.7 Bibliographic Notes

Shared matrix factorization has been used for many heterogeneous mining applications with
text data. In particular, the notion of collective matrix factorization is introduced in [448],
which provides a generic view of using matrix factorization methods with shared entity
types. Since topic modeling methods like PLSA are instantiations of nonnegative matrix
factorization, such probabilistic models can also be generalized easily to other domains. For
example, collective topic modeling methods are discussed in [130, 131], and topic-modeling
methods with network regularization are discussed in [332]. The method in [332] is also
referred to as NetPLSA. The work in [462] discusses a topic modeling approach in the
context of heterogeneous networks. The use of matrix factorization methods for community
detection with edge content are discussed in [392]. The link prediction problem was proposed
in [292]. The use of matrix factorization methods for link prediction are discussed in [3, 336].
Numerous methods have also been proposed for transfer learning between text and images
for clustering [513] and classification [125, 540, 391]. A survey of heterogeneous transfer
learning may be found in [14]. Methods for cross-lingual text mining are discussed in [484,
490]. An overview of cross-lingual methods for text mining is provided in [14].

Factorization machines are proposed in [403, 404], and a detailed discussion is provided
in [172]. Although factorization machines have primarily been used in recommender systems,
they have significant potential to be used in other applications like network link prediction
and heterogeneous classification. They are also useful for short-text data, although this
aspect remains relatively unexplored.

An early work that uses a Bayesian approach for hypertext categorization with hyper-
links is provided in [81]. The use of a Bayesian approach for clustering and classification of
text data is provided in [16]. A generative approach for community detection in nodes with
content is proposed in [512]. A discriminative probabilistic approach for combining link and
content in community detection is provided in [514]. A detailed discussion of several node
classification methods with content and structure is provided in [440]. Probabilistic models
that combine content and structure for link prediction are discussed in [11, 186].

A graph-based approach to clustering with structure and content is presented in [538].
A classification technique that uses random walks on derived graphs for classification with
text in social networks is discussed in [7]. Random walks for social media settings with
image, text, and links are discussed in [475]. These walks are used for applications such as
search and recommendations in heterogeneous social media settings.



8.7.1 Software Resources

Numerous software resources are available for performing matrix factorization in scikit-
learn [550] (in Python) and at Weka [553] (in Java). However, most of these matrix fac-
torization methods are designed for homogeneous settings, based on the ideas in Chap. 3.
Most of the shared matrix factorization methods are designed as research prototypes, and
few are available as off-the-shelf software for practical use. The easiest to use software for
heterogeneous data is that of factorization machines [403]. In particular, three different li-
braries are available in the form of libFM [404] (from the original author), libMF [581], and
fastFM [42]. The libMF library also provides access to other matrix factorization methods,
and is different from the similar-sounding libF'M library. Many of these libraries have freely
downloadable Python wrappers.

8.8 Exercises

1. Show how to use a factorization machine to perform undirected link prediction in a
social network with content.

2. Show how to convert a link prediction problem with structure and content into a link
prediction problem on a derived graph.

3. Suppose that you have a user-item ratings matrix with numerical/missing values. Fur-
thermore, users have rated each other’s trustworthiness with binary/missing values.

(a) Show how you can use shared matrix factorization for estimating the rating of a
user on an item that they have not already rated.
(b) Show how you can use factorization machines to achieve similar goals as (a).

4. Derive the gradient update equations for using factorization machines in binary clas-
sification with logistic loss. Derive the prediction function and updates for hinge loss.

5. Derive the gradient-descent updates for the optimization problem in Sect. 8.2.5. Dis-
cuss the special case of 8 = 0.



Chapter 9

Information Retrieval and Search
Engines

“Making a wrong decision is understandable. Refusing to search continually for
learning is not.”—Phil Crosby

9.1 Introduction

Information retrieval is the process of satisfying user information needs that are expressed as
textual queries. Search engines represent a Web-specific example of the information retrieval
paradigm. The problem of Web search has many additional challenges, such as the collection
of Web resources, the organization of these resources, and the use of hyperlinks to aid the
search. Whereas traditional information retrieval only uses the content of documents to
retrieve results of queries, the Web requires stronger mechanisms for quality control because
of its open nature. Furthermore, Web documents contain significant meta-information and
zoned text, such as title, author, or anchor text, which can be leveraged to improve retrieval
accuracy. This chapter discusses the following aspects of information retrieval:

1. What types of data structures are most suitable for retrieval applications? The classi-
cal data structure for enabling search in text is the inverted index, and it is surprisingly
versatile in handling various types of queries. The discussion of the inverted index will
be paired with that of query processing.

2. The additional design issues associated with Web-centric search engines will be dis-
cussed. For example, we will discuss the collection of document resources from the
Web, which is referred to as crawling.

3. How does one decide which Web documents are of high quality? Documents that
are pointed to by many other pages are often considered more reputable, and it is
desirable to assign such documents higher ranks in the search results.



4. Given a search query, how does one score the matching between the keywords and the
document? This is achieved with the use of information retrieval models. In recent
years, such models have been enhanced with machine learning techniques in order to
account for user feedback.

From the aforementioned discussion, it is evident that the Web-centric application of in-
formation retrieval (i.e., a search engine) has several additional layers of complexity. This
chapter will discuss these additional layers.

The query processing can either provide a 0-1 response (i.e., Boolean retrieval), or it
can provide a score that indicates the relevance of the document to the query. The Boolean
model is the traditional approach used in classical information retrieval in which all results
satisfying a logical keyword query are returned. The scoring model is more common for
queries on very large document collections like the Web, because only a tiny fraction of the
top-ranked results are relevant. Although thousands of Web pages might exactly match the
keywords specified by the user, it is crucial to rank the results with various relevance- and
quality-centric criteria in order to ease the burden on the user. After all, a user cannot be
expected to browse more than ten or twenty of the top results. In such cases, quality-scoring
techniques and learning techniques on user feedback are often used to enhance the search
results. Although traditional forms of information retrieval are unsupervised, a supervised
variant of information retrieval has gained increasing attention in recent years. Search can
be viewed as a ranking-centric variant of classification. This is because a user query to a
document collection is a binary classification problem over the entire corpus in which a label
of “relevant”’ indicates that the document is relevant, and a label of “non-relevant” indicates
otherwise. This is the essence of the learning-to-rank approach, which is also discussed in
this chapter.

9.1.1 Chapter Organization

This chapter is organized as follows. Indexing and query processing are discussed in the
next section, whereas scoring models are covered in Sect. 9.3. Methods for Web crawling are
discussed in Sect. 9.4. The special issues associated with query processing in search engines
are discussed in Sect.9.5. The different ranking algorithms such as PageRank and HITS are
discussed in Sect.9.6. A summary is given in Sect.9.7.

9.2 Indexing and Query Processing

Queries in information retrieval are typically posed as sets of keywords. The older boolean
retrieval systems were closer to database querying systems in which users could enter sets
of keywords connected with the “AND” and “OR” clauses:

text AND mining
(text AND mining) OR (recommender AND systems)

Each keyword in the aforementioned expression implicitly refers to the fact that the
document contains the relevant keywords. For example, the first query above can be viewed

as the conjunct of two conditions:

(text € Document) AND (mining € Document)



Most natural keyword queries in information retrieval systems are posed as conjuncts.
Because of the ease in providing keywords as sets of relevant terms, it is often implicitly
assumed that a query like “text mining” really refers to a conjunct of two conditions without
explicitly using the “AND” operator. The use of the “OR” operator is increasingly rare in
modern retrieval systems both because of the complexity of using it, and the fact that too
many results are returned with queries containing the “OR” operator unless the individual
conjuncts are very restrictive. In general, the most common approach is to simply pose the
query as a set of keywords, which implicitly uses the “AND” operator. However, search
engines also use the relative ordering of the keywords when interpreting such queries. For
example, the query “tert mining” might not yield the same result as “mining text.” For
simplicity in discussion, we will first discuss the case in which queries are posed as sets of
keywords that are implicitly interpreted as conjuncts of membership conditions. Later, we
will show how to extend the approach to more complex settings.
In all keyword-centric queries, two important data structures are commonly used:

1. Dictionary: Given a query containing a set of terms, the first step is to discover
whether that term occurs in the vocabulary of the corpus. If the term does occur in
this vocabulary, a pointer is returned to a second data-structure indexing the docu-
ments containing this term. The second data structure is an inverted list, which is a
component of the inverted index.

2. Inverted index: As the name implies, the inverted index can be viewed as an “inverted”
representation of the document-term matrix, and it comprises a set of inverted lists.
Each inverted list contain the identifiers of documents containing a term. The inverted
index is connected to the dictionary data structure in the sense that the dictionary
data structure contains pointers to the heads of the inverted lists of each term. These
pointers are required during query processing.

For a given query, the dictionary is first used to locate the pointers to the relevant term-
specific inverted lists, and subsequently these inverted lists are used for query processing.
The intersection of the different inverted lists provides the list of document identifiers that
are relevant to a particular query. In practice, too many or too few documents might satisfy
all query keywords. Therefore, other types of scoring criteria such as partial matches and
word positions are used to rank the results. The inverted index is versatile enough to address
such ranking queries, as long as the scoring function satisfies certain convenient additivity
properties with respect to the query terms. In the following, we will describe these query
processing techniques together with their supporting data structures.

9.2.1 Dictionary Data Structures

The simplest dictionary data structure is a hash table. Each entry of the hash table contains
the (1) string representation of the term, (2) a pointer to the first element of the inverted
list of the term, and (3) the number of documents in which the term occurs. Consider a
hash table containing N entries. The data structure is initialized to an array of NULL
values. The hash function h(-) uses the string representation of the term ¢; to map it to a
random value v = h(¢;) in [0, N — 1]. In the event that the vth entry in the hash table is
empty, the term ¢; is inserted as the vth entry in the hash table. The main problem arises
in cases where the vth entry is already occupied, which results in a collision. Collisions can
be resolved in two ways, depending on the type of hash table that is used:



Chained hashing: In the case of chained hashing, one creates a linked list of multi-
ple terms, which is pointed to by each hash table entry. When the vth entry is already
occupied, it is first checked whether term ¢; already exists within the linked list. If this
is the case, then an insertion does not need to be performed. Otherwise, the linked list is
augmented with the term ¢;, and its length increases by 1. The entries of the linked list
contain the string representation of the term, the number of documents in which it occurs,
and a pointer to the first item on the inverted list of the term. The linked list is maintained
in (lexicographically) sorted order! to enable faster searching of terms. When a term is to
be checked against the linked list, one simply scans the linked list in sorted order until the
term is found or a lexicographically larger term is reached.

Linear probing: In linear probing, a linked list is not maintained at each position in
the hash table. Rather each position in the hash table contains the meta-information (e.g.,
string representation, inverted list pointer, and inverted list size) for a single term. For a
given term ¢;, the h(t;)th position is checked to see if it is empty. If the position is empty,
then the string for term ¢; is inserted at that position along with its meta-information
(document frequency and inverted list pointer). Otherwise, it is checked if the occupied
position already contains term t;. If the occupied position does not contain the term ¢;,
the same check is repeated with the [h(t;) 4+ 1|th position. Thus, one “probes” successive
positions h(t;), h(t;)+1,...h(t;) +r, until the term ¢; is encountered or an empty position
is reached. If the term ¢; is encountered, then nothing needs to be done, since the hash table
already contains the term ¢;. Otherwise, the term ¢; is inserted at the first empty position
encountered during the linear probing process. This probing process is also useful during
query time, when a term needs to be searched in the dictionary to obtain the pointer to its
inverted list.

The hash table data structure does not provide any natural way to identify terms with
closely related spellings. It is often useful to identify such terms as query suggestions to
the user, when they make a mistake in entering a query. For example, if a user enters
the (misspelled) query term “recieve,” it is often desirable to suggest the alternate query
term “receive.” One can find such terms in the context of the hash table data structure by
creating a separate dictionary of misspelled words (from historical queries) together with
the possible spellings that might be correct. A more challenging case arises when users
misspell words to their homonyms. For example, the term “school principle” is most likely
intended to be “school principal.” Such a spelling correction is referred to as a contezrtual
spelling correction, and it can be detected only by using the surrounding phrase in the form
of a k-gram dictionary of incorrect query phrases.

An alternative that allows the detection of closely related spellings is to implement the
dictionary as a variant of the binary search tree in which terms are stored only at the leaf
levels of the tree, and the internal nodes contain the meta-information in order to find the
relevant leaf efficiently. In the binary search tree, the entire set of terms can be viewed
as a lexicographically sorted list, which is partitioned at some intermediate letter between
‘a’ and ‘z.” For example, all terms starting with letters between ‘a’ and ‘h’ belong to the
left branch of the tree, whereas all terms starting with letters between ‘i’ and ‘z’ belong
to the right branch of the tree. Similarly, the left branch may be divided into two parts,
corresponding to the beginning portions between [a, de|, and [df, h], respectively. This type
of recursive division is shown in Fig.9.1. The leaf nodes of the binary search tree contain
the actual terms. The process of searching for a term is a relatively simple matter. One only

LA lexicographically sorted order refers to the order in which terms occur in a dictionary.
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Figure 9.1: A binary tree structure for storing a searchable dictionary of terms. The leaf
nodes point to the data structures indexed by the terms, which are the inverted lists.

needs to traverse the path corresponding to the front portion of the query term until the
appropriate leaf node is reached (or it is determined that the binary tree does not contain
the search term).

If the binary tree is relatively well balanced, the search process is efficient because the
depth of the tree is O(log(d)) over a dictionary of d terms. It is often difficult to fully balance
a binary tree in the presence of dynamic updates. One way of creating a more balanced tree
structure is to use a B-Tree instead of a binary search tree. Interested readers are referred
to [427] for details of these data structures. Although the tree-like structures do offer better
search capabilities, the hash table is often the data structure of choice for dictionaries. One
advantage of the hash table is that it has O(1) lookup and insertion time.

9.2.2 Inverted Index

The inverted list is designed to identify all the document identifiers related to a particular
term. Each inverted list or postings list corresponds to a particular term in the lexicon, and
it contains a list of the identifiers of all documents containing the term. Each element of
this list is also referred to as a posting. The document identifiers of the inverted list are
often (but not always) maintained in sorted order to enable efficient query processing and
index update operations. The relevant term frequencies are often stored with document
identifiers.

An example of an inverted representation of a document-term matrix is shown in Fig. 9.2.
The hash-based dictionary data structure, which is tied to this index, is also included in this
figure. Note that the dictionary data structure also contains the document-wise frequency of
each term (i.e., number of occurrences across distinct documents), whereas each individual
posting of the inverted list contains the document-specific term frequency. These additional
statistics are required to compute match-based scores between queries and documents with
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Figure 9.2: A hash-based dictionary and an inverted index together with its parent
document-term matrix. The dictionary is used to retrieve the pointer to the first element
of the inverted list during query processing.

inverse document frequency normalization. As we will see later, the postings list might also
contain other meta-data about the position of that term in the document. Such meta-data
can be useful for positional queries.

It is common to use linked lists to store the inverted index when it is maintained in
main memory. Even when inverted lists are too long to be stored in main memory, smaller
portions of them are often maintained in main memory for fast query processing. Linked
lists can be used to insert a document identifier at any position in the inverted list efficiently
by a single pointer deletion and two pointer additions. Therefore, such data structures are
efficient from the perspective of incremental updates. The first element of each inverted
list is pointed to by the entry of the relevant term in the dictionary data structure. This
mapping is crucial for query processing.

One issue with the inverted list is that many of the lists of uncommon or unique terms
are extremely short. Storing such lists as separate files is inefficient. In practical implemen-
tations, multiple inverted lists are consolidated into files on disk, and the dictionary data
structure contains the pointer to the offset in the relevant file on disk. This pointer provides
the first posting in the inverted list of the term being queried.

9.2.3 Linear Time Index Construction

Given a document corpus, how does one create the dictionary and the inverted lists? Modern
computers usually have sufficient memory to maintain the dictionaries in main memory.
However, the construction of inverted lists is a completely different matter. The space
required by an inverted index is of the same magnitude required by a sparse representation of
the document-term matrix within a constant of proportionality (see Exercise 1). A document
corpus is usually too large to be maintained in main memory and so is its inverted index.



Converting one disk-resident representation (i.e., corpus) to another (i.e., inverted index)
is often an inefficient task, if care is not taken to limit the reads and writes to disk. The
most important algorithm design criterion is to minimize random accesses to disk and favor
sequential reads as far as possible during index construction. The following will describe a
linear-time method, which is referred to as single-pass in-memory indezxing. The basic idea
is to work with the available main memory and build both the dictionary and inverted index
within the memory until it is exhausted. When memory is exhausted, the current dictionary
and inverted index structure are both stored on disk with care being taken to store the
inverted lists in sorted lexicographic order of the terms. At this point, a new dictionary and
inverted index structure is started, and the entire process is repeated. Therefore, at the end
of the process, one will have multiple dictionaries and inverted index structures. These are
then merged in a single pass through the inverted lists. The following discussion explains
both the phases of multiple index construction and merging.

An important assumption is that the document identifiers are processed in sorted order,
which is easy to implement when the document identifiers are created during index con-
struction. The practical effect of this design choice is that the elements of the inverted lists
are arranged in sorted order as identifiers are appended to the end of each list. Furthermore,
the document identifiers in the list of an earlier block are all strictly smaller than those in a
later block, which enables easy merging of these lists. The approach starts by initializing a
hash-based dictionary H and an inverted index Z, to empty structures and then updating
them as follows:

while remaining memory is sufficient to process next document do begin
Parse next document with identifier DocID;
Extract set S of distinct terms in DocID with term frequencies;
Use H to identify existing and new terms in S;
For each new term in S, create a new entry in H pointing to a newly created
singleton inverted list in Z containing DocID and term frequency;
For each existing term in S, add DocID to end of corresponding inverted list
in Z together with the term frequency;
end while
Sort the entries of H in lexicographic order of term;
Use the sorted entries of H to create a single disk file containing
the inverted lists of Z in lexicographic order of term,;
Store sorted dictionary H on disk containing file offset pointers to inverted lists;

The sorted dictionaries can be stored on disk as lists of sorted term-string/document-
frequency/offset triplets rather than as hash tables. After processing the entire corpus,
the (multiple) disk files containing partial inverted indexes need to be merged. Let these
disk files containing the inverted lists be denoted by 77,75, ... Zx. The merging is a simple
matter because (1) each inverted list in Z; is sorted by document identifier, (2) the different
inverted lists within each Z; are arranged in lexicographically sorted order of term, and (3)
all document identifiers in earlier block writes are smaller than the document identifiers in
later block writes. The conditions (1) and (3) are consequences of the fact that document
identifiers are selected (or created) in sorted order for parsing. An example of two partial
indexes containing three documents each is shown in Fig. 9.3. Note that the first index only
contains sorted lists with document identifiers between Docld1l and Docld3, whereas the
second index contains sorted inverted lists with document identifiers between Docld4 and
Docld6. Therefore, the merged and sorted list of any term (e.g., Jaguar) can be obtained
by concatenating one list after the other.

In order to merge the inverted lists, one can simultaneously open all the files containing
Ziy... 2y and Hy...Hi. We do not need to read these files in memory but scan them
sequentially in order to process each term in sorted order. The merging can be achieved
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Figure 9.3: Merging a pair of partial indexes

with a simultaneous linear scan of the different files, because the inverted lists of various
terms are stored in lexicographically sorted order. For any particular term, its inverted
list is identified in each block (if it exists), and these lists are simply concatenated. The
lists of later blocks are concatenated after those of earlier blocks to ensure that document
identifiers remain in sorted order. At the same time, the dictionary of the merged index is
created from scratch. For each term-specific merging, a new entry is added to the dictionary
containing the pointer to the merged postings list and the number of documents containing
that term (which is the length of the merged list). It is also possible to create the index
without processing the document identifiers in sorted order, although doing so will increase
the running time slightly (see Exercise 2).

9.2.4 Query Processing

Query processing is of two types. One of them is Boolean retrieval, in which documents are
returned only when they ezactly match a particular query. There is no focus on ranking
the results, even when a large number of them are returned. Furthermore, in the Boolean
retrieval model, one can construct Boolean expressions for queries containing “AND,” “OR,”
and “NOT,” whereas ranked retrieval generally uses free text queries. As a practical matter,
however, ranked retrieval is almost always necessary in order to distinguish between the
varying levels of matches between target queries and documents.

9.2.4.1 Boolean Retrieval

In Boolean retrieval, results are returned depending on whether or not they match a par-
ticular query. The query can be in forms such as the following:

(text AND mining) OR (data AND mining)
(text OR data) AND mining



The two queries above are actually equivalent, which also reflect the different ways in which
they can be resolved. Consider the case where one wishes to use the first form of the query.
The first step is to use the dictionary data structure in order to locate the terms “text,”
“data,” and “mining,” and their corresponding inverted lists. First, the lists of “text” and
“mining’ are intersected into a sorted list Lp, and then the lists of “data” and “mining’ are
intersected into another sorted list Ly. Subsequently, the lists Ly and Lo are merged with
a union operation in order to implement the “OR” operator. An important point about
Boolean retrieval is that the returned results are unordered, and there is a single correct
result set for a given search query.

The following will describe the process of intersecting two sorted lists in linear time.
Assume that each inverted list is defined as a linked list in which the document identifiers
are in sorted order. Then, the algorithm uses two pointers, which are initialized to the
beginning of the two lists. These pointers are used to scan through the two linked lists in
order to identify common document identifiers. The query-result list, which is denoted by
@, is initialized to the empty list. If the document identifiers at the current pointer values
in the two inverted lists are the same, then this document identifier is appended to the end
of @ and both pointers are incremented by 1. Otherwise, it is determined which pointer
corresponds to the smaller document identifier. Consider the case where the pointer of the
list corresponding to the keyword “mining” has the smaller document identifier. The pointer
to the inverted list for “mining” is incremented until the corresponding document identifier
is either the same or larger than that of “text.” This process of advancing the pointers to
the two lists is continued (with the list @) growing continuously) until the end of at least
one of the lists is reached. When the intersection of more than two lists is performed in
succession, it is advisable to start with the most restrictive pair of words first to perform
the intersection, so that the size of the intermediate result is as small as possible. In other
words, the inverted lists are used in decreasing order of inverse document frequency in the
intersection process. This is done in order to ensure that smaller documents are processed
first. The process of merging two lists with the “OR” operator uses a similar approach as
that of intersection (see Exercise 3).

9.2.4.2 Ranked Retrieval

Boolean retrieval is rarely used in information retrieval and search engines, because it pro-
vides no understanding of the ranking of the retrieved results. Even though the Boolean
retrieval model does allow the ability to combine different logical operators to create po-
tentially complex queries, the reality is that it is often cumbersome for the end user to
effectively use this type of functionality. Most practical applications use free text queries,
in which users specify sets of keywords. Although a free text query can be interpreted in
terms of maximizing the match over the query keywords, there are often many other factors
that influence the matching. In ranked retrieval, the results need to be scored and ranked in
response to the query, and the system often performs this type of ranking using a variety of
different factors (e.g., relative positions of terms in document or document quality) that are
not always specified explicitly in the query. In this sense, ranked retrieval allows the use of
a variety of different models for retrieving search results, and there is no single model that is
considered fundamentally “correct” in a way that can be crisply defined. This is a different
concept from Boolean retrieval, in which the correct set of results is exactly defined, and
the returned results are unordered.

For large-scale applications like Web search, the Boolean relevance of the (possibly
thousands of) documents to a set of search terms is not quite as important as ensuring



that the tiny set of results at the very top of the search are relevant to the user. This is a far
more difficult problem than Boolean search, and many aspects of it have a distinct machine
learning flavor. Although one can restrict the search results based on relevance criteria
(e.g., all query terms must be present), the ability to correctly score the large number of
valid search results remains exceedingly important in these settings. Most natural scoring
functions satisfy the following properties:

1. The presence of a term in the document that matches a query term increases the
score, and the score increases with the frequency of the term.

2. Matching terms that are rarely present in the document collection (i.e., terms with
high inverse document frequency) increase the score to a greater degree. This is be-
cause rare terms are less likely to be matched by chance.

3. The score of candidate documents with longer length is penalized because terms might
be matched to the query purely by chance.

The cosine similarity function with tf-idf normalization satisfies all of the above properties,
although it does not account for many factors used in modern search engines such as the
ordering of the terms or their proximity. Furthermore, when multiple factors are used for
computing similarity, it is helpful to be able to weight the relative importance of these
factors. This problem has the flavor of supervised learning, which leads to the notion of
machine learning in information retrieval. This section will provide a broad overview of the
index structures, query processing, and scoring functions, whereas Sect. 9.3 will focus more
deeply on the basic principles with which various scoring functions are designed.

There are two fundamental paradigms for query processing in ranked retrieval, which
correspond to term-at-a-time and document-at-a-time query processing with the inverted
index. Many nicely behaved scoring functions like the cosine can be computed using either
paradigm because they can be expressed as additive functions over query terms. However,
the document-at-a-time processing is more convenient for complex functions that use var-
ious factors involving multiple terms, such as the relative positions of the terms. In both
cases, the document identifiers are accessed using the inverted lists and their scores are con-
tinually updated using accumulator variables (each of which is associated with a document
identifier). In the following, we will describe each of these paradigms.

9.2.4.3 Term-at-a-Time Query Processing with Accumulators

Accumulators are intermediate aggregation variables that can help in evaluating surprisingly
general scoring functions between queries and documents, as long as the scoring function
is computed in an additive way over the target query terms. For small subsets of query
terms, even more general functions incorporating positional information between terms can
be computed with accumulators. Consider a query @ = (g1 .. .qq) With a small number of
query terms in which most values of ¢; are 0. Consider a document X = (z1 ...x4) defined
over the same lexicon of size d. Now consider a simple scoring function F(X,Q) of the
following form:

F(X,Q)= > glz.q) (9.1)

J:q;>0

Note that the summation is only over the small number of terms satisfying ¢; > 0, and g(-, )
is another function that increases with both z; and ¢;. For example, using g(z;,q;) = z;q;
yields the dot product, which is the unnormalized variant of the cosine function.



The inverted lists of all the terms with g; > 0 are accessed one after another to perform
the scoring. Every time a new document identifier is encountered on an inverted list, a new
accumulator needs to be created to track the score of that document. For each document
identifier encountered on the inverted list of a query term with ¢; > 0, the value of g(z;, ¢;)
is added to the accumulator of that document identifier. In cases where the corpus is large,
too many document identifiers might be encountered and one might run out of space to
create new accumulators. There are several solutions for addressing this issue. First, the
inverted lists should always be accessed in decreasing order of inverse document frequency,
so that the most number of terms are used when one runs out of memory. Furthermore, since
the terms with higher inverse document frequency are assumed to be more discriminative,
this ordering is also helpful in ensuring that the accumulators are more likely to be assigned
to relevant documents. A hash table is used to keep track of the accumulators for various
documents. When one runs out of memory in the hash table, the results are returned with
respect to only? those identifiers that have been encountered so far. New accumulators are
no longer added because such documents are not assumed to be strong matches. However,
the counts of existing accumulators continue to be updated.

Finally, the documents with the largest accumulators are returned. The naive approach
would be to scan the accumulators to identify the top-k values. A more efficient approach is
to scan the accumulator values and maintain the top-k in a min-heap (i.e., a heap containing
the minimum value at the root). The heap is initialized by inserting the first & scanned
accumulators. Subsequent accumulators are compared with the value at the root of the
heap, and dropped if they are less than the value at the root. Otherwise, they are inserted
into the heap, and the minimum value at the root is deleted. This approach requires time
that is O(n, - log(k)) time, where n, is the number of accumulators.

It is noteworthy that term-at-a-time query processing does not require the elements
on the inverted list to be sorted by document identifier. In fact, for term-at-a-time query
processing, it makes sense to sort the lists by decreasing order of term-frequency in the
various document identifiers and use only those documents whose term-frequency is above
a particular threshold. Furthermore, one can also handle more general functions than Eq. 9.1,
which are of the following form:

Zj:qj>() g(xj’ q])

+a-QX) (9-2)

Here, G(X) is some normalization function (like the length of the document), « is a param-
eter, and the function Q(X) is some global measure of the quality of the document (such
as the PageRank of Sect.9.6.1). It is not difficult to see that the cosine is a special case® of
this measure. It is also assumed that such global measures for document normalization or
quality are pre-stored up front in a hash table indexed by document identifier. This type
of scoring function can be addressed by using an additional processing step at the end in
which the values of G(X) and Q(X) are accessed from the hash table to adjust the scores.

2If all query terms must be included in the result, then the intersection of the inverted lists can be
performed up front and accumulators are assigned only to document identifiers that lie in this intersection.
There are many such indez elimination tricks that one can use to speed up the process.

30ne can set Q(X) = 0 and select G(X) to be the length of document X . Normalization with the query
length is not necessary because it is constant across all documents and does not change the relative ranking.



9.2.4.4 Document-at-a-Time Query Processing with Accumulators

Unlike the term-at-a-time query processing paradigm, the document-at-a-time approach
requires each inverted list to be sorted by document identifier. The document-at-a-time
approach can handle more general query functions than the term-at-a-time approach be-
cause it accesses all the inverted lists for the query terms simultaneously in order to identify
all the query-specific meta-information associated with a document identifier. For a given
query vector Q = (q1 ... qa), let Z x ¢ represent all the meta-information in the document X
about the matching terms in the document with respect to the query. This meta-information
could correspond to the position of the matching terms in the document X, the portion of
the document in which matching terms lie, and so on. As we will discuss later, such meta-
information can often be stored along with the inverted lists. Then, consider the following
scoring function, which is a generalization of Eq.9.2:

H(Zx.q)

+a-Q(X) (9.3)

Here, G(X) and Q(X) are global document measures as in Eq.9.2. The function H(Zx q)
is more general than the additive form of Eq. 9.2 because it could include the effect of the
interaction of multiple query terms. This function could, in principle, be quite complex and
include factors such as the positional distance between the query terms in the document.
However, to enable such a query, the inverted index needs to contain the meta-information
about the positions of query terms (cf. Sect.9.2.4.7).

In such a case, one simultaneously traverses the inverted list for each term t; satisfying
¢; > 0 (i.e., terms included in the query). As in the case of list intersection, one traverses each
of the sorted lists in parallel until one reaches the same document identifier. At this point,
the value of H(Z x q) is computed (using the meta-information associated with document
identifiers) and added to the accumulator variable for that document identifier. The other
post-processing steps in document-at-a-time querying are identical to those of term-at-a-
time query processing. If the space for accumulator variables is limited, the document-at-
a-time processing maintains the best scores so far, which turns out to be a more sensible
approach for obtaining the best results. In such cases, it might also make sense to incorporate
the impact of global document measures like G(X) and Q(X) at the time the document is
processed rather than leaving it to the post-processing phase.

Although it is possible to enable scoring functions like Eq. 9.3 with term-at-a-time query-
ing, it increases the space overhead in impractical ways. One would need to store all the
meta-information in the traversed lists along with the accumulator variables and then eval-
uate Eq.9.3 in the final step.

9.2.4.5 Term-at-a-Time or Document-at-a-Time?

The two schemes have different advantages and disadvantages. The document-at-a-time ap-
proach allows the maintenance of the best k results found so far dynamically. Furthermore,
the types of queries that can be resolved with document-at-a-time processing are more com-
plex, because one can use the relative positions of terms and other statistics that use the
properties of multiple query terms. On the other hand, the document-at-a-time processing
requires multiple disk seeks and buffers because multiple inverted lists are explored simul-
taneously. In term-at-a-time processing, one can read in large chunks of a single inverted
list at one time in order to perform the processing efficiently.



9.2.4.6 What Types of Scores Are Common?

In many search engines, global meta-features of the document such as its provenance or
its citation structure are included in the final similarity score. In fact, modern search en-
gines often learn the importance of various meta-features (cf. Sects. 9.2.4.9 and 9.2.4.10) by
leveraging user click-through behavior. For example, Eqgs. 9.2 and 9.3 contain the parameter
«, which regulates the importance of page quality in ranking. Such a parameter can be
learned using machine learning models from previous user click-through behavior. It needs
to be pointed out that most of the popular scoring functions in information retrieval and
search engines (including advanced machine learning models) can be captured using Egs. 9.2
and 9.3 by instantiating the various terms in these equations appropriately. Several such
models will be explored in this section and in Sect. 9.3.

9.2.4.7 Positional Queries

It is often desirable for query processing to account for the positions of the query terms.
There are several ways in which the positioning can be taken into account. The first is
to include common phrases as “terms” and created inverted lists for them. However, this
approach greatly expands the term set. Furthermore, for a given query, there are multiple
ways in which one can process the query using either the phrases or the individual terms.
In order to resolve queries with the positional index, the same inverted list is maintained,
except that all the positions of a term in the document are maintained as meta-information
along with a document identifier in the inverted list. Specifically, in the inverted list for any
particular term, the following meta-information is retained along with document identifiers:

Docld, freq, (Posi, Posa, ..., P0sfreq)

Here, freq denotes the number of times the term occurs in the document with identi-
fier Docld. For example, if the term “fext’ occurs at position 7 and 16 in Docld, and
the term “mining’ occurs at positions 3, 8, and 23 of Docld, then all these positions are
stored with the document identifiers in the inverted list. Therefore, in the first case, the
meta-information Docld,2, (7,16) is maintained as one of the entries in the inverted list of
“text,” whereas in the second case, the meta-information Docld,3, (3,8,23) is maintained
in one of the entries of the inverted list of “mining.” In this particular case, it is evident
that the term “text’ occurs at position 7 in the document with identifier Docld, whereas
the term “mining” occurs at position 8 in the same document. Therefore, it is evident that
the phase “text mining’ is present in Docld. For Boolean queries, one will need to check
these positions at the time of intersecting the inverted lists of “text and “mining.”

In ranking queries (like search engines), the relative positions of terms in a document
can affect the scoring function used to quantify the degree to which a document matches
a specific set of keywords in a particular order. Therefore, the queries “text mining” and
“mining text” will not return the same ranking of the results, when using a search engine like
Google. It turns out that this type of query processing can be performed with accumulator
variables, because the effect of relative positioning can be captured by Eq. 9.3. In particular,
the function H(Zx g) of Eq.9.3 should be defined by the search engine architect in order
to capture the impact of term positioning. The natural approach in these cases is to use
document-at-a-time query processing (see page 270).

It is common to combine phrase-based indexes with positional indexes. The basic idea is
to keep track of the commonly queried phrases, and maintain inverted lists for these frequent



phases in addition to the lists of the individual terms. For a given query, the frequent phrases
in it are combined with positional indexes in order to use the positioning information. How
is such a combination achieved? An important point here is that search engines typically
use free text queries, which are often mapped to an internal representation by the system
with the use of a query parser. In many cases, the query parser can issue multiple queries,
in which phrase indexes are used in combination with positional indexes to yield an efficient
query result. For example, the following approach might be used:

1. The inverted lists of frequent phrases might be used in order to provide a first response
to the query. Note that it is not necessary that the query phrase is frequent and is
available in the index. In such a case, one might try different 2-word subsets of the
query phrase to check if it is available in the inverted index.

2. In the event that sufficient query results cannot be generated using the aforementioned
approach, one might try to use the positional index in order to generate a query result
that scores the documents based on relative proximity of query terms.

The specific heuristic used to resolve a query depends on the goals of the search system at
hand. Modern search engines use a number of query optimizations that include all types of
meta-data about the document to score and rank results. Examples include zoned scoring
and machine learned scoring, which are discussed in Sects. 9.2.4.8 and 9.2.4.9, respectively.
Furthermore, qualitative judgements about the document are inferred based on the co-
citation structure, and incorporated in the final ranking. These issues are discussed in a
later section (cf. Sects. 9.5 and 9.6).

9.2.4.8 Zoned Scoring

In zoned scoring, different parts of a document, such as the author, title, keywords, and
other meta-data are given varying amounts of weight. These different parts are referred to as
zones. Although zones seem similar to fields at first sight, they are different in the sense that
they might contain arbitrary and free-form text. For example, in search engines, the title of
a document is quite important as compared to the body of the document. In some cases,
the zoning can be implemented by simply adding a more important zone to the vector space
representation with a higher weight. For example, the title can be given a higher weight
than the body of the document. However, in most cases, zoning is implemented by storing
the information about the zoning within the inverted list. Specifically, consider the inverted
list of each term that contains the frequency as well as the positioning information. Along
with each positioning information, we also maintain the zone in which the term occurs. In
other words, consider a position-based inverted index in which one of the entries in the
inverted list of “text” is of the form Docld, 2, (7, 16). Therefore there are two occurrences of
the term “text” in Docld with positions 7 and 16, respectively. This type of entry, however,
assumes that the positioning is defined with respect to a document with a single zone. More
generally, the entry can be of the form Docld, 2, (2-Title, 9-Body). In this case, the term
“text” occurs as the second token of the title and the ninth position in the body. This type
of meta-information can be used easily for weighted zone scoring, in which the matched
document identifiers during the intersection of inverted lists are scored based on the specific
zones in which they reside. An important point here is in deciding how much weight to
give each zone. While it is clear that some zones such as the title are more important, the
process of finding specific weights for zones has the flavor of a machine learning algorithm.



9.2.4.9 Machine Learning in Information Retrieval

How can one find the appropriate weights for each zone in an information retrieval setting?
Consider a situation in which the documents of a corpus have r weights w; ... w, over the r
zones. Furthermore, the frequencies of a particular document-term combination over these
zones are zj ... x,. For simplicity, one can also assume that each z; € {0,1} depending on
whether the term is present in the zone. However, it is also possible to have non-binary
values of x;. For example, if a term occurs more than once in a ith zone, the value of z;
might be larger than one. In practical settings, many values of x; might be 0. Then, the
contribution of that document-term combination to the scoring is given by 25:1 wj - xj,
where wj; is an unknown weight. It is relatively easy to compute this type of additive score
with accumulators at query processing time, if one knew the values w; ... w, of the weights.
Therefore, the weights are learned up front in offline fashion.

In order to learn the appropriate values of w;, one can use the relevance feedback values
from the user over a set of training queries. The training data contains a set of engineered
features that are extracted from each document in response to a query (such as the zones
in which query words lie) together with a user relevance judgement of whether the docu-
ment is relevant to the corresponding query. The relevance judgement might be a binary
quantity (i.e., relevant /not relevant), a numerical quantification of the relevance judgement,
or a ranking-based judgement between pairs of documents. The Web-centric approach of
collecting relevance feedback leverages user click-through behavior, which is discussed later.

Learning the importance of zones is not the only application of such weight-learning tech-
niques. There is significant meta-information associated with both terms and documents,
whose importance can be learned for query processing. Examples include the following;:

1. Document-specific features: The meta-information associated with a document on the
Web, such as its geographical location, creation date, Web linkage-based co-citation
measures (cf. Sect. 9.6.1), number of words in pointing anchor text, or Web domain
can be used in the scoring process. Document-specific meta-data is often independent
of the query at hand, and has been shown to be effective for improving retrieval
performance with machine learning techniques [406].

2. Impact features: The impact of several terms in a scoring function is often regulated
with parameters. For example, the scoring functions of Eqgs. 9.2 and 9.3 contain the
parameter «, which regulates the importance of document quality. Sometimes multiple
scoring functions like the cosine, binary-independence model, and the BM25 model
(see Sect. 9.3) can be combined with weights. The importance of these weights can be
learned with user feedback.

3. Query-document pair-specific meta-data: The zones of the document in which query
terms occur and query-term ordering/positioning within the candidate document can
be used in the scoring process.

The scoring function in modern search engines is quite complex and is often tuned using
machine learning. In general, one might have any arbitrary set of parameters wj ... w,,. In
other words, these weight parameters include the zoning weights, and they might represent
the importance of different features x; ...z, extracted from a document-query pair. Note
that the same set of features is extracted from any document-query pair, which allows the
learning to be generalized from one query to another. In the zoning example, the features
correspond to the different zones of the documents in which the query words lie, and their
corresponding frequencies. Therefore, if the user feedback data consistently shows the user



preferentially clicking on search results with query words in the title (over the body), then
this fact will be learned by the algorithm irrespective of the query at hand. This is achieved
with a relevance function R(wiz1,...wmZm), which is defined in terms of the weighted
features. For example, a possible relevance function could be as follows:

m
R(wixy,. .., WnTm) = Z w;T; (9.4)
j=1

The values of w; ... w,, are learned from user feedback. The choice of the relevance function
is a part of search engine design, and virtually all functions that are defined in terms of the
meta-data about matching terms between the query and the target can be modeled with
scoring functions like Eq.9.3. Such scores can be efficiently computed at query processing
time with accumulators.

It is noteworthy that relevance judgements can also be inferred using implicit feedback
based on user actions rather than their explicit judgements. For example, search engines
provide a large amount of implicit feedback based on user clicks on returned query results.
Such feedback should, however, be used carefully because top-ranked items are more likely
to be clicked by a user, and therefore one must adjust for the rank of the returned items
during the learning process. Consider a situation in which a search engine ranks document
Yj above document X;, but the user clicks on the document X; but not YJ Because of the
preferential clicking pattern of the user, there is evidence that document X; might be more
relevant than document fj to the user. In such a case, the training data is defined in terms
of ranked pairs like (X;, X;), which indicate relative preference. This type of data is highly
noisy but the saving grace is that copious amounts of it can be collected easily. Machine
learning methods are particularly good at learning from large amounts of noisy data.

For the purpose of this section and the next, each X; refers to the query-specific features
extracted from the document (e.g., impact features), rather than text vectors. This choice
requires an understanding of the importance of various characteristics of the document-
query pair, such as the impact features, including the use of zones, physical proximities,
ordering of matched words, document authorship, domain, creation date, page citation
structure, and so on. The extraction of the features depending on the match between the
query and the document is an important modeling and feature engineering process, which
depends on the search application at hand. Each of these features either need to be pre-
stored (e.g., document-specific PageRank), or they need to be computed on-the-fly using
accumulators. At query time, they need to be combined using the linear condition in Eq. 9.4.

9.2.4.10 Ranking Support Vector Machines

The previous section discusses the importance of learning methods by extracting m query-
specific features and learning their associated parameters ws ...w,, in order to quantify
their relevance to a new query. How can one use such pairwise judgements by the end user
in order to learn key parameters such as ws ...w,, that are used in ranking the results?
This is typically achieved by learning-to-rank algorithms. A classical example of such an
algorithm is the ranking support vector machine, which is also referred to as the ranking
SVM. The ranking SVM uses previous queries to create training data for the extracted fea-
tures. The features for a document contain attributes corresponding to the various zones in
which the query terms occur, meta-information about the document such as its geographical
location, and so on. The training data contains pairs of documents (in this query-centric
representation), denoted by (X;, X;), which signifies the fact that X; should occur earlier



than X;. We would like to learn W = (wj ... w,), so that W - X; > W - X; for the training
documents X; and Yj, which contain the query-specific “match” features (see Sect.9.2.4.9
for examples). Once such weights have been learned from a training corpus (created by past
queries and user feedback), they can be used in real time to rank the different documents.

We will now formalize the optimization model for the ranking SVM. The training data
Dr contains the following set of ranked pairs:

Dr = {(X;, X;) : X; should be ranked above X}

For each such pair in the ranking support vector machine, the goal is learn W, so that
wW-X;>W- YJ However, we impose an additional margin requirement to penalize pairs
where the difference between W - X; and W - X is not sufficiently large. Therefore, we would
like to impose the following stronger requirement:

W (X, —X;) > 1

Any violations of this condition are penalized by 1—W - (X; — X;) in the objective function.
Therefore, one can formulate the problem as follows:
o A
Minimize J = Z max{0, [1 — (W - [X; — X,])]} + §HWH2
(Yi)Xij)EDR

Here, A > 0 is the regularization parameter. Note that one can replace each pair (X;, X;)
with the new set of features X; — X;. Therefore, one can now assume that the training data
simply contains n instances of the m-dimensional difference features denoted by Uy ... U,,
where n is the number of ranked pairs in the training data. In other words, each U, is of
the form U, = X; — YJ for a ranked pair (X;, YJ) in the training data. Then, the ranking
SVM formulates the following optimization problem:

n - )
Minimize J = 0,[1-W-TU,; Z|w 2
inimize Zmax{ [ }}“‘2” I

i=1

One can also write this optimization formulation in terms of the slack penalty C = 1/X in
order to make it look cosmetically more similar to a traditional SVM:

- - o
Minimize J = 5||W||2 +C Y max{0,[1 - W -T;]}

i=1

Note that the only difference from a traditional support-vector machine is that the class
variable y; is missing in this optimization formulation. However, this change is extremely
easy to incorporate in all the optimization techniques discussed in Sect. 6.3 of Chap.6. In
each case, the class variable y; is replaced by 1 in the corresponding gradient-descent steps
of various methods discussed in Sect. 6.3. The linear case is particularly easy to extend using
the aforementioned approach, although one can also extend the techniques to kernel SVMs
with some minor modifications. The main point to keep in mind is that kernel SVMs work
with dot products between training instances. In this case, the training instances are of the
form U, = ®(X;) — ®(X;), where ®(-) is the nonlinear transformation that is (implicitly)
used by a particular kernel similarity function. Let the kernel similarity function define a
similarity matrix S = [s;;] over the training instances so that we have the following:

sij = O(X;) - 2(X;) (9.5)
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Figure 9.4: Skip pointers with skip values of 4

In kernel methods, only the similarity values s;; are available (as a practical matter) rather
than the explicit transformation. o
Consider two training instances U, and Uy in the following form:
(Xi) — ®(X;) [X,; ranked higher than X;]
(X) — ®(X;) [Xj ranked higher than X;]

Then, the dot product between 7]0 and 7,1 can be computed as follows:

Up Uy = (2(X;) — (X)) - (B(X) — (X))

{2(X5) - (X)) + @(X;) - (X))} = {2(Xi) - (X)) + O(X;) - D(Xp)}
{sir + sz} - {sa+ Sjk}
— ——

Similarly ranked Differently ranked

One can use these pairwise similarity values to adapt the kernel methods discussed in
Sect. 6.3 to the case of the ranking SVM. As a practical matter, however, linear models
are preferable because they can be efficiently used in conjunction with an inverted index
with the use of accumulators. The basic idea here is that the inverted index can be used
in conjunction with all the meta-data available in it to efficiently compute W - Z for a
test (candidate) document Z, once the weights in W have been learned during the (offline)
scoring phase.

9.2.5 Efficiency Optimizations

There are several other optimizations associated with query processing. Some of these opti-
mizations are particularly important in the context of Web retrieval in which the inverted
lists are long and lead to many disk space accesses.

9.2.5.1 Skip Pointers

Skip pointers are like shortcuts in the inverted lists at various positions in order to be able
to skip over irrelevant portions of the lists in the intersection process. Skip pointers are
useful for intersecting lists of unequal size. In such cases, the skip pointers in the longer list
can be useful in performing efficient intersection, because the longer inverted list will have
large segments that are irrelevant to the intersection. Consider a term ¢; with an inverted
list of length n;. We assume that the inverted list is sorted with respect to the document
identifiers. Skip pointers are placed only at positions in the inverted list of the form s-k+1
for fixed skip value s and k =0,1,2,...,[n;/s] —1. An example of skip pointers with s = 4
is shown in Fig. 9.4.

Now consider the simple problem of intersecting a long list with an extremely short list
of length 1 containing a single document identifier. In order to determine whether or not
the long list contains this document identifier, we simply traverse its skip pointers, until we



identify the segment in which the identifier lies. Subsequently, only this segment is scanned
in order to determine whether or not the document identifier lies inside it. In this case, if
we use s = ,/n;, then it can be shown that at most 2,/n; traversals will be required. Now,
if we need to intersect a short list of length n; with a longer list of length n;, then we can
repeat this process one by one with elements of the shorter list in sorted order. For best
efficiency, care must be taken to use the starting point in the longer list in each case where
the search for the previous element of the shorter list was concluded. In the worst case,
this approach might incur a small overhead, whereas one will generally do extremely well in
cases where the lists have asymmetric lengths. In general, the use of the square-root of the
length of the inverted list is a good heuristic for setting the skip values. The main drawback
of skip pointers is that they are best suited to static lists that do not change frequently. For
a dynamically changing list, it is impossible to maintain the structured pattern of the skip
pointers without incurring large update overheads.

9.2.5.2 Champion Lists and Tiered Indexes

One problem with the solutions in all of the above cases is that the query processing can
be quite slow for larger collections in which the inverted lists are very long. In such cases,
one typically does not even need all the responses to the query, as long as the top-ranked
results can be identified reasonably accurately.

Since large term frequencies often have a favorable impact on the scores, they can be
used to identify the portions of the inverted lists that are most likely to yield good matches.
A natural approach is to use champion lists, in which only the subset of document iden-
tifiers in which only the top-p documents with highest frequency with respect to a term
are maintained in a truncated inverted list. Any additional meta-information such as term
frequency and term positions can also be maintained along with the document identifiers.
In order to resolve a query, the first step is to determine if a “sufficient” number (say, ¢) of
documents is returned by using only the champion lists. If a sufficient number of documents
is returned, then one does not need to use the entire inverted index. Otherwise, the query
has to be resolved using the full inverted index. The values of p and ¢ are therefore parame-
ters in this process, which need to be chosen in an application-specific way. Champion lists
are particularly useful in document-at-a-time querying in which inverted lists are sorted by
document identifier. In the event that the inverted lists are sorted in decreasing order of
term frequency (for term-at-a-time querying), the effect of champion lists can be realized
by using only the initial portions of the inverted lists. Therefore, champion lists need not
be explicitly maintained in such cases.

A generalization of the notion of champion lists is the use of tiered indezxes. In tired in-
dexes, the idea is that the inverted list only contains the subset of document identifiers with
frequency more than a particular threshold. Therefore, the highest threshold corresponds to
tier 1, which has the shortest inverted lists. The next higher threshold corresponds to tier
2, and so on. If a query can be resolved using only tier 1 lists, then the results are accepted.
Otherwise, the query is processed using the next tier. This approach is continued, until a
sufficient number of results can be returned.

9.2.5.3 Caching Tricks

In query processing systems, large numbers of users might be simultaneously making queries,
as a result of which many inverted lists will be accessed repeatedly. In such cases, it makes
sense to store the inverted lists of frequently queried terms in fast caches for quick retrieval.



The query processing system first checks the cache to retrieve the inverted list for the term.
If the inverted list is not available in the cache, then the pointer to the disk (available in
the dictionary) is used.

Caches are expensive and therefore only a small fraction of the inverted lists can be
stored. Therefore, one needs an admission control mechanism to decide which inverted lists
to store in the cache. The admission control mechanism must be sufficiently adaptive that
the inverted lists stored in the cache are statistically likely to have been accessed frequently
in the recent past. The time-tested method for achieving this goal is to use a least recently
used (LRU) cache. The cache maintains the last time that each inverted list in it was
accessed. When an inverted list for a term is requested, the cache is checked to see if its
is available. If the inverted list is found in the cache, its time stamp is updated to the
current time. On the other hand, if the inverted list is not found in the cache, it needs
to be accessed from disk. Furthermore, it is now inserted in the cache at the expense of
one or more existing lists in the cache. This is achieved by removing a sufficient number of
least recently used inverted lists from the cache to make room for the newly inserted list.
Refer to the bibliographic notes for pointers to multilevel caching methods that are used in
information retrieval applications.

9.2.5.4 Compression Tricks

Both the dictionary and the inverted index are often stored in compressed form. Although
compression obviously saves on storage, a more important motivation for compression is
that it improves efficiency. This is because smaller files improve the caching behavior of the
system. Furthermore, it takes less time to read a file from disk and load it to main memory.

Dictionaries are often stored in main memory because they require much less space than
the inverted index. However, for some systems even the memory requirements of a dictionary
become a burden. Therefore, one needs to reduce its memory footprint as much as possible
to ensure that it fits in main memory and possibly free up storage for other parts of the
index. How does one allocate memory for the terms in the dictionary? One approach is to
allocate fixed-width for the string representation of the term in a hash-based dictionary. For
example, if 25 characters are allocated for each term in the hash table, but a term like “golf’
requires only four characters. Therefore, 21 characters are being wasted. Furthermore, the
fixed-length approach would cause problems in storage of long terms or phrases with more
than 25 characters. One approach is to allocate space only for pointers within the hash table
to the string representation of each term. Such pointers are referred to as term pointers.
Dictionaries are compressed by concatenating all the terms in the lexicon into a single
string, in which the terms occur in lexicographically sorted order. The delimiters between
two terms can be obtained by using term pointers. Therefore, instead of the hash table, one
now maintains a lexicographically sorted array of entries containing these term pointers.
A term pointer points to the position on the string at which the term starts. Because of
the sorting of both the string dictionary and the array in the same way, the next pointer
in the array also provides the end delimiter of the current term in the string. Aside from
the term pointers, the array also contains a numerical entry with the number of documents
containing the term and the pointer to the first element of the inverted list of the term.
Therefore each entry in the sorted table contains 4 bytes each for two pointers (to terms
and postings), and 4 bytes to store the document frequency. An example of a compressed
dictionary for the example of Fig. 9.2 is shown in Fig.9.5. When a query is entered by the
user, one needs to efficiently locate the pointer to the relevant inverted lists. To achieve this
goal, binary search can be used on this dictionary with the help of term pointers. Once the
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Figure 9.5: Compressing a dictionary by avoiding fixed width allocation of terms

relevant entry of the array has been isolated, the pointer to the inverted list can be returned.
For a dictionary containing a million terms of 8 characters per term, the size required by the
string is 8 MB and the size required by the array is 12 MB. Although these requirements
might seem tiny (and unimportant to compress), they do enable the use of very fast caches
or severely constrained hardware settings. One can also use hash tables with dynamically
allocated memory for terms, if space is not at a premium.

Inverted lists can also be compressed. The most common approach is to use variable
byte codes, in which each number is encoded using as many bytes as needed. Only 7 bits
within the byte are used for encoding, and the last bit is a continuation indicator telling
us whether or not the next byte is part of the same number. Therefore any number less
than 27 = 128 requires a single byte, and any number less than 1282 requires at most two
bytes. Most term frequencies in a document are small values less than 128, and they can
be stored in a single byte. However, document identifiers can be arbitrarily long integers.
In the case of inverted lists, which are sorted by document identifier, one can use the idea
of delta encoding.

When the document identifiers are in sorted order, one can store the differences be-
tween consecutive document identifiers using variable byte codes (or any other compression
scheme that favors small numbers). For example, consider the following sequence of docu-
ment identifiers:

23671, 23693, 23701, 23722, 23755, 23812

One does have to store the first document identifier, which is rather large. However,
subsequent document identifiers can be stored as successive offsets, which are the differ-
ences between consecutive values in the aforementioned sequence:

22, 8, 21, 33, 57

These values are also referred to as d-gaps. Each of these values is small enough to be
stored in a single byte in this particular example. Another important point to keep in mind
is that these differences between successive document identifiers will be small for more
frequent terms (with larger inverted lists). This means that larger inverted lists will be
compressed to a greater degree, which is desirable for storage efficiency. This is a recurring
idea in many compression methods where frequently occurring items are represented using
codes of smaller length, whereas rarer items are allowed codes of longer length. We refer
the reader to the bibliographic notes for pointers to various compression schemes.



9.3 Scoring with Information Retrieval Models

The previous section provides a broad idea of the scoring process in information retrieval
with the use of different types of indexes. A broad picture is provided about the various
types of factors that are used for scoring and ranking documents (e.g., aggregate matches
or proximity of keywords). However, it does not discuss the specific types of models that
are used in information retrieval applications for scoring and ranking documents. Such
models can often be used in combination with relevance judgements by combining them
with weights. It is noteworthy that most of the models in this section can be captured using
scoring functions of the form discussed in Eqs.9.2 and 9.3. This fact enables the use of
efficient term-at-a-time or document-at-a-time query processing methods for these models
(see page 268).

9.3.1 Vector Space Models with tf-idf

The simplest approach is to use the tf-idf representation discussed in Sect.2.4 of Chap. 2.
We briefly recap some of the concepts in using the tf-idf representation.

Consider a document collection containing n documents in d dimensions. Let X =
(z1...24) be the d-dimensional representation of a document after the term extraction
phase. The square-root or the logarithm function may be applied to the frequencies to
reduce the effect of terms that occur too often in a document. In other words, one might
replace each x; with either \/z;, log(1 4 x;), or 1 + log(x;).

It is also common to normalize term frequencies based on their presence in the entire
collection. The first step in normalization is compute the inverse document frequency of
each term. The inverse document frequency id; of the ith term is a decreasing function of
the number of documents n; in which it occurs:

id; = log(n/n;) (9.6)

Note that the value of id; is always nonnegative. In the limiting cases in which a term occurs
in every document of the collection, the value of id; is 0. The term frequency is normalized
by multiplying it with the inverse document frequency:

Once the normalized representation of each document in the corpus is computed, it is used
to respond to similarity-based queries. The most common similarity function is the cosine
function, which is introduced in Sect. 2.5 of Chap. 2.

Consider a target document X = (x1...74) and the query vector @ = (qi ...qq). The
query vector might either be binary or it might be based on term frequencies. The cosine
function is defined as follows:
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cosine(X, Q) =

It is sufficient to compute the cosine to a constant of proportionality because we only need
to rank the different instances for a particular query. It is easy to see that this scoring
function is of the form captured by Egs. 9.2 and 9.3, which can be computed with either
term-at-a-time or document-at-a-time query processing (see pages 268 and 270).



9.3.2 The Binary Independence Model

The binary independence model uses binary relevance judgements about training documents
in order to score previously unseen documents with the use of a naive Bayes classifier. In
particular, the Bernoulli classifier of Sect.5.3.1 in Chap.5 is used. Let R € {0,1} indicate
whether or not a the document is relevant to be particular query. As discussed in Sect. 5.3.1,
the Bernoulli model implicitly assumes that each document X is represented in a vector
space representation with Boolean attributes containing information about whether or not
each term ¢; is present in X.

Assume that we have some training data available, which tells us whether or not a
document is relevant to a particular query. Note that relevance judgement data that is
query-specific* is often hard to come by, although one can allow the user to provide feed-
back to query results to collect data about document relevance or non-relevance. Note that
the collected data is useful only for that specific query, which is different from the machine
learning approach of previous sections in which the training data for importance of specific
types of meta-features are learned over multiple queries. In order to use these models with-
out human intervention or training data, we will eventually make a number of simplifying
assumptions. In that sense, these models also provide the intuitions necessary for query
processing without these (query-specific) relevance judgements.

Let p§-0) be the fraction of non-relevant documents in the training data (i.e., user rel-
evance judgements) that do not contain term t;, and p§»1) be the fraction of documents
containing term ¢;. Similarly, let oy be the fraction of non-relevant documents and oy be
the fraction of relevant documents in the training data. The scoring function for a given
query is represented in terms of the Bayes classification probabilities. We wish to find the
ratio of the probability P(R = 1|X) to that of P(R = 0|X). Based on the results from the
Bernoulli model in Sect. 5.3.1, we can state the following:
P(R=1)-PX|R=1) o1ll,exp} Il ox1-2")
P(R = 1|Y) - - 0\ - _ tjeX g lﬁZX J
P(X) P(X)
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Then, the ratio of the two quantities may be computed after ignoring the prior probabilities
(because they are not document-specific and do not affect the ranking):

P(R=1]X) Htjefpﬁl) [T, gx(1 - r;”)
P(R=01X) " T[, cx 0" T, g (1 1))

The constant of proportionality is used here because the document-independent ratio ay /g
is ignored in the above expression. We can rearrange the above expression to within a
constant of proportionality and make it dependent only on the terms occurring in X. This
is achieved by multiplying both sides of Eq.9.8 with a document-independent term, and
then dropping it only from the left-hand side (which retains the proportionality relationship

(9.8)

4In all the previous discussions on machine learned information retrieval, the training data is not specific
to a particular query. However, each set of values of the extracted features is query-specific and multiple
queries are represented in the same training data. The importance of the query-specific values of the meta-
features (e.g., zones, authorship, location) of the document is learned with feedback data.
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The logarithm of the above quantity is used in order to compute an additive form of the
relevance score. The additive form of the ranking score is always desirable because it can be
computed using inverted indexes and accumulators, as discussed on page 268. In the binary
independence model, the retrieval status value RSVy;(X, Q) of document X with respect to
query vector @ can be expressed in terms of a summation only over the terms present in
the document X as follows:

W _ (0
RSVu(X,Q) = 3 log ((1%) (9.9)

(0)
t;eX (1-p;

For any term ¢; that is not included in the binary query vector @, it is assumed that the
term is distributed in a similar way across relevant and non-relevant documents. This is
equivalent to assuming that p;-O) = pg-l) for terms not in @, which results in the dropping
of non-query terms from the right-hand side of Eq.9.9. This results in a retrieval status
value that is expressed only as a summation over the matching terms in the query and the

document:

- (= p")
RSVyu(X, Q)= Y log (M) (9.10)
EX t;€Q Pj (1 by )
An important point here is that the quantities such as pg- ) and p( ) are not usually avail-

able on a query-specific basis, unless the human is actively 1nv01ved in providing relevance
feedback to the results of queries. Some systems do allow the user to actively enter rel-
evance feedback values. In these cases, a list of results is presented to the user based on
some matching model for retrieval. The user then indicates which results are relevant. As a
result, one can now label documents as relevant or non-relevant, which is a straightforward
classification setting. In such cases, the problem of parameter estimation of p] ) and pj

becomes identical to the way in which parameters are estimated in the Bernoulli model in
Sect.5.3.1. As in Sect. 5.3.1, Laplacian smoothing is used in order to provide more robust
estimates of the probabilities. Note that such an approach has to perform the parameter
estimation in real time after receiving the feedback, so that the next round of ranking can
be presented to the user on the basis of computed values of RSV;; (X, Q). If R is the number

of relevant documents out of N documents, and r; is the number of relevant documents
(0) ©)

containing term ¢; out of n; such documents, then the values of p; and p;’ are set as
follows: 05 405
n_r : 0O _Nj 7 .
S B e R N Ehta 9.11
Pi R+1" Pi N-R+1 (0-11)

The constant values of 0.5 and 1 are respectively added to the numerator and denominator
for smoothing.



However, not all systems are able to use the feedback to specific queries in real time.
In such cases, a number of simplifying assumptions are used in order to estimate quantities

§-0) and p§-1)
value of pé.l) is assumed to be a large constant® such as 0.5 (relative to fractional occurrences
of random terms in documents) because the terms in the queries are generally extremely
relevant. However, such terms can also be present in non-relevant documents at a statistical
frequency that is similar to that of the remaining collection. The value of p;o) is computed
based on the statistical frequency of the term ¢; across the whole collection. The frequency
of the term across the whole collection is n;/n, where n; is the number of documents in
the whole collection in which the term ¢; occurs and n be the total number of documents.

Then, the value of p§0) is set to n;/n.
Therefore, if relevance feedback is not used, the retrieval status value with the binary
independence model, specific to query ) and candidate document X is given by substituting

Y = 0.5 and pgo) =n;/n in Eq.9.10:

j RSVu(X,Q) = > log (”;j”j>z > log (;;) (9.12)
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such as p . For any term ¢; that is included in the binary query vector @, the

An alternative version of the expression above is also used, when Laplacian smoothing is
desired:

RSViu(X, Q)= > log( (9.13)

n—nj+ 0.5)
t;eX,t;€Q

n; + 0.5

It is easy to see that the expression on the right-hand side of Eq.9.12 is equal to the sum of
the inverse document frequency (idf) weights over matching terms. Therefore, one can even
view this probabilistic model as a theoretical confirmation of the soundness of using inverse
document frequencies in other similarity functions (e.g., cosine similarity) for computing
matching scores. There are, however, several key differences of this model from the cosine
similarity. First, the term frequencies of documents are not used, and secondly, document
length normalization is missing. The fact that the term frequency is missing is a consequence
of the fact that the documents are treated as binary vectors. Unfortunately, the missing term
frequencies and document-length normalization do hurt the retrieval performance. Never-
theless, the binary independence model provides an initial template for constructing a more
refined probabilistic model using the term frequencies that accounts for the same factors as
the cosine similarity, but is better grounded in terms of probabilistic interpretation. This
model is referred to as the BM25 model, which is discussed in the next section.

9.3.3 The BM25 Model with Term Frequencies

The BM25 model, which is also referred to as the Okapi model, augments the binary in-
dependence model with term frequencies and document length normalization in order to
improve the retrieved results. Let (x1 ... xz4) represent the raw term frequencies in document
X without any form of frequency damping® or inverse document frequency (idf) normaliza-

5This was one of the earliest ideas proposed by Croft and Harper [119]. However, other alternatives are

possible. Sometimes, a few relevant documents may be available, which can be used to estimate pg-l). The
other idea is to allow p§1) to rise with the number of documents n; containing term t;. For example, one
2.m;
can use pgl) = % + % [184].
6As discussed earlier, the square root or logarithm is frequently applied to term frequencies to reduce
the impact of repeated words.



tion. Similarly, let Q = (q1 ... qdlrel)resent the term frequencies in the query Q. Then, the
retrieval status value RSVyma5(X, @) is closely related to that of the binary independence
model:

(1) (0)
(1 — p k D k Vg,
RSVimas = ) logp‘ zo)( p?n) ' i+ Dy . et Ly (9.14)
s P (1 ) ki(1—b)+b- L(X)+x; ko + q;
ridf; doc. frequency/length impact query impact

The values k1, k2, and b are parameters, which respectively regulate impact of document
term frequency, query term frequency, and document length normalization, respectively. The
first term is identical to that in the binary independence model and can be simplified in a
similar way to Eq.9.13. The second term incorporates the impact of term frequencies and
the document lengths. Small values of k; lead to the frequencies of the term being ignored,
and large values of ki lead to linear weighting with the term frequency x;. Intermediate
values” of k; € (1,1.5) have the same effect as that of applying the square-root or logarithm
to the term frequency in order to reduce excessive impact of repeated term occurrences.
The expression L(X) is the normalized length of document X, which is the ratio of its
length to the average length of a document in the collection. Note that L(X) will be larger
than 1 for long documents. The parameter b is helpful for document length normalization.
Setting the value of b to 0 results in no document length normalization, whereas setting
the value of b = 1 leads to maximum normalization. A typical value of b = 0.75 is used.
The parameter ko serves the same purpose as ki, except that it does so for the query
document frequencies. The choice of ks is, however, not quite as critical because the query
documents are typically short with few repeated occurrences of terms. In such cases, almost
any choice of ko € (1,10) will yield similar results, and in some cases the entire term
for query frequency normalization is dropped. Query length normalization is unnecessary
because it is a proportionality factor that does not affect ranking of documents. Unlike the
binary independence model, the summation is over all the terms in the query @ rather than
only the matching terms between @ and X. However, since the value of z; is multiplicatively
included in the expression, the absence of the query term in a document will automatically
set its retrieval status value to 0. This is important because it means that only documents
with matching terms contribute to the ranking score, and it is possible to perform query
processing with an inverted index. One can express the first term in a data-driven manner,
which is similar to Eq.9.13:

T mt05 (-0 +b LX)tz kat
~udf; doc. frequency/length impact query impact

The aforementioned expression is for cases where relevance feedback is not available. If
relevance feedback is available, then the values of p;o) and pgl) in the first term are set using
Eq.9.11. Since the retrieval status value is computed in an additive way over query terms,
and only matching documents are relevant, one can use the document-at-a-time (page 270)
query processing technique in order to evaluate the score.

7Such values of k; are recommended in TREC experiments.



9.3.4 Statistical Language Models in Information Retrieval

A statistical language model assigns a probability to a sequence of words in a given language
in a data-driven manner. In other words, given a corpus of documents, the language model
estimates the probability that it was generated using this model. The use of language models
in information retrieval is based on the intuition that users often formulate queries based
on terms that are likely to appear in the returned documents. In some cases, even the
ordering of the terms in the query might be chosen on the basis of the expected sequence of
terms in the document. Therefore, if the user creates a language model for each document,
it effectively provides a language model for the query. In other words, the assumption is
that the document and query were generated from the same model. Documents can then be
scored by computing the posterior probability of generating the document from the same
model as the query. This is a fundamentally different notion from the concept of relevance
that is used in the binary independence and BM25 models for ranking documents.

A language model for a document provides a generative process of constructing the
document. The most primitive language model is the unigram language model in which
no sequence information is used and only the frequencies of terms are used. The basic
assumption is that each token in a document is generated by rolling a die independently
from the previous tokens in the document, where each face of the die shows a particular
term. Note that the unigram language model creates a multinomial distribution of terms
in a document, as discussed in Chaps. 4 and 5. Therefore, the unigram language model can
be fully captured by using the probabilities of the different terms in the documents and no
information about the sequence of the terms in the collection.

More complex language models such as bigram and n-gram language models use sequence
information. A bigram language model uses only the previous term to predict the term at a
particular position, and a trigram model uses the previous two words. In general, an n-gram
model uses the previous (n — 1) terms to predict a term at a particular position. In this
case, the parameters of the model correspond to the conditional probabilities of tokens,
given a fixed set of previous (n — 1) tokens. An n-gram model falls in the broad category of
Markovian models, which refers to a short-memory assumption. In this particular case, only
a history of (n — 1) terms in the sequence is used to predict the current term, and therefore
the amount of memory used for modeling is limited by the parameter n. Large values of n
result in theoretically more accurate models (i.e., lower bias), but sufficient data is often
not available to estimate the exponentially increasing number of parameters of the model
(i-e., higher variance). As a practical matter, only small values of n can be used in a realistic
way because of the rapid increase in the amount of data needed to estimate the parameters
at large values of n. A broader discussion of language models is provided in Sect. 10.2 of
Chap. 10, although this section will restrict the discussion to unigram language models. In
general, unigram language models are used frequently because of their simplicity and the
ease in estimation of the parameters with a limited amount of data.

9.3.4.1 Query Likelihood Models

How are language models used for information retrieval? Given a document X, one can
estimate the parameters of the language model, and then compute the posterior probabilities
of X, given the additional knowledge about the query Q. Therefore, the overall approach
may be described as follows:

1. Estimate the parameter vector gX of the language model M being used with the
use of each candidate document X in the corpus. For example, if a unigram language



model is used, the parameter vector © x will contain the probabilities of the different
faces of the die that generated X. The value of ©x can therefore be estimated as
the fractional presence of various terms in X. Note that each parameter vector O x is
specific only to a particular document X.

2. For a given query @, estimate the posterior probability P(X|Q). The documents are
ranked on the basis of this posterior probability.

In order to compute the posterior probability, the Bayes rule is used:

PX)-P@QX) o~
PX)-POIX)  prxy. pfx)

P(Q)
The constant of proportionality above is identified as the document-independent term, which

does not affect relative ranking. A further assumption is that the prior probability P(X) is
uniform over all documents. Therefore, we have the following:

P(X|Q) x P(Q[X)
Finally, the value of P(Q|X) is computed by using the underlying language model, whose
parameters were estimated using X. This is the same as estimating P(Q|Ox).
In the context of a unigram model, this estimation takes on a particularly simple form.

Let Ox = (61 ... .04) be the probabilities of the different terms in the collection, which were
estimated using X = (21 ...zq). The parameter §; can be estimated as follows:

P(X[Q) =

Ly
d
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Then, the estimation of P(Q|O©x) can be accomplished using the multinomial distribution:

0, = (9.16)

P(Q6x) = H g% (9.17)

Note that the logarithm of Eq.9.17 is additive in nature, and it can be computed efficiently
with the use of an inverted index and accumulator variables (cf. page 268). Furthermore,
the use of the logarithm avoids the multiplication of very small probabilities.

One way of understanding the query likelihood probability in the context of the unigram
language model is that it estimates the probability that the query is generated as a sample
of terms from the document. Of course, this interpretation would not be true for more
complex language models like a bigram model.

One issue with this estimation is that it would give nonzero scores for a document only
if it contained all the terms in that document. This is because the parameter vector O x
is computed using a single document X, which inevitably leads to a lot of zero values in
the parameter vector. One can use the Laplacian smoothing methods that are commonly
used for multinomial distributions, as discussed in Chaps.4 and 5. Another option is to
use Jelinek-Mercer smoothing, in which the value of 0; is estimated using the statistics of
both the document X and the whole collection. Let HJX and 934” be these two estimated
values. The parameter HJX is estimated as before, whereas the estimation of 9;‘” is simply
he fraction of the tokens in the whole collection that are ¢;. Then, the estimated value of
6; is a convex combination of these two values with the use of the parameter A € (0, 1):

0; = A0 + (1L — X6 (9.18)

Using A = 1 reverts to the aforementioned model without smoothing, whereas using A = 0
causes so much smoothing that all documents tie with the same ranking score.



9.4 'Web Crawling and Resource Discovery

Web crawlers are also referred to as spiders or robots. The primary motivation for Web
crawling is that the resources on the Web are dispensed widely across globally distributed
sites. While the Web browser provides a graphical user interface to access these pages in
an interactive way, the full power of the available resources cannot be leveraged with the
use of only a browser. In many applications, such as search and knowledge discovery, it is
necessary to download all the relevant pages at a central location (or a modest number of
distributed locations), to allow search engines and machine learning algorithms to use these
resources efficiently. In this sense, search engines are somewhat different from information
retrieval applications; even the compilation of the corpus for querying is a difficult task
because of the open and vast nature of the Web.

Web crawlers have numerous applications. The most important and well-known appli-
cation is search, in which the downloaded Web pages are indexed to provide responses to
user keyword queries. All the well-known search engines, such as Google and Bing, employ
crawlers to periodically refresh the downloaded Web resources at their servers. Such crawlers
are also referred to as universal crawlers because they are intended to crawl all pages on the
Web irrespective of their subject matter or location. Web crawlers are also used for business
intelligence, in which the Websites related to a particular subject are crawled or the sites
of a competitor are monitored and incrementally crawled as they change. Such crawlers are
also referred to as preferential crawlers because they discriminate between the relevance of
different pages for the application at hand.

9.4.1 A Basic Crawler Algorithm

While the design of a crawler is quite complex, with a distributed architecture and many
processes or threads, the following describes a simple sequential and universal crawler that
captures the essence of how crawlers are constructed.

A crawler uses the same mechanism used by browsers to fetch Web pages based on the
Hypertext Transfer Protocol (HTTP). The main difference is that the fetching is now done
by an automated program using automated selection decisions, rather than by the manual
specification of a Uniform Resource Locator (URL) by a user with a Web browser. In all
cases, a particular URL is fetched by the system. Both browsers and crawlers typically®
use GET requests to fetch Web pages, which is a functionality provided by the HTTP
protocol. The difference is that the GET request is invoked in a browser when a user clicks
a link or enters a URL, whereas the GET request is invoked in an automated way by the
crawler. In both cases, a domain name system (DNS) server is used to translate the URL
into an internet protocol (IP) address. The program then connects to the server using that
IP address and sends a GET request. In most cases, servers listen to requests at multiple
ports, and port 80 is typically used for Web requests.

The basic crawler algorithm, described in a very general way, uses a seed set of Universal
Resource Locators (URLs) S, and a selection algorithm A as the input. The algorithm .4
decides which document to crawl next from a current frontier list of URLs. The frontier list
represents URLs extracted from the Web pages. These are the candidates for pages that
can eventually be fetched by the crawler. The selection algorithm A is important because it
regulates the basic strategy used by the crawler to discover the resources. For example, if new

8Browsers also use POST requests, when additional information is needed by the Web server. For
example, an item is usually bought on the POST request. However, such requests are not used by crawlers
because they might inadvertently causes actions (such as buying), which were not desired by the crawler.



Algorithm BasicCrawler(Seed URLSs: S, Selection Algorithm: A)
begin
FrontierList = S;
repeat
Use algorithm A to select URL X € FrontierSet;
FrontierList = FrontierList — {X};
Fetch URL X and add to repository;
Add all relevant URLs in fetched document X to
end of FrontierList;
until termination criterion;
end

Figure 9.6: The basic crawler algorithm

URLs are appended to the end of the frontier list, and the algorithm A selects documents
from the beginning of the list, then this corresponds to a breadth-first algorithm.

The basic crawler algorithm proceeds as follows. First, the seed set of URLs is added
to the frontier list. In each iteration, the selection algorithm A picks one of the URLs from
the frontier list. This URL is deleted from the frontier list and then fetched using the GET
request of the HTTP protocol. The fetched page is stored in a local repository, and the
URLs inside it are extracted. These URLs are then added to the frontier list, provided that
they have not already been visited. Therefore, a separate data structure, in the form of a
hash table, needs to be maintained to store all visited URLs. In practical implementations
of crawlers, not all unvisited URLs are added to the frontier list due to Web spam, spider
traps, topical preference, or simply a practical limit on the size of the frontier list. After the
relevant URLs have been added to the frontier list, the next iteration repeats the process
with the next URL on the list. The process terminates when the frontier list is empty. If the
frontier list is empty, it does not necessarily imply that the entire Web has been crawled.
This is because the Web is not strongly connected, and many pages are unreachable from
most randomly chosen seed sets. Because most practical crawlers such as search engines are
incremental crawlers that refresh pages over previous crawls, it is usually easy to identify
unvisited seeds from previous crawls and add them to the frontier list, if needed. With large
seed sets, such as a previously crawled repository of the Web, it is possible to robustly crawl
most pages. The basic crawler algorithm is described in Fig. 9.6.

Thus, the crawler is a graph-search algorithm that discovers the outgoing links from
nodes by parsing Web pages and extracting the URLs. The choice of the selection algo-
rithm A will typically result in a bias in the crawling algorithm, especially in cases where
it is impossible to crawl all the relevant pages due to resource limitations. For example, a
breadth-first crawler is more likely to crawl a page with many links pointing to it. Inter-
estingly, such biases are sometimes desirable in crawlers because it is impossible for any
crawler to index the entire Web. Because the indegree of a Web page is often closely related
to its PageRank, a measure of a Web page’s quality, this bias is not necessarily undesirable.
Crawlers use a variety of other selection strategies defined by the algorithm A.

Because most universal crawlers are incremental crawlers that are intended to refresh
previous crawls, it is desirable to crawl frequently changing pages. The explicit detection of
whether a Web page has been changed can be done at a relatively low cost using the HEAD
request of the HTTP protocol. The HEAD request receives only the header information
from a Web page at a lower cost than crawling the Web page. The header information also
contains the last date at which the Web document was modified. This date is compared
with that obtained from the previous fetch of the Web page (using a GET request). If the
date has changed, then the Web page needs to be crawled again.

The use of the HEAD request reduces the cost of crawling a Web page, although it



still imposes some burden on the Web server. Therefore, the crawler needs to implement
some internal mechanisms in order to estimate the frequency at which a Web page changes
(without actually issuing any requests). This type of internal estimation helps the crawler in
minimizing the number of fruitless requests to Web servers. Specific types of Web pages such
as news sites, blogs, and portals might change frequently, whereas other types of pages may
change slowly. The change frequency can be estimated from repeated previous crawls of the
same page or by using learning algorithms that factor in specific characteristics of the Web
page. Some resources such as news portals are updated frequently. Therefore, frequently
updated pages may be selected by the algorithm A. Other than the change frequency,
another factor is the popularity and usefulness of Web pages to the general public. Clearly,
it is desirable to crawl popular and useful pages more frequently. Therefore, the selection
algorithm A4 may specifically choose Web pages with high PageRank from frontier list. The
computation of PageRank is discussed in Sect.9.6.1. The use of PageRank as a criterion for
selecting Web pages to be crawled is closely related to that of preferential crawlers.

9.4.2 Pref