
Charu C. Aggarwal

Machine Learning for Text

123

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

ISBN 978-3-319-73530-6 ISBN 978-3-319-73531-3 (eBook)
https://doi.org/10.1007/978-3-319-73531-3

Library of Congress Control Number: 2018932755

© Springer International Publishing AG, part of Springer Nature 2018

https://doi.org/10.1007/978-3-319-73531-3

Preface

“ If it is true that there is always more than one way of construing a text, it is
not true that all interpretations are equal.” – Paul Ricoeur

The rich area of text analytics draws ideas from information retrieval, machine learning,
and natural language processing. Each of these areas is an active and vibrant field in its
own right, and numerous books have been written in each of these different areas. As a
result, many of these books have covered some aspects of text analytics, but they have not
covered all the areas that a book on learning from text is expected to cover.

At this point, a need exists for a focussed book on machine learning from text. This
book is a first attempt to integrate all the complexities in the areas of machine learning,
information retrieval, and natural language processing in a holistic way, in order to create
a coherent and integrated book in the area. Therefore, the chapters are divided into three
categories:

1. Fundamental algorithms and models: Many fundamental applications in text analyt-
ics, such as matrix factorization, clustering, and classification, have uses in domains
beyond text. Nevertheless, these methods need to be tailored to the specialized char-
acteristics of text. Chapters 1 through 8 will discuss core analytical methods in the
context of machine learning from text.

2. Information retrieval and ranking: Many aspects of information retrieval and rank-
ing are closely related to text analytics. For example, ranking SVMs and link-based
ranking are often used for learning from text. Chapter 9 will provide an overview of
information retrieval methods from the point of view of text mining.

3. Sequence- and natural language-centric text mining: Although multidimensional rep-
resentations can be used for basic applications in text analytics, the true richness of
the text representation can be leveraged by treating text as sequences. Chapters 10
through 14 will discuss these advanced topics like sequence embedding, deep learning,
information extraction, summarization, opinion mining, text segmentation, and event
extraction.

Because of the diversity of topics covered in this book, some careful decisions have been made
on the scope of coverage. A complicating factor is that many machine learning techniques

depend on the use of basic natural language processing and information retrieval method-
ologies. This is particularly true of the sequence-centric approaches discussed in Chaps. 10
through 14 that are more closely related to natural language processing. Examples of an-
alytical methods that rely on natural language processing include information extraction,
event extraction, opinion mining, and text summarization, which frequently leverage basic
natural language processing tools like linguistic parsing or part-of-speech tagging. Needless
to say, natural language processing is a full fledged field in its own right (with excellent
books dedicated to it). Therefore, a question arises on how much discussion should be pro-
vided on techniques that lie on the interface of natural language processing and text mining
without deviating from the primary scope of this book. Our general principle in making
these choices has been to focus on mining and machine learning aspects. If a specific nat-
ural language or information retrieval method (e.g., part-of-speech tagging) is not directly
about text analytics, we have illustrated how to use such techniques (as black-boxes) rather
than discussing the internal algorithmic details of these methods. Basic techniques like part-
of-speech tagging have matured in algorithmic development, and have been commoditized
to the extent that many open-source tools are available with little difference in relative
performance. Therefore, we only provide working definitions of such concepts in the book,
and the primary focus will be on their utility as off-the-shelf tools in mining-centric settings.
The book provides pointers to the relevant books and open-source software in each chapter
in order to enable additional help to the student and practitioner.

The book is written for graduate students, researchers, and practitioners. The exposition
has been simplified to a large extent, so that a graduate student with a reasonable under-
standing of linear algebra and probability theory can understand the book easily. Numerous
exercises are available along with a solution manual to aid in classroom teaching.

Throughout this book, a vector or a multidimensional data point is annotated with a bar,
such as X or y. A vector or multidimensional point may be denoted by either small letters
or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots,
such as X · Y . A matrix is denoted in capital letters without a bar, such as R. Throughout
the book, the n × d document-term matrix is denoted by D, with n documents and d
dimensions. The individual documents in D are therefore represented as d-dimensional row
vectors, which are the bag-of-words representations. On the other hand, vectors with one
component for each data point are usually n-dimensional column vectors. An example is
the n-dimensional column vector y of class variables of n data points.

Yorktown Heights, NY, USA Charu C. Aggarwal

Contents

1 Machine Learning for Text: An Introduction 1

1.1 Introduction . 1

1.1.1 Chapter Organization . 3

1.2 What Is Special About Learning from Text? 3

1.3 Analytical Models for Text . 4

1.3.1 Text Preprocessing and Similarity Computation 5

1.3.2 Dimensionality Reduction and Matrix Factorization 7

1.3.3 Text Clustering . 8

1.3.3.1 Deterministic and Probabilistic Matrix Factorization
Methods . 8

1.3.3.2 Probabilistic Mixture Models of Documents 8

1.3.3.3 Similarity-Based Algorithms 9

1.3.3.4 Advanced Methods . 9

1.3.4 Text Classification and Regression Modeling 10

1.3.4.1 Decision Trees . 11

1.3.4.2 Rule-Based Classifiers . 11

1.3.4.3 Näıve Bayes Classifier . 11

1.3.4.4 Nearest Neighbor Classifiers 12

1.3.4.5 Linear Classifiers . 12

1.3.4.6 Broader Topics in Classification 13

1.3.5 Joint Analysis of Text with Heterogeneous Data 13

1.3.6 Information Retrieval and Web Search 13

1.3.7 Sequential Language Modeling and Embeddings 13

1.3.8 Text Summarization . 14

1.3.9 Information Extraction . 14

1.3.10 Opinion Mining and Sentiment Analysis 14

1.3.11 Text Segmentation and Event Detection 15

1.4 Summary . 15

1.5 Bibliographic Notes . 15

1.5.1 Software Resources . 16

1.6 Exercises . 16

2 Text Preparation and Similarity Computation 17
2.1 Introduction . 17

2.1.1 Chapter Organization . 18
2.2 Raw Text Extraction and Tokenization . 18

2.2.1 Web-Specific Issues in Text Extraction 21
2.3 Extracting Terms from Tokens . 21

2.3.1 Stop-Word Removal . 22
2.3.2 Hyphens . 22
2.3.3 Case Folding . 23
2.3.4 Usage-Based Consolidation . 23
2.3.5 Stemming . 23

2.4 Vector Space Representation and Normalization 24
2.5 Similarity Computation in Text . 26

2.5.1 Is idf Normalization and Stemming Always Useful? 28
2.6 Summary . 29
2.7 Bibliographic Notes . 29

2.7.1 Software Resources . 30
2.8 Exercises . 30

3 Matrix Factorization and Topic Modeling 31
3.1 Introduction . 31

3.1.1 Chapter Organization . 33
3.1.2 Normalizing a Two-Way Factorization into a Standardized

Three-Way Factorization . 34
3.2 Singular Value Decomposition . 35

3.2.1 Example of SVD . 37
3.2.2 The Power Method of Implementing SVD 39
3.2.3 Applications of SVD/LSA . 39
3.2.4 Advantages and Disadvantages of SVD/LSA 40

3.3 Nonnegative Matrix Factorization . 41
3.3.1 Interpretability of Nonnegative Matrix Factorization 43
3.3.2 Example of Nonnegative Matrix Factorization 43
3.3.3 Folding in New Documents . 45
3.3.4 Advantages and Disadvantages of Nonnegative Matrix

Factorization . 46
3.4 Probabilistic Latent Semantic Analysis . 46

3.4.1 Connections with Nonnegative Matrix Factorization 50
3.4.2 Comparison with SVD . 50
3.4.3 Example of PLSA . 51
3.4.4 Advantages and Disadvantages of PLSA 51

3.5 A Bird’s Eye View of Latent Dirichlet Allocation 52
3.5.1 Simplified LDA Model . 52
3.5.2 Smoothed LDA Model . 55

3.6 Nonlinear Transformations and Feature Engineering 56
3.6.1 Choosing a Similarity Function . 59

3.6.1.1 Traditional Kernel Similarity Functions 59
3.6.1.2 Generalizing Bag-of-Words to N -Grams 62
3.6.1.3 String Subsequence Kernels 62

3.6.1.4 Speeding Up the Recursion 65
3.6.1.5 Language-Dependent Kernels 65

3.6.2 Nyström Approximation . 66
3.6.3 Partial Availability of the Similarity Matrix 67

3.7 Summary . 69
3.8 Bibliographic Notes . 70

3.8.1 Software Resources . 70
3.9 Exercises . 71

4 Text Clustering 73
4.1 Introduction . 73

4.1.1 Chapter Organization . 74
4.2 Feature Selection and Engineering . 75

4.2.1 Feature Selection . 75
4.2.1.1 Term Strength . 75
4.2.1.2 Supervised Modeling for Unsupervised Feature

Selection . 76
4.2.1.3 Unsupervised Wrappers with Supervised Feature

Selection . 76
4.2.2 Feature Engineering . 77

4.2.2.1 Matrix Factorization Methods 77
4.2.2.2 Nonlinear Dimensionality Reduction 78
4.2.2.3 Word Embeddings . 78

4.3 Topic Modeling and Matrix Factorization 79
4.3.1 Mixed Membership Models and Overlapping Clusters 79
4.3.2 Non-overlapping Clusters and Co-clustering: A Matrix Factorization

View . 79
4.3.2.1 Co-clustering by Bipartite Graph Partitioning 82

4.4 Generative Mixture Models for Clustering 83
4.4.1 The Bernoulli Model . 84
4.4.2 The Multinomial Model . 86
4.4.3 Comparison with Mixed Membership Topic Models 87
4.4.4 Connections with Näıve Bayes Model for Classification 88

4.5 The k-Means Algorithm . 88
4.5.1 Convergence and Initialization . 91
4.5.2 Computational Complexity . 91
4.5.3 Connection with Probabilistic Models 91

4.6 Hierarchical Clustering Algorithms . 92
4.6.1 Efficient Implementation and Computational Complexity 94
4.6.2 The Natural Marriage with k-Means 96

4.7 Clustering Ensembles . 97
4.7.1 Choosing the Ensemble Component 97
4.7.2 Combining the Results from Different Components 98

4.8 Clustering Text as Sequences . 98
4.8.1 Kernel Methods for Clustering . 99

4.8.1.1 Kernel k-Means . 99
4.8.1.2 Explicit Feature Engineering 100
4.8.1.3 Kernel Trick or Explicit Feature Engineering? 101

4.8.2 Data-Dependent Kernels: Spectral Clustering 102

4.9 Transforming Clustering into Supervised Learning 104
4.9.1 Practical Issues . 105

4.10 Clustering Evaluation . 105
4.10.1 The Pitfalls of Internal Validity Measures 105
4.10.2 External Validity Measures . 105

4.10.2.1 Relationship of Clustering Evaluation to Supervised
Learning . 109

4.10.2.2 Common Mistakes in Evaluation 109
4.11 Summary . 110
4.12 Bibliographic Notes . 110

4.12.1 Software Resources . 111
4.13 Exercises . 111

5 Text Classification: Basic Models 113
5.1 Introduction . 113

5.1.1 Types of Labels and Regression Modeling 114
5.1.2 Training and Testing . 115
5.1.3 Inductive, Transductive, and Deductive Learners 116
5.1.4 The Basic Models . 117
5.1.5 Text-Specific Challenges in Classifiers 117

5.1.5.1 Chapter Organization . 117
5.2 Feature Selection and Engineering . 117

5.2.1 Gini Index . 118
5.2.2 Conditional Entropy . 119
5.2.3 Pointwise Mutual Information . 119
5.2.4 Closely Related Measures . 119
5.2.5 The χ2-Statistic . 120
5.2.6 Embedded Feature Selection Models 122
5.2.7 Feature Engineering Tricks . 122

5.3 The Näıve Bayes Model . 123
5.3.1 The Bernoulli Model . 123

5.3.1.1 Prediction Phase . 124
5.3.1.2 Training Phase . 125

5.3.2 Multinomial Model . 126
5.3.3 Practical Observations . 127
5.3.4 Ranking Outputs with Näıve Bayes 127
5.3.5 Example of Näıve Bayes . 128

5.3.5.1 Bernoulli Model . 128
5.3.5.2 Multinomial Model . 130

5.3.6 Semi-Supervised Näıve Bayes . 131
5.4 Nearest Neighbor Classifier . 133

5.4.1 Properties of 1-Nearest Neighbor Classifiers 134
5.4.2 Rocchio and Nearest Centroid Classification 136
5.4.3 Weighted Nearest Neighbors . 137

5.4.3.1 Bagged and Subsampled 1-Nearest Neighbors
as Weighted Nearest Neighbor Classifiers 138

5.4.4 Adaptive Nearest Neighbors: A Powerful Family 140
5.5 Decision Trees and Random Forests . 142

5.5.1 Basic Procedure for Decision Tree Construction 142

5.5.2 Splitting a Node . 143
5.5.2.1 Prediction . 144

5.5.3 Multivariate Splits . 144
5.5.4 Problematic Issues with Decision Trees in Text Classification 145
5.5.5 Random Forests . 146
5.5.6 Random Forests as Adaptive Nearest Neighbor Methods 147

5.6 Rule-Based Classifiers . 147
5.6.1 Sequential Covering Algorithms . 148

5.6.1.1 Learn-One-Rule . 149
5.6.1.2 Rule Pruning . 150

5.6.2 Generating Rules from Decision Trees 150
5.6.3 Associative Classifiers . 151
5.6.4 Prediction . 152

5.7 Summary . 152
5.8 Bibliographic Notes . 153

5.8.1 Software Resources . 154
5.9 Exercises . 154

6 Linear Classification and Regression for Text 159
6.1 Introduction . 159

6.1.1 Geometric Interpretation of Linear Models 160
6.1.2 Do We Need the Bias Variable? . 161
6.1.3 A General Definition of Linear Models with Regularization 162
6.1.4 Generalizing Binary Predictions to Multiple Classes 163
6.1.5 Characteristics of Linear Models for Text 164

6.1.5.1 Chapter Notations . 165
6.1.5.2 Chapter Organization . 165

6.2 Least-Squares Regression and Classification 165
6.2.1 Least-Squares Regression with L2-Regularization 165

6.2.1.1 Efficient Implementation 166
6.2.1.2 Approximate Estimation with Singular Value

Decomposition . 167
6.2.1.3 Relationship with Principal Components Regression . . . 167
6.2.1.4 The Path to Kernel Regression 168

6.2.2 LASSO: Least-Squares Regression with L1-Regularization 169
6.2.2.1 Interpreting LASSO as a Feature Selector 170

6.2.3 Fisher’s Linear Discriminant and Least-Squares Classification . . . 170
6.2.3.1 Linear Discriminant with Multiple Classes 173
6.2.3.2 Equivalence of Fisher Discriminant and Least-Squares

Regression . 173
6.2.3.3 Regularized Least-Squares Classification and LLSF 175
6.2.3.4 The Achilles Heel of Least-Squares Classification 176

6.3 Support Vector Machines . 177
6.3.1 The Regularized Optimization Interpretation 178
6.3.2 The Maximum Margin Interpretation 179
6.3.3 Pegasos: Solving SVMs in the Primal 180

6.3.3.1 Sparsity-Friendly Updates 181
6.3.4 Dual SVM Formulation . 182

6.3.5 Learning Algorithms for Dual SVMs 184
6.3.6 Adaptive Nearest Neighbor Interpretation of Dual SVMs 185

6.4 Logistic Regression . 187
6.4.1 The Regularized Optimization Interpretation 187
6.4.2 Training Algorithms for Logistic Regression 189
6.4.3 Probabilistic Interpretation of Logistic Regression 189

6.4.3.1 Probabilistic Interpretation of Stochastic Gradient
Descent Steps . 190

6.4.3.2 Relationships Among Primal Updates of Linear Models . 191
6.4.4 Multinomial Logistic Regression and Other Generalizations 191
6.4.5 Comments on the Performance of Logistic Regression 192

6.5 Nonlinear Generalizations of Linear Models 193
6.5.1 Kernel SVMs with Explicit Transformation 195
6.5.2 Why Do Conventional Kernels Promote Linear Separability? 196
6.5.3 Strengths and Weaknesses of Different Kernels 197

6.5.3.1 Capturing Linguistic Knowledge with Kernels 198
6.5.4 The Kernel Trick . 198
6.5.5 Systematic Application of the Kernel Trick 199

6.6 Summary . 203
6.7 Bibliographic Notes . 203

6.7.1 Software Resources . 204
6.8 Exercises . 205

7 Classifier Performance and Evaluation 209
7.1 Introduction . 209

7.1.1 Chapter Organization . 210
7.2 The Bias-Variance Trade-Off . 210

7.2.1 A Formal View . 211
7.2.2 Telltale Signs of Bias and Variance 214

7.3 Implications of Bias-Variance Trade-Off on Performance 215
7.3.1 Impact of Training Data Size . 215
7.3.2 Impact of Data Dimensionality . 217
7.3.3 Implications for Model Choice in Text 217

7.4 Systematic Performance Enhancement with Ensembles 218
7.4.1 Bagging and Subsampling . 218
7.4.2 Boosting . 220

7.5 Classifier Evaluation . 221
7.5.1 Segmenting into Training and Testing Portions 222

7.5.1.1 Hold-Out . 223
7.5.1.2 Cross-Validation . 224

7.5.2 Absolute Accuracy Measures . 224
7.5.2.1 Accuracy of Classification 224
7.5.2.2 Accuracy of Regression . 225

7.5.3 Ranking Measures for Classification and Information Retrieval . . . 226
7.5.3.1 Receiver Operating Characteristic 227
7.5.3.2 Top-Heavy Measures for Ranked Lists 231

7.6 Summary . 232
7.7 Bibliographic Notes . 232

7.7.1 Connection of Boosting to Logistic Regression 232

7.7.2 Classifier Evaluation . 233
7.7.3 Software Resources . 233
7.7.4 Data Sets for Evaluation . 233

7.8 Exercises . 234

8 Joint Text Mining with Heterogeneous Data 235
8.1 Introduction . 235

8.1.1 Chapter Organization . 237
8.2 The Shared Matrix Factorization Trick . 237

8.2.1 The Factorization Graph . 237
8.2.2 Application: Shared Factorization with Text and Web Links 238

8.2.2.1 Solving the Optimization Problem 240
8.2.2.2 Supervised Embeddings 241

8.2.3 Application: Text with Undirected Social Networks 242
8.2.3.1 Application to Link Prediction with Text Content 243

8.2.4 Application: Transfer Learning in Images with Text 243
8.2.4.1 Transfer Learning with Unlabeled Text 244
8.2.4.2 Transfer Learning with Labeled Text 245

8.2.5 Application: Recommender Systems with Ratings and Text 246
8.2.6 Application: Cross-Lingual Text Mining 248

8.3 Factorization Machines . 249
8.4 Joint Probabilistic Modeling Techniques 252

8.4.1 Joint Probabilistic Models for Clustering 253
8.4.2 Näıve Bayes Classifier . 254

8.5 Transformation to Graph Mining Techniques 254
8.6 Summary . 257
8.7 Bibliographic Notes . 257

8.7.1 Software Resources . 258
8.8 Exercises . 258

9 Information Retrieval and Search Engines 259
9.1 Introduction . 259

9.1.1 Chapter Organization . 260
9.2 Indexing and Query Processing . 260

9.2.1 Dictionary Data Structures . 261
9.2.2 Inverted Index . 263
9.2.3 Linear Time Index Construction . 264
9.2.4 Query Processing . 266

9.2.4.1 Boolean Retrieval . 266
9.2.4.2 Ranked Retrieval . 267
9.2.4.3 Term-at-a-Time Query Processing with Accumulators . . 268
9.2.4.4 Document-at-a-Time Query Processing with

Accumulators . 270
9.2.4.5 Term-at-a-Time or Document-at-a-Time? 270
9.2.4.6 What Types of Scores Are Common? 271
9.2.4.7 Positional Queries . 271
9.2.4.8 Zoned Scoring . 272
9.2.4.9 Machine Learning in Information Retrieval 273
9.2.4.10 Ranking Support Vector Machines 274

9.2.5 Efficiency Optimizations . 276
9.2.5.1 Skip Pointers . 276
9.2.5.2 Champion Lists and Tiered Indexes 277
9.2.5.3 Caching Tricks . 277
9.2.5.4 Compression Tricks . 278

9.3 Scoring with Information Retrieval Models 280
9.3.1 Vector Space Models with tf-idf . 280
9.3.2 The Binary Independence Model 281
9.3.3 The BM25 Model with Term Frequencies 283
9.3.4 Statistical Language Models in Information Retrieval 285

9.3.4.1 Query Likelihood Models 285
9.4 Web Crawling and Resource Discovery . 287

9.4.1 A Basic Crawler Algorithm . 287
9.4.2 Preferential Crawlers . 289
9.4.3 Multiple Threads . 290
9.4.4 Combatting Spider Traps . 290
9.4.5 Shingling for Near Duplicate Detection 291

9.5 Query Processing in Search Engines . 291
9.5.1 Distributed Index Construction . 292
9.5.2 Dynamic Index Updates . 293
9.5.3 Query Processing . 293
9.5.4 The Importance of Reputation . 294

9.6 Link-Based Ranking Algorithms . 295
9.6.1 PageRank . 295

9.6.1.1 Topic-Sensitive PageRank 298
9.6.1.2 SimRank . 299

9.6.2 HITS . 300
9.7 Summary . 302
9.8 Bibliographic Notes . 302

9.8.1 Software Resources . 303
9.9 Exercises . 304

10 Text Sequence Modeling and Deep Learning 305
10.1 Introduction . 305

10.1.1 Chapter Organization . 308
10.2 Statistical Language Models . 308

10.2.1 Skip-Gram Models . 310
10.2.2 Relationship with Embeddings . 312

10.3 Kernel Methods . 313
10.4 Word-Context Matrix Factorization Models 314

10.4.1 Matrix Factorization with Counts 314
10.4.1.1 Postprocessing Issues . 316

10.4.2 The GloVe Embedding . 316
10.4.3 PPMI Matrix Factorization . 317
10.4.4 Shifted PPMI Matrix Factorization 318
10.4.5 Incorporating Syntactic and Other Features 318

10.5 Graphical Representations of Word Distances 318

10.6 Neural Language Models . 320
10.6.1 Neural Networks: A Gentle Introduction 320

10.6.1.1 Single Computational Layer: The Perceptron 321
10.6.1.2 Relationship to Support Vector Machines 323
10.6.1.3 Choice of Activation Function 324
10.6.1.4 Choice of Output Nodes 325
10.6.1.5 Choice of Loss Function 325
10.6.1.6 Multilayer Neural Networks 326

10.6.2 Neural Embedding with Word2vec 331
10.6.2.1 Neural Embedding with Continuous Bag of Words 331
10.6.2.2 Neural Embedding with Skip-Gram Model 334
10.6.2.3 Practical Issues . 336
10.6.2.4 Skip-Gram with Negative Sampling 337
10.6.2.5 What Is the Actual Neural Architecture of SGNS? 338

10.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization 338
10.6.3.1 Gradient Descent . 340

10.6.4 Beyond Words: Embedding Paragraphs with Doc2vec 341
10.7 Recurrent Neural Networks . 342

10.7.1 Practical Issues . 345
10.7.2 Language Modeling Example of RNN 345

10.7.2.1 Generating a Language Sample 345
10.7.3 Application to Automatic Image Captioning 347
10.7.4 Sequence-to-Sequence Learning and Machine Translation 348

10.7.4.1 Question-Answering Systems 350
10.7.5 Application to Sentence-Level Classification 352
10.7.6 Token-Level Classification with Linguistic Features 353
10.7.7 Multilayer Recurrent Networks . 354

10.7.7.1 Long Short-Term Memory (LSTM) 355
10.8 Summary . 357
10.9 Bibliographic Notes . 357

10.9.1 Software Resources . 358
10.10 Exercises . 359

11 Text Summarization 361
11.1 Introduction . 361

11.1.1 Extractive and Abstractive Summarization 362
11.1.2 Key Steps in Extractive Summarization 363
11.1.3 The Segmentation Phase in Extractive Summarization 363
11.1.4 Chapter Organization . 363

11.2 Topic Word Methods for Extractive Summarization 364
11.2.1 Word Probabilities . 364
11.2.2 Normalized Frequency Weights . 365
11.2.3 Topic Signatures . 366
11.2.4 Sentence Selection Methods . 368

11.3 Latent Methods for Extractive Summarization 369
11.3.1 Latent Semantic Analysis . 369
11.3.2 Lexical Chains . 370

11.3.2.1 Short Description of WordNet 370
11.3.2.2 Leveraging WordNet for Lexical Chains 371

11.3.3 Graph-Based Methods . 372
11.3.4 Centroid Summarization . 373

11.4 Machine Learning for Extractive Summarization 374
11.4.1 Feature Extraction . 374
11.4.2 Which Classifiers to Use? . 375

11.5 Multi-Document Summarization . 375
11.5.1 Centroid-Based Summarization . 375
11.5.2 Graph-Based Methods . 376

11.6 Abstractive Summarization . 377
11.6.1 Sentence Compression . 378
11.6.2 Information Fusion . 378
11.6.3 Information Ordering . 379

11.7 Summary . 379
11.8 Bibliographic Notes . 379

11.8.1 Software Resources . 380
11.9 Exercises . 380

12 Information Extraction 381
12.1 Introduction . 381

12.1.1 Historical Evolution . 383
12.1.2 The Role of Natural Language Processing 384
12.1.3 Chapter Organization . 385

12.2 Named Entity Recognition . 386
12.2.1 Rule-Based Methods . 387

12.2.1.1 Training Algorithms for Rule-Based Systems 388
12.2.1.2 Top-Down Rule Generation 389
12.2.1.3 Bottom-Up Rule Generation 390

12.2.2 Transformation to Token-Level Classification 391
12.2.3 Hidden Markov Models . 391

12.2.3.1 Visible Versus Hidden Markov Models 392
12.2.3.2 The Nymble System . 392
12.2.3.3 Training . 394
12.2.3.4 Prediction for Test Segment 394
12.2.3.5 Incorporating Extracted Features 395
12.2.3.6 Variations and Enhancements 395

12.2.4 Maximum Entropy Markov Models 396
12.2.5 Conditional Random Fields . 397

12.3 Relationship Extraction . 399
12.3.1 Transformation to Classification . 400
12.3.2 Relationship Prediction with Explicit Feature Engineering 401

12.3.2.1 Feature Extraction from Sentence Sequences 402
12.3.2.2 Simplifying Parse Trees with Dependency Graphs 403

12.3.3 Relationship Prediction with Implicit Feature Engineering:
Kernel Methods . 404
12.3.3.1 Kernels from Dependency Graphs 405
12.3.3.2 Subsequence-Based Kernels 405
12.3.3.3 Convolution Tree-Based Kernels 406

12.4 Summary . 408

12.5 Bibliographic Notes . 409

12.5.1 Weakly Supervised Learning Methods 410

12.5.2 Unsupervised and Open Information Extraction 410

12.5.3 Software Resources . 410

12.6 Exercises . 411

13 Opinion Mining and Sentiment Analysis 413

13.1 Introduction . 413

13.1.1 The Opinion Lexicon . 415

13.1.1.1 Dictionary-Based Approaches 416

13.1.1.2 Corpus-Based Approaches 416

13.1.2 Opinion Mining as a Slot Filling and Information Extraction Task . 417

13.1.3 Chapter Organization . 418

13.2 Document-Level Sentiment Classification 418

13.2.1 Unsupervised Approaches to Classification 420

13.3 Phrase- and Sentence-Level Sentiment Classification 421

13.3.1 Applications of Sentence- and Phrase-Level Analysis 422

13.3.2 Reduction of Subjectivity Classification to Minimum Cut Problem 423

13.3.3 Context in Sentence- and Phrase-Level Polarity Analysis 423

13.4 Aspect-Based Opinion Mining as Information Extraction 424

13.4.1 Hu and Liu’s Unsupervised Approach 424

13.4.2 OPINE: An Unsupervised Approach 426

13.4.3 Supervised Opinion Extraction as Token-Level Classification 427

13.5 Opinion Spam . 428

13.5.1 Supervised Methods for Spam Detection 428

13.5.1.1 Labeling Deceptive Spam 429

13.5.1.2 Feature Extraction . 430

13.5.2 Unsupervised Methods for Spammer Detection 431

13.6 Opinion Summarization . 431

13.6.1 Rating Summary . 432

13.6.2 Sentiment Summary . 432

13.6.3 Sentiment Summary with Phrases and Sentences 432

13.6.4 Extractive and Abstractive Summaries 432

13.7 Summary . 433

13.8 Bibliographic Notes . 433

13.8.1 Software Resources . 434

13.9 Exercises . 434

14 Text Segmentation and Event Detection 435

14.1 Introduction . 435

14.1.1 Relationship with Topic Detection and Tracking 436

14.1.2 Chapter Organization . 436

14.2 Text Segmentation . 436

14.2.1 TextTiling . 437

14.2.2 The C99 Approach . 438

14.2.3 Supervised Segmentation with Off-the-Shelf Classifiers 439

14.2.4 Supervised Segmentation with Markovian Models 441

14.3 Mining Text Streams . 443
14.3.1 Streaming Text Clustering . 443
14.3.2 Application to First Story Detection 444

14.4 Event Detection . 445
14.4.1 Unsupervised Event Detection . 445

14.4.1.1 Window-Based Nearest-Neighbor Method 445
14.4.1.2 Leveraging Generative Models 446
14.4.1.3 Event Detection in Social Streams 447

14.4.2 Supervised Event Detection as Supervised Segmentation 447
14.4.3 Event Detection as an Information Extraction Problem 448

14.4.3.1 Transformation to Token-Level Classification 448
14.4.3.2 Open Domain Event Extraction 449

14.5 Summary . 451
14.6 Bibliographic Notes . 451

14.6.1 Software Resources . 451
14.7 Exercises . 452

Bibliography 453

Index 489

Chapter 1

Machine Learning for Text: An
Introduction

“The first forty years of life give us the text; the next thirty supply the
commentary on it.”—Arthur Schopenhauer

1.1 Introduction

The extraction of useful insights from text with various types of statistical algorithms is
referred to as text mining, text analytics, or machine learning from text. The choice of
terminology largely depends on the base community of the practitioner. This book will use
these terms interchangeably. Text analytics has become increasingly popular in recent years
because of the ubiquity of text data on the Web, social networks, emails, digital libraries,
and chat sites. Some common examples of sources of text are as follows:

1. Digital libraries: Electronic content has outstripped the production of printed books
and research papers in recent years. This phenomenon has led to the proliferation of
digital libraries, which can be mined for useful insights. Some areas of research such
as biomedical text mining specifically leverage the content of such libraries.

2. Electronic news: An increasing trend in recent years has been the de-emphasis of
printed newspapers and a move towards electronic news dissemination. This trend
creates a massive stream of news documents that can be analyzed for important
events and insights. In some cases, such as Google news, the articles are indexed by
topic and recommended to readers based on past behavior or specified interests.

3. Web and Web-enabled applications: The Web is a vast repository of documents that
is further enriched with links and other types of side information. Web documents are
also referred to as hypertext. The additional side information available with hypertext
can be useful in the knowledge discovery process. In addition, many Web-enabled

2 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

applications, such as social networks, chat boards, and bulletin boards, are a significant
source of text for analysis.

• Social media: Social media is a particularly prolific source of text because of the
open nature of the platform in which any user can contribute. Social media posts
are unique in that they often contain short and non-standard acronyms, which
merit specialized mining techniques.

Numerous applications exist in the context of the types of insights one of trying to discover
from a text collection. Some examples are as follows:

• Search engines are used to index the Web and enable users to discover Web pages
of interest. A significant amount of work has been done on crawling, indexing, and
ranking tools for text data.

• Text mining tools are often used to filter spam or identify interests of users in particular
topics. In some cases, email providers might use the information mined from text data
for advertising purposes.

• Text mining is used by news portals to organize news items into relevant categories.
Large collections of documents are often analyzed to discover relevant topics of inter-
est. These learned categories are then used to categorize incoming streams of docu-
ments into relevant categories.

• Recommender systems use text mining techniques to infer interests of users in specific
items, news articles, or other content. These learned interests are used to recommend
news articles or other content to users.

• The Web enables users to express their interests, opinions, and sentiments in various
ways. This has led to the important area of opinion mining and sentiment analy-
sis. Such opinion mining and sentiment analysis techniques are used by marketing
companies to make business decisions.

The area of text mining is closely related to that of information retrieval, although the latter
topic focuses on the database management issues rather than the mining issues. Because
of the close relationship between the two areas, this book will also discuss some of the
information retrieval aspects that are either considered seminal or are closely related to
text mining.

The ordering of words in a document provides a semantic meaning that cannot be
inferred from a representation based on only the frequencies of words in that document.
Nevertheless, it is still possible to make many types of useful predictions without inferring
the semantic meaning. There are two feature representations that are popularly used in
mining applications:

1. Text as a bag-of-words: This is the most commonly used representation for text min-
ing. In this case, the ordering of the words is not used in the mining process. The set
of words in a document is converted into a sparse multidimensional representation,
which is leveraged for mining purposes. Therefore, the universe of words (or terms)
corresponds to the dimensions (or features) in this representation. For many appli-
cations such as classification, topic-modeling, and recommender systems, this type of
representation is sufficient.

1.2. WHAT IS SPECIAL ABOUT LEARNING FROM TEXT? 3

2. Text as a set of sequences: In this case, the individual sentences in a document are
extracted as strings or sequences. Therefore, the ordering of words matters in this
representation, although the ordering is often localized within sentence or paragraph
boundaries. A document is often treated as a set of independent and smaller units (e.g.,
sentences or paragraphs). This approach is used by applications that require greater
semantic interpretation of the document content. This area is closely related to that
of language modeling and natural language processing. The latter is often treated as a
distinct field in its own right.

Text mining has traditionally focused on the first type of representation, although recent
years have seen an increasing amount of attention on the second representation. This is
primarily because of the increasing importance of artificial intelligence applications in which
the language semantics, reasoning, and understanding are required. For example, question-
answering systems have become increasingly popular in recent years, which require a greater
degree of understanding and reasoning.

It is important to be cognizant of the sparse and high-dimensional characteristics of text
when treating it as a multidimensional data set. This is because the dimensionality of the
data depends on the number of words which is typically large. Furthermore, most of the word
frequencies (i.e., feature values) are zero because documents contain small subsets of the
vocabulary. Therefore, multidimensional mining methods need to be cognizant of the sparse
and high-dimensional nature of the text representation for best results. The sparsity is not
always a disadvantage. In fact, some models, such as the linear support vector machines
discussed in Chap. 6, are inherently suited to sparse and high-dimensional data.

This book will cover a wide variety of text mining algorithms, such as latent factor
modeling, clustering, classification, retrieval, and various Web applications. The discussion
in most of the chapters is self-sufficient, and it does not assume a background in data mining
or machine learning other than a basic understanding of linear algebra and probability. In
this chapter, we will provide an overview of the various topics covered in this book, and
also provide a mapping of these topics to the different chapters.

1.1.1 Chapter Organization

This chapter is organized as follows. In the next section, we will discuss the special properties
of text data that are relevant to the design of text mining applications. Section 1.3 discusses
various applications for text mining. The conclusions are discussed in Sect. 1.4.

1.2 What Is Special About Learning from Text?

Most machine learning applications in the text domain work with the bag-of-words repre-
sentation in which the words are treated as dimensions with values corresponding to word
frequencies. A data set corresponds to a collection of documents, which is also referred to as
a corpus. The complete and distinct set of words used to define the corpus is also referred
to as the lexicon. Dimensions are also referred to as terms or features. Some applications
of text work with a binary representation in which the presence of a term in a document
corresponds to a value of 1, and 0, otherwise. Other applications use a normalized function
of the word frequencies as the values of the dimensions. In each of these cases, the dimen-
sionality of data is very large, and may be of the order of 105 or even 106. Furthermore,
most values of the dimensions are 0s, and only a few dimensions take on positive values. In
other words, text is a high-dimensional, sparse, and non-negative representation.

4 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

These properties of text create both challenges and opportunities. The sparsity of text
implies that the positive word frequencies are more informative than the zeros. There is also
wide variation in the relative frequencies of words, which leads to differential importance
of the different words in mining applications. For example, a commonly occurring word like
“the” is often less significant and needs to be down-weighted (or completely removed) with
normalization. In other words, it is often more important to statistically normalize the rela-
tive importance of the dimensions (based on frequency of presence) compared to traditional
multidimensional data. One also needs to normalize for the varying lengths of different
documents while computing distances between them. Furthermore, although most multidi-
mensional mining methods can be generalized to text, the sparsity of the representation has
an impact on the relative effectiveness of different types of mining and learning methods. For
example, linear support-vector machines are relatively effective on sparse representations,
whereas methods like decision trees need to be designed and tuned with some caution to
enable their accurate use. All these observations suggest that the sparsity of text can either
be a blessing or a curse depending on the methodology at hand. In fact, some techniques
such as sparse coding sometimes convert non-textual data to text-like representations in
order to enable efficient and effective learning methods like support-vector machines [355].

The nonnegativity of text is also used explicitly and implicitly by many applications.
Nonnegative feature representations often lead to more interpretable mining techniques, an
example of which is nonnegative matrix factorization (see Chap. 3). Furthermore, many topic
modeling and clustering techniques implicitly use nonnegativity in one form or the other.
Such methods enable intuitive and highly interpretable “sum-of-parts” decompositions of
text data, which are not possible with other types of data matrices.

In the case where text documents are treated as sequences, a data-driven language model
is used to create a probabilistic representation of the text. The rudimentary special case of
a language model is the unigram model, which defaults to the bag-of-words representation.
However, higher-order language models like bigram or trigram models are able to capture
sequential properties of text. In other words, a language model is a data-driven approach
to representing text, which is more general than the traditional bag-of-words model. Such
methods share many similarities with other sequential data types like biological data. There
are significant methodological parallels in the algorithms used for clustering and dimension-
ality reduction of (sequential) text and biological data. For example, just as Markovian
models are used to create probabilistic models of sequences, they can also be used to create
language models.

Text requires a lot of preprocessing because it is extracted from platforms such as
the Web that contain many misspellings, nonstandard words, anchor text, or other meta-
attributes. The simplest representation of cleaned text is a multidimensional bag-of-words
representation, but complex structural representations are able to create fields for different
types of entities and events in the text. This book will therefore discuss several aspects
of text mining, including preprocessing, representation, similarity computation, and the
different types of learning algorithms or applications.

1.3 Analytical Models for Text

The section will provide a comprehensive overview of text mining algorithms and applica-
tions. The next chapter of this book primarily focuses on data preparation and similarity
computation. Issues related to preprocessing issues of data representation are also discussed
in this chapter. Aside from the first two introductory chapters, the topics covered in this
book fall into three primary categories:

1.3. ANALYTICAL MODELS FOR TEXT 5

1. Fundamental mining applications: Many data mining applications like matrix factor-
ization, clustering, and classification, can be used for any type of multidimensional
data. Nevertheless, the uses of these methods in the text domain has specialized
characteristics. These represent the core building blocks of the vast majority of text
mining applications. Chapters 3 through 8 will discuss core data mining methods. The
interaction of text with other data types will be covered in Chap. 8.

2. Information retrieval and ranking: Many aspects of information retrieval and ranking
are closely related to text mining. For example, ranking methods like ranking SVM
and link-based ranking are often used in text mining applications. Chapter 9 will
provide an overview of information retrieval methods from the point of view of text
mining.

3. Sequence- and natural language-centric text mining: Although multidimensional min-
ing methods can be used for basic applications, the true power of mining text can be
leveraged in more complex applications by treating text as sequences. Chapters 10
through 14 will discuss these advanced topics like sequence embedding, neural learn-
ing, information extraction, summarization, opinion mining, text segmentation, and
event extraction. Many of these methods are closely related to natural language pro-
cessing. Although this book is not focused on natural language processing, the basic
building blocks of natural language processing will be used as off-the-shelf tools for
text mining applications.

In the following, we will provide an overview of the different text mining models covered
in this book. In cases where the multidimensional representation of text is used for mining
purposes, it is relatively easy to use a consistent notation. In such cases, we assume that a
document corpus with n documents and d different terms can be represented as a sparse
n×d document-term matrix, which is typically very sparse. The ith row of D is represented
by the d-dimensional row vector Xi. One can also represent a document corpus as a set of
these d-dimensional vectors, which is denoted by D = {X1 . . . Xn}. This terminology will be
used consistently throughout the book. Many information retrieval books prefer the use of
a term-document matrix, which is the transpose of the document-term matrix and the rows
correspond to the frequencies of terms. However, using a document-term matrix, in which
data instances are rows, is consistent with the notations used in books on multidimensional
data mining and machine learning. Therefore, we have chosen to use a document-term
matrix in order to consistent with the broader literature on machine learning.

Much of the book will be devoted to data mining and machine learning rather than the
database management issues of information retrieval. Nevertheless, there is some overlap
between the two areas, as they are both related to problems of ranking and search engines.
Therefore, a comprehensive chapter is devoted to information retrieval and search engines.
Throughout this book, we will use the term “learning algorithm” as a broad umbrella term
to describe any algorithm that discovers patterns from the data or discovers how such
patterns may be used for predicting specific values in the data.

1.3.1 Text Preprocessing and Similarity Computation

Text preprocessing is required to convert the unstructured format into a structured and
multidimensional representation. Text often co-occurs with a lot of extraneous data such as
tags, anchor text, and other irrelevant features. Furthermore, different words have different
significance in the text domain. For example, commonly occurring words such as “a,” “an,”

6 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

and “the,” have little significance for text mining purposes. In many cases, words are variants
of one another because of the choice of tense or plurality. Some words are simply misspellings.
The process of converting a character sequence into a sequence of words (or tokens) is
referred to as tokenization. Note that each occurrence of a word in a document is a token,
even if it occurs more than once in the document. Therefore, the occurrence of the same word
three times will create three corresponding tokens. The process of tokenization often requires
a substantial amount of domain knowledge about the specific language at hand, because the
word boundaries have ambiguities caused by vagaries of punctuation in different languages.

Some common steps for preprocessing raw text are as follows:

1. Text extraction: In cases where the source of the text is the Web, it occurs in combi-
nation with various other types of data such as anchors, tags, and so on. Furthermore,
in the Web-centric setting, a specific page may contain a (useful) primary block and
other blocks that contain advertisements or unrelated content. Extracting the use-
ful text from the primary block is important for high-quality mining. These types of
settings require specialized parsing and extraction techniques.

2. Stop-word removal: Stop words are commonly occurring words that have little discrim-
inative power for the mining process. Common pronouns, articles, and prepositions
are considered stop words. Such words need to be removed to improve the mining
process.

3. Stemming, case-folding, and punctuation: Words with common roots are consolidated
into a single representative. For example, words like “sinking” and “sank” are consol-
idated into the single token “sink.” The case (i.e., capitalization) of the first alphabet
of a word may or may not be important to its semantic interpretation. For example,
the word “Rose” might either be a flower or the name of a person depending on the
case. In other settings, the case may not be important to the semantic interpretation
of the word because it is caused by grammar-specific constraints like the beginning
of a sentence. Therefore, language-specific heuristics are required in order to make
decisions on how the case is treated. Punctuation marks such as hyphens need to be
parsed carefully in order to ensure proper tokenization.

4. Frequency-based normalization: Low-frequency words are often more discriminative
than high-frequency words. Frequency-based normalization therefore weights words
by the logarithm of the inverse relative-frequency of their presence in the collection.
Specifically, if ni is the number of documents in which the ith word occurs in the
corpus, and n is the number of documents in the corpus, then the frequency of a
word in a document is multiplied by log(n/ni). This type of normalization is also
referred to as inverse-document frequency (idf) normalization. The final normalized
representation multiplies the term frequencies with the inverse document frequencies
to create a tf-idf representation.

When computing similarities between documents, one must perform an additional normal-
ization associated with the length of a document. For example, Euclidean distances are
commonly used for distance computation in multidimensional data, but they would not
work very well in a text corpus containing documents of varying lengths. The distance be-
tween two short documents will always be very small, whereas the distance between two
long documents will typically be much larger. It is undesirable for pairwise similarities to
be dominated so completely by the lengths of the documents. This type of length-wise bias
also occurs in the case of the dot-product similarity function. Therefore, it is important

1.3. ANALYTICAL MODELS FOR TEXT 7

to use a similarity computation process that is appropriately normalized. A normalized
measure is the cosine measure, which normalizes the dot product with the product of the
L2-norms of the two documents. The cosine between a pair of d-dimensional document
vectors X = (x1 . . . xd) and Y = (y1 . . . yd) is defined as follows:

cosine(X,Y) =

∑d
i=1 xiyi

√∑d
i=1 x

2
i

√∑d
i=1 y

2
i

(1.1)

Note the presence of document norms in the denominator for normalization purposes. The
cosine between a pair of documents always lies in the range (0, 1). More details on document
preparation and similarity computation are provided in Chap. 2.

1.3.2 Dimensionality Reduction and Matrix Factorization

Dimensionality reduction and matrix factorization fall in the general category of methods
that are also referred to as latent factor models. Sparse and high-dimensional representations
like text work well with some learning methods but not with others. Therefore, a natural
question arises as whether one can somehow compress the data representation to express it
in a smaller number of features. Since these features are not observed in the original data
but represent hidden properties of the data, they are also referred to as latent features.

Dimensionality reduction is intimately related to matrix factorization. Most types of
dimensionality reduction transform the data matrices into factorized form. In other words,
the original data matrix D can be approximately represented as a product of two or more
matrices, so that the total number of entries in the factorized matrices is far fewer than
the number of entries in the original data matrix. A common way of representing an n× d
document-term matrix as the product of an n×k matrix U and a d×k matrix V is as follows:

D ≈ UV T (1.2)

The value of k is typically much smaller than n and d. The total number of entries in D is
n · d, whereas the total number of entries in U and V is only (n+ d) · k. For small values of
k, the representation of D in terms of U and V is much more compact. The n × k matrix
U contains the k-dimensional reduced representation of each document in its rows, and
the d × k matrix V contains the k basis vectors in its columns. In other words, matrix
factorization methods create reduced representations of the data with (approximate) linear
transforms. Note that Eq. 1.2 is represented as an approximate equality. In fact, all forms
of dimensionality reduction and matrix factorization are expressed as optimization models
in which the error of this approximation is minimized. Therefore, dimensionality reduction
effectively compresses the large number of entries in a data matrix into a smaller number
of entries with the lowest possible error.

Popular methods for dimensionality reduction in text include latent semantic analysis,
non-negative matrix factorization, probabilistic latent semantic analysis, and latent Dirichlet
allocation. We will address most of these methods for dimensionality reduction and matrix
factorization in Chap. 3. Latent semantic analysis is the text-centric avatar of singular value
decomposition.

Dimensionality reduction and matrix factorization are extremely important because they
are intimately connected to the representational issues associated with text data. In data
mining and machine learning applications, the representation of the data is the key in
designing an effective learning method. In this sense, singular value decomposition methods

8 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

enable high-quality retrieval, whereas certain types of non-negative matrix factorization
methods enable high-quality clustering. In fact, clustering is an important application of
dimensionality reduction, and some of its probabilistic variants are also referred to as topic
models. Similarly, certain types of decision trees for classification show better performance
with reduced representations. Furthermore, one can use dimensionality reduction and matrix
factorization to convert a heterogeneous combination of text and another data type into
multidimensional format (cf. Chap. 8).

1.3.3 Text Clustering

Text clustering methods partition the corpus into groups of related documents belonging
to particular topics or categories. However, these categories are not known a priori, be-
cause specific examples of desired categories (e.g., politics) of documents are not provided
up front. Such learning problems are also referred to as unsupervised, because no guidance
is provided to the learning problem. In supervised applications, one might provide examples
of news articles belonging to several natural categories like sports, politics, and so on. In
the unsupervised setting, the documents are partitioned into similar groups, which is some-
times achieved with a domain-specific similarity function like the cosine measure. In most
cases, an optimization model can be formulated, so that some direct or indirect measure
of similarity within a cluster is maximized. A detailed discussion of clustering methods is
provided in Chap. 4.

Many matrix factorization methods like probabilistic latent semantic analysis and latent
Dirichlet allocation also achieve a similar goal of assigning documents to topics, albeit in
a soft and probabilistic way. A soft assignment refers to the fact that the probability of
assignment of each document to a cluster is determined rather than a hard partitioning of
the data into clusters. Such methods not only assign documents to topics but also infer the
significance of the words to various topics. In the following, we provide a brief overview of
various clustering methods.

1.3.3.1 Deterministic and Probabilistic Matrix Factorization Methods

Most forms of non-negative matrix factorization methods can be used for clustering text
data. Therefore, certain types of matrix factorization methods play the dual role of clustering
and dimensionality reduction, although this is not true across every matrix factorization
method. Many forms of non-negative matrix factorization are probabilistic mixture models, in
which the entries of the document-term matrix are assumed to be generated by a probabilistic
process. The parameters of this random process can then be estimated in order to create
a factorization of the data, which has a natural probabilistic interpretation. This type of
model is also referred to as a generative model because it assumes that the document-term
matrix is created by a hidden generative process, and the data are used to estimate the
parameters of this process.

1.3.3.2 Probabilistic Mixture Models of Documents

Probabilistic matrix factorization methods use generative models over the entries of the
document-term matrix, whereas probabilistic models of documents generate the rows (doc-
uments) from a generative process. The basic idea is that the rows are generated by amixture
of different probability distributions. In each iteration, one of the mixture components is
selected with a certain a priori probability and the word vector is generated based on the

1.3. ANALYTICAL MODELS FOR TEXT 9

distribution of that mixture component. Each mixture component is therefore analogous to
a cluster. The goal of the clustering process is to estimate the parameters of this generative
process. Once the parameters have been estimated, one can then estimate the a posteriori
probability that the point was generated by a particular mixture component. We refer to
this probability as “posterior” because it can only be estimated after observing the attribute
values in the data point (e.g., word frequencies). For example, a document containing the
word “basketball” will be more likely to belong to the mixture component (cluster) that is
generating many sports documents. The resulting clustering is a soft assignment in which
the probability of assignment of each document to a cluster is determined. Probabilistic
mixture models of documents are often simpler to understand than probabilistic matrix
factorization methods, and are the text analogs of Gaussian mixture models for clustering
numerical data.

1.3.3.3 Similarity-Based Algorithms

Similarity-based algorithms are typically either representative-based methods or hierarchical
methods, In all these cases, a distance or similarity function between points is used to
partition them into clusters in a deterministic way. Representative-based algorithms use
representatives in combination with similarity functions in order to perform the clustering.
The basic idea is that each cluster is represented by a multi-dimensional vector, which
represents the “typical” frequency of words in that cluster. For example, the centroid of
a set of documents can be used as its representative. Similarly, clusters can be created
by assigning documents to their closest representatives such as the cosine similarity. Such
algorithms often use iterative techniques in which the cluster representatives are extracted
as central points of clusters, whereas the clusters are created from these representatives by
using cosine similarity-based assignment. This two-step process is repeated to convergence,
and the corresponding algorithm is also referred to as the k-means algorithm. There are
many variations of representative-based algorithms although only a small subset of them
work with the sparse and high-dimensional representation of text. Nevertheless, one can
use a broader variety of methods if one is willing to transform the text data to a reduced
representation with dimensionality reduction techniques.

In hierarchical clustering algorithms, similar pairs of clusters are aggregated into larger
clusters using an iterative approach. The approach starts by assigning each document to its
own cluster and then merges the closest pair of clusters together. There are many variations
in terms of how the pairwise similarity between clusters is computed, which has a direct
impact on the type of clusters discovered by the algorithm. In many cases, hierarchical
clustering algorithms can be combined with representative clustering methods to create
more robust methods.

1.3.3.4 Advanced Methods

All text clustering methods can be transformed into graph partitioning methods by using a
variety of transformations. One can transform a document corpus into node-node similarity
graphs or node-word occurrence graphs. The latter type of graph is bipartite and clustering
it is very similar to the process of nonnegative matrix factorization.

There are several ways in which the accuracy of clustering methods can be enhanced
with the use of either external information or with ensembles. In the former case, external
information in the form of labels is leveraged in order to guide the clustering process towards
specific categories that are known to the expert. However, the guidance is not too strict, as

10 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

a result of which the clustering algorithm has the flexibility to learn good clusters that are
not indicated solely by the supervision. Because of this flexible approach, such an approach
is referred to as semi-supervised clustering, because there are a small number of examples
of representatives from different clusters that are labeled with their topic. However, it is still
not a full supervision because there is considerable flexibility in how the clusters might be
created using a combination of these labeled examples and other unlabeled documents.

A second technique is to use ensemble methods in order to improve clustering quality.
Ensemble methods combine the results from multiple executions of one or more learning
algorithms to improve prediction quality. Clustering methods are often unstable because
the results may vary significantly from one run to the next by making small algorithmic
changes or even changing the initialization. This type of variability is an indicator of a
suboptimal learning algorithm in expectation over the different runs, because many of these
runs are often poor clusterings of the data. Nevertheless, most of these runs do contains some
useful information about the clustering structure. Therefore, by repeating the clustering in
multiple ways and combining the results from the different executions, more robust results
can be obtained.

1.3.4 Text Classification and Regression Modeling

Text classification is closely related to text clustering. One can view the problem of text clas-
sification as that of partitioning the data into pre-defined groups. These pre-defined groups
are identified by their labels. For example, in an email classification application, the two
groups might correspond to “spam” and “not spam.” In general, we might have k different
categories, and there is no inherent ordering among these categories. Unlike clustering, a
training data set is provided with examples of emails belonging to both categories. Then, for
an unlabeled test data set, it is desired to categorize them into one of these two pre-defined
groups.

Note that both classification and clustering partition the data into groups; however, the
partitioning in the former case is highly controlled with a pre-conceived notion of partitioning
defined by the training data. The training data provides the algorithm guidance, just as a
teacher supervises her student towards a specific goal. This is the reason that classification
is referred to as supervised learning.

One can also view the prediction of the categorical label yi for data instance Xi as that
of learning a function f(·):

yi = f(Xi) (1.3)

In classification, the range of the function f(·) is a discrete set of values like
{spam,not spam }. Often the labels are assumed to be drawn from the discrete and un-
ordered set of values {1, 2, . . . , k}. In the specific case of binary classification, the value
of yi can be assumed to be drawn from {−1,+1}, although some algorithms find it more
convenient to use the notation {0, 1}. Binary classification is slightly easier than the case
of multilabel classification because it is possible to order the two classes unlike multi-label
classes such as {Blue,Red,Green}. Nevertheless, multilabel classification can be reduced
to multiple applications of binary classification with simple meta-algorithms.

It is noteworthy that the function f(·) need not always map to the categorical domain,
but it can also map to a numerical value. In other words, we can generally refer to yi as the
dependent variable, which may be numerical in some settings. This problem is referred to as
regression modeling, and it no longer partitions the data into discrete groups like classifica-
tion. Regression modeling occurs commonly in many settings such as sales forecasting where

1.3. ANALYTICAL MODELS FOR TEXT 11

the dependent variables of interest are numerical. Note that the terminology “dependent
variable” applies to both classification and regression, whereas the term “label” is generally
used only in classification. The dependent variable in regression modeling is also referred
to as a regressand. The values of the features in Xi are referred to as feature variables, or
independent variables in both classification and regression modeling. In the specific case of
regression modeling, they are also referred to as regressors. Many algorithms for regression
modeling can be generalized to classification and vice versa. Various classification algo-
rithms are discussed in Chaps. 5, 6, and 7. In the following, we will provide an overview of
the classification and regression modeling algorithms that are discussed in these chapters.

1.3.4.1 Decision Trees

Decision trees partition the training data hierarchically by imposing conditions over at-
tributes so that documents belonging to each class are predominantly placed in a single
node. In a univariate split, this condition is imposed over a single attribute, whereas a
multivariate split imposes this split condition over multiple attributes. For example, a
univariate split could correspond to the presence or absence of a particular word in the
document. In a binary decision tree, a training instance is assigned to one or two children
nodes depending on whether it satisfies the split condition. The process of splitting the
training data is repeated recursively in tree-like fashion until most of the training instances
in that node belong to the same class. Such a node is treated as the leaf node. These split
conditions are then used to assign test instances with unknown labels to leaf nodes. The
majority class of the leaf node is used to predict the label of the test instance. Combina-
tions of multiple decision trees can be used to create random forests, which are among the
best-performing classifiers in the literature.

1.3.4.2 Rule-Based Classifiers

Rule-based classifiers relate conditions on subsets of attributes to specific class labels. Thus,
the antecedent of a rule contains a set of conditions, which typically correspond to the
presence of a subset of words in the document. The consequent of the rule contains a class
label. For a given test instance, the rules whose antecedents match the test instance are
discovered. The (possibly conflicting) predictions of the discovered rules are used to predict
the labels of test instances.

1.3.4.3 Näıve Bayes Classifier

The näıve Bayes classifier can be viewed as the supervised analog of mixture models in
clustering. The basic idea here is that the data is generated by a mixture of k components,
where k is the number of classes in the data. The words in each class are defined by a
specific distribution. Therefore, the parameters of each mixture component-specific distri-
bution need to be estimated in order to maximize the likelihood of these training instances
being generated by the component. These probabilities can then be used to estimate the
probability of a test instance belonging to a particular class. This classifier is referred to as
“näıve” because it makes some simplifying assumptions about the independence of attribute
values in test instances.

12 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

1.3.4.4 Nearest Neighbor Classifiers

Nearest neighbor classifiers are also referred to as instance-based learners, lazy learners,
or memory-based learners. The basic idea in a nearest neighbor classifier is to retrieve
the k-nearest training examples to a test instance and report the dominant label of these
examples. In other words, it works by memorizing training instances, and leaves all the work
of classification to the very end (in a lazy way) without doing any training up front. Nearest
neighbor classifiers have some interesting properties, in that they show probabilistically
optimal behavior if an infinite amount of data is available. However, in practice, we rarely
have infinite data. For finite data sets, nearest neighbor classifiers are usually outperformed
by a variety of eager learning methods that perform training up front. Nevertheless, these
theoretical aspects of nearest-neighbor classifiers are important because some of the best-
performing classifiers such as random forests and support-vector machines can be shown to
be eager variants of nearest-neighbor classifiers under the covers.

1.3.4.5 Linear Classifiers

Linear classifiers are among the most popular methods for text classification. This is par-
tially because linear methods work particularly well for high-dimensional and sparse data
domains.

First, we will discuss the natural case of regression modeling in which the dependent
variable is numeric. The basic idea is to assume that the prediction function of Eq. 1.3 is in
the following linear form:

yi ≈ W ·Xi + b (1.4)

Here, W is a d-dimensional vector of coefficients and b is a scalar value, which is also referred
to as the bias. The coefficients and the bias need to learned from the training examples, so
that the error in Eq. 1.4 is minimized. Therefore, most linear classifiers can be expressed in
as the following optimization model:

Minimize
∑

i Loss[yi −W ·Xi − b] + Regularizer (1.5)

The function Loss[yi−W ·Xi−b] quantifies the error of the prediction, whereas the regularizer
is a term that is added to prevent overfitting for smaller data sets. The former is also
referred to as the loss function. A wide variety of combinations of error functions and
regularizers are available in literature, which result in methods like Tikhonov regularization
and LASSO. Tikhonov regularization uses the squared norm of the vector W to discourage
large coefficients. Such problems are often solved with gradient-descent methods, which are
well-known tools in optimization.

For the classification problem with a binary dependent variable yi ∈ {−1,+1}, the
classification function is often of the following form:

yi = sign{W ·Xi + b} (1.6)

Interestingly, the objective function is still in the same form as Eq. 1.5, except that the loss
function now needs to be designed for a categorical variable rather than a numerical one.
A variety of loss functions such as hinge loss function, the logistic loss function, and the
quadratic loss function are used. The first of these loss functions leads to a method known
as the support vector machine, whereas the second one leads to a method referred to as
logistic regression. These methods can be generalized to the nonlinear case with the use of
kernel methods. Linear models are discussed in Chap. 6.

1.3. ANALYTICAL MODELS FOR TEXT 13

1.3.4.6 Broader Topics in Classification

Chapter 7 discusses topics such as the theory of supervised learning, classifier evaluation,
and classification ensembles. These topics are important because they illustrate the use of
methods that can enhance a wide variety of classification applications.

1.3.5 Joint Analysis of Text with Heterogeneous Data

Much of text mining occurs in network-centric, Web-centric, social media, and other settings
in which heterogenous types of data such as hyperlinks, images, and multimedia are present.
These types of data can often be mined for rich insights. Chapter 8 provides a study of the
typical methods that are used for mining text in combination with other data types such
as multimedia and Web linkages. Some common tricks will be studied such as the use of
shared matrix factorization and factorization machines for representation learning.

Many forms of text in social media are short in nature because of the fact that these
forums are naturally suited to short snippets. For example, Twitter imposes an explicit
constraint on the length of a tweet, which naturally leads to shorter snippets of documents.
Similarly, the comments on Web forums are naturally short. When mining short documents,
the problems of sparsity are often extraordinarily high. These settings necessitate special-
ized mining methods for such documents. For example, such methods need to be able to
effectively address the overfitting caused by sparsity when the vector-space representation
is used. The factorization machines discussed in Chap. 8 are useful for short text mining.
In many cases, it is desirable to use sequential and linguistic models for short-text mining
because the vector-space representation is not sufficient to capture the complexity required
for the mining process. Several methods discussed in Chap. 10 can be used to create multi-
dimensional representations from sequential snippets of short text.

1.3.6 Information Retrieval and Web Search

Text data has found increasing interest in recent years because of the greater importance of
Web-enabled applications. One of the most important applications is that of search in which
it is desired to retrieve Web pages of interest based on specified keywords. The problem is
an extension of the notion of search used in traditional information retrieval applications.
In search applications, data structures such as inverted indices are very useful. Therefore,
significant discussion will be devoted in Chap. 9 to traditional aspects of document retrieval.

In the Web context, several unique factors such as the citation structure of the Web
also play an important role in enabling effective retrieval. For example, the well-known
PageRank algorithm uses the citation structure of the Web in order to make judgements
about the importance of Web pages. The importance of Web crawlers at the back-end is also
significant for the discovery of relevant resources. Web crawlers collect and store documents
from the Web at a centralized location to enable effective search. Chapter 9 will provide
an integrated discussion of information retrieval and search engines. The chapter will also
discuss recent methods for search that leverage learning techniques like ranking support
vector machines.

1.3.7 Sequential Language Modeling and Embeddings

Although the vector space representation of text is useful for solving many problems, there
are applications in which the sequential representation of text is very important. In partic-
ular, any application that requires a semantic understanding of text requires the treatment

14 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

of text as a sequence rather than as a bag of words. One useful approach in such cases
is to transform the sequential representation of text to a multidimensional representation.
Therefore, numerous methods have been designed to transform documents and words into
a multidimensional representation. In particular, kernel methods and neural network meth-
ods like word2vec are very popular. These methods leverage sequential language models in
order to engineer multidimensional features which are also referred to as embeddings. This
type of feature engineering is very useful because it can be used in conjunction with any
type of mining application. Chapter 10 will provide an overview of the different types of
sequence-centric models for text data, with a primary focus on feature engineering.

1.3.8 Text Summarization

In many applications, it is useful to create short summaries of text in order to enable users
to get an idea of the primary subject matter of a document without having to read it
in its entirety. Such summarization methods are often used in search engines in which an
abstract of the returned result is included along the title and link to the relevant document.
Chapter 11 provides an overview of various text summarization techniques.

1.3.9 Information Extraction

The problem of information extraction discovers different types of entities from text such as
names, places, and organizations. It also discovers the relations between entities. An example
of a relation is that the person entity John Doe works for the organization entity IBM.
Information extraction is a very key step in converting unstructured text into a structured
representation that is far more informative than a bag of words. As a result, more powerful
applications can be built on top of this type of extracted data. Information extraction
is sometimes considered a first step towards truly intelligent applications like question-
answering systems and entity-oriented search. For example, searching for a pizza location
near a particular place on the Google search engines usually returns organization entities.
Search engines have become powerful enough today to recognize entity-oriented search from
keyword phrases. Furthermore, many other applications of text mining such as opinion
mining and event detection use information extraction techniques. Methods for information
extraction are discussed in Chap. 12.

1.3.10 Opinion Mining and Sentiment Analysis

The Web provides a forum to individuals to express their opinions and sentiments. For
example, the product reviews in a Web site might contain text beyond the numerical ratings
provided by the user. The textual content of these reviews provides useful information that
is not available in numerical ratings. From this point of view, opinion mining can be viewed
as the text-centric analog of the rating-centric techniques used in recommender systems. For
example, product reviews are often used by both types of methods. Whereas recommender
systems analyze the numerical ratings for prediction, opinion mining methods analyze the
text of the opinions. It is noteworthy that opinions are often mined from information settings
like social media and blogs where ratings are not available. Chapter 13 will discuss the
problem of opinion mining and sentiment analysis of text data. The use of information
extraction methods for opinion mining is also discussed.

1.5. BIBLIOGRAPHIC NOTES 15

1.3.11 Text Segmentation and Event Detection

Text segmentation and event detection are very different topics from an application-centric
point of view; yet, they share many similarities in terms of the basic principle of detecting
sequential change either within a document, or across multiple documents. Many long docu-
ments contain multiple topics, and it is desirable to detect changes in topic from one part of
the document to another. This problem is referred to as text segmentation. In unsupervised
text segmentation, one is only looking for topical change in the context. In supervised seg-
mentation, one is looking for specific types of segments (e.g., politics and sports segments
in a news article). Both types of methods are discussed in Chap. 14. The problem of text
segmentation is closely related to stream mining and event detection. In event detection,
one is looking for topical changes across multiple documents in streaming fashion. These
topics are also discussed in Chap. 14.

1.4 Summary

Text mining has become increasingly important in recent years because of the preponderance
of text on the Web, social media, and other network-centric platforms. Text requires a
significant amount of preprocessing in order to clean it, remove irrelevant words, and perform
the normalization. Numerous text applications such as dimensionality reduction and topic
modeling form key building blocks of other text applications. In fact, various dimensionality
reduction methods are used to enable methods for clustering and classification. Methods
for querying and retrieving documents form the key building blocks of search engines. The
Web also enables a wide variety of more complex mining scenarios containing links, images,
and heterogeneous data.

More challenging applications with text can be solved only be treating text as sequences
rather than as multidimensional bags of words. From this point of view, sequence embed-
ding and information extraction are key building blocks. Such methods are often used in
specialized applications like event detection, opinion mining, and sentiment analysis. Other
sequence-centric applications of text mining include text summarization and segmentation.

1.5 Bibliographic Notes

Text mining can be viewed as a specialized offshoot of the broader field of data mining [2,
204, 469] and machine learning [50, 206, 349]. Numerous books have been written on the
topic of information retrieval [31, 71, 120, 321, 424] although the focus of these books is
primarily on the search engines, database management, and retrieval aspect. The book by
Manning et al. [321] does discuss several mining aspects, although this is not the primary
focus. An edited collection on text mining, which contains several surveys on many topics,
may be found in [14]. A number of books covering various aspects of text mining are
also available [168, 491]. The most recent book by Zhai and Massung [529] provides an
application-oriented overview of text management and mining applications. The natural
language focus on text understanding is covered in some recent books [249, 322]. A discussion
of text mining, as it relates to Web data, may be found in [79, 303].

16 CHAPTER 1. MACHINE LEARNING FOR TEXT: AN INTRODUCTION

1.5.1 Software Resources

The Bow toolkit is a classical library available for classification, clustering, and information
retrieval [325]. The library is written in C, and supports several popular classification and
clustering tools. Furthermore, it also supports a lot of software for text preprocessing, such as
finding document boundaries and tokenization. Several useful data sets for text mining may
be found in the “text” section of the UCI Machine Learning Repository [549]. The scikit-
learn library also supports several off-the-shelf tools for mining text data in Python [550],
and is freely usable. Another Python library that is more focused towards natural language
processing is the NLTK toolkit [556]. The tm package in R [551] is publicly available and it
supports significant text mining functionality. Furthermore, significant functionality for text
mining is also supported in the MATLAB programming language [36].Weka provides a Java-
based platform for text mining [553]. Stanford NLP [554] is a somewhat more academically-
oriented system, but it provides many advanced tools that are not available elsewhere.

1.6 Exercises

1. Consider a text corpus with 106 documents, a lexicon of size 105, and 100 distinct
words per document, which is represented as a bag of words with frequencies.

(a) What is the amount of space required to store the entire data matrix without
any optimization?

(b) Suggest a sparse data format to store the matrix and compute the space required.

2. In Exercise 1, let us represent the documents in 0-1 format depending on whether or
not a word is present in the document. Compute the expected dot product between
a pair of documents in each of which 100 words are included completely at random.
What is the expected dot product between a pair with 50,000 words each? What
does this tell you about the effect of document length on the computation of the dot
product?

3. Suppose that a news portal has a stream of incoming news and they asked you to
organize the news into about ten reasonable categories of your choice. Which problem
discussed in this chapter would you use to accomplish this goal?

4. In Exercise 3, consider the case in which examples of ten pre-defined categories are
available. Which problem discussed in this chapter would you use to determine the
category of an incoming news article.

5. Suppose that you have popularity data on the number of clicks (per hour) associated
with each news article in Exercise 3. Which problem discussed in this chapter would
you use to decide the article that is likely to be the most popular among a group of
100 incoming articles (not included in the group with associated click data).

6. Suppose that you want to find the articles that are strongly critical of some issue in
Exercise 3. Which problem discussed in this chapter would you use?

7. Consider a news article that discusses multiple topics. You want to obtain the portions
of contiguous text associated with each topic. Which problem discussed in this chapter
would you use in order to identify these segments?

Chapter 2

Text Preparation and Similarity
Computation

“Life is a long preparation for something that never happens.”—William
B. Yeats

2.1 Introduction

Text data is often found in highly unstructured environments, and is frequently created by
human participants. In many cases, text is embedded within Web documents, which is con-
taminated with elements such as HyperText Markup Language (HTML) tags, misspellings,
ambiguous words, and so on. Furthermore, a single Web page may contain multiple blocks,
most of which might be advertisements or other unrelated content. These effects can be
ameliorated with proper preprocessing. Common preprocessing methods are as follows:

1. Platform-centric extraction and parsing: Text can contain platform-specific content
such as HTML tags. Such documents need to cleansed of platform-centric content and
parsed. The parsing of the text extracts the individual tokens from the documents.
A token is a sequence of characters from a text that is treated as an indivisible unit
for processing. Each mention of the same word in a document is treated as a separate
token.

2. Preprocessing of tokens: The parsed text contains tokens that are further processed
to convert them into the terms that will be used in the collection. Words such as
“a,” “an,” and “the” that occur very frequently in the collection can be removed.
These words are typically not discriminative for most mining applications, and they
only add a large amount of noise. Such words are also referred to as stop words.
Common prepositions, conjunctions, pronouns, and articles are considered stop words.
In general, language-specific dictionaries of stop words are often available. The words
are stemmed so that words with the same root (e.g., different tenses of a word) are

18 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

consolidated. Issues involving punctuation and capitalization are addressed. At this
point, one can create a vector space representation, which is a sparse, multidimensional
representation containing the frequencies of the individual words.

3. Normalization: As our discussion above shows, not all words are equally important in
analytical tasks. Stop words represent a rather extreme case of very frequent words
at one end of the spectrum that must be removed from consideration. What does one
do about the varying frequencies of the remaining words? It turns out that one can
weight them a little differently by modifying their document-specific term frequencies
based on their corpus-specific frequencies. Terms with greater corpus-specific frequen-
cies are down-weighted. This technique is referred to as inverse document frequency
normalization.

Pre-processing creates a sparse, multidimensional representation. Let D be the n × d
document-term matrix. The number of documents is denoted by n and the number of
terms is denoted by d. This notation will be used consistently in this chapter and the book.

Most text mining and retrieval methods require similarity computation between pairs of
documents. This computation is sensitive to the underlying document representation. For
example, when the binary representation is used, the Jaccard coefficient is an effective way
of computing similarities. On the other hand, the cosine similarity is appropriate for cases
in which term frequencies are explicitly tracked.

2.1.1 Chapter Organization

This chapter is organized as follows. The next section discusses the conversion of a character
sequence into a set of tokens. The postprocessing of the tokens into terms is discussed in
Sect. 2.3. Issues related to document normalization and representation are introduced in
Sect. 2.4. Similarity computation is discussed in Sect. 2.5. Section 2.6 presents the summary.

2.2 Raw Text Extraction and Tokenization

The first step is to convert the raw text into a character sequence. The plain text representa-
tion of the English language is already a character sequence, although text sometimes occurs
in binary formats such as Microsoft Word or Adobe portable document format (PDF). In
other words, we need to convert a set of bytes into a sequence of characters based on the
following factors:

1. The specific text document may be represented in a particular type of encoding,
depending on the type of format such as a Microsoft Word file, an Adobe portable
document format, or a zip file.

2. The language of the document defines its character set and encoding.

When a document is written in a particular language such as Chinese, it will use a differ-
ent character set than in the case where it is written in English. English and many other
European languages are based on the Latin character set. This character set can be repre-
sented easily in the American Standard Code for Information Interchange, which is short
for ASCII. This set of characters roughly corresponds to the symbols you will see on the
keyboard of a modern computer sold in an English speaking country. The specific encoding
system is highly sensitive to the character set at hand. Not all encoding systems can handle
all character sets equally well.

2.2. RAW TEXT EXTRACTION AND TOKENIZATION 19

A standard code created by the Unicode Consortium is the Unicode. In this case, each
character is represented by a unique identifier. Furthermore, almost all symbols known to us
from various languages (including mathematical symbols and many ancient characters) can
be represented in Unicode. This is the reason that the Unicode is the default standard for
representing all languages. The different variations of Unicode use different numbers of bytes
for representation. For example UTF-8 uses one byte, UTF-16 uses two bytes and so on.
UTF-8 is particularly suitable for ASCII, and is often the default representation on many
systems. Although it is possible to use UTF-8 encoding for virtually any language (and is
a dominant standard), many languages are represented in other codes. For example, it is
common to use UTF-16 for various Asian languages. Similarly, other codes like ASMO 708
are used for Arabic, GBK for Chinese, and ISCII for various Indian languages, although one
can represent any of these languages in the Unicode. The nature of the code used therefore
depends on the language, the whims of the creator of the document, and the platform on
which it is found. In some cases, where the documents are represented in other formats like
Microsoft Word, the underlying binary representation has to be converted into a character
sequence. In many cases, the document meta-data provides useful information about the
nature of its encoding up front without having to infer it by examining the document
content. In some cases, it might make sense to separately store the meta-data about the
encoding because it can be useful for some machine learning applications. The key takeaway
from the above discussion is that irrespective of how the text is originally available, it is
always converted into a character sequence.

In many cases, the character sequence contains a significant amount of meta-information
depending on its source. For example, an HTML document will contain various tags and
anchor text, and an XML document will contain meta-information about various fields.
Here, the analyst has to make a judgement about the importance of the text in various
fields to the specific application at hand, and remove all the irrelevant meta-information. As
discussed in Sect. 2.2.1 on Web-specific processing, some types of fields such as the headers of
an HTML document may be even more relevant than the body of the text. Therefore, there is
a cleaning phase is often required for the character sequence. This character sequence needs
to be expressed in terms of the distinct terms in the vocabulary, which comprise the base
dictionary of words. These terms are often created by consolidating multiple occurrences
and tenses of the same word. However, before finding the base terms, the character sequence
needs to be parsed into tokens.

A token is a contiguous sequence of characters with a semantic meaning, and is very
similar to a “term,” except that it allows repetitions, and no additional processing (such
as stemming and stop word removal) has been done. For example, consider the following
sentence:

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{ “After” “sleeping” “for” “four” “hours” “he” “decided” “to” “sleep” “for”
“another” “four” }.

Note that the words “for” and “four” are repeated twice, and the words “sleep” and “sleep-
ing” are also not consolidated. Furthermore, the word “After” is capitalized. These aspects
are addressed in the process of converting tokens into terms with specific frequencies. In
some situations, the capitalization is retained, and in others, it is not.

Tokenization presents some challenging issues from the perspective of deciding word
boundaries. A very simple and primitive rule for tokenization is that white spaces can be

20 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

used as separators after removing punctuation. White spaces refer to the character space,
the tab, and the newline. However, this primitive rule is rather inadequate to address many
language-specific issues. For example, how do we deal with a pair of words like “Las Vegas”
that describe a city? Separating them out completely loses the semantic meaning. Should
“Abraham Lincoln” be one token or two tokens? Some pairs of words like “a priori” occur
together naturally, and therefore they cannot be separated on the basis of white spaces. In
many cases, dictionaries of semantically co-occurring words can be used. Furthermore, com-
mon phrases can be stored and extracted from the character sequence. It is possible to not
create a strict segmentation of the character sequence, but also extract overlapping char-
acter sequences. It is noteworthy that one must distinguish between low-level tokenization
and high-level tokenization in this respect. Recognizing linguistically coherent phrases is an
example of high-level tokenization and it requires a minimum level of linguistic processing.
In many cases, the low-level phase of basic tokenization is followed up by a high-level phase
of recreating semantically more meaningful tokens from the initial tokenization.

Removing punctuation marks and treating white spaces as separators will not work if
a document creator has forgotten to leave a white space after a punctuation mark such as
a comma. Commas, colons, and periods are therefore treated as separators, although there
are some exceptions. For example, a comma or period often occurs within a number (e.g.,
decimal), and a colon appears between numbers when time is being represented (e.g., “8:20
PM”). Therefore, they are not treated as separators when they appear between numbers. A
similar rule applies to the character ‘/’ because it can be a separator between two words, but
might be a part of a date (e.g., “06/20/2003”) when it occurs between two numbers. A period
has many other uses such as within an acronym, and therefore it requires special handling.
Typically a list of acronyms such as “Dr.” or “M.D.” is stored up front by the preprocessor
and compared to the character sequence as it is processed. A sequence of two dashes is
treated as a separator, although a single occurrence might be a hyphen and is treated
differently as discussed in a later section. Hyphens can also occur within phone numbers or
social security numbers, and therefore the tokenizer should be trained to recognize them.
In general, the tokenizer should be trained to recognize email addresses, Uniform Resource
Locators (URLs), telephone numbers, dates, times, measures, vehicle license plate numbers,
paper citations, and so on. As we can see, the process is rather tedious in the sense that we
have to take care of lots of little details.

Apostrophes need to treated specially during tokenization, although some aspects are
handled during the stemming phase as well. An apostrophe at the beginning of a word,
at the end of a word, or ending in ‘s’ is removed. This is because these apostrophes are
often present for grammatical reasons such as a quotation or the expression of a possessive
noun. Other apostrophes within the middle of the word such as “o’clock” have semantic
significance, and are therefore retained within the token. In such cases, the apostrophe is
simply treated as a letter within the integrated token.

In some cases, there is no unique way of performing the best tokenization. As humans,
we tokenize accurately without much thought, but the task turns out to be far more ambigu-
ous to a computer program. Therefore, different tokenizers will create a slightly different
segmentation. The main rule is to use the tokenization consistently across the application
at hand, when it is used at different places. An excellent off-the-shelf tokenizer is available
from the Apache OpenNLP effort [548].

2.3. EXTRACTING TERMS FROM TOKENS 21

2.2.1 Web-Specific Issues in Text Extraction

Several aspects of text extraction are highly platform-specific. Since the Web is the most
common source of text that is used in various applications, it is worthwhile examining the
specific issues that arise in extracting text from the Web.

HTML documents have numerous fields in them, such as the title, the meta-data, and the
body of the document. Typically, analytical algorithms treat these fields with different levels
of importance, and therefore weight them differently. For example, the title of a document
is considered more important than the body and is weighted more heavily. Another example
is the anchor text in Web documents. Anchor text contains a description of the Web page
pointed to by a link. Because of its descriptive nature, it is considered important, but it is
sometimes not relevant to the topic of the page itself. Therefore, it is often removed from
the text of the document. In some cases, where possible, anchor text could even be added to
the text of the document to which it points. This is because anchor text is often a summary
description of the document to which it points.

A Web page may often be organized into content blocks that are not related to the
primary subject matter of the page. A typical Web page will have many irrelevant blocks,
such as advertisements, disclaimers, or notices, that are not very helpful for mining. It has
been shown that the quality of mining results improve when only the text in the main block
is used. However, the (automated) determination of main blocks from Web-scale collections
is itself a data mining problem of interest. While it is relatively easy to decompose the
Web page into blocks, it is sometimes difficult to identify the main block. Most automated
methods for determining main blocks rely on the fact that a particular site will typically
utilize a similar layout for the documents on the site. Therefore, if a collection of documents
is available from the site, two types of automated methods can be used:

1. Block labeling as a classification problem: The idea in this case is to create a new train-
ing data set that extracts visual rendering features for each block in the training data.
This can be achieved using Web browsers such as Internet Explorer. Many browsers
provide an API that can be used to extract the coordinates for each block. The main
block is then manually labeled for some examples. This results in a training data set.
The resulting training data set is used to build a classification model. This model is
used to identify the main block in the remaining (unlabeled) documents of the site.

2. Tree matching approach: Most Web sites generate the documents using a fixed tem-
plate. Therefore, if the template can be extracted, then the main block can be
identified relatively easily. The first step is to extract tag trees from the HTML pages.
These represent the frequent tree patterns in the Website. The tree-matching algo-
rithm, discussed in the bibliographic section, can be used to determine such templates
from these tag trees. After the templates have been found, the main block in each
Web page is found using the extracted template. Many of the peripheral blocks often
have similar content in different pages and can therefore be eliminated.

The tree-matching algorithm is discussed in [303, 530].

2.3 Extracting Terms from Tokens

Once the tokens have been extracted from the document collection, they are transformed
into terms with specific frequencies. Note that a document may have many repetitions of a
token, and these repetitions are consolidated into a single occurrence with an appropriate
frequency. Furthermore, highly frequent tokens are often not discriminative, and variants

22 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

of the same token need to be consolidated. We discuss these aspects in the following sub-
sections.

2.3.1 Stop-Word Removal

Stop words are common words of a language that do not carry much discriminative content.
For example, in a classification task of news articles, we would expect a word such as “the”
to occur at roughly the same frequency in a sports-related article, as it would in a politics-
related article. Therefore, it makes sense to remove such poorly discriminating words. The
following strategies are commonly used:

1. All articles, prepositions, and conjunctions are stop words. Pronouns are sometimes
considered stop words.

2. Language-specific dictionaries of stop words are available.

3. The frequent tokens in any particular collection can be identified, and a threshold on
the frequency can be set in order to remove the stop words.

Stop-word removal is a hard variant of the softer approach of down-weighting frequent
words with inverse document frequency normalization. In some cases, there is some loss of
information associated with the hard removal of stop words. Therefore, many search and
mining systems do not remove stop words, but simply rely on the approach of reducing the
weight of frequent words.

2.3.2 Hyphens

Dealing with hyphens can sometimes be tricky, because in some cases they can define word
boundaries, whereas in other cases they should be considered individual words. For example,
compound adjectives such as “state-of-the-art” are always hyphenated, irrespective of their
position in a sentence. In such a case, we can create a single term for this token. Some
systems may represent this term as “stateoftheart”. In other cases, two or more words
might modify a noun, and therefore they might get hyphenated as a compound adjective.
Depending on the usage and semantic intent, it may or may not be desirable to break it up
for mining purposes. For example, consider the sentence:

He has a dead-end job.

In such a case, the word “dead-end” naturally defines a single semantic idea, and it should
probably be retained as a single term. On the other hand, consider the sentence:

The five-year-old girl was playing with the cat.

In this case, the word “five” should probably be separated from “year-old.” One can see that
these decisions seem to be harder than they seem at first sight. Dictionaries of commonly
hyphenated words are often available and it is possible to create automated, language-
specific rules about deciding when hyphenated words should be broken up. The default rule
is to retain the hyphenated word as a single term, because breaking it up leads to a change
in the semantic meaning in most cases.

The other issue is that of consistency. Some writers may choose to use a hyphen between
one or more words, whereas other writers might not. For example, consider the sentence:

This road leads to a dead end.

2.3. EXTRACTING TERMS FROM TOKENS 23

In this usage, “dead end” is not a compound adjective and therefore it is not hyphenated.
However, it might still make sense to be consistent within the semantic representation to
treat “dead-end” as a single hyphenated word, because it refers to the same basic idea. In
such cases, dictionaries of commonly adjacent words that (1) should be hyphenated, and
(2) should not be hyphenated, can be used in order to decide whether a pair of adjacent
words should be treated as a unit. This step can be implemented in the same way as the
usage-based consolidation step discussed in Sect. 2.3.4.

2.3.3 Case Folding

The case of a term often defines its semantic interpretation, which is relevant to the mining
task at hand. Words get capitalized for various reasons, such as for beginning a sentence,
for being part of a title, or for being proper nouns. In some cases, the same word could get
capitalized for different reasons. For example, the word “Bob” could be a person name or
a verb. In the latter case, it might be capitalized for beginning a sentence, and therefore it
should be converted to lower case. On the other hand, if “Bob” is a person, then the upper
case should be retained. Therefore, “Bob” and “bob” will be different terms in the lexicon.

How to decide on the specific usage of a particular term? The entire process of converting
to the proper case is referred to as truecasing [300], and it is a machine learning problem.
However, there are limits to what a machine learning model can achieve in such cases because
of the ambiguities in usage and various other factors. In many cases, it is possible to use
simplified heuristics. Although these are not perfect rules, their simplicity enables efficient
processing. For example, words at the beginning of a sentence can always be converted to
lower case, and words in titles or section headers can also be converted to lower case. The
case of all other words is retained.

2.3.4 Usage-Based Consolidation

The notion of usage-based consolidation is quite similar to that of stemming, except that
it is a much simpler process and is done up front during tokenization using lookup tables.
The basic idea is that small variations of the same token often refer to the same word.
For example, the words “color” and “colour” are just different spellings of the same word
in American and British English, respectively. Similarly, usage of accents, hyphens, and
white spaces may vary not only across geographical regions but also over individual writers.
Different writers might use “naive” and “näıve” to refer to the same concept. In all such
cases, it is important to consolidate these variations into a single term. For example, one
could maintain a hash table (or other) data structure of all the possible variations of the
tokens with their standardized forms. For example, hashing on either “naive” or “näıve”
might return the same standardized form in both cases.

2.3.5 Stemming

Stemming is the process of consolidating related words with the same root. For example, a
text document might contain the singular or plural form of the same word, various tenses,
and other variations. In such cases, it makes sense to consolidate these words into a single
one. After all, changing the tense of a word does not change its semantic interpretation from
a mining point of view. For example, words such as “eat,” “eats,” “eating,” and “ate” all
belong to the same stem corresponding to “eat” and should therefore be consolidated into
a single term.

24 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

More generally, stemming refers to the process of extracting the morphological root of a
word, and various crude heuristics are used to achieve this goal. The common techniques
are as follows:

1. Semi-automatic lookup tables: The lookup table of a stemmer is created up front in
a semi-automatic way with various heuristics. For example, in the case of the token
“eat”, the variants “eats,” “eated,” “eatly,” and “eating” may be stored in the table.
Therefore, if the token “eating” is encountered at the time of text extraction, one
can proceed to replace it with the word “eat.” Note that not all of these are valid
words, and in some cases, the constructed word could easily have a different semantic
interpretation.

2. Suffix stripping: A small list of rules is stored in order to find the root form of a given
word. For example, common suffixes such as “ing,” “ed,” and “ly,” should be removed.
Rules can also strip prefixes, although it is more common to strip suffixes.

Sometimes, suffix stripping leads to changes in the semantic meaning. For example,
the word “hoping” might get chopped to “hop,” which has a completely different
meaning. Similarly, this type of approach would not work with word pairs like “eat”
and “ate.”

3. Lemmatization: Lemmatization is a more sophisticated approach because it uses the
specific part of speech in order to determine the root form of a word. The normalization
rules depend on the part of speech and therefore, they are highly language specific.

Lemmatization is sometimes considered different from stemming, in that it goes beyond the
simple stripping rules and uses the morphological roots of the words. Such an approach yields
the dictionary form of the word, known as the lemma. For example, when the word “ate” is
encountered, the approach would be able to discover that the proper root is “eat.” A lem-
matizer needs a significant amount of vocabulary and language-specific domain knowledge
to carry out its task compared to other stemmers. The classical algorithm for lemmatization
is the Porter’s algorithm [481]. The latest version of Porter’s algorithm is also referred to
as Snowball. We omit the specific details of this method as it is outside the scope of this
book, and packages to perform this task are readily available to the practitioner [481, 547].

2.4 Vector Space Representation and Normalization

This section will describe the vector space representation, which is the sparse, multidimen-
sional representation of text used in most applications. Once the terms have been extracted
we have a dictionary or lexicon as the base set of dimensions. For most mining applications,
a sparse, multidimensional representation is preferred. This representation contains one di-
mension (feature) for each word and the value of the dimension is strictly positive only
when the word is present in the document. Otherwise the value is set to 0. The positive
value could either be a normalized term frequency or a binary indicator value of 1. Since
a given document contains a tiny subset of the lexicon, this representation is extremely
sparse. It is not uncommon for document collections of have lexicons significantly greater
than a hundred-thousand words, and the average number of words in each document may
only be a few hundred. Note that the entire process of conversion into this representation
loses all the ordering information among words. Therefore, this model is also referred to as
the bag-of-words model. There are two commonly used multidimensional representations of
text data, corresponding to the binary model and the tf-idf model.

2.4. VECTOR SPACE REPRESENTATION AND NORMALIZATION 25

In some applications, it is sufficient to use a 0-1 representation corresponding to whether
or not a word is present in the document. Certain types of machine learning applications such
as the Bernoulli variant of the Bayes classifier only need the binary representation. However,
the binary representation does lose a lot of information because it does not contain the
frequencies of the individual terms, and it is also not normalized for the relative importance
of words. However, the main advantages of the binary representation are that it is compact
and it enables the use of many applications that would otherwise be hard to use on a
representation containing the frequencies of words. For example, consider a setting in which
we wish to find frequently co-occurring groups of k words, irrespective of their placement
in the document. In such a case, one can leverage the binary representation and apply
an off-the-shelf frequent pattern mining algorithm on the multidimensional representation.
Another interesting aspect of text data is that the presence or absence of a particular word
in a document is more informative than its precise frequency. Therefore, reasonable results
can be achieved with the binary representation in some cases. It is certainly worthwhile to
use the binary representation in cases where the application at hand allows only binary input
data. The binary model is also sometimes referred to as the Bernoulli or the boolean model.

Most representations of text do not work with the boolean model. Rather, they use
normalized frequencies of the terms. This model is referred to as the tf-idf, where tf stands
for the term frequency and idf stands for the inverse document frequency. During the term
extraction phase, the additional task of keeping track of the consolidated and stemmed
terms is also accomplished.

Consider a document collection containing n documents in d dimensions. Let X =
(x1 . . . xd) be the d-dimensional representation of a document after the term extraction
phase. Note that xi represents the unnormalized frequency of a document. Therefore, all
the values of xi are nonnegative and most are zero. Since word frequencies in a long doc-
ument can sometimes vary significantly, it makes sense to use damping functions on these
frequencies. The square-root or the logarithm function may be applied to the frequencies
to reduce the effect of spam. In other words, one might replace each xi with either

√
xi or

log(1+xi). Although the use of such damping functions is not universal, there is significant
evidence to suggest that the wide variation in word frequencies makes damping extremely
important in at some applications. Damping also reduces the effect of (repeated) spam
words.

It is also common to normalize term frequencies based on their presence in the entire
collection. The first step in normalization is to compute the inverse document frequency of
each term. The inverse document frequency idi of the ith term is a decreasing function of
the number of documents ni in which it occurs:

idi = log(n/ni) (2.1)

Note that the value of idi is always nonnegative. In the limiting cases in which a term occurs
in every document of the collection, the value of idi is 0. The term frequency is normalized
by multiplying it with the inverse document frequency:

xi ⇐ xi · idi (2.2)

Although the use of inverse document frequency normalization is almost ubiquitous in
commercial implementations of search applications, it is noteworthy that some mining algo-
rithms have reported the use of better results with the use of raw frequencies. For example,
the work in [438] reported that higher quality of clustering was obtained by not using
the inverse document frequency normalization. One issue with inverse document frequency

26 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

normalization is that even though it might help by de-emphasizing stop words, it might
occasionally hurt in an inadvertent way by increasing the frequencies of misspellings and
other errors that were not properly handled at preprocessing time. Therefore, the effect
can be corpus-sensitive and application-sensitive. If one chooses not to use inverse docu-
ment frequency normalization in a particular application, it becomes more important to be
aggressive about removing stop words.

2.5 Similarity Computation in Text

Many multidimensional data mining applications use the Euclidean distance to measure
the distances between pairs of points. The Euclidean distance between X = (x1 . . . xd) and
Y = (y1 . . . yd) is defined as follows:

Distance(X,Y) =

√
√
√
√

d∑

i=1

(xi − yi)2 (2.3)

It would seem at first sight that one should simply use the Euclidean distances to com-
pute distances between pairs of points, since text is a special case of the multidimensional
representation. However, the Euclidean distance is not good in computing distances in
multidimensional representations that are very sparse and the number of zero values vary
significantly over different points. This occurs frequently in the case of text because of the
varying lengths of different documents.

In order to understand this point, consider the following four sentences:

1. She sat down.
2. She drank coffee.
3. She spent much time in learning text mining.
4. She invested significant efforts in learning text mining.

For simplicity in discussion, assume that stop words are not removed, and the text is
represented in boolean form without normalization. Note that the first pair of sentences is
virtually unrelated, but the two sentences are very short. Therefore, only five distinct words
in the sentence have nonzero frequencies. The Euclidean distance is only

√
4 = 2. In the

case of the third and fourth sentences, there are many words in common. However, these
sentences are also longer, and therefore they also have many words that are present in only
one of the two sentences. As a result, the Euclidean distance between the second pair is√
6, which is larger than the first case. This clearly does not seem to be correct because

the second pair of sentences is obviously related in a semantic way, and they even share a
larger fraction of their sentences in common.

This problem was caused by the varying lengths of the documents. The Euclidean dis-
tance will consistently report higher values for distances between longer pairs of documents
even if large fractions of those documents are in common. For example, if exactly half of
the terms in a pair of documents containing more than a thousand distinct words each are
exactly identical, the Euclidean distance will still be more than

√
1000 when the documents

are represented in boolean form. This distance will always be more than that between any
pair of documents with less than 500 distinct words each, even if they do not share a single
word in common. This type of distance function can lead to poor mining results in which
longer and shorter documents are not treated with an even hand.

2.5. SIMILARITY COMPUTATION IN TEXT 27

This suggests that we need distance (or similarity) functions that strongly normalize for
the varying lengths of documents. A natural solution to this problem is to use the cosine of
the angle between the multidimensional vectors representing the two documents. Note that
the cosine between a pair of vectors does not depend on the length of the vectors but only
on the angle between them. In other words, the cosine similarity between a pair of vectors,
denoted by X = (x1 . . . xd) and Y = (y1 . . . yd), is defined as follows:

cosine(X,Y) =

∑d
i=1 xiyi

√∑d
i=1 x

2
i

√∑d
i=1 y

2
i

(2.4)

We can already see why this representation normalizes so well for the document length– the
denominator contains the norms of the documents and therefore the effect of the varying
length is blunted. The normalization also ensures that the cosine always lies in the range
(0, 1). Although we did not perform any idf normalization here, it is often (but not always)
performed in text mining applications.

A more intuitive interpretation of the cosine can be obtained in the special case when
each X and Y is a binary vectors (rather than a vector of tf-idf values). Let Sx and Sy be
the indices of the words that take on the value of 1 in X and Y , respectively. In such a case,
the set-based variant of the cosine can be computed as follows:

cosine(Sx, Sy) =
|Sx ∩ Sy|√|Sx| ·

√|Sy|

= GEOMETRIC-MEAN

{ |Sx ∩ Sy|
|Sx| ,

|Sx ∩ Sy|
|Sy|

}

In other words, the cosine is the geometric mean of the fraction of shared words contained in
each of the pair of documents (for the case of the binary representation of text). Even in the
case where tf-idf values are used instead of the binary values, this factor plays a dominant
role in the cosine computation. Since the cosine computation is so largely dependent on the
fraction of common words in each of the documents, it is largely impervious to the lengths
of the documents.

As an example, consider a pair of documents with representations X =
(2, 3, 0, 5, 0, . . . , 0) and Y = (0, 1, 2, 2, 0, . . . , 0). Then, the cosine between the two is as
follows:

cosine(X,Y) =
2 · 0 + 3 · 1 + 0 · 2 + 5 · 2√
22 + 32 + 52 · √12 + 22 + 22

=
13√

38 · √9
=

13

3 · √38
(2.5)

The cosine can also be viewed as a normalized dot product; in other words, it is the dot
product obtained after normalizing each vector to unit norm. Consider a collection in which
we have normalized each vector. Therefore, for any vector X, we have

∑d
i=1 x

2
i = 1. Then,

the cosine can be expressed as the dot product:

cosine(X,Y) =

∑d
i=1 xiyi

√∑d
i=1 x

2
i

√∑d
i=1 y

2
i

=

∑d
i=1 xiyi√
1
√
1

= X · Y (2.6)

Interestingly, if we normalize each document in the corpus to unit norm, the Euclidean
distance is not very different from the cosine except that it is a distance function instead of
a similarity function. The two can be shown to be related as follows:

28 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

||X − Y ||2 = ||X||2 + ||Y ||2 − 2X · Y (2.7)

= 1 + 1− 2X · Y (2.8)

= 2(1−X · Y) (2.9)

The normalized Euclidean distance always lies in the range (0, 2) because of the up front,
length-wise normalization. Therefore, if we normalize each vector in the corpus to unit
norm, we could easily use the Euclidean distance for various mining applications instead of
the cosine similarity. In other words, one could obtain the same length-wise normalization
advantage of the cosine by normalizing the documents up front and using the Euclidean
distance. In fact, there is no difference between the use of the Euclidean distance, the dot
product, or the cosine similarity for retrieval applications, once a normalization has been
performed.

In the special case where the boolean representation of text is used, another commonly
used measure is the Jaccard similarity. Let Sx and Sy be the set of words in a pair of
documents that are represented in boolean form. Then, the Jaccard similarity is defined as
follows:

Jaccard(Sx, Sy) =
|Sx ∩ Sy|
|Sx ∪ Sy|

=
#Common terms in Sx and Sy

#Distinct terms in union of Sx and Sy

The Jaccard coefficient always lies in the range (0, 1) just like the cosine coefficient. It is also
possible to define the Jaccard coefficient for the case where the documents X = (x1 . . . xd)
and Y = (y1, . . . , yd) are represented in tf-idf form:

Jaccard(X,Y) =

∑d
i=1 xi · yi

∑d
i=1 x

2
i +

∑d
i=1 y

2
i −

∑d
i=1 xi · yi

(2.10)

The Jaccard coefficient is especially useful for the case where the boolean representation of
text is used. For the tf-idf representation, it is more common to use the cosine measure,
although similar results are obtained with the Jaccard and cosine coefficients [231, 461].

2.5.1 Is idf Normalization and Stemming Always Useful?

The use of idf normalization owes its origin to information retrieval applications in which
stop-words have an obviously confounding effect on the quality of the results. However, in
several text mining applications, it is been observed that idf normalization actually has
a detrimental effect. For example, in text segmentation (cf. Sect. 14.2 of Chap. 14), it was
observed in implementations of the TextTiling algorithm [213] that the use of idf normal-
ization in similarity computation worsened the results. Similarly, several implementations
and variations of the k-means clustering algorithm have been shown to work better without
idf normalization [438]. Furthermore, in many probabilistic methods for topic modeling,
clustering, and classification, the underlying generative assumption implies that one should
use raw term frequencies rather than idf-normalized frequencies. Methods like k-means are
deterministic avatars of such probabilistic models. In linear models for classification, idf
normalization is almost1 equivalent to the use of raw term frequencies.

1Small differences are caused by regularization effects. Without regularization, the same results will be
obtained in a method like linear regression, no matter how one scales the attributes.

2.7. BIBLIOGRAPHIC NOTES 29

Issues such as stemming also have similar effects in mining applications. While the effect
of stemming is significant2 in IR applications (because users specify a small number of key-
words), the issue is not quite as critical when mining larger collections containing documents
of reasonable length. Stemming may still be useful when mining very small documents like
discussion board posts or tweets. In fact, it has been stated in [321] that techniques like
stemming can sometimes degrade classification accuracy when working with larger docu-
ments. All these observations suggest that one should be careful when using different types
of normalization and preprocessing methods, because they are legacy methods inherited
from traditional information retrieval settings. The constraints of typical settings in mining
are not always the same as those in information retrieval.

2.6 Summary

Text data requires a significant amount of preprocessing because of the unstructured nature
of the environments in which it is often found. The most important phases of text processing
include tokenization, term extraction, and normalization. The phases of tokenization and
term extraction are highly language-specific and may often require some domain knowledge
about the language at hand. After extracting the term frequencies from a collection, they
are normalized so that very frequent terms receive lower weights. This type of normalization
is referred to as the inverse document frequency normalization.

Similarity computation in text is highly sensitive to the length of the documents. Using
the Euclidean distance on a length-unnormalized text collection can lead to disastrous
results. Therefore, the common approach is to use the cosine similarity between pairs of
documents. The implicit effect of the cosine similarity is to normalize each document in the
corpus to unit Euclidean norm before computing the dot product. Several other similarity
functions such as the Jaccard coefficient are often used, when the text is represented in
boolean form.

2.7 Bibliographic Notes

A discussion of several aspects of text preprocessing may be found in several textbooks [31,
303, 321, 491]. Web-specific issues to text extraction may be found in [79, 303]. Several
aspects of text preprocessing are related to information extraction of text and part-of-
speech tagging. A discussion of information extraction for text data may be found in [430].
Some aspects of text preprocessing are also related to language modeling methods that are
discussed in [322].

A discussion on character encoding methods may be found in [316]. Some practical sug-
gestions on tokenization may be found in [552]. Discussions on conversions of tokens to terms
may be found in [303, 321]. A variety of recent stemming algorithms are discussed in [481,
547]. Issues related to text representation and frequency-based normalization are discussed
in [31, 303, 321, 424, 491]. Experimental results and theoretical justifications of various
weighting schemes may be found in [119, 423, 411, 453]. A discussion of how search engines
implement similarity measures efficiently is provided in [545]. An interesting method, re-
ferred to as pivoted document length normalization was proposed by Singhal et al. [450]. Sim-
ilarity measures for short segments of text are discussed in Metzler et al. [337]. A Web-based

2When a user queries for “eat”, documents containing “eating” are also useful. The main issue here is
that a set of query keywords is an extremely small document, and stemming helps in reducing the effect of
sparsity.

30 CHAPTER 2. TEXT PREPARATION AND SIMILARITY COMPUTATION

kernel similarity function was studied in [418], in which queries to a search engine are used
to evaluate the similarities between short text snippets. The works in [231, 461] compared
several similarity measures in the context of text clustering, such as the Euclidean, cosine,
Jaccard, and the Pearson correlation coefficient. The Euclidean distance performed poorly
because it did not normalize for the lengths of the documents. On the other hand, compa-
rable results were obtained with the cosine, Jaccard, and Pearson correlation coefficients.

2.7.1 Software Resources

The Bow toolkit contains a tokenizer [325] written in C, which is distributed under the GNU
public license. A high-quality tokenizer may also be found from the Apache OpenNLP ef-
fort [548]. The Stanford NLP [554] and NLTK site [556] also contain several natural language
processing tools that can be used for tokenizing and other term extraction operations. The
latest version of the Porter stemmer may be available at [547]. The scikit-learn [550] and
R-based tm library [551] also have preprocessing and tokenization functionalities built into
them. A Java-based tokenizer and preprocessor may be found at the Weka library [553].

2.8 Exercises

1. Tokenize the following sentence:

After sleeping for 2 h, he decided to sleep for another two.

2. Assume that all article, pronouns, and prepositions are stop words. Perform a sensible
stemming and case folding in the example of Exercise 1, and convert to a vector-
space representation. Express your representation as a set of words with associated
frequencies but no normalization.

3. Consider a collection in which the words “after,” “decided,” and “another,” each occur
in 16% of the documents. All other words occur in 4% of the documents. Create an
idf-normalized representation of your answer in Exercise 2.

4. Show that the Jaccard similarity between a pair of documents can never be larger than
the cosine similarity between them. What are the special cases in which the Jaccard
similarity is exactly equal to the cosine similarity?

5. Compute the cosine similarity between the vector pair (1, 2, 3, 4, 0, 1, 0) and
(4, 3, 2, 1, 1, 0, 0). Repeat the same computation with the Jaccard coefficient.

6. Normalize each of the vectors in Exercise 5 to unit norm. Compute the Euclidean
distance between the pair of normalized vectors. What is the relationship between
this Euclidean distance and the cosine similarity computed in Exercise 5?

7. Repeat Exercise 5 with the boolean representations of the two documents.

8. Write a computer program to evaluate the cosine similarity between a pair of vectors.

Chapter 3

Matrix Factorization and Topic
Modeling

“Nobody can be told what the matrix is—you have to see it for
yourself.”—The fictional character Morpheus in the movie Matrix

3.1 Introduction

Most document collections are defined by document-term matrices in which the rows (or
columns) are highly correlated with one another. These correlations can be leveraged to
create a low-dimensional representation of the data, and this process is referred to as di-
mensionality reduction. Almost all dimensionality reductions of this type can be expressed
as low-rank factorizations of the document-term matrix. In order to understand this point,
consider a toy corpus defined on a lexicon of seven words:

lion, lioness, cheetah, jaguar, porsche, ferrari, maserati

The first three words in the lexicon are related to the topic of cats and the last three are
related to cars. The (middle) word, which is “jaguar,” could be related to either topic. This
because the word “jaguar” is polysemous, and its meaning might depend on its usage and
context.

The words in a document will often be predominantly related to a particular topic,
which will cause inter-attribute correlations. Therefore, consider a case where most docu-
ments contain a majority of their words from either the set { lion, lioness, cheetah, jaguar }
or they contain a majority of the words from the set { jaguar, porsche, ferrari, maserati}.
Intuitively speaking, these two sets define new features in terms of which the entire col-
lection is expressed. In other words, a document containing most words from the first set
can be expressed as (a, 0), a document containing most words from the second set can be
approximately expressed as (0, b), and a document containing many words from both sets

32 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

can be expressed as (c, d). One can view this new set of coordinates as a reduced represen-
tation of the data. Although it might seem that dimensionality reduction loses information,
it is often possible to choose a representation dimensionality in which most of the semantic
knowledge in the corpus is retained, and only noise is lost.

The reduction in noise can even improve representation quality. For example, in the
original collection the words “lion” and “lioness” are (almost) synonymous but will not be
recognized as similar words in a cosine similarity computation on the original representation.
The different usages of “jaguar” to refer to either cats or to cars will also not be properly
disambiguated. On the other hand, a reduced representation is often able to improve the
semantic closeness of related words and disambiguate multiple uses of the same word. As
a result, many retrieval and mining algorithms show improved accuracy when the reduced
representation is used in lieu of the original representation. When a feature transformation
improves the accuracy of an algorithm, it can be viewed as a feature engineering method.
The goals of feature engineering are subtly different from those of dimensionality reduc-
tion. Feature engineering is focussed on improving performance accuracy of a particular
algorithm by changing the data representation, and it might sometimes even increase the
dimensionality of the representation to achieve these goals. This chapter primarily discusses
dimensionality reduction methods, but it also discusses some feature engineering methods.

It is noteworthy that the new representation in the aforementioned example of cats and
cars is able to pull out the hidden semantic concepts in the data, and express any document
in the collection as a combination of these hidden (or latent) concepts. One will often see the
use of the word “latent” to describe many of these techniques, which refers to the fact that
these concepts are hidden in the aggregate statistics of the data. It is not difficult to observe
that the notions of semantic concepts, topics, and clusters are closely related. In fact, some
forms of nonnegative dimensionality reduction are also referred to as topic modeling, and
they have dual use in clustering applications.

How do the notions of dimensionality reduction and latent semantic analysis relate
to matrix factorization? The basic idea is that any n × d document-term matrix can be
expressed in terms of k � min{n, d} d-dimensional basis vectors. The value of k defines
the number of semantic concepts in the data. In our previous example of cats and cars, the
value of k is 2, whereas the value of d is 7. Typically, one expresses the basis vector as a d×k
matrix V = [vij], in which the columns represent the basis vectors. In the example of cats
and cars, one column of V (i.e., basis vector) corresponds to cats and the other corresponds
to cars. If we assume that the features are ordered in the same way as shown on page 31,
the basis vector for the cat concept might1 have strongly positive components on the first
four (out of seven) word components, and the car concept might have strongly positive
values on the last four. Other values might be nearly zero. Furthermore, the k-dimensional
reduced representations of the n documents can be expressed as the rows of an n×k matrix
U = [uij], which is also the reduced representation of the corpus. The rows in U provide the
document coordinates (i.e., transformed representation) with respect to the basis system in
V . In our previous example, the rows of U will contain the two coordinates corresponding to
the strength of association of the document with cats and/or cars. Therefore, the document-
term matrix can be represented in the following factorized form:

D ≈ UV T (3.1)

1Here, we are assuming a specific type of factorization, referred to as non-negative matrix factorization,
because of its interpretability. Other factorizations might not obey these properties.

3.1. INTRODUCTION 33

The right-hand side is simply a matrix multiplication of a embedding matrix U with the
(transpose of the) basis matrix V in order to transform the reduced representation into
the original feature space. This type of matrix multiplication is used in all types of basis
transformations in linear algebra. However, one needs to find the best basis representation
V (and corresponding reduction U) in which the error of the approximate equality “≈” in
Eq. 3.1 is low. Therefore, one can also view this problem as that of approximate factorization
of the n × d document-term matrix D into two low-rank matrices of size n × k and d × k,
respectively. The value of k defines the rank of the factorization. This factorization is referred
to as low-rank because the ranks of each of U , V , and UV T are at most k � d, whereas
the rank of D might be d. The remaining (d − k)-dimensional subspace does not have
significant representation in the corpus at hand, and it can be captured by the approximate
equality “≈” in Eq. 3.1. Note that there will always be some residual error (D − UV T)
from the factorization. In fact, the entries in U and V are often discovered by solving an
optimization problem in which the sum of squares (or other aggregate function) of the
residual errors in (D−UV T) are minimized. A low-error factorization is possible only when
the underlying matrix exhibits high correlations among its different columns.

Almost all forms of dimensionality reduction and matrix factorization are special cases
of the following optimization model over matrices U and V :

Maximize similarity between entries of D and UV T

subject to:

Constraints on U and V

By varying the objective function and constraints, dimensionality reductions with different
properties are obtained. The most commonly used objective function is the sum of the
squares of the entries in (D−UV T), which is also defined as the (squared) Frobenius norm
of the matrix (D − UV T). The (squared) Frobenius norm of a matrix is also referred to as
its energy, because it is the sum of the second moments of all data points about the origin.
However, some forms of factorizations with probabilistic interpretations use a maximum-
likelihood objective function. Similarly, the constraints imposed on U and V enable different
properties of the factorization. For example, if we impose orthogonality constraints on the
columns of U and V , this leads to a model known as singular value decomposition (SVD) or
latent semantic analysis (LSA). The orthogonality of the basis vectors is particularly helpful
in mapping new documents to the transformed space in a simple way. On the other hand,
better semantic interpretability can be obtained by imposing nonnegativity constraints on
U and V . In this chapter, we will discuss different types of reductions and their relative
advantages.

3.1.1 Chapter Organization

This chapter is organized as follows. The remainder of this section discusses some conven-
tions for representing the reduced representation. Section 3.2 introduces the singular value
decomposition model, which is also referred to as latent semantic analysis. Nonnegative ma-
trix factorization is introduced in Sect. 3.3. Probabilistic latent semantic analysis is discussed
in Sect. 3.4. Latent Dirichlet Allocation is introduced in Sect. 3.5. Nonlinear dimensionality
reduction methods are introduced in Sect. 3.6. A summary is given in Sect. 3.7.

34 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

3.1.2 Normalizing a Two-Way Factorization into a Standardized
Three-Way Factorization

The aforementioned optimization model factorizes D into two matrices U and V . One can
immediately notice that the factorization is not unique. For example, if we multiply each
entry of U by 2, then we can divide each entry of V by 2 to get the same product UV T .
Furthermore, we can apply this trick to just a particular (say, rth) column of each of U and
V to get the same result. In other words, different normalization factors for the columns of
U and V lead to the same product.

Therefore, some forms of dimensionality reduction convert the two-way matrix factor-
ization into a three-way matrix factorization in which each of the matrices satisfies certain
normalization conventions. This additional matrix is typically a k × k diagonal matrix of
nonnegative entries, in which the (r, r)th entry contains a scaling factor for the rth column.
Specifically, for any two-way matrix factorization D ≈ UV T into n× k and d× k matrices
U and V , respectively, we can convert it into a unique2 three-way matrix factorization of
the following form:

D ≈ QΣPT (3.2)

Here, Q is a normalized n × k matrix (derived from U), P is a normalized d × k matrix
(derived from V), and Σ is a k × k diagonal matrix in which the diagonal entries contain
the nonnegative normalization factors for the k concepts. Each of the columns of Q and
P satisfy the constraint that its L2-norm (or L1-norm) is one unit. It is common to use
L2-normalization in methods like singular value decomposition and L1-normalization in
methods like probabilistic latent semantic analysis. For the purpose of discussion, let us
assume that we use L2-normalization. Then, the conversion from two-way factorization to
three-way factorization can be achieved as follows:

1. For each r ∈ {1 . . . k}, divide the rth column Ur of U with its L2-norm ||Ur||. The
resulting matrix is denoted by Q.

2. For each r ∈ {1 . . . k}, divide the rth column Vr of V with its L2-norm ||Vr||. The
resulting matrix is denoted by P .

3. Create a k×k diagonal matrix Σ, in which the (r, r)th diagonal entry is the nonnegative
value ||Ur|| · ||Vr||.

It is easy to show that the newly created matrices Q, Σ, and P satisfy the following rela-
tionship:

QΣPT = UV T (3.3)

It is noteworthy that all diagonal entries of Σ are always nonnegative because of how the nor-
malization is done. The three-way factorized representation is used by many dimensionality
reduction methods because of its normalized properties. An example of L1-normalization
is shown later in this chapter (cf. Fig. 3.2). The entries in the diagonal matrix intuitively
represent the relative dominance of the different latent concepts. For example, in our pre-
vious example with the car- and cat-related documents, if car documents are more copious
than cat documents and also have higher term frequencies, this will be reflected in a higher
diagonal value of Σrr for the car-related entry. In a sense, Σrr reflects the relative frequency
of the rth latent concept in the collection. The varying frequencies of different concepts also
provide a rationale for dimensionality reduction. If we use k = d, then many of the values

2The factorization is unique up to multiplication by −1 of any particular column of P and Q.

3.2. SINGULAR VALUE DECOMPOSITION 35

of Σrr of the infrequent latent concepts would be very small. Such concepts can be dropped
without affecting the accuracy of the approximation inherent in matrix factorization. This
is the reason that one can typically use values of the rank k that are much less than the
dimensionality d. In text collections, it is possible for the value of d (i.e., number of terms)
to be of the order of a few hundred thousand, whereas the value of k is only of the order of
a few hundred.

In some of the following discussions, we will pose the optimization problem for dimen-
sionality reduction in terms of a two-way factorization, whereas in others we will pose it as a
three-way factorization. This is because different choices are provide better interpretability
in different settings, although they are mathematically equivalent.

3.2 Singular Value Decomposition

Singular value decomposition (SVD) is used in all forms of multidimensional data, and its
instantiation in the text domain is referred to as latent semantic analysis (LSA). Consider
the simplest possible factorization of the n×d matrix D into an n×k matrix U = [uij] and
the d× k matrix V = [vij] as an unconstrained matrix factorization problem:

MinimizeU,V ||D − UV T ||2F
subject to:

No constraints on U and V

Here || · ||2F refers to the (squared) Frobenius norm of a matrix, which is the sum of squares
of its entries. The matrix (D − UV T) is also referred to as the residual matrix, because
its entries contain the residual errors obtained from a low-rank factorization of the orig-
inal matrix D. This optimization problem is the most basic form of matrix factorization
with a popular objective function and no constraints. This formulation has infinitely many
alternative optimal solutions (see Exercises 2 and 3). However, one3 of them is such that
the columns of V are orthonormal, which allows transformations of new documents (not in-
cluded in D) with simple axis rotations (i.e., matrix multiplication). A remarkable property
of the unconstrained optimization problem above is that imposing orthogonality constraints
does not worsen the optimal solution. The following constrained optimization problem shares
at least one optimal solution as the unconstrained version [149, 460]:

MinimizeU,V ||D − UV T ||2F
subject to:

Columns of U are mutually orthogonal

Columns of V are mutually orthonormal

In other words, one of the alternative optima to the unconstrained problem also satisfies
orthogonality constraints. It is noteworthy that only the solution satisfying the orthogonality
constraint is considered SVD because of its interesting properties, even though other optima
do exist (see Exercises 2 and 3).

Another remarkable property of the solution (satisfying orthogonality) is that it can be
computed using eigen-decomposition of either of the positive semi-definite matrices DTD or
DDT . The following properties of the solution can be shown (see Exercises 3[a], 5, and 6):

3This solution is unique up to multiplication of any column of U or V with −1.

36 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

1. The columns of V are defined by the top-k unit eigenvectors of the d × d positive
semi-definite and symmetric matrix DTD. The diagonalization of a symmetric and
positive semi-definite matrix results in orthonormal eigenvectors with non-negative
eigenvalues. After V has been determined, we can also compute the reduced represen-
tation U as DV , which is simply an axis rotation operation on the rows (documents)
in the original data matrix. This is caused by the orthogonality of the columns of V ,
which results in DV ≈ U(V TV) = U . One can also use this approach to compute the
reduced representation XV of any row-vector X that was not included in D.

2. The columns of U are also defined by the top-k scaled eigenvectors of the n× n dot-
product matrix DDT in which the (i, j)th entry is the dot-product similarity between
the ith and jth documents. The scaling factor is defined so that each eigenvector is
multiplied with the square-root of its eigenvalue. In other words, the scaled eigenvec-
tors of the dot-product matrix can be used to directly generate the reduced represen-
tation. This fact has some interesting consequences for the nonlinear dimensionality
reduction methods, which replace the dot product matrix with another similarity ma-
trix (cf. Sect. 3.6). This approach is also efficient for linear SVD when n � d, and
therefore the n× n matrix DDT is relatively small. In such cases, U is extracted first
by eigen-decomposition of DDT , and then V is extracted as DTU .

3. Even though the n eigenvectors of DDT and d eigenvectors of DTD are different, the
top min{n, d} eigenvalues of DDT and DTD are the same values. All other eigenvalues
are zero.

4. The total squared error of the approximate matrix factorization of SVD is equal to the
sum of the eigenvalues of DTD that are not included among the top-k eigenvectors. If
we set the rank of the factorization k to min{n, d}, we can obtain an exact factorization
into orthogonal basis spaces with zero error.

This factorization of rank k = min{n, d} with zero error is of particular interest. We convert
the two-way factorization (of zero error) into a three-way factorization according to the
methodology of Sect. 3.1.2, which results in a standard form of SVD:

D = QΣPT = (QΣ)
︸ ︷︷ ︸

U

PT
︸︷︷︸
V T

(3.4)

Here, Q is an n× k matrix containing all the k = min{n, d} non-zero eigenvectors of DDT ,
and P is a d × k matrix containing all the k = min{n, d} non-zero eigenvectors of DTD.
The columns of Q are referred to as the left singular vectors, whereas the columns of P are
referred to as the right singular vectors. Furthermore, Σ is a (nonnegative) diagonal matrix
in which the (r, r)th value is equal to the square-root of the rth largest eigenvalue of DTD
(which is the same as the rth largest eigenvalue of DDT). The diagonal entries of Σ are
also referred to as singular values. Note that the singular values are always nonnegative by
convention. The sets of columns of P and Q are each orthonormal because they are the unit
eigenvectors of symmetric matrices. It is easy to verify (using Eq. 3.4) that DTD = PΣ2PT

and that DDT = QΣ2QT , where Σ2 is a diagonal matrix containing the top-k non-negative
eigenvalues of DTD and DDT (which are the same).

SVD is formally defined as the exact decomposition with zero error. What about the
approximate variant of SVD, which is the primary goal of matrix factorization? In practice,
one always uses values of k � min{n, d} to obtain approximate or truncated SVD:

D ≈ QΣPT (3.5)

3.2. SINGULAR VALUE DECOMPOSITION 37

n

d
TERMS

DOCUMENT-TERM

D
O

CU
M

EN
TS

MATRIX

D
O

CU
M

EN
TS

n

k

LATENT
COMPONENTS

x

LATENT
COMPONENTS

k

k

LA
TE

N
T

CO
M

PO
N

EN
TS

x

LA
TE

N
T

CO
M

PO
N

EN
TS

k

TO
P-

k
 B

AS
IS

VE

CT
O

RS
 O

F
RO

W
S

O
F

 D
T TOP-k BASIS

VECTORS OF
ROWS OF D

TERMS
d

Σ

D
Σ: IMPORTANCE OF

LATENT COMPONENTSQ

PT

Figure 3.1: Dual interpretation of SVD in terms of the basis vectors of both D and DT

Using truncated SVD is the standard use-case in practical settings. Throughout this book,
our use of the term “SVD” always refers to truncated SVD.

Just as the matrix P contains the d-dimensional basis vectors of D in its columns, the
matrix Q contains the n-dimensional basis vectors of DT in its columns. In other words,
SVD simultaneously finds approximate bases of both documents and terms. This ability of
SVD to simultaneously find approximate bases for the row space and column space is shown
in Fig. 3.1. Furthermore, the diagonal entries of the matrix Σ provide a quantification of
the relative dominance of the different semantic concepts.

One can express SVD as a weighted sum of rank-1 matrices. Let Qi be the n× 1 matrix
corresponding to the ith column of Q and Pi be the d × 1 matrix corresponding to the
ith column of P . Then, the SVD product can be decomposed in spectral form using simple
matrix-multiplication laws as follows:

QΣPT =

k∑

i=1

ΣiiQiP
T
i (3.6)

Note that each QiPi is a rank-1 matrix of size n×d and a Frobenius norm of 1. Furthermore,
it is possible to show that the Frobenius norm of QΣPT is given by

∑k
i=1 Σ

2
ii, which is the

amount of energy retained in the representation. Maximizing the retained energy is the same
as minimizing the loss defined by the sum of squares of the truncated singular values (which
are small), because the sum of the two is always equal to ||D||2F . The energy retained in
the approximated matrix is the same as that in the transformed representation, because
squared distances do not change with axis rotation. Therefore, the sum of the squares of
the retained singular values provides the energy in the transformed representation DP . An
important consequence of this observation is that the projection Dp of D on any column p
of P has an L2-norm, which is equal to the corresponding singular value. In other words,
SVD naturally selects the orthogonal directions along which the transformed data exhibits
the largest scatter.

3.2.1 Example of SVD

An example of SVD helps in illustrating its inner workings. Consider a 6 × 6 matrix D
defined over the lexicon of size 6 as follows:

lion, tiger, cheetah, jaguar, porsche, ferrari

38 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

The data matrix D is illustrated below:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lion tiger cheetah jaguar porsche ferrari
Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0
Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that this matrix represents topics related to both cars and cats. The first three doc-
uments are primarily related to cats, the fourth is related to both, and the last two are
primarily related to cars. The word “jaguar” is polysemous because it could correspond
to either a car or a cat. Therefore, it is often present in documents of both categories
and presents itself as a confounding word. We would like to perform an SVD of rank-2 to
capture the two dominant concepts corresponding to cats and cars, respectively. Then, on
performing the SVD of this matrix, we obtain the following decomposition:

D ≈ QΣPT

≈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.41 0.17
−0.65 0.31
−0.23 0.13
−0.56 −0.20
−0.10 −0.46
−0.19 −0.78

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(
8.4 0
0 3.3

)(−0.41 −0.49 −0.44 −0.61 −0.10 −0.12
0.21 0.31 0.26 −0.37 −0.44 −0.68

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.55 1.87 1.67 1.91 0.10 0.04
2.46 2.98 2.66 2.95 0.10 −0.03
0.89 1.08 0.96 1.04 0.01 −0.04
1.81 2.11 1.91 3.14 0.77 1.03
0.02 −0.05 −0.02 1.06 0.74 1.11
0.10 −0.02 0.04 1.89 1.28 1.92

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The reconstructed matrix is a very good approximation of the original document-term ma-
trix. Furthermore, each point gets a 2-dimensional embedding corresponding to the rows
of QΣ. It is clear that the reduced representations of the first three documents are quite
similar, and so are the reduced representations of the last two. The reduced representa-
tion of the fourth document seems to be somewhere in the middle of the representations
of the other documents. This is logical because the fourth document corresponds to both
cars and cats. From this point of view, the reduced representation seems to satisfy the
basic intuitions one would expect in terms of relative coordinates. However, one annoy-
ing characteristic of this representation is that it is hard to get any absolute semantic
interpretation from the embedding. For example, it is difficult to match up the two la-
tent vectors in P with the original concepts of cats and cars. The dominant latent vector
in P is [−0.41,−0.49,−0.44,−0.61,−0.10,−0.12], in which all components are negative.
The second latent vector contains both positive and negative components. Therefore, the
correspondence between the topics and the latent vectors is not very clear. A part of the
problem is that the vectors have both positive and negative components, which reduces their
interpretability. The lack of interpretability of singular value decomposition is its primary
weakness, as a result of which other nonnegative forms of factorization are sometimes pre-
ferred. Furthermore, forcing orthogonality of the vectors in P is not very natural, especially

3.2. SINGULAR VALUE DECOMPOSITION 39

when the two topics have overlapping and confounding words like “jaguar.” As a result,
SVD does a relatively poor job at handling polysemy compared to many other forms of
matrix factorization. However, it is not completely unsuccessful either, and it can handle
the problem of synonymy relatively well.

3.2.2 The Power Method of Implementing SVD

The power method is an efficient way of finding the d × k basis matrix P . Note that the
reduced representation QΣ can be obtained by post-multiplying the document-term matrix
D with P , because we haveDP ≈ QΣ. The power method can find the dominant eigenvector
of any matrix (like DTD) by first initializing it to a random d-dimensional column vector
p and then repeatedly pre-multiplying with DTD and scaling to unit norm. To reduce the
number of operations, it makes sense to compute the operations in the order dictated by
the brackets in [DT (Dp)]. Therefore, we repeat the following step to convergence:

p ⇐ [DT (Dp)]

||[DT (Dp)]||
The projection of the data matrixD on the vector p has an energy that is equal to the square
of the first singular value. Therefore, the first singular value σ is obtained by using the L2-
norm of the vector Dp. Since Dp contains the n different coordinates of the n documents
along the first latent direction p, the first column q of Q is obtained by a single execution
of the following step:

q ⇐ Dp

σ
(3.7)

This completes the determination of the first set of singular vectors and singular values. The
next eigenvector and eigenvalue pair is obtained by making use of the spectral decomposition
of Eq. 3.6. First, we remove the rank-1 component contributed by the first set of singular
vectors by adjusting the data matrix as follows:

D ⇐ D − σq pT (3.8)

Note that even though q and p are vectors, we treat them as n × 1 and d × 1 matrices in
the expression σq pT to obtain a rank-1 matrix of size n × d. Once the impact of the first
component has been removed, we repeat the process to obtain the second set of singular
vectors. The entire process is repeated k times to obtain the rank-k singular value decom-
position. It is noteworthy that the matrix D is sparse in the case of document data, and
therefore other efficient implementations such as the Lanczos algorithm are used [145, 146].

3.2.3 Applications of SVD/LSA

Singular value decomposition (also known as latent semantic indexing in its text-centric
implementations) is used for dimensionality reduction of sparse and extremely high-
dimensional text into a more traditional multidimensional format of a few hundred di-
mensions. A side effect of the reduction is to reduce the noise effects of synonymy and
polysemy. As in the case of document-term matrix, one can use the cosine similarity to
compute similarity with the reduced representations of the documents. If the rank k is cho-
sen carefully, it is possible to improve both precision and recall, although the former often
degrades if the value of k is chosen incorrectly. The improvement in both precision and
recall occurs because of the reduction in noise effects of synonymy and polysemy. Typically,

40 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

for collections containing a few hundred thousand terms, it is often sufficient to use values
of k between 200 and 400. Therefore, the reduction in dimensionality is very significant, but
the new representation is no longer sparse.

SVD can also be used to enable other data mining applications that do not work well with
sparsity. For example, univariate decision trees work poorly with the original sparse rep-
resentation of the document-term matrix. However, the transformed representation works
somewhat better, especially if combinations of multiple decision trees (i.e., random forests)
are used. Refer to Sect. 5.5 of Chap. 5 for a detailed discussion of decision trees.

Aside from providing a k-dimensional representation of the documents, SVD also pro-
vides a k-dimensional representation of the words. This k-dimensional representation may
be extracted as the rows on the matrix PΣ. Words that are semantically similar will tend
to be closer to one another in this multidimensional space. For example, the words “movie”
and “film” are likely to be closer to another than the words “movie” and “song.” Further-
more, the words “movie” and “song” will typically be closer to one another than “movie”
and “carrot.” This type of dual embedding is not exclusive to SVD, but it can be achieved
in any form of matrix factorization.

The orthogonal basis representation of SVD has numerous other applications in solving
systems of linear equations and other matrix operations. It also provides the mathematical
framework required for generalizing SVD to nonlinear dimensionality reduction, as discussed
in Sect. 3.6.

3.2.4 Advantages and Disadvantages of SVD/LSA

Singular value decomposition has several advantages and disadvantages compared to other
matrix factorization methods. These advantages and disadvantages are as follows:

1. The orthogonal basis representation of SVD is useful for folding in the reduced rep-
resentation of new documents not included in the data matrix D. For example, if
X is a row vector of a new document, then its reduced representation is given by
the k-dimensional vector XV . This type of out-of-sample embedding is harder (albeit
possible) with other forms of matrix factorization.

2. The SVD solution provides the same error as unconstrained matrix factorization prob-
lem. Since most other forms of dimensionality reduction are constrained matrix fac-
torization problems, one can typically achieve a lower residual error with SVD at the
same value of the rank k.

3. The topics of a text collection are often highly overlapping in terms of their vocab-
ulary. As a result, the directions represented by the various topics are naturally not
orthogonal, which matches poorly with orthogonal basis vectors. SVD does a poor
job at revealing the actual semantic topics (or clusters) in the underlying data. Most
forms of nonnegative matrix factorization that do not use orthogonal basis vectors are
more adept at representing the clustering structure in the underlying data.

4. The representation provided by SVD is not very interpretable and it is hard to match
with the semantic concepts in the collection. A key part of the problem is that the
eigenvectors contain both positive and negative components that are hard to interpret.

The specific use of a particular method depends on the scenario or the application at hand.

3.3. NONNEGATIVE MATRIX FACTORIZATION 41

3.3 Nonnegative Matrix Factorization

Nonnegative matrix factorization is a highly interpretable type of matrix factorization in
which nonnegativity constraints are imposed on U and V . Therefore, this optimization
problem is defined as follows:

Minimize U,V ||D − UV T ||2F
subject to:

U ≥ 0, V ≥ 0

As in the case of SVD, U = [uij] is an n× k matrix and V = [vij] is a d× k matrix of opti-
mization parameters. Note that the optimization objective is the same but the constraints
are different.

This type of constrained problem is often solved using Lagrangian relaxation. For the
(i, s)th entry uis in U , we introduce the Lagrange multiplier αis ≤ 0, whereas for the (j, s)th
entry vjs in V , we introduce the Lagrange multiplier βjs ≤ 0. One can create a vector (α, β)
of dimensionality (n+d) ·k by putting together all the Lagrangian parameters into a vector.
Instead of using hard constraints on nonnegativity, Lagrangian relaxation uses penalties in
order to relax the constraints into a softer version of the problem, which is defined by the
augmented objective function L:

L = ||D − UV T ||2F +
n∑

i=1

k∑

r=1

uirαir +
d∑

j=1

k∑

r=1

vjrβjr (3.9)

Note that violation of the nonnegativity constraints always lead to a positive penalty be-
cause the Lagrangian parameters cannot be positive. According to the methodology of
Lagrangian optimization, this augmented problem is really a minimax problem because
we need to minimize L over all U and V at any particular value of the (vector of) La-
grangian parameters, but we then need to maximize these solutions over all valid values of
the Lagrangian parameters αis and βjs. In other words, we have:

Maxα≤0,β≤0MinU,V L (3.10)

Here, α and β represent the vectors of optimization parameters in αis and βjs, respectively.
This is a tricky optimization problem because of the way in which it is formulated with
simultaneous maximization and minimization over different sets of parameters. The first step
is to compute the gradient of the Lagrangian relaxation with respect to the (minimization)
optimization variables uis and vjs. Therefore, we have:

∂L

∂uis
= −(DV)is + (UV TV)is + αis ∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.11)

∂L

∂vjs
= −(DTU)js + (V UTU)js + βjs ∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.12)

The optimal value of the (relaxed) objective function at any particular value of the La-
grangian parameters is obtained by setting these partial derivatives to 0. As a result, we
obtain the following conditions:

− (DV)is + (UV TV)is + αis = 0 ∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.13)

− (DTU)js + (V UTU)js + βjs = 0 ∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.14)

42 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

We would like to eliminate the Lagrangian parameters and set up the optimization condi-
tions purely in terms of U and V . It turns out the Kuhn-Tucker optimality conditions [48]
are very helpful. These conditions are uisαis = 0 and vjsβjs = 0 over all parameters. By
multiplying Eq. 3.13 with uis and multiplying Eq. 3.14 with vjs, we can use the Kuhn-
Tucker conditions to get rid of these pesky Lagrangian parameters from the aforementioned
equations. In other words, we have:

− (DV)isuis + (UV TV)isuis + αisuis︸ ︷︷ ︸
0

= 0 ∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.15)

− (DTU)jsvjs + (V UTU)jsvjs + βjsvjs
︸ ︷︷ ︸

0

= 0 ∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.16)

One can rewrite these optimality conditions, so that a single parameter occurs on one side
of the condition:

uis =
(DV)isuis

(UV TV)is
∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.17)

vjs =
(DTU)jsvjs
(V UTU)js

∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.18)

Even though these conditions are circular in nature (because the optimization parameters
occur on both sides), they are natural candidates for iterative updates.

Therefore, the iterative approach starts by initializing the parameters in U and V to
nonnegative random values in (0, 1) and then uses the following updates derived from the
aforementioned optimality conditions:

uis ⇐ (DV)isuis

(UV TV)is
∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.19)

vjs ⇐ (DTU)jsvjs
(V UTU)js

∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.20)

These iterations are then repeated to convergence. Improved initialization provides signifi-
cant advantages, and the reader is referred to [272] for such methods. Numerical stability
can be improved by adding a small value ε > 0 to the denominator during the updates:

uis ⇐ (DV)isuis

(UV TV)is + ε
∀i ∈ {1, . . . , n}, s ∈ {1, . . . , k} (3.21)

vjs ⇐ (DTU)jsvjs
(V UTU)js + ε

∀j ∈ {1, . . . , d}, s ∈ {1, . . . , k} (3.22)

One can also view ε as a type of regularization parameter whose primary goal is to avoid
overfitting. Regularization is particularly helpful in small document collections.

As in all other forms of matrix factorization, it is possible to convert the factorization
UV T into the three-way factorization QΣPT by using the approach discussed in Sect. 3.1.2.
It is common to use L1-normalization on each column of U and V , or that the columns of the
resulting matrices Q and P each sum to 1. Interestingly, this type of normalization makes
nonnegative factorization similar to a closely related factorization known as Probabilistic
Semantic Analysis (PLSA). The main difference between PLSA and nonnegative matrix
factorization is that the former uses a maximum likelihood optimization function whereas
nonnegative matrix factorization (typically) uses the Frobenius norm. However, some forms
of nonnegative matrix factorization use the I-divergence objective, which has been shown
to be identical to PLSA [137, 185, 276].

3.3. NONNEGATIVE MATRIX FACTORIZATION 43

3.3.1 Interpretability of Nonnegative Matrix Factorization

An important property of nonnegative matrix factorization is that it is highly interpretable
in terms of the clusters in the underlying data. The rth columns Ur and Vr of each of U and
V respectively contain document- and word-membership information about the rth topic
(or cluster) in the data. The n entries in Ur correspond to the nonnegative components
(coordinates) of the n documents along the rth topic. If a document strongly belongs to
topic r, then it will have a very positive coordinate in Ur. Otherwise, its coordinate will be
zero or mildly positive (representing noise). Similarly, the rth column Vr of V provides the
frequent vocabulary of the rth cluster. Terms that are highly related to a particular topic
will have large components in Vr. The k-dimensional representation of each document is
provided by the corresponding row of U . This approach allows a document to belong to
multiple clusters, because a given row in U might have multiple positive coordinates. For
example, if a document discusses both science and history, it will have components along
latent components with science-related and history-related vocabularies. This provides a
more realistic “sum-of-parts” decomposition of the corpus along various topics, which is
primarily enabled by the nonnegativity of U and V . In fact, one can create a decomposition
of the document-term matrix into k different rank-1 document-term matrices corresponding
to the k topics captured by the decomposition. Let us treat Ur as an n×1 matrix and Vr as a
d×1 matrix. If the rth component is related to science, then UrV

T
r is an n×d document-term

matrix containing the science-related portion of the original corpus. Then the decomposition
of the document-term matrix is defined as the sum of the following components:

D ≈
k∑

r=1

UrV
T
r (3.23)

This decomposition is analogous to the spectral decomposition of SVD, except that its
nonnegativity often gives it much better correspondence to semantically related topics.

3.3.2 Example of Nonnegative Matrix Factorization

In order to illustrate the semantic interpretability of nonnegative matrix factorization, let
us revisit the same example used in Sect. 3.2.1, and create a decomposition in terms of
nonnegative matrix factorization:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lion tiger cheetah jaguar porsche ferrari
Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0
Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This matrix represents topics related to both cars and cats. The first three documents are
primarily related to cats, the fourth is related to both, and the last two are primarily related
to cars. The word “jaguar” is polysemous because it could correspond to either a car or a
cat and is present in documents of both topics.

A highly interpretable nonnegative factorization of rank-2 is shown in Fig. 3.2a. We have
shown an approximate decomposition containing only integers for simplicity, although the
optimal solution would (almost always) be dominated by floating point numbers in practice.

44 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

CH
E

T A
H

AR AR
I

R

PO
RS

C

CH
EE
T

LI
O
N

JA
G
UA

FE
RR

A

2 12 0 0 2 0

CA
TS

CA
RS

TI
G
ER

G
ERO
N EE
TA

H

G
UA

R

RS
CH

E

R R
AR

I

X1X1 2

CATS

BOTH

332

11 1

0 0

0 0

3

1

2

03

1 0

1 X

TI
G

CATS

CARS

LI
O

CH JA
G

PO FE
R

1 1 1 1

1 1 10 0 0

0 0

X2 X2

X3

X4

X3

X42 2 3 1 1 2BOTH

0

0

00

0 0 2

1

1

1

2

1
CARS

CATS

BOTHBOTH

CARS

0 0

00

1

2

CARS

X6

X5

4 4

X5

X6

VT

D U
(a) Two-way factorization

X

TI
G
ER

CATS

LI
O
N

CH
EE
TA

H

JA
G
UA

R

PO
RS

CH
E

FE
RR

AR
I

0 0 0

0 0

PT

0

0

0

0 0

00

CA
TS

CA
RS

X1

X2

X3

X4

X5

X6

Q

0

00 X

PO
RS

CH
E

CH
EE
TA

H

LI
O
N

JA
G
UA

R

FE
RR

AR
I

0

0

00

0

0 0

0 0

0 0

TI
G
ER

X6

X2

X1

X3

X5

X4

D

CARS

0

Σ

2 2 1 2

2

2

3

3

3 3

1 1 1

1

1

22

2

2

1

1

1 11
CA

TS

CA
RS

32

12

(b) Three-way factorization by applying L1-normalization to (a) above

Figure 3.2: The highly interpretable decomposition of nonnegative matrix factorization

It is clear that the first latent concept is related to cats and the second latent concept is
related to cars. Furthermore, documents are represented by two non-negative coordinates
indicating their affinity to the two topics. Correspondingly, the first three documents have
strong positive coordinates for cats, the fourth has strong positive coordinates in both, and
the last two belong only to cars. The matrix V tells us that the vocabularies of the various
topics are as follows:

Cats: lion, tiger, cheetah, jaguar
Cars: jaguar, porsche, ferrari

It is noteworthy that the polysemous word “jaguar” is included in the vocabulary of both
topics, and its usage is automatically inferred from its context (i.e., other words in doc-
ument) during the factorization process. This fact becomes especially evident when we
decompose the original matrix into two rank-1 matrices according to Eq. 3.23. This decom-
position is shown in Fig. 3.3 in which the rank-1 matrices for cats and cars are shown. It
is particularly interesting that the occurrences of the polysemous word “jaguar” are nicely
divided up into the two topics, which roughly correspond with their usage in these topics.

As discussed in Sect. 3.1.2, any two-way matrix factorization can be converted into a
standardized three-way factorization. The three-way normalized representation is shown in
Fig. 3.2b, and it tells us a little bit more about the relative frequencies of the two topics.
Since the diagonal entry in Σ is 32 for cats in comparison with 12 for cars, it indicates

3.3. NONNEGATIVE MATRIX FACTORIZATION 45

CATS

E CH
EE
TA

H

LI
O
N

JA
G
UA

R

FE
RR

AR
I

TI
G
ER

PO
RS

CH
E

X CATS =
3

1
1 LI

O
N

TI
G
ER

CH
EE
TA

H

JA
G
UA

R

PO
RS

CH
E

FE
RR

AR
I

2 2 2 2 0 0
3 3 3 3 0 0

0 01 1 1 1

X1

X3

X2

X1

X3

X2

2

11 1 1 0 0X CATS =2
0
0

0 0

0 0

2 2 2 2

0 0 0 0
0 0 0 0 0 0

X4

X5

X6

X4

X5

X6

11 1 1 0 0

LATENT COMPONENT (CATS)

O
RS

CH
E

O
N G
UA

R

RR
AR

I

G
ER EE
TA

H

CARS PO

0
0

LI
O

JA
G

FETI
G

CH

X1

X2

X1

X2 LI
O
N

TI
G
ER

CH
EE
TA

H

A G
UA

R

PO
RS

CH
E

FE
RR

AR
I 0 0 0

0 0 0
0 0

000
0

X CARS =1
1

X3

X4

X5

X3

X4

X5

L T C JA P F 0 0 0 0 00

00 0
0 0 0

0
00 0 1 1 1 1 1 1

1 1 1

2
LATENT COMPONENT (CARS)

X6X6 0 0 0 2 2 2

Figure 3.3: The highly interpretable “sum-of-parts” decomposition of the document-term
matrix into rank-1 matrices representing different topics

that the topic of cats is more dominant than cars. This is consistent with the observation
that more documents and terms in the collection are associated with cats as compared to
cars.

3.3.3 Folding in New Documents

The process of folding in refers to the fact that one wants to represent the out-of-sample
documents using the same basis system as the in-sample documents. It is not as easy as
SVD to fold in new documents with nonnegative matrix factorization. Let Dt be a new
nt × d test data matrix with rows not included in the original matrix D. Let Ut be the
nt × k matrix containing the k-dimensional representations of the new documents. Since
the basis has rank k < d, it is possible to determine only an approximate representation
of the d-dimensional data matrix Dt in a k-dimensional basis. This can be achieved by
minimizing the objective function ||Dt−UtV ||2F over fixed V and varying Ut. The matrix V
is fixed because it was already estimated using the in-sample matrix D. This optimization
problem can be decomposed into nt least-squares regression problems for each of the nt

rows (documents) in Ut. As discussed in Sect. 6.2 of Chap. 6, the optimal solution is given
by the following:

Ut = DtV (V TV)−1 (3.24)

This approach can be used for any basis system, whether it is orthogonal or not. For
orthonormal basis systems like SVD, we have V TV = I, and therefore Eq. 3.24 simplifies
to Ut = DtV . The main problem with this solution in the specific context of nonnegative
matrix factorization is that Ut might have negative components. Nonnegativity can be
forced only by fixing V after in-sample learning on D, and then learning Ut by performing

46 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

the same gradient-descent updates (cf. Eq. 3.19) on Dt. Note that V is not updated using
out-of-sample data. This process is, of course, not as simple as the straightforward fold-in
of SVD using matrix multiplication.

3.3.4 Advantages and Disadvantages of Nonnegative Matrix
Factorization

Nonnegative matrix factorization has several advantages and disadvantages:

1. Nonnegativity enables a highly interpretable decomposition because of ability to rep-
resent the factorization as a sum of parts.

2. The semantic clusters (or topics) are often captured more accurately by allowing non-
orthogonality in the basis vectors. This is because semantic topics are often related.

3. Nonnegative matrix factorization can better address polysemy than SVD.

4. One disadvantage of nonnegative matrix factorization is that it is harder (than SVD)
to compute the reduced representations of documents that were not included in the
original data matrix D. SVD is able to fold in such documents more easily as a simple
projection because of its orthogonal basis system.

The advantages and disadvantages of this approach are exactly shared by PLSA, because
the latter is simply a different form of nonnegative matrix factorization.

3.4 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis creates a normalized three-way factorization of the
document-term matrix of the following form:

D ∝ QΣPT (3.25)

Here, Q is an n×k matrix, Σ is a k×k diagonal matrix, and P is a d×k matrix. Furthermore,
each of the columns of Q and P sum to 1, the entries in Σ sum to 1, and the individual
entries are interpreted as probabilities. The use of proportionality (instead of equality) in
Eq. 3.25 is necessitated by the strict probability-centric scaling of Q, P , and Σ, although
scaling down the entries of D to sum to 1 yields an equality relationship. The matrices P ,
Q, and Σ define the parameters of a generative process that is used to create the observed
matrix D. These parameters are learned in order to maximize the likelihood of the observed
data for this generative process. What is this generative process?

The basic idea is to assume that the frequencies in the document-term matrix are gen-
erated by a mixture of latent components G1 . . .Gk sequentially incrementing entries of the
document-term matrix. These mixture components are hidden variables, also known as la-
tent variables, because they are not observed in the data, but have an explanatory role in

3.4. PROBABILISTIC LATENT SEMANTIC ANALYSIS 47

modeling the data. A mixture component is also referred to as an aspect or topic, which leads
to it being considered a topic modeling method. Therefore, if a given mixture component is
selected, it is likely to increment topic-relevant entries. As we will see later, the number of
mixture components k defines the rank of the factorization. The basic generative process
may be described in terms of repeatedly selecting a position from the document-term matrix
and incrementing its frequency:

1. Select a mixture component (topic) Gr with probability Σrr, where r ∈ {1 . . . k}.

2. Select the index i of a document Xi with probability Qir = P (Xi|Gr) and the index
j of a term tj with probability Pjr = P (tj |Gr). It is assumed that the two selections
are conditionally independent. Increment the (i, j)th entry of D by 1.

The generative process of incrementing matrix entries will need to be repeated as many
times as the number of tokens in the corpus (including document-specific repetitions of term
occurrences). A plate diagram (see explanation in Fig. 3.4a) of this symmetric generative
process is described in Fig. 3.4b.

A

P(A)

GENERATE HIDDEN
VARIABLE A

P(A)

GENERATE OBSERVED
VARIABLE A

A

GENERATE HIDDEN VARIABLE B
FOLLOWED BY CONDITIONAL
GENERATION OF OBSERVED A

P(A|B)

AB

P(B)

A

B

C

P(B)

P(C)

P(A|B,C)

INDEPENDENTLY GENERATE HIDDEN
B,C FOLLOWED BY OBSERVED A

B

P(B)

GENERATE HIDDEN VARIABLE B FOLLOWED BY N CONDITIONALLY
INDEPENDENT INSTANCES OF OBSERVED VARIABLE A

(PLATE SUMMARIZES MULTIPLE INSTANCES)

A

A

A

P(A|B)

P(A|B)

AB

P(B)

N

(a) Examples of plate diagrams showing generative dependencies

DOC.
ID

TOPIC
ID

TERM
ID

NUMBER OF
TOKENS IN CORPUS

DOC.
ID

TOPIC
ID

TERM
ID

NUMBER OF
TOKENS IN CORPUS

(b) Symmetric PLSA model (c) Asymmetric PLSA model

Figure 3.4: Examples of plate diagrams and two equivalent generative models for PLSA

48 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

One must formulate an optimization problem that maximizes the log-likelihood of the
document-term matrix being generated by this model. In other words, the optimization
problem for PLSA may be stated as follows:

Maximize (P,Q,Σ) [Log likelihood of generating D using parameters in matrices (P,Q,Σ)]

= log

⎛

⎝
∏

i,j

P (Adding one occurrence of term j in document i)Dij

⎞

⎠

=
n∑

i=1

d∑

j=1

Dij log
(
P (Xi, tj)

)

︸ ︷︷ ︸
Parametrized by P,Q,Σ

subject to:

P,Q,Σ ≥ 0

Entries in each column of P sum to 1

Entries in each column of Q sum to 1

Σ is a diagonal matrix that sums to 1

A key point here is that the entries in P , Q, and Σ are interpreted as probabilities and the
generative process creates the observed matrix D on this basis. This is the reason for the
normalization constraints on P , Q, and Σ.

The conditional probability P (Xi, tj |Gr) of selecting a particular document-term pair
(Xi, tj) in the generative process follows the conditional independence assumption:

P (Xi, tj |Gr) = P (Xi|Gr) · P (tj |Gr) (3.26)

The main challenge in solving this optimization problem is that we do not know which
mixture component generated which token. The problem would have been easy to solve,
had there been only one mixture component (i.e., k = 1). Therefore, we need to simulta-
neously compute the mixture memberships and optimization parameters. This is achieved
by using the expectation-maximization (EM) algorithm, which optimizes parameters and
probabilistic assignments alternately in iterative fashion. The algorithm starts with random
nonnegative parameters in Q, Σ, and P , which are normalized4 so that they can be inter-
preted as probabilities. In the E-step, we compute the posterior probability P (Gr|Xi, tj)
that each observed document-term pair (Xi, tj) (i.e., token) was generated by a particular
mixture component. Therefore, the E-step determines memberships in expectation. These
probabilities are treated as “membership weights” of that token for the various mixture com-
ponents. The M-step uses these membership weights to compute the maximum-likelihood
values of all parameters in each mixture component. The M-step is referred to as the max-
imization step, because it is really solving a simplified optimization problem in which the
membership weights of the tokens for various mixture components have been fixed. The
specific details of the E- and M-steps are as follows:

4In other words, the columns of P , the columns of Q, and the diagonal of Σ each sum to 1.

3.4. PROBABILISTIC LATENT SEMANTIC ANALYSIS 49

1. (E-step): Estimate the posterior probabilities P (Gr|Xi, tj) for each document-term
pair (Xi, tj) occurring in the corpus. The Bayes rule is used with the current state of
the parameters:

P (Gr|Xi, tj) =
P (Gr) · P (Xi|Gr) · P (tj |Gr)

∑k
s=1 P (Gs) · P (Xi|Gs) · P (tj |Gs)

=
(Σrr) · (Qir) · (Pjr)

∑k
s=1(Σss) · (Qis) · (Pjs)

∀i, j, r
(3.27)

2. (M-step): Estimate the current parameters in Q, P and Σ by using the conditional
probabilities in the first step as weights for entries belonging to each generative com-
ponent. This is achieved as follows:

Qir = P (Xi|Gr) =

∑
j P (Xi, tj) · P (Gr|Xi, tj)

P (Gr)
∝
∑

j

DijP (Gr|Xi, tj) ∀i, r

Pjr = P (tj |Gr) =

∑
i P (Xi, tj) · P (Gr|Xi, tj)

P (Gr)
∝
∑

i

DijP (Gr|Xi, tj) ∀j, r

Σrr = P (Gr) =
∑

i,j

P (Xi, tj) · P (Gr|Xi, tj) ∝
∑

i,j

DijP (Gr|Xi, tj) ∀r

The constants of proportionality are set by ensuring that the probabilities in the
columns of P , Q and the diagonal of Σ each sum to 1.

As in all applications of the expectation-maximization algorithm, these steps are iterated to
convergence. Convergence can be checked by computing the likelihood function at the end
of each iteration, and checking if it has improved by a minimum amount over its average
value in the last few iterations.

Why can we express the estimated parameters in the factorized form ofD ∝ QΣPT ? The
reasoning for this follows directly from the probabilistic interpretation of the parameters:

Dij ∝ P (Xi, tj) =

k∑

r=1

P (Gr)
︸ ︷︷ ︸
Select r

· P (Xi, tj |Gr)
︸ ︷︷ ︸

Select Xi, tj

[Generative probability of incrementing (i, j)]

=

k∑

r=1

P (Gr) · P (Xi|Gr) · P (tj |Gr) [Conditional independence]

=
k∑

r=1

P (Xi|Gr) · P (Gr) · P (tj |Gr) [Rearranging product]

=

k∑

r=1

Qir · Σrr · Pjr=(QΣPT)ij [The factorized form we are familiar with]

PLSA is very similar to nonnegative matrix factorization except that we are optimizing
a maximum likelihood model (equivalent to I-divergence objective in non-negative matrix
factorization) rather than the Frobenius norm.

50 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

3.4.1 Connections with Nonnegative Matrix Factorization

The original paper on nonnegative matrix factorization [276] proposed an alternative for-
mulation that uses an I-divergence objective rather than the Frobenius norm:

Minimize U,V

n∑

i=1

d∑

j=1

(

Dij log

{
Dij

(UV T)ij

}

−Dij + (UV T)ij

)

subject to:

U ≥ 0, V ≥ 0

This formulation is identical to PLSA and requires the following iterative solution for U =
[uis] and V = [vjs]:

uis ⇐ uis

∑d
j=1[Dijvjs/(UV T)ij]

∑d
j=1 vjs

∀i, s; vjs ⇐ vjs

∑n
i=1[Dijuis/(UV T)ij]∑n

i=1 uis
∀j, s

The two-way factorization can be converted into a normalized three-way factorization
like PLSA using the normalization approach discussed in Sect. 3.1.2. The aforementioned
gradient-descent steps provide an alternative way of solving PLSA. Since a different com-
putational algorithm is used, the resulting solution may not exactly be the same as that
obtained with the expectation-maximization method. However, the quality of the solutions
will be quite similar in the two cases since the same objective function is used.

3.4.2 Comparison with SVD

The three-way factorization of PLSA is shown in Fig. 3.5, and it is similar to the correspond-
ing factorization of SVD (cf. Fig. 3.1). However, unlike SVD, the basis vectors in P and Q
are not mutually orthogonal but have a probabilistic interpretation. Just as the matrix Σ
in SVD contains the singular values indicating dominance of different latent concepts, the
matrix Σ in PLSA contains the prior probabilities. As in SVD, the matrix Q provides a
reduced representation of the documents and the matrix P provides the reduced represen-
tations of the words. The decomposition is highly interpretable. Highly positive entries in
each column of P provide the lexicon for a specific topic, whereas highly positive entries in
each row of P provide the most relevant topics for a particular word.

n

d
TERMS

DOCUMENT- TERM
MATRIX

D
O

CU
M

EN
TS

D
O

CU
M

EN
TS

n

k
TOPICS

x

TOPICS
k

k

TO
PI

CS x

TO
PI

CS k

k
D

O
M

IN
AN

T
BA

SI
S

 V
EC

TO
RS

 T
O

RE

PR
ES

EN
T

TE
RM

S

P(Gr): PRIOR PROBABILITY
OF TOPIC Gr

TERMS
d

Σ k DOMINANT
BASIS VECTORS
OF DOCUMENTS

Q = [P(Xi|Gr)]

PT = [P(tj|Gr)]

D [P(Xi, tj)]

Figure 3.5: The decomposition of PLSA is similar to that of SVD (see Fig. 3.1) except that
the basis vectors are nonorthogonal and have a probabilistic interpretation

3.4. PROBABILISTIC LATENT SEMANTIC ANALYSIS 51

3.4.3 Example of PLSA

Let us revisit the same example used in Sects. 3.2.1 and 3.3.2, respectively, to create a
decomposition:

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lion tiger cheetah jaguar porsche ferrari
Document-1 2 2 1 2 0 0
Document-2 2 3 3 3 0 0
Document-3 1 1 1 1 0 0
Document-4 2 2 2 3 1 1
Document-5 0 0 0 1 1 1
Document-6 0 0 0 2 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A possible factorization is shown in Fig. 3.6. We have intentionally used the same factoriza-
tion as Fig. 3.2b to show the analogy, although they might be slightly different in practice
because of the difference in objective functions. The main difference between Figs. 3.2b and
3.6 is that the diagonal matrix Σ has been scaled down to a (prior) probability in the lat-
ter, and therefore the factorization is observed to within a constant of proportionality in
PLSA. If we scale down the document-term matrix so that its entries sum to 1, then the
factorization will be observed to approximate equality in PLSA.

3.4.4 Advantages and Disadvantages of PLSA

Since PLSA is a form of nonnegative matrix factorization, it inherits all the advantages and
disadvantages discussed in Sect. 3.3.4. However, one can also view PLSA as a probabilistic
model rather than a factorization model. From the probabilistic point of view, it has the
following advantages and disadvantages:

1. The parameter estimation process is simple, intuitive and easy to understand. The
parameters have multiple interpretations from a probabilistic or factorization point of
view. This type of interpretability is often helpful to a practitioner.

2. The number of parameters estimated in PLSA grows linearly with the size of the
collection, because the matrix Q has O(n ·k) parameters. As a result, there is inability
to take sufficient advantage of increasing corpus size. However, since it does not make
any assumption on the distribution of topics in a document, it has the advantage of
greater generality of modeling for large collections.

X

TI
G
ER

CATS

LI
O
N

CH
EE
TA

H

JA
G
UA

R

PO
RS

CH
E

FE
RR

AR
I

0 0 0

0 0

PT

0

0

0

0 0

00

CA
TS

CA
RS

X1

X2

X3

X4

X5

X6

Q

0

00 X

PO
RS

CH
E

CATS

BOTH

CARS

CH
EE
TA

H

LI
O
N

JA
G
UA

R

FE
RR

AR
I

0

0

00

0

0 0

0 0

0 0

TI
G
ER

D

CARS

0

Σ

2 2 1 2

2

2

3

3

3 3

1 1 1

1

1

22

2

2

1

1

1 11

CA
TS

CA
RS

X6

X2

X1

X3

X5

X4

Figure 3.6: Example of PLSA (compare with Fig. 3.2)

52 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

3. PLSA is not a fully generative model and it faces the same challenges as nonnegative
matrix factorization in folding in new documents. Typically, one re-estimates P (Gr|X)
for a new document X.

Some of these challenges are addressed using a different model that is referred to as Latent
Dirichlet Allocation.

3.5 A Bird’s Eye View of Latent Dirichlet Allocation

We use this section to provide an understanding of the basic principles underlying LDA
and also an understanding of its advantages and pitfalls over its cousin, PLSA, from the
point of view of the practitioner. In the following, we first describe a simplified LDA model
with a single Dirichlet assumption on the topic distribution of documents. Subsequently, we
smooth the model with a second Dirichlet distribution on the term occurrences.

3.5.1 Simplified LDA Model

The parameter space increases proportionally with corpus size in PLSA, because the matrix
Q contains n · k parameters and the matrix P contains d · k parameters. The matrix Q is
particularly troublesome because it blows up the parameter space with increasing corpus size
and we somehow need to find a way to get rid of it by changing the generative mechanism.
Furthermore, it is not a fully generative model because new documents are difficult to fold
in after parameter estimation (although heuristic fixes are possible).

A part of the problem is that PLSA tries to independently generate the different tokens
of the document-term matrix rather than generating one document at a time (as is common
with most mixture models in clustering). Latent Dirichlet allocation solves this problem
by deciding the composition of topics in a document up front with the Dirichlet distribu-
tion, and then generating all the entries in a row of the document-term matrix in one shot.
Therefore, a prior structure is imposed on each document with the Dirichlet distribution.
Before discussing the generative process of LDA, we first discuss a slightly different asym-
metric generative process of PLSA. This generative process is mathematical identical to the
symmetric generative process of Sect. 3.4, but it is useful in relating PLSA to LDA. The
asymmetric generative process of PLSA is as follows:

1. Select the ith document, Xi, with probability P (Xi) =
∑

s P (Gs)P (Xi|Gs) =∑
s(Σss)(Qis).

2. Select the topic r with probability P (Gr|Xi) =
P (Gr∩Xi)

P (Xi)
= (Σrr)(Qir)∑

s(Σss)(Qis)
.

3. Select the jth term, tj , with probability P (tj |Gr) = Pjr.

Once the document-term pair has been selected, the corresponding entry in the document-
term matrix is incremented by 1. The plate diagram for this asymmetric model is shown in
Fig. 3.4c. This process increments entries of the document-term matrix. How can we gener-
ate the entire row (document) at a time? In order to do so, we need to make some kind of
assumption on how the ith row of D is defined as a mixture of different topic distributions.
This is achieved by using the Dirichlet distribution (with only k parameters) to implicitly
generate P (Gr|Xi) for the ith document. In a sense, we are imposing a Dirichlet prior on
the topic distribution in order to generate the relative topic frequencies in a document.
The relative topic frequencies in each document are different because they are defined by

3.5. A BIRD’S EYE VIEW OF LATENT DIRICHLET ALLOCATION 53

drawing a different instantiation of the k relative frequencies from the Dirichlet distribution.
Therefore, the document-specific parameters of the generative process are themselves gen-
erated by using another set of (compact) Dirichlet parameters. This reduces the parameter
space. Subsequently, all the terms in the ith document are generated. We still need the
matrix Pjr = P (tj |Gr) to decide the word distribution of different topics. Therefore, the
fully generative process of LDA for the ith document is as follows:

1. Generate the number ni of tokens (counting repetitions) in the ith document from a
Poisson distribution.

2. Generate the relative frequencies Θ = (θ1, θ2, . . . , θk) of different topics in the ith
document from a Dirichlet5 distribution. This step is like generating θr = P (Gr|Xi)
from the Dirichlet distribution for all topics r in the document in order to generate
the document in one shot.

3. For each of the ni tokens in the ith document, first select the rth latent component
with probability P (Gr|Xi) and then generate the jth term with probability P (tj |Gr).
As in PLSA, we still need the d × k matrix of parameters P , which retain the same
interpretation of containing the values P (tj |Gr).

The plate diagram for the simplified LDA model is shown in Fig. 3.7a. This generative
process requires only O(d · k + k) parameters, which reduces overfitting. Furthermore, the
process is fully generative because of its document-at-a-time generative mechanism that
is fully described by document-independent parameters. The probabilities of the terms of
a new document being generated by any particular topic can therefore be estimated in a
natural way, and can be used to create its reduced representation.

We need to use an order-k Dirichlet distribution to generate the k relative frequen-
cies of the topics in each document in each sample. The multivariate probability density
f(x1, . . . , xk) of the order-k Dirichlet distribution uses k positive concentration parameters
denoted by α1 . . . αk:

f(x1 . . . xk) =
Γ(
∑k

r=1 αr)
∏k

r=1 Γ(αr)

k∏

r=1

(xr)
αr−1

︸ ︷︷ ︸
Multivariate density function in k-dimensional topic space

(3.28)

Here, Γ denotes6 the Gamma function, which is the natural extension of the factorial func-
tion on integer numbers to the domain of real numbers. The Dirichlet distribution takes on
positive probability densities only for positive variables xi that sum to 1 (i.e.,

∑k
r=1 xr = 1).

5The Dirichlet is selected because it is the posterior distribution of multinomial parameters, if the prior
distribution of these parameters is a Dirichlet (although the parameters of the prior and posterior Dirichlet
may be different). If we throw a loaded dice repeatedly with its faces showing various topics, the resulting
observations are referred to as multinomial. In LDA, the selection of the latent components of the different
tokens in a document is achieved by throwing such a dice repeatedly. Formally, the Dirichlet distribution
is a conjugate prior to the multinomial distribution. The use of conjugate priors is widespread in Bayesian
statistics because of this property.

6For a positive integer n, the value of Γ(n) is (n − 1)!. For a positive real value x, the value of Γ(x) is
defined by interpolating the values at integer points with a smooth curve, which works out to an interpolated
value of Γ(x) =

∫∞
0 yx−1e−ydy. More details of an exact definition and a specific functional form may be

found at http://mathworld.wolfram.com/GammaFunction.html.

http://mathworld.wolfram.com/GammaFunction.html

54 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

OF TOKENS IN DOCUMENT

RELATIVE
TOPIC
FREQ.

OF DOCUMENTS IN CORPUS

…

MATRIX P (TERM-TOPIC
FREQUENCY PARAMETERS)

TERM IDTOPIC ID

(a) Simplified LDA model

OF TOKENS IN DOCUMENT

RELATIVE
TOPIC
FREQ.

OF DOCUMENTS IN CORPUS

… TERM IDTOPIC ID

RELATIVE
TERM
FREQ.

OF TOPICS

(b) Smoothed LDA model

Figure 3.7: Plate diagrams for simplified and smoothed LDA models

This is quite convenient because each generated tuple of k values can be interpreted as the
probabilities of the k topics. Values of 0 < αi � 1 lead to sparse outcomes of the random
process in which only a small number of topics will have large probabilities. This type of
sparsity is natural in real settings because a given document might contain only a couple
of topics out of hundreds of topics. Furthermore, the relative presence of the ith topic will
be proportional to αi. Fixing each αi = 1 leads to a uniform and rather non-informative
prior, which gives solutions similar to PLSA [190]. Therefore, learning appropriate values of
these priors will lead to more natural models of higher quality. The topic-word parameters
in matrix P need to be estimated in a data-driven manner like any other generative model.
The prior parameters α1 . . . αk can either be fixed up front, or they can be tuned/estimated
in a data-driven manner. The default approach is to treat the prior parameters as inputs
provided by the user. One can also view the priors in LDA as a clever form of regularization
that reduces overfitting.

The process of parameter estimation in Latent Dirichlet Allocation is quite complex.
The EM algorithm is used for parameter estimation (as in all generative models) along with
techniques from variational inference for computing posterior probabilities in the E-step.
In PLSA, it is a simple matter to compute the posterior probabilities in the E-step. In
LDA, these posterior probabilities take on the form P (Gr,Θ|α1 . . . αk, tj). This type of

3.5. A BIRD’S EYE VIEW OF LATENT DIRICHLET ALLOCATION 55

estimation is far more difficult, and it requires the use of methods from variational inference.
Interested readers are referred to [54] for details. Several excellent off-the-shelf softwares
are available for LDA, which are introduced in the software section of the bibliographic
notes.

3.5.2 Smoothed LDA Model

Although the simplified LDA model reduces the number of parameters significantly, this
can still be a problem when some of the terms are contained in only a small number of
documents. When a new document contains a term that was not seen earlier, it would end
up getting assigned zero probability in the simplified model. This is a common problem of
sparsity in all types of probabilistic parameter estimations, and we will see several examples
of this phenomenon in probabilistic classification/clustering models. A natural solution in
such settings is to use Laplacian smoothing. The LDA model uses an additional Dirichlet
distribution to perform the smoothing.

What does smoothing mean? Implicitly, smoothing is a prior assumption on the distri-
bution of parameters in a mixture model to reduce the overfitting caused by sparsity. In
this case, we have O(d · k) parameters of the form P (tj |Gr), which we are treating as the
d× k matrix P . It is therefore assumed that each of the k columns of P is an instantiation
that is generated by the same order-d exchangeable Dirichlet distribution. Unlike the case
of the Dirichlet distribution in Eq. 3.28, which uses as many parameters as the order of the
distribution, the exchangeable Dirichlet distribution uses a single parameter β to generate
all the d-dimensions of the multivariate instantiation. The use of this special case of the
Dirichlet distribution is important because using d parameters to describe the Dirichlet
would defeat the purpose of smoothing in the first place. Therefore, the d terms in each
topic are assumed to be generated according to the following order-d Dirichlet distribution,
which is parameterized by a single value β:

f(x1 . . . xd) =
Γ(d · β)
(Γ(β))d

d∏

j=1

(xj)
β−1

︸ ︷︷ ︸
Multivariate density function in d-dimensional term space

(3.29)

The generative process of the simplified LDA model is now modified in only one respect. As a
very first step, before generating any of the documents, it is assumed that the d-dimensional
columns of the d× k matrix P = [P (tj |Gr)] are generated using the exchangeable Dirichlet
distribution. After an up front generation of the matrix P , the individual documents are
generated according to the same approach discussed in the previous section. The plate
diagram for the smoothed LDA model is shown in Fig. 3.7b. It is noteworthy that the
two Dirichlet distributions are used in somewhat different ways. The k parameters of the
asymmetric topic-specific Dirichlet distribution (Eq. 3.28) control the relative frequencies of
various topics in documents as well as topic-specific smoothing effects, whereas the single
parameter of the symmetric term-specific Dirichlet distribution (Eq. 3.29) only controls the
term-specific smoothing. Since the second Dirichlet distribution uses only a single parameter,
all term-topic interactions are treated identically by it, and it does not regulate any detailed
variabilities in term-topic distributions beyond smoothing. It is also possible [29] to use a
single parameter, α, for the document-topic distributions, although this is not recommended
for getting the most out of LDA [488]. It is noteworthy that many off-the-shelf software
packages do use symmetric choices for both distributions as the default setting. In such

56 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

cases, the main purpose of LDA is to use values of α, β � 1 to encourage individual
documents to each have a small number of topics and the vocabulary of each topic to be
compact (i.e., sparse outcomes).

The changes in the generative process also lead to some changes in the parameter esti-
mation process. In particular, the inference procedures are changed to treat the entries of
the matrix P as random variables that are endowed with a posterior distribution. Note that
this type of approach is used commonly in many probabilistic algorithms that use Laplacian
smoothing.

3.6 Nonlinear Transformations and Feature
Engineering

SVD provides an interesting relationship between document-document similarity matrices
and dimensionality reduction. As discussed in Sect. 3.2, one of the ways of directly generating
a reduced representation QΣ of the n×d data matrix D is to extract the eigenvectors of the
n×n dot-product similarity matrix DDT without generating a basis representation P in the
word space. The d-dimensional columns of P , which correspond to the basis representation,
are usually obtained by diagonalizing the d × d matrix DTD instead of DDT . Note that
the matrix S = DDT contains all n2 pairwise dot products between documents. We can
generate an embedding from this similarity matrix by using SVD of D:

S = DDT = (QΣPT)(QΣPT)T = QΣ(PTP)
︸ ︷︷ ︸

I

ΣQT = QΣ2QT = (QΣ)(QΣ)T (3.30)

The columns of matrix Q contain the eigenvectors of the similarity matrix S, and the
diagonal matrix Σ contains the square-root of the eigenvalues of S. In other words, if we
generate the n × n dot-product similarities S = DDT between the n documents of the
corpus, then we can construct the reduced representation QΣ from its scaled eigenvectors.
This approach is an unusual way of performing SVD, because we generally use the d × d
matrix DTD to generate the basis matrix P and then derive the reduced representation by
the projection QΣ ≈ DP . Although the alternative similarity-matrix approach to SVD is
computationally challenging for large values of n, its advantage is that we no longer have to
care about the basis representation P . By using similarity matrices, we are able to escape
from the need to generate these non-existent basis representations in a case where we use
something other than the dot product as the similarity. This general principle forms the
motivating idea of nonlinear dimensionality reduction in which we replace the dot-product
similarity matrix with a different and more cleverly chosen similarity matrix of possibly
higher quality. This principle is so important that we highlight it below:

The large eigenvectors of high-quality similarity matrices can be used to generate
useful multidimensional representations of the corpus that encode the knowledge
inside the similarity matrix.

The basic assumption is that the similarity matrix represents the dot products Φ(Xi)·Φ(Xj)
in some (unknown) transformation Φ(·) of the data that is more informative for particular
data mining applications. We want to find this transformed representation. Virtually all non-
linear dimensionality reduction methods such as spectral methods [314], kernel SVD [436],
and ISOMAP [473] use this broad approach to generate the reduced representations. Such
dimensionality “reductions” are implicit transformations of the original data representation

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 57

n
ARTS CRAFTS MUSIC

n

AR
TS

CR
AF

TS
M

U
SI

C

MOST UNSHADED
ENTRIES ARE ZEROS

MOST SHADED ENTRIES
ARE NON-ZERO

SI
M

IL
AR

IT
Y

M
AT

RI
X

(0, 0, 1,….)

(0, 1, 0,….)

(1, 0, 0,….)

CRAFTS

LOWER-ORDER
NOISE COMPONENTS

MUSIC

ARTS

ARTS CRAFTS MUSIC

Figure 3.8: Explaining the rationale for nonlinear dimensionality reduction

because a linear basis system for this new representation no longer exists in the original
input space. Therefore, they are also referred to as embeddings. In fact, in some cases, em-
beddings do not reduce the input dimensionality at all because the final transformed and
reduced representation might have a higher dimensionality than the original input space.
Note that more than d eigenvectors of the n × n similarity matrix S can have nonzero
eigenvalues; it is only in the case of the dot-product similarity that we are guaranteed at
most d nonzero eigenvalues. Furthermore, if the similarity function encodes the details of
a highly complex distribution, it is possible for more than d eigenvalues to be sufficiently
large so that they cannot be dropped. The goal of the embedding in such cases is often to
leverage a better similarity function (than the dot product) and obtain a more expressive
feature representation of the complex data distribution than the overly simple dot prod-
uct will provide. In a sense, nonlinear dimensionality reduction is inherently an exercise in
unsupervised feature engineering.

The power of such embeddings is significantly greater than linear SVD and matrix
factorization methods that are married to the original input space. For example, consider a
setting in which we have three clusters of related topics corresponding to Arts, Crafts, and
Music. A conceptual rendering of these clusters in two dimensions is shown in Fig. 3.8. It is
evident that dot-product similarity (which is similar to using the Euclidean distance) will
have a hard time distinguishing between different clusters because of the non-convex shapes
of the clusters. Euclidean distances and dot products implicitly favor spherical clusters. If
we applied any simple clustering algorithm like k-means on the representation, it would
not work well because such clustering algorithms are biased towards discovering spherical
clusters. Similarly, a supervised learning method that uses linear separators to distinguish
between the classes would perform very poorly.

58 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

Now imagine that we could somehow define a similarity matrix in which most of the
similarities between documents of different topics are close to zero, whereas most of the
similarities between documents of the same topic are nearly 1s. This similarity matrix S is
shown in Fig. 3.8 with a natural block structure. What type of embedding U will yield the
factorization S ≈ UUT ? First let us consider the absolutely perfect similarity function in
which the entries in all the shaded blocks are 1s and all the entries outside shaded blocks are
0s. In such a case, it can be shown (after ignoring zero eigenvalues) that every document
in Arts will receive an embedding of (1, 0, 0), every document in Music will receive an
embedding of (0, 1, 0), and every document in Crafts will receive an embedding of (0, 0, 1).
Of course, in practice, we will never have a precise block structure of 1s and 0s, and there
will be significant noise/finer trends within the block structure. These variations will be
captured by the lower-order eigenvectors shown in Fig. 3.8. Even with these additional
noise dimensions, this new representation will perform much better with many learning
algorithms for clustering and classification. Where is the magic? The key idea here is that
dot product similarities are sometimes not very good at capturing the detailed structure
of the data, which other similarity functions with sharper locality-centric variations can
sometimes capture. In a later section, we will also provide an intuitive illustration of how
distance-exponentiated similarity functions can sometimes capture more detailed trends
because of the sharper drop off in similarity values with distances.

One can even use this approach to work with richer representations of text than the
multidimensional representation, without losing the convenience of a multidimensional rep-
resentation. For example, imagine a setting in which we want a multidimensional embedding
that preserves information about the ordering of words in documents. For example, consider
the following pair of sentences:

The cat chased the mouse.
The mouse chased the cat.

From a semantic point of view, the second sentence is very different from the first, but this
fact is not reflected in the bag-of-words representation. Only the sequence representation
can distinguish between these two sentences. However, it is more challenging to design
data mining algorithms with sequence representations because of the implicit constraints
between data items (i.e., sequential ordering of tokens). A multidimensional embedding has
the advantage that one does not have to worry about constraints between the individual
dimensions while designing algorithms. Furthermore, the simplest and most generic setting
for off-the-shelf machine learning and data mining algorithms is multidimensional data.

In such a case, we can use sequence-based similarity functions to generate the similarity
matrix S. Such a similarity matrix will encode the fact that the two sentences above are
different. The large eigenvectors of S will therefore also encode information about the or-
dering of words. As a result, mining algorithms that use this embedding will also be able to
distinguish between documents based on the ordering of the words without losing the con-
venience of working with a multidimensional representation. The power of the embedding is
limited only by how clever we can be in designing a good similarity function. As we will see
in Chap. 10, there are other methods like neural networks to perform feature engineering,
which have powerful applications like machine translation and image captioning.

Are there any restrictions on the types of similarity matrices one can use? As you might
have noticed, it is necessary to diagonalize S with nonnegative eigenvalues:

S = QΣ2QT = Q Δ︸︷︷︸
≥0

QT (3.31)

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 59

Since Δ = Σ2 contains only nonnegative eigenvalues, it implies that the similarity matrix
must be positive semi-definite. As a practical matter, however, one can make any similarity
matrix positive semi-definite by adding a sufficient amount λ > 0 to each diagonal entry.

S + λI = Q(Δ + λI)QT (3.32)

For large enough λ, the entries of the diagonal matrix Δ + λI will be nonnegative as well.
Therefore, S + λI will be positive semi-definite. Note that we are only perturbing the (less
important) self-similarity values on the diagonal to achieve this goal, and all the other
(critical) pairwise similarity information is preserved.

3.6.1 Choosing a Similarity Function

The choice of a proper similarity function is critical in generating an insightful embedding. In
the following, commonly used similarity functions are reviewed along with their suitability
to the text domain.

3.6.1.1 Traditional Kernel Similarity Functions

Traditional kernel similarity functions are positive semi-definite similarity functions that
(typically) improve the performance of data mining applications by implicitly transforming
the data to a higher-dimensional space before applying SVD on it. A kernel function is
denoted by K(Xi, Xj) indicating the similarity between the multidimensional vectors Xi

and Xj . We list the commonly used kernel functions in the table below:

Function Form

Linear kernel K(Xi, Xj) = Xi ·Xj

(Defaults to SVD)

Gaussian radial basis kernel K(Xi, Xj) = e−||Xi−Xj ||2/(2·σ2)

Polynomial kernel K(Xi, Xj) = (Xi ·Xj + c)h

Sigmoid kernel K(Xi, Xj) = tanh(κXi ·Xj − δ)

Many of these kernel function have parameters associated with them, which have a critical
effect on the type of feature transformation and reduction achieved by the approach.

With some commonly used kernels like the Gaussian kernel, each dimension often rep-
resents a small, densely populated locality of the input space. For example, consider a
situation in which the bandwidth parameter σ of the Gaussian kernel is relatively small.
In such a situation, two points that are located at a distance more than 4 · σ will have
a similarity value of virtually 0. Therefore, if σ is chosen so that the similarities between
points of different clusters are close to zero, but a sufficient number of pairwise similarities
within each cluster is nonzero, then each cluster will dominate a subset of the features of the
embedding. This situation is shown in Fig. 3.9a in which pairwise similarities do not have a
precise block structure like Fig. 3.8. Nevertheless. most of the non-zero entries reside inside
the block structure with some residual variations. As a result, the embedding created by
the similarity matrix of Fig. 3.9a will be at least somewhat similar to that of Fig. 3.8. The
main difference is that each cluster will be represented by multiple eigenvectors, and the
lower-order features will capture the residual variations from the block structure. However,
the overall embedding will still be quite useful. The expression of each cluster with a subset
of eigenvectors can sometimes expand the dimensionality of the transformed representation

60 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

n
ARTS CRAFTS MUSIC

n

AR
TS

CR
AF

TS
M

U
SI

C

UNSHADED ENTRIES
ARE CLOSE TO ZERO

SHADED ENTRIES ARE
NON-ZERO

SI
M

IL
AR

IT
Y

M
AT

RI
X

ARTS CRAFTS MUSIC

CRAFTS

LOWER-ORDER
NOISE COMPONENTS

ARTS

MUSIC

KERNEL
BANDWIDTH
JUST RIGHT

(INTER-CLUSTER
SIMILARITY IS
NEARLY ZERO)

(a) Bandwidth much smaller than inter-cluster distance but not inter-point distance

n
ARTS CRAFTS MUSIC

n

AR
TS

CR
AF

TS
M

U
SI

C

NON-DIAGONAL ENTRIES
ARE CLOSE TO ZERO

DIAGONAL ENTRIES ARE
NON-ZERO

SI
M

IL
AR

IT
Y

M
AT

RI
X

ARTS CRAFTS MUSIC

KERNEL
BANDWIDTH
TOO SMALL

(INTER-POINT
SIMILARITY IS
NEARLY ZERO)

EVERY POINT GETS ITS OWN
ORTHOGONAL EIGENVECTOR

(b) Bandwidth much smaller than inter-point and inter-cluster distance

Figure 3.9: The effects of using different bandwidths of the Gaussian kernel

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 61

for low-dimensional input data even after dropping low-eigenvalue features (although text
usually does not fall in this category). The basic idea here is that the (highly sensitive)
distance-exponentiated similarity function creates a transformed representation that is able
to better able to capture key local characteristics of the data distribution within smaller
subsets of dimensions than the original representation (which locks up this information in
data localities of complex shapes). Such an unlocking also makes the different dense regions
of the space more clearly separable. For example, if we apply a simple clustering algorithm
like k-means on the new representation in Fig. 3.9a, it will be able to nicely separate out the
different high-level topics. This advantage comes at the price that the dimensionality of the
transformed representation typically expands to accommodate detailed local information in
individual features. For a corpus with n documents, the dimensionality of the transformed
data can be as large as n when all eigenvectors are significantly nonzero. For example, if we
reduce the bandwidth σ too much, each n-dimensional point will have a positive coordinate
in only one dimension that is different from the dimensions chosen by any of the other
(n − 1) points. This situation is shown in Fig. 3.9b. Such a transformation is completely
useless and is a manifestation of overfitting. Therefore, the choice of the parameters of the
kernel is crucial. Kernel transformations like the Gaussian radial basis function (RBF) are
particularly useful in supervised settings like classification in which one can measure the
algorithm performance on the labeled data to tune parameters like the bandwidth. For un-
supervised settings, the rule of thumb is to set the kernel bandwidth to the median pairwise
distance between points, although the exact value also depends on the data distribution and
size. The bandwidth should be set to larger values for small data sets and smaller values
for large data sets.

In the high-dimensional domain of text data, kernel functions like the Gaussian work
poorly unless one chooses large values of σ. Text data has too many irrelevant features
(terms), as a result of which the Gaussian similarity computations are noisy. Note that the
irrelevant input features will be included in the exponent of the Gaussian kernel, and will
become so tightly integrated with all the different transformed features of the embedding
that it becomes difficult to remove their detrimental effect on data mining applications with
feature selection and regularization tricks (see Chaps. 5 and 6). This effect is particularly
pronounced at smaller values of the bandwidth σ. Using large values of σ is similar to using
the linear kernel, and the additional accuracy gains7 over the linear kernel in such cases
are small compared to the significant increase in computational complexity. Although the
Gaussian kernel is one of the most successful kernels with other types of multidimensional
data, the linear kernel often provides almost equally accurate results in the specific case of
text, while retaining its computational efficiency in most application-centric settings. Some
(mildly) encouraging results have been shown [88] for text data with the use of the second-
order polynomial kernel K(Xi, Xj) = (Xi ·Xj + c)2. In general, the success of traditional
multidimensional kernels has been quite limited in the text domain. The main use-case of
nonlinear dimensionality reduction methods in the text domain occurs in cases in which one
wants to use the positioning information between words rather than using the bag-of-words
approach. These methods will be discussed in the following sections.

7There does not seem to be a clear consensus on this issue. For the classification problem, slightly better
results have been claimed in [519] for the linear kernel. On the other hand, the work in [88] shows that
slightly better results are obtained with the Gaussian kernel method with proper tuning. Theoretically, the
latter claim seems to be a better justified because linear kernels can be roughly simulated by the Gaussian
by using a large bandwidth.

62 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

3.6.1.2 Generalizing Bag-of-Words to N-Grams

A bag-of-words kernel is the same as using linear SVD, because it uses the dot product
on the tf-idf representation. However, it is possible to enrich this approach by adding the
N -grams to the representation of the document. The N -grams represent the groups of N
words, corresponding to the sequence of N consecutively occurring words in a document.
In an N -gram, this sequence of N words is treated as an indivisible entity, and becomes a
pseudo-term in its own right. It is possible to discover N -grams at the time of tokenizing
a text collection by allowing up to (N − 1) white spaces within a token. The N -grams can
often discriminate to some extent between different semantic ideas that are defined on the
same bag of words. For example, consider the following three short documents:

Document-1: The cat chased a mouse.
Document-2: The mouse chased a cat.
Document-3: The cat chased a rat.

Clearly, the first and third documents convey similar ideas, which can be captured only by
the sequence information. A bag-of-words kernel gives a perfect similarity score of 1 between
the first and second documents, even though the second document sounds quite different
compared to the first. However, when we examine8 the 2-grams of the first document, we
obtain “the cat,” “cat chased,” “chased a,” and “a mouse.” The majority of the 2-grams
are different from those of the second sentence. On the other hand, the first and third
documents will share many 2-grams in common, which is what we want. Adding 3-grams
will further enrich the representation.

One could address this situation by simply adding N -grams to the feature represen-
tation and using linear SVD. However, in such a case, the enriched dimensionality might
expand significantly enough to exceed the number of documents in the collection. In such
a case, the complexity of SVD becomes prohibitive. Therefore, it is more efficient to first
compute the similarity matrix on the extended representation and then extract the reduced
representation directly. The maximum number of nonzero eigenvectors of such a matrix is
equal to the number of documents, although one can also drop very small eigenvectors.
Other than N -grams, one can also use skip-grams, which are generalizations of N -grams.
Both N -grams and skip-grams are discussed in detail in Sect. 10.2 of Chap. 10.

3.6.1.3 String Subsequence Kernels

String subsequence kernels [308] generalize the notion of k-grams to allow gaps inside them.
We can view them as k-subsequences in which all subsequences of length k in the document
are considered. A decay parameter λ < 1 is used to weight the importance of gaps in the
subsequence. If the first and last words are r units apart, the weight of that k-subsequence
is λr < 1. For example, consider the following sentence:

The hungry lion ran after the rabbit, who was too clever for the lion.

Just like k-grams, we can extract k-subsequences and add them to the representation, but
with appropriate weights. In this case, the weight of “the hungry” is λ, whereas that of “the
lion” is λ2+λ. Note that “the lion” has two occurrences with different gaps, which accounts

8For simplicity, we are including stop words in the 2-grams.

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 63

for the two terms in its weight. Let the document containing the single sentence above be
denoted by A. Consider a different document B that has a weight of λ2 for “the lion” in its
subsequence-based representation. Then, the kernel similarity between A and B contributed
by this particular subsequence will be λ2(λ2+λ) = λ4+λ3. This contribution is aggregated
over all the subsequences in the pair of documents at hand to create an unnormalized kernel
similarity value. The unnormalized kernel similarity is divided by the geometric mean of the
self-similarities (computed in the same manner) of the pairs of documents being concerned.
This type of normalization is similar to the cosine similarity, and it yields a similarity value
in (0, 1).

As in the case of N -grams, explicit feature engineering can cause an explosion in the
dimensionality of the representation. In fact, in the case of subsequence-based representa-
tions, the problem is so much more severe than in the case N -grams, that it is impractical to
create an engineered representation even as an intermediate step for similarity computation.
In the case of k-subsequences, the interesting cases are those in which the value of k is at
least 4. Interestingly, it can be shown that this type of similarity can be computed using a
dynamic programming approach between the pair of documents without explicitly comput-
ing the engineered features. Before introducing this dynamic programming approach, we
will formalize the definition of the engineered representation.

Let Σ represent the set of all d terms in the lexicon. Then, this type of feature engineering
implicitly creates a representation over the feature space Σk, which has dk possible values.
Let x = x1x2 . . . xm be a sequence corresponding to a sentence or a full document in which
each xi is a token from the lexicon. Let u = u1 . . . uk ∈ Σk be a k-dimensional sequence
of words. Note that each possible k-dimensional sequence u has a single dimension (and
corresponding coordinate value) in the engineered representation. Then, Φu(x) represents
the coordinate value of the dimension corresponding to u in the engineered representation.
The value of Φu(x) is obtained by determining all occurrences of the subsequence u in x
and adding the credit of this subsequence over these occurrences. The credit of a particular
occurrence of this subsequence is λl, where l ≥ k is the length of the substring of x that
matches u as a subsequence. Let i(1) < i(2) < . . . < i(k) represent the indices of the tokens
in S so that ur = xi(r).

Φu(x) =
∑

i(1)<i(2)<...<i(k):ur=xi(r)

λi(k)−i(1)+1 (3.33)

Note that if one were to compute the engineered representation explicitly, then one would
have to compute Φu(x) for each u ∈ Σk. This is computationally infeasible even from a
storage point of view. However, one can use this definition in order to define the kernel
similarity between two sequences x = x1x2 . . . xm and y = y1y2 . . . yp. Note that x and y
need not be of the same length (i.e., m
= p). The kernel similarity K(x, y) is computed as
follows:

K(x, y) =
∑

u∈Σk

Φu(x)Φu(y)

=
∑

[u∈Σk]

∑

[i(1)<...<i(k):ur=xi(r)]

∑

[j(1)<...<j(k):ur=yj(r)]

λi(k)+j(k)−i(1)−j(1)+2

One would also need to normalize the above with the geometric mean ofK(x, x) and K(y, y)
in order to map the similarity to a value in (0, 1). Since these values can be computed

64 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

in a similar way, we will focus only on the computation of K(x, y). The aforementioned
summation has an exponential number of terms. Therefore, it would seem at first sight that
one has gained nothing over explicit feature engineering by directly computing the kernel
similarity rather than creating the engineered features. However, it turns out that this
similarity function can be computed efficiently using dynamic programming. To aid a proper
description of the dynamic programming computation, we subscript the kernel function with
the length of the matching subsequence. In other words, let Kh(x, y) represents the kernel
similarity between x and y using matching subsequences of length h. In order to compute the
kernel similarity over subsequences of length k, our goal is to compute Kk(x, y). Therefore,
we have:

Kh(x, y) =
∑

u∈Σh

Φu(x)Φu(y)

=
∑

[u∈Σh]

∑

[i(1)<...<i(h):ur=xi(r)]

∑

[j(1)<...<j(h):ur=yj(r)]

λi(h)+j(h)−i(1)−j(1)+2

An additional function K ′
h(x, y) is defined that aids the recursive computation of the kernel

for all h ∈ {1, 2, . . . , k − 1}:

K ′
h(x, y) =

∑

[u∈Σh]

∑

[i(1)<...<i(h):ur=xi(r)]

∑

[j(1)<...<j(h):ur=yj(r)]

λm+p−i(1)−j(1)+2

The main difference between Kh(x, y) and K ′
h(x, y) is that i(h)+j(h) is replaced with m+p

in the exponent of λ. In other words, the latter replaces the indices of the last matching
elements of x and y with the lengths of the two strings.

To facilitate a more general discussion in which different types of matchings between the
tokens of the two strings are allowed, we define a match function between a pair of tokens.
In the simplest definition, the match function, M(w, v), is 1 when w and v are the same,
and 0, otherwise:

M(w, v) =

{
1 if w = v

0 if w
= v
(3.34)

Although we have defined the match function in a rudimentary way here (to be consistent
with our earlier definition of Φ(·) [308]), it is possible to define more general match functions
in which we have features associated with tokens (e.g., part-of-speech tag). In such cases,
the match function can be defined to be the similarity between the corresponding features.
Such methods are used in more complex applications like information extraction [68].

The dynamic programming approach uses recursive computation in which the kernel
similarity function is computed for subsequences of increasing length h from 0 to k. The
similarity functions over subsequences of length (h−1) are helpful in computing the similar-
ities over subsequences of length h. Let x⊕v denote the sequence obtained by concatenating
the token v at the end of sequence x. The boundary initialization is as follows:

K ′
0(x, y) = 1 ∀x, y

K ′
h(x, y) = Kh(x, y) = 0 [if either x or y has less than h tokens]

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 65

Let yba denote the substring of y from position a to position b. The recursive computations
based on this initialization are as follows:

K ′
h(x⊕ w, y) = λK ′

h(x, y) +

l(y)∑

j=2

K ′
h−1(x, y

j−1
1)λl(y)−j+2M(w, yj)

︸ ︷︷ ︸
Denote by K′′

h (x⊕w,y)

∀h = 1, 2 . . . k − 1

Kk(x⊕ w, y) = Kk(x, y) +

l(y)∑

j=2

K ′
k−1(x, y

j−1
1)λ2M(w, yj)

Here, l(y) denotes the number of tokens in y. Furthermore, we have defined an additional
notation K ′′

h(·, ·) in the equation above, which we will use later to improve the efficiency of
this recursion. An immediate observation about this recursion is that the kernel similarity
computation over subsequences of length k can also be easily used to compute all the
similarities over subsequences of length 1 . . . k − 1 as byproducts. Therefore, it is relatively
easy to create a composite kernel over subsequences over all lengths up to k by adding them
without much additional effort. This recursion requires O(kmp2) time.

3.6.1.4 Speeding Up the Recursion

One can reduce the running time further by defining an additional function K ′′
h(x⊕ w, y),

which is one of the terms on the right-hand side of the above recursion:

K ′′
h(x⊕ w, y) =

l(y)∑

j=2

K ′
h−1(x, y

j−1
1)λl(y)−j+2M(w, yj) (3.35)

By defining this function, one can modify the aforementioned recursive equations as follows:

K ′′
h(x⊕ w, y ⊕ v) = λK ′′

h(x⊕ w, y) + λ2K ′
h−1(x, y) ·M(w, v) ∀h = 1, 2 . . . k − 1

K ′
h(x⊕ w, y) = λK ′

h(x, y) +K ′′
h(x⊕ w, y) ∀h = 1, 2 . . . k − 1

Kk(x⊕ w, y) = Kk(x, y) +

l(y)∑

j=2

K ′
k−1(x, y

j−1
1)λ2 ·M(w, yj)

This variant of the computation requires O(kmp) time.
One nice characteristic of this kernel function is that it is possible to change the match

function in order to incorporate complex linguistic features associated with tokens. For ex-
ample, consider a situation in which each token in x and y is associated with discrete features
like the token value itself, the part-of-speech, whether the token is an entity (cf. Chap. 12),
and so on. In such a case, one can change M(w, v) to be the number of features in which
the discrete feature value is the same. In fact, such an approach is used in the relation
extraction problem (cf. Sect. 12.3.3.2 of Chap. 12).

3.6.1.5 Language-Dependent Kernels

It is possible to encode the rules of the grammar of the specific language into the kernel
function by using the notion of probabilistic context free grammars. A context-free grammar
is a set of rules that encodes the rules of a specific language such as the following:

66 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

Sentence → NounPhrase VerbPhrase

NounPhrase → Determiner Noun

VerbPhrase → Verb NounPhrase

Noun → “lion”

Typically, thousands of rules may be required to encode a specific language. Given a sen-
tence, it is possible to parse the sentence into a hierarchical tree-like structure with the
above rules. This results in a constituency-based parse tree. Given two sentences, one can
compute the similarity between their parse trees with the use of convolution tree kernels.
Since the discussion of this kernel requires a deeper understanding of parse trees, it will be
deferred to Sect. 12.3.3.3 of Chap. 12.

3.6.2 Nyström Approximation

One of the main problems with nonlinear dimensionality reduction is that the eigenvectors
of an n × n similarity matrix need to be determined. The space requirement is O(n2) and
the running time requirement is O(n3), which can be computationally prohibitive even for
modestly large values of n such as 1,000,000. A corpus containing 1,000,000 documents is
not considered extraordinarily large by modern standards.

It is possible to greatly speed up the dimensionality reduction process by subsampling
the rows of the document-term matrix, and then approximating the reduced kernel repre-
sentation with the Nyström technique [501]. The basic idea is to first estimate the reduced
representation of the in-sample points and then fold-in the out-of-sample points on the
learned embedding. Although this will lead to inaccuracy in the randomized approximation,
the randomization can be turned into an advantage by using ensembles. The approach can
be extremely effective in a predictive setting where the predictive learning is repeated mul-
tiple times on different subsamples, and the predictions are averaged in an ensemble-centric
manner [9]. Repeated engineering of features with different samples actually improves the
averaged results of a predictive modeling algorithm because of the ensemble-centric effect
of variance reduction (see Sect. 7.2 of Chap. 7).

The first step is to sample a set of s rows from the corpus. The value of s is typically
determined by computational and space constraints. However, it is generally dependent on
the corpus distribution and is independent of the size of the corpus. In other words, one
can view s as a constant, although it is usually a large one like 2000. The dimensionality
k of the embedding (selected by the user) can be no larger than s. An in-sample similarity
matrix Sin of size s× s is constructed in which the (i, j)the entry is the similarity between
the ith and jth in-sample points. Similarly, an n× s similarity matrix Sa is constructed in
which the (i, j)th entry is the similarity between the ith point with the jth in-sample point.
Then, the following pair of steps is used to first generate the embeddings of the in-sample
points and then generalize the in-sample embeddings to all points (including out-of-sample
points):

• (In-sample embedding): Diagonalize Sin = QΣ2QT . Retain the top-k eigenvectors
to create the matrices Qk and Σk. The resulting k-dimensional representation of the
s in-sample points is available in the rows of QkΣk. If there are fewer than k nonzero
eigenvectors, then reduce the value of k to the number of nonzero eigenvectors. This
step requires O(s2 · k) time and O(s2) space. Since s is a constant, this step requires
constant time and space.

3.6. NONLINEAR TRANSFORMATIONS AND FEATURE ENGINEERING 67

• (Universal embedding): Let Uk denote the unknown n × k matrix containing the
k-dimensional representation of the all n points in its rows. Although we already know
the embeddings of the in-sample points, we will use the properties of the similarity
matrix in transformed space to derive all rows in a uniform way. Since the dot products
of the n points in Uk and in-sample points in QkΣk are (approximately) contained in
the matrix Sa, we have the following:

Sa ≈ Uk(QkΣk)
T

︸ ︷︷ ︸
Transformed Dot Products

(3.36)

By postmultiplying each side with QkΣ
−1
k and using QT

kQk = I, we obtain the
following:

Uk ≈ SaQkΣ
−1
k (3.37)

Therefore, we have an embedding of all n points in k-dimensional space. This step
requires a simple matrix multiplication in time O(n · s · k), which is linear in the size
of the corpus.

It is noteworthy that the s in-sample rows in Uk are approximately the same as the s rows in
QkΣk but not quite the same because of the approximation inherent in the dimensionality
reduction process. Therefore, it is preferable to use the in-sample rows from Uk (rather than
QkΣk) so that out-of-sample and in-sample rows are approximated in a similar way.

This approach can even be used for linear SVD. In linear SVD, the conventional approach
(see Sect. 3.2.2) is to use the d × d matrix DTD to discover the basis vectors, rather than
using the similarity matrix DDT to directly extract the embedding. However, the similarity
matrices are quite small when we use subsampling. The reason is that the sample size s
can be selected to around 20 times the target dimensionality of the reduced representation
rather than the input dimensionality of the lexicon. The typical target dimensionality of the
reduced representation in linear SVD for text is often of the order of 200. This means that
we can work with a sample size of about 4000 in many cases. Text can have a dimensionality
of a few hundred thousand words, which makes it costly to diagonalize the d × d matrix
DTD in comparison with diagonalizing the 4000× 4000 similarity matrix.

Note that the entire reduction requires linear time in the size of the corpus, and it will
execute reasonably fast at sample sizes of the order of 4000 even for large collections. Typ-
ically, this type of dimensionality reduction is coupled with an ensemble-centric setting to
make repeated predictions with different transformations and then averaging the results [9].
High-quality predictive results can be obtained with such methods in both supervised and
unsupervised settings because of the ensemble-centric approach. In many cases, these re-
sults are not only more accurate but also more efficient in spite of the repeated executions
of an ensemble-centric approach. This is because each ensemble-centric run is often several
orders of magnitude faster than using a single run on a very large corpus, and averaging
the results over 20–25 runs still retains a computational advantage. An example of its use
in the unsupervised setting is provided in Sect. 4.8 of Chap. 4, and a discussion in the case
of the supervised setting is provided at the end of Sect. 6.5.1 of Chap. 6.

3.6.3 Partial Availability of the Similarity Matrix

Nonlinear dimensionality reduction methods can be viewed as clever ways of converting
high-quality similarity functions into engineered features that are friendly to learning algo-
rithms. In many cases, such similarity functions are challenging to compute, which makes

68 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

their availability limited on a de facto basis. For example, the string subsequence kernels
require dynamic programming methods to compute similarities between pairs of strings.
Such methods are computationally expensive. In such cases, it is not realistic to assume
that the entire similarity matrix can be computed. For a corpus containing 106 documents,
one cannot expect to compute 1012 pairwise similarities, which might require a few days.
However, it is possible to learn the embedding from only a subset of the entries. In cases,
where there is wide variation in the similarities across different parts of the matrix, it might
make sense to spread out the similarity computations randomly over the similarity matrix
S in order to learn as much as possible about the structure of the embedding. In other
cases, a domain expert might provide pre-specified similarities between pairs of documents,
and one has no control over which pairs were selected. In such cases, it is desired to engi-
neer a multidimensional feature representation that leverages partial information about the
similarity matrix. This is a more challenging setting than the Nyström approximation of
the previous section, because entries of the similarity matrix have been subsampled, rather
than specific rows or columns.

Let S = [sij] be an n × n similarity matrix, in which only a subset O of entries are
observed:

O = {(i, j) : sij is observed} (3.38)

One can assume that the matrix S is symmetric, and therefore the observed set of similarities
O can be grouped into symmetric pairs of entries satisfying sij = sji. It is desired to learn
an n × k embedding U for user-specified rank k, so that for any observed entry (i, j) the
dot product of the ith row of U and the jth row of U is as close as possible to the (i, j)th
entry, sij , of S. In other words, the value of ||S−UUT ||2F should be as small as possible for
the observed entries in S. This problem can be formulated only over the observed entries
in O as follows:

Minimize J =
∑

(i,j)∈O

(sij −
k∑

p=1

uipujp)
2

This problem is similar to the determination of factors in recommendation problems, and is
a natural candidate for gradient-descent methods. Let eij = sij −

∑k
p=1 uipujp be the error

of any observed entry (i, j) from set O at a particular value of the parameter matrix U . On
computing the partial derivative with respect to uim, one obtains the following:

∂J

∂uim
= 2

∑

j:(i,j)∈O

(sij + sji − 2 ·
k∑

p=1

uipujp)(−ujm) ∀i ∈ {1 . . . n},m ∈ {1 . . . k}

= 2
∑

j:(i,j)∈O

(eij + eji)(−ujm) ∀i ∈ {1 . . . n},m ∈ {1 . . . k}

= −4
∑

j:(i,j)∈O

eijujm ∀i ∈ {1 . . . n},m ∈ {1 . . . k}

Note that sij and sji are either both present or both absent from the observed entries
because of the symmetric assumption. It is possible to express these partial derivatives in
matrix form. Let E = [eij] be an error matrix, in which (i, j)th entry is set to the error
for any observed entry (i, j) in O, and 0, otherwise. When a small number of entries are
observed, this matrix is a sparse matrix. It is not difficult to see that the entire n×k matrix

3.7. SUMMARY 69

of partial derivatives
[

∂J
∂uim

]

n×k
is given by −4EU . This suggests that one should randomly

initialize the matrix U of parameters, and use the following gradient-descent steps:

U ⇐ U + αEU (3.39)

Here, α > 0 is the step size, which one can follow through to convergence or another stopping
criterion (discussed later). Note that the error matrix E is sparse, and therefore it makes
sense to compute only those entries that are present in O before converting to a sparse data
structure. To improve stability of the learner, a small amount of regularization can also be
used.

U ⇐ U(1− λα) + αEU (3.40)

Here, λ > 0 is a small regularization parameter.

When working with a sparsely specified similarity matrix, it is possible to determine only
the most dominant features accurately. In general, the use of any rank k > |O|/n will cause
overfitting. For example, if we have a corpus in which the number of specified similarities is
15 times the number of documents, we can realistically learn an embedding of (much) less
than 15 dimensions. To determine the optimal rank k of the factorization, one can hold out
a small subset O1 ⊂ O of the observed entries, which are not used for learning U . These
entries are used to test the squared error

∑
(i,j)∈O1

e2ij of the matrix U learned using various
values of k. The value of k at which the error of the held out entries is minimized is used.
Furthermore, one can also use the held out entries to determine the stopping criterion for
the gradient-descent approach. The gradient-descent is terminated when the error on the
held out entries begins to rise. The recovered matrix U provides a k-dimensional embedding
of the data, which can be used in conjunction with machine learning algorithms.

3.7 Summary

Many forms of dimensionality reduction can be viewed as matrix factorization methods.
Singular value decomposition, nonnegative matrix factorization and PLSA fall in the cate-
gory of low-rank approximation methods. Singular value decomposition has the geometric
advantage of orthogonal eigenvectors, which enables out-of-sample embeddings more effec-
tively. It can also address the problem of synonymy well and that of polysemy to a limited
extent. On the other hand, it is not semantically interpretable. Nonnegative matrix fac-
torization and PLSA, which are almost equivalent, are semantically interpretable and can
handle both synonymy and polysemy very well. On the other hand, they cannot fold-in
out-of-sample documents. Latent Dirichlet Allocation is a generalization of PLSA that uses
a Dirichlet prior on the topic distribution of documents in order to create a fully generative
model that can fold-in new documents quite as effectively.

Nonlinear dimensionality reduction methods can be viewed as generalizations of SVD
that use similarity functions other than the dot product to embed the points in a trans-
formed space. By choosing the right type of similarity function, one can often engineer more
expressive features such as those that incorporate sequential word ordering information in
the documents. In this sense, nonlinear dimensionality reduction is often an exercise in fea-
ture engineering. Although nonlinear dimensionality reduction methods are computationally
inefficient, one can often speed them up with the use of subsampling methods.

70 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

3.8 Bibliographic Notes

Singular value decomposition has been in use in various forms since the 1800s, although
some of the key proofs of the underlying results are contained in the seminal work of Eckart
and Young [149]. The linear algebra book by Strang [460] is an excellent resource on the
topic. The effectiveness of SVD in removing noise from high-dimensional similarity search
was discussed in [5]. In the text domain, singular value decomposition is referred to as
Latent Semantic Analysis (LSA). The use of LSA in text data was pioneered in the work
by Deerwester et al. [148]. Subsequent experiments on TREC data sets were reported by
Dumais [145, 146].

Nonnegative matrix factorization was proposed in [276]. Projected gradient-descent
methods for nonnegative matrix factorization are proposed in [294]. An excellent expo-
sition on the interpretability of nonnegative matrix factorization is provided in [277]. There
are several generalizations of nonnegative matrix factorization, such as the use of orthogo-
nal factors [138], semi-nonnegativity [136], and convexity [136]. Probabilistic latent semantic
analysis is discussed in [224, 225]. The relationship of PLSA to nonnegative matrix factoriza-
tion was shown in [137, 185, 276]. Latent Dirichlet Allocation was proposed independently
in the fields of population genetics [388] and text mining [54]. The approach was also gener-
alized to the dynamic setting [55]. Detailed evaluations of Latent Dirichlet Allocation may
be found in [29, 493]. The work in [29] investigates the effect of hyper-parameters, when
two symmetric Dirichlet distributions are used to model the document-topic and topic-term
distributions. The work in [488] provides insights on the effects of using either a symmetric
or asymmetric Dirichlet distribution for document-topic and topic-term distributions. An
edited book on text mining [14] contains a dedicated chapter on dimensionality reduction
and topic modeling techniques. A review of probabilistic topic models may be found in [52].

Nonlinear dimensionality reduction methods have a rich history in multidimensional
data and include methods like Kernel PCA [436], ISOMAP [473], Local Linear Embedding
(LLE) [417] and spectral clustering [314]. The Nyström technique for kernel dimensionality
reduction was proposed in [501]. Local linear embedding has been used to learn semantic rep-
resentations of words in text [417]. In recent years, neural networks and autoencoders have
also seen an increased amount of interest for nonlinear dimensionality reduction [218]. The
word2vec [341] and doc2vec [275] techniques are specific neural network-based embedding
methods that retain the linguistic context of words in the embedding. In text applications,
structured kernels are very useful when text is interpreted as a sequence. Details of the
dynamic programming algorithm for string subsequence kernels may be found in [308]. A
survey of structured kernels may be found in [180]. Similarity measures for short segments
of text are discussed in [337]. A Web-based kernel similarity function was studied in [418],
in which queries to a search engine are used to evaluate the similarities between short text
snippets. The Nyström method was proposed in [501], and its use in the ensemble-centric
setting is advocated in [9].

3.8.1 Software Resources

An R package for LSA may be found in [557], whereas a Python implementation from scikit-
learn [550] may be found at [558]. Both implementations can handle sparse representations
of text. A Java implementation of LSA may be found at Weka [559]. Several efficient imple-
mentations of SVD/LSA with the Lanczos algorithm in ANSI Fortran-77 and ANSI C may
be found in the SVDPACK library [567]. Python implementations of various types of matrix
factorization methods may be found at scikit-learn [560]. A Python implementation of La-

3.9. EXERCISES 71

tent Dirichlet Allocation may also be found at that site [561]. Another free Python library of
topic modeling techniques is gensim [401], which includes representation learning methods
like word2vec and doc2vec. CRAN [562] also contains several packages for topic modeling.
In particular, the packages topicmodels and lda are noteworthy. Many of these packages
build on the text mining package tm at CRAN. A detailed discussion of the topicmodels
package may be found in [226]. The C code from the original authors of the LDA paper is
also available [563]. The MALLET toolkit [605] provides several fast implementations of
topic models. The kernlab package in R [255] from CRAN provides the ability to perform
nonlinear dimensionality reduction. Numerous manifold learning packages in Python are
also available from scikit-learn [564]. The Nyström method of kernel approximation is also
available [568]. However, the kernel functions available are designed for multidimensional
data rather than sequence data. Since mining of sequential data is the primary use-case
of kernels in the text domain, one would need to augment and modify this (open-source)
Nyström implementation with a separate implementation of substring kernels in order to
use it. The word2vec tool is available [565] under the terms of the Apache license. The
TensorFlow version of the software is available at [566].

3.9 Exercises

1. Consider the following matrix:

D =

⎛

⎜
⎜
⎜
⎜
⎝

car truck carrot apple
Document-1 1 1 1 1
Document-2 1 1 1 1
Document-3 0 0 1 1
Document-4 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

(a) Construct a rank-2 SVD of this matrix. You can use any off-the-shelf software
you like. What is the error of the decomposition?

(b) Perform a rank-2 nonnegative matrix factorization of this matrix with the Frobe-
nius norm. What is the error of the decomposition?

(c) Which of the factorizations is more easily interpretable? Can you put names
to the topics of the two latent components in the case of SVD? How about
nonnegative matrix factorization?

2. Let U and V be n × k and d × k matrices, respectively. Consider the unconstrained
optimization problem of minimizing the Frobenius norm ||D−UV T ||2F , which is equiv-
alent to SVD. Show that an infinite number of alternative optimal solutions for U and
V exist in which the columns of U and V are mutually non-orthogonal.

3. Consider the unconstrained optimization problem of minimizing the Frobenius norm
||D − UV T ||2F , which is equivalent to SVD. Here, D is an n× d data matrix, U is an
n× k matrix, and V is a d× k matrix.

(a) Use differential calculus to show that the optimal solution satisfies the following
conditions:

DV = UV TV

DTU = V UTU

72 CHAPTER 3. MATRIX FACTORIZATION AND TOPIC MODELING

(b) Let E = D − UV T be a matrix of errors from the current solutions U and V .
Show that an alternative way to solve this optimization problem is by using the
following gradient-descent updates:

U ⇐ U + αEV

V ⇐ V + αETU

Here, α > 0 is the step-size.

(c) Will the resulting solution necessarily contain mutually orthogonal columns in
U and V ?

4. Suppose that you change the objective function of SVD in Exercise 3 to add penalties
on large values of the parameters. This is often done to reduce overfitting and improve
generalization power of the solution. The new objective function to be minimized is
as follows:

J = ||D − UV T ||2F + λ(||U ||2F + ||V ||2F)
Here, λ > 0 defines the penalty. How would your answers to Exercise 3 change?

5. Without using SVD, show that the nonzero eigenvalues of DTD and DDT are the
same for any matrix D. [Hint: The proof is no more than three or four lines.]

6. Suppose that you are allowed to assume that at least one of the optimal solutions of
the objective function in Exercise 3 must have mutually orthogonal columns in each
of U and V , and in which each column of V is normalized to unit norm.

(a) Use the optimality conditions of Exercise 3(a) to show that U must contain
the largest eigenvectors of DDT in its columns and V must contain the largest
eigenvectors of DTD in its columns. What is the value of the optimal objective
function?

(b) Show that the (length-normalized) optimal value for V that maximizes ||DV T ||2F
also contains the largest eigenvectors of DTD like (a) above. You are allowed to
use the same assumption of orthonormal columns in V as above. What is the
value of this optimal objective function? What does this tell you about the energy
preserved by the SVD projection?

(c) Show that the sum of the optimal objective function values in (a) and (b) is a
constant that is independent of the rank k of the factorization but dependent
only on D. How would you (most simply) describe this constant in terms of the
data matrix D?

7. Suppose that you are given an n × n matrix containing the squared Euclidean dis-
tances between n data points rather than the similarities. However, you do not know
the coordinates of these data points. How would you use this matrix to generate an
embedding of these n data points into multidimensional space?

8. Implement the algorithms for SVD and nonnegative matrix factorization introduced
in the chapter.

9. Convert the solution to Exercise 1(b) into a three-way factorization with L1-
normalization. What is the significance of the diagonal matrix?

10. Suppose you have a string kernel in which objects i and j have similarity sij . Show
that the Euclidean distance between embedded objects i and j is

√
sii + sjj − 2sij .

Chapter 4

Text Clustering

“Taxonomy is described sometimes as a science and sometimes as an art, but
really it’s a battleground.”—Bill Bryson in A Short History of Nearly Everything

4.1 Introduction

The problem of text clustering is that of partitioning a corpus into groups of similar docu-
ments. Clustering is an unsupervised learning application because no data-driven guidance
is provided about specific types of groups (e.g., sports, politics, and so on) with the use of
training data. Clustering has numerous applications because of its ability to organize large
collections of documents into topical groups:

1. Web portals: Web portals often organize documents into clusters based on content
similarity, which helps the users in navigating Web pages of interest. In many cases,
this organization is hierarchical, in which the higher-level clusters cover broader topics,
whereas the lower-level clusters cover fine-grained topics. Such hierarchical organiza-
tions are also referred to as taxonomies.

2. News portals: Many providers of news content need to organize the documents by
topic, so that users are able to find news articles of their interest. As in the case of
Web portals, the organization is often hierarchical.

3. Intermediary for other applications: Clustering is often used as an intermediate step
in other applications like outlier analysis and classification. Clustering is a type of
summarization that helps in building compact predictive models for various problems.

In many settings such as that of news wire services, examples of specific groups (e.g., sports
or politics) may be available. This data is then used to categorize other documents into
these pre-defined groups. This setting is referred to as supervised learning, and the examples
of categorized documents are collectively referred to as training data. These methods are

74 CHAPTER 4. TEXT CLUSTERING

introduced in Chap. 5. The terminology “supervised” refers to the fact that one can use
the training examples to guide the grouping process, just as a teacher guides her students
towards a specific goal. However, clustering is useful in applications in which no prior
training examples are available, and is therefore an unsupervised method.

Clustering methods are either flat or hierarchical. In flat clustering, documents are par-
titioned into a set of clusters in one shot, and no hierarchical relationships exist between
clusters. In hierarchical clustering, the clusters are organized in tree-like fashion as a taxon-
omy. For example, the sports-related documents could be at a higher-level cluster and the
basketball/baseball clusters could be among the many children of the sports-related cluster.
The basketball cluster could have further children containing documents related to basket-
ball items, tournaments, clubs, and so on. Hierarchical clustering is of special importance
in the text domain because of its ability to enable intuitive browsing in Web applications.

It is often useful to perform various types of feature selection and feature engineering
tricks to improve the clustering process. Feature selection refers to removal of irrelevant
words, whereas feature engineering refers to the transformation of text into a representation
that is more amenable for clustering. This chapter will discuss several such techniques.

Clustering methods are closely related to dimensionality reduction. In particular, most
nonnegative matrix factorization methods and topic models can be leveraged for clustering
both words and documents. Many of these models are mixed membership models in which
the documents are assumed to be generated by multiple mixture components containing
the various topics. The basic assumption is that the corpus is defined by certain core top-
ics (e.g., Arts, Politics, Sports), and a document may contain components associated with
multiple topics. Many matrix factorization methods (like PLSA) exhibit these characteris-
tics. However, if an application demands a hard partitioning of the documents into clusters,
this creates some additional requirements for disambiguation of cluster membership during
post-processing. The natural solution in such cases is to modify topic models with more
constraints that force this type of disambiguation early on in the modeling. Such methods
are also referred to as co-clustering. This chapter will discuss matrix factorization methods,
the k-means method, hierarchical methods, and probabilistic methods for clustering. Clus-
tering is closely related to the design of similarity functions, because most deterministic
methods like k-means leverage similarity functions to construct clusters.

The effectiveness of clustering algorithms can be significantly improved with the use
of ensemble methods. In some cases, it may be useful to cluster the text as sequences,
particularly when the documents are short. In such cases, kernel methods can be used for
feature engineering in an implicit or explicit way. Such sequence-centric methods can also
be combined with subsampled ensembles to improve clustering quality. Furthermore, the
clustering and classification problems are closely related, and one can use this fact in order
to leverage classification algorithms for clustering.

4.1.1 Chapter Organization

This chapter is organized as follows. The next section studies several feature selection and
feature engineering methods for text clustering. Section 4.3 studies the use of topic models
for text clustering. Section 4.4 introduces the traditional mixture model for clustering. The
k-means algorithm is discussed in Sect. 4.5. Hierarchical clustering algorithms are discussed
in Sect. 4.6. Clustering ensemble methods are discussed in Sect. 4.7. The clustering of text
as sequences is discussed in Sect. 4.8. The use of classification algorithms for clustering is ex-
plored in Sect. 4.9. Section 4.10 introduces techniques for clustering evaluation. Section 4.11
gives a summary.

4.2. FEATURE SELECTION AND ENGINEERING 75

4.2 Feature Selection and Engineering

Text data is high dimensional, and many words are irrelevant for clustering. The removal of
such words is referred to as feature selection. Furthermore, the vector-space representation
does not incorporate information about the sequential ordering of words. Such information
is incorporated by using feature engineering techniques. We distinguish between these two
classes of techniques as follows:

1. In feature selection techniques, the irrelevant features are dropped before applying
the clustering algorithm. Such an approach improves clustering quality because a
significant amount of noise is removed. Feature selection methods always reduce the
dimensionality of the data.

2. In feature engineering techniques, the features are transformed to a new representation
in which simple clustering algorithms like the k-means method can work much more
effectively. In some cases, the representation of the data might change in a fundamental
way (e.g., sequences to vector-space representation).

Methods like singular value decomposition (SVD) and latent semantic analysis (LSA) are
somewhere in the middle, because they use only linear transformations on the features,
and the primary advantage of the representation is obtained by dropping the lower-order
(transformed) features. In the following, we will provide an overview of the different feature
selection and engineering techniques.

4.2.1 Feature Selection

Feature selection methods remove the irrelevant words in the document collection in order to
improve the effectiveness of the clustering process. Note that the removal of stop words and
the inverse document weighting frequency (idf) of words is also a form of feature selection.
However, these are rather rudimentary techniques that only use the raw frequencies of
words in order to make judgements about their relevance. It is possible to improve on
these methods by carefully evaluating the consistency of the features with intra-document
similarities. One can also use any of the following feature selection methods as feature
weighting methods.

4.2.1.1 Term Strength

The basic idea underlying term strength [498] is that a term is semantically relevant when it
has a higher probability of co-occurrence in similar pairs of documents. Two documents are
considered to be sufficiently similar, if the cosine similarity between them is greater than a
pre-defined similarity threshold δ. Then, the term strength of tj is defined as the fraction of
such pairs in which the term occurs in the second member of the pair, given that it occurs
in the first member. Therefore, the term strength S(tj) for a term tj between documents
X and Y is defined as follows:

S(tj) = P (tj ∈ X|tj ∈ Y , cosine(X,Y) ≥ δ) (4.1)

It is relatively straightforward to compute the term strength by sampling pairs of documents,
selecting those that satisfy the similarity threshold, and then estimating the conditional
probability in a data-driven manner. Features with low term strength are removed. The
aforementioned computation includes the impact of the (evaluated) term tj in the similarity

76 CHAPTER 4. TEXT CLUSTERING

calculations, which favors high-frequency terms. However, some minor changes [498] can
remove the impact of the evaluated term.

4.2.1.2 Supervised Modeling for Unsupervised Feature Selection

Supervised modeling techniques are sometimes used for feature selection in unsupervised
problems like clustering and outlier detection. Although the following technique was pro-
posed [379] for unsupervised feature selection and weighting in traditional multidimensional
data, it can also be used for text. We present a slight adaptation of the original idea [379]
to account for the sparse representation of text.

The basic idea is to decompose the feature selection into d different prediction problems,
where d is the dimensionality of the data. A feature that is largely unrelated to the remaining
data set cannot be meaningfully predicted by the other (d−1) features. Therefore, we create
a classification problem (see Chap. 5) in which the presence of absence of the jth term tj
in a document is a binary class variable. The performance of an off-the-shelf classifier can
be used to compute the relevance of this feature because relevant features can be predicted
more accurately from other features. The vector space representation of the remaining
terms is used to represent the document. This type of classification problem is typically
an imbalanced learning problem because the term tj is unlikely to be present in most
of the documents. In imbalanced settings, many classifiers rank instances based on their
propensity to belong to the minority class, and the ranking quality is evaluated using a
measure referred to as the Area under Curve (AUC) of the Receiver Operating Characteristic
(ROC) (see Chap. 7). The AUC lies in (0, 1), and a classifier that ranks instances randomly
would be expected to receive an AUC of 0.5. Such a scenario would occur for a feature
that is poorly related to the remaining features and is unlikely to help in creating coherent
clusters. Therefore, the feature relevance R(tj) is given by the additional AUC beyond the
random performance of 0.5:

R(tj) = max{AUC(tj)− 0.5, 0} (4.2)

Here, AUC(tj) is the AUC of the classifier that uses term tj as the target class. Features
with low relevance are removed.

The main problem with this technique is that it requires the training of one classification
model for each feature. Therefore, if the data contains a large number of features, as in the
text domain, it becomes rather difficult to use this approach. A more efficient alternative
is to divide the data into K random subsets of features, where K is a user parameter. We
use (K − 1) subsets of features for training, and the remaining subset for prediction. Such
an approach requires only K applications of the classifier.

4.2.1.3 Unsupervised Wrappers with Supervised Feature Selection

The aforementioned methods are filter methods because the quality of a feature is evaluated
independently of the specific clustering algorithm being used. In wrapper methods, we wrap
a clustering algorithm around the feature selection process. Therefore, the feature selec-
tion is tightly integrated with the clustering method at hand. Furthermore, the approach
transforms unsupervised feature selection to supervised feature selection (cf. Sect. 5.2 of
Chap. 5). The basic approach combines unsupervised clustering and supervised feature se-
lection method with the following two steps:

1. Use clustering algorithm with current feature set F to partition corpus into k clusters.

4.2. FEATURE SELECTION AND ENGINEERING 77

2. Treat the cluster label of a document as its class. Apply any of the supervised feature
selection algorithms discussed in Chap. 5 on feature set F and prune it if needed.

It is also possible to iterate on these steps, although a single application of these steps
is often sufficient. A specific example of such an algorithm that combines the expectation-
maximization (EM) clustering algorithm with the supervised χ2-statistic is provided in [291].
This work also shows how such methods can also be used for feature weighting.

4.2.2 Feature Engineering

In contrast to feature selection, feature engineering methods transform the data to get the
most out of clustering methods. Matrix factorization methods are linear feature engineering
methods that work well in practice. In the unsupervised setting, the primary goal of such
methods is to reduce the noise effects of synonymy and polysemy. In cases where it is desired
to also add linguistic knowledge (i.e., word ordering knowledge) into the engineered features,
nonlinear dimensionality reduction methods are required.

Many feature engineering methods exhibit a duality in the sense that they can be used
to either transform documents into multidimensional space, or they can be used to trans-
form words in the same way. For example, all matrix factorization methods simultaneously
produce an embedding of documents and an embedding of words with the factor matri-
ces. In nonlinear embedding methods, the ability to create a word embedding or document
embedding depends on the specific model that is used. Nonlinear dimensionality reduction
can be achieved either with kernels or with neural networks. Examples of the latter include
word2vec [341] and doc2vec [275]. Such methods are discussed in Chap. 10.

4.2.2.1 Matrix Factorization Methods

Matrix factorization methods perform an approximate decomposition of an n×d document-
term matrix D into two n×k and d×k matrices U and V , respectively, so that the following
condition is satisfied:

D ≈ UV T (4.3)

The rank k is typically chosen to be much smaller than both n and d. Numerous matrix
factorization methods are discussed in detail in Chap. 3. The matrix factorization problem
is typically posed as an optimization problem over minimizing the aggregate squared error
of the entries in (D − UV T). In addition, different types of constraints on U and V can
be used to regulate the properties of these matrices. Examples of various forms of matrix
factorization include singular value decomposition, nonnegative matrix factorization, and
probabilistic latent semantic analysis. The rows of the matrix U can be used as the document
embeddings and the rows of the matrix V can be treated as the word embeddings. When
using the factorization to create document embeddings, one scales the columns of V to unit
norm and adjusts the columns of U accordingly (see Sect. 3.1.2 of Chap. 3). Similarly, when
using the factorization to create word embeddings, one scales the columns of U to unit norm
and adjusts the columns of V accordingly. Using this approach makes the corresponding
embeddings sensitive to their frequencies in the collection.

The primary gain from these feature engineering methods is achieved by using a rank k
that is much less than min{n, d}. The typical value of k used in most matrix factorization
methods is in the low hundreds, whereas the value of d is often in the range of hundreds
of thousands. Furthermore, the value of k may vary with the collection at hand; for small
collections or lexicon sizes, the value of k will be smaller. The low-rank factorization creates

78 CHAPTER 4. TEXT CLUSTERING

a residual error in Eq. 4.3, which is observed only as an approximate equality. In such
cases, the noise effects of synonymy and polysemy are removed from the collection, and
the clustering tendency of the corpus improves. In other words, the approximation actually
improves the representation quality. A detailed discussion of this phenomenon is provided
in Chap. 3. One can apply a k-means algorithm on the rows of U to cluster documents and
a k-means algorithm on the rows of V to cluster words.

Different types of matrix factorizations have different advantages from a feature engi-
neering point of view. SVD is good at efficiently representing out-of-sample documents by
a simple projection operation. Nonnegative matrix factorization and PLSA provide seman-
tically interpretable representations, which can be directly used for soft clustering in which
each document is associated with a set of probabilities of belonging to various clusters. Such
methods are useful in collections with highly overlapping clusters. These issues are discussed
in Sect. 4.3.

4.2.2.2 Nonlinear Dimensionality Reduction

Nonlinear dimensionality reduction methods are particularly well suited to creating em-
beddings from short texts in which linguistic/sequence knowledge is incorporated in the
embedding. It is particularly important to use knowledge about the sequential ordering
of words when working with short texts because the data is too sparse to be used effec-
tively with a vector-space representation. However, unlike linear dimensionality reduction
methods, which simultaneously provide word embeddings and document embeddings, these
methods are optimized for either document embeddings or word embeddings. Kernel meth-
ods are best suited to the creation of document embeddings although these methods can
also be generalized to create word embeddings, if suitable similarity functions can be defined
between words with the use of sequence information. In all these cases, the key is to create
a high-quality similarity matrix between the objects.

Nonlinear dimensionality reduction methods are discussed in Sect. 3.6 of Chap. 3. The
basic idea is to perform an approximate rank-k diagonalization of the n × n similarity
matrix S as S = QkΣ

2
kQ

T
k and then extract QkΣk as the embedding. When the size n of

the corpus is large, such an approach can be space- and time-prohibitive. In such cases, The
Nyström sampling method of Sect. 3.6.2 can be used. Although this type of sampling method
loses some accuracy, these methods become extremely powerful when they are combined
with sampling-based clustering ensembles. A specific example of such an approach in the
clustering context is provided in Sect. 4.8.

4.2.2.3 Word Embeddings

For word-clustering applications, word embeddings are required that require some knowl-
edge of the positioning information between words. The simplest approach is to use an 2-
gram embedding. For each pair of terms ti and tj the probability P (tj |ti) that term tj occurs
just after ti is computed. A matrix S is created in which Sij is equal to [P (ti|tj)+P (tj |ti)]/2.
Values of Sij below a certain threshold are removed. The diagonal entries are set to be equal
to the sum of the remaining entries in that row. This is done in order to ensure that the
matrix is positive semi-definite. The top-k eigenvectors of this matrix can be used to gen-
erate a word embedding. Since the word space is large, the sampling technique (discussed
above) may need to be leveraged. One can generalize this approach by using skip-grams
with varying gaps in the modeling process. The linguistic power in the embedding depends
almost completely on the type of word-word similarity function that is leveraged. The gen-

4.3. TOPIC MODELING AND MATRIX FACTORIZATION 79

erality of the approach arises from the fact that one can even incorporate linguistic prior
knowledge by using semantic databases like WordNet [347] to further refine the similarity
matrix S. In recent years, neural network methods [47, 275, 341] like word2vec and doc2vec
have also become increasingly popular for creating word embeddings (cf. Chap. 10).

4.3 Topic Modeling and Matrix Factorization

Chapter 3 introduces topic models from the perspective of matrix factorization and latent
semantic analysis. In this section, we introduce the relationship between these models and
clustering. All forms of nonnegative matrix factorization and Latent Dirichlet Allocation
(LDA) can be used to generate overlapping clusters from the collection.

4.3.1 Mixed Membership Models and Overlapping Clusters

Topic models are inherently mixed membership models in which each document is gen-
erated by one or more topics or aspects. Although one can treat an aspect as a cluster,
this point of view leads to clusters that are highly overlapping both in terms of document
membership and vocabulary. One possible solution is to use the matrix U from the fac-
torization D ≈ UV T to assign each document (row of U) to the topic that has the largest
positive coordinate value in U . However, documents (rows of U) that contain multiple topics
(strictly positive coordinates) do logically belong to multiple clusters and it is not fair to
force a disambiguation under such circumstances. For example, consider a document col-
lection containing 100 documents about cats, another 100 about cars, and 30 documents
discussing both cats and cars. From the perspective of topic models, this collection naturally
contains two topics and the final set of 30 documents can be expressed as a combination of
two topics. However, if each document is forced to be in a single cluster, a larger number of
clusters are required to express the same collection, because the final set of 30 documents
can be viewed as a completely distinct cluster. Therefore, there are two options in leveraging
methods like nonnegative matrix factorization for clustering:

1. One can use the highly positive coordinates in U to report overlapping membership of
documents in clusters as well as the topical vocabulary from the columns of V . This
point of view inherently accepts mixed membership of documents in clusters.

2. If a single-membership clustering is required, can treat the matrix factorization pro-
cess as a feature engineering step and apply a k-means algorithm on the engineered
representation. The rationale for this view is explained in Sect. 4.2.2.1. Typically, the
number of clusters would be larger than the rank of the factorization because of the
additional clusters created by combinations of topics.

One good property of topic modeling techniques is that they allow the simultaneous dis-
covery of word clusters and document clusters, even if they are highly overlapping.

4.3.2 Non-overlapping Clusters and Co-clustering: A Matrix
Factorization View

Even though most clustering methods assign each document to one cluster, they do allow
heavy term overlap across clusters. For example, a k-means algorithm assigns each document
to only one cluster, but the frequent terms in the centroids might contain heavy overlaps

80 CHAPTER 4. TEXT CLUSTERING

NOISE

NOISE

d

n

N
U

M
BE

R
O

F
D

O
CU

M
EN

TS
NUMBER OF TERMS

NOISE

NOISE

d

n

N
U

M
BE

R
O

F
D

O
CU

M
EN

TS

NUMBER OF TERMS

NOISE

NOISE

d

n

N
U

M
BE

R
O

F
D

O
CU

M
EN

TS

NUMBER OF TERMS

(a) Mixed membership and (b) Single membership and (c) Single membership and
overlapping vocabulary overlapping vocabulary disjoint vocabulary

(e.g., PLSA, LDA) (e.g., k-means) (e.g., co-clustering)

Figure 4.1: Mixed-membership versus single-membership models

across multiple clusters. An extreme view at the other end of the spectrum is that of co-
clustering in which each cluster of a matrix is defined as a subset of rows and columns.
Furthermore, no overlap is allowed among the different row sets and column sets. One
can view co-clustering as the process of re-arranging the rows and columns of a matrix so
that most of the positive entries lie on blocks around the diagonal. In fact, the overlaps
among documents/terms in different types of clustering methods can be understood in
terms of this re-arranged structure. In Fig. 4.1, we have shown three common cases of
clustering with varying levels of overlap between document clusters and word clusters. Even
though most clustering methods strictly partition the data, they do allow overlap in the
cluster vocabulary. In most of these cases of Fig. 4.1b, the cluster vocabulary is derived as
a secondary output of the clustering process. However, in cases of Fig. 4.1a, c, the cluster
vocabularies are recovered as first-class citizens along with clusters.

One can also modify nonnegative matrix factorization to also handle cases shown in
Fig. 4.1b, c. Let D be an n × d document-term matrix, and let U and V be the n × k
document factors and d × k term factors, respectively. In order to force the clusters to
be non-overlapping but not the terms (Fig. 4.1b), the non-negative matrix factorization
formulation of Sect. 3.3 can be modified as follows:

Minimize U,V ||D − UV T ||2F
subject to:

U, V ≥ 0

UTU = I

Most clustering algorithms implicitly try to optimize an objective function of this type. In
fact, it has been shown [138] that this objective function is equivalent to that used by the
k-means algorithm! One can view each of the factors in an analogous way to a cluster. The
rows of matrix U contain the cluster memberships and the columns of matrix V contain
the cluster representatives (centroids). By forcing orthonormality and non-negativity at the
same time, we are ensuring that only a single coordinate in each row of U has a value of

4.3. TOPIC MODELING AND MATRIX FACTORIZATION 81

1, which corresponds to the membership of that point in the corresponding cluster. Fur-
thermore, the k columns of V contain the k nonnegative cluster representatives. Therefore,
the factorization represents each point by its closest cluster representative, and the objec-
tive function minimizes the sum of squared errors of this approximation. As discussed in
Sect. 4.5, this objective function is equivalent to that of the k-means algorithm. Although
the k-means algorithm does not impose a nonnegativity constraint on the cluster represen-
tatives, this constraint is redundant, because the optimal cluster representative can never
have a negative component if the data matrix is nonnegative.

If one wishes to force the terms of each cluster to be non-overlapping, then orthogonality
can also be forced on the columns of V :

Minimize U,V ||D − UV T ||2F
subject to:

U, V ≥ 0

Columns of U are mutually orthogonal

Columns of V are mutually orthogonal

SVD also forces orthogonality on the factors. However, this optimization problem is different
from SVD because of the nonnegativity of the factors, which makes it more difficult. The
combination of orthogonality and nonnegativity implies that each row of both U and V
has at most a single positive value. This type of mutually exclusive membership of both
documents and words in clusters is shown in Fig. 4.1c.

One can equivalently formulate this problem in standardized three-way factorization by
normalizing U and V according to the approach discussed in Sect. 3.1.2 of Chap. 3:

UV T = QΣPT (Q and P have normalized columns and Σ is diagonal)

The equivalent optimization problem (with normalized matrices) is as follows:

Minimize Q,P,Σ||D −QΣPT ||2F
subject to:

P,Q,Σ ≥ 0

QTQ = I

PTP = I

Σ is diagonal

Here, the diagonal matrix plays the role of pulling out the scaling factors from the columns
of U and V according to the approach discussed in Sect. 3.1.2.

This problem can be solved [138] even in the case where Σ is not diagonal or is not a
square matrix, and is referred to as tri-factorization. This generalization allows a different
number kq of document clusters (captured by the n × kq matrix Q) and word clusters
(captured by the d × kp matrix P). The interactions among the document clusters and
word clusters are captured by the kq × kp matrix Σ. Tri-factorization is a variation of topic
modeling, and is more general than strict co-clustering. In tri-factorization, an exact one-to-
one correspondence does not exist between the document clusters and word clusters because
it is regulated by Σ.

We will first provide a solution for the (more general) optimization problem of tri-
factorization in which Σ is neither diagonal nor square. Later, we will see that the special

82 CHAPTER 4. TEXT CLUSTERING

case of diagonal factors can be solved simply by using a different initialization. In such a
case, Q is an n×kq matrix, Σ is a kq×kp matrix, and P is a d×kp matrix. The optimization
parameters of this problem can be obtained by using the following iterative steps:

Qiq ⇐ Qiq

√
(DPΣT)iq

(QQTDPΣT)iq
∀i ∈ {1 . . . n}, ∀q ∈ {1 . . . kq}

Pjp ⇐ Pjp

√
(DTQΣ)jp

(PPTDTQΣ)jp
∀j ∈ {1 . . . d}, ∀p ∈ {1 . . . kp}

Σqp ⇐ Σqp

√
(QTDP)qp

(QTQΣPTP)qp
∀p ∈ {1 . . . kp}, ∀q ∈ {1 . . . kq}

These steps are iterated to convergence. The matrices are all initialized to random nonneg-
ative values in (0, 1), although it is possible for a particular initialization point to arrive
at a local minimum. For example, it is possible to solve the constrained problem in which
Σ is square and diagonal by choosing an initialization point in which Σ is diagonal. The
orthogonality constraints tend to make this approach sensitive to the presence of local min-
ima. Better results can be achieved by relaxing the orthogonality constraints slightly [189]
or by incorporating them as constraints in the objective function. Another approach, which
is discussed in the next section, is to transform the problem into that of graph partitioning.

4.3.2.1 Co-clustering by Bipartite Graph Partitioning

One can pose the problem of co-clustering as a bipartite graph partitioning problem. The
basic idea is to create a bipartite document-term graph in which a node exists for each
document and also for each term. Edges exist only between document nodes and term
nodes. An undirected edge is added to the graph between a term node and document node
if and only if that term occurs between the document. The weight of the edge is equal to
the normalized frequency of the term. Then, it is easy to see that a partitioning of this
graph simultaneously yields both document clusters and word clusters. This situation is
shown in Fig. 4.2 in which each demarcated community contains both document clusters and
word clusters. Therefore, this approach transforms the problem of co-clustering to that of
community detection in graphs. The reader is referred to [2] for several community detection
methods in graphs. A commonly used method is that of spectral graph partitioning [132],
which turns out to be closely related to singular value decomposition in the special case of
bipartite graphs. The following description of spectral clustering is atypical and is applicable
only to the case of bipartite graphs. A more general description for all types of graphs may
be found in [361].

The basic idea is to treat the n×d document-term matrix D as the adjacency matrix of
the bipartite graph in which the relevant n× d portion with edges is used rather than the
full (n+ d)× (n+ d) adjacency matrix. Let the sum of the term frequencies in document i
be di, and let the aggregate frequency of term j be fj . Then, the matrix D is normalized
by dividing its (i, j)th entry with

√
di · fj , and the normalized matrix be denoted by D0.

This matrix is approximately decomposed with rank-p SVD as follows:

D0 ≈ QΣPT (4.4)

Here, Q is an n × p matrix and P is a d × p matrix. The value of p is much less than
min{n, d}. The original work [132] recommends using p = log2(k)+1 for a k-way clustering,

4.4. GENERATIVE MIXTURE MODELS FOR CLUSTERING 83

DOCUMENTS TERMS

Figure 4.2: Transforming co-clustering to graph partitioning

although this can turn out to be too conservative in practice. The two matrices Q and P
are stacked1 to create a single (n+ d)× p matrix as follows:

Z =

(
Q
P

)

(4.5)

Note that the matrix Z has one p-dimensional row for each document or term. Furthermore,
it can be shown that the rows of Z are not comparable in terms of their scaling because
of the varying frequencies of words and documents. In order to remedy this issue, each
row in Z is divided by the square-root of the aggregate frequency2 of the corresponding
document/term in the corpus. These frequencies are the same as di or fj computed above.
Subsequently, a k-means algorithm is applied to cluster the rows of Z in order to extract
the simultaneous partitioning of documents and words. Note that each cluster will typically
contain a subset of documents and words, depending on which rows of Z are grouped into
that cluster. Therefore, this partitioning turns out to be a co-clustering.

4.4 Generative Mixture Models for Clustering

Generative models assume that the corpus is generated by a mixture of distributions, and
estimate the parameters of these distributions based on the observed corpus. The k clusters
in the mixture are denoted by G1 . . .Gk, where k is an input parameter. The terms in each
document of a mixture component are modeled by a distribution specific to that mixture
component. These assumptions provide the analyst the ability to incorporate some domain
knowledge into the modeling process by selecting a particular type of distribution. The most
commonly used assumptions correspond to the Bernoulli and the multinomial models. The
Bernoulli model is appropriate when the text documents are represented as vectors of 0-1

1The first eigenvector is not discriminative in terms of the clustering structure and can be dropped.
Its value can be shown to depend only on the square-root of the frequency of the corresponding term or
document.

2The general form of symmetric spectral clustering [361] (cf. Sect. 4.8.2), which is applicable to all types
of bipartite and non-bipartite graphs, normalizes each row to unit norm. This choice is a worthy alternative.

84 CHAPTER 4. TEXT CLUSTERING

values, corresponding to the presence or absence of terms. The multinomial model is used to
model arbitrary word frequencies. The generative process of mixture modeling is as follows:

1. Select the rth mixture component Gr with prior probability αr = P (Gr).

2. Generate the vector space representation of a document using the probability distri-
bution of Gr. The common choices are Bernoulli or multinomial distributions.

For a given corpus, the goal of the expectation-maximization algorithm is to estimate the pa-
rameters of the distributions, so that the observed data has the maximum likelihood of being
generated by this model. One can compactly denote the entire vector of mixture distribu-
tion parameters and prior probabilities α1 . . . αk by Θ. The probability of a single document
Xi being generated by the model is

∑k
m=1 P (Gm) · P (Xi|Gm) =

∑k
m=1 αmP (Xi|Gm). We

want to learn the entire vector Θ of parameters, so as to maximize the product of these
probabilities over all documents in the corpus:

MaximizeΘ

{

P (Corpus|Θ) =

n∏

i=1

(
k∑

m=1

αmP (Xi|Gm)

)}

(4.6)

In practice, one uses the logarithm of this value to create a log-likelihood objective function,
which is then maximized.

The main challenge in estimating these parameters is that it is not known which mix-
ture component generated which document; if we knew which mixture component generated
which document, then parameter estimation would be a very simple matter by fitting the rel-
evant subset of documents to that mixture component in an optimal way. The expectation-
maximization algorithm therefore uses an iterative approach, in which the expected proba-
bility of membership is estimated based on the current state of the parameters (i.e., expec-
tation step). Then, the parameters are optimized by holding this membership probability
fixed. This step is simplified because the membership probabilities can be viewed as (fixed)
weights on points and we can optimally estimate the parameters of each mixture compo-
nent without worrying about the other components (i.e., maximization step). The two-step
iterative approach is then executed to convergence. In the following, we will describe the
steps of the expectation-maximization algorithm for the Bernoulli and multinomial models.

4.4.1 The Bernoulli Model

In the Bernoulli model, it is assumed that the jth term, tj , in the lexicon is present in

a document generated from the rth mixture component with probability p
(r)
j . Then, the

probability P (Xi|Gr) of the generation of the document Xi from mixture component Gr is
given3 by the product of the d different Bernoulli probabilities corresponding to presence
or absence of various terms:

P (Xi|Gr) =
∏

tj∈Xi

p
(r)
j

∏

tj �∈Xi

(1− p
(r)
j) (4.7)

An important assumption here is that the presence or absence of the various terms are
conditionally independent with respect to the choice of mixture component. Therefore, one
can express the joint probability of the attributes in Xi as the product of the corresponding

3Although Xi is a binary vector, we are treating it like a set when we use a set-membership notation
like tj ∈ Xi. Any binary vector can also be viewed as a set of the 1s in it.

4.4. GENERATIVE MIXTURE MODELS FOR CLUSTERING 85

values on individual attributes. This assumption is also referred to as the näıve Bayes
assumption, and is commonly used for clustering and classification with the Bernoulli model.

Then, the expectation-maximization algorithm starts by randomly assigning documents
to clusters, and estimates the initial parameters by applying the M-step (see below) with
respect to this random assignment. Subsequently, it uses the following two steps iteratively:

1. (E-step): In the expectation step, the probabilistic assignments of documents to
clusters are computed using the Bayes rule of posterior probabilities. The probability of
a document Xi belonging to the rth cluster can be viewed as the posterior probability
that the rth mixture component, Gr, was used to generate it. This posterior probability
is computed as follows:

P (Gr|Xi) =
P (Gr) · P (Xi|Gr)

∑k
m=1 P (Gm) · P (Xi|Gm)

=
αr ·

∏
tj∈Xi

p
(r)
j

∏
tj �∈Xi

(1− p
(r)
j)

∑k
m=1 αm ·∏tj∈Xi

p
(m)
j

∏
tj �∈Xi

(1− p
(m)
j)

(4.8)
The right-most expression above is a result of substitution of P (Xi|Gr) from Eq. 4.7
in the above equation.

2. (M-step): The soft assignment probability wir = P (Gr|Xi) above is used to enable
the estimation of parameters by treating it as a “membership weight.” The value of
αr = P (Gr) is estimated as the fraction of membership weights assigned to cluster r.
One can estimate this value as

∑n
i=1 wir/n. One also needs to estimate the parameters

of the Bernoulli distribution for various mixture components. One can estimate p
(r)
j

as the weighted fraction of documents in component r containing term tj :

p
(r)
j =

∑
i:tj∈Xi

wir
∑n

i=1 wir
(4.9)

The two aforementioned steps are iterated to convergence. Convergence is checked by eval-
uating whether the (log-likelihood) objective function has improved by a minimum amount
over its average value in the previous few iterations. Laplacian smoothing is used in the
estimation of the M-step. Let da be the average number of 1s in each (binary representa-
tion of a) document and d be the size of the lexicon. The basic idea is to add a Laplacian
smoothing parameter γ > 0 to the numerator of Eq. 4.9 and d · γ/da to the denominator.
Similarly, one can smooth the estimation of αr by adding β > 0 to the numerator and k · β
to the denominator.

It is noteworthy that the posterior probability P (Gr|Xi) provides the probability of as-
signment of document Xi to cluster Gr. The k posterior probabilities specific to a document
will always sum to 1, as is expected in a probabilistic assignment of a document to clusters.
If desired, one can also convert this soft assignment to a hard assignment by assigning each
document to the cluster to which it has the largest posterior probability. For any particular

cluster r, the terms with large values of p
(r)
j are assumed to be the topical vocabulary of the

cluster. Therefore, the approach returns (overlapping) word clusters along with document
clusters. The initialization can be performed randomly, although improved results can be
obtained by using another simple clustering algorithm in lieu of the first E-step to assign
documents to clusters (corresponding to 0-1 posteriors).

86 CHAPTER 4. TEXT CLUSTERING

4.4.2 The Multinomial Model

The multinomial model is designed to handle arbitrary term frequencies. The parameters
of the k mixture components are defined by a d × k matrix of multinomial probability
parameters Q = [qjr], in which (q1r, q2r, . . . qdr) represent the d parameters of a multinomial
distribution of terms for the rth mixture component. The different values of qjr sum to 1

for a particular mixture component, Gr, over all terms (i.e.,
∑d

j=1 qjr = 1).

The generative process first selects the rth mixture component Gr with probability
αr = P (Gr) and then throws a loaded die (owned by the rth component) L times to
generate a document with L tokens (counting repetitions). The loaded die has as many
faces as the number of terms d, and the probability of the jth face showing up is given
by qjr for the die owned by the rth mixture component. Therefore, if the die is thrown L
times, then the number of times each face shows up provides the number of times each term
shows up in the document. If we assume that the frequency vector of the document Xi is
given by (xi1 . . . xid), then the generative probability of the ith document is defined by the
multinomial distribution:

P (Xi|Gr) =
(
∑d

j=1 xij)!

xi1!xi2! . . . xid!

d∏

j=1

(qjr)
xij ∝

d∏

j=1

(qjr)
xij (4.10)

The constant of proportionality holds for fixed Xi and varying mixture component, because
it depends only on Xi and is independent of the mixture component Gr.

One can now perform the E-step by using this new probability instead:

1. (E-step): Compute the posterior probability of documentXi using Eq. 4.10 as follows:

P (Gr|Xi) =
P (Gr) · P (Xi|Gr)

∑k
m=1 P (Gm) · P (Xi|Gm

=
αr ·

∏d
j=1(qjr)

xij

∑k
m=1 αm ·∏d

j=1(qjm)xij

(4.11)

2. (M-step): The soft assignment probability wir = P (Gr|Xi) above is used to enable the
estimation of parameters by treating it as a “membership weight.” As in the Bernoulli
model, the value of αr = P (Gr) is estimated as

∑n
i=1 wir/n. One also needs to estimate

the parameters of the multinomial distribution for various mixture components. One
can estimate qjr as the weighted fraction of tokens in mixture component r that
correspond to term tj :

qjr =

∑n
i=1 wir · xij

∑n
i=1

∑d
v=1 wir · xiv

(4.12)

It is also possible to use Laplacian smoothing to improve the estimation of the pa-
rameters for sparse data. In such a case, we add γ to the numerator and γ · d to the
denominator for a small value of γ > 0.

As in the case of the Bernoulli model, these steps are iterated to convergence. One can use
the estimated value of P (Gr|Xi) as the probability of assignment of document Xi to cluster
r. The soft assignment can also be converted to a hard assignment by selecting the value of
r for which this probability is as large as possible. For any particular cluster r, the terms
with large values of qjr are assumed to be the topical vocabulary of the cluster.

4.4. GENERATIVE MIXTURE MODELS FOR CLUSTERING 87

CLUSTER
ID

OF DOCUMENTS IN CORPUS

…

BERNOULLI PARAMETERS
FOR EACH CLUSTER

YES/NO
VECTOR

PRIOR CLUSTER
PROBABILITIES

(a) Bernoulli clustering model

OF TOKENS IN DOCUMENT

CLUSTER
ID

OF DOCUMENTS IN CORPUS

…

MULTINOMIAL PARAMETERS
FOR EACH CLUSTER

TERM ID

PRIOR CLUSTER
PROBABILITIES

(b) Multinomial clustering model

Figure 4.3: Plate diagrams for Bernoulli and multinomial clustering models

4.4.3 Comparison with Mixed Membership Topic Models

The topic models of Chap. 3 are referred to as mixed membership models, whereas the
clustering models of this section are single membership models. Here, it is important to
understand that the generative process in (mixed-membership) topic models is quite differ-
ent from (single-membership) clustering models. Although both the PLSA model and the
clustering models discussed above yield a cluster assignment probability for each document
(i.e., P (Gr|Xi)), this value should be interpreted differently in the two cases:

Clustering: P (Gr|Xi) = P(Gr given entire document Xi)
Topic Models: P (Gr|Xi) = P(Gr given a randomly chosen token from Xi)

This difference is crucial because a single-membership model will always generate a docu-
ment about cars and cats from a single mixture component, whereas topic models might
generate different tokens of that document from different mixture components.

In this context, we present the plate diagrams for the single membership clustering
models in Fig. 4.3. Note that the cluster identifier is always generated exactly once for
each document. However, in the plate diagrams for topic models (cf. Figs. 3.4 and 3.7 of
Chap. 3), it is evident that the topic identifiers are generated once for every token. These
differences are crucial while trying to convert soft probabilities into a hard assignment. In a
single membership model, it is theoretically justified to assign each document to the cluster
with the highest probability of assignment because it was assumed to be generated from a
single component. The soft nature of the assignment is simply caused by the uncertainty
of the statistical estimation process. In a topic model, the actual generation could be truly
overlapping across multiple topics even after accounting for the estimation uncertainty.

88 CHAPTER 4. TEXT CLUSTERING

Therefore, in the case of topic models, it makes more sense to either accept the overlapping
nature of the clustering, or to treat the soft probabilities as engineered features on top of
which a k-means algorithm is applied.

4.4.4 Connections with Näıve Bayes Model for Classification

The näıve Bayes model4 for classification (cf. Sect. 5.3 of Chap. 5) is a rudimentary special
case of the expectation-maximization (EM) algorithm in which a single iteration of the
E-step and M-step is sufficient. Imagine that you were given labeled training data in which
the labels indicate which mixture component generated which point. How could you use the
EM algorithm to create probabilistic assignments for unlabeled test points? The basic idea
is to apply the M-step only to the labeled training data and estimate all the parameters.
This step is greatly simplified because the posterior probabilities of the labeled points are
all pre-defined to be either 0 or 1 rather than soft “membership weights.” Furthermore, the
M-step does not need to be iteratively repeated because the labeling is assumed to be an
unquestioned ground truth, which cannot be improved upon. Subsequently, these estimated
parameters are used with the unlabeled points to assign probabilities in one execution of the
E-step. This process we have just described is the same as the näıve Bayes algorithm.

The näıve Bayes classification algorithm is a rudimentary special case of the
expectation-maximization algorithm in which the M-step is applied once to the
labeled training data and the E-step is applied once to the unlabeled test data.

This connection between clustering and classification can be extended to any type of clas-
sifier (cf. Sect. 4.9) and not just näıve Bayes.

Is it also possible to use the unlabeled data in the M-step? If we choose to do so, the al-
gorithm remains iterative, and the resulting algorithm [364] is referred to as semi-supervised
classification. This type of algorithm can sometimes perform more accurate classification
than the näıve Bayes algorithm, particularly if the amount of available labeled data is small.
This algorithm is discussed in Sect. 5.3.6 of Chap. 5.

4.5 The k-Means Algorithm

The k-means algorithm is a very simple clustering algorithm that identifies a strict parti-
tioning of the data into k clusters. The value of k is an input parameter to the algorithm.
Consider an n×d data matrix in which the ith row vector (document) is denoted by Xi. The
k-means problem is that of finding the k d-dimensional representatives Y1 . . . Yk, such that
the sum of squared distances of each document to its closest centroid is as low as possible.
In other words, we wish to determine Y1 . . . Yk, so that the following objective function is
minimized:

J =

n∑

i=1

mindj=1||Xi − Yj ||2 (4.13)

Note that this objective function uses the Euclidean distance, which is unusual for text
data. However, for the purpose of the following discussion, assume that the document-term
matrix is normalized as a preprocessing step, so that the L2-norm ||Xi|| of each document
is one unit. As discussed in Sect. 2.5 of Chap. 2 (cf. Eq. 2.9), there is no difference between

4This model is discussed only in later chapters. The uninitiated reader may choose to skip over this
section in the first reading.

4.5. THE K-MEANS ALGORITHM 89

Algorithm KMeans(Documents: X1 . . . Xn, Number of clusters: k)
begin

Initialize each of Y1 . . . Yk to random points from X1 . . . Xn;
repeat

Create partitioning C1 . . . Ck by assigning each Xi to
its closest representative (i.e., largest cosine) from Y1 . . . Yk;

for each cluster Cr set Yr to the centroid of Cr;
until convergence;
return C1 . . . Ck;

end

Figure 4.4: The k-means algorithm

the use of the Euclidean distance, cosine similarity, or the dot product similarity, after such
a normalization has been performed. We will first discuss a simple k-means algorithm with
this length-wise normalization assumption, and then discuss the heuristic variations utilized
for text data.

The main obstacle to solving Eq. 4.13 is that the optimal assignments of data points to
representatives depend on the values of the representatives, and the representatives them-
selves depend on these assignments in a circular way. This circularity naturally suggests
an iterative approach, in which we alternately determine the best assignments (while fixing
the representatives) and determine the best representatives (while fixing the assignments)
until convergence is achieved. Therefore, the k-means algorithm starts by initializing a set
of k seed representatives Y1 . . . Yk as k randomly chosen documents, and improves them by
using the following pair of iterative steps:

1. Optimal assignments with fixed representatives: Each document is assigned to
the representative to which it has the largest cosine measure. For normalized data,
maximization of the cosine is the same as the minimization of the Euclidean distance,
and therefore this assignment provides the lowest objective function for Eq. 4.13. As-
sume that the n points are partitioned into k clusters denoted by C1 . . . Ck, where each
cluster Ci contains a subset of points in {X1 . . . Xn}.

2. Optimal representatives with fixed assignments: If the assignments are fixed
then one can separately determine the optimal value of Yr for the rth cluster Cr, which
turns out to be the centroid of that cluster:

Yr =

∑
Xi∈Cr

Xi

|Cr| (4.14)

The proof of this result is provided in Lemma 4.5.1 and its intuitive explanation is
that a cluster is best represented by its most central point for minimizing error.

The two steps are then iterated to convergence. Typically, the convergence criterion is that
the objective function does not change by a certain minimum amount. Furthermore, there
is typically also a bound on the maximum number of iterations in order to prevent very
long running times.

We now show that the contribution of the rth cluster to objective function J with
assigned points in Cr if the representative Yj is chosen to be the centroid of Cr.

Lemma 4.5.1 Let the contribution Jr of the rth cluster Cr to the objective function value

90 CHAPTER 4. TEXT CLUSTERING

of Eq. 4.13 be defined as follows:

Jr =
∑

Xi∈Cr

||Xi − Yr||2 (4.15)

Then, the value of Jr is minimized when Yr is chosen to be the centroid of Cr.
Proof: The gradient of the objective function with respect to Yr needs to be set to 0 as the
optimality condition. Setting the gradient to 0 leads to the following optimality condition:

∑

Xi∈Cr

2 · (Yr −Xi) = 0 (4.16)

This condition simplifies to the following:

Yr =

∑
Xi∈Cr

Xi

|Cr| (4.17)

In other words, the gradient-based optimality condition implies that Yr is the centroid of
Cr.
The aforementioned discussion provides a mathematical description of using normalized
vectors that is theoretically optimal. However, for text data, a few practical changes are
made that deviate from this presentation in the following ways:

1. We do not normalize the documents length-wise to unit norm up front. Note that the
cosine function is insensitive to the length-wise normalization step and therefore the
similarity computation is not affected. Furthermore, the use of cosine ensures that
we can drop the factor of |Cr| in the denominator of Eq. 4.14 without changing the
similarity computation. However, if the documents are not normalized to unit norm
up front, the solution will no longer be exactly the same because longer documents will
have more influence on the centroids. The practical effect of this change is, however,
not significant in most reasonable settings.

2. The infrequent terms in the centroid of a cluster can be dropped [438]. Dropping
infrequent terms has the dual advantage of improving the quality of computation
(by removing noise) and efficiency (by reducing the number of computations). It was
suggested in [438] that as few as 200–400 of the most frequent words can be retained
in the centroid of each cluster.

The frequent words in the centroid of each cluster provide a cluster digest that summarizes
the topical content of the cluster. A partial example [6] of a cluster digest containing a
cluster of documents related to American history is as follows:

history (183), lincoln (122), washington (23), abolition (38), constitution (95),
bill (124), independence (165), columbus (63), settlers (44), civil (91), presi-
dent (105), war (83), treaty (36), jefferson (23), confederate (43), union (29),
british (61), . . .

The numbers in the brackets represent the term weights in the truncated centroid. Because
of truncation, only large term weights are retained. Thus, by examining the frequent words
in each cluster, it is often possible to get an idea of the semantic content of the cluster. A
pseudo-code of the k-means algorithm is provided in Fig. 4.4.

4.5. THE K-MEANS ALGORITHM 91

4.5.1 Convergence and Initialization

It is noteworthy that each execution of the aforementioned steps is guaranteed to not worsen
the objective function J of Eq. 4.13, and therefore the objective function changes mono-
tonically with algorithm progression. Since the number of possible clusterings is finite, a
monotonically changing objective function is usually a recipe for convergence after a finite
number of iterations. One needs to be careful that ties in assignment are broken using a
consistent rule (e.g., using the lowest cluster index), so that the algorithm will never cycle
to the same solution unless it has converged to a fixed point. Although convergence of the
k-means algorithm is guaranteed, it is not guaranteed to converge to a global optimum so-
lution. In particular, the algorithm can be sensitive to the choice of seeds that are selected
up front. If outliers are selected as the initial seeds, the quality of the approach can be poor.
In fact, it is often better to use completely randomly generated vectors as initialization
points, rather than the use of a document from the collection. The k-means algorithm is
often combined with other hierarchical algorithms [124] to provide a high-quality starting
point. Such an approach is described in Sect. 4.6.2.

4.5.2 Computational Complexity

The k-means typically requires a relatively small number of iterations. It is not uncommon
to require less than ten iterations for the algorithm to give high-quality solutions, provided
that a reasonable starting point is used. In this sense, the use of a proper starting point
with other algorithms becomes even more important. For all practical purposes, the number
of iterations is assumed to be a constant.

In each iteration, the similarities of n documents to k clusters is computed. This process
requires O(n·k) similarity computations. If the number of words in each centroid is restricted
to maximum value dt � d, the time complexity of each similarity computation is O(dt).
Therefore, the overall computational complexity is given by O(n · k · dt).

4.5.3 Connection with Probabilistic Models

The k-means algorithm can be viewed as the deterministic avatar of the expectation-
maximization (EM) algorithm. Just as EM algorithms determine a probabilistic assign-
ment of documents to clusters (E-step), the k-means algorithm computes a deterministic
assignment in each iteration. The EM algorithm optimizes the parameters of its mixture
component in the M-step, whereas the k-means algorithm determines the optimal repre-
sentative (i.e., centroid) in each iteration. Just as the EM-algorithm optimizes the mean-
squared error, the EM algorithm maximizes a log-likelihood criterion. In fact, with mixture
distributions like the Gaussian, the log-likelihood of a Gaussian simplifies to the Euclidean
distance! Of course, one rarely uses the Gaussian modeling assumption in the text domain.
Nevertheless, the connections between the two methods are useful to keep in mind. The
expectation-maximization algorithm flexibility of incorporating domain-specific knowledge
about the corpus by choosing a particular mixture distribution (e.g., Bernoulli or multino-
mial). On the other hand, the k-means algorithm has the advantage of greater simplicity.
The benefits of simplicity should not be underestimated, because it makes the k-means
approach more robust and less likely to get stuck in local minima.

92 CHAPTER 4. TEXT CLUSTERING

A

EB

C FC

D

F

Cluster j

Cluster i

Cluster j

Figure 4.5: The similarity between the two sets of documents is expressed as a function of
the similarities between individual document pairs

4.6 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms naturally create a tree-like structure (or taxonomy) of
the documents. The creation of the taxonomies has a special place in document clustering
because of its ability to enable intuitive browsing of large collections. The taxonomy can be
created in either top-down or bottom-up fashion. The bottom-up technique can be viewed
as a standalone clustering method, whereas the top-down approach can be viewed as a
meta-algorithm that uses another clustering algorithm as a subroutine. This makes the
bottom-up approach inherently more interesting, and it is the primary focus of this section.

Bottom-up methods start with individual documents in each cluster and successively ag-
glomerate them into higher-level clusters by merging similar pairs of clusters. This successive
merging leads to a natural hierarchical relationship among the clusters, where clusters in
later stages are supersets of clusters in earlier stages. The main differences among differ-
ent hierarchical methods arise because of the differences in the criteria with which clusters
are successively merged. The basic framework for a hierarchical clustering algorithm is to
always work with a current cluster set (or model) M = {C1 . . . Cm} of clusters and reduce
the size of this set by 1 by using the following iterative step:

Determine the most similar pair of clusters (Ci, Cj) from M = {C1 . . . Cm} and
replace them with a single larger cluster containing the points in both clusters
as follows:

M ⇐ M− {Ci, Cj}
︸ ︷︷ ︸

Remove similar pair

∪ {Ci ∪ Cj}
︸ ︷︷ ︸

Add larger cluster

(4.18)

Therefore, each step of this clustering process reduces the number of clusters by 1, until one
arrives at the desired number of clusters. In the initialization step, each document lies in its
own cluster and therefore there are n clusters. After the first merge of the most similar pair
of singleton clusters, a single cluster will contain two documents, and therefore there will be
(n− 1) clusters. In general, the hierarchical clustering process will require us to determine
the similarity between sets of documents, Ci and Cj , in order to determine which pair to
select for merging.

How can one determine the similarity between two sets, Ci and Cj , of documents? It turns
out that there is no single way to do this. There are |Ci| × |Cj | possible pairwise similarity
computations between the documents in these sets and one must somehow combine these

4.6. HIERARCHICAL CLUSTERING ALGORITHMS 93

similarity values to create a global measure of the similarity between these sets. For example,
there are 4 × 2 = 8 possible similarity computations between the sets of points shown in
Fig. 4.5. There are several natural criteria for combining the similarities, which lead to the
different variations of this family of bottom-up clustering algorithms:

1. Single-linkage clustering: In single-linkage clustering, the similarity between the closest
pair of documents from Ci and Cj is used to quantify the similarity between Ci and
Cj . Therefore, if sij is the similarity between clusters Ci and Cj , then we have:

sij = MAXX∈Ci,Y ∈Cj
cosine(X,Y) (4.19)

2. Group-average linkage clustering: In group-average linkage the average of the similar-
ities between all documents in Ci and all documents in Cj is computed. Therefore, if
sij is the similarity between clusters Ci and Cj , we have:

sij = MEANX∈Ci,Y ∈Cj
cosine(X,Y) (4.20)

3. Complete linkage clustering: In complete linkage clustering, the similarity between the
most dissimilar pair is used as the relevant criterion. Therefore, the similarity between
the cluster pairs Ci and Cj is defined as follows:

sij = MINX∈Ci,Y ∈Cj
cosine(X,Y) (4.21)

4. Centroid similarity: In centroid similarity, the cosine similarity between the centroids
of Ci and Cj is used as the merging criterion.

Both the single-linkage and the complete-linkage criteria have weaknesses that are caused by
the fact that they depend on a single pair of documents in order to compute the similarity
criterion. In the case of single-linkage clustering, the main problem is that of chaining where
a sequence of successive merges caused by individual pairs of documents eventually leads to
the merging of unrelated groups of documents. For example, consider a set of four clusters,
which contain the following representative documents:

Cluster 1 contains: “The sergeant looked at the platoon.”
Cluster 2 contains: “The sergeant looked at the moon.”
Cluster 3 contains: “The dog looked at the moon.”
Cluster 4 contains: “The dog howled at the moon.”

It is easy to see that successive clusters contain very similar documents although there
is no relationship between the documents in clusters 1 and 4. It is quite conceivable that
successive merges might eventually lead to the merging of these clusters because of the
presence of a chain of similar documents between the pair. An example of such a chain of
undesirable merges is shown in Fig. 4.6a. Indeed, this situation occurs annoyingly often with
single-linkage clustering algorithms. The complete-linkage method also performs poorly at
later stages of the merging. When the clusters are large, they will often contain pairs of
outlier documents between which the similarity is quite low. In general, complete-linkage
similarity computation is often dominated by the outliers in these clusters. Clearly, making
merging decisions about clusters based on the properties of outliers (i.e., atypical points)
inside them does not seem to be a wise choice. Therefore, group-average linkage and centroid
clustering are more desirable choices.

94 CHAPTER 4. TEXT CLUSTERING

THE SERGEANT
POINTED AT

THE PLATOON

THE SERGEANT
LOOKED AT

THE PLATOON

THE SERGEANT
LOOKED AT
THE MOON

THE DOG
LOOKED AT
THE MOON

THE DOG
HOWLED AT
THE MOON

THE DOG
HOWLED AT

THE BALLOON

(a) Undesirable dendrogram with chaining

THE SERGEANT
POINTED AT

THE PLATOON

THE SERGEANT
LOOKED AT

THE PLATOON

THE SERGEANT
LOOKED AT
THE MOON

THE DOG
LOOKED AT
THE MOON

THE DOG
HOWLED AT
THE MOON

THE DOG
HOWLED AT

THE BALLOON

(b) Balanced dendrogram

Figure 4.6: Different dendrograms of the same set of six documents

This successive clustering process leads to a natural hierarchy of the clusters, which is
referred to as a dendrogram. A dendrogram is a binary tree in which each merge is an internal
node of the tree, and its two children nodes correspond to the sets of clusters that have
been merged. Therefore, lower nodes of the tree are more fine grained, and the leaf nodes
contain individual documents. An example of two possible dendrograms based on a different
sequence of merges from the same set of documents is shown in Fig. 4.6. In one case, the
dendrogram is well balanced. whereas in another it is not. In general, one has little control
on the shape of the dendrogram in bottom-up clustering methods, and exercising good
judgement in the choice of merging function is crucial. For example, a poorly structured
dendrogram like that in Fig. 4.6a can be caused by single linkage clustering. One can obtain
a flat clustering from this dendrogram by cutting it at a higher level of the tree. The default
approach of hierarchical clustering cuts the dendrogram in a specific way, which depends
on the order in which the merges are performed. To create a flat clustering with k clusters,
one can omit the last set of (k − 1) merges. However, it is also possible to construct the
dendrogram up to the root and then use the hindsight gained from the structure in the
dendrogram. In such a case, the dendrogram can be cut so as to obtain a clustering that
seems semantically appealing to a domain expert (on manual inspection) or to obtain a
more balanced clustering structure.

4.6.1 Efficient Implementation and Computational Complexity

It is important to implement the approach properly in order to obtain fast performance.
For example, a naive implementation might compute m×m similarities in each step, when
m clusters remain in the data. This is obviously not optimal because most of the pairwise
similarities between clusters can be carried over from one step to the next without re-
computation. At any given moment in time, when m clusters remain in the data, an m×m

4.6. HIERARCHICAL CLUSTERING ALGORITHMS 95

similarity matrix S is maintained. This similarity matrix is updated (and shrinks in size)
as the clusters are successively merged over the course of algorithm progression.

At the very beginning of the algorithm, an n×n similarity matrix S = [sij] is computed
between all pairs of documents, in which the (i, j)th entry sij corresponds to the similarity
between the ith and jth documents. As the algorithm progresses and clusters are merged,
the indices of the clusters are updated, and the entry sij corresponds to the similarity
between the ith and jth cluster in the data. During a merge of Ci and Cj , the rows/columns
for the ith and jth clusters need to be removed and a new row/column needs to be added
to the similarity matrix for the merged cluster. Therefore, we need a way to compute the
similarity between this new cluster and every other cluster in the data. For the case of
centroid similarity, this re-computation is a simple matter of just recomputing the centroid
of the new cluster, and computing its similarity with respect to the centroids of the remaining
clusters. However, even for the other cases, this re-computation is generally quite simple.
Let Sim(Ci∪Cj , Ck) be the similarity of any other cluster Ck with the merged cluster Ci∪Cj .
Then, one can compute the new similarities in terms of the current entries of the similarity
matrix S as follows:

Sim(Ci ∪ Cj , Ck) =

⎧
⎪⎨

⎪⎩

max{sik, sjk} (Single-Linkage Clustering)
sik·|Ci|+sjk·|Cj |

|Ci|+|Cj | (Group-Average Linkage Clustering)

min{sik, sjk} (Complete Linkage Clustering)

(4.22)

Therefore, when a cluster is merged, one only has to drop the rows/columns for clusters
Ci and Cj from the similarity matrix, and add a single row/column for the merged cluster.
Therefore, the number of rows and number of columns both reduce by 1.

For a corpus containing n documents, the space complexity of the approach is O(n2),
which is the size of the similarity matrix at the very beginning of the algorithm. The
computation of the similarity matrix requires O(n2) cosine similarity computations at the
very beginning of the algorithm. Let da be the average document size. Since the cosine
similarity computation is linearly related to average document size, the initialization of the
similarity matrix requires O(n2da) time. In addition, the algorithm contains O(n) merges.
However, other than in the case of centroid merging (see Exercise 7), this step is independent
of document size. This is because each similarity re-computation in Eq. 4.22 requires only
O(1) time rather than O(da) time and there are O(n) such computations for the various
clusters. Therefore, the total time for similarity re-computation is O(n2). In addition, one
must determine the similarity of the highest quality among O(n) possible values, which
requires O(n2 · log(n)) time over the course of the algorithm is a heap data structure is
maintained. Therefore, the overall computational complexity is O(n2 · da + n2log(n)), of
which O(n2 · da) turns out to be running time of the initialization step. For values of da of
the order of a couple of hundred words, it is possible for the initialization time to become
both the running time and space bottleneck for the algorithm.

The space complexity is particularly problematic even for data sets of modest size.
For example, if the corpus contains a million documents, the space complexity is of the
order of 1012 bytes, which is about a terabyte. In the modern age, it is not uncommon to
encounter collections of such sizes. This space complexity increases by a factor of 100 for
every ten-fold increase in corpus size. In cases, where the similarities cannot be maintained
in main memory, they may need to be recomputed from scratch in each iteration. This would
dramatically increase the time-complexity to O(n3), which is unmanageable even for small
data sets containing a few thousand documents. Luckily, one good property of hierarchical
methods is that they provide excellent clusterings even on small samples of the data. In

96 CHAPTER 4. TEXT CLUSTERING

such cases, they can be combined with k-means methods to obtain the best of both worlds.
This approach is described in the next section.

4.6.2 The Natural Marriage with k-Means

Hierarchical algorithms and k-means algorithms have strengths and weaknesses that are
complementary in terms of running time and accuracy. The k-means algorithm is efficient
and generally accurate on large data sets, unless the seed set is very poor. On the other
hand, a hierarchical clustering algorithm is expensive, but it is quite robust even when
applied to a small sample of the data. This observation suggests that a hierarchical method
can be used to merge a relatively small sample of documents to a robust set of k clusters,
whose centroids can be used to create an excellent seed set for the k-means algorithm. This
results in a two-phase approach in which the first phase uses hierarchical clustering and the
second phase uses k-means.

The size of the sample used in the first phase should be such that the running times of
the two phases are balanced. The running time of the k-means algorithm is O(k·n·dt), where
dt is the average lexicon size retained in each centroid. The running time of the hierarchical
approach for a sample of size s is roughly given by O(s2dt + s2log(s)) ≈ O(s2dt), if we
assume that dt is larger than log(s). These are reasonable assumptions to make in practical
settings. In order for the running time to be balanced between the phases of k-means and
hierarchical clustering, the following condition must hold:

s2 · dt = k · n · dt (4.23)

Therefore, we have s =
√
k · n. In such a case, the running time of the two-phase approach

is given by O(s2dt) = O(k · n · dt), which is linear in the corpus size and the number
of clusters. This is generally the best running time that one can hope to achieve with a
clustering algorithm.

The above description of the hierarchical phase is (roughly) that of a technique, referred
to as buckshot [124]. Another alternative for the hierarchical phase is referred to as frac-
tionation [124]. The fractionation method is the more robust one, but the buckshot method
is faster in many practical settings. Unlike the buckshot method, which uses a sample of√
k · n documents, the fractionation method works with all the documents in the corpus.

The fractionation algorithm initially breaks up the corpus into n/m buckets, each of size
m > k documents. An agglomerative algorithm is applied to each of these buckets to reduce
them by a factor ν ∈ (0, 1). This step creates ν ·m agglomerated documents in each bucket,
and therefore ν ·n agglomerated documents over all buckets. An “agglomerated document”
is defined as the concatenation of the documents in a cluster. The entire process (including
the creation of m buckets) is repeated by treating each of these agglomerated documents
as a single document. The approach terminates when a total of k seeds remains.

It remains to be explained how the documents are partitioned into buckets. One possi-
bility is to use a random partitioning of the documents. However, a more carefully designed
procedure sorts the documents by the index of the jth most common word in the document.
Here, j is chosen to be a small number, such as 3, that corresponds to medium frequency
words in the documents. Contiguous groups of m documents in this sort order are mapped
to clusters. This approach ensures that the resulting groups have at least a few common
words in them and are therefore not completely random.

The agglomerative clustering of m documents in the first iteration of the fractionation
algorithm requires O(m2) time for each group, and sums to O(n ·m) over the n/m different
groups. Because the number of individuals reduces geometrically by a factor of ν in each

4.7. CLUSTERING ENSEMBLES 97

iteration, the total running time over all iterations is O(n ·m · (1+ ν+ ν2+ . . .)). For ν < 1,
the running time over all iterations is still O(n ·m). By selecting m = O(k), one still ensure
a running time of O(n · k) for the initialization procedure.

4.7 Clustering Ensembles

Clustering is an unsupervised problem and therefore it is possible for specific parameter
or algorithmic choices to perform poorly in an individual run. However, by combining the
results from multiple runs, the results are more robust. Such methods are referred to as
ensembles. It is common for the combined result to be better than the results obtained
from most of the individual runs. This effect is observed because of the impact of variance
reduction (cf. Sect. 7.2 of Chap. 7). The basic idea of a clustering ensemble is to use the
following two steps:

1. Apply clustering on the data set D for m times to obtain m different partitions by
either using a randomized variant of the algorithm, or by using different clustering
algorithms/parameter choices in each run. Each such run is referred to as an ensemble
component or base method.

2. Merge the results from the m runs in the first step to obtain a single (more robust)
clustering. This step is referred to as the consensus step, and it usually requires the
application of a (simple) clustering algorithm on the point-to-cluster assignment in-
formation obtained in the first phase. The basic idea of the consensus phase is that
pairs of points that repeatedly get assigned to the same cluster over different ensemble
components should be grouped in the same cluster at the very end.

The following sections will describe each of these steps in detail.

4.7.1 Choosing the Ensemble Component

The specific ensemble component chosen will have different effects on the overall accuracy
and efficiency of the clustering approach. The most common ways of choosing the different
ensemble components are as follows:

1. One can choose to use different clustering algorithms such as the k-means, hierarchical,
and the EM-methods in different ensemble components.

2. One can use a randomized approach such as k-means with different choices of initial-
ized seeds. This will result in different outputs from different ensemble components.

3. One can run a clustering algorithm on a derived data set containing a subset of fea-
tures. This approach is referred to as feature bagging or multiview clustering.

4. One can apply the computationally intensive parts of the clustering algorithm to only
a subsample of the data set. A useful example is the pairing of Nyström sampling
with ensemble methods. Kernel methods are often used in the text domain to incor-
porate the sequential ordering information between the words, although the primary
impediment in their use is their high computational complexity. Subsampling methods
have great power when paired with base methods of super-linear complexity, because
they can improve both the accuracy and the efficiency of the approach. In such cases,
running many ensemble components on subsamples is faster than a single application

98 CHAPTER 4. TEXT CLUSTERING

of the base method on the full data set. The leveraging of the Nyström ensemble
for incorporating sequence knowledge into text clustering methods is described in
Sect. 4.8.

In general, it is advisable to use base methods with high diversity in order to get the most
out of an ensemble method.

4.7.2 Combining the Results from Different Components

The final step in an ensemble method is to combine the results from different components.
It turns out that the final step of combining the results is also a clustering problem on
the outputs of the results. However, this new clustering problem is much simpler because
the outputs have a more natural tendency to cluster. Therefore, very simple clustering
methods like k-means can be used effectively in these cases. In the final phase, each point is
represented in m keywords, where m is the number of ensemble components. Each keyword
in this new pseudo-document corresponds to an ensemble component, and it contains a
concatenation of its cluster identifier and ensemble component identifier. For example, if
a document was assigned to cluster identifier 23 in the 45th ensemble component, then
the keyword “23#45” is created and added to the new representation of that document.
Therefore, each document will have exactly as many keywords as the number of ensemble
components. Two documents that co-occur in the same cluster frequently will have many
keywords in common. One can view this new representation as a kind of feature engineering
like the stacking ensemble in classification [2]. The new features will have an extremely high
tendency to cluster because of the fact that they are cluster identifiers from obtained from
various base clustering methods. Therefore, a simple application of a k-means approach on
this new representation will provide high-quality results.

4.8 Clustering Text as Sequences

Most mining methods use the bag-of-words model when working with text. However, a lot of
knowledge in the collection is hidden in the sequential and positioning information between
words. For short documents, the use of sequential information becomes more critical, because
a bag of words is often too sparse to be used robustly with conventional mining techniques.

Almost all the successful learning methods that treat text as sequences use represen-
tation learning and feature engineering in one form or the other. Typically, the sequential
representation of text is converted into a multidimensional representation that encodes in-
formation about sequential word ordering. This multidimensional representation may often
be quite high-dimensional, because sequence information is inherently complex. The com-
mon feature engineering methods are as follows:

1. Enriching with phrases and k-grams: Frequent phrases in the corpus can be used as
features to enrich the representation. It has been shown [525] that using frequent
phrases improves the quality of clustering of Web documents. One can also add fre-
quent k-grams to the vector-space representation to use the bag-of-words model.

2. Kernel methods: Kernel methods provide a natural approach for incorporating se-
quence information into text mining applications by using string-based kernel func-
tions in order to perform nonlinear dimensionality reduction. Refer to Sect. 3.6 of
Chap. 3.

4.8. CLUSTERING TEXT AS SEQUENCES 99

TEXT AS
A SEQUENCE

REPRESENTATION
LEARNING

APPLICATIONS

PHRASE AND
k-GRAM

ENRICHMENT

NEURAL
NETWORKS

(e.g., doc2vec,
word2vec)

CLUSTERING

CLASSIFICATION

KERNEL
LEARNING

(e.g., STRING
KERNELS)

MULTIDIMENSIONAL
EMBEDDING

SENTIMENT
ANALYSIS

Figure 4.7: Representation learning for converting sequences to semantically knowledgeable
embeddings

3. Neural networks: In recent years, a number of neural network techniques such as
word2vec [341] and doc2vec [275] have been proposed that incorporate sequence infor-
mation in creating word and document embeddings. These methods are discussed in
detail in Chap. 10.

All these methods achieve the same task of creating a multidimensional representation that
can be leveraged with existing off-the-shelf methods for clustering. This overall framework
is shown in Fig. 4.7.

4.8.1 Kernel Methods for Clustering

As discussed in Sect. 3.6 of Chap. 3, string kernels can be used to incorporate sequence
information into kernel representations. The basic idea is that these methods work with
similarity matrices (defined on the string representations) rather than the document-term
representations. The most common algorithms for kernel-based clustering include kernel
k-means and spectral clustering. The former performs implicit feature engineering with the
kernel trick, whereas the latter performs explicit feature transformation with only a small
number of eigenvectors. In the following, we describe both these methods.

4.8.1.1 Kernel k-Means

The kernel k-means approach can be implemented in various ways, the most convenient
of which is with the use of a normalized similarity matrix. Let S = [sij] be an n × n
similarity matrix, which contains the pairwise similarity information between the string
representations of the documents. The matrix is normalized as follows:

sij ⇐ sij√
sii · √sjj

(4.24)

The effect of the normalization is that every data point lies on the unit sphere in (trans-
formed) kernel space. As discussed in Sect. 2.5 of Chap. 2, it is equivalent to use the dot
product, the Euclidean distance, or the cosine with such a normalization. Therefore, one can
use the dot product for simplicity. Assume that the transformation implied by the kernel
similarity matrix is denoted by Φ(·) so that sij = Φ(Xi) · Φ(Xj).

100 CHAPTER 4. TEXT CLUSTERING

The kernel k-means algorithm proceeds as follows. We start with a random assignment
of points to the k clusters, denoted by C1 . . . Ck. The usual implementation of the k-means
algorithm determines the centroids of the clusters as the representatives of the next iteration.
The kernel k-means algorithm computes the dot product of each point to the various clusters
in transformed space and re-assigns each point to its closest centroid in the next iteration.
How can one compute the dot product between a transformed point Φ(Xi) and the centroid
Yj of Cj (in transformed space)? This can be achieved as follows:

Φ(Xi) · Yj = Φ(Xi) ·
(
∑

q∈Cj
Φ(Xq))

|Cj | =

∑
q∈Cj

Φ(Xi) · Φ(Xq)

|Cj | =
∑

q∈Cj

siq
|Cj |

Therefore, for any given point Xi, we only need to compute its average kernel similarity
to all points in that cluster. The basic idea of being able to perform such operations in
transformed space without explicitly performing the transformation is referred to as the
kernel trick.

Instead of the centroids, the approach does require the explicit maintenance of assign-
ments of each point to various clusters in order to recompute the assignments for the next
iteration. As in all k-means algorithms, the approach is iterated to convergence. For a data
set containing n points, the approach requires O(n2) time in each iteration of the k-means
algorithm, which can be quite costly for large data sets. The approach also requires the
computation of the entire kernel matrix, which might require O(n2) storage. However, if
the similarity function can be computed efficiently, then one does not need to store the
kernel matrix a priori, but simply recompute individual entries on the fly when they are
needed. The main problem is that many substring similarity functions require dynamic pro-
gramming, which are not particularly efficient to compute. In such cases, one must consider
the fact that the approach will require as many as O(n2) similarity computations in each
iteration of the k-means method. Another disadvantage of the kernel trick is that it can be
paired with only a restricted subset of clustering algorithms (e.g., k-means) that use simi-
larity functions between points. Not all clustering algorithms are equally friendly to the use
of the kernel trick. Furthermore, one can perform no further engineering or normalization
of the extracted features, if they are being used only indirectly via the kernel trick.

4.8.1.2 Explicit Feature Engineering

Explicit feature engineering works by actually materializing the kernel SVD transformation
and applying an off-the-shelf algorithm on the transformed data. This is a more flexible
approach of enabling arbitrary clustering algorithms to work with kernel transformations,
rather than simply algorithms (like k-means) that can be expressed in terms of pairwise
similarities. The broader approach of explicit feature engineering works by diagonalizing
an n× n similarity matrix S = QΣ2QT as follows:

Diagonalize S = QΣ2QT ;
Extract the n-dimensional embeddings in rows of QΣ;
Drop any zero eigenvectors from QΣ to create Q0Σ0;
Apply any existing clustering algorithm on rows of Q0Σ0;

The columns of Q0 contain the non-zero eigenvectors, and the n rows of Q0Σ0 contain
the embeddings of the n points. It is noteworthy that all n eigenvectors are extracted and
only the zero eigenvectors are dropped. Such zero eigenvectors show up as zero columns
in QΣ. Explicit feature engineering is exactly equivalent to the use of the kernel trick
only when all non-zero eigenvectors (no matter how small) are retained. The embedding

4.8. CLUSTERING TEXT AS SEQUENCES 101

dimensionality can be as large as the number of points n, if no dimensions are dropped. The
space requirements of such an approach can therefore be O(n2). Furthermore, the running
time requirement for extracting all n eigenvectors is O(n3), which can be prohibitive.

A natural question arises as to whether one can drop the lower-order eigenvectors to im-
prove the space requirements and computational efficiency. Indeed, many implementations
of kernel methods such as spectral clustering do drop lower-order eigenvectors. However,
dropping lower-order eigenvectors is not without its pitfalls. Often, a complex data set will
require a large number of dimensions to express the complex variations in the local shapes
of the data distribution. An example is provided in Sect. 3.6, in which a large number of
eigenvectors are required to express non-convex clusters (cf. Fig. 3.9a). In this sense, nonlin-
ear dimensionality reduction methods should be viewed as feature engineering techniques
(unlike linear dimensionality reduction methods where the primary goal is feature space
compression). The main problem in unsupervised settings is that it is hard to know the cor-
rect number of dimensions to use, and even extremely low-order eigenvectors are sometimes
informative in complex distributions. The safest solution is to keep all nonzero eigenvectors
(or drop only a small percentage of them). However, this might result in an n-dimensional
data set with n points, which requires O(n2) space.

A solution to this computational dilemma is the use of Nyström sampling, which sub-
samples a set of s documents in order to create an s-dimensional representation. Typically,
the value of s is independent of the corpus size, although it depends on the complexity of
the underlying data distribution (e.g., number of clusters). Then, the approach proceeds as
follows:

Draw a subsample of s documents from the corpus;
Use the Nyström method (cf. Sect. 3.6.2) to create an s-dimensional

representation of all documents denoted by the n× s matrix Us;
Apply any existing clustering algorithm on Us;

In order to improve robustness, the approach can be used in the ensemble-centric setting
discussed in Sect. 4.7. The clustering is repeated m times, and the results are integrated into
a single robust clustering using the methodology discussed in Sect. 4.7.2.

4.8.1.3 Kernel Trick or Explicit Feature Engineering?

A natural question arises as whether one should use the kernel trick or explicit feature
engineering. When using explicit feature engineering with the full data, the kernel trick
provides equivalent results (with k-means), but will require O(n2) similarity computations,
whereas feature engineering will require not only these similarity computations, but also
an additional O(n3) time required for eigenvector extraction. The kernel trick will also
require only O(n) space, if one is willing to recompute kernel similarities every time they
are required. Therefore, it would make sense to use the kernel trick.

On the other hand, the choice is not quite as simple, if one uses Nyström sampling with
m ensemble components. In terms of accuracy, the ensembles will almost always provide
higher quality results because of variance reduction effects. The comparisons in computa-
tional time and space requirements are more interesting. The Nyström method requires
O(n · s) similarity computations and O(n · s2) time to extract the eigenvectors for each en-
semble component. The time required for k-means clustering in each ensemble component
is O(n · k · s) with the s-dimensional engineered representation. Since there are m ensemble
components, the overall time required is O(n · s ·m(k + T + s)), which strictly dominates
the O(n ·k ·m) time required for the post-processing phase of the ensemble-centric method.

102 CHAPTER 4. TEXT CLUSTERING

Here, T is the time required for each similarity computation. The running time of kernel
k-means is always O(n2 · T).

Which is larger? For substring kernels that use dynamic programming, the value of
T can be quite large. However, even if we ignore this factor and set it to 1, it seems
that the sampling approach has an advantage. If the corpus has a very large number of
documents, it is possible for s2 · m to be less than n. For example, if the corpus contains
100 million documents, then one would do better with Nyström sampling at m = 20 and
s = 2000. This does not yet include the effect of expensive kernel computation. Increasing T
to 1000 results in a break-even corpus size of a few hundred thousand documents. The only
advantage of the kernel k-means approach is that the Nyström method requires O(n · s)
space, whereas one can choose to compute all similarities on the fly with kernel k-means
and reduce the space requirements to O(n). However, this saving comes at the expense
of repeated computation of the same kernel similarity value across different iterations of
k-means. Explicit feature engineering also provides the opportunity to further enhance the
extracted feature representation by normalization, or by using any of the feature selection
methods discussed earlier in this chapter. These methods are not available by using the
kernel trick. One can also use an arbitrary clustering algorithm, and not be restricted to
the use of k-means. Therefore, explicit feature engineering has significant advantages, which
are often not recognized when the kernel trick is used.

4.8.2 Data-Dependent Kernels: Spectral Clustering

Explicit feature engineering is useful in cases where data-dependent kernels are used. A
data-dependent kernel adjusts the similarity matrix with local or global data statistics, and
therefore the computation of any particular similarity value requires knowledge of the entire
data distribution rather than just a pair of points. Spectral clustering is an instantiation
of kernel k-means in which one is compelled to use explicit feature engineering rather than
the kernel trick. This compulsion is caused by the data-dependent nature of the kernel and
subsequent feature selection/normalization. Spectral clustering uses the following steps,
which are refinements of those used in kernel k-means with explicit feature engineering:

1. (Breaking inter-cluster links): Let S = [sij] be a symmetric n × n similarity
matrix defined over n documents, in which sij is the similarity between documents
i and j. The similarity matrix might be created with the use of a domain-specific
similarity function such as a string subsequence kernel (cf. Sect. 3.6.1.3). The diagonal
entries of S are set to 0. All pairs (i, j) are identified such that documents i and j are
mutual κ-nearest neighbors of each other according to the similarity matrix S. Such
similarity values, sij , are retained in S. Otherwise, the value of sij is set to 0. This
step sparsifies the similarity matrix, and intuitively tries to “break” the inter-cluster
links, so that the resulting points are less likely to be close to one another in the
engineered representation. The number of nearest neighbors, κ, regulates the sparsity
of the similarity matrix.

2. (Normalizing for dense and sparse regions): For each row i, the sum of each
row in the symmetric matrix S is computed as follows:

Si =
∑

j

sij

4.8. CLUSTERING TEXT AS SEQUENCES 103

Intuitively, the value of Si quantifies the “density” in the locality of document i. Then,
each similarity value is normalized using the following relation:

sij ⇐ sij√
Si · Sj

=
sij

GEOMETRIC-MEAN(Si, Sj)

The basic idea is to normalize the similarities between documents with the geometric
mean of the “densities” at their end points. Therefore, the similarity is relative to
the local data distribution. For example, the similarity between two modestly similar
documents in a local region belonging to a rare topic (e.g., beetle fighting) becomes
magnified, whereas the similarity between two documents on a popular topic (e.g.,
stock market) is de-emphasized. This type of adjustment makes the similarity function
more adaptive to the statistics of data locality. For example, if a document is in a very
dense region, it facilitates the creation of a larger number of fine-grained clusters in
that region. At the same time, it becomes possible to create fewer clusters with more
widely separated points in sparse regions. An intuitive way of understanding this (in
the context of a spatial application) is that population clusters in sparsely-populated
Alaska would be geographically larger than those in densely-populated California.

3. (Explicit feature engineering): The resulting similarity matrix S is diagonalized
to S = QΔQT , where the columns of Q contain the eigenvectors, and Δ is a diagonal
matrix containing the eigenvalues. Only the largest r � n eigenvectors (columns) of
Q need to be computed to create a smaller n × r matrix Q0. Furthermore, each row
of Q0 is scaled to unit norm, so that all engineered points (i.e., rows of Q0) lie on
the unit sphere. This type of normalization ensures that the use of Euclidean distance
between points is identical to the use of cosine similarity (cf. Eq. 2.9 of Chap. 2). At
this point, the k-means algorithm is applied on the normalized and engineered points
with the Euclidean distance.

The first two steps change the kernel matrix in a data-dependent way because aggregated
statistics from multiple points are used to change the entries. As in the case of spectral
clustering, a data-dependent kernel often cannot be computed without materializing the
similarity matrix first. Materializing the similarity matrix loses the space-efficiency advan-
tage of the kernel trick over explicit feature engineering, which is one of the reasons that
the kernel trick is not used in this case. Furthermore, the various adjustments to the en-
gineered representation such as the dropping of lower-order eigenvectors cannot be exactly
replicated with the kernel trick. Therefore, spectral clustering is a good example of the
numerous advantages of explicit feature engineering over the kernel trick.

One quirk with spectral clustering is that the diagonal entries of S are set to 0, which
will always5 allow negative eigenvalues in QΔQT . From this point of view, the spectral
kernel S is not positive semi-definite, as is required in kernel methods. However, increasing
all diagonal entries of S by an amount equal to the most negative eigenvalue does not change
the eigenvectors (embedding), and also makes the matrix positive semi-definite. It is much
easier to interpret spectral clustering as a kernel technique with this cosmetic change. The
main difference is that one uses Q as the embedding in spectral clustering (rather than
Q
√
Δ), and the former is invariant to translation of the diagonal entries of S. Because of

these types of minor quirks, it is often forgotten that the spectral method is an approximate
instantiation of kernel k-means after data-dependent modification of the kernel matrix.

5Each of the respective sums of the diagonal entries of S and Δ are the same because the trace of a
matrix is invariant under similarity transformation [460]. Therefore, the eigenvalues sum to 0. Unless all
eigenvalues are 0 (i.e., S = 0), at least one negative eigenvalue will exist.

104 CHAPTER 4. TEXT CLUSTERING

4.9 Transforming Clustering into Supervised Learning

A neat connection exists between unsupervised and supervised6 learning, because of which
clustering problems can be solved by repeated execution of any classification algorithm. This
is a useful result, because it unlocks the use of hundreds of off-the-shelf classifiers for clus-
tering. The expectation-maximization algorithm discussed in this chapter is a special case
of this approach, which uses a repeated application of the näıve Bayes classifier. Similarly,
the k-means algorithm can be viewed as a repeated application of the centroid classifier.
In spite of the wide popularity of expectation-maximization and k-means, it is surprising
that the notion of using an arbitrary classifier for clustering is rarely explored. Such an
approach offers modeling choices with more interesting properties than the näıve Bayes or
the centroid classifier. For example, numerous deep learning methods like long short-term
memory (cf. Sect. 10.7.5 of Chap. 10) are designed for text classification. These classifiers
treat text as sequences and their use as subroutines also results in the incorporation of se-
mantic properties of text in clustering. In general, any classifier that works at the sequence
level is potentially interesting.

The basic idea is to assume that each of the k clusters corresponds to a “class” in the
data. We have a classification algorithm A available, which can be trained on a labeled data
set, and it returns scores associated with each of the k different classes when applied to
a test instance (i.e., unlabeled instance). Without loss7 of generality, we can assume that
the scores are non-negative and sum to 1. Furthermore, it is assumed that classifier A can
be used in cases where the training instances are weighted, and the classifier gives propor-
tional importance to instances in accordance with their weight. One can always convert an
unweighted classifier to a weighted classifier by repeatedly sampling training instances in
proportion to their weights, training the classifiers, and averaging the predictions over these
models.

The approach starts by randomly assigning the n documents in the corpus to the k
clusters (or, preferably, by using a simple algorithm like k-means), and estimates the initial
parameters of algorithm A by applying the training step (see below) with respect to this
“class” labeling. Subsequently, it uses the following two steps iteratively:

1. (Prediction step): Use currently trained algorithm A to predict scores of each class
(i.e., cluster) for each document in the data set. For each document-class pair, create
a training instance with weight equal to the corresponding score. This process will
create a training data set with O(n · k) instances in which each document takes on all
the labels, albeit with different weights.

2. (Training step): Train the algorithm A on the weighted training data set from the
prediction step to create an updated model.

These steps are repeated to convergence. The reader is strongly encouraged to compare the
iterative approach above with the expectation-maximization method discussed in Sect. 4.4.
One issue in the training step is that the training data set contains k copies of the same
instance, albeit with different weights and class labels. Some classifiers can cause problems
with such data sets. One way of avoiding this problem is to sample only one of the duplicate
instances in proportion to its weight while creating the training model.

6This section requires an understanding of the classification problem. We recommend the uninitiated
reader to skip this section at the first reading of the book, and return to it only after covering the material
in the next chapter. The notations and terminologies used in this section assume such an understanding.

7The sigmoid function 1/(1 + e−λs) can be used to convert an arbitrary score s to the range (0, 1),
which is followed by normalizing the scores to sum to 1 over all classes.

4.10. CLUSTERING EVALUATION 105

4.9.1 Practical Issues

As in the case of expectation-maximization, a pervasive risk with the use of this approach
is that it can get stuck in local minima. Local minima become particularly likely when a
complex classifier with an over-fitting tendency is used. The approach depends crucially on
generalizing and smoothing out the (initial) random variations in cluster identifier distribu-
tion into a more coherent distribution over many iterations. This is not possible with com-
plex classifiers that are too ready to fit to any non-smooth class distribution. For example,
one of the reasons that k-means gets stuck in local minima less often than expectation-
maximization is because it uses a relatively simple centroid classifier. Larger data sets allow
the use of more complex classifiers including neural networks. Furthermore, it might some-
times be advisable to use simpler classifiers in the first few iterations and gradually increase
the complexity of the classifier. For example, one can use a neural network with a smaller
number of parameters in the initial iterations, and increase the number of parameters in
later iterations. Creating the model on sampled data (in proportion to weights) in each
training iteration is also helpful in avoiding overfitting and local minima. Other options
include the use of different classification algorithms in different iterations, or the use of
different random subsets of features for training/prediction in different iterations.

4.10 Clustering Evaluation

Clustering algorithms can be evaluated using either internal validity measures, or by using
external validity measures.

4.10.1 The Pitfalls of Internal Validity Measures

Internal validity measures use a criterion, such as the average cosine similarity to the nearest
cluster centroid, to evaluate a clustering. It is not difficult to see that this criterion is used
within the objective function optimized by clustering algorithms like k-means. In fact, most
internal validity measures use the criteria derived from the objective functions of various
clustering algorithms or are at least related to these criteria in some way. This creates a
problem in using internal validity measures to fairly compare two clustering algorithms with
very different objective functions. For example, if we use the average cosine similarity to
the nearest cluster centroid as an internal validity criterion, it is virtually impossible for
any other clustering algorithm to outperform k-means for the same number of clusters. The
main problem is that the measure does not tell us anything about the inherent goodness
of a particular clustering, but more about how well the criterion of a particular clustering
algorithm matches with the evaluation criterion. In other words, internal validity measures
are often inherently biased towards specific algorithms or specific parameter settings of the
same algorithm, and are dangerous to use because they can lead to misleading views on the
accuracy of particular clustering algorithms. This book will, therefore, pointedly, omit the
discussion of internal validity measures.

4.10.2 External Validity Measures

External validity measures use the dependent variables (or labels) from supervised learning
problems to evaluate the clustering. The dependent variable is not used by the clustering
algorithm, and therefore the criterion is inherently external both to the algorithm and the
data set used for clustering. For example, consider a classification problem from the domain

106 CHAPTER 4. TEXT CLUSTERING

of earth science in which the features describe characteristics of trees, and the class labels
correspond to the forest cover type. In such a case, the clustering algorithm would only use
the features to create the clusters without using the feature cover type. Subsequently, it is
measured whether the class labels are spread out randomly over the different clusters or
whether each cluster is dominated by a single class label. It is generally desirable for the
individual clusters to be dominated by particular class labels.

The main assumption in external validity measures is that the external class labels
respect the inherent clustering structure of the data to a large degree. Although this might
not be a perfect assumption, it is still a better choice than the use of internal validity
measures. After all, class labels are often selected on the basis of natural semantic groupings
in the corpus. Over a large number of data sets, any particular external validity measure
can provide a very good indicator of the quality of the results in real settings.

The following will provide an overview of the key validity measures that are used fre-
quently. Therefore, we introduce the notation that will be used consistently in this section.
Consider a situation in which a particular clustering algorithm finds kd clusters from a
corpus of n documents containing n1 . . . nkd

documents. Furthermore, the number of class
labels (or ground-truth clusters) in the underlying data set is denoted by kt, and the num-
bers of documents belonging to the different ground-truth clusters are denoted by g1 . . . gkt

.
The number of algorithm-determined clusters, kd, may not be the same as the number,
kt, of class labels/ground-truth clusters. The number of documents in the ith algorithm-
determined cluster that belong to the jth class label is denoted by mij . Then, the following
relationships become immediately evident:

kt∑

j=1

mij = ni ∀i ∈ {1 . . . kd}

kd∑

i=1

mij = gj ∀j ∈ {1 . . . kt}

kd∑

i=1

ni =

kt∑

j=1

gj = n

One of the simplest validity measures used is the cluster purity. The basic idea in cluster
purity is to determine the level of dominance of the class labels in the algorithm-determined
clusters. This purity, P , can be computed as follows:

P =

∑kd

i=1 maxj{mij}
∑kd

i=1 ni

=

∑kd

i=1 maxj{mij}
n

(4.25)

An equivalent way of computing the cluster purity is to compute the purity of the ith cluster
as (maxj{mij}/ni) and compute its weighted average over all clusters. The weight of the ith
cluster is proportional to the number of documents in it. A different way of understanding
purity is by viewing the clustering method as a classifier. Each document is labeled with
the dominant label of the algorithm-determined cluster it belongs to. The accuracy of such
a prediction with respect to the external ground-truth is the cluster purity. Therefore, the
cluster purity always lies between 0 and 1. It is noteworthy that most external validity
measures are related to various quantifications used in supervised learning in one form or
the other. This fact is not a co-incidence because external validity measures use a supervised
setting to test the effectiveness of an unsupervised algorithm.

4.10. CLUSTERING EVALUATION 107

The main advantage of the cluster purity measure is that it is simple and easy to
understand in an intuitive way. However, it pays too much attention to only the most
dominant label in a particular cluster, and it ignores the relative distribution of other labels.
Consider a setting in which we have three algorithm-determined clusters and ten class labels.
The data set is clustered in two different ways, which are referred to as partitioning A and
partitioning B, respectively. Suppose that each of the three clusters have 70% presence of a
unique label in both A and B in an identical way. However, in partitioning A, the remaining
seven labels are randomly distributed across the different clusters. In partitioning B, the
remaining seven labels are neatly segmented across the three clusters in a mutually exclusive
way. Clearly, one would prefer partitioning B over partitioning A. However, cluster purity
is unable to distinguish between partitioning A and partitioning B because it ignores the
non-dominant labels in the clusters. Such clusterings can be distinguished using two other
measures, which are referred to as Gini index and entropy. As in the case of cluster purity,
these measures are also borrowed from the supervised learning domain.

Let pij = mij/ni be the fraction of the points in cluster i that belong to class (ground-

truth cluster) j. Therefore, we have
∑kt

j=1 pij = 1. Both the Gini index and entropy are
defined in terms of pij . For Gini index, we first define the Gini index G(i) that is specific
to cluster i as follows:

G(i) = 1−
kt∑

j=1

p2ij (4.26)

The Gini index lies between 0 and 1−1/kt, in which a perfectly homogeneous cluster receives
a Gini index of 0, whereas a cluster with equally distributed class labels receives a value of
1 − 1/kt. Therefore, smaller values of the Gini index are indicative of superior clustering.
The overall Gini index G is the weighted average of the Gini index of the individual clusters:

G =

∑kd

i=1 ni ·G(i)

n
(4.27)

A second measure that is commonly used is that of conditional entropy, which is very
similar to the Gini index. Let E(i) be the conditional entropy specific to cluster i. Then,
the value of E(i) is defined as follows:

E(i) = −
kt∑

j=1

pij log(pij) (4.28)

As in the case of the Gini index, lower values of the conditional entropy are indicative
of a clustering of higher quality, and it always lies in the range (0, log(kt)). The overall
conditional entropy E is obtained by computing the weighted average of the cluster-specific
values:

E =

∑kd

i=1 ni · E(i)

n
(4.29)

The conditional entropy measures how much uncertainty remains in predicting the class
labels, if one were given the clustering. For example, if one sets kd = n, the clusters would
be singleton points containing only one class, and there would be no uncertainty in predicting
the class label. This is consistent with the fact that the conditional entropy of this case can
be shown to be 0. It is noteworthy that all of the aforementioned measures will generally
give better values of clustering quality when the number of algorithm-determined clusters kd
is increased. Therefore, they cannot be used to compare clusterings of varying granularity.

108 CHAPTER 4. TEXT CLUSTERING

A measure related to conditional entropy is the normalized mutual information, which is
better normalized for the number of clusters in the data. First, we define the notion of
mutual information between the algorithm-determined clusters and class labels:

MI =

kd∑

i=1

kt∑

j=1

mij

n
log

(
n ·mij

ni · gj

)

(4.30)

The mutual information is always nonnegative, and higher values are desirable. For a partic-
ular data set and class labeling, the sum of the conditional entropy and mutual information
can be shown to be a constant that depends only on the entropy of the class labeling, ir-
respective of the algorithm used for clustering. Therefore, the mutual information can be
viewed as an information gain over the original class labeling, and it conveys almost the
same information about the quality of clustering as conditional entropy. The only difference
is that larger values are more desirable in this case, with a value of 0 indicating independence
between clustering and class labels. These relationships are also discussed in Sect. 5.2.4 of
Chap. 5 in the context of feature selection. However, one advantage of the mutual informa-
tion is that it can be normalized to a value in (0, 1) that is less sensitive to the number
of algorithm-determined clusters. The normalized mutual information, NMI, is defined as
follows:

NMI =
2 ·MI

−∑kd

i=1
ni

n log
(
ni

n

)−∑kt

j=1
gj
n log

(gj
n

) (4.31)

The denominator is simply the sum of the entropies in the ground-truth labels and
algorithm-determined clusters, and is at least equal to twice the mutual information. The
normalized mutual information can take on a value of 1, when kd = kt and the clusters
match up exactly with the class labels. Therefore, the measure is biased in favor of cluster-
ings where the number of algorithm-determined clusters is close to the number of classes in
the data. This can sometimes be a problem if the number of natural clusters in the data is
not equal to the number of classes in the data. However, if we assume that the ground-truth
classes reflect the true number of clusters in the data, then the measure is a reasonable one
to use to compare between clusters of varying granularities. After all, not picking the correct
number of clusters should also be considered a mistake made by the algorithm-determined
clustering in such a case.

Finally, a number of measures sample pairs at objects and quantify the agreement be-
tween the algorithm-determined cluster indices and class labels. The Rand Index samples
pairs of documents and computes the fraction of pairs in which the algorithm-determined
cluster indices and class labels come to the same conclusion about whether or not they
should belong to the same cluster. Therefore, the Rand Index lies in the range (0, 1), and
higher values are better. The Fowlkes-Mallows measure computes the geometric mean be-
tween the precision and recall. The precision is defined as the average fraction of pairs in
an algorithm-determined cluster that belong to the same ground-truth label. The recall
is defined as the average fraction of the pairs in a ground-truth cluster that belong to
the same algorithm-determined cluster. The geometric mean of these two quantities is the
Fowlkes-Mallows measure. For large data sets, the precision and recall must be estimated
by sampling because the total number of pairs is large. One advantage of measures like the
Rand Index and Fowlkes-Mallows is that it is possible (to a limited extent) to compare two
clusterings with a varying number of algorithm-determined clusters kd, which is not possible
with other measures like purity that improve with increasing kd. This is because the preci-
sion and recall are affected in opposite directions by varying kd. However, these measures

4.10. CLUSTERING EVALUATION 109

would still be biased towards values of kd that are close to kt, because the assumption is
that the class labeling reflects the true number of clusters in the data. Note that the best
possible value of 1 can only be achieved by these measures when kd = kt.

4.10.2.1 Relationship of Clustering Evaluation to Supervised Learning

Clustering evaluation measures are closely related to supervised learning in two ways:

1. Supervised accuracy measures: The cluster purity measure can be viewed as a gen-
eralization of the accuracy measure in classification, where the clustering is used to
perform classification. Similarly, the Fowlkes-Mallows measure generalizes the preci-
sion/recall measures used in supervised learning. A discussion of classification evalu-
ation is provided in Sect. 7.5 of Chap. 7.

2. Categorical feature selection measures: All feature selection measures used in super-
vised learning for categorical attributes can be generalized easily to clustering eval-
uation. This is because feature selection methods effectively use the discrete values
of a categorical attribute in an analogous way to a cluster of repeated values, when
measuring the discriminative power of that categorical attribute. As a result, mea-
sures like the Gini index and entropy are also used for feature selection in supervised
learning. Therefore, many supervised feature selection measures like the χ2-statistic
can also be used for clustering evaluation. A discussion of feature selection measures
in supervised learning is provided in Sect. 5.2 of Chap. 5.

This relationship between clustering and supervised evaluation measures is useful, because
one can use it to design many high-quality evaluation measures for clustering.

4.10.2.2 Common Mistakes in Evaluation

There are several common mistakes made by practitioners while bench-marking clustering
algorithms:

1. Most clustering measures cannot evaluate the relative quality of clusterings of different
granularities in an unbiased way. For example, increasing the value of k will usually
improve the cluster purity, Gini index, and the entropy. When each point is in its own
cluster, a perfect value of the measure will be achieved. Although the Fowlkes-Mallows
measure is less sensitive, it is biased in favor of clusterings in which the number of
algorithm-determined and ground-truth clusters match.

2. A common temptation for a practitioner is to evaluate different variations of a clus-
tering algorithm using some external validity measure and then select the best option.
However, by using an external validity measure for tuning, the analyst has unwittingly
incorporated supervision in the algorithm. To ensure that the clustering is truly un-
supervised, one must assume that the ground-truth labels do not exist while setting
the algorithm parameters.

Clustering is a hard problem to evaluate because of its unsupervised nature. Often, the only
true evaluation of a clustering is its utility in an application-centric setting.

110 CHAPTER 4. TEXT CLUSTERING

4.11 Summary

The problem of clustering is that of unsupervised learning in which no guidance is provided
to a learner about the natural groupings in the data. Feature selection methods typically
evaluate the consistency in the similarities over individual features with those over other fea-
tures. Most matrix factorization and topic modeling methods can be used to discover over-
lapping document clusters and word clusters from the corpus. Traditional mixture models
use a specific model of generation of a document from each mixture component. Similarity-
based methods such as the k-means algorithm are closely related to mixture models, but
are less likely to be stuck in local minima because of their simplicity. Hierarchical meth-
ods are more expensive than k-means methods but they often provide clusterings of better
quality. Therefore, it sometimes makes sense to combine hierarchical and k-means methods
to obtain high-quality results.

Clustering ensembles are useful for combining the results of different clustering algo-
rithms and in obtaining a single more robust clustering. Such methods also have utility
in improving the efficiency of clustering methods when they are combined with methods
like subsampling. Clustering methods that use the sequence information inside text are al-
most always feature engineering methods. Methods like kernel k-means and explicit feature
engineering can both prove useful when combined with string-based kernels. Feature engi-
neering has the advantage that one can obtain high-quality results with ensembles, and also
use algorithms other than the k-means approach. Clustering evaluation measures are either
internal or external. Internal evaluation measures are often misleading and generally not
recommended. External measures use class labels as the ground-truth and typically adapt
classification accuracy measures in order to quantify the quality of a clustering.

4.12 Bibliographic Notes

Surveys on text clustering may be found in [8, 14]. A feature selection survey for cluster-
ing may also be found in [8], and some of the these methods are also applicable to text
data. Term strength was one of the earliest unsupervised methods [498] proposed for text
feature selection. The use of unsupervised models for supervised feature selection was pro-
posed in [379] in the context of outlier detection. A wrapper method that combines the
χ2-statistic with probabilistic clustering is proposed in [291]. Most of the matrix factoriza-
tion and dimensionality reduction techniques discussed in Chap. 3 can be used as feature
engineering methods for improving clustering applications, because they reduce the effects
of synonymy and polysemy and bring out the key latent concepts in the data. Interestingly,
it is also possible to use clustering to engineer such types of concept decompositions for
other applications like similarity search [12, 133].

Nonnegative matrix factorization was proposed in [276], and PLSA was proposed in [224,
225]. The equivalence between the two was shown in [137]. The use of nonnegative matrix
factorization for clustering is advocated in several works [135, 138, 443, 508]. Among these
works, the work in [138] discusses how different types of constraints within the nonnegative
matrix factorization lead to clusterings with varying levels of overlaps among the rows and
the columns. A chapter on nonnegative matrix factorization methods for clustering may be
found in [8]. A survey on co-clustering for biological data may be found in [317].

The earliest works on probabilistic clustering [289, 381] were focused on distributional
clustering of words based on co-occurrence. These ideas were generalized to the supervised
setting in [33]. The multinomial version of unsupervised clustering may be found in [91]. The

4.13. EXERCISES 111

work in [364] is a semi-supervised variant of the expectation-maximization algorithm. This
work illuminates the entire spectrum of possibilities between the unsupervised expectation-
maximization algorithm and the fully supervised näıve Bayes algorithm.

The k-means algorithm has been explored extensively by several researchers. The
projection-based approach discussed in this book is based on [438]. The basic ideas in
k-means clustering have been generalized to the streaming setting [13, 537]. Numerous hi-
erarchical methods have also been proposed for clustering, and a comprehensive overview
may be found in [8]. In the text domain, a single-linkage implementations are discussed
in [19, 118], and the centroid clustering method is discussed in [486]. The combination of
hierarchical and k-means clustering (cf. Sect. 4.6.2) is discussed in the Scatter/Gather work
in [124]. This approach also discusses alternatives to using hierarchical methods, such as
buckshot and fractionation in order to make the algorithms more efficient. A semi-supervised
variant of k-means is found in [6], and this paper also illuminates the connections between
semi-supervised clustering and classification. A detailed comparison of various clustering
algorithms may be found in [536].

A survey on ensemble methods for clustering may be found in [187]. Sequential knowl-
edge can be incorporated into text clustering methods by using frequent phrases [525].
Representation learning methods have found much interest in the text community for em-
bedding sequential relationships among words into multidimensional representations. In
particular, neural network methods like word2vec [341] and doc2vec [275] are used to embed
text sequences into multidimensional methods. The Nyström sampling method is discussed
in [501], and its use for unsupervised learning is discussed in [9]. Numerous clustering va-
lidity measures are discussed in detail in [8, 524].

4.12.1 Software Resources

One of the earliest libraries for clustering is the Bow toolkit [325], which is written in C.
The Python library scikit-learn [550] contains several text clustering tools [569]. The R-
based tm library [551] can be used for preprocessing the documents. Most R distributions
contain the stats package, which contains the kmeans and hclust functions by default.
These functions perform k-means and hierarchical clustering, respectively. However, since
these implementations use the Euclidean distance function rather than the cosine function,
it is important to normalize each vector-space representation up front to unit norm, so that
using the cosine, dot product, or the Euclidean distances create the same result (cf. Sect. 2.5
of Chap. 2). The Weka library also contains several Java implementations of clustering algo-
rithms [553]. The statistics and machine learning toolbox in MATLAB has functions [570]
for k-means and hierarchical clustering. It also provides the ability to automatically compute
the dendrogram from a data set. In many of these packages, it is important to normalize
the documents up front to unit length, because they use the Euclidean distance under the
covers.

4.13 Exercises

1. The Gini index criterion is discussed in this chapter (for cluster validity). Show how
you can pair this criterion with the k-means algorithm to perform unsupervised fea-
ture selection. Which other cluster validity criterion (or criteria) can you use for
unsupervised feature selection in this manner?

2. Implement the feature selection criterion for term strength.

112 CHAPTER 4. TEXT CLUSTERING

3. Consider the nonnegative tri-factorization D = QΣPT of rank-k, in which Σ is con-
strained to be diagonal/nonnegative. Furthermore P and Q are constrained to satisfy
QTQ = PTP = I. The optimization formulation of this problem is discussed in the
chapter. Show how you can use the k-means algorithm to create an initialization point
for the gradient-descent steps of this optimization formulation.

4. Suppose your text documents have a representation in which you only know about the
presence or absence of words in half the lexicon and you know the exact frequencies of
words in the remaining half. Show how you can combine the Bernoulli and multivariate
models to perform text clustering.

5. Implement the k-means algorithm for clustering.

6. Suppose that you represent your corpus as a graph in which each document is a
node, and the weight of the edge between a pair of nodes is equal to the cosine
similarity between them. Interpret the single-linkage clustering algorithm in terms of
this similarity graph.

7. Suppose you were given only the similarity graph of Exercise 5 and not the actual
documents. How would you perform k-means clustering with this input?

8. For the case of hierarchical clustering algorithms, what is the complexity of centroid
merging? How would you make it efficient?

9. What is the number of possible clusterings of a data set of n points into k groups?
What does this imply about the convergence behavior of algorithms whose objective
function is guaranteed not to worsen from one iteration to the next?

10. Implement the group-average linkage clustering algorithm.

11. As discussed in the chapter, explicit feature engineering methods can be made faster
and more accurate with Nyström sampling. Spectral clustering has also been presented
as a special case of kernel methods with explicit feature engineering in this chapter.
Discuss the difficulties in using Nyström sampling with spectral clustering. Can you
think of any way of providing a reasonable approximation? [The second part of the
question is open-ended without a crisp answer.]

Chapter 5

Text Classification: Basic Models

“Science is the systematic classification of experience.”—George Henry Lewes

5.1 Introduction

In classification, the corpus is partitioned into classes that are typically defined by
application-specific criteria. Therefore, training examples are provided that associate data
points with labels indicating their class membership. For example, the training examples
extracted from a news portal on political matters might attach one of three labels associ-
ated with each of the documents, such as “senate,” “congress,” and “legislation.” Then, for
a given set of test examples in which labels are not available, the goal is to place them in
one of these categories with the use of a supervised model that was constructed using the
training examples. The process of learning a categorization model from the training data,
and then applying it to the test data is referred to as generalization. The basic principle here
is that we are generalizing our experiences from (specific) training examples with known
labels to arbitrary test data with unknown labels.

Text classification and clustering are closely related problems. One can view each class in
an analogous way to a cluster. Unlike clustering, the problem of classification distinguishes
between training examples and test examples, and labels are observed only for training ex-
amples. Therefore, the supervised model from the training data is used to predict the labels
of the test examples. For example, the model might learn that the word “representative”
is related to the label “congress” and it might use this fact to assign test documents con-
taining this word to the label “congress.” A key observation is that the training instances
inherently fix the nature of these “clusters” (i.e., classes) with the use of labels. Therefore,
the test examples are always assigned to one of the pre-defined training labels (groupings)
in classification, whereas clustering has a more open-ended view in which it uses the simi-
larity structure of the data to define its own groupings (which can eventually be manually
labeled by a domain expert). This is the reason that classification is referred to as supervised
learning, because the training examples play the role of a teacher who guides the students

114 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

towards a specific goal of finding a particular type of grouping. This type of guided grouping
provides significant control in many application-centric settings:

1. News portals: News portals often organize incoming documents on the basis of a
specific topic such as politics, sports, entertainment, and so on. In many cases, the
topical categorization needs to be done in real time, as new articles are received
continuously. This process is also referred to as news filtering. A similar principle
applies to the organization of large groups of document collections such as digital
libraries or scientific literature.

2. Email and spam filtering: Many email providers allow the ability to filter spam in an
automated way. This is a classification application in which each email is labeled as
either “spam” or “not spam.”

3. Opinion mining and sentiment analysis: In opinion mining and sentiment analysis,
the basic idea is to use the text of reviews, blogs, or social posts in order to make
judgements about the opinions and sentiments of users. As discussed in Chap. 13, this
problem is a direct application of classification.

The problem of text classification is formally defined as follows. Consider an n× d training
data matrix D, whose n rows are the tf-idf representations of the n documents. These
rows contain the d-dimensional row vectors X1 . . . Xn. In addition, the ith document Xi is
associated with the class label yi. We can assume that the column vector y = [y1 . . . yn]

T

contains all the class labels associated with the n training instances. It is assumed that
the class label of each training instance is drawn from the set of k label values denoted by
L = {1, . . . k}, although there are some special conventions for binary classes (which will be
discussed later). Therefore, the pair (D, y) represents the training data, and a one-to-one
correspondence exists between rows of D and entries of y. This data matrix is used to create
a model for classifying each unlabeled test instance Z:

Definition 5.1.1 (Data Classification) Given an n× d document-term matrix D asso-
ciated with the n-dimensional vector of class labels y, predict the class label for an unlabeled
test document Z.

More generally, one can create a test matrix Dt of size nt × d. Therefore, there are nt

test instances, Z1 . . . Znt
, which are rows of this matrix. Each such test instance needs to

be independently classified using the above model. The aforementioned definition is the
simplest model formulation. In some cases, instead of predicting the labels of each instance
independently, one might want to sort all the test instances inDt in order of their propensity
to belong to a particularly important class. For example, in a spam-detection application,
one might want to rank all the emails in order of their propensity to be spam.

5.1.1 Types of Labels and Regression Modeling

For k-way classification, it is assumed that the label set is denoted by L = {1 . . . k}. Note
that the values 1 . . . k represent only discrete identifiers without any ordering among them.
For example, the semantic interpretation of the labels in a color-prediction application
could correspond to L = {Blue,Red,Green}. The only case in which one might impose an
arbitrary ordering between labels (and use them as numeric quantities) is the binary case in
which the value of k is 2. Many binary classification algorithms use either the convention L =
{0, 1}, or they work with the convention L = {−1,+1}. The binary classification problem is

5.1. INTRODUCTION 115

particularly common in practical settings, and some classification models (cf. Chap. 6) are
naturally designed to solve only the binary case. Nevertheless, these classifiers can also be
used for k-way classification with some algorithmic tricks.

So far, we have viewed the class label only from the point of view of partitioning the data,
and therefore it is defined as a categorical label. A more general view is that this label could
be an arbitrary numerical quantity, such as a decimal value drawn from the real domain.
In such a case, we use the term dependent variable to refer to this quantity rather than as a
class variable. The entries in each row (document) of D are referred to as the independent
variables of that instance. The problem in which the dependent variable is numerical is
also referred to as regression modeling. It is easy to see that binary classification can be
considered a rudimentary special case of regression modeling. The dependent variable is
also referred to as the response variable or regressand. The independent variables are also
referred to as the explanatory variables, input variables, feature variables, predictor variables,
or regressors. All the models discussed in this chapter can be used for both classification
and regression, although our primary focus will be on classification.

5.1.2 Training and Testing

Most classifiers have an up front training phase in which only the labeled training data is
used to build a summarized model that relates the characteristics of the documents (e.g.,
term distributions) to the classes. This phase is referred to as training or learning. The
summarized model essentially generalizes the knowledge gained from the training data to
unseen test instances. This prediction of the labels of unseen test instances is referred to as
the testing or prediction phase. It is noteworthy that the accuracy of a trained classifier will
typically be much higher if it is used to “predict” the (known) labels of the (seen) instances
that it was trained on than on the unseen test instances. This is because the trained model
“remembers” some of the specific and unimportant nuances about the training instances
within the summarized model, which improves the accuracy only on these specific instances.
Classifiers that have small gaps in their training and test data accuracy are said to have
good generalization power. It is easy1 to construct classifiers in which the accuracy on the
training data is very high, but that on the test data is extremely poor. This phenomenon is
referred to as overfitting. Overfitting is undesirable, because the only utility of a classifier
arises from correctly predicting instances for which labels are not already available (i.e.,
test data). As a general rule, classifiers with a concise summary model will have better
generalization power, although the overall accuracy depends on several other factors. These
issues will be discussed in Sect. 7.2 of Chap. 7.

The training phase might include a phase of model selection, which corresponds to the
tuning of parameters or other design choices in the algorithm. A very simple way to im-
plement model selection is by hiding (i.e., holding out) a part of the labeled training data
during model construction and then evaluating the accuracy of using various values of the
parameters (or training design choices) on the held out data. This set is referred to as the
validation set, and it is distinct from the test set on which the predictions are finally applied.
After the phase of model selection, the unlabeled instances are predicted with the optimized
design choices.

1Consider a classifier that memorizes the training examples as follows. For any test instance, it is
determined whether a training instance has zero distance to it (which is guaranteed when the test instance
is drawn from the training data). If such an instance is found, the label of that training instance is returned.
Otherwise a random label is returned. Such a classifier will have 100% accuracy on the training data, but
will perform randomly on unseen test instances. The key point is that generalization is about extrapolating
predictions from known instances of the data space (i.e., training points) to all regions of the data space.
Memorizing only the known instances is the worst possible way to achieve this.

116 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

Finally, a decision boundary is a hyperplane or hyper-surface in the data space that
partitions the data into various classes. All classification algorithms attempt to model this
decision boundary directly or indirectly using the training data. It is noteworthy that the
hyper-surface might not be contiguous when a class is not contiguously located in the data
space. Furthermore, a real data set may not contain a sharply defined decision boundary
because there might be regions where the classes are overlapping. As a result, the decision
boundary is sometimes viewed as a region of the data space in which the classification is
ambiguous, and the predicted decision boundary by a particular model is often chosen some-
where in this region to provide the best performance on unseen data. Simplified modeling
assumptions (e.g., linear shape of boundary) are often made during learning, and therefore
it is common for classifiers to make mistakes near the modeled decision boundary.

5.1.3 Inductive, Transductive, and Deductive Learners

Not all classifiers have a clear separation between the training and testing phase. Classifiers
that do create a summarized model up front from the training data are said to be inductive
learners, and their primary goal is to generalize the observation from training data to unseen
instances. These classifiers generalize easily to any unlabeled test instance. However, if more
training data is received, then it could invalidate the model because of the presence of
additional data that conflicts with the currently available summarized model. After all, the
currently available model is only a hypothesis about unseen instances. Most of the classifiers
discussed in this chapter are inductive learners.

In transductive learners, the (unlabeled) test data is included with the labeled training
data in the training phase, and the predictions can be specific only to that particular set
of unlabeled data. Therefore, the generalization achieved with a transductive learner is less
than that achieved with an inductive learner because the resulting models may not generalize
to unseen test instances. However, this specificity also (often) provides the advantage that
the predictions for those specific test instances are more accurate. Such methods are closely
related to semi-supervised methods, because they use both labeled and unlabeled data.

Finally, a fundamentally different way of classifying data is by using deductive learners.
Deductive learners use rules of logic to capture fundamental properties of the instances.
These rules are often obtained using knowledge of the world or other domain characteristics.
In a sense, these rules are considered absolute truth that cannot be invalidated by future
observations. For example, consider the following pair of rules: “Bald men do not have hair.
Only people with hair need combs.” Now if you had a feature in your instance containing
information about whether or not someone was bald, you could use it to predict whether
they will need a comb. A human-centric analogy would be that deductive learning comprises
the lessons you learned from your parents, whereas inductive learning comprises the lessons
you learned from your own life experiences. The latter is known to more effective both in
real life and in machine learning, although one should not discount the guidance provided by
deductive learning where it is available. Inductive learners that encode domain knowledge
about the data within the classification process can be viewed to have some characteristics
of deductive learners, and are therefore hybrid models [378]. The power of deductive learning
is often incorporated indirectly in inductive models by incorporating mild constraints (or
bias) into the model with domain-specific insights. One needs to be careful when using such
methods because strong levels of bias suffocate the ability of the learner to benefit from more
examples. Most of machine learning focuses on inductive learning, because of its emphasis
on observation-driven inference. This chapter will primarily focus on inductive learners.

5.2. FEATURE SELECTION AND ENGINEERING 117

5.1.4 The Basic Models

This chapter will discuss the four basic models for text classification, which are the näıve
Bayes classifier, the nearest-neighbor classifier, decision trees, and rule-based classifiers.
These four classifiers are selected because they are among the oldest methods in the lit-
erature, and are related in fundamental ways to other learning models. For example, the
näıve Bayes classifier can be shown to be a supervised variant of the probabilistic clustering
model discussed in Chap. 4. Similarly, some of the most powerful classifiers in the super-
vised domain like random forests and support-vector machines can be shown to be adaptive
variants of nearest-neighbor classifiers (cf. Sects. 5.5.6 and 6.3.6).

5.1.5 Text-Specific Challenges in Classifiers

Text is extremely sparse and high-dimensional, which causes off-the-shelf, multidimensional
models to behave in unexpected ways. The frequency of a single term often contains little
predictive power, and it is only by using combinations of many features that robust classi-
fication can be achieved. If a classifier uses sequential decisions that prioritizes one feature
strictly before another, this can affect the accuracy of classification negatively because of
overfitting. This observation has implications in the design of classifiers like univariate de-
cision trees that use sequential decisions over individual attributes. In fact, if all features
are used simultaneously, then some simple models like linear classification work better than
in other domains without the need for sophisticated nonlinear transformations of the data
(cf. Sect. 6.5.3 of Chap. 6).

Another consequence of sparsity is that the presence of a particular term in a document
is much more informative than its absence for inferring the class label. This is because the
presence of a term is statistically rare in a sparse document and thereby more informative.
Some classifiers that use excessive information about absent terms perform poorly because
of overfitting. Furthermore, the precise frequency of a term contains much less incremental
information compared to that obtained by knowing that the term is present in the docu-
ment. This asymmetry in the relative importance of different values of the term frequencies
is important to keep in mind while attempting to adapt classifiers from the traditional
multidimensional domain (which tend to treat all values in a symmetric way).

5.1.5.1 Chapter Organization

This chapter is organized as follows. The next section introduces feature selection methods
for classification. The näıve Bayes model is introduced in Sect. 5.3. Section 5.4 discusses
nearest-neighbor methods. Decision trees are discussed in Sect. 5.5. Rule-based classifiers
are introduced in Sect. 5.6. A summary is given in Sect. 5.7.

5.2 Feature Selection and Engineering

Text data is often extracted from sources like the Web in which the authorship varies widely,
with many misspellings and use of non-standard vocabulary and acronyms. Many features
are irrelevant, and including them leads to overfitting, particularly when labeled data are
limited. The discriminative features can be identified by examining the co-occurrence statis-
tics of the various terms with respect to the classes. For example, an undiscriminating term
will be randomly distributed across all classes. On the other hand, a highly relevant term
will be concentrated in a smaller subset of the classes. A number of measures such as the

118 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

Gini index, conditional entropy, and the χ2-statistic are used to measure this type of as-
sociation. Such models are referred to as filter models because a single quantification is
used up front to filter features. All the models discussed in this section, other than those
in Sect. 5.2.6, are filter models. In wrapper models, an iterative feature selection process is
tied to a particular classification model, and the effect of a particular term on the accuracy
of that model is used for feature selection. We will omit a detailed discussion of wrapper
models because they are rarely used in the text domain. Finally, in embedded models (cf.
Sect. 5.2.6), the feature discrimination can be quantified using the intermediate outputs of
a particular classification algorithm.

5.2.1 Gini Index

The Gini index measures the imbalance in the class distribution of a set of instances that
include a particular term. The basic idea is that discriminative features tend to increase
this imbalance. From all instances that contain the term tj , let P (cr|tj) be the fraction (i.e.,
observed probability) that belong to the class r. Therefore, for a k-class problem we have:

k∑

r=1

P (cr|tj) = 1 ∀tj (5.1)

When the term tj is poorly discriminative of the class label, all the values of P (cr|tj) for
varying r and fixed j will be similar and close to 1/k. On the other hand, if the feature is
extremely discriminative, then all documents containing that term will belong to a single
class. As a result, only one of these fractions will be 1, and others will be 0s. How can
we provide a single measure of goodness that captures the desirability of greater skew? A
simple measure is the Gini index G(tj), which is defined as follows:

G(tj) = 1−
k∑

r=1

[P (cr|tj)]2 (5.2)

When all documents containing a term belong to a single class, the Gini index takes its
minimum value of 0. On the other hand, if documents containing the term are evenly
distributed across different classes, the Gini index takes on its maximum value of 1− 1/k.
In other words, the Gini index always lies in the range (0, 1− 1/k), and smaller values are
desirable. Features with large values of the Gini index can be removed. One issue with this
measure is that it does not work very well when the class distributions are imbalanced in
the original data [6]. Therefore, one has to compute a re-normalized value of P (cr|tj) with
respect to the numbers of instances n1 . . . nk in various classes:

fr(tj) =
P (cr|tj)/nr

∑k
s=1 P (cs|tj)/ns

(5.3)

Then, the normalized value of the Gini index may be computed as follows:

Gn(tj) = 1−
k∑

r=1

fr(tj)
2 (5.4)

The re-normalization is a way of forcing the original class distribution to be an even dis-
tribution, and examining how much the addition of term tj changes the class distribution.
Unlike most other measures, the absence of the term in not used in the Gini coefficient
computation. In the text domain, it is sometimes desirable to not use the absence of terms
too strongly, because it is noisy information.

5.2. FEATURE SELECTION AND ENGINEERING 119

5.2.2 Conditional Entropy

Let n(tj) be the number of documents containing term tj out of a corpus of size n ≥ n(tj).
Among all these instances that contain the term tj , let P (cr|tj) be the fraction (i.e., observed
probability) of documents belonging to the class r. Furthermore, among the (n − n(tj))
documents that do not contain tj , let P (cr|¬tj) be the fraction that belong to class r.
Then, the conditional entropy E(tj) is defined as follows:

E(tj) = −
k∑

r=1

{[
n(tj)

n

]

P (cr|tj) · log[P (cr|tj)] +
[
n− n(tj)

n

]

P (cr|¬tj) · log[P (cr|¬tj)]
}

(5.5)
The conditional entropy lies between (0, log(k)) and it measures how much the presence
or absence of a term affects our certainty of being able to determine the class label. For
example, if all documents containing a term belong to one class, and all documents not
containing that term belong to another class, then the conditional entropy will be 0. Lower
values are indicative of more discriminative features. The features can be ranked in order
of conditional entropy and the ones with the largest values can be pruned.

5.2.3 Pointwise Mutual Information

First, the point-wise mutual information with respect to a single class is defined. Sub-
sequently, the idea is generalized to multiple classes. The point-wise mutual information
PMIr(tj) with respect to class r is defined as follows:

PMIr(tj) = log

[
P (cr|tj)
P (cr)

]

The notions used in this section are the same as those used above in the discussions on the
Gini index and conditional entropy. The overall point-wise mutual information across all
classes can be defined in two different ways:

PMIavg(tj) =

k∑

r=1

nr

n
PMIr(tj)

PMImax(tj) = maxrPMIr(tj)

The point-wise mutual information is positive when the presence of the term is positively
correlated with respect to a particular class. Larger values of the point-wise mutual infor-
mation are more desirable.

5.2.4 Closely Related Measures

Many authors and practitioners use closely related measures like mutual information (dif-
ferent from pointwise mutual information) and information gain, which turn out to give
identical results to conditional entropy. Therefore, it is useful to know these relationships to
avoid redundancy in usage. Note that point-wise mutual information uses only information
about the presence of terms but not about the absence of terms. A different measure is
the mutual information, which uses both the presence and absence of terms to compute
pointwise mutual information values such as {PMIr(tj), PMIr(¬tj)}, and then computes

120 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

a weighted average over all possibilities. Let P (cr ∩ tj) represent the fraction of all docu-
ments from the corpus that both belong to class r and contain term tj . Then, the mutual
information MI(tj) is computed as follows:

MI(tj) =

k∑

r=1

[P (cr ∩ tj)PMI(tj) + P (cr ∩ ¬tj)PMI(¬tj)] (5.6)

The mutual information measures the amount of information that the term tj has with
respect to the class distribution. The mutual information is always nonnegative and takes
on the minimum value of 0 when the two terms are statistically independent. Either positive
or negative correlation between the term and a particular class increases mutual informa-
tion. As discussed in Sect. 4.10.2 of Chap. 4, a normalized variant of mutual information is
also used in measuring clustering validity. The mutual information is also referred to the
information gain. Interestingly, one can compute the mutual information (i.e., information
gain) I(tj) in terms of the aforementioned measure of conditional entropy and the entropy
of the original class frequencies n1 . . . nk:

Information Gain I(tj) of tj
︸ ︷︷ ︸
Same as Mutual Information

= −
k∑

r=1

nr

n
log
(nr

n

)

︸ ︷︷ ︸
Entropy in class distribution

− E(tj)
︸ ︷︷ ︸

Conditional Entropy

(5.7)
In other words, information gain tells us the gain in conditional entropy (after knowing
occurrence data of term tj) with respect to base entropy of class distribution. Since the
first term in the RHS above is independent of tj , the use of information gain only flips the
ordering of the different features in relation to conditional entropy. The information gain is
always a nonnegative value with higher values indicating a greater degree of discrimination.
The fact that the information gain I(tj) is the same as the mutual information MI(tj)
is left as an exercise for the reader (see Exercise 2). It makes sense to use only one of
the three measures of conditional entropy, mutual information, and information gain, while
performing feature selection, because they will provide the same results. However, point-
wise mutual information will provide different results, because it does not use the absence
of terms. The normalized Gini index also does not use the absence of terms.

5.2.5 The χ2-Statistic

The basic idea of the χ2-statistic is to treat the co-occurrence between the term and class
as a contingency table. For example, consider a scenario where we are trying to determine
whether the term “elections” is relevant to the class Politics. Consider a collection of 1000
documents in which 10% of the documents belong to the Politics category, and the term
“elections” occurs in about 20% of the documents. Then, the expected number of occur-
rences of each possible combination of word occurrence and class contingency is as follows:

Term “elections” ∈ document Term “elections”
∈ document

Document ∈ Politics 1000 ∗ 0.1 ∗ 0.2 = 20 1000 ∗ 0.1 ∗ 0.8 = 80
Document
∈ Politics 1000 ∗ 0.9 ∗ 0.2 = 180 1000 ∗ 0.9 ∗ 0.8 = 720

The aforementioned expected values are computed under the assumption that the occur-
rence of the term in the document and the occurrence of a document in the Politics class are

5.2. FEATURE SELECTION AND ENGINEERING 121

independent events. If these two events are truly independent, then clearly the term will be
irrelevant to the learning process. Therefore, the goal of the χ2-computation is to evaluate
how far the observed quantities in the contingency table different from the aforementioned
expected quantities. For example, consider a scenario where the contingency table deviates
from expected values and the term “elections” and class label Politics are related. In such
a case, the observed contingency table may appear as follows:

Term “elections” ∈ document Term “elections”
∈ document

Document ∈ Politics O1 = 60 O2 = 40
Document
∈ Politics O3 = 140 O4 = 760

The χ2-statistic measures the normalized deviation between observed and expected values
across the various cells of the contingency table. In this case, the contingency table contains
p = 2 × 2 = 4 cells. Let Oi be the observed value of the ith cell and Ei be the expected
value of the ith cell. Then, the χ2-statistic is computed as follows:

χ2 =

p∑

i=1

(Oi − Ei)
2

Ei
(5.8)

Therefore, in the particular example of this table, the χ2-statistic evaluates to the following:

χ2 =
(60− 20)2

20
+

(40− 80)2

80
+

(140− 180)2

180
+

(760− 720)2

720
= 80 + 20 + 8.89 + 2.22 = 111.11

It is also possible to compute the χ2-statistic as a function of the observed values in the
contingency table without explicitly computing expected values. This is possible because
the expected values are also functions of these observed values. The arithmetic formula to
compute the χ2-statistic in a 2× 2 contingency table is as follows:

χ2 =
(O1 +O2 +O3 +O4) · (O1O4 −O2O3)

2

(O1 +O2) · (O3 +O4) · (O1 +O3) · (O2 +O4)
(5.9)

Here, O1 . . . O4 are the observed frequencies according to the table above. It is easy to verify
that this formula yields the same χ2-statistic of 111.11. Note that if the observed values
are exactly equal to the expected values, then it implies that the corresponding term is
irrelevant to the class at hand. In such a case, the χ2-statistic will evaluate to its least
possible value of 0. Therefore, the top-k features with the largest χ2-statistic are retained.
The χ2-test can also be probabilistically interpreted in terms of a χ2 distribution.

One can extend the χ2-statistic for binary classification (as discussed above) to the k-way
setting by combining the class-wise results [520]. Then, if χ2

r(tj) represents the χ2-statistic
for term tj and occurrence/non-occurrence of class r, the integrated values are as follows:

χ2
avg(tj) =

k∑

r=1

nr

n
χ2
r(tj)

χ2
max(tj) = maxrχ

2
r(tj)

Here, n1 . . . nk represent the number of documents in the k classes, and n is the total number
of documents.

122 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

5.2.6 Embedded Feature Selection Models

Many classification and regression models provide the ability to perform embedded feature
selection by leveraging the output of intermediate steps. Feature selection is accomplished
with the use of regularization in order to reduce overfitting, which is similar in principle
to the goals of feature selection. As a result, the intermediate outputs of these regularized
algorithms provide useful insights for feature selection. For example, consider the follow-
ing linear regression model (see Sect. 6.2.2 of Chap. 6), in which the numerical dependent
variable yi is predicted using the following linear relationship to the feature variables Xi:

yi ≈ W ·Xi ∀i ∈ {1 . . . n} (5.10)

The notation W represents a d-dimensional vector of coefficients that is learned by the
training model. This vector is computed by solving the following optimization model:

Minimize
n∑

i=1

(W ·Xi − yi)
2

︸ ︷︷ ︸
Prediction Error

+ λ
d∑

i=1

|wi|
︸ ︷︷ ︸

Penalty for using features

Here, λ > 0 is a regularization parameter, which controls the severity of the penalty. Such
a penalty ensures that the optimization will not assign a large non-zero coefficient for that
feature, unless the feature conveys important and irreplaceable information about the de-
pendent variable. Feature penalization is referred to as regularization. The type of penalty
discussed above is referred to as the L1-penalty, and it has the remarkable property of
favoring a coefficient vector W in which many values of wi are zero. Such features are
effectively dropped because they will have no influence on prediction of test instances ac-
cording to Eq. 5.10. The natural idea in embedded feature selection is that it leverages on
built-in (regularization) mechanisms by many algorithms to avoid overfitting. After all, the
main goal of feature selection is also the prevention of overfitting. A detailed discussion of
L1-regularization is provided in Sect. 6.2.2 of Chap. 6.

5.2.7 Feature Engineering Tricks

Two types of feature engineering tricks are commonly used in the text domain. The first trick
is done to get rid of sparsity, which can be a problem for some classifiers such as decision
trees. The second technique uses representation mining techniques to embed sequential
representations of text to multidimensional representations. The latter approach is able to
leverage the sequential ordering information among words to incorporate greater semantic
knowledge in learning. Since the second approach will be discussed in Chap. 10, the following
will discuss only the feature engineering methods used to address sparsity.

Sparsity can cause challenges with certain types of classifiers like decision trees, which
use attributes one at a time in the modeling process. Since each term contains informa-
tion relevant to only a small subset of documents in which it is present, and the absence
of terms is noisy information, it often causes overfitting when classifiers make important
decisions with individual attributes. Therefore, in such cases, methods like latent semantic
analysis (LSA) are not just useful for dimensionality reduction, but they can be viewed as
feature engineering methods that enable the use of certain types of classifiers. A particular
variant of LSA, known as a Rotation Ensemble is particularly useful for ensemble-centric
implementations. The basic idea is to use the following approach:

5.3. THE NAÏVE BAYES MODEL 123

Randomly split the d terms into K disjoint subsets of size d/K to
create K projected data sets;

Perform LSA on each projected data set to extract r � d/K features;
Pool all extracted features to create a (K · r)-dimensional data set;
Apply a classifier on the new representation;

This approach can be applied multiple times, and the prediction of a test instance
can be averaged over multiple such transformations. A particularly common classifier that
is used with this approach is the decision tree, and the resulting classifier is referred to
as the Rotation Forest [413]. Another feature engineering method is the Fisher’s linear
discriminant (cf. Sect. 6.2.3 of Chap. 6), which provides discriminative directions in the
space. Such methods have also been used in conjunction with decision trees [82].

5.3 The Näıve Bayes Model

The näıve Bayes classifier uses a probabilistic generative model that is identical to the
mixture model used for clustering (cf. Sect. 4.4 of Chap. 4). The model assumes that the
corpus is generated from a mixture of different classes. The generative process, which is
applied once for each observed document, is as follows:

1. Select the rth class (mixture component) Cr with prior probability αr = P (Cr).

2. Generate the next document from the probability distribution for Cr. The most com-
mon choices are the Bernoulli and multinomial distributions.

The observed (training and test) data are assumed to be outcomes of this generative process,
and the parameters of this generating process are estimated so that the log-likelihood of this
data set being created by the generative process is maximized. Generally, only the training
data is used to estimate the parameters, because the training data contains additional
information about the identity of the mixture component that generated each document.
Subsequently, these parameters are used to estimate the probability of the generation of each
unlabeled test document from each mixture component (class). This results in a probabilistic
classification of unlabeled documents.

Each cluster Gr in the expectation-maximization algorithm of Sect. 4.4 is analogous to
a class Cr in this setting. One can view näıve Bayes as a simplification of the iterative
expectation-maximization algorithm in which the presence of labels allows the execution of
the approach in a single iteration. Unlike clustering, the training process in classification uses
a single application of the M-step (on labeled data), and the probabilistic prediction of test
instances is a single application of the E-step on the unlabeled test instances (to estimate
posterior probabilities). Furthermore, the näıve Bayes classifier has analogous Bernoulli and
multinomial models to those used in clustering.

5.3.1 The Bernoulli Model

In the Bernoulli model, it is assumed that only the presence or absence of each term in the
document is observed. Therefore, the frequencies of the terms are ignored, and the vector-
space representation of a document is a sparse binary vector. The Bernoulli model assumes
that the jth term, tj , in the lexicon is present in a document generated from the rth class

(mixture component) with probability p
(r)
j . Then, the probability P (Z|Cr) of the generation

124 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

of the document Z from mixture component Cr is given2 by the product of the d different
Bernoulli probabilities corresponding to presence of absence of various terms:

P (Z|Cr) =
∏

tj∈Z

p
(r)
j

∏

tj �∈Z

(1− p
(r)
j) (5.11)

An important assumption here is that the presence or absence of the various terms are
conditionally independent with respect to the choice of class. Therefore, one can express
the joint probability of the attributes in Z as the product of the corresponding values on
individual attributes. This assumption is also referred to as the näıve Bayes assumption,
which is also the reason that the method is referred to as a näıve Bayes classifier. The term
“näıve” is used because this type of approximation is generally not true in real settings.

The main task in the training phase of the Bayes classifier is to estimate the (maximum

likelihood) values of the prior probabilities αr and class-specific generative probabilities p
(r)
j .

These parameters are estimated so that the observed data has the maximum likelihood of
being generated by the model, and are then used to perform the prediction of the labels of
unseen test instances. One can summarize this process as follows:

• Training phase: Estimate the maximum-likelihood values of the parameters p
(r)
j and

αr using only the training data.

• Prediction phase: Use the estimated values of the parameters to predict the class
of each unlabeled test instance.

The training phase is executed first, which is followed by the prediction phase. However,
since the prediction phase of a näıve Bayes classifier is the key to understanding it, we will
present the prediction phase before the training phase. Therefore, the following section will
assume that the model parameters have already been learned in the training phase.

5.3.1.1 Prediction Phase

The prediction phase uses the Bayes rule of posterior probabilities to predict an instance.
The basic idea is that the learner uses the aggregate frequency of each class in the training
data to learn a prior probability αr = P (Cr), of each class. Subsequently, it needs to
estimate the posterior probability P (Cr|Z) after observing a specific document (with binary
representation Z = (z1 . . . zd)) for which the label is not known. This estimation provides a
probabilistic prediction for the test instance Z of belonging to a particular class.

According to the Bayes rule of posterior probabilities, the posterior probability of Z
being generated by the mixture component Cr of the rth class can be estimated as follows:

P (Cr|Z) =
P (Cr) · P (Z|Cr)

P (Z)
∝ P (Cr) · P (Z|Cr) (5.12)

A constant of proportionality3 is used instead of the P (Z) in the denominator, because the
estimated probability is only compared between multiple classes to determine the predicted
class, and P (Z) is independent of the class.

2Although Xi is a binary vector, we are treating it like a set when we use a set-membership notation
like tj ∈ Xi. Any binary vector can also be viewed as a set of the 1s in it.

3The constant of proportionality can be easily inferred by ensuring that the sum of the posterior prob-
abilities across all classes is 1. As we will see later, there are scenarios associated with ranking instances to
belong to specific classes, where the constant of proportionality does matter.

5.3. THE NAÏVE BAYES MODEL 125

An important observation here is that all the parameters on the right-hand side of the
conditional can be estimated using the Bernoulli model. We further expand the relationship
in Eq. 5.12 using the Bernoulli distribution of Eq. 5.11 as follows:

P (Cr|Z) ∝ P (Cr) · P (Z|Cr) = αr

∏

tj∈Z

p
(r)
j

∏

tj �∈Z

(1− p
(r)
j) (5.13)

Note that all the parameters on the right-hand side are estimated during the training
phase discussed below. Therefore, one now has an estimated probability of each class being
predicted up to a constant factor of proportionality. The class with the highest posterior
probability is predicted as the relevant one, although the output is sometimes provided in
the form of probabilities. It is noteworthy that this step is identical to the E-step used
for mixture modeling in clustering (cf. Sect. 4.4.1), except that it is applied only to the
unlabeled test instances.

5.3.1.2 Training Phase

The training phase of the Bayes classifier uses the labeled training data to estimate the max-
imum likelihood values of the parameters in Eq. 5.13. It is evident that we need to estimate
two sets of parameters, which are the prior probabilities αr and the Bernoulli generative

parameters, p
(r)
j , for each mixture component. The statistics available for parameter esti-

mation include the number of labeled documents nr belonging to the rth class Cr, and the

number, m
(r)
j , of the documents belonging to class Cr that contain term tj . The maximum

likelihood estimates of these parameters can be shown to be the following:

1. Estimation of prior probabilities: Since the training data contains nr documents for
the rth class in a corpus size of n, the natural estimate for the prior probability of the
class is as follows:

αr =
nr

n
(5.14)

If the corpus size is small, it is helpful to perform Laplacian smoothing by adding a
small value β > 0 to the numerator and β · k to the denominator:

αr =
nr + β

n+ k · β (5.15)

The precise value of β contains the amount of smoothing, and it is often set to 1 in
practice. When the amount of data is very small, this results in the prior probabili-
ties being estimated closer to 1/k, which is a sensible assumption in the absence of
sufficient data.

2. Estimation of class-conditioned mixture parameters: The class-conditioned mixture

parameters, p
(r)
j , are estimated as follows:

p
(r)
j =

m
(r)
j

nr
(5.16)

It is particularly important to use Laplacian smoothing on the class-conditioned prob-
abilities because a particular term tj might not even be present in the training doc-
uments of the rth class, particularly when the corpus is small. In such a case, one

would estimate the corresponding value of p
(r)
j to 0. As a result of the multiplicative

126 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

nature of Eq. 5.13, the presence of term tj in an unseen document will always lead to
an estimated probability of 0 for the rth class. Such predictions are often erroneous,
and are caused by overfitting to the small training data size.

Laplacian smoothing of class-conditioned probability estimation is performed as fol-
lows. Let da be the average number of 1s in the binary representation of each training
document and d be the size of the lexicon. The basic idea is to add a Laplacian smooth-
ing parameter γ > 0 to the numerator of Eq. 5.16 and d γ/da to the denominator:

p
(r)
j =

m
(r)
j + γ

nr + d γ/da
(5.17)

The value of γ is often set to 1 in practice. When the amount of training data is very

small, this choice leads to a default value of da/d for p
(r)
j , which reflects the level of

sparsity in the document collection.

It is noteworthy that the training phase in the Bayes classifier is a simplified variant of
the M-step used in the mixture model for clustering (cf. Sect. 4.4.1). This simplification is
because labeled training data is available to infer the membership of documents in mixture
components.

5.3.2 Multinomial Model

While the Bernoulli model uses only the presence of absence of terms in documents, the

multinomial model explicitly uses their term frequencies. Just as the parameter p
(r)
j in

the Bernoulli model denotes the probability whether a term is observed in a particular
component, the parameter qjr in the multinomial model denotes the fractional presence of
term tj in the rth mixture component, including the effect of repetitions. The values of qjr
sum to 1 for a particular mixture component r over all terms (i.e.,

∑d
j=1 qjr = 1).

The generative process for the multinomial mixture model first selects the rth class
(mixture component) with probability αr = P (Cr). Then, it throws a loaded die (owned by
the rth class) L times to generate a document with L tokens (counting repetitions). The
loaded die has as many faces as the number of terms d, and the probability of the jth face
showing up is given by qjr for the die owned by the rth class. Therefore, if the die is thrown
L times, then the number of times each face shows up provides the number of times each
term shows up in the observed document. If we assume that the frequency vector of the
document Z is given by (z1 . . . zd), then the generative probability of the ith document is
given by the following multinomial distribution:

P (Z|Cr) =
(
∑d

j=1 zj)!

z1!z2! . . . zd!

d∏

j=1

(qjr)
zj ∝

d∏

j=1

(qjr)
zj (5.18)

The constant of proportionality holds for fixed Z and varying class, because it depends only
on Z and is independent of the class Cr.

The overall process of both prediction and training in the multinomial model is very
similar to that of the Bernoulli model. As in the case of the Bernoulli model, one can
use the Bayes rule and Eq. 5.18 to derive the following values for the estimated posterior
probability that the test instance Z belongs to class Cr:

P (Cr|Z) ∝ P (Cr) · P (Z|Cr) ∝ αr

d∏

j=1

(qjr)
zj (5.19)

5.3. THE NAÏVE BAYES MODEL 127

If needed, the constant of proportionality can be inferred by ensuring the posterior prob-
abilities over all classes sum to 1. The class with the largest posterior probability can be
predicted as the relevant one for the test instance Z.

In order to compute the values on the right-hand side of Eq. 5.19, one only needs to
estimate the parameters αr and qjr during the training phase. The fractional presence of
each class in the training data is used as the estimate of αr. Laplacian smoothing can be
used if needed. Furthermore, if ν(j, r) is the number of times that the term tj shows up
in the documents belonging to class r (with proportionate credit given to repetitions in a
single document), then the estimate qjr can be computed as follows:

qjr =
ν(j, r)

∑d
j=1 ν(j, r)

(5.20)

One can also view this estimate as the fraction of the number of tokens (i.e., positions)
in a class that correspond to a particular term. This is different from the Bernoulli model
that estimates the class-conditioned probabilities as the fraction of class-specific documents
containing a particular term. It is also possible to use Laplacian smoothing in order to
smooth the estimation. In this case, we add a small value γ > 0 to the numerator, and γ · d
to the denominator. This results in the following estimation:

qjr =
ν(j, r) + γ

∑d
j=1 ν(j, r) + γ · d

(5.21)

It is common to set γ to 1. This type of smoothing biases the estimation of the probability
of each of the d faces in the multinomial die roll towards 1/d, which implies that all terms
are equally favored. This is a reasonable assumption in the absence of sufficient data.

5.3.3 Practical Observations

The näıve assumption of conditional independence is never really true in practical settings.
In spite of this fact, the actual predictions are surprisingly robust. Using more complicated
assumptions often end up overfitting the data. Several insights are provided in [140] about
why the näıve assumption works so well in practice.

A natural question arises as to when it is preferable to use either the Bernoulli or the
multinomial models. Note that the Bernoulli model uses both the presence and the absence
of terms in a document, but it does not use the term frequencies. The two main factors
are (1) the typical length of each document and, (2) the size of the lexicon from which the
terms are drawn. For short documents that have a non-sparse representation with respect
to a small lexicon, it makes sense to use the Bernoulli model. In short documents, there are
a limited number of repetitions of terms, which reduces the gain obtained from including
frequency information. Furthermore, if the lexicon size is very small and the vector-space
representation is non-sparse, then even the absence of a term in a document is informative.
When the document representation is sparse, information about absence of terms is noisy,
which hurts the Bernoulli model. Furthermore, the ignoring of frequency information will
also increase the inaccuracy of the Bernoulli model. Therefore, it makes sense to use the
multinomial model in such cases.

5.3.4 Ranking Outputs with Näıve Bayes

The prediction problem of classification is not always posed in terms of selecting the class
of a single test instance. In many cases, a set of test instances Z1 . . . Znt

is provided, and

128 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

it is desired to rank them in order of their propensity to belong to a particularly valuable
class of interest. This problem is closely related to that of ranking in search engines.

Consider a situation where an aficionado in automobiles is interested in the rth class
for which the label is Cars. How would one use the trained Bayes model to rank the test
documents Z1 . . . Znt

for this user? The aforementioned discussion already shows how one
can estimate P (Cr|Zi) for each test instance Zi up to a constant of proportionality. This
scaling factor is not relevant when comparing the probabilities across different classes, but it
is relevant when comparing the prediction across different instances because it varies across
instances. The scaling factor for each test instance can be easily estimated by using the fact
that the posterior probabilities of all classes must always sum to 1:

k∑

r=1

P (Cr|Zi) = 1 (5.22)

After scaling, the normalized value of the posterior probabilities of the rth class are com-
pared across different instances, and the documents are ranked in order of decreasing prob-
ability.

5.3.5 Example of Näıve Bayes

In the following, we will provide a numerical example of the näıve Bayes model. A simi-
lar example will be provided for both the Bernoulli and the multinomial model, in which
documents are categorized either as Cars or as Cats.

5.3.5.1 Bernoulli Model

Consider the following corpus containing four training documents and two test documents.
The corpus is represented in binary form in which the frequencies of the terms are ignored:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lion tiger cheetah jaguar porsche ferrari Label
Train1 1 1 1 1 0 0 Cats
Train2 1 1 1 1 0 0 Cats
Train3 0 0 0 1 1 1 Cars
Train4 0 0 0 1 1 1 Cars
Test1 1 1 1 1 1 1 -
Test2 1 1 1 1 0 0 -

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For illustrative purposes, the lexicon contains only six terms. The class label of each instance
is shown in the final column. The first four documents are the training documents, and the
labels shown for them in the final column are Cats and Cars. However, the last two rows
correspond to test instances, and therefore their labels are missing.

In the following, it is only shown how to use the training data to predict the probability
of the two labels for the document Test1. The prediction of Test2 is left as an exercise for
the reader (see Exercise 4). The steps for the training and prediction phase are as follows.
Training: In order to perform the training, the prior probabilities and the class conditioned
probabilities need to be estimated. Laplacian smoothing is used with β = γ = 1. The prior
probabilities are estimated as:

P (Car) =
2 + β

4 + 2β
=

1

2
, P (Cat) =

2 + β

4 + 2β
=

1

2

5.3. THE NAÏVE BAYES MODEL 129

Next, we need to estimate the parameters for the Bernoulli distribution. We first show how
to estimate P (lion|Cats). The average number da of terms in the four training documents
is 14/4, and the total size of lexicon is d = 6. Therefore, the sparsity factor required for
Laplacian smoothing is 6 × 4/14 = 12/7. In order to estimate P (lion|Cats) note that the
term is present in both of the two training documents on cats. Therefore, the estimation of
this Bernoulli parameter is as follows:

P (lion|Cats) = 2 + γ

2 + 12γ
7

=
2 + 1

2 + 12
7

=
21

26

By using an identical argument, we can show the following:

P (lion|Cats) = 21

26
, P (tiger|Cats) = 21

26
, P (cheetah|Cats) = 21

26
, P (jaguar|Cats) = 21

26

P (porsche|Cats) = 7

26
, P (ferrari|Cats) = 7

26

Similarly, one can compute the parameters of the Bernoulli distribution for Cars as follows:

P (lion|Cars) = 7

26
, P (tiger|Cars) = 7

26
, P (cheetah|Cars) = 7

26
, P (jaguar|Cars) = 21

26

P (porsche|Cars) = 21

26
, P (ferrari|Cars) = 21

26

Note that “jaguar” is the only term to get a high probability for both classes. These
estimated probabilities represent the entire training model used by a näıve Bayes classifier.
Next, we show how these estimated probabilities can be used for prediction of Test1.

Prediction: The prediction phase of Test1 is particularly simple because it contains all
the terms of the lexicon. Therefore, the class conditional probabilities may be computed as
follows:

P (Cats|Test1) ∝ P (Cats) · P (lion|Cats) · P (tiger|Cats) · P (cheetah|Cats)·
P (jaguar|Cats) · P (porsche|Cats) · P (ferrari|Cats)

=
1

2

(
21

26

)4(
7

26

)2

P (Cars|Test1) ∝ P (Cars) · P (lion|Cars) · P (tiger|Cars) · P (cheetah|Cars)·
P (jaguar|Cars) · P (porsche|Cars) · P (ferrari|Cars)

=
1

2

(
21

26

)3(
7

26

)3

These computations only provide the inference to a constant of proportionality. One can
also compute the exact probabilities of each class by ensuring that the corresponding prob-
abilities sum to 1. Using that relationship, we obtain the fact that P (Cats|Test1) = 3

4 and
P (Cars|Test1) = 1

4 . Therefore, the test instance is more likely to belong to the Cat category.
This is a logical conclusion because a larger number of terms in the document belong to
the category of Cats. It is noteworthy that Laplacian smoothing is essential for obtaining
reasonable results. If Laplacian smoothing had not been used, then one would have arrived
at a probability of 0 for both outcomes, which would have lead to an indefinite prediction.

130 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

5.3.5.2 Multinomial Model

In the case of the multinomial model, the document-term matrix is assumed to contain
frequencies. Therefore a very similar matrix is used as in the previous case, except that it
also contains frequencies. The corresponding matrix is shown below:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lion tiger cheetah jaguar porsche ferrari Label
Train1 2 2 1 2 0 0 Cats
Train2 2 3 3 3 0 0 Cats
Train3 0 0 0 1 1 1 Cars
Train4 0 0 0 2 1 2 Cars
Test1 2 2 2 3 1 1 -
Test2 1 1 1 1 0 0 -

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The prior probabilities are computed in exactly the same way as before. Therefore,
the prior probabilities can be estimated to (1/2) for each class. In order to compute the
multinomial parameters, the number of occurrences of each term in the various classes are
computed (including the effect of repetitions in the same document). This is summarized
in the table below:

⎛

⎝
lion tiger cheetah jaguar porsche ferrari Total

Cats 4 5 4 5 0 0 18
Cars 0 0 0 3 2 3 8

⎞

⎠

The last column contains the total number of tokens in that class over all its documents.
Now we need to compute the probabilities of each multinomial parameter qjr. Without
Laplacian smoothing, one can derive these parameters from the above counts by simply
dividing each row with the total at the very end. However, with smoothing, we need to add
1 to each numerator and 6 to each denominator, since there are six terms in the lexicon.
The corresponding values of qjr are provided in the matrix below:

⎛

⎝
lion tiger cheetah jaguar porsche ferrari

Cats 5
24

6
24

5
24

6
24

1
24

1
24

Cars 1
14

1
14

1
14

4
14

3
14

4
14

⎞

⎠

Note that each row sums to 1, because it represents the probabilities of the different faces
of the die in a multinomial event of selecting a word at a particular position.

One can use these estimated parameters to perform the prediction. Since, the frequency
vector of Test1 is (2, 2, 2, 3, 1, 1), these frequencies are the exponents of the probabilistic
parameters for each term:

P (Cats|Test1) ∝ 1

2

(
5

24

)2(
6

24

)2(
5

24

)2(
6

24

)3(
1

24

)(
1

24

)

P (Cars|Test1) ∝ 1

2

(
1

14

)2(
1

14

)2(
1

14

)2(
4

14

)3(
3

14

)(
4

14

)

On simplification and normalization, it can be shown that the probabilities of Cats and Cars
are around 0.94 and 0.06, respectively. Therefore, one arrives at the same conclusion, except
that the predictions are more definitive in this case. This is because of the greater frequency
of the cat-related words in the test document. It is noteworthy that Laplacian smoothing is

5.3. THE NAÏVE BAYES MODEL 131

essential for obtaining reasonable results. If Laplacian smoothing had not been used, then
one would have arrived at a probability of 0 for both outcomes, which would have lead to
an indefinite prediction. The multinomial model also does not use terms absent from the
test document. Although Test1 contains all the terms, the document Test2 does not. If the
multinomial model is used to classify Test2, both P (Cats|Test2) and P (Cars|Test2) can be
expressed in terms of only the conditional probability estimates of “lion,” “tiger,” “cheetah,”
and “jaguar.” The conditional estimates of “porsche” and “ferrari” will be ignored (see
Exercise 5).

5.3.6 Semi-Supervised Näıve Bayes

The Bayes model provides a remarkably clear picture of the connections between supervised
and unsupervised models of learning. It is noteworthy that the mixture-modeling algorithm
for clustering in Sect. 4.4 of Chap. 4 uses exactly the same generative model as the näıve
Bayes model. A mixture component represents a cluster in unsupervised learning, whereas
a mixture component represents a class in supervised learning. The differences in their
computational procedures are explained by the fact that unsupervised mixture modeling is
handicapped by the absence of labels. Labels are useful in identifying the mixture component
that generates each training point so that the parameters of each mixture component can
be estimated easily. In the absence of labels, one is forced to use an iterative approach of
probabilistically predicting the mixture component associated with each data point (E-step)
and estimating mixture parameters (M-step). The presence of labels simplifies the learning
process to a single M-step in näıve Bayes classification, because the unlabeled data is not
used in parameter estimation. Furthermore, the unlabeled instances are classified with a
single application of the E-step using the learned parameters.

Semi-supervised learning is useful when the amount of labeled data is limited, and
therefore the unlabeled data is incorporated in the parameter estimation process in order
to improve classification accuracy. The use of unlabeled data in parameter estimation [364]
causes semi-supervised methods to be iterative like the expectation-maximization algorithm
of Sect. 4.4. The semi-supervised approach assumes that each mixture component is asso-
ciated with a class. The labeled and unlabeled points of each class are generated by its
mixture component. At initialization, the parameters of each mixture component and the
prior probabilities are estimated with an application of the näıve Bayes algorithm on the
labeled instances. Subsequently, the following pair of steps is iteratively used:

1. (E-step): The E-step estimates the probabilities of the unlabeled instances using the
Bayes rule of posterior probabilities. Therefore, the first iteration of the E-step would
yield exactly the same probabilities as computed by the näıve Bayes algorithm. There-
fore, the E-step remains the same but it is applied only to the unlabeled data during
the iterations in order to predict their class memberships. As in the EM-algorithm of
Sect. 4.4, we use the soft membership probabilities derived in the E-step to associate
membership weights with unlabeled instances. The membership weights of a point
across different clusters sum to 1 because they represent posterior probabilities. An
important modification to the E-step in the semi-supervised setting is that the labeled
instances are also associated with a membership weight λ > 0 to the class/cluster it
belongs to and 0 to all other classes. The value of λ is a user-driven parameter in
(0,∞), which regulates the level of supervision.

2. (M-step): The M-step remains identical to what is discussed in the mixture-modeling
algorithm of Sect. 4.4, except that it is executed with the help of the modified mem-
bership weights in which labeled instances are given the user-defined weight of λ.

132 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

The two steps are iterated to convergence. The probabilistic predictions of the E-step in
the final iteration can be used to predict the class labels. Therefore, the modifications to
the expectation-maximization algorithm of Sect. 4.4 are relatively minor, and involve the
incorporation of labeled data within the parameter estimation step. The degree of impact
of this change depends on the value of λ.

The parameter λ controls the trade-off between the importance of labeled and unlabeled
data. Setting λ = 0 results in the EM-algorithm of Sect. 4.4, and setting λ = ∞ results in
the näıve Bayes algorithm of this section. All other positive values of λ provide varying
levels of supervision in which the iterative approach is still needed. It is generally sensible
to choose λ > 1 in semi-supervised classification applications, because one should weight
each labeled point to a greater degree than each unlabeled point.

Note that such intermediate values of λ can often outperform the näıve Bayes method
in cases where the amount of labeled data is very small. With limited labeled data, the
conditional probabilities of absent terms from the labeled data will be estimated poorly
by the fully supervised näıve Bayes method. Such probabilities will be estimated far more
robustly in the semi-supervised setting because the unlabeled documents in the relevant
mixture component can be leveraged for robust estimation. A different way of understanding
this is that unlabeled data can learn the shape of the underlying data distribution and ensure
that the labeled data is required only to map the learned clusters of this data distribution
to the different labels. Therefore, most of the “heavy-lifting” of learning the shape of the
data distribution is done with unlabeled data, and only a small amount of data is needed to
map the dense segments (mixture components) of this data distribution to different classes.
The natural assumption here is that class labels do not change abruptly within contiguous,
dense, and clustered regions of the data. This situation occurs often in real data sets due
to the natural smoothness and clustered properties of real-world class distributions [90].
It is also possible to construct semi-supervised models in which the number of mixture
components is larger than the number of labeled classes to learn class distributions that are
locally contiguous in specific regions (see Exercises 6 and 7).

Another advantage of semi-supervision is that the learning process is specific to the
test instances we are interested in. Purely supervised methods build models that are more
general than what we really need. This provides semi-supervision an advantage based on
Vapnik’s principle [90]:

“When trying to solve some problem, one should not solve a more difficult
problem as an intermediate step.”

One can get better results by solving the narrower problem and tuning the learning process
to the specific test instances at hand. For example, if a small training data set contains
only a couple of instances of each class, the number of instances is too small to robustly
estimate the prior probabilities. On the other hand, if a large test data contains these
classes in the proportion of 9:1, then the semi-supervised parameter estimation process will
use this additional information to assign more robust prior probabilities. If a different test
data set contains these classes in the reverse proportion of 1:9, it will assign different prior
probabilities.

This approach can be used for both semi-supervised clustering and semi-supervised clas-
sification. Semi-supervised clustering has slightly different applications from semi-supervised
classification, because the supervision is gentler in the former and the goal is to create a
semantically meaningful partition with external input rather than to label instances. For
semi-supervised clustering applications, it makes sense to use smaller values of λ to give
more importance to the clustering structure inherent in the unlabeled data.

5.4. NEAREST NEIGHBOR CLASSIFIER 133

5.4 Nearest Neighbor Classifier

Nearest-neighbor classifiers use the following principle:

Similar instances have similar labels.

A natural way of implementing this principle is to use a κ-nearest-neighbor classifier. The
basic idea is to identify4 the κ-nearest neighbors of a test point, and compute the number of
points that belong to each class. The class with the largest number of points is reported as
the relevant one. The cosine similarity is used to compute the nearest neighbors, although
one can use advanced methods like the substring kernel in order to incorporate sequence
information in the classification process. Nearest-neighbor classification can be used for both
binary classes and multi-way classes, as long as the class with the largest vote is used. If
the dependent variable is numeric, the average value of the dependent variable among the
nearest neighbors can be reported.

Nearest-neighbor classifiers are also referred to as lazy learners, memory-based learners,
and instance-based learners. They are referred to as lazy learners because most of the
work of classification is postponed to the very end. In a sense, these methods memorize
all the training examples, and use the best matching ones to the instance at hand. Unlike
model-based methods, less generalization and learning is done up front, and most of the
work of classification is left to the very end in a lazy way. However, there are many natural
variations of nearest-neighbor classifiers in which some of the work of learning is brought
up front. Such classifiers are referred to as adaptive nearest-neighbor classifiers.

A straightforward implementation of the nearest-neighbor method requires no training,
but it requires O(n) similarity computations for classifying each test instance. One can
speed this process up using a data structure called an inverted index. This data structure is
discussed in detail in Sect. 9.2.2 of Chap. 9. An inverted index contains a list of document
identifiers associated with each term. For a given test document, one needs to access as
many inverted lists as the number of terms in it, and access only those documents whose
identifiers are included in one of these inverted lists.

The number of nearest neighbors, κ, is a parameter for the algorithm. Its value can
be set by trying different values of κ on the training data. The value of κ at which the
highest accuracy is achieved on the training data is used. While computing accuracy on the
training data, a leave-one-out approach is used, in which the point to which the κ-nearest
neighbors are computed is not included among the nearest neighbors. For example, if we
did not take this precaution, every point with be its own nearest neighbor, and a value of
κ = 1 would always be deemed as optimal. This is a manifestation of overfitting, which is
avoided with the leave-one-out approach. The classification accuracy is computed by using
a validation sample of size s. For each point in the sample, the similarities with respect to
the entire data are computed in a leave-one-out manner. These computed similarities are
used to rank the n − 1 training points for each sample, and test various values of κ. This
process requires O(n · s) similarity computations and O(n · s · log(n)) time for sorting the
points. For a validation sample size of s, the time required is O(s · n · (T + log(n))) for
tuning the parameter κ. Here, T is the time required for each similarity computation. One
can reduce this running time with an inverted index.

4Most of the literature uses the notation of k instead of κ to denote the number of nearest neighbors.
We use κ instead of k for notational disambiguation, since the latter variable has been used consistently in
this chapter to denote the number of classes. Using k to denote both the number of classes and the number
of neighbors would cause confusion.

134 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

ATTRIBUTE VALUE

P
R

O
B

A
B

IL
IT

Y
 D

E
N

S
IT

Y

CLASS A CLASS B

AMBIGUOUS REGION
THAT CONTRIBUTES
HEAVILY TO BAYES
ERROR RATE

Figure 5.1: Example of how the noise in a data set affects error

5.4.1 Properties of 1-Nearest Neighbor Classifiers

A special case of nearest-neighbor classifiers is one in which the value of κ is set to 1. Such
classifiers are not very robust in practice because they are sensitive to the specific data
set at hand. This lack of robustness is caused by the fact that the predictions can overfit
the vagaries of the particular training sample at hand. Whenever the classification of the
same test instance varies significantly with the choice of training sample, it contributes
to increased classifier error, and this portion of the error is referred to as the variance
(cf. Sect. 7.2 of Chap. 7). As the size of the training sample increases, the accuracy of the
1-nearest neighbor classifier increases as well. In fact, it can be shown that with an infinite
amount of data, the error of a 1-nearest-neighbor classifier is at most twice the Bayes optimal
error rate. The Bayes optimal error rate refers to the minimum achievable error rate of a
particular data distribution. In order to understand this point, consider a 1-dimensional
data set with two normally distributed classes as shown in Fig. 5.1. It is noteworthy that
the class distribution is overlapping in a particular region of the data. Even if a learner
were given the extraordinary advantage of being told the (true) generative distribution of
the two classes, it would still make mistakes on some of these ambiguous instances in this
overlapping region. The Bayes error rate quantifies this intrinsic error from a probabilistic
point of view. This notion is closely related to that of intrinsic noise in a data set, which is
a fundamental component of the error in any classifier (cf. Sect. 7.2 of Chap. 7).

The boundary between various classes is also referred to as the decision boundary in
classification. In general, boundaries of complex nonlinear shapes are considered more chal-
lenging for classification. The aforementioned observation of the error rate of a 1-nearest-
neighbor classifier implies that it can approximate any nonlinear boundary very well, given a
“sufficient” amount of data. This point can be better understood with the Voronoi diagram
induced by the training data.

Given a set of training points, one can divide the data space into a set of Voronoi regions
or cells induced by these points. A Voronoi region or cell is a portion of the data space that
is closest to the single point inside it as compared to all the other training points. From a
1-nearest neighbor classifier point of view, each Voronoi region “belongs” to a single training
point, and all test instances within that cell will take on the same class label as that training

5.4. NEAREST NEIGHBOR CLASSIFIER 135

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

CLASS A

CLASS BONLY TEST POINTS IN TWO
CELLS WILL BE PREDICTED
TO CLASS A

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Two Voronoi regions belong to class A (b) Shaded region predicted to class A
(25 training points) (25 training points-same as (a))

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) Shaded region predicted to class A (d) Shaded region predicted to class A
)stniopgniniart0001()stniopgniniart001(

Figure 5.2: Increasing the number of training points improves the accuracy of 1-
nearest neighbor classification. The shaded region approximates the (true) elliptical bound-
ary between classes A and B more closely with increasing number of training points. With
an infinite amount of data, only the error caused by intrinsic noise (e.g., overlapping regions
and mislabeled training points) will remain. The cumulative effect of the noise contributed
by both training and test points is equal to twice the Bayes error rate.

point. This situation is shown in Fig. 5.2a, in which the class A is enclosed by an elliptical
decision boundary. However, only 25 training points are used, and therefore test points in
only two Voronoi regions will be assigned class A. Note that the shapes of the Voronoi
cells are jagged, and therefore if the decision boundary between the two classes is smooth,
the 1-nearest-neighbor classifier will try to approximate this boundary with jagged edges,
which increases its error. As shown in Fig. 5.2b, the 1-nearest neighbor classifier tries to
approximate the elliptical region for class A with the shaded region, which causes a rather
poor decision boundary. This approximation varies with random choice of training data,
which increases classification error in expectation. However, if the number of training points
is increased, the size of each Voronoi region reduces, and therefore the jagged approximation

136 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

of the 1-nearest-neighbor classifier improves, as shown in Fig. 5.2c, and d in which 100 and
1000 points are respectively used. With an infinite amount of data, any arbitrary boundary
can be approximated very well, and only the ambigous/overlapping regions of the decision
boundary will be incorrectly classified. This portion of the error is a result of the specific
noise or mislabeling in the data set. There is little that most classifiers to do to handle such
instances, and they contribute to the portion of the error referred to as the Bayes error rate.

The main problem with the 1-nearest neighbor classifier is that the amount of data
required to achieve this error rate depends exponentially on the intrinsic dimensionality
of the data set. Text data may have hundreds of thousands of terms, and the intrinsic
dimensionality may often be on the order of hundreds. As a result, the required amount of
data is too large for a 1-nearest-neighbor classifier to achieve an error anywhere close the
Bayes error rate. Using a κ-nearest neighbor classifier with larger values of κ is a way of
smoothing the aforementioned jagged boundary to improve the error rate with a limited
amount of data. There are several other ways of smoothing this boundary, such as the use of
clustering, the use of weighted nearest neighbors, or the use of some level of supervision in
determining the nearest neighbors. The last of these is also referred to as adaptive nearest-
neighbor classification, and it provides a family of the most powerful classifiers in machine
learning. Two of the most powerful classifiers in machine learning, which are random forests
and kernel support vector machines, can be shown to be adaptive nearest-neighbor classifiers.
These points will be discussed in Sects. 5.5.6 and 6.3.6. This section will provide an overview
of methods for smoothing the predicted decision boundary, such as the Rocchio method,
the weighted nearest-neighbor method, and adaptive nearest-neighbor method.

5.4.2 Rocchio and Nearest Centroid Classification

The Rocchio classifier can be viewed as a modification of the nearest-neighbor classifier. In
Rocchio classification, the centroids of each of the classes is computed up front. For a given
test instance, the nearest class centroid is computed with cosine similarity. The label of the
closest centroid is reported as the classification of the test instance. The Rocchio classifier
is extremely efficient in both training and prediction. The training step requires only the
computation of the centroid of each class, which scales linearly with training data size. The
testing step requires only the computation of k cosine similarities for a k-class problem.

The Rocchio method provides stable predictions over different choices of training data
sets. However, it shows significant bias in the predictions. For example, Rocchio’s method
would not work very well if documents of the same class were separated into distinct clusters.
In such cases, the centroid of a class of documents may not be representative of that class. A
bad case for Rocchio’s method is illustrated in Fig. 5.3, in which each class is associated with
two distinct clusters. Furthermore, the centroid of each class is similar, and therefore, the
Rocchio method would have difficulty in distinguishing between the classes. On the other
hand, a 1-nearest-neighbor classifier would perform quite well in this case. The Rocchio
method does not adjust well to the varying frequencies of different classes. By using one
centroid for each class, it effectively sets an equal prior probability of each class.

A natural trade-off between the two extremes of a 1-nearest neighbor classifier and the
Rocchio method is to use centroid-based classification. The basic idea is to use an off-the-
shelf clustering algorithm to partition the documents of each class into clusters. Class labels
are associated with clusters rather than documents. The number of clusters in each class
is proportional to the number of documents in that class. This ensures that the clusters in
each class are of approximately the same granularity.

5.4. NEAREST NEIGHBOR CLASSIFIER 137

−6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

FEATURE X

FE
A

TU
R

E
 Y

Figure 5.3: A bad case for the Rocchio method

The cluster digests from the centroids are extracted by retaining only the most frequent
words in that centroid. Typically, about 200–400 words are retained in each centroid. The
lexicon in each of these centroids provides a stable and topical representation of the subjects
in each class. An example of the (weighted) word vectors for two classes corresponding to
the labels “Business schools” and “Law schools” could be as follows:

1. Business schools: business (35), management (31), school (22), university (11), cam-
pus (15), presentation (12), student (17), market (11), . . .

2. Law schools: law (22), university (11), school (13), examination (15), justice (17),
campus (10), courts (15), prosecutor (22), student (15), . . .

Typically, most of the noisy words have been truncated from the cluster digest. Similar words
are represented in the same centroid, and words with multiple meanings can be represented
in contextually different centroids. Therefore, this approach also indirectly addresses the
issues of synonymy and polysemy, with the additional advantage that the nearest-neighbor
classification can be performed more efficiently with a smaller number of centroids. The
dominant label from the top-κ matching centroids, based on cosine similarity, is reported.
Such an approach can provide comparable or better accuracy than the vanilla κ-nearest
neighbor classifier in many cases.

5.4.3 Weighted Nearest Neighbors

A κ-nearest neighbor classifier can be viewed through the lens of a similarity weighted
classifier. Such a view helps in generalizing the κ-nearest neighbor classifier to a surprisingly
powerful family of methods (e.g., adaptive nearest neighbor methods), and also illustrates
how a proper choice of weight balances robustness (resistance to overfitting) and reduction in
bias. Consider a training data set with documents X1 . . . Xn with labels y1 . . . yn. Although
we assume binary labels yi ∈ {−1,+1} for notational simplicity and closed-form expressions,
the basic ideas underlying these arguments can be generalized to multi-way classification
and regression modeling with minor modifications. Then, for any test instance Z, one can
view a κ-nearest neighbor classifier as a similarity weighted classifier, where the similarity

138 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

between test instance Z and training instance Xi is denoted
5 by K(Z,Xi). The prediction

F (Z) of the test instance Z can be expressed as a similarity weighted classifier as follows:

F (Z) = sign

{
n∑

i=1

K(Z,Xi)yi

}

(5.23)

Here, the function “sign” returns either −1 or +1, depending on the sign of its argument.
One can view the κ-nearest neighbor classifier as a weighted nearest-neighbor classifier in
which the value of K(Z,Xi) is defined as follows:

K(Z,Xi) =

{
1 Xi is among the κ-nearest neighbors of Z

0 otherwise
(5.24)

The similarity function K(Z,Xi) can be viewed as a weight that decays with reducing
similarity of Xi to the test point Z. For infinitely large data sets, it is desirable to choose
the sharpest possible decay in weight, which is achieved by the 1-nearest neighbor classifier.
Such a classifier yields an error of at most twice the Bayes optimal rate for infinite data but
very poor results for small data sets. Choosing κ = n results in a (relatively stable) majority-
vote classifier even for minuscule data sets, but the predictions are unable to take advantage
of more data. In particular, the predictions are not very discriminating in different regions
of the space because every test point gets the same prediction. This is a manifestation of
excessive bias in predictions. Clearly, a trade-off needs to be selected that works well for
the data set at hand.

Setting K(Z,Xi) to the dot product Z ·Xi (after scaling the training and test vectors
to unit norm) results in the use of the cosine similarity as the weight. One can also use
Gaussian kernel similarity (with normalized documents), which exponentiates the negative
(squared) distances D(Z,Xi) to create similarity values:

K(Z,Xi) = e−D(Z,Xi)
2/(2·σ2) = e−||Z−Xi||2/(2·σ2) (5.25)

The choice of the bandwidth σ controls the rate of decay of the weight with increasing
distance of training points to the test point. If we have a small data set, we should use
a large value of σ to encourage slow decay. On the other hand, for a larger data set, we
can use a smaller value of σ to encourage sharper decay. The value of σ can be tuned by
using a leave-one-out validation approach. The weighted nearest-neighbor method can also
be used for regression. The only difference is that one does not need to use the sign function
in Eq. 5.23, and one must normalize the similarities to sum to 1 over all points. In other
words, the values of K(Z,Xi) should be proportionately scaled to sum to 1 for fixed Z and
all Xi.

5.4.3.1 Bagged and Subsampled 1-Nearest Neighbors as Weighted Nearest
Neighbor Classifiers

A 1-nearest neighbor classifier makes unstable predictions over different choices of the train-
ing data. It stands to reason that the classifier is making mistakes in at least some of the
training data instantiations, and therefore the instability contributes to higher expected er-
ror. A weighted nearest-neighbor classifier has less variability than a 1-nearest neighbor

5We intentionally use the seemingly unusual notation K(·, ·) for a similarity function, as we will later
connect this principle with the kernel similarity function used by support vector machines.

5.4. NEAREST NEIGHBOR CLASSIFIER 139

classifier. Interestingly, one can show that combining some ensemble methods like bagging
or subsampling with the 1-nearest neighbor classifier can simulate the effect of a weighted
nearest-neighbor classifier, and reduce the variability of the base predictor.

Bagging works as follows. In each iteration, a sample of size s ≤ n is selected from the
training data of size n. The sample is selected with replacement so that it might contain
duplicates. The 1-nearest neighbor classifier is used on each test point to make a prediction
of that point in each ensemble component. The predictions of that point over all ensemble
components are averaged. For a regression model, the average prediction is returned. For a
binary classifier model with class labels in {−1,+1}, the sign of the average (or aggregate)
prediction is returned. Subsampling is similar to bagging, except that the sampling is done
without replacement.

A bagged nearest-neighbor classifier is a weighted nearest-neighbor classifier in which
the weight of each training point is the probability that it is the 1-nearest neighbor of the
test instance in a sample of size s. Let P (Xi|Z) be the probability that Xi is the 1-nearest
neighbor of Z in the bagged sample of size s. Furthermore, let R(Z,Xi) ∈ {1 . . . n} represent
the rank of the nearest neighbor distance of Xi to Z. Then, the probability that the point
Xi is the nearest neighbor of Z in a bagged sample of size s is as follows:

P (Xi|Z) = P [Not sampling nearest (R(Z,Xi)− 1)]− P [Not sampling nearest R(Z,Xi)]

(5.26)

=

(

1− R(Z,Xi)− 1

n

)s

−
(

1− R(Z,Xi)

n

)s

(5.27)

Then, the effect of the bagged 1-nearest neighbor classifier is to create a weighted prediction
of the form of Eq. 5.23, where K(Z,Xi) is set to P (Xi|Z). The sample size s regulates the
rate of decay. Using a sample size of s = 1 is equivalent to using the κ-nearest neighbor
classifier with κ = n, and using a sample size of s = n is equivalent to the 1-nearest neighbor
classifier on all the points with a single ensemble component. In general, increasing the
sample size makes the weight decay sharper. Another observation is that one does not need
to implement a bagged 1-nearest neighbor classifier with Monte Carlo sampling. One can
directly use Eq. 5.23 and set K(Z,Xi) = P (Xi|Z) according to Eq. 5.27. One can also derive
a similar result for the case of subsampling without replacement:

P (Xi|Z) =

{(
n−R(Z,Xi)

s−1

)
/
(
n
s

)
if R(Z,Xi) ≤ n− s+ 1

0 if R(Z,Xi) > n− s+ 1
(5.28)

We leave the proof of this result as an exercise for the reader (see Exercise 8).

These results show that weighted nearest-neighbor classifiers are connected to well-
known techniques in ensemble-learning, and their use can provide robust results. It is par-
ticularly noteworthy that the weights decay exponentially with the rank of the distances of
the training points to the test point in the bagged and subsampled 1-nearest neighbor meth-
ods. This is similar to using Gaussian decay (cf. Eq. 5.25), except that the weights decay
exponentially with the raw distances in Eq. 5.25 (rather than the rank). Bagged/subsampled
1-nearest neighbors are known to give good results, and this also suggests that one can get
good results with Gaussian decay. In fact, combining Gaussian decay with supervised impor-
tance weighting of points can be shown to be equivalent to kernel support vector machines
(cf. Chap. 6). Such methods are referred to as adaptive nearest neighbor methods.

140 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

5.4.4 Adaptive Nearest Neighbors: A Powerful Family

Nearest-neighbor methods are sensitive to several factors, which add to the error:

1. Noisy and irrelevant points add to the error of the nearest-neighbor classifier.

2. Irrelevant features add to the instability of the computations, which can further in-
crease the variability in predictions.

Is there any way to modify the nearest-neighbor classifier to make it less sensitive to these
effects? It turns out that this is indeed possible by using one of the following two strategies
either in isolation or in combination:

1. It can be learned up front which points are more important for improving classification
accuracy. Such points can be weighted to a greater degree.

2. It can learned up front, which dimensions (or directions) are more important, and
the similarity function K(Z,Xi) can be modified to give greater importance to the
discriminative directions.

One can now augment the weighted nearest-neighbor classification prediction function with
an additional weight λi with point Xi:

F (Z) = sign

{
n∑

i=1

λi K(Z,Xi) yi

}

(5.29)

The value of λi needs to be learned up front in a data-driven manner. Furthermore, the
similarity functionK(Z,Xi) might be data-driven and learned in a supervised manner based
on the labeled training data. It is often overlooked that some of the most powerful classifiers
in all of machine learning are adaptive nearest-neighbor classifiers:

The kernel support vector machine and the random forest, which are known
to be extremely powerful classifiers [169], are special cases of adaptive nearest-
neighbor classifiers. Specifically, their prediction function can be reduced to the
form of Equation 5.29.

In the case of the support vector machine, the prediction function is almost identically of
the form of Eq. 5.29, whereas a random forest uses λi = 1 but uses a data-driven similarity
function, which is defined algorithmically (i.e., not in closed form) [62]. These points will be
explained in greater detail in the sections on random forests and support vector machines
(cf. Sects. 5.5.6 and 6.3.6).

In this section, we will provide a specific example of an adaptive method in which
K(Z,Xi) is designed in a supervised way. We describe the discriminant adaptive nearest-
neighbor classifier [207], which weights specific directions in the data in order to make the
distance function more sensitive to the distribution of classes. This makes the classifier
less sensitive to noise, and able to perform better classification with a small amount of
data. In order to understand this point, consider a two-class data distribution shown in
Fig. 5.4, which contains two classes denoted by A and B. For the purpose of the following
discussion, assume that the documents have been normalized to unit norm, so that using
the Euclidean is equivalent to using the cosine similarity (cf. Sect. 2.5 of Chap. 2). Although
the test instance belongs to class A, the spherical distance contour of the Euclidean distance
finds a larger number of points belonging to class B. This is caused by the fact that the

5.4. NEAREST NEIGHBOR CLASSIFIER 141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FEATURE X

FE
A

TU
R

E
 Y

X<−TEST INSTANCE

CLASS A

CLASS B

LINEAR
DISCRIMINANT

Figure 5.4: Increasing sensitivity of distance function towards discriminating directions re-
duces impact of noise

data set is very small, and only one of the two directions in the data is discriminating (see
direction of arrow shown in Fig. 5.4). As a result, the noisy direction contributes to the error
caused by the vagaries inherent in a small data set.

One can improve the Euclidean distance function by incorporating information about
the class distribution. Consider the Euclidean distance D(Z,Xi), which is defined as follows:

D(Z,Xi) = ||Z −Xi||2 = (Z −Xi)(Z −Xi)
T

One can augment this distance function with a d × d distortion matrix A, which contains
all the useful knowledge in the training data about the discriminating directions:

D(Z,Xi) = (Z −Xi)A(Z −Xi)
T (5.30)

How is A learned from the training data? Basically, the matrix A is set to the linear
discriminant analysis metric that implicitly scales the directions in the data, so that less
discriminating directions are given less importance.

Let Σi be the covariance matrix of the ith class, so that the (j, k)th entry of Σi is equal
to the covariance between the jth and kth dimensions in the ith class. Let ni be the number
of points in the ith class. Let μ be the d-dimensional row vector representing the mean of
the entire data set, and μi be the d-dimensional row vector representing the mean of the
ith class. Then, the d× d within-class scatter matrix is defined as follows:

Sw =

k∑

i=1

niΣi (5.31)

The d×d between-class scatter matrix is defined as the sum of the following rank-1 matrices:

Sb =

k∑

i=1

ni(μi − μ)T (μi − μ) (5.32)

Note that each term in the above summation is a d× d matrix, because it is the product of
a d× 1 matrix with a 1× d matrix. Then, the distortion matrix A is defined as follows:

A = S−1
w SbS

−1
w (5.33)

142 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

This matrix A is used to compute the distance function of Eq. 5.30 and the corresponding
nearest neighbors. The dominant class among the κ nearest neighbors is reported as the
relevant one.

It is also possible to exponentiate the (negative of the) squared distance function to
create a similarity value like Eq. 5.25, and then substitute in the prediction function of
Eq. 5.29. The value of λi in Eq. 5.29 is set to 1. This is an adaptive approach because the
similarity function has been learned up front with the use of labeling information.

This approach requires the inversion of matrices of size d × d in the original space,
which might be computationally onerous. Therefore, latent semantic analysis can be used
to transform all the training and test documents to a space of less than 500 dimensions. The
operations in the transformed space are far more efficient and computationally tractable.

5.5 Decision Trees and Random Forests

As the name implies, a decision tree is a tree-like (i.e., hierarchical) partitioning of the data
space, in which the partitioning is achieved with a series of split conditions (i.e., decisions)
on the attributes. The idea is to partition the data space into attribute regions that are
heavily biased towards a particular class during the training phase. Therefore, partitions are
associated with their favored class labels. During the testing phase, the relevant partition of
the data space is identified for the test instance, and the label of the partition is returned.
Note that each node in the decision tree corresponds to a region of the data space defined
by the split conditions at its ancestor nodes, and the root node corresponds to the entire
data space. Random forests are ensemble-centric implementations of decision trees, which
are known to be highly robust and accurate.

5.5.1 Basic Procedure for Decision Tree Construction

Decision trees partition the data space recursively in top-down fashion using split conditions
or predicates. The basic idea is to choose the split conditions in such a way that the subdi-
vided portions are dominated by one or more classes. The evaluation criteria for such split
predicates are often similar to feature selection criteria in classification. The split criteria
typically correspond to constraints on the frequencies of one or more words. A split that
uses a single attribute is referred to as a univariate split, whereas a split using multiple at-
tributes is referred to as a multivariate split. It is common for each node in the decision tree
to have only two children. For example, if the split predicate corresponds to the presence of
absence of a word, then all documents containing the word will be contained in one child
and the remaining documents will be in the other child. The splits are applied recursively
in top-down fashion, until each node in the tree contains a single class. These nodes are
the leaf nodes, and are labeled with the classes of their instances. In order to classify a test
instance for which the label is unknown, the split predicates are used in top-down fashion
over various nodes of the tree in order to identify the branch to follow down the tree until the
leaf node is reached. For example, if the split predicates correspond to presence or absence
of words, it is checked whether the test document contains the word or not to determine the
relevant branch to follow. This process is repeated until the relevant leaf node is identified,
and its label is reported as the prediction of the test instance.

This type of extreme way of creating a tree until each leaf contains instances of only a
single class is referred to as growing a tree to full height. Such a fully-grown tree will provide
100% accuracy on the training data even for a data set in which class labels are generated

5.5. DECISION TREES AND RANDOM FORESTS 143

randomly and independently of the features in the training instances. This is clearly the
result of overfitting, because one cannot expect to learn anything from a data set with
random labels. A fully-grown tree will often misinterpret random nuances in the training
data as indicative of discriminative power, and these types of overfitted choices will cause
the predictions of the same test instance to vary significantly between trees constructed on
different training samples. This type of variability is usually a sign of a poor classifier in
expectation, because at least some of these diverse predictions are bound to be incorrect.
As a result, the performance on the test data of such a tree will be poor even for those data
sets in which the feature values are related to the class labels. This problem is addressed
by pruning the nodes at the lower levels of the tree that do not contribute in a positive way
to the generalization power on unseen test instances. As a result, the leaves of the pruned
tree may no longer contain a single class, and are therefore labeled with the majority class
(or dominant class for k-way classification).

Pruning is accomplished by holding out a part of the training data, which is not used in
the (initial) decision-tree construction. For each internal node, it is tested whether or not the
accuracy improves on the held out data by removing the subtree rooted at that node (and
converting that internal node to a leaf). Depending on whether or not the accuracy improves,
the pruning is performed. Internal nodes are selected for testing in bottom-up order, until all
of them have been tested once. It is also noteworthy that pruning is not required in ensemble-
centric implementations of decision trees like random forests, because such implementations
avoid overfitting by other mechanisms. The overall procedure of decision-tree construction
is shown in Fig. 5.5. Note that the specific split criterion is not spelled out in these generic
pseudo-code. This is an issue that will be discussed in the next section. The notion of
eligibility of a node to be split is also not specified in the pseudo-code. Since bottom nodes
are pruned anyway, it is possible to stop early using other criteria than growing the tree to
full height. Various stopping criteria make nodes ineligible for splitting, such as a maximum
threshold on the number of instances, or a minimum percentage threshold on the dominant
class.

5.5.2 Splitting a Node

The split criteria can use any of the feature selection criteria discussed in Sect. 5.2. Common
choices are the Gini index (cf. Eq. 5.2) and conditional entropy (cf. Eq. 5.5). In the following,
conditional entropy is used as an example because of its popularity.

Consider the case of univariate splits, in which only the presence or absence of a term
in a document is used as the split criterion. In other words, the frequency of the term is
ignored. For a given node L, let L1(j) and L2(j) be the respective sets of documents that
contain or do not contain the jth term tj . Then, the conditional entropy values, E1(tj) and
E2(tj), are computed for L1(j) and L2(j), respectively, using Eq. 5.5. The overall entropy
Oj of the split with term tj is defined as the weighted average of these two values, where
the weight is defined by the number of data points in L1(j) and L2(j), respectively:

Oj =
|L1(j)|

|L1(j)|+ |L2(j)|E1(tj) +
|L2(j)|

|L1(j)|+ |L2(j)|E2(tj) (5.34)

The split is tested for each term tj , and the one providing the lowest conditional entropy
is selected. The identity of the term tj is also stored at node L, so that it can be used at
prediction time, when a test instance is classified with the decision tree.

144 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

Algorithm ConstructDecisionTree(Labeled Training Document Set: Dy)
begin
Hold out a document subset H from Dy to create Dy = Dy − H;
Initialize decision tree T to a single root node containing Dy ;
{ Tree Construction Phase }
repeat
Select any eligible leaf node from T with data set L;
Use split criteria of section 5.5.2 to partition L into subsets L1 and L2;
Store split condition at L and make {L1, L2} children of L in T ;

until no more eligible nodes in T ;
{ Tree Pruning Phase }
repeat
Select an untested internal node N in T in bottom-up order;
Create Tn obtained by pruning subtree of T at N ;
Compare accuracy of T and Tn on held out set H;
if Tn has better accuracy then replace T with Tn;

until no untested internal nodes remain in T ;
Label each leaf node of T with its dominant class;
return T ;

end

Figure 5.5: Training process in a decision tree

5.5.2.1 Prediction

Once the decision tree has been set up, it is relatively easy to use it for prediction. The
split criterion associated with each node is always stored with that node during decision
tree construction. For a test instance, the split criterion at the root node is tested (e.g.,
presence or absence of a word) to decide which branch to follow. This process is repeated
recursively until the leaf node is reached. The label of the leaf node is returned as the
prediction. A confidence is associated with the prediction, corresponding to the fraction of
the labels belonging to the predicted class in the relevant leaf node.

5.5.3 Multivariate Splits

In the case of multivariate splits, more than one attribute is used for making splitting
decisions. The vector-space representation of documents is used for implementing the split.
The basic idea is to sample r directions Y1 . . . Yr in the d-dimensional vector space and
project all the documents in L along each of these r directions. Here, r is user-defined
parameter. The projection of the document Xi along the qth direction is given by Xi · Yq.
The projection of each document (contained in node L) along the qth direction creates
an ordering among these documents, which is used to test |L| − 1 possible split points.
Furthermore, since there are r directions, one can test a total of r(|L| − 1) possible split
points by repeating the process along each of the directions. The quantification of Eq. 5.34 is
used to evaluate the quality of each split, and the best one is selected. How are the directions
Y1 . . . Yr selected? One possibility is to choose random directions in the space. However, it
is often helpful to use biased directions [432], where Yq is a vector joining the centroids
of random samples drawn from documents in L, and each of the centroids is defined by
documents of only a single randomly chosen class. Such a direction is more likely to yield a
good split that discriminates well between two classes.

5.5. DECISION TREES AND RANDOM FORESTS 145

A special case of this setting [432] is one in which a pair of documents (Xu, Xv) belonging
to different classes is chosen to define Yq = Xu −Xv. In such a case, the projection of data
pointXi on the direction Yq is given byXu·Xi−Xv ·Xi = sui−svi. Here, sui and svi represent
dot-product similarities between corresponding training pairs. Instead of the dot product,
we can use any type of similarity function, even if the multidimensional representation
of the document is not used. For example, we can use string kernel similarities in cases
where we want to use the sequence information. In other words, it is possible to build
multivariate decision trees only with similarities to make decision trees sensitive to word
ordering. This notion is referred to as similarity forests, when used with an ensemble-centric
implementation [432], and is an adaptation of kernel methods to decision trees (see Chap. 6
for kernel methods).

5.5.4 Problematic Issues with Decision Trees in Text Classification

Because of the high-dimensional and sparse nature of text, off-the-shelf implementations
of decision trees do not always work well. However, with the proper implementation, it is
possible to obtain high-quality results with decision trees. In the following, some practical
guidance is provided.

Like nearest-neighbor classifiers, decision trees have the capability to approximate arbi-
trary decision boundaries, given an infinite amount of data. This is because the successive
localization of small regions of the data with splits is similar6 to the implicit Voronoi-based
partitioning of the data space in nearest-neighbor classifiers. However, with a finite amount
of data, the predictions of a decision tree are not only inaccurate, but they are also heavily
biased in favor of specific classes in particular regions of the data. In other words, if training
data samples of small size are drawn from a large base data set, the predictions will all be
biased towards favoring particular classes in specific regions of the data. This bias is caused
by the split criteria at the top levels of the tree, which have a disproportionately large effect
on the final prediction. Often, the split criteria at the top levels of the tree are relatively
stable with choice of training sample. Note that this correlated behavior is quite different
from a 1-nearest neighbor classifier in which the predictions of different training samples
are quite diverse. It is easy to make mistakes in the split criteria at the top levels because
they are made in myopic way without an understanding of the interactions between various
attributes. The problem starts becoming particularly severe with increasing dimensionality
of the data set. Text collections often contain hundreds of thousands of dimensions.

One observation about univariate splits is that they lead to imbalanced decision trees
in which the paths dominated by absence of terms are much longer than paths dominated
by presence of terms. Univariate splits are generally best for classification of short text,
or text documents drawn from a smaller lexicon. For longer documents, multivariate split
criteria can often provide better results. This is because univariate split criteria give too
much importance to the absence of terms in many long paths of the tree. Such paths might
lead to noisy decisions. When working with long documents, it is particularly important
to use models that use many terms simultaneously at key decision points in the learning
process, and also to give greater importance to presence of terms (rather than absence).

Another issue is that multi-way classification tends to work poorly in text if one con-
structs a single tree to explain all classes. This is because the terms relevant to various
classes are largely disjoint, which increases the size of the relevant vocabulary. Since deci-
sion trees use sequential decisions on individual attributes, the small number of terms used

6In Sect. 5.5.6, we show further connections between nearest-neighbor classifiers and randomized variants
of decision trees.

146 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

for splitting at the higher levels of the tree assume a disproportionately high importance.
Therefore, a multi-way classification problem is usually decomposed into multiple binary,
one-against-all classification problems, and the results from these different classifiers are
integrated by reporting the most confident prediction.

5.5.5 Random Forests

Even though decision trees can capture arbitrary decision boundaries with an infinite
amount of data, they can capture only piecewise linear approximations of these bound-
aries with a finite amount of data. These approximations are particularly inaccurate in
smaller data sets. Another problem with decision trees is that the bagging and subsampling
tricks used for 1-nearest neighbors do not work quite as well because the splits at the higher
levels of the tree are highly correlated. In other words, the expected prediction of a decision
tree with randomly chosen training data sets of small size has a bias in terms of consistently
classifying certain test examples incorrectly. One cannot correct the predictions of such test
instances by using bagging or subsampling.

A more effective approach is to randomize the tree construction process by allowing the
splits at the higher levels of the tree to use the best feature selected out of a restricted
subset of features. In other words, r features are randomly selected at each node, and the
best splitting feature is selected only out of these features. Furthermore, different nodes
use different subsets of randomly selected features. Using smaller values of r results in an
increasing amount of randomization in tree construction. At first sight, it would seem that
using such a randomized tree construction should impact the prediction in a detrimental
way. However, the key is that multiple such randomized trees are grown, and the predictions
of each test point over different trees are averaged to yield the final result. By averaging, we
mean that the number of times a class is predicted by a randomized tree for a test instance
is counted. The class receiving the most number of votes is predicted for the test instance.
This averaging process improves the quality of the predictions significantly over a single tree
by effectively using diverse terms at higher levels of the different trees in various ensemble
components. This results in more robust predictions. The individual trees are grown to
full height without pruning because the averaged predictions do not have the overfitting
problem of the predictions of individual trees.

The approach can be generalized easily to the multivariate case, which is already ran-
domized to some extent. The multivariate case uses r randomized directions in the data
Y1 . . . Yr, in which each direction Yq is defined as the vector joining documents belonging
to two randomly chosen classes. It is helpful to use a small value of r in order to optimize
the split with respect to a smaller number of directions (thereby increasing randomization).
This approach can even be made to work when only similarities between documents are
available, such as with the use of string kernels [432]. A pair of documents (Xu, Xv) be-
longing to different classes is chosen to define Yq = Xu −Xv. In such a case, the projection
of data point Xi on the direction Yq is given by Xu · Xi − Xv · Xi = sui − svi. Here, sui
and svi represent dot-product similarities between corresponding training pairs (which can
be replaced with string kernel similarities during the split). This notion is referred to as
similarity forests [432], and is an adaptation of kernel methods to decision trees (see Chap. 6
for kernel methods).

The random forest can also be constructed by building a conventional (deterministic)
decision tree on a randomized feature engineering of the data set. This is a slightly different
approach to randomization than the one obtained by using a bag of features at a node. In
particular, the LSA-based feature extraction trick discussed in Sect. 5.2.7 is used to build

5.6. RULE-BASED CLASSIFIERS 147

each decision tree. The resulting forest is referred to as a Rotation Forest [413], and it is
particularly well suited to text because the new representation is able to get rid of the
sparsity in the original representation.

5.5.6 Random Forests as Adaptive Nearest Neighbor Methods

Random forests are adaptive nearest neighbor methods. The intuitive similarity between
a decision tree and a 1-nearest neighbor method is easy to see by treating a 1-nearest
neighbor method as a technique that performs a Voronoi partitioning of the space with
singleton training points (cf. Fig. 5.2). Each Voronoi region is labeled with the class of its
training instance. A decision tree also partitions the space into hypercubes (in the case of
univariate splits), but the hypercubes are constructed more carefully by the hierarchical
tree construction process. This supervision in hypercube-based partitioning is what gives
the decision tree its adaptivity. The forest adds robust weights to the neighbors, just as an
ensemble of 1-nearest neighbors results in weighted nearest neighbors (cf. Sect. 5.4.3.1).

In the following, we will show this result more formally for a random forest. It is assumed
that each decision tree in the random forest is grown to full height without pruning (which
is common in the random forest setting). Let It(X,Y) be a binary 0-1 indicator function
that takes on the value of 1 when X and Y are mapped to the same node in the tth
randomized decision tree from a forest containing m ≥ t trees. Let N(i, t) be number of
training instances in the node containing Xi for the tth randomized decision tree. Consider
the following similarity function between the test instance Z and training instance Xi.

K(Z,Xi) =

m∑

t=1

It(Z,Xi)

N(i, t)
(5.35)

Then, it can be shown (see Exercise 12) that the prediction F (Z) of a random forest for
binary classification of test instance Z with labels yi ∈ {−1,+1} takes on the following form
of weighted nearest-neighbor classification over all n training instances:

F (Z) = sign

{
n∑

i=1

K(Z,Xi) yi

}

(5.36)

Note that this form is exactly the same of that of adaptive nearest-neighbor prediction in
Eq. 5.29, except that the value of λi has been set to 1. The classification is still adaptive
because the similarity function K(Z,Xi) needs to be learned up front in a supervised way
with the construction of the random forest.

5.6 Rule-Based Classifiers

Rule-based classifiers use a set of “if then” rules R = {R1 . . . Rm} to match conditions on
features on the left-hand side of the rule to the class labels on the right-hand side. The
expression on the left-hand side of the rule is referred to as the antecedent and that on the
right-hand side of the rule is referred to as the consequent. A rule is typically expressed in
the following form:

IF Condition THEN Conclusion

148 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

The condition on the left-hand side of the rule, also referred to as the antecedent, often
contains conditions of the form (tj ∈ X) AND (tl ∈ X) AND (. . .). In other words, all
terms included in the antecedent, such as tj and tl, must be present in the document for the
rule to be triggered. Each condition (tj ∈ X) is referred to as a conjunct. The right-hand
side of the rule is referred to as the consequent, and it contains the class variable. Therefore,
a rule Ri is of the form Qi ⇒ c where Qi is the antecedent, and c is the class variable. The
“⇒” symbol denotes the “THEN” condition. In other words, the rules relate the presence
of terms like tj and tl in the document to the class variable c. Although it is possible for
more general conditions to be used on the left-hand side, this is often not done in practice.
For example, it is possible to include conditions like (tj
∈ X) corresponding to absence of
terms, although this is not recommended in sparse domains like text because such conditions
are noisy and could lead to overfitting [104]. Therefore, throughout this section, it will be
assumed that only rules corresponding to the presence of terms are generated.

As in all inductive classifiers, rule-based methods have a training phase and a prediction
phase. The training phase of a rule-based algorithm creates a set of rules. The prediction
phase for a test instance discovers some or all rules that are triggered or fired by the test
instance. A rule is said to be triggered by a training or test instance when the logical
condition in the antecedent is satisfied by the features in the instance. Alternatively, for the
specific case of training instances, it is said that such a rule covers the training instance.
In some algorithms, the rules are ordered by priority and therefore, the first rule fired by
the test instance is used to predict the class label in the consequent. In some algorithms,
the rules are unordered, and multiple rules with (possibly) conflicting consequent values are
triggered by the test instance. In such cases, methods are required to resolve the conflicts in
class label prediction. Rules generated from sequential covering algorithms are ordered. On
the other hand, rules that are generated from association pattern mining are unordered.

5.6.1 Sequential Covering Algorithms

The basic idea in sequential covering algorithms is to generate the rules for each class at
one time, by treating the class of interest as the positive class, and the union of all other
classes as the negative class. Each generated rule always contains the positive class as the
consequent. In each iteration, a single rule is generated using a Learn-One-Rule procedure
and training examples that are covered by the class are removed. The generated rule is
added to the bottom of the rule list. This procedure is continued until at least a certain
minimum fraction of the instances of that class have been covered. Other termination
criteria are often used. For example, the procedure can be terminated when the error of the
next generated rule exceeds a certain pre-determined threshold on a separate validation set.
A minimum description length (MDL) criterion is sometimes used when further addition
of a rule increases the minimum description length of the model by more than a certain
amount. The procedure is repeated for all classes. Note that less prioritized classes start
with a smaller training data set because many instances have already been removed in the
rule generation of higher priority classes. The RIPPER algorithm orders the rules belonging
to the rare classes before those of more frequent classes, although other criteria are used
by other algorithms, whereas C4.5rules uses various accuracy and information-theoretic
measures to order the classes. The broad framework of the sequential covering algorithm is
as follows:

5.6. RULE-BASED CLASSIFIERS 149

for each class c in a particular order do
repeat
Extract the next rule R ⇒ c using Learn-One-Rule on training data V ;
Remove examples covered by R ⇒ c from training data V ;
Add extracted rule to bottom of rule list;

until class c has been sufficiently covered

The procedure for learning a single rule is described in Sect. 5.6.1.1. Only rules for (k−1)
classes are grown, and the final class is assumed to be a default catch-all class. One can
also view the final rule for the remaining class cl as the catch-all rule {} ⇒ cl. This rule
is added to the very bottom of the entire rule list. This type of ordered approach to rule
generation makes the prediction process a relatively simple matter. For any test instance,
the first triggered rule is identified. The consequent of that rule is reported as the class label.
Note that the catch-all rule is guaranteed to be triggered when no other rule is triggered.
One criticism of this approach is that the ordered rule generation mechanism might favor
some classes more than others. However, since multiple criteria exist to order the different
classes, it is possible to repeat the entire learning process with these different orderings, and
report an averaged prediction.

5.6.1.1 Learn-One-Rule

It remains to be explained how the rule for a single class is generated. Although the orig-
inal RIPPER algorithm allows antecedent conditions corresponding to both presence and
absence of terms in documents, the absence of terms is a noisy indicator. As a result, their in-
clusion often causes overfitting [104]. Therefore, the following description will only consider
the case in which rules corresponding to presence of terms in a document are used in the
antecedent. For brevity, we will concisely denote a rule such as (tj ∈ X) AND (tl ∈ X) ⇒ c
by {tj , tl} ⇒ c. When the rules for class c are generated, each term is sequentially added to
the antecedent. The approach starts with the empty rule {} ⇒ c for the class c, and then
adds terms one by one to the antecedent. What should be the criterion for adding a term
to the antecedent of the current rule R ⇒ c?

1. The simplest criterion is to add the term to the antecedent that increases the accuracy
of the rule as much as possible. In other words, if n∗ is the number of training examples
covered by the rule (after addition of a candidate term tj to antecedent), and n+ is
the number of positive examples among these instances, then the accuracy of the rule
is given by n+/n∗. However, such an approach can sometimes favor rare terms or
misspellings if the small number of training examples covered by the corresponding
rule all belong to the positive category (by random chance). This is a manifestation of
overfitting. To address this issue, the accuracy of adding the term tj to the antecedent
of the current rule R ⇒ c is computed as follows:

A(R ⇒ c, tj) =
n+ + 1

n∗ + k
(5.37)

Here, k is the total number of classes.

2. Another criterion is FOIL’s information gain. The term “FOIL” stands for First Order
Inductive Learner. Consider the case where a rule covers n+

1 positive examples and n−
1

negative examples, where positive examples are defined as training examples matching
the class in the consequent. Furthermore, assume that the addition of a term to the

150 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

antecedent changes the number of positive examples and negative examples to n+
2 and

n−
2 , respectively. Then, FOIL’s information gain FG is defined as follows:

FG = n+
2

(

log2
n+
2

n+
2 + n−

2

− log2
n+
1

n+
1 + n−

1

)

(5.38)

This measure tends to select rules with high coverage because n+
2 is a multiplicative

factor in FG. At the same time, the information gain increases with higher accuracy
because of the term inside the parentheses. This particular measure is used by the
RIPPER algorithm.

Several other measures are often used, such as the likelihood ratio and entropy. Terms can
be successively added to the antecedent of the rule, until 100% accuracy is achieved by the
rule on the training data or when the addition of a term cannot improve the accuracy of
a rule. In many cases, this point of termination leads to overfitting. Just as node pruning
is done in a decision tree, antecedent pruning is necessary in rule-based learners to avoid
overfitting. Another modification to improve generalization power is to grow the r best rules
simultaneously at a given time, and only select one of them at the very end based on the
performance on a held-out set. This approach is also referred to as beam search.

5.6.1.2 Rule Pruning

Overfitting may result from the presence of too many conjuncts. As in decision-tree pruning,
the Minimum Description Length principle can be used for pruning. For example, for each
conjunct in the rule, one can add a penalty term δ to the quality criterion in the rule-growth
phase. This will result in a pessimistic error rate. Rules with many conjuncts will therefore
have larger aggregate penalties to account for their greater model complexity. A simpler
approach for computing pessimistic error rates is to use a separate holdout validation set
that is used for computing the error rate (without a penalty). However, this type of approach
is not used by Learn-One-Rule.

The conjuncts successively added during rule growth (in sequential covering) are then
tested for pruning in reverse order. If pruning reduces the pessimistic error rate on the train-
ing examples covered by the rule, then the generalized rule is used. While some algorithms
such as RIPPER test the most recently added conjunct first for rule pruning, it is not a
strict requirement to do so. It is possible to test the conjuncts for removal in any order, or
in greedy fashion, to reduce the pessimistic error rate as much as possible. Rule pruning
may result in some of the rules becoming identical. Duplicate rules are removed from the
rule set before classification.

5.6.2 Generating Rules from Decision Trees

Decision trees can also be used to generate rules because each path in a decision tree
corresponds to a rule. Generally, rules are generated from univariate decision trees because
of their interpretability although it is possible, in principle, possible to also generate rules
from multivariate decision trees. For each path in a decision tree, a rule can be generated
corresponding to the conjuncts of the conditions required to reach a leaf. One difference
between the rules generated from decision trees and other methods is that many paths in
a (univariate) decision tree correspond to absence of attributes. Therefore, the rules may
contain conjuncts corresponding to absence of attributes. Since all the paths in a decision
tree represent non-overlapping regions of the space, the initial set of rules generated from

5.6. RULE-BASED CLASSIFIERS 151

a decision tree are mutually exclusive in terms of coverage. However, this situation changes
with further processing of this initial set of rules with rule pruning.

Rules are processed one by one, and conjuncts are pruned from them in greedy fashion
to improve the accuracy as much as possible on the covered examples in a separate holdout
validation set. This approach is similar to decision-tree pruning except that one is no longer
restricted to pruning the conjuncts at the lower levels of the decision tree. Therefore, the
pruning process is more flexible than that of a decision tree, because it is not restricted by
an underlying tree structure. Duplicate rules may result from pruning of conjuncts. These
rules are removed. The rule-pruning phase increases the coverage of the individual rules and,
therefore, the mutually exclusive nature of the rules is lost. A single test instance might fire
multiple rules. As a result, it again becomes necessary to order the rules.

In C4.5rules [395], all rules that belong to the class whose rule set has the smallest
description length are prioritized over other rules. The total description length of a rule set
is a weighted sum of the number of bits required to encode the size of the model (rule set)
and the number of examples covered by the class-specific rule set in the training data, which
belong to a different class. Typically, classes with a smaller number of training examples
are favored by this approach. A second approach is to order the class first whose rule set
has the least number of false-positive errors on a separate holdout set. A rule-based version
of a decision tree generally allows the construction of a more flexible decision boundary
with limited training data than the base tree from which the rules are generated. This is
primarily because of the greater flexibility in the model, which is no longer restrained by
the straitjacket of an exhaustive and mutually exclusive rule set. As a result, the approach
generalizes better to unseen test instances.

5.6.3 Associative Classifiers

Associative classifiers [306] leverage association rule mining techniques [1, 2] in order to
perform text classification. Such methods are particularly well suited to the text domain
because associative classifiers were originally designed for sparse domains like market basket
data, which are similar to text. The basic idea of such classifiers is to relate a bag of terms
in the antecedent of the rules to a class label in the consequent of the rule. Therefore, a rule
is of the following form:

S ⇒ c

Here, S is a set of terms, and c is a class label (identifier) drawn from {1 . . . k} The bags of
terms, S, in the antecedent of the rule always correspond to the presence of all terms in S
in a document. Therefore, absence of terms in a document is never used. Furthermore, this
approach borrows ideas from association rule mining to define the rule set. A rule S ⇒ c is
mined from the training data, if it satisfies two conditions:

1. At least a minimum fraction minsup of the training documents both contain S and
belong to class c. The value of minsup is a user-defined parameter, which is referred to
as the minimum support. In general, the support of the rule is defined as the fraction
of documents that contain S and belong to class c.

2. Among all documents that contain S, at least a minimum fraction minconf of the
documents belong to class c. The value of minconf is a user-defined parameter, which
is referred to as the minimum confidence. In general, the confidence of the rule is the
conditional probability of a document belonging to class c, given that it contains S.

152 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

Imposing a minimum support requirement prevents overfitting by only selecting rules with
significant presence, whereas imposing a minimum confidence requirement ensures that
predictive rules are selected.

Associative classifiers are easy to implement in an efficient way because many off-the-
shelf association pattern mining techniques are available to mine the rules from the under-
lying data in an efficient way. We refer the reader to [1, 2] for a review of various rule mining
techniques. Significant amount of rule pruning is often used in order to reduce redundancy.
Rule pruning is a heuristic process in which the different factors are integrated to create
the final rule set [26]. For example, for two rules S1 ⇒ c and S2 ⇒ c, in which S1 ⊆ S2,
the second rule is redundant with respect to the first. However, if the confidence of the
second rule is significantly higher, then it does convey additional information. Therefore,
the rule S2 ⇒ c can be pruned, only if it has lower confidence. All such rules are removed.
Subsequently, the rules are ordered by decreasing confidence, with ties broken by successive
criteria of decreasing support and increasing number of terms in antecedent. The rules are
processed in this order and documents that fire a rule are marked, if they have not already
been marked. A rule is considered non-redundant only if it is fired by at least one unmarked
document during the aforementioned processing. At the end of the process, the majority
class of those training instances that do not fire any rule is treated as the default class.

5.6.4 Prediction

For any given test instance, those rules that are fired by the test instance are identified. If
no rules are fired, then the default class is predicted. If all fired rules predict the same class,
then the corresponding class is reported. The main challenge arises in cases where the fired
rules conflict with one another. The simplest approach is to use the sum of the confidences
of all the fired rules for a particular class as its prediction propensity. The class with the
highest propensity is reported. However, more complex prediction mechanisms are used by
various rule-based methods. Refer to the bibliographic notes.

5.7 Summary

The sparsity of text causes a number of unique challenges for classification. For example,
the absence of words conveys noisier information as compared to the presence of words.
The chapter studies numerous feature selection methods such as the Gini index, conditional
entropy, mutual information, and the χ2-statistic. The four most fundamental classification
methods, which are the näıve Bayes classifier, the κ-nearest neighbor method, the decision
tree, and rule-based methods are studied in this chapter. The näıve Bayes classifier is closely
related to mixture models for clustering. Nearest-neighbor classifiers are theoretically very
accurate if an infinite amount of data is available, although their accuracy is limited by the
finiteness of the data and the noise in the features. A powerful family of nearest-neighbor
classifiers is that of adaptive methods, of which random forests and support vector machines
are special cases. Decision trees face many challenges for effective implementation in text
data; however, with the proper implementation, they can provide good results. Rule-based
classifiers are closely connected to decision trees, because rules can also be extracted from
decision trees. Numerous methods like sequential covering and association pattern mining
have been developed for extracting rules from text documents.

5.8. BIBLIOGRAPHIC NOTES 153

5.8 Bibliographic Notes

Surveys on text classification may be found in [1, 14, 439]. A comparative study of several
feature selection methods for text categorization may be found in [520]. The use of word
clusters for dimensionality reduction is explored in [12, 33, 258, 285, 451]. Many classifiers
in the text domain have been compared in [147, 240, 519].

The basic ideas of the näıve Bayes classifier for text are discussed in [243, 286, 327]. The
differences between the Bernoulli and multinomial models are discussed in [327]. Discussions
on the independence assumption in näıve Bayes are provided in [113, 140]. A hierarchical
classifier with the näıve Bayes method is discussed in [80]. The semi-supervised method
for probabilistic classification is based on the ideas in [364]. The work in [289] also uses
supervised clustering with a mixture model, which is then leveraged for categorization. A
variety of semi-supervised methods for learning are discussed in [56, 57, 350]. A book on
semi-supervised learning [90] provides an excellent overview.

The κ-nearest neighbor classifier and its variants have been studied extensively in the lit-
erature [116]. Early studies on the effectiveness of κ-nearest neighbor methods are provided
in [516, 517, 519]. A nearest-neighbor classifier that weights words is discussed in [202].
The Rocchio classifier is based on the relevance feedback ideas developed in [414]. A prob-
abilistic variant of the Rocchio algorithm for text classification is provided in [243]. Several
centroid classifiers are studied in [6, 58, 203, 258]. The work in [271] uses ideas from linear
classifiers to create generalized instance sets for nearest-neighbor classification. The ideas
of bagging were presented in [61] and those of subsampling are presented in [65]. The proof
of Bayes optimality of the 1-nearest neighbor classifier is available in [144]. The connections
between bagged/subsampled 1-nearest neighbors and weighted nearest-neighbor classifiers
are explored in [428]. The discriminant metric-based distance function is presented in [207].
The work in [207] introduces a local variation of this approach as well.

The well-known C4.5 decision tree classifier was proposed in [395] and ID3 was proposed
in [396]. Decision trees were generalized to random forests in [60, 62]. DT-min10 [287] was
an early decision-tree algorithm for building the tree for each category. The algorithm
derives its name from the fact that the tree construction was stopped when fewer than
10 examples were mapped to a leaf node. No pruning was done. Several recommendations
on the construction of decision trees on sparse data like text are provided in [246]. Early
studies on the advantages of ensemble-centric implementations of decision trees for text
categorization are provided in [28, 492]. The work in [92] provides some of the earliest
proposals on decision tree construction, and also suggested that a separate decision tree
should be grown for each category. The use of Fisher’s linear discriminant for constructing
decision trees is presented in [82], and rotation forests are presented in [413]. The work
in [203] highlights some of the problems associated with decision-tree classification in sparse
domains like text. The work in [290] also does not show encouraging results of decision trees
in comparison with methods like näıve Bayes. There is, however, not a clear consensus on
this issue. For example, the work in [147] reports relatively good results with the decision
tree proposed in [92], especially in comparison with the näıve Bayes classifier. Independent
results in [240] suggest that the decision tree does not work as well as the support vector
machine, but it works approximately as well as κ-nearest neighbor and Rocchio, and (much)
better than the näıve Bayes classifier. Indeed, the repeated under-performance of the (widely
revered) näıve Bayes classifier in independent experiments [147, 240, 519] would make this
classifier a more questionable choice. It is also noteworthy that none of the compared results
use the random forest implementation of a decision tree, which should provide better results.
Therefore, it would seem that even though decision trees have sparsity-centric challenges

154 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

in the text domain, their true potential might be widely underestimated and that of the
näıve Bayes might be widely overestimated. In fact, most of the sparsity-based drawbacks
of random forests vanish, when splits in arbitrary directions are used. In such cases, one
can even use kernelized variants of random forests [432].

The earliest methods for rule-based text classification were proposed in [27]. Many key
ideas for sequential covering algorithms were laid by Fürkranz and Widmer [178] in the
IREP algorithm. The RIPPER method [102] for rule-induction, which is a popular method
for text classification, is closely related to IREP. Its use in email classification was studied
in [103]. It was shown in [104] that it is inadvisable to use the absence of words in rule-based
classification for text. The use of context-sensitive methods for improving the classification
accuracy of rule-based methods is studied in [106]. The foundation for classification based on
associations was laid in the seminal work of [306]. The description of the associative classifier
in this chapter is roughly based on [26], although several portions have been simplified.

5.8.1 Software Resources

The Bow toolkit [325], which is written in C, contains many basic algorithms for text classi-
fication. Several text classification tools are included in the Python library scikit-learn [550].
The most well known library for classification in R is the caret package [267]. Although
this package is not specifically designed for text data, many of the core predictive modeling
techniques can be adapted easily to the text domain with appropriate text preprocessing
tools. The R-based tm library [551] can be used for preprocessing and tokenization in com-
bination with the caret package. The package RTextTools [571] in R also has numerous
categorization methods, which are specifically designed for text. The primary focus on this
package is on ensemble methods, although it also contains standalone classifiers like decision
trees. In addition, the rotationForest package [572] in R, which is available from CRAN,
can be used to address the sparsity challenges associated with text. An implementation of
this method is also available in Weka [553]. The Weka library [553] in Java contains nu-
merous text classification tools, and it is particularly rich in conventional tools like decision
trees and rule-based methods. The MALLET toolkit [605] supports many classifiers like
näıve Bayes and decision trees.

5.9 Exercises

1. Consider the term “elections” which is present in only 50 documents in a corpus
of 1000 documents. Furthermore, assume that the corpus contains 100 documents
belonging to the Politics category, and 900 documents belonging to the Not-Politics
category. The term “election” is contained in 25 documents belonging to the Politics
category.

(a) Compute the unnormalized Gini index and the normalized Gini index Gn(·) of
the term “elections.”

(b) Compute the entropy of the class distribution with respect to the entire data set.

(c) Compute the conditional entropy of the class distribution with respect to the
term “elections.”

(d) Compute the mutual information of the term “elections” according to Eq. 5.6.
How are your answers to (b), (c), and (d) related?

5.9. EXERCISES 155

(e) Compute the information gain of the term “elections” according to Eq. 5.7. How
are your answers to (d) and (e) related?

2. Show that the sum of (1) the mutual information between a class and term (Eq. 5.6),
and (2) the conditional entropy of the class distribution with respect to the same
term, is equal to the total entropy of the class distribution.

3. The χ2 distribution is defined by the following formula, as discussed in the chapter:

χ2 =

p∑

i=1

(Oi − Ei)
2

Ei

Show that for a 2× 2 contingency table, the aforementioned formula can be rewritten
as follows:

χ2 =
(O1 +O2 +O3 +O4) · (O1O4 −O2O3)

2

(O1 +O2) · (O3 +O4) · (O1 +O3) · (O2 +O4)

Here, O1 . . . O4 are defined in the same way as in the tabular example in the text.

4. Predict the probabilities of categories Cat and Car of Test2 on the toy corpus example
in Sect. 5.3.5.1. You can use the Bernoulli näıve Bayes model with the same level of
smoothing as used in the example in the book. Return normalized probabilities that
sum to 1 over the two categories.

5. Predict the probabilities of categories Cat and Car of Test2 on the toy corpus example
in Sect. 5.3.5.2. You can use the multinomial näıve Bayes model with the same level of
smoothing as used in the example in the book. Return normalized probabilities that
sum to 1 over the two categories.

6. Näıve Bayes is a generative model in which each class corresponds to one mixture
component. Design a fully supervised generalization of the naïıve Bayes model in which
each of the k classes contains exactly b > 1 mixture components for a total of b · k
mixture components. How would you perform parameter estimation in this model?

7. Näıve Bayes is a generative model in which each class corresponds to one mixture
component. Design a semi-supervised generalization of the naïıve Bayes model in which
each of the k classes contains exactly b > 1 mixture components for a total of b · k
mixture components. How would you perform parameter estimation in this model?

8. Provide a proof of Eq. 5.28 on subsampling. Specifically, show that if the 1-nearest
neighbor algorithm is used with a subsample of size s out of n points, then the predic-
tion F (Z) is equivalent to that of a weighted nearest-neighbor classifier of the following
form:

F (Z) = sign

{
n∑

i=1

P (Xi|Z)yi

}

Here, the ith training point and its label are denoted by (Xi, yi) in a training data
set of n points. The value of P (Xi|Z) is defined as follows:

P (Xi|Z) =

{(
n−R(Z,Xi)

s−1

)
/
(
n
s

)
if R(Z,Xi) ≤ n− s+ 1

0 if R(Z,Xi) > n− s+ 1

The notation R(Z,Xi) ∈ {1, . . . , n} denotes the rank of the distance of the ith training
point Xi in sorted order from Z.

156 CHAPTER 5. TEXT CLASSIFICATION: BASIC MODELS

9. The adaptive nearest-neighbor method discussed in the chapter uses a single distortion
metric over the entire data space in order to compute the nearest neighbor of a point.
Propose a training algorithm to make this metric locally adaptive, so that an optimized
distortion metric is used for each test instance based on the local class patterns in the
data. What are the possible advantages and disadvantages of using such an approach?

10. Consider a bagged 1-nearest neighbor classifier in which a bagged sample of size s is
selected out of 1000 training points repeatedly in order to create a prediction. You
have two different data sets with the following types of (binary) class distributions:

• Distribution A: Class 1 is linearly separable from class 2 with a hyperplane
although there might be some mixing of the classes near the boundary. Both
classes have 50% presence in the data.

• Distribution B: There are 10 spherical clusters of each of class A and class B
containing exactly 50 points each, and there is also some overlap of the clusters
of different classes.

How would you choose the optimal size of the sample s in each training data set.
Would this optimal sample size be the same in the two data sets? In which data set
do you think that the optimal sample size will be larger?

11. Imagine a document data set in which the class label is generated by the following
hidden function (which is unknown to the analyst and therefore has to be learned by
a supervised learner):

If a term has an odd number of consonants, then the term is of type 1.
Otherwise the term is of type 2. The class label of a document is of type 1,
if the majority of the tokens in it are of type 1. Otherwise, the class label
is of type 2.

For a document collection of this type, would you prefer to use (1) a Bernoulli näıve
Bayes classifier, (2) a multinomial näıve Bayes classifier, (3) a nearest-neighbor clas-
sifier, or (4) a univariate decision tree? What is the impact of the lexicon size and
average document size on various classifiers?

12. Show that the prediction F (Z) of the test instance Z by a random forest with m
ensemble components is given by the following:

F (Z) = sign

{
n∑

i=1

m∑

t=1

It(Z,Xi)

N(i, t)
yi

}

5.9. EXERCISES 157

Here, X1 . . . Xn are the training instances, y1 . . . yn are the binary labels drawn from
{−1,+1}, N(i, t) is the number of instances in the same leaf as Xi in the tth ensemble
component, and I(i, t) is an indicator function that tells us whether or not Z and Xi

end up in the same leaf in the tth ensemble component.

13. Discuss the advantages of rule-based learners over decision trees, when the amount of
data is limited.

14. Discuss how one might integrate domain knowledge with rule-based learners.

Chapter 6

Linear Classification and Regression for
Text

“When the solution is simple, God is answering.”—Albert Einstein

6.1 Introduction

Linear models for classification and regression express the dependent variable (or class
variable) as a linear function of the independent variables (or feature variables). Specifically,
consider the case in which yi is the dependent variable of the ith document, and Xi =
(xi1 . . . xid) are the d-dimensional feature variables of this document. In the case of text,
these feature variables correspond to the term frequencies of a lexicon with d terms. The
value of yi is a numerical quantity in the case of regression, and it is a binary value drawn
from {−1,+1} in the case of classification. Then, linear models for both classification and
regression assume that the dependence between yi and Xi is expressed in terms of d linear
coefficients W = (w1 . . . wd), and a bias term b as follows:

yi =

d∑

j=1

wjxij + b = W ·Xi + b Linear Regression (Numerical Dependent Variable)

yi = sign{
d∑

j=1

wjxij + b} = sign{W ·Xi + b} Classification (Binary Dependent Variable)

If the coefficients W and bias b can be learned, so that they are satisfied for the training
data, then the aforementioned prediction function can be used to predict the dependent
variable of any (unlabeled) test document. An important point here is that it may not be
possible to find a coefficient vectorW and bias b, so that these conditions are exactly satisfied
for all training data points. After all, the modeling assumption is only a rough hypothesis
about the true function relating Xi and yi. In particular, for any data set in which the

160 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

number of training records n is greater than d, the aforementioned system of equations is
over-determined. Therefore, a set of coefficients w1 . . . wd and bias b will usually not exist in
which the aforementioned equations are exactly satisfied. In such a case, it makes sense to
learn W and b, so that the equations are satisfied with the least possible cumulative error.
For the case of numeric dependent variables, one could set up an optimization objective
function of the following form:

Minimize J =
1

2

n∑

i=1

(yi −
d∑

j=1

wjxij − b)2 =
1

2

n∑

i=1

(yi −W ·Xi − b)2

Note that the objective function punishes violations of the linear condition yi =∑d
j=1 wjxij + b with a squared penalty. Of course, the penalty for binary dependent vari-

ables is different from that used for numeric dependent variables. Furthermore, there are
many other ways in which one can penalize errors, which will lead to subtle variations in
the properties of the model. Therefore, it is important to view all these choices as being
part of a larger family of linear models with many subtle distinguishing characteristics. This
chapter will discuss many such variations.

6.1.1 Geometric Interpretation of Linear Models

Both classification and regression have a neat geometric interpretation in terms of linear
hyperplanes. In the case of classification, one can view the hyperplane W ·X + b = 0 as a
(d− 1)-dimensional separating hyperplane between the two classes in d-dimensional feature
space. A two-class example is shown in Fig. 6.1a, in which the first class is marked by ‘o’
and the second class is denoted by ‘*’. The best linear separator x1 + x2 = 1 between the
two classes is shown, although four points do occur on the wrong side of the separator.
Such training instances are penalized by the optimization model used to learn W and b.
The aggregate errors of such points are minimized by the linear model. Points are typically
penalized as a function of how far they are from the separating hyperplane on the “wrong”
side. Typically, only training points on the wrong side of the separator are penalized by the
linear model, although some linear models also penalize points for being “close enough” to
the separator even when they are on the correct side. The specific choice of the penalty
is a key distinguishing characteristic between different members of the family of linear
models. The bias is proportional to the distance of the hyperplane from the origin, and the
proportionality factor is equal to 1 when W and b are proportionately scaled so that the
former is normalized to unit length.

Linear regression models can also be interpreted in terms of linear hyperplanes. In the
case of regression, a d-dimensional hyperplane is constructed in (d + 1)-dimensional space
including the dependent variable. The corresponding hyperplane is y = W ·X + b, which is
shown in Fig. 6.1b. As in the case of Fig. 6.1a, there are two independent variables, although
the hyperplane needs to be drawn in three dimensions to include the dependent variable. For
any given training point (Xi, yi), deviations in the observed value of yi from the predicted
value W ·Xi+ b are penalized. Unlike the case of classification, most training points will be
penalized to some extent (and not just the misclassified points) unless they lie exactly on
the linear hyperplane that is learned by the algorithm. There are numerous relationships
between the models used for linear classification and regression. For example, the linear
regression model can also be used to directly solve linear classification by treating the
binary class variables as numerical response values. This particular special case is referred
to as the regularized least-squares classification.

6.1. INTRODUCTION 161

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FEATURE X

FE
A

TU
R

E
 Y

BIAS
PENALTY

PENALTY

PENALTY

PENALTY

LINEAR
SEPARATOR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4

0.6
0.8

1

−0.5

0

0.5

1

1.5

2

2.5

FEATURE Y

FEATURE X

D
E

P
E

N
D

E
N

T
V

A
R

IA
B

LE

BIAS

BEST FITTING
HYPERPLANE

PENALTIES DEPEND ON DISTANCES
TO HYPERPLANE ALONG THE
DEPENDENT VARIABLE DIRECTION

(a) Linear classification (2 features) (b) Linear regression (2 features)

Figure 6.1: Geometric interpretation of linear classification and regression

For both classification and regression, the bias is shown in Fig. 6.1 as a kind of offset of
the learned hyperplane from the origin. Although the effect of bias is important, it can be
incorporated indirectly without explicitly introducing a bias variable. The following section
discusses such an algebraic simplification to reduce notational complexity.

6.1.2 Do We Need the Bias Variable?

The bias variable b captures the invariant portion of the prediction yi that is unrelated to
the values of the feature variables. For example, consider a regression setting in which all
dependent variables yi are drawn from [99.99, 100.01], and all feature values correspond to
relatively modest term frequencies, which are less than 10. Since the dependent variable does
not vary much over different training instances, one can simply set the coefficient vector
W to a d-dimensional vector of 0s, and set the value of b to 100 to obtain a reasonable
prediction. Note that it would be hard to obtain an accurate prediction without a bias
variable b, especially if different documents contain very different terms. In other words,
the bias variable captures the invariant portion of the prediction over different documents,
which is difficult to model using highly varying features.

It is also possible to model the bias variable as one of the coefficients of a feature
variable by using a simple feature engineering trick of incorporating an invariant feature.
The basic idea is to add a single dummy feature to each training record with a value of 1.
The coefficient of the newly added dummy variable is the bias. This approach is equivalent
to inventing a single dummy pseudo-word, and adding it to every document in the corpus.
Therefore, if we change the notation to assume (without loss of generality) that the lexicon
contains d − 1 terms (instead of d terms), and the dth term is the dummy term, then one
can set b = wd. Therefore, one can write the aforementioned linear model as follows:

yi =

d−1∑

j=1

wjxij + wd = W ·Xi Linear Regression (Numerical Dependent Variable)

yi = sign{
d−1∑

j=1

wjxij + wd} = sign{W ·Xi} Classification (Binary Dependent Variable)

162 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

The addition of a single dummy term with an invariant frequency naturally captures the
invariant part of the dependent variable within its coefficient (which is the bias). This way
of modeling the bias is helpful in promoting algebraic simplicity without losing anything in
terms of modeling generality. Depending on algebraic convenience, some of the models in
this chapter will use the bias term, whereas others may not. In cases where the bias term
is not used, it is important to keep in mind that the derived algorithms are based on the
assumption of adding a dummy feature, and one must actually perform this preprocessing
on the data set when using these algorithms. The corresponding optimization model for
numeric dependent variables now becomes the following:

Minimize J =
1

2

n∑

i=1

(yi −W ·Xi)
2

This model is the classical objective function for linear regression, although other optimiza-
tion criteria are used for binary dependent variables.

Another heuristic way of getting rid of the bias in the case of numeric dependent variables
(i.e., regression) is by mean centering all independent and dependent variables. The intuition
is that the bias is caused by the offset of the data distribution from the origin along the
dependent variable (cf. Fig. 6.1b). In the special case of the least-squares objective function
for regression, mean-centering all variables and then using a bias-free model can be shown
to be mathematically identical to the use of a bias-inclusive model on the original data (see
Exercise 2).

6.1.3 A General Definition of Linear Models with Regularization

All forms of supervised learning emphasize the ability to generalize a learned model from
(seen) training data to (unseen) test data. Unfortunately, the coefficients learned from the
training data may not always generalize very well to making predictions on the test data,
particularly if the size of the training data is small. In order to understand this point,
consider a situation in which number of features d is greater than the number of training
instances n. Furthermore, the dependent variable yi is always twice the value of the first
feature in document Xi, and the remaining (d− 1) feature values are completely unrelated
to the dependent variable. In such a case, it is evident that the optimal coefficient vector
would be w1 = 2, and w2 = w3 = . . . = wd = 0. Setting a coefficient value of a feature to
0 has the same effect as discarding the feature, and it may be viewed as a type of feature
selection. Unfortunately, however, when the number of features d is greater than n, the
system of equations above is an under-determined system with infinitely many solutions
with zero error. In other words, an optimization model might easily discover solutions in
which irrelevant features are used. This will inevitably lead to overfitting, and therefore
poor generalization on the unseen test data. Note that the problem of overfitting occurs
not only in the case when d > n, but also in cases where the number of instances is larger
than the number of features only to a modest degree. This is because every data set is
bound to have random nuances, which can cause freak correlations between features and
the dependent variable. The optimization model is bound to assign non-zero coefficients to
such features as well. In general, the larger the amount of data available, the better the
coefficients that can be learned by optimizing the squared error of the prediction in terms
of their generalization power to unseen test instances.

How can we encourage the linear model to use only relevant features and discard the
irrelevant ones by setting zero (or small) coefficient values for such features? One possibility

6.1. INTRODUCTION 163

is to use feature selection up front. Although such a solution does help to some extent, it
creates several problems in terms of accounting for the specific effect of redundant features
and predicting the precise effect of removing features on the optimization process. A more
natural solution is to try to impose a budget on the number of features that are used. In
other words, one might try to optimize the following problem:

Minimize J =
1

2

n∑

i=1

(yi −W ·Xi)
2

subject to:

At most r coefficients from W have non-zero values

Such an optimization problem is hard to solve in practice. A more natural solution is to
impose a penalty for using large values of coefficients. This is a soft form of feature selection,
because it encourages the absolute values of coefficients to be small (thereby de-emphasizing
the impact of weakly correlated features). Therefore, one uses a regularization parameter
λ > 0 to create the following regularized linear regression model:

Minimize J =
1

2

n∑

i=1

(yi −W ·Xi)
2

︸ ︷︷ ︸
Prediction Error

+
λ

2
||W ||2

︸ ︷︷ ︸
Penalty for using features

The penalty term on the coefficients, which is ||W ||2 =
∑d

j=1 w
2
j , is also referred to as the

regularizer. This particular form of regularization is also referred to as L2-regularization,
since the L2-norm of the coefficients is used. Other types of regularization, such as L1-
regularization, are commonly used. The various linear models differ in terms of the choice
of the objective function quantifying the prediction error (which is different between classi-
fication and regression) and the choice of the regularizer. More generally, almost all linear
models for both classification and regression can be shown to be special cases of the following
optimization problem:

Minimize J =

n∑

i=1

L(yi,W ·Xi)

︸ ︷︷ ︸
Loss Function

+ λΩ(W)
︸ ︷︷ ︸

Regularization

The function L(·, ·) denotes the loss function that tries to quantify the error penalty of trying
to predict yi with the linear function W · Xi, and the function Ω(·) is the regularization
term to prevent overfitting. The properties of the learned model depend in several interesting
ways on these choices. This chapter will study the most common choices, which result in
models such as linear regression, linear least-squares fit (LLSF), Fisher’s linear discriminant,
support vector machines, and logistic regression.

6.1.4 Generalizing Binary Predictions to Multiple Classes

You might have noticed that the class label yi is often assumed to be binary in the case
of linear models. What do we do when the data contains k > 2 classes? It is common to
use generic meta-algorithms, which can take a binary classification algorithm A as input
and use it to make multilabel predictions. Several strategies are possible to convert binary
classifiers into multilabel classifiers.

164 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

The first strategy is the one-against-rest approach, which is also referred to as the
one-against-all approach. In this approach, k different binary classification problems are
created, such that one problem corresponds to each class. In the ith problem, the ith class
is considered the set of positive examples whereas all the remaining examples are considered
negative examples. The binary classifier A is applied to each of these training data sets.
This creates a total of k models. If the positive class is predicted in the ith problem, then
the ith class is rewarded with a vote that is proportional to the confidence of prediction.
One may also use the numeric output of a classifier (e.g., a function of the distance of
instance from separator) to weight the corresponding vote. The highest numeric score for
a particular class is selected to predict the label. Note that the choice of the numeric score
for weighting the votes depends on the classifier at hand.

The second strategy is the one-against-one approach. In this strategy, a training data set
is constructed for each of the

(
k
2

)
pairs of classes. The algorithm A is applied to each training

data set. This results in a total of k(k−1)/2 models. For each model, the prediction provides
a vote to the winner. The class label with the most votes is declared as the winner at the
end. At first sight, it seems that this approach is computationally more expensive, because
it requires us to train k(k − 1)/2 classifiers, rather than training k classifiers, as in the
one-against-rest approach. However, the computational cost is ameliorated by the smaller
size of the training data in the one-against-one approach. Specifically, the training data size
in the latter case is approximately 2/k of the training data size used in the one-against-rest
approach on the average. If the running time of each individual classifier scales super-
linearly with the number of training points, then the overall running time of this approach
may actually be lower than the first approach that requires us to train only k classifiers.
This can be the case with many nonlinear classifiers. The one-against-one approach may
also result in ties between different classes that receive the same number of votes. In such
cases, the numeric scores output by the classifier may be used to weight the votes for the
different classes. As in the previous case, the choice of the numeric score depends on the
choice of the base classifier model.

There are also some optimized methods for converting the binary classifier into a mul-
tilabel classifier by changing the problem formulation. The change in the formulation is
specific to the linear model at hand, and it is not designed as a meta-algorithm (like
one-against-rest). Examples include multinomial logistic regression (cf. Sect. 6.4.4) and the
Weston-Watkins multi-class SVM [496].

6.1.5 Characteristics of Linear Models for Text

The sparse and high-dimensional representation of text is particularly suitable for linear
models. Several independent evaluations have shown that linear models are among the best
performing classifiers in the text domain. Furthermore, linear models are very efficient, and
can be implemented in time that is linear to corpus size.

Linear models can be extended to modeling nonlinear relationships by using feature en-
gineering tricks in which the documents are implicitly transformed into a new space before
applying a linear model. In fact, it is even possible to use these models in cases where one
only has access to similarities between pairs of documents rather than the actual feature
representation. Such methods are particularly helpful when one wants to use the sequence
representation of text in mining algorithms by leveraging sequence-centric similarity func-
tions. Therefore, linear models present a broad class of highly flexible algorithms that are
considered state-of-the-art in the text domain.

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 165

6.1.5.1 Chapter Notations

The following notations will be used in this chapter. The training data is defined by the n×d
data matrix D, whose rows are the documents denoted by the d-dimensional row vectors
X1 . . . Xn. Let Xi be a d-dimensional tuple denoted by (xi1, xi2, . . . xid) corresponding to
the d term frequencies in the document. In addition, the ith document Xi is associated
with the class label yi. We can assume that the column vector y = [y1 . . . yn]

T contains
the class labels (or dependent variables in regression) for the n training instances. In the
context of classification, this chapter only considers binary class labels, which are drawn
from {−1,+1}. Therefore, the pair (D, y) represents the training data, and a one-to-one
correspondence exists between the n rows (documents) of D and the n entries of y. In
addition to the training data, we have a test matrix Dt of size nt × d. Therefore, there are
nt test instances, denoted by Z1 . . . Znt

, and the class label (or numeric dependent variable)
is not observed for these instances.

6.1.5.2 Chapter Organization

This chapter is organized as follows. The next section will introduce the least-squares family
of regression and classification models, which includes the Fisher discriminant. The support
vector machine is introduced in Sect. 6.3. Logistic regression is introduced in Sect. 6.4. Non-
linear models are discussed in Sect. 6.5. The summary is given in Sect. 6.6.

6.2 Least-Squares Regression and Classification

The least-squares family is one of the most fundamental ones for classification and regression.
Although this particular family is inherently designed for regression, it can also be adapted
to classification. In fact, many important classification models used in the text domain,
such as the linear least-squares fit and the Fisher discriminant are applications of this
basic model to categorical dependent variables. There are also some important properties
of models based on the type of regularization that is used. So far, we have only considered
a regularization penalty in which the sum of squares of the coefficients is penalized. This
type of regularization is referred to as L2-regularization or Tikhonov regularization.

6.2.1 Least-Squares Regression with L2-Regularization

Consider an n × d document-term matrix D (training data), for which the n-dimensional
column vector containing the numeric dependent variables is denoted by y = [y1, y2, . . . yn]

T .
Then, the ith row (i.e., document) of D, denoted by Xi, is approximately related to the
class variable using a d-dimensional row vector W of coefficients as follows:

yi ≈ W ·Xi ∀i ∈ {1 . . . n} (6.1)

Therefore, the least-squares formulation, which includes a regularization term (i.e., penalty
on coefficients) is as follows:

Minimize J =
1

2

n∑

i=1

(yi −W ·Xi)
2

︸ ︷︷ ︸
Prediction Error

+
λ

2

d∑

j=1

w2
j

︸ ︷︷ ︸
L2-Regularization

166 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

We have already seen this form of the objective function in the previous section. One can
express this objective function in terms of the n × d document-term matrix D, dependent
variable vector y, and coefficient vector W as follows:

Minimize J =
1

2
||DW

T − y||2 + λ

2
||W ||2

The optimality condition for this problem is obtained by setting the partial derivative of J
with respect to each element of the vector W to 0. The partial derivative across all elements
of the vector W can be expressed in an integrated way using matrix calculus notation:

∂J

∂W
= DT (DW

T − y) + λW
T
= 0 (6.2)

By re-arranging the aforementioned condition, we obtain the following:

(DTD + λI)W
T
= DT y (6.3)

The matrix DTD is positive semi-definite, and the regularization with λ > 0 makes the
matrix DTD + λI positive definite. Any positive definite matrix is always invertible, and
therefore the coefficient vector W can be obtained as follows:

W
T
= (DTD + λI)−1DT y (6.4)

Here, I is the d × d identity matrix. Once the coefficient vector has been determined, the
dependent variable of an unseen test instance Zi can be predicted as the dot product of the
coefficient vector and the test instance:

F (Zi) = W · Zi (6.5)

In fact, one can predict the labels of the entire nt × d test data matrix Dt in one shot as

yt = DtW
T
. Note that yt is a column vector of nt entries containing the predicted values of

the dependent variable of each of the nt rows in Dt. The value of λ can be tuned by holding
out of a part of the data, and testing the accuracy of using various values of λ for training.

6.2.1.1 Efficient Implementation

The solution of Eq. 6.4 requires the inversion of a d×d matrix. The value of d can be greater
than 105 for the text domain, which can create significant challenges. One possibility is to
use a gradient-descent method for more efficient prediction.

Instead of setting the gradient vector ∂J
∂W

to 0 to obtain the solution in closed form, one

can choose to use it for gradient descent. The approach initializes the vector W randomly.
In each iteration, the coefficient vector W can be updated using a step-size α > 0 as follows:

W
T ⇐ W

T − α

[
∂J

∂W

]

= W
T
(1− αλ)− αDT (DW

T − y)
︸ ︷︷ ︸

Current Errors

The gradient-descent steps are repeated to convergence. Note that the last term contains

an error vector (DW
T − y), which is computed first, and then DT is pre-multiplied with it

to create the update. Such an ordering of matrix/vector computations ensures efficiency.

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 167

6.2.1.2 Approximate Estimation with Singular Value Decomposition

Singular value decomposition provides an efficient way to perform approximate matrix inver-
sion of (DTD+λI). Furthermore, this approximation actually helps the prediction because
it is an indirect form of regularization. In other words, we can set λ to 0 and use this alter-
native form of regularization instead. Therefore, we will discuss the following by assuming
that λ is set to 0. Truncated singular value decomposition of rank-k approximately decom-
poses the n × d document-term matrix D into a n × k matrix Q, a k × k diagonal matrix
Σ, and a d× k matrix P as follows:

D ≈ QΣPT (6.6)

The rank k should always be chosen small enough that each entry of Σ is strictly positive.
A key observation is that it is often possible to set k � min{d, n}, and the “loss” resulting
from such a truncation actually improves the representation by reducing the noise effects
of synonymy and polysemy. This is what improves the generalizability of the learned coef-
ficients to unseen test instances. By substituting Eq. 6.6 in Eq. 6.4 and setting λ = 0, one
obtains the following:

W
T
= (PΣ2PT)−1(QΣPT)T y

= (PΣ−2PT)PΣQT y [Using P−1 = PT]

= PΣ−2ΣQT y [Using PTP = I]

= PΣ−1QT y

The key point here is that one only needs to compute the top-k singular vectors/values of
D using Lanczos algorithm [145, 146]. Even the power method of Sect. 3.2.2 can be used for
document collections of modest size. Since the value of k ∼ [200, 500] is often much smaller
than the dimensionality d > 100,000 of a typical collection, such an approach turns out to be
very efficient. The value of k now serves the same role as the regularization parameter λ, in
which small values of k indicate a higher level of regularization. The benefits of such a noise
reduction approach have also been shown [515] in the context of the linear least-squares fit
method for classification (cf. Sect. 6.2.3.3).

In order to understand why the approach improves generalizability of the approach to
unseen test instances, one can view this approach as a way of building concise models
with fewer parameters. It is noteworthy that one could transform the training matrix D
to k-dimensional space using the transformation Dk = DP . Each test instance Z can be

transformed to k-dimensional space using Z
(k)

= ZP . Then, one can perform the linear
regression in this new lower-dimensional space (without any need for regularization) and
predict the dependent variable. It can be shown that the SVD-truncated prediction in the
original space is exactly equivalent to the prediction in this transformed problem. Note
that the transformed problem needs to compute only k coefficients on a non-redundant
set of variables, and is therefore far more concise. Furthermore, much of the noise in the
lower-order singular vectors (which is a source of overfitting) has been removed by the
transformation to a semantically coherent space. As a result, the overall accuracy of the
results improves using this approach on unseen test instances.

6.2.1.3 Relationship with Principal Components Regression

The aforementioned use of truncated singular value decomposition is closely related to
principal components regression [248]. In principal components regression, the data is trans-

168 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

formed to a lower-dimensional space using principal component analysis (PCA) [247]. The
data is then regressed in this new space by treating the transformed attributes as the
explanatory variables. This approach is very similar to the truncated singular value decom-
position discussed above, except that PCA is used instead of SVD for the transformation.
The SVD of a data matrix after centering it to zero mean will result in the same solution
as that obtained with the use of PCA. For sparse data matrices like text, the means of
the attributes (term frequencies) are close to zero anyway, and centering the data does not
make a large difference to the final predictions. It is better to not center the data matrix,
because doing so destroys the sparsity of the data matrix. Sparsity is very desirable from a
computational and space-efficiency point of view with such decompositions.

6.2.1.4 The Path to Kernel Regression

The prediction of test point Z of linear regression (cf. Eq. 6.5) can be equivalently expressed
purely in terms of dot products between training instances, as well the dot products between
Z and the training instances. Let K(Z,Xi) = Z ·Xi represent the dot product between the
test instance Z and the training instance Xi. Let S be the n × n matrix representing the
dot-product similarities between the n training points and y represent the n-dimensional
column vector of response variables. Then, the prediction F (Z) of test point Z can be
expressed in terms of an n-dimensional row vector [K(Z,X1), . . .K(Z,Xn)] of similarities
between training points and the test instance:

F (Z) = [K(Z,X1),K(Z,X2) . . .K(Z,Xn)]
︸ ︷︷ ︸

Test-Training Similarities

(S + λI)−1y (6.7)

We leave the proof of this result as an exercise to the reader (see Exercise 3). Note that
we cannot derive the coefficient vector W without using the features of the training points,
but we can still express the predictions of test instances purely in terms of the dot prod-
ucts in matrix S. If one chooses to use similarity functions other than the dot product
for K(Z,Xi), then the approach becomes least-squares kernel regression, which is able to
capture nonlinear relationships1 between the regressors and regressand. In fact, a multi-
dimensional representation of the data is not even needed, and one can use string kernels
(cf. Chap. 3) as similarities. There are two useful applications of this form of the prediction:

1. If the number of documents n is far less than the size of the lexicon d, then it is
easier to invert an n× n matrix S + λI than to invert a d× d matrix. Therefore, the
aforementioned solution may be preferable.

2. Consider a setting in which one wishes to use the sequential relationships among
the terms in the documents as salient information for predicting the regressand. In
such a case, one can use string kernels in conjunction with Eq. 6.7. A string kernel
effectively incorporates the linguistic and semantic information in sentences, which is
not available from the bag-of-words representation. As a result, this approach leverages
deeper semantic knowledge embedded in the documents.

In general, it is hard to invert an n× n similarity matrix in large collections. Therefore, it
makes sense to use the SVD-based low-rank trick discussed in Sect. 6.2.1.2.

1When using kernel methods, it is customary to add a small constant amount to every entry in the
similarity matrix between points to account for the effect of the dummy variable representing the bias
term [319] (see Exercise 5).

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 169

6.2.2 LASSO: Least-Squares Regression with L1-Regularization

The acronym LASSO stands for Least Absolute Shrinkage and Selection Operator, and it
uses L1-regularization instead of L2-regularization for least-squares regression. As in the
case of all least-squares problems, it is assumed that the ith training instance Xi is related
to the dependent variable as follows:

yi ≈ W ·Xi (6.8)

In order to learn the regression coefficients, the least-squares error of the prediction needs
to be minimized as follows:

Minimize J =
1

2

n∑

i=1

(yi −W ·Xi)
2

︸ ︷︷ ︸
Prediction Error

+ λ

d∑

j=1

|wj |
︸ ︷︷ ︸

L1-Regularization

Note that the regularization term now uses the L1-norm of the coefficient vector rather
than the L2-norm. One can write this objective function in terms of the n×d training data
matrix D and the n-dimensional column vector y of dependent variables as follows:

Minimize J =
1

2
||DW

T − y||2 + λ||W ||1

Here, ||W ||1 represents the L1-norm of the vector W . This optimization problem cannot
be solved in closed form like the case of L2-regularization. An important point here is that
the function J is non-differentiable for any W in which even a single component wj is 0.
Specifically, if wj is infinitesimally larger than 0, then the partial derivative of |wj | is +1,
whereas if wj is infinitesimally smaller than 0, then the partial derivative of |wj | is −1. This
makes the derivative of wj undefined exactly at 0. For such non-differentiable objective
functions, subgradients are often used. In these methods, the partial derivative of wj at 0
is selected randomly from {−1,+1}, whereas the derivative at values different from 0 is
computed in the same way as the gradient. Let the subgradient of wj be denoted by sj .
Then, for step-size α > 0, the update is as follows:

W
T ⇐ W

T − αλ [s1, s2, . . . , sd]
T − αDT (DW

T − y)
︸ ︷︷ ︸

Error

Here, each sj is the subgradient of wj and is defined as follows:

sj =

⎧
⎪⎨

⎪⎩

−1 wj < 0

+1 wj > 0

Any of {−1,+1} wj = 0

(6.9)

One issue here is that the random choice of sj from {−1,+1} can sometimes cause the
objective function to worsen. Therefore, this method is not a gradient-descent method be-
cause some iterations will cause the objective function value to worsen. Nevertheless, it can
be shown that the approach has guaranteed convergence properties for convex objective
functions. However, the fact that the objective function can worsen is important from the
point of view of using the best possible value of W best that was obtained in any iteration. At
the beginning of the process, both W and W best are initialized to the same random vector.

170 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

After each update of W , the objective function value is evaluated with respect to W , and
W best is set to the recently updated W if the objective function value provided by W is
better than that obtained by the stored value of W best. At the end of the process, the vector
W best is returned by the algorithm as the final solution. One issue with this solution is that
it can be slow in practice, and therefore another technique called least-angle regression [151]
is often used. Another option is to use sj = 0 at wj = 0, which often turns out to be a more
practical choice.

6.2.2.1 Interpreting LASSO as a Feature Selector

Almost all L1-regularization methods, including LASSO, always lead to sparse solutions
in which most values of wj are exactly zero. This is different from L2-regularization, in
which the penalty reduces the size of the coefficients but most of them are non-zero. From a
prediction point of view, a zero coefficient has no influence on the prediction, and therefore
such a feature can be dropped. In L2-regularization, the feature selection is softer in the
sense that the influence of each feature is reduced by shrinking its coefficient, but most of
them still have non-zero influence on the prediction. This observation provides LASSO a very
nice interpretability and also dual use as a feature selector. In fact, such feature selectors
are referred to as embedded models because they embed the feature selection within the
modeling process. From a semantic point of view, one gets to learn which terms are relevant
or irrelevant for the modeling process. LASSO is particularly useful in very high-dimensional
domains like text in which a small number of features can have a high level of explanatory
power.

A natural question arises as to when one should choose L1- or L2-regularization.
In terms of prediction accuracy, L2-regularization almost always performs better than
L1-regularization, and is the safe option over arbitrary data sets. For sparse and high-
dimensional domains like text, L1-regularization can sometimes provide comparable per-
formance, but is almost always outperformed by combining L1- and L2-regularization with
the elastic net [546]. The real utility of pure L1-regularization is in providing highly inter-
pretable feature selection, and that should also be viewed as its primary use case. Combining
with L2-regularization provides high-quality solution with good interpretability. However, if
prediction accuracy is the primary goal and one does not want to use the more complicated
optimization algorithms to combine L1- and L2-regularization, the simple and safe choice is
to use only L2-regularization. Although this chapter primarily focuses on L2-regularization
for classification, it is noteworthy that all the linear classification models in this chapter
have L1-variants, which have similar sparsity properties to the LASSO for regression. A
detailed discussion of many of these generalizations is provided in [208].

6.2.3 Fisher’s Linear Discriminant and Least-Squares Classifica-
tion

The Fisher’s linear discriminant can be shown to be a special case of least-squares regression
on appropriately coded response variables, although this is not how the discriminant is
defined. Rather, the linear discriminant is defined as the direction that maximizes the ratio
of the inter-class variance to the intra-class variance, if all points were to be projected along
that direction.

One can view the Fisher’s discriminant as a supervised cousin of principal component
analysis (PCA). The latter finds a direction in the data space that maximizes the variance of
all points along that direction irrespective of class. On the other hand, the Fisher’s discrim-

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 171

(a) Best discrimination along (b) Best discrimination along
high-variance direction low-variance direction

Figure 6.2: Sensitivity of Fisher’s discriminant to class distribution

inant focuses on maximizing the ratio of inter-class to intra-class variance, and therefore
discovers very different solutions. A two-class example is illustrated in Fig. 6.2, in which the
effect of using different labeling of classes on the same data set is shown. The directions in
Fig. 6.2a, b are very different because the ratio of inter-class to intra-class variance is max-
imized in different directions in the two cases. Let the discovered direction be W . Then,
the projection of any data point Xi along this direction is given by W · Xi. In each case,
it is a relatively simple matter to classify the data set by using an appropriately chosen
threshold with respect to the 1-dimensional coordinate from the projection. The negative
of this threshold can be used to define the bias b. The value of b can be estimated on a
held-out set using cross-validation. Therefore, the prediction ŷi ∈ {−1,+1} of the ith data
point can be computed as follows:

ŷi = sign{W ·Xi + b}
This is the well-known prediction function used in linear classification. However, as we
will discuss later, the Fisher’s method is also used as a feature engineering method, and
particularly so in multiclass settings.

Next, we discuss the derivation of the Fisher direction W . For a d-dimensional data
set, let μ0 be the row vector denoting the d-dimensional mean of the negative class (i.e.,
class with label −1), and μ1 be the row vector denoting the d-dimensional mean of the
positive class (i.e., class with label +1). Similarly, let Σ0 be the d× d covariance matrix of
only the points belonging to the negative class in which the (j, k)th entry is the covariance
between the jth and kth attributes of the points in this class. The corresponding covariance
matrix for the positive class is Σ1. Furthermore, let n0 and n1 be the number of training
examples, respectively, belonging to the negative and positive class, so that the total number
of training examples n is given by n0 + n1.

The squared distance between the means of the two classes along W is given by (W ·
μ1 −W · μ0)

2. This quantity is proportional to the inter-class variance2 (or between-class
scatter) B(W):

B(W) ∝ n(W · (μ1 − μ0))
2 = W

[
n(μ1 − μ0)

T (μ1 − μ0)
]

︸ ︷︷ ︸
d× d matrix Sb of rank-1

W
T
= WSbW

T

2The notions of scatter and variance are different only in terms of scaling. The scatter of a set of n
values is equal to n times their variance. Therefore, it does not matter whether the scatter or variance is
used within a constant of proportionality.

172 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

The above relationships introduce an additional notation Sb by replacing the d× d rank-1
matrix

[
n(μ1 − μ0)

T (μ1 − μ0)
]
with a between-class scatter matrix3 Sb.

In order to compute the scatter within each class along direction W , we make use of
the well-known fact [247] that the scatter of a set of n points along a direction W can be

expressed in terms of the covariance matrix Σ as nWΣW
T
. Then, we compute the scatter

within each class along W and compute their sum in I(W) as follows:

I(W) = n1(WΣ1W
T
) + n0(WΣ0W

T
)

= W (n1Σ1 + n0Σ0)
︸ ︷︷ ︸
d× d matrix Sw

W
T

= WSwW
T

An additional notation, Sw, corresponding to the within-class scatter matrix is introduced
above. Then, the objective function of the Fisher discriminant maximizes the ratio of the
interclass to intra-class scatter along W as follows:

Maximize J =
B(W)

I(W)
=

WSbW
T

WSwW
T

Note that only the direction of W matters in the above solution, and its scaling (i.e., norm)
does not affect J . Therefore, in order to make the optimal solution unique, one can choose
a scaling in which the denominator is 1. This creates a constrained optimization problem:

Maximize J = WSbW
T

subject to:

WSwW
T
= 1

Setting the gradient of the Lagrangian relaxation WSbW
T − α(WSwW

T − 1) to 0 yields

the generalized eigenvector condition SbW
T
= αSwW

T
. Therefore, W

T
is the only nonzero

eigenvector of the rank-1 matrix S−1
w Sb. Because SbW

T
= (μT

1 − μT
0)
[
n(μ1 − μ0)W

T
]

always points in the direction of (μT
1 − μT

0), it follows that SwW
T ∝ μT

1 − μT
0 . Therefore,

we have the following:

W
T ∝ S−1

w (μ1 − μ0)
T (6.10)

= (n1Σ1 + n0Σ0)
−1(μ1 − μ0)

T (6.11)

It is also common to use a variant of this methodology in which a parameter γ is introduced
to give differential weight to the various classes:

W
T ∝ (Σ1 + γΣ0)

−1(μ1 − μ0)
T (6.12)

One can choose γ by optimizing a desired cost function on held out portion of the data.
Equal weighting to the classes irrespective of their relative population is achieved by setting
γ = 1. However, the “official” Fisher discriminant is defined only by Eq. 6.11, which is what
will be used in this chapter.

3This two-class variant of the scatter matrix Sb is not exactly the same as defined in the multi-class
version Sb of Sect. 6.2.3.1. Nevertheless, all entries in the two matrices are related with the proportionality
factor of n1·n0

n2 which turns out to be inconsequential to the direction of the Fisher discriminant. In other
words, the use of the multi-class formulas in Sect. 6.2.3.1 will yield the same result in the binary case.

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 173

6.2.3.1 Linear Discriminant with Multiple Classes

The aforementioned solution can be generalized to multiple classes in two ways. One can
perform the classification using a one-against-all approach in which one class is selected
as the positive class and the remaining classes are selected as the negative classes. This
process is repeated k times, and the most confident prediction is returned for a test instance.
This approach is used frequently in the text domain [82, 515, 518]. Although the approach
can be reasonably used for prediction, a more powerful approach is to use all the classes
simultaneously to derive the k − 1 directions.

First, we need to compute the scatter matrices Sw and Sb for the multi-class setting.
The scatter matrices are computed in a similar way to the linear discriminant metric of
Sect. 5.4.4 in Chap. 5. Let Σi be the covariance matrix of the ith class, so that the (j, k)th
entry of Σi is equal to the covariance between the jth and kth dimensions in the ith class.
Let ni be the number of points in the ith class, and n =

∑
i ni be the total number of

points. Let μ be the d-dimensional row vector representing the mean of the entire data set,
and μi be the d-dimensional row vector representing the mean of the ith class. Then, the
d× d within-class scatter matrix is defined as follows:

Sw =

k∑

i=1

niΣi (6.13)

The d×d between-class scatter matrix4 is defined as the sum of the following rank-1 matrices:

Sb =

k∑

i=1

ni(μi − μ)T (μi − μ) (6.14)

Note that each product above is the product of a d × 1 matrix with a 1 × d matrix. The
matrix Sb is n times the covariance matrix of a data set containing the means of the classes
in which the mean of the ith class is repeated ni times. Then, the top-(k − 1) eigenvectors
of the rank-(k − 1) matrix S−1

w Sb provides a low-dimensional space of data representation.
Other classifiers like decision trees can be constructed in this space. The multiclass variant of
linear discriminant analysis is often used to perform feature engineering for other classifiers.
It is sometimes also used for soft feature scaling as shown in Sect. 5.4.4.

An immediate observation is that the approach is computationally expensive for high
dimensional data sets. It requires O(n · d2) time to compute each scatter matrix, and O(d3)
time to invert the within-class scatter matrix. The value of d is usually greater than 105

in text. To improve efficiency, one can first preprocess the feature variables of both the
training and test data with latent semantic analysis, and reduce the dimensionality to less
than 500. It is much easier to compute a 500× 500 matrix and invert it.

6.2.3.2 Equivalence of Fisher Discriminant and Least-Squares Regression

The binary Fisher’s discriminant classifier is the same as least-squares regression with re-
spect to the (binary) class indicator variable [50]. This is an important result, because
it enables the use of many of the efficient techniques for least-squares regression, such as
gradient-descent and SVD-based approximation. Furthermore, this equivalence also enables
the use of kernel methods presented for the case of least-squares regression.

4Note that this matrix is different from the one introduced for the two-class case only by a proportionality
factor, which does not affect the final solution.

174 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

This result is algebraically easiest to show by mean-centering both the data matrix and
the response variable in a particular way and setting5 the bias to 0. Therefore, the following
will not assume the use of a dummy column to adjust for bias. Consider the following case in
which the n×d document-term matrix D and the n-dimensional column vector y containing
the class variables have been preprocessed as follows. The matrix D is mean-centered by
simply subtracting the mean of each column from the corresponding variable. Similarly,
the column vector y of class variables in {−1,+1} has been mean-centered by setting its

positive entries to n0/n and negative entries to −n1/n. Then, the coefficient vector W
T
of

least-squares regression without regularization satisfies the following;

(DTD)W
T
= DT y (6.15)

Because of the special way in which the response variable has been coded, the right-hand
side of the above expression simplifies as follows (convince yourself why this is true):

(DTD)W
T ∝ (μ1 − μ0)

T (6.16)

A key relationship between the within-class scatter matrix Sw, the between-class scatter
matrix Sb, and the full scatter matrix DTD is as follows:

DTD = Sw +
n1 · n0

n2
Sb (6.17)

= Sw +K
[
(μ1 − μ0)

T (μ1 − μ0)
]

(6.18)

Here, K is a suitably chosen scalar. Note that this relationship holds when the matrix D
is mean-centered. Here, we simply assume this relationship, and leave it as an exercise for
the reader to show its correctness (see Exercise 4).

By substituting Eq. 6.18 in Eq. 6.16, one obtains the following:

(
Sw +K

[
(μ1 − μ0)

T (μ1 − μ0)
])

W
T ∝ (μ1 − μ0)

T (6.19)

Now, a key point here is that the vector
[
(μ1 − μ0)

T (μ1 − μ0)
]
W

T
always points in the

direction of (μ1 − μ0)
T because we can write this vector as (μ1 − μ0)

T
[
(μ1 − μ0)W

T
]
.

This means that the second term on the left-hand side of Eq. 6.19 can be dropped without
affecting the proportionality relationship of vectors:

SwW
T ∝ (μ1 − μ0)

T

W
T ∝ S−1

w (μ1 − μ0)
T

Note that the vector on the right-hand side is the same as that provided by the Fisher
discriminant. In other words, with the proper preprocessing of the data matrix and response
variable, one obtains the same result with least-squares regression as the Fisher discriminant.

The aforementioned result uses mean-centered matrices to obtain the equivalence with
algebraic simplicity. Centering both the data matrix and the response variable is simply a
way of ensuring that the bias is 0 in the optimal solution of least-squares regression, and
one does not have to worry about an (uncentered) dummy column of 1s in D. One can also
show more general equivalence by allowing for a bias variable and adding a dummy column

5One can also show more general equivalence by allowing for bias.

6.2. LEAST-SQUARES REGRESSION AND CLASSIFICATION 175

of 1s to the data matrix to absorb the bias coefficient. This result has considerable practical
significance because it shows that one can use any of the efficient solution methods discussed
earlier in this section for least-squares regression in the case of Fisher discriminant with two
classes. The equivalence between least-squares regression and the Fisher discriminant also
means that one can extend the kernel regression methods discussed in Sect. 6.2.1.4 to the
Fisher discriminant.

Although the Fisher discriminant can be simulated with least-squares regression, this
does not mean that the entire family of discriminant methods is subsumed by the least-
squares family. Fisher’s discriminant is only one member of a larger family of linear discrim-
inators. The objective functions of linear discriminators and least-squares regression try to
capture geometrically different notions but turn out to be equivalent in special cases like the
Fisher discriminant with binary data. Furthermore, the multi-class treatment is different in
the two cases.

6.2.3.3 Regularized Least-Squares Classification and LLSF

When regularization is combined with linear regression on binary class variables drawn
from {−1,+1}, the formulation is referred to as regularized least-squares classification. The
formulation for least-squares classification can be written as follows:

Minimize J =
1

2

n∑

i=1

[yi − (W ·Xi)]
2 +

λ

2
||W ||2 (6.20)

=
1

2

n∑

i=1

[1− yi(W ·Xi)]
2 +

λ

2
||W ||2 (6.21)

Note that the second relationship of Eq. 6.21 is only true when the class variable is coded to
{−1,+1} because the value of y2i is always 1. As we will see later, this form of the objective
function is very closely related to that of a support-vector machine. A test instance Z is
classified using the following prediction function with the learned value of W :

F (Z) = sign{W · Z} (6.22)

At a learning rate of η, the stochastic gradient-descent update of least-squares classifica-
tion is exactly the same as the one shown earlier for least-squares regression with numeric
responses (cf. Sect. 6.2.1.1):

W ⇐ W (1− ηλ) + ηy(1− y(W ·X))X

The equivalence to the updates in Sect. 6.2.1.1 follow from using y2 = 1. Furthermore, the
above updates represent stochastic gradient descent because the gradients are computed
with respect to a single training point (X, y) that is randomly sampled from the training
data. We use this form of the updates to relate them better with other types of linear
classification models.

This formulation is also referred to as the linear least-squares fit (LLSF) method in
the text domain [515, 518]. However, the original formulation in [515, 518] does not use L2-
regularization, and it uses truncated singular value decomposition instead (cf. Sect. 6.2.1.2).
A formulation was also proposed for the multiclass case [515], although it can be shown
that it is equivalently decomposable into a one-against-all approach applied to the binary
formulation.

176 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

The LLSF and least-squares classification methods are equivalent to the Fisher discrimi-
nant, when regularization is not used. The LLSF method does not center the document-term
matrix and uses binary variables as the responses to learn the regressors. In contrast, the
results in Sect. 6.2.3.2 show that Fisher’s discriminant performs the same regression on
centered variables. Is this difference significant? It turns out that these differences are not
significant because they can be adjusted for by simply adding a bias variable in the form
of a dummy column of 1s to D when running LLSF. Note that a binary indicator response
variable can be obtained from the response variable of Sect. 6.2.3.2 by adding n1/n to each
response value. Furthermore, each column of a mean-centered data matrix D is different
from the uncentered matrix only in terms of translation of each column by its mean. These
differences in translation can be fully absorbed with the use of different values of the bias
variable (dummy-column coefficient) without changing the non-trivial regression coefficients
(i.e., those belonging to observed variables). The LLSF implementation does have the ad-
vantage of working with the original sparse data matrices, which is particularly useful in
the text domain.

As a historical note, it should be pointed out that the regularized least-squares family has
been re-invented several times. The Fisher discriminant was proposed in 1936 as a method
for finding class-sensitive directions. Least-squares classification and regression date back to
Widrow-Hoff learning in the sixties [497] and Tikhonov-Arsenin’s seminal work [474] in the
seventies. The remarkable relationship between the Fisher discriminant and these methods
was eventually discovered [50]. Another closely related variation is the perceptron algorithm
(cf. Sect. 10.6.1.1 of Chap. 10), which (also remarkably) is a shifted version of the support
vector machine loss function (page 323). As discussed in the next section, the support
vector machine is itself a repaired version of the least-squares classification loss function.
In fact, Hinton [217] repaired the Widrow-Hoff avatar of the least-squares classification loss
function to create the L2-loss of the support vector machine, 3 years before Cortes and
Vapnik’s seminal work [115] on support vector machines. The first application of least-
squares methods to text categorization was proposed in [515, 518].

6.2.3.4 The Achilles Heel of Least-Squares Classification

The least-squares classification family (including the Fisher discriminant), has an important
weakness in the nature of its loss function. By directly penalizing the squared difference be-
tween the indicator variable yi and the predictionW ·Xi, one not only penalizes misclassified
points but also the “easy” points that are correctly classified by W ·Xi in a very strong way.
For example, consider an instance Xi belonging to the positive class for which the value of
W ·Xi turns out to be 10. Even though this prediction is correct in a very confident way,
this confidence will be penalized by the least-squares objective function, in which the coded
value of yi is 1. Such points typically correspond to well-separated points from the decision
boundary, and their influence on the learned value of W often has a detrimental effect on
the classification of points that are close to the decision boundary.

In order to illustrate this point, a two-class distribution is illustrated in Fig. 6.3. It is
noteworthy that the points that are far away from the decision boundary (on the correct
side) skew the direction of the Fisher discriminant, which results in two misclassified regions
near the true decision boundary. If the well-separated points in Fig. 6.3 were to be thrown
away, the Fisher discriminant does much better in approximating the true boundary. This
observation is intriguing in the sense that one expects a classification model to be punished
by the presence of “delinquent” (i.e., mislabeled) training points on the wrong side of the
decision boundary, but one rarely expects to be penalized for having outstanding citizens

6.3. SUPPORT VECTOR MACHINES 177

THROW AWAY

WELL-SEPARATED POINTS

TRUE BOUNDARY

MISCLASSIFIED
REGION

FISHER’S DISCRIMINANT

TRUE BOUNDARY

FISHER’S DISCRIMINANT

DISCOVERED BOUNDARY
(ALMOST OVERLAPPING)

Figure 6.3: Well-separated points have a detrimental effect on the Fisher discriminant

in the training data!
The Fisher discriminant often lags behind another linear classifier, referred to as the

support vector machine. The support vector machine removes the well-separated points,
and keeps only the points near the decision boundary, which are referred to as “support
vectors” for learning. Interestingly, it has been shown [445] that the Fisher discriminant is
similar6 to the support vector machine, if the well-separated points were to be discarded.

The difference in accuracy performance of the support-vector machine and the
Fisher discriminant/least-squares classification can be primarily explained by
the differences in their treatment of the well-separated points.

Of course, since the problem of finding the well-separated points is the most difficult part of
a support-vector machine, this observation does not help us much from an algorithmic point
of view. This observation is, nevertheless, helpful from a heuristic point of view because one
can discard well-separated points by using various heuristic tricks [82, 112]. Such heuristics
can often boost the accuracy of the Fisher discriminant significantly.

While the superiority of SVMs over least-squares classification is generally accepted,
some researchers have also pointed out that the differences are not large enough to be
considered significant [407, 519]. Furthermore, points near the decision boundary can also
be noisy points on the wrong side of the boundary, and therefore their primacy over the
well-separated points is not guaranteed. Not all real-world settings are as neat as that shown
in Fig. 6.3. One can easily construct examples of toy data sets to make the counter-argument
that well-separated examples are more informative than points near the boundary. Support-
vector machines also require greater care and computational effort in parameter tuning. In
particular, the work in [407] shows several examples in which least-squares methods are
less sensitive to parameter choice (such as the regularization parameter) as compared to
support vector machines.

6.3 Support Vector Machines

A support vector machine (SVM) has a special geometric interpretation of its regularizer,
which leads to the notion of margin-based separation of the points belonging to the two

6The SVM generally uses the hinge loss rather than the quadratic loss. The use of quadratic loss is
possible in an SVM but it is less common. This is another key difference between the Fisher discriminant
and the (most common implementation of the) SVM.

178 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

classes. The basic idea here is that an SVM creates two parallel hyperplanes symmetrically
on each side of the decision boundary, so that most points lie on either side of these two
margin hyperplanes on the correct side. Although most textbooks introduce SVMs with this
geometric interpretation, we believe that the regularized optimization view of a support vec-
tor machine is more helpful in understanding its true origins, and relating it to other linear
models like least-squares classification. Therefore, we will first start with the regularized
optimization view, and introduce the geometric interpretation later.

Some expositions of SVMs explicitly use a bias variable b, whereas others do not. The
bias variable can be absorbed by addition of a single columns of 1s to the document-term
matrix D. The coefficient of this dummy term is the bias variable (cf. Sect. 6.1.2). This does
lead to a small change in the final predictions when regularization is used. This is because
only the coefficients of the feature variables are regularized but an explicit bias variable is
not. However, when the bias variable is treated as a coefficient of a dummy feature, it is
regularized as well. Although the use of a dummy variable changes the optimization model
slightly, the effect on the final predictions is quite small. The following exposition will work
with the assumption of a dummy column like the other models of this chapter.

6.3.1 The Regularized Optimization Interpretation

Consider a data set with n training point-class variable pairs (X1, y1) . . . (Xn, yn), in which
the class variable yi is always drawn from {−1,+1}. We start with the optimization formu-
lation of least-squares classification in Eq. 6.21, which is treated as the “parent problem”
throughout this chapter:

Minimize J =
1

2

n∑

i=1

[1−yi(W ·Xi)]
2+

λ

2
||W ||2 [Regularized Least-Squares Classification]

The primary criticism of the least-squares classification model (cf. Sect. 6.2.3.4) is the fact
that it not only penalizes the points for being on the incorrect side of the decision boundary,
but it also penalizes them for being too far on the correct side. In particular, any point Xi

for which yi(W · Xi) > 1 is actually being classified in a comfortable way on the correct
side, and it should not be penalized. How can we remove this weakness of the least-squares
classification model? The simplest way is to modify the aforementioned objective function
so that points with yi(W · Xi) > 1 are not penalized. We present two such modifications
below corresponding to different variations of the SVM objective function:

Minimize J =
1

2

n∑

i=1

max{0, [1− yi(W ·Xi)]}2 + λ

2
||W ||2 [Quadratic-Loss SVM]

Minimize J =
n∑

i=1

max{0, [1− yi(W ·Xi)]}+ λ

2
||W ||2 [Hinge-Loss SVM]

As in the case of regularized least-squares regression, the prediction F (Z) for test point Z
is as follows:

F (Z) = sign{W · Z} (6.23)

The linear separator W ·X = 0 therefore defines the decision boundary between the positive
and negative classes. Therefore, the support vector machine is a modification of the least-
squares classification model, which addresses the latter’s weakness in handling well-separated
training points.

6.3. SUPPORT VECTOR MACHINES 179

The quadratic-loss SVM is more closely related to the regularized least-squares classi-
fication as compared to hinge loss. However, since the hinge-loss SVM is more common,
the following description will primarily focus on this setting. One notational quirk used by
the SVM community is that the optimization formulation is (equivalently) parameterized
with the slack penalty C = 1/λ rather than the regularization parameter λ. Therefore, for
greater consistency with widely accepted notations, we use a similar form:

Minimize J =
1

2
||W ||2 + C ·

n∑

i=1

max{0, [1− yi(W ·Xi)]} [Hinge-Loss SVM]

From an intuitive point of view, the slack penalty C quantifies the amount by which each
point is penalized for “slacking off” from its target value of yi in a one-sided way. For
example, a positive point (i.e., yi = 1) with W ·Xi = 0.7 will be penalized by 0.3C, whereas
a point with W ·Xi = 1.3 will not be penalized. Note that the former point will be classified
correctly by Eq. 6.23, but it is still penalized for being “too close” to the decision boundary.
After all, such a point could be on the correct side of the decision boundary simply by virtue
of overfitting. One can immediately see that the optimization formulation of the support
vector machine is naturally designed to discourage overfitting.

6.3.2 The Maximum Margin Interpretation

Support vector machines also have an interesting geometric interpretation, which often helps
in visualizing their solutions and motivating several solution methodologies. Note that the
decision surface W · X = 0 lies in the middle of the two hyperplanes W · X = 1 and
W ·X = −1. The two parallel hyperplanes to the decision boundary are shown in Fig. 6.4a.
These hyperplanes are key because the distance between them is referred to as the margin,
and the region between them reflects the zone of “uncertainty” near the decision boundary. It
is undesirable to have too many points in this region, and therefore a training point Xi lying
in this region is always penalized, even when it is correctly classified by virtue of satisfying
yi = sign{W ·Xi} [or, equivalently yi(W ·Xi) > 0]. Such correctly classified training points
in the uncertain margin region satisfy yi(W · Xi) ∈ (0, 1), and the corresponding penalty
will be at most C. Other points on the incorrect side of the decision boundary can have
arbitrarily large values of the penalty depending on their distance to the (relevant) margin
hyperplane. The quantity (1− yi(W ·Xi)) > 0 captures this “slack,” and will be explicitly
represented as a slack variable ξi later in this section. Four examples of penalized points
are shown in Fig. 6.4a, all of which are circled. Note that the point A will be penalized even
though it lies on the correct side of the decision boundary.

The contribution of the regularizer has a more interesting interpretation. The distance
between the two hyperplanes W ·X = 1 and W ·X = −1 can be shown7 to be 2/||W || using
elementary rules of coordinate geometry. Note that the regularizer is the squared inverse
of this quantity, and therefore minimizing the regularizer is equivalent to increasing the
distance between the two hyperplanes. Increasing the distance between the two hyperplanes
is a natural way of achieving the goals of a regularizer because it discourages correctly
classified training points from being too close to the decision boundary, which might be a
result of overfitting. Therefore, one can recast the goals of the regularization and prediction

7http://mathworld.wolfram.com/Point-PlaneDistance.html.

http://mathworld.wolfram.com/Point-PlaneDistance.html

180 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

.
.

.
.

.
.

.
.

.

.

.
..

.

.

.
. .

.

.

.

MARGIN VIOLATION WITH PENALTY-BASED SLACK VARIABLES

1-SSALC1+SSALC

FREE SUPPORT VECTORBOUNDED SUPPORT VECTOR

A

.
.

.
.

.
.

.
.

.

.

.
..

.

.

.
. .

.

.

.

DECISION BOUNDARY 2 DECISION BOUNDARY 1

(a) Support vectors and slack penalties (b) Trade-off between margin and slack penalties

Figure 6.4: Illustrating the notions of support vectors and margins in SVMs

errors in terms of the margin maximization principle as follows:

Minimize J =
1

2
||W ||2
︸ ︷︷ ︸

Encourage Greater Margin

+C ·
n∑

i=1

max{0, [1− yi(W ·Xi)]}
︸ ︷︷ ︸
Discourage Margin Violation

As in all regularized problems, there is a trade-off between the loss function and the reg-
ularizer. For example, in Fig. 6.4b, two possible sets of decision boundaries are shown. In
one of them, the margin is undesirably thin, but there are only two penalties for margin
violation. In the other case, the margins are thicker, but there are four penalties for margin
violation. Which of these would the SVM optimization formulation select? If C is small,
then it would go for the thick margin with increased regularization. If C is large, then the
SVM would go for the thin margin with less regularization. In practice, parameters like C
are chosen in a data-driven way by holding out a portion of the training data and selecting
them in order to maximize the accuracy.

A key concept in SVM optimization is the notion of support vectors, based on which
the SVM derives its name. An important point about SVM optimization is that each of
the two separating hyperplanes on either side of the decision boundary could touch one
or more training points at optimality. Such training data points are referred to as free
support vectors. There are three free support vectors in the example of Fig. 6.4a. The notion
of support vector naturally conveys the geometric interpretation of these training points
“supporting” the hyperplanes on either side of the decision boundary. The training data
points that are explicitly penalized for margin violation are also considered support vectors,
but they are considered bounded support vectors. Since four points are penalized in Fig. 6.4a,
there are four bounded support vectors. Note that a bounded support vector could either be
a correctly classified training point within the margin region, or it could be a misclassified
point inside/outside the margin region.

6.3.3 Pegasos: Solving SVMs in the Primal

Although dual formulations of SVMs are common, linear SVMs can be solved quite effi-
ciently in the primal. As in the least-squares models, the first line of attack should be to

6.3. SUPPORT VECTOR MACHINES 181

examine if gradient-descent methods can be used on the original (i.e., primal) objective
function. Unfortunately, the hinge-loss objective is not differentiable at a particular value of
the vector W , because of the presence of points satisfying the condition yi(W · Xi) = 1
in the training data. This problem is caused by the maximization function inside the
loss term, max{0, [1 − yi(W · Xi)]}, of each point. For margin-violating points satisfying
yi(W ·Xi) < 1, the portion of the gradient contributed by these points is −yXi. For points
satisfying yi(W ·Xi) > 1 the contribution to the gradient is 0. The main uncertainty arises
for points where the condition is exactly satisfied with equality, where the gradient is non-
differentiable. In spite of this fact, a particular form of mini-batch stochastic gradient descent
works very well, in which such non-differentiable points are dropped from the sampled set.

One such solution is Pegasos [444], which also has a sub-gradient interpretation. The
approach randomly samples training points of batch-size s, and retains only those points
in the batch violating the margin (i.e., satisfying yi(W ·Xi) < 1). The gradient is updated
with respect to only these retained points in each iteration. Since the points are selected
based on margin violation, the differentiability of the objective function with respect
to these points is guaranteed. The learning rate ηt in the tth iteration is set to 1/t. The
Pegasos algorithm starts by initializingW to a vector of 0s and then uses the following steps:

for t = 1 to T do begin

ηt = 1/t; W ⇐ W (1− ηt);

At = Random sample of s training pairs (Xi, yi);

A+
t = {(X, y) ∈ At : y(W ·X) < 1};

W ⇐ W + ηt·n·C
s

∑
(X,y)∈A+

t
y X;

W ⇐ min
{
1,

√
n·C

||W ||
}
W ; { Optional }

endfor

Aside from the stochastic gradient update8 step, the approach has an additional param-
eter shrinking step before the end of the iterative loop, which is optional. Another notable
characteristic of Pegasos is in the bold nature of the step sizes, which are shown to converge
fast. Aside from the step-size and shrinking innovations, these updates are almost identical
to those of a regularized perceptron (cf. Eq. 10.23 of Chap. 10), except that a perceptron
defines A+

t as the set of all misclassified points satisfying y(W ·X) < 0 (without including
the marginally correct points near the decision boundary). It has been shown in [444] that
the number of iterations required depends on O(C0/ε), where ε is the desired accuracy and
C0 = n · C is the relative weight of the slack penalty term compared to the regularization
term after accounting for the effect of training data size. With careful handling of sparsity
in the update process, the complexity of each update is O(s · q) where s is the (typically
small) mini-batch size, and q is the average number of terms with non-zero frequency in
each training example. In other words, the running time of the approach is independent of
the training sample size, because one can assume that the relative weight C0 is chosen in
an insensitive way to training data size. The implementation of each update requires some
care in handling sparsity.

6.3.3.1 Sparsity-Friendly Updates

This method is also particularly suitable for sparse domains like text, in which most entries
of each Xi are 0s. Note that W might be a dense vector, whereas the vector added to it in

8On the surface, these steps look different from [444]. However, they are mathematically the same,
except that the objective function uses different parametrizations and notations. The parameter λ in [444]
is equivalent to 1/(n · C) in this book.

182 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

each iteration from a small batch of s entries might be sparse. One wants the update time to
be proportional to the number of non-zero entries in the sparse vector rather than the dense
vector. A part of the problem is that some of the updates on W are multiplicative with
respect to all the entries, which might require O(d) time at first sight. One does not want
to perform the multiplicative updates on each of the d elements of W explicitly because
the value of d could easily be greater than 105. An important point is that multiplicative
updates only affect a proportional scaling of the vector, which can be maintained separately
from the relative values of its entries. In other words, one maintains two scalars θ and
γ, and an unnormalized vector V . The vector W is equal to θV , and the norm of W is
maintained in γ = ||W ||. Note that this is a redundant representation of W (because one
is using d + 2 values instead of d values to represent W), but it helps in performing the
additive and multiplicative portions of the update on different parts of the representation.
An update is implemented as follows. First, θ and γ are multiplied with (1− ηt) to account
for the multiplicative part of the update. Then, the relevant entries of V are updated with
the additive quantity ηtn·C

s·θ
∑

(X,y)∈A+
t
yXi. Note the use of θ in the denominator of the

additive quantity so that W = θ ·V is appropriately updated. This additive update changes
the value of γ, which can be updated9 in time proportional to the sparsity level in the added
quantity. Then, the multiplicative updates caused by the final shrinking step are used to
update θ and γ. The final shrinking step is able to avoid the expensive computation of the
norm of W because it is readily available in γ.

6.3.4 Dual SVM Formulation

The dual formulation of SVMs has been the dominant methodology for solving SVMs by
historical accident [89], although there is no special reason to prefer the dual over the primal.
In order to formulate the dual SVM, one first needs to explicitly introduce slack variables
ξi in order to get rid of the maximization function in the objective. Such a restatement of
the objective function results in the following constrained optimization problem:

Minimize J =
1

2
||W ||2 + C ·

n∑

i=1

ξi

subject to:

ξi ≥ 1− yi(W ·Xi) ∀i ∈ {1 . . . n} [Satisfied tightly for poorly separated points]

ξi ≥ 0 ∀i ∈ {1 . . . n} [Satisfied tightly for well-separated points]

Intuitively, the slack variables ξi represent the amount by which the margin rules are vi-
olated, and they are penalized with C. The objective function therefore naturally tries to
minimize each ξi. As a result, at least one of the two constraints involving ξi will be satisfied
to equality (at optimality) depending on whether the training point is poorly separated (i.e.,
a support vector) or well separated (i.e., correctly classified outside margin hyperplanes).

A Lagrangian relaxation methodology is commonly used to solve such constrained opti-
mization problems. We introduce two sets of Lagrangian parameters corresponding to the
two sets of constraints. The margin violation constraints are assigned the Lagrangian pa-

9When a sparse vector a is added to a dense vector b, the change in the squared norm of b is ||a||2+2a ·b.
This can be computed in time proportional to the number of nonzero entries in the sparse vector a.

6.3. SUPPORT VECTOR MACHINES 183

rameters αi, whereas the nonnegativity constraints are assigned the Lagrangian parameters
γi. The Lagrangian relaxation JL is as follows:

LD = Minimize JL =
1

2
||W ||2 + {C

n∑

i=1

ξi} −
n∑

i=1

αi(ξi − 1 + yi(W ·Xi))

︸ ︷︷ ︸
Relax margin rule

−
n∑

i=1

γiξi

︸ ︷︷ ︸
Relax ξi ≥ 0

subject to:

αi ≥ 0, γi ≥ 0 ∀i ∈ {1 . . . n} [Since relaxed constraints are inequalities]

In Lagrangian optimization, one wants to minimize the optimization problem at fixed values
of the Lagrangian parameters, and then maximize this objective function with respect to
all values of the Lagrangian parameters. Such a problem is referred to as the dual problem
of the Lagrangian. In other words, we have:

L∗
D = maxαi,γi≥0LD = maxαi,γi≥0 minW,ξi

JL

For convex optimization problems like support vector machines, the solution of this rather
odd optimization problem can be shown to be the same as the optimal solution of the
original problem. Such a solution is referred to as the saddle point of the Lagrangian. The
first step in finding the saddle point is to get rid of the minimization variables, so that we are
left with a pure maximization problem in terms of the Lagrangian parameters. Therefore,
one must set the partial derivatives with respect to the W = (w1 . . . wd) and ξi to 0.

∇JL = W −
n∑

i=1

αiyiXi = 0 [Gradient with respect to W is 0] (6.24)

∂JL
∂ξi

= C − αi − γi = 0 ∀i ∈ {1 . . . n} (6.25)

The first of these two constraints is particularly interesting because it shows that the co-
efficients of the separating hyperplane can be fully expressed in terms of the training data
points. Therefore, solving for αi is sufficient to derive the separating hyperplane. Further-
more, one can even use αi to directly provide a prediction F (Z) of the test instance Z in
terms of pairwise dot products between points:

F (Z) = sign{W · Z} = sign{
n∑

i=1

αiyiXi · Z} (6.26)

In order to eliminate the minimization variables, we substitute for W in the objective func-
tion. As an added bonus, we can also get rid of γi by substituting γi = C − αi (based on
Eq. 6.25) to derive an objective function (and constraints) purely in terms of αi. On substi-
tuting for these variables and simplifying, one can write the dual problem in maximization
form as follows:

Maximize LD =

{
n∑

i=1

αi

}

− 1

2

n∑

i=1

n∑

j=1

αiαjyiyj(Xi ·Xj)

subject to:

0 ≤ αi ≤ C ∀i ∈ {1 . . . n}

184 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

Once we solve for αi, the prediction function of Eq. 6.26 can be used to classify a test
instance. For linear SVMs, one can also derive the coefficient vector W using Eq. 6.24. The
dual formulation has the following properties:

1. The dual objective function and the prediction of Eq. 6.26 can be expressed purely in
terms of dot products without knowing the feature representations of the points. As
we will see later, this fact has important consequences in order to use the approach
for arbitrary data types.

2. The Kuhn-Tucker optimality conditions of the Lagrangian dual are obtained by setting
the penalty terms in the Lagrangian relaxation to 0:

αi(ξi − 1 + yi(W ·Xi)) = 0

(C − αi)ξi = 0

Based on the Kuhn-Tucker optimality conditions, one can derive the following:

• Any point satisfying yi(W ·Xi) > 1 (i.e., non-support vector) must satisfy αi = 0
because of the first Kuhn-Tucker condition and the nonnegativity of ξi. Further-
more, the second Kuhn-Tucker condition (C − 0)ξi = 0 ensures that ξi = 0 for
non-support vectors. Such well-separated points are not penalized in the primal.

• Any point satisfying yi(W ·Xi) < 1 (i.e., bounded/margin-violating support vec-
tor) must satisfy (i) ξi > 0, (ii) αi = C. These points are penalized in the primal
objective function, because they are either too close to the decision boundary
(on the correct side), or are on the incorrect side of the decision boundary.

• Points with 0 < αi < C are free support vectors and satisfy (i) ξi = 0, (ii)
yi(W ·Xi) = 1. These points are not penalized in the primal objective function,
since slacks are 0. These points lie on the margin hyperplanes.

Points that are not support vectors do not contribute to either the primal or dual objective
function value at optimality. This means that the well-separated points are redundant with
respect to both the optimization objective and the constraints, and can be thrown away
without affecting the optimal solution. This observation is often used in SVM optimization
algorithms.

6.3.5 Learning Algorithms for Dual SVMs

In the following, we provide a generalized description of the dual solution by replacing dot
products Xi ·Xj with kernel similarity values K(Xi, Xj). This generalized description will
be helpful in using support vector machines in the context of kernel methods.

Maximize LD =

{
n∑

i=1

αi

}

− 1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(Xi, Xj)

subject to:

0 ≤ αi ≤ C ∀i ∈ {1 . . . n}

6.3. SUPPORT VECTOR MACHINES 185

A natural solution is to use gradient ascent in which the n-dimensional vector of Lagrangian
parameters is updated according to a gradient direction. The partial derivative of LD with
respect to αk is as follows:

∂LD

∂αk
= 1− yk

n∑

s=1

ysαsK(Xk, Xs) (6.27)

This direction is used to update αk. However, an update might lead to αk violating the
feasibility constraints. One possible solution to address this problem is reset the value
of αk to 0 if it becomes negative, and to reset it to C if it exceeds C. Therefore, one
starts by setting the vector of Lagrangian parameters α = [α1 . . . αn] to an n-dimensional
vector of 0s and uses the following update steps with learning rate ηk for the kth component:

repeat
for each k ∈ {1 . . . n} do begin

Update αk ⇐ αk + ηk
[
1− yk

∑n
s=1 ysαsK(Xk, Xs)

]
;{

Update is equivalent to αk ⇐ αk + ηk

[
∂LD
∂αk

]}

αk ⇐ min{αk, C};
αk ⇐ max{αk, 0};

endfor;
until convergence

The learning rate ηk for the kth component is set to 1/K(Xk, Xk), because it causes
the partial derivative of the objective with respect to αk to fall to 0 after making this step.
This result can be shown by replacing αk with α′

k = αk + ηk(1− yk
∑n

s=1 ysαsK(Xk, Xs))
in Eq. 6.27 (see Exercise 19). In the pseudo-code above, the values of all the αk are not
updated simultaneously, and the updated value of αk is allowed to influence the updates of
other components of α. This results in faster convergence.

The aforementioned algorithm is not optimized for efficiency. Efficiency can be improved
by leveraging decomposition techniques that optimize with respect to only an active subset
of Lagrangian variables at any given time [368, 241]. In such cases, the ideas on Sequential
Minimal Optimization (SMO) [165, 382] restrict the working set of variables to a minimal
value of 2. Some cutting plane algorithms like SVMPerf [242] are focused on constructing
only linear models in sparse domains like text. The algorithm scales linearly with the number
of non-zero entries in the document-term matrix.

6.3.6 Adaptive Nearest Neighbor Interpretation of Dual SVMs

The dual formulation of an SVM has an adaptive nearest-nearest interpretation. Consider
the prediction function F (Z) of test instance Z (which is introduced in Eq. 6.26 and repeated
below):

F (Z) = sign{W · Z} = sign{
n∑

i=1

αiyiXi · Z} (6.28)

It is useful to compare this equation with the adaptive nearest-neighbor prediction of
Eq. 5.29 in Chap. 5. The two prediction functions are identical because the weight λi in
Eq. 5.29 is analogous to the Lagrangian parameter αi, and the similarity function K(Z,Xi)
of Eq. 5.29 is the dot product Xi · Z. Well-separated data points are not support vectors,
and therefore have αi = 0. Such points have no influence on the objective function. In other
words, the SVM learns the relative importance of points using the Lagrangian parameters
αi, which results in throwing away the unimportant points (i.e., well-separated points). Af-
ter throwing away the unimportant points, the SVM performs a weighted nearest-neighbor

186 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

prediction on the remaining points, in which the weights correspond to the learned La-
grangian parameters. This is the basic principle of adaptive nearest neighbors in which
some of the work in identifying “important” points or dimensions is done up front, rather
than in a purely lazy fashion. Is there a way in which one can interpret the nature of the
adaptivity learned by the dual? To understand this point, consider the only data-dependent
term −∑n

i=1

∑n
j=1 αiαjyiyj(Xi · Xj) in the dual objective LD. This term is maximized

when the weights of pairs of points (Xi, Xj) that belong to opposite classes (i.e., yiyj = −1)
and are located close to one another (i.e., high (Xi ·Xj)) also have large weights (αi, αj). In
other words, points in “mixed-class regions” should have large weights, and these are pre-
cisely the uncertain points near the decision boundary. Furthermore, well-separated points
have no influence at all. As we will see later, the shape of the decision boundary can be
nonlinear (like a nearest-neighbor classifier) if we use something other than dot products as
the similarity in the dual objective function. Consider, what happens when instead of using
Xi ·Xj as the similarity in the dual, we use a 0-1 similarity K(Xi, Xj) defining neighbors,
which is 1 only if the similarity is greater than a threshold and 0, otherwise. In such a case,
one can interpret the dual as roughly10 solving the following problem:

Maximizeαi

∑

Opposite class neighbor pairs

αi · αj −
∑

Same class neighbor pairs

αi · αj

subject to:

Each nonnegative weight αi is less than C

This optimization formulation will try to maximize the weights of points located in regions
near other classes and will set of weights of points fully surrounded by same-class neighbors
to 0. This will result in a subset of “uncertain” points together with point-specific weights.
The basic idea is that giving greater importance to uncertain points in the boundary region for
nearest-neighbor prediction is more accurate than using a näıve implementation of nearest-
neighbor classification. This “importance weight” is learned in the dual parameters. We
summarize this point below.

A support vector machine is an adaptive nearest-neighbor method.

The equivalence between a support-vector machine and an adaptive nearest-neighbor
method is illustrated in Fig. 6.5. The fact that most of the training points can be thrown
away without changing the prediction means that SVMs have a more concise model com-
pared to lazy nearest-neighbor methods. This type of model compression is how an adaptive
nearest-neighbor classifier sometimes expresses itself. Compressed learning algorithms al-
ways have good generalization power to unseen test data because they do not have sufficient
memory to remember irrelevant training data nuances.

This equivalence between the SVMs and nearest-neighbor methods also provides an
intuitive explanation why one can capture nonlinear decision boundaries by changing the
dot product Xi · Z in both the optimization formulation and the prediction function to a
weight that decays more sharply with distance than the dot product (e.g., Gaussian kernel).
After all, weighted nearest-neighbor methods are also able to capture nonlinear boundaries
when the weights are sharply decaying (cf. Sect. 5.4 of Chap. 5). Such kernel methods will
be discussed in more detail in Sect. 6.5.

10We say “roughly” because we are ignoring the data-independent term
∑n

i=1 αi.

6.4. LOGISTIC REGRESSION 187

THROW AWAY WELL-
SEPARATED POINTSTRUE BOUNDARY TRUE BOUNDARY

KEEP SUPPORT VECTORS IN
MARGIN REGION AND
MISCLASSIFIED POINTS

APPLY A WEIGHTED NEAREST
NEIGHBOR CLASSIFIER

Figure 6.5: Support vector machines are adaptive nearest-neighbor methods. A support
vector machine summarizes the data in a small number of support vectors, which contributes
to its generalization power.

6.4 Logistic Regression

Logistic regression falls in a class of probabilistic models referred to as discriminative models.
Such models assume that the dependent variable is an observed value generated from a
probabilistic distribution defined by a function of the feature variables. First, we present
a regularized optimization interpretation in order to relate it better to the other models
discussed in this chapter.

6.4.1 The Regularized Optimization Interpretation

Consider a classification problem with training-test pairs (X1, y1) . . . Xn, yn). Each class
variables yi is drawn from {−1,+1}. We start with the optimization formulation of least-
squares classification in Eq. 6.21 (which is treated as the “parent problem” throughout this
chapter):

Minimize J =
1

2

n∑

i=1

[1−yi(W ·Xi)]
2+

λ

2
||W ||2 [Regularized Least-Squares Classification]

SVMs address an important criticism of the least-squares classification model
(cf. Sect. 6.2.3.4), which is the fact that least-squares not only penalizes the points for
being on the incorrect side of the decision boundary, but it also penalizes them for being
too far on the correct side. SVMs do not penalize such points by setting negative values of
the slack [1− yi(W ·Xi)] to 0. However, one unusual effect of this change is that there is no
variation in the value of the objective for points that are sufficiently well separated. Logistic
regression uses a smooth log loss, in which there is still some variation in the objective
function value of such points. It is a debatable matter whether or not such a change will
help the model; this is an issue that we will explore in Sect. 6.4.5.

One can write the objective function for logistic regression as follows:

Minimize J =
n∑

i=1

log[1 + exp{−yi(W ·Xi)}] + λ

2
||W ||2 (6.29)

Here, the exponentiation function is denoted by “exp(·).” A key point here is that an increas-
ing level of distance of a training point Xi from the decision boundary on the correct side,
which is captured by increasingly positive values of yi(W ·Xi), is penalized less by logistic

188 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

PREDICTION= W.X FOR X IN POSITIVE CLASS

P
E

N
A

LT
Y

LEAST SQUARES
SVM HINGE
LOGISTIC

DECISION
BOUNDARY

INCORRECT
PREDICTIONS

CORRECT
PREDICTIONS

LINEAR REGRESSION
(y IS NUMERIC)

LOSS = (y-W X)2

LEAST-SQUARES CLASSIFICATION

LOSS = (y-W X)2 = (1-y W X)2

SET y Є {-1,+1}

OVER-
PERFORMANCE
PENALIZED

INDIFFERENT TO
OVER-PERFORMANCE

SLIGHTLY REWARD
OVER-PERFORMANCE

SVM
LOSS = max {0, 1-y W X }

LOGISTIC REGRESSION
LOSS = log [1+exp (-y (W X))]

(LLSF)

(a) Loss functions of various linear models (b) Relationships among linear models

Figure 6.6: (a) The loss for a training instance X belonging to the positive class at varying
values of W ·X. Logistic regression and SVM are similar except that the former is smooth,
whereas the latter abruptly flattens out beyond the margin point with W ·X ≥ 1. Least-
squares classification is the only case in which the penalty increases in some regions with
increasing W ·X for the (positive) class training instance. (b) All linear models in classifica-
tion derive their motivation from the parent problem of linear regression, which historically
precedes the classification formulations. The modifications treat the well-separated (i.e.,
over-performing) points in different ways.

regression (albeit with smoothly diminishing returns). This is the opposite of least-squares
classification, where it is increasingly penalized beyond a particular point. In support-vector
machines, increasing distance in the correct direction from the decision boundary beyond a
particular point (i.e., margin boundary) is neither rewarded nor penalized.

To show the differences between the various loss functions, we have plotted (cf. Fig. 6.6)
the penalty at varying values of W · X of a positive training point X with label y =
+1. The three loss functions of regularized least-squares classification, SVM, and logistic
regression are shown. The loss functions of logistic regression and the support vector machine
look strikingly similar, except that the former is a smooth function, and the SVM sharply
bottoms at zero loss beyond W · X ≥ 1. This similarity in loss functions is important,
because it explains why the two models seem to provide similar results in many practical
cases. The regularized least-squares model, which is equivalent to the Fisher discriminant,
provides a very different loss function. In fact, this is the only loss function where there is a
region of the space in which increasingW ·X actually increases the penalty on the point. One
consequence of the smooth objective function of logistic regression is that it considers all
points including well-separated points relevant to the model, albeit to a smaller degree. As a
result, the model no longer throws away most of the points (like SVMs). Furthermore, unlike
SVMs, logistic regression is commonly used in the linear setting. This is not a problem in the
specific case of the text domain, where linear models are recommended anyway. Although it
is possible to design nonlinear variants of logistic regression, SVMs are generally preferable
in those settings.

As logistic regression also has a probabilistic interpretation, it turns out that one can per-
form the prediction F (Z) of a test instance both deterministically as well as in a probabilistic

6.4. LOGISTIC REGRESSION 189

sense. The deterministic prediction is identical to an SVM, but the probabilistic prediction
is unique11 to logistic regression.

F (Z) = sign{W · Z} [Deterministic Prediction]

P (F (Z) = 1) =
1

1 + exp(−W · Z)
[Probabilistic Prediction]

It is noteworthy that points on the decision boundary satisfying W ·Z = 0 will be predicted
to a probability of 1/(1 + exp(0)) = 0.5, which is a reasonable prediction. The probabilistic
predictions in logistic regression can be learned using stochastic gradient descent.

6.4.2 Training Algorithms for Logistic Regression

In order to derive the stochastic gradient-descent iterations for logistic regression, let us
consider the gradient ∇J of its objective function J with respect to W :

∇J = λW −
n∑

i=1

yiexp{−yi(W ·Xi)}Xi

1 + exp{−yi(W ·Xi)}
(6.30)

For mini-batch stochastic gradient descent, only the gradient with respect to a subset A of s
randomly chosen training instances is considered. We can write the corresponding gradient
as follows:

∇J =
λs

n
W −

∑

(Xi,yi)∈A

yiexp{−yi(W ·Xi)}Xi

1 + exp{−yi(W ·Xi)}
(6.31)

Choosing s = 1 leads to pure stochastic gradient descent. One can use these updates to
design the mini-batch stochastic gradient-descent algorithm for logistic regression, starting
with W = 0 and updating for T iterations with learning rate η as follows:

for t = 1 to T do begin

At = Random sample of s training pairs (Xi, yi);

W ⇐ W
(
1− ηλs

n

)
+ η

∑
(X,y)∈At

y exp{−y(W ·X)}X
1+exp{−y(W ·X)} ;

endfor

The reader is encouraged to examine the similarity of this update process to the Pegasos al-
gorithm described in Sect. 6.3.3. The main differences arise in the handling of well-separated
points and choice of learning rate. For simplicity, we have used a constant learning rate η.
There are several other techniques like the Newton method that are used for fast convergence
in logistic regression.

6.4.3 Probabilistic Interpretation of Logistic Regression

Logistic regression is a member of the family of generalized linear models, which have a
natural probabilistic interpretation. Although logistic regression is designed to deal with
binary dependent variables, the family of generalized linear models can handle dependent
variables of all types like ordinal data (ratings), categorical data, and count occurrence data.
Both SVMs and logistic regression use different ways of modifying least-squares regression
to the binary nature of the dependent variable. Logistic regression is more systematic in
the sense that the ideas can be adapted to other types of target variables.

11It has been shown [383] how one can derive heuristic probability estimates with an SVM.

190 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

In essence, logistic regression assumes that the target variable yi ∈ {−1,+1} is the
observed value generated from a hidden Bernoulli probability distribution that is parame-
terized by W ·Xi. Since W ·Xi might be an arbitrary quantity (unlike the parameters of
a Bernoulli distribution), we need to apply some type of function to it in order to bring it
to the range (0, 1). The specific function chosen is the sigmoid function. In other words, we
have:

yi ∼ Bernoulli distribution parametrized by sigmoid of W ·Xi

It is this probabilistic interpretation because of which we get our prediction function F (Z)
for a given data point Z:

P (F (Z) = 1) =
1

1 + exp(−W · Z)

One can write this prediction function more generally for any target y ∈ {−1,+1}.

P (F (Z) = y) =
1

1 + exp(−y(W · Z))
(6.32)

It is easy to verify that the sum of the probabilities over both outcomes of y is 1.
The key here is that if we have another type of target variable (e.g., categorical, multi-

nomial, or ordinal), we can choose to use a different type of distribution and a different
function of W · Xi to define the parametrization of the hidden probabilistic process. The
ability to handle arbitrary types of target variables is where the real power of this family
of generalized linear models is derived.

Probabilistic models learn the parameters of the probabilistic process in order to maxi-
mize the likelihood of the data. The likelihood of the entire training data set with n pairs
of the form (Xi, yi) is as follows:

L(Training Data|W) =
n∏

i=1

P (F (Xi) = yi) =
n∏

i=1

1

1 + exp(−yi(W ·Xi))

One must maximize the likelihood and minimize the negative log-likelihood. Therefore, the
minimization objective function LL of the log-likelihood can be expressed by using the
negative logarithm of the aforementioned expression:

LL =

n∑

i=1

log[1 + exp{−yi(W ·Xi)}] (6.33)

After adding the regularization12 term, this (negative) log-likelihood function is identical
to the objective function of logistic regression in Eq. 6.29. Therefore, logistic regression is
essentially a (negative) log-likelihood minimization algorithm.

6.4.3.1 Probabilistic Interpretation of Stochastic Gradient Descent Steps

Most gradient-descent models are mistake-driven methods, in that the update step is often a
function of the errors made on the training data. In order to understand this point, note that
the gradient-descent steps for least-squares regression in Sect. 6.2.1.1 are direct functions

12Regularization is equivalent to assuming that the parameters in W are drawn from a Gaussian prior
and it results in the addition of the term λ||W ||2/2 to the log-likelihood to incorporate this prior assumption.

6.4. LOGISTIC REGRESSION 191

of errors made on the training data. How do the updates in logistic regression compare to
this characteristic of other methods? Let us examine an update made by stochastic gradient
descent on a subset of points At in the tth iteration (see pseudocode on page 189):

W ⇐ W

(

1− ηλs

n

)

+ η
∑

(X,y)∈At

y exp{−y(W ·X)}X
1 + exp{−y(W ·X)}

= W

(

1− ηλs

n

)

+ η
∑

(X,y)∈At

y
{
P (F (X) = −y)

}
X

= W

(

1− ηλs

n

)

+ η
∑

(X,y)∈At

y
{
P
[
Mistake on (X, y)

]}
X

Therefore, logistic regression is also a mistake-driven method, and the probabilities of the
mistakes are used. This is in consonance with the fact that logistic regression is a proba-
bilistic method.

6.4.3.2 Relationships Among Primal Updates of Linear Models

SVMs replace P
[
Mistake on (X, y)

]
with a 0/1 value in the probabilistic update of the pre-

vious section, depending on whether or not the point (X, y) meets the margin requirement.
In fact, it is possible to write a unified form of the update for least-squares classification,
SVM, and logistic regression. This form of the update is as follows:

W ⇐ W (1− ηλ) + ηy[δ(X, y)]X

Here, the mistake function δ(X, y) is an error value for least-squares classification, an indi-
cator variable for SVMs, and a probability for logistic regression (see Exercise 15). The close
relationships among the updates mirror the close relationships among their loss functions
(cf. Fig. 6.6). Remarkably, the perceptron update is identical to the SVM update, but with
a different definition of the indicator variable (cf. page 323).

6.4.4 Multinomial Logistic Regression and Other Generalizations

The probabilistic interpretation of logistic regression is particularly convenient because it
provides a path to modeling target variables of other types with the use of generalized
linear models. After all, the whole point of the probabilistic process in logistic regression
is to convert the continuous value W · Xi into a binary prediction yi with a probabilistic
interpretation. In the case of the k-class problem, the target variable yi is generated as
follows:

yi ∼ Target-sensitive distribution parametrized by functions of W1 ·Xi . . .Wk ·Xi

The choice of the distribution above depends on the type of target variable (i.e., dependent
variable) one is trying to learn. In the aforementioned setting, the target variable has k
categorical values denoted by {1 . . . k}. Therefore, the classes have probability distributions
defined by the following:

P (yi = r|Xi) =
exp(Wr ·Xi)

∑k
m=1 exp(Wm ·Xi)

∀r ∈ {1 . . . k} (6.34)

192 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

As in the case of logistic regression one learns the parameters in W1 . . .Wk by maximizing
the likelihood of the observed targets on the training data. Specifically, the loss function is
also referred to as the cross-entropy loss:

LL = −
n∑

i=1

k∑

r=1

I(yi, r) · log
[
P (yi = r|Xi)

]
(6.35)

Here, the indicator function I(yi, r) is 1 when the observed value of yi is r, and 0, otherwise.
Therefore, the approach for learning the multiclass parameters is different only in the specific
details of the maximum-likelihood function, and the principles of the overall framework
remain unchanged from logistic regression. One can use the following stochastic gradient-
descent steps for each Wr, when trained on (Xi, yi):

Wr ⇐ Wr(1− ηλ) + ηXi

[
I(yi, r)− P (yi = r|Xi)

] ∀r ∈ {1 . . . k} (6.36)

Here, η is the step size and λ is the regularization parameter. The reader should convince
herself that the special case of the multinomial objective function (Eq. 6.35) for binary
classes turns out to be identical to logistic regression (see Exercise 13).

In essence, the approach is learning k different linear separators simultaneously, and
each separator tries to discriminate a particular class from the remaining data. This bears
some resemblance to a one-against-all approach (see Sect. 6.1.4), which is often used to
convert binary classifiers like support vector machines to multi-way classifiers by voting on
different predictions obtained by building such models separately. However, the difference is
that the separators are learned simultaneously in multinomial logistic regression by jointly
optimizing training log-likelihood with respect to all k classes at once. This results in a
more flexible model rather than a decomposable one-against-all approach, which is done se-
quentially after learning each Wr individually. This model is also referred to as multinomial
logistic regression, maximum entropy (MaxEnt), or the softmax model. One can also use
appropriate distributions to model count-occurrence data (with a multinomial distribution),
or ratings data (with an ordered probit model). Refer to the bibliographic notes for pointers
on generalized linear models. It is noteworthy that using different linear separators simulta-
neously can also be achieved in other binary models like SVMs. For example, it is possible
to design a multi-class SVM loss function, known as the Weston-Watkins SVM [496], that
learns k different separators simultaneously (see Exercise 14). However, the SVM is not
quite as flexible as the family of generalized linear models in handling different types of
target variables.

6.4.5 Comments on the Performance of Logistic Regression

Logistic regression has very similar performance to that of support vector machines. This is
because the loss functions of the two methods are very similar. In fact, in highly noisy data
sets with overlapping class distributions, linear logistic regression may slightly outperform
a linear support vector machine. Support vector machines tend to do well when the classes
are well separated. One reason for this is that support vector machines always include
misclassified training points among the support vectors. Therefore, if the data set contains a
large number of mislabeled points or other intrinsic noise, it can affect the SVM classification
to a larger extent. This is caused by the fact that the SVM throws away a lot of the correctly
labeled points for not being support vectors. Therefore, the misclassified training points
occupy an even larger proportion of the support vectors retained by the SVM model. In

6.5. NONLINEAR GENERALIZATIONS OF LINEAR MODELS 193

these specific cases, the smooth objective function of logistic regression might provide some
protection because it gives some weight to all correctly labeled points in the loss function
(albeit a small amount to the well separated ones) to balance out the noise. However, even
in these cases, the performance of the SVM is often statistically comparable to logistic
regression, provided that the regularization parameters are properly tuned.

A difficult case for logistic regression is that of well-separated classes in which support
vector machines generally provide superior performance. In such cases, logistic regression
methods tend to become unstable in terms of their probability estimates. However, they can
usually be used to reasonably classify the test instances even if the probability estimates
are poor. Note that well separated classes are an easy case, and many classifiers can be
used to solve such cases. In summary, it is often difficult to choose between SVMs and
logistic regression. Multinomial variations of logistic regression often have an advantage in
multi-way classification because of the ability to build a more powerful model with multiple
classes. If nonlinear models are desired, then the support vector machine is the method of
choice. This will be the subject of discussion in the next section.

6.5 Nonlinear Generalizations of Linear Models

Nonlinear methods for classification use linear models on a transformation of the data that
is defined by kernel singular value decomposition (SVD). Therefore, a simplistic way to
implement nonlinear models is as follows:

1. Transform the n training data points in d-dimensional space to a new representation
D′. For a finite data set of n points, a data-specific representation of at most n
dimensions can always be found. The n-dimensional representation is contained in
the n rows of the n × n matrix U by diagonalizing an appropriately chosen n × n
similarity matrix S between the points to express it in the form S = UUT .

2. Apply any linear model (e.g., Fisher discriminant, SVM, or logistic regression) on the
transformed representation of the training data in the rows of U to create a model.

3. For any test point, transform it to the same space as the training data, and apply the
learned model on the transformed representation to predict its class label.

The basic idea is that a linear separator in the transformed space maps to a nonlinear
separator in the original space. Although this crude way of implementing kernel classification
is not what is done in practice, it is identical to what is achieved using methods like the kernel
trick, which will be discussed later. Before reading further, the reader is advised to revisit
the material in Sect. 3.6 of Chap. 3 on kernel SVD. Kernel SVMs are direct applications of
this transformation.

Singular value decomposition can recover13 the original data representation from an n×n
similarity (i.e., dot product) matrix by computing its top eigenvectors. Any data matrix D
can be recovered (in a rotated and de-correlated axis system) using the eigenvectors of its
n× n dot product matrix S = DDT . One can diagonalize S as follows:

S = QΣ2QT = (QΣ)
︸ ︷︷ ︸

U

(QΣ)T
︸ ︷︷ ︸

UT

(6.37)

13The data will typically be rotated and reflected in particular directions.

194 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

The matrix U will have at most d nonzero columns when S contains dot products, because
at most min{n, d} entries (SVD singular values) of the diagonal matrix Σ are non-zero. The
remaining (n − d) dimensions of U can be dropped. In such a case, the matrix U contains
the d-dimensional embedding of all n points, which are returned by traditional SVD. Now
imagine that you replaced the dot product in the (i, j)th entry of S = DDT with another
kernel similarity value K(Xi, Xj) such as one of the following:

Function Form

Linear kernel K(Xi, Xj) = Xi ·Xj

(Defaults to rotated/reflected version
of original data as in SVD)

Gaussian radial basis kernel K(Xi, Xj) = exp(−||Xi −Xj ||2/(2 · σ2))

Polynomial kernel K(Xi, Xj) = (Xi ·Xj + c)h

Sigmoid kernel K(Xi, Xj) = tanh(κXi ·Xj − δ)

The basic idea is that these kernel similarities represent the dot products between data
points in transformed space with unknown transformation Φ(·):

K(Xi, Xj) = Φ(Xi) · Φ(Xj) (6.38)

The extraction of the nonzero eigenvectors of any of the similarity matrices above will yield
an n-dimensional representation Φs(X) of the transformed data. Consider the case, where
for any of the n× n similarity matrices above, if we extract all nonzero eigenvectors using
the same approach as above:

S = QΣ2QT = (QΣ)
︸ ︷︷ ︸

U

(QΣ)T
︸ ︷︷ ︸

UT

(6.39)

In this case, the n rows of U provide the data-specific14 transformed representation Φs(X),
and it is possible for U to have more than d nonzero columns. In other words, the transfor-
mation can have higher dimensionality than the original data. The linear kernel is a special
case in which we obtain a rotated and reflected version of the original data with at most d
nonzero dimensions. For many kernels, this higher-dimensional representation unlocks the
local clustering characteristics of the data along the different transformed dimensions, and
the clusters (or classes) now become linearly separable. Therefore, it would make sense to
use linear SVM on Φs(X) rather than the original data.

14Strictly speaking, the transformation Φ(X) would need to be infinite dimensional to adequately rep-
resent the universe of all possible data points for Gaussian kernels. However, the relative positions of n
points (and the origin) in any dimensionality can always be projected on an n-dimensional plane, just as a
set of a two 3-dimensional points (with the origin) can always be projected on a 2-dimensional plane. The
eigenvectors of the n× n similarity matrix of these points provide precisely this projection. This is referred
to as the data-specific Mercer kernel map. Therefore, even though one often hears of the impossibility of
extracting infinite dimensional points from a Gaussian kernel, this makes the nature of the transformation
sound more abstract and impossible than it really is (as a practical matter). The reality is that we can
always work with the data-specific n-dimensional transformation. As long as the similarity matrix is posi-
tive semi-definite, a finite dimensional transformation always exists for a finite data set, which is adequate
for the learning algorithm. We use the notation Φs(·) instead of Φ(·) to represent the fact that this is a
data-specific transformation.

6.5. NONLINEAR GENERALIZATIONS OF LINEAR MODELS 195

6.5.1 Kernel SVMs with Explicit Transformation

Even though it is uncommon to implement kernel SVMs with explicit transformation, it is
possible to do so. For the purpose of discussion, assume that the eigenvectors and eigenvalues
of the n×n kernel similarity matrix S are denoted byQ and Σ (see previous section). One can
drop the zero eigenvectors (columns) of Σ and Q to yield the n× r matrix U0 = Q0Σ0 with
r < n dimensions. The rows of U0 contain the explicit transformations of the training points.
Any out-of-sample test point Z can also be projected into this r-dimensional representation
by observing that its dot products with training points must evaluate to the corresponding
kernel similarities between the test and training points:

Φs(Z)
︸ ︷︷ ︸
1× r

(Q0Σ0)
T

︸ ︷︷ ︸
r×n

= [K(Z,X1),K(Z,X2), . . .K(Z,Xn)]
︸ ︷︷ ︸
1× n row vector of similarities

(6.40)

Multiplying both sides with Q0Σ
−1
0 and using QT

0 Q0 = I on the left-hand side, we obtain:

Φs(Z) = [K(Z,X1),K(Z,X2), . . .K(Z,Xn)]Q0Σ
−1
0 (6.41)

The point Φs(Z) contains the r-dimensional data-specific transformation of the test point in
the same r-dimensional space as the training data was transformed. Therefore, we present
the algorithm for kernel SVMs (with explicit transformation starting from the training data
similarity matrix S) as follows:

Diagonalize S = QΣ2QT ;
Extract the n-dimensional embedding in rows of QΣ;
Drop any zero eigenvectors from QΣ to create Q0Σ0;
{ The n rows of Q0Σ0 and their class labels constitute training data }
Apply linear SVM on Q0Σ0 and class labels to learn model M;

Convert test point Z to Φs(Z) using Eq. 6.41;

Apply M on Φs(Z) to yield prediction;

In other words, kernel SVMs can be implemented with explicit transformation. Furthermore,
one can substitute the SVM with any learning algorithm like logistic regression or Fisher
discriminant. Note that this approach is applicable across the entire spectrum of supervised
and unsupervised learning algorithms. An unsupervised example of kernel-based k-means
clustering algorithm (with explicit feature transformation) is described in Sect. 4.8.1.2 of
Chap. 4. In the form described above, the explicit transformation approach is highly in-
efficient, because the extracted representation might require O(n2) space for the matrix
U0 = Q0Σ0. This is the (practical) reason that one resorts to the kernel trick, which is dis-
cussed later in this chapter. The kernel trick provides an equivalent solution to that provided
by the pseudo-code above.

However, explicit transformations with kernels have a worse reputation than they de-
serve. It is noteworthy that one can use Nyström sampling (cf. Sect. 3.6.2 of Chap. 3) in
combination with ensemble tricks to improve the efficiency and the accuracy of this ap-
proach. In fact, this type of sampling approach (explicit transformation) has many benefits,
but is often underappreciated by researchers and practitioners alike. Such a sampling-based
approach is described for clustering in Sects. 4.7 and 4.8.1.2. We leave the implementation
for classification to the reader (see Exercise 12). It is also useful to explore the explicit
transformation approach, because it provides an understanding of how kernels improve the
separability of the different classes in transformed space. This will be the topic of the dis-
cussion in the next section.

196 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

6.5.2 Why Do Conventional Kernels Promote Linear Separability?

Conventional kernels like the Gaussian kernel transform the data into a higher-dimensional
space in which the points of different classes become linear separable. As discussed in the
previous section, these transformations actually expand the dimensionality of the embedded
data over the representation in the input space. An expanded dimensionality leads to a
greater number of ways to separate two sets of points, and therefore a linear separator is
easier to find. Even better insight might be obtained by examining the way in which this
larger number of dimensions is used. The key point is that embedded kernel can capture the
local clustering (i.e., class) structure of the data in dedicated subsets of engineered features
that are often disjoint from one another. In order to understand this point, consider a case in
which the text documents are all normalized to unit norm. Then, the dot product between
any pair of documents (Xi, Xj) can be expressed in terms of the squared Euclidean distance
R2 between them:

Xi ·Xj =
||Xi||2 + ||Xj ||2 − ||X − Y ||2

2

=
1 + 1−R2

2
= 1−R2/2

Conventional kernels can therefore be expressed in terms of R2 as follows:

Xi ·Xj = 1−R2/2 [Linear Kernel]

(Xi ·Xj)
2 = (1−R2/2)2 [Quadratic Kernel]

exp(−||Xi −Xj ||2/(2 · σ2)) = exp(−R2/2σ2) [Exponential Kernel]

In each case, it is evident that higher-order kernel similarities in the transformed space
decay much more sharply than the dot product with increasing distance in the input space.
In Fig. 6.7, it is shown how the similarity values of the Gaussian kernel (i.e., dot products in
transformed space) vary with different values of the squared distance R2 in the input space.
For the Gaussian kernel, two different values of σ at 0.25 and 0.5 are used. It is immediately
evident that the drop is much sharper with higher-order kernels and small bandwidths. In
such cases, the similarity is almost zero between many pairs of points. Since nonnegative
kernels like the Gaussian can always be assumed15 to create a nonnegative embedding in a
single orthant, the only way in which the similarity between a pair of transformed points
is zero if they take positive components along different dimensions. In other words, kernels
like the Gaussian map distant points in the input space to different dimensions, and they
map closely clustered points (typically belonging to the same class) to a dedicated subset of
dimensions. With the right choice of the bandwidth σ, different classes will be dominated by
different subsets of dimensions in the transformed space, which promotes linear separability.
However, this linear separator in the transformed space maps to a nonlinear separator in
the original input space.

In order to explain this point, we revisit an example from Chap. 3 in Fig. 6.8. In this
case, the data is segmented into three classes, corresponding to Arts, Crafts, and Music.
Suppose, we want to separate Arts from the other classes. It is evident that a linear sepa-
rator cannot separate out this class, because it is tightly integrated with the other classes.
Now imagine that you use a Gaussian kernel to transform the data. If a sufficiently small

15When all entries in the kernel matrix are nonnegative, it means that all pairwise angles between points
are less than 90◦. One can always reflect the points to the nonnegative orthant without loss of generality.

6.5. NONLINEAR GENERALIZATIONS OF LINEAR MODELS 197

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SQUARED DISTANCE IN INPUT SPACE

S
IM

IL
A

R
IT

Y
 (T

R
A

N
S

FO
R

M
E

D
 P

O
IN

TS
)

LINEAR KERNEL
GAUSSIAN KERNEL (0.5)
GAUSSIAN KERNEL (0.25)

Figure 6.7: Similarities between pairs of points in the transformed space are very sensitive
to the squared distances in the input space, when a small bandwidth of the Gaussian kernel
is used.

bandwidth is chosen, the similarity between pairs of points belonging to different classes
will be close to zero, although there will always be pairs of points within the same class
that have high similarity to one another. As a result, the populated entries in the similarity
matrix might look like the ones shown in Fig. 6.8. The only way in which such a matrix
can be represented as dot products of points is the case in which different dimensions of
this embedding are dominated by the different classes. In such a case, a linear separator
will be able to separate the Arts class from the other classes. Note that this linear sepa-
rator in the transformed space corresponds to a nonlinear separator in the original input
space. In essence, such transformation methods are designed to unlock the local information
captured by combinations of (input) dimensions into individual (transformed) dimensions.
A key point is that it is crucial to tune the parameters of the kernel (e.g., bandwidth σ)
appropriately in order to get the best classification performance.

6.5.3 Strengths and Weaknesses of Different Kernels

Conventional kernels like the Gaussian kernel and the polynomial kernel have had only lim-
ited success in the text domain. One issue is that text data is sparse and high-dimensional,
and such data domains are often linearly separable to a large degree. Note that the Gaus-
sian kernel and polynomial kernels will usually provide slightly better performance than
linear classifiers with sufficient tuning, because choosing a large bandwidth in the Gaussian
kernel is (almost) equivalent to the linear kernel. Therefore, with sufficient tuning of band-
width an operating point can usually be found where the nonlinear kernel wins over the
linear kernel. The main problem is that the nonlinear variations of most SVM algorithms
are computationally expensive compared to the linear variations, and the small accuracy
advantages may not be worth the additional effort. The other point to keep in mind is that
one now needs to tune two parameters (corresponding to regularization and kernel param-
eters), which requires a more expensive grid search16 for parameter tuning. This further

16Suppose one has p1 . . . pt different possibilities for t different parameters. One now has to evaluate the
algorithm at each combination of p1 × p2 . . .× pt possibilities over a held out set.

198 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

CRAFTS

LOWER-ORDER
NOISE COMPONENTS

ARTS

MUSIC

KERNEL
BANDWIDTH
JUST RIGHT

(INTER-CLUSTER
SIMILARITY IS
NEARLY ZERO)

n
ARTS CRAFTS MUSIC

n

AR
TS

CR
AF

TS
M

U
SI

C

UNSHADED ENTRIES
ARE CLOSE TO ZERO

SHADED ENTRIES ARE
NON-ZERO

SI
M

IL
AR

IT
Y

M
AT

RI
X

ARTS CRAFTS MUSIC

ARTS CRAFTS MUSIC

NONLINEAR SEPARATOR

Figure 6.8: Linear separators in transformed space often serve the purpose of nonlinear
separators in the input space. Refer to Fig. 3.9 of Chap. 3 to relate the approach to kernel
SVD.

increases computational costs. If the grid search is not exhaustive enough, it is possible for
the nonlinear kernel method to perform worse than the linear kernel in which it is easier
to tune effectively. Second-order polynomial kernels can provide modest improvements [88]
in accuracy because they capture the interactions between pairs of terms, although the
advantages are still quite limited.

6.5.3.1 Capturing Linguistic Knowledge with Kernels

The main potential of kernels lies in its ability to incorporate the linguistic knowledge
in the corpus for classification. In this context, substring kernels [308] use the sequential
positioning of words in order to capture deeper semantic concepts from the data than are
available from the bag-of-words representation. A number of such kernels are discussed
in Chap. 3. The ability to incorporate semantic and linguistic concepts directly into the
model by using string kernels is a powerful notion. In the longer run, such settings may
be the primary use case for kernel methods in text, although much research needs to be
done on linguistically-sensitive similarity learning in this domain. Truly cognitive forms of
artificial intelligence require the ability to integrate sequence-based learning models into the
classification process.

6.5.4 The Kernel Trick

As discussed earlier, the transformation Φ(X) is obtained by using an n×n similarity matrix
S containing all pair-wise similarities Φ(Xi) ·Φ(Xj) in transformed space. One way of using
kernel methods is to extract the data-specific Mercer kernel map Φs(X) by diagonalizing the
n×n similarity matrix S and then building a linear model on the extracted representation.
However, in many cases, if the solutions to a linear model can be expressed in terms of

6.5. NONLINEAR GENERALIZATIONS OF LINEAR MODELS 199

dot products, it is not necessary to explicitly perform this feature engineering. In such
cases, replacing dot products with similarities provide identical results to explicit feature
engineering. So, the essence of the kernel trick is as follows:

Create a closed-form solution or optimization formulation that is defined in
terms of dot products. Also derive a form of the test instance prediction function
in terms of the dot products of the test instance with other training instances.
Now replace all dot products with entries of the similarity matrix S.

Several sections of this chapter show how the training as well as prediction of many linear
models can be expressed in terms of dot products. For example, consider the dual of the
support vector machine introduced earlier in this chapter. The dual can be expressed as
follows:

Maximize LD =

{
n∑

i=1

αi

}

− 1

2

n∑

i=1

n∑

j=1

αiαjyiyj(Xi ·Xj)

subject to:

0 ≤ αi ≤ C ∀i ∈ {1 . . . n}

It is evident that this dual only contains dot products likeXi·Xj between training data pairs.
We can replace this dot product with kernel similarity (e.g., the similarity obtained from a
string kernel) and solve for the various values of αi. Note that the gradient-ascent update
for the dual problem (cf. Sect. 6.3.5) is already expressed in terms of kernel similarities
K(Xi, Xj) rather than dot products.

How can we use this similarity to return the prediction for a test document (say, in
string form)? In order to understand this point, consider the prediction function of kernel
SVMs for test point Z:

F (Z) = sign{W · Z} = sign{
n∑

i=1

αiyiXi · Z} (6.42)

One can replace each Xi ·Z with the corresponding string kernel similarity between training
point Xi and test point Z in order to yield the final prediction.

6.5.5 Systematic Application of the Kernel Trick

The use of the kernel trick with the dual of an SVM almost seems like a serendipitous
observation in retrospect. However, there are large numbers of possible variations of linear
models, each of which might have its own objective function and its own set of constraints.
The techniques of least-squares regression, Fisher’s discriminant, and logistic regression are
examples from a large family of possibilities. Given a linear problem, how can we kernelize
it? Would the dual of an optimization problem always work for kernelization? Is there a
systematic way to do it?

Although several methods have been proposed in recent years for using the kernel trick
with the primal, the use of the kernel trick on the dual is more well known. Using primal
methods in conjunction with the kernel trick is far more systematic, and even has several
efficiency advantages. However, this (more) useful and systematic technique has always
toiled in relative obscurity compared to its more famous dual cousin because of historical
reasons, such as the fact that the very first paper on this topic used the dual optimization

200 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

method [115]. In this context, the following observation was made in an insightful paper
written about a decade back [89]:

“The vast majority of text books and articles introducing support vector ma-
chines (SVMs) first state the primal optimization problem, and then go directly
to the dual formulation. A reader could easily obtain the impression that this is
the only possible way to train an SVM.”

An important idea that can be used in order to solve nonlinear SVMs in the primal is the
representer theorem. Consider the L2-regularized form of all linear models discussed in this
chapter, in which the loss function is L(yi,W ·Xi):

Minimize J =
n∑

i=1

L(yi,W ·Xi) +
λ

2
||W ||2 (6.43)

Consider a situation in which the training data points have dimensionality d, but all of them
lie on a 2-dimensional plane. Note that the optimal linear separation of points on this plane
can always be achieved with the use of a 1-dimensional line on this 2-dimensional plane.
Furthermore, this separator is more concise than any higher dimensional separator and will
therefore be preferred by the L2-regularizer. A 1-dimensional separator of training points
lying on a 2-dimensional plane is shown in Fig. 6.9a. Although it is also possible to get the
same separation of training points using any 2-dimensional plane (e.g., Fig. 6.9b) passing
through the 1-dimensional separator of Fig. 6.9a, such a separator would not be preferred
by an L2-regularizer because of its lack of conciseness. In other words, given a set of training
data points X1 . . . Xn, the separator W always lies in the space spanned by these vectors.
We state this result below, which is a very simplified version of the representer theorem,
and is specific to linear models with L2-regularizers.

Theorem 6.5.1 (Simplified Representer Theorem) Let J be any optimization prob-
lem of the following form:

Minimize J =

n∑

i=1

L(yi,W ·Xi) +
λ

2
||W ||2

Then, any optimum solution W
∗
to the aforementioned problem lies in the subspace spanned

by the training points X1 . . . Xn. In other words, there must exist real values β1 . . . βn such
that the following is true:

W
∗
=

n∑

i=1

βiXi

Proof: Suppose that W
∗
cannot be expressed in the subspace spanned by the training

points. Then, let us decompose W
∗
into the portion W ‖ =

∑n
i=1 βiXi spanned by the

training points and an additional orthogonal residual W⊥. In other words, we have:

W
∗
= W ‖ +W⊥ (6.44)

Then, it suffices to show that W
∗
can be optimal only when W⊥ is the zero vector.

Each (W⊥ ·Xi) has to be 0, because W⊥ is orthogonal to the subspace spanned by the
various training points. The optimal objective J∗ can be written as follows:

J∗ =

n∑

i=1

L(yi,W
∗ ·Xi) +

λ

2
||W ∗||2 =

n∑

i=1

L(yi, (W ‖ +W⊥) ·Xi) +
λ

2
||W ‖ +W⊥||2

6.5. NONLINEAR GENERALIZATIONS OF LINEAR MODELS 201

.

.

..

.. .
.

.

.
. .

. .
.

.

.
.
.

.
.

..

LINEAR SEPARATOR
ON SAME 2-D

PLANE AS POINTS
AND ORIGIN

ORIGIN

. .

.
.

.

SEPARATOR IN LINEAR SPAN
OF TRAINING POINTS

.

.

..

.. .
.

.

.
. .

. .
.

.

.
.
.

.
.

..

IDENTICAL SEPARATION
AS THE ONE IN LEFT

FIGURE BUT REJECTED BY
REGULARIZER FOR LACK

OF CONCISENESS

ORIGIN

. .

.
.

.

SEPARATOR NOT IN LINEAR SPAN
OF TRAINING POINTS

(a) Separator in subspace spanned (b) Separator not in subspace
spanned by training points spanned by training points

Figure 6.9: Both the linear separators in (a) and (b) provide exactly the same separation
of training points, except that the one in (a) can be expressed as a linear combination of
the training points. The separator in (b) will always be rejected by the regularizer. The key
point of the representer theorem is that a separator W can always be found in the plane
(subspace) of the training points.

=

n∑

i=1

L(yi,W ‖ ·Xi +W⊥ ·Xi︸ ︷︷ ︸
0

) +
λ

2
||W ‖||2 + λ

2
||W⊥||2

=

n∑

i=1

L(yi,W ‖ ·Xi) +
λ

2
||W ‖||2 + λ

2
||W⊥||2

It is noteworthy that ||W⊥||2 must be 0, or else W ‖ will be a better solution than W
∗
.

Therefore, W
∗
= W ‖ lies in the subspace spanned by the training points.

Intuitively, the representer theorem states that for a particular family of loss functions, one
can always find an optimal linear separator within the subspace spanned by the training
points (see Fig. 6.9), and the regularizer ensures that this is the concise way to do it.

The representer theorem provides a boilerplate method to create an optimization model
that is expressed as a function of dot products:

For any given optimization model of the form of Equation 6.43 plug in W =∑n
i=1 βiXi to obtain a new optimization problem parameterized by β1 . . . βn, and

expressed only in terms of dot products between training points. Furthermore,
the same approach is also used while evaluating W · Z for test instance Z.

Consider what happens when one evaluates W ·Xi in order to plug it into the loss function:

W ·Xi =
n∑

p=1

βpXp ·Xi (6.45)

Furthermore, the regularizer ||W ||2 can be expressed as follows:

||W ||2 =

n∑

i=1

n∑

j=1

βiβjXi ·Xj (6.46)

202 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

In order to kernelize the problem, all we have to do is to substitute the dot product with
the similarity value sij = K(Xi, Xj) = Φ(Xi) · Φ(Xj) from the n × n similarity matrix S.
Therefore, one obtains the following optimization objective function:

J =

n∑

i=1

L(yi,

n∑

p=1

βpspi) +
λ

2

n∑

i=1

n∑

j=1

βiβjsij [General form]

In other words, all we need to do is to substitute each W · Xi in the loss function with∑
p βpspi. Therefore, one obtains the following form for least-squares regression:

J =
1

2

n∑

i=1

(yi −
n∑

p=1

βpspi)
2 +

λ

2

n∑

i=1

n∑

j=1

βiβjsij [Least-squares regression]

The aforementioned formulation provides an alternative way of proving the closed-form
solution of kernel regression in Sect. 6.2.1.4 (see Exercise 18).

By substituting W · Xi =
∑

p βpspi into the loss functions of linear classification, one
can obtain corresponding optimization formulations:

J =

n∑

i=1

max{0, 1− yi

n∑

p=1

βpspi}+ λ

2

n∑

i=1

n∑

j=1

βiβjsij [SVM]

J =

n∑

i=1

log(1 + exp(−yi

n∑

p=1

βpspi)) +
λ

2

n∑

i=1

n∑

j=1

βiβjsij [Logistic Regression]

These unconstrained optimization problems are conveniently expressed in terms of pairwise
similarities, and parameterized by β1 . . . βn. In order to classify a test instance Z, one only
needs to compute W · Z =

∑
i βiK(Xi, Z) after β1 . . . βn have been learned.

In SVMs, the primal variables β1 . . . βn can be related to the dual variables α1 . . . αn at
optimality. At least one optimal solution pair (α∗, β

∗
) will exist in which we have β∗

i = yiα
∗
i

because W
∗
=
∑

i α
∗
i yiΦ(Xi) =

∑
i β

∗
i Φ(Xi). However, this relationship does not hold over

all points in the solution space, and the corresponding non-optimal objective function value
of the primal at βi = αiyi is always larger than that of the dual at αi. Any optimal solution
to the dual can be used to derive an optimal solution β∗

i = yiα
∗
i for the primal, although the

converse is not true because dual variables are bounded. Furthermore, an “almost” optimal
solution for the dual problem can map to a much poorer solution for the primal (which is
a potential drawback of dual optimization).

The unconstrained variables β1 . . . βn in the primal (in contrast to the bounded variables
α1 . . . αn in the dual) allow easier optimization. Furthermore, a neat re-parametrization
trick is available with the primal. One can perform stochastic gradient descent with re-
spect to W (as in Sect. 6.3.3), while updating W only indirectly using β1 . . . βn via the
representer theorem. We describe the kernelized variant of Pegasos for SVMs using C = 1/λ:

Initialize β1 . . . βn to 0;
for t = 1 to T do begin

ηt = 1/t; β ⇐ (1− ηt)β;

Select (Xit , yit) randomly;

if (yit

n∑

p=1

βpK(Xit , Xp) < 1)

︸ ︷︷ ︸
yitW ·Xit

<1

then βit ⇐ βit + ηt · n · C · yit︸ ︷︷ ︸

Update W indirectly

;

endfor

6.7. BIBLIOGRAPHIC NOTES 203

Note that this algorithm is almost identical to that discussed in Sect. 6.3.3 except that
we are indirectly updating W =

∑n
i=1 βiXi by updating βi instead of W . The batch-size

selected is 1, and the optional projection step has been omitted to simplify the updates.
An algorithm like the above can be derived for many linear methods with the use of the
representer theorem (see Exercise 9).

The learning rate of ηt = 1/t is convenient because it allows some optimizations in
Pegasos. At the tth iteration, the amount added to the coefficient βit for a margin-violating
point Xit is n · C · yit/t, which is proportional to 1/t. This proportionality is maintained
for all t′ > t iterations because of successive scaling down of β by (r − 1)/r in the rth
iteration for each r ∈ (t, t′]. This property allows us to simply add 1 to the unnormalized
value of βit in the tth iteration, drop the regularization scaling, and multiply each (i.e.,
ith) coefficient at the end with n ·C · yi/T after the final (i.e., T th) iteration. The checking
of the margin condition is modified to yit

∑n
p=1 βpypK(Xit , Xp) < t/nC, which is the only

potentially expensive step. The time for this check depends on the number of nonzero entries
in the vector β. At most one nonzero βi is introduced in each iteration, and β is sparse if
there is early generalization accuracy. It is sometimes beneficial to initialize β to a sparse
and “almost optimal” vector by deriving it from execution on a smaller data sample. The
Pegasos algorithm is considered a state-of-the-art method because of its efficiency. What
this algorithm shows is that after more than two decades of complex research in optimizing
dual SVMs, one can do as well or better with primal optimization in a few lines of code.

6.6 Summary

All linear models for classification are closely related, as they optimize a loss function that is
expressed in terms of a linear combination of the feature variables. Linear classification prob-
lems adapt the loss function from linear regression in various ways in order to address the
binary nature of the class variable. Methods like the Fisher discriminant are straightforward
adaptations of linear regression in this respect. The SVM varies on the Fisher discriminant
in terms of its handling of the well-separated points in the data. Logistic regression uses a
loss function that is a smooth variation on the one used in support vector machines and it
provides similar results. All of these models can be generalized to the nonlinear setting by
using kernel transformations.

6.7 Bibliographic Notes

Least-squares regression and classification dates back to the Widrow-Hoff algorithm [497]
and Tikhonov-Arsenin’s seminal work [474]. L2-regularization is sometimes referred to as
Tikhonov regularization. A detailed discussion of regression analysis may be found in [142],
and regression with L1-regularization is discussed in [208]. Neural networks like percep-
trons [51] are also based on a modified version of least-squares regression, which is much
closer to a support vector machine. A discussion of these methods may be found in [191].
Several independent works [177, 466] re-derived these methods in terms of their relation-
ship with support-vector machines. The first application of least-squares methods to text
categorization is provided in [515, 518]. All these methods are straightforward applica-
tions of regularized least-squares regression on the training data by treating the binary
response variable as a numeric response. The Fisher discriminant was proposed by Ronald
Fisher [167] in 1936, and is a specific case of the family of linear discriminant analysis meth-
ods [330]. The kernel version of Fisher discriminant is discussed in [340]. Even though the

204 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

Fisher discriminant uses a different looking objective function that least-squares regression,
it turns out to be a special case of least-squares regression in which the binary response
variable is used as the regressand [50]. The relationship of the Fisher discriminant with
the support-vector machine was shown in [445] in terms of the treatment of well-separated
points. A variation [112] of the Fisher discriminant has also been proposed that removes
the well-separated points in order to improve its performance.

The support-vector machine is generally credited to Cortes and Vapnik [115], although
the primal method for L2-loss SVMs was proposed several years earlier by Hinton [217]. This
approach repairs the loss function in least-squares classification by keeping only one-half of
the quadratic loss curve and setting the remaining to zero, so that it looks like a smooth
version of hinge loss (try this on Fig. 6.6a). The specific significance of this contribution was
lost within the broader literature on neural networks. Hinton’s work also does not focus on
the importance of regularization in SVMs, although the general notion of adding shrinkage
to gradient-descent steps in neural networks was well known. The hinge-loss SVM [115] is
heavily presented from the perspective of duality and the maximum-margin interpretation,
which makes its relationship to regularized least-squares classification somewhat opaque.
The relationship of SVMs to least-squares classification is more evident from other related
works [407, 445], where it becomes evident that quadratic and hinge-loss SVMs are natural
variations of regularized L2-loss (i.e., Fisher discriminant) and L1-loss classification that use
the binary class variables as the regression responses [191]. The main differences account
for the fact that binary responses should be treated differently than numerical responses,
and points with yi(W · Xi) > 1 should not be penalized because they represent correct
classification of training instances (see Fig. 6.6). All these variations of the objective function
can be kernelized in the same way using the representer theorem [487]. The margin-centric
interpretation has been used to create a different variant of linear regression for numeric
targets, referred to as support-vector regression [143, 482].

The decomposition methods for the dual were pioneered by Osuna et al. [368] and
adapted in SVMLight [241] and the Sequential Minimal Optimization (SMO) [382] algo-
rithms. An optimized version of this algorithm [165] is implemented in LIBLINEAR [164],
which is a software library for many linear learning algorithms. A cutting plane algorithm
for text data was proposed in SVMPerf [242]. Primal optimization of kernel SVMs was
advocated in [89]. The Pegasos algorithm was proposed in [444], and the approach was
based on primal optimization. General material on support vector machines is available
in [69, 117, 482]. String kernels are discussed in [308]. The logistic regression model smooths
the hinge-loss in a support vector machine, and it belongs to the broader family of gener-
alized linear models. A detailed discussion of generalized linear models is provides in [328].
The use of maximum entropy models for text classification is explored in [363]. A variety
of procedures such as generalized iterative scaling, iteratively reweighted least-squares, and
gradient descent for multinomial logistic regression are discussed in [209].

6.7.1 Software Resources

Two important libraries for large-scale SVMs and linear classification are LIBSVM [87] and
LIBLINEAR [164]. Both these libraries are implemented in C++. These libraries implement
many of the linear classification algorithms discussed in this chapter, and also contain
specialized implementations for sparse data like text. The former library is focused more
on SVMs, whereas the latter library has various linear algorithms like SVMs and logistic
regression. Interfaces in several languages like Python, Java, and MATLAB have been made
available by the creators of LIBSVM and LIBLINEAR. Furthermore, many other third-party

6.8. EXERCISES 205

platforms use LIBLINEAR or LIBSVM’s implementations under the covers. Therefore,
many of the tools mentioned below also use these implementations, but it is important to
discuss them as they use different programming language platforms to provide the user
interface. The Python library scikit-learn [550] contains many tools for linear classification
and regression. The kernlab package [255] from CRAN can be used to perform linear and
nonlinear classification in R. The caret package [267] is a good choice for those working in
the R programming language, although it sources the implementations of specific algorithms
from other packages and constructs a wrapper around them. The R-based tm library [551]
can be used for preprocessing and tokenization in combination with the caret package.
The package RTextTools [571] in R also has numerous categorization methods, which
are specifically designed for text. The Weka library [553] in Java has also implemented
various tools for text classification and regression. The MALLET toolkit [605] supports
an implementation of the MaxEnt classifier, which uses multinomial logistic regression.

6.8 Exercises

1. The bias variable is often addressed in least-squares classification and regression by
adding an additional column of 1s to the data. Discuss the differences with the use of
an explicit bias term when regularized forms of the model are used.

2. Write the optimization formulation for least-squares regression of the form y = W ·
X + b with a bias term b. Do not use regularization. Show that the optimal value of
the bias term b always evaluates to 0 when the data matrix D and response variable
vector y are both mean-centered.

3. For any n× d data matrix D, use singular value decomposition to show the following
for any value of λ > 0:

(DTD + λI)−1DT = DT (DDT + λI)−1

Note that the two identity matrices on either side of the equation are of sizes d × d
and n× n, respectively. What you showed is a special case of the Sherman-Morrison-
Woodbury identity in matrix algebra. Explain the consequences of this identity for
kernel least-squares regression.

4. Suppose that the within-class scatter matrix Sw is defined as in Sect. 6.2.3, and the
between-class scatter matrix Sb is defined as Sb = n

[
(μ1 − μ0)

T (μ1 − μ0)
]
. Assume

that the data matrix D is mean-centered. Show that the full scatter matrix can be
expressed as follows:

DTD = Sw +
n1 · n0

n2
Sb (6.47)

Here, μ1 and μ0 are the means of the positive and negative classes in the training
data. Furthermore, n1 and n0 are the number of positive and negative examples in
the training data.

5. Show that the effect of the bias term can be accounted for by adding a constant
amount to each entry of the n × n kernel similarity matrix when using kernels with
linear models.

206 CHAPTER 6. LINEAR CLASSIFICATION AND REGRESSION FOR TEXT

6. Formulate a variation of regularized least-squares classification in which L1-loss is
used instead of L2-loss. How would you expect each of these methods to behave in
the presence of outliers? Which of these methods is more similar to SVMs with hinge
loss? Discuss the challenges of using gradient-descent with this problem as compared
to the regularized least-squares formulation.

7. Derive stochastic gradient-descent steps for the variation of L1-loss classification in-
troduced in Exercise 6. You can use a constant step size.

8. Derive stochastic gradient-descent steps for SVMs with quadratic loss instead of hinge
loss. You can use a constant step size.

9. Consider loss functions of the following form:

Minimize J =
n∑

i=1

L(yi,W ·Xi) +
λ

2
||W ||2

Derive stochastic gradient-descent steps for this general loss function. You can use a
constant step size.

10. Consider loss functions of the following form:

Minimize J =

n∑

i=1

L(yi,W ·Xi) +
λ

2
||W ||2

Use the representer theorem to derive stochastic gradient-descent steps for this general
loss function in the kernel setting, where the gradient is computed with respect to β.
Here, β defines the n-dimensional vector of representer-theorem coefficients.

11. Consider loss functions of the following form:

Minimize J =

n∑

i=1

L(yi,W ·Xi) +
λ

2
||W ||2

Use the representer theorem to derive stochastic gradient-descent steps for this gen-
eral loss function in the kernel setting, where the gradient is computed with respect
to W . Here, W defines the linear hyperplane in the transformed space of unknown di-
mensionality. Your gradient-descent steps should update the hyperplane W indirectly
via the representer theorem. Discuss the difference from the previous exercise.

12. Provide an algorithm to perform classification with explicit kernel feature transfor-
mation and the Nyström approximation. How would you use ensembles to make the
algorithm efficient and accurate?

13. Multinomial logistic regression: Show that the special case of Eq. 6.35 for binary
classes is identical to the objective function of logistic regression.

14. Multi-class SVMs: Consider a k-class problem for k > 2. An alternative to the one-
against-all approach for learning multi-class SVMs is to learn the coefficient vectors
W1 . . .Wk of the k separators simultaneously like the multinomial logistic regression
model. Set up a loss function and an optimization model for multi-class SVMs. Discuss
the advantages and disadvantages of this approach versus the one-against-all approach.

6.8. EXERCISES 207

15. Show that the stochastic gradient-descent updates of least-squares classification, SVM,
and logistic regression are all of the form W ⇐ W (1− ηλ) + ηy[δ(X, y)]X. Here, the
mistake function δ(X, y) is 1− y(W ·X) for least-squares classification, an indicator
variable for SVMs, and a probability value for logistic regression. Assume that η is
the learning rate, and y ∈ {−1,+1}. Write the specific forms of δ(X, y) in each case.

16. Consider an SVM with properly optimized parameters. Provide an intuitive argument
as to why the out-of-sample error rate of the SVM will be usually less than the fraction
of support vectors in the training data.

17. Suppose that you perform least-squares regression without regularization with the loss
function

∑n
i=1(yi − W · Xi)

2, but you add spherical Gaussian noise with variance λ
to each feature. Show that the expected loss with the perturbed features provides a
loss function that is identical to that of L2-regularization. Use this result to provide
an intuitive explanation of the connection between regularization and noise addition.

18. Show how to use the representer theorem to derive the closed-form solution of kernel
least-squares regression.

19. Show that the partial derivative of the Lagrangian dual LD falls to zero in Eq. 6.27,
when the step-size ηk in Sect. 6.3.5 is set to 1/K(Xk, Xk).

Chapter 7

Classifier Performance and Evaluation

“All models are wrong, but some are useful.”—George E. P. Box

7.1 Introduction

Among all machine learning problems, classification is the most well studied, and has the
most number of solution methodologies. This embarrassment of riches also leads to the
natural problems of model selection and evaluation. In particular, some natural questions
that arise are as follows:

1. Given a classifier, what are the causes for its error? Is there a theoretical way in which
one might decompose the error into intuitively interpretable components?

2. Can one use the insights from the aforementioned analysis to choose a particular clas-
sifier in a domain in general, and text in particular? Are there specific design criteria
that one should be aware of while using a particular supervised learning algorithm?
Are there ways in which the performance of off-the-shelf classifiers can be enhanced
with these insights?

3. Given a set of learning algorithms, is there an empirical way to evaluate their perfor-
mance and choose the best performer among them?

The theoretical analysis of classification models is closely related to their evaluation, model
design, and selection. Therefore, this chapter will discuss these issues in an integrated way.

Classification models are often designed to maximize accuracy on the training data
either directly or indirectly. Although the maximization of accuracy on the training data
is desirable in general, it does not always translate to increased accuracy on the test data
(i.e., better generalizability), particularly when the training data is small. For example,
decision trees prune nodes, rule-based classifiers prune rules, and almost all optimization-
based learning models use regularizers that are designed to make the model concise at the
expense of training accuracy. Concise models have better generalizability to (unseen) test

210 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

data, even though they may be unable to take sufficient advantage of an increasing amount
of training data. The natural trade-off between these goals is quantified with the use of the
bias-variance trade-off.

The theoretical analysis of classifier performance is useful because it provides some
guidance about classifier design and other tricks such as the use of ensembles. Previous
chapters have already discussed some ensemble methods like bagging and random forests.
This chapter will revisit these methods and introduce other methods like boosting. Finally,
this chapter will discuss classifier evaluation, model selection, and parameter tuning.

7.1.1 Chapter Organization

This chapter is organized as follows. The bias-variance trade-off is introduced in Sect. 7.2.
The implications of the bias-variance trade-off on text classification performance are dis-
cussed in Sect. 7.3. Classification ensemble methods are introduced in Sect. 7.4. Methods for
classifier evaluation are introduced in Sect. 7.5. A summary is given in Sect. 7.6.

7.2 The Bias-Variance Trade-Off

The bias-variance trade-off provides theoretical insights into the varying causes of modeling
error. All classifiers attempt to learn the shape of the decision boundary separating different
classes in one form or another. Classifiers like linear support vector machines impose strong
prior assumptions on the shape of the decision boundary and are therefore inherently less
powerful than nonlinear classifiers like kernel support vector machines that can learn an ar-
bitrary shape of the boundary. From a conceptual point of view, a nonlinear model is more
“correct” because it does not make as many assumptions (i.e., does not have predefined
biases) about the shape of the decision boundary. However, the fact that more powerful
models do not always win with a finite data set is the most important takeaway from the
bias-variance trade-off. A key point is that the prediction of a model is not only dependent
on the correctness of the model used but also on the specific nuances of the training data set
at hand, which may cause accidental relationships between the feature and target variables
from a particular training data set. A complex model may result in more opportunities
for these accidental relationships to influence the final prediction, particularly if the train-
ing data set is small. This sensitivity in prediction to the specific nuances of the training
data contributes to the error and makes the comparison in accuracy between different mod-
els more subtle than it seems at first sight. In particular, the error of a classifier can be
decomposed into the following three components:

1. Bias: Loosely speaking, the bias can be viewed as an error caused by erroneous as-
sumptions made in the model. For example, consider a situation in which the two
classes are separated by a nonlinear decision boundary. However, if we choose to use a
linear support vector machine (SVM) in this setting, the classifier will be consistently
incorrect over different choices of training data sets. Bias often results in consistently
incorrect classification of particular test instances. Another example of a highly bi-
ased classifier is an n-nearest neighbor classifier for a training data set of size n. This
classifier is essentially a majority vote classifier over the full data set, and will (almost
always) predict minority class examples incorrectly irrespective of the specific draw
of the training data one receives, as long as the draw is of reasonable size.

2. Variance: The variance of a learning algorithm is a measure of its stability over differ-
ent choices of training data sets. For example, a 1-nearest neighbor classifier is highly

7.2. THE BIAS-VARIANCE TRADE-OFF 211

unstable with respect to the choice of the specific training data set that is used. When
the variance is high, the same test point might receive inconsistent predictions over
different choices of the training data. This inconsistency is a result of overfitting, in
which the classifier learns the specific nuances of the training data that do not gen-
eralize well to test instances. As a result, changing the training data set changes the
prediction on the same test instance, and the classifier predictions become less stable.
Clearly, variance always adds to the error in expectation because at least some of the
training instantiations in which the same test point is predicted differently must be
incorrect. Therefore, variance causes inconsistency in classification of the same test
instance over different choices of training data sets, which naturally adds to the error.

3. Noise: The intrinsic noise is a property of the specific data set at hand. Any data
set will have regions of the space in which the two classes overlap or in which the
points are mislabeled. There is little that any classifier can do to reduce this type of
noise. While bias and variance are specific to a particular learning model, the intrinsic
noise is considered a property of the data, and is independent of the model at hand.
Noise is considered an irreducible part of the error that cannot be addressed by a
learning algorithm. For example, even if a learning algorithm were to be seeded with
the extraordinary advantage of being told the distribution of each class, the noise
would still be a part of the error.

As shown above with the example of the nearest neighbor classifier, different choices of
parameters in the same model may lead to different levels of bias and variance, which
typically (but not always) exhibit in the form of a trade-off between the two. The goal of
a supervised learning algorithm is to attain an optimal point of this trade-off in which the
overall error is minimized.

7.2.1 A Formal View

We assume that the base distribution from which the training data set is generated is
denoted by B. One can generate a data set D from this base distribution:

D ∼ B (7.1)

One could draw the training data in many different ways, such as selecting only data sets
of a particular size. For now, assume that we have some well defined generative process
according to which training data sets are drawn from B. The analysis below does not rely
on the specific mechanism with which training data sets are drawn from B.

Access to the base distribution B is equivalent to having access to an infinite resource
of training data, because one can use the base distribution an unlimited number of times
to generate training data sets. In practice, such base distributions (i.e., infinite resources of
data) are not available. As a practical matter, an analyst uses some data collection mech-
anism to collect only one finite instance of D. However, the conceptual existence of a base
distribution from which other training data sets can be generated is useful in theoretically
quantifying the sources of error in training on this finite data set.

Now imagine that the analyst had a set of t test instances in d dimensions, denoted by
Z1 . . . Zt. The dependent variables of these test instances are denoted by y1 . . . yt. For clarity
in discussion, let us assume that the test instances and their dependent variables were also
generated from the same base distribution B by a third party, but the analyst was provided
access only to the feature representations Z1 . . . Zt, and no access to the dependent variables
y1 . . . yt. Therefore, the analyst is tasked with job of using the single finite instance of the
training data set D in order to predict the dependent variables of Z1 . . . Zt.

212 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

Now assume that the relationship between the dependent variable y and its feature
representation Zi is defined by the unknown function f(·) as follows:

yi = f(Zi) + εi (7.2)

Here, the notation εi denotes the intrinsic noise, which is independent of the model being
used. The value of εi might be positive or negative, although it is assumed that E[εi] = 0. If
the analyst knew what the function f(·) corresponding to this relationship was, then they
could simply apply the function to each test point Zi in order to approximate the dependent
variable yi, with the only remaining uncertainty being caused by the intrinsic noise.

The problem is that the analyst does not know what the function f(·) is in practice.
Note that this function is used within the generative process of the base distribution B, and
the entire generating process is like an oracle that is unavailable to the analyst. The analyst
only has examples of the input and output of this function. Clearly, the analyst would need
to develop some type of model g(Zi,D) using the training data in order to approximate this
function in a data-driven way.

ŷi = g(Zi,D) (7.3)

Note the use of the circumflex (i.e., the symbol ‘̂ ’) on the variable ŷi to indicate that it is
a predicted value by a specific algorithm rather than the observed (true) value of yi.

All prediction functions of supervised learning models such as Bayes classifiers, SVMs,
and decision trees are examples of the estimated function g(·, ·). Some algorithms (such as
linear regression and SVMs) can even be expressed in a concise and understandable way:

g(Zi,D) = W · Zi︸ ︷︷ ︸

Learn W with D
[Linear Regression]

g(Zi,D) = sign{W · Zi}
︸ ︷︷ ︸

Learn W with D
[SVMs]

Other models like decision trees are expressed algorithmically as computational functions.
The choice of computational function includes the effect of its specific parameter setting,
such as the number of nearest neighbors in a κ-nearest neighbor classifier.

The goal of the bias-variance trade-off is to quantify the expected error of the learning
algorithm in terms of its bias, variance, and the (data-specific) noise. For generality in
discussion, we assume a numeric form of the target variable, so that the error can be
intuitively quantified by the mean-squared error between the predicted values ŷi and the
observed values yi. This is a natural form of error quantification in regression, although
one can also use it in classification by using probabilistic predictions of test instances. The
mean squared error, MSE, of the learning algorithm g(·,D) is defined over the set of test
instances Z1 . . . Zt as follows:

MSE =
1

t

t∑

i=1

(ŷi − yi)
2 =

1

t

t∑

i=1

(g(Zi,D)− f(Zi)− εi)
2

The best way to estimate the error in a way that is independent of the specific choice of
training data set is to compute the expected error over different choices of training data sets:

E[MSE] =
1

t

t∑

i=1

E[(g(Zi,D)− f(Zi)− εi)
2]

7.2. THE BIAS-VARIANCE TRADE-OFF 213

=
1

t

t∑

i=1

E[(g(Zi,D)− f(Zi))]
2 +

∑t
i=1 E[ε2i]

t
[Using E[εi] = 0]

The second relationship is obtained by expanding the quadratic expression on the right-hand
side of the first equation.

The right-hand side of the above expression can be further decomposed by adding and
subtracting E[g(Zi,D)] within the squared term on the right-hand side:

E[MSE] =
1

t

t∑

i=1

E[{(f(Zi)− E[g(Zi,D)]) + (E[g(Zi,D)]− g(Zi,D))}2] +
∑t

i=1 E[ε2i]

t

One can expand the quadratic polynomial on the right-hand side to obtain the following:

E[MSE] =
1

t

t∑

i=1

E[{f(Zi)− E[g(Zi,D)]}2]

+
2

t

t∑

i=1

{f(Zi)− E[g(Zi,D)]}{E[g(Zi,D)]− E[g(Zi,D)]}

+
1

t

t∑

i=1

E[{E[g(Zi,D)]− g(Zi,D)}2] +
∑t

i=1 E[ε2i]

t

The second term on the right-hand side of the aforementioned expression evaluates to 0
because one of the multiplicative factors is E[g(Zi,D)]−E[g(Zi,D)]. On simplification, we
obtain the following:

E[MSE] =
1

t

t∑

i=1

{f(Zi)− E[g(Zi,D)]}2
︸ ︷︷ ︸

Bias2

+
1

t

t∑

i=1

E[{g(Zi,D)− E[g(Zi,D)]}2]
︸ ︷︷ ︸

Variance

+

∑t
i=1 E[ε2i]

t︸ ︷︷ ︸
Noise

We examine each of the aforementioned terms to understand the parts of the error they rep-
resent. Consider the (squared) bias term corresponding to the expression 1

t

∑t
i=1 E[{f(Zi)−

E[g(Zi,D)]}2]. This measure computes the difference between the true value of the function
f(Zi), and the expected prediction by the model, which is denoted by E[g(Zi,D)]. For ex-
ample, a 1-nearest neighbor classifier is known to have very low bias because the averaged
prediction over a large number of training data sets will be close to the true prediction. Sim-
ilarly, a nonlinear classifier will often have low bias because of the ability to model complex
decision boundaries.

However, these excellent bias characteristics do not always result in low values of the
expected mean-squared error (MSE). This is because of the additional variance term, which
is generally irreducible to 0. The main problem is that one only has access to a single finite
instance of the training data set D, and therefore it is not possible to exactly compute
E[g(Zi,D)], which remains only a theoretical prediction. As we will see later, ensemble
methods try to approximate this prediction using some tricks, albeit in an imperfect way.

The variance term is exacerbated by the use of powerful classifiers on small data sets.
For example, the powerful 1-nearest neighbor classifier is almost Bayes optimal for infinitely
large data. Now consider a tiny data set in which all points belonging to the positive class
are enclosed inside the following ellipse:

25

9
x2
1 + 16x2

2 = 1

214 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8 ELLIPTICAL REGION
ENCLOSES POSITIVE
CLASS (TRUE BOUNDARY)

SHADED REGION PREDICTED AS
POSITIVE CLASS BY 1−NEAREST
NEIGHBOR

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
ELLIPTICAL REGION
ENCLOSES POSITIVE
CLASS (TRUE BOUNDARY)

SHADED REGION PREDICTED AS
POSITIVE CLASS BY 1−NEAREST
NEIGHBOR

(b) Training set 2 (25 points)(a) Training set 1 (25 points)

Figure 7.1: Illustration of high variance in prediction of 1-nearest neighbor classifier
SQ

U
AR

ED
 E

RR
O

R

MODEL COMPLEXITY

OVERALL ERROR

OPTIMAL
COMPLEXITY

Figure 7.2: The point of optimal model complexity

Two examples of the Voronoi regions (cf. Chap. 5) induced by different samples of 25 training
points are shown in Fig. 7.1a and b, respectively. Test instances lying in the shaded region
are predicted to the positive class in each case, and this shaded region is very different
from the true elliptical boundary. This high level of inaccuracy is caused by the inherent
instability (i.e., variance) of the model on a small training data set.

Using a very powerful model on a tiny data set is like using a sledgehammer to swat a
fly, which causes unpredictability in controlling it properly (i.e., increased variance). The
optimal model complexity depends on the delicate trade-off between bias and variance.
Although bias reduces with increasing model complexity, the variance increases. Therefore,
the optimal error is reached at some intermediate model complexity (cf. Fig. 7.2).

7.2.2 Telltale Signs of Bias and Variance

For a given data set and learning algorithm, how can an analyst tell whether the main
causative factor in the error is the bias or the variance? This is a useful piece of information
to have in order to make appropriate adjustments to the algorithm at hand. In general,
it is impossible to exactly estimate the bias and the variance without access to an infinite
resource of data. However, there are some telltale signs that an analyst can use in order to
make decisions on the source of the error. High-variance algorithms are particularly easy
to identify because they will often overfit the data, and there will be large gaps between
the accuracy on the training data and a held-out portion of the labeled data (which is not
used for training). Furthermore, it is also possible to run the algorithm on multiple samples
to estimate the variance term on an out-of-sample test data set, although the estimate will
only be a very approximate one.

7.3. IMPLICATIONS OF BIAS-VARIANCE TRADE-OFF ON PERFORMANCE 215

Bias is generally harder to identify. Although algorithms with small gaps between train-
ing and test accuracy (and large error) might have high bias, one cannot be certain whether
the errors are caused by intrinsic noise in the training data. One way to check if the errors
are caused by intrinsic noise is to use other types of the models on the data set to check if
the same test instances are being classified incorrectly by very different models. The noisy
instances will cause problems for all models, and will tend to be misclassified in a more
consistent way. On the other hand, since the bias of different models is different, it will be
reflected in the fact that each model is consistently incorrect on its own specific set of test
instances which is somewhat different from that of others. Although this approach can pro-
vide rough hints about the nature of the bias and noise, one should not view this approach
as a formal methodology. An important issue to always keep in mind is that an analyst only
sees the integrated form of the error on a particular data set, which is usually not possible
to precisely decompose into different components with the use of a finite data resource.

7.3 Implications of Bias-Variance Trade-Off on Perfor-
mance

This section will discuss the implications of the bias-variance trade-off on classifier perfor-
mance. The discussion will be specifically focussed on text data, which is high-dimensional
and sparse.

7.3.1 Impact of Training Data Size

Increased training data size almost always reduces the variance of a classifier because of
the robustness of using a larger amount of data. It is common for classifiers to overfit the
specific characteristics of a particular data distribution when a small training data set is
used. The expected value E[V] of the variance V in the bias-variance trade-off is as follows:

E[V] =
1

t

t∑

i=1

E[{g(Zi,D)− E[g(Zi,D)]}2]

Note that if the expectation is computed conditionally over data sets D of small size, the
value of g(Zi,D) will vary more significantly with choice of D for most reasonable models.
Examples of this drastic variation in the case of a 1-nearest neighbor classifier on data sets of
size 25 are shown in Fig. 7.1. Furthermore, if the size of the training data is increased beyond
25, then examples of predicted regions are shown in Fig. 5.2 of Chap. 5. It is immediately
evident that the use of larger training data sets leads to more stable predictions.

Increasing data size also reduces bias in many classifiers, although the effect is usually
less pronounced and can sometimes be reversed if the parameters of the algorithm are fixed
at values that are suitable to small data sets. In the case of the 1-nearest neighbor classifier,
increases in data size lead to reduction in both bias and variance. With an infinite amount
of data, the only remaining effect is that of intrinsic noise. In particular, the accuracy of a
1-nearest neighbor classifier is that of twice the Bayes optimal rate (cf. Sect. 5.4 of Chap. 5).
The factor of two is because the noise in the training data and the test instance contribute
equally to the error.

Another interesting example of the effect of data size on bias is that in a decision tree.
A decision tree can model arbitrary decision boundaries with an infinite amount of data.
However, when a small amount of data is used, piecewise linear boundaries are created.

216 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

TRUE BOUNDARY

PREDICTED BOUNDARY

TRUE BOUNDARY

PREDICTED BOUNDARY

(a) Decision tree (b) Random forest

Figure 7.3: Even though a decision tree can model an arbitrary decision boundary with
an infinite amount of data, it has a consistent bias with a small amount of data. This is
reflected in its piecewise linear boundaries that do not change significantly with choice in
training data. Randomizing the tree construction is a way of reducing this data-centric
bias by forcibly inducing model-centric diversity and averaging the predictions. A random
forest can be viewed either as a bias reduction method or as a variance-reduction method,
depending on the specific choice of bias-variance decomposition that one uses for analysis.

Such piecewise linear boundaries do not necessarily imply a high level of bias if they vary
significantly over different choices of the training data. However, since a decision tree is
heavily influenced by the splits at the top level of the tree, which do not change significantly
with different choices of training data, the result is that the predictions of the decision tree
could be very stable to different choices of training data sets. This situation is shown in
Fig. 7.3a, in which the coarse and piece-wise linear approximations of the true decision
boundary are shown. This type of coarse approximation would often result in greater bias
when the bias is estimated only over training data sets of small size. In other words, the
value of E[g(Zi,D)] is often further away from f(Zi), when the expectation computation
is restricted to training data sets of small size. A key issue is that the bias of a decision
tree depends on its height. Smaller trees are more biased, and small data sets prevent the
creation of deep trees. On the other hand, the random forest has better bias performance
over smaller training data sets because it averages the predictions from trees constructed
using different choices of splits. The averaging process leads to smoother decision boundaries
like Fig. 7.3b that approximate the true decision boundary more accurately, which results
in lower bias. Although the random forest is often viewed as a variance-reduction method,
that point of view needs a non-traditional definition1 of the bias-variance trade-off in which
the expected bias, variance, and error are computed using a random process defined by the
choice of model at hand. The traditional view of the bias-variance trade-off is one in which
the expectation is computed over randomized choices of training data sets [9]. A detailed
discussion of the random forest is provided in Sect. 5.5.5 of Chap. 5.

1Instead of computing the expected values of the bias-variance trade-off over different choices of training
data sets, one can compute it over different randomized choices of models. This approach is referred to as
the model-centric view of the bias-variance trade-off [9]. The traditional view of the bias-variance trade-off
is a data-centric view in which the randomized process to describe the bias-variance trade-off is defined by
using different choices of training data sets. From the data-centric view, a random forest is really a bias
reduction method over training data sets of small size.

7.3. IMPLICATIONS OF BIAS-VARIANCE TRADE-OFF ON PERFORMANCE 217

7.3.2 Impact of Data Dimensionality

Increased data dimensionality almost always leads to an increase in the error because of
the presence of irrelevant attributes. This issue is particularly important in the text domain
because of the high dimensionality of text data. However, the increased error may be either
reflected in the bias or the variance, depending on the choice of classifier. Classifiers like
linear regression, in which the parameter space increases with dimensionality, tend to show
increased variance with dimensionality if regularization is not used. Regularization in linear
models can be viewed as an indirect form of feature selection. Feature selection improves
the accuracy of a complex model by reducing variance. This is the reason that using regu-
larization is crucial when using linear models with text data. Interestingly, even though the
increased dimensionality increases the variance of linear models, it has a beneficial effect on
the bias. In high-dimensional cases like text, the different classes are often (almost) linearly
separable. Therefore, even though linear models can have high bias in many data sets, they
seem to work well in the text domain. This is a ringing endorsement of linear SVMs for
text, because linear SVMs have lower variance than nonlinear SVMs, and they also seem
to have low bias in the specific case of the text domain.

On the other hand, classifiers in which the contributions from different dimensions are
pre-aggregated before prediction tend to show increased bias. An example is the nearest
neighbor classifier in which the contributions from different dimensions are aggregated in
the distance function. In such cases, increased dimensionality actually tends to make the
predictions of the classifier more stable (albeit with increased bias because of the aggregated
impact of irrelevant dimensions). Just as a random forest works well because of randomized
choices of splits, one of the tricks that is used with nearest neighbor classifiers in high di-
mensions is to build classifiers on random subsets of dimensions, and average the predictions
from various subsets. This approach is referred to as feature bagging. In fact, the idea of
feature bagging was a precursor to the idea of random forests in classification [220, 221].

7.3.3 Implications for Model Choice in Text

There are several implications of the high-dimensional and sparse nature of text on classifier
design. Although many of these issues are discussed in Chaps. 5 and 6, this chapter will also
provide an analytical explanation of these behaviors in terms of the bias-variance trade-off.
Such explanations also provide guidance in designing models for text.

Linear versus nonlinear models: Although linear models often have high bias because
of strong prior assumptions, this is not the case in the text domain in which the sparse, high-
dimensional nature of text tends to make the different classes (almost) linearly separable. As
a result, linear models often have low bias in the text domain. Although nonlinear models
like the Gaussian kernels can also simulate (or slightly improve) linear performance by using
a large bandwidth, the additional accuracy advantages are often not worth the increased
computational effort. A key point is that tuning kernel parameters becomes exceedingly
important with a nonlinear model, and it is easy to be less than exhaustive in searching the
space of parameter choices with a nonlinear method (because of the computational cost).
In such cases, it is actually possible for a nonlinear model to deliver poorer performance
than a linear model as a practical matter. The use of nonlinear methods should be largely
restricted to cases in which linguistic or sequencing information inside the text is used with
string kernels. It makes little sense to use a nonlinear kernel with the vector space (i.e.,
multidimensional) representation of text.

218 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

Importance of feature selection: Text is a high-dimensional domain with many irrele-
vant attributes. Such attributes increase the error of the classifier in terms of either bias or
variance, depending on the choice of model used. Models in which the number of parameters
increase with data dimensionality tend to show increased variance with dimensionality. In
such cases, feature selection is an effective way of reducing variance. The regularization of
parameters in a linear model is a form of feature selection.

Presence versus absence of words: In Chaps. 5 and 6, several examples have been
provided in which classifiers using presence of words generally perform better than those
using absence of words. For example, this is an important reason why the multinomial
model often performs better than the Bernoulli model in text classification. A category can
often be expressed using thousands of words, and most of the topical words of the category
may be missing from a small document purely as a matter of chance. If a classifier uses the
absence of these words as conclusive evidence of a particular document belonging to that
class, it is likely to have poor generalization power to unseen test documents. This will lead
to overfitting, which is a manifestation of high variance. In general, imbalanced frequencies
of categorical features are important to account for in classification models because the
presence of a feature is far more informative than its absence.

7.4 Systematic Performance Enhancement with En-
sembles

From the aforementioned discussion, it is evident that key choices in the design of an algo-
rithm can optimize the error by choosing the bias-variance trade-off appropriately. Ensem-
bles provide a natural way to use the bias-variance theory in a judicious way to optimize
performance. These methods are meta-algorithms that take a base method as input and
improve its performance by applying it repeatedly over different modifications of the data
or with different variants of the same model. The results from the different models are then
combined to yield a single robust prediction. The specific choice of the model and the way
in which the outputs of different models are combined regulate how an ensemble method
reduces the bias or variance.

7.4.1 Bagging and Subsampling

Bagging and subsampling are two methods to reduce the variance of an ensemble method.
A brief description of these methods in the context of the 1-nearest neighbor detector is
provided in Sect. 5.4.3.1 of Chap. 5. The basic ideas in these methods are as follows:

1. In the case of bagging, the training data is sampled with replacement. The sample size
s may be different from the size of the training data size n, although it is common to
set s to n. In the latter case, the resampled data will contain duplicates, and about a
fraction 1/e of the original data set will not be included at all (see Exercise 6). Here,
the notation e denotes the base of the natural logarithm. A model is constructed on
the resampled training data set, and each test instance is predicted with the resampled
data. The entire process of resampling and model building is repeated m times. For a
given test instance, each of these m models is applied to the test data. The predictions
from different models are then averaged to yield a single robust prediction. Although
it is customary to choose s = n in bagging, the best results are often obtained by
choosing values of s much less than n.

7.4. SYSTEMATIC PERFORMANCE ENHANCEMENT WITH ENSEMBLES 219

2. Subsampling is similar to bagging, except that the different models are constructed
on the samples of the data created without replacement. The predictions from the
different models are averaged. In this case, it is essential to choose s < n, because
choosing s = n yields the same training data set and identical results across different
ensemble components.

Both bagging and subsampling are variance-reduction methods. In order to understand this
point, consider the variance term in the bias-variance trade-off:

E[V] =
1

t

t∑

i=1

E[{g(Zi,D)− E[g(Zi,D)]}2]

If the analyst had access to an infinite resource of data (i.e., the base distribution B), she
could go back to it as many times as she wanted in order to draw different training data
sets D, estimate the value of E[g(Zi,D)] with an averaged prediction of Zi, and report it as
the final result instead of g(Zi,D) on a single finite instance of D. Such an approach would
result in a variance of 0, which will provide lower error.

The main problem with this approach is that the analyst does not have access to such
an infinite resource of data. Bagging is an imperfect way of performing the same simulation
by drawing D from the original instance of the finite data. Of course, such a simulation is
imperfect because of two reasons:

1. The different instances of D drawn from the same base data are correlated with one
another because of overlaps in instances. This limits the amount of variance reduction,
and a part of it is irreducible in a way that is hidden from the analyst (without
knowledge of the base distribution). This irreducible variance is a consequence of the
fact that one cannot hope to determine the expected values over draws from a base
distribution with a single finite instance. Nevertheless, if unstable configurations of
the detector are used (e.g., a 1-nearest neighbor detector), then the variance-reduction
effects are very significant.

2. The samples from the original data set do not provide as accurate results as using
the original data. For example, a bagged sample contains repetitions, which are not
naturally reflective of the original distribution. Similarly a subsample is smaller in size
than the original instance, as a result of which some useful pattern for modeling will
be irretrievably lost. All these effects will lead to a slight increase in bias.

The heuristic simulation above can either improve or worsen the accuracy, depending on
the choice and configuration of the detector at hand. For example, if an extremely stable
detector is used, then the variance reduction will not be sufficient to compensate for the loss
in bias. However, in practice, the overall effect of the simulation is to improve the accuracy
of most reasonable configurations of the base detector.

Methods like bagging and subsampling help unstable configurations of detectors to
achieve their full potential. The unstable configuration of a detector has inherently higher
potential for improvement because of fewer prior assumptions than a stable configuration
and the fact that its base performance is impeded by variance to a greater degree. The
overall error at very stable configurations (i.e., large number of nearest neighbors) actually
increases slightly because of bagging, and therefore this choice is inappropriate for bagging.

220 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

7.4.2 Boosting

In boosting, a weight is associated with each training instance, and the different classifiers
are trained with the use of these weights. The weights are modified iteratively based on
classifier performance. In other words, the future models constructed are dependent on the
results from previous models. Thus, each classifier in this model is constructed using a
the same algorithm A on a weighted training data set. The basic idea is to focus on the
incorrectly classified instances in future iterations by increasing the relative weight of these
instances. The hypothesis is that the errors in these misclassified instances are caused by
classifier bias. Therefore, increasing the instance weight of misclassified instances will result
in a new classifier that corrects for the bias on these particular instances. By iteratively
using this approach and creating a weighted combination of the various classifiers, it is
possible to create a classifier with lower overall bias.

The most well-known approach to boosting is the AdaBoost algorithm. For simplicity,
the following discussion will assume the binary class scenario. It is assumed that the class
labels are drawn from {−1,+1}. This algorithm works by associating each training example
with a weight that is updated in each iteration, depending on the results of the classification
in the last iteration. The base classifiers therefore need to be able to work with weighted
instances. Weights can be incorporated either by direct modification of training models, or
by (biased) bootstrap sampling of the training data. The reader should revisit the section
on rare class learning for a discussion on this topic. Instances that are misclassified are given
higher weights in successive iterations. Note that this corresponds to intentionally biasing
the classifier in later iterations with respect to the global training data, but reducing the
bias in certain local regions that are deemed “difficult” to classify by the specific model A.

In the tth round, the weight of the ith instance is Wt(i). The algorithm starts with
equal weight of 1/n for each of the n instances, and updates them in each iteration. In
the event that the ith instance is misclassified, then its (relative) weight is increased to
Wt+1(i) = Wt(i)e

αt , whereas in the case of a correct classification, the weight is decreased
to Wt+1(i) = Wt(i)e

−αt . Here αt is chosen as the function 1
2 loge((1− εt)/εt), where εt is the

fraction of incorrectly predicted training instances (computed after weighting with Wt(i))
by the model in the tth iteration. The approach terminates when the classifier achieves
100% accuracy on the training data (εt = 0), or it performs worse than a random (binary)
classifier (εt ≥ 0.5). An additional termination criterion is that the number of boosting
rounds is bounded above by a user-defined parameter T . The overall training portion of the
algorithm is illustrated in Fig. 7.4.

It remains to be explained how a particular test instance is classified with the ensemble
learner. Each of the models induced in the different rounds of boosting is applied to the test
instance. The prediction pt ∈ {−1,+1} of the test instance for the tth round is weighted
with αt and these weighted predictions are aggregated. The sign of this aggregation

∑
t ptαt

provides the class label prediction of the test instance. Note that less accurate components
are weighted less by this approach.

An error rate of εt ≥ 0.5 is as bad or worse than the expected error rate of a random
(binary) classifier. This is the reason that this case is also used as a termination criterion.
In some implementations of boosting, the weights Wt(i) are reset to 1/n whenever εt ≥ 0.5,
and the boosting process is continued with the reset weights. In other implementations, εt
is allowed to increase beyond 0.5, and therefore some of the prediction results pt for a test
instance are effectively inverted with negative values of the weight αt = loge((1− εt)/εt).

Boosting primarily focuses on reducing the bias. The bias component of the error is re-
duced because of the greater focus on misclassified instances. The ensemble decision bound-

7.5. CLASSIFIER EVALUATION 221

Algorithm AdaBoost(Data Set: D, Base Classifier: A, Maximum Rounds: T)
begin

t = 0;
for each i initialize W1(i) = 1/n;
repeat

t = t + 1;
Determine weighted error rate t on D when base algorithm A

is applied to weighted data set with weights Wt(·);
αt = 1

2 loge((1 − t) t);
for each misclassified Xi ∈ D do Wt+1(i) = Wt(i)eαt ;

else (correctly classified instance) do Wt+1(i) = Wt(i)e−αt ;
for each instance Xi do normalize Wt+1(i) = Wt+1(i)/[n

j=1 Wt+1(j)];
until ((t ≥ T) OR (t = 0) OR (t ≥ 0.5));
Use ensemble components with weights αt for test instance classification;

end

Figure 7.4: The AdaBoost algorithm

ary is a complex combination of the simpler decision boundaries, which are each optimized
to specific parts of the training data. For example, if the AdaBoost algorithm uses a linear
SVM on a data set with a nonlinear decision boundary, it will be able to learn this boundary
by using different stages of the boosting to learn the classification of different portions of
the data. Because of its focus on reducing the bias of classifier models, such an approach is
capable of combining many weak (high bias) learners to create a strong learner. Therefore,
the approach should generally be used with simpler (high bias) learners with low variance
in the individual ensemble components. In spite of its focus on bias, boosting can occa-
sionally reduce the variance slightly when re-weighting is implemented with sampling. This
reduction is because of the repeated construction of models on randomly sampled, albeit re-
weighted, instances. The amount of variance reduction depends on the re-weighting scheme
used. Modifying the weights less aggressively between rounds will lead to better variance
reduction. For example, if the weights are not modified at all between boosting rounds,
then the boosting approach defaults to bagging, which only reduces variance. Therefore, it
is possible to leverage variants of boosting to explore the bias-variance trade-off in various
ways. However, if one attempts to use the vanilla AdaBoost algorithm with a high-variance
learner, severe overfitting is likely to occur.

Boosting is vulnerable to data sets with significant noise in them. This is because boost-
ing assumes that misclassification is caused by the bias component of instances near the
incorrectly modeled decision boundary, whereas it might simply be a result of the misla-
beling of the data. This is the noise component that is intrinsic to the data, rather than
the model. In such cases, boosting inappropriately overtrains the classifier to low-quality
portions of the data. Indeed, there are many noisy real-world data sets where boosting does
not perform well. Its accuracy is typically superior to bagging in scenarios where the data
sets are not excessively noisy.

7.5 Classifier Evaluation

Evaluation algorithms are important not only from the perspective of understanding the
performance characteristics of a learning algorithm, but also from the point of view of opti-
mizing algorithm performance via model selection. Given a particular data set, how can we
know which algorithm to use? Should we use a support vector machine or a random forest?
Therefore, the notions of model evaluation and model selection are closely intertwined.

222 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

Given a labeled data set, one cannot use all of it for model building. This is because the
main goal of classification is to generalize a model of labeled data to unseen test instances.
Therefore, using the same data set for both model building and testing grossly overestimates
the accuracy. Furthermore, the portion of the data set used formodel selection and parameter
tuning also needs to be different from that used for model building. A common mistake is
to use the same data set for both parameter tuning and final evaluation (testing). Such an
approach partially mixes the training and test data, and the resulting accuracy is overly
optimistic. Given a data set, it should always be divided into three parts.

1. Training data: This part of the data is used to build the training model such as a
decision tree or a support vector machine. The training data may be used multiple
times over different choices of the parameters or completely different algorithms to
build the models in multiple ways. This process sets up the stage for model selection,
in which the best algorithm is selected out of these different models. However, the
actual evaluation of these algorithms for selecting the best model is not done on the
training data but on a separate validation data set to avoid favoring overfitted models.

2. Validation data: This part of the data is used for model selection and parameter tuning.
For example, the choice of the kernel bandwidth and the regularization parameters
may be tuned by constructing the model multiple times on the first part of the data
set (i.e., training data), and then using the validation set to estimate the accuracy
of these different models. The best choice of the parameters is determined by using
this accuracy. In a sense, validation data should be viewed as a kind of test data set
to tune the parameters of the algorithm, or to select the best choice of the algorithm
(e.g., decision tree versus support vector machine).

3. Testing data: This part of the data is used to test the accuracy of the final (tuned)
model. It is important that the testing data are not even looked at during the process
of parameter tuning and model selection to prevent overfitting. The testing data are
used only once at the very end of the process. Furthermore, if the analyst uses the
results on the test data to adjust the model in some way, then the results will be
contaminated with knowledge from the testing data. The idea that one is allowed
to look at a test data set only once is an extraordinarily strict requirement (and an
important one). Yet, it is frequently violated in real-life benchmarks. The temptation
to use what one has learned from the final accuracy evaluation is simply too high.

The division of the labeled data set into training data, validation data, and test data is shown
in Fig. 7.5. Strictly speaking, the validation data is also a part of the training data, because
it influences the final model (although only the model building portion is often referred to
as the training data). The division in the ratio of 2:1:1 is quite common. However, it should
not be viewed as a strict rule. For very large labeled data sets, one needs only a modest
number of examples to estimate accuracy. When a very large data set is available, it makes
sense to use as much of it for model building as possible, because the variance induced
by the validation and evaluation stage is often quite low. A constant number of examples
(e.g., less than a few thousand) in the validation and test data sets are sufficient to provide
accurate estimates.

7.5.1 Segmenting into Training and Testing Portions

The aforementioned description of partitioning the labeled data into three segments is an
implicit description of a method referred to as hold-out for segmenting the labeled data into

7.5. CLASSIFIER EVALUATION 223

VALIDATION

50% 25% 25%

VALIDATION
(TUNING,
MODEL

SELECTION)

TESTING
DATAMODEL BUILDING

USED FOR BUILDING
TUNED MODEL

Figure 7.5: Partitioning a labeled data set for evaluation design

LABELED
DATA

TEST
DATA

TRAINING
DATA

TRAINING
WITHOUT

VALIDATION SET
VALIDATION

SET

DIVIDE USING
HOLD-OUT OR

CROSS-VALIDATION

DIVIDE USING
HOLD-OUT OR

CROSS-VALIDATION

Figure 7.6: Hierarchical division into training, validation, and testing portions

various portions. However, the division into three parts is not done in one shot. Rather, the
training data is first divided into two parts for training and testing. The testing part is then
carefully hidden away from any further analysis until the very end where it can be used only
once. The remainder of the data set is then divided again into the training and validation
portions. This type of recursive division is shown in Fig. 7.6.

A key point is that the types of division at both levels of the hierarchy are conceptually
identical. In the following, we will consistently use the terminology of the first level of
division in Fig. 7.6 into “training” and “testing” data, even though the same approach can
also be used for the second-level division into model building and validation portions. This
consistency in terminology allows us to provide a common description for both levels of the
division.

7.5.1.1 Hold-Out

In the hold-out method, a fraction of the instances are used to build the training model.
The remaining instances, which are also referred to as the held out instances, are used for
testing. The accuracy of predicting the labels of the held out instances is then reported as
the overall accuracy. Such an approach ensures that the reported accuracy is not a result
of overfitting to the specific data set, because different instances are used for training and
testing. The approach, however, underestimates the true accuracy. Consider the case where
the held-out examples have a higher presence of a particular class than the labeled data
set. This means that the held-in examples have a lower average presence of the same class,
which will cause a mismatch between the training and test data. Furthermore, the class-wise
frequency of the held-in examples will always be inversely related to that of the held-out
examples. This will lead to a consistent pessimistic bias in the evaluation.

224 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

7.5.1.2 Cross-Validation

In the cross-validation method, the labeled data is divided into q equal segments. One
of the q segments is used for testing, and the remaining (q − 1) segments are used for
training. This process is repeated q times by using each of the q segments as the test set.
The average accuracy over the q different test sets is reported. Note that this approach
can closely estimate the true accuracy when the value of q is large. A special case is one
where q is chosen to be equal to the number of labeled documents and therefore a single
document is used for testing. Since this single document is left out from the training data,
this approach is referred to as leave-one-out cross-validation. Although such an approach
can closely approximate the accuracy, it is usually too expensive to train the model a large
number of times. Nevertheless, leave-one-out cross-validation is the method of choice for
lazy learning algorithms like nearest neighbor classifiers.

7.5.2 Absolute Accuracy Measures

Once the data have been segmented between training and testing, a natural question arises
about the type of accuracy measure that one can use in classification and regression.

7.5.2.1 Accuracy of Classification

When the output is presented in the form of class labels, the ground-truth labels are com-
pared to the predicted labels to yield the following measures:

1. Accuracy: The accuracy is the fraction of test instances in which the predicted value
matches the ground-truth value.

2. Cost-sensitive accuracy: Not all classes are equally important in all scenarios, while
comparing the accuracy. This is particularly important in imbalanced class problems,
in which one of the classes is much rarer than the other. For example, consider an
application in which it is desirable to classify tumors as malignant or non-malignant
where the former is much rarer than the latter. In such cases, the misclassification
of the former is often much less desirable than misclassification of the latter. This is
frequently quantified by imposing differential costs c1 . . . ck on the misclassification of
the different classes. Let n1 . . . nk be the number of test instances belonging to each
class. Furthermore, let a1 . . . ak be the accuracies (expressed as a fraction) on the
subset of test instances belonging to each class. Then, the overall accuracy A can be
computed as a weighted combination of the accuracies over the individual labels.

A =

∑k
i=1 ciniai
∑k

i=1 cini

(7.4)

The cost sensitive accuracy is the same as the unweighted accuracy when all costs
c1 . . . ck are the same.

Aside from the accuracy, the statistical robustness of a model is also an important issue. For
example, if two classifiers are trained over a small number of test instances and compared,
the difference in accuracy may be a result of random variations, rather than a truly statisti-
cally significant difference between the two classifiers. This measure is related to that of the
variance of a classifier that was discussed earlier in this chapter. When the variance of two
classifiers is high, it is often difficult to assess whether one is truly better than the other. One

7.5. CLASSIFIER EVALUATION 225

way of testing the robustness is to repeat the aforementioned process of cross-validation (or
hold-out) in many different ways (or trials) by repeating the randomized process of creating
the folds in many different ways. The difference δai in accuracy between the ith pair of
classifiers (constructed on the same folds) is computed, and the standard deviation σ of this
difference is computed as well. The overall difference in accuracy over s trials is computed
as follows:

ΔA =

∑s
i=1 δai
s

(7.5)

Note that ΔA might be positive or negative, depending on which classifier is winning. The
standard deviation is computed as follows:

σ =

√∑s
i=1(δai −ΔA)2

s− 1
(7.6)

Then, the overall statistical level of significance by which one classifier wins over the other
is given by the following:

Z =
ΔA

√
s

σ
(7.7)

The factor
√
s accounts for the fact that we are using the sample mean ΔA, which is

more stable that the individual accuracy differences δai. The standard deviation of ΔA is a
factor 1/

√
s of the standard deviation of individual accuracy differences. Values of Z that

are significantly greater than 3, are strongly indicative of one classifier being better than
the other in a statistically significant way.

7.5.2.2 Accuracy of Regression

The effectiveness of linear regression models can be evaluated with a measure known as
the Mean Squared Error (MSE), or the Root Mean Squared Error, which is the RMSE.
Let y1 . . . yr be the observed values over r test instances, and let ŷ1 . . . ŷr be the predicted
values. Then, the mean-squared error, denoted by MSE is defined as follows:

MSE =

∑r
i=1(yi − ŷi)

2

r
(7.8)

The Root-Mean-Squared Error (RMSE) is defined as the square root of this value:

RMSE =

√∑r
i=1(yi − ŷi)2

r
(7.9)

Another measure is the R2-statistic, or the coefficient of determination, which provides a
better idea of the relative performance of a particular model. In order to compute the R2-
statistic, we first compute the variance σ2 of the observed values. Let μ =

∑r
j=1 yj/r be

the mean of the dependent variable. Then, the variance σ2 of the r observed values of the
test instances is computed as follows:

σ2 =

∑r
i=1(yi − μ)2

r
(7.10)

Then, the R2-statistic is as follows:

R2 = 1− MSE

σ2
(7.11)

226 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

Larger values of the R2 statistic are desirable, and the maximum value of 1 corresponds
to an MSE of 0. It is possible for the R2-statistic to be negative, when it is applied on an
out-of-sample test data set, or even when it is used in conjunction with a nonlinear model.

Although we have described the computation of the R2-statistic for the test data, this
measure is often used on the training data in order to compute the fraction of unexplained
variance in the model. In such cases, linear regression models always return an R2-statistic
in the range (0, 1). This is because the mean value μ of the dependent variable in the training
data can be predicted by a linear regression model, when the coefficients of the features are
set to 0 and only the bias term (or coefficient of dummy column) is set to the mean. Since
the linear regression model will always provide a solution with a lower objective function
value on the training data, it follows that the value of MSE is no larger than σ2. As a result,
the value of the R2-statistic on the training data always lies in the range (0, 1). In other
words, a training data set can never be predicted better using its mean than by using the
predictions of linear regression. However, an out-of-sample test data set can be modeled
better by using its mean than by using the predictions of linear regression.

One can increase the R2-statistic on the training data simply by increasing the number
of regressors, as the MSE reduces with increased overfitting. When the dimensionality is
large, and it is desirable to compute the R2-statistic on the training data, the adjusted
R2-statistic provides a more accurate measure. In such cases, the use of a larger number of
features for regression is penalized. The adjusted R2-statistic for a training data set with n
documents and d dimensions is computed as follows:

R2 = 1− (n− d)

(n− 1)

MSE

σ2
(7.12)

The R2-statistic is generally used only for linear models. For nonlinear models, it more
common to use the MSE as a measure of the error.

7.5.3 Ranking Measures for Classification and Information Re-
trieval

The classification problem is posed in different ways, depending on the setting in which
it is used. The absolute accuracy measures discussed in the previous section are useful in
cases where the labels or numerical dependent variables are predicted as the final output.
However, in some settings, a particular target class is of special interest, and all the test
instances are ranked in order of their propensity to belong to the target class. A particular
example is that of classifying email as “spam” or “not spam.” When one has a large number
of documents with a high imbalance in relative proportion of classes, it makes little sense
to directly return binary predictions. In such cases, only the top-ranked emails will be
returned based on the probability of belonging to the “spam” category, which is the target
class. Ranking-based evaluation measures are often used in imbalanced class settings in
which one of the classes (i.e., the rare class) is considered more relevant from a detection
point of view.

Ranking-based evaluations are also useful in information retrieval settings, in which a
keyword query is entered by a user, and a ranked list of documents is returned based on their
relevance. Such methods are also used for Web search, which will be discussed in Chap. 9. All
such information retrieval problems can implicitly be considered two-class problems in which
the documents belong to either the “relevant” class or “not relevant” class, and the ranking
is returned based on the propensity to belong to the former. Therefore, the evaluation
discussion in this section is not only relevant to classification, but is also useful from the
broader point of view of information retrieval, Web search, and some other applications:

7.5. CLASSIFIER EVALUATION 227

1. In outlier analysis, one often returns a ranked list of anomalies. Although outlier
detection is an unsupervised problem, a binary ground truth is often available for
evaluation.

2. In recommender systems with implicit feedback, binary ground truth may be available
about which items have been consumed. A ranked list of recommendations can be
evaluated against this ground truth.

3. In information retrieval and search, the ground-truth set of relevant documents may
be available. The ranked list of retrieved documents can be evaluated against this
binary ground truth.

Discussions of some of these different ranking measures is also provided in different con-
texts [3, 4].

7.5.3.1 Receiver Operating Characteristic

Ranking methods are used frequently in cases where a ranked list of a particular class of
interest is returned. The ground-truth is assumed to be binary in which the class of interest
corresponds to the positive class, and the remaining documents belong to the negative class.
In most such settings, the relative frequencies of the two classes are heavily imbalanced, so
that the discovery of (rare) positive class instances is more desirable. This situation is also
true in information retrieval and search, in which the set of documents returned in response
to a keyword search can be viewed as belonging to the “relevant” class.

The instances that belong to the positive class in the observed data are ground-truth pos-
itives or true positives. It is noteworthy that when information retrieval, search, or classifi-
cation applications are used, the algorithm can predict any number of instances as positives,
which might be different from the number of observed positives (i.e., true positives). When
a larger number of instances are predicted as positives, one would recover a larger number
of the true positives, but a smaller percentage of the predicted list would be correct. This
type of trade-off can be visualized with the use of a precision-recall or a receiver operating
characteristic (ROC) curve. Such trade-off plots are commonly used in rare class detection,
outlier analysis evaluation, recommender systems, and information retrieval. In fact, such
trade-off plots can be used in any application where a binary ground truth is compared to
a ranked list discovered by an algorithm.

The basic assumption is that it is possible to rank all the test instances using a numerical
score, which is the output of the algorithm at hand. This numerical score is often available
from classification algorithms in the form of a probability of belonging to the positive class
in methods like the näıve Bayes classifier or logistic regression. For methods like SVMs, one
can report the (signed) distance of a point from the separating class instead of converting
it into a binary prediction. A threshold on the numerical score creates a predicted list
of positives. By varying the threshold (i.e., size of predicted list), one can quantify the
fraction of relevant (ground-truth positive) instances in the list, and the fraction of relevant
instances that are missed by the list. If the predicted list is too small, the algorithm will miss
relevant instances (false-negatives). On the other hand, if a very large list is recommended,
there will be too many spuriously predicted instances (i.e., false-positives). This leads to a
trade-off between the false-positives and false-negatives, which can be visualized with the
precision-recall curve or the receiver operating characteristic (ROC) curve.

228 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

0 10 20 30 40 50 60 70 80 90 10
0

10

20

30

40

50

60

70

80

90

100

FALSE POSITIVE RATE

TR
U

E
 P

O
S

IT
IV

E
 R

A
TE

 (R
E

C
A

LL
)

ALGORITHM A
ALGORITHM B
RANDOM ALGORITHM
PERFECT ORACLE

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

RECALL

P
R

E
C

IS
IO

N

ALGORITHM A
ALGORITHM B
RANDOM ALGORITHM
PERFECT ORACLE

(a) ROC (b) Precision-recall

Figure 7.7: ROC curve and precision-recall curves

Table 7.1: Rank of ground-truth positive instances

Algorithm Rank of ground-truth positives
(ground-truth positives)

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5

Assume that one selects the top-t set of ranked instances and predicted them to belong
to the positive class. For any given value t of the size of the positively predicted list, the
set of instances predicted to belong to the positive class is denoted by S(t). Note that
|S(t)| = t. Therefore, as t changes, the size of S(t) changes as well. Let G represent the
true set of relevant documents (ground-truth positives). Then, for any given size t of the
predicted list, the precision is defined as the percentage of percentage of instances predicted
to belong to the positive class that truly turn out to belong to the positive class in the
predicted labels:

Precision(t) = 100 · |S(t) ∩ G|
|S(t)|

The value of Precision(t) is not necessarily monotonic in t because both the numerator
and denominator may change with t differently. The recall is correspondingly defined as the
percentage of ground-truth positives that have been recommended as positive for a list of
size t.

Recall(t) = 100 · |S(t) ∩ G|
|G|

While a natural trade-off exists between precision and recall, this trade-off is not necessarily
monotonic. In other words, an increase in recall does not always lead to a reduction in
precision. One way of creating a single measure that summarizes both precision and recall
is the F1-measure, which is the harmonic mean between the precision and the recall.

F1(t) =
2 · Precision(t) ·Recall(t)

Precision(t) +Recall(t)
(7.13)

7.5. CLASSIFIER EVALUATION 229

While the F1(t) measure provides a better quantification than either precision or recall,
it is still dependent on the size t of the number of instances predicted to belong to the
positive class, and is therefore still not a complete representation of the trade-off between
precision and recall. It is possible to visually examine the entire trade-off between precision
and recall by varying the value of t and plotting the precision versus the recall. The lack of
monotonicity of the precision makes the results hard to interpret.

A second way of generating the trade-off in a more intuitive way is through the use of
the ROC curve. The true-positive rate, which is the same as the recall, is defined as the
percentage of ground-truth positives that have been included in the predicted list of size t.

TPR(t) = Recall(t) = 100 · |S(t) ∩ G|
|G|

The false-positive rate FPR(t) is the percentage of the falsely reported positives in the
predicted list out of the ground-truth negatives (i.e., irrelevant documents belonging to the
negative class in the observed labels). Therefore, if U represents the universe of all test
instances, the ground-truth negative set is given by (U − G), and the falsely reported part
in the predicted list is (S(t)− G). Therefore, the false-positive rate is defined as follows:

FPR(t) = 100 · |S(t)− G|
|U − G| (7.14)

The false-positive rate can be viewed as a kind of “bad” recall, in which the fraction of the
ground-truth negatives (i.e., test instances with observed labels in the negative class), which
are incorrectly captured in the predicted list S(t), is reported. The ROC curve is defined
by plotting the FPR(t) on the X-axis and TPR(t) on the Y -axis for varying values of t. In
other words, the ROC curve plots the “good” recall against the “bad” recall. Note that both
forms of recall will be at 100% when S(t) is set to the entire universe of test documents (or
entire universe of documents to return in response to a query). Therefore, the end points
of the ROC curve are always at (0, 0) and (100, 100), and a random method is expected to
exhibit performance along the diagonal line connecting these points. The lift obtained above
this diagonal line provides an idea of the accuracy of the approach. The area under the ROC
curve provides a concrete quantitative evaluation of the effectiveness of a particular method.
Although one can directly use the area shown in Fig. 7.7a, the staircase-like ROC curve is
often modified to use local linear segments which are not parallel to either the X-axis or the
Y -axis. The trapezoidal rule [166] is then used to compute the area slightly more accurately.
From a practical point of view, this change often makes very little difference to the final
computation.

To illustrate the insights gained from these different graphical representations, consider
an example of a scenario with 100 test instances, in which 5 documents truly belong to
the positive class. Two algorithms A and B are applied to this data set that rank all test
instances from 1 to 100 to belong to the positive class, with lower ranks being selected first in
the predicted list. Thus, the true-positive rate and false-positive rate values can be generated
from the ranks of the five test instances in the positive class. In Table 7.1, some hypothetical
ranks for the five truly positive instances have been illustrated for the different algorithms.
In addition, the ranks of the ground-truth positive instances for a random algorithm have
been indicated. This algorithm ranks all the test instances randomly. Similarly, the ranks
for a “perfect oracle” algorithm are such that the correct positive instances are placed
as the top five instances in the ranked list. The resulting ROC curves are illustrated in
Fig. 7.7a. The corresponding precision-recall curves are illustrated in Fig. 7.7b. Note that

230 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

the ROC curves are always increasing monotonically, whereas the precision-recall curves
are not monotonic. While the precision-recall curves are not quite as nicely interpretable as
the ROC curves, it is easy to see that the relative trends between different algorithms are
the same in both cases. In general, ROC curves are used more frequently because of greater
ease in interpretability.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms and that the
random algorithm is inferior to all the other algorithms. On the other hand, algorithms A
and B show domination at different parts of the ROC curve. In such cases, it is hard to say
that one algorithm is strictly superior. From Table 7.1, it is clear that Algorithm A ranks
three positive instances very highly, but the remaining two positive instances are ranked
poorly. In the case of Algorithm B, the highest ranked positive instances are not as well
ranked as Algorithm A, though all five positive instances are determined much earlier in
terms of rank threshold. Correspondingly, Algorithm A dominates on the earlier part of the
ROC curve, whereas Algorithm B dominates on the later part. It is possible to use the area
under the ROC curve as a proxy for the overall effectiveness of the algorithm. However, not
all parts of the ROC curve are equally important because there are usually practical limits
on the size of the predicted list.
Application to information retrieval and search: The ROC can also be used for
evaluation in information retrieval and search. The only difference is that instead of a single
prediction problem, we have a set Q of multiple queries. Each such query has its own ROC,
and the AUCs of the different queries are averaged to provide a final result.
Intuitive interpretation of Area under Curve (AUC): The area under the curve has
a natural intuitive interpretation. If one samples two random test instances, such that one
of them belongs to the positive class and the other belongs to the negative class, the AUC
provides the probability that the two instances are ranked correctly with respect to each
other by the ranking algorithm. When the algorithm returns random rankings, each of these
instances is equally likely to occur ahead of the other in the ranked list. As a result, the
AUC of a random algorithm is 0.5.
Average precision and mean-average precision (MAP): The average precision is
defined in the single-query setting (like classification), whereas the mean average precision
is defined in a multi-query setting like information retrieval where multiple queries are used.
In the context of information retrieval applications, the precision is also referred to as the
hit rate. Let L be the maximum size of the recommended list in an information retrieval
setting, and Precision(t) be the precision, when the size of the predicted list is t. Then, the
average precision AP is computed as follows:

AP =

∑L
t=1 Precision(t)

L
(7.15)

This defines the average precision over a single query. However, if we have a query set Q,
and APi corresponds to the precision of the ith query, then the mean average precision is
defined as the mean of these values over the |Q| different queries.

MAP =

∑|Q|
i=1 APi

|Q| (7.16)

It is possible to set the value of L to the size of the universe of documents, although this is
often not done in practice. In practice, a maximum “reasonable” size of the recommended
list is used to set the value of L.

7.5. CLASSIFIER EVALUATION 231

7.5.3.2 Top-Heavy Measures for Ranked Lists

One disadvantage of the receiver operating characteristic is that it places an equal level
of importance on the top-ranked instances versus the lower-ranked instances. For example,
moving an instance belonging to the positive class in the ranking below ten additional
negative instances has the same incremental effect on the AUC, irrespective of whether
that instance was originally at the top of the list or whether that instance was in the
middle of the list. However, from an application-centric point of view, the user often pays
much more attention to the top of the list. Therefore, it is useful to design performance
measures that pay greater attention to the top of the ranked list. These types of measures
are particularly important in information retrieval and search, in which the returned list of
results is an extremely small fraction of the universe of documents, and it is not realistic
to use measures such as the AUC that require the entire ranked list. Top-heavy measures
provide decreasing importance to the instances ranked lower in the list, so that the effect of
changing the list lower down the order has little effect on the performance metric. From a
practical point of view, this approach truncates the ranked list of predicted positive instances
because the vast majority of items that are very low down the list have little effect on the
overall evaluation.

In utility-based ranking, the basic idea is that each positive instance in the recommended
list contributes a utility value that depends on its position in the list. If a positive item is
ranked higher in the recommended list, then it has greater utility to the user, because it
is more likely to be noticed by virtue of its position. This is a somewhat different concept
from the AUC, which only uses the relative positions of the positive and negative instances,
and pays little attention to their absolute position.

Let vj be the position of the jth test instance in the recommended list. Furthermore, let
yj ∈ {0, 1} be its label corresponding to whether it is relevant or not. A value of 1 indicates
that it is relevant. In the classification2 setting, a value of 0 corresponds to the negative
class, whereas a value of 1 corresponds to the positive class.

An example of such a measure is the discounted cumulative gain (DCG). In this case,
the discount factor of the jth test instance is set to log2(vj +1), where vj is the rank of this
instance in the recommended list. Then, the discounted cumulative gain for a single query
is defined as follows:

DCG =
∑

j:vj≤L

2relj − 1

log2(vj + 1)
(7.17)

Here, relj is the ground-truth relevance of test instance j. In the classification setting,
the value of relj might simply be set to yj . In information retrieval settings, the value
of relj is set to the numerical score that a human evaluator gives to the document. Note
that the discounted cumulative gain only gets credit for those test instances in which the
value of vj is at most L. In some settings like classification, the value of L is set to the total
number of test instances. However, in other settings, the value of L is set to some reasonably
large value beyond which it does not make sense to examine the recommended list. The
above description is for the case of single query setting like classification. In the multi-query
setting, the value of the DCG is averaged over the different queries. Note that each query
would have its own ground truth set, and corresponding values of relj , and therefore the
discounted cumulative gain needs to be computed independently for each query.

2Throughout this book, we have used yj ∈ {−1,+1} in the classification setting. However, we switch to
the notation {0, 1} here for greater conformity with the information retrieval literature.

232 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

Then, the normalized discounted cumulative gain (NDCG) is defined as ratio of the
discounted cumulative gain to its ideal value, which is also referred to as ideal discounted
cumulative gain (IDCG).

NDCG =
DCG

IDCG
(7.18)

The ideal discounted cumulative gain is computed by repeating the computation for DCG,
except that the ground-truth rankings are used in the computation. The basic idea in the
computation is that it is assumed that the ranking system can correctly place the ground-
truth positive instances at the top of the ranked list. The ideal score is computed under
this assumption.

7.6 Summary

This chapter discusses the theoretical aspects of text classification performance and its
applications in improve the accuracy of text classifiers. In particular, the use of ensem-
ble methods in improving classifier accuracy was discussed. In addition, the evaluation of
classification algorithms was discussed. Text classifier evaluation is closely related to that
of evaluation of search engines, particularly when ranking-based measures are used. The
receiver operating characteristic is commonly used for evaluating the accuracy of classifiers.
In addition, a number of top-heavy measures such as the use of normalized discounted
cumulative gain are introduced in this chapter.

7.7 Bibliographic Notes

A detailed discussion of the bias-variance trade-off may be found in [206]. The bias-variance
trade-off was originally proposed for regression, though it was eventually generalized for
binary loss functions in classification [264, 265]. The bias-variance trade-off has also been
studied from the perspective of unsupervised problems such as outlier analysis [9]. A dis-
cussion of ensemble methods for classification may be found in [441, 539], and a discussion
for outlier detection is found in [9]. Bagging and random forest methods for classification
are discussed in [60, 61, 65]. In addition, feature begging methods for classification were
introduced in [220, 221]. These methods were precursors to the random forest technique.
The use of bagging for 1-nearest neighbor detectors is studied in [428]. The AdaBoost algo-
rithm was introduced in [173], and a ranking variant for information retrieval, referred to as
AdaRank, is discussed in [510]. Stochastic gradient boosting methods are proposed in [174].

7.7.1 Connection of Boosting to Logistic Regression

Although boosting methods may sometimes seem mysterious in their ability to consistently
improve accuracy, they can be understood better when viewed from the perspective of
iterative variations of linear regression that fit linear models to nonlinear data with the use
of example re-weighting. Such models are referred to as generalized additive models [209]
that attempt to fit a (simpler) linear model to a complex data distribution by applying
multiple instantiations of the linear model on re-weighted or modified instances of the
training data. An example of such a model with numerical data is to apply linear regression
iteratively with the residuals as new response variables and also reweighting instances. This
is a classical form of generalized additive models that was known long before the advent of
the boosting algorithm [209].

7.7. BIBLIOGRAPHIC NOTES 233

However, iterative linear regression with residuals is suited to numerical response vari-
ables. Logistic regression is a probabilistic approach that uses the logistic function to convert
the numerical response in linear regression to a binary response with a Bernoulli assumption
on the response variable. For the two-class problem, boosting can be viewed as an approxi-
mation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a
criterion [175]. Note that the use of the logistic scale is a standard way to convert numerical
regression responses to the binary case. The exponential re-weighting in boosting can be
explained on the basis of this assumption. In essence, AdaBoost adapts the loss function
from the approach used in generalized additive models in a suitable form for classification,
and then uses an iterative approach to optimize it. Furthermore, AdaBoost is applied as
an ensemble method with any classification algorithm rather than as a generalized variant
of a specific classification (i.e., logistic regression) model. This historical connection is also
consistent with the fact that AdaBoost should only be used in combination with simple
models with low variance (like linear models). Like AdaBoost, generalized linear models are
susceptible to overfitting.

7.7.2 Classifier Evaluation

Evaluation methods for classification, recommender systems, regression, information re-
trieval, and outlier analysis are closely related. In fact, many techniques like the precision-
recall measures and the receiver operating characteristic are used in all these cases. A
detailed discussion of evaluation methods in recommender systems may be found in [3].
Such evaluation measures have significant usefulness in the context of information retrieval
applications. The receiver operating characteristic curve is discussed in detail in [166]. A
detailed discussion of several evaluation methods for classification and information retrieval
may also be found in [321].

7.7.3 Software Resources

Ensemble methods are available in many of the libraries such as the Python library scikit-
learn [550], the caret package in R [267], and the package RTextTools [571]. The ro-
tationForest package [572] in R, which is available from CRAN, can be used to address
the sparsity challenges associated with text. The Weka library [553] in Java contains nu-
merous ensemble methods for classification. Most of the aforementioned libraries contain
built-in tools for classifier evaluation, such as the accuracy, precision, recall, and the receiver
operating characteristic.

7.7.4 Data Sets for Evaluation

Many data sets are available for the evaluation of classification algorithms. Any discussion
of data sets for text is incomplete without the discussion of the pioneering 20 Newsgroups
and Reuters data sets. The 20-Newsgroups data set [576] contains about 1000 articles from
twenty different Usenet groups. Therefore, this is a multiclass problem, which is used com-
monly in many classification settings. The Reuters data set has two variations corresponding
to Reuters-21578 [577] and (the larger) Reuters Corpus Volume 1 (RCV1) [578]. The for-
mer data set derives its name from the back that it contains 21,578 news articles from the
Reuters newswire service. The latter collection contains more than 800,000 articles. The
University of California at Irvine Machine Learning Repository [549] contains several la-
beled text data sets. The Europeana Linked Open Data initiative [579] has a collection of

234 CHAPTER 7. CLASSIFIER PERFORMANCE AND EVALUATION

text data sets, which includes other types of rich data such as links, images, videos, and
other metadata. The ICWSM 2009 data set challenge [580] has also published a very large
data set of 44 million blog posts. Although the data set is not specific to classification, it
can be used for a variety of supervised applications with the appropriate annotation. In
addition, Stanford University NLP [555] contains a large number of text corpora, albeit for
linguistically focused applications.

A number of data sets are also available for evaluating search and retrieval relevance,
which is related to but not quite the same as classification. Among them, the Text Retrieval
Conference (TREC) collections are among the most well known for information retrieval
evaluation [573]. The data sets also contain relevance judgements that are useful for evalu-
ation purposes. The NII Test Collection for IR Systems (NTCIR) focuses on cross-language
retrieval and may be found in [574]. The cross-language evaluation forum (CLEF) also
provides a similar source of data sets [575].

7.8 Exercises

1. Discuss the effect on the bias and variance by making the following changes to a clas-
sification algorithm: (a) Increasing the regularization parameter in a support vector
machine, (b) Increasing the Laplacian smoothing parameter in a n̈ıve Bayes classifier,
(c) Increasing the depth of a decision tree, (d) Increasing the number of antecedents in
a rule, (e) Reducing the bandwidth σ, when using the Gaussian kernel in conjunction
with a support vector machine.

2. Suppose you found the optimal setting of the Gaussian kernel in and SVM for a
data set. Now you were given additional training data to use for your SVM, which is
identically distributed to your previous data set. Given the larger data set, would the
optimal value of the kernel bandwidth increase or decrease in most settings?

3. A key parameter while designing a subsampling ensemble is the size of the subsample.
Discuss the effect of this choice from the point of view of the bias-variance trade-off.

4. Implement a subsampling ensemble in combination with a 1-nearest neighbor classifier.

5. Suppose you used a 1-nearest neighbor classifier in combination with an ensemble
method, and you are guaranteed that each application gets you the correct answer
for a test instance with 60% probability. What is the probability that you get the
correct answer using a majority vote of three tries, each of which are guaranteed to
be independent and identically distributed?

6. Suppose that a data set is sampled without replacement to create a bagged sample
of the same size as the original data set. Show that he probability that a point will
not be included in the re-sampled data set is given by 1/e, where e is the base of the
natural logarithm.

Chapter 8

Joint Text Mining with Heterogeneous
Data

“We become not a melting pot but a beautiful mosaic. Different people, different
beliefs, different yearnings, different hopes, different dreams.”—Jimmy Carter

8.1 Introduction

Text documents often occur in combination with other heterogeneous data such as images,
Web links, social media, ratings, and so on. Examples of such settings are as follows:

1. Web and social media links: In Web and social media networks, the text documents
are often associated with nodes. For example, the Web can be a viewed as a graph in
which each node contains a Web page and also connects to other nodes via hyperlinks.
Similarly, a social network is a friendship graph of user-to-user linkages in which each
node contains the textual posting activity of the user. Therefore, one can associate a
node with a list of terms as well as a list of other nodes.

2. Image data: Many images on the Web and from other sources are associated with
textual captions and other content. One can therefore conceptualize two sepa-
rate collections of text and images, which are connected to one another with co-
occurrence/captioning links.

3. Cross-lingual data: Cross-lingual data contains a separate corpus for each language,
and associations might exist between the two collections. These associations might be
based on either cross-lingual dictionaries or pairs of similar documents. The goal is to
discover a joint representation for text mining.

The heterogeneous nature of the features creates numerous challenges for algorithm design.
Although researchers and practitioners have often studied these different problem domains
independently, there are surprising similarities in the underlying techniques. Therefore, this
chapter will provide a unified presentation of these heterogeneous settings.

236 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

The aforementioned problems arise in both supervised (e.g., classification) and unsu-
pervised settings (e.g., clustering and topic modeling). The resulting methods are fairly
general, and they cover nontraditional variations of these problems such as transfer learn-
ing. In transfer learning, labeled data (e.g., documents) in one domain are used to perform
classification in another domain (e.g., images), when the amount of labeled data in the first
domain is significantly greater than the second. Transfer learning is also used in the unsuper-
vised context, in which the unlabeled data in the text domain is used to learn semantically
coherent features for a domain like image data.

The main challenge in all these cases is that the input feature spaces of the different
domains are different. Machine learning methods can be best implemented when the data
from the different modalities are embedded in a single feature space. This opens the door
to latent modeling techniques, which can take on one of three forms:

1. Shared matrix factorization: In these case, the various types of data are represented
as matrices, and the relationships among these matrices are expressed in the form
of a factorization graph, which expresses a set of factorization relationships among
matrices. This terminology should not be confused with the notion of a factor graph
used in probabilistic graphical models. Each vertex corresponds to the latent variables
of a row (e.g., document, image, social network node) or a column (e.g., term, visual
feature, social network node). Each edge corresponds to a factorization relationship
by multiplying the latent variable matrices at its end points, and therefore the edge is
labeled with the relevant matrix that is factorized by these latent variables. Therefore,
given a problem with heterogeneous data, all that the analyst has to do is to set up
an appropriate factorization graph, which is followed by setting up its corresponding
optimization problem and gradient-descent steps. It is noteworthy that even though
this approach has implicitly been used by many researchers repeatedly across many
data domains, this book will formalize the approach as a more systematic framework.
It is hoped that such a systematic framework will reduce the burden on a practitioner
and researcher who is faced with a new setting involving heterogeneous data.

2. Factorization machines: Factorization machines were recently proposed in the context
of heterogeneous data in recommender systems. The approach can be extended to all
types of heterogeneous settings beyond recommender systems. Many special cases
of factorization machines are identical to shared matrix factorization methods. One
advantage of using factorization machines is that the problem can be reduced to
the systematic process of feature engineering. Furthermore, off-the-shelf software for
factorization machines is available. On the other hand, factorization machines are
better suited to supervised problems like regression and classification, whereas shared
matrix factorization methods can be applied to broader settings.

3. Joint probabilistic modeling: In joint probabilistic modeling, a generative process is
assumed to create the documents and other data types based on a hidden variable.
Each data type is drawn from its own probability distribution.

Another common approach is to convert the heterogeneous data to a relationship graph
on which network mining algorithms are directly applied. In such cases, each data item
(document) or feature corresponds to a node in the graph and the edges represent the
relationships among them (e.g., presence of a term in a document). One can view the
relationship graph as an expanded representation of the factorization graph in which one
does not attempt to summarize the data with latent variables. This approach is different

8.2. THE SHARED MATRIX FACTORIZATION TRICK 237

from the aforementioned methods in that it does not directly try to find to a compressed
(latent) representation of the data, but it explicitly tries to model structural relationships
between the individual data items and/or features of various domains, and represent them
as a network. The resulting network is often quite large because each data item (e.g.,
document) or feature (e.g., term) corresponds to a distinct node in the resulting network.
This type of modeling allows the use of off-the-shelf structural mining algorithms.

Finally, a general comment about the goals of this chapter is in order. While it is
possible to create separate chapters for text-image mining, text-link mining, or cross-lingual
mining, such an approach does not help one grasp the main ideas behind the common
principles of the corresponding mathematical techniques. Therefore, if one is faced with a
new setting involving a different type of data, one has to start from scratch in designing
a suitable methodology for the mining process without being able to generalize the ideas
already available from known settings. The goal of this chapter is not to teach the reader
about a specific type of heterogeneous setting such as text, images, links, or cross-lingual
data. Rather, it is to point out the common threads that run through these (seemingly
independent) lines of research and educate the reader to use them in a systematic way.
This book therefore summarizes this commonly used “bag of tricks” from various domains
(and independent threads of work) in the context of a unified framework for the first time.
In addition, for each specific approach, examples from various application domains will be
provided to compare and contrast the different tricks.

8.1.1 Chapter Organization

This chapter is organized as follows. The next section introduces shared matrix factorization.
Factorization machines are introduced in Sect. 8.3. Joint probabilistic modeling techniques
are introduced in Sect. 8.4. The use of graph mining techniques for mining heterogeneous
data domains is discussed in Sect. 8.5. A summary is given in Sect. 8.6.

8.2 The Shared Matrix Factorization Trick

The main challenge while dealing with heterogeneous data is the fact that the different data
domains use completely different feature spaces to represent their data. For example, while
documents are represented as document-word matrices, images are represented as image-
(visual word) matrices. Furthermore, indirect relationships between documents and images
such as captioning and user tagging may also be expressed in the form of matrices. Note that
the document-term matrix shares the document modality with the document-image matrix.
In general, we have a set of matrices in which some of the modalities are shared, and we
wish to extract latent representations of the shared relationships implicit in these matrices.
These latent representations are typically expressed in the form of low-rank matrices, which
can be used for any application such as clustering, classification, and so on. The key in this
entire process is to use shared latent factors between different modalities so that they are
able to incorporate the impact of these relationships in an indirect (i.e., latent) way within
the extracted embedding. A key aspect of this approach is to create a factorization graph
that expresses the latent relationships between the different data modalities.

8.2.1 The Factorization Graph

The factorization graph is a way of expressing how different data matrices are created
by different features and data items. The simplest possible factorization graph is that of

238 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

U VD

DOCUMENT
FACTORS

TERM
FACTORS

D UVT

U

A

NODE FACTORS

A UUT

(a) Asymmetric factorization (b) Symmetric factorization

Figure 8.1: Simplest possible examples of factorization graphs

factorizing the n× d document-term matrix D into the n× k latent factor U and the d× k
latent factor V . The corresponding document-term matrix D is factorized as follows:

D ≈ UV T (8.1)

Note that the matrix U contains the latent factors (i.e., embedding coordinates) of
each document in its rows, and the matrix V contains the latent factors (i.e., embedding
coordinates) of each term in its rows. This factorization can be expressed as a directed graph
shown in Fig. 8.1a. The nodes and edges of this factorization graph are defined as follows:

1. Each node corresponds to a matrix of latent factors. These latent factors might either
correspond to the rows of a data matrix or the columns of a data matrix. For example,
the node on the left in Fig. 8.1a corresponds to the document embedding U , and the
node on the right corresponds to the term embedding V . Each of these latent factor
matrices is defined in such a way that the number of columns is equal to the rank of
the factorization.

2. A directed edge from U to V is defined for the factorization D ≈ UV T . The edge is
labeled with the matrix D that is factorized. It is noteworthy that the direction of
the edge defines the fact that U occurs first in the factorization. Furthermore, even
though the node at the arrow-head of the edge is labeled with V , its transpose is used
in the factorization.

It is possible for the edges in the factorization graph to be self-loops. For example,
a factorization of an n × n symmetric matrix A (e.g., adjacency relations of a social
network) can be of the form UUT . Such an example is shown in Fig. 8.1b. In such a
case, the factorization is expressed with a single node in the factorization graph.

All the factorizations discussed in Chap. 3 are two-node or single-node factorizations. It is
also possible to add other constraints to the factorization, such a orthogonality, nonnega-
tivity, and so on. Such constraints are optional, and are not included in the factorization
graph. Therefore, a given factorization graph could represent many possible factorizations,
depending on the constraints that are added to the factorization process. Although the
two-node factorization graph does not seem to convey much information, this graphical
representation is more useful in complex types of multi-modal settings.

8.2.2 Application: Shared Factorization with Text and Web Links

Consider a setting in which one wants to factorize a Web graph using both the text content
and links. In this case, we have two data matrices. The first data matrix D is an n × d

8.2. THE SHARED MATRIX FACTORIZATION TRICK 239

document-term matrix corresponding to the textual content of all the Web pages. The other
matrix A is an n× n directed adjacency matrix, which is not symmetric. Furthermore, the
structural and textual information are intimately connected. Therefore, the latent factors
of a node should be regulated by both the text and linkage structure.

The n× k document factors are denoted by the matrix U = [uij] (with rows containing
k-dimensional document factors) and the term factors are contained in the matrix V = [vij]
(with rows containing k-dimensional term factors). Since there is a one-to-one correspon-
dence between documents and the vertices of the Web graph, one of the factors of the
adjacency matrix A should be U . However, there are two modeling options as to whether to
use U as the outgoing factors of the adjacency matrix or to use U as the incoming factors of
the adjacency matrix. With these options the corresponding factorizations are as follows:

1. When U is used as an outgoing factor of the adjacency matrix, the semantic inter-
pretation is that the low-rank representation of a Web document is closely related to
the types of Web pages that it points towards. In such a case, one must introduce an
additional n× k incoming factor matrix H = [hij], and try to find U , V , and H, such
that the following conditions are satisfied:

D ≈ UV T , A ≈ UHT (8.2)

The corresponding factorization graph is illustrated in Fig. 8.2a.

2. When U is used as an incoming factor of the adjacency matrix, the semantic interpre-
tation is that the low-rank representation of Web document are closely related to the
types of Web pages that point to it. In such a case, one must introduce an additional
n× k outgoing factor matrix H, and try to find U , V , and H, such that the following
conditions are satisfied:

D ≈ UV T , A ≈ HUT (8.3)

The corresponding factorization graph is illustrated in Fig. 8.2b.

3. An additional option is to treat the outgoing and incoming link factors in a symmetric
way by using the following set of conditions:

D ≈ UV T , D ≈ HV T , A ≈ UHT (8.4)

Note that in this case, it does not matter whether the last condition is used as A ≈
UHT or whether we use A ≈ HUT , although only one of these two conditions is
imposed for an asymmetric matrix A. The two equivalent factorizations are shown in
Fig. 8.2c.

The specific choice of the shared factorization depends on which semantic interpretation is
considered more likely by the analyst. For now, let us consider the case in which the content
of documents is more closely related to their outgoing links (cf. Fig. 8.2a). In such a case,
the optimization model should enforce the following factorizations:

D ≈ UV T , A ≈ UHT (8.5)

One can, therefore, define the following optimization problem in order to learn the matrices
U , V , and H as follows:

Minimize J = ||D − UV T ||2F + β||A− UHT ||2F + λ(||U ||2F + ||V ||2F + ||H||2F)︸ ︷︷ ︸
Regularization

240 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

U D

DOCUMENT FACTORS/
OUTGOING LINK FACTORS

TERM
FACTORS

H A

INCOMING
LINK FACTORS

A UHT D UVT

U D

DOCUMENT FACTORS/
INCOMING LINK FACTORS

TERM
FACTORS

H A

OUTGOING
LINK FACTORS

A HUT D UVT

(b) Incoming link factors shared
with document factors

U D

DOCUMENT FACTORS/
OUTGOING LINK FACTORS

TERM
FACTORS

H A

DOCUMENT FACTORS/
INCOMING LINK FACTORS

A UHT D UVT

D

U D

DOCUMENT FACTORS/
INCOMING LINK FACTORS

TERM
FACTORS

H A

DOCUMENT FACTORS/
OUTGOING LINK FACTORS

A HUT D UVT

D

BOTH FACTORIZATION GRAPHS ARE EQUIVALENT

HVTD HVTD

(c) Symmetric treatment of link factors

V V

(a) Outgoing link factors shared
with document factors

V V

Figure 8.2: Factorization graph for shared factorization of text and Web links

Here, the notation || · ||F denotes the Frobenius norm of a matrix, the parameter β regulates
the relative importance of the structure versus the content, and λ controls the amount of
regularization. It is also possible to use different regularization weights for each of U , V ,
and W . Such optimization problems are solved with the use of gradient-descent methods
(cf. Sect. 8.2.2.1). It is relatively straightforward to formulate the optimization problem for
the case of Fig. 8.2b by changing the term β||A−UHT ||2F in the aforementioned optimization
problem to β||A − HUT ||2F . In the case of the factorization graph in Fig. 8.2c, it would
suffice to add the term γ||D − HV T ||2F to either of the aforementioned two formulations.
This particular family of optimization problems is designed for the unsupervised setting.
The resulting factors can be used for clustering either documents or terms by applying
the k-means algorithm to the k-dimensional rows of U and V , respectively. Although these
embeddings can be directly used for classification, one can also make enhancements to the
optimization model for supervised settings (cf. Sect. 8.2.2.2).

8.2.2.1 Solving the Optimization Problem

We compute the gradient of J with respect to the entries in U , V , and H to update them
in the direction of the (negative) gradient. For any current values of U , V , and H, let eDij
represent the (i, j)th entry of the error matrix (D − UV T), and eAij represent the (i, j)th

entry of the error matrix (A−UHT). The relevant partial derivatives of J can be expressed
as follows:

∂J

∂uiq
= −

d∑

j=1

eDijvjq − β
n∑

p=1

eAiphpq + λuiq ∀i ∈ {1 . . . n}, ∀q ∈ {1 . . . k}

∂J

∂vjq
= −

n∑

i=1

eDijuiq + λvjq ∀j ∈ {1 . . . d}, ∀q ∈ {1 . . . k}

∂J

∂hpq
= −β

n∑

i=1

eAipuiq + λhpq ∀j ∈ {1 . . . d}, ∀q ∈ {1 . . . k}

8.2. THE SHARED MATRIX FACTORIZATION TRICK 241

For notational simplicity, a factor of 2 is omitted from the aforementioned gradients because
it can be absorbed by the step-size in the gradient-descent method. These gradients can be
used to update the entire set of (2·n+d)k parameters with a step-size of α. However, such an
approach can sometimes be slow to converge. It can also be impractical because it requires
the computation of large error matrices corresponding to (D−UV T) and (A−UHT). The
latter is particularly large when n is large.

A more effective approach is to use stochastic gradient descent, which effectively com-
putes the gradients with respect to residual errors in randomly sampled entries of the
matrices. One can sample any entry in either the document-term matrix or the adjacency
matrix, and then perform the gradient-descent step with respect to the error in this single
entry. In other words, one performs the following steps:

Randomly sample any entry from either D or A;
Perform a gradient-descent step with respect to entry-specific loss;

Consider a case in which the (i, j)th entry in the document-term matrix is sampled with
error eDij . Then, the following updates are executed for each q ∈ {1 . . . k} and step-size α:

uiq ⇐ uiq(1− α · λ/2) + αeDijvjq

vjq ⇐ vjq(1− α · λ) + αeDijuiq

On the other hand, if the (i, p)th entry in the adjacency matrix is sampled, then the following
updates are performed for each q ∈ {1 . . . k} and step-size α:

uiq ⇐ uiq(1− α · λ/2) + αβeAiphpq

hpq ⇐ hpq(1− α · λ) + αβeAipuiq

These steps are repeated to convergence. The main advantage of stochastic gradient descent
is the fast update and the ability to deal with large matrices.

The aforementioned updates are designed for the case of the factorization of Fig. 8.2a.
It is also possible to derive the stochastic gradient-descent steps for the case of Fig. 8.2b in
an analogous way.

8.2.2.2 Supervised Embeddings

It is possible to extract better embeddings in supervised settings by incorporating infor-
mation available from the dependent variable within the optimization model. Consider the
case in which some of the rows of the n× d data matrix D are associated with class labels
yi drawn from {−1,+1}. Therefore, we define the set S of observed labels as follows:

S = {i : Label yi of ith row of D is observed} (8.6)

In such a case, one can create a k-dimensional coefficient (row) vector W , and assume that
the class label is related to features by regression. Let ui be the k-dimensional row vector
corresponding to the ith row of U . Then, the linear-regression condition is as follows:

yi ≈ ui ·W ∀i ∈ S (8.7)

242 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

U D

DOCUMENT FACTORS/
LINK FACTORS

TERM
FACTORS

A UUTª D UVTª

A

V

Figure 8.3: Joint factorization with undirected social networks

In such a case, the optimization problem is modified as follows:

Minimize J = ||D − UV T ||2F + β||A− UHT ||2F + γ
∑

i∈S

(yi − ui ·W)2

+λ(||U ||2F + ||V ||2F + ||H||2F + ||W ||2)
︸ ︷︷ ︸

Regularization

Note that the added term is derived from the optimization formulation of least-squares
classification (cf. Chap. 6). Therefore, the approach can also be used in cases where the
dependent variables are real-valued. One can then use gradient-descent methods in order to

learn the supervised embeddings U , V , and H. In such a case, the vector UW
T
yields the

predicted values of yi for both the training and the test data. Using supervised embeddings
can sometimes yield better quality results for classification than unsupervised embeddings.
The derivation of the gradient-descent steps uses the same broad approach as in the case
of Sect. 8.2.2.1.

8.2.3 Application: Text with Undirected Social Networks

Many graphs like social networks are undirected, which raises the possibility of symmetric
matrix factorization. We have a set of n documents, such that each document corresponds to
a node (or actor) in the social network. Therefore, we have an n× d document-term matrix
D, and an n×n symmetric and undirected adjacency matrix of the social friendship network.
Furthermore, it is assumed that a one-to-one correspondence exists between documents and
social actors, representing the content (e.g., summary of all Facebook wall posts) associated
with that actor. In such a case, we have an n× k node-linkage factor matrix U , and a d× k
term factor matrix V . The relevant factorizations are as follows:

D ≈ UV T , A ≈ UUT (8.8)

The corresponding factorization graph is illustrated in Fig. 8.3. It is noteworthy that the
adjacency matrix can be factorized with a single matrix because of the fact that it is
symmetric. However, it is important to set the diagonal entries of A to the degrees of
the nodes in order to ensure that the matrix A is positive semi-definite. Otherwise, the
diagonal entries might increase the error of factorization UUT (which is always positive
semi-definite). The optimization formulation is as follows:

Minimize J = ||D − UV T ||2F + β||A− UUT ||2F + λ(||U ||2F + ||V ||2F)︸ ︷︷ ︸
Regularization

8.2. THE SHARED MATRIX FACTORIZATION TRICK 243

One can use similar stochastic gradient-descent steps as in Sect. 8.2.2.1. At any particular
values of U and V , the error of the (i, j)th entry of the document-term matrix is denoted
by eDij = (D−UV T)ij and the error of the (i, j)th entry of the adjacency matrix is denoted

by eAij = (A−UUT)ij . In stochastic gradient-descent approach, the gradients are computed
with respect to the loss in a single entry. Consider a case in which the (i, j)th entry in the
document-term matrix has been sampled with error eDij = (D−UV T)ij . Then, the following
updates are performed for each q ∈ {1 . . . k} and step-size α:

uiq ⇐ uiq(1− α · λ/2) + αeDijvjq

vjq ⇐ vjq(1− α · λ) + αeDijuiq

On the other hand, if the (i, p)th entry in the adjacency matrix is sampled, then the following
updates are performed for each q ∈ {1 . . . k} and step-size α:

uiq ⇐ uiq(1− α · λ/2) + 2αβeAipupq

upq ⇐ upq(1− α · λ) + 2αβeAipuiq

These steps are repeated to convergence. One can also perform a supervised factorization
of the matrix by adapting the approach discussed in Sect. 8.2.2.2.

8.2.3.1 Application to Link Prediction with Text Content

The link prediction problem in social networks is that of finding pairs of actors, who are
not currently connected but are likely to become connected in the future [292]. The afore-
mentioned factorization can used easily for link prediction in social networks. In particular,
consider any pair of nodes (i, j), between which a link does not currently exist. Then, the
(i, j)th entry of UUT will provide a numerical propensity of a link existing between nodes
i and j. Therefore, the entries of UUT provide link-prediction scores.

8.2.4 Application: Transfer Learning in Images with Text

Text documents have the advantages of having a semantically coherent feature space, which
is often closely related to the semantic nature of clusters and classes in real-world appli-
cations. In other words, text has a data representation, which is often application-friendly
because of the natural way in which its features are extracted. This is not quite the case in
image data in which the features are semantically less informative. Is there any way in which
one can use the higher-quality features of text data in order to engineer better features for
image mining? This problem is referred to as that of “closing the semantic gap” in image
classification. One way of achieving this goal is the use of transfer learning, in which knowl-
edge is transferred from the text to the image domain. The key idea here is that images
often co-occur with various types of text such as tags or captions. This co-occurrence can
be used to map the images into a new latent semantic space in which the feedback from
the co-occurrence information is incorporated. The new multidimensional representation is
semantically more coherent, because it incorporates knowledge from the text modality. As
a result, the classification is significantly improved when off-the-shelf classifiers are used on
the representation. There are two distinct settings in which transfer learning is used. The
first is one in which the text is unlabeled and the only purpose of transfer learning is to
engineer better quality features with the use of co-occurrence information. This approach is
a kind of semi-supervision, except that the unlabeled data belongs to a different (text) do-
main from that in which the classification is performed. The second setting is one in which

244 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

V D

TAG
FACTORS

DOCUMENT
FACTORS

H G

VISUAL WORD
FACTORS

G HVTª D UVTª

U

Figure 8.4: Joint factorization with document-tag and (visual feature)-tag matrix

the text data are already labeled and one also uses the labeling to perform the classification
in the image domain. Unlike the first setting, the text also helps in compensating for the
paucity of labels associated with the images.

8.2.4.1 Transfer Learning with Unlabeled Text

Consider the case in which we have an m× d′ image-(visual feature) matrix denoted by M
in d′ dimensions (corresponding to visual words), and each of the m rows in this matrix is
denoted by a class label. It is noteworthy that visual words correspond to image features,
they are often semantically a lot less friendly than textual words. Therefore, transfer learning
methods are used [540] in order to extract a semantically coherent representation of the
images. One can view this approach as a kind of semi-supervised learning with unlabeled
data, except that the semi-supervision is performed with data from a different (text) domain
in order to classify image data [540].

Where does one obtain the semantic knowledge about the visual features? This is ex-
tracted from tagging data. In many social media sites like Flickr, images are often tagged
and each tag can be viewed as a short set of keywords. Each tag typically contains less
than two or three words, and rarely more than ten words. As a practical matter, one can
consider a tag set as new and informal lexicon, which is semantically very descriptive. Con-
sider the case in which we have a vocabulary of d tags, and each tag can be applied to one
or more of a set of p images. Therefore, we have a tagged set of p images, with a p × d′

representation (denoted by Z) in visual-word space, and a corresponding tag matrix T ,
which has a p× d binary representation. In other words, the matrix T contains 0-1 entries
corresponding to which tag is applied to which image. This matrix is extremely sparse. The
matrix G = ZTT is then a d′ × d mapping between visual words and tags. In other words,
it provides knowledge about which visual word corresponds with which tag frequently, and
is a kind of mapping of the (semantically obscure) visual words to the space of (semanti-
cally coherent) tags. In addition, it is assumed that we have a set of n documents that are
expressed in terms of the informal vocabulary of d tags. Although a document collection
might originally be expressed using a conventional lexicon of English words, it is not very
difficult to express it in terms of a tag vocabulary by setting the value of the jth tag for the
ith document to 1 if at least one conventional word is shared between the document and the
tag. In other words, we have an n× d document-tag matrix in terms of this non-traditional
tag-vocabulary of size d. This document-tag matrix is denoted by D and it provides useful
co-occurrence information between the different tags, which is further useful for extracting
a semantic representation of the images. One can view D as the unlabeled collection that
is used for semi-supervision.

Let H be a d′ × k matrix and V be a d × k matrix, where k is the rank of the fac-
torization process. Note that the factorization of the matrix G = HV T provides a latent
representation H of each visual word, although it is unable to account for the co-occurrences

8.2. THE SHARED MATRIX FACTORIZATION TRICK 245

and relationships among different tags. This is particularly important because the matrix
G is often sparse, which makes it difficult to extract reliable factor matrices. Therefore, we
propose to use a shared factorization with an additional n × k factor matrix U of the n
documents in D:

D ≈ UV T , G ≈ HV T

The corresponding factorization graph is illustrated in Fig. 8.4, and its associated optimiza-
tion problem is as follows:

Minimize J = ||D − UV T ||2F + β||G−HV T ||2F + λ(||U ||2F + ||V ||2F + ||H||2F)
Here, β is the balancing parameter that regulates the relative importance of the different
terms. This optimization problem is very similar to that discussed in Sect. 8.2.2.1. Therefore,
the gradient-descent steps of that section can be used for this problem, although other types
of optimization methods are also discussed in [540].

The matrixH can be viewed as a kind of translator matrix to transform data points from
visual-word space to a latent semantic space in which the representation quality is improved.
Given the labeled m× d′ matrix M , one can transform it to k-dimensional space by using
the new representation M ′ = MH. The classification is performed on this transformed
representation of the data.

8.2.4.2 Transfer Learning with Labeled Text

A second setting is one in which have a labeled n× d document-term matrix, and also a set
of images for which very few labels are observed. In the case of the documents, the labels
are available as an n-dimensional column vector y = [y1 . . . yn]

T . It is assumed that each
yi is drawn from {−1,+1}. In addition, we have an m× d′ image-(visual word) matrix M ,
which is defined over a lexicon of d′ visual words. The labels for a subset S of images in M
is observed, and these labels are drawn from the same base set as the documents. Therefore,
we have:

S = {i : Label of ith row of M is observed}
In the event that the label of the ith row of M is observed, it is denoted by zi. Each zi is
also drawn from {−1,+1}. It is noteworthy that the size of the set S may be quite small in
many real settings, which is why transfer learning is required in the first place. It is assumed
that the documents and images may co-occur in various ways through either Web links, or
through the use of inline placement of images within Web pages. Therefore, we assume that
we have an m× n co-occurrence matrix C between the images and the Web pages.

In order to perform the factorization, both the images and the documents are mapped
into a k-dimensional latent space, with corresponding factors denoted by UM and UD,
respectively. Here UM is an m× k matrix because there are m images, and UD is an n× k
matrix because there are n documents. In addition, the d′ × k latent-factor matrix of the
visual words is denoted by H and the d × k latent-factor matrix of the (textual) words is
denoted by V . Then, in order to force UM and UD to be the relevant embeddings of the
image and text domains, respectively, we have the following:

M ≈ UMHT , D ≈ UDV T

The key point is that the matrices UM and UD are in the same k-dimensional space and the
dot products between their rows correspond to similarities, which are also reflected in the
co-occurrence matrix C. This condition can be enforced by using the following factorization:

C ≈ UMUT
D (8.9)

246 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

UM

IMAGE
FACTORS

VD

TERM
FACTORS

H M

VISUAL WORD
FACTORS

M UMHT D UDVT

UD
C

C UMUD
T

DOCUMENT
FACTORS

Figure 8.5: Joint factorization with text, images, and co-occurrence matrix

The corresponding factorization graph is illustrated in Fig. 8.5.
Without considering the labels, it is possible to create an unsupervised embedding for

the documents and images within a joint latent space. The corresponding optimization
problem is as follows:

Minimize J = ||D − UDV T ||2F + β||M − UMHT ||2F + γ||C − UMUT
D ||2F + λ · Regularizer

As in all the previous cases, the regularizer is defined by the sum of the squares of the
Frobenius norms of the various parameter matrices. Furthermore, β and γ are balancing
parameters that regulate the relative importance of various terms.

However, when additional labels yi are available for documents and zj for images, it is
possible to add supervision by forcing documents and images with the same labels to be
somewhat similar. Because the labels are drawn from {−1,+1}, the value of 1+yizj will be
2 when yi = zj , and it will be 0, otherwise. Let uD

i be the ith row of the document factor
matrix UD, and let uM

j be the jth row of the image factor matrix UM . Both these rows are
k-dimensional row vectors and the difference between them provides the distance between
the relevant embeddings of these rows. A label-agreement term, JL, is defined by penalizing
distances between embeddings with the same label:

JL =

n∑

i=1

∑

j∈S

(1 + yizj)||uD
i − uM

j ||2
︸ ︷︷ ︸
Nonzero when yi = zj

In order to construct a supervised embedding, an additional term of θJL needs to be added
to the objective function J of the unsupervised embedding, where θ regulates the importance
of supervision.

Once the embeddings have been learned (with a gradient-descent method), the sign of
each of the m entries in the column vector UMUT

Dy provides the label prediction of the m
images (including the originally labeled ones). The basic idea is that UMUT

D provides pair-
wise similarity between image-document pairs. By post-multiplying with y, one is classifying
each image by using a similarity-weighted linear combination of the labels of documents.
Hyper-parameters like β, γ, and θ can be tuned in order to maximize accuracy on a held-out
set. This discussion is broadly based on the ideas presented in [391].

8.2.5 Application: Recommender Systems with Ratings and Text

Content-based recommender systems use the textual descriptions of items to learn user
propensities about particular items. Ratings indicate the degree of like or dislike of users
towards items. In such cases, the data for each user is converted into a user-specific text
classification problem. The training documents for each user-specific classification problem
correspond to the descriptions of items rated by that user, and the dependent variable is its

8.2. THE SHARED MATRIX FACTORIZATION TRICK 247

V R

DOCUMENT/ITEM
FACTORS

USER
FACTORS

H D

TERM
FACTORS

D VHT R UVT

U

Figure 8.6: Joint factorization with users, items, and item descriptions

item-specific rating from that user. This training data can be used to learn a user-specific
classification or regression model for rating prediction.

However, content-based systems do not use the collaborative power of like-mined users to
make predictions. A different class of recommendation methods, referred to as collaborative
filtering methods, use the similarities in rating patterns between users and items to make
predictions. Let R be an m × n ratings matrix R over m users and n items. The matrix
R = [rij] is massively incomplete, and only a small subset O of the ratings in R are observed:

O = {(i, j) : rij is observed}
In addition, we have an n×d document-term matrix D, in which each of the n rows contains
the descriptions of the n items over a lexicon of size d.

Collaborative filtering problems are often solved using matrix factorization methods in
which the ratings matrix R is decomposed into user and item factors. A key complica-
tion with recommender systems is that the ratings matrix is only partial observed and
therefore, one can only define the optimization problem in matrix factorization over the
observed ratings in O. Let U be the m× k matrix representing the factors of the users, V
be the n × k matrix representing the factors of the items, and let H = [hij] be the d × k
matrix representing the factors of the textual words (terms). Then, we have the following
relationships:

R ≈ UV T
︸ ︷︷ ︸

Observed entries

, D ≈ V HT

The corresponding factorization graph is illustrated in Fig. 8.6.
Note that the first factorization is defined only over the observed entries in O. Therefore,

the corresponding optimization problem also needs to be formulated over the observed
entries as follows:

Minimize J =
∑

(i,j)∈O

(rij −
k∑

s=1

uisvjs)
2 + β||D − V HT ||2F + λ(||U ||2F + ||V ||2F + ||H||2F)

Here, β is the balancing parameter. The gradient-descent steps for this optimization problem
are similar to those discussed in Sect. 8.2.2.1, except that only the observed entries are used
to compute the gradients. Setting β to 0 results in traditional recommender system updates
(see Exercise 5). Furthermore, almost the same optimization problem is used in the following
related settings:

1. One can combine user-user trust matrices with ratings matrices instead of combining
text with ratings matrices. This approach is described in Chapter 11 of [3].

2. One can combine social tagging matrices with ratings matrices. Such an approach
is similar to the technique discussed above, except that the tags are used as the
“lexicon” to represent the items. Furthermore, since tags are related to the users, it
is also possible to create a user-tag matrix, which can be factorized.

248 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

VE

ENGLISH
TERM

FACTORS

US
DS

SPANISH
DOCUMENT

FACTORS

UE
DE

ENGLISH
DOCUMENT

FACTORS

DE UEVE
T DS USVS

T

VS
C

C VEVS
T

SPANISH
TERM

FACTORS

Figure 8.7: Joint factorization of English and Spanish documents with feature co-occurrence

It is noteworthy that shared matrix factorization methods form the backbone of a wide
variety of hybrid techniques for recommender systems.

8.2.6 Application: Cross-Lingual Text Mining

Cross-lingual text mining shares a number of similarities with the case in which images and
text are mined together. However, in the case of the image/text mining, the co-occurrence
matrices are created using instances of images and documents. In the case of cross-lingual
text mining, sufficient domain knowledge is available to create cross-lingual matrices at the
feature level.

Consider a setting in which we have two document collections in English and Spanish,
respectively. The n× d document-term matrix for the English collection is denoted by DE ,
whereas the m× d′ document-term matrix for the Spanish collection is denoted by DS . In
addition, we have a d×d′ feature-level co-occurrence matrix C between English and Spanish.
The feature-level co-occurrence matrix between English and Spanish can be extracted in a
variety of ways. For example, one can use a cross-lingual dictionary [34] or thesaurus [338]
in order to create the co-occurrence matrix. Each entry (i, j) in C takes on the value of
1 if the ith English term is related to the jth Spanish term. It is relatively easy to use a
dictionary to create a co-occurrence matrix. It is also possible to create co-occurring feature
matrix from document pairs that are translations of one another. For example, let CE and
CS be two c × d and c × d′ document-term matrices containing c documents in English
and Spanish, respectively, so that the ith rows in CE and CS are translations of the same
sentence in English and Spanish, respectively. Then, one can derive d× d′ the feature-level
co-occurrence matrix as follows:

C = CEC
T
S (8.10)

Unlike image-text mining, the co-occurrence matrices are specified at the feature level rather
than the instance level. Let UE and VE be the respective n×k and d×k document-factor and
term-factor matrices for the English documents. Similarly, let US and VS be the respective
n×k and d×k document-factor and term-factor matrices for the Spanish documents. Then,
the corresponding factorizations are as follows:

DE ≈ UEV
T
E , DS = USV

T
S , C ≈ VEV

T
S

The corresponding factorization graph is illustrated in Fig. 8.7. This particular factorization
is similar to the case of image/text mining except that the co-occurrence matrix is defined
as the product of the term-factor matrices in the two languages (rather than the instance
factors). The optimization problem can be formulated in a similar way, and the gradient-
descent steps can be obtained by computing the derivative of the squared error.

8.3. FACTORIZATION MACHINES 249

8.3 Factorization Machines

Factorization machines are closely related to shared matrix factorization methods, and are
particularly suitable under the following conditions:

1. Each data instance contains features from multiple domains. For example, consider
an item that is tagged with particular keywords by a user and also rated by that
user. In such a case, the feature set corresponds to all the item identifiers, all the
possible keywords, and the user identifiers. The feature values of the user identifier,
item identifier, and the relevant keywords are set to 1, whereas all other feature values
are set to 0. The dependent variable is equal to the value of the rating.

2. The feature representation is often sparse, which contains a large number of 0s. Many
homogeneous text domains, such as short text snippets can also be used in conjunc-
tion with factorization machines. For example, a tweet in Twitter is limited to 140
characters, which imposes natural constraints on the number of words in each such
“document.” Traditional classification and regression methods, such as support vec-
tor machines, work poorly in this setting. In many natural applications, the feature
representation is sparse and binary, although this is not always necessary.

Factorization machines are polynomial regression techniques, in which strong regularization
conditions are imposed on the regression coefficients in order to handle the challenges of
sparsity. Sparsity is common in short-text domains, such as the social content on bulletin
boards, social network datasets, and chat messengers. It is also common in recommender
systems.

An example of a data set drawn from the recommendation domain is illustrated in
Fig. 8.8. It is evident that there are three types of attributes corresponding to user at-
tributes, item attributes, and tagging keywords. Furthermore, the rating corresponds to
the dependent variable, which is also the regressand. At first sight, this data set seems
to be no different from a traditional multidimensional data set to which one might apply
least-squares regression in order to model the rating as a linear function of the regressors.

Unfortunately, the sparsity of the data in Fig. 8.8 ensures that a least-squares regression
method does rather poorly. For example, each row might contain only three or four non-zero
entries. In such cases, linear regression may not be able to model the dependent variable very
well, because the presence of a small number of non-zero entries provides little information.
Therefore, a second possibility is to use higher-order interactions between the attributes
in which we use the simultaneous presence of multiple entries for modeling. As a practical
matter, one typically chooses to use second-order interactions between attributes, which
corresponds to second-order polynomial regression. One possibility is to use a second-order
polynomial kernel in order to perform kernel regression with the use of the kernel trick
(cf. Chap. 6). However, as we will discuss below, an attempt to do so leads to overfitting,
which is exacerbated by the sparse data representation.

Let d1 . . . dr, be the number of attributes in each of the r data modalities such as text,
images, network data and so on. Therefore, the total number of attributes is given by
p =

∑r
k=1 dk. We represent the variables of the row by x1 . . . xp, most of which are 0s, and

a few might be nonzero. In many natural applications in the recommendation domain, the
values of xi might be binary. Furthermore, it is assumed that a target variable is available
for each row. In the example of Fig. 8.8, the target variable is the rating associated with
each row, although it could be any type of dependent variable in principle.

250 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

REGRESSAND

DA
VI

D

SA
YA

N
I

JO
SE

M
AR

K

AN
N

JIM G
AN

DH
I

SH
RE

K

SP
ID

ER
M

AN

TE
RM

IN
AT

O
R

bo
ri

ng

fa
m

ily
 fu

n

ac
tio

n

lu
di

cr
ou

s

co
m

ic
s

RA
TI

N
G

5

1

2

4

REGRESSORS

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0

0 0

0

0

0

0

0 0

0

0

0

0 0

00

0 0

0

00 0

0

0

0

0 0 0 0

0

0 0 0

00 0

0 1 1 1 1

USERS ITEMS TAGS

Figure 8.8: An example of a sparse regression modeling problem with heterogeneous at-
tributes

Consider the use of a regression methodology in this setting. For example, the simplest
possible prediction would be use linear regression with the variables x1 . . . xp.

ŷ(x) = b+

p∑

i=1

wixi (8.11)

Here, b is the bias variable and wi is the regression coefficient of the ith attribute. This
is in an almost identical form to the linear regression discussed in Sect. 6.2 of Chap. 6,
except that we have explicitly used a global bias variable b. Although this form can provide
reasonable results in some cases, it is often not sufficient for sparse data in which a lot of
information is captured by the correlations between various attributes. For example, in a
recommender system, the co-occurrence of a user-item pair is far more informative than
the separate coefficients of users and items. Therefore, the key is to use a second-order
regression coefficient sij , which captures the coefficient of the interaction between the ith
and jth attribute.

ŷ(x) = b+

p∑

i=1

wixi +

p∑

i=1

p∑

j=i+1

sijxixj (8.12)

Note that one could also include the second-order term
∑p

i=1 siix
2
i , although xi is often

drawn from sparse domains with little variation in nonzero values of xi, and the addition of
such a term is not always helpful. For example, if the value of xi is binary (as is common),
the coefficient of x2

i would be redundant with respect to that of xi.
One observation is that the above model is very similar to what one would obtain with

the use of kernel regression with a second-order polynomial kernel. In sparse domains like
text, such kernels often overfit the data, especially when the dimensionality is large and the
data is sparse. Even for an application in a single domain (e.g., short-text tweets), the value
of d is greater than 105, and therefore the number of second-order coefficients is more than
1010. With any training data set containing less than 1010 points, one would perform quite

8.3. FACTORIZATION MACHINES 251

poorly. This problem is exacerbated by sparsity, in which pairs of attributes co-occur rarely
in the training data, and may not generalize to the test data. For example, in a recommender
application, a particular user-item pair may occur only once in the entire training data, and
it will not occur in the test data if it occurs in the training data. In fact, all the user-item
pairs that occur in the test data will not have occurred in the training data. How, then,
does one learn the interaction coefficients sij for such user-item pairs? Similarly, in a short-
text mining application, the words “movie” and “film” may occur together, and the words
“comedy” and “film” may also occur together, but the words “comedy” and “movie” might
never have occurred together in the training data. What does one do, if the last pair occurs
in the test data?

A key observation is that one can use the learned values of sij for the other two pairs
(i.e., “comedy”/“film” and “movie”/“‘film”) in order to make some inferences about the
interaction coefficient for the pair “comedy” and “movie.” How does one achieve this goal?
The key idea is to assume that the d× d matrix S = [sij] of second-order coefficients has a
low-rank structure for some d× k matrix V = [vis]:

S = V V T (8.13)

Here, k is the rank of the factorization. Intuitively, one can view Eq. 8.13 as a kind of regular-
ization constraint on the (massive number of) second-order coefficients in order to prevent
overfitting. Therefore, if vi = [vi1 . . . vik] is the k-dimensional row vector representing the
ith row of V , we have:

sij = vi · vj (8.14)

By substituting Eq. 8.14 in the prediction function of Eq. 8.12, one obtains the following:

ŷ(x) = b+

p∑

i=1

wixi +

p∑

i=1

p∑

j=i+1

(vi · vj)xixj (8.15)

The variables to be learned are b, the different values of wi, and each of the vectors vi.
Although the number of interaction terms might seem large, most of them will evaluate to
zero in sparse settings in Eq. 8.15. This is one of the reasons that factorization machines
are designed to be used only in sparse settings where most of the terms of Eq. 8.15 evaluate
to 0. A crucial point is that we only need to learn the O(d · k) parameters represented by
v1 . . . vk in lieu of the O(d2) parameters in [sij]d×d.

A natural approach to solve this problem is to use the stochastic gradient-descent
method, in which one cycles through the observed values of the dependent variable to
compute the gradients with respect to the error in the observed entry. The update step
with respect to any particular model parameter θ ∈ {b, wi, vis} depends on the error
e(x) = y(x)− ŷ(x) between the predicted and observed values:

θ ⇐ θ(1− α · λ) + α · e(x)∂ŷ(x)
∂θ

(8.16)

Here, α > 0 is the learning rate, and λ > 0 is the regularization parameter. The partial
derivative in the update equation is defined as follows:

∂ŷ(x)

∂θ
=

⎧
⎪⎨

⎪⎩

1 if θ is b

xi if θ is wi

xi

∑p
j=1 vjs · xj − vis · x2

i if θ is vis

(8.17)

252 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

The term Ls =
∑p

j=1 vjs · xj in the third case is noteworthy. To avoid redundant effort,
this term can be pre-stored while evaluating ŷ(x) for computation of the error term e(x) =
y(x)− ŷ(x). This is because Eq. 8.15 can be algebraically rearranged as follows:

ŷ(x) = b+

p∑

i=1

wixi +
1

2

k∑

s=1

⎛

⎝[

p∑

j=1

vjs · xj]
2 −

p∑

j=1

v2js · x2
j

⎞

⎠

= b+

p∑

i=1

wixi +
1

2

k∑

s=1

⎛

⎝L2
s −

p∑

j=1

v2js · x2
j

⎞

⎠

Furthermore, the parameters vi and wi do not need to be updated when xi = 0. This allows
for an efficient update process in sparse settings, which is linear in both the number of
nonzero entries and the value of k.

Factorization machines can be used for any (massively sparse) classification or regression
task; ratings prediction in recommender systems is only one example of a natural applica-
tion. Although the model is inherently designed for regression, binary classification can be
handled by applying the logistic function on the numerical predictions to derive the proba-
bility whether ŷ(x) is +1 or −1. The prediction function of Eq. 8.15 is modified to a form
used in logistic regression:

P [y(x) = 1] =
1

1 + exp(−[b+
∑p

i=1 wixi +
∑p

i=1

∑p
j=i+1(vi · vj)xixj])

(8.18)

Note that this form is identical to that used in Eq. 6.32 of Chap. 6. The main difference
is that we are also using second-order interactions within the prediction function. A log-
likelihood criterion can be optimized to learn the underlying model parameters with a
gradient-descent approach [172, 403, 404].

The description in this section is based on second-order factorization machines that
are popularly used in practice. In third-order polynomial regression, we would have O(p3)
additional regression coefficients of the form wijk, which correspond to interaction terms of
the form xixjxk. These coefficients would define a massive third-order tensor, which can
be compressed with tensor factorization. Although higher-order factorization machines have
also been developed, they are often impractical because of greater computational complexity
and overfitting. A software library, referred to as libFM [404], provides an excellent set of
factorization machine implementations. The main task in using libFM is an initial feature
engineering effort, and the effectiveness of the model mainly depends on the skill of the
analyst in extracting the correct set of features. Other useful libraries include fastFM [42]
and1 libMF [581], which have some fast learning methods for factorization machines.

8.4 Joint Probabilistic Modeling Techniques

Probabilistic modeling techniques like expectation-maximization and näıve Bayes can be
naturally used with heterogeneous data, because different data modalities are generated by
different distributions. In other words, the individual data instances contain elements from
all the different domains, which are generated from different domain-specific distributions.
In fact, methods like collective topic modeling [130, 131] can be viewed as probabilistic
variants of shared matrix factorization.

1The libraries libFM and libMF are different.

8.4. JOINT PROBABILISTIC MODELING TECHNIQUES 253

For ease in discussion, consider a setting in which each data instance contains attributes
corresponding to the text, numerical, and categorical domains. Therefore, we will assume
that there are a total of n data instances denoted by the vectors X1 . . . Xn. Each data

instance Xi can be segmented into three parts Xi = (Xi
D
, Xi

C
, Xi

N
). Here, Xi

D
contains

the values of the d attributes (word frequencies) for the text portion of the data instances,

Xi
C

contains the values of the attributes for the categorical portion of the data instances,

andXi
N
contains the values of the attributes for the numerical portion of the data instances.

8.4.1 Joint Probabilistic Models for Clustering

It is relatively easy to create generative models for clustering data instances with attributes
of different types. Consider the case in which we wish to use a mixture modeling approach in
order to determine the clusters. Therefore, we will discuss a generalized form of the mixture
modeling approach discussed in Sect. 4.4 of Chap. 4.

We assume that the mixture contains k hidden components (clusters) denoted by
G1 . . .Gk. The value of k is an input parameter to the algorithm. Each iteration of the

generative process creates a particular data instance Xi = (Xi
D
, Xi

C
, Xi

N
). Therefore,

the text, categorical, and numerical components of each instance need to be generated at
the same time. An important assumption made in the generative process is that once the
mixture component has been selected, the text, categorical, and numerical components are
generated in a conditionally independent way by a distribution that is most suitable for
that particular data modality. For example, the following assumptions could be made:

1. The term-frequency component Xi
D

is generated from a multinomial distribution.

2. The categorial component Xi
C

is generated from a categorical distribution.

3. The numerical component Xi
N

is generated rom a Gaussian distribution.

It is noteworthy that the relevant parameters of each distribution are specific to the mixture
component at hand. Therefore, by selecting a particular component, the shape and location
of the relevant cluster is fixed across all data modalities in the form of relevant probability
distributions. Therefore, by independently generating the instances from these three dif-
ferent probability distributions, one can generate the entire data instance. The generative
process uses the following steps:

1. Select the rth mixture component Gr with prior probability αr = P (Gr).

2. Independently generate Xi
D

from the multinomial distribution of the rth compo-

nent, Xi
C
from the categorical distribution of the rth component, and Xi

N
from the

Gaussian distribution of the rth component.

It is relatively easy to adapt the expectation maximization algorithm to this setting. The
key differences lie in the E-step. In the E-step, the goal is to estimate P (Gr|Xi), which is
expressed in the following way using Bayes theorem:

P (Gr|Xi) =
P (Gr) · P (Xi|Gr)

∑k
m=1 P (Gm) · P (Xi|Gm)

(8.19)

254 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

The key point here is that one can express P (Xi|Gr) in terms of the product of the corre-
sponding values over the different data modalities because of conditional independence:

P (Xi|Gr) = P (Xi
D|Gr) · P (Xi

C |Gr)P (Xi
M |Gr) (8.20)

Since each of these quantities has its own (discrete or continuous) probability distribution,
one can compute these values using the current values of the corresponding parameters.
Furthermore, the M-step remains the same as the case of homogeneous data, except that the
parameters of each data modality are estimated independently for each mixture component.
Methods for estimating the parameters of the multinomial distribution for the text modality
are discussed in Sect. 4.4. The estimation of parameters for the numerical and categorical
distributions are discussed in [2].

8.4.2 Näıve Bayes Classifier

It is natural to generalize the näıve Bayes classifier to heterogeneous data using the same
approach as the expectation-maximization algorithm for clustering. This is because the
näıve Bayes classifier can be viewed as a supervised variant of the expectation-maximization
algorithm, in which a single iteration of the M-step is applied to the labeled data in order to
estimate the parameters of each mixture component (class). Furthermore, these estimated
parameters are used to estimate the probability of each class for unlabeled data points with
the Bayes rule, as in the E-step:

P (Gr|Xi) =
P (Gr) · P (Xi|Gr)

∑k
m=1 P (Gm) · P (Xi|Gm)

(8.21)

As in the case of the expectation-maximization algorithm, the quantities on the right-hand
side can be estimated using the product of the corresponding values over the different data
modalities (cf. Eq. 8.20).

8.5 Transformation to Graph Mining Techniques

Many of the heterogeneous text mining problems can be transformed to graph mining
problems. This opens the door to the use of a vast variety of graph mining techniques
like community detection and collective classification [2]. Virtually all the shared matrix
factorization methods discussed in Sect. 8.2 can be addressed with transformation to graph
mining techniques. This is because the factorization graphs discussed in Sect. 8.2 can be
expanded into more detailed relationship graphs.

Consider an undirected social network, in which we have a set of n documents, such
that each document corresponds to a node in the social network. Therefore, we have an
n×d document-term matrix D, and an n×n symmetric and undirectedadjacency matrix of
the social friendship network. Furthermore, it is assumed that a one-to-one correspondence
exists between documents and social actors, representing the content (e.g., summary of all
Facebook wall posts) associated with that actor. This case is discussed in Sect. 8.2.3. In
such a case, we have an n× k node-linkage factor matrix U , and a d× k term factor matrix
V . The relevant factorizations are as follows:

D ≈ UV T , A ≈ UUT (8.22)

8.5. TRANSFORMATION TO GRAPH MINING TECHNIQUES 255

U VD

DOCUMENT FACTORS/
LINK FACTORS

TERM
FACTORS

A UUT
≈ D UVT

≈

A

1

2

3

4

science

golf

gravity

chess

mad

crazy

soccer

DOCUMENTS

TERMS

(a) Factorization graph (b) Relationship graph

Figure 8.9: Expanding a factorization graph into a relationship graph with undirected social
networks

The corresponding factorization graph is illustrated in Fig. 8.3, which is repeated above in
Fig. 8.9a. Furthermore, the corresponding relationship graph is illustrated in Fig. 8.9b. Note
that the document factor node in Fig. 8.9a is now replaced by the actual nodes in the social
network (containing the documents) in Fig. 8.9b. Similarly, the self-loop (labeled by A) in
Fig. 8.9 is replaced by the corresponding links in the adjacency matrix A. The term factor
node in Fig. 8.9a is replaced by the actual terms in Fig. 8.9b. The document-term matrix
is now replaced by links between documents and nodes. It is possible for these edges to
be weighted corresponding to the term-frequencies. It is noteworthy that the relationship
graph is generally undirected, whereas the factorization graph is always directed.

The entire process creates a semi-bipartite network, which can be used in conjunction
with many graph mining algorithms [2] for clustering and classification. The area of graph
mining contains a rich variety of combinatorial algorithms that can be used to gain various
insights. For example, the PageRank techniques discussed in Chap. 9 can also be used with
these network mining algorithms to discover various insights about the relationships between
documents and terms. The broad approach is to use the following steps:

1. Create nodes for the various data instance identifiers (e.g., document identifiers) and
attribute values (e.g., terms) in the data.

2. Create undirected, weighted links depending on the available data matrices across
different domains. These matrices may correspond to document-term matrices, image-
(visual word) matrices, or co-occurrence matrices.

Consider the cross-lingual mining application discussed in Sect. 8.2.6. In this case, we assume
that English and Spanish documents are available as respective document-term matrices DE

and DS . In addition, an explicit mapping between English terms and Spanish terms is avail-
able in a co-occurrence matrix C, where the rows of C correspond to English terms and the
columns correspond to Spanish terms. The factorization graph and a possible relationship
graph are illustrated in Fig. 8.10. In this case, we have used an exact mapping between
the terms of the two languages, although it is also possible to construct the co-occurrence

256 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

matrix with matching pairs of sentences in the two languages. In such a case, a nonzero
entry is placed between an English and Spanish term in C when they co-occur in a matching
pair of sentences. Although such an approach creates noisy co-occurrence links, it can also
capture useful semantic relationships between terms without exact equivalence.

It is evident from Fig. 8.10 that a one-to-one relationship exists between nodes in the
factorization graph, and the various types of nodes in the relationship graph. Furthermore,

VE

ENGLISH
TERM

FACTORS

US
DS

SPANISH
DOCUMENT

FACTORS

UE
DE

ENGLISH
DOCUMENT

FACTORS

DE UEVE
T

≈ DS USVS
T

≈

VS
C

C VEVS
T

≈

SPANISH
TERM

FACTORS

(a) Factorization graph

ENGLISH
DOCUMENTS

science

golf

gravity

chess

happy

cheerful

soccer

ENGLISH
TERMS

ciencia

golf

gravedad

ajedrez

contento

alegre

fútbol

SPANISH
TERMS

E1

E2

E3

E4

E5

E6

E7

E8

E9

S1

S2

S3

S4

S5

S6

S7

S8

S9

SPANISH
DOCUMENTS

(b) Relationship graph

Figure 8.10: Comparing factorization and relationship graphs in cross-lingual text mining

the data matrices in the factorization graph have been expanded into explicit links in
the relationship graph. Once such a network has been constructed, it can be used in the
conjunction with a variety of graph mining algorithms such as the following:

1. Node clustering methods can be used to partition the nodes into disjoint groups and
create a segmentation of both the data instances and terms in all modalities.

2. Collective classification methods can be used to leverage a subset of labeled nodes
(in any modality) to propagate the labels to other nodes with label propagation meth-
ods [2]. A specific approach that uses label propagation with PageRank-like random
walk methods for social networks is discussed in [7].

The main advantage of graph-based transformation techniques is that they allow the use
of broader classes of discrete combinatorial techniques, which are inherently different from
the continuous optimization methods used by techniques like matrix factorization. In many
cases, off-the-shelf graph mining techniques can be used.

8.7. BIBLIOGRAPHIC NOTES 257

8.6 Summary

Text mining applications arise frequently in combination with various types of heteroge-
neous data such as Web links, social links, images, recommender systems, and cross-lingual
data. Shared matrix factorization methods are among the most flexible methods for mining
heterogeneous data sources, and they can be used in both supervised and unsupervised
settings. Factorization machines are closely related to shared matrix factorization meth-
ods, and are particularly suitable for supervised modeling of sparse data. Many mixture
models and their supervised variants like the näıve Bayes classifier can be extended easily
to heterogeneous data domains by modeling a heterogeneous data instance with the use
of conditionally independent data distributions. Finally, many heterogeneous data mining
problems can be transformed to graph mining techniques.

8.7 Bibliographic Notes

Shared matrix factorization has been used for many heterogeneous mining applications with
text data. In particular, the notion of collective matrix factorization is introduced in [448],
which provides a generic view of using matrix factorization methods with shared entity
types. Since topic modeling methods like PLSA are instantiations of nonnegative matrix
factorization, such probabilistic models can also be generalized easily to other domains. For
example, collective topic modeling methods are discussed in [130, 131], and topic-modeling
methods with network regularization are discussed in [332]. The method in [332] is also
referred to as NetPLSA. The work in [462] discusses a topic modeling approach in the
context of heterogeneous networks. The use of matrix factorization methods for community
detection with edge content are discussed in [392]. The link prediction problem was proposed
in [292]. The use of matrix factorization methods for link prediction are discussed in [3, 336].
Numerous methods have also been proposed for transfer learning between text and images
for clustering [513] and classification [125, 540, 391]. A survey of heterogeneous transfer
learning may be found in [14]. Methods for cross-lingual text mining are discussed in [484,
490]. An overview of cross-lingual methods for text mining is provided in [14].

Factorization machines are proposed in [403, 404], and a detailed discussion is provided
in [172]. Although factorization machines have primarily been used in recommender systems,
they have significant potential to be used in other applications like network link prediction
and heterogeneous classification. They are also useful for short-text data, although this
aspect remains relatively unexplored.

An early work that uses a Bayesian approach for hypertext categorization with hyper-
links is provided in [81]. The use of a Bayesian approach for clustering and classification of
text data is provided in [16]. A generative approach for community detection in nodes with
content is proposed in [512]. A discriminative probabilistic approach for combining link and
content in community detection is provided in [514]. A detailed discussion of several node
classification methods with content and structure is provided in [440]. Probabilistic models
that combine content and structure for link prediction are discussed in [11, 186].

A graph-based approach to clustering with structure and content is presented in [538].
A classification technique that uses random walks on derived graphs for classification with
text in social networks is discussed in [7]. Random walks for social media settings with
image, text, and links are discussed in [475]. These walks are used for applications such as
search and recommendations in heterogeneous social media settings.

258 CHAPTER 8. JOINT TEXT MINING WITH HETEROGENEOUS DATA

8.7.1 Software Resources

Numerous software resources are available for performing matrix factorization in scikit-
learn [550] (in Python) and at Weka [553] (in Java). However, most of these matrix fac-
torization methods are designed for homogeneous settings, based on the ideas in Chap. 3.
Most of the shared matrix factorization methods are designed as research prototypes, and
few are available as off-the-shelf software for practical use. The easiest to use software for
heterogeneous data is that of factorization machines [403]. In particular, three different li-
braries are available in the form of libFM [404] (from the original author), libMF [581], and
fastFM [42]. The libMF library also provides access to other matrix factorization methods,
and is different from the similar-sounding libFM library. Many of these libraries have freely
downloadable Python wrappers.

8.8 Exercises

1. Show how to use a factorization machine to perform undirected link prediction in a
social network with content.

2. Show how to convert a link prediction problem with structure and content into a link
prediction problem on a derived graph.

3. Suppose that you have a user-item ratings matrix with numerical/missing values. Fur-
thermore, users have rated each other’s trustworthiness with binary/missing values.

(a) Show how you can use shared matrix factorization for estimating the rating of a
user on an item that they have not already rated.

(b) Show how you can use factorization machines to achieve similar goals as (a).

4. Derive the gradient update equations for using factorization machines in binary clas-
sification with logistic loss. Derive the prediction function and updates for hinge loss.

5. Derive the gradient-descent updates for the optimization problem in Sect. 8.2.5. Dis-
cuss the special case of β = 0.

Chapter 9

Information Retrieval and Search
Engines

“Making a wrong decision is understandable. Refusing to search continually for
learning is not.”—Phil Crosby

9.1 Introduction

Information retrieval is the process of satisfying user information needs that are expressed as
textual queries. Search engines represent a Web-specific example of the information retrieval
paradigm. The problem of Web search has many additional challenges, such as the collection
of Web resources, the organization of these resources, and the use of hyperlinks to aid the
search. Whereas traditional information retrieval only uses the content of documents to
retrieve results of queries, the Web requires stronger mechanisms for quality control because
of its open nature. Furthermore, Web documents contain significant meta-information and
zoned text, such as title, author, or anchor text, which can be leveraged to improve retrieval
accuracy. This chapter discusses the following aspects of information retrieval:

1. What types of data structures are most suitable for retrieval applications? The classi-
cal data structure for enabling search in text is the inverted index, and it is surprisingly
versatile in handling various types of queries. The discussion of the inverted index will
be paired with that of query processing.

2. The additional design issues associated with Web-centric search engines will be dis-
cussed. For example, we will discuss the collection of document resources from the
Web, which is referred to as crawling.

3. How does one decide which Web documents are of high quality? Documents that
are pointed to by many other pages are often considered more reputable, and it is
desirable to assign such documents higher ranks in the search results.

260 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

4. Given a search query, how does one score the matching between the keywords and the
document? This is achieved with the use of information retrieval models. In recent
years, such models have been enhanced with machine learning techniques in order to
account for user feedback.

From the aforementioned discussion, it is evident that the Web-centric application of in-
formation retrieval (i.e., a search engine) has several additional layers of complexity. This
chapter will discuss these additional layers.

The query processing can either provide a 0-1 response (i.e., Boolean retrieval), or it
can provide a score that indicates the relevance of the document to the query. The Boolean
model is the traditional approach used in classical information retrieval in which all results
satisfying a logical keyword query are returned. The scoring model is more common for
queries on very large document collections like the Web, because only a tiny fraction of the
top-ranked results are relevant. Although thousands of Web pages might exactly match the
keywords specified by the user, it is crucial to rank the results with various relevance- and
quality-centric criteria in order to ease the burden on the user. After all, a user cannot be
expected to browse more than ten or twenty of the top results. In such cases, quality-scoring
techniques and learning techniques on user feedback are often used to enhance the search
results. Although traditional forms of information retrieval are unsupervised, a supervised
variant of information retrieval has gained increasing attention in recent years. Search can
be viewed as a ranking-centric variant of classification. This is because a user query to a
document collection is a binary classification problem over the entire corpus in which a label
of “relevant” indicates that the document is relevant, and a label of “non-relevant” indicates
otherwise. This is the essence of the learning-to-rank approach, which is also discussed in
this chapter.

9.1.1 Chapter Organization

This chapter is organized as follows. Indexing and query processing are discussed in the
next section, whereas scoring models are covered in Sect. 9.3. Methods for Web crawling are
discussed in Sect. 9.4. The special issues associated with query processing in search engines
are discussed in Sect. 9.5. The different ranking algorithms such as PageRank and HITS are
discussed in Sect. 9.6. A summary is given in Sect. 9.7.

9.2 Indexing and Query Processing

Queries in information retrieval are typically posed as sets of keywords. The older boolean
retrieval systems were closer to database querying systems in which users could enter sets
of keywords connected with the “AND” and “OR” clauses:

text AND mining
(text AND mining) OR (recommender AND systems)

Each keyword in the aforementioned expression implicitly refers to the fact that the
document contains the relevant keywords. For example, the first query above can be viewed
as the conjunct of two conditions:

(text ∈ Document) AND (mining ∈ Document)

9.2. INDEXING AND QUERY PROCESSING 261

Most natural keyword queries in information retrieval systems are posed as conjuncts.
Because of the ease in providing keywords as sets of relevant terms, it is often implicitly
assumed that a query like “text mining” really refers to a conjunct of two conditions without
explicitly using the “AND” operator. The use of the “OR” operator is increasingly rare in
modern retrieval systems both because of the complexity of using it, and the fact that too
many results are returned with queries containing the “OR” operator unless the individual
conjuncts are very restrictive. In general, the most common approach is to simply pose the
query as a set of keywords, which implicitly uses the “AND” operator. However, search
engines also use the relative ordering of the keywords when interpreting such queries. For
example, the query “text mining” might not yield the same result as “mining text.” For
simplicity in discussion, we will first discuss the case in which queries are posed as sets of
keywords that are implicitly interpreted as conjuncts of membership conditions. Later, we
will show how to extend the approach to more complex settings.

In all keyword-centric queries, two important data structures are commonly used:

1. Dictionary: Given a query containing a set of terms, the first step is to discover
whether that term occurs in the vocabulary of the corpus. If the term does occur in
this vocabulary, a pointer is returned to a second data-structure indexing the docu-
ments containing this term. The second data structure is an inverted list, which is a
component of the inverted index.

2. Inverted index: As the name implies, the inverted index can be viewed as an “inverted”
representation of the document-term matrix, and it comprises a set of inverted lists.
Each inverted list contain the identifiers of documents containing a term. The inverted
index is connected to the dictionary data structure in the sense that the dictionary
data structure contains pointers to the heads of the inverted lists of each term. These
pointers are required during query processing.

For a given query, the dictionary is first used to locate the pointers to the relevant term-
specific inverted lists, and subsequently these inverted lists are used for query processing.
The intersection of the different inverted lists provides the list of document identifiers that
are relevant to a particular query. In practice, too many or too few documents might satisfy
all query keywords. Therefore, other types of scoring criteria such as partial matches and
word positions are used to rank the results. The inverted index is versatile enough to address
such ranking queries, as long as the scoring function satisfies certain convenient additivity
properties with respect to the query terms. In the following, we will describe these query
processing techniques together with their supporting data structures.

9.2.1 Dictionary Data Structures

The simplest dictionary data structure is a hash table. Each entry of the hash table contains
the (1) string representation of the term, (2) a pointer to the first element of the inverted
list of the term, and (3) the number of documents in which the term occurs. Consider a
hash table containing N entries. The data structure is initialized to an array of NULL
values. The hash function h(·) uses the string representation of the term tj to map it to a
random value v = h(tj) in [0, N − 1]. In the event that the vth entry in the hash table is
empty, the term tj is inserted as the vth entry in the hash table. The main problem arises
in cases where the vth entry is already occupied, which results in a collision. Collisions can
be resolved in two ways, depending on the type of hash table that is used:

262 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

Chained hashing: In the case of chained hashing, one creates a linked list of multi-
ple terms, which is pointed to by each hash table entry. When the vth entry is already
occupied, it is first checked whether term tj already exists within the linked list. If this
is the case, then an insertion does not need to be performed. Otherwise, the linked list is
augmented with the term tj , and its length increases by 1. The entries of the linked list
contain the string representation of the term, the number of documents in which it occurs,
and a pointer to the first item on the inverted list of the term. The linked list is maintained
in (lexicographically) sorted order1 to enable faster searching of terms. When a term is to
be checked against the linked list, one simply scans the linked list in sorted order until the
term is found or a lexicographically larger term is reached.

Linear probing: In linear probing, a linked list is not maintained at each position in
the hash table. Rather each position in the hash table contains the meta-information (e.g.,
string representation, inverted list pointer, and inverted list size) for a single term. For a
given term tj , the h(tj)th position is checked to see if it is empty. If the position is empty,
then the string for term tj is inserted at that position along with its meta-information
(document frequency and inverted list pointer). Otherwise, it is checked if the occupied
position already contains term tj . If the occupied position does not contain the term tj ,
the same check is repeated with the [h(tj) + 1]th position. Thus, one “probes” successive
positions h(tj), h(tj)+1, . . . h(tj)+ r, until the term tj is encountered or an empty position
is reached. If the term tj is encountered, then nothing needs to be done, since the hash table
already contains the term tj . Otherwise, the term tj is inserted at the first empty position
encountered during the linear probing process. This probing process is also useful during
query time, when a term needs to be searched in the dictionary to obtain the pointer to its
inverted list.

The hash table data structure does not provide any natural way to identify terms with
closely related spellings. It is often useful to identify such terms as query suggestions to
the user, when they make a mistake in entering a query. For example, if a user enters
the (misspelled) query term “recieve,” it is often desirable to suggest the alternate query
term “receive.” One can find such terms in the context of the hash table data structure by
creating a separate dictionary of misspelled words (from historical queries) together with
the possible spellings that might be correct. A more challenging case arises when users
misspell words to their homonyms. For example, the term “school principle” is most likely
intended to be “school principal.” Such a spelling correction is referred to as a contextual
spelling correction, and it can be detected only by using the surrounding phrase in the form
of a k-gram dictionary of incorrect query phrases.

An alternative that allows the detection of closely related spellings is to implement the
dictionary as a variant of the binary search tree in which terms are stored only at the leaf
levels of the tree, and the internal nodes contain the meta-information in order to find the
relevant leaf efficiently. In the binary search tree, the entire set of terms can be viewed
as a lexicographically sorted list, which is partitioned at some intermediate letter between
‘a’ and ‘z.’ For example, all terms starting with letters between ‘a’ and ‘h’ belong to the
left branch of the tree, whereas all terms starting with letters between ‘i’ and ‘z’ belong
to the right branch of the tree. Similarly, the left branch may be divided into two parts,
corresponding to the beginning portions between [a, de], and [df, h], respectively. This type
of recursive division is shown in Fig. 9.1. The leaf nodes of the binary search tree contain
the actual terms. The process of searching for a term is a relatively simple matter. One only

1A lexicographically sorted order refers to the order in which terms occur in a dictionary.

9.2. INDEXING AND QUERY PROCESSING 263

…….....
………..

CH
EE
TA

H

FE
RR

AR
I

JA
G
U
AR

LI
O
N

PO
RS

CH
E

TI
G
ER

ROOT

Figure 9.1: A binary tree structure for storing a searchable dictionary of terms. The leaf
nodes point to the data structures indexed by the terms, which are the inverted lists.

needs to traverse the path corresponding to the front portion of the query term until the
appropriate leaf node is reached (or it is determined that the binary tree does not contain
the search term).

If the binary tree is relatively well balanced, the search process is efficient because the
depth of the tree is O(log(d)) over a dictionary of d terms. It is often difficult to fully balance
a binary tree in the presence of dynamic updates. One way of creating a more balanced tree
structure is to use a B-Tree instead of a binary search tree. Interested readers are referred
to [427] for details of these data structures. Although the tree-like structures do offer better
search capabilities, the hash table is often the data structure of choice for dictionaries. One
advantage of the hash table is that it has O(1) lookup and insertion time.

9.2.2 Inverted Index

The inverted list is designed to identify all the document identifiers related to a particular
term. Each inverted list or postings list corresponds to a particular term in the lexicon, and
it contains a list of the identifiers of all documents containing the term. Each element of
this list is also referred to as a posting. The document identifiers of the inverted list are
often (but not always) maintained in sorted order to enable efficient query processing and
index update operations. The relevant term frequencies are often stored with document
identifiers.

An example of an inverted representation of a document-term matrix is shown in Fig. 9.2.
The hash-based dictionary data structure, which is tied to this index, is also included in this
figure. Note that the dictionary data structure also contains the document-wise frequency of
each term (i.e., number of occurrences across distinct documents), whereas each individual
posting of the inverted list contains the document-specific term frequency. These additional
statistics are required to compute match-based scores between queries and documents with

264 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

PO
RS

CH
E

CH
EE

TA
H

LI
O

N

JA
G

U
AR

FE
RR

AR
I

2

0

2

332

11

0 0

00

0

0

0

2

1

1 1

1

1

2

1

0

3

1

2

TI
G

ER

DOCID1

2 2 3

2

DOCID2

DOCID3

DOCID4

DOCID5

DOCID6

TIGER (4)

PORSCHE (3)
LION (4)

CHEETAH (4)
JAGUAR (6)

FERRARI (3)

DOCID1 (2) DOCID2 (3) DOCID3 (1) DOCID4 (2)

DOCID4 (1) DOCID5 (1) DOCID6 (1)
DOCID1 (2) DOCID2 (2) DOCID3 (1)

DOCID1 (1) DOCID2 (3) DOCID3 (1) DOCID4 (2)

DOCID1 (2) DOCID2 (3) DOCID3 (1) DOCID4 (3) DOCID5 (1) DOCID6 (2)

DOCID4 (1) DOCID6 (2)

DOCUMENT-TERM MATRIX

HASH-BASED
DICTIONARY

INVERTED LISTS

DOCUMENT
FREQUENCY

TERM FREQUENCY

1 0

0

01

DOCID4 (2)

DOCID5 (1)

Figure 9.2: A hash-based dictionary and an inverted index together with its parent
document-term matrix. The dictionary is used to retrieve the pointer to the first element
of the inverted list during query processing.

inverse document frequency normalization. As we will see later, the postings list might also
contain other meta-data about the position of that term in the document. Such meta-data
can be useful for positional queries.

It is common to use linked lists to store the inverted index when it is maintained in
main memory. Even when inverted lists are too long to be stored in main memory, smaller
portions of them are often maintained in main memory for fast query processing. Linked
lists can be used to insert a document identifier at any position in the inverted list efficiently
by a single pointer deletion and two pointer additions. Therefore, such data structures are
efficient from the perspective of incremental updates. The first element of each inverted
list is pointed to by the entry of the relevant term in the dictionary data structure. This
mapping is crucial for query processing.

One issue with the inverted list is that many of the lists of uncommon or unique terms
are extremely short. Storing such lists as separate files is inefficient. In practical implemen-
tations, multiple inverted lists are consolidated into files on disk, and the dictionary data
structure contains the pointer to the offset in the relevant file on disk. This pointer provides
the first posting in the inverted list of the term being queried.

9.2.3 Linear Time Index Construction

Given a document corpus, how does one create the dictionary and the inverted lists? Modern
computers usually have sufficient memory to maintain the dictionaries in main memory.
However, the construction of inverted lists is a completely different matter. The space
required by an inverted index is of the same magnitude required by a sparse representation of
the document-term matrix within a constant of proportionality (see Exercise 1). A document
corpus is usually too large to be maintained in main memory and so is its inverted index.

9.2. INDEXING AND QUERY PROCESSING 265

Converting one disk-resident representation (i.e., corpus) to another (i.e., inverted index)
is often an inefficient task, if care is not taken to limit the reads and writes to disk. The
most important algorithm design criterion is to minimize random accesses to disk and favor
sequential reads as far as possible during index construction. The following will describe a
linear-time method, which is referred to as single-pass in-memory indexing. The basic idea
is to work with the available main memory and build both the dictionary and inverted index
within the memory until it is exhausted. When memory is exhausted, the current dictionary
and inverted index structure are both stored on disk with care being taken to store the
inverted lists in sorted lexicographic order of the terms. At this point, a new dictionary and
inverted index structure is started, and the entire process is repeated. Therefore, at the end
of the process, one will have multiple dictionaries and inverted index structures. These are
then merged in a single pass through the inverted lists. The following discussion explains
both the phases of multiple index construction and merging.

An important assumption is that the document identifiers are processed in sorted order,
which is easy to implement when the document identifiers are created during index con-
struction. The practical effect of this design choice is that the elements of the inverted lists
are arranged in sorted order as identifiers are appended to the end of each list. Furthermore,
the document identifiers in the list of an earlier block are all strictly smaller than those in a
later block, which enables easy merging of these lists. The approach starts by initializing a
hash-based dictionary H and an inverted index I, to empty structures and then updating
them as follows:

while remaining memory is sufficient to process next document do begin
Parse next document with identifier DocID;
Extract set S of distinct terms in DocID with term frequencies;
Use H to identify existing and new terms in S;
For each new term in S, create a new entry in H pointing to a newly created

singleton inverted list in I containing DocID and term frequency;
For each existing term in S, add DocID to end of corresponding inverted list

in I together with the term frequency;
end while
Sort the entries of H in lexicographic order of term;
Use the sorted entries of H to create a single disk file containing

the inverted lists of I in lexicographic order of term;
Store sorted dictionary H on disk containing file offset pointers to inverted lists;

The sorted dictionaries can be stored on disk as lists of sorted term-string/document-
frequency/offset triplets rather than as hash tables. After processing the entire corpus,
the (multiple) disk files containing partial inverted indexes need to be merged. Let these
disk files containing the inverted lists be denoted by I1, I2, . . . Ik. The merging is a simple
matter because (1) each inverted list in Ij is sorted by document identifier, (2) the different
inverted lists within each Ij are arranged in lexicographically sorted order of term, and (3)
all document identifiers in earlier block writes are smaller than the document identifiers in
later block writes. The conditions (1) and (3) are consequences of the fact that document
identifiers are selected (or created) in sorted order for parsing. An example of two partial
indexes containing three documents each is shown in Fig. 9.3. Note that the first index only
contains sorted lists with document identifiers between DocId1 and DocId3, whereas the
second index contains sorted inverted lists with document identifiers between DocId4 and
DocId6. Therefore, the merged and sorted list of any term (e.g., Jaguar) can be obtained
by concatenating one list after the other.

In order to merge the inverted lists, one can simultaneously open all the files containing
I1 . . . Ik and H1 . . .Hk. We do not need to read these files in memory but scan them
sequentially in order to process each term in sorted order. The merging can be achieved

266 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

TIGER (4)

PORSCHE (3)
LION (4)

CHEETAH (4)
JAGUAR (6)

FERRARI (3)

DOCID1 (2) DOCID2 (3) DOCID3 (1) DOCID4 (2)

DOCID4 (1) DOCID5 (1) DOCID6 (1)

DOCID1 (1) DOCID2 (3) DOCID3 (1) DOCID4 (2)

DOCID1 (2) DOCID2 (3) DOCID3 (1) DOCID4 (3) DOCID5 (1) DOCID6 (2)

DOCID4 (1) DOCID6 (2)

DOCID1 (2) DOCID2 (2) DOCID3 (1)

DOCID1 (2) DOCID2 (2) DOCID3 (1)LION (3)

CHEETAH (3)
JAGUAR (3)

TIGER (3)

DOCID1 (1) DOCID2 (3) DOCID3 (1)
DOCID1 (2) DOCID2 (3) DOCID3 (1)

DOCID1 (2) DOCID2 (3) DOCID3 (1)

LION (1)

CHEETAH (1)

JAGUAR (3)

TIGER (1)
PORSCHE (3)

FERRARI (3)

DOCID4 (2)
DOCID4 (1) DOCID5 (1) DOCID6 (2)

DOCID4 (3) DOCID5 (1) DOCID6 (2)

DOCID4 (2)

DOCID4 (1) DOCID5 (1) DOCID6 (1)

DOCID4 (2)

MERGE

SORTED
DICTIONARY

AS LIST

HASH-BASED
DICTIONARY

DOCID4 (2)

DOCID5 (1)

Figure 9.3: Merging a pair of partial indexes

with a simultaneous linear scan of the different files, because the inverted lists of various
terms are stored in lexicographically sorted order. For any particular term, its inverted
list is identified in each block (if it exists), and these lists are simply concatenated. The
lists of later blocks are concatenated after those of earlier blocks to ensure that document
identifiers remain in sorted order. At the same time, the dictionary of the merged index is
created from scratch. For each term-specific merging, a new entry is added to the dictionary
containing the pointer to the merged postings list and the number of documents containing
that term (which is the length of the merged list). It is also possible to create the index
without processing the document identifiers in sorted order, although doing so will increase
the running time slightly (see Exercise 2).

9.2.4 Query Processing

Query processing is of two types. One of them is Boolean retrieval, in which documents are
returned only when they exactly match a particular query. There is no focus on ranking
the results, even when a large number of them are returned. Furthermore, in the Boolean
retrieval model, one can construct Boolean expressions for queries containing “AND,” “OR,”
and “NOT,” whereas ranked retrieval generally uses free text queries. As a practical matter,
however, ranked retrieval is almost always necessary in order to distinguish between the
varying levels of matches between target queries and documents.

9.2.4.1 Boolean Retrieval

In Boolean retrieval, results are returned depending on whether or not they match a par-
ticular query. The query can be in forms such as the following:

(text AND mining) OR (data AND mining)
(text OR data) AND mining

9.2. INDEXING AND QUERY PROCESSING 267

The two queries above are actually equivalent, which also reflect the different ways in which
they can be resolved. Consider the case where one wishes to use the first form of the query.
The first step is to use the dictionary data structure in order to locate the terms “text,”
“data,” and “mining,” and their corresponding inverted lists. First, the lists of “text” and
“mining” are intersected into a sorted list L1, and then the lists of “data” and “mining” are
intersected into another sorted list L2. Subsequently, the lists L1 and L2 are merged with
a union operation in order to implement the “OR” operator. An important point about
Boolean retrieval is that the returned results are unordered, and there is a single correct
result set for a given search query.

The following will describe the process of intersecting two sorted lists in linear time.
Assume that each inverted list is defined as a linked list in which the document identifiers
are in sorted order. Then, the algorithm uses two pointers, which are initialized to the
beginning of the two lists. These pointers are used to scan through the two linked lists in
order to identify common document identifiers. The query-result list, which is denoted by
Q, is initialized to the empty list. If the document identifiers at the current pointer values
in the two inverted lists are the same, then this document identifier is appended to the end
of Q and both pointers are incremented by 1. Otherwise, it is determined which pointer
corresponds to the smaller document identifier. Consider the case where the pointer of the
list corresponding to the keyword “mining” has the smaller document identifier. The pointer
to the inverted list for “mining” is incremented until the corresponding document identifier
is either the same or larger than that of “text.” This process of advancing the pointers to
the two lists is continued (with the list Q growing continuously) until the end of at least
one of the lists is reached. When the intersection of more than two lists is performed in
succession, it is advisable to start with the most restrictive pair of words first to perform
the intersection, so that the size of the intermediate result is as small as possible. In other
words, the inverted lists are used in decreasing order of inverse document frequency in the
intersection process. This is done in order to ensure that smaller documents are processed
first. The process of merging two lists with the “OR” operator uses a similar approach as
that of intersection (see Exercise 3).

9.2.4.2 Ranked Retrieval

Boolean retrieval is rarely used in information retrieval and search engines, because it pro-
vides no understanding of the ranking of the retrieved results. Even though the Boolean
retrieval model does allow the ability to combine different logical operators to create po-
tentially complex queries, the reality is that it is often cumbersome for the end user to
effectively use this type of functionality. Most practical applications use free text queries,
in which users specify sets of keywords. Although a free text query can be interpreted in
terms of maximizing the match over the query keywords, there are often many other factors
that influence the matching. In ranked retrieval, the results need to be scored and ranked in
response to the query, and the system often performs this type of ranking using a variety of
different factors (e.g., relative positions of terms in document or document quality) that are
not always specified explicitly in the query. In this sense, ranked retrieval allows the use of
a variety of different models for retrieving search results, and there is no single model that is
considered fundamentally “correct” in a way that can be crisply defined. This is a different
concept from Boolean retrieval, in which the correct set of results is exactly defined, and
the returned results are unordered.

For large-scale applications like Web search, the Boolean relevance of the (possibly
thousands of) documents to a set of search terms is not quite as important as ensuring

268 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

that the tiny set of results at the very top of the search are relevant to the user. This is a far
more difficult problem than Boolean search, and many aspects of it have a distinct machine
learning flavor. Although one can restrict the search results based on relevance criteria
(e.g., all query terms must be present), the ability to correctly score the large number of
valid search results remains exceedingly important in these settings. Most natural scoring
functions satisfy the following properties:

1. The presence of a term in the document that matches a query term increases the
score, and the score increases with the frequency of the term.

2. Matching terms that are rarely present in the document collection (i.e., terms with
high inverse document frequency) increase the score to a greater degree. This is be-
cause rare terms are less likely to be matched by chance.

3. The score of candidate documents with longer length is penalized because terms might
be matched to the query purely by chance.

The cosine similarity function with tf-idf normalization satisfies all of the above properties,
although it does not account for many factors used in modern search engines such as the
ordering of the terms or their proximity. Furthermore, when multiple factors are used for
computing similarity, it is helpful to be able to weight the relative importance of these
factors. This problem has the flavor of supervised learning, which leads to the notion of
machine learning in information retrieval. This section will provide a broad overview of the
index structures, query processing, and scoring functions, whereas Sect. 9.3 will focus more
deeply on the basic principles with which various scoring functions are designed.

There are two fundamental paradigms for query processing in ranked retrieval, which
correspond to term-at-a-time and document-at-a-time query processing with the inverted
index. Many nicely behaved scoring functions like the cosine can be computed using either
paradigm because they can be expressed as additive functions over query terms. However,
the document-at-a-time processing is more convenient for complex functions that use var-
ious factors involving multiple terms, such as the relative positions of the terms. In both
cases, the document identifiers are accessed using the inverted lists and their scores are con-
tinually updated using accumulator variables (each of which is associated with a document
identifier). In the following, we will describe each of these paradigms.

9.2.4.3 Term-at-a-Time Query Processing with Accumulators

Accumulators are intermediate aggregation variables that can help in evaluating surprisingly
general scoring functions between queries and documents, as long as the scoring function
is computed in an additive way over the target query terms. For small subsets of query
terms, even more general functions incorporating positional information between terms can
be computed with accumulators. Consider a query Q = (q1 . . . qd) with a small number of
query terms in which most values of qi are 0. Consider a document X = (x1 . . . xd) defined
over the same lexicon of size d. Now consider a simple scoring function F (X,Q) of the
following form:

F (X,Q) =
∑

j:qj>0

g(xj , qj) (9.1)

Note that the summation is only over the small number of terms satisfying qj > 0, and g(·, ·)
is another function that increases with both xj and qj . For example, using g(xj , qj) = xjqj
yields the dot product, which is the unnormalized variant of the cosine function.

9.2. INDEXING AND QUERY PROCESSING 269

The inverted lists of all the terms with qj > 0 are accessed one after another to perform
the scoring. Every time a new document identifier is encountered on an inverted list, a new
accumulator needs to be created to track the score of that document. For each document
identifier encountered on the inverted list of a query term with qj > 0, the value of g(xj , qj)
is added to the accumulator of that document identifier. In cases where the corpus is large,
too many document identifiers might be encountered and one might run out of space to
create new accumulators. There are several solutions for addressing this issue. First, the
inverted lists should always be accessed in decreasing order of inverse document frequency,
so that the most number of terms are used when one runs out of memory. Furthermore, since
the terms with higher inverse document frequency are assumed to be more discriminative,
this ordering is also helpful in ensuring that the accumulators are more likely to be assigned
to relevant documents. A hash table is used to keep track of the accumulators for various
documents. When one runs out of memory in the hash table, the results are returned with
respect to only2 those identifiers that have been encountered so far. New accumulators are
no longer added because such documents are not assumed to be strong matches. However,
the counts of existing accumulators continue to be updated.

Finally, the documents with the largest accumulators are returned. The näıve approach
would be to scan the accumulators to identify the top-k values. A more efficient approach is
to scan the accumulator values and maintain the top-k in a min-heap (i.e., a heap containing
the minimum value at the root). The heap is initialized by inserting the first k scanned
accumulators. Subsequent accumulators are compared with the value at the root of the
heap, and dropped if they are less than the value at the root. Otherwise, they are inserted
into the heap, and the minimum value at the root is deleted. This approach requires time
that is O(na · log(k)) time, where na is the number of accumulators.

It is noteworthy that term-at-a-time query processing does not require the elements
on the inverted list to be sorted by document identifier. In fact, for term-at-a-time query
processing, it makes sense to sort the lists by decreasing order of term-frequency in the
various document identifiers and use only those documents whose term-frequency is above
a particular threshold. Furthermore, one can also handle more general functions than Eq. 9.1,
which are of the following form:

F (X,Q) =

∑
j:qj>0 g(xj , qj)

G(X)
+ α ·Q(X) (9.2)

Here, G(X) is some normalization function (like the length of the document), α is a param-
eter, and the function Q(X) is some global measure of the quality of the document (such
as the PageRank of Sect. 9.6.1). It is not difficult to see that the cosine is a special case3 of
this measure. It is also assumed that such global measures for document normalization or
quality are pre-stored up front in a hash table indexed by document identifier. This type
of scoring function can be addressed by using an additional processing step at the end in
which the values of G(X) and Q(X) are accessed from the hash table to adjust the scores.

2If all query terms must be included in the result, then the intersection of the inverted lists can be
performed up front and accumulators are assigned only to document identifiers that lie in this intersection.
There are many such index elimination tricks that one can use to speed up the process.

3One can set Q(X) = 0 and select G(X) to be the length of document X. Normalization with the query
length is not necessary because it is constant across all documents and does not change the relative ranking.

270 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

9.2.4.4 Document-at-a-Time Query Processing with Accumulators

Unlike the term-at-a-time query processing paradigm, the document-at-a-time approach
requires each inverted list to be sorted by document identifier. The document-at-a-time
approach can handle more general query functions than the term-at-a-time approach be-
cause it accesses all the inverted lists for the query terms simultaneously in order to identify
all the query-specific meta-information associated with a document identifier. For a given
query vector Q = (q1 . . . qd), let ZX,Q represent all the meta-information in the document X
about the matching terms in the document with respect to the query. This meta-information
could correspond to the position of the matching terms in the document X, the portion of
the document in which matching terms lie, and so on. As we will discuss later, such meta-
information can often be stored along with the inverted lists. Then, consider the following
scoring function, which is a generalization of Eq. 9.2:

F (X,Q) =
H(ZX,Q)

G(X)
+ α ·Q(X) (9.3)

Here, G(X) and Q(X) are global document measures as in Eq. 9.2. The function H(ZX,Q)
is more general than the additive form of Eq. 9.2 because it could include the effect of the
interaction of multiple query terms. This function could, in principle, be quite complex and
include factors such as the positional distance between the query terms in the document.
However, to enable such a query, the inverted index needs to contain the meta-information
about the positions of query terms (cf. Sect. 9.2.4.7).

In such a case, one simultaneously traverses the inverted list for each term tj satisfying
qj > 0 (i.e., terms included in the query). As in the case of list intersection, one traverses each
of the sorted lists in parallel until one reaches the same document identifier. At this point,
the value of H(ZX,Q) is computed (using the meta-information associated with document
identifiers) and added to the accumulator variable for that document identifier. The other
post-processing steps in document-at-a-time querying are identical to those of term-at-a-
time query processing. If the space for accumulator variables is limited, the document-at-
a-time processing maintains the best scores so far, which turns out to be a more sensible
approach for obtaining the best results. In such cases, it might also make sense to incorporate
the impact of global document measures like G(X) and Q(X) at the time the document is
processed rather than leaving it to the post-processing phase.

Although it is possible to enable scoring functions like Eq. 9.3 with term-at-a-time query-
ing, it increases the space overhead in impractical ways. One would need to store all the
meta-information in the traversed lists along with the accumulator variables and then eval-
uate Eq. 9.3 in the final step.

9.2.4.5 Term-at-a-Time or Document-at-a-Time?

The two schemes have different advantages and disadvantages. The document-at-a-time ap-
proach allows the maintenance of the best k results found so far dynamically. Furthermore,
the types of queries that can be resolved with document-at-a-time processing are more com-
plex, because one can use the relative positions of terms and other statistics that use the
properties of multiple query terms. On the other hand, the document-at-a-time processing
requires multiple disk seeks and buffers because multiple inverted lists are explored simul-
taneously. In term-at-a-time processing, one can read in large chunks of a single inverted
list at one time in order to perform the processing efficiently.

9.2. INDEXING AND QUERY PROCESSING 271

9.2.4.6 What Types of Scores Are Common?

In many search engines, global meta-features of the document such as its provenance or
its citation structure are included in the final similarity score. In fact, modern search en-
gines often learn the importance of various meta-features (cf. Sects. 9.2.4.9 and 9.2.4.10) by
leveraging user click-through behavior. For example, Eqs. 9.2 and 9.3 contain the parameter
α, which regulates the importance of page quality in ranking. Such a parameter can be
learned using machine learning models from previous user click-through behavior. It needs
to be pointed out that most of the popular scoring functions in information retrieval and
search engines (including advanced machine learning models) can be captured using Eqs. 9.2
and 9.3 by instantiating the various terms in these equations appropriately. Several such
models will be explored in this section and in Sect. 9.3.

9.2.4.7 Positional Queries

It is often desirable for query processing to account for the positions of the query terms.
There are several ways in which the positioning can be taken into account. The first is
to include common phrases as “terms” and created inverted lists for them. However, this
approach greatly expands the term set. Furthermore, for a given query, there are multiple
ways in which one can process the query using either the phrases or the individual terms.

In order to resolve queries with the positional index, the same inverted list is maintained,
except that all the positions of a term in the document are maintained as meta-information
along with a document identifier in the inverted list. Specifically, in the inverted list for any
particular term, the following meta-information is retained along with document identifiers:

DocId, freq, (Pos1, Pos2, . . ., Posfreq)

Here, freq denotes the number of times the term occurs in the document with identi-
fier DocId. For example, if the term “text” occurs at position 7 and 16 in DocId, and
the term “mining” occurs at positions 3, 8, and 23 of DocId, then all these positions are
stored with the document identifiers in the inverted list. Therefore, in the first case, the
meta-information DocId,2, (7, 16) is maintained as one of the entries in the inverted list of
“text,” whereas in the second case, the meta-information DocId,3, (3, 8, 23) is maintained
in one of the entries of the inverted list of “mining.” In this particular case, it is evident
that the term “text” occurs at position 7 in the document with identifier DocId, whereas
the term “mining” occurs at position 8 in the same document. Therefore, it is evident that
the phase “text mining” is present in DocId. For Boolean queries, one will need to check
these positions at the time of intersecting the inverted lists of “text and “mining.”

In ranking queries (like search engines), the relative positions of terms in a document
can affect the scoring function used to quantify the degree to which a document matches
a specific set of keywords in a particular order. Therefore, the queries “text mining” and
“mining text” will not return the same ranking of the results, when using a search engine like
Google. It turns out that this type of query processing can be performed with accumulator
variables, because the effect of relative positioning can be captured by Eq. 9.3. In particular,
the function H(ZX,Q) of Eq. 9.3 should be defined by the search engine architect in order
to capture the impact of term positioning. The natural approach in these cases is to use
document-at-a-time query processing (see page 270).

It is common to combine phrase-based indexes with positional indexes. The basic idea is
to keep track of the commonly queried phrases, and maintain inverted lists for these frequent

272 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

phases in addition to the lists of the individual terms. For a given query, the frequent phrases
in it are combined with positional indexes in order to use the positioning information. How
is such a combination achieved? An important point here is that search engines typically
use free text queries, which are often mapped to an internal representation by the system
with the use of a query parser. In many cases, the query parser can issue multiple queries,
in which phrase indexes are used in combination with positional indexes to yield an efficient
query result. For example, the following approach might be used:

1. The inverted lists of frequent phrases might be used in order to provide a first response
to the query. Note that it is not necessary that the query phrase is frequent and is
available in the index. In such a case, one might try different 2-word subsets of the
query phrase to check if it is available in the inverted index.

2. In the event that sufficient query results cannot be generated using the aforementioned
approach, one might try to use the positional index in order to generate a query result
that scores the documents based on relative proximity of query terms.

The specific heuristic used to resolve a query depends on the goals of the search system at
hand. Modern search engines use a number of query optimizations that include all types of
meta-data about the document to score and rank results. Examples include zoned scoring
and machine learned scoring, which are discussed in Sects. 9.2.4.8 and 9.2.4.9, respectively.
Furthermore, qualitative judgements about the document are inferred based on the co-
citation structure, and incorporated in the final ranking. These issues are discussed in a
later section (cf. Sects. 9.5 and 9.6).

9.2.4.8 Zoned Scoring

In zoned scoring, different parts of a document, such as the author, title, keywords, and
other meta-data are given varying amounts of weight. These different parts are referred to as
zones. Although zones seem similar to fields at first sight, they are different in the sense that
they might contain arbitrary and free-form text. For example, in search engines, the title of
a document is quite important as compared to the body of the document. In some cases,
the zoning can be implemented by simply adding a more important zone to the vector space
representation with a higher weight. For example, the title can be given a higher weight
than the body of the document. However, in most cases, zoning is implemented by storing
the information about the zoning within the inverted list. Specifically, consider the inverted
list of each term that contains the frequency as well as the positioning information. Along
with each positioning information, we also maintain the zone in which the term occurs. In
other words, consider a position-based inverted index in which one of the entries in the
inverted list of “text” is of the form DocId, 2, (7, 16). Therefore there are two occurrences of
the term “text” in DocId with positions 7 and 16, respectively. This type of entry, however,
assumes that the positioning is defined with respect to a document with a single zone. More
generally, the entry can be of the form DocId, 2, (2-Title, 9-Body). In this case, the term
“text” occurs as the second token of the title and the ninth position in the body. This type
of meta-information can be used easily for weighted zone scoring, in which the matched
document identifiers during the intersection of inverted lists are scored based on the specific
zones in which they reside. An important point here is in deciding how much weight to
give each zone. While it is clear that some zones such as the title are more important, the
process of finding specific weights for zones has the flavor of a machine learning algorithm.

9.2. INDEXING AND QUERY PROCESSING 273

9.2.4.9 Machine Learning in Information Retrieval

How can one find the appropriate weights for each zone in an information retrieval setting?
Consider a situation in which the documents of a corpus have r weights w1 . . . wr over the r
zones. Furthermore, the frequencies of a particular document-term combination over these
zones are x1 . . . xr. For simplicity, one can also assume that each xi ∈ {0, 1} depending on
whether the term is present in the zone. However, it is also possible to have non-binary
values of xi. For example, if a term occurs more than once in a ith zone, the value of xi

might be larger than one. In practical settings, many values of xi might be 0. Then, the
contribution of that document-term combination to the scoring is given by

∑r
j=1 wj · xj ,

where wj is an unknown weight. It is relatively easy to compute this type of additive score
with accumulators at query processing time, if one knew the values w1 . . . wr of the weights.
Therefore, the weights are learned up front in offline fashion.

In order to learn the appropriate values of wi, one can use the relevance feedback values
from the user over a set of training queries. The training data contains a set of engineered
features that are extracted from each document in response to a query (such as the zones
in which query words lie) together with a user relevance judgement of whether the docu-
ment is relevant to the corresponding query. The relevance judgement might be a binary
quantity (i.e., relevant/not relevant), a numerical quantification of the relevance judgement,
or a ranking-based judgement between pairs of documents. The Web-centric approach of
collecting relevance feedback leverages user click-through behavior, which is discussed later.

Learning the importance of zones is not the only application of such weight-learning tech-
niques. There is significant meta-information associated with both terms and documents,
whose importance can be learned for query processing. Examples include the following:

1. Document-specific features: The meta-information associated with a document on the
Web, such as its geographical location, creation date, Web linkage-based co-citation
measures (cf. Sect. 9.6.1), number of words in pointing anchor text, or Web domain
can be used in the scoring process. Document-specific meta-data is often independent
of the query at hand, and has been shown to be effective for improving retrieval
performance with machine learning techniques [406].

2. Impact features: The impact of several terms in a scoring function is often regulated
with parameters. For example, the scoring functions of Eqs. 9.2 and 9.3 contain the
parameter α, which regulates the importance of document quality. Sometimes multiple
scoring functions like the cosine, binary-independence model, and the BM25 model
(see Sect. 9.3) can be combined with weights. The importance of these weights can be
learned with user feedback.

3. Query-document pair-specific meta-data: The zones of the document in which query
terms occur and query-term ordering/positioning within the candidate document can
be used in the scoring process.

The scoring function in modern search engines is quite complex and is often tuned using
machine learning. In general, one might have any arbitrary set of parameters wi . . . wm. In
other words, these weight parameters include the zoning weights, and they might represent
the importance of different features x1 . . . xm extracted from a document-query pair. Note
that the same set of features is extracted from any document-query pair, which allows the
learning to be generalized from one query to another. In the zoning example, the features
correspond to the different zones of the documents in which the query words lie, and their
corresponding frequencies. Therefore, if the user feedback data consistently shows the user

274 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

preferentially clicking on search results with query words in the title (over the body), then
this fact will be learned by the algorithm irrespective of the query at hand. This is achieved
with a relevance function R(w1x1, . . . wmxm), which is defined in terms of the weighted
features. For example, a possible relevance function could be as follows:

R(w1x1, . . . , wmxm) =

m∑

j=1

wjxj (9.4)

The values of w1 . . . wm are learned from user feedback. The choice of the relevance function
is a part of search engine design, and virtually all functions that are defined in terms of the
meta-data about matching terms between the query and the target can be modeled with
scoring functions like Eq. 9.3. Such scores can be efficiently computed at query processing
time with accumulators.

It is noteworthy that relevance judgements can also be inferred using implicit feedback
based on user actions rather than their explicit judgements. For example, search engines
provide a large amount of implicit feedback based on user clicks on returned query results.
Such feedback should, however, be used carefully because top-ranked items are more likely
to be clicked by a user, and therefore one must adjust for the rank of the returned items
during the learning process. Consider a situation in which a search engine ranks document
Xj above document Xi, but the user clicks on the document Xi but not Xj . Because of the
preferential clicking pattern of the user, there is evidence that document Xi might be more
relevant than document Xj to the user. In such a case, the training data is defined in terms
of ranked pairs like (Xi, Xj), which indicate relative preference. This type of data is highly
noisy but the saving grace is that copious amounts of it can be collected easily. Machine
learning methods are particularly good at learning from large amounts of noisy data.

For the purpose of this section and the next, each Xi refers to the query-specific features
extracted from the document (e.g., impact features), rather than text vectors. This choice
requires an understanding of the importance of various characteristics of the document-
query pair, such as the impact features, including the use of zones, physical proximities,
ordering of matched words, document authorship, domain, creation date, page citation
structure, and so on. The extraction of the features depending on the match between the
query and the document is an important modeling and feature engineering process, which
depends on the search application at hand. Each of these features either need to be pre-
stored (e.g., document-specific PageRank), or they need to be computed on-the-fly using
accumulators. At query time, they need to be combined using the linear condition in Eq. 9.4.

9.2.4.10 Ranking Support Vector Machines

The previous section discusses the importance of learning methods by extracting m query-
specific features and learning their associated parameters w1 . . . wm in order to quantify
their relevance to a new query. How can one use such pairwise judgements by the end user
in order to learn key parameters such as w1 . . . wm that are used in ranking the results?
This is typically achieved by learning-to-rank algorithms. A classical example of such an
algorithm is the ranking support vector machine, which is also referred to as the ranking
SVM. The ranking SVM uses previous queries to create training data for the extracted fea-
tures. The features for a document contain attributes corresponding to the various zones in
which the query terms occur, meta-information about the document such as its geographical
location, and so on. The training data contains pairs of documents (in this query-centric
representation), denoted by (Xi, Xj), which signifies the fact that Xi should occur earlier

9.2. INDEXING AND QUERY PROCESSING 275

than Xj . We would like to learn W = (w1 . . . wm), so that W ·Xi > W ·Xj for the training
documents Xi and Xj , which contain the query-specific “match” features (see Sect. 9.2.4.9
for examples). Once such weights have been learned from a training corpus (created by past
queries and user feedback), they can be used in real time to rank the different documents.

We will now formalize the optimization model for the ranking SVM. The training data
DR contains the following set of ranked pairs:

DR = {(Xi, Xj) : Xi should be ranked above Xj}
For each such pair in the ranking support vector machine, the goal is learn W , so that
W ·Xi > W ·Xj . However, we impose an additional margin requirement to penalize pairs
where the difference between W ·Xi and W ·Xj is not sufficiently large. Therefore, we would
like to impose the following stronger requirement:

W · (Xi −Xj) > 1

Any violations of this condition are penalized by 1−W ·(Xi−Xj) in the objective function.
Therefore, one can formulate the problem as follows:

Minimize J =
∑

(Xi,Xj)∈DR

max{0, [1− (W · [Xi −Xj])]}+ λ

2
||W ||2

Here, λ > 0 is the regularization parameter. Note that one can replace each pair (Xi, Xj)
with the new set of features Xi−Xj . Therefore, one can now assume that the training data
simply contains n instances of the m-dimensional difference features denoted by U1 . . . Un,
where n is the number of ranked pairs in the training data. In other words, each Up is of
the form Up = Xi −Xj for a ranked pair (Xi, Xj) in the training data. Then, the ranking
SVM formulates the following optimization problem:

Minimize J =

n∑

i=1

max{0, [1−W · Ui]}+ λ

2
||W ||2

One can also write this optimization formulation in terms of the slack penalty C = 1/λ in
order to make it look cosmetically more similar to a traditional SVM:

Minimize J =
1

2
||W ||2 + C

n∑

i=1

max{0, [1−W · Ui]}

Note that the only difference from a traditional support-vector machine is that the class
variable yi is missing in this optimization formulation. However, this change is extremely
easy to incorporate in all the optimization techniques discussed in Sect. 6.3 of Chap. 6. In
each case, the class variable yi is replaced by 1 in the corresponding gradient-descent steps
of various methods discussed in Sect. 6.3. The linear case is particularly easy to extend using
the aforementioned approach, although one can also extend the techniques to kernel SVMs
with some minor modifications. The main point to keep in mind is that kernel SVMs work
with dot products between training instances. In this case, the training instances are of the
form Up = Φ(Xi) − Φ(Xj), where Φ(·) is the nonlinear transformation that is (implicitly)
used by a particular kernel similarity function. Let the kernel similarity function define a
similarity matrix S = [sij] over the training instances so that we have the following:

sij = Φ(Xi) · Φ(Xj) (9.5)

276 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

ID3 ID5 ID9 ID12 ID17 ID18 ID21 ID25 ID28 ID30 ID34 ID37 ID42 ID45 ID50LION

SKIP POINTER SKIP POINTER SKIP POINTER

Figure 9.4: Skip pointers with skip values of 4

In kernel methods, only the similarity values sij are available (as a practical matter) rather
than the explicit transformation.

Consider two training instances Up and Uq in the following form:

Up = Φ(Xi)− Φ(Xj) [Xi ranked higher than Xj]

Uq = Φ(Xk)− Φ(Xl) [Xk ranked higher than Xl]

Then, the dot product between Up and Uq can be computed as follows:

Up · Uq = (Φ(Xi)− Φ(Xj)) · (Φ(Xk)− Φ(Xl))

= {Φ(Xi) · Φ(Xk) + Φ(Xj) · Φ(Xl)} − {Φ(Xi) · Φ(Xl) + Φ(Xj) · Φ(Xk)}
= {sik + sjl}

︸ ︷︷ ︸
Similarly ranked

− {sil + sjk}
︸ ︷︷ ︸

Differently ranked

One can use these pairwise similarity values to adapt the kernel methods discussed in
Sect. 6.3 to the case of the ranking SVM. As a practical matter, however, linear models
are preferable because they can be efficiently used in conjunction with an inverted index
with the use of accumulators. The basic idea here is that the inverted index can be used
in conjunction with all the meta-data available in it to efficiently compute W · Z for a
test (candidate) document Z, once the weights in W have been learned during the (offline)
scoring phase.

9.2.5 Efficiency Optimizations

There are several other optimizations associated with query processing. Some of these opti-
mizations are particularly important in the context of Web retrieval in which the inverted
lists are long and lead to many disk space accesses.

9.2.5.1 Skip Pointers

Skip pointers are like shortcuts in the inverted lists at various positions in order to be able
to skip over irrelevant portions of the lists in the intersection process. Skip pointers are
useful for intersecting lists of unequal size. In such cases, the skip pointers in the longer list
can be useful in performing efficient intersection, because the longer inverted list will have
large segments that are irrelevant to the intersection. Consider a term tj with an inverted
list of length nj . We assume that the inverted list is sorted with respect to the document
identifiers. Skip pointers are placed only at positions in the inverted list of the form s ·k+1
for fixed skip value s and k = 0, 1, 2, . . . , �nj/s�−1. An example of skip pointers with s = 4
is shown in Fig. 9.4.

Now consider the simple problem of intersecting a long list with an extremely short list
of length 1 containing a single document identifier. In order to determine whether or not
the long list contains this document identifier, we simply traverse its skip pointers, until we

9.2. INDEXING AND QUERY PROCESSING 277

identify the segment in which the identifier lies. Subsequently, only this segment is scanned
in order to determine whether or not the document identifier lies inside it. In this case, if
we use s =

√
nj , then it can be shown that at most 2

√
nj traversals will be required. Now,

if we need to intersect a short list of length nt with a longer list of length nj , then we can
repeat this process one by one with elements of the shorter list in sorted order. For best
efficiency, care must be taken to use the starting point in the longer list in each case where
the search for the previous element of the shorter list was concluded. In the worst case,
this approach might incur a small overhead, whereas one will generally do extremely well in
cases where the lists have asymmetric lengths. In general, the use of the square-root of the
length of the inverted list is a good heuristic for setting the skip values. The main drawback
of skip pointers is that they are best suited to static lists that do not change frequently. For
a dynamically changing list, it is impossible to maintain the structured pattern of the skip
pointers without incurring large update overheads.

9.2.5.2 Champion Lists and Tiered Indexes

One problem with the solutions in all of the above cases is that the query processing can
be quite slow for larger collections in which the inverted lists are very long. In such cases,
one typically does not even need all the responses to the query, as long as the top-ranked
results can be identified reasonably accurately.

Since large term frequencies often have a favorable impact on the scores, they can be
used to identify the portions of the inverted lists that are most likely to yield good matches.
A natural approach is to use champion lists, in which only the subset of document iden-
tifiers in which only the top-p documents with highest frequency with respect to a term
are maintained in a truncated inverted list. Any additional meta-information such as term
frequency and term positions can also be maintained along with the document identifiers.
In order to resolve a query, the first step is to determine if a “sufficient” number (say, q) of
documents is returned by using only the champion lists. If a sufficient number of documents
is returned, then one does not need to use the entire inverted index. Otherwise, the query
has to be resolved using the full inverted index. The values of p and q are therefore parame-
ters in this process, which need to be chosen in an application-specific way. Champion lists
are particularly useful in document-at-a-time querying in which inverted lists are sorted by
document identifier. In the event that the inverted lists are sorted in decreasing order of
term frequency (for term-at-a-time querying), the effect of champion lists can be realized
by using only the initial portions of the inverted lists. Therefore, champion lists need not
be explicitly maintained in such cases.

A generalization of the notion of champion lists is the use of tiered indexes. In tired in-
dexes, the idea is that the inverted list only contains the subset of document identifiers with
frequency more than a particular threshold. Therefore, the highest threshold corresponds to
tier 1, which has the shortest inverted lists. The next higher threshold corresponds to tier
2, and so on. If a query can be resolved using only tier 1 lists, then the results are accepted.
Otherwise, the query is processed using the next tier. This approach is continued, until a
sufficient number of results can be returned.

9.2.5.3 Caching Tricks

In query processing systems, large numbers of users might be simultaneously making queries,
as a result of which many inverted lists will be accessed repeatedly. In such cases, it makes
sense to store the inverted lists of frequently queried terms in fast caches for quick retrieval.

278 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

The query processing system first checks the cache to retrieve the inverted list for the term.
If the inverted list is not available in the cache, then the pointer to the disk (available in
the dictionary) is used.

Caches are expensive and therefore only a small fraction of the inverted lists can be
stored. Therefore, one needs an admission control mechanism to decide which inverted lists
to store in the cache. The admission control mechanism must be sufficiently adaptive that
the inverted lists stored in the cache are statistically likely to have been accessed frequently
in the recent past. The time-tested method for achieving this goal is to use a least recently
used (LRU) cache. The cache maintains the last time that each inverted list in it was
accessed. When an inverted list for a term is requested, the cache is checked to see if its
is available. If the inverted list is found in the cache, its time stamp is updated to the
current time. On the other hand, if the inverted list is not found in the cache, it needs
to be accessed from disk. Furthermore, it is now inserted in the cache at the expense of
one or more existing lists in the cache. This is achieved by removing a sufficient number of
least recently used inverted lists from the cache to make room for the newly inserted list.
Refer to the bibliographic notes for pointers to multilevel caching methods that are used in
information retrieval applications.

9.2.5.4 Compression Tricks

Both the dictionary and the inverted index are often stored in compressed form. Although
compression obviously saves on storage, a more important motivation for compression is
that it improves efficiency. This is because smaller files improve the caching behavior of the
system. Furthermore, it takes less time to read a file from disk and load it to main memory.

Dictionaries are often stored in main memory because they require much less space than
the inverted index. However, for some systems even the memory requirements of a dictionary
become a burden. Therefore, one needs to reduce its memory footprint as much as possible
to ensure that it fits in main memory and possibly free up storage for other parts of the
index. How does one allocate memory for the terms in the dictionary? One approach is to
allocate fixed-width for the string representation of the term in a hash-based dictionary. For
example, if 25 characters are allocated for each term in the hash table, but a term like “golf”
requires only four characters. Therefore, 21 characters are being wasted. Furthermore, the
fixed-length approach would cause problems in storage of long terms or phrases with more
than 25 characters. One approach is to allocate space only for pointers within the hash table
to the string representation of each term. Such pointers are referred to as term pointers.
Dictionaries are compressed by concatenating all the terms in the lexicon into a single
string, in which the terms occur in lexicographically sorted order. The delimiters between
two terms can be obtained by using term pointers. Therefore, instead of the hash table, one
now maintains a lexicographically sorted array of entries containing these term pointers.
A term pointer points to the position on the string at which the term starts. Because of
the sorting of both the string dictionary and the array in the same way, the next pointer
in the array also provides the end delimiter of the current term in the string. Aside from
the term pointers, the array also contains a numerical entry with the number of documents
containing the term and the pointer to the first element of the inverted list of the term.
Therefore each entry in the sorted table contains 4 bytes each for two pointers (to terms
and postings), and 4 bytes to store the document frequency. An example of a compressed
dictionary for the example of Fig. 9.2 is shown in Fig. 9.5. When a query is entered by the
user, one needs to efficiently locate the pointer to the relevant inverted lists. To achieve this
goal, binary search can be used on this dictionary with the help of term pointers. Once the

9.2. INDEXING AND QUERY PROCESSING 279

1

1

3

1
3

3

CHEETAHFERRARIJAGUARLIONPORSCHETIGER

IN
VE

RT
ED

 L
IS

TS

SORTED
DICTIONARY

SORTED STRING

TERM POINTERS

Figure 9.5: Compressing a dictionary by avoiding fixed width allocation of terms

relevant entry of the array has been isolated, the pointer to the inverted list can be returned.
For a dictionary containing a million terms of 8 characters per term, the size required by the
string is 8 MB and the size required by the array is 12 MB. Although these requirements
might seem tiny (and unimportant to compress), they do enable the use of very fast caches
or severely constrained hardware settings. One can also use hash tables with dynamically
allocated memory for terms, if space is not at a premium.

Inverted lists can also be compressed. The most common approach is to use variable
byte codes, in which each number is encoded using as many bytes as needed. Only 7 bits
within the byte are used for encoding, and the last bit is a continuation indicator telling
us whether or not the next byte is part of the same number. Therefore any number less
than 27 = 128 requires a single byte, and any number less than 1282 requires at most two
bytes. Most term frequencies in a document are small values less than 128, and they can
be stored in a single byte. However, document identifiers can be arbitrarily long integers.
In the case of inverted lists, which are sorted by document identifier, one can use the idea
of delta encoding.

When the document identifiers are in sorted order, one can store the differences be-
tween consecutive document identifiers using variable byte codes (or any other compression
scheme that favors small numbers). For example, consider the following sequence of docu-
ment identifiers:

23671, 23693, 23701, 23722, 23755, 23812

One does have to store the first document identifier, which is rather large. However,
subsequent document identifiers can be stored as successive offsets, which are the differ-
ences between consecutive values in the aforementioned sequence:

22, 8, 21, 33, 57

These values are also referred to as d-gaps. Each of these values is small enough to be
stored in a single byte in this particular example. Another important point to keep in mind
is that these differences between successive document identifiers will be small for more
frequent terms (with larger inverted lists). This means that larger inverted lists will be
compressed to a greater degree, which is desirable for storage efficiency. This is a recurring
idea in many compression methods where frequently occurring items are represented using
codes of smaller length, whereas rarer items are allowed codes of longer length. We refer
the reader to the bibliographic notes for pointers to various compression schemes.

280 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

9.3 Scoring with Information Retrieval Models

The previous section provides a broad idea of the scoring process in information retrieval
with the use of different types of indexes. A broad picture is provided about the various
types of factors that are used for scoring and ranking documents (e.g., aggregate matches
or proximity of keywords). However, it does not discuss the specific types of models that
are used in information retrieval applications for scoring and ranking documents. Such
models can often be used in combination with relevance judgements by combining them
with weights. It is noteworthy that most of the models in this section can be captured using
scoring functions of the form discussed in Eqs. 9.2 and 9.3. This fact enables the use of
efficient term-at-a-time or document-at-a-time query processing methods for these models
(see page 268).

9.3.1 Vector Space Models with tf-idf

The simplest approach is to use the tf-idf representation discussed in Sect. 2.4 of Chap. 2.
We briefly recap some of the concepts in using the tf-idf representation.

Consider a document collection containing n documents in d dimensions. Let X =
(x1 . . . xd) be the d-dimensional representation of a document after the term extraction
phase. The square-root or the logarithm function may be applied to the frequencies to
reduce the effect of terms that occur too often in a document. In other words, one might
replace each xi with either

√
xi, log(1 + xi), or 1 + log(xi).

It is also common to normalize term frequencies based on their presence in the entire
collection. The first step in normalization is compute the inverse document frequency of
each term. The inverse document frequency idi of the ith term is a decreasing function of
the number of documents ni in which it occurs:

idi = log(n/ni) (9.6)

Note that the value of idi is always nonnegative. In the limiting cases in which a term occurs
in every document of the collection, the value of idi is 0. The term frequency is normalized
by multiplying it with the inverse document frequency:

xi ⇐ xi · idi (9.7)

Once the normalized representation of each document in the corpus is computed, it is used
to respond to similarity-based queries. The most common similarity function is the cosine
function, which is introduced in Sect. 2.5 of Chap. 2.

Consider a target document X = (x1 . . . xd) and the query vector Q = (q1 . . . qd). The
query vector might either be binary or it might be based on term frequencies. The cosine
function is defined as follows:

cosine(X,Q) =

∑d
i=1 xiqi

√∑d
i=1 x

2
i

√∑d
i=1 q

2
i

∝
∑d

i=1 xiqi
√∑d

i=1 x
2
i

=

∑d
i=1 xiqi

||X||

It is sufficient to compute the cosine to a constant of proportionality because we only need
to rank the different instances for a particular query. It is easy to see that this scoring
function is of the form captured by Eqs. 9.2 and 9.3, which can be computed with either
term-at-a-time or document-at-a-time query processing (see pages 268 and 270).

9.3. SCORING WITH INFORMATION RETRIEVAL MODELS 281

9.3.2 The Binary Independence Model

The binary independence model uses binary relevance judgements about training documents
in order to score previously unseen documents with the use of a näıve Bayes classifier. In
particular, the Bernoulli classifier of Sect. 5.3.1 in Chap. 5 is used. Let R ∈ {0, 1} indicate
whether or not a the document is relevant to be particular query. As discussed in Sect. 5.3.1,
the Bernoulli model implicitly assumes that each document X is represented in a vector
space representation with Boolean attributes containing information about whether or not
each term tj is present in X.

Assume that we have some training data available, which tells us whether or not a
document is relevant to a particular query. Note that relevance judgement data that is
query-specific4 is often hard to come by, although one can allow the user to provide feed-
back to query results to collect data about document relevance or non-relevance. Note that
the collected data is useful only for that specific query, which is different from the machine
learning approach of previous sections in which the training data for importance of specific
types of meta-features are learned over multiple queries. In order to use these models with-
out human intervention or training data, we will eventually make a number of simplifying
assumptions. In that sense, these models also provide the intuitions necessary for query
processing without these (query-specific) relevance judgements.

Let p
(0)
j be the fraction of non-relevant documents in the training data (i.e., user rel-

evance judgements) that do not contain term tj , and p
(1)
j be the fraction of documents

containing term tj . Similarly, let α0 be the fraction of non-relevant documents and α1 be
the fraction of relevant documents in the training data. The scoring function for a given
query is represented in terms of the Bayes classification probabilities. We wish to find the
ratio of the probability P (R = 1|X) to that of P (R = 0|X). Based on the results from the
Bernoulli model in Sect. 5.3.1, we can state the following:

P (R = 1|X) =
P (R = 1) · P (X|R = 1)

P (X)
=

α1

∏
tj∈X p

(1)
j

∏
tj �∈X(1− p

(1)
j)

P (X)

P (R = 0|X) =
P (R = 0) · P (X|R = 0)

P (X)
=

α0

∏
tj∈X p

(0)
j

∏
tj �∈X(1− p

(0)
j)

P (X)

Then, the ratio of the two quantities may be computed after ignoring the prior probabilities
(because they are not document-specific and do not affect the ranking):

P (R = 1|X)

P (R = 0|X)
∝
∏

tj∈X p
(1)
j

∏
tj �∈X(1− p

(1)
j)

∏
tj∈X p

(0)
j

∏
tj �∈X(1− p

(0)
j)

(9.8)

The constant of proportionality is used here because the document-independent ratio α1/α0

is ignored in the above expression. We can rearrange the above expression to within a
constant of proportionality and make it dependent only on the terms occurring in X. This
is achieved by multiplying both sides of Eq. 9.8 with a document-independent term, and
then dropping it only from the left-hand side (which retains the proportionality relationship

4In all the previous discussions on machine learned information retrieval, the training data is not specific
to a particular query. However, each set of values of the extracted features is query-specific and multiple
queries are represented in the same training data. The importance of the query-specific values of the meta-
features (e.g., zones, authorship, location) of the document is learned with feedback data.

282 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

because of document-independence):

P (R = 1|X)

P (R = 0|X)
·

∏
tj
(1− p

(0)
j)

∏
tj
(1− p

(1)
j)

︸ ︷︷ ︸
Document Independent

∝
∏

tj∈X p
(1)
j (1− p

(0)
j)

∏
tj∈X p

(0)
j (1− p

(1)
j)

[Multiplying both sides]

P (R = 1|X)

P (R = 0|X)
∝
∏

tj∈X

p
(1)
j (1− p

(0)
j)

p
(0)
j (1− p

(1)
j)

[Dropping document-independent term on LHS]

The logarithm of the above quantity is used in order to compute an additive form of the
relevance score. The additive form of the ranking score is always desirable because it can be
computed using inverted indexes and accumulators, as discussed on page 268. In the binary
independence model, the retrieval status value RSVbi(X,Q) of document X with respect to
query vector Q can be expressed in terms of a summation only over the terms present in
the document X as follows:

RSVbi(X,Q) =
∑

tj∈X

log

(
p
(1)
j (1− p

(0)
j)

p
(0)
j (1− p

(1)
j)

)

(9.9)

For any term tj that is not included in the binary query vector Q, it is assumed that the
term is distributed in a similar way across relevant and non-relevant documents. This is

equivalent to assuming that p
(0)
j = p

(1)
j for terms not in Q, which results in the dropping

of non-query terms from the right-hand side of Eq. 9.9. This results in a retrieval status
value that is expressed only as a summation over the matching terms in the query and the
document:

RSVbi(X,Q) =
∑

tj∈X,tj∈Q

log

(
p
(1)
j (1− p

(0)
j)

p
(0)
j (1− p

(1)
j)

)

(9.10)

An important point here is that the quantities such as p
(0)
j and p

(1)
j are not usually avail-

able on a query-specific basis, unless the human is actively involved in providing relevance
feedback to the results of queries. Some systems do allow the user to actively enter rel-
evance feedback values. In these cases, a list of results is presented to the user based on
some matching model for retrieval. The user then indicates which results are relevant. As a
result, one can now label documents as relevant or non-relevant, which is a straightforward

classification setting. In such cases, the problem of parameter estimation of p
(0)
j and p

(1)
j

becomes identical to the way in which parameters are estimated in the Bernoulli model in
Sect. 5.3.1. As in Sect. 5.3.1, Laplacian smoothing is used in order to provide more robust
estimates of the probabilities. Note that such an approach has to perform the parameter
estimation in real time after receiving the feedback, so that the next round of ranking can
be presented to the user on the basis of computed values of RSVbi(X,Q). If R is the number
of relevant documents out of N documents, and rj is the number of relevant documents

containing term tj out of nj such documents, then the values of p
(0)
j and p

(1)
j are set as

follows:

p
(1)
j =

rj + 0.5

R+ 1
, p

(0)
j =

nj − rj + 0.5

N −R+ 1
(9.11)

The constant values of 0.5 and 1 are respectively added to the numerator and denominator
for smoothing.

9.3. SCORING WITH INFORMATION RETRIEVAL MODELS 283

However, not all systems are able to use the feedback to specific queries in real time.
In such cases, a number of simplifying assumptions are used in order to estimate quantities

such as p
(0)
j and p

(1)
j . For any term tj that is included in the binary query vector Q, the

value of p
(1)
j is assumed to be a large constant5 such as 0.5 (relative to fractional occurrences

of random terms in documents) because the terms in the queries are generally extremely
relevant. However, such terms can also be present in non-relevant documents at a statistical

frequency that is similar to that of the remaining collection. The value of p
(0)
j is computed

based on the statistical frequency of the term tj across the whole collection. The frequency
of the term across the whole collection is nj/n, where nj is the number of documents in
the whole collection in which the term tj occurs and n be the total number of documents.

Then, the value of p
(0)
j is set to nj/n.

Therefore, if relevance feedback is not used, the retrieval status value with the binary
independence model, specific to query Q and candidate document X is given by substituting

p
(1)
j = 0.5 and p

(0)
j = nj/n in Eq. 9.10:

RSVbi(X,Q) =
∑

tj∈X,tj∈Q

log

(
n− nj

nj

)

≈
∑

tj∈X,tj∈Q

log

(
n

nj

)

(9.12)

An alternative version of the expression above is also used, when Laplacian smoothing is
desired:

RSVbi(X,Q) =
∑

tj∈X,tj∈Q

log

(
n− nj + 0.5

nj + 0.5

)

(9.13)

It is easy to see that the expression on the right-hand side of Eq. 9.12 is equal to the sum of
the inverse document frequency (idf) weights over matching terms. Therefore, one can even
view this probabilistic model as a theoretical confirmation of the soundness of using inverse
document frequencies in other similarity functions (e.g., cosine similarity) for computing
matching scores. There are, however, several key differences of this model from the cosine
similarity. First, the term frequencies of documents are not used, and secondly, document
length normalization is missing. The fact that the term frequency is missing is a consequence
of the fact that the documents are treated as binary vectors. Unfortunately, the missing term
frequencies and document-length normalization do hurt the retrieval performance. Never-
theless, the binary independence model provides an initial template for constructing a more
refined probabilistic model using the term frequencies that accounts for the same factors as
the cosine similarity, but is better grounded in terms of probabilistic interpretation. This
model is referred to as the BM25 model, which is discussed in the next section.

9.3.3 The BM25 Model with Term Frequencies

The BM25 model, which is also referred to as the Okapi model, augments the binary in-
dependence model with term frequencies and document length normalization in order to
improve the retrieved results. Let (x1 . . . xd) represent the raw term frequencies in document
X without any form of frequency damping6 or inverse document frequency (idf) normaliza-

5This was one of the earliest ideas proposed by Croft and Harper [119]. However, other alternatives are

possible. Sometimes, a few relevant documents may be available, which can be used to estimate p
(1)
j . The

other idea is to allow p
(1)
j to rise with the number of documents nj containing term tj . For example, one

can use p
(1)
j = 1

3
+

2·nj

3·n [184].
6As discussed earlier, the square root or logarithm is frequently applied to term frequencies to reduce

the impact of repeated words.

284 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

tion. Similarly, let Q = (q1 . . . qd) represent the term frequencies in the query Q. Then, the
retrieval status value RSVbm25(X,Q) is closely related to that of the binary independence
model:

RSVbm25 =
∑

tj∈Q

(

log
p
(1)
j (1− p

(0)
j)

p
(0)
j (1− p

(1)
j)

)

︸ ︷︷ ︸
≈idfj

· (k1 + 1)xj

k1(1− b) + b · L(X) + xj
︸ ︷︷ ︸

doc. frequency/length impact

· (k2 + 1)qj
k2 + qj
︸ ︷︷ ︸

query impact

(9.14)

The values k1, k2, and b are parameters, which respectively regulate impact of document
term frequency, query term frequency, and document length normalization, respectively. The
first term is identical to that in the binary independence model and can be simplified in a
similar way to Eq. 9.13. The second term incorporates the impact of term frequencies and
the document lengths. Small values of k1 lead to the frequencies of the term being ignored,
and large values of k1 lead to linear weighting with the term frequency xj . Intermediate
values7 of k1 ∈ (1, 1.5) have the same effect as that of applying the square-root or logarithm
to the term frequency in order to reduce excessive impact of repeated term occurrences.
The expression L(X) is the normalized length of document X, which is the ratio of its
length to the average length of a document in the collection. Note that L(X) will be larger
than 1 for long documents. The parameter b is helpful for document length normalization.
Setting the value of b to 0 results in no document length normalization, whereas setting
the value of b = 1 leads to maximum normalization. A typical value of b = 0.75 is used.
The parameter k2 serves the same purpose as k1, except that it does so for the query
document frequencies. The choice of k2 is, however, not quite as critical because the query
documents are typically short with few repeated occurrences of terms. In such cases, almost
any choice of k2 ∈ (1, 10) will yield similar results, and in some cases the entire term
for query frequency normalization is dropped. Query length normalization is unnecessary
because it is a proportionality factor that does not affect ranking of documents. Unlike the
binary independence model, the summation is over all the terms in the query Q rather than
only the matching terms between Q and X. However, since the value of xj is multiplicatively
included in the expression, the absence of the query term in a document will automatically
set its retrieval status value to 0. This is important because it means that only documents
with matching terms contribute to the ranking score, and it is possible to perform query
processing with an inverted index. One can express the first term in a data-driven manner,
which is similar to Eq. 9.13:

RSVbm25 =
∑

tj∈Q

(

log
N − nj + 0.5

nj + 0.5

)

︸ ︷︷ ︸
≈idfj

· (k1 + 1)xj

k1(1− b) + b · L(X) + xj
︸ ︷︷ ︸

doc. frequency/length impact

· (k2 + 1)qj
k2 + qj
︸ ︷︷ ︸

query impact

(9.15)

The aforementioned expression is for cases where relevance feedback is not available. If

relevance feedback is available, then the values of p
(0)
j and p

(1)
j in the first term are set using

Eq. 9.11. Since the retrieval status value is computed in an additive way over query terms,
and only matching documents are relevant, one can use the document-at-a-time (page 270)
query processing technique in order to evaluate the score.

7Such values of k1 are recommended in TREC experiments.

9.3. SCORING WITH INFORMATION RETRIEVAL MODELS 285

9.3.4 Statistical Language Models in Information Retrieval

A statistical language model assigns a probability to a sequence of words in a given language
in a data-driven manner. In other words, given a corpus of documents, the language model
estimates the probability that it was generated using this model. The use of language models
in information retrieval is based on the intuition that users often formulate queries based
on terms that are likely to appear in the returned documents. In some cases, even the
ordering of the terms in the query might be chosen on the basis of the expected sequence of
terms in the document. Therefore, if the user creates a language model for each document,
it effectively provides a language model for the query. In other words, the assumption is
that the document and query were generated from the same model. Documents can then be
scored by computing the posterior probability of generating the document from the same
model as the query. This is a fundamentally different notion from the concept of relevance
that is used in the binary independence and BM25 models for ranking documents.

A language model for a document provides a generative process of constructing the
document. The most primitive language model is the unigram language model in which
no sequence information is used and only the frequencies of terms are used. The basic
assumption is that each token in a document is generated by rolling a die independently
from the previous tokens in the document, where each face of the die shows a particular
term. Note that the unigram language model creates a multinomial distribution of terms
in a document, as discussed in Chaps. 4 and 5. Therefore, the unigram language model can
be fully captured by using the probabilities of the different terms in the documents and no
information about the sequence of the terms in the collection.

More complex language models such as bigram and n-gram language models use sequence
information. A bigram language model uses only the previous term to predict the term at a
particular position, and a trigram model uses the previous two words. In general, an n-gram
model uses the previous (n − 1) terms to predict a term at a particular position. In this
case, the parameters of the model correspond to the conditional probabilities of tokens,
given a fixed set of previous (n− 1) tokens. An n-gram model falls in the broad category of
Markovian models, which refers to a short-memory assumption. In this particular case, only
a history of (n− 1) terms in the sequence is used to predict the current term, and therefore
the amount of memory used for modeling is limited by the parameter n. Large values of n
result in theoretically more accurate models (i.e., lower bias), but sufficient data is often
not available to estimate the exponentially increasing number of parameters of the model
(i.e., higher variance). As a practical matter, only small values of n can be used in a realistic
way because of the rapid increase in the amount of data needed to estimate the parameters
at large values of n. A broader discussion of language models is provided in Sect. 10.2 of
Chap. 10, although this section will restrict the discussion to unigram language models. In
general, unigram language models are used frequently because of their simplicity and the
ease in estimation of the parameters with a limited amount of data.

9.3.4.1 Query Likelihood Models

How are language models used for information retrieval? Given a document X, one can
estimate the parameters of the language model, and then compute the posterior probabilities
of X, given the additional knowledge about the query Q. Therefore, the overall approach
may be described as follows:

1. Estimate the parameter vector ΘX of the language model M being used with the
use of each candidate document X in the corpus. For example, if a unigram language

286 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

model is used, the parameter vector ΘX will contain the probabilities of the different
faces of the die that generated X. The value of ΘX can therefore be estimated as
the fractional presence of various terms in X. Note that each parameter vector ΘX is
specific only to a particular document X.

2. For a given query Q, estimate the posterior probability P (X|Q). The documents are
ranked on the basis of this posterior probability.

In order to compute the posterior probability, the Bayes rule is used:

P (X|Q) =
P (X) · P (Q|X)

P (Q)
∝ P (X) · P (Q|X)

The constant of proportionality above is identified as the document-independent term, which
does not affect relative ranking. A further assumption is that the prior probability P (X) is
uniform over all documents. Therefore, we have the following:

P (X|Q) ∝ P (Q|X)

Finally, the value of P (Q|X) is computed by using the underlying language model, whose
parameters were estimated using X. This is the same as estimating P (Q|ΘX).

In the context of a unigram model, this estimation takes on a particularly simple form.
Let ΘX = (θ1 . . . θd) be the probabilities of the different terms in the collection, which were
estimated using X = (x1 . . . xd). The parameter θj can be estimated as follows:

θj =
xj

∑d
j=1 xj

(9.16)

Then, the estimation of P (Q|ΘX) can be accomplished using the multinomial distribution:

P (Q|ΘX) =
d∏

j=1

θ
qj
j (9.17)

Note that the logarithm of Eq. 9.17 is additive in nature, and it can be computed efficiently
with the use of an inverted index and accumulator variables (cf. page 268). Furthermore,
the use of the logarithm avoids the multiplication of very small probabilities.

One way of understanding the query likelihood probability in the context of the unigram
language model is that it estimates the probability that the query is generated as a sample
of terms from the document. Of course, this interpretation would not be true for more
complex language models like a bigram model.

One issue with this estimation is that it would give nonzero scores for a document only
if it contained all the terms in that document. This is because the parameter vector ΘX

is computed using a single document X, which inevitably leads to a lot of zero values in
the parameter vector. One can use the Laplacian smoothing methods that are commonly
used for multinomial distributions, as discussed in Chaps. 4 and 5. Another option is to
use Jelinek-Mercer smoothing, in which the value of θj is estimated using the statistics of
both the document X and the whole collection. Let θXj and θAll

j be these two estimated

values. The parameter θXj is estimated as before, whereas the estimation of θAll
j is simply

he fraction of the tokens in the whole collection that are tj . Then, the estimated value of
θj is a convex combination of these two values with the use of the parameter λ ∈ (0, 1):

θj = λθXj + (1− λ)θAll
j (9.18)

Using λ = 1 reverts to the aforementioned model without smoothing, whereas using λ = 0
causes so much smoothing that all documents tie with the same ranking score.

9.4. WEB CRAWLING AND RESOURCE DISCOVERY 287

9.4 Web Crawling and Resource Discovery

Web crawlers are also referred to as spiders or robots. The primary motivation for Web
crawling is that the resources on the Web are dispensed widely across globally distributed
sites. While the Web browser provides a graphical user interface to access these pages in
an interactive way, the full power of the available resources cannot be leveraged with the
use of only a browser. In many applications, such as search and knowledge discovery, it is
necessary to download all the relevant pages at a central location (or a modest number of
distributed locations), to allow search engines and machine learning algorithms to use these
resources efficiently. In this sense, search engines are somewhat different from information
retrieval applications; even the compilation of the corpus for querying is a difficult task
because of the open and vast nature of the Web.

Web crawlers have numerous applications. The most important and well-known appli-
cation is search, in which the downloaded Web pages are indexed to provide responses to
user keyword queries. All the well-known search engines, such as Google and Bing, employ
crawlers to periodically refresh the downloaded Web resources at their servers. Such crawlers
are also referred to as universal crawlers because they are intended to crawl all pages on the
Web irrespective of their subject matter or location. Web crawlers are also used for business
intelligence, in which the Websites related to a particular subject are crawled or the sites
of a competitor are monitored and incrementally crawled as they change. Such crawlers are
also referred to as preferential crawlers because they discriminate between the relevance of
different pages for the application at hand.

9.4.1 A Basic Crawler Algorithm

While the design of a crawler is quite complex, with a distributed architecture and many
processes or threads, the following describes a simple sequential and universal crawler that
captures the essence of how crawlers are constructed.

A crawler uses the same mechanism used by browsers to fetch Web pages based on the
Hypertext Transfer Protocol (HTTP). The main difference is that the fetching is now done
by an automated program using automated selection decisions, rather than by the manual
specification of a Uniform Resource Locator (URL) by a user with a Web browser. In all
cases, a particular URL is fetched by the system. Both browsers and crawlers typically8

use GET requests to fetch Web pages, which is a functionality provided by the HTTP
protocol. The difference is that the GET request is invoked in a browser when a user clicks
a link or enters a URL, whereas the GET request is invoked in an automated way by the
crawler. In both cases, a domain name system (DNS) server is used to translate the URL
into an internet protocol (IP) address. The program then connects to the server using that
IP address and sends a GET request. In most cases, servers listen to requests at multiple
ports, and port 80 is typically used for Web requests.

The basic crawler algorithm, described in a very general way, uses a seed set of Universal
Resource Locators (URLs) S, and a selection algorithm A as the input. The algorithm A
decides which document to crawl next from a current frontier list of URLs. The frontier list
represents URLs extracted from the Web pages. These are the candidates for pages that
can eventually be fetched by the crawler. The selection algorithm A is important because it
regulates the basic strategy used by the crawler to discover the resources. For example, if new

8Browsers also use POST requests, when additional information is needed by the Web server. For
example, an item is usually bought on the POST request. However, such requests are not used by crawlers
because they might inadvertently causes actions (such as buying), which were not desired by the crawler.

288 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

Figure 9.6: The basic crawler algorithm

URLs are appended to the end of the frontier list, and the algorithm A selects documents
from the beginning of the list, then this corresponds to a breadth-first algorithm.

The basic crawler algorithm proceeds as follows. First, the seed set of URLs is added
to the frontier list. In each iteration, the selection algorithm A picks one of the URLs from
the frontier list. This URL is deleted from the frontier list and then fetched using the GET
request of the HTTP protocol. The fetched page is stored in a local repository, and the
URLs inside it are extracted. These URLs are then added to the frontier list, provided that
they have not already been visited. Therefore, a separate data structure, in the form of a
hash table, needs to be maintained to store all visited URLs. In practical implementations
of crawlers, not all unvisited URLs are added to the frontier list due to Web spam, spider
traps, topical preference, or simply a practical limit on the size of the frontier list. After the
relevant URLs have been added to the frontier list, the next iteration repeats the process
with the next URL on the list. The process terminates when the frontier list is empty. If the
frontier list is empty, it does not necessarily imply that the entire Web has been crawled.
This is because the Web is not strongly connected, and many pages are unreachable from
most randomly chosen seed sets. Because most practical crawlers such as search engines are
incremental crawlers that refresh pages over previous crawls, it is usually easy to identify
unvisited seeds from previous crawls and add them to the frontier list, if needed. With large
seed sets, such as a previously crawled repository of the Web, it is possible to robustly crawl
most pages. The basic crawler algorithm is described in Fig. 9.6.

Thus, the crawler is a graph-search algorithm that discovers the outgoing links from
nodes by parsing Web pages and extracting the URLs. The choice of the selection algo-
rithm A will typically result in a bias in the crawling algorithm, especially in cases where
it is impossible to crawl all the relevant pages due to resource limitations. For example, a
breadth-first crawler is more likely to crawl a page with many links pointing to it. Inter-
estingly, such biases are sometimes desirable in crawlers because it is impossible for any
crawler to index the entire Web. Because the indegree of a Web page is often closely related
to its PageRank, a measure of a Web page’s quality, this bias is not necessarily undesirable.
Crawlers use a variety of other selection strategies defined by the algorithm A.

Because most universal crawlers are incremental crawlers that are intended to refresh
previous crawls, it is desirable to crawl frequently changing pages. The explicit detection of
whether a Web page has been changed can be done at a relatively low cost using the HEAD
request of the HTTP protocol. The HEAD request receives only the header information
from a Web page at a lower cost than crawling the Web page. The header information also
contains the last date at which the Web document was modified. This date is compared
with that obtained from the previous fetch of the Web page (using a GET request). If the
date has changed, then the Web page needs to be crawled again.

The use of the HEAD request reduces the cost of crawling a Web page, although it

9.4. WEB CRAWLING AND RESOURCE DISCOVERY 289

still imposes some burden on the Web server. Therefore, the crawler needs to implement
some internal mechanisms in order to estimate the frequency at which a Web page changes
(without actually issuing any requests). This type of internal estimation helps the crawler in
minimizing the number of fruitless requests to Web servers. Specific types of Web pages such
as news sites, blogs, and portals might change frequently, whereas other types of pages may
change slowly. The change frequency can be estimated from repeated previous crawls of the
same page or by using learning algorithms that factor in specific characteristics of the Web
page. Some resources such as news portals are updated frequently. Therefore, frequently
updated pages may be selected by the algorithm A. Other than the change frequency,
another factor is the popularity and usefulness of Web pages to the general public. Clearly,
it is desirable to crawl popular and useful pages more frequently. Therefore, the selection
algorithm A may specifically choose Web pages with high PageRank from frontier list. The
computation of PageRank is discussed in Sect. 9.6.1. The use of PageRank as a criterion for
selecting Web pages to be crawled is closely related to that of preferential crawlers.

9.4.2 Preferential Crawlers

In the preferential crawler, only pages satisfying a user-defined criterion need to be crawled.
This criterion may be specified in the form of keyword presence in the page, a topical crite-
rion defined by a machine learning algorithm, a geographical criterion about page location,
or a combination of the different criteria. In general, an arbitrary predicate may be specified
by the user, which forms the basis of the crawling. In these cases, the major change is to the
approach used for updating the frontier list during crawling, and also the order of selecting
the URLs from the frontier list.

1. The Web page needs to meet the user-specified criterion in order for its extracted
URLs to be added to the frontier list.

2. In some cases, the anchor text may be examined to determine the relevance of the
Web page to the user-specified query.

3. In context-focused crawlers, the crawler is trained to learn the likelihood that relevant
pages are within a short distance of the page, even if the Web page is itself not directly
relevant to the user-specified criterion. For example, a Web page on “data mining” is
more likely to point to a Web page on “information retrieval,” even though the data
mining page may not be relevant to the query on “information retrieval.” URLs from
such pages may be added to the frontier list. Therefore, heuristics need to be designed
to learn such context-specific relevance.

Changes may also be made to the algorithm A. For example, URLs with more relevant
anchor text, or with relevant tokens in the Web address, may be selected first by algorithm
A. A URL such as http://www.golf.com, with the word “golf” in the Web address may be
more relevant to the topic of “golf,” than a URL without the word in it. The bibliographic
notes contain pointers to a number of heuristics that are commonly used for preferential
resource discovery.

A number of simple techniques, such as the use of PageRank to preferential crawl Web
pages, greatly enhance the popularity of the Web pages crawled. This type of approach en-
sures that only “hot” Web pages are crawled, which are of interest to many users. Therefore,
these types of preferential crawlers are desirable when one has limited resources to crawl
pages, although the goal is often similar to that of a universal crawler algorithm.

http://www.golf.com

290 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

Other types of preferential crawlers include focused crawling or topical crawling. In
focused crawling, the crawler is biased using a particular type of classifier. The first step is
to build a classification model based on an open resource of Web pages such as the Open
Directory9 Project (ODP). When a crawled Web page belongs to a desired category, then
the URLs inside it are added to frontier list. The URLs can be scored in various ways for
ordering on frontier list, such as the level of classifier relevance of their parent Web pages
as well as their recency.

In topical crawling, labeled examples are not available to the crawler. Only a set of seed
pages and a description of the topic of interest is available. In many cases, a description
of the topic of interest is provided by the user with a short query. A common approach
in this case is to use the best-first algorithm in which the (crawled or seed) Web pages
containing the most number of user-specified keywords are selected, and the URLs inside
them are preferentially added to the frontier list. As in the case of focused crawling, the
topical relevance (e.g., matching between query and Web page) of the parent Web pages of
the URLs on frontier list as well as their recency can be used to order them.

9.4.3 Multiple Threads

Crawlers typically use multiple threads to improve efficiency. You might have noticed that
it can sometimes take a few seconds for your Web browser to fulfill your URL request. This
situation is also encountered in a Web crawler, which idles while the server at the other end
satisfies the GET request. It makes sense for Web crawlers to use this idle time in order to
fetch more Web pages. A natural way to speed up the crawling is by leveraging concurrency.
The idea is to use multiple threads of the crawler that update a shared data structure
for visited URLs and the page repository. In such cases, it is important to implement
concurrency control mechanisms for locking or unlocking the relevant data structures during
updates. The concurrent design can significantly speed up a crawler with more efficient use
of resources. In practical implementations of large search engines, the crawler is distributed
geographically with each “sub-crawler” collecting pages in its geographical proximity.

One problem with this approach is that if hundreds of requests are made to the Web
server at a single site, it would result in an unreasonable load on the server, which also
has to serve URL requests from other clients. Therefore, Web crawlers often use politeness
policies, in which a page is not crawled from a Web server, if one has been crawled recently.
This is achieved by creating per-server queues, and disallowing a fetch from a particular
queue, if a page has been crawled from it within a particular time window.

9.4.4 Combatting Spider Traps

The main reason that the crawling algorithm always visits distinct Web pages is that it
maintains a list of previously visited URLs for comparison purposes. However, some shop-
ping sites create dynamic URLs in which the last page visited is appended at the end of
the user sequence to enable the server to log the user action sequences within the URL for
future analysis. For example, when a user clicks on the link for page2 from http://www.
examplesite.com/page1, the new dynamically created URL will be http://www.examplesite.
com/page1/page2. Pages that are visited further will continue to be appended to the end of
the URL, even if these pages were visited before. A natural way to combat this is to limit
the maximum size of the URL. Furthermore, a maximum limit may also be placed on the
number of URLs crawled from a particular site.

9http://www.dmoz.org.

http://www.examplesite.com/page1
http://www.examplesite.com/page1
http://www.examplesite.com/page1/page2
http://www.examplesite.com/page1/page2
http://www.dmoz.org

9.5. QUERY PROCESSING IN SEARCH ENGINES 291

9.4.5 Shingling for Near Duplicate Detection

One of the major problems with the Web pages collected by a crawler is that many duplicates
of the same page may be crawled. This is because the same Web page may be mirrored
at multiple sites. Therefore, it is crucial to have the ability to detect near duplicates. An
approach known as shingling is commonly used for this purpose.

A k-shingle from a document is simply a string of k consecutively occurring words in the
document. A shingle can also be viewed as a k-gram. For example, consider the document
comprising the following sentence:

Mary had a little lamb, its fleece was white as snow.

The set of 2-shingles extracted from this sentence is “Mary had”, “had a”, “a little”,
“little lamb”, “lamb its”, “its fleece”, “fleece was”, “was white”, “white as”, and “as snow”.
Note that the number of k-shingles extracted from a document is no longer than the length
of the document, and 1-shingles are simply the set of words in the document. Let S1 and
S2 be the k-shingles extracted from two documents D1 and D2. Then, the shingle-based
similarity between D1 and D2 is simply the Jaccard coefficient between S1 and S2.

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2| (9.19)

The advantage of using k-shingles instead of the individual words (1-shingles) for Jaccard
coefficient computation is that shingles are less likely than words to repeat in different
documents. There are rk distinct shingles for a lexicon of size r. For k ≥ 5, the chances of
many shingles recurring in two documents becomes very small. Therefore, if two documents
have many k-shingles in common, they are very likely to be near duplicates. To save space,
the individual shingles are hashed into 4-byte (32-bit) numbers that are used for comparison
purposes. Such a representation also enables better efficiency.

9.5 Query Processing in Search Engines

The broad framework for query processing in search engines is inherited from traditional
information retrieval, as discussed in Sects. 9.2 and 9.3. All the data structures introduced
in earlier sections, such as dictionaries (cf. Sect. 9.2.1) and inverted indexes (cf. Sect. 9.2.2)
are used in search engines, albeit with some modifications to account for the large size of
the Web and the immense burden placed on Web servers by the large numbers of queries.

After the documents have been crawled, they are leveraged for query processing. The
following are the primary stages in search index construction:

1. Preprocessing: This is the stage in which the search engine preprocesses the crawled
documents to extract the tokens. Web pages require specialized preprocessing meth-
ods, which are discussed in Chap. 2. A substantial amount of meta-information about
the Web page is also collected, which is often useful in enabling query processing.
This meta-information might include information like the date of the document, its
geographical location, or even its PageRank based on the methodology in Sect. 9.6.1.
Note that measures such as PageRank need to be computed up front because they are
expensive to compute, and cannot be reasonably computed during query processing
time.

292 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

2. Index construction: Most of the data structures discussed in Sect. 9.2 carry over to the
search engine setting. In particular, the inverted indexes are required to respond to
queries, and dictionary data structure is required to map terms to offsets in inverted
files and conveniently access the relevant inverted lists for each term. However, there
are many issues of scalability when using such data structures. For example, the size
of the Google index is of the order of a hundred trillion documents as of 2018, and it
continues to grow over time. In most cases, it becomes cost effective and economical
to build distributed indexes that are highly fault tolerant. Fault tolerance is achieved
by replicating the index over multiple machines. Therefore, distributed MapReduce
methods [128] are often used in the process of index construction.

3. Query processing: This preprocessed collection is utilized for online query processing.
The relevant documents are accessed and then ranked using both their relevance to
the query and their quality. The basic technique of query processing with an inverted
index is discussed in Sect. 9.2.4, and a number of additional information retrieval
models for scoring are discussed in Sect. 9.3. User feedback on search results is of-
ten used to construct machine learning methods on extracted meta-features such as
zones, positional data, document meta-information, and linkage features such as the
PageRank. As long as all these characteristics can be combined in an additive way
to create a score, accumulators can be used in conjunction with inverted indexes for
efficient query processing (cf. page 268). However, query processing in search engines
is more challenging than in a traditional information retrieval system because of the
high volume of the search and the distributed nature of the indexes. In such cases,
the use of techniques like tiered inverted lists and skip pointers becomes essential.
These types of optimizations can lead to large speedups because huge portions of the
inverted lists are not accessed at all.

Some of these issues are discussed in the following subsections.

9.5.1 Distributed Index Construction

In most large search engines, the indexes are distributed over multiple nodes. One can
partition the inverted indexes by storing different inverted lists at different nodes (term-
wise partitioning) or by partitioning the different documents over multiple nodes. Although
partitioning by terms might seem to be natural in the inverted list setting, it creates some
challenges for query processing. Consider a situation, where the user enters the keywords
“text mining” and the inverted lists for “text” and “mining” are located in different nodes.
This means that one now has to send one of the two inverted lists from one node to the other
to perform the intersection operation. This can create inefficiencies during query processing.

On the other hand, document-wise partitioning distributes the documents across dif-
ferent nodes and maintains all the inverted lists for that subset of documents in a single
node. This means that all the intersection operations and intermediate computations can
occur within the individual nodes. However, the global statistics such as the frequencies of
terms in documents (for computing idf) need to be computed in a global way across all
documents using distributed processes and then stored at individual nodes along with the
terms. A hash function is used on each URL in order to distribute the different Web pages
to nodes in a uniform way. For query processing, a given query is first broadcast to all the
nodes, and computations/mergings are performed within the nodes. The top results from
each node are returned and then combined in order to yield the top results for the query.

9.5. QUERY PROCESSING IN SEARCH ENGINES 293

9.5.2 Dynamic Index Updates

Another important issue with search engines is that new documents are continually created
and deleted, which creates problems when multiple inverted lists are stored in a single
file. This is because inserting postings in a single file containing multiple inverted lists will
affect the offset locations of all the postings in the dictionary. Although some techniques
like logarithmic merging are available in the literature, the drawback is that such methods
increase the complexity of query processing, and it is crucially required to very efficient at
query processing time. Therefore, many large search engines periodically reconstruct the
indexes from scratch as new crawled pages are discovered by spiders, and old pages are
removed. The trade-offs associated with different ways of dynamic index maintenance are
discussed in [281].

9.5.3 Query Processing

Web pages have different types of text in them, which can be used for various types of ad hoc
query optimizations. An example is that of treating the anchor and title text differently from
the body of a document during query processing. For a given set of terms in a query, all the
relevant inverted lists are accessed, and the intersection of these inverted lists is determined.
One can use accumulators to score and rank the different documents. Typically, to speed
up the process, two indexes are constructed. A smaller index is constructed on only the
titles of the Web page, or anchor text of pages pointing to the page. If enough documents
are found in the smaller index, then the larger index is not referenced. Otherwise, the larger
index is accessed. The logic for using the smaller index is that the title of a Web page and
the anchor text of Web pages pointing to it, are usually highly representative of the content
in the page.

If only the textual content of a Web page is used, the number of pages returned for
common queries may be of the order of millions or more. Obviously, such a large number of
query results will not be easy for a human user to assimilate. A typical browser interface will
present only the first few (say 10) results to the human user in a single view of the search
results, with the option of browsing other less relevant results. Therefore, the methodology
for ranking needs to be very robust to ensure that the top results are highly relevant, As
discussed in Sect. 9.3, information retrieval techniques always extract meta-features beyond
the tf-idf scores in order to enable high-quality retrieval. While the exact scoring methodol-
ogy used by commercial engines is proprietary, a number of factors are known to influence
the content-based score:

1. A word is given different weights, depending upon whether it occurs in the title,
body, URL token, or the anchor text of a pointing Web page. The occurrence of the
term in the title or the anchor text of a Web page pointing to that page is generally
given higher weight. This is similar to the notion of zoning discussed in Sect. 9.2.4.8.
The weights of various zones can be learned using the machine learning techniques
discussed in Sect. 9.2.4.9.

2. The prominence of a term in font size and color may be leveraged for scoring. For
example, larger font sizes will be given a larger score.

3. When multiple keywords are specified, their relative positions in the documents are
used as well. For example, if two keywords occur close together in a Web page, then
this increases the score.

294 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

4. The most important meta-feature that is used by search engines is a reputation-based
score of the Web page, which is also referred to as the PageRank.

The weighting of many of the aforementioned features during query processing requires the
use of machine learning techniques in information retrieval. When a user chooses a Web
page from among the responses to a search result in preference to earlier ranked results,
this is clear evidence of the relevance of that page to the user. As discussed in Sect. 9.2.4.9
such data can be used by search engines to learn the importance of the various features.
Furthermore, as long as the scoring computation is additive over the various meta-features,
one can use the inverted index in combination with accumulator variables in order to enable
efficient query processing (cf. page 268).

9.5.4 The Importance of Reputation

One of the most important meta-features used in Web search is the reputation, or the
quality, of the page. This meta-feature corresponds to the PageRank. It is important to use
such mechanisms because of the uncoordinated and open nature of Web development. After
all, the Web allows anyone to publish almost anything, and therefore there is little control
on the quality of the results. A user may publish incorrect material either because of poor
knowledge on the subject, economic incentives, or with a deliberately malicious intent of
publishing misleading information.

Another problem arises from the impact of Web spam, in which Website owners inten-
tionally serve misleading content to rank their results higher. Commercial Website owners
have significant economic incentives to ensure that their sites are ranked higher. For exam-
ple, an owner of a business on golf equipment, would want to ensure that a search on the
word “golf” ranks his or her site as high as possible. There are several strategies used by
Website owners to rank their results higher.

1. Content-spamming: In this case, the Web host owner fills up repeated keywords in
the hosted Web page, even though these keywords are not actually visible to the user.
This is achieved by controlling the color of the text and the background of the page.
Thus, the idea is to maximize the content relevance of the Web page to the search
engine, without a corresponding increase in the visible level of relevance.

2. Cloaking: This is a more sophisticated approach, in which the Website serves different
content to crawlers than it does to users. Thus, the Web site first determines whether
the incoming request is from a crawler or from a user. If the incoming request is from
a user, then the actual content (e.g., advertising content) is served. If the request is
from a crawler, then the content that is most relevant to specific keywords is served.
As a result, the search engine will use different content to respond to user search
requests from what a Web user will actually see.

It is obvious that such spamming will significantly reduce the quality of the search results.
Search engines also have significant incentives to improve the quality of their results to
support their paid advertising model, in which the explicitly marked sponsored links ap-
pearing on the side bar of the search results are truly paid advertisements. Search engines
do not want advertisements (disguised by spamming) to be served as bona fide results to
the query, especially when such results reduce the quality of the user experience. This has
led to an adversarial relationship between search engines and spammers, in which the for-
mer use reputation-based algorithms to reduce the impact of spam. At the other end of
Website owners, a Search Engine Optimization (SEO) industry attempts to optimize search
results by using their knowledge of the algorithms used by search engines, either through
the general principles used by engines or through reverse engineering of search results.

9.6. LINK-BASED RANKING ALGORITHMS 295

For a given search, it is almost always the case that a small subset of the results is more
informative or provides more accurate information. How can such pages be determined?
Fortunately, the Web provides several natural voting mechanisms to determine the reputa-
tion of pages. The citation structure of Web pages is the most common mechanism used to
determine the quality of Web pages. When a page is of high quality, many other Web pages
point to it. A citation can be logically viewed as a vote for the Web page. While the number
of in-linking pages can be used as a rough indicator of the quality, it does not provide a
complete view because it does not account for the quality of the pages pointing to it. To
provide a more holistic citation-based vote, an algorithm referred to as PageRank is used.

It should be pointed out, that citation-based reputation scores are not completely im-
mune to other types of spamming that involve coordinated creation of a large number of
links to a Web page. Furthermore, the use of anchor text of pointing Web pages in the
content portion of the rank score can sometimes lead to amusingly irrelevant search results.
For example, a few years back, a search on the keyword “miserable failure” in the Google
search engine, returned as its top result, the official biography of a previous president of
the United States. This is because many Web pages were constructed in a coordinated way
to use the anchor text “miserable failure” to point to this biography. This practice of influ-
encing search results by coordinated linkage construction to a particular site is referred to
as Googlewashing. Such practices are less often economically motivated, but are more often
used for comical or satirical purposes.

Therefore, the ranking algorithms used by search engines are not perfect but have,
nevertheless, improved significantly over the years. The algorithms used to compute the
reputation-based ranking score will be discussed in the next section.

9.6 Link-Based Ranking Algorithms

The PageRank algorithm uses the linkage structure of the Web for reputation-based ranking.
The PageRank method is independent of the user-query, because it only precomputes the
reputation portion of the score. Eventually, the reputation portion of the score is combined
with other content-scoring methods like BM25, and the weights of the different components
are regulated by learning-to-rank methods (e.g., ranking SVM of Sect. 9.2.4.10). The HITS
algorithm is query-specific. It uses a number of intuitions about how authoritative sources
on various topics are linked to one another in a hyperlinked environment.

9.6.1 PageRank

The PageRank algorithm models the importance of Web pages with the use of the citation
(or linkage) structure in the Web. The basic idea is that highly reputable documents are
more likely to be cited (or in-linked) by other reputable Web pages.

A random surfer model on the Web graph is used to achieve this goal. Consider a random
surfer who visits random pages on the Web by selecting random links on a page. The long-
term relative frequency of visits to any particular page is clearly influenced by the number
of in-linking pages to it. Furthermore, the long-term frequency of visits to any page will
be higher if it is linked to by other frequently visited (or reputable) pages. In other words,
the PageRank algorithm models the reputation of a Web page in terms of its long-term
frequency of visits by a random surfer. This long-term frequency is also referred to as the
steady-state probability. This model is also referred to as the random walk model.

296 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

The basic random surfer model does not work well for all possible graph topologies.
A critical issue is that some Web pages may have no outgoing links, which may result in
the random surfer getting trapped at specific nodes. In fact, a probabilistic transition is
not even meaningfully defined at such a node. Such nodes are referred to as dead ends. An
example of a dead-end node is illustrated in Fig. 9.7a. Clearly, dead ends are undesirable
because the transition process for PageRank computation cannot be defined at that node.
To address this issue, two modifications are incorporated in the random surfer model. The
first modification is to add links from the dead-end node (Web page) to all nodes (Web
pages), including a self-loop to itself. Each such edge has a transition probability of 1/n.
This does not fully solve the problem, because the dead ends can also be defined on groups
of nodes. In these cases, there are no outgoing links from a group of nodes to the remaining
nodes in the graph. This is referred to as a dead-end component, or absorbing component.
An example of a dead-end component is illustrated in Fig. 9.7b.

Dead-end components are common in the Web graph because the Web is not strongly
connected. In such cases, the transitions at individual nodes can be meaningfully defined,
but the steady-state transitions will stay trapped in these dead-end components. All the
steady-state probabilities will be concentrated in dead-end components because there can
be no transition out of a dead-end component after a transition occurs into it. Therefore,
as long as even a minuscule probability of transition into a dead-end component10 exists,
all the steady-state probability becomes concentrated in such components. This situation is
not desirable from the perspective of PageRank computation in a large Web graph, where
dead-end components are not necessarily an indicator of popularity. Furthermore, in such
cases, the final probability distribution of nodes in various dead-end components is not
unique and it is dependent on the starting state. This is easy to verify by observing that
random walks starting in different dead-end components will have their respective steady-
state distributions concentrated within the corresponding components.

While the addition of edges solves the problem for dead-end nodes, an additional step is
required to address the more complex issue of dead-end components. Therefore, aside from
the addition of these edges, a teleportation, or restart step is used within the random surfer
model. This step is defined as follows. At each transition, the random surfer may either jump
to an arbitrary page with probability α, or it may follow one of the links on the page with
probability (1−α). A typical value of α used is 0.1. Because of the use of teleportation, the
steady state probability becomes unique and independent of the starting state. The value
of α may also be viewed as a smoothing or damping probability. Large values of α typically
result in the steady-state probability of different pages to become more even. For example,
if the value of α is chosen to be 1, then all pages will have the same steady-state probability
of visits.

How are the steady-state probabilities determined? Let G = (N,A) be the directed Web
graph, in which nodes correspond to pages, and edges correspond to hyperlinks. The total
number of nodes is denoted by n. It is assumed that A also includes the added edges from
dead-end nodes to all other nodes. The set of nodes incident on i is denoted by In(i), and
the set of end points of the outgoing links of node i is denoted by Out(i). The steady-state
probability at a node i is denoted by π(i). In general, the transitions of a Web surfer can be
visualized as a Markov chain, in which an n × n transition matrix P is defined for a Web
graph with n nodes. The PageRank of a node i is equal to the steady-state probability π(i)

10A formal mathematical treatment characterizes this in terms of the ergodicity of the underlying Markov
chains. In ergodic Markov chains, a necessary requirement is that it is possible to reach any state from any
other state using a sequence of one or more transitions. This condition is referred to as strong connectivity.
An informal description is provided here to facilitate understanding.

9.6. LINK-BASED RANKING ALGORITHMS 297

DEAD END

1
1/4

1

1/4

1

1/4 1/31/3
1/4

1/2

3
1/2

1/3

DASHED TRANSITIONS ADDED
TO REMOVE DEAD END

1/2

DEAD END

1 4

4

DEAD END COMPONENT

1/2

2

2

3 5 6

1 1
1/2

1/2

1/2
6

11

(a) Dead-end node (b) Dead-end component

Figure 9.7: Transition probabilities for PageRank computation with different types of dead
ends

for node i, in the Markov chain model. The probability11 pij of transitioning from node i
to node j, is defined as 1/|Out(i)|. Examples of transition probabilities are illustrated in
Fig. 9.7. These transition probabilities do not, however, account for teleportation which will
be addressed12 separately below.

Let us examine the transitions into a given node i. The steady-state probability π(i) of
node i is the sum of the probability of a teleportation into it and the probability that one
of the in-linking nodes directly transitions into it. The probability of a teleportation into
the node is exactly α/n because a teleportation occurs in a step with probability α, and
all nodes are equally likely to be the beneficiary of the teleportation. The probability of a
transition into node i is given by (1−α) ·∑j∈In(i) π(j) · pji, as the sum of the probabilities
of transitions from different in-linking nodes. Therefore, at steady-state, the probability of
a transition into node i is defined by the sum of the probabilities of the teleportation and
transition events are as follows:

π(i) = α/n+ (1− α) ·
∑

j∈In(i)

π(j) · pji (9.20)

For example, the equation for node 2 in Fig. 9.7a can be written as follows:

π(2) = α/4 + (1− α) · (π(1) + π(2)/4 + π(3)/3 + π(4)/2)

There will be one such equation for each node, and therefore it is convenient to write the
entire system of equations in matrix form. Let π = (π(1) . . . π(n))T be the n-dimensional
column vector representing the steady-state probabilities of all the nodes, and let e be an
n-dimensional column vector of all 1 values. The system of equations can be rewritten in

11In some applications such as bibliographic networks, the edge (i, j) may have a weight denoted by wij .

The transition probability pij is defined in such cases by
wij∑

j∈Out(i) wij
.

12An alternative way to achieve this goal is to modify G by multiplying existing edge transition proba-
bilities by the factor (1− α) and then adding α/n to the transition probability between each pair of nodes
in G. As a result G will become a directed clique with bidirectional edges between each pair of nodes. Such
strongly connected Markov chains have unique steady-state probabilities. The resulting graph can then be
treated as a Markov chain without having to separately account for the teleportation component. This
model is equivalent to that discussed in the chapter.

298 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

matrix form as follows:
π = αe/n+ (1− α)PTπ (9.21)

The first term on the right-hand side corresponds to a teleportation, and the second term
corresponds to a direct transition from an incoming node. In addition, because the vector
π represents a probability, the sum of its components

∑n
i=1 π(i) must be equal to 1.

n∑

i=1

π(i) = 1 (9.22)

Note that this is a linear system of equations that can be easily solved using an iterative
method. The algorithm starts off by initializing π(0) = e/n, and it derives π(t+1) from π(t)

by repeating the following iterative step:

π(t+1) ⇐ αe/n+ (1− α)PTπ(t) (9.23)

After each iteration, the entries of π(t+1) are normalized by scaling them to sum to 1. These
steps are repeated until the difference between π(t+1) and π(t) is a vector with magnitude
less than a user-defined threshold. This approach is also referred to as the power-iteration
method. It is important to understand that PageRank computation is expensive, and it
cannot be computed on the fly for a user query during Web search. Rather, the PageRank
values for all the known Web pages are pre-computed and stored away. The stored PageRank
value for a page is accessed only when the page is included in the search results for a
particular query for use in the final ranking. Typically, this stored value is used as one of
the features in a learning-to-rank procedure (cf. Sect. 9.2.4.10).

The PageRank values can be shown to be the n components of the largest left eigen-
vector13 of the stochastic transition matrix P , for which the eigenvalue is 1. However, the
stochastic transition matrix P needs to be adjusted to incorporate the restart within the
transition probabilities. This approach is described in Sect. 11.3.3 of Chap. 11.

9.6.1.1 Topic-Sensitive PageRank

Topic-sensitive PageRank is designed for cases in which it is desired to provide greater
importance to some topics than others in the ranking process. While personalization is less
common in large-scale commercial search engines, it is more common is smaller scale site-
specific search applications. Typically, users may be more interested in certain combinations
of topics than others. The knowledge of such interests may be available to a personalized
search engine because of user registration. For example, a particular user may be more
interested in the topic of automobiles. Therefore, it is desirable to rank pages related to
automobiles higher when responding to queries by this user. This can also be viewed as the
personalization of ranking values. How can this be achieved?

The first step is to fix a list of base topics, and determine a high-quality sample of pages
from each of these topics. This can be achieved with the use of a resource such as the Open
Directory Project (ODP),14 which can provide a base list of topics and sample Web pages
for each topic. The PageRank equations are now modified, so that the teleportation is only

13The left eigenvector X of P is a row vector satisfying XP = λX. The right eigenvector Y is a
column vector satisfying PY = λY . For asymmetric matrices, the left and right eigenvectors are not the
same. However, the eigenvalues are always the same. The unqualified term “eigenvector” refers to the right
eigenvector by default.

14http://www.dmoz.org.

http://www.dmoz.org

9.6. LINK-BASED RANKING ALGORITHMS 299

performed on this sample set of Web documents, rather than on the entire space of Web
documents. Let ep be an n-dimensional personalization (column) vector with one entry for
each page. An entry in ep takes on the value of 1, if that page is included in the sample
set, and 0 otherwise. Let the number of nonzero entries in ep be denoted by np. Then, the
PageRank Equation 9.21 can be modified as follows:

π = αep/np + (1− α)PTπ (9.24)

The same power-iteration method can be used to solve the personalized PageRank problem.
The selective teleportations bias the random walk, so that pages in the structural locality
of the sampled pages will be ranked higher. As long as the sample of pages is a good
representative of different (structural) localities of the Web graph, in which pages of specific
topics exist, such an approach will work well. Therefore, for each of the different topics, a
separate PageRank vector can be precomputed and stored for use during query time.

In some cases, the user is interested in specific combinations of topics such as sports and
automobiles. Clearly, the number of possible combinations of interests can be very large, and
it is not reasonably possible or necessary to prestore every personalized PageRank vector.
In such cases, only the PageRank vectors for the base topics are computed. The final result
for a user is defined as a weighted linear combination of the topic-specific PageRank vectors,
where the weights are defined by the user-specified interest in the different topics.

9.6.1.2 SimRank

The notion of SimRank was defined to compute the structural similarity between nodes.
SimRank determines symmetric similarities between nodes. In other words, the similarity
between nodes i and j, is the same as that between j and i. Before discussing SimRank, we
define a related but slightly different asymmetric ranking problem:

Given a target node iq and a subset of nodes S ⊆ N from graph G = (N,A), rank
the nodes in S in their order of similarity to iq.

Such a query is very useful in recommender systems in which users and items are ar-
ranged in the form of a bipartite graph of preferences, in which nodes corresponds to
users and items, and edges correspond to preferences. The node iq may correspond to an
item node, and the set S may correspond to user nodes. Alternatively, the node iq may
correspond to a user node, and the set S may correspond to item nodes. Refer to [3] for a
discussion on recommender systems. Recommender systems are closely related to search,
in that they also perform ranking of target objects, but while taking user preferences into
account.

This problem can be viewed as a limiting case of topic-sensitive PageRank, in which
the teleportation is performed to the single node iq. Therefore, the personalized PageRank
Equation 9.24 can be directly adapted by using the teleportation vector ep = eq, that is, a
vector of all 0s, except for a single 1, corresponding to the node iq. Furthermore, the value
of np in this case is set to 1.

π = αeq + (1− α)PTπ (9.25)

The solution to the aforementioned equation will provide high ranking values to nodes in
the structural locality of iq. This definition of similarity is asymmetric because the simi-
larity value assigned to node j starting from query node i is different from the similarity
value assigned to node i starting from query node j. Such an asymmetric similarity mea-
sure is suitable for query-centered applications such as search engines and recommender

300 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

systems, but not necessarily for arbitrary network-based data mining applications. In some
applications, symmetric pairwise similarity between nodes is required. While it is possible to
average the two topic-sensitive PageRank values in opposite directions to create a symmetric
measure, the SimRank method provides an elegant and intuitive solution.

The SimRank approach is as follows. Let In(i) represent the in-linking nodes of i. The
SimRank equation is naturally defined in a recursive way, as follows:

SimRank(i, j) =
C

|In(i)| · |In(j)|
∑

p∈In(i)

∑

q∈In(j)

SimRank(p, q) (9.26)

Here C is a constant in (0, 1) that can viewed as a kind of decay rate of the recursion. As
the boundary condition, the value of SimRank(i, j) is set to 1 when i = j. When either i or
j do not have in-linking nodes, the value of SimRank(i, j) is set to 0. To compute SimRank,
an iterative approach is used. The value of SimRank(i, j) is initialized to 1 if i = j, and 0
otherwise. The algorithm subsequently updates the SimRank values between all node pairs
iteratively using Eq. 9.26 until convergence is reached.

The notion of SimRank has an interesting intuitive interpretation in terms of random
walks. Consider two random surfers walking in lockstep backwards from node i and node j
till they meet. Then the number of steps taken by each of them is a random variable L(i, j).
Then, SimRank(i, j) can be shown to be equal to the expected value of CL(i,j). The decay
constant C is used to map random walks of length l to a similarity value of Cl. Note that
because C < 1, smaller distances will lead to higher similarity and vice versa.

Random walk-based methods are generally more robust than the shortest path distance
to measure similarity between nodes. This is because random walks measures implicitly
account for the number of paths between nodes, whereas shortest paths do not.

9.6.2 HITS

The Hypertext Induced Topic Search (HITS) algorithm is a query-dependent algorithm for
ranking pages. The intuition behind the approach lies in an understanding of the typical
structure of the Web that is organized into hubs and authorities.

An authority is a page with many in-links. Typically, it contains authoritative content
on a particular subject, and, therefore, many Web users may trust that page as a resource of
knowledge on that subject. This will result in many pages linking to the authority page. A
hub is a page with many out-links to authorities. These represent a compilation of the links
on a particular topic. Thus, a hub page provides guidance to Web users about where they
can find the resources on a particular topic. Examples of the typical node-centric topology
of hubs and authorities in the Web graph are illustrated in Fig. 9.8a.

The main insight used by the HITS algorithm is that good hubs point to many good
authorities. Conversely, good authority pages are pointed to by many hubs. An example of
the typical organization of hubs and authorities is illustrated in Fig. 9.8b. This mutually
reinforcing relationship is leveraged by the HITS algorithm. For any query issued by the
user, the HITS algorithm starts with the list of relevant pages and expands them with a
hub ranking and an authority ranking.

The HITS algorithm starts by collecting the top-r most relevant results to the search
query at hand. A typical value of r is 200. This defines the root set R. Typically, a query to
a commercial search engine or content-based evaluation is used to determine the root set.
For each node in R, the algorithm determines all nodes immediately connected (either in-
linking or out-linking) to R. This provides a larger base set S. Because the base set S can

9.6. LINK-BASED RANKING ALGORITHMS 301

A

A

HUBA H

A

A
A

H

H

AUTHORITYH A

H
H

A

H

A

H

A

H

HUBS
AUTHORITIES

A

(a) Hub and authority
examples

(b) Network organization between
hubs and authorities

Figure 9.8: Illustrating hubs and authorities

be rather large, the maximum number of in-linking nodes to any node in R that are added
to S is restricted to k. A typical value of k used is around 50. Note that this still results in a
rather large base set because each of the possibly 200 root nodes might bring 50 in-linking
nodes, along with out-linking nodes.

Let G = (S,A) be the subgraph of the Web graph defined on the (expanded) base set
S, where A is the set of edges between nodes in the root set S. The entire analysis of the
HITS algorithm is restricted to this subgraph. Each page (node) i ∈ S is assigned both a
hub score h(i) and authority score a(i). It is assumed that the hub and authority scores are
normalized, so that the sum of the squares of the hub scores and the sum of the squares of
the authority scores are each equal to 1. Higher values of the score indicate better quality.
The hub scores and authority scores are related to one another in the following way:

h(i) =
∑

j:(i,j)∈A

a(j) ∀i ∈ S (9.27)

a(i) =
∑

j:(j,i)∈A

h(j) ∀i ∈ S (9.28)

The basic idea is to reward hubs for pointing to good authorities and reward authorities
for being pointed to by good hubs. It is easy to see that the aforementioned system of
equations reinforces this mutually enhancing relationship. This is a linear system of equa-
tions that can be solved using an iterative method. The algorithm starts by initializing
h0(i) = a0(i) = 1/

√|S|. Let ht(i) and at(i) denote the hub and authority scores of the ith
node, respectively, at the end of the tth iteration. For each t ≥ 0, the algorithm executes
the following iterative steps in the (t+ 1)th iteration:

for each i ∈ S set at+1(i) ⇐∑
j:(j,i)∈A ht(j);

for each i ∈ S set ht+1(i) ⇐∑
j:(i,j)∈A at+1(j);

Normalize L2-norm of each of hub and authority vectors to 1;

For hub-vector h = [h(1) . . . h(n)]T and authority-vector a = [a(1) . . . a(n)]T , the updates

302 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

can be expressed as a = ATh and h = Aa, respectively, when the edge set A is treated as
an |S| × |S| adjacency matrix. The iteration is repeated to convergence. It can be shown
that the hub vector h and the authority vector a converge in directions proportional to
the dominant eigenvectors of AAT and ATA, respectively. This is because the relevant pair
of updates can be shown to be equivalent to power-iteration updates of AAT and ATA,
respectively.

9.7 Summary

This chapter discusses the data structures and query processing methods involved in infor-
mation retrieval, and their generalizations to search engines. A proper design of the inverted
index is crucial in obtaining efficient responses to queries. Many types of additive functions
over terms can be computed with an inverted index and accumulator variables. Many vector
space and probabilistic models of retrieval are used by search engines. Some of these models
use relevance feedback, whereas others are able to score documents with respect to queries
without using relevance feedback. An important aspect of search engine construction is the
discovery of relevant resources with the use of crawling techniques. In search engines, the
linkages can be used to create a measure Web page quality with PageRank measures. These
quality measures are combined with match-based measures to provide responses to queries.

9.8 Bibliographic Notes

A discussion of several data structures, such as hash tables, binary trees and B-Trees, may
be found in [427]. All these data structures are useful for dictionary construction. The use
of k-gram dictionaries for spelling corrections and error-tolerant retrieval may be found
in [542, 543].

A detailed discussion of the inverted file in the context of search engines may be found
in [506, 545], including various optimizations like skip pointers. Skip pointers were intro-
duced in [354]. The inverted file is the dominant data structure for indexing documents,
although some alternatives like the signature file [163] have also been proposed in the lit-
erature. A comparison of the inverted files with the signature file is provided in [544], and
it is shown that the signature file is inefficient as compared to the inverted file. Several
methods for constructing inverted indexes are discussed in [216, 506]. The construction of
distributed indexes is discussed in [31, 72, 194, 334, 405]. Most recent techniques are based
on the MapReduce framework [128]. Dynamic index construction methods like logarithmic
merging are discussed in [71]. The trade-offs of different ways of index maintenance are
discussed in [281].

The technique of using accumulators with early stopping is discussed in [354]. Other
efficient methods for query processing with early termination and pruning are discussed
in [22, 24]. Methods for using inverted indexes in phrase queries are discussed in [502].
Machine learning approaches for search engine optimization with the use of the ranking SVM
were pioneered in [244]. However, the view of information retrieval as a classification problem
was recognized much earlier and also appears in van Rijsbergen’s classical book [480], which
was written in 1979. The earliest methods for learning to rank with pairwise training data
points were proposed in [105]. The work in [472] optimized the parameters of the BM25
function on the basis of the NDCG measure. Refer to Chap. 7 for a discussion of the NDCG
measure. The ranking SVM idea has been explored in [74] in the context of information
retrieval. A structured SVM idea that optimizes average precision is discussed in [522]. The

9.8. BIBLIOGRAPHIC NOTES 303

work in [70] discusses ways of ranking using gradient-descent techniques with the RankNet
algorithm. It is stated in [307] that the RankNet algorithm was the initial approach used in
several commercial search engines. The listwise approach for learning to rank is discussed
in [75]. The extraction of document-specific features for improving ranking with machine
learning approach is discussed in [406]. An excellent overview of different learning-to-rank
algorithms with a focus on search engines is provided in [307].

The use of champion lists, pruning, and tiered indexes for large-scale search is discussed
in [77, 309, 321, 366]. Dictionary compression is discussed in [506], and variable byte codes
were proposed in [435]. Word aligned codes have also been proposed that improve over
variable byte codes [23, 25]. The delta coding scheme was proposed in [153]. The use of
caching for improving retrieval performance is studied in [31, 278, 429]. Many of these
techniques show how one can use caches of multiple levels to improve performance. The
combination of inverted list compression and caching for improved performance is explored
in [532]. In general, compression improves caching performance as well. A good overview of
caching and compression may also be found in Zobel and Moffat’s survey on indexing [545].

The vector space model for information retrieval was introduced in [426], and term
weighting methods were studied in [423]. Over the years, numerous term weighting and
document length normalization methods have been proposed. Pivoted length document
normalization is a notable approach that is often used [450]. The use of idf normalization
was first conceived in [453]. The binary independence model was proposed in [411, 480],
and the final form of the retrieval status value is a confirmation of the importance of idf
in retrieval applications. A number of theoretical arguments for idf normalization may also
be found in [410]. A number of experiments about the probabilistic model of information
retrieval are provided in [456]. This paper also adapts the binary independence model into
the BM25 model. The BM25 model has had a significant impact on the matching function
used in the search engines. A variant of the BM25 model that uses the different fields in the
document is referred to as BM25F [412]. The use of language models in information retrieval
were pioneered by Ponte and Croft with the Bernoulli approach [385]. A language model by
Hiemstra [214] also appeared at approximately the same time, which used a multinomial
approach. The use of Hidden Markov Models for language modeling were proposed by
Miller et al. [346]. The role of smoothing in language modeling approaches is studied by
Zhai and Lafferty [528]. An overview of language models for information retrieval may be
found in [527].

Detailed discussions on crawling and search engines may be found in several books [31,
71, 79, 120, 303, 321, 506]. Focused crawling was proposed in [83]. The work in [93] discusses
the importance of proper URL ordering in being able to efficiently crawl useful pages. The
PageRank algorithm is described in [64, 370]. The HITS algorithm was described in [262].
A detailed description of different variations of the PageRank and HITS algorithms may be
found in [79, 303, 321, 280]. The topic-sensitive PageRank algorithm is described in [205].

9.8.1 Software Resources

Numerous open source search engines are available such as Apache Lucene and Solr [587,
588], Datapark search engine [586], and Sphinx [589]. Some of the search engines also pro-
vide crawling capabilities. The Lemur project [582] provide an open source framework for
language modeling approaches in information retrieval. Numerous open source crawlers
are available such as Heritrix [585] (Java), Apache Nutch [583] (Java), Datapark search
engine [586] (C++), and Python Scrapy [584]. The package scikit-learn [550] has an im-
plementation of the computation of the principal eigenvector, which is useful for PageRank

304 CHAPTER 9. INFORMATION RETRIEVAL AND SEARCH ENGINES

evaluation and HITS. The Snap repository at Stanford University also includes a PageRank
implementation [590]. The gensim software package [401] has an implementation of some
ranking functions like BM25.

9.9 Exercises

1. Show that the space required by the inverted index is exactly proportional to that
required by a sparse representation of the document-term matrix.

2. The index construction of Sect. 9.2.3 assumes that document identifiers are processed
in sorted order. Discuss the modifications required when the document identifiers are
not processed in sorted order. How much does this modification increase the time
complexity?

3. Discuss an efficient algorithm to implement the OR operator in Boolean retrieval with
two inverted lists that are available in sorted form.

4. Show that a dictionary, which is implemented as a hash table with linear probing,
requires constant time for insertions and lookups. Derive the expected number of
lookups in terms of the fraction of the table that is full.

5. Write a computer program to implement a hash-based dictionary and an inverted
index from a document-term matrix.

6. Suppose that the inverted index also contains positional information. Show that the
size of the inverted index is proportional to the number of tokens in the corpus.

7. Consider the string ababcdef . List all 2-shingles and 3-shingles, using each alphabet
as a token.

8. Show that the PageRank computation with teleportation is an eigenvector computa-
tion on an appropriately constructed probability transition matrix.

9. Show that the hub and authority scores in HITS can be computed by dominant
eigenvector computations on AAT and ATA respectively. Here, A is the adjacency
matrix of the graph G = (S,A), as defined in the chapter.

10. Propose an alternative to the ranking SVM based on logistic regression. Discuss
how you would formulate the optimization problem and how the stochastic gradient-
descent steps are related to traditional logistic regression.

11. The ranking SVM is a special case of the classical SVM in which each class variable
is +1 in the training data (but not necessarily at the time of prediction) and the bias
variable is 0. Show that any classical SVM in which the bias variable is 0 but the class
variables are drawn from {−1,+1} can be transformed to the case in which each class
variable is +1. Why do we need the bias variable to be 0 for this transformation?

Chapter 10

Text Sequence Modeling and Deep
Learning

“A sequence works in a way a collection never can.”—George Murray

10.1 Introduction

Much of the discussion in the previous chapters has focused on a bag-of-words representation
of text. While the bag-of-words representation is sufficient in many practical applications,
there are cases in which the sequential aspects of text become more important. There are
two primary reasons for the sequence representation to become particularly useful:

1. Data-centric reasons: In some settings, the lengths of the text units are small. For
example, text segments corresponding to micro-blogs and tweets are relatively short.
In such cases, there is simply not sufficient information within the bag-of-words repre-
sentation to make meaningful inferences. When the underlying document is large, the
bag of words contains sufficient evidence in the form of word frequencies. On the other
hand, it is more important to enrich short text snippets with sequencing information
to extract the most out of limited data.

2. Application-centric reasons: Many applications like text summarization, information
extraction, opinion mining, and question answering require semantic insights. Seman-
tic understanding can be gained only by treating sentences as sequences.

Word ordering conveys semantics that cannot be inferred from the bag-of-words represen-
tation. For example, consider the following pair of sentences:

The cat chased the mouse.
The mouse chased the cat.

Clearly, the two sentences are very different (and the second one is unusual), but they are
identical from the point of view of the bag-of-words representation. For longer segments

306 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

of text, term frequency usually conveys sufficient evidence to robustly handle simple ma-
chine learning decisions like binary classification. This is one of the reasons that sequence
information is rarely used in simpler settings like classification. On the other hand, more
sophisticated applications with fine-grained nuances require a greater degree of linguistic
intelligence.

A common approach is to convert text sequences to multidimensional embeddings be-
cause of the wide availability of machine learning solutions for multidimensional data. How-
ever, unlike the matrix factorization techniques of Chap. 3, the goal is to incorporate the
sequential structure of the data within the embedding. For example, consider the word anal-
ogy “king is to queen as man is to woman.” We would like a multidimensional embedding
f(·) of the terms “king,” “queen,” “man,” and “woman,” which satisfies the following [380]:

f(king)− f(queen) ≈ f(man)− f(woman) (10.1)

Such embeddings can only be created with the use of sequencing information because of its
semantic nature.

There are two broader approaches for incorporating linguistic structure from text sen-
tences. These methods are as follows:

1. Language-specific methods: These techniques use the parts of speech and other lin-
guistic features in the learning process, which requires input from linguists of the
specific language at hand. An example of a language-specific method is the use of a
probabilistic context free grammar, which uses grammar rules to define the syntax of
a language. Although these rules are supplemented with statistical analysis, the basic
approach is inherently language specific because it starts with a set of grammar rules
that are specific to the language at hand. A key point is that the incorporation of
linguistic domain knowledge with the use of rules is essential to the workings of such
a system. Therefore, such learning systems are not purely inductive, because a certain
amount of deductive learning with rules is involved.

2. Language-independent methods: These techniques create a language model purely us-
ing statistical analysis of the sequential ordering of words. A statistical language model
is a probability distribution over sequences of words, and it learns the statistical likeli-
hood of a word following a sequence of words in a sentence. Examples of such models
include the unigram, bigram, trigram, and n-gram models. Neural language models
use neural networks to encode the grammatical structure of a language from text ex-
amples. These models can be used with arbitrary languages and applications, because
the underlying representations are learned in a data-driven manner without significant
domain knowledge.

Even though language-independent methods start with a handicap (i.e., no specified set
of rules encoding a grammar), they generally work surprisingly well when sufficient data
is available. The surprising effectiveness of language-illiterate methods over linguistically-
literate methods is a result of the inherently intuitive way in which many ideas are conveyed
in spoken language. Human language is sufficiently inexact and complex in terms of the vari-
ations in usage that it is hard to decode the semantic interpretation of a sentence purely
based on grammatical rules. From this point of view, it can be an advantage to not use
language-specific input, because it avoids the incorrect biases arising from our inherent
limitation to encode complex semantic ideas with grammatical rules. Very often, our un-
derstanding of sentences is based on our intuitive life experiences of learning usages and
semantic meanings of sentences from examples, which cannot be encoded in a literal way.

10.1. INTRODUCTION 307

TEXT AS
A SEQUENCE

REPRESENTATION
LEARNING

APPLICATIONS

PHRASE AND
k-GRAM

ENRICHMENT

NEURAL
NETWORKS

(e.g., doc2vec,
word2vec)

CLUSTERING

CLASSIFICATION

KERNEL
LEARNING

(e.g., STRING
KERNELS)

MULTIDIMENSIONAL
EMBEDDING

SENTIMENT
ANALYSIS

Figure 10.1: Representation learning for converting sequences into semantically knowledge-
able embeddings

The same insights apply to machine learning, where given sufficient training data, the algo-
rithm should learn much of the grammar and usage on its own in a goal-directed way for the
specific application at hand (e.g., machine translation). This also elucidates another advan-
tage of such methods in which the engineered features are often learned in an application-
dependent manner. For example, the optimal feature representation of a sentence for an
image captioning application may not be the same as that for a machine translation appli-
cation, and the typical objective functions in inductive learning automatically account for
these differences. In general, inductive learning methods have several advantages over de-
ductive learning methods, although the debate between the two is not yet settled. Linguistic
input is indeed helpful in many cases, because part-of-speech tags and other linguistically
derived features are used as additional input to improve the learning. In this point of view,
linguistic features primarily serve as guide rails to deal with the challenges associated with
limited data in the same way as a regularizer improves performance. However, linguistically-
oriented methods are often used only on the margins, and rarely serve as the primary basis of
sequence-centric applications. Since this book is primarily focused on language-independent
methods, the second category of inductive methods will be considered in this chapter.

A closely related problem to that of statistical language modeling is that of encoding
all the rich structural information in text sequences in a multidimensional format that is
friendly to the use of text mining algorithms. Indeed, feature engineering is the holy grail
of machine learning and text mining methods. The common techniques for feature engi-
neering use statistical language models as well as some amount of syntactic information in
order to encode the sequencing information into a multidimensional format. The statistical
language models are used indirectly within feature engineering methods. For example, one
might use phrase and k-gram enrichment, neural networks, and kernel methods. The use
of statistical language models in the design of kernel similarity functions like the string
kernel (cf. Sect. 3.6.1.3 of Chap. 3) is more subtle, and it is implicit. Other methods like
the convolution tree kernel (cf. Sect. 12.3.3.3) use language-dependent input in the form
of context-free grammars. All these methods typically return a high-dimensional represen-
tation of each word and/or document. Once the multidimensional representation of words
and/or documents has been constructed, it can be used in conjunction with any off-the-shelf
mining algorithm. This process is illustrated in Fig. 10.1.

308 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

10.1.1 Chapter Organization

This chapter will study both statistical language models and representation learning within
a unified framework. Since the process of representation learning and feature engineering
depends on the underlying language models, these models will be discussed first in Sect. 10.2.
Some embedding methods are good for creating word embeddings, whereas others are good
for creating document embeddings. Kernel methods are discussed in several chapters of this
book, and Sect. 10.3 summarizes these methods from the point of view of feature engineering.
In word-context factorization models (cf. Sect. 10.4), the occurrence frequencies of different
contextual elements in a given window are used to create word embeddings. The use of
graph-based methods for representation learning is discussed in Sect. 10.5. As discussed
in Sect. 10.6, similar goals to word-context factorization can also be achieved using neural
networks. Recurrent neural networks for language modeling are discussed in Sect. 10.7. The
conclusions are discussed in Sect. 10.8.

10.2 Statistical Language Models

A statistical language model assigns a probability to a sequence of words. Given a sequence
of words w1, w2, . . . , wm, the language model estimates its probability P (w1, w2, . . . , wm).
Sequences of words that are grammatically correct and occur with high frequency in the
collection will typically be assigned high probabilities. Common applications of statistical
language models include speech recognition, machine translation, part-of-speech tagging,
and information retrieval. The use of statistical language models for information retrieval
is discussed in Sect. 9.3.4 of Chap. 9. Statistical language models also provide the intuition
needed for feature engineering of text sequences into multidimensional data.

The simplest way to compute P (w1, w2, . . . , wm) is to use the chain rule in sequences:

P (w1, . . . wm) = P (w1) · P (w2|w1) · P (w3|w1, w2) · . . . · P (wm|w1, w2, . . . , wm−1)

=

m∏

i=1

P (wi|w1, . . . , wi−1)

Each of the terms P (wi|w1 . . . wi−1) needs to be estimated in a data-driven manner. This
is achieved by expressing the conditional with the Bayes rule as follows:

P (wi|w1, . . . , wi−1) =
P (w1, . . . wi)

P (w1, . . . , wi−1)
=

Count(w1, . . . wi)

Count(w1, . . . , wi−1)

The counts in the numerator and denominator are estimated directly from the data. Unfor-
tunately, the count of the group (w1, . . . , wi) is hard to robustly estimate for large values of
the group-size i. In such cases, the numerator and the denominator in the aforementioned
estimation can be close to 0. Even with Laplacian smoothing, such an estimation is unlikely
to be robust.

In order to address this problem, theMarkovian assumption is used, which is also referred
to as the short-memory assumption. According to this assumption, only the last (n − 1)
tokens are used in order to estimate the conditional probability of a token, which results in
an n-gram model. Mathematically, the short-memory assumption for the n-gram model can
be written as follows:

P (wi|w1, . . . , wi−1) ≈ P (wi|wi−n+1, . . . , wi−1) (10.2)

10.2. STATISTICAL LANGUAGE MODELS 309

With this simplified assumption, the conditional probabilities can be estimated as follows:

P (wi|w1, . . . , wi−1) ≈ P (wi|wi−n+1, . . . wi−1) =
Count(wi−n+1 . . . wi)

Count(wi−n+1, . . . , wi−1)
(10.3)

Larger values of n provide better theoretical discrimination, but the amount of data is
usually not sufficient to obtain reliable estimates. Therefore, one can view the choice as a
reliability versus discrimination trade-off, which is a form of the bias-variance trade-off that
is popularly used in machine learning. Setting n = 2 is referred to as the bigram model,
whereas setting n = 3 is referred to as the trigram model. Setting n = 1 results in the
unigram language model, which does not use any sequence information at all. This model
is equivalent to using independent rolls of a die in order to decide the choice of tokens in a
sentence. The unigram language model is a probabilistic avatar of the conventional bag-of-
words model, and it results in a multinomial distribution of term frequencies. As discussed in
Sect. 9.3.4 of Chap. 9, this model is used frequently for query-likelihood estimation in search.
Furthermore, this model has also been (implicitly) discussed for probabilistic clustering and
classification in Chaps. 4 and 5, respectively. Since this chapter is focused in the sequential
aspects of text, the unigram language model is of little interest to us, and we will focus on
the n-gram language model only for n ≥ 2.

In the case of the bigram model at n = 2, the aforementioned estimation can be written
as follows:

P (wi|w1 . . . wi−1) ≈ P (wi|wi−1) =
Count(wi−1, wi)

Count(wi−1)
(10.4)

An n-gram essentially incorporates the effect of sequential context. For example, the value
of P (“sky”|“blue”) will usually be greater than that of P (“tree”|“blue”) in a bigram model,
because “sky” is more likely to follow “blue” than the word “tree”. The most common values
of n range between 2 and 5. However, larger values can also be used with increasing data.

Smoothing is particularly important in the case of language models because of the
paucity of data. In such cases, the counts in both the numerator and denominator of Eq. 10.4
can be zero, as a result of which the estimation becomes difficult. Furthermore, the presence
of very rare words can have a confounding effect on the estimation process. Words that are
present with very low frequency in the training data are often replaced with a special token
denoted by 〈UNK〉. This token is then treated as any other term in the estimation pro-
cess. Furthermore, for a lexicon of size d, Eq. 10.4 can be modified in order to incorporate
smoothing as follows:

P (wi|wi−1) =
Count(wi−1, wi) + β

Count(wi−1) + d · β (10.5)

Here, β > 0 is the smoothing parameter that controls the degree of regularization. Large
values of β lead to a greater degree of smoothing.

The n-gram models can be expressed as generative models in the form of finite state
automatons. This type of Markovian model contains a set of states that transition to one
another while generating a word at each transition. The sum of the probabilities of the
transitions out of a state is always equal to 1. Each state is labeled with a string of length
(n − 1). At any given point in the transition, the value of the state provides the previous
string of length (n−1). For a lexicon of size d, there are d possible transitions to states, which
are obtained by appending the generated word to the last (n−2) words. The probabilities of
these transitions are precisely the conditional probabilities that are estimated using Eq. 10.4.

310 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

The number of states in an n-gram model is dn−1. Consider a toy lexicon of size 4 with
elements {the,mouse,chased,cat}. The data set contains two sentences:

The mouse chased the cat.
The cat chased the mouse.

The bigram model has four possible states, corresponding to the individual words, and the
trigram model has 42 possible states. However, most of these states are not present even
once in the training data. Therefore, in practice, one drops such states from the model. Fur-
thermore, assume that the n-gram models do not cross sentence boundaries, and therefore
each of the two sentences above is treated as a unit. The corresponding bigram and trigram
models are illustrated in Fig. 10.2a and b, respectively. A state is defined by a single word
in a bigram model and by two words in a trigram model. Note that only a small subset
of the transitions are valid in the trigram model Fig. 10.2b, because two successive states
must have an overlapping word. Therefore, such transitions are invalid (with zero theoret-
ical probability) and are not included at all. The probabilities of the various transitions
are estimated by using the fractional counts discussed earlier with Laplacian smoothing.
Some of the (valid) transitions shown in Fig. 10.2a, b are not reflected in the two training
sentences, but will nevertheless have nonzero probability because of Laplacian smoothing.
For example, the words “cat” and “mouse” do not occur consecutively in any of the two
sentences above, but the transition in Fig. 10.2a from the state “cat” to the state “mouse”
will have nonzero probability because of Laplacian smoothing.

In the case of the trigram model, infrequent states (with zero frequency) have been
pruned, and therefore the number of states in quite modest. It is noteworthy that any text
segment of length m can create at most (m − n + 1) n-grams, which provides a practical
limitation on the size of the Markovian model that is created with pruning. One consequence
of state pruning is that it can cause generalization problems when using the Markovian
model in an application-specific setting on a text segment where that state was never seen
before. In such cases, it becomes essential to use back-off models to be able to handle
such states. For example, one might use the trigram model of Fig. 10.2b when a sufficient
amount of data is available. However, if one encountered a word pair such as “cat cat” in a
(grammatically incorrect or rare) test segment, one might back-off to the bigram model of
Fig. 10.2a. In general, one tries the n-gram model first, then the (n − 1)-gram model, and
so on in order to estimate the conditional probability of Eq. 10.4.

Such models are considered visible Markov models, as opposed to hidden Markov models.
The reader should take a minute to examine Fig. 10.2 and verify the fact that the precise
sequence of states for a given training sentence can be inferred in a deterministic way. This is
always true for n-gram models in which the precise sequence of states is always visible to the
analyst. In a hidden Markov model, the states are defined with a hidden semantic notion,
and multiple paths through the model could generate the same training sentence. Hidden
Markov models will be discussed in Chap. 12 on information extraction. It is noteworthy
that visible Markov models have a much simpler parameter estimation procedure because
of the ability to deterministically infer the sequence of transitions corresponding to the
training data.

10.2.1 Skip-Gram Models

The problem of data sparsity can never be fully solved with methods like smoothing or
back-off. After all, smoothing and back-off are forms of regularization that do not provide
very refined models, and they only encode prior beliefs into the model. Therefore, if the

10.2. STATISTICAL LANGUAGE MODELS 311

mouse

the chased

cat

mouse

the the
chased

ca
t

m
ou

se

cat

chased

mouse chased

the cat
chased the

cat chased

the mouse

(b) Trigram model(a) Bigram model

Figure 10.2: The Markovian models for bigrams and trigrams. The transitions are labeled
with the symbols (words) that they generate.

model is dominated by these regularization aspects, the quality of prediction is often low.
Extensive studies have shown that the vast majority of valid trigrams are not available even
in very large training data sets.

One problem is that the required value of n encodes the length of the context that may
vary from sentence to sentence. Small variations of a given sentence can have large effects on
the estimation in an n-gram model. For example, consider the following pair of sentences:

Adam and Eve ate an apple.
Adam ate the red apple.

Although each of the two sentences contain information that is not available in the other,
the key idea of Adam eating an apple is available in both sentences. Unfortunately, the two
sentences do not share even a single bigram or trigram. Part of the problem is caused by the
noise in words like “red,” which are not important to the core idea, but they nevertheless
have an outsized effect on the n-gram representation.

In order to handle this problem, several recent models have been proposed that allow
one to skip tokens while creating the model. One such model is the skip-gram model. The
skip-gram model predicts a context word of the target word from the given word. In the
skip-gram model, one is allowed to skip at most k tokens while predicting the context of a
word. Then, the set S(k, n) of all k-skip-n-grams of a sentence sequence w1w2w3 . . . wm is
defined as follows:

S(k, n) = {wi1wi2 . . . win :

n∑

j=2

(ij − ij−1 − 1) ≤ k, ij > ij−1 ∀j} (10.6)

Note that all n-grams can be considered 0-skip-n-grams. Therefore, skip-grams represent a
natural generalization of n-grams. As we will see later, there is also a difference in terms of
how skip-grams are used for predictive modeling.

For example, the 2-skip-2-grams of the sentence “Adam and Eve ate an apple.” are as
follows:

Adam and, Adam Eve, Adam ate, and Eve, and ate, and an, Eve ate, Eve an,
Eve apple, ate an, ate apple, an apple

312 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

We can already see that the skip-grams contain key phrases like “Adam ate”, “Eve ate”,
and “ate apple”, which are very useful for understanding the semantics of a sentence. In
fact, both “Adam ate” and “ate apple” can be shown to be 2-skip-2-grams of the second
sentence above in which the apple is qualified to be red. This qualifier can be skipped by
the modeling process. The skip-grams provide the context that can be used to extract the
semantic information that are hidden within the word occurrences.

Unfortunately, these desirable characteristics of skip-grams come at the expense of ex-
panding the number of word sets, many of which are nonsensical. Nevertheless, the addi-
tional contextual information obtained from such skip-grams usually outweighs the noise
effects of the low-quality skip-grams. In some cases, however, the storage and computational
costs of this representation can be large, when it is used for creating word embeddings and
feature engineering. A closely related model to the skip-gram is the continuous bag of words,
with the main difference being in terms of the direction of the prediction. In the skip-gram
model, one predicts the context C from the target word w, whereas in the continuous bag of
words, one predicts the target word w, given the context. These types of predictive models
are useful for creating embeddings.

10.2.2 Relationship with Embeddings

There are several ways in which skip-grams can be directly or indirectly used for embeddings.
In many cases, the relationship with skip-grams is only an indirect one. Most of these
methods respect sentence boundaries because the individual sentences are assumed to be
sufficiently independent, so that it does not make sense for the skip-gram to cross sentence
boundaries. Furthermore, some embeddings are performed at the word level, whereas others
are performed at the document or sentence level.

The key methods for using language models for creating embeddings are as follows:

1. Kernel-based embeddings: Kernel-based embeddings compute similarities between
pairs of sentences/docunments in order to create multidimensional representations
of the data. Note that these embeddings are typically performed at the level of sen-
tences or documents rather than individual words. Various methods for kernel-based
embeddings are discussed in Chaps. 3 and 12. Therefore, this chapter will primarily
summarize these methods and discuss their relationships with other methods. Some
kernel-based methods directly enrich the document with n-gram representation to
compute high-quality similarities. Other methods like string kernels (cf. Sect. 3.6.1.3)
indirectly use the principles in skip-grams for similarity computation with the use of
decaying context.

2. Distributional semantic models: Distributional semantic models are also referred to
as count models, and they use the counts of the words occurring in the contexts of
other words in order to create an embedding of words. Typically, a word-context co-
occurrence matrix C is constructed, in which each row contains the frequencies of
various contextual elements occurring in the vicinity of a row-specific target word.
This matrix is factorized C = UV T in order to extract the matrix U , in which each
row contains the embedding of a target word. Although the contextual elements can
also be words, they can be generalized beyond words to features such as the parts-of-
speech and so on.

3. Contextual neural-network models: These models are similar to distributional semantic
models under the covers, although a neural network architecture is used to achieve

10.3. KERNEL METHODS 313

the same goals. In these models, a word and its surrounding text (i.e., context) is used
to create a supervised learning problem. The use of the neural network is particularly
popular, although any supervised method can be used in principle. These methods
have also been shown to be closely related to count-based matrix factorization and
kernel methods [282, 365]. These methods (e.g., word2vec) are designed to create
word embeddings, although some modifications like doc2vec can also create document
embeddings.

4. Recurrent neural-network models: These methods use recurrent neural networks in
order to create a neural language model. Unlike contextual models, which are primar-
ily designed for word embeddings, recurrent neural network models are designed for
sentence-level embeddings. These are among the most powerful methods that can be
used for applications like image captioning and sequence-to-sequence learning.

Finally, multidimensional embeddings are not the only way to represent text [15]. Rather, it
is possible to use distance graphs in order to represent text. Using a graphical representation
has the advantage that one can use many combinatorial graph-mining algorithms (rather
than multidimensional algorithms) for learning purposes. Graph mining is a rich area of
machine learning in its own right, which provides many off-the-shelf options. Interestingly,
the factorization of distance graphs provides similar representations to count-based models.

10.3 Kernel Methods

Kernel methods typically extract an embedding at the sentence or the document level. Con-
sider a data set containing N different sentences/documents, and similarity between the ith
and jth sentences is given by sij . Therefore, an N × N matrix S = [sij] is computed. In
cases where the similarities between documents need to be computed, the pairwise simi-
larities between sentences can be aggregated into pairwise similarities between documents.
For example, the 1-nearest neighbor similarities of each sentence in one document to the
sentences in the other document are computed. These values are first averaged over the
sentences in each document, and then averaged between the two documents.

Then, the matrix S can be symmetrically factorized using the N×K matrix U as follows:

S ≈ UUT (10.7)

Here, the N rows of U contain the K-dimensional representations of the various data in-
stances. Note that the matrix U is not unique as one can rotate the axis system with the
orthogonal transformation U ′ = UP with a K×K matrix P with orthogonal columns, such
that the product of the symmetric factors is not changed. In kernel methods, the conven-
tion is to choose an embedding matrix U whose columns are mutually orthogonal. This is
achieved by diagonalizing the positive semi-definite and symmetric matrix S into an N × k
matrix Q with orthonormal columns and a k × k diagonal matrix Σ as follows:

S ≈ QΣ2QT = (QΣ)
︸ ︷︷ ︸

U

(QΣ)T
︸ ︷︷ ︸

UT

(10.8)

The sequential information is incorporated within the process of similarity computation.
Since many of these methods are discussed in Chaps. 3 and 12, we do not revisit them here.
We summarize pointers to these methods below:

314 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

1. Kernels based directly on n-grams and skip-grams: These kernels are discussed in
detail in Sect. 3.6.1.2 of Chap. 3. The simplest possible approach is to enrich the vector
space representation with n-grams and skip-grams and then compute the vector-space
similarity between document pairs. The symmetric factorization S = UUT of the
resulting similarity matrix yields the document embedding U .

2. String subsequence kernels: String subsequence kernels are discussed in Sect. 3.6.1.3
of Chap. 3. Like skip-grams, these kernels can allow the skipping of words by using
decay factors to weight a skip-gram. Furthermore, string subsequence kernels can be
extended to allow features to be associated with the tokens in the string. Such kernels
are very useful for incorporating linguistic knowledge in the embedded representation
(cf. Sect. 12.3.3.2 of Chap. 12).

3. Kernels based on language-specific grammars: It is also possible to incorporate some
amount of linguistic knowledge directly into the kernel by creating constituency-based
parse trees of sentences, and then computing convolution tree kernels (cf. Sect. 12.3.3.3
of Chap. 12). Furthermore, this approach can be extended to handle features associ-
ated with tokens, which is useful for information extraction.

It is noteworthy that all these methods use symmetric factorization, and many feature
engineering methods use matrix factorization in one form or the other.

10.4 Word-Context Matrix Factorization Models

Matrix factorization models compute a word-context matrix based on the counts of con-
textual elements for each target word. The context of a target word is generally defined in
terms of windows of equal size on either side of the target word. For the purpose of this
section, assume that the size of the windows on either side of the target is denoted by t.
The window size varies between 2 and 10 depending on training data size. Larger training
data sets enable larger window sizes.

10.4.1 Matrix Factorization with Counts

In the simplest case, we factorize the matrix of co-occurrence frequencies in order to create
embeddings of words. This was approach used in Hyperspace Analogue to Language (HAL)
model. HAL [313] was an early and relatively unoptimized model that was not followed
up for several years. In this section, we describe HAL along with several recent learning,
optimization, and postprocessing techniques that are general-purpose techniques for all
types of embeddings.

For each word i, let cij represent the number of times that the word j occurs in the
context (i.e., separated from it by a distance of at most t in a sentence) of word i on either
side. For example, consider the sentence:

Adam and Eve lived in Eden and frequently ate apples.

Consider the case in which we use a window of length 2 on either side of the word. Then,
the context of the word “Eden” is any of the four words from {lived, in, and, frequently}.
Therefore, the full context window has size m = 2 · t. Then, for any given word, we can
extract the number of times each context occurs for that word.

Then, the d × d contextual co-occurrence matrix is denoted by matrix C = [cij]. Note
that each row of C can directly be used as a new high-dimensional feature representation

10.4. WORD-CONTEXT MATRIX FACTORIZATION MODELS 315

of the word. However, it is possible to create a more compact feature representation by
dimensionality reduction of C.

The matrix C can be factorized into rank-p matrices U and V (of size d× p) as follows:

C ≈ UV T (10.9)

The rows of the matrix U yield the embedding that we are interested in. A popular choice is
the singular value decomposition (SVD) method of Sect. 3.2. However, most of the entries in
C are 0s, and these entries are not as informative about context as the non-zero entries. For
example, for a context window of m = 10, a word that occurs only 20 times in the corpus
will have at most 200 non-zero entries out of a vocabulary of possible size 106. As a result
the factorization is dominated by the zero terms. Direct use of stochastic gradient descent
has the advantage that one can indirectly change the objective function of factorization to
de-emphasize the zero entries by sampling zero entries at a lower rate. Such an approach
results in weighted matrix factorization. Furthermore, the computational complexity of this
approach is dependent only on the number of non-zero entries.

One can write the relationship of Eq. 10.9 in element-wise form by expressing C = [cij]
in terms of the dot product of the ith row ui of matrix U and the jth row vj of matrix V .

cij ≈ ĉij = ui · vj (10.10)

Note the circumflex on top of ĉij differentiating this predicted value from the observed value
of cij . The rows of the d×pmatrix U provide the p-dimensional embeddings of the individual
words. The rows of the matrix V provide the embeddings of the contextual elements, which
(in this case) are words as well. One can further improve this matrix factorization by using
biased matrix factorization with row biases bri and column biases bcj as follows:

ĉij = bri + bcj + ui · vj (10.11)

These bias variables also need to be learned using the optimization model of the factoriza-
tion.

The straightforward optimization model of matrix factorization is as follows:

Minimize J =
∑

i

∑

j

(cij−bri−bcj−ui·vj)2+λ · (
∑

i

||ui||2 +
∑

i

(bri)
2 +

∑

j

||vj ||2 +
∑

j

(bcj)
2)

︸ ︷︷ ︸
Regularizer

The regularizer can be dropped when the amount of data is large.
Stochastic gradient descent initializes U and V randomly. In each iteration, it updates

U and V based on the error eij = cij − ĉij of a randomly selected entry (i, j) in C according
to the following updates:

ui ⇐ ui(1− αλ) + αeijvj

vj ⇐ vj(1− αλ) + αeijui

bri ← bri (1− αλ) + αeij

bcj ← bcj(1− αλ) + αeij

Here, α > 0 is the learning rate. One can cycle through all the entries of C in random
order, and make these updates. Such cycles are repeated until convergence is reached. It
is possible to improve the factorization by using the notion of negative sampling in which

316 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

a single cycle of stochastic gradient descent samples through all the non-zero entries of C
but only a random sample of zero entries. The random sample may be different in each
cycle, but its size is always k times the number of non-zero entries. The value of k > 1
is a user-driven parameter, and it implicitly controls the weight of positive and negative
samples in the factorization. In such a case, each cycle of stochastic gradient descent no
longer requires time proportional to O(d2), but it is linearly proportional to the number
of non-zero entries in the matrix. It is noteworthy that this type of negative sampling is
ubiquitous in contextual embeddings. There are other structured ways of negative sampling
in which each positive sample (i, j) is matched with k negative samples (i, j1) . . . (i, jk).
The indices j1 . . . jk are sampled with probability proportional to their frequencies in the
underlying corpus. One can also use damped values of cij (e.g., populate C with

√
cij) to

reduce the impact of frequent words.

10.4.1.1 Postprocessing Issues

Several postprocessing issues are common to all types of word embedding methods discussed
in this chapter (including neural methods). For example, why does one use the rows of U
as embeddings? Why not the rows of V ? Also how should one normalize the rows of U and
V ? This section will provide an integrated discussion of these issues.

It is common to use the same context vocabulary as the lexicon. In such cases, one can
either concatenate or add the word embedding ui and the contextual embedding vi to create
the embedding of word i. This first of these ideas was proposed in the original HAL paper,
and the second was proposed by the GloVe approach (see next section). However, other
definitions of contexts are possible in which the number of contexts d′ may not be the same
as d. In such cases, a matrix C of size d × d′ may be factorized (see Sect. 10.4.5), and one
must follow the conventional practice of working only with ui. In general, adding ui and vi
could either help or hurt the embedding. It is worthwhile to try.

The factorization C ≈ UV T is not unique. For example, multiplying the first column
of U by 2 and dividing the first column of V by 2 will not change UV T . How should U
and V be normalized to create a unique embedding. There are several ways to perform the
normalization. If the rows of U and V are added, then both matrices must be normalized
in the same way. One can either normalize the rows of U to unit norm, or the columns to
unit norm. Furthermore, the row and column normalization can be applied in succession. If
SVD is used for factorizing C = QΣPT , then a viable alternative is to use U = Q

√
Σ and

V = P
√
Σ, respectively [283]. This trick can, in fact, be used for any type of factorization

by converting it into a standardized three-way factorization like SVD (cf. Sect. 3.1.2).

10.4.2 The GloVe Embedding

One problem with the factorization approach is that the wide variations of the frequencies of
the different words can cause the embedding to be dominated by the effect of frequent words.
The problem is particularly severe because the raw co-occurrence counts can span over
eight or nine orders of magnitude. Therefore, the GloVe method (Global Vectors for Word
Representation) [380] makes two modifications to the basic matrix factorization approach,
which are as follows:

1. The (i, j)th entry of matrix C is defined as log(1+cij) rather than as cij . As discussed
in Sect. 2.4 of Chap. 2, this type of frequency damping function is used in all types of
text mining applications to reduce the impact of frequent words.

10.4. WORD-CONTEXT MATRIX FACTORIZATION MODELS 317

2. The term in the optimization objective function of matrix factorization (see
Sect. 10.4.1), corresponding to the error of the (i, j)th entry, is weighted as a function
of cij with the use of a maximum threshold M and parameter α as follows:

Weight(i, j) = min
{
1,

cij
M

}α

(10.12)

The values of M and α are recommended to be 100 and 3/4, respectively, based on
empirical considerations.

One can now write the modified objective function as follows:

Minimize J =
∑

i

∑

j

Weight(i, j) · [log(1 + cij)− bri − bcj − ui · vj]2

=
∑

i

∑

j

min
{
1,

cij
M

}α

· [log(1 + cij)− bri − bcj − ui · vj]2

The sum of ui and vi is used as the embedding of word i.
The original GloVe paper does not use any regularization term. The optimization model

can be solved using either stochastic gradient-descent or coordinate-descent. The stochastic
gradient descent steps of GloVe are similar to those in the previous section, except that
each entry is sampled with probability proportional to Weight(i, j), and that log-normalized
frequencies are used. It is noteworthy that zero entries are not sampled at all because the
value of Weight(i, j) is 0 for such entries. In other words, zero values of cij are disregarded
by GloVe. Therefore, the complexity of stochastic gradient-descent only depends on the
number of non-zero entries. The implications of dropping the zero entries are potentially
intriguing. For example, if we have a data set in which each non-zero cij does not vary much
(but there are many zero entries), the approach discussed in the previous section can still
discover reasonable embeddings because of the contrast between zero and non-zero entries.
However, GloVe could discover trivial matrices U and V in which all entries are the same
(see Exercise 8). Of course, in real settings, such pathological situations do not occur. GloVe
is known to work quite well in practice.

10.4.3 PPMI Matrix Factorization

Glove uses logarithmic normalization for damping very frequent words. Damping can also
be accomplished by using various types of correlation measures to construct the matrix,
such as positive pointwise mutual information (PPMI) [66]. For each word, we extract the
contexts of a particular length on either side that surround the word. The length of the
window size on either side is denoted by t = m/2 for some even number m.

Let cij be the number of times that a word j appears in the context of target word i.
Let fi =

∑
j cij , and qj =

∑
i cij . Furthermore, we denote N =

∑
i,j cij . Then, the positive

pointwise mutual information, PPMI, is defined as follows:

PPMI(i, j) = max

{

log

(
N · cij
fi · qj

)

, 0

}

(10.13)

These PPMI values are stored in a d × d matrix M . The matrix M can be factorized into
rank-p matrices U and V , respectively:

M ≈ UV T (10.14)

318 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

The matrices U and V are both of size d× p. The rows of U will contain the p-dimensional
embeddings of the various words, whereas the rows of V contain the embeddings of con-
texts. The optimization approach is similar to that discussed for matrix factorization in
Sect. 10.4.1. An alternative is to factorize the matrix M ≈ QΣPT using (truncated) singu-
lar value decomposition in p dimensions. The matrices U and V are set to Q

√
Σ and P

√
Σ,

respectively [283].

10.4.4 Shifted PPMI Matrix Factorization

A shifted PPMI matrix (SPPMI) uses a parameter k to shift the matrix and sparsify it:

SPPMI(i, j) = max

{

log

(
N · cij
fi · qj

)

− log(k), 0

}

(10.15)

Using k = 1 is equivalent to PPMI. Better results are obtained for values of k > 1, and the
results can be shown to be closely related to one of the popular negative sampling-based
variants of word2vec [282]. Let M (s) be the d × d matrix, whose entries correspond to the
SPPMI values computed above. As in the case of PPMI matrix factorization, the singular
value decomposition of M (s) can be used to extract the word embeddings. An alternative
is to simply use the rows of the SPPMI matrix directly without any factorization. Since the
SPPMI matrix is sparse, it is possible to work efficiently with these types of vectors.

10.4.5 Incorporating Syntactic and Other Features

A key point in the design of count-based methods is that it is relatively easy to incorporate
syntactic and other features in the factorization process. For example, the case of word-
word embedding, the matrix C is a word-word co-occurrence matrix. Strictly speaking, the
columns need not correspond to words, but they may correspond to any type of contextual
elements. For example, one might have counts of various parts-of-speech, entity types and
so on within the context window. In such a case, the matrix C might not even be a square
matrix. Alternatively, the context words might be tagged with their parts of speech. For
example, the word “bear” might have the variants “bear-V” and “bear-N” corresponding
to the verb and noun form, respectively. Clearly, building such matrices requires a certain
amount of natural language processing. The choice of features is limited only by the type
of linguistic preprocessing one is willing to perform in these systems.

10.5 Graphical Representations of Word Distances

Feature engineering generally refers to the creation of multidimensional embeddings, be-
cause they can be paired with most learning algorithms. However, in recent years, many
algorithms have been designed to work with more powerful data types like graphs. Therefore,
it also makes sense to create graph representations. Furthermore, such methods also pro-
vide an indirect route to the creation of multidimensional embeddings by the factorization
of the adjacency matrices of such graphical representations. The resulting representations
are similar to those created by factorizations of word-context matrices. Graphical represen-
tations have some advantages over using context-based windows because they encode more
information about proximity and ordering of words. The following discussion will present
the distance graph [15].

10.5. GRAPHICAL REPRESENTATIONS OF WORD DISTANCES 319

The distance graph representation captures the sequential relationships between words,
and therefore it makes sense to create distance graphs from individual sentences. In other
words, each distance graph corresponds to an individual sentence. Each distinct word in
the sentence corresponds to a node, and a directed edge occurs between nodes when the
corresponding words occur in sufficient proximity in a sentence. This proximity level is
defined by the order k ≥ 1 of the distance graph. One can view an order-k distance graph
as a graphical representation of the skip-gram model in which each edge represents a (k−1)-
skip-2-gram. A value of k = 1 corresponds to a bigram. The value of k is analogous to the
context window used in the factorization and context-based neural network models of this
chapter. Furthermore, the weight of the edge is defined by the number of times1 that the
r-skip-2-gram occurs in the sentence for r = k − 1. It is noteworthy that the weight from
edge i to edge j is not the same as that between edge j to edge i. Therefore, the distance
graph captures a greater amount of precedence information between words than most of
the factorization models.

For more refined analysis, it is also possible to weight the edges based on the number of
skips between words. For example, consider a pair of nodes i and j, in which word i precedes
word j for a total of t times. Furthermore, assume that the number of skips in each of these
cases is r1, r2, . . . rt, where each ri ≤ k − 1. Then, the weight cij of the edge (i, j) is given
by the following sum of decay weights for a decay parameter λ ∈ (0, 1):

cij =
t∑

s=1

λrs+1 (10.16)

Note that choosing λ = 1 results in a non-decayed version of the distance graph. Adding
this type of decayed weight also results in a more refined representation of context in which
the distances between the individual words matter to a greater degree.

Although the distance graph is naturally created at the sentence level, it can be converted
into a document-level distance graph by aggregating all the sentence-level distance graphs.
The sentence-level distance graphs are aggregated by defining a new distance graph over
the union of all the nodes in the individual (sentence-level) distance graphs, and adding
the weights of the corresponding edges. It is also possible to create a corpus-level distance
graph, factorizing which yields similar results to many models of this chapter.

As in all other text representation methods, frequent words and stop words have a
confounding effect on the accuracy of the representation. Therefore, one solution that is
proposed in [15] is to remove the stop-words before creating the distance graph. However, it
is also possible to down-sample the frequent words to create the distance graph. Four exam-
ples of distance graphs created from a well known nursery rhyme are shown in Fig. 10.3. The
self-loops in this distance graph are slightly different from those presented in [15] because
of a slightly different criterion for their inclusion. The distance graph can be leveraged in
two distinct ways:

1. It is possible to apply graph mining algorithms directly on the distance graph represen-
tations of individual sentences. Graph mining algorithms are much better developed in

1The original definition of distance-graph [15] differs from the skip-gram definition here in a very minor
way. The original definition always assumes that a word is connected to itself. Such a definition also allows
a distance graph of order k = 0, which corresponds to a traditional bag-of-words with only self-loops. For
example, for the sentence “Adam ate an apple” there would always be a self-loop at each of the four nodes
even though there are no adjacent repetitions of words. The slightly modified definition here would include
a self-loop only when words actually occur in their own context. For many traditional applications, however,
this distinction does not seem to affect the results.

320 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

MARY HAD A LITTLE LAMB, LITTLE LAMB,
LITTLE LAMB, MARY HAD A LITTLE LAMB,
WHOSE FLEECE WAS WHITE AS SNOW

MARY LITTLE LAMB, LITTLE LAMB,
LITTLE LAMB, MARY LITTLE LAMB,
FLEECE WHITE SNOW

REMOVE STOPWORDS

CREATE DISTANCE GRAPH

ORDER 1:

ORDER 2:

MARY LITTLE LAMB FLEECE WHITE SNOWλ=1.0 12 4
2

1 1

MARY LITTLE LAMB FLEECE WHITE SNOWANY λ 2λ 4λ

2λ
λ λ λ

MARY LITTLE LAMB FLEECE WHITE SNOWλ=1.0

2 2
1 1

2 4
3

1 1 1

MARY LITTLE LAMB FLEECE WHITE SNOWANY λ

2λ2 2λ2
λ2 λ2

λ λ λ4λ2λ
2λ+λ2

2 1

λ22λ2

1

λ2

1

1

λ

λ

Figure 10.3: Distance graphs of orders k = {1, 2} for different λ

the literature as compared to sequence mining algorithms [2], and off-the-shelf options
are often available [15].

2. The distance graphs of different sentences can be aggregated into a single distance
graph. It is possible to factorize the (aggregated) distance graphs to create similar
embeddings to word-context factorization methods (see Exercise 6).

It is possible to create undirected variants of distance graphs in the event that the precedence
information is not important [15].

10.6 Neural Language Models

Neural embeddings like word2vec [341, 342] create embeddings from a context window like
GLoVe and other matrix factorization methods. First, we will start with a brief introduction
to neural networks.

10.6.1 Neural Networks: A Gentle Introduction

Neural networks are a model of simulation of the human nervous system. The human nervous
system is composed of cells, referred to as neurons. Biological neurons are connected to one
another at contact points, which are referred to as synapses. Learning is performed in living
organisms by changing the strength of synaptic connections between neurons. Typically, the
strength of these connections change in response to external stimuli. Neural networks can
be considered a simulation of this biological process.

As in the case of biological networks, the individual nodes in artificial neural networks
are referred to as neurons. These neurons are units of computation that receive input from
other neurons, make computations on these inputs, and feed them into yet other neurons.
The computation at a neuron is affected by the weights on the input connections to that

10.6. NEURAL LANGUAGE MODELS 321

neuron because the input to the neuron is scaled by the weight. This weight can be viewed
as analogous to the strength of a synaptic connection. By changing these weights appro-
priately, the overall computation function of the artificial neural network can be learned,
which is analogous to the learning of the synaptic strength in biological neural networks.
The “external stimulus” in artificial neural networks for learning these weights is provided
by the training data. The idea is to incrementally modify the weights whenever incorrect
predictions are made by the current set of weights.

A wide variety of architectures exist, starting from a simple perceptron to complex mul-
tilayer networks. The use of a large number of layers is referred to as deep learning. In
particular, the recurrent neural networks in this chapter can be considered deep models.

10.6.1.1 Single Computational Layer: The Perceptron

The most basic architecture of a neural network is referred to as the perceptron. An example
of the perceptron architecture is illustrated in Fig. 10.5a. The perceptron contains two layers
of nodes, which correspond to the input nodes and a single output node. The number of
input nodes is exactly equal to the dimensionality d of the underlying data. Each input node
receives and transmits a single numerical attribute to the output node. Therefore, the input
nodes only transmit input values and do not perform any computation on these values. In the
basic perceptron model, the output node is the only node that performs a mathematical
function on its inputs. The individual features in the training data are assumed to be
numerical. Categorical attributes are handled by creating a separate binary input for each
value of the categorical attribute, and only one of these inputs take on the value of 1 and the
other inputs take on the value of 0. This is logically equivalent to binarizing the categorical
attribute into multiple attributes. This type of encoding is referred to as one-hot encoding
and is useful in the text setting where there are multiple inputs corresponding to different
words. In the binary classification problem, there is a single output node with two possible
values drawn from {−1,+1}.

Consider the simplest possible setting with numerical inputs and a single binary output.
In this case, each input node is connected with a weighted connection to the output node.
These weights define a function from the values transmitted by the input nodes to a binary
value drawn from {−1,+1}. This value can be interpreted as the perceptron’s prediction of
the class variable of the data instance fed to the input nodes. Just as learning is performed
in biological systems by modifying synaptic strengths, the learning in a perceptron is per-
formed by modifying the weights of the links connecting the input nodes to the output node
whenever the predicted label does not match the true label.

The function learned by the perceptron is referred to as the activation function, which
is a signed linear function. This function is very similar to that learned in support vector
machines for mapping training instances to binary class labels. Let W = (w1 . . . wd) be the
weights for the connections of d different inputs to the output neuron for a data record of
dimensionality d. In addition, the (d+ 1)th input to the neuron has a constant value of 1,
whose coefficient is the bias b. The output ŷ ∈ {−1,+1} for the feature set (x1 . . . xd) of
the data point X, is as follows:

ŷ = sign{
d∑

j=1

wjxj + b} (10.17)

The value ŷ (with the circumflex on top) represents the prediction of the perceptron for the
class variable of X. The sign function is used in order to transform the output to a form
that is suitable for binary classification. The sign function can be dropped if the target to
be learned is real valued.

322 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

It is noteworthy that the use of a dummy input with a constant value of 1 allows us to
drop an explicit use of the bias from the above function, because the bias can be incorporated
within the coefficient vector W :

ŷ = sign{
d∑

j=1

wjxj} (10.18)

This type of feature engineering trick is similar to what is used in the case of linear mod-
els (see Sect. 6.1.2 of Chap. 6). An equivalent approach is to create a bias neuron that always
emits an output value of 1. This neuron is not connected to any of the nodes in its previous
layer, but it has an input into each of the nodes of the layer where a bias is required. The
coefficient of each such connection provides the node-specific bias.

It is desired to learn the weights, so that the value of ŷ is equal to the true value y of
the class variable for as many training instances as possible. The goal in neural network
algorithms is to learn the vector of weights W = (w1 . . . wd), so that ŷ approximates the true
class variable y as closely as possible. Therefore, one implicitly tries to minimize the sum
of squared errors (ŷ − y)2 over various training instances. This type of objective function
is, however, well suited to numerical data, and binary outputs can be viewed as special
cases of numerical data. In cases where the ground-truth is a multi-way categorical value
(e.g., identity of word in text data), multiple output nodes are used with a similar form
of probabilistic prediction as multinomial logistic regression (cf. Sect. 6.4.4). The objective
function therefore takes the form of log-likelihood maximization. This type of output is
referred to as softmax, and we will discuss a specific example in the context of the word2vec
model. The key point to understand is that neural networks enable a variety of architectures
to handle different types of learning problems and data types.

The basic perceptron algorithm starts with a random vector of weights. The algorithm
then feeds each input data instance X into the neural network one by one to create the
prediction ŷ. The weights are then updated, based on the error value E(X) = (y − ŷ).
Specifically, when the data point X is fed into the network, the weight vector W is updated
as follows:

W ⇐ W + α(y − ŷ)X (10.19)

The parameter α regulates the learning rate of the neural network. The perceptron algorithm
repeatedly cycles through all the training examples in random order and iteratively adjusts
the weights until convergence is reached. Note that a single training data point may be
cycled through many times. Each such cycle is referred to as an epoch. One can also write
the gradient-descent update in terms of the error E(X) = (y − ŷ) as follows:

W ⇐ W + αE(X)X (10.20)

The perceptron implicitly uses a loss function, which is not quite the same as that used in
least-squares classification (cf. Eq. 6.21). Let us examine the incremental term (y − ŷ)X in
the update of Eq. 10.19, without the multiplicative factor α. The computed error (y − ŷ) is
always an integer value in the perceptron but not in least-squares classification. However,
the two methods use their respective versions of the error in an identical way. In other words,
the perceptron algorithm is unique with respect to other related least-squares methods.

The perceptron updates are performed on a tuple-by-tuple basis, rather than globally,
over the entire data set, as one would expect in a global least-squares optimization. The
basic perceptron algorithm can be considered a stochastic gradient-descent method, which
implicitly minimizes the squared error of prediction by performing local gradient-descent

10.6. NEURAL LANGUAGE MODELS 323

updates with respect to randomly chosen training points. The assumption is that the neural
network cycles through the points in random order during training with the goal of reducing
prediction error. It is easy to see that non-zero updates are made to the weights only when
y
= ŷ, and errors are made in categorization. In mini-batch stochastic gradient descent, the
aforementioned updates of Eq. 10.20 are implemented over a randomly chosen subset S of
training points:

W ⇐ W + α
∑

X∈S

E(X)X (10.21)

As in all linear models of Chap. 6, it is possible to penalize the weights in order to prevent
overfitting. The most common form of penalization is L2-regularization, in which case the
updates are as follows:

W ⇐ W (1− αλ) + α
∑

X∈S

E(X)X (10.22)

Here, λ > 0 is the regularization parameter. One can view this type of penalization as a
kind of weight decay during the updates. Note that this type of penalization is applied
in all types of neural networks, and not just the perceptron. Regularization is particularly
important when the amount of available data is limited.

10.6.1.2 Relationship to Support Vector Machines

The perceptron turns out to very closely related to the support vector machine (SVM).
This similarity becomes particularly evident, when the perceptron updates are rewritten as
follows:

W ⇐ W (1− αλ) + α
∑

(X,y)∈S+

yX (10.23)

Here, S+ is defined as the set of X ∈ S satisfying y(W · X) < 0. Although the above
update looks different from the error-based update of the perceptron, the (integer) error
value E(X) = (y − sign{W · X}) ∈ {−2,+2} is equal to 2y for misclassified points, and
one can absorb the factor of 2 within the learning rate. The resulting perceptron update
(on replacing E(X) with y) is similar to that used by the primal SVM algorithm, except
that the updates are performed only for the misclassified points, and do not include the
marginally correct predictions near the decision boundary. Note that the SVM uses the
condition y(W ·X) < 1 to define S+, which causes the marginal predictions to be included
as well. This is the only difference between the perceptron and the primal SVM algorithm.
Refer to Sect. 6.3.3 of Chap. 6 for a discussion of the primal SVM algorithm.

The perceptron implicitly optimizes the perceptron criterion [51] defined by the following:

L = max{−y(W ·X), 0} (10.24)

The reader is encouraged to verify that the gradient of this smoothed objective function
leads to the perceptron update. A remarkable observation is that the perceptron criterion
is a shifted version of the hinge-loss used in the SVM:

Lsvm = max{1− y(W ·X), 0} (10.25)

This shifting by one unit also explains the minor difference in the condition under which
the training point (X, y) contributes to the update. Illustrative examples of optimal solu-
tions found by the perceptron and the SVM are shown in Fig. 10.4. The SVM discourages
marginally correct predictions, as a result of which it will tend to generalize better to unseen
test data near the decision boundary.

324 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

OPTIMAL SOLUTION
FOUND BY PERCEPTRON

OPTIMAL SOLUTION
FOUND BY SVM

MARGINALLY
CORRECT PREDICTION

LOSS FUNCTION DISCOURAGES
MARGINALLY CORRECT PREDICTIONS

W X = 0W X = 0

Figure 10.4: Comparing the SVM and the perceptron

10.6.1.3 Choice of Activation Function

In the case of the perceptron, the sign function is used as the activation function. This
particular type of activation is useful for creating discrete outputs, although it may not be
well suited to every type of output. For example, if it is desired to predict the probability of
the positive class, one might choose to use a sigmoid function. In such cases, the optimization
of the squared error is no longer appropriate (as in the perceptron), and it makes sense to
maximize the likelihood of the observed data. Therefore, the choice of the activation and loss
functions may also vary with the desired goal of the learning algorithm. Many of these loss
functions are similar to those used in the linear and nonlinear models of Chap. 6. The reason
is that these models are highly dependent on optimization methods like gradient-descent,
which are easy to generalize to neural network architectures. Mastery of these models is
highly recommended for readers interested in neural networks and deep learning.

Common choices of activation functions are the sign, sigmoid, or hyperbolic tangent
functions. We use the notation Φ in order to denote the activation function:

ŷ = Φ(W ·X) (10.26)

Some examples of the function Φ(·) are as follows:

Φ(v) = v (identity function) Φ(v) = sign(v) (sign function)
Φ(v) = 1

1+e−v (sigmoid function) Φ(v) = max{v, 0} (ReLU)

Φ(v) = e2v−1
e2v+1 (tanh function) Φ(v) = max {min [v, 1] ,−1} (hard tanh)

The specific choice of the activation function is determined by the analyst depending on her
experience and insight about different types of problems. For example, the sigmoid function
always maps the output in (0, 1), which is interpreted as a probability value. The tanh
function is similar to the sigmoid function, except that it maps the output in the range
(−1,+1) rather than (0, 1). It is desirable when the output needs to be mapped to both
positive and negative values. The Rectified Linear Unit (ReLU) and hard tanh functions
are piecewise linear approximations of the sigmoid and tanh functions, respectively.

As we will see later, such nonlinear activation functions are also very useful in multilayer
networks, because they help in creating more powerful compositions of different types of
functions. Many of these functions are referred to as squashing functions, as they map the
outputs from an arbitrary range to bounded outputs.

10.6. NEURAL LANGUAGE MODELS 325

10.6.1.4 Choice of Output Nodes

In many basic variations of the perceptron architecture, it is possible to use multiple output
nodes when there are multiple classes. Multiple output nodes are useful in other types of
architectures where one is trying to reconstruct more than one attribute of the data from
a subset of other attributes. A classical example of such a setting is an autoencoder that
tries to reconstruct all the features with a multi-layer architecture. Multiple output nodes
are also of interest to us, because the output may be a set of t contextual words that are
predicted from a single word. The discrete nature of the target word(s) also requires us to
choose a form of the output that is different from the sign activation function. In the case
where the output is a target word with d possible values, the output is typically computed
using a softmax layer with d outputs, and each output is a probability value indicating the
likelihood that the particular word is selected. Therefore, if v = [v1, . . . vd] be the d output
values using a linear model for each word, then the ith softmax output is computed as
follows:

Φ(v)i =
exp(vi)

∑d
j=1 exp(vj)

∀i ∈ {1 . . . d} (10.27)

One can view a softmax output as a form of multinomial logistic prediction (cf. Sect. 6.4.4
of Chap. 6), and it is particularly useful for discrete variable prediction in the multi-way
setting. In such cases, the loss function of the neural network is computed using the negative
log loss over the output probabilities rather than the squared error used in the perceptron.

10.6.1.5 Choice of Loss Function

It is evident from the aforementioned discussion that the choice of activation function, the
nature of the output nodes, and the goal of the specific application have a role to play
in deciding the loss function. For example, least-squares regression with numeric outputs
requires a simple squared loss of the form (y − ŷ)2 for a single training instance with real-
valued target y and prediction ŷ (with identity activation). One can also use other types
of loss like hinge loss, which is defined for y ∈ {−1,+1} and real-valued prediction ŷ (with
identity activation):

L = max{0, 1− y · ŷ} (10.28)

The reader should satisfy herself that this type of loss function can be used to implicitly
define a support vector machine with single-layer neural networks (cf. Sect. 6.3 of Chap. 6).
The resulting algorithm is different from the perceptron in only a very small way (see
discussion surrounding Eq. 10.23).

For multiway predictions (like predicting word identifiers or one of multiple classes),
the softmax output is particularly useful. However, a softmax output is probabilistic, and
therefore it requires a different type of loss function. In fact, for probabilistic predictions,
two different types of loss functions are used, depending on whether the prediction is binary
or whether it is multiway:

1. Binary targets (logistic regression): In this case, it is assumed that the observed
value y is drawn from {−1,+1}, and the prediction ŷ is a an arbitrary numerical value
on using the identity activation function. In such a case, the loss function for a single
instance with observed value y and prediction ŷ is defined as follows:

L = log(1 + exp(−y · ŷ)) (10.29)

326 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

The reader should satisfy herself that this loss function is identical to that used in
logistic regression (cf. Sect. 6.4 of Chap. 6). Alternatively, one can use a sigmoid acti-
vation function to output ŷ ∈ (0, 1), which indicates the probability that the observed
value y is 1. Then, the negative logarithm of |y/2−0.5+ ŷ| provides the loss, assuming
that y is coded from {−1, 1}. This is because |y/2− 0.5 + ŷ| indicates the probability
that the prediction is correct, which creates a negative log-loss.

2. Categorical targets: In this case, if ŷ1 . . . ŷk be the probabilities of the k classes
(using the softmax activation), and the rth class is the ground-truth class, then the
loss function for a single instance is defined as follows:

L = −log(ŷr) (10.30)

This function is referred to as cross-entropy loss, and is the same as the one used
in multinomial logistic regression (see Eq. 6.35 of Sect. 6.4.4). Furthermore, this loss
function is a direct generalization of the loss function discussed above for the binary
case.

Predicting the probability of an output word (e.g., next word in language model) is a
classical example of the use of such an approach, because one needs to predict a single
discrete possibility (word) out of a lexicon of d terms. The word2vec method provides a
specific example of the use of such an approach. The key point to remember is that the
nature of the output nodes, the activation function, and the loss function that is optimized
depend on the application at hand. Even though the perceptron is often presented as the
quintessential representative of single-layer networks, it is only a single representative out
of a very large universe of possibilities.

10.6.1.6 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feedforward network. The nodes in one layer are also assumed to be fully connected to the
nodes in the next layer. Therefore, the topology of the multilayer feedforward network is
automatically determined, after the number of layers and the number/type of nodes in
each layer have been specified by the analyst, although the choice of the loss function is
also critical. The basic perceptron may be viewed as a single-layer feedforward network.
A popularly used model is one in which a multilayer feedforward network contains only a
single hidden layer. Such a network may be considered a two-layer feedforward network.
An example of a three-layer feedforward network is illustrated in Fig. 10.5b. Note that the
number of layers refers to the number of computational layers, and does not include the
input layer (which only transmits the data to the next layer).

10.6. NEURAL LANGUAGE MODELS 327

INPUT NODES

∑
OUTPUT NODE

y

w1

w2

w3

w4

x4

x3

x2

x1

x5

w5

f

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

(a) Perceptron (b) Three-layer feedforward

Figure 10.5: Single and multilayer neural networks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

Figure 10.6: An example of an autoencoder with multiple outputs

The example of Fig. 10.5b illustrates a multilayer network, which is relevant for the
classification problem. However, it is possible to use different types of outputs, depending on
the goal at hand. A classical example of this setting is the autoencoder, which recreates the
outputs from the inputs. Therefore, the number of outputs is equal to the inputs, as shown
in Fig. 10.6. The constricted hidden layer in the middle outputs the reduced representation
of each instance, just as principal component analysis or matrix factorization produces lower
dimensional representations of data points. In fact, a shallow variant of this scheme can be
shown to be mathematically equivalent to principal component analysis. Another common
example of multiple outputs is a simulation of multinomial logistic regression. This approach
is particularly useful in the context of language models, where one predicts the probabilities
of various words with the use of a context window as the input. This chapter will discuss
one such method.

What does a multi-layer network mean in terms of the functions computed at individual
nodes? A path of length 2 in the neural network in which the function f(·) follows g(·) can
be considered a composition function f(g(·)). Furthermore, if g1(·), g2(·) . . . gk(·) are the
functions computed in layer m, and a particular layer-(m+1) node computes f(·), then the
composition function computed by the layer(m+ 1) node in terms of the layer-m inputs is
f(g1(·), . . . gk(·)). The use of nonlinear activation functions increases the power of multiple
layers. If all layers use an identity activation function, then a multilayer network simplifies

328 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

w
f(w)

g(y)

h(z)

K(p,q)

O = K(p,q) = K(g(f(w)),h(f(w)))

UGLY COMPOSITION FUNCTION

O

INPUT
WEIGHT

OUTPUT

∂O

∂w
=

∂O

∂p
· ∂p

∂w
+

∂O

∂q
· ∂q

∂w
[Multivariable Chain Rule]

=
∂O

∂p
· ∂p

∂y
· ∂y

∂w
+

∂O

∂q
· ∂q

∂z
· ∂z

∂w
[Univariate Chain Rule]

=
∂K(p, q)

∂p
· g (y) · f (w)

First path

+
∂K(p, q)

∂q
· h (z) · f (w)

Second path

Figure 10.7: Illustration of chain rule in computational graphs: The products of node-
specific partial derivatives along paths from weight w to output O are aggregated. The
resulting value yields the derivative of output O with respect to weight w. Only two paths
between input and output exist in this simplified example.

to linear regression. It has been shown [227] that a network with a single hidden layer
in which the outputs of multiple sigmoidal units (or any reasonable squashing function)
are combined linearly can compute any function in theory (given sufficient data). As a
result, neural networks are often referred to as universal function approximators. In practice,
however, since the number of units required in the hidden layer may be very large (causing
over-fitting), the practical usefulness of this paradigm has its own limitations.

It is helpful to view a neural network as a computational graph, which is constructed
by piecing together many of the basic parametric models discussed in earlier chapters.
Neural networks are fundamentally more powerful than their building blocks because the
parameters of these models are learned jointly to create a highly optimized composition
function of these models. The common use of the term “perceptron” to refer to the basic
unit of a neural network is somewhat inexact, because the multilayer network puts together
models of different types (which frequently have nonlinear activations) in order to gain its
power.

In the single-layer neural network, the training process is relatively straightforward be-
cause the error (or loss function) can be computed as a direct function of the weights, which
allows easy gradient computation. In the case of multi-layer networks, the problem is that
the loss is a complicated composition function of the weights in earlier layers. The gradient
of a composition function is computed using the backpropagation algorithm. The backprop-
agation algorithm leverages the chain rule of differential calculus, which computes the error
gradients in terms of summations of local-gradient products over the various paths from a
node to the output. Although this summation has an exponential number of components

10.6. NEURAL LANGUAGE MODELS 329

(paths), one can compute it efficiently using dynamic programming. The backpropagation
algorithm is a direct application of dynamic programming. It contains two main phases,
referred to as the forward and backward phases, respectively. The forward phase is required
to compute the output values and the local derivatives at various nodes, and the backward
phase is required to accumulate the products of these local values over all paths from the
node to the output:

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to that of the
training instance and the derivative of the loss function with respect to the output is
computed. The derivative of this loss now needs to be computed with respect to the
weights in all layers in the backwards phase.

2. Backward phase: The main goal of the backward phase is to learn the gradient of the
loss function with respect to the different weights by using the chain rule of differen-
tial calculus. These gradients are used to update the weights. Since these gradients
are learned in the backward direction, starting from the output node, this learning
process is referred to as the backward phase. Consider a sequence of hidden units
h1, h2, . . . , hk followed by output o, with respect to which the loss function L is com-
puted. Furthermore, assume that the weight of the connection from hidden unit hr to
hr+1 is w(hr,hr+1). Therefore, the input into the rth unit, which is contributed by the
(r − 1)th hidden unit, is w(hr−1,hr) · hr−1. Then, in the case that a single path exists
from h1 to o, one can derive the gradient of the loss function with respect to any of
these edge weights using the chain rule:

∂L

∂w(hr−1,hr)
=

∂L

∂o
·
[
∂o

∂hk

k−1∏

i=r

∂hi+1

∂hi

]
∂hr

∂w(hr−1,hr)
∀r ∈ 1 . . . k (10.31)

The aforementioned expression assumes that only a single path from h1 to o exists in
the network, whereas an exponential number of paths might exist in reality. A gener-
alized variant of the chain rule, referred to as the multivariable chain rule, computes
the gradient in a computational graph, where more than one path might exist. This is
achieved by adding the composition along each of the paths from hr to o. An exam-
ple of the chain rule in a computational graph with two paths is shown in Fig. 10.7.
Therefore, one generalizes the above expression to the case where a set P of paths
exist from hr to o:

∂L

∂w(hr−1,hr)
=

∂L

∂o
·
⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂o

∂hk

k−1∏

i=r

∂hi+1

∂hi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes Δ(hr, o) =
∂L
∂hr

∂hr

∂w(hr−1,hr)
(10.32)

The computation of ∂hr

∂w(hr−1,hr)
on the right-hand side is straightforward, and is dis-

cussed later in Eq. 10.35. However, the path-aggregated term above [annotated by
Δ(hr, o) =

∂L
∂hr

] is aggregated over an exponentially increasing number of paths (with
respect to path length), which seems to be intractable at first sight. A key point is
that the computational graph of a neural network does not have cycles, and it is pos-
sible to compute such an aggregation in a principled way in the backwards direction

330 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

by first computing Δ(hk, o) for nodes hk closest to o, and then recursively computing
these values for nodes in earlier layers in terms of nodes in later layers. This type of
dynamic programming technique is used frequently to efficiently compute all types
of path-centric functions in directed acyclic graphs, which would otherwise require
an exponential number of operations. The recursion for Δ(hr, o) can be expressed as
follows:

Δ(hr, o) =
∂L

∂hr
=

∑

h:hr⇒h

∂L

∂h

∂h

∂hr
=

∑

h:hr⇒h

∂h

∂hr
·Δ(h, o) (10.33)

The value of Δ(o, o) is initialized to ∂L
∂o at the beginning of the backwards pass. Since

each h is in a later layer than hr, Δ(h, o) has already been computed while evaluating
Δ(hr, o). However, we still need to evaluate ∂h

∂hr
in order to compute Eq. 10.33. Con-

sider a situation in which the edge joining hr to h has weight w(hr,h), and let ah be
the value computed in hidden unit h just before applying the activation function Φ(·).
In other words, we have h = Φ(ah), where ah is a linear combination of its inputs
from earlier-layer units incident on h. Then, by the univariate chain rule, the following
expression for ∂h

∂hr
can be derived:

∂h

∂hr
=

∂h

∂ah
· ∂ah
∂hr

=
∂Φ(ah)

∂ah
· w(hr,h) = Φ′(ah) · w(hr,h)

By substituting ∂h
∂hr

in Eq. 10.33, one obtains the following:

Δ(hr, o) =
∑

h:hr⇒h

Φ′(ah) · w(hr,h) ·Δ(h, o) (10.34)

These gradients are successively accumulated in the backwards pass. Finally, Eq. 10.32
requires the computation of ∂hr

∂w(hr−1,hr)
, which is easily computed as follows:

∂hr

∂w(hr−1,hr)
= hr−1 · Φ′(ahr

) (10.35)

The approach requires linear time in the number of network connections.

The recurrence condition of Eq. 10.34 is derived above by applying the chain rule to the
variables representing hidden values after applying the activation function. A slightly dif-
ferent recurrence condition may be obtained [51, 183] by replacing Δ(hr, o) with δ(hr, o),
which is defined in terms of variables representing pre-activation values ah1

. . . ahk
and ao

in the units h1 . . . hk and o. Therefore, Eq. 10.32 is adjusted as follows:

∂L

∂w(hr−1,hr)
=

∂L

∂o
Φ′(ao) ·

⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂ao
∂ahk

k−1∏

i=r

∂ahi+1

∂ahi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes δ(hr, o) =
∂L

∂ahr

· ∂ahr

∂w(hr−1,hr)
︸ ︷︷ ︸

hr−1

(10.36)

The recurrence of δ(hr, o) = ∂L
∂ahr

is defined as δ(hr, o) = Φ′(ahr
)
∑

h:hr⇒h w(hr,h)δ(h, o)

and each δ(o, o) is initialized to ∂L
∂oΦ

′(ao). The recurrence using pre-activation values is
more commonly used, and is the one found in most textbooks. It is easy to generalize the
recurrence to multiple outputs by adding all contributions.

10.6. NEURAL LANGUAGE MODELS 331

10.6.2 Neural Embedding with Word2vec

The two variants of word2vec are as follows:

1. Predicting target words from contexts: This model tries to predict the ith word, wi,
in a sentence using a window of width t around the word. Therefore, the words
wi−twi−t+1 . . . wi−1wi+1 . . . wi+t−1wi+t are used to predict the target word wi. This
model is also referred to as the continuous bag-of-words (CBOW) model.

2. Predicting contexts from target words: This model tries to predict the context
wi−twi−t+1 . . . wi−1wi+1 . . . wi+t−1wi+t around word wi, given the ith word in the
sentence, denoted by wi. This model is referred to as the skip-gram model. There are,
however, two ways in which one can perform this prediction. The first technique is a
multinomial model which predicts one word out of d outcomes. The second model is a
Bernoulli model, which models whether or not each context is present for a particular
word. The second approach uses negative sampling for efficiency.

Each of these methods will be discussed in this section.

10.6.2.1 Neural Embedding with Continuous Bag of Words

In the continuous bag-of-words (CBOW) model, the training pairs are all context-word pairs
in which a window of context words is input, and a single target word is predicted. The
context contains 2 · t words, corresponding to t words both before and after the target word.
For notational ease, we will use the length m = 2 · t to define the length of the context.
Therefore, the input to the system is a set of m words. Without loss of generality, let the
subscripts of these words be numbered so that they are denoted by w1 . . . wm, and let the
target (output) word in the middle of the context window be denoted by w. Note that w
can be viewed as a categorical variable with d possible values, where d is the size of the
lexicon. The goal of the neural embedding is to compute the probability P (w|w1w2 . . . wm)
and maximize the product of these probabilities over all training samples.

The overall architecture of this model is illustrated in Fig. 10.8. In the architecture, we
have a single input layer with m × d nodes, a hidden layer with p nodes, and an output
layer with d nodes. The nodes in the input layer are clustered into m different groups, each
of which has d units. Each group with d input units is the one-hot encoded input vector
of one of the m context words being modeled by CBOW. Only one of these d inputs will
be 1 and the remaining inputs will be 0. Therefore, one can represent an input xij with
two indices corresponding to contextual position and word identifier. Specifically, the input
xij ∈ {0, 1} contains two indices i and j in the subscript, where i ∈ {1 . . .m} is the position
of the context, and j ∈ {1 . . . d} is the identifier of the word.

The hidden layer contains p units, where p is the dimensionality of the hidden layer in
word2vec. Let h1, h2, . . . hp be the outputs of the hidden layer nodes. Note that each of the
d words in the lexicon has m different representatives in the input layer corresponding to
the m different context words, but the weight of each of these m connections is the same.
Such weights are referred to as shared. Let the shared weight of each connection from the
jth word in the lexicon to the qth hidden layer node be denoted by ujq. Note that each of
the m groups in the input layer has connections to the hidden layer that are defined by the
same d× p weight matrix U . This situation is shown in Fig. 10.8.

It is noteworthy that uj = (uj1, uj2, . . . ujp) can be viewed as the p-dimensional em-
bedding of the jth input word over the entire corpus, and h = (h1 . . . hp) provides the

332 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

x11x12x13

x1d

xj1xj2xj3

xjd

xm1xm2xm3

xmd

h2

h1

hp

y1y2y3

yd

U=[ujq]

d X p matrix

d X p matrix

U=[ujq]

U=[ujq]
d X p matrix

V=[vqj]
p X d matrix

Figure 10.8: Word2vec: The CBOW model. One could also choose to collapse the m sets of
d input nodes into a single set of d inputs, and aggregate the m one-hot encoded inputs in
a single context window to achieve the same effect. In such a case, the input is no longer
one-hot encoded.

embedding of a specific instantiation of an input context. Then, the output of the hidden
layer is as follows:

hq =

m∑

i=1

⎡

⎣
d∑

j=1

ujqxij

⎤

⎦ ∀q ∈ {1 . . . p} (10.37)

Many expositions use an additional factor of m in the denominator on the right-hand side,
although this type of multiplicative scaling (with a constant) is inconsequential. One can
also write this relationship in vector form:

h =

m∑

i=1

d∑

j=1

ujxij (10.38)

In essence, the one-hot encodings of the input words are aggregated, which implies that the
ordering of the words within the window of size m does not affect the output of the model.
This is the reason that the model is referred to as the continuous bag-of-words model.
However, sequential ordering of the words is still used by virtue of restricting the prediction
to a context window.

The embedding (h1 . . . hp) is used to predict the probability that the target word is one
of each of the d outputs with the use of the softmax function. The weights in the output

10.6. NEURAL LANGUAGE MODELS 333

layer are parameterized with a p × d matrix V = [vqj]. The jth column of V is denoted
by vj . The output after applying softmax creates d output values ŷ1 . . . ŷd, which are real
values in (0, 1). These real values sum to 1 because they can be interpreted as probabilities.
The ground-truth value of only one of the outputs y1 . . . yd is 1 and the remaining values
are 0 for a given training instance. This condition can be written as follows:

yj =

{
1 if the target word w is the jth word

0 otherwise
(10.39)

The softmax function computes the probability P (w|w1 . . . wm) of the one-hot encoded
ground-truth outputs yj as follows:

ŷj = P (yj = 1|w1 . . . wm) =
exp(

∑p
q=1 hqvqj)

∑d
k=1 exp(

∑p
q=1 hqvqk)

(10.40)

Note that this probabilistic form of the prediction is the same as multinomial logistic re-
gression (cf. Sect. 6.4.4). For a particular target word w = r ∈ {1 . . . d}, the loss function
is given by L = −log[P (yr = 1|w1 . . . wm)] = −log(ŷr). The use of the negative logarithm
turns the multiplicative likelihoods over different training instances into an additive loss.

The updates are defined by using the backpropagation algorithm in feedforward neural
networks. One can update the weights of the neural networks in an additive way using the
loss-gradients of different training instances, which are passed through the neural network
one by one. First, the derivative of the aforementioned loss function can be used to update
the gradients of the weight matrix V in the output layer. Then, backpropagation can be
used to update the weight matrix U between the input and hidden layer. Then, the update
equations with learning rate α are as follows:

ui ⇐ ui − α
∂L

∂ui
∀i

vj ⇐ vj − α
∂L

∂vj
∀j

The probability of making a mistake in predicting the jth word in the lexicon is defined by
|yj − ŷj |. However, we use signed mistakes εj , in which only the correct word with yj = 1
receives a positive mistake value, while all the other words in the lexicon receive negative
mistake values. This is achieved by dropping the modulus:

εj = yj − ŷj (10.41)

Then, the updates2 for a particular input context and output word are as follows:

ui ⇐ ui + α
d∑

j=1

εjvj [∀ words i present in context window]

vj ⇐ vj + αεjh [∀j in lexicon]

Here, α > 0 is the learning rate. Repetitions of the same word i in the context window trigger
multiple updates of ui. It is noteworthy that the input embeddings of the context words

2Note that ui and vj are added in the updates, which is a slight abuse of notation. Although ui is a
row vector and vj is a column vector, the updates are intuitively clear.

334 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

are aggregated in both updates, considering the fact that h aggregates input embeddings
according to Eq. 10.38. This type of aggregation has a smoothing effect on the CBOW
model, which is particularly helpful with smaller data sets.

The training examples of context-target pairs are presented one by one, and the weights
are trained to convergence. It is noteworthy that the word2vec model provides not one but
two different embeddings that correspond to the p-dimensional rows of the matrix U and the
p-dimensional columns of the matrix V . The former type of embedding of words is referred
to as the input embedding, whereas the latter is referred to as the output embedding. In the
CBOW model the input embedding represents context, and therefore it makes sense to use
the output embedding. However, the input embedding (or the sum/concatenation of input
and output embeddings) can also be helpful for many tasks.

10.6.2.2 Neural Embedding with Skip-Gram Model

In the skip-gram model, the target words are used to predict the m context words. There-
fore, we have one input word and m outputs. One issue with the CBOW model is that the
averaging effect of the input words in the context window (which creates the hidden repre-
sentation) has a (helpful) smoothing effect with less data, but fails to take full advantage
of a larger amount of data. The skip-gram model is the technique of choice when a large
amount of data is available.

The skip-gram model uses a single target word w as the input and outputs the m context
words denoted by w1 . . . wm. Therefore, the goal is to estimate P (w1, w2. . . . wm|w), which
is different from the quantity P (w|w1 . . . wm) estimated in the CBOW model. As in the
case of the continuous bag-of-words model, we can use one-hot encoding of the (categorical)
input and outputs in the skip-gram model. After such an encoding, the skip-gram model
will have d binary inputs denoted by x1 . . . xd corresponding to the d possible values of the
single input word. Similarly, the output of each training instance is encoded as m×d values
yij ∈ {0, 1}, where i ranges from 1 to m (size of context window), and j ranges from 1 to d
(lexicon size). Each yij ∈ {0, 1} indicates whether the ith contextual word takes on the jth
possible value for that training instance. However, the (i, j)th output node only computes
a soft probability value ŷij = P (yij = 1|w). Therefore, the probabilities ŷij in the output
layer for fixed i and varying j sum to 1, since the ith contextual position takes on exactly
one of the d words. The hidden layer contains p units, the outputs are denoted by h1 . . . hp.
Each input xj is connected to all the hidden nodes with a d × p matrix U . Furthermore,
the p hidden nodes are connected to each of the m groups of d output nodes with the same
set of shared weights. This set of shared weights between the p hidden nodes and the d
output nodes of each of the context words is defined by the p× d matrix V . Note that the
input-output structure of the skip-gram model is an inverted version of the input-output
structure of the CBOW model. The neural architecture of the skip-gram model is illustrated
in Fig. 10.9.

The output of the hidden layer can be computed from the input layer using the d × p
matrix of weights U = [ujq] between the input and hidden layer as follows:

hq =
d∑

j=1

ujqxj ∀q ∈ {1 . . . p} (10.42)

The above equation has a simple interpretation because of the one-hot encoding of the input
word w in terms of x1 . . . xd. If the input word w is the rth word, then one simply copies
urq to the qth node of the hidden layer for each q ∈ {1 . . . p}. In other words, the rth row

10.6. NEURAL LANGUAGE MODELS 335

x1x2x3

xd

h1h2

hp

y11y12y13

y1d

yj1
yj2yj3

yjd

ym1ym2ym3

ymd

U=[ujq]

V=[vqj]

V=[vqj]

V=[vqj]

d X p matrix

p X d matrix

p X d matrix

p X d matrix

Figure 10.9: Word2vec: The skip-gram model. One could also choose to collapse the m sets
of d output nodes into a single set of d outputs, and mini-batch the m instances in a single
context window during stochastic gradient descent to achieve the same effect.

ur of U is copied to the hidden layer. As discussed above, the hidden layer is connected to
m groups of d output nodes, each of which is connected to the hidden layer with a p × d
matrix V = [vqj]. Each of these m groups of d output nodes computes the probabilities of
the various words for a particular context word. The jth column of V is denoted by vj and
represents the output embedding of the jth word. The output ŷij is the probability that the
word in the ith context position takes on the jth word of the lexicon. However, since the
same matrix V is shared by all groups, the neural network predicts the same multinomial
distribution for each of the context words. Therefore, we have the following:

ŷij = P (yij = 1|w) = exp(
∑p

q=1 hqvqj)
∑d

k=1 exp(
∑p

q=1 hqvqk)
︸ ︷︷ ︸

Independent of context position i

∀i ∈ {1 . . .m} (10.43)

Note that the probability ŷij is the same for varying i and fixed j, since the right-hand side
of the above equation does not depend on the exact location i in the context window.

The loss function for the backpropagation algorithm is the negative of the log-likelihood
values of the ground truth yij ∈ {0, 1} of a training instance. This loss function L is given
by the following:

L = −
m∑

i=1

d∑

j=1

yij log(ŷij) (10.44)

336 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

Note that the value outside the logarithm is a ground-truth binary value, whereas the value
inside the logarithm is a predicted (probability) value. Since yij is one-hot encoded for fixed i
and varying j, the objective function has only m non-zero terms. For each training instance,
this loss function is used in combination with backpropagation to update the weights of the
connections between the nodes. The update equations with learning rate α are as follows:

ui ⇐ ui − α
∂L

∂ui
∀i

vj ⇐ vj − α
∂L

∂vj
∀j

We leave the computation of the derivatives as an exercise for the reader (cf. Exercise 7),
and details may also be found in [341, 342, 415]. We briefly state the updates below without
derivation.

The probability of making a mistake in prediction on the jth word in the lexicon for
the ith context is defined by |yij − ŷij |. However, we use signed mistakes εij in which only
the predicted words (positive examples) have a positive probability. This is achieved by
dropping the modulus:

εij = yij − ŷij (10.45)

Then, the updates for a particular input word r and its output context are as follows:

ur ⇐ ur + α

d∑

j=1

[
m∑

i=1

εij

]

vj [Only for input word r]

vj ⇐ vj + α

[
m∑

i=1

εij

]

h [For all words j in lexicon]

Here, α > 0 is the learning rate. The p-dimensional rows of the matrix U are used as the
embeddings of the words. In other words, the convention is to use the input embeddings in
the rows of U rather than the output embeddings in the columns of V . It is stated in [283]
that adding the input and output embeddings can help in some tasks (but hurt in others).
The concatenation of the two can also be useful.

10.6.2.3 Practical Issues

Several practical issues are associated with the accuracy and efficiency of the word2vec
framework. The embedding dimensionality, defined by the number of nodes in the hidden
layer, provides the trade-off between bias and variance. Increasing the embedding dimen-
sionality improves discrimination, but it requires a greater amount of data. In general, the
typical embedding dimensionality is of the order of several hundred, although it is possi-
ble to choose dimensionalities in the thousands for very large collections. The size of the
context window typically varies between 5 and 10, with larger window sizes being used for
the skip-gram model as compared to the CBOW model. Using a random window size is a
variant that has the implicit effect of giving greater weight to words that are placed close
together. The skip-gram model is slower but it works better for infrequent words and for
larger data sets.

Another issue is that the effect of frequent and less discriminative words (e.g., “the”)
can dominate the results. Therefore, a common approach is to downsample the frequent
words, which improves both accuracy and efficiency. Note that downsampling frequent words

10.6. NEURAL LANGUAGE MODELS 337

has the implicit effect of increasing the context window size because dropping a word in
the middle of two words brings the latter pair closer. The words that are very rare are
misspellings, and it is hard to create a meaningful embedding for them without overfitting.
Therefore, such words are ignored.

From a computational point of view, the updates of output embeddings are expensive.
This is caused by applying the softmax over a lexicon of d words, which requires an update of
each vj . Therefore, the softmax function is implemented hierarchically for better efficiency.
The idea in this approach is to create a binary tree of words, and then reduce the problem
to log2(d) binary predictions. The structure of the tree does affect the quality of the results.
It is suggested in [341, 342] to use Huffman encoding. We refer the reader to [341, 342, 415]
for details.

10.6.2.4 Skip-Gram with Negative Sampling

An efficient alternative to the hierarchical softmax technique is a method known as skip-
gram with negative sampling (SGNS) [342], in which both presence or absence of word-
context pairs are used for training. As the name implies, the negative contexts are artificially
generated by sampling words in proportion to their frequencies in the corpus (i.e., unigram
distribution). This approach optimizes a different objective function from the skip-gram
model, which is based on ideas from noise contrastive estimation [198, 352, 353].

The basic idea is that instead of directly predicting each of the m words in the context
window, we try to predict whether or not each of the d words in the lexicon is present in
the window. In other words, the final layer of Fig. 10.9 is not a softmax prediction, but
a Bernoulli layer of sigmoids. The output unit for each word at each context position in
Fig. 10.9 is a sigmoid providing a probability value that the position takes on that word.
As the ground-truth values are also available, it is possible to use the logistic loss function
over all the words. Therefore, in this point of view, even the prediction problem is defined
differently. Of course, it is computationally inefficient to try to make binary predictions
for all d words. Therefore, the SGNS approach uses all the positive words in a context
window and a sample of negative words. The number of negative samples is k times the
number of positive samples. Here, k is a parameter controlling the sampling rate. Negative
sampling becomes essential in this modified prediction problem to avoid learning trivial
weights that predict all examples to 1. In other words, we cannot choose to avoid negative
samples entirely (i.e., we cannot set k = 0).

How does one generate the negative samples? The vanilla unigram distribution samples
words in proportion to their relative frequencies f1 . . . fd in the corpus. Better results are

obtained [342] by sampling words in proportion to f
3/4
j rather than fj . As in all word2vec

models, let U be a d× p matrix representing the input embedding, and V be a p× d matrix
representing the output embedding. Let ui be the p-dimensional row of U (input embedding
of ith word) and vj be the p-dimensional column of V (output embedding of jth word).
Let P be the set of positive target-context word pairs in a context window, and N be the
set of negative target-context word pairs which are created by sampling. Therefore, the size
of P is equal to the context window m, and that of N is m · k. Then, the (minimization)
objective function for each context window is obtained by summing up the logistic loss over
the m positive samples and m · k negative samples:

O = −
∑

(i,j)∈P
log(P [Predict (i, j) to 1])−

∑

(i,j)∈N
log(P [Predict (i, j) to 0]) (10.46)

338 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

= −
∑

(i,j)∈P
log

(
1

1 + exp(−ui · vj)
)

−
∑

(i,j)∈N
log

(
1

1 + exp(ui · vj)
)

(10.47)

This modified objective function is used in the skip-gram with negative sampling (SGNS)
model in order to update the weights of U and V . SGNS is mathematically different from
the basic skip-gram model discussed earlier. SGNS is not only efficient, but it also provides
the best results among the different variants of skip-gram models.

10.6.2.5 What Is the Actual Neural Architecture of SGNS?

Even though the original word2vec paper seems to treat SGNS as an efficiency optimization
of the skip-gram model, it is using a fundamentally different architecture in terms of the
activation function used in the final layer. Unfortunately, the original word2vec paper does
not explicitly point this out (and only provides the changed objective function), which
causes confusion.

The modified neural architecture of SGNS is as follows. The softmax layer is no longer
used in the SGNS implementation. Rather, each observed value yij in Fig. 10.9 is indepen-
dently treated as a binary outcome, rather than as a multinomial outcome in which the
probabilistic predictions of different outcomes at a contextual position depend on one an-
other. Instead of using softmax to create the prediction ŷij , it uses the sigmoid activation
to create ŷij , which is the predicted probability whether or not the jth word occurs in each
contextual position i. One then uses the logarithmic loss with respect to both positive and
negative occurrences of each word in each contextual position. Then, one can add up the
loss of ŷij over all m · d possible values of (i, j) to create the full loss function of a context
window. However, this is impractical because the number of zero values of yij is too large
and zero values are noisy anyway. Therefore, SGNS uses negative sampling to approximate
this modified objective function. This means that for each context window, we are back-
propagating from only a subset of the m · d outputs in Fig. 10.9. The size of this subset is
m + m · k. This is where efficiency is achieved. However, since the final layer uses binary
predictions (with sigmoids), it makes the SGNS architecture fundamentally different from
the vanilla skip-gram model even in terms of the basic neural network it uses (i.e., logistic
instead of softmax activation). The difference between the SGNS model and the vanilla skip-
gram model is analogous to the difference between the Bernoulli and multinomial models
in näıve Bayes classification (with negative sampling applied only to the Bernoulli model).
Obviously, one cannot be considered a direct efficiency optimization of the other.

10.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization

The architecture of the skip-gram models look suspiciously similar to an autoencoder (except
that words decode to their context). Autoencoders are often indirect ways of performing
matrix factorization. The SGNS model of word2vec can be simulated with logistic matrix
factorization. The SGNS embedding can be shown to be roughly equivalent to shifted PPMI
matrix factorization [282] of Sect. 10.4.4. However, this equivalence is only implicit in terms
of a derived PPMI matrix. This section discusses a more direct relationship in terms of a
binary matrix of actual outcomes.

Let B = [bij] be a binary matrix in which the (i, j)th value is 1 if word j occurs at
least once in the context of word i in the data set, and 0 otherwise. The weight cij for any
word (i, j) that occurs in the corpus is defined by the number of times word j occurs in
the context of word i. The weights of the zero entries in B are defined as follows. For each

10.6. NEURAL LANGUAGE MODELS 339

row i in B we sample k
∑

j bij different entries from row i, among the entries for which

bij = 0, and the frequency with which the jth word is sampled is proportional to f
3/4
j .

These are the negative samples, and one sets the weights cij for the negative samples (i.e.,
those for which bij = 0) to the number of times that each entry is sampled. As in word2vec,
the p-dimensional embeddings of the ith word and jth context are denoted by ui and vj ,
respectively. The simplest way of factorizing is to use weighted matrix factorization of B
with the Frobenius norm:

MinimizeU,V

∑

i,j

cij(bij − ui · vj)2 (10.48)

Even though the matrix B is of size O(d2), this matrix factorization only has a limited
number of nonzero terms in the objective function, which have cij > 0. Like GloVe, these
weights are dependent on co-occurrence counts, but (unlike GloVe) some zero entries also
have positive weight. Therefore, the stochastic gradient-descent steps only have to focus on
entries with cij > 0, as in GloVe. Each cycle of stochastic gradient-descent is linear in the
number of non-zero entries, as in the SGNS implementation of word2vec. This objective
function goes beyond Glove’s logarithmic damping by damping counts all the way to binary
values. Therefore, contrast between the entries is achieved by negative sampling, whereas
GloVe ignores negative samples and only contrasts the variation in non-zero entries.

However, this objective function also looks somewhat different from word2vec, which has
a logistic form. Just as it is advisable to replace linear regression with logistic regression in
supervised learning of binary targets, one can use the same trick in matrix factorization of
binary matrices [245]. We can change the squared error term to the familiar likelihood term
Lij , which is used in logistic regression:

Lij =

∣
∣
∣
∣bij −

1

1 + exp(ui · vj)
∣
∣
∣
∣ (10.49)

The value of Lij always lies in the range (0, 1), and higher values indicate greater likelihood
(which results in a maximization objective). The modulus in the above expression flips the
sign only for the negative samples in which bij = 0. Now, one can optimize the following
objective function in minimization form:

MinimizeU,V J = −
∑

i,j

cij log(Lij) (10.50)

The main difference from the objective function (cf. Eq. 10.47) of word2vec is that this is
a global objective function over all matrix entries, rather than a local objective function
over a particular context window. Using mini-batch stochastic gradient-descent in matrix
factorization (with an appropriately chosen mini-batch) makes the approach almost identical
to word2vec’s backpropagation updates.

How can one interpret this type of factorization? Instead of B ≈ UV , we have B ≈
f(UV), where f(·) is the sigmoid function. More precisely, this is a probabilistic factorization
in which one computes the product of matrices U and V , and then applies the sigmoid
function to obtain the parameters of the Bernoulli distribution from which B is generated:

P (bij = 1) =
1

1 + exp(−ui · vj) [Matrix factorization analog of logistic regression]

It is also easy to verify from Eq. 10.49 that Lij is P (bij = 1) for positive samples and
P (bij = 0) for negative samples. Therefore, the objective function of the factorization is

340 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

in the form of log-likelihood maximization. This type of logistic matrix factorization is
commonly used [245] in recommender systems with binary data (e.g., user click-streams).

It is suggested [37] that models like SGNS, which make binary predictions, are fun-
damentally better than count-based factorization models (cf. Sect. 10.4). However, as the
above argument shows, SGNS is also equivalent to a factorization model, where the counts
are used as weights in the factorization rather than as matrix entries. Therefore, any differ-
ence in performance is only the result of the specific choice of how the counts are used in the
objective function. It is also shown in [380] that count-based factorization can outperform
word2vec, especially when the counts are properly damped and also used to weight the ob-
jective function. Therefore, the claim that predictive models are fundamentally better than
count-based models should be taken with a grain of salt. It is likely that the real issue is one
of properly handling the order-of-magnitude variation in the word counts within the objec-
tive function in a graceful way. Leveraging the zero entries of the count co-occurrence matrix
in a careful way is also helpful, depending on the problem setting (see Exercise 8). If the
SGNS variant of the skip-gram model is logistic matrix factorization, then what about the
vanilla skip-gram model? It turns out that it is possible to show that the vanilla skip-gram
model is equivalent to multinomial matrix factorization (see Exercise 9).

10.6.3.1 Gradient Descent

It is also helpful to examine the gradient-descent steps of the factorization. One can take
the derivative of J with respect to the input and output embeddings:

∂J

∂ui
= −

∑

j:bij=1

cijvj
1 + exp(ui · vj) +

∑

j:bij=0

cijvj
1 + exp(−ui · vj)

= −
∑

j:bij=1

cijP (bij = 0)vj

︸ ︷︷ ︸
Positive Mistakes

+
∑

j:bij=0

cijP (bij = 1)vj

︸ ︷︷ ︸
Negative Mistakes

∂J

∂vj
= −

∑

j:bij=1

cijui

1 + exp(ui · vj) +
∑

j:bij=0

cijui

1 + exp(−ui · vj)

= −
∑

j:bij=1

cijP (bij = 0)ui

︸ ︷︷ ︸
Positive Mistakes

+
∑

j:bij=0

cijP (bij = 1)ui

︸ ︷︷ ︸
Negative Mistakes

Since this is a minimization problem, the optimization procedure uses gradient descent to
convergence:

ui ⇐ ui − α
∂J

∂ui
∀i

vj ⇐ vj − α
∂J

∂vj
∀j

It is noteworthy that the derivatives can be expressed in terms of the probabilities of making
mistakes in predicting bij . This is common in gradient descent with log-likelihood optimiza-
tion. It is also noteworthy that the derivative of the SGNS objective in Eq. 10.47 yields a

10.6. NEURAL LANGUAGE MODELS 341

similar form of the gradient. The only difference is that the derivative of the SGNS objec-
tive is expressed over a smaller batch of instances, defined by a context window. We can
also solve the probabilistic matrix factorization with mini-batch stochastic gradient descent.
With an appropriate choice of the mini-batch, the stochastic gradient descent of matrix fac-
torization becomes identical to the backpropagation update of SGNS. The only difference
is that SGNS samples negative entries for each set of updates on the fly, whereas matrix
factorization fixes the negative samples up front. Of course, on-the-fly sampling can also be
used with matrix factorization updates.

10.6.4 Beyond Words: Embedding Paragraphs with Doc2vec

The broader principle of word2vec can be generalized to embedding paragraphs as well,
by treating the paragraph identifier as another word in the context. For example, consider
the CBOW model of word2vec, which has m input words with an one-hot encoding of d
possibilities per input word. We can add an (m + 1)th context “word” corresponding to a
paragraph identifier; however, this paragraph identifier is drawn from a different vocabulary
of d′ paragraph identifiers than the other context words. Therefore, the one-hot encoding
of this paragraph identifier requires d′ binary input units. Another difference is that we
now have an additional d′× p matrix U ′ containing the weights of the connections from the
paragraph identifier input nodes to the hidden layer, in addition to the d× p matrix U that
connect the word input nodes to the hidden layer. This is because the weights of the “words”
corresponding to paragraph identifiers are not shared with the regular vocabulary of words.
The rows of the matrix U ′ provide the embeddings of the various paragraphs. The training
process then samples contexts from the various paragraphs and uses the same gradient-
descent method in combination with the backpropagation algorithm. The representations
of paragraph vectors (in the training data) and word vectors are jointly learned because
the entries of U ′, U , and V are updated simultaneously during training. It is also possible
to quickly learn the embedding of out-of-sample paragraphs by applying the same process
of gradient-descent to update only U ′ while keeping U and V fixed. The basic idea here
is that word embeddings are considered stable beyond a certain amount of training, and
paragraph embeddings can be efficiently learned directly from them while holding the word
embeddings fixed.

There are several variations of the architecture that one might use:

1. One can add an additional input for paragraph vectors to the CBOW model of
word2vec. This generalization is shown in Fig. 10.10a.

2. One can add an additional input for paragraph vectors to the skip-gram model of
word2vec. This generalization is shown in Fig. 10.10b. However, this generalization is
not explored in the original doc2vec paper.

…

PARA ID

WORD ID

WORD ID

WORD ID

U’

U

U

U
h

WORD IDV …

WORD ID

WORD ID

WORD ID

V

V

Vh

PARA ID
U’

WORD ID U

…

WORD ID

WORD ID

WORD ID

V

V

V
h

PARA ID U’

(a) CBOW generalization (c) Skip-gram generalization II(b) Skip-gram generalization I

Figure 10.10: Different generalizations of word2vec to doc2vec

342 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

3. One can replace the one-hot encoded word identifier input in the skip-gram model
of word2vec with a one-hot encoded target paragraph identifier input. Not that in
this case, we are dropping the matrix U entirely, and learning only U ′ and V . This
generalization is shown in Fig. 10.10c.

There are some additional differences proposed in the doc2vec work over the original
word2vec framework:

1. Rather than using a word at the center of the context window, the doc2vec framework
uses the historical context window to predict the next word. There is, however, con-
siderable flexibility in what one might choose as context for a particular application.

2. The word2vec framework averages the embeddings of the words in the context in
order to create the output of the hidden layer for a particular context. The doc2vec
framework recommends an additional choice, corresponding to the concatenation of
the vectors. Note that concatenating the vectors increases the dimensionality of the
hidden layer but it does have the benefit of preserving more ordering information.

The incorporation of the paragraph identifiers within the context helps in creating memory
about memberships of text segments in various paragraphs. This memory can help in the
creation of a more refined model, although it does increase the number of parameters.
Therefore, the doc2vec model will generally require a larger corpus than word2vec in order
to work effectively.

10.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) allow the use of loops within the neural network ar-
chitecture to model language dependencies. Recurrent networks take as input a sequence
of inputs, and produce a sequence of outputs. In other words, such models are particu-
larly useful for sequence-to-sequence learning. Some examples of applications include the
following:

1. The input might be a sequence of words, and the output might be the same sequence
shifted by 1. This is a classical language model in which we are trying the predict the
next word based on the sequential history of words.

2. The input might be a sentence in one language, and the output might be a sentence
in another language.

3. The input might be a sequence (e.g., sentence), and the output might be a vector of
class probabilities, which is triggered by the end of the sentence.

The simplest recurrent neural network is shown in Fig. 10.11a. A key point here is the pres-
ence of the self-loop in Fig. 10.11a, which will cause the hidden state of the neural network
to change after the input of each word in the sequence. In practice, one only works with se-
quences of finite length, and it makes sense to unfurl the loop into a “time-layered” network
that looks more like a feedforward network. This network is shown in Fig. 10.11b. Note that
in this case, we have a different node for the hidden state at each time-stamp and the self-
loop has been unfurled into a feedforward network. This representation is mathematically
equivalent to Fig. 10.11a, but it is much easier to comprehend because of its similarity to
a traditional network. The copies of the weight matrices in the different temporal layers,

10.7. RECURRENT NEURAL NETWORKS 343

which are created by unfurling, are shared to ensure that the same mathematical transfor-
mation is applied at each time-stamp. The annotations Wxh, Whh, and Why of the weight
matrices in Fig. 10.11b make the sharing evident.

Given a sequence of words, their one-hot encoding is fed to the network one at a time to
the network in Fig. 10.11a, which is equivalent to feeding the words to the adjacent inputs
in Fig. 10.11b. In the setting of language modeling, the output is a vector of probabilities
predicted for the next word in the sequence. For example, consider the sentence:

The cat chased the mouse.

When the word “The” is input, the output will be a vector of probabilities of the entire
lexicon that includes the word “cat,” and when the word “cat” is input, we will again get
a vector of probabilities predicting the next word. This is, of course, the classical way in
which language models are defined in which the probability of a word is estimated based
on the immediate history of previous words. For the purpose of discussion, let us refer to
each step of processing the sequence as a time-stamp. In general, the input vector at time
t (e.g., one-hot encoded vector of tth word) is xt, the hidden state at time t is ht, and
the output vector at time t (e.g., predicted probabilities of (t + 1)th word) is yt. Both xt

and yt are d-dimensional for a lexicon of size d. The hidden vector ht is p-dimensional,
where p regulates the complexity of the embedding. For the purpose of discussion, we will
assume that all these vectors are column vectors. In many applications like classification,
the output is not produced at each time unit but is only triggered at the last time-stamp in
the end of the sentence. Although output and input units may be present only at a subset of
the time-stamps, we examine the simple case in which they are present in all time-stamps.
Then, the hidden state at time t is given by a function of the input vector at time t and
the hidden vector at time (t− 1):

ht = f(ht−1, xt) (10.51)

This function is defined with the use of weight matrices and activation functions (as used
by all neural networks for learning), and the same weights are used at each time-stamp.
Therefore, even though the hidden state evolves over time, the weights and the underlying
function f(·, ·) remain fixed over all time-stamps (i.e., sequential elements) after the neural
network has been trained. A separate function yt = g(ht) is used to learn the output
probabilities from the hidden states.

Next, we describe the functions f(·, ·) and g(·) more concretely. We define p× d input-
hidden matrix Wxh, a p× p hidden-hidden matrix Whh, and a d× p hidden-output matrix
Why. Then, one can expand Eq. 10.51 and also write the condition for the outputs as follows:

ht = tanh(Wxhxt +Whhht−1)

yt = Whyht

Here, the “tanh” notation (cf. Sect. 10.6.1.6) is used in a relaxed way, in the sense that the
function is applied to the p-dimensional column vector in an element-wise fashion to create
a p-dimensional vector with each element in [−1, 1]. Throughout this section, this relaxed
notation will be used for several activation functions such as tanh and sigmoid. At the very
first time-stamp, ht−1 is assumed to be some default constant vector, because there is no
input from the hidden layer at the beginning of a sentence. Although the hidden states
change at each time-stamp, the weight matrices stay fixed over the various time-stamps.
Note that the output vector yt is a set of continuous values with the same dimensionality as

344 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

xt

ht

yt

Wxh

Whh

Why

ONE-HOT
ENCODED

WORD

PREDICTED
WORD

LIKELIHOODS

HIDDEN
REPRESENTATION

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

WhyWhh Whh

the cat chased the

cat chased the mouseTARGET
WORDS

INPUT
WORDS

(a) RNN (b) Time-layered representation of (a)

Figure 10.11: A recurrent neural network and its time-layered representation

the lexicon. A softmax layer is applied on top of yt so that the results can be interpreted as
probabilities. The p-dimensional output ht of the hidden layer at the end of a text segment
of t words yields its embedding, and the p-dimensional columns of Wxh yield the embeddings
of individual words. The latter provides an alternative to word2vec embeddings.

How can one train such networks? The negative logarithms of the softmax probabilities
of the correct words at various time-stamps are aggregated to create the loss function. The
backpropagation algorithm will need to account for the temporal weight sharing during
updates. This special type of backpropagation algorithm is referred to as backpropagation
through time (BPTT). It works just like the backpropagation algorithm on the unfurled
network by (1) running the input sequentially in the forward direction through time and
computing the error/loss at each time-stamp, (2) computing the changes in edge weights
in the backwards direction on the unfurled network without any regard for the fact that
weights in different time layers are shared, and (3) adding all the changes in the (shared)
weights corresponding to different instantiations of an edge in time. The last of these steps
is unique to BPTT. Readers are referred to [183] for details.

Whh

Wxh

Why

Wxh

Why

Wxh

Why

Wxh

Why
Whh Whh

the cat the

cat chased the mouse

1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
0

-1.2
1.3

-0.8
1.7

LIKELIHOOD OF ‘CAT’
LIKELIHOOD OF ‘CHASED’

LIKELIHOOD OF ‘THE’

LIKELIHOOD OF ‘MOUSE’

-0.4
-1.7
1.9

-1.6

1.7
0.4

-1.9
1.1

-1.8
0.8

-1.3
1.8

0.8
0.7

0.6
0.8

0.6
-0.9

-0.8
0.4

chased

Figure 10.12: Example of language modeling with a recurrent neural network

10.7. RECURRENT NEURAL NETWORKS 345

10.7.1 Practical Issues

The entries of each weight matrix are initialized to small values in [−1/
√
r, 1/

√
r], where r is

the number of columns in that matrix. One can also initialize each of the d columns of Wxh

to the word2vec embedding of the corresponding word. Another detail is that the training
data often contains a special <START> and an <END> token at the beginning and end
of each training segment. These types of tokens help the model to recognize specific text
units such as sentences, paragraphs, or the beginning of a particular module of text. It is
also noteworthy that multiple hidden layers (with long short-term memory enhancements)
are used in all practical applications, which will be discussed in Sect. 10.7.7. However, the
following application-centric exposition will use the simpler single-layer model for clarity.
The generalization of each of these applications to enhanced architectures is straightforward.

10.7.2 Language Modeling Example of RNN

In order to illustrate the workings of the RNN, we will use a toy example of a single sequence
defined on a vocabulary of four words. Consider the sentence:

The cat chased the mouse.

In this case, we have a lexicon of four words, which are {“the,”“cat,”“chased,”“mouse”}.
In Fig. 10.12, we have shown the probabilistic prediction of the next word at each of time-
stamps from 1 to 4. Ideally, we would like the probability of the next word to be predicted
correctly from the probabilities of the previous words. Each one-hot encoded input vector
xt has length four, in which only one bit is 1 and the remaining bits are 0s. The main
flexibility here is in the dimensionality p of the hidden representation, which we set to 2 in
this case. As a result, the matrix Wxh will be a 2 × 4 matrix, so that it maps a one-hot
encoded input vector into a hidden vector ht vector of size 2. As a practical matter, each
column of Wxh corresponds to one of the four words, and one of these columns is copied by
the expression Wxhxt. Note that this expression is added to Whhht and then transformed
with the tanh function to produce the final expression. The final output yt is defined by
Whyht. Note that the matrices Whh and Why are of sizes 2× 2 and 4× 2, respectively.

In this case, the outputs are continuous values (not probabilities) in which larger values
indicate greater likelihood of presence. Therefore, the word “cat” is predicted in the first
time-stamp with a value of 1.3, although this value seems to be (incorrectly) outstripped
by “mouse” for which the corresponding value is 1.7. However, the word “chased” seems
to be predicted correctly. As in all learning algorithms, one cannot hope to predict any
value exactly, and such errors are more likely to be made in the early iterations of the
backpropagation algorithm. However, as the network is repeatedly trained over multiple
iterations, it makes fewer errors over the training data.

10.7.2.1 Generating a Language Sample

Such an approach can also be used to generate an arbitrary sample of a language, once the
training has been completed. How does one use such a language model at testing time, since
each state requires an input word, and none is available during language generation? The
likelihoods of the tokens at the first time-stamp can be generated using the <START> token
as input. Since the <START> token is also available in the training data, the model will
typically select a word that often starts text segments. Subsequently, the idea is to sample
one of the tokens generated at each time-stamp (based on the predicted likelihood), and
then use it as an input to the next time-stamp. To improve the accuracy of the sequentially

346 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

predicted token, one might use beam search to expand on the most likely possibilities by
always keeping track of the b best sequence prefixes of any particular length. The value
of b is a user-driven parameter. By recursively applying this operation, one can generate
an arbitrary sequence of text that reflects the particular language at hand. If the <END>
token is predicted, it indicates the end of that particular segment of text. Although such
an approach often results in syntactically correct text, it might be nonsensical in meaning.
For example, a character-level RNN3 (available/described in [256, 619]) was trained on
William Shakespeare’s plays. A character-level RNN requires the neural network to learn
both syntax and spelling. After only five iterations of learning, the following was a sample
of the output:

KING RICHARD II:
Do cantant,-’for neight here be with hand her,-
Eptar the home that Valy is thee.

NORONCES:
Most ma-wrow, let himself my hispeasures;
An exmorbackion, gault, do we to do you comforr,
Laughter’s leave: mire sucintracce shall have theref-Helt.

Note that there are a large number of misspellings in this case, and a lot of the words are
gibberish. However, when the training was continued to 50 iterations, the following was
generated as a part of the sample:

KING RICHARD II:
Though they good extremit if you damed;
Made it all their fripts and look of love;
Prince of forces to uncertained in conserve
To thou his power kindless. A brives my knees
In penitence and till away with redoom.

GLOUCESTER:
Between I must abide.

This generated piece of text is largely consistent with the syntax and spelling of the archaic
English in William Shakespeare’s plays, although there are still some errors. Furthermore,
the approach also indents and formats the text in a manner similar to the plays by placing
newlines at reasonable locations. Continuing to train for more iterations makes the output
almost error-free, and some impressive samples are also available at [257].

Of course, the semantic meaning of the text is limited, and one might wonder about
the usefulness of generating such nonsensical pieces of text from the perspective of machine
learning applications. The key point here is that by providing an additional contextual
input, such as the neural representation of an image, the neural network can be made to
give intelligent outputs such as a grammatically correct description (i.e., caption) of the
image.

The primary goal of the language-modeling RNN is not to create arbitrary sequences
of the language, but to provide an architectural base that can be modified in various ways
to incorporate the effect of the specific context. For example, applications like machine
translation and image captioning learn a language model that is conditioned on another

3An LSTM was used, which is a variation on the vanilla RNN discussed here.

10.7. RECURRENT NEURAL NETWORKS 347

input such as a sentence in the source language or an image to be captioned. Therefore,
the precise design of the application-dependent RNN will use the same principles as the
language-modeling RNN, but will make small changes to this basic architecture in order
to incorporate the specific context. In all these cases, the key is in choosing the input and
output values of the recurrent units in a judicious way, so that one can backpropagate the
output errors and learn the weights of the neural network in an application-dependent way.
Examples of such applications will be discussed in this section.

10.7.3 Application to Automatic Image Captioning

In image captioning, the training data consists of image-caption pairs. For example, the
image4 in the left-hand side of Fig. 10.13 is obtained from the National Aeronautics and
Space Administration Web site. This image is captioned “cosmic winter wonderland.” One
might have hundreds of thousands of such image-caption pairs. These pairs are used to train
the weights in the neural network. Once the training has been completed, the captions are
predicted for unknown test instances. Therefore, one can view this approach as an instance
of image-to-sequence learning.

One issue in the automatic captioning of images is that a separate neural network is
required to learn the representation of the images. A common architecture to learn the
representation of images is the convolutional neural network. A detailed discussion of con-
volutional neural networks is beyond the scope of this book, and readers are referred to [183].
Consider a setting in which the convolutional neural network produces the q-dimensional
vector v as the output representation. This vector is then used as an input to the neural
network, but only5 at the first time-stamp. To account for this additional input, we need an-
other p×q matrix Wih, which maps the image representation to the hidden layer. Therefore,

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

WhyWhh Whh

<START> cosmic winter wonderland

cosmic winter wonderland <END>

CONVOLUTIONAL
NEURAL

NETWORK
V

Figure 10.13: Example of image captioning with a recurrent neural network. An additional
convolutional neural network is required for representational learning of the images. The
image is represented by the vector v, which is the output of the convolutional neural network.
The inset image is by courtesy of the National Aeronautics and Space Administration
(NASA).

the update equations for the various layers now need to be modified as follows:

h1 = tanh(Wxhx1 +Wihv)

4https://www.nasa.gov/mission pages/chandra/cosmic-winter-wonderland.html.
5In principle, one can also allow it to be input at all time-stamps, but it only seems to worsen perfor-

mance.

https://www.nasa.gov/mission_pages/chandra/cosmic-winter-wonderland.html

348 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

ht = tanh(Wxhxt +Whhht−1) ∀t ≥ 2

yt = Whyht

An important point here is that the convolutional neural network and the recurrent neural
network are not trained in isolation. Although one might train them in isolation in order to
create an initialization, the final weights are always trained jointly by running each image
through the network and matching up the predicted caption with the true caption. In other
words, for each image-caption pair, the weights in both networks are updated when errors are
made in predicting the caption. Such an approach ensures that the learned representation
v of the images is sensitive to the specific application of predicting captions. After all the
weights have been trained, a test image is input to the entire system and passed through
both the convolutional and recurrent neural network. For the recurrent network, the input
at the first time-stamp is the <START> token and the representation of the image. At later
time-stamps, the input is the most likely token predicted at the previous time-stamp. One
can also use beam search to keep track of the b most likely sequence prefixes to expand on
at each point. This approach is not very different from the language generation approach
discussed in Sect. 10.7.2.1, except that it is conditioned on the image representation that
is input to the model in the first time-stamp of the recurrent network. This results in the
prediction of a relevant caption for the image.

10.7.4 Sequence-to-Sequence Learning and Machine Translation

Just as one can put together a convolutional neural network and a recurrent neural network
to perform image captioning, one can put together two recurrent networks to translate one
language into another. Such methods are also referred to as sequence-to-sequence learn-
ing because a sequence in one language is mapped to a sequence in another language. In
principle, sequence-to-sequence learning can have applications beyond machine translation.

I don’t understand Spanish

y1 y2 y3 y4

<EOS> No en�endo español

No <EOS>en�endo español
RNN1 RNN2

RNN1 LEARNS REPRESENTATION
OF ENGLISH SENTENCE FOR
MACHINE TRANSLATION

(CONDITIONED SPANISH LANGUAGE MODELING)

Wes

Figure 10.14: Machine translation with recurrent neural networks. Note that there are two

separate recurrent networks with their own sets of shared weights. The output of h
(1)

4 is a
fixed length encoding of the 4-word English sentence.

For example, even question-answering (QA) systems can be viewed as sequence-to-sequence
learning applications.

10.7. RECURRENT NEURAL NETWORKS 349

In the following, we provide a simple solution to machine translation with recurrent
neural networks, although such applications are rarely addressed directly with the simple
forms of recurrent neural networks. Rather, a variation of the recurrent neural network,
referred to as the long short-term memory (LSTM) model is used. Such a model is much
better in learning long-term dependencies, and can therefore work well with longer sentences.
Since the general approach of using an RNN applies to an LSTM as well, we will provide
the discussion of machine translation with the (simple) RNN. A discussion of the LSTM is
provided in Sect. 10.7.7.1, and the generalization of the machine translation application to
the LSTM is straightforward.

In the machine translation application, two different RNNs are hooked end-to-end, just
as a convolutional neural network and a recurrent neural network are hooked together for
image captioning. The first recurrent network uses the words from the source language
as input. No outputs are produced at these time-stamps and the successive time-stamps
accumulate knowledge about the source sentence in the hidden state. Subsequently, the end-
of-sentence symbol is encountered, and the second recurrent network starts by outputting
the first word of the target language. The next set of states in the second recurrent network
output the words of the sentence in the target language one by one. These states also use the
words of the target language as input, which is available for the case of the training instances
but not for test instances (where predicted values are used instead). This architecture is
shown in Fig. 10.14.

The architecture of Fig. 10.14 is similar to that of an autoencoder, and can even be used
with pairs of identical sentences in the same language to create fixed-length representations
of sentences. The two recurrent networks are denoted by RNN1 and RNN2, and their
weights are not the same. For example, the weight matrix between two hidden nodes at

successive time-stamps in RNN1 is denoted by W
(1)
hh , whereas the corresponding weight

matrix in RNN2 is denoted by W
(2)
hh . The weight matrix Wes of the link joining the two

neural networks is special, and can be independent of either of the two networks. This
is necessary if the sizes of the hidden vectors in the two RNNs are different because the

dimensions of the matrix Wes will be different from those of both W
(1)
hh and W

(2)
hh . As a

simplification, one can use6 the same size of the hidden vector in both networks, and set

Wes = W
(1)
hh . The weights in RNN1 are devoted to learning an encoding of the input in the

source language, and the weights in RNN2 are devoted to using this encoding in order to
create an output sentence in the target language. One can view this architecture in a similar
way to the image captioning application, except that we are using two recurrent networks
instead of a convolutional-recurrent pair. The output of the final hidden node of RNN1 is
a fixed-length encoding of the source sentence. Therefore, irrespective of the length of the
sentence, the encoding of the source sentence depends on the dimensionality of the hidden
representation.

The grammar and length of the sentence in the source and target languages may not be
the same. In order to provide a grammatically correct output in the target language, RNN2
needs to learn its language model. It is noteworthy that the units in RNN2 associated with
the target language have both inputs and outputs arranged in the same way as a language-
modeling RNN. At the same time, the output of RNN2 is conditioned on the input it
receives from RNN1, which effectively causes language translation. In order to achieve this
goal, training pairs in the source and target languages are used. The approach passes the
source-target pairs through the architecture of Fig. 10.14 and learns the model parameters

6The original work in [464] seems to use this option [274]. In the Google Neural Machine Translation
system [620], this weight is removed. This system is now used in Google Translate.

350 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

with the use of the backpropagation algorithm. Since only the nodes in RNN2 have outputs,
only the errors made in predicting the target language words are backpropagated to train
the weights in both neural networks. The two networks are jointly trained, and therefore the
weights in both networks are optimized to the errors in the translated outputs of RNN2. As a
practical matter, this means that the internal representation of the source language learned
by RNN1 is highly optimized to the machine translation application, and is very different
from one that would be learned if one had used RNN1 to perform language modeling of the
source sentence. After the parameters have been learned, a sentence in the source language
is translated by first running it through RNN1 to provide the necessary input to RNN2.
Aside from this contextual input, another input to the first unit of RNN2 is the <EOS>
tag, which causes RNN2 to output the likelihoods of the first token in the target language.
The most likely token using beam search (cf. Sect. 10.7.2.1) is selected and used as the input
to the recurrent network unit in the next time-stamp. This process is recursively applied
until the output of a unit in RNN2 is also <EOS>. As in Sect. 10.7.2.1, we are generating
a sentence from the target language using a language-modeling approach, except that the
specific output is conditioned on the internal representation of the source sentence.

The use of neural networks for machine translation is relatively recent. Recurrent neu-
ral network models have a sophistication that greatly exceeds that of traditional machine
translation models. The latter class of methods uses phrase-centric machine learning, which
is often not sophisticated enough to learn the subtle differences between the grammars of
the two languages. In practice, deep models with multiple layers are used to improve the
performance. A discussion of deep variations of recurrent neural networks is provided in
Sect. 10.7.7.

One weakness of such translation models is that they tend to work poorly when the
sentences are long. Numerous solutions have been proposed to solve the problem. A recent
solution is that the sentence in the source language is input in the opposite order [464]. This
approach brings the first few words of the sentences in the two languages closer in terms
of their time-stamps within the recurrent neural network architecture. As a result, the first
few words in the target language are more likely to be predicted correctly. The correctness
in predicting the first few words is also helpful in predicting the subsequent words, which
are also dependent on a neural language model in the target language.

10.7.4.1 Question-Answering Systems

A natural application of sequence-to-sequence learning is that of question answering (QA).
Question-answering systems are designed with different types of training data. In particular,
two types of question-answering systems are common:

1. In the first type, the answers are directly inferred based on the phrases and clue words
in the question.

2. In the second type, the question is first transformed into a database query, and is used
to query a structured knowledge base of facts.

Sequence-to-sequence learning can be helpful in both settings. Consider the first setting, in
which we have training data containing question-answer pairs like the following:

What is the capital of China? <EOQ> The capital is Beijing. <EOA>

These types of training pairs are not very different from those available in the case of
machine translation, and the same techniques can be used in these cases. However, note

10.7. RECURRENT NEURAL NETWORKS 351

that one key difference between machine translation and question-answering systems is that
there is a greater level of reasoning in the latter, which typically requires an understand-
ing of the relationships between various entities (e.g., people, places, and organizations).
This problem is related to the quintessential problem of information extraction, which is
discussed in detail in Chap. 12. Since questions are often crafted around various types of
named entities and relationships among them, information extraction methods are used
in various ways. The utility of entities and information extraction is well known in an-
swering “what/who/where/when” types of questions (e.g., entity-oriented search), because
named entities are used to represent persons, locations, organizations, dates, and events,
and relationship extraction provides information about the interactions among them. One
can incorporate the meta-attributes about tokens, such as entity types, as additional in-
puts to the learning process. Specific examples of such input units are shown in Fig. 10.16
of Sect. 10.7.6, although the figure is designed for the different application of token-level
classification.

An important difference between question-answering and machine translation systems
is that the latter is seeded with a large corpus of documents (e.g., a large knowledge base
like Wikipedia). The query resolution process can be viewed as a kind of entity-oriented
search. From the perspective of deep learning, an important challenge of QA systems is
that a much larger capacity to store the knowledge is required than is typically available in
recurrent neural networks. A deep learning architecture that works well in these settings is
that of memory networks [495]. Question-answering systems pose many different settings in
which the training data may be presented, and the ways in which various types of questions
may be answered and evaluated. In this context, the work in [494] discusses a number of
template tasks that can be useful for evaluating question-answering systems.

A somewhat different approach is to convert natural language questions into queries that
are properly posed in terms of entity-oriented search. Unlike machine translation systems,
question answering is often considered a multi-stage process in which understanding what
is being asked (in terms of a properly represented query) is sometimes more difficult than
answering the query itself. In such cases, the training pairs will correspond to the informal
and formal representations of questions. For example, one might have a pair as follows:

What is the capital of China? <EOQ1>
︸ ︷︷ ︸

Natural language question

CapitalOf(China, ?) <EOQ2>
︸ ︷︷ ︸

Formal Representation

The expression on the right-hand side is a structured question, which queries for entities
of the type discussed in Chap. 12. The first step would be to convert the question into
an internal representation like the one above, which is more prone to query answering.
This conversion can be done using training pairs of questions and their internal represen-
tations in conjunction with an recurrent network. Once the question is understood as an
entity-oriented search query, it can be posed to the indexed corpus, from which relevant
relationships might already have been extracted up front. Therefore, the knowledge base
is also preprocessed in such cases, and the question resolution boils down to matching the
query with the extracted relations. It is noteworthy that this approach is limited by the
complexity of the syntax in which questions are expressed, and the answers might also be
simple one-word responses. Therefore, this type of approach is often used for more restricted
domains. In some cases, one learns how to paraphrase questions by rewording a more com-
plex question as a simpler question before creating the query representation [161, 162]:

How can you tell if you have the flu? <EOQ1>
︸ ︷︷ ︸

Complex question

What are the signs of the flu? <EOQ2>
︸ ︷︷ ︸

Paraphrased

352 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

The paraphrased question can be learned with sequence-to-sequence learning, although the
work in [162] does not seem to use this approach. Subsequently, it is easier to convert the
paraphrased question into a structured query. Another option is to provide the question
in structured form to begin with. An example of a recurrent neural network that supports
factoid question answering from QA training pairs is provided in [232]. However, unlike pure
sequence-to-sequence learning, it uses the dependency parse trees of questions as the input
representation. Therefore, a part of the formal understanding of the question is already
encoded into the input.

10.7.5 Application to Sentence-Level Classification

In this problem, each sentence is treated as a training (or test) instance for classification
purposes. Sentence-level classification is generally a more difficult problem than document-
level classification because sentences are short, and there is often not enough evidence in the
vector space representation to perform the classification accurately. However, the sequence-
centric view is more powerful and can often be used to perform more accurate classification.
The RNN architecture for sentence-level classification is shown in Fig. 10.15. Note that the
only difference from Fig. 10.15b is that we no longer care about the outputs at each node
but defer the class output to the end of the sentence. In other words, a single class label is
predicted at the very last time-stamp of the sentence, and it is used to backpropagate the
class prediction errors.

Sentence-level classification is often leveraged in sentiment analysis (cf. Sect. 13.3 of
Chap. 13). For example, one can use sentence-level classification to determine whether or
not a sentence expresses a positive sentiment by treating the sentiment polarity as the class
label. In the example shown in Fig. 10.15, the sentence clearly indicates a positive sentiment.
Note, however, that one cannot simply use a vector space representation containing the word

Whh

x1

h1

Wxh

x2

h2

Wxh

x3

h3

Wxh

Whh Whh

I love this

x4

h4

Wxh

ipod

x5

h5

y

Wxh

Why

<EOS>

Whh

CLASS
LABEL

Posi�ve Sen�ment

Figure 10.15: Example of sentence-level classification in a sentiment analysis application
with the two classes “positive sentiment” and “negative sentiment”

“love” to infer the positive sentiment. For example, if words such as “don’t” or “hardly”
occur before “love”, the sentiment would change from positive to negative. Such words are
referred to as contextual valence shifters [384], and their effect can be modeled only in a
sequence-centric setting. Recurrent neural networks can handle such settings because they
use the accumulated evidence over the specific sequence of words in order to predict the
class label. One can also combine this approach with linguistic features. In the next section,
we show how to use linguistic features for token-level classification; similar ideas also apply
to the case of sentence-level classification.

10.7. RECURRENT NEURAL NETWORKS 353

10.7.6 Token-Level Classification with Linguistic Features

The numerous applications of token-level classification include information extraction and
text segmentation (cf. Chaps. 12 and 14). In information extraction, specific words or com-
binations of words are identified that correspond to persons, places, or organizations. The
linguistic features of the word (capitalization, part-of-speech, orthography) are more im-
portant in these applications than in typical language modeling or machine translation
applications. Nevertheless, the methods discussed in this section for incorporating linguistic
features can be used for any of the applications discussed in earlier sections. For the purpose
of discussion, consider a named-entity recognition application in which every entity is to be
classified as one of the categories corresponding to person (P), location (L), and other (O).
In such cases, each token in the training data has one of these labels. An example of a
possible training sentence is as follows:

William︸ ︷︷ ︸
P

Jefferson︸ ︷︷ ︸
P

Clinton︸ ︷︷ ︸
P

lives︸ ︷︷ ︸
O

in︸︷︷︸
O

New︸ ︷︷ ︸
L

York︸ ︷︷ ︸
L

.

In practice, the tagging scheme is often more complex because it encodes information about
the beginning and end of a set of contiguous tokens with the same label (cf. Sect. 12.2.2).
For test instances, the tagging information about the tokens is not available.

The recurrent neural network can be defined in a similar way as in the case of language
modeling applications, except that the outputs are defined by the tags rather than the
next set of words. The input at each time-stamp t is the one-hot encoding xt of the token,
and the output yt is the tag. Furthermore, we have an additional set of q-dimensional
linguistic features f t associated with the tokens at time-stamp t. These linguistic features
might encode information about the capitalization, orthography, capitalization, and so on.

Whh

x1

h1

Wxh

x2

h2

Wfh

x3

h3

Wfh

x4

h4

Wxh

Whh Whh

William Jefferson Clinton lives

Whh

x5

h5

Wfh

x6

h6

Wfh

x7

h7

Wfh

WhhWhh

y5

Why

y6

Why

y7

Why

OTHER LOCATION

y1

Why

y2

Why

y3

Why

y4

Why

PERSON OTHERPERSON PERSON

f1

Wfh

f2

Wxh

f3

Wxh

f4

Wfh

f5

Wxh Wxh

f6

Wxh

f7

in New York

LOCATION

ONE-HOT
ENCODED

WORD

LINGUISTIC
FEATURES

Figure 10.16: Token-wise classification with linguistic features

The hidden layer, therefore, receives two separate inputs from the tokens and from the
linguistic features. The corresponding architecture is illustrated in Fig. 10.16. We have an
additional p × q matrix Wfh that maps the features f t to the hidden layer. Then, the
recurrence condition at each time-stamp t is as follows:

ht = tanh(Wxhxt +Wfhf t +Whhht−1)

yt = Whyht

354 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

The main innovation here is in the use of an additional weight matrix for the linguistic fea-
tures. The change in the type of output tag does not affect the overall model significantly.
The overall learning process is also not significantly different. In token-level classification ap-
plications, it is sometimes helpful to use bidirectional recurrent networks in which recurrence
occurs in both temporal directions [437].

10.7.7 Multilayer Recurrent Networks

In all of the aforementioned applications, a single-layer RNN architecture is used for ease in
understanding. However, in real applications, a multilayer architecture is used in order to
build models of greater complexity. Furthermore, this multilayer architecture can be used
in combination with advanced variations of the RNN, such as the LSTM architecture.

An example of a deep network containing three layers is shown in Fig. 10.17. Note that
nodes in higher-level layers receive input from those in lower-level layers. The relationships
among the hidden states can be generalized directly from the single-layer network. First,
we rewrite the recurrence equation of the hidden layers (for single-layer networks) in a form
that can be adapted easily to multilayer networks:

ht = tanh(Wxhxt +Whhht−1)

= tanh W

[
xt

ht−1

]

Here, we have put together a larger matrix W = [Wxh,Whh] that includes the columns of
Wxh and Whh. Similarly, we have created a larger column vector that stacks up the state
vector in the first hidden layer at time t − 1 and the input vector at time t. In order to

y1 y2 y3 y4

x1 x2 x3 x4

the cat the

cat chased the mouse

INPUT
WORDS

TARGET
WORDS

chased

Figure 10.17: Multi-layer recurrent neural networks

distinguish between the hidden nodes for the upper-level layers, let us add an additional
superscript to the hidden state and denote the vector for the hidden states at time-stamp t

and layer k by h
(k)

t . Similarly, let the weight matrix for the kth hidden layer be denoted by
W (k). It is noteworthy that the weights are shared across different time-stamps (as in the
single-layer recurrent network), but they are not shared across different layers. Therefore,

10.7. RECURRENT NEURAL NETWORKS 355

the weights are superscripted by the layer index k in W (k). The first hidden layer is special
because it receives inputs both from the input layer at the current time-stamp and the
adjacent hidden state at the previous time-stamp. Therefore, the matrices W (k) will have a
size of p× (d+ p) only for the first layer (i.e., k = 1), where d is the size of the input vector
xt and p is the size of the hidden vector ht. Note that d will typically not be the same as p.
The recurrence condition for the first layer is already shown above by setting W (1) = W .
Therefore, let us focus on all the hidden layers k for k ≥ 2. It turns out that the recurrence
condition for the layers with k ≥ 2 is also in a very similar form as the equation shown
above:

h
(k)

t = tanh W (k)

[
h
(k−1)

t

h
(k)

t−1

]

In this case, the size of the matrix W (k) is p × (p + p) = p × 2p. The transformation from
hidden to output layer remains the same as in single-layer networks. It is easy to see that this
approach is a straightforward multilayer generalization of the case of single-layer networks.
It is common to use two or three layers in practical applications.

10.7.7.1 Long Short-Term Memory (LSTM)

Recurrent neural networks have problems associated with vanishing and exploding gradi-
ents [223, 377]. This is a common problem in neural network updates where successive
multiplication by the matrix W (k) is inherently unstable; it either results in the gradient
disappearing during backpropagation or in blowing up to large values in an unstable way.
This type of instability is the direct result of successive multiplication with the (recurrent)
weight matrix at various time-stamps, which either continually increases or decreases the
prediction. One way of viewing this problem is that a neural network that uses only mul-
tiplicative updates is good only at learning over short sequences, because it scrambles all
the hidden states. Such an approach is therefore inherently endowed with good short-term
memory but poor long-term memory [223]. To address this problem, a solution is to change
the recurrence equation for the hidden vector with the use of the LSTM.

The LSTM is an enhancement of the recurrent neural network architecture of Fig. 10.17

in which we change the recurrence conditions of how the hidden states h
(k)

t are propagated.
In order to achieve this goal, we have an additional hidden vector of p dimensions, which is

denoted by c
(k)
t , and it is referred to as the cell state. One can view the cell state as a kind

of long-term memory that retains at least a part of the information in earlier hidden states
by using a combination of partial “forgetting” and “increment” operations on previous cell

states. It has been shown in [256] that the nature of the memory in c
(k)
t is occasionally

interpretable when it is applied to text data such as literary pieces. For example, one of

the p values in c
(k)
t might change in sign after an opening quotation and then revert back

only when that quotation is closed. The upshot of this phenomenon is that the resulting
neural network is able to model long-range dependencies in the language or even a specific
pattern (like a quotation) extended over a large number of tokens. This is achieved by using
a gentle approach to update these cell states over time, so that there is greater persistence
in information storage.

As with the multilayer recurrent network, the update matrix is denoted by W (k) and

is used to premultiply the column vector [h
(k−1)

t , h
(k)

t−1]
T . However, this matrix is of size

4p × 2p, and therefore pre-multiplying a vector of size 2p with W (k) results in a vector of
size 4p. In this case, the updates use four intermediate, p-dimensional vector variables i, f ,

356 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

o, and c. The intermediate variables i, f , and o are respectively referred to as input, forget,
and output variables, because of the roles they play in updating the cell states and hidden

states. The determination of the hidden state vector h
(k)

t and the cell state vector c
(k)
t uses

a multi-step process of first computing these intermediate variables and then computing the
hidden variables from these intermediate variables:

⎡

⎢
⎢
⎣

i

f
o
c

⎤

⎥
⎥
⎦ =

⎛

⎜
⎜
⎝

sigm
sigm
sigm
tanh

⎞

⎟
⎟
⎠ W (k)

[
h
(k−1)

t

h
(k)

t−1

]

[Setting up intermediate variables]

c
(k)
t = f � c

(k)
t−1 + i� c [Selectively forget and/or add to long-term memory]

h
(k)

t = o� tanh(c
(k)
t) [Selectively leak long-term memory to hidden state]

Note the difference between c and c
(k)
t . Here, the element-wise product of vectors is denoted

by “�,” and the notation “sigm” denotes a sigmoid operation. In practical implementations,
biases are also used in the above updates, although they are omitted here for simplicity. The
aforementioned update seems rather cryptic, and therefore it requires further explanation.

The first step in the above sequence of equations is to set up the intermediate variable
vectors i, f , o, and c, of which the first three should conceptually be considered binary
values, although they are continuous values in (0, 1). Multiplying a pair of binary values
is like using an AND gate on a pair of boolean values. We will henceforth refer to this
operation as gating. The vectors i, f , and o are referred to as input, forget, and output
gates, and c is the newly proposed content of the cell state. In particular, these vectors
are conceptually used as boolean gates for deciding (1) whether to add to a cell-state, (2)
whether to forget a cell state, and (3) whether to allow leakage into a hidden state from
a cell state. The use of the binary abstraction for the input, forget, and output variables
helps in understanding the types of decisions being made by the updates. In practice, a
continuous value in (0, 1) is contained in these variables, which can enforce the effect of
the binary gate in a probabilistic way if the output is seen as a probability. In the neural
network setting, it is essential to work with continuous functions in order to ensure the
differentiability required for gradient updates.

The four intermediate variables i, f , o, and c, are set up using the weight matrices W (k)

for the kth layer using the first equation above. Let us now examine the second equation
that updates the cell state with the use of some of these intermediate variables:

c
(k)
t = f � c

(k)
t−1

︸ ︷︷ ︸
Reset?

+ i� c
︸︷︷︸

Increment?

This equation has two parts. The first part uses the p forget bits in f to decide which of
the p cell states from the previous time-stamp to reset7 to 0, and it uses the p input bits in
i to decide whether to add the corresponding components from c to each of the cell states.
Note that such updates of the cell states are in additive form, which is helpful in avoiding
the vanishing gradient problem caused by multiplicative updates. One can view the cell-
state vector as a continuously updated long-term memory, where the forget and input bits
respectively decide (1) whether to reset the cell states from the previous time-stamp and

7Here, we are treating the forget bits as a vector of binary bits, although it contains continuous values in
(0, 1), which can be viewed as probabilities. As discussed earlier, the binary abstraction helps us understand
the conceptual nature of the operations.

10.9. BIBLIOGRAPHIC NOTES 357

forget the past, and (2) whether to increment the cell states from the previous time-stamp
to incorporate new information into long-term memory from the current word. The vector
c contains the p amounts with which to increment the cell states, and these are values in
[−1,+1] because they are all outputs of the tanh function.

Finally, the hidden states h
(k)

t are updated using leakages from the cell state. The hidden
state is updated as follows:

h
(k)

t = o� tanh(c
(k)
t)

︸ ︷︷ ︸

Leak c
(k)
t to h

(k)

t

Here, we are copying a functional form of each of the p cell states into each of the p hidden
states, depending on whether the output gate (defined by o) is 0 or 1. Of course, in the
continuous setting of neural networks, partial gating occurs and only a fraction of the signal
is copied from each cell state to the corresponding hidden state. It is noteworthy that the
use of the tanh in the last equation is not always essential to ensure good performance. The
update can be even as simple as a (partial) copy from each cell state to the corresponding
hidden state. This alternative update is as follows, which can be used to replace the above
equation:

h
(k)

t = o� c
(k)
t

As in the case of all neural networks, the backpropagation algorithm is used for training
purposes. It is noteworthy that all the applications discussed in previous sections (for single-
layer RNNs) are always implemented using multi-layer LSTMs for best performance.

10.8 Summary

Feature engineering is a useful process for encoding the sequential structure of text into a
multidimensional representation. Multidimensional representations are particularly conve-
nient because they can be used in conjunction with many off-the-shelf tools. This chapter
discusses a number of matrix factorization, graph-based, and neural network models for
feature engineering. Feature engineering methods find their genesis in statistical language
models, which provide the mathematical basis for converting the data into multidimensional
representations in a systematic way. The kernel methods discussed in earlier chapters are
also defined using language modeling principles. Recurrent neural networks are powerful
methods for end-to-end sequential analysis of text, which have applications to language
modeling, sequence classification, image captioning and machine translation. A class of
recurrent networks, which is referred to as LSTM, is more robust than straightforward
implementations of recurrent networks.

10.9 Bibliographic Notes

An early overview of vector-space models of semantics may be found in [479]. A comparison
of count-based and prediction-based models for word embeddings is provided in [37]. String
subsequence and n-gram kernels are discussed in [308]. The incorporation of different types
of token-specific features in kernels is discussed in [67, 68, 107, 122, 393, 526, 533, 534].
The use of Latent Semantic Analysis and matrix factorization methods for document and
word embedding is discussed in Chap. 3. These methods do not use the sequential structure
or the context at all for embedding purposes. An early method that uses context is the

358 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

Hyperspace Analog to Language (HAL) [313], which creates term-term matrices, in which
the co-occurrence is defined based on proximity within a context window. One problem with
the technique in [313] is that it is dominated by words with very high frequencies. A general
framework for distributional methods for creating embeddings is discussed in [38]. The value
of using word embeddings that leverage sequential information for various natural language
tasks is discussed in [108].

The GloVe system for word representation was proposed in [380], which uses logarithmic
normalization to reduce the effect of very high-frequency words. The use of pointwise mutual
information has a rich history in natural language processing [99]. The earliest methods
espousing PPMI for semantic representation may be found in [66], and the notion of noise
contrastive estimation was proposed in [198]. The vLBL and ivLBL models, as well as
methods based on noise contrastive estimation, are discussed in [352, 353]. Related log
bilinear models were proposed in early work [351] on statistical language modeling. An
embedding based on a different pointwise mutual information metric is proposed in [284].
Numerous practical ideas for the best implementation of contextual models like word2vec
are provided in [283]. The use of graphical models for text representation and processing is
discussed in [15], although its relationship to word-context factorization models is not shown
in this work. In essence, the factorization of aggregated distance graphs yields intuitively
similar results to the factorization of word-context matrices (see Exercise 6).

General discussions on neural networks are available in [51, 183]. Neural language mod-
els have become increasingly popular in recent years [47, 181]. Various methods for using
skip-grams and continuous bag-of-word predictions with neural networks are discussed in
the word2vec and doc2vec methods [275, 341]. A related model with negative sampling is dis-
cussed in [342], although this model uses a different objective function than the skip-gram
model. An empirical evaluation of doc2vec may be found in [273]. Some good explana-
tions of the word2vec model are provided in [182, 415]. The relationship of neural word
embeddings to matrix factorization and kernel methods is shown in [282, 365]. The types
of embeddings found by methods like word2vec, doc2vec, GloVe, and distance graphs have
been shown to be useful in many applications. These methods have been used in traditional
clustering/classification [15, 282], word analogy tasks [344], word-to-word machine transla-
tion [345], named entity recognition [447], opinion mining, and sentiment analysis [275].

The LSTM model was proposed in [222] and its use for language modeling is discussed
in [463]. The problem associated with the poor ability of recurrent networks to store long-
term dependencies is discussed in [223, 377]. Several variations of recurrent neural networks
and LSTMs for language modeling are discussed in [94, 98, 196, 197, 324, 343]. The particu-
lar discussion of LSTMs in this chapter is based on [196], and an alternative gated recurrent
unit (GRU) is presented in [94, 98]. A guide to understanding recurrent neural networks is
available in [256]. Further discussions on the sequence-centric applications of recurrent neu-
ral networks are available in [299]. LSTM networks are also used for sequence labeling [195],
which is useful in sentiment analysis [616]. The use of a combination of convolutional neural
networks and recurrent neural networks for image captioning is discussed in [485]. Sequence-
to-sequence learning methods for machine translation are discussed in [94, 250, 464]. The
use of convolutional neural networks for different types of deep learning tasks in text is
explored in [108, 109, 261].

10.9.1 Software Resources

The DISSECT (Distributional Semantics Composition Toolkit) [609] is a toolkit that uses
word co-occurrence counts in order to create embeddings. The GloVe method is available

10.10. EXERCISES 359

from Stanford NLP [610], and it is also available in the gensim library [401]. The word2vec
tool is available [565] under the terms of the Apache license. The TensorFlow version of the
software is available at [566]. The gensim library has Python implementations of word2vec
and doc2vec [401]. Java versions of doc2vec, word2vec, and GloVe may be found in the
DeepLearning4j repository [611]. In several cases, one can simply download pre-trained
versions of the representations (on a large corpus that is considered generally representative
of text) and use them directly, as a convenient alternative to training for the specific cor-
pus at hand. Many of these repositories also provide implementations of recurrent neural
networks and LSTMs. For example, the LSTM component of the deep learning software
provided by DeepLearning4j is available at [618]. The software for using LSTM networks
in the context of sentiment analysis is available at [616]. This approach is based on the se-
quence labeling technique presented in [195]. Blogs with pointers to further resources in the
topic of LSTMs may be found in [615, 617]. A notable piece of code [619] is a character-level
RNN, and it is particularly instructive for learning purposes. The conceptual description of
this code is provided in [256, 615].

10.10 Exercises

1. Consider the following sentence, “The sly fox jumped over the lazy dog.” Enumerate
all the 1-skip-2-grams and 2-skip-2-grams.

2. Implement an algorithm to discover all 2-skip-2-grams from a given sentence.

3. Suppose you are given an embedding found by word2vec of each of the d terms in the
lexicon. You are also given an n × d document-term matrix D containing the term
frequencies of each document in its rows with the same lexicon of size d. Propose a
heuristic to find the coordinates of the documents in terms of this word embedding.

4. Suppose you have additional syntactic features of words such as the part-of-speech,
orthography, and so on. Show how you would incorporate such features in word2vec.

5. How can you use an RNN to predict grammatical errors in a sentence?

6. Suppose that you have the n distance graphs G1, . . . Gn in a document corpus. You
create the union of all these distance graphs by taking the union of their nodes/edges
and aggregating the weights of any parallel edges.

(a) Discuss the relationship of the factorization of the adjacency matrix of this graph
with word-context factorization models.

(b) How would you change the factorization objective function to address the effect
of wide variation in counts.

7. For each of the CBOW and skip-gram models, show the following:

(a) Express the loss function only as a function of the inputs and weights, after
eliminating the hidden layer variables.

(b) Compute the gradients of the loss function with respect to the weights in the
input and output layers.

8. Suppose that you use GloVe on a count matrix C = [cij] in which each count cij is
either 0 or 10,000. A sizeable number of counts are 0s.

360 CHAPTER 10. TEXT SEQUENCE MODELING AND DEEP LEARNING

(a) Show that GloVe can discover a trivial factorization with zero error in which
each word has the same embedded representation.

(b) Suppose we generate a sequence of 107 tokens in which the first half are randomly
selected from word identifiers in {1 . . . 100}, and the second half are randomly
selected from {101 . . . 200}. Discuss why the ignoring of negative samples is a bad
idea for creating meaningful factorization-based word embeddings in this case.

9 Multinomial matrix factorization: Consider a d × d word-word context matrix
C = [cij] in which cij is the frequency of word j in the context of word i. The goal
is to learn d× p and p× d matrices U and V , respectively, so that applying softmax
to each row of UV matches the relative frequencies in the corresponding row of C.
Create a loss function for this probabilistic factorization of C into U and V . Discuss
the relationship with the skip-gram model.

10. Multiclass Perceptron: Consider a multiclass setting in which each training in-
stance is of the form (Xi, c(i)), where c(i) ∈ {1 . . . k} is the class label. We want to
find k linear separators W1 . . .Wk so that W c(i) · Xi > Wr · Xi for any r
= c(i).
Consider the following loss function for the ith training instance:

Li = maxr:r �=c(i)max(Wr ·Xi −W c(i) ·Xi, 0)

Propose a neural architecture for this loss function and the corresponding stochastic
gradient-descent steps. Discuss the relationship with the perceptron at k = 2.

11. Use the representer theorem of Chap. 6 to propose an objective function and gradient-
descent steps for the kernelized version of a regularized perceptron.

Chapter 11

Text Summarization

“Less is more.”—Ludwig Mies van der Rohe

11.1 Introduction

Text summarization creates a short summary of a document, which can be easily assimi-
lated by the user. The most basic form of text summarization creates a summary from a
single document, although it is also possible to do so from multiple documents. The key
applications of text summarization are as follows:

1. News articles: A short summary of a news article enables quick perusal. It may also
be useful to summarize the titles of a large number of related news articles in order
to understand the common theme.

2. Search engine results: A query on a search engine may return multiple results that need
to be presented on a single page. Typically, the title is followed by short summaries
on that page.

3. Review summarization: Reviewers at sites such as Amazon produce large numbers
of short documents describing their assessment of a particular product. It may be
desirable to condense these reviews into a shorter summary.

4. Scientific articles: Impact summarization is a way of extracting the most influential
sentences in a particular article. This type of summarization provides a broad under-
standing of what the article is about.

5. Emails: A thread of email corresponds to a discourse between two participants. In
such cases, it is important to take the interactive nature of the dialog into account
during the summarization process.

362 CHAPTER 11. TEXT SUMMARIZATION

6. Improving other automated tasks: An unexpected benefit of text summarization is that
it sometimes improves the performance of other tasks in text analytics. For example,
it has been reported [419] that the precision of information retrieval applications
improves when terms from the summary are used to expand the query.

The applications associated with single-document and multi-document summarization are
quite different. Multi-document summarization often arises in settings in which the set of
documents is closely related, such as the articles related to a particular news event, the
tweets in response to an event [78], or the search-engine results of a particular query.

In many cases, the specific context or application domain plays an important role in
deciding the choice of the summarization technique. For example, in query-focused summa-
rization, the documents returned by a query processing system are often summarized to
show short snippets of the documents to the user for ease in browsing. In such cases, the
summaries are tailored to be more inclusive of the specific query words entered by the user.
The use of context provides additional hints, and this is often helpful in tailoring the results
to the application domain at hand. In the multi-document setting, the presence of context
is particularly common, because the documents are interrelated by their context. It is some-
times argued [454] that context is so important that one should not attempt to summarize
at all without the presence of some context. Nevertheless, the broader literature on text
summarization proposes a number of generic methods that can be used for summarization
without the presence of context. This chapter will primarily focus on generic methods.

11.1.1 Extractive and Abstractive Summarization

The two main types of summarization are either extractive or abstractive, which are
defined below:

1. Extractive summarization: In extractive summarization, a short summary is created
by extracting sentences from the original document without modifying the individual
sentences in any way. In such cases, an important step is often that of scoring the
importance of different sentences. Subsequently, a subset of the top-scored sentences
are retained to maximize the topical coverage and minimize redundancy.

2. Abstractive summarization: Abstractive summarization creates a summary that con-
tains new sentences not available in the original document. In some cases, such meth-
ods may use phrases and clauses from the original representation although the overall
text is still considered new. Of course, generating new text is often challenging be-
cause it requires the use of a language model to create a meaningful sequence of words.
Even then, one is not guaranteed that the generated summary will contain meaningful
sentences. In general, abstractive summarization is much harder and there is only a
limited amount of work on the topic.

It is noteworthy that abstractive summarization requires coherence and fluency. This re-
quires a high level of semantic understanding of the underlying text, which is beyond the
capabilities of modern systems. Completely fluent abstractive summarization represents an
unsolved problem in artificial intelligence, and most summarization systems are extractive.
Because of the preponderance of extractive summarization in the text mining literature,
this chapter will focus in large part on this type of summarization and only briefly touch
on abstractive summarization.

11.1. INTRODUCTION 363

11.1.2 Key Steps in Extractive Summarization

Most extractive text summarization methods use two stages, and the specific choices used
at each stage regulates the overall design of the method at hand:

1. Sentence scoring: The first step in many techniques is to score sentences based on their
importance towards the creation of a coherent summary. Some methods use only the
content of the sentences whereas others use various types of meta-information such as
its length or positioning of the sentence. In many cases, an intermediate representation
is created in order to perform the modeling. For example, one might create a table
of important words for the summary or a graph representation of sentence-sentence
similarities. Sentences are scored based on their ability to represent key themes in the
document at hand, which are eventually useful in creating the summary.

2. Sentence selection: Based on the scores, the sentences are selected in order to represent
the summary. During this process, it is important to not only account for the score
of a document but also its redundancy with respect to the other selected sentences.
Reducing overlap is the key mechanism in controlling summary size.

In many cases, the processes of sentence scoring and selection are independent of one an-
other, but in other cases (such as sentence-sentence similarity methods) the scoring and
selection process are tightly integrated. In cases where the scoring and selection are in-
dependent, it is possible to reuse a particular sentence selection technique across multiple
scoring methods.

11.1.3 The Segmentation Phase in Extractive Summarization

Text segmentation [215] is an important step in extractive summarization. The basic idea in
text segmentation is to break up a long document into shorter or more coherent segments,
each of which is contiguous within the document. These shorter segments might be based on
grammatical rules (e.g., sentences/paragraphs), or they might be based on topical contiguity.
In spite of the widespread use of sentences as the units of summarization, it has sometimes
been argued that the use of longer segments like paragraphs is often more useful [425].
Although this chapter will consistently use a sentence as the unit segment (because of its
preponderance in the literature), we point out that most of the techniques in the chapter
can be generalized to any type of segment without changing the underlying algorithms in
a significant way. For example, one can segment the text based on topical continuity. The
problem of text segmentation is discussed in Sect. 14.2 of Chap. 14.

11.1.4 Chapter Organization

This chapter is organized as follows. The next section will discuss methods based on topic
words. Latent methods for summarization are discussed in Sect. 11.3. The use of machine
learning for extractive summarization is discussed in Sect. 11.4. Methods for multi-document
summarization are presented in Sect. 11.5. Abstractive summarization methods are dis-
cussed in Sect. 11.6. The summary is presented in Sect. 11.7.

364 CHAPTER 11. TEXT SUMMARIZATION

11.2 Topic Word Methods for Extractive Summariza-
tion

Topic word methods create a table of words and their weights, where a larger weight is
more indicative of the topic at hand. The earliest work on extractive summarization with
topic words was done by Luhn [312]. The basic idea in his work was to find the most
topical words based on frequencies. Words that are too frequent or too infrequent are not
helpful for identifying the topical content of a document. Very frequent words are often
stopwords, whereas very infrequent words are misspellings or obscure words. By identifying
lower and upper thresholds on the frequencies, the remaining words are identified as topical
words and used to score sentences. Luhn’s original work introduced the notion that topical
words that are placed close to one another should have more impact on the score of a
sentence than scattered words. Therefore, Luhn proposed to place a bracket around the
segment of a sentence in which the topically significant words (i.e., words satisfying upper
and lower thresholds) are separated by a gap of no larger than g. This type of bracketing
enables subsequent scoring. Note that the gap is measured only between consecutive pairs
of topically significant words. The value of g was set to around 4 or 5. Then, the square
of the number of words in each segment divided by the length of the segment provides a
significance score of the bracketed segment. The score of a sentence is the maximum score
over all its bracketed segments.

These basic ideas of Luhn provided a starting point for much of the eventual research on
topic-word methods. The following will discuss the key ideas along this line, such as the use
of word probabilities, tf-if, and log-likelihoods. The last of these is considered state-of-the-art
among topic-word techniques.

11.2.1 Word Probabilities

Consider a document X = (x1 . . . xd), in which xj is the raw frequency of the jth word.
Then, the word probability pj may be computed as the fractional presence of that word:

pj =
xj

∑d
j=1 xj

(11.1)

Now consider a summary with M tokens, in which the jth term occurs mj times, and
therefore we have:

d∑

j=1

mj = M (11.2)

The likelihood L of this summary can be computed using the multinomial distribution:

L = P (m1,m2, . . .md) =
M !

∏d
j=1 mj !

d∏

j=1

p
mj

j (11.3)

Why is it desirable to maximize likelihood? The core basis of this assumption is the hy-
pothesis is that summaries reflecting the frequency distribution of the terms in the original
document are more likely to be informative.

One heuristic way of selecting summaries with high likelihood is the SumBasic method.
Let tj denote the jth word (term). Then, SumBasic computes the average probability over

11.2. TOPIC WORD METHODS FOR EXTRACTIVE SUMMARIZATION 365

all the words in each sentence Sr as follows:

μ(Sr) =

∑
tj∈Sr

pj

|{tj : tj ∈ Sr}| (11.4)

Then, the sentence S∗ with the largest value of μ(Sr) is selected and included in the sum-
mary. At this point, the probability pj of each term in S∗ is reduced by setting it to the
square of its original value. The idea here is that users are unlikely to select a summary
with too many repeated terms because it would cause redundancy. The entire process of
computing μ(Sr) is repeated with these adjusted probabilities, and the next sentence with
the largest value of μ(Sr) is selected. This process is repeated until the summary is of the
desired length. Therefore, the algorithm can be described as follows:

1. Compute the probability pj of each word according to Eq. 11.1.

2. Compute the average word-probability μ(Sr) of each sentence Sr according to Eq. 11.4.

3. Select the sentence S∗ = argmaxr μ(Sr) with the largest value of μ(Sr) and add it to
the summary.

4. Reduce the probability of each word included in the added sentence, S∗, by squaring
it.

5. If the desired summary length has not been reached, then go to step 2.

The bag of sentences at the end of the process provides the summary. This approach tightly
integrates sentence scoring with selection, while accounting for redundancy. Redundancy
is avoided by reducing the probabilities of already included words by squaring them. An
alternative is to multiply the probability with a factor less than 1.

11.2.2 Normalized Frequency Weights

This approach distinguishes the frequent words in a particular document from those that are
present in a generic corpus. Frequent words in a generic corpus are often caused by the fact
that they are stopwords like articles, prepositions, or conjunctions. However, in a specific
corpus, some of the frequent words may be germane to the topics in the collection, and are
worthy of using at least a few times in the summary. For example, the word“election” may
be very common in a specific document that needs to be summarized, but it may not be so
common in a generic background corpus. Therefore, it is desirable to always use background
information when performing stopword removal, rather than using frequency thresholding
with respect to the specific document being summarized. A common approach is to use
stopword lists in order to remove the irrelevant words. Furthermore, terms that occur an
extremely small number of times (e.g., once or twice) are also removed because they might
be misspellings or too unusual to be germane to a summary.

A key step in this approach is to use inverse document frequency normalization before
deciding on the significant words. Document length normalization is used by dividing the
tf-idf weight with the maximum frequency of any word in the document. For any document
X = (x1 . . . xd) in which the jth term has inverse document frequency of idfj , the weight
wj can be computed as follows:

wj =
xj · idfj

max{x1, . . . xd} (11.5)

366 CHAPTER 11. TEXT SUMMARIZATION

All words with weight wj below a particular threshold are reset to a weight of 0, because
such words are presumed to be noisy words. These word weights can then be used to score
sentences. The simplest approach is to use the average weight of a word in a sentence Sr in
order to compute its significance. The average weight μw(Sr) of a word in a sentence can
be computed as follows:

μw(Sr) =

∑
tj∈Sr

wj

|{tj : tj ∈ Sr}| (11.6)

Note that this type of averaging is almost identical to that used in SumBasic. The sen-
tences are then ordered in decreasing order by weight and the top sentences are selected.
However, unlike SumBasic, it does not seem to account for the redundancy between dif-
ferent sentences in the selection process. Nevertheless, it is relatively easy to incorporate
such modifications by multiplying the frequency of each selected word by a small factor less
than 1. It is noteworthy that the process of sentence selection is largely independent of the
scoring process, and a wide variety of selection methods can be paired with different scoring
methods. Therefore, the key methods for sentence selection (which are often reusable over
different ways of scoring) will be discussed in Sect. 11.2.4.

11.2.3 Topic Signatures

Topic signatures are important words for summarization that are identified with a log-
likelihood ratio test. In order to implement the log-likelihood ratio test, the term frequency
in a particular document is compared with that in a background corpus. The basic idea is
to identify words that occur frequently in the document to be summarized, but are rare
with respect to the background collection. Statistical hypothesis testing is a well-defined
methodology with a probabilistic interpretation, which also provides appropriate thresholds
for word selection.

The probability of the term tj in the document X with term frequencies (x1 . . . xd) is
denoted by pj :

pj =
xj

∑d
j=1 xj

(11.7)

Note that this way of defining pj is similar to Eq. 11.1. The value of pj can also be defined
for a set of documents instead of a single document by using the corresponding frequencies
across n documents as follows:

pj =

∑n
i=1 x

(i)
j

∑n
i=1

∑d
j=1 x

(i)
j

(11.8)

Here, x
(i)
j is the frequency of the jth term in the ith document. A similar approach can

also be used to define the probabilities in the background collection. Let bj ∈ (0, 1) be
the corresponding probability of the jth term in the background collection and pj be the
probability only in the document(s) being summarized. Similarly, we compute the proba-
bility aj ∈ (0, 1) of the jth term belonging to the union of the background collection and
the specific document(s) being summarized. The main idea in the likelihood-ratio test is
to assume that the number of occurrences of each token in both the background and the
document are each generated by repeatedly flipping a biased coin for each token. The goal
is to find out whether the same coin is used for both document and background. Therefore,
the two hypotheses are as follows:

11.2. TOPIC WORD METHODS FOR EXTRACTIVE SUMMARIZATION 367

H1: [For jth token] The number of occurrences of the jth token in the document for
summarization and background are both generated by repeatedly flipping a biased
coin with probability aj .

H2: [For jth token] The number of occurrences of the jth token in the document for
summarization is generated from a biased coin with probability pj , and that in the
background with a biased coin with probability bj .

Furthermore, we are only interested in testing terms tj that satisfy pj > bj , because other
terms cannot be topic signatures. Now consider a situation in which the document to be
summarized contains n tokens of which nj correspond to term tj . For the background corpus,
the corresponding numbers are n(b) and nj(b), respectively. Then, under the hypothesis H1,
the probabilities of nj and nj(b) are defined by binomial distributions with different numbers
of trials, but the same sampling parameter aj . Therefore, the probability distribution of the
number of occurrences of the jth token can be computed as follows:

Document to be summarized: P (nj |H1) =

(
n

nj

)

a
nj

j (1− aj)
n−nj

Background collection: P (nj(b)|H1) =

(
n(b)

nj(b)

)

a
nj(b)
j (1− aj)

n(b)−nj(b)

The joint probability of nj and nj(b) under hypothesis H1 is computed as the product of
the above two quantities:

P (nj , nj(b)|H1) = P (nj |H1) · P (nj(b)|H1) (11.9)

In the case of hypothesis H2, the main difference is that we are using different coins with
face probabilities pj and bj , respectively, to model the distribution of term tj .

Document to be summarized: P (nj |H2) =

(
n

nj

)

p
nj

j (1− pj)
n−nj

Background collection: P (nj(b)|H2) =

(
n(b)

nj(b)

)

b
nj(b)
j (1− bj)

n(b)−nj(b)

The joint probability of nj and nj(b) based on hypothesis H2 is given the product of the
above two quantities:

P (nj , nj(b)|H2) = P (nj |H2) · P (nj(b)|H2) (11.10)

Then, the likelihood ratio λ is defined as the ratio of the quantities estimated in Eqs. 11.9
and 11.10:

λ =
P (nj , nj(b)|H1)

P (nj , nj(b)|H2)
(11.11)

The value −2log(λ) has a χ2-distribution, which enables the use of a threshold on −2log(λ)
at a specific level of probabilistic significance. For example, one can use a 99.9% level of
confidence in order to select a threshold value from the χ2 distribution tables. Therefore,
unlike some of the methods discussed earlier in this section, one is able to choose thresholds
that are statistically better justified.

Given the topic signatures, the score of a sentence is equal to the number of tokens
that are topic signatures. An alternative is to set the score of a sentence to the fraction of
the tokens in it that are topic signatures. The first method tends to favor longer sentences
for inclusion in the summary, whereas the second method normalizes for the length of the
sentence in the summary. As discussed in the next section, it is also possible to account for
redundancy in sentence selection.

368 CHAPTER 11. TEXT SUMMARIZATION

11.2.4 Sentence Selection Methods

Sentence selection is a key step in summarization that follows the scoring process. The
presence of redundancy defeats one of the key goals of summarization. Therefore, various
ad hoc techniques are sometimes used to reduce redundancy when the sentence scoring is
tightly integrated with sentence selection. For example, the SumBasic method adjusts the
probabilities of the words after selecting each sentence, so that the probabilities of words
that are included in previously selected sentences are reduced. However, it is desirable to
sometimes decouple sentence scoring from sentence selection. In such cases, generic meth-
ods for redundancy removal are required. Such methods can be used in combination with
arbitrary scoring methods.

A method in [76] proposed techniques for sentence selection in query-focused summa-
rization. However, such techniques have also been adapted to generic summarization set-
tings [192, 296]. The method proposed in [76] is a greedy technique for selecting sentences
with the largest maximum marginal relevance (MMR). The basic idea is to add sentences to
the summary one by one, while ensuring that the score of the added sentences is as favorable
as possible, but the overlap with the previously selected sentences is as little as possible.
There are several ways of operationalizing this technique. The original idea, which is pro-
posed in [76], is to use a convex combination of the relevance score and a novelty score. The
relevance score can be computed in a variety of ways, including any of the scoring methods
discussed in this section.

Let S = {S1 . . . Sr} be the sentences that have been added to the summary so far from
document X. The novelty score N(S) of the sentence S from document X is high when the
document is dissimilar to other documents that have been included in the summary. There-
fore, the novelty score has been quantified by using the negative1 of the cosine similarity of
the sentence Sj with the other sentences in document S.

N(S) = 1−maxSj∈S cosine(S, Sj) (11.12)

The cosine is computed using the vector space representation of the sentences. Note that
the novelty score always lies in (0, 1) and larger values of the novelty are desirable. Let
T (S) be the score of a sentence S using any of the scoring methods such as tf-idf or topic
signature method with the same convention that larger values are more desirable. Then, the
overall score F (S) of a sentence is a linear combination of the scores using the two criteria
and combination parameter λ ∈ (0, 1).

F (S) = λT (S) + (1− λ)N(S) (11.13)

Here, λ ∈ (0, 1) regulates the trade-off between diversity and sentence relevance. The MMR
algorithm always adds a sentence S with the largest value of F (S) to the summary S from
the remaining sentences in the document X. One can vary on the similarity function that is
used to compute the novelty. For example, some methods [296] use the percentage overlap
instead of the cosine in order to compute novelty.

Another simplified approach, which is discussed in [296], is to add a sentence S with
the highest value of T (S) to the summary, while constraining the novelty score between
this sentence and previously selected sentences to be above a particular threshold. This
approach boils down to setting a minimum threshold on the novelty score N(S) in order to

1In the original paper [76], the novelty component is set to N(S) = −maxSj∈S cosine(S, Sj). We have

added the additional value of 1 in order to create a score in the range (0, 1), which is easier to interpret.
The addition of 1 does not change the final results of the computation.

11.3. LATENT METHODS FOR EXTRACTIVE SUMMARIZATION 369

ensure that every sentence that is added has a minimum level of novelty. Among all such
sentences, the sentence with the largest score T (S) is added to the summary. Although the
greedy approach does not necessarily find the optimal solution, it usually finds a high-quality
solution in most practical settings.

11.3 Latent Methods for Extractive Summarization

Latent methods borrow ideas from latent semantic analysis, matrix factorization, and chains
of co-occurring words in order to identify summary sentences.

11.3.1 Latent Semantic Analysis

An important property of latent semantic analysis is that it exposes the independent la-
tent concepts in the data. Therefore, by selecting sentences with large components along
these latent directions, one is able to create a summary of sentences that express dominant
concepts in the document.

One of the earliest methods using latent semantic analysis was proposed in [192]. Con-
sider a document X, which contains m sentences denoted by S1 . . . Sm. The sentence Si is
denoted by the d-dimensional vector Yi. The m × d matrix for which the ith row contains
the vector Yi is denoted by Dy. Then, one can use latent semantic analysis in order to create
a rank-k latent decomposition of the matrix Dy as follows:

Dy ≈ QΣPT (11.14)

Here, Q is an m×k matrix, Σ is a k×k diagonal matrix, and P is a d×k matrix. The value
of k can be chosen to be min{m, d} to ensure that the above approximation is satisfied as an
exact equality. Here, the k columns of P provide the k orthogonal basis vectors along which
the sentences are represented. Therefore, sentences with large projections along these inde-
pendent concepts are likely to be relatively independent of one another and represent good
choices for summarization. The rows of the matrix QΣ contain the k-dimensional reduced
representations of each of the sentences. The matrix Q = [qij] (rather than QΣ) contains
the normalized coordinates of the sentences after adjusting for the relative frequency of each
concept. The m-dimensional column vectors of the m×k matrix Q are useful for extracting
the sentences that correspond to each of the k independent concepts. Large absolute values
of qij in a particular column of Q indicate that the corresponding sentence has a strong
projection along that concept. Therefore, the approach for summary extraction processes
the columns of Q one by one in decreasing order of singular value to add sentences. While
processing the jth column of Q, we pick the entry qij , whose absolute value is larger than
all values of qrj for r
= i. The index i provides the sentence Si that should be added next
to the summary. The sentences are added one by one to the summary using this approach
until the desired summary length is reached. By using different eigenvectors to generate
different sentences, the impact of redundancy is minimized.

One problem with this approach is that it uses only one representative sentence for each
latent concept (singular vector of Dy). In practice, it may be possible that a single sentence
might not be sufficient to represent each concept. In particular, latent concepts with large
singular values might require more than one sentence to represent them because of their
preponderance in the collection in terms of frequency. Furthermore, it is often the case
that good summary sentences do not just discuss one concept but they may discuss several
concepts.

370 CHAPTER 11. TEXT SUMMARIZATION

Therefore, several modifications [458, 459] were proposed in the later literature to address
this issue. One approach2 is to use the normalized matrix U = QΣ2. Note that U = [uij] is
an m × k matrix like Q except that the dominant columns are scaled up with the square
of the singular values. Then, the score si of the ith sentence, Si (i.e., ith row of Dy) is
computed as follows:

si =

√
√
√
√

k∑

p=1

u2
ip (11.15)

Then, a large value of the score si for sentence Si is indicative of the fact that it should
be included in the summary. Unlike the original LSA approach [192], this type of scoring
does not provide a natural way to check for redundancy. Therefore, one can combine this
type of scoring with the MMR approach (cf. Sect. 11.2.4) to create the summary. It is
noteworthy that one can use a wide variety of matrix factorization techniques discussed in
Chap. 3 in order to generate such summaries, and this avenue is explored to some extent in
multi-document summarization.

11.3.2 Lexical Chains

Methods like latent semantic analysis drive their power in large part because of their ability
to capture semantic similarity in a data-driven manner, which is able to adjust for natural
linguistic effects such as synonymy and polysemy. In contrast, the lexical chain methods use
a manually constructed thesaurus in order to find groups of closely related words. For this
purpose, WordNet [347] is used, which is an automated thesaurus.

11.3.2.1 Short Description of WordNet

WordNet is a lexical database of English nouns, verbs, adjectives, and adverbs. These words
are grouped into sets of cognitive synonyms, which are also referred to as synsets. Although
WordNet serves some of the same functions as a thesaurus, it captures richer relationships in
terms of the complexity of the relationships it encodes. WordNet can be expressed as a net-
work of relationships between words, which go beyond straightforward notions of similarity.
The main relationship among the words in WordNet is synonymy, which naturally creates
a total of about 117, 000 synsets. Polysemous words occur in multiple synsets, which pro-
vides useful information for the mining process. An important point is that a lexical chain
is a sequence of words extracted from the same text, which often serves the purpose of
disambiguating the word. For example, the word “jaguar” is polysemous because it might
be either a car of a cat. The sense of this word in a chain such as “jaguar-safari-forest,”
would be different from that in “jaguar-race-miles.” This is a similar type of disambigua-
tion to what is achieved by many latent and matrix factorization methods. Synsets also
have encoded relationships between them, such as between the general and the specific. For
example, a specific form of “furniture” is “bed.” WordNet distinguishes between types and
instances. For example, a “bunkbed” is a type of bed, whereas “Bill Clinton” is an instance
of a president. The specific types of relationships depend deeply on the parts of speech

2There is some difference between the presentations in [458] and [459]. The former suggests to use
U = QΣ, whereas the latter uses U = QΣ2. Using U = QΣ is almost equivalent to setting the sentence-wise
scores to the L2-norms of the original vector space representations (rows of Dy) except that the truncation
of LSA removes some noise. The equality becomes exact when k is set to min{m, d}. In such a case, the use
of LSA is not even necessary.

11.3. LATENT METHODS FOR EXTRACTIVE SUMMARIZATION 371

of the constituent words. For example, verbs can have relationships corresponding to in-
tensity (e.g., “like” and “love”) whereas adjectives can have relationships corresponding to
antonymy (e.g., “good” and “bad”). There are also a few relationships across different parts
of speech, such as words arising from the same stem. For example, “paint” and “painting”
arise from the same stem but are different parts of speech. In general, one can view WordNet
as a kind of graph in which groups of synonyms (synsets) are nodes and edges are relations.

11.3.2.2 Leveraging WordNet for Lexical Chains

The relationships between words in the document are first categorized by using the graph
structure of WordNet. Relationships between words are classified as extra strong, strong, or
moderate. An extra strong relationship is a word and its repetition, and a strong relationship
is the presence of a WordNet relation. A moderate relationship is the presence of a path of
length greater than one in the WordNet graph. Some restrictions [219] are also placed on
the patterns of paths between two words in the graph.

The earliest lexical chain generation algorithms appeared in [219, 457]. The process of
chain generation consists of successive insertion of words in the current set of chains. This
insertion step is discussed in [39] as follows:

1. Find a set of candidate words. Generally, nouns are used as candidate words.

2. For each candidate word, find a chain that satisfies one of the above relatedness criteria
(based on the strength of the WordNet relation) of the candidate word to a member
of the chain. As discussed in detail later, the insertion decision also depends on the
physical distance of the candidate word to the chain-specific words in the segment of
the text being summarized. For example, insertion is allowed if very highly related
words are far apart in the text being summarized.

3. If a chain is found that satisfies the relatedness criterion, then insert the word in the
chain and update it accordingly. When a related chain cannot be found, a new chain
is started containing the word together with links to all its synsets.

In order to insert words in a lexical chain, the inserted words need to be related to a member
of the lexical chain. For selecting the lexical chain, extra-strong relations are preferred to
strong relations, and strong relations are preferred to moderately strong relations. In order
to insert a word in a chain based on a relatedness criterion to another word in the chain,
the two words need to be no more than a certain distance apart from one another in the
text being summarized. For extra-strong relations, there is no limit on the distance between
words, for strong relations the maximum window length of the text segment is 7, and for
moderate relations the window length is 3.

At this point, it is useful to understand how lexical chains disambiguate between poly-
semous uses of the same word, because it relates to the update of a lexical chain when a
word is inserted. A polysemous word has more than one synset corresponding to its multiple
senses. When a chain is started with a single word, the links to all its synsets are retained.
However, when new words are inserted, all unconnected synsets of the word are removed.
This type of removal leads to automatic disambiguation of different senses of the word as
the chain grows over time and unconnected synsets are removed.

In order to use the chains for text summarization, the first step is to score the chains
based on their relevance to the main topic at hand. In order to score a chain, the number
of occurrences of the members of the chains (including repetition) in the text segment is
computed. Furthermore, the number of distinct occurrences of the members of the chain is

372 CHAPTER 11. TEXT SUMMARIZATION

computed. The difference between the two is quantified as the score of the lexical chain.
A chain is considered strong if its score is more than two standard deviations above the
average score of all the chains that were identified in the first step.

Once the strong chains have been identified, they are used to extract significant sentences
from the base text in order to create the summary. A key point is that not all words in
a chain are equally good indicators (i.e., representatives) of the subject matter in the text
being summarized. A word in a chain is considered representative if its frequency is no
less than the frequency of other words in the chain with respect to the text segment being
summarized. For each strong chain that is identified in the previous step, we choose a single
sentence that contains the first appearance of a representative word from the chain in the
text. Note that this step is similar to latent semantic analysis in which a single sentence
is extracted for each latent concept in the collection. In this sense, lexical chains serve the
same purpose as latent concepts except that they are mined with the help of significant
linguistic input such as the WordNet database.

11.3.3 Graph-Based Methods

Graph-based methods use PageRank on the sentence-sentence similarity graph in order to
determine the significant sentences. The PageRank method is described in Sect. 9.6.1 of
Chap. 9 in the context of Web ranking. At first sight, it might seem that such graph-based
methods have nothing in common with latent techniques. However, like latent methods, they
use the overall similarity structure between sentences. This relationship will be explained
in greater detail at the end of this section. The steps underlying the PageRank method are
as follows:

1. Create a node for each sentence in the document to create m nodes. For any pair of
sentences between which the cosine similarity exceeds a pre-defined threshold, add an
undirected edge. Use the cosine similarity as the weight of the edge.

2. Compute the transition probabilities for the edges using this weighted adjacency ma-
trix. Note that the transition probability from node i to node j is equal to its fractional
weight among all edges incident on node i. Furthermore, the transition probability
from node i to node j may not be the same as that from node j to node i. The
resulting matrix m×m is denote by AP .

3. As discussed in Sect. 9.6.1, the PageRank method requires restart with probability α.
Let AR be an m×m matrix in which every entry is 1/m. Then, update AP to a new
stochastic transition matrix A with restart:

A = AP (1− α) + αAR (11.16)

The matrix A incorporates the restart within the transition probabilities.

4. The dominant left eigenvector of the matrix A provides the PageRank values in its
m entries. Each of these values can be shown to be the steady-state probability of a
random walk on the stochastic transition graph represented by A. For greater details
on the PageRank method, the reader is referred to Sect. 9.6.1 of Chap. 9.

The PageRank values provide scores that can be used for ranking sentences. Although one
can simply select the top-scoring sentences, it sometimes helps to use the redundancy elim-
ination methods of Sect. 11.2.4 in order to create a more informative summary. The earliest

11.3. LATENT METHODS FOR EXTRACTIVE SUMMARIZATION 373

methods that used PageRank for summarization were the TextRank [339] and LexRankmeth-
ods [154]. These methods have also been extended to multi-document summarization [154].
One advantage of the PageRank approach is that it is relatively easy to incorporate linguistic
and semantic information within the similarity graph [84].

How is the PageRank method related to the latent semantic methods of Sect. 11.3.1?
The latent semantic methods of Sect. 11.3.1 also use eigenvectors of similarity matrices, just
as the PageRank method uses the dominant left eigenvector of a modified similarity matrix
(which is a stochastic transition matrix). Note that the LSA method of Sect. 11.3.1 first
constructs the sentence-term matrixDy, and then performs SVD of the matrixDy = QΣPT .
One can also extract the matrices Q and Σ by using the top eigenvectors of the sentence-
sentence similarity matrix DyD

T
y .

The PageRank technique can be viewed as a closely related method except that it con-
structs the similarity matrix in the form of a transition matrix, and uses a single dominant
eigenvector of this matrix. The approach for selecting sentences is also different from the
latent semantic analysis method because one no longer uses multiple eigenvectors of the sim-
ilarity matrix, but the elements of a single eigenvector of the transition matrix. Therefore,
one has to be careful about not selecting redundant sentences (with the use of MMR-like
methods) when using the PageRank technique. In the case of the latent semantic analysis
method, a single sentence is selected with respect to each eigenvector.

11.3.4 Centroid Summarization

Although centroid summarization is naturally designed for multi-document collections [398,
399], one can also adapt it in a simple way for single document summarization by treating
each sentence as a document. In fact, such an adaptation is very similar to the latent
semantic analysis method, if one uses a single representative from each cluster. The overall
approach for centroid summarization with single documents proceeds as follows:

1. Treat each sentence in the document as a document. Cluster the sentences into groups
of k clusters. It is often difficult to cluster short segments of text like sentences. In such
cases, one can use nonnegative matrix factorization to create a latent representation
of the documents before clustering. Alternatively, some of the feature engineering
techniques discussed in Chap. 10 can be helpful for short text clustering.

2. For each cluster, use the tf-idf frequency of words in the cluster in order to determine
the importance of topic words and also score sentences. One can use any of the topic-
word methods discussed in Sect. 11.2, except that all the sentences in each cluster are
aggregated into a single document during the computation of term frequencies in the
scoring process. In other words, the scoring of the sentences in a particular cluster is
independent of other clusters by defining the term-frequency of a word in a cluster
only with respect to sentences in the cluster (rather than all sentences in the original
document).

3. Create a summary using the top-scoring sentence of each cluster. Therefore, the sum-
mary will contain exactly k sentences as in latent semantic analysis. The sentences in
the summary are in the same order as they occur in the original document.

This approach is very similar to the latent semantic analysis method, except that each clus-
ter is treated as a latent component. Furthermore, the approach discussed here is an adap-
tion of its (more common) use case in the multi-document setting. The original centroid-
summarization method [398, 399], which was proposed for multi-document summarization,
is presented in Sect. 11.5.

374 CHAPTER 11. TEXT SUMMARIZATION

11.4 Machine Learning for Extractive Summarization

Most of the methods discussed so far use only content in the summarization process. How-
ever, there are important characteristics about the positioning of various sentences and other
meta-information that provide useful information for the importance of various sentences in
summarization. This point of view leads to the broader perspective that one should extract
indicator features that reflect the importance of a sentence belonging to a summary. Such
an approach also paves the way towards a machine learning view of text summarization.
The earliest work by Edmundson [150] was an unsupervised technique, which noticed that
multiple characteristics of a sentence in a document such as the length and the location of
the sentence within the text played an important role in deciding whether it should be part
of the summary. In fact, it is quite common in many systems to include the first sentence
in the text segment as a part of the summary. These observations led to the natural con-
clusion that it makes sense to extract different types of features about sentences based on
both content-centric as well as non-content-centric criteria, and then use machine learning
techniques [269] in order to score the importance of sentences for summarization. The key
point here is that machine learning methods require training examples in order to perform
the learning. The training examples take the form of a text segment with binary annotations
indicating whether or not the sentence should be a part of the summary. One can then use
a binary classifier in which features are associated with individual sentences and the label
indicates whether or not it should be a part of the summary. The need for human annotation
is the main bottleneck in the use of machine learning systems for text summarization.

11.4.1 Feature Extraction

The first work on machine learning for text summarization [269] proposed using a set of
features that were motivated by the work of Edmundson [150], Luhn [312], and Paice [371].
The initial work of Paice proposed the use of specific types of features associated with
sentences such as frequency-based features (i.e., number and frequency of topic words),
presence of title words, and location features (e.g., beginning or end of paragraph). In
addition, indicator phrases often accompany summary material. For example, the phrase
such as “This report. . . ” often occurs at the beginning of a summary sentence. A related
notion is that of cue words, containing bonus and stigma words, which are positively or
negatively correlated with summary sentences.

The work in [269], which was motivated by Paice’s initial feature set, proposed to use
several related and additional features, all of which were discrete. It was proposed to use a
sentence length cut-off feature that is set to 1 when the sentence length is greater than 5.
The basic idea is that summaries generally do not contain very small sentences. In addition,
a fixed-phrase feature was used that was set to 1, when the sentence contained phrases like
“This report. . . ” or keywords like “conclusion.” Sentences that contained one of a set of 26
indicator phrases or which contained keywords from the section heading had this feature set
to 1. A paragraph feature indicated whether a sentence occurred in the beginning, middle,
or ending of a paragraph. A thematic feature was used, which can be viewed as setting the
binary feature to 1, if a frequency-based topic-word score of a sentence (cf. Sect. 11.2) is
larger than a particular threshold. The occurrence of a proper noun several times or the
explanatory expansion of an acronym sets the uppercase word feature to 1.

An immediate observation is that some of the features, such as thematic features, are
actually used to score sentences on a standalone basis in some of the techniques discussed in
previous sections. The supervised approach is therefore potentially more powerful because it

11.5. MULTI-DOCUMENT SUMMARIZATION 375

extracts many of the features used for scoring sentences (along with other indicator features)
and then learns the importance of a specific combination of features from the training data.
This broader approach of using different scoring methods to create features was exploited
in other ways. For example, the PageRank feature of Sect. 11.3.3 is also used. The work
in [279] also proposed to use various structural features (including PageRank) from a graph
in which nodes correspond to words and phrases rather than sentences.

11.4.2 Which Classifiers to Use?

The original work in [269] used a näıve Bayes classifier on the training data. However, almost
any machine learning algorithm can be used in practice. Refer to the bibliographic notes for
pointers to supervised methods. A recent trend has been on the use of hidden Markov models,
which treat sentences as sequential entities rather than as independent entities [110]. The
basic idea here is that the likelihood of a sentence belonging to a summary is not independent
of whether its preceding sentence has been included in the summary. In general, the machine
learning approach has often improved the performance of summarization methods in many
domains, although the unsupervised methods often perform competitively in generic cases.
The main constraint on the use of the technique is the presence of labeled training data.

11.5 Multi-Document Summarization

In a multi-document summarization, the summary is not just germane to one article but
to multiple articles that are closely related. Most of these techniques use either a clustering
method or a topic model on the document collection in order to identify sentences that are
locally relevant to each cluster.

11.5.1 Centroid-Based Summarization

In centroid-based summarization [398, 399], a clustering algorithm is used to partition
the corpus into groups of related documents. The centroid of each cluster is defined by
averaging the tf-idf representations of its documents, although words with low tf-idf scores
are truncated. Note that the inverse document frequency (idf) is computed with the help
of a background corpus rather than the corpus being summarized. Therefore, the steps for
centroid-based summarization are as follows:

1. Cluster the documents using any off-the-shelf method. In early works [398, 399], clus-
tering methods from the topic detection and tracking (TDT) effort [18] were used. The
use of the k-means technique is particularly desirable because of its natural tendency
to create centroids of topical words from the cluster.

2. For each cluster, create a pseudo-document corresponding to the centroid of all doc-
uments in the cluster. The centroid is created by adding the tf-idf frequencies of each
term across different documents in the cluster and truncating the terms with aggre-
gate frequency below a particular threshold. Select the terms with the largest tf-idf
frequencies as the topical words of the cluster.

3. Score each sentence in the cluster based on the tf-idf frequencies of its words in the
cluster centroid. This type of scoring is similar to that of single document summariza-
tion in Sect. 11.2.2. The main difference is that the scoring of the sentence is done with

376 CHAPTER 11. TEXT SUMMARIZATION

respect to the documents in its cluster rather than the frequency in the document it-
self. This notion is referred to as cluster-based sentence utility [398, 399]. In addition,
documents are scored higher based on positional factors. Early sentences in docu-
ments are given higher credit, which reduces linearly with the order of the sentence.
The first sentence in a document gets an additional credit Cmax which is equal to
the score of the highest-ranking sentence based only on centroid scoring. Subsequent
sentences have a linearly reducing credit which is equal to Cmax(m− i+1)/m, where
m is equal to the number of sentences in the document, and i is the positional index
of the sentence. An additional credit is given based on the dot product similarity with
the first sentence in the collection. The idea is that the first sentence is indicative of
topical salience and therefore overlap with the first sentence is desirable. Therefore, if
sc is the centroid score, sp is the positional score, and sf is the first-sentence overlap
score, then the overall score (without accounting for redundancy) is as follows:

sall = wcsc + wpsp + wfsf (11.17)

Here, wc, wp, and wf are user-driven parameters, which can be tuned but are often
set to 1.

4. Since multiple documents in a cluster might contain similar sentences, such redundant
sentences need to be removed. Although it is possible to use the maximum marginal
relevance (MMR) principles for sentence selection, the work in [398, 399] uses the
notion of cross-sentence informational subsumption (CSIS). If W1 and W2 are the
respective sets of words in two sentences, then the value of CSIS between the two
sentences is as follows:

CSIS(W1,W2) = wR
2|W1 ∩W2|
|W1|+ |W2| (11.18)

Here, wR is the weight of the redundancy penalty, which is set at the maximum
value of sall over all sentences according to Eq. 11.17. The score value sall for each
sentence is then adjusted with the redundancy penalty defined by Eq. 11.18. For a
sentence, we subtract the redundancy penalties only with respect to sentences that
have higher scores. Of course, since the ranking of sentences is itself influenced by
the redundancy penalty, this approach for adjusting the scores with the redundancy
penalty is circular. Therefore, the approach starts with an initial ranking without any
redundancy penalty, computes the penalties based on this fixed ranking, and then
re-ranks documents. The approach is repeated iteratively until the ranking does not
change. At the end of the process, the top-ranked documents across all clusters are
included in the summary.

How does one order the sentences in a summary drawn from multiple documents? It is
assumed that the original document collection has some pre-defined order (e.g., chrono-
logical), which also provides an ordering for the sentences from different documents. The
sentences from a particular document appear contiguously in the summary.

11.5.2 Graph-Based Methods

It is evident from the discussion in the previous section that issues associated with re-
dundancy are slightly more complex in the case of multi-document models as compared
to single-document models. An approach is proposed in [297] that uses the MMR method

11.6. ABSTRACTIVE SUMMARIZATION 377

directly in the graph context. As discussed in Sect. 11.5, a graph is constructed by treating
individual sentences as nodes. However, in this case, a sentence may be drawn from any of
the documents3 in the collection. An edge is added between each pair of nodes for which
the cosine similarity exceeds a pre-defined threshold. The weight wij between nodes i and
j is equal to the cosine similarity between the corresponding pair of sentences.

Let U represent the universe of all the sentences in a multi-document collection. Let
S be the set of sentences to be included in a summary. Ideally, a summary should select
sentences that are as representative of the entire collection as possible. This goal is achieved
by ensuring that the sentences in S are as similar as possible to those in U − S. At the
same time, one should ensure that the sentences within S are as dissimilar as possible to
one another. Therefore, one attempts to identify the set of sentences S that maximize the
following submodular function:

f(S) =
∑

i∈S

∑

j∈U−S
wij − λ

∑

i∈S

∑

j∈S
wij (11.19)

The balancing parameter λ > 0 regulates the relative importance of content coverage and
redundancy. The goal is to maximize the value of f(S) while imposing a budget on the
maximum cost of the summary. For example, the cost associated with the ith sentence
might be the number of bytes in it, although one might use other types of costs as well.

A submodular function like f(S) satisfies the law of diminishing returns as applied
to set-wise functions. In other words, adding a sentence to a larger superset S1 is not
incrementally as rewarding as adding it to the subset S2 ⊆ S1. Such set functions are
known to work well with greedy algorithms, with provable approximation bounds in special
cases [358]. Therefore, the approach in [297] adds sentences to the summary greedily (i.e.,
largest incremental increase in f(S) per unit cost), until the budget limit is reached.

11.6 Abstractive Summarization

The goal of extractive summarization is to generate summaries that reuse sentences (or
segments) from the original document(s). However, such a summary is often not fluent
from a human perspective. Humans often rewrite portions of the document completely for
greater clarity and fluency. Abstractive summarization is designed to create summaries that
do not necessarily reuse portions of the document in a verbatim way.

In general, the construction of completely fluent summaries that mimic human perfor-
mance is well beyond the ability of modern systems, and is an unsolved problem in artificial
intelligence. The high level of difficulty of this setting also explains why most modern sys-
tems are extractive. Nevertheless, some methods have been proposed in recent years that
can be considered “abstractive” in a rather limited way. Many of these methods first create
extractive summaries from the input and then modify portions of these summaries in order
to improve the presentation and output. However, these methods have met only limited suc-
cess. In fact, some works [523] have explicitly demonstrated that attempts to incorporate
abstractive methods on extractive summaries can sometimes worsen concrete evaluation
measures for summarization. In spite of the mixed results achieved by such methods, it is
important to explore them in order to pave the way for future development of this field. In
many cases, the modifications made by such systems do agree with typical changes made
by human participants. The following discussion introduces some of these techniques.

3The approach can also be used for a single document summary.

378 CHAPTER 11. TEXT SUMMARIZATION

11.6.1 Sentence Compression

When humans summarize documents, they often shorten longer sentences in terms of lin-
guistic and writing style. Inessential phrases are removed. Automated methods for sentence
compression are motivated by similar goals, and try to mimic human performance as an
ideal. The following techniques are often used for sentence compression:

1. Rule-based methods: Rule-based methods often use linguistic knowledge in order to
identify the phrases that are removed from a summary. The different grammatical
parts of a sentence can be identified with the use of a linguistic parser. Those parts of
the sentence that are not essential to the grammatical integrity of the sentence, and
are not closely related to the subject of the overall article are removed [238]. These
types of conditions are encoded in terms of rules that are used to modify an extracted
summary. Many other methods use syntactic heuristics [111, 449] to simplify sentences,
and these methods have been shown to improve the quality of the summarization. The
syntactic heuristics are often based on linguistic rules in a direct or indirect way.

2. Statistical methods: In this case, the portions of the sentences to be removed are
learned by the model. The approach discussed in [263] constructs different parse trees
with the use of probabilistic context free grammars (PCFG). This method uses the
Ziff-Davis corpus [591] as training data for the learning process. The goodness of a
sentence is computed with the use of PCFG scores and a bigram language model.
Several later works [179, 476] improved on these methods by avoiding undesirable
deletions and acquiring training data in innovative ways.

These methods have led to increasing interest in the field of sentence compression [101],
which has taken a life of its own (beyond text summarization applications). Several
recent methods use integer linear programming [101] in order to identify which words
to remove from a sentence. These methods do not use the parse trees, and therefore
they cannot ensure that the grammar of the output is accurate.

Both types of methods have had mixed success in terms of their performance with respect to
human annotators. Sentence compression methods are also used for headline generation [141,
505], in which the length of the compressed summary is small enough to be considered a
headline. Headline generation has often been seen as a related but independent problem
from text summarization tasks.

11.6.2 Information Fusion

The aforementioned methods for sentence compression almost have a one-to-one corre-
spondence of the created summary from an extractive summarization approach. The main
difference is that the generated sentences are compressed using either rule-based or machine-
learning techniques. A more generic form of summarization is one in which the information
from multiple sentences is integrated into a single sentence. Such an approach is also referred
to as “cut-and-paste” approach [239].

A approach, referred to as MultiGen [41], proposed techniques for fusing more than two
sentences in the context of multi-document summarization. The basic idea is that there are
many documents that are similar to one another in a cluster and they can often be fused
into a grammatically correct sentence by identifying phrases that occur in common across
different sentences. This general line of work has led to the standardized problem of finding
the best union of two sentences that conveys all the information in the two sentences as
well as possible [170, 323].

11.8. BIBLIOGRAPHIC NOTES 379

11.6.3 Information Ordering

The order in which the extracted sentences are presented in a summary need not be the same
as that in the original document. In the multi-document setting, this issue is particularly
important because the ordering of the sentences is often based on the chronological order of
the underlying articles. The chronological order of the underlying articles may not correctly
reflect the order in which they appear in the summary. A more natural approach [210] is to
cluster sentences with similar topical content contiguously in the summary. Furthermore, the
ordering of the different topics may not be the same across different documents. Therefore,
a graph is constructed in which each vertex represents a topic cluster. An edge is placed
between two vertices if one topic precedes another in a document. The majority ordering
across the various documents is used to decide which topics should precede one another in
the final summary. Another idea that combines topical locality with chronological ordering
is discussed in [40].

11.7 Summary

Summarization methods are either extractive or abstractive. The former type represents the
majority of the available techniques in the literature, and is defined as a methodology in
which sentences from the original document(s) are put together to create the summary. Var-
ious methods have been proposed for document summarization such as topic-word methods,
latent methods and machine learning techniques. These methods have also been extended to
the multi-document scenario. In recent years, some progress has also been made on abstrac-
tive summarization methods. Most of these techniques start with an extracted summary
and then modify it in order to remove redundant sentences, fuse related sentences, and
reorder the underlying segments more appropriately. Summarization methods can also be
improved significantly by incorporating domain-specific knowledge.

11.8 Bibliographic Notes

Numerous surveys have been written in the literature on text summarization [126, 359, 360,
455]. Among these, the survey by Nenkova and McKeown [359] is excellent and comprehen-
sive; furthermore, it is very systematic in providing an overview of the different topics. A lot
of the work in text summarization derives its motivation and ideas from the early work of
Luhn [312] and Edmundson [150]. Luhn’s work led to the popularization of topic represen-
tation methods, whereas Edmundson’s work popularized indicator methods in general and
machine learning methods in particular. The SumBasicmethod is discussed in [483]. The use
of topic signatures is proposed in [295]. Methods for selecting non-redundant methods based
on various scoring methods in combination with the greedy MMR approach are discussed
in [76, 296]. Methods that go beyond the greedy approach and use global optimization are
discussed in [188].

The latent semantic method for summarization was first proposed in [192] and subse-
quent improvements were proposed in [458, 459]. The method of lexical chains was intro-
duced in [219, 457], and its use for summarization was first discussed in [39]. The use of
PageRank for summarization was first explored in the LexRank [154] and TextRank [339]
methods. The TextRank method also provides techniques for keyword extraction. The earli-
est work on graph-based summarization was proposed in [425]. The first centroid-based sum-
marization method was proposed in [398, 399], although it was proposed for multi-document
summarization. The single-document summarization method presented in Sect. 11.3.4 is a
simplification of this approach.

380 CHAPTER 11. TEXT SUMMARIZATION

The works by Edmundson [150] and Paice [371] set the stage for feature extraction for
machine learning techniques, although these methods were themselves not machine learning
methods. The first machine learning method in text summarization [269] used many of these
features in conjunction with a näıve Bayes classifier. A number of supervised methods for
text summarization are discussed in [176, 201, 228, 279, 367, 507]. The use of hidden Markov
models for text summarization was first introduced in [110].

The centroid-based technique for multi-document summarization is based on [398, 399].
Topic models provide an attractive alternative [200, 489] to clustering, and they use the
latent semantic structure of the relationships between the sentences, documents, and corpus
in order to create a summary. Graph-based methods for multi-document summarization are
discussed in [154, 297].

This chapter discusses abstractive summarization briefly because it is considered an
advanced topic that has not reached full maturity. Furthermore, summarization is often
performed much more effectively in domain-specific settings such as the Web because of the
availability of additional contextual information. For more discussion on these topics, the
interested reader is referred to [359].

11.8.1 Software Resources

A number of open source libraries such as Apache OpenNLP [548], NLTK [556], and Stan-
ford NLP [554] support preprocessing tasks (including sentence-wise segmentation) that
are crucial for text summarization. Numerous software packages are available for text sum-
marization such as a component of gensim [401] and ROUGE [592]. A summarizer that
is based on Latent Semantic Analysis is presented in [594]. A summarization functional-
ity is also available from TensorFlow [595]. A multi-document summarizer, referred to as
MEAD, is also available in the public domain [596]. The ICSI document multi-document
summarizer [593] uses integer linear programming techniques, and is known to one of the
best performing systems in various evaluations.

11.9 Exercises

1. Suppose that you are only given pairwise similarities between text sentences in a
document, but you are not given the sentences themselves. Show how you can use
these pairwise similarities in order to create a summary of the document.

2. Consider a background corpus with 100,000 tokens in which the word “politics” occurs
250 times. Furthermore, a document with 70 tokens contains this word twice. Calculate
the likelihood ratio that this word is a topic signature.

3. Suppose that you use nonnegative matrix factorization instead of LSA for the latent
method discussed in Sect. 11.3.1. Discuss the intuitive relationship of such a technique
with the clustering method discussed in Sect. 11.3.4.

4. Implement the topic-signature method for single-document summarization.

5. Implement the latent semantic analysis method for single-document summarization.

Chapter 12

Information Extraction

“We are drowning in information, while starving for wisdom.”—E. O. Wilson

12.1 Introduction

In its most basic form, text is a sequence of tokens, which is not annotated with the prop-
erties of these tokens. The goal of information extraction is to discover specific types of
useful properties of these tokens and their interrelationships relationships. The umbrella
term “information extraction” refers to a family of the following closely related tasks:

1. Named entity recognition: The tokens in the text may refer to named entities, such as
locations, people, and organizations. For example, consider the following sentences:

Bill Clinton lives in New York at a location that is a few miles away from an
IBM building. Bill Clinton and his wife, Hillary Clinton, relocated to New
York after his presidency.

For this text segment, it needs to be determined which tokens correspond to which
type of entity. In this case, the system needs to recognize that “New York” is a location,
“Bill Clinton” is a person, and “IBM” is an organization.

2. Relationship extraction: Relationship extraction generally follows named entity recog-
nition, and it attempts to find the relationships among different named entities in a
sentence. Examples of relationships may be as follows:

LocatedIn(Bill Clinton, New York)
WifeOf(Bill Clinton, Hillary Clinton)

In general, the types of relationships to be mined will be specified in the application
at hand.

A related problem, which is not discussed in this chapter, is one in which different terms
may refer to the same entity. This problem is referred to as co-reference resolution. For

382 CHAPTER 12. INFORMATION EXTRACTION

example, both “International Business Machines” and “IBM,” refer to the same named
entity, and the co-reference resolution system needs to recognize this in an automated way.
As another example, consider the following pair of sentences:

Bill Clinton lives in New York at a location that is a few miles away from an
IBM building. He and his wife, Hillary Clinton, relocated to New York after his
presidency.

Note that the word “He” at the beginning of the second sentence is not a named entity,
but it refers to the same entity as Bill Clinton. These types of references to the same entity
also need to be captured by co-reference resolution.

It is worth noting that there are many different settings in which information extraction
systems are used. An open information extraction task is unsupervised and has no idea
about the types of entities to be mined up front. Furthermore, weakly supervised methods
either expand a small set of initial relations, or they uses other knowledge bases from
external sources in order to learn the relations in a corpus. Although such methods have
recently been proposed1 in the literature, this chapter will focus on a more traditional view
of information extraction that is fully supervised. In this view, it is assumed that the types
of entities and the relationships among them to be learned are pre-defined, and tagged
training data (i.e., text segments) are available containing examples of such entities and/or
relationships. Therefore, in named entity extraction, tagged examples of persons, locations,
and organizations may be provided in the training data. In relationship extraction, examples
of specific relationships to be mined may be provided along with the free text. Subsequently,
the entities and relations are extracted from untagged text with the use of models learned
on the training data. As a result, many of the important information extraction methods
are supervised in nature, since they learn about specific types of entities and relationships
from previous examples. In this chapter, we will focus on such supervised settings. In each
case, the types of entities to be mined and the relationships among them depend on the
specific application at hand. The common applications in which the need for information
extraction arises are as follows:

1. News tracking: This is one of the oldest applications in information extraction, which
involves the tracking of different events from news sources and the various interac-
tions/relations between different entities. Several early competitions were also orga-
nized around this application, which has also facilitated the availability of research
prototypes in this context. The relationship between information extraction and event
detection is also explored in Sect. 14.4.3 of Chap. 14.

2. Counter-terrorism: In these applications, law enforcement agencies may need to go
through large numbers of articles in order to identify different types of individual
entities, organizations, events, and relationships among them.

3. Business and financial intelligence: There are numerous events that occur between
corporations such as mergers, takeovers, business agreements, and so on. It is often
useful to extract the different types of named entities and the relationships among
them in order to obtain an idea of key trends.

4. Biomedical data: Biomedical data may have different entity types such as gene, protein,
drug, and disease names. It may be useful to determine when different terms refer to
the same thing, and also find the relationships between different entities.

1The bibliographic notes contain pointers to such methods.

12.1. INTRODUCTION 383

5. Entity-oriented search: Some information retrieval systems provide the ability to
search for specific types of entities in documents such as persons, locations, and orga-
nizations. For example, entering the query “restaurants in Manhattan” in the Google
search engine yields results containing several popular restaurants, which are named
entities. The first step in building searchable entity indexes is to identify different
types of named entities within the documents.

6. Question-answering systems: Question-answering systems are often built on top of
information extraction systems and entity-oriented search. This is because the process
of understanding a question requires one to extract the different types of entities in the
question and the relationships among them. A brief discussion of question-answering
systems is provided in Sect. 10.7.4.1 of Chap. 10.

7. Scientific libraries: The automated indexing of scientific libraries requires the extrac-
tion of specific fields of the document such as the author, title, and so on. Each of
these fields is a named entity.

8. Text segmentation: Although text segmentation is often studied as a separate problem
from named entity recognition, many existing algorithms for named entity recognition
can be used for text segmentation. The problem of text segmentation is studied in
detail in Chap. 14.

Over the years, it has been shown that these diverse applications can be addressed by solving
a pair of application-independent tasks, which are named entity recognition and relationship
extraction. Therefore, these problems have become the primary focus of work in the field.

12.1.1 Historical Evolution

The earliest problems in information extraction converted unstructured to structured data
using slot-filling tasks over a pre-defined template. For example, imagine a case where we
have training data containing Wikipedia pages of US politicians and some associated tables
containing the relevant fields. In Wikipedia, this information is available in tables, which are
referred2 to as infoboxes. For example, consider the following statistics for John F. Kennedy,
most of which is available both in the text of the Wikipedia page3 as well as in the tables
on the right-hand side of the page:

Slot/Field Value

Born May 29, 1917
Political party Democratic
Spouse(s) Jacqueline Bouvier
Parents Joseph Kennedy Sr.

Rose Kennedy
Alma mater Harvard University
Positions US House of Representatives

US Senate
US President

Military Service Yes

2https://en.wikipedia.org/wiki/Help:Infobox.
3https://en.wikipedia.org/wiki/John F. Kennedy.

https://en.wikipedia.org/wiki/Help:Infobox
https://en.wikipedia.org/wiki/John_F._Kennedy

384 CHAPTER 12. INFORMATION EXTRACTION

Here, it is evident that some fields (such as political party and military service) are obtained
from a predefined set, whereas others like the names of spouses and parents can be arbitrary
values. Early variants of the information extraction task were designed to extract such tables
from unstructured text.

One problem with the slot-filling task is that it is highly application dependent, and
such systems are not generalizable across different application settings. For example, a slot-
filling system for US politicians on Wikipedia might not work for terrorism-centric slot filling
on news articles. The main problem is that the various settings either require significant
customization, or they require significantly increased complexity in terms of how the input
to the problem is defined. This situation makes it difficult to create off-the-shelf software
for such tasks. An important evolution of the slot-filling task was defined in MUC-6 [193],
which was one of a series4 of the early Message Understanding Conferences (MUC). It was
recognized that more crisply defined tasks like named entity recognition and relationship
extraction were often used as subtasks of slot filling, and they also had the advantage of being
template independent. As a result, these subtasks eventually became the predominant forms
of information extraction. This chapter will, therefore, primarily focus on these subtasks.

12.1.2 The Role of Natural Language Processing

Information extraction draws techniques from natural language processing, information re-
trieval, machine learning, and text mining. The roots of the field lie within the natural
language processing community, and many algorithms for information extraction are moti-
vated by natural language processing. For example, various types of Markovian models are
used in information extraction, and also for natural-language processing tasks like recogniz-
ing parts of speech. Information extraction also requires a pipeline of preprocessing tasks
related to natural language processing, which is as follows:

1. Tokenization and preprocessing: Tokenization represents the first task in any text-
mining application, and this task is discussed in detail in Chap. 2. For many applica-
tions, additional preprocessing steps such as stemming may be required.

2. Parts-of-speech tagging: Each token is assigned to a part of speech such as noun, verb,
adjective, adverb, pronoun, conjunction, preposition, and article. However, there are
many refined categorization of these basic types, which can lead to as many as 179 tags.
There are standardized tags corresponding to the Brown [597] or the Penn Treebank
tags [598]. For example, one might differentiate among different types of nouns with
tags such as NN, NNP, and NNS, to represent singular, proper, and plural nouns,
respectively. Similarly, one might distinguish between the base form of a verb and its
past tense as VB and VBD, respectively. Common articles, such as “a,” “an,” and
“the,” are referred to as determiners with a tag of DT. An example of a sentence with
parts-of-speech tags is as follows:

The/DT rabbit/NN ate/VBD the/DT carrot/NN.

Recognizing the parts of speech is crucial for information extraction, because entities
comprise nouns or groups of nouns, whereas the expression of relationships often
requires the usage of verbs.

4This early series of conferences played an important role in the evolution of the field of information
extraction, which had been largely sporadic till then.

12.1. INTRODUCTION 385

S

VP

DT

VBD NP

NN

NP

DT NN

The rabbit ate

the carrot

Figure 12.1: The tree-structure obtained by parsing

3. Parser: A parser extracts a hierarchical structure from each sentence in the form of a
parse tree, in which the lower-level subtrees group the parts of speech into syntactically
coherent phrases like noun phrases and verb phrases. The former is useful for named
entity recognition, whereas the latter is useful for relationship extraction. For example,
one can recognize the noun phrases (NP) and verb phrases (VP) for the previous
sentence as follows:

The rabbit︸ ︷︷ ︸
NP

ate the carrot︸ ︷︷ ︸
NP

︸ ︷︷ ︸
VP

One can already see the tree-like nesting structure of the phrases, which results in
a constituency-based parse tree that includes both the parts-of-speech tags and the
phrase tags. The leaf nodes of the tree are the actual tokens, and the pre-terminal
nodes are the parts-of-speech tags, each of which has a single child with the corre-
sponding token. An example of the constituency-based parse tree is shown in Fig. 12.1.
Named entities are usually noun phrases, whereas relationships are often inferred from
verb phrases.

4. Dependency analyzer: Some of the words depend on others, which are useful for rela-
tionship extraction. For example, both “rabbit” and “carrot” depend on “ate.” One can
encode these dependencies in the form of a dependency graph with nodes representing
words and directed edges representing dependencies. This type of graph is useful for
relationship extraction, and is referred to as a dependency graph. An example of a
dependency graph is shown in Fig. 12.4.

The aforementioned preprocessing tasks are available in many off-the-shelf natural language
processing libraries, such as Stanford CoreNLP [554], NLTK toolkit [556], and the Apache
OpenNLP effort [548]. It is noteworthy that some parts of speech, such as adjectives, are
useful for opinion mining, which is closely related to information extraction (cf. Chap. 13).

12.1.3 Chapter Organization

This chapter is organized as follows. The next section discusses the problem of named entity
recognition. The problem of relation extraction is discussed in Sect. 12.3. A summary is given
in Sect. 12.4.

386 CHAPTER 12. INFORMATION EXTRACTION

12.2 Named Entity Recognition

A named entity typically refers to a sequence of words that correspond to a specific entity in
the real world (i.e., an entity with a name). Examples of such entities include “Bill Clinton,”
“New York,” and “IBM.” Most named entity recognition methods focus on three types of
entities corresponding to person, location, and organization. The original definition of named
entity recognition, as provided in MUC-6 [193], also allowed for the detection of dates, times,
monetary values, and percentages. Although these types of entities are not really named
entities, they can still be useful in some applications. In other domains such as biological
data and online advertising, entities can be biological or they can be names of products.
Although these types of entities lie outside the person/location/organization categorization,
the broader principles of extracting any particular type of entity remain roughly the same
across all domains. Most of the principles and methods discussed in this chapter apply to
these diverse settings.

It is assumed that the training data consists of a set of unstructured texts together with
all occurrences of the relevant entities marked at the appropriate places. For example, the
entities in the training data might be tagged as follows:

〈Person〉 Bill Clinton 〈/Person〉 lives in 〈Location〉 New York 〈/Location〉
in a neighborhood that is a few miles away from an 〈Organization〉 IBM
〈/Organization〉 building. He and his wife, 〈Person〉 Hillary Clinton 〈/Person〉,
relocated to 〈Location〉 New York 〈/Location〉 after his presidency.

Given this training data, the goal is to tag the test segments in which the entities are
not marked a priori. Note that the entities might comprise multiple tokens, and therefore
one needs to mark the starting point, the ending point, and the name of the entity.

Named entity recognition is the most fundamental problem in information extraction
because it provides the basic building block on top of which many other information ex-
traction methods are built. For example, it would be impossible to perform relationship
extraction, if one did not have the named entities between which to extract relationships.
In fact, the entire pipeline of information extraction can be combined with the linguistic
preprocessing pipeline as follows:

Tokenization ⇒ POS Tagging
︸ ︷︷ ︸

Linguistic Preprocessing

⇒ Named Entity Recognition ⇒ Relationship Extraction

In the above, the abbreviation POS tagging refers of parts-of-speech tagging. We have not
shown the (optional) preprocessing steps of parsing and dependency extraction, although
these steps are also used in many information extraction settings. Furthermore, the linguistic
analysis is always carried out at the sentence level, and therefore a sentence segmentation
module is required.

At first sight, it might seem that one can use a dictionary of all known entities on the
planet and simply extract all occurrences of these entities from the text. Such dictionaries
of different types of entities do exist, and are referred to as gazetteers. However, such a
simplistic solution is an incomplete one at best. First, the set of known entities is not
constant, but it evolves over time. For some types of entities like locations, the names of
entities evolve slowly, whereas for others like people and organizations, the incompleteness
problem is very significant. As a result, any particular list of entities used for matching with
a document would always be incomplete. The second problem is that there is significant
ambiguity in defining a named entity by using a sequence of words. In particular, the use

12.2. NAMED ENTITY RECOGNITION 387

of abbreviations in a contextual setting often leads to the same entity name referring to
multiple instances. For example, when a news article uses the term “Texas quarterback
James Street,” the word “Texas” refers to the University of Texas at Austin, and this
point cannot be inferred without considering the context of the word that corresponds to
its surrounding tokens. A different piece of text might use the term “Texas” to refer to a
US State, whereas another might refer to a British pop band. To provide an idea of the
magnitude of this problem, the surface form “Texas” is used to refer to twenty different
entities in Wikipedia [121]. Clearly, the context in which a particular term is used is crucial
in making a clear judgement about the type of entity at hand. Although gazetteers are
frequently used as one of the inputs to named entity recognition systems, they are not
sufficient on a standalone basis.

There are two primary classes of methods for information extraction in text. The first
class of methods uses rule-based methods on extracted features in order to perform infor-
mation extraction. The second class of methods, referred to as statistical learning methods,
uses hidden Markov models, maximum entropy Markov models, and conditional random
fields. We will discuss each of these different types of models in this section.

12.2.1 Rule-Based Methods

Rule-based methods work as follows. Each token in the text is converted into a set of
features. These features are typically helpful properties of the token or their context for
entity extraction. For example, one obvious feature could be the information about whether
or not that token starts with a capital letter. These features, therefore, help in defining
various patterns on the left-hand side of the rule. The process of feature extraction is an
important aspect of feature engineering in rule-based methods, which will be discussed
later in this section. Subsequently, a set of rules are mined from the data, which are of the
following form:

Contextual Pattern ⇒ Action

The contextual pattern on the left-hand side of the rule is a combination of conditions
corresponding to the features associated with a sequence of tokens. Therefore, a rule is
fired if a sequence of tokens in the text matches this pattern. The action on the right-hand
side could correspond to labeling that sequence as a named entity. More generally, it could
correspond to inserting the start of an entity tag at a particular position, the end of an entity
tag, or multiple tags. The simplest and most general case is one in which the right-hand
side of the rule is an entity tag.

The nature of the left-hand side of the rule can vary with the specific rule system being
constructed. In general, the pattern will always contain a regular expression matching the
tokens in the entity. Note that the “matching” may be based on the extracted features of
the tokens rather than the tokens themselves. The typical features associated with each
token are as follows:

1. The most basic feature of a token is the string representation of the token itself,
which is also referred to as its surface value. In some cases, the surface value may be
sufficiently informative for entity extraction.

2. The orthography type of the token can capture characteristics of the token such as its
capitalization, punctuation, or specific choice of spelling.

3. Linguistic preprocessing provides the part of speech of the token. Some features (e.g.,
noun phrases) might correspond to a sequence of multiple tokens.

388 CHAPTER 12. INFORMATION EXTRACTION

4. A number of dictionaries are used to identify whether a token belongs to a specific
type such as titles, locations, organizations, and so on. Furthermore, dictionaries can
even identify whether a token occurs as a part of a specific name. An example of a
title is “Mr.” and an example of a company ending is “Inc” or “LLC ”.

5. In some rule-based methods, the text is sequentially tagged in phases. In such cases,
the tags in earlier phases are used as features in rule conditions of later phases.

In addition to the structured patterns matching the token, the left-hand side might op-
tionally contain patterns corresponding to the context preceding or following an entity.
Examples of two possible rules are as follows:

(Token=“Ms.”, Orthography=FirstCap) ⇒ Person Name

(Orthography=FirstCap, Token=“Inc”) ⇒ Organization Name

The first rule matches a sequence of two tokens beginning with “Ms.” and a capitalized
letter. The second rule matches a sequence of two tokens starting with a capitalized letter
and ending with the “Inc” abbreviation. Many useful dictionaries of titles and company
endings are available for constructing such rules. Therefore, one might have a feature such
as Dictionary-Class to describe such tokens. An alternative set of rules is as follows:

(Dictionary-Class=Titles, Orthography=FirstCap) ⇒ Person Name

(Orthography=FirstCap, Dictionary-Class=Company-End) ⇒ Organization Name

It is noteworthy that the regular expression on the left-hand side of the rule can be quite
complex, and many alternatives might exist. Furthermore, dictionaries of all types exist,
corresponding to person names, location names, and so on. Given the large number of ways
in which one might create a matching rule for the same expression, there are significant
efficiency challenges in creating rule-based systems.

For a given text segment, the fired rules are used to recognize the entities in the text.
As in all rule-based systems (cf. Sect. 5.6 of Chap. 5), there will always be conflicts in the
fired rules. Two rules might have different actions on the right-hand side, while matching
overlapping spans of text on the left-hand side. Therefore, such systems always have conflict
resolution mechanisms like the following:

1. There is no ordering among the rules, but one can have specific policies about which
type of rule is favored over the other. For example, if the left-hand side of one rule
matches a larger span of text than the other, then the former rule is given priority.

2. An ordering is imposed among the rules that indicates which rule has priority over
the other. Rules with greater precision and coverage (with respect to the training
data) are given priority. This approach is not different from the use of support and
confidence measures in traditional rule-based systems (cf. Sect. 5.6).

It is easy to see that there are similarities in rule-based systems as used in information
extraction to those used in the classification. The main difference is that the structure of
the rules is often more complex in information extraction.

12.2.1.1 Training Algorithms for Rule-Based Systems

The simplest training algorithms for rule-based systems use manual and hand-crafted rules.
This approach encodes natural domain knowledge about the structure of person, location,

12.2. NAMED ENTITY RECOGNITION 389

and organization names, and represents a form of deductive learning. However, such rules are
tedious to construct, and there are limitations on what humans can achieve with arbitrary
corpora. Therefore, most of the rule-based systems are automated, and they learn from
labeled training data with the use of inductive learning.

As discussed earlier, the training data contains unstructured texts together with occur-
rences of tagged entities. Starting with this training data, the learning algorithm iteratively
adds rules that have good precision and coverage with respect to these tagged entities. An
example of a primitive “master-algorithm” for rule generation is illustrated below:

R = {};
repeat;
Select a tagged entity E in the training data that is uncovered;
Create a rule R that covers E;
R = R∪ {R};

until no more uncovered entities;

At the end of this algorithm, a post-processing approach may be applied in order to create
the policies required to avoid conflicts, remove the redundant or weak rules, create default
rules for situations not covered by the training data, and so on. Within this basic framework,
there is significant flexibility in how a specific rule R is discovered from the training data.
Existing algorithms for rule generation are either top-down or they are bottom-up. In top-
down rule-generation methods, we start with more general conditions in the antecedent
(i.e., covering lots of positive examples) and then add constraints in order to make them
more specific. For example, adding a conjunct to the antecedent (as in Learn-One-Rule
of Sect. 5.6) is a way of making a rule more specific. In bottom-up rule generation, one
starts with very specific rules and then generalizing it so as to allow the rule to cover more
positive examples. Top-down systems often have low precision on the training data, but
they generalize well to the test data. Bottom-up systems often have higher precision on the
training data, but do not generalize as well to the test data. A lot of the successful systems
for named entity recognition in recent years have been bottom-up systems, although a
combination of the two has also been successfully used. Since the branching factor for a
top-down rule (i.e., number of ways to specialize the rule) is often quite high, as a result of
which such systems are computationally expensive. In the following, we give a brief overview
of these two methods.

12.2.1.2 Top-Down Rule Generation

One of the earliest methods, referred to as WHISK [452], was implemented as top-down rule
specialization method. Strictly speaking, WHISK is an active learning method because it
interleaves the user tagging activities (i.e., creating new training instances) with the process
of rule creation. Nevertheless, it is possible to also use WHISK without user interaction.
The approach starts with a seed instance of the tagged data and creates the most general
instance that covers the rule. Subsequently, terms are added to the antecedent of the rule
one at a time, so as to minimize the expected error of the rule. This type of rule-growth is
similar to the Learn-One-Rule algorithm of Sect. 5.6, although the growth of an instance is
somewhat different in this case.

First, since a seed instance is used to grow a rule, only terms from this instance need to
be used in the growth. Furthermore, in information extraction, one often does not add the
term to the antecedent of the rule, but a semantic class matching the rule (e.g., when the
dictionary-class is “title”). Therefore, the WHISK approach checks for not only the term
itself but all its matching semantic classes while adding to the rule. The addition with the

390 CHAPTER 12. INFORMATION EXTRACTION

lowest error is selected for extension. Laplacian smoothing is used during the computation
of the error rate in order to minimize the impact of overfitting, when the amount of training
data is limited. Other than the error rate, WHISK tries to use the least restrictive rule, when
making growth choices between rules with similar error. It is possible to continue growing
the rules, until zero error is achieved on the training data. However, such a choice would
lead to overfitting. Therefore, WHISK uses a pre-pruning approach, in which rule growth is
prematurely stopped when the error falls below a particular threshold. In addition, a post-
pruning step is also used in which rules with low coverage and high error on the training
data are discarded. An alternative is to use the error rate on the validation set in order to
prune the rules. The top-down rule generation methods historically preceded the bottom-
up methods, which might partially be a result of the fact that the traditional rule learning
methods in machine learning tend to resemble top-down methods.

12.2.1.3 Bottom-Up Rule Generation

In bottom-up rule generation, one always starts with a specific instance, and uses it to
construct an antecedent matching this instance exactly. This will result in a rule with 100%
accuracy on the training data. Unfortunately, however, such a rule will perform poorly on
unseen test data and will also have low coverage. Such a rule needs to be generalized. It is
noteworthy that the generalization process will reduce the precision on the training data,
but it will typically improve the performance on the test data at least in the initial phase.
This is the reverse of what happens in the top-down approach. Two well-known methods
for bottom-up rule generation are Rapier [73] and (LP)2 [100].

The broad approach in these methods is summarized by the pseudo-code below:

R = {};
repeat;
Select a tagged entity E in the training data that is uncovered;
Create a rule R that covers E by:

starting with the most specific rule covering the entity
and successively generalizing this specific rule;

R = R∪ {R};
Remove instances covered by R;

until no more uncovered entities;

A seed rule might be the most specific rule that covers an instance. For example, a series
of generalizations may be as follows:

(Token=“Ms.”, Token=“Smith”) ⇒ Person Name

(Token=“Ms.”, Orthography=FirstCap) ⇒ Person Name

(Dictionary-Class=Titles, Orthography=FirstCap) ⇒ Person Name

In order to include the effect of context, the set of tokens preceding or following a particular
pattern is also included in the left-hand side of the rule. In such a case, the action on the
right-hand side must also indicate where the tag begins or ends. For example, consider the
following form, which includes the verb after the person occurrence:

((Token=“Ms.”, Token=“Smith”):p, Token=“studies”) ⇒ Person Name before p

((Dictionary-Class=Titles, Orthography=FirstCap):p, (POS=VB) ⇒ Person Name bef. p

Note that the right-hand side of the rule is now an action about the positioning of the end
point of tag just before the verb, rather than the placement of the entire tag. One can also
have rules about the placement of the beginning of the tag.

12.2. NAMED ENTITY RECOGNITION 391

It is evident from the above examples that the number of ways in which the rules may
be generalized increases exponentially with successive branching. Therefore, one always
greedily performs the best generalization, while maintaining a limited number of best gen-
eralizations that have been seen so far. The quality of the generalization is quantified using
a number of factors such as a combination of precision and coverage.

12.2.2 Transformation to Token-Level Classification

In token-level classification, an entity with multiple consecutive tokens can be tagged by
using four types of tokens {B,C,E,O}, which stand for Begin, Continue, End, and Other,
respectively [430]. An example of a possible token-level classification is as follows:

William︸ ︷︷ ︸
B

Jefferson︸ ︷︷ ︸
C

Clinton︸ ︷︷ ︸
E

lives︸ ︷︷ ︸
O

in︸︷︷︸
O

New︸ ︷︷ ︸
B

York︸ ︷︷ ︸
E

.

Consecutive occurrences of B, C, and E, correspond to an entity. The above labeling scheme
does not include the entity type. For example, the person-level and location-level tokens have
been given the same classification. Nevertheless, it is easy to integrate the specific entity
type within this framework with additional labels like L, P , and O, for location, person,
and organization, respectively.

William︸ ︷︷ ︸
PB

Jefferson︸ ︷︷ ︸
PC

Clinton︸ ︷︷ ︸
PE

lives︸ ︷︷ ︸
O

in︸︷︷︸
O

New︸ ︷︷ ︸
LB

York︸ ︷︷ ︸
LE

.

One can use the features associated with tokens (such as orthography and dictionary mem-
bership) to classify the tokens with a traditional classifier like a decision tree. However,
such an approach does not use sequential ordering and context, which is undesirable. For
example, it is hard to guess that the token “New” is the beginning of a place (in spite of
capitalization), because it could be placed at the beginning of a sentence and it can also
correspond to the beginning of an organization. Therefore, classifiers that treat each token
independently are not useful in such settings, because the tokens preceding or following a
token are informative. The first step of the process is to extract the features associated
with the tokens, which are typically not very different from those used in extracting rules.
In particular, the features such as the token itself, the orthography, the parts of speech
tags, and the dictionary lookup features are commonly used in these settings. A natural ap-
proach for performing token-level classification with recurrent neural networks is discussed
in Sect. 10.7.6 of Chap. 10. The following sections will discuss several other ways of per-
forming token-wise classification with methods such as hidden Markov models, maximum
entropy Markov models, and conditional random fields.

12.2.3 Hidden Markov Models

Hidden Markov models transition through a sequence of hidden states, and each state
produces a token. One can view the state of a hidden Markov model in the same way
as one views a mixture component (i.e., hidden latent component), which generates a data
point from a given distribution. Just as the hidden latent component is used to generate
an instance within a particular cluster of closely related points (cf. Chap. 4), a state in
a hidden Markov model is used to generate a token (i.e., word) in a given sequence of
text words. However, the key differences between the generative process used in a hidden
Markov model and the mixture modeling approach discussed earlier is the fact that the

392 CHAPTER 12. INFORMATION EXTRACTION

states in a hidden Markov model are dependent on one another. In other words, the hidden
components at the sequential generations are not independent of one another, and this
fact needs to be accounted for in the estimation process. Each transition from one state to
another generates some type of data, which is a symbol in its most basic form. However,
it can also generate some multidimensional combination of features from a multivariate
probability distribution. For each transition, a categorical distribution (i.e., loaded die roll
with faces showing symbols) is used to generate the tokens. The outcome of the die roll
decides the token at this position. This is, of course, the simplest form of the model, which
does not include the effect of extracted features. For now, we will discuss this simplified
version.

12.2.3.1 Visible Versus Hidden Markov Models

In visible forms of Markov models, the states of the models are often directly associated
with the generated symbols. As a result, the observed sequence of states can be used to
trivially infer the state of the model. For example, a bigram language model is a visible
model in which the state is defined by the last word that was generated. As a result, the
number of states is equal to the number of possible tokens (i.e., words), and each token is
generated based on the one before it. On the other hand, hidden Markov models allow a more
generalized definition of a hidden state with some semantic interpretation. For example, a
hidden state could correspond to the fact whether or not a token lies inside an entity of a
particular type in a text document. Although the location of entities is known in training
documents, it is not known in test documents. Therefore, a hidden Markov model that uses
the occurrences of tokens within specific entity types as hidden states needs to learn the
transition probabilities from the training data, and use it to make predictions for the test
data. One such system is referred to as Nymble.

12.2.3.2 The Nymble System

Since there is considerable variations in different systems, we describe an early representative
called Nymble [49], which provides a broader idea about how such systems work. The Nymble
approach associates a state with each of the different types of entities in the data. However,
within each state corresponding to an entity, it creates a set of word states, in which one
transition corresponds to the generation of a word. This is a standard bigram model in
which each state generates the next word in the sequence (cf. Sect. 10.2 of Chap. 10). The
basic idea here is that each entity state generates the tokens within a multi-token entity
with a bigram model that is specific to that entity. In addition, we have a special “end”
token5 after each entity, which provides the cue that one is moving from one entity-state to
another within the model. Therefore, the different entity states inside Fig. 12.2 are connected
through transitions using the special “end” token. Although Fig. 12.2 shows only the entity
states and not the word states inside them, the total number of combinations of word-
entity states is equal to the product of the lexicon size with the number of different types of
entities. This type of architecture ensures that the generation of an observation is dependent
on the preceding label and/or observation. The transition probabilities in this model are
estimated from a training data set in which the entities are marked. In such cases, the states
of the Markovian model become visible because of the entity tagging information. This fact

5Note that this approach is slightly different from directly tagging the last token of an entity that a
state that indicates its end point. In the approach of the previous section, a person entity would be ended
by a token with a PE tag, whereas Nymble simply uses a separate “end” token.

12.2. NAMED ENTITY RECOGNITION 393

PERSON

LOCATION

OTHER

(OTHER NAME CLASSES)

START-OF-SENTENCE END-OF-SENTENCE

ENTITY-STATE CONTAINS
MANY WORD-STATES

(BIGRAM MODEL)

Figure 12.2: The hidden Markov model used by Nymble

simplifies the parameter estimation process. Furthermore, labels of tokens in a test document
can be inferred by estimating the states of the most likely path through the Markov model
for an unlabeled sequence of tokens. The determination of the most likely path through the
Markov model is somewhat more complex, and is discussed in Sect. 12.2.3.4.

Formally, let x = (x1 . . . xm) be the sequence of tokens in a text document, and let
y = (y1 . . . ym) be the corresponding sequence of labels. Note that each yi is a tag like
“Person,” “Location,” “Other,” and so on. These tags are referred to as name classes
by Nymble, although many other Markovian models use more complex name classes like
{PB,PC, PE,LB,LC,LE,O} and so on. Another simplification is that we are ignoring
the features associated with the tokens for simplicity, although we will come back to this
point later. For tagged documents in the training data, the sequence y is known, whereas
for untagged documents in the test data, the sequence y is unknown. One must therefore,
determine the sequence y for test data that maximizes P (y|x).

It is noteworthy that Nymble is considered a hidden Markov model in the broader
literature, but there are a number of subtle differences from the traditional way in which a
hidden Markov model is used. In particular, the number of states (including the word states
inside the name-class states) is equal to the lexicon size, and each word state produces a
word deterministically. This is different from the traditional usage of a hidden Markov
model in which a small number of states with semantic significance is used, and the token
generation from each state is inherently probabilistic. As a result of this modeling approach,
the word-states become at least partially visible if the entity-states are known. As we will
see later, this fact helps in the modeling process. The Nymble model uses the following
generative process to create each token xi:

1. Select the current name-class yi based on the previous label yi−1 and the previous
word xi−1 with probability P (yi|yi−1, xi−1). Note that the value of P (yi|yi−1, xi−1)
will eventually be estimated in a data-driven manner.

2. Based on the selected yi, generate xi using one of the following two rules:

• If xi is the first word of a named entity, then generate it based on the previous
state yi−1 and current state yi with probability P (xi|yi, yi−1). Note that yi−1

394 CHAPTER 12. INFORMATION EXTRACTION

and yi are different in this case. This way of generating the first token of an
entity (including “Other”) is helpful in accounting for the effect of context after
an entity.

• If xi is inside a named entity, then generate it based on the current name-class
state yi and previous token xi−1 with probability P (xi|yi, xi−1).

It is assumed that the training and test data are generated using this repetitive process.
The main difference between the two is that the entity tags and special “end” token are
available in the training data, but they have been removed from the test data.

12.2.3.3 Training

For such generative processes, the model parameters need to be estimated using a maximum-
likelihood approach. The model parameters correspond to the probabilities in the genera-
tive process shown above. In traditional hidden Markov models, the parameters are esti-
mated using a process known as the Baum-Welch algorithm, which is an adaptation of the
expectation-maximization approach to a setting in which the latent states are dependent
on one another. However, the specific structure of the model by Nymble is simplified by the
fact that the word-states inside the name-class states generate the terms deterministically, if
the tokens and their tags are known (as is the case for training data). As a result, for a given
training data set, the exact sequence of visited states are fully visible and deterministic. In
such cases, the parameter estimation process simplifies to a counting problem that is a slight
generalization of bigram probability estimation. The three steps in the generative process
above require the estimation of three probabilistic parameters, which are P (yi|yi−1, xi−1),
P (xi|yi, yi−1), and P (xi|yi, xi−1). To estimate these parameters, one simply needs to run
the training data through the model, and (1) count the number/fraction of times yi follows
(xi−1, yi−1); (2) count the number/fraction of times xi occurs in combination with (yi−1, yi)
(when yi is different from yi−1); (3) count the number/fraction of times that xi occurs in
combination with (xi−1, yi) (with yi is same as yi−1). In other words, we have:

P (yi|yi−1, xi−1) =
Count(xi−1, yi−1, yi)

Count(xi−1, yi−1)

P (xi|yi, yi−1) =
Count(yi−1, yi, xi)

Count(yi−1, yi)
[yi and yi−1 are different]

P (xi|yi, xi−1) =
Count(xi−1, yi, xi)

Count(xi−1, yi)
[yi and yi−1 are the same]

Laplacian smoothing can be used in order to make the estimation more robust in the
presence of sparsity. We emphasize that this greatly simplified training process is largely a
consequence of the simplified type of hidden Markov model used in Nymble; the states are
not really hidden for the training data, but they are visible as in bigram models. However,
for the test data, the states are hidden and they need to be inferred probabilistically.

12.2.3.4 Prediction for Test Segment

After the estimations have been performed, a test segment can be classified with the use
of the estimated parameters. For a test segment x = x1 . . . xt that is not annotated with
entities, the path through the Markov model is no longer deterministic. In other words,
there are multiple possible label sequences y = y1 . . . yt that can result in the sequence of

12.2. NAMED ENTITY RECOGNITION 395

transitions x1 . . . xt, and each has its own probability P (y|x). Therefore, one must deter-
mine the optimal sequence y so that P (y|x) is maximized. Note that maximizing P (y|x) is
equivalent to maximizing P (y, x) as long as we are comparing different sequences of states
y, and the test segment x is fixed:

P (y|x) = P (y, x)/P (x) ∝ P (y, x) (12.1)

Therefore, once the parameters of the model have been estimated, it suffices to find the tag
sequence y that maximizes P (y, x). This probability is the product of the probabilities of
the transitions in each of the paths through the Markov model. A näıve approach would
enumerate all possible paths through the model that match x and select the one that
maximizes the probability. However, it turns out that this maximization can be done in
a much more efficient way with dynamic programming, when using the Viterbi algorithm.
Refer to [2, 397] for details of the Viterbi algorithm.

12.2.3.5 Incorporating Extracted Features

The approach discussed so far uses the surface values of the tokens and does not incorporate
the extracted features such as the orthography, dictionary features, and so on. Nymble uses
the features in a simplified way. Specifically, the different feature values are prioritized (such
as capitalization and first word of a sentence). The lowest priority feature is a single catch-all
keyword, referred to as “other.” The highest priority feature value is associated with each
token as an additional keyword, and this keyword is selected from one of fourteen different
possibilities. Therefore, in addition to the token sequence x1 . . . xm, we have an additional
feature sequence f1 . . . fm, so that each fi is one of fourteen keywords, like “AllCaps,”
“FirstWord,” and “other.” The problem changes only in a minor way with the incorporation
of features, because we can now pretend that 〈xi, fi〉 is the generated token at the ith
position rather than xi. All other steps remain the same.

12.2.3.6 Variations and Enhancements

There are several natural variations and enhancements to the basic model that was proposed
in [49]. Many of these enhancements are related to the fact that hidden Markov models face
severe challenges related to sparsity and overfitting. These problems are addressed as follows:

1. One approach that was discussed in the original work [49] was the use of back-off
models. The idea of back-off models is to use a generalized model to handle cases in
which sufficient data does not exist to estimate the parameters of a complex model.
An example is the use of a unigram to estimate the probability of a token in cases
where a bigram model does not work because of sparsity of data. For example, the
back-off estimate of P (xi|yi, xi−1) is simply P (xi|yi), when the word-pairs xi−1xi do
not occur frequently enough in the training data. The use of such back-off models is
widespread in language modeling.

2. The Nymble model uses one word-state for each term in the lexicon within an entity-
state. However, this results in a large number of states. It was suggested in [442] that
one could merge related states with the same entity label in order to create a model
that generalizes better. This type of merging does increase the training complexity of
the model.

396 CHAPTER 12. INFORMATION EXTRACTION

3. One can use unlabeled data [442] in order to improve generalizability. The unlabeled
data can be used in an iterative way in order to improve the parameter estimations
in cases where the amount of labeled data is limited. This is a natural extension
of the semi-supervised approach discussed in Chap. 5 to the problem of information
extraction.

Hidden Markov models have been recently outperformed by related models like maximum
entropy Markov models, conditional random fields, and recurrent neural networks. One
problem with hidden Markov models is that they use the features associated with tokens in
a rather rudimentary way compared to many other models.

12.2.4 Maximum Entropy Markov Models

Hidden Markov models generate sequences using transitions between states. On the other
hand, maximum entropy Markov models directly model the probability of labeling based
on the states. Such models are referred to as discriminative models, like the logistic re-
gression model discussed in Chap. 6. The multinomial logistic regression model discussed in
Sect. 6.4.4 is a maximum entropy model without the Markovian assumption of sequential
dependencies among data items. This section discusses the generalization of this model with
the Markovian assumption, which is required for sequence data.

It is noteworthy that the way in which features are used in the case of the Nymble
system (with hidden Markov models) is rather limited in scope. In particular, features are
extracted only from individual positions in the sequence. Furthermore, Nymble prioritizes
the features, and it uses only the highest prioritized feature associated with each token in
order to ease the estimation process with limited data. We would like to be able to extract
many different types of features from overlapping portions of the text segment and use them
simultaneously for the modeling process.

Let x = (x1 . . . xm) be the sequence of tokens in a text document, and let y = (y1 . . . ym)
be the corresponding sequence of label tags. Furthermore, let xi+q

i−q denote the segment
(xi−q, xi−q+1, . . . xi+q) of x from the (i − q)th position to the (i + q)th position. Similarly,

let yi−p
i−1 denote the segment (yi−p, yi−p+1, . . . yi−1) of y from the (i − p)th position to the

(i− 1)th position.

A key point here is that one can now extract features from the neighborhood of the
tokens in the ith position and the history of labels including and before the ith position. In
other words, it is assumed that the labels up to the (i − 1)th position have been inferred,
but the labels including and after position i are not known. In other words, features are
extracted from the contiguous sequence xi+q

i−q of tokens and the contiguous sequence yi−1
i−p of

labels. For example, consider the case where p = q = 1, and the token xi follows the token
“Ms.” at xi−1. In such a case, binary feature f1(yi, yi−1, x

i+1
i−1) is defined as follows:

f1(yi, yi−1, x
i+1
i−1) =

⎧
⎪⎨

⎪⎩

1 if [yi−1 == PB] AND [xi−1 ==“Ms.”] AND [yi == PC]

AND [Dictionary-Class(xi+1) ==Person-End]

0 otherwise

Note that PB and PC correspond to the beginning and continuation tags for the person
entity type. This is a binary feature, which is extracted in the form of a boolean expression,
although it is possible to extract numerical features as well. For example, a contiguous
window of three tokens such as “Thomas Watson Jr.” and xi set to “Watson” could be

12.2. NAMED ENTITY RECOGNITION 397

represented as follows:

f2(yi, yi−1, x
i+1
i−1) =

⎧
⎪⎨

⎪⎩

1 if [FirstCap(xi−1) == 1] AND [FirstCap(xi) == 1]

AND [Dictionary-Class(xi+1) ==Person-End]

0 otherwise

Note that the first feature uses both tokens and labels, whereas the second uses only tokens.
In general, one can use any subset of the arguments to define the feature. These features
combine the effects of multiple token and label properties over a contiguous sequence of
tokens, and can often capture excellent semantics when sufficient effort and thought is put
into feature engineering. Such features are quite powerful because they naturally encode
the context required for making inferences. Furthermore, they are naturally more expressive
than the simplistic features extracted from individual tokens in hidden Markov models. Now
imagine a setting in which d such features are extracted. Then, one can model the label
yi directly using the same form as logistic regression. However, since the entity tags have
multiple possible values, we need to use multinomial logistic regression (cf. Sect. 6.4.4) over
the entire set of possible entity tags denoted by Y:

P (yi|yi−1
i−p, x

i+q
i−q) =

exp(
∑d

j=1 wjfj(yi, y
i−1
i−p, x

i+q
i−q))

∑
y′∈Y exp(

∑d
j=1 wjfj(y′, yi−1

i−p, x
i+q
i−q))

(12.2)

The values w1 . . . wd are the regression coefficients that needed to be learned in a data-driven
manner. Learning these parameters is the essence of the modeling process.

The parameters can be learned so as maximize the conditional probabilities of the labels
in the training data. The conditional probability of the sequence of labels y = (y1 . . . ym) in
the training data is defined as the product of the conditional probabilities of the constituent
labels yi, given the observed tokens in the neighborhood of the ith position and the labels
that occur prior to the ith position:

P (y|x) =
m∏

i=1

P (yi|yi−1
i−p, x

i+q
i−q) (12.3)

One can then compute the likelihood L(D) of all pairs (x, y) in the training data D:

L(D) =
∏

(x,y)

P (y|x) (12.4)

The log-likelihood needs to be maximized in order to learn the coefficients, which is achieved
with the generalized iterative scaling [318, 326]. Furthermore, the optimal sequence of la-
bels for an unlabeled test sequence can also be determined using dynamic programming.
Note that the Viterbi algorithm for hidden Markov models is also a dynamic programming
algorithm. A detailed discussion of these algorithms is beyond the scope of this book, and
the reader is referred to [318, 326, 397].

12.2.5 Conditional Random Fields

Conditional random fields are among the best performing models for information extraction,
and they are closely related to maximum entropy Markov models. In the maximum entropy
Markov model, a restriction is placed on the probabilistic modeling of yi, which depends only

398 CHAPTER 12. INFORMATION EXTRACTION

on the labels yi−p . . . yi−1 occurring before it but not after it (although one can use the tokens
occurring both before and after it). This restriction is removed in a conditional random field,
where the inference of yi depends on both the labels occurring before it and those occurring
after it. The removal of this restriction increases the training complexity of the model.
Therefore, one simplification is to use only the immediately neighboring labels yi−1 and
yi+1 to predict yi, although one can use a larger window of tokens. Such models are referred

… …Xi-1 Xi Xi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

(a) Visible Markov model (e.g., bigrams) (b) Hidden Markov model

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

(c) Maximum entropy Markov model (d) Conditional random field

Figure 12.3: A comparison of the probabilistic graphical models associated with Markovian
models (visible states), hidden Markov models, maximum entropy Markov models, and
conditional random fields

to as linear chain conditional random fields. The use of long-range dependencies among
labels can make conditional random fields too expensive to train. One can illustrate these
differences among the linear-chain versions of hidden Markov models, maximum entropy
Markov models, and conditional random fields with the use of probabilistic graphical models,
which are depicted in Fig. 12.3. A shaded state represents an value generated by the model,
whereas the unshaded value is hidden, and therefore not generated by the model. Therefore,
hidden Markov models generate token sequences, whereas maximum entropy Markov models
and conditional random fields generate label sequences. Furthermore, conditional random
fields are undirected graphical models because the dependency can occur in any direction.

As in the case of the maximum entropy Markov model, it is assumed that the label
sequence is denoted by y = (y1 . . . ym) and the corresponding token sequence is denoted
by x = (x1 . . . xm). However, the features are extracted somewhat differently with respect
to the edge joining yi and yi−1, and also all the tokens in x with a specific focus on their
contextual relationship to position i. Let us represent the jth feature by fj(yi, yi−1, x, i).
Note that the index i has been added to the argument of the feature function so that the
tokens of x may be used for feature extraction with a specific focus on the context with
respect to position i. Assume that a total of d features denoted by f1()̇ . . . fd(·) are extracted
for the position i.

How does one model the predictive process in a conditional random field? As in the case
of maximum entropy Markov models, the goal is to maximize P (y|x) for the label sequence
y = (y1 . . . ym) given x = (x1 . . . xm). However, in this case, the probability is expressed by

12.3. RELATIONSHIP EXTRACTION 399

multiplying the likelihood of various edges between yi−1 and yi:

P (y|x) ∝
m∏

i=2

exp

⎛

⎝
d∑

j=1

wjfj(yi, yi−1, x, i)

⎞

⎠ = exp

⎛

⎝
m∑

i=2

d∑

j=1

wjfj(yi, yi−1, x, i)

⎞

⎠

As before, the parameters w1 . . . wd represent the coefficients of various features and learning
them is the key to the prediction process. The constant of proportionality in the aforemen-
tioned equation can be removed by rewriting it as follows:

P (y|x) =
exp

(∑m
i=2

∑d
j=1 wjfj(yi, yi−1, x, i)

)

∑
y′ exp

(∑m
i=2

∑d
j=1 wjfj(y′i, y

′
i−1, x, i)

) (12.5)

Note that the normalization factor is defined using all possible combinations of label se-
quences, which can be rather expensive. As in the case of maximum entropy models, the
likelihood function can be computed, and the optimization process yields the model param-
eters. A number of quasi-Newton methods, such as L-BFGS, are used in order to determine
the optimal parameters.

12.3 Relationship Extraction

The task of relationship extraction is built on top of entity extraction. In other words, once
the entities in the text have been extracted, the relationships among them can be mined.
Some examples of relations between various entities are as follows:

LocatedIn(Bill Clinton, New York)
WifeOf(Bill Clinton, Hillary Clinton)
EmployeeOf(ABC Corporation, John Smith)

The most common relationship types include physical location relations, social relations,
and organizational affiliation, which are shown above. The above examples illustrate binary
relationships. In general, it is also possible to have relationships between more than two
entities, which are referred to as multi-way relationships. This chapter will focus on binary
relationships, which are considered fundamental.

The problem of relationship extraction is defined as follows. Given a fixed set R of rela-
tions, the goal is to identify all occurrences of these relations in a test document where the
entities have already been tagged but the relations among them are missing. In supervised
settings, one also has a training corpus in which both the entities and the relations between
specific occurrences of the entity have been identified. Since the entities are tagged in both
the training and test corpus, one can view the entity extraction task as a more fundamental
task that precedes relationship extraction. Therefore, if one is given a training corpus with
entities and their relations and a test document with no annotations at all, then one will
first extract the entities in the test document and then the relationships among them.

One issue is that the same entity like “Bill” might have multiple mentions in the same
document, which can cause a large number of candidate pairs. However, a commonly used
assumption is that the task of relationships between sentence mentions do not cross sentence
boundaries. This chapter will adhere to this assumption. For any pair of entity mentions in
a sentence, the task is to determine whether or not a relationship exists between them from
the set R. It is assumed that the set R contains a special relationship type referred to as
“Null”, which applies in cases where the pair of entities occur in the same sentence but no
relationship between them has been specified.

400 CHAPTER 12. INFORMATION EXTRACTION

12.3.1 Transformation to Classification

The relationship extraction problem can be naturally posed as a classification problem. Since
the relationships are extracted only between entity mentions with sentence boundaries, one
can extract the pairs of entity mentions in the same sentence in both the training and test
data. Therefore, the key is to create one data instance for each pair of entities within a
sentence. The instance is also labeled with the relationship type for sentences in training
documents, and is not labeled for test documents. For pairs of entity mentions in the same
sentence that are not labeled in the training data, one creates a negative training instance,
and uses the label “Null”. For example, consider the following sentence in the training data
in which three person entities are marked:

Bill︸︷︷︸
Person

, who is a brother of Roger
︸ ︷︷ ︸
Person

, is married to Hillary
︸ ︷︷ ︸
Person

.

From this single sentence, as many as three training instances can be extracted for each pair
of persons. In this particular case, the entities belong to the same type, but this may not be
the case in general. Furthermore, one would have to predefine relations like brother, and
wife in the training data in order to label the training instances properly. For example, it
may be possible that the analyst might not spend the time to pre-define the brother-in-
law relation between “Hillary” and “Roger.” In such a case, the training instance between
this pair might be labeled “Null.” Such a training instance might be useful as a negative
example with respect to the types of relations one is interested in. In general, for any
sentence containing q entities, one can extract as many as

(
q
2

)
training instances.

The information required for inferring the relationships between a pair of entity mentions
is hidden in the vocabulary and grammatical structure of the sentence in which the pair
occurs. For example, consider the following test sentence in which the entities have already
been marked but the relationships have not been marked:

Bill Clinton︸ ︷︷ ︸
Person

lives in New York︸ ︷︷ ︸
Location

.

Here “Bill Clinton” and “New York” are two named entities, and one can infer the fact that
the person entity lives in the location entity by using the training data to learn the fact
that the phrase “lives in” provides useful clues for learning the following relation:

LocatedIn(Bill Clinton, New York)

In other words, one needs to extract features from various regions of the sentence (e.g.,
tokens between entity pair) to make inferences about relationships. Such a learning process
in relationship extraction can be implemented by extracting the appropriate features from
the sentence containing a pair of entity mentions. An alternative approach is to use kernel
similarity functions defining similarities between pairs of instances (i.e., pairs of marked
relationships). At the end of the day, kernel methods are also indirect ways of performing
feature engineering. In the case where explicit feature engineering is used, it is common to
use a linear support vector machine (cf. Chap. 6), especially if many features are extracted.
In the case where kernel similarity functions are used, the natural approach is to use kernel
support vector machines. However, in the case of explicit feature engineering, one advantage
is that a wider variety of classification methods can be used. In fact, the earliest techniques
were rule-based methods, which are specialized types of classifiers. This section will focus
on these two different ways of performing the feature engineering.

12.3. RELATIONSHIP EXTRACTION 401

12.3.2 Relationship Prediction with Explicit Feature Engineering

The features extracted from the words in a sentence use various properties of the words,
such as the surface tokens, the parts-of-speech tags, and the features extracted from the
syntactic parse-tree structure. The features may be extracted both from within and outside
the entity. Features that are extracted from within the entity are referred to as entity
features. Furthermore, the features that are extracted from the regions of the sentence
surrounding the argument entities, or those located between the two entities are useful for
making inferences. Such features are referred to as contextual features.

The entity features and contextual features are used somewhat differently during the
feature engineering process. However, in both cases, similar features are extracted from the
individual tokens, which are not very different from those used in entity extraction. These
features (associated with individual tokens) are as follows:

1. Surface tokens: Consider the following sentence:

Bill Clinton︸ ︷︷ ︸
Person

lives in New York︸ ︷︷ ︸
Location

.

In this sentence, the word “lives” as well as the phrase “lives in” provides useful infor-
mation about the relationship between the person and location entity. In many cases,
the training data might contain sufficient number of such occurrences of these tokens
that tell us a lot about relationships among entities. In other cases, the morphological
roots of the sentence can also be extracted.

2. Parts-of-speech tags: The word “lives” is often used both as a noun and as a verb.
In the sentence above, the fact that the word “lives” is used as a verb is useful
for making meaningful inferences about the relationship between the person and the
location entity.

3. Constituency-based parse-tree structure: In many cases, the sentence structure may
be complicated, which will cause challenges in making inferences. For example, a
sentence may contain more than two named entities and there will be some ambiguity
in deciding which pairs of entities are more closely related or in how the clues extracted
from the sentence should be used. In such cases, the constituency-based parse tree
structure, such as the one shown in Fig. 12.1, is very useful. For example, consider the
following sentence:

Bill︸︷︷︸
Person

, who is a brother of Roger
︸ ︷︷ ︸
Person

, is married to Hillary
︸ ︷︷ ︸
Person

.

In the sentence above, the word “Roger” is located closer to “Hillary” and it is easy
for an automated learning algorithm to use the surface token “married” to make
the wrong assumption that the two are married. However, a parse-tree will place the
entire phrase “who is a brother of Roger” in a completely different subtree. This is very
helpful in knowing that the entities “Bill” and “Hillary” are respectively the subject
and the object of the verb “married.” Parse trees are, however, quite expensive to
construct. Therefore, simplified structural representations, referred to as dependency
graphs, are often used. The features extracted from the parse tree are not related to
individual tokens, but they may correspond to groups of tokens that comprise subtrees
of the sentence. As we will see later, this type of feature extraction falls within the
general approach of graph-based methods [237].

402 CHAPTER 12. INFORMATION EXTRACTION

Individual word features, however, are somewhat limited in their ability to extract relations
between entities. It is often more informative to extract combinations of features from the
sentence. Most of the features are extracted using either the sequential structure of the
sentence or the parse tree/dependency graph of the sentence.

12.3.2.1 Feature Extraction from Sentence Sequences

Consider two named entities E1 and E2 (in either the training or the test data) between
which we wish to predict the relations. Let S = x1x2 . . . xm be the sentence containing
these two entities, where xi is the ith token of S. We note that the tokens that are inside
the entities are treated slightly differently from those outside the entity during feature
engineering because they have somewhat different significance for relationship extraction.

We assume that each token xi is associated with a fixed set of p properties corresponding
to its surface token, orthography, part-of-speech, or even its entity label (in the event that
xi is inside an entity). As a practical matter, one can assume that a set of p keywords
is associated with each xi, and this set of features is denoted by Fi. For example, the
keywords associated with “Bill” and “Hillary” might correspond to the fact that they have
orthography of FirstCaps, they are both person entities, and the actual values of the tokens.
In practice, the number of such values will be much larger, but assume for now that only
the following p = 3 keywords are extracted:

Features for “Bill”: F1 = {“Bill”, person, FirstCaps}
Features for “Hillary”: F2 = {“Hillary”, person, FirstCaps}

An important set of features is created by using all possible combination of the features
inside Fi, Fj , where xi and xj are inside the two different entities between which the
relationships need to be extracted. Therefore, in the example above, there are 3 × 3 = 9
possible combinations of features that can be extracted with respect to “Bill” and “Hillary”.
Then, we can create a composite feature corresponding to the concatenation of each pair
of these features. For example, the feature person-person is very useful because it will
often correspond to various types of social relations in the training data. Although not
all combinations of features are as discriminative, machine learning algorithms will have
various mechanisms for deciding which combination pairs can be extracted.

Another set of features is extracted using the broader structure of the sentence, which
could include tokens from outside the entity. These types of features are more challenging to
extract because they depend on the broader syntactic structure of the sentence at hand. In
this respect, the work in [237] is notable, because it provides a generic graph-based approach
to extract features from the sentence. As a starting point, consider the parse tree associated
with a particular sentence. We can treat the parse tree as a graph G = (N,A), where N
is the set of nodes in the tree, and E is the set of edges indicating the relationships. Each
node i ∈ N is associated with the feature set Fi, which is similar to the feature set discussed
earlier for individual tokens (with the same notation). However, in this case, the node i can
not only be a token (leaf node) but it can also be a portion of a sentence such as a noun
phrase (internal node). Therefore, the extracted features can include the phrase-type tag at
a given node such as a noun phrase or a verb phrase. Furthermore, since nodes correspond
to phrases and segments of sentences, it is useful to include information about how these
segments are related to the two entities E1 and E2 for which the training or test instance is
being constructed. Therefore, an additional flag feature is included within Fi for each node

12.3. RELATIONSHIP EXTRACTION 403

i. The flag feature is defined as follows:

flag(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 Node i does not subsume either E1 or E2

1 Node i subsumes E1 but not E2

2 Node i subsumes E2 but not E1

3 Node i subsumes both E1 and E2

(12.6)

ADAM ATE APPLE AN

SUBJECT

OBJECT

DETMOD

Figure 12.4: A dependency graph

Note that the flag feature is categorical rather than numeric, because no ordering is
assumed among the different values.

For example, let us revisit an earlier sentence that includes mentions of three entities
“Hillary,” “Bill,” and “Roger”:

Bill︸︷︷︸
Person

, who is a brother of Roger
︸ ︷︷ ︸
Person

, is married to Hillary
︸ ︷︷ ︸
Person

.

The sentence fragment “who is a brother of Roger” corresponds to a node of the parse-tree.
A particular instance in the training or test data always corresponds to the relationship
between two entities, and the value of the flag feature for this node will depend on which
two entities are being considered. The value of the flag feature for this node will be either
1 or 2, when one of the two entities in the instance is “Roger”. However, if we are trying to
create an instance that includes only “Hillary” and “Bill” (but not “Roger”) from the same
sentence, then the value of the flag feature will be 0.

At the most basic level, one can create a feature out of any subgraph of the parse tree
containing a particular number of nodes. In general, however, one tends to use only two
nodes or three nodes of the tree in order to create the features. Typically, the sets of nodes
selected to create the features are either all adjacent leaf nodes or they are sets of two or
three nodes that are directly connected to one another by parent-child relationships in the
parse-tree. In the former case, the adjacent leaf nodes correspond to adjacent words in the
sentence, whereas in the latter case, at least one internal node is included in the node set.
For any pair of nodes i and j, the bigram features correspond to all the feature combinations
in Fi × Fj . Similarly, for any three nodes i, j, and k, the trigram features correspond to
all the feature combinations in Fi × Fj × Fk. Note that this approach is not too different
from how the entity-based features are created. The only difference is in terms of how pairs
of nodes are selected for the creation of the features, and in terms of the additional flag
features.

12.3.2.2 Simplifying Parse Trees with Dependency Graphs

One challenge in using parse trees is that they are rather expensive to construct. An al-
ternative and complementary way of representing sentence structure is with the use of a
dependency graph. A dependency graph is a directed acyclic graph constructed on the to-
kens in the sentence that tells us about the dependencies between tokens. For example, the
subject and object of a verb depend on it. An example of a dependency graph for a sentence
is shown in Fig. 12.4.

404 CHAPTER 12. INFORMATION EXTRACTION

Here, we omit the details of how dependency graphs are constructed, and refer the reader
to [556] for both a description and open-source software. The key point is that dependency
graphs can be constructed much more efficiently than parse trees, and bigram/trigram fea-
tures can be extracted using the edges of the dependency graph. In addition, bigram/trigram
features can be extracted from adjacent words as discussed earlier.

12.3.3 Relationship Prediction with Implicit Feature Engineering:
Kernel Methods

Kernel methods are also feature engineering methods, which represent the underlying feature
representation indirectly with the use of kernel functions. For example, instead of extracting
features from dependency graphs, one might directly try to compute the similarities between
pairs of training instances (using linguistic knowledge) to create a kernel similarity matrix.
As discussed in Sect. 3.6 of Chap. 3, such matrices are very useful in extracting an engineered
representation, or they can be directly used with kernel support vector machines. Such
kernel methods are very powerful because they encode language-specific knowledge within
the similarity function. Although we discuss the kernel methods in the context of information
extraction, it is important to emphasize that many of these methods can be easily adapted
to general-purpose settings with minor modifications.

Since the training instances are usually extracted from sentences containing the two
entities, one can compute the similarities between the structured representations of the two
sentences, rather than “flattening” the structural text into a multidimensional represen-
tation. For example, one can extract kernel similarity matrices from dependency graphs,
sequence representations, parse trees, or any other structured representation of the sen-
tences. For any training or test set of data instances (i.e., sentences with entity pairs), the
kernel-based approach is as follows:

1. Create a structured representation of each data instance, which can be a sequence,
dependency graph, or a parse tree. Each element or node of this structured represen-
tation is typically a token, but it can also be a phrase (in the case of a parse tree).
The ith element is associated with the set of features Fi, which is defined in a similar
way as in the case of explicit feature engineering. For example, each element could be
associated with its part-of-speech tag, entity type, and so on.

2. Using these structured representations of sentences, one defines a concrete way of
computing similarities between them. Therefore, if we have n1 training instances,
then one can create an n1 × n1 kernel similarity matrix among them. The explicitly
engineered multidimensional representation is given by symmetrically factorizing the
similarity matrix K into the form UUT to yield the n1 × k embedding U . One can
then use a linear support vector machine on U . Of course, in the kernel methods, the
whole point is to not do this explicitly, but use the similarity matrix K directly with
nonlinear support vector machines via the kernel trick. The results are mathematically
equivalent to those obtained by using a linear support vector machine on U , but the
kernel trick provides better computational and space efficiency.

The key point in the above exercise is in creating an appropriate definition of the similarity
function between a pair of sentences and the pairs of entities inside them. In the specific
case of information extraction, the entity arguments inside the sentences must be used in
the computation of similarity in order to ensure that the similarity function is sufficiently
discriminative with respect to the relation being mined. However, for other natural language

12.3. RELATIONSHIP EXTRACTION 405

applications, which do not use entities, minor modifications of these similarity functions can
be constructed. The following discussion will focus on various structured representations
from which the similarities can be extracted.

12.3.3.1 Kernels from Dependency Graphs

One of the earliest methods [67] proposed to extract kernels from dependency graphs
(cf. Fig. 12.4). Consider two sentences S1 and S2, each of which contains a pair of marked
entities. The shortest paths between entity arguments in the in the undirected versions of
the dependency graphs of these two sentences are used to compute the similarity. The intu-
ition of this approach is that most of the information about the relationships between two
entities is often concentrated in the segment between the two sentences.

The first step is to compute the shortest path P1 between the two entity arguments of
S1 and the corresponding shortest path P2 between the two entity arguments of S2. If the
paths P1 and P2 are of different lengths, then the kernel similarity between S1 and S2 is set
to 0. However, if the two paths P1 = i(1), i(2), . . . , i(m) and P2 = j(1), j(2), . . . j(m) are of
the same length, then the similarity between the sentences S1 and S2 is computed by using
the similarities between the features sets Fi(r) and Fj(r) of the corresponding tokens (which
are corresponding nodes in the paths P1 and P2). In other words, we have:

Similarity(S1, S2) =

m∏

r=1

|Fi(r) ∩ Fj(r)| (12.7)

Since the features contain many characteristics of the words such as the parts of speech and
the surface tokens, one can capture a high level of semantic similarity with this approach.
For example, consider the following two sentences containing named persons as entities:

Romeo loved Juliet
Harry met Sally

Even though the tokens of the two sentences are completely disjoint, there is still nonzero
similarity between the two sentences. This is because the features corresponding to the parts-
of-speech tags in the dependency path are the same. In particular, the feature sequence in
the shortest path in the dependency graph in both cases is NNP←VBD→NNP. Note that if
we change the word “met” in the second sentence to “loved,” the similarity would increase
further since the engineered feature set Fi(2) and Fj(2) will usually contain the surface token
as well.

12.3.3.2 Subsequence-Based Kernels

The subsequence-based kernel treats sentences as sequences and it considers two sentences
similar, if many subsequences of the two sentences can be found that have a large amount
of similarity between them. The approach described in this section is a trivial modification
of the subsequence-based kernel described in Sect. 3.6.1.3. The key modification required
over the approach described in Sect. 3.6.1.3 is to account for the fact that the each token
in the sentence is associated with a feature set. The feature set might contain the surface
value of the token, its part-of-speech tag, entity type, and so on. The choice of the feature
set depends on the application at hand. For example, for applications beyond information
extraction, the entity type might not be available, but the part-of-speech tag and surface
token might be available.

406 CHAPTER 12. INFORMATION EXTRACTION

In order to understand the generalization of subsequence kernels of Sect. 3.6.1.3 to the
relationship extraction problem, we advise the reader to revisit Sects. 3.6.1.3 and 3.6.1.4
before reading further. A dynamic programming approach is described for the computation
of the string kernel. The notations used below are also borrowed from that section, and are
not redefined here for brevity. The recursive steps from that section are replicated below:

K ′
0(x, y) = 1 ∀x, y

K ′
h(x, y) = Kh(x, y) = 0 if either x or y has less than h tokens

K ′′
h(x⊕ w, y ⊕ v) = λK ′′

h(x⊕ w, y) + λ2K ′
h−1(x, y) ·M(w, v) ∀h = 1, 2 . . . k − 1

K ′
h(x⊕ w, y) = λK ′

h(x, y) +K ′′
h(x⊕ w, y) ∀h = 1, 2 . . . k − 1

Kk(x⊕ w, y) = Kk(x, y) +

l(y)∑

j=2

K ′
k−1(x, y

j−1
1)λ2 ·M(w, yj)

Here, l(y) denotes the length of y. The description of Sect. 3.6.1.4 assumes that only the
surface tokens in the two strings x = x1x2 . . . xm and y = y1y2 . . . yp are used, and therefore
a binary match function M(w, v) is assumed. The match function is defined to be 1 when
w and v are the same; otherwise, it is 0. Here, the match function is modified, because the
tokens w and v are associated with feature sets Fx(w) and Fy(v), respectively. Correspond-
ingly, the only difference to the recursive approach of Sect. 3.6.1.4 is to use a feature-centric
match function:

M(w, v) = |Fx(w) ∩ Fy(v)| (12.8)

Note that this match function specializes to the approach in Sect. 3.6.1.4 when a token is
associated with only a single feature corresponding to its surface value.

12.3.3.3 Convolution Tree-Based Kernels

Tree-based kernels are able to encode complex grammatical relationships by comparing
the parse trees of two relation instances. The main idea of this approach is that similar
substructures in two parse trees are indicative of the fact that the concepts in the underlying
sentences are similar. In the following discussion, it will be assumed that the parse-trees of
individual sentences are already available using off-the-shelf linguistic preprocessing [322].

All kernel methods implicitly create a feature space under the covers. In the case of parse-
trees, this feature space is defined by the subtrees of the parse-tree. However, only specific
types of subtrees of the parse tree are used, which correspond to all-or-none subtrees.

Definition 12.3.1 (All-or-None Subtree) An all-or-none subtree Ts of a given tree T
is such that if a node i and its child in T are included in Ts, then all children of i in T
must be included in Ts. In other words, either all children of i in T are included in Ts or
no children are included.

The reason that all-or-none subtrees are useful because of their semantic significance in the
field of linguistics. Each node corresponds to a grammar-production rule, which is defined
by a node and all its children. For example, one of the production rules of the noun phrase
(NP) node of Fig. 12.5a is as follows:

NP → DT NN

While picking subtrees to define the feature space, it is important to preserve the underlying
grammar production rule that creates the sentence for better semantic similarity. Therefore,

12.3. RELATIONSHIP EXTRACTION 407

if any children of a node are selected, then all of them are always selected in the all-or-none
subtrees so that the grammar production rules of selected nodes (with children) remain

VP

VBD DT NN

NP

NNP

Adam

S

VP

VBD

ate

NP

DT

an

NN

apple

VALID
SUBTREES

VP

VBD

DT NNate

apple

NNP

Adam

VBD

ate

DT

an

NN

apple

NP

NP

NP

DT

an

NN

apple

NP

DT

an

NN

NP

DT NN

apple

(a) A parse tree and examples of valid subtrees

VP

VBD DT

NP VP

VBD NP

NNate

apple

NP

DT

an

NP

NN

apple

(b) Examples of invalid subtrees

Figure 12.5: The parse tree and examples of valid and invalid subtrees

undisturbed. An example of a parse tree and its valid subtrees are shown in Fig. 12.5a.
Examples of some invalid subtrees are shown in Fig. 12.5b. Note that one of these subtrees
corresponds to the following grammar production rule:

NP → DT

Clearly, this grammar production rule is invalid, and it would be counter-productive to use
it for kernel similarity computation. Therefore, it is not used.

The engineered representation uses the subtrees in order to create features. If the ith
subtree occurs q times in the parse tree of a given sentence S, then the value of the ith
dimension of the engineered representation is set to q. Note that this engineered represen-
tation will have a very large number of dimensions because of the exponential number of
possibilities for subtree creation. It turns out to be far more efficient to directly compute the
kernel similarity between pairs of trees rather than explicitly compute an engineered repre-
sentation. As in the case of string kernels, one can use a recursive approach for similarity
computation. For two trees T1 and T2, the kernel similarity is defined as follows:

K(T1, T2) = Φ(T1) · Φ(T2) (12.9)

Let Ii(n, T) be an indicator function, that takes on the value of 1 when the ith subtree of
the engineered representation occurs in T and is rooted at node n. Then, the ith dimension
of the engineered representation (i.e., number of occurrences of the ith subtree) in T is given
by summing this indicator function over all nodes in the tree:

Φi(T) =
∑

n∈T

Ii(n, T) (12.10)

408 CHAPTER 12. INFORMATION EXTRACTION

One can compute the dot product of Eq. 12.9 by summing over the individual dimensions
of the engineered representation Φ(·) as follows:

K(T1, T2) =
∑

i

Φi(T1) · Φi(T2)

=
∑

i

[
∑

n1∈T1

Ii(n1, T1)][
∑

n2∈T2

Ii(n2, T2)]

=
∑

i

∑

n1∈T1

∑

n2∈T2

Ii(n1, T1)Ii(n2, T2)

=
∑

n1∈T1

∑

n2∈T2

[
∑

i

Ii(n1, T1)Ii(n2, T2)]

The key here is to be able to compute the expression in the square brackets above:

C(n1, n2) =
∑

i

Ii(n1, T1)Ii(n2, T2) = # Common subtrees rooted at both n1 and n2

One can view each node in a parse tree as a production rule of the grammar in which
the parent is on the left-hand side of the rule and the children are on the right-hand side
of the rule. Matching subtrees will have matching production rules as well because the
corresponding parents and children have the same labels. Therefore, the value of C(n1, n2)
can be computed recursively as follows:

1. If the grammar productions at n1 and n2 are different, then set C(n1, n2) = 0.

2. If the grammar productions at n1 and n2 are the same, and n1, n2 are pre-terminals
(i.e., nodes just above tokens), then set C(n1, n2) = 1.

3. If the grammar productions at n1 and n2 are the same, and n1, n2 are not pre-
terminals, then we have:

C(n1, n2) =

nc(n1)∏

j=1

(1 + C(ch(n1, j), ch(n2, j))) (12.11)

Here, nc(n1) denotes the number of children of node n1. This value is the same as
nc(n2) because the production rules at n1 and n2 are the same. The notation ch(n1, j)
denotes the jth child of node n1.

This recursion can be shown to be correct by verifying the fact that each case of the
recursion amounts to counting the number of common subtrees rooted at nodes n1 and
n2. Furthermore, the running time is modest because it depends on the product of the
number of nodes in the two trees T1 and T2. It is possible to enrich the nodes of the parse
tree structure with additional features and further enrich the similarity function. Refer to
the bibliographic notes for several variants of tree kernels, which have been used for entity
extraction.

12.4 Summary

The problem of entity and relationship extraction lies on the interface of information re-
trieval, text mining, and natural language processing. In named entity recognition, one is
trying to extract names, places, and organizations, although other types of entities are also

12.5. BIBLIOGRAPHIC NOTES 409

possible. The earliest techniques used rule-based methods for named entity recognition.
More recently, machine learning techniques like hidden Markov models, maximum entropy
Markov models, and conditional random fields have become increasingly popular. A sec-
ond task is that of relationship extraction in which machine learning techniques are very
popular. Machine learning techniques either use explicit feature engineering or use kernel
methods. Many of the kernel techniques used for relationship extraction have dual use in
natural language processing.

12.5 Bibliographic Notes

The earliest methods for structured information extraction from text date back to the
FRUMP program [129]. However, the research during the seventies and eighties on infor-
mation extraction was sporadic and limited. An important source of advancement in the field
was the group of Message Understanding Conferences (MUC) that started in the nineties.
Among these, MUC-6 [193] is particularly notable for introducing the key information ex-
traction subtasks as they are known today. Many challenges have since been held in the
problems of named entity recognition and relationship extraction. For named entity recog-
nition, the key challenges include the Automatic Content Extraction (ACE) program [599],
several tasks defined by the Conference on Natural Language Learning (CoNLL) [601], and
the BioCreAtIvE challenge evaluation [600]. The last of these is specifically focused on the
biological domain. Excellent surveys on information extraction may be found in [236, 430].
It is noteworthy that this chapter focuses on information extraction from free text, although
there exist various information extraction methods for semi-structured data, such as HTML
and XML. Such procedures are referred to as wrappers. This chapter is focused on infor-
mation extraction methods from free text and does not discuss such specialized methods
for the Web domain. Interested readers may refer to [303, 430] for excellent discussions of
these methods.

Rule-based methods for named entity recognition are either top-down methods like
WHISK [452], or they are bottom-up [73, 100]. Among machine learning methods, the
early methods used only a limited amount of sequential information [134, 468]. There is a
significant similarity between the models used for parts-of-speech tagging and named entity
recognition. For example, hidden Markov models [266, 397] were used for parts-of-speech
tagging in [268]. Subsequently, hidden Markov models were used [49, 171, 442] for entity
extraction. Maximum entropy Markov models were first introduced for part-of-speech tag-
ging in [400] and then used for named entity recognition in [326]. Other popular models in
this family are discussed in [45, 123]. Various learning algorithms and their comparisons for
maximum entropy Markov models are discussed in [318].

The use of conditional random fields for information extraction was first discussed
in [270]. A segment-wise model for information extraction with conditional random fields
was proposed in [431]. Both the maximum entropy models and the conditional random field
models were originally proposed with dual applications in entity extraction and text seg-
mentation. This is not particularly surprising, given the similarity in the underlying problem
formulation. A detailed discussion of conditional random fields may be found in [465].

The use of feature-based classification for relation learning is explored in [86, 237, 251].
The work in [237] is particularly notable because it explores systematic ways of feature
engineering for relationship extraction. A second method for relationship extraction is with
the use of kernel methods. Shortest-path and subsequence kernels are discussed in [67, 68].
Tree-based kernels are discussed in [107, 122, 393, 526]. In the context, the works in [393,

410 CHAPTER 12. INFORMATION EXTRACTION

533] are notable because they specifically explore the domain of relationship extraction
while constructing convolution tree kernels. Methods for combining structured and sequence
kernels are referred to as composite kernels, and are discussed in [534, 535].

12.5.1 Weakly Supervised Learning Methods

The main challenge in problems like relationship extraction is that the amount of (labeled)
training data required is very large. In such cases, one can reduce the requirement on the
amount of training data by using methods like bootstrapping and distant supervision. In
bootstrapping [17, 63], one starts with a small set of seed relations, and iteratively labels
nearby entity pairs using this training data. This newly labeled data is used to learn relevant
aspects of the context and label other records. This type of training data is usually noisy,
and therefore it is important to have the ability to filter out the noisy patterns and learn
the relevant features.

A second method is that of distant supervision, in which large knowledge bases are
available in which known target relations are available. Such knowledge bases are created
using crowd-sourced efforts from users. Such type of data can be used to training in settings
where the data is drawn from different sources. Such methods are discussed in [348, 362].

12.5.2 Unsupervised and Open Information Extraction

Most of this chapter focuses on supervised information extraction in which a significant
amount of effort needs to be spent in both defining the appropriate entity and relation
structures, as well as in labeling training data. In unsupervised information extraction,
the goal is to group similar entries and entity pairs based on their syntactic, lexical, or
contextual similarities. In open extraction, the goals are even more fundamental, in which
one tries to extract various types of relations from a large corpus like the Web.

The problem of unsupervised entity extraction from the Web is discussed in [158]. A
clustering-based approach for unrestricted relationship discovery is discussed in [446], in
which the important relations from a corpus are discovered. A later work explicitly discussed
the problem of grouping entity pairs into clusters [416].

In open information extraction, relations are extracted from a large and open corpus
like the Web [35, 160]. In such cases, target relations are not pre-specified, and one learns
new relations along with a phrase to describe them. This type of approach is useful when
one does not want to have the restriction of a pre-defined set of relations. Open relationship
extraction is closely related to distant supervision, in which a corpus from a different domain
is used [402].

12.5.3 Software Resources

Information extraction is a field that lies on the interface of machine learning and natural
language processing. As a result, many applications in information extraction require the use
of natural language processing tools. Apache OpenNLP [548] supports many information
extraction tasks, such as sentence segmentation, named entity extraction, chunking, and
coreference resolution. Many of the underlying preprocessing tasks and natural language
processing tasks are also supported by Apache OpenNLP. Other open source repositories
that support these tasks include NLTK [556] and Stanford NLP [554]. Stanford NLP also
specifically supports open information extraction [604]. The MALLET toolkit supports

12.6. EXERCISES 411

many of the Markov models for sequence tagging and entity recognition [605]. The Re-
Verb/Ollie packages provide open information extraction capabilities for extracting binary
relations from English sentences [602, 603]. TheDBpedia Spotlight [606] provides tools for
named entity recognition and annotation. A conditional random field implementation from
Sunita Sarawagi’s group is available at [607]. Information extraction capabilities are also
provided by OpenCalais, which is a software provided by the company ClearForest [608].

12.6 Exercises

1. Although this chapter does not discuss deep learning methods in detail, these tech-
niques can be used for entity extraction. Which deep learning model discussed in
Chap. 10 can be used for entity extraction? Pick out the specific model discussed in
Chap. 10, and how the inputs and outputs of the neural network would be defined.

2. Show how you can extend the methodology discussed in Exercise 1 to relationship
extraction.

3. Suppose you have a corpus in which words and phrases indicating positive/negative
sentiment are tagged. You want to tag corresponding words and phrases with various
sentiments in an unmarked corpus. Discuss the relationship of this problem to entity
extraction.

4. The Nymble approach uses the features of the tokens in a relatively rudimentary way.
Discuss an approach based on HMMs in which each state of the model can output a
multidimensional feature vector.

5. Show that the running time of the convolutional kernel is at most proportional to the
product of the number of nodes in the two trees between which the kernel similarity
is being computed.

6. Implement the string kernel discussed in this chapter.

Chapter 13

Opinion Mining and Sentiment Analysis

“Opinion is the medium between knowledge and ignorance.”—Plato

13.1 Introduction

The recent proliferation of social media has enabled users to post views about entities,
individuals, events, and topics in a variety of formal and informal settings. Examples of
such settings include reviews, forums, social media posts, blogs, and discussion boards.
The problem of opinion mining and sentiment analysis is defined as the computational
analytics associated with such text. In some settings, such as review text, the problem of
opinion mining can be viewed as the natural language analog/complement to recommender
systems. Whereas recommender systems analyze quantitative ratings to make predictions
about user likes and dislikes, opinion mining analyzes review text to infer user likes, dislikes,
and sentiments. Opinion mining therefore provides a more subjective and detailed point of
view, which is complementary to the predictions of a recommender system. Furthermore,
opinion mining is not restricted to product reviews, but it may pertain to user attitudes,
political opinions, and so on. For example, the sentiment from Twitter users has been used
to predict election results [114]. In contrast, recommender systems are almost always focused
on maximizing the sales of products. Opinion mining refers to the discovery of positive and
negative sentiments about objects (e.g., a computer) and their attributes (e.g., computer
battery) with the use of text processing. An example1 of an opinion is as follows:

“The Logitech X300 is a compact wireless Bluetooth speaker that offers decent
sound for its size and features an attractive, sturdy design at a modest price
point. It has a built-in microphone for speakerphone calls and can be laid down
horizontally or stood up vertically. Battery life could be better. At around $60
online, the decently performing and well-designed Logitech X300 is a relative
bargain in the mini Bluetooth speaker category.”

1https://www.cnet.com/products/logitech-x300-mobile-wireless-stereo-speaker/review/.

https://www.cnet.com/products/logitech-x300-mobile-wireless-stereo-speaker/review/

414 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

Note that this opinion expresses points of view not only about the main product (which
is the Logitech X300), but also about several of its attributes such as the battery, design,
and price point. Each of these sentiments might be positive or negative, which provides an
overall point of view of the product. The task of opinion mining and sentiment analysis
is not only about finding the opinions about the whole entity but also the opinions about
individual attributes of the entity and summarizing them. These individual attributes are
also referred to as aspects. The person making the opinion is referred to as the opinion
holder, and the nature of the sentiment expressed (e.g., positive or negative) is referred to
as its orientation or polarity. The entity or aspect that the opinion is expressed about is
referred to as the opinion target.

Within the broader umbrella of topics associated with opinion mining, there is a sig-
nificant variation in the types of questions that one tries to answer using opinion mining.
Some examples are as follows. Does a piece of text represent a positive or a negative sen-
timent? What are the entities being discussed about, and are they being discussed about
in a positive or negative way? What attributes of the entity are discussed, and what are
the sentiments expressed about them? Are entities being compared to one another? Is a
particular opinion a spam?

It is evident that the discovery of useful opinions from raw text requires a nontrivial
amount of natural language processing. Furthermore, the problem of opinion mining uses
various methodologies discussed in earlier chapters as building blocks for its analysis. Exam-
ples of such methodologies include feature engineering, entity extraction, and classification.
In this sense, opinion mining may be considered an application-centric topic, which builds
on many of the recent advancements in text mining.

The process of opinion mining can be performed at several levels. Opinions can be
discovered at the document level, sentence level, or at the entity level. We briefly summarize
these different ways of processing:

1. Document-level sentiment analysis: In this case, the implicit assumption is that a
single document expresses opinions about a particular target (which is known). The
goal of the task is to discover whether the document expresses positive or negative
sentiments. The problem of document-level sentiment analysis can be viewed as a
special case of classification with natural language data.

2. Sentence- and phrase-level sentiment analysis: Document-level sentiment analysis is
often broken up into smaller units corresponding to individual words, phrases, or
sentences as an intermediate step. These finer grained classifications are then aggre-
gated into a higher-level prediction at the document level. In this context, phrase-
and sentence-level sentiment analysis are important subproblems in their own right
because they enable document-level classification. Furthermore, the output is some-
times used for opinion summarization.

In sentence-level sentiment analysis, each sentence is analyzed one by one, and sen-
tences are classified one by one as positive, negative, or neutral. In some cases, it is
tricky to determine how a statement of fact should be treated. For example, consider
the following sentence from the aforementioned review of the Logitech X300:

“It has a built-in microphone for speakerphone calls and can be laid down
horizontally or stood up vertically.”

Although this sentence is a statement of fact about the features of the Logitech X300,
it can also be considered positive because it conveys the flexibility associated with the

13.1. INTRODUCTION 415

product. However, from a practical point of view, such sentences could have a con-
founding effect on the classification, and they are therefore prevented from influencing
the document classification process by removing them [373]. In order to achieve this
goal, sentences need to be first classified as either subjective or objective. Subjective
sentences often contain many adjectives and emotional phrases, whereas objective
sentences contain statements of fact. It is generally much easier to classify the po-
larity of subjective sentences with the use of an opinion lexicon, whereas objective
sentiments pose significant challenges from the point of view of sentiment polarity
classification. Therefore, an important problem in sentence-level sentiment analysis is
that of subjectivity classification.

3. Entity and aspect-level opinions: Many sentences in an opinion text may not refer to
the entity itself. For example, consider the following sentence picked out of a larger
review of a computer security product:

“Hackers have made our lives miserable in this day and age.”

Even though this statement expresses a negative sentiment, it does not state anything
about the product and in fact (implicitly) emphasizes the necessity of the broader
class of computer security products. This implies that it is extremely important to
specify the opinion targets in order to make opinion mining truly useful. Similarly,
the previous opinion about the Logitech X300 states a positive point of view about
the overall product, its flexibility in features, and price, but it states a negative point
of view about the battery life. The “battery life” is an aspect of the broader entity
“Logitech X300” and, therefore, an opinion about it can be viewed as fine-grained
analysis. Entity- and aspect-level sentiment analysis expresses opinions about the
fine-grained characteristics of an entity.

Entity extraction is closely related to opinion mining because entities need not always be
persons, places, and organizations, but they could be products or other types of entities.
Furthermore, the extraction of an opinion lexicon is similar to entity extraction, except
that one is trying to identify adjectives/phrases associated with sentiments rather than
noun-phrases associated with named entities.

13.1.1 The Opinion Lexicon

Certain types of words, referred to as opinion words or sentiment words are particularly
important from the point of view of opinion mining and sentiment analysis. Typically, the
opinion lexicon contains words like “good” “bad,” “excellent,” “wonderful,” and so on. In
many cases, the opinion lexicon might contain phrases like “blows away,” “gets under my
skin,” or “silver lining.” Opinion words are often adjectives and adverbs, although nouns
(e.g., “trash”) or verbs (e.g., “annoy”) can be considered opinion words. The topic of finding
an opinion lexicon is a problem in its own right, and pre-compiled lists of opinion words
are often used as simple solutions for off-the-shelf applications. Examples of such lists are
available at [30, 612]. One can isolate an opinion lexicon with either a dictionary-based
approach or a corpus-based approach. Both methods start with seed sets of words, which
are expanded with the use of either a dictionary or a corpus. This process is referred to as
opinion lexicon expansion.

416 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

13.1.1.1 Dictionary-Based Approaches

This approach combines a seed set of opinion words and a dictionary like WordNet in
order to expand the seed set. A brief description of WordNet is provided in Sect. 11.3.2.1
of Chap. 11. The main approach is to first select a modest set of positive and negative seed
words, and then grow them by leveraging the online dictionary by using their synonyms
and antonyms. This approach is applied recursively because the words that are found are
added to the seed set, and their synonyms/antonyms in the dictionary are again explored.
Furthermore, it is possible to use machine learning to improve the quality of the lexicon
found. Numerous such methods for opinion expansion are discussed in [20, 156, 157, 252].
The main shortcoming of this approach is that it does not take into account the context of
a word in making judgements. For example, the word “hot” might be slang for a desirable
product, or it might simply refer to an overheated computer with a poorly working fan.
Corpus-based methods are more effective at handling problems associated with context.

13.1.1.2 Corpus-Based Approaches

Corpus-based methods also start with a seed set of positive and negative words, and then
leverage their usage in a corpus to infer whether other co-occurring words in the vicinity of
one of the known words are positive or negative. The notion of vicinity is often defined with
the use of connectives like “or,” “and,” “but,” and so on. For example, two adjectives that
are joined together with the connective “and” are often likely to be of the same orientation.
Therefore, if one of them is already known to be a positive member of the opinion lexicon,
then the other one can also be added to this set. In general, linguistic rules can be defined
using various types of connectives.

These types of rules provides natural ways to recursively expand the seed set of positive
and negative words [211]. In general, it is possible that the same pair of adjectives may be
connected in both a positive and a negative way in different parts of the same corpus. For
example, even though the words “good” and “bad” are of different orientations, it is possible
for them to be occasionally connected with an “and.” A natural way of resolving such
conflicts is to create a graph in which adjectives correspond to nodes, and links correspond
to relationships of different orientations. Clustering can be applied on this graph in order
to identify the words of the same orientation.

Another idea is to assume that the same sentence or neighboring sentences are of similar
orientation, which provides useful hints about the orientations of the adjectives and opinion
words inside those sentences [139, 254]. This is because opinions do not abruptly change
in tone and orientation within a continuous piece of text. This concept is referred to as
inter-sentential or intra-sentential consistency. Of course, this type of consistency is only
an empirical phenomenon, and the tone may indeed change in many settings. For example,
the use of words like “but” might precede changes in opinion orientation. It is also natural to
integrate the concept of context within inter-sentential and intra-sentential consistency. In
the work in [139, 310], the opinions are mined as aspect-opinion word pairs to distinguish
between different uses of the word. For example, a warm soda and a warm blanket have
completely different orientations of the word “warm” because they are applied to different
entities. Instead of using the inter-sentential and intra-sentential consistency, an alternative
idea is to use syntactic consistency like the parts-of-speech patterns for learning the orien-
tation of opinion words [477]. This approach is described in Sect. 13.2, and therefore we do
not discuss this approach in detail here.

13.1. INTRODUCTION 417

Finally, many of the ideas discussed in Chap. 12 for entity extraction are also use-
ful for finding opinion words. For example, the conditional random field method [270]
(cf. Sect. 12.2.5 of Chap. 12) is often used for extracting opinion words with the use of
supervised learning. These methods have the natural ability to incorporate context within
the extraction process like all entity extraction methods. The use of such methods for joint
entity and opinion word extraction is discussed in [394]. In general, opinion mining can be
considered a variation on the information extraction task (cf. Sect. 13.1.2) in which instead
of trying to find person/location/organization entities and their relations, one is trying
to find product/person/location/organization entities and their related opinion “entities”
(even though opinions are usually adjectives rather than noun phrases). In both cases, simi-
lar types of models can be used by tagging the appropriate portions of the text and applying
supervised learning. This point is discussed in detail in the following section.

13.1.2 Opinion Mining as a Slot Filling and Information Extraction
Task

One can view the opinion mining task as a closely related task to information extraction
and slot filling. Refer to Chap. 12 for a definition of these terms. In general, it is not only
important to know the polarity of the opinion but also the target. In some cases, it may also
be useful to know the opinion holder, although this might not be specified, or it might be
implicit in some cases. At the most general level, one can view the problem of opinion mining
as that of a slot filling task of finding the opinion holder, entity, aspect, opinion polarity,
and the time at which the opinion was made. These slots are shown in the table below:

Slot Value

Entity holder CNET editor
Entity Logitech X300
Aspect Battery

Orientation/polarity Negative
Time October 20, 2014

For the Aspect slot, the value “General” is reserved for the case when one of talking about
the entity itself (e.g., Logitech X300) rather than a specific attribute (e.g., battery). Even
though the five slots above provide a comprehensive view of the opinion, the values of many
of these slots are often implicitly assumed (or not considered important) in many opinion
mining tasks. In other words, the individual opinion mining tasks are often much simpler
than slot filling in the same way as the slot filling task in information extraction has been
simplified to the tasks of entity extraction and relation extraction (see Chap. 12). For exam-
ple, the extraction of the opinion holder and the time of the opinion is not very different from
off-the-shelf tasks in information extraction, which provide the ability to discover named
entities as well as dates from unstructured text. In some simplified tasks like document-level
sentiment classification, it is assumed that the targets of the opinion are known, and one
only predicts the polarity of the opinion. This problem is very similar to binary classifica-
tion, although the approach is often customized to the domain of opinion mining. In entity-
and aspect-level opinion mining, one predicts a subset of the aforementioned slots corre-
sponding to the entity, aspect, and orientation. Many recent techniques for opinion mining
discover these different slot values simultaneously along with the corresponding opinion
words. This type of simultaneous discovery of entities, opinion words, and polarities, shares
many methodological and conceptual similarities with information extraction.

418 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

Finally, it should be pointed out that there are some variations of opinion mining that
cannot be fully captured by the above slot-filling task. For example, sentence-level slot filling
requires the creation of slots at the sentence-level, and the information about whether a
sentence is subjective or objective can be represented by additional slots. Opinion mining
can therefore be considered a simplification of the slot-filling task, just as entity extraction
and relation mining are considered simplifications of slot-filling tasks. However, this is a very
general view of opinion mining. Many document-level opinion mining methods assume that
the document is about a single entity, and other slots are either implicitly known or they are
not considered important. In such cases, there is little difference between the classification
problem and the sentiment analysis task.

13.1.3 Chapter Organization

This chapter is organized as follows. Document-level sentiment classification is discussed
in Sect. 13.2. The determination of sentence subjectivity and classification is explored in
Sect. 13.3. Section 13.4 discusses a more generic view of opinion mining, in which it is viewed
as information extraction problem. The problem of opinion spam detection is discussed in
Sect. 13.5. Methods for opinion summarization are discussed in Sect. 13.6. The conclusions
and summary of the chapter are presented in Sect. 13.7.

13.2 Document-Level Sentiment Classification

Document-level sentiment classification is the simplest setting of opinion mining in which the
sentiment classification (e.g., positive, negative, or neutral polarity) is done at the document
level. Furthermore, the classification is about the “General” aspect of the entity. Certain
types of documents, such as Amazon reviews, are usually about a single entity or product,
and therefore document-level methods are particularly relevant for these settings. A useful
characteristic of product-centric settings is that ratings are usually available with the text of
the reviews, which can be leveraged for supervised learning. For example, Amazon product
reviews are associated with a rating on a five-point scale, which can be transformed to
positive, negative, or neutral ratings.

This problem can be considered an off-the-shelf classification problem, and any of the
existing methods for supervised learning in Chaps. 5 and 6 can be used on the bag-of-words
representation of text. However, a pure bag-of-words approach to text classification does not
work well in this specialized setting because of the importance of linguistic subtleties and
opinion words. In order to use richer information about the underlying natural language, one
can also use the sequence-centric feature engineering tricks (e.g., doc2vec method) discussed
in Chap. 10. For example, the work in [275] shows how one can use the doc2vec approach
for sentiment analysis. Although the technique in [275] is tested in a sentence-level setting,
the ideas can be easily adapted to document-level sentiment analysis.

If the bag-of-words representation is used, the tf-idf representation is usually not suffi-
cient, and additional features are required. Sentiment analysis is a specific domain in which
some features are particularly important for learning. For example, adjectives should be
weighted differently than other parts of speech. However, the work by Pang et al. [376]
showed that the use of only adjectives provided worse results than using frequent unigrams.
When parts of speech are used, their primary goal is word-sense disambiguation by con-
catenating the specific part of speech with the word. For example “bear-V” is considered
a different word than “bear-N” corresponding to the verb and noun forms of “bear,” re-
spectively. Furthermore, the parts of speech are more helpful in identifying useful phrases
containing adjectives or adverbs.

13.2. DOCUMENT-LEVEL SENTIMENT CLASSIFICATION 419

Rather than using specific parts of speech, it is more important to distinguish words in
terms of whether or not they belong to the opinion lexicon. Note that the opinion lexicon
is already somewhat biased towards specific parts of speech such as adjectives or adverbs.
The following are the common features that are used for document-level classification:

1. Opinion lexicon: Words that belong to the opinion lexicon have greater significance
than those that do not. Methods for finding words that belong to the opinion lexicon
are discussed in Sect. 13.1.1. When a word belongs to the opinion lexicon, information
about the orientation of that word (such as positivity/negativity) is also incorporated
among the features. A specific study of the effect of this type of lexical knowledge on
classification accuracy is provided in [335].

2. Specialized phrase extraction with adjectives or adverbs: A specialized type of phrase
extraction has been shown to be specially helpful to classification of opinions. In par-
ticular, the work in [477] showed that phrases with adjectives and adverbs have signif-
icant discriminatory power in terms of classification of opinions. Although this work
was designed for unsupervised classification of reviews, it can also be incorporated for
supervised classification.

3. Term presence versus frequency: While the frequency of a term plays an important
role in traditional information retrieval, a finding in sentiment analysis is that is that
the presence or absence of a term is often sufficiently significant, and the repeated use
of a term does not add to significance, and it may detract from it in some cases [376].

4. Term positioning: The position of a token within the document plays an important
role in its effect on the sentiment polarity. For example, the last sentence of a review
often has a special significance in terms of summing up the feeling of the reviewer,
and the presence of an opinion word towards the beginning and the middle also has
specific significance. The feature position is therefore sometimes encoded into the
documents. Examples of such methods may be found in [260, 376]. The basic idea
is to append the feature positioning of a token (e.g., first, middle, end) to create a
separate feature. Therefore, a feature such as “excellent-middle” would be treated
differently from “excellent-end.”

5. Negation: Negation has an unusually important role to play in sentiment analysis,
which does not have a corresponding parallel in traditional information retrieval. For
example, in topic-oriented classification, the presence of the word “not” often tells us
little about whether or not a document belongs to a specific category (e.g., “politics”).
However, the presence of a negation while indicating whether or not one likes politics
is often a strong indicator. The basic idea is to first create a representation that is
independent of the presence of a negation, and then convert to a representation that
is negation-aware. For example, the technique in [127] suggests to add the word “not”
to words that occur near the negation. Therefore, the word “like” becomes “like-not.”
Other methods [357] search for phrases that are considered negation phrases, which
might possibly be different for different negation words.

6. Valence shifters: A generalization of the idea of notion of negation is that of valence
shifters [384]. A valence shifter is any word (such as negation) that changes the value
of a base word. For example, the word “very” can be considered a valence shifter.
Valence shifters include negations, intensifiers, downtoners, and irrealis markers.

420 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

7. Context and topic features: The context and the topic of a document might play an
important role in how the document is interpreted. For example, consider the following
sentence: “Hillary Clinton is polling really well in the final stretch.”

This sentence can be considered to be indicative of either a positive or a negative
sentiment, depending on whether the opinion holder is a Democrat or a Republican.
Similarly, consider the following statement: “It was over so quickly!”

This sentiment can be either positive or negative, depending on whether one is refer-
ring to a surgery or to a vacation. Some discussions on the use of context and topical
features for sentiment classification may be found in [199, 260, 356, 503].

8. Syntactic features: It has been shown [503] that the use of syntactic features like parse
trees can be helpful in determining the orientation of specific mentions of opinion
words. Determining the orientation of specific mentions of opinion words is a first
step towards determining the polarity of the sentence or the document.

In many of the supervised settings, such as product reviews, labels (in the form of ratings)
are available for learning. Therefore, techniques like ordinal regression can be used. There
are several works that use regression modeling rather than binary classification in order to
determine the degree of polarity. An example of such a work may be found in [374].

13.2.1 Unsupervised Approaches to Classification

Although labeled data is often easily available when documents correspond to product
reviews, this is not the case when the documents correspond to posts on a social network
site, blogs, or discussion boards. In other words, paucity of labeled data becomes a major
problem. In such cases, active learning techniques can be employed. The basic idea in active
learning is to provide the user with good candidates for labeling documents, so that robust
models can be learned with a small amount of training data. A discussion on active learning
may be found in [1]. Documents that contain a lot of opinion words are often good candidates
for active learning, because they provide evidence of the importance of specific opinion words
to documents of various polarities.

Another approach is to use unsupervised learning. In fact, unsupervised learning meth-
ods were among the earliest techniques used for opinion mining [477]. The work in [477]
mines phrases according to the rules shown in the table below. Here, the tags2 starting with
NN correspond to noun variations, the tags starting with VB are verb variations, the tags
starting with RB are adverb variations, and the tag JJ is an adjective. The idea is to ex-
tract two consecutive words based on their parts-of-speech and then also check a third word
immediately following these two words. The specific rules for the two consecutive words and
the third word following it are as follows:

First word Second word Third word
(Not extracted)

JJ NN or NNS Anything
RB, RBR, or RBS JJ Not NN or NNS

JJ JJ Not NN or NNS
NN or NNS JJ Not NN or NNS

RB, RBR, or RBS VB, VBD, VBN, or VBG Anything

2See [598] for the complete list of tags according to the Penn Treebank project.

13.3. PHRASE- AND SENTENCE-LEVEL SENTIMENT CLASSIFICATION 421

The extraction of parts-of-speech tags is a well-known problem in natural language
processing [249, 322], and many off-the-shelf tools are available3 for this purpose. The
parts-of-speech tags are then used to extract phrases according to the rules above. Once the
phrases have been extracted, their semantic orientation in terms of positivity or negativity
is determined. In order to achieve this goal, the notion of pointwise mutual information is
used. Let Count(p, w) be the number of times that the phrase p and word w co-occur in
a document. The notion of co-occurrence is defined in terms of closeness in occurrence of
the phrase and the word. Then, the pointwise mutual information PMI(p, w) is defined as
follows:

PMI(p, w) = log2

(
Count(p, w)

Count(p) · Count(w)
)

(13.1)

Then, the semantic orientation SO(p) of phrase p is defined using two special words corre-
sponding to “excellent” and “poor,” respectively.

SO(p) = PMI(p, “excellent”)− PMI(p, “poor”) (13.2)

These two specific words are chosen because they often correspond to high and low ratings in
reviews, respectively. In some sense, these can be viewed as two (extremely strong) opinion
words with special significance.

Which corpus is used to perform the aforementioned computations? The work in [477]
issues queries to a search engine in order to discover documents in which the discovered
phrases (according to the rules of the earlier table) occur in proximity of these two opinion
words. Note that the phrases are extracted from the corpus that one is trying to classify
whereas the computation of the semantic orientation of the phrases is done using the results
from a search engine. The approach in [477] used the AltaVista search engine in order to
discover documents containing each of the two special opinion words, as well as documents
that contain phrases in proximity of either of the two special opinion words “excellent” and
“poor.” The notion of proximity is defined in terms of a distance of at most ten tokens.
Then, the semantic orientation is defined in terms of the search hits as follows:

SO(p) = log2

(
Hits(p NEAR “excellent”) ·Hits(“poor”)

Hits(p NEAR “poor”) ·Hits(“excellent”)

)

(13.3)

How is the computed semantic orientation used to classify reviews? Given a review, the
approach computes the semantic orientation of all the phrases in them and averages them.
If the semantic orientation is positive, then the review is classified as positive. Otherwise,
the review is classified as negative.

A later follow-up work by Turney and Littman [478] discusses how one can use latent
semantic analysis in order to find the semantic orientation of words. Another interesting
lexicon-based approach for finding semantic orientation is discussed in [467]. This technique
combines parts-of-speech analysis with valence shifters in order to discover the semantic
orientation of words.

13.3 Phrase- and Sentence-Level Sentiment Classifica-
tion

Phrase- and sentence-level sentiment classification problems are not standalone problems
in their own right, but they are often used as approaches to enable methods for document
classification. In general, a document can be broken up into smaller units corresponding

3See the section on software resources at the end of this chapter.

422 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

to paragraphs, sentences, or phrases, and at least some of these units can be meaningfully
classified. These classifications can then be aggregated into document-level classification. It
is also noteworthy that phrase-level classification is performed at the granularity of individ-
ual words, which is similar to the problem of finding an opinion lexicon. However, the main
difference is that in phrase-level classification, one is attempting to classify the polarity of
individual mentions of words and phrases, rather than the typical polarity of a particular
word over all mentions.

As discussed in the introduction of this chapter, individual sentences can be either
subjective or objective. Objective sentences, which are statements of fact rather than ex-
pressions of polarity, often dilute the effectiveness of a document-level (sentiment) classifier.
This is because the content and tone of such sentences is often neutral, and the use of such
sentences in the sentiment classifier worsens the accuracy. Therefore, there are two separate
problems at the sentence level, because it is often hard to classify the sentiment of objective
sentences. These two problems are as follows:

1. Subjectivity classification: Given a sentence, is it subjective or objective?

2. Sentiment classification: If the sentence is subjective, then is its polarity positive
or negative?

Although both of the above two problems are binary classification problems, they have very
different domain-specific characteristics. In both cases, the individual units are short text
segments, and therefore it can sometimes be useful to leverage techniques for classification
of short text (e.g., the embedding tricks in Chap. 10). Furthermore, the enrichment of text
with additional features can also be useful in these settings.

In subjectivity classification, we have labeled sentences available with the binary class
subjective/objective, one can use off-the-shelf classifiers for determining whether unlabeled
sentences are subjective or objective. However, such an approach ignores a lot of infor-
mation about the proximity of the different sentences to one another. Just as the notion
of inter-sentential consistency applies to polarity classification, it applies to subjectivity
classification as well.

13.3.1 Applications of Sentence- and Phrase-Level Analysis

Sentence- and phrase-level analysis is often used as an intermediate step in opinion mining
applications. There are two key applications of this type of analysis:

1. Preprocessing step for document-level classification: The sentence- and phrase-level
analysis of documents helps in providing intermediate results that are often used for
document-level classification. For example, objective sentences might be removed in
order to improve classification accuracy. Furthermore, some document-level classifi-
cation methods use an approach in which fine-grained classification at the word and
phrase level is aggregated in order to perform document-level classification.

2. Summarization in terms of polar phrases and sentences: A closely related task to
opinion classification is that of opinion summarization in which an explanation is
provided about why a particular document is classified in a certain way. In many cases,
the sentences and phrases with the greatest polarity are extracted from a review and
presented to the user along with the overall classification.

A discussion of the related task of opinion summarization is provided in Sect. 13.6.

13.3. PHRASE- AND SENTENCE-LEVEL SENTIMENT CLASSIFICATION 423

13.3.2 Reduction of Subjectivity Classification to Minimum Cut
Problem

The work in [373] transforms the problem to a minimum cut problem. In this transformation,
each sentence is treated as a node. Furthermore, a source and a sink node is added, and
goal is to create a partition of nodes in which the source and sink are on opposite sides.
All nodes on the same side of the source are deemed to be subjective sentences, whereas
all nodes on the side of the sink are deemed to be objective sentences. Therefore, the
key is to define the weights of the edges in the network in such a way that the effect
of the output of a subjective/objective classifier and the inter-sentential consistency are
reflected in these weights. The weights of the edges from the source to the various nodes
(sentences) are defined to be the (standalone classifier) output probabilities that these
sentences are subjective. Similarly, the weights of the edges from the sink to the various
nodes (sentences) are defined to be (standalone classifier) output probabilities that these
sentences are objective. Although some classifiers like the näıve Bayes classifier do produce
probabilities, it is also possible to use classifiers that output some type of numerical weight
by normalizing the numerical weights for the two classes to sum to 1. For example, in a
support vector machine, one can convert the distance from the hyperplane into a probability
with a logistic function. Other types of heuristic functions were tested in [373]. Note that if
these are the only edges that are used, then a minimum s-t cut in this network will simply
assign each sentence independently to the class to which it has the best affinity. Therefore,
inter-sentential consistency is enforced by adding edges between each pair of nodes with an
association weight.

Consider a setting in which the sentences are ordered s1, s2, . . . sr as they appear in
the text. The distance between two sentences si and sj is therefore given by |j − i|. The
association weight between a pair of sentences si and sj is defined as follows:

Assoc(si, sj) =

{
C · f(|j − i|) if |j − i| ≤ T

0 otherwise
(13.4)

Here, C is a scaling parameter and T is a threshold parameter. The function f(x) is a
non-increasing function of x. The values of f(x) used in [373] were 1, 1/x2 and exp(1− x).
The edges between the sentences si and sj are then weighted with the association weight
defined above. The minimum s-t cut was found in the graph, and all nodes (sentences) on
the same side of the source were deemed to be subjective. It was found in [373] that such
an approach significantly improved the effectiveness of subjectivity classification.

13.3.3 Context in Sentence- and Phrase-Level Polarity Analysis

Once the subjective and objective sentences have been determined, a common approach is
to classify the polarity of subjective sentences. These can be used in order to classify the
polarity at the document level. At the fine-grained level of sentences, the context becomes
particularly important in identifying polarity. For example, consider the sentence:

“I hardly consider my experience with this product satisfying.”

Even though the word “satisfying” is a positive member of the opinion lexicon, the presence
of the valance shifter “hardly”, changes the semantic orientation of this word. Therefore,
the approach in [503] distinguishes between the prior orientation of a word, and a specific
orientation of the word mention depending on its usage in the corpus. This is achieved

424 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

by mining features like the presence of negations or other valence shifters that change the
tone of the sentence. Furthermore, structural features extracted from the parse tree and
the topical content of the document are used as features. These features are extracted in
order to perform off-the-shelf classification of words and phrases at the level of specific
mentions. In particular, the AdaBoost classifier was used in [503]. Such word- and phrase-
level classification methods can also be used to classify sentences more accurately because
the orientations of the words and phrases have been properly corrected by their context.

Various types of recurrent neural network architectures (cf. Sect. 10.7.6 of Chap. 10) are
also used for sentiment analysis. In particular, the use of long short term memory (LSTM)
variants of the recurrent architecture is very common. One advantage of using LSTM is
that the effect of valence shifters can be automatically learned in a data-driven manner,
because the long-term and short-term memory captured by this architecture is able to learn
the effect of valence shifters directly from the training data.

13.4 Aspect-Based Opinion Mining as Information Ex-
traction

As discussed in the introduction section, one can view the opinion mining task in a similar
way to information extraction at the most general level. This is because each sentence in an
opinion mining task can state an opinion about a target, which might not be the base entity
but it might only be an aspect or attribute of the entity. As in document-based opinion
mining, there are both unsupervised and supervised variants to the aspect-based opinion
mining problem. Information extraction is traditionally defined in the supervised setting,
although many recent methods for information extraction (like open-domain information
extraction) are defined in the unsupervised setting. It is not surprising that supervised
methods have better accuracy than unsupervised methods; the main challenge in using
supervised methods is that a sufficient amount of training data is not available. However,
with the availability of an increasing number of crowd-sourcing platforms like Amazon
Mechanical Turk, this problem is likely to become less severe over time.

Interestingly, some of the unsupervised systems for information extraction (like
OPINE [387]) are built on top of unsupervised information extraction systems (like Know-
ItAll [158]). Furthermore, many supervised methods for opinion mining (like the one in [233])
adapt methods like conditional random fields from information extraction to opinion min-
ing. As in document-based sentiment classification, significant customizations are needed to
adapt the information extraction approaches to the domain of opinion mining. In fact, some
of the early unsupervised methods for aspect-based opinion mining (such as Hu and Liu’s
seminal approach [229]) developed in parallel with the field of unsupervised information
extraction. Therefore, many aspect-based opinion mining methods are not formally recog-
nized as information extraction tasks, although it is easy to see the similarities between
these methods and information extraction tasks.

13.4.1 Hu and Liu’s Unsupervised Approach

Hu and Liu’s work [229] was one of the earliest unsupervised methods for aspect-based
opinion mining. Central to the problem of aspect-based opinion mining is the problem of
discovering product features. This is achieved by identifying sets of words that co-occur in
many texts and are nouns. Nouns can be identified using parts-of-speech tagging methods
from natural language processing [249, 322]. Subsequently, a flat file of “transactions” is

13.4. ASPECT-BASED OPINION MINING AS INFORMATION EXTRACTION 425

created in which each line contains the nouns and noun phrases in each sentence. All other
words are discarded under the assumption that they do not reflect product features. The
approach first applies the Apriori algorithm from frequent pattern mining [2] in order to
discover groups of three or less words that co-occur in many opinion texts. A minimum
threshold on the co-occurrence frequency, which is referred to as the minimum support, is
used to identify the relevant sets of words.

Subsequently, a compactness criterion is applied to these sets of words. Let F be a
feature set containing the words in the specific order w1 . . . wn in a particular sentence S.
This specific instantiation of the feature set is said to be compact, if the distance between
adjacent words wi and wi+1 is no greater than three. A feature set F is said to be compact,
if at least two instantiations of it in specific sentences are compact. For example, consider
the following two sentences [229]:

“This is the best digital camera on the market.”
“This camera does not have a digital zoom.”

The first sentence is compact for the feature set {“digital”, “camera”}, but the second is not.
After the compact features have been identified, the redundant features with only single

words are removed. For example, if the phrase “battery life” is both compact and frequent,
it is often possible for the single word “life” to be redundant with respect to this phrase. In
order to find redundant words, the p-support (i.e., pure support) of a word is found, which
is the number of sentences containing the word as a noun, in which the frequent superset
phrases are not present. For example, if the support of “life” is 10, that of “battery life” is 4,
and that of “life guarantee” is 5 (with the last two in disjoint sentences), then the p-support
of “life” is 10 − 5 − 4 = 1. The p-support of single words must be greater than a separate
threshold on that quantity in order for it to not be considered redundant. This threshold
was set to 3 in [229].

After product feature (aspect) extraction, the next phase is that of opinion word extrac-
tion. An important observation is that opinion words are often adjectives that occur near
the product feature words within the sentences. Therefore, the following rule is used [229]:

For each sentence in the review database, if it contains any frequent feature,
extract the nearby adjective. If such an adjective is found, it is considered an
opinion word. A nearby adjective refers to the adjacent adjective that modifies
the noun/noun phrase that is a frequent feature.

The adjacency rule also provides a way of identifying product features that were missed by
the initial attempt. This is because some of the features are inherently infrequent, which
cannot be found by frequent pattern mining algorithms. For example, consider the phrase:

“Red eye is easy to correct.”

The phrase “red eye” might be a useful product feature, but with insufficient frequency.
It is noteworthy that this product feature occurs close to the word “easy.” Therefore, in
order to identify the elusive features, which are infrequent, one uses the opinion words to
determine the features as follows:

For each sentence in the review database, if it contains no frequent feature but
one or more opinion words, find the nearest noun/noun phrase of the opinion
word. The noun/noun phrase is then stored in the feature set as an infrequent
feature.

426 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

The nearest noun/noun phrase of an opinion word is the noun or noun phrase that the
opinion word modifies.

After extraction of the opinion features, the semantic orientation (i.e., polarity) of each
sentence is identified by using WordNet to determine the orientation of the opinion words
in it. The opinion orientation is identified by using the dominant orientation of the opinion
words in the sentence. Note that this approach can also be considered sentence-level classi-
fication, although it can also be used for aspect-level classification because of the fact that
it identifies the product features in individual sentences.

13.4.2 OPINE: An Unsupervised Approach

One of the earliest uses of information extraction for opinion mining was the OPINE sys-
tem [387], which is directly based on an information extraction system [158] referred to as
KnowItAll. The basic idea in this approach is to use the steps of (1) identifying products and
their attributes, (2) Mining opinions about product features, and (3) determining opinion
polarity. As a final step, one can also rank the opinions if needed.

The OPINE system distinguishes between explicit features and implicit features. The
former can be mined more easily using certain syntactic characteristics. For example, the
word “scan quality” refers to an explicit product feature, although it might sometimes be
implicitly referred to as “scans.” In order to find the explicit product features, one needs to
find the related concepts such as parts and properties of the product. The first step is to find
noun phrases from reviews that have frequency greater than an experimentally set threshold.
Each such noun phrase is assessed by computing the pointwise mutual information (PMI)
scores between the phrase and meronymy discriminators associated with the product class.
Examples of such discriminators include “of scanner,” “scanner has,” and so on. Note that
this basic idea is similar to that of [477], as discussed in Sect. 13.2.1. However, the goal here
is to find product features rather than opinion words.

Once the product features have been extracted, the opinion words are assumed to the
terms that occur in the vicinity of these features. This assumption is similar to that used
in [229]. However, rather than using simple proximity conditions, ten specific extraction rules
are defined in order to identify opinion phrases. At this point, one is able to generate opinion-
feature-sentence triplets, each of which is assigned a semantic orientation. This achieved
by first starting with a semantic orientation of the (opinion) word, generalizing it to a
semantic orientation of the word-feature pair, and then generalizing it to the word-feature-
sentence triplet (i.e., opinion-feature-sentence triplet). The basic idea is to successively
incorporate context into the process. For example, “hot coffee” might be positive whereas,
“hot room” might be negative. This is achieved with the use of relaxation labeling in which
the neighborhoods of word-feature pairs are defined. For example, if “hot room” appears
in the neighborhood of many words with negative orientation like “stifling kitchen” then
the relaxation labeling approach will eventually assign it a negative label in an iterative
update process. The initial semantic orientation of a word is defined using the same PMI-
based approach [477] discussed in Sect. 13.2.1. The neighborhood relationships in relaxation
labels are inferred from conjunctions and disjunctions in review text, syntactic dependency
rules, relationships between words (e.g., grammatic/tense variations of the same word), and
WordNet-specified dependencies. Note that the final result of the approach assigns polarities
to specific mentions of opinion words and features in individual sentences.

13.4. ASPECT-BASED OPINION MINING AS INFORMATION EXTRACTION 427

13.4.3 Supervised Opinion Extraction as Token-Level Classifica-
tion

An interesting method for supervised opinion extraction with hidden Markov models was
the OpinionMiner system [234]. This approach is particularly notable because it transforms
the (supervised) opinion mining problem to almost the same form that is used in information
extraction. The approach is a holistic technique that answers several useful questions that
arise in the aspect-based opinion mining. These questions pertain to (1) the extraction of
potential product entities and opinion entities from the reviews, (2) the identification of
opinion sentences that describe each extracted product entity, and (3) the determination of
opinion orientation (positive or negative) given each recognized product entity.

To achieve these goals, one needs to define entity tags, as is used in information extraction
(cf. Chap. 12). The work in [234] defined two types of entities, which are referred to as aspect
entities and the opinion entities. Examples of aspect entities and opinion entities in the
context of opinions provided on a camera are shown below.

Tag set Corresponding entities

〈PROD F〉 Feature entity
(e.g., camera color, speed, size, weight, clarity)

〈PROD P〉 Component (part) entity
(e.g., LCD, battery)

〈PROD U〉 Function of entity
(e.g., move playback, zoom)

〈OPIN P〉 Positive opinion entity
(e.g., “love”)

〈OPIN N〉 Negative opinion entity
(e.g., “hate”)

〈BG〉 Background words
(e.g., “the”)

The original work [234] also defines notions of implicit and explicit opinions with a more
refined tag set, although we omit this distinction for simplicity. As in traditional information
extraction, entities can be represented by either individual words or phrases. However, it
is much easier to build Markovian models by tagging at the word level. Therefore, we
append one of the three symbols corresponding to {B,C,E} corresponding to beginning,
continuation, and end word of the tag. For example, the beginning word of a product feature
becomes tagged by 〈PROD FB〉, a continuation word by 〈PROD FC〉, and an end word
by 〈PROD FE〉. This type of hybrid tagging approach is used commonly in information
extraction (cf. Sect. 12.2.2 of Chap. 12) in order to transform the problem to token-level
classification. Token-level classification can be handled much more easily with a variety of
sequence-centric models. Consider the sentence, “I love the ease of transferring the pictures
to my computer.” Then, this sentence is tagged as follows:

I︸︷︷︸
BG

love︸︷︷︸
OPIN P

the︸︷︷︸
BG

ease︸ ︷︷ ︸
PROD FB

of︸︷︷︸
PROD FM

transferring
︸ ︷︷ ︸
PROD FM

the︸︷︷︸
PROD FM

pictures
︸ ︷︷ ︸
PROD FE

to︸︷︷︸
BG

my
︸︷︷︸
BG

computer
︸ ︷︷ ︸

BG

.

In the above example (based on [234]), opinion entities and background tokens are not
encoded in hybrid format, because they are treated as independent entities. However, it is
also possible to encode these types of entities in hybrid format, especially in cases where the

428 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

presence of phrases is common. This transformation creates the same token-wise classifica-
tion problem, as is used in the information extraction problem (see Sect. 12.2.2). As a result,
almost all the information extraction methods such as hidden Markov models, maximum
entropy Markov models, and conditional random fields (cf. Sects. 12.2.3, 12.2.4, and 12.2.5)
can be used for this problem. Although the approach in [234] uses a hidden Markov model
for solving the problem, the specific details of the approach are less important than the
fact that the transformation in this paper opens the door to use of a well-known family
of techniques from information extraction. Indeed, a later work [288] used a similar kind
of token-level classification in combination with conditional random fields for aspect-based
opinion mining. Furthermore, it is also possible to focus exclusively on extracting other
types of properties of opinions (e.g., opinion sources or only opinion targets) rather than
mining opinion phrases. The main difference among all these cases lies in the preprocessing
step of deciding how the tokens in the sentence are labeled. The work in [233] proposed
a method based on conditional random fields in order to identify the opinion targets. The
sources of opinions are identified in [97] with conditional random fields.

It is also noteworthy that this family of Markovian models for information extraction
allows the use of a wide variety of features associated with each token, such as the orthog-
raphy, part-of-speech and so on. One can, therefore, engineer useful features in the opinion
mining problem as in the case of the information extraction problem. The work on feature
engineering for opinion mining is limited compared to that in information extraction, and
there is significant scope of using such methods in opinion mining. Furthermore, the recur-
rent neural networks and long short-term memory networks discussed in Chap. 10 can also
be used for token-level classification in opinion mining (cf. Sect. 10.7.6).

13.5 Opinion Spam

Opinion mining is often performed on reviews of products, in which good reviews are re-
warded with customer interest and better sales. This fact provides a significant incentive to
the sellers and manufacturers of items to cheat on the reviews. For example, the author of
a book on Amazon might post fake reviews about his or her item. The problem of opinion
mining is closely related to that of shilling recommender systems [3] in which users post
fake ratings about items. Such users are referred to as “shills” in the parlance used in the
field of recommender systems.

The main difference between the field of shilling recommender systems and opinion spam
is that the former is exclusively devoted to the analysis of numerical ratings, whereas the
latter is (almost) exclusively focused on the textual component of the review. In the case
of opinion mining, numerical ratings are not always available, and therefore it makes sense
to focus on the textual component. Nevertheless, in cases where textual reviews are posted
with numerical ratings, it makes sense to use both types of methods to detect fake reviewers.
There are two primary types of spam discovery. The first uses supervised learning in order
to discover fake reviews. The second uses unsupervised methods to detect fake reviewers
who have certain types of atypical behaviors.

13.5.1 Supervised Methods for Spam Detection

In supervised methods, it is assumed that training data is available indicating which reviews
are fake, and which ones are not. The main problem with this approach is that it is very
hard to obtain labeled training data. Furthermore, unlike many other types of topical clas-

13.5. OPINION SPAM 429

sification, manual annotation is extremely difficult. After all, spammers have an inherently
deceptive intent, and it is difficult to manually label a review as a spam just by reading
it. However, some types of reviews are easier to classify using manual labeling. The work
in [235] defined three types of reviews:

• Type I: The first type of spam contains untruthful opinions on products. These types
of reviews might either promote a product, or they might maliciously try to harm
the reputation of a product. This is the most common type of spam and it is often
difficult to identify such types of spam manually because a user might be careful while
crafting it.

• Type II: The second type of spam contains opinions about product brands but not
about the manufacturers. This type of spam might be caused by the employee of a
specific brand trying to market all the products for that brand. In many cases, such
type of spam tries to praise or criticize the brand rather than the product itself, when
the spammer has not spent the time needed to craft careful product-specific opinions.

• Type III: The third type of spam contains advertisements and other non-informative
content about individual products.

The second and third types of spam are relatively easy to manually identify and label.
Therefore, the work in [235] treats the prediction of a spam of the first type differently from
the spams of the second two types. The first type of spam is referred to as deceptive spam,
whereas the second two types of spam are referred to a disruptive spam [369].

13.5.1.1 Labeling Deceptive Spam

The creating of labeled data is the key in using supervised methods for spam detection. Since
disruptive spam is relatively easy to label manually, the main challenges arise in terms of
how deceptive spam may be labeled. Therefore, this section will focus on the problem of
labeling deceptive spam. Several techniques have been proposed in the literature for labeling
deceptive spam.

1. Leveraging duplicates: One approach to labeling is by identifying reviews that were
duplicates or near duplicates. Although duplicates might sometimes be legitimately
caused by a user clicking twice on the “submit” button by accident, there are other
types of duplicates that are often spam. In particular, near duplicates form the same
userid on different products, or duplicates from different userids on either the same or
different products are often spam. The work in [235] marks these reviews as spam, and
the remaining reviews are marked as non-spam. Duplicates were detected by extracting
the bigrams from each review, and then marking a pair of reviews as similar if the
Jaccard coefficients between their bags-of-bigrams was greater than 0.9.

2. Constructing a spam review training data set using Amazon Mechanical Turk: A sec-
ond approach is the use of Amazon Mechanical Turk to have users hand-craft fake
reviews [369] (of a positive nature). This approach uses reviews of hotels as a test
case. Truthful reviews were obtained by using 5-star reviews from TripAdvisor after
removing some of the reviews that were more likely to be spam. In particular, reviews
that were unreasonably short or were submitted from first-time authors were removed.
The idea here is to ensure that truthful reviews are contaminated with as little spam
as possible. The fake reviews were obtained from 400 Amazon Turk participants, who

430 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

were asked to comment on a particular hotel (from the same set used in the truthful
reviews). The Turker was asked to assume that they work for the hotel’s marketing
department, and to pretend that their boss wants them to write a fake review. The
review needed to sound realistic and portray the hotel in a positive light. Finally, the
(larger number of) truthful reviews were subsampled down to 400 in such a way that
the length distribution of the reviews in the two sets was the same.

In general, the approach of manual labeling with crowd-sourced system like Amazon Me-
chanical Turk does come at a cost, although it provides the benefit of more realistic training
data. There are still some residual biases in the data, because a simulated user on Amazon
Mechanical Turk has a different motivation for submitting a fake review than a fake reviewer
in the real world.

13.5.1.2 Feature Extraction

The features that are used for identifying review spam are extracted from the review content,
the reviewer who posted the review, and the product being reviewed. Some commonly used
features [235] are as follows:

1. Many reviewer sites like Amazon have feedback mechanisms. In such cases, the num-
ber of feedbacks, the number of positive feedbacks, and the percentage of positive
feedbacks are used as features.

2. Longer reviews and titles tend to get more positive feedbacks (which is recognized by
spammers). Therefore, the lengths of the review title and/or body could be used as
features.

3. Earlier reviews tend to get more attention. Therefore, the temporal rank of the review
of a product is used as a feature.

4. Spammers tend to be unbalanced in their use of opinion words. Therefore, the per-
centage of positive and negative opinion words are used as features.

5. Spammers often provide excessive detail and over-emphasize with capitalization.
Therefore, the percentages of numerals, capitals, and all-capital words in the review
were extracted.

6. Some features are also extracted based on the similarity between the review and the
description of the product, or the number of times that the brand name is mentioned.
These types of spam occur in cases where an advertisement is posted or the opinion
is about a specific brand.

7. For product-oriented systems, ratings are available. Therefore, the deviation of the
rating from the average, the rating value, and the orientation of the rating are ex-
tracted as features.

8. A feature can be extracted when a good review is posted just after a bad review and
vice versa. The former is often common when a spammer tries to do damage control.

9. The percentage of time that a reviewer was the first to post a review can be extracted
as a feature. Furthermore, the percentage of time that the reviewer posted the only
review can be extracted.

13.6. OPINION SUMMARIZATION 431

10. Spammers often tend to give similar ratings to various products to save time. There-
fore, the standard deviation of ratings posted by the reviewer can be extracted. The
average rating and the distribution of good and bad ratings can be extracted.

With these extracted features, the work in [235] used logistic regression as the classifier
of choice. Other work has also used support vector machines. The optimal choice of the
classifier might be sensitive to the particular data set at hand.

13.5.2 Unsupervised Methods for Spammer Detection

Unsupervised methods are generally focused on detecting spammers (i.e., users posting
spam) rather than spam reviews. The basic idea here is that spamming users often have
certain types of undesirable behaviors that are easy to detect with unsupervised methods.
Spammers are sometimes also referred to as trolls in some online settings. Some sites, such as
Slashdot, Wikipedia, and Epinions, allow users to specify trust and distrust links about each
other, which can be used to create signed network representations of trust and distrust [470].
Such signed networks can be used in combination with PageRank-like algorithms in order
to find trustworthy and untrustworthy users [509]. Such networks can be used in order to
identify the reliability of users and reviews jointly. In settings where users are not allowed
to specify trust and distrust links about one another, it is still possible to predict distrust
links between users by using their feedbacks about each other’s reviews [471]. Finding pairs
of users that distrust one another is helpful in constructing a signed network, which is
eventually helpful in finding spammers. These methods do not use text analysis in any way,
but are, nevertheless, useful for the discovery of spammer behavior.

The work in [293] proposes to find spammers with the use of rating data and content
associated with reviews. This approach uses four different models referred to as (1) the
targeting product, (2) the targeting group, (3) general rating deviation, and (4) early rating
deviation. The scores of these models can be combined to create an integrated score. For
example, to identify the targeted product, multiple reviews on the same product by the
same user with very high/low ratings and similar review text is suspicious. In some cases,
a reviewer may give spam ratings to many different products of the same brand, which
corresponds to the targeting group model. When a reviewer assigns a rating that is very
different from other reviews for the product, then the review is more likely to be spam.
Finally, the early rating deviation model identifies reviewers that rate products soon after
it becomes available for review. Most of these methods do not use deep text analysis, and
therefore we omit a detailed discussion of these methods.

13.6 Opinion Summarization

Opinion summarization is closely related to the problem of text summarization discussed
in Chap. 11. However, there several unique characteristics of the problem in the opinion
mining domain. Like traditional document summarization, one can summarize either a
single document or multiple documents. However, the nature of the summaries can be
either textual or non-textual. Textual summaries are often constructed using considerations
beyond topical characteristics of the document, because the subjectivity of sentences also
plays an important role in deciding whether or not that sentence should be included in
the summary. Another way of classifying summarization methods is in terms of whether or
not they are aspect-based. In the following, we provide an overview of the different types
of summaries that are created from documents. Many of these techniques can be enabled

432 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

by using variations of methods discussed both in this chapter and in the book. In many
cases, opinion summarization is used as the final step after sentiment classification [230],
and therefore the intermediate steps and outputs of sentiment classification provide the raw
statistics needed for summarization.

13.6.1 Rating Summary

This is the simplest type of summary associated with rating-based review systems. For
example, Amazon always provides a summary rating of each item, which is typically the
arithmetic mean of the user provided ratings. Some rating systems also allow users to rate
different aspects of a product, such as the battery. In such cases, one can also provide a
summary of the ratings of each individual aspect. Note that this type of approach does not
use any natural language processing, and it will work only when the opinions are associated
with explicitly specified ratings.

13.6.2 Sentiment Summary

The notion of sentiment summary is similar to that of a rating summary, except that
the techniques of this chapter are used to perform sentiment-based classification of either
the individual documents or the aspects in the documents. Most classifiers will return a
numerical score along with each such classification, which can be viewed as the analog of
a user-specified rating. Subsequently, a summary can be presented at either the overall
(general) level or at the aspect level, which shows the means of the scores. More commonly,
the percentage of positive and negative orientations ate presented in order to provide a more
interpretable summary.

13.6.3 Sentiment Summary with Phrases and Sentences

In this case, the sentiment summary is provided together with key phrases that provide an
explanatory point of view of the summary. For example, if the battery aspect receives a 70%
positive response, one can add the phrases “long lasting,” “sturdy,” and “too noisy” to the
sentiment summary in order to provide better insights. Such methods can be implemented by
extracting the key phrases, sentences, and opinion words that contribute to the classification
process. The sentence- and phrase-level classification methods of Sect. 13.3 are useful in the
process of generating such summaries. It makes sense to use only subjective sentences that
are oriented in one direction or the other for the summarization process. A review may
often contain both strong points and weak points about a product. A contrastive summary
presents the summaries of the strong points and the weak points separately.

13.6.4 Extractive and Abstractive Summaries

These types of summaries are similar to those presented in Chap. 11. In the setting of
opinion mining, opinion words often have greater importance in the creation of summaries.
Furthermore, multi-document summaries are particularly important, since each product
may be associated with multiple reviews. Abstractive summaries try to create more coherent
summaries from a large number of opinions. However, the creation of abstractive summaries
is currently considered too difficult, and is an emerging area of research.

13.8. BIBLIOGRAPHIC NOTES 433

13.7 Summary

Opinion mining and sentiment analysis has gained increasing attention in recent years be-
cause of the vast amount of reviews and other textual data being contributed on social
platforms. Sentiment analysis can be done at the document-level, at the sentence-level, or
at the aspect level. Document-level sentiment mining is an instantiation of the classification
problem, although unsupervised methods also exist for such cases. Aspect-level opinion
mining is a special case of information extraction, and many of the existing information
extraction techniques can be generalized to this case. The quality of opinion mining can
be improved by using various techniques for spam detection. The final process in opin-
ion mining is that of opinion summarization, in which the intermediate steps of sentiment
classification are used to create summaries.

13.8 Bibliographic Notes

An excellent book on sentiment analysis may be found in [305]. Shorter reviews of sentiment
analysis from the same author may be found in individual chapters of [14, 303]. An earlier
review of opinion mining and sentiment analysis from a different set of authors may be
found in [375].

Dictionary-based approaches for opinion lexicon expansion are discussed in [20, 156,
157, 252]. Corpus-based methods with the use of connectives are discussed in [211]. The
use of sentential consistency for corpus-based lexicon expansion is discussed in [139, 254,
310]. Syntactic methods for opinion-based lexicon expansion are discussed in [477]. The use
of double propagation with entity-extraction methods for lexicon extraction are discussed
in [394]. In this approach, entities/aspects and opinion words are extracted together. The
discovery of multi-word opinion expressions with the use of context is discussed in [59]. The
work in [503] distinguishes between the notion of prior polarity of words and that of specific
instantiations of words in a particular context.

Numerous techniques have been proposed for document-based sentiment classification.
In this context, the work in [376] is particularly notable in making numerous advances
to machine-learning methods. Feature engineering methods are particularly important for
document-centric sentiment classification. In this context, methods for using term position-
ing [376, 260], negation [127], valence shifters [384, 467], and topical context [199, 260, 356]
for engineering features have been proposed. The supervised learning of a vector-space rep-
resentation of text with the use of ratings is discussed in [315]. Methods for using regression
in combination with sentiment analysis in order to infer the precise degree of polarity may
be found in [374, 504]. The integration of opinions from multiple sources with the use of
semi-supervised topic modeling is discussed in [311]. The works in [467, 477, 478] proposed
the use of unsupervised and lexicon-based methods for sentiment classification. The work
in [478] is notable because it shows that latent semantic analysis can be useful in finding the
semantic orientation of words. The use of joint topic modeling and sentiment classification
is proposed in [302, 333].

The earliest definition of sentence subjectivity seems to be attributed to the work in [499].
An overview of subjectivity in opinion mining may be found in [304]. The effect of the
semantic orientation of adjectives on sentence subjectivity was studied in [212]. The work
in [503] showed how various types of contextual features such as negations and valance
shifters can change the default polarity of a word. The work in [373] is among the earliest
works on emphasizing the importance of document subjectivity on sentiment classification.

434 CHAPTER 13. OPINION MINING AND SENTIMENT ANALYSIS

A rule-based approach for discovering subjective and objective sentences from unannotated
texts may be found in [500]. The use of conditional random fields for converting sentence
classification to document classification is discussed in [329].

The earliest methods for aspect-based information extraction were unsupervised tech-
niques [229]. The OPINE system [387] was built on top of an unsupervised information
extraction system [158]. A discussion of open information extraction and its relevance to un-
supervised aspect-based opinion mining is provided in [159]. One of the earliest techniques
for supervised information extraction was proposed in [541]. The work in [234] formally
recognized supervised aspect-based opinion mining as an information extraction task by
transforming the problem to token-wise classification. This work used hidden Markov mod-
els in order to perform joint opinion mining and aspect extraction. The works in [233, 288]
used conditional random fields to provide a solution to the opinion mining problem with a
similar token-wise classification. The work in [97] focuses on the problem of opinion source
mining with the use of conditional random fields.

Methods for finding review spam were proposed in [235, 369]. This work is comple-
mentary to the techniques for finding shills in recommender systems [3]. Signed network
methods for finding trustworthy users in social media are discussed in [470, 509]. Tech-
niques for finding opinion spammers with rating analysis and text mining are discussed
in [46, 293]. The works on shilling recommender systems, trust analysis, and opinion spam
have largely been conducted independently by multiple communities of researchers. It is
likely that many of these methods are complementary to one another. A future direction
of work could compare/contrast these methods and possibly combine them where needed.
Overviews of methods for opinion summarization may be found in [259, 375].

13.8.1 Software Resources

The seminal survey by Pang and Lee [375] contains a dedicated section on publicly available
resources. A number of data sets for benchmarking opinion mining and sentiment analysis
algorithms are available at [612]. A key part of opinion mining is that of linguistic process-
ing, such as part-of-speech tagging. The Stanford NLP [554] and NLTK site [556] contain
several natural language processing tools that can be used for tokenizing, term extraction
operations, and part-of-speech tagging. Furthermore, opinion lexicons are also available
at [30, 612]. A methodical approach for creating a sentiment-centric corpus from Twitter is
discussed in [372]. For the classification and entity extraction tasks, which are often used
in opinion mining, refer to software sections of Chaps. 5, 6, and 12. Furthermore, recent
methods for opinion mining use modern feature engineering tricks like word2vec, which is
discussed in Chap. 10. The software for using LSTM networks in the context of sentiment
analysis is available at [616], and this approach is based on the sequence labeling technique
proposed in [195]. Some of the text summarization methods are also useful for opinion sum-
marization, and an overview of the software resources for text summarization may be found
in Chap. 11.

13.9 Exercises

1. Write a computer program that uses the package available at [616] for sentence-level
sentiment classification.

2. Design a framework and architecture for aspect-based sentiment classification with
the use of recurrent neural networks.

Chapter 14

Text Segmentation and Event Detection

“To improve is to change; to be perfect is to change often.”—Winston Churchill

14.1 Introduction

Although text segmentation and event detection might seem like different problems, they
are closely related. In both cases, the text in one or more documents is scanned sequentially
in order to detect key changes. Therefore, the concept of change detection in a sequential
context is the overarching theme of this chapter. This chapter covers the following topics:

1. Text segmentation: The goal of text segmentation is to divide a single document
into coherent linguistic or topical units. Linguistic segmentation corresponds to the
segmentation into words, sentences, or paragraphs, and is often based on punctuation
and language-specific issues. On the other hand, topical segmentation is based on
semantic content. In all cases, the unit of segmentation is a smaller portion of a
document, such as a line, sentence, or a fixed number of tokens.

2. Mining text streams: In the text stream setting, the text is analyzed sequentially within
the context of multiple documents. Therefore, the unit of analysis is an individual
document. In this setting, it is particularly important to process the streams in a
single pass. A foundational problem in the stream setting is that of clustering text
streams, because it provides a summary representation of the stream and serves as a
starting point for solutions to other problems like event detection.

3. Event Detection: Event detection refers to the occurrence of unusual and sudden
changes in a text stream structure, which are often caused by external shocks. A
first step in event detection is that of creating a summary representation of the data
stream. This summary representation is then leveraged for finding unusual deviations
that correspond to informative events.

436 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

This chapter will provide an overview of the key topics and ideas underlying each of
these subject areas.

14.1.1 Relationship with Topic Detection and Tracking

It is noteworthy that many of these topics are closely related to the topic detection and
tracking effort (TDT), which was a DARPA-sponsored1 initiative in finding events in a
stream of broadcast news stories. The original effort contained three major tasks: (1) seg-
menting a stream of data, especially recognized speech, into distinct stories; (2) identifying
those news stories that are the first to discuss a new event occurring in the news; and (3)
given a small number of sample news stories about an event, finding all following stories
in the stream. A more detailed description may be found in the final report of the pilot
study [18]. The last of these tasks is an online classification task, and almost all the methods
in Chaps. 5 and 6 can be used for this problem. Therefore, this chapter will primarily focus
on the first two tasks. Furthermore, some related problems that are not discussed in the
original TDT effort will also be discussed in this chapter.

The current state-of-the-art supports many applications beyond the ones discussed in
the original TDT effort. For example, the ideas in the segmentation task have now been
generalized to the information extraction domain. Similarly, from a chronological point of
view, the streaming setting was investigated several years later than the original TDT effort,
but it has more stringent computational and memory constraints. There are, however, close
similarities in the TDT and streaming setting, which are both temporal in nature. This
chapter will, therefore, provide an integrated overview of stream mining, segmentation, and
event detection.

14.1.2 Chapter Organization

This chapter is organized as follows. Section 14.2 discusses the problem of text segmentation.
The problem of mining text streams is discussed in Sect. 14.3. Section 14.4 studies the
problem of event detection. A summary of the chapter is provided in Sect. 14.5.

14.2 Text Segmentation

Text segmentation can be either linguistic or topical. In linguistic segmentation, the lin-
guistic characteristics of a text document, such as words, sentences, or paragraphs, are used
to divide it into smaller units. In topical segmentation, a long document containing mul-
tiple topics is divided into contiguous units that are topically coherent. This chapter will
be primarily focused on topical segmentation in the unsupervised case, although supervised
settings can handle both cases.

Topical segmentation has a number of useful applications in information retrieval and
word-sense disambiguation. In many search applications, it may be helpful to highlight the
coherent segments of a long document that are most relevant to the search. Early experi-
ments by Salton et al. [422] showed that comparing a query against coherent units of the
text is more effective than against the full document. In a different work, Salton et al. [425]
showed the utility of topical segmentation for text summarization. It is noteworthy that

1DARPA stands for Defense Advanced Research Projects Agency, which is an agency of the United
States Department of Defense. It is responsible for the development of emerging technologies for use by the
military, and often funds academic research efforts.

14.2. TEXT SEGMENTATION 437

the extractive summarization approaches discussed in Chap. 11 extract individual sentences
from the document to create summaries. An alternative approach is to use topical segments,
which was recommended by Salton et al. [425]. Finally, an important application of text
segmentation is word-sense disambiguation. It is much easier to disambiguate between the
multiple senses of a word, when a coherent segment of the document in which the word
occurs is available.

A natural question arises as to why one cannot simply use paragraphs as natural topical
segments. Paragraphs are often used to demarcate topical changes, although these expecta-
tions are often not met in real-world applications. In many newspapers, the text is segmented
just to break up its physical appearance for improved readability [213]. Nevertheless, the
known boundaries of paragraphs do provide useful hints about topical changes. Therefore,
several topical segmentation algorithms use the boundaries of paragraphs as the candidate
segmentation points that are used in conjunction with other types of topical analysis for
demarcation of topical segments.

Text segmentation can be unsupervised or supervised. In unsupervised methods, the text
is segmented based on significant changes in the underlying topics. In supervised methods,
examples of valid segmentations are provided to guide the results. Although supervised
methods have the disadvantage of requiring labeled data, they are more useful when one
is looking for a particular type of segmentation. For example, a common application of
supervised segmentation is that of segmenting a list of frequently asked questions (FAQ)
into question and answer segments. In such cases, the specific punctuation, orthography, and
capitalized tokens like “What” can be used to learn the break between questions and answers,
even though such linguistic features are usually ignored in unsupervised topic segmentation.
Therefore, the supervised approach to segmentation is more powerful, and it extends beyond
topical segmentation applications. Supervised segmentation can be transformed into the
problem of token-level classification, which is identical to the setting used in information
extraction (cf. Chap. 12). Consequently, the problems of supervised information extraction
and segmentation are sometimes discussed in the same research papers [270, 326].

14.2.1 TextTiling

TextTiling is an unsupervised approach to topic segmentation [213]. The first step in Text-
Tiling is to divide the text into token sequences of fixed length, which are of relatively small
size compared to the overall length of the document. It is suggested in [213] to use about
20–40 tokens as the length of each such sequence. The position in the text sequence between
two adjacent token sequences is referred to as a gap. The TextTiling algorithm has three
primary components, which correspond to the cohesion scorer, the depth scorer, and the
boundary selector.

Since a gap is the dividing point between two token sequences, a natural step is to
measure the amount of cohesion (i.e., similarity in topic) between the sequences lying on
either side of the gap. The cohesion is measured in terms of the cosine similarity between the
token sequences on either side of the gap. Typically, a block of k token sequences on either
side of the gap is treated as a bag of words for the similarity computation. A high amount
of cohesion indicates that a similar topic is discussed on both sides of the gap. Therefore, a
lower level of cohesion tends to be indicative of a segmental change point, especially if the
surrounding gaps have higher cohesion. This type of comparison is performed with a depth
scorer. For example, if the cohesion is low at a particular gap, as compared to surrounding
gaps, then the depth is considered high. Otherwise, the depth is low. Then, if ci is the
cohesion at the ith gap, then a simplistic definition for the depth at the ith gap would be

438 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

(ci−1− ci)+ (ci+1− ci). Large (positive) values of this depth would imply that the cohesion
is low at the ith gap compared to surrounding gaps. However, such a definition does not
account for the gradual change across multiple token sequences. Intuitively, one wants to
find a deep “valley” of cohesion values when plotting the cohesion against the gap index
as a kind of time-series. Therefore, starting at gap i, one chooses the first gap index l < i
to the left of gap i such that cl−1 < cl. Similarly, starting at gap i, one chooses the first
gap index r > i to right of gap i, such that cr+1 < cr. Then, the depth is defined as
(cl − ci) + (cr − ci). In order to address the problems of noisy variations between adjacent
values, one can smooth this “time-series” of cohesion values using a variety of time-series
smoothing methods before performing the computation.

The final segmentation is done using the boundary detector. The first step is to sort
the depth scores by decreasing value. The gaps are added one by one to the list of valid
segmentation points in this order. However, a gap is not added to the list of segmentation
points, when at least three token sequences do not occur between it and at least one of the
gaps already added to the list of segmentation points. In order to terminate the process
of adding the segmentation points, a termination criterion based on the mean μ and stan-
dard deviation σ of the depth scores is used. The process of adding segmentation points
is terminated when the depth score falls below μ − tσ, where t ∈ [0.5, 1] is a user-driven
parameter. A token-sequence length of 20, and block size of k = 10 token sequences was
used in [213]. However, the proper length of the token sequence and the value of k are likely
to be sensitive to the corpus at hand.

14.2.2 The C99 Approach

The C99 approach [95] is an unsupervised method that maximizes the average pairwise
similarity between sentences in the same segment with the use of a divisive clustering
approach. The first step is to compute the pairwise cosine similarity between each pair of
sentences in the entire document using the vector-space representations of the sentences.
Therefore, for a document containingm sentences, one can create anm×mmatrix S = [sij].
The rows (and columns) of this matrix are ordered so that adjacent rows (and columns)
correspond to adjacent sentences. Note that pairwise similarity on short text segments (like
sentences) using the vector-space model can be notoriously unreliable. Furthermore, there is
significant variation in the intra-sentence similarity depending on location in the document.
For example, the sentences in the abstract might vary quite a lot, but the sentences in a
later portion of the document might be tightly related. This implies that it makes sense to
perform some kind of local normalization of the similarity values.

The C99 technique converts these similarity values into ranks based on relative locality
analysis. To achieve this goal, we use a locality threshold t � m, which defines the local
region with respect to which a similarity value sij is compared. Each similarity value sij in S
is replaced with a rank value rij , which is equal to the number of neighboring entries of (i, j)
in S, which are less than sij . How is the neighborhood defined? Formally, the neighborhood
of (i, j) is the square region centered at (i, j) such that each side has length 2 · t+ 1. Thus,
the use of the value of t = 1 results in a 3 × 3 square matrix centered at (i, j). Then, the
value of rij is equal to the number of entries among these 3 × 3 = 9 cells that are strictly
less than sij . Formally, we can define rij as follows:

rij = |{(p, q) : |p− i| ≤ t, |q − j| ≤ t, spq < sij}| (14.1)

Note that a different region of size (2t + 1) × (2t + 1) needs to be examined for each cell
in order to compute its rank value. Examples of four steps of the conversion of similarity

14.2. TEXT SEGMENTATION 439

values to rank values are shown in Fig. 14.1. This example is directly adapted from [95],
and it uses integer similarity values for simplicity, although the cosine values always lie in
the range (0, 1) in practice. Furthermore, this example uses t = 1 for simplicity, but a value
of t = 5 was used in [95]. Let the resulting matrix be denoted by R.

2 3 2 8

6

1745

1
3687

94
7

2 3 2 8

6

1745

1
3687

94
7 4

2 3 2 8

6

1745

1
3687

94
7
3

4

2 3 2 8

6

1745

1
3687

94
7
3

4
6

SIMILARITY
MATRIX

RANK
MATRIX

STEP 2

SIMILARITY
MATRIX

RANK
MATRIX

STEP 1

SIMILARITY
MATRIX

RANK
MATRIX

STEP 3

SIMILARITY
MATRIX

RANK
MATRIX

STEP 4

Figure 14.1: Converting absolute similarity into localized rank-centric similarity

The final step is to use divisive hierarchical clustering in order to find the segmentation
points. It is assumed that the segmentation points are always at sentence boundaries, and
therefore there are only (m−1) segmentation points. Note that picking any of these segmen-
tation points will result in two segments. For each such candidate segmentation, its quality
is computed as follows. The similarity between each pair of sentences (according to matrix
R) in the same segment is aggregated. For example, if one segment contains 10 sentences
and another contains 5 sentences, then a total of 10 × 10 + 5 × 5 = 125 similarity values
is retrieved from matrix R and aggregated. This value is divided by 125 to provide the
quality of the candidate segmentation. The candidate segmentation with the best quality is
selected out of all the (m−1) possible segmentations. If needed, constraints can be imposed
on the minimum length of a segment. This process is repeated recursively until the use of a
division no longer improves the average segmentation quality significantly. The work in [95]
also suggests the use of a number of efficiency optimizations to improve the speed of the
approach.

Divisive clustering is not the only way one might perform segmentation. Other meth-
ods like [425] uses pairwise similarity analysis for segmentation. In particular, the method
in [425] creates a weighted graph of pairwise similarity values, drops links with low similarity
weight, and then performs graph partitioning for segmentation.

14.2.3 Supervised Segmentation with Off-the-Shelf Classifiers

The basic idea in this approach [44] is to associate a “Yes” or “No” tag with the end of
each sentence, which is a potential segmentation point. This model is supervised because
it is assumed that each such point is like an instance in either the training or test data.
Each potential segmentation point is converted into a multidimensional feature vector by
extracting contextual features from it. Let the set of features at a potential segmentation
point be denoted by X with the use of (an as yet unspecified) feature engineering procedure.

440 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

Note that one can extract labeled pairs (X, y) from each labeled segmentation point in the
training data. For the test segmentation points, the binary labels are not available. This
is a classical supervised learning setting. Then, the problem can be decomposed into the
following two subtasks:

1. The first step is to extract a set of words X at a potential training or test segmentation
point. This set X is defined by 500 words to either side of the segmentation point.

2. Engineer a new set of features Z = (z1, . . . , zd) = (f1(X), . . . fd(X)), which are more
sensitive to the label of the potential segmentation point. This step is described in
more detail later. Note that these features are extracted for all the (potential) training
and test segmentation points.

3. Build a binary classification model using the engineered features. For any poten-
tial segmentation point in the test data (with features Z), compute the probabilities
P (Yes|Z) and P (No|Z). Although a logistic regression classifier (cf. Chap. 6) naturally
provides probabilistic predictions, one can use any off-the-shelf classifier (e.g., decision
tree) that outputs a numerical score instead of a probability value.

4. Given the aforementioned probabilities at each potential segmentation point, identify
those segmentation points for which P (Yes|Z) > α and no other (selected) segmenta-
tion point lies within ε units to the left or right of that position. Note that this step
can be implemented in a similar way as the final step of the TextTiling algorithm.

It remains to be described how the features of each potential segmentation point are ex-
tracted. Blindly using the context of 500 words directly is not likely to be very discriminative
for segmentation point detection. In the following, we provide a very simplified variation
of the feature engineering process in [44]. Our goal here is to convey the basic principles
of [44] in a compact way without introducing a large amount of mathematical formalism.
The work in [44] engineers two types of features:

• Topicality feature: Imagine a sequential word predictor that predicts the next word
from the previous word using a language model. When the topic changes very suddenly
at a segmentation point, the predicted probability of a word based on a bag of larger
context (long-range prediction) would be different from that predicted by a bag of
shorter context. At a potential segmentation point with the next word as w, one can
use the tri-gram probability P (w|w−1w−2) as the short-range prediction. Furthermore,
one can use logistic regression on the subset of words in X corresponding to the history
of last 500 words to predict w. In other words, the probability P (w|X) is the long-
range prediction. The ratio of these two quantities provides the topicality feature.
Our description of the topicality feature is a highly simplified variation of the “trigger
pair” approach discussed in [44], but it captures the basic principle of what is achieved
with the use of such a feature. Note that one can use histories of different lengths to
construct multiple such features if needed.

• Cue-word features: The cue-word features are defined for each word in the lexicon
at a potential segmentation point corresponding to (1) whether each word occurs
in the next few words after a potential segmentation point; (2) whether each word
occurs in the next few sentences; (3) whether each word occurs in the previous few
words/sentence; (4) whether each word occurs in the previous few sentences but not
in the next few sentences; and (5) whether a word begins the preceding/next sentence.

14.2. TEXT SEGMENTATION 441

The above description uses the word “few” several times. The word “few” is not
interpreted as a single value, but multiple features are extracted for different sizes of
the history or future context. Typically, this value ranges between 1 and 10. Clearly,
such an approach would extract a large number of features because these questions
are asked for each word in the vocabulary.

For such high-dimensional settings, linear or generalized linear models (like logistic regres-
sion) are effective. Furthermore, it is extremely important to use feature selection mecha-
nisms or other classifiers with built-in feature selection mechanisms like regularization.

It is noteworthy that this type of approach is not restricted to Yes/No types of topical
segmentations. One can even recognize specific types of segments, such as the segmentation
of a frequently-asked-questions (FAQ) list into question, answer, and other segments. One
can view this problem as that of multi-label classification as opposed to binary Yes/No
classification. This type of domain-specific segmentation goes beyond topical segmentation,
and it is possible using only supervised models. For such multi-way labeling settings, it is
more common to use another class of sophisticated models known as Markovian models.
These include methods like maximum entropy Markovian models and conditional random
fields. Many of these models are also used for information extraction, and their use is
discussed in the next section.

14.2.4 Supervised Segmentation with Markovian Models

The feature engineering approach discussed in the previous section predicts the labels of
different sequence points with the use of off-the-shelf classifiers by treating them as in-
dependent instances with engineered features. It is only in the final postprocessing phase
that the predictions at various segmentation points are integrated with the use of ε-length
constraints on the segments. These types of oversimplified ways of integrating independent
predictions become particularly inaccurate in domain-specific settings, where the segments
might have specific interpretations (like “question” and “answer” labels in a FAQ appli-
cation). This is somewhat of an over-simplification because the class label prediction at
a particular segmentation point should influence the one at the next segmentation point.
Markovian models are able to learn the labels at different segmentation points jointly so as
to maximize the overall prediction probability over the whole text segment.

The problem of supervised segmentation is very similar to that in information extraction.
The main difference is that information extraction is token-level classification, whereas seg-
mentation is sentence-level classification. Just as each entity in information extraction might
contain multiple tokens, a text segment might contain multiple sentences. (see Sect. 12.2.2
of Chap. 12). Therefore, the unit of analysis is different, although the broader principles
are similar. As a result, almost all the information extraction methods such as hidden
Markov models, maximum entropy Markov models, and conditional random fields (cf.
Sects. 12.2.3, 12.2.4, and 12.2.5) can be used for this problem. It is noteworthy that the
many of the papers on Markovian models for information extraction [326, 270] explicitly
consider text segmentation as an additional (or main) application of these sequence clas-
sification methods. Refer to Chap. 12 for a discussion of these methods. Furthermore, a
natural approach for performing token-level classification with recurrent neural networks is
discussed in Sect. 10.7.6 of Chap. 10.

Since these models are already described in Chap. 12, we restrict our discussion in this
chapter to how these models are applied in the context of text segmentation. For example,
consider the FAQ segmentation application in which the training data is labeled into four
classes corresponding to “question,” “answer,” “head,” or “tail.” A snapshot of the training
data, based on [326], is shown in Fig. 14.2.

442 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

This data contains four different labels (with three of them shown in the figure), and the
nature of the segments are highly domain-specific. The typical cue-words or the topicality
features that are extracted in the previous section are unlikely to work very well in this
type of application. In such settings, a considerable amount of domain-specific effort needs
to be invested in the feature engineering process associated with each unit of the sequence.
Each unit in the sequence might correspond to the end of a sentence or a line, which is a
potential segmentation point. For example, the work in [326] used the end of each line as a

<head> X-NNTP-Poster: NewsHound v1.33
<head>
<head> Archive-name:acorn/faq/part2
<head> Frequency: monthly
<head>
<question> 2.6) What configuration of serial cable should I use
<answer>
<answer> Here follows a diagram of the necessary connections
<answer> programs to work properly.They are as far as I know t
<answer> agreed upon by commercial comms software developers fo
<answer>
<answer> Pins 1,4, and 8 must be connected together inside
<answer> is to avoid the well known serial port chip bugs. The

Figure 14.2: Example of training data labeling for FAQ segmentation

Table 14.1: Features extracted from each line for FAQ segmentation application

begins-with-number contains-question-mark
begins-with-ordinal contains-question-word
begins-with-punctuation ends-with-question-mark
begins-with-question-word first-alpha-is-capitalized
begins-with-subject indented
blank indented-1-to-4
contains-alphanum indented-5-to-10
contains-bracketed-number more-than-one-third-space
contains-http only-punctuation
contains-non-space prev-is-blank
contains-number prev-begins-with-ordinal
contains-pipe shorter-than-30

potential segmentation point. Furthermore, a total of 24 features were extracted from each
line, which are shown in Table 14.1.

The label of the previous state can also be used as a feature, which results in a model re-
quiring joint prediction of labels rather than independent prediction. Similar to information
extraction, one combines the features extracted from the lines as well as the potential labels
of the previous tokens in order to create new features. This creates a powerful sequence-
driven model, although it requires a more expensive learning procedure like generalized
iterative scaling, as compared to off-the-shelf classification models. Although we have not
provided a detailed description of the features in Table 14.1, their names are self explana-
tory. It is easy to see that these features are highly optimized to the FAQ segmentation
application, and they require some thought on the part of the analyst. In most of these
applications, the feature engineering phase is easily the most important part of the learning
process.

14.3. MINING TEXT STREAMS 443

14.3 Mining Text Streams

The problem of mining text streams is closely related to that of topic segmentation. Just as
topic segmentation looks for changes within a text document, a streaming setting often looks
for sudden changes in the stream. The latter problem can also be used to detect new events
in the stream. In fact, the topic detection and tracking project [18] defined the problem of
first story detection, in which the first story on a specific topic is identified in the temporal
setting. In the streaming setting, one can detect deviations by creating a summary model
of the data stream. Such deviations may correspond to new events (or their representative
stories). The natural way to create a summary model from a text stream is to use clustering.
In the following, we describe a simple approach for streaming text clustering, which can be
used for various down-stream tasks like event detection or first-story detection.

14.3.1 Streaming Text Clustering

A fundamental assumption in the streaming setting is that it is not possible to maintain
the entire history of the data stream in detail. Therefore, a summary model of the stream
is often enabled with the use of clustering. In the following, we describe a simplification of
an online streaming approach that is discussed in [13].

The basic idea is to always maintain a summary representation of each cluster. This
summary representation can be viewed as the time-decayed centroid of each cluster. To
create a time-decayed centroid, we have a decay parameter λ that regulates the weight of
the document. At current time tc, the weight of the ith document that arrived at time ti
is denoted by 2−λ(tc−ti). Therefore, if a cluster C contains the documents X1 . . . Xr, which
have arrived at times t1 . . . tr, then the centroid Y (C, tc) of the cluster C is given by the
following:

Y (C, tc) =
∑r

i=1 Xi · 2−λ(tc−ti)

r
(14.2)

Note that this type of decay function changes each centroid at every time stamp by a
multiplicative factor of 2−λ, and the value of 1/λ is the half-life of the decay. Therefore,
it would seem that a clustering approach that adapts k-means would need to update the
centroids at every time-stamp. However, it turns out that such updates can be performed
effectively with the use of a lazy approach. The key point is that the decay-based approach
needs to be applied to a centroid only when a document is added to the cluster, because all
documents in the cluster decay at the same rate of 2−λ, and this is also the decay rate of the
term frequencies in the centroid. Because of the fact that cosine similarity computations are
normalized, the value of the similarity between a centroid and a document is not affected by
the decay. In other words, the cosine similarity between a document and a centroid at time
tc will be the same as that at tc+1, even though the terms in the centroid have decayed with
time. In this sense, the use of exponential decay is particularly convenient. Furthermore,
exponential decay is theoretically well accepted because of its memoryless property.

Therefore, the technique in [13] uses a k-means approach in which we continuously
maintain the centroids of the k clusters. The value of k is an input parameter to the
algorithm. For the jth cluster we maintain the time stamp lj , which is the last time that
a document was added to the cluster. At time tc, when a new document X arrives, the
cosine similarity is computed between X and each centroid, and the index m of the closest
centroid is determined. At this point, the multiplicative decay-based update is applied only
to cluster m. Since the cluster m was last updated at time-stamp lm, the term frequencies in
its centroid are multiplied with the decay factor 2−λ(tc−lm), and then the term frequencies

444 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

of X are added to that centroid. At this point, the last update time lm of the mth cluster
is updated to tc. This approach can be continuously applied for each incoming document
in order to maintain the clusters in real time. The value of λ regulates the rate of decay.
In fast-evolving environments, large values of λ should be used. From an intuitive point of
view, one should set the half-life 1/λ to a time-span over which the patterns are expected
to change significantly. This approach does not yet discuss how outliers or sudden changes
in the patterns are handled. Such changes in patterns are often useful in discovering the
first story on specific events. The work in [13] makes some additional changes to this basic
approach in order to handle outliers. These changes are discussed in the next section.

14.3.2 Application to First Story Detection

The clustering model of [13] can be used in order to identify novelties from the underly-
ing data stream. Instead of using a fixed number of clusters k, the value of k reflects the
maximum number of clusters. The approach starts with a single cluster and incrementally
adds new clusters when an incoming point is not sufficiently close to the existing clusters
(because it is a novelty). Such an approach identifies the novelties and clusters simultane-
ously. The basic idea is to maintain the mean μ and standard deviation σ of the similarity
values of the assignments of documents to clusters in the history of the stream. Note that
these quantities can be maintained incrementally by maintaining the number t of assign-
ments, first-moment (sum) F of assignment similarities, and second-moment (squared sum)
S of assignment similarities. The value of the mean μ is simply F/t, and the value of σ is
computed as follows:

σ =

√
S

t
− F 2

t2
(14.3)

Then, a data point is an outlier when its similarity to closest centroid is less than μ− r · σ,
where r is a user-driven parameter. The work in [13] uses r = 3. When a data point is
deemed to be an outlier, a new cluster is created containing that singleton data point. In
order to make room for this new cluster, one of the older clusters need to be ejected in a
fixed-memory setting. To decide which cluster is ejected, the last update time of a cluster is
used. The cluster j with the least-recent update time (i.e., smallest value of lj) is removed.
If the amount of memory is large enough, one can afford to maintain a large number of
clusters, and one may not even need to use the entire amount of available memory. In such
cases, the “cluster” ejected will often be another singleton cluster containing an outlier,
which was created as a new cluster but was never updated. In such cases, one can identify
which novelties lead to the eventual creation of new clusters (i.e., true events containing
multiple documents) and which novelties are simply isolated outliers. The former type of
outlier can be considered a first story of a larger event. However, if the amount of memory
is relatively small, one will often eject the singleton clusters too early to identify whether
it results in the creation of a new event.

Both probabilistic and deterministic clustering methods have been used in various un-
supervised event detection applications. It is noteworthy that the use of one-pass clustering
for event detection was also proposed in the context of the TDT project [521]. However,
the approach in [13] is more sophisticated in the sense that it can allow for different levels
of evolution with a decay parameter. It also provides the ability to perform analysis of the
events and evolving clusters over different time horizons.

14.4. EVENT DETECTION 445

14.4 Event Detection

An event is something that happens in a particular place at a particular time (e.g., meeting,
conference, terrorist attack, earthquake, tsunami), which has an effect on online streams
of documents such as emails, publications, news, blogs, or tweets. For large events like
earthquakes, the occurrence of an event can often be detected from extrinsic sources like
news outlets. However, for smaller events, the effects are often far more subtle, and can
be detected from pattern changes in the underlying stream of articles. Furthermore, some
sources of document streams like Twitter might sometimes show event indications earlier
than traditional news streams. At the same time, such sources are noisy, and they might
contain all types of noise and other spurious events like rumors. Early (or even predictive)
event detection is often more useful than late event detection, because the occurrence of
larger events is often known in retrospect through external sources. However, for smaller
and inconspicuous events, even retrospective event detection can be useful.

The problem of first-story detection, which is discussed in the previous section, is directly
related to event detection, because a novel story is often the first indicator of a newsworthy
event. The clustering-related approach discussed in the previous section is only one out of
a broader class of methods for event detection. This section will provide a holistic view of
different event detection tasks. In general, there are two settings in event detection:

1. Unsupervised event detection: In unsupervised event detection, examples of relevant
events are not available. Therefore, a significant change in the textual patterns over
time is interpreted as an event.

2. Supervised event detection: In supervised event detection, examples of relevant events
are available for learning purposes.

Both these tasks have different applications. It is also noteworthy that there are many
similarities in the methods used in text segmentation and event detection. For example,
in text segmentation, one looks for natural change boundaries within a single document.
On the other hand, in event detection, one looks for change boundaries across multiple
documents. However, since a single document is more likely to be coherent than a set
of multiple documents, there are some differences in how the change analysis is performed.
These differences are more significant in the unsupervised case, because supervised methods
more adaptable to different settings.

14.4.1 Unsupervised Event Detection

In unsupervised event detection, no prior knowledge is assumed about the types of events
that one is trying to detect. As a result, the problem is very similar to that of change
detection in data streams. The first-story detection technique discussed in Sect. 14.3.2 is
one example of an unsupervised method. The following discusses other popular methods.

14.4.1.1 Window-Based Nearest-Neighbor Method

An early approach that was proposed in [521] used a window-based nearest neighbor method.
In this technique the current document Z was compared to the window of the previous
m documents. Let the vector-space representations of these m documents received in the
stream of documents be denoted by X1 . . . Xm where the documents are received in this
temporal order as well. Then, the score of the document Z is denoted by the inverse of

446 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

the maximum similarity of Z with all documents in the window. Let the similarity between
document Z and Xi be denoted by S(Z,Xi) ∈ (0, 1). Then, the event detection score of the
document Z is as follows:

Score(Z) = 1−MAXi∈{1...m}
{
S(Z,Xi)

}
(14.4)

The value S(Z,Xi) is typically computed with the use of the cosine similarity function. It is
noteworthy that this quantification shows some similarity with that of Sect. 14.3.2 for first-
story detection in which the centroid of a cluster is used for score computation rather than
the actual documents in the window. Furthermore, an exponential decay-based approach
is used in Sect. 14.3.2, rather than the window-based approach discussed here. The work
in [521] also provides a way of scoring that incorporates linear decay within the window
itself. In other words, if the previous window of documents (in temporal order) is denoted by
Xi . . . Xm, then the decay-based score of the incoming document Z is computed as follows:

Score(Z) = 1−MAXi∈{1...m}

{
i

m
S(Z,Xi)

}

(14.5)

Note that the only difference of this scoring method from Eq. 14.4 is the presence of the
linear decay factor (i/m) within the window. As a result, earlier documents in the window
are less likely to have an impact, because they may not have the maximum (adjusted)
similarity with respect to the test document Z.

14.4.1.2 Leveraging Generative Models

Another approach is to use a generative model and assume that every document in the
corpus was generated by this model. Documents that have low fit with respect to this
model are deemed as outliers. There are several choices about how one might design the
generative model:

• One can assume that each document was generated from one of k mixture components
G1 . . .Gk with prior probabilities α1 . . . αk, and each document is generated using a
multinomial distribution P (X|Gr) specific to the rth component. The prior probabili-
ties and the parameters of the distribution are learned using exactly the same process
as discussed in Sect. 4.4.2 of Chap. 4. The main difference is that parameter estimation
process (i.e., E- and M-step) is done incrementally using r passes over the last window
of m points after the arrival of a batch of m points. This ensures that the effect of
previous documents decays with time because points before that window are not used
for iterative updates. The values of r and m affect the rate of decay. The novelty
score of each data point Z in the window of m points is computed with respect to
the model before updating it iteratively. The score is computed using the inverse of
the maximum likelihood fit of the document to the model. This is achieved using the
prior probabilities and multinomial model parameters as follows:

Score(Z) = 1−
k∑

r=1

αrP (Z|Gr) (14.6)

Points with high novelty scores are deemed as the starting points of novel events. Note
that this approach can be viewed as a probabilistic variant of the clustering method.
After all, the EM-based clustering approach is closely related to methods based on
k-means (cf. Sect. 4.5.3 of Chap. 4).

14.4. EVENT DETECTION 447

• Use of PLSA and LDA: The generative process described above uses a single-
membership mixture model. However, it is also possible to use a mixed membership
model like PLSA or LDA in cases where individual documents are likely to discuss
more than one subject. Such an approach is discussed in [531].

It is noteworthy that this approach can be used in conjunction with almost any type of
data and almost any type of generative model. In each case, the maximum likelihood fit
for a document provides it novelty score. For example, one could impose a sequential de-
pendency among the mixture components and use a hidden Markov model to compute the
probabilities of transitions from one state to another. Such methods have been used in text
segmentation [511], and they can also be adapted to event detection.

14.4.1.3 Event Detection in Social Streams

In recent years, social streams have become increasingly popular, which contain continuous
posts from social network users. A specific example is the case of tweet streams from Twit-
ter. Twitter provides a dedicated application programming interface (API) that allows the
collection of a certain percentage of the stream both on a free and on a subscription basis.
Such streams are often very valuable because they can be used to make predictions about
key events.

The work in [10] uses clustering of the tweets in the Twitter social stream in order to
detect events. However, social streams are very noisy, and each tweet contains only about
140 characters. Therefore, the known list of followers of each user are added to a tweet in
order to facilitate the clustering process. The keyword and the follower tokens in a tweet
can be weighted differently in order to provide varying importance to content and structure
in the clustering process. Another problem in the social stream setting is that simply using
a tweet which is very different from other tweets (as in the first-story detection method of
Sect. 14.3.2) will only detect noise. Therefore, the approach in [10] defines events as time
instants in which the relative fraction of points in the cluster has increased over a fixed time-
horizon by a minimum factor α. The intuition is that cascading discussions on a specific
and focused topic in the social network will lead to the sudden growth of particular clusters.
This approach is also generalized to the supervised setting in [10] by treating the ratio of
the change in cluster size over a specific horizon as a feature. The training data is used to
learn the importance of these features to the occurrence of specific types of events.

14.4.2 Supervised Event Detection as Supervised Segmentation

In supervised event detection, one often has examples of key event points in the training
data. These training examples are used to identify the event points in the test data. As
a practical matter, one can assume that a Yes/No label exists after each document that
indicates whether or not a new event has occurred. It turns out that supervised event
detection is closely related to supervised segmentation in text streams.

It is easy to see that supervised event detection is very similar to the supervised seg-
mentation task. An event point is similar to a segmentation point. The main difference is
in terms of how the potential event boundaries are defined. In the segmentation task, the
potential segmentation points are defined at the end of sentences in a single document. In
the event detection task, one can pretend that the entire sequence of text documents is
one long document and the potential “segmentation” (i.e., event) points correspond to the
document boundaries. Just like the supervised segmentation task, we have a Yes/No label
at each potential event point in the training data. It is also possible to have refined labels

448 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

corresponding to multiple types of events. For the test data, the potential event points are
the document boundaries in the test sequence. Note that one can use all the supervised
methods discussed in Sect. 14.2 for this problem. The main difference is in terms of how
the features are extracted. Clearly, longer context windows need to be used in order to
extract the features compared to a text segmentation task. Furthermore, for specific types
of event detection tasks (e.g., tsunami event or terrorist attack) some amount of domain-
specific feature engineering is required. For example, specific cue words or features may be
extracted for these tasks. This is not particularly surprising because such feature engineer-
ing is also required in the case of the segmentation task. The use of off-the-shelf classifiers
is generally more efficient with these models rather than the use of Markovian models. This
is because Markovian models often require complex dynamic programming or generalized
iterative scaling methods at prediction time.

14.4.3 Event Detection as an Information Extraction Problem

The event detection methods discussed so far depend only on broad topical changes between
documents. A different view of event detection is at the mention-level in current documents
like news articles. In such cases, a single document might contain mentions of two different
events such as the “tsunami” and “earthquake.” Such detections at the mention level are
handled by the creation of event entities, which are phrases corresponding to the occurrence
of events. The mention-level event detection problem is generally supervised, and it requires
heavily annotated training data. This is a potential drawback of the approach, although
the existence of crowd-sourcing resources like Amazon Mechanical Turk has simplified this
problem to a large extent.

There are two settings for event extraction, which correspond to the supervised and
unsupervised scenarios. In the supervised setting, the individual phrases corresponding to
event occurrences are already tagged with specific labels, and the goal is to mark similar
events in other documents. In the unsupervised settings, such a tagged training data set
may not be available, and even the definition of the events might depend on the problem
setting.

14.4.3.1 Transformation to Token-Level Classification

The guidelines for annotating training data for event extraction are available in a seminal
paper introducing the Timebank corpus [389]. Events are tagged the same way as other
types of named entities. Furthermore, events are often tagged along with other types of
entities such as dates. The basic idea is that such types of extraction can also facilitate
sophisticated question-answering systems that can answer who/what/when/why questions
about events. For example, consider a setting in which one is mining events of type “death”
being caused by events of type “accident,” and we are also interested in the dates at which
the accidents occurred. Now consider the sentence:

Fifty passengers lost their lives in the May 5 train collision.

There are three entities of interest in this sentence, which are underlined. There are many
ways to annotate this type of event extraction task at the token level. Consider, a case in
which we use four types of token tags {A,D, T,O} corresponding to accident, death, time,
and other types of tokens, respectively. One can annotate this sentence at the token level as

14.4. EVENT DETECTION 449

follows:

Fifty
︸ ︷︷ ︸

O

passengers
︸ ︷︷ ︸

O

lost︸︷︷︸
D

their︸ ︷︷ ︸
D

lives︸ ︷︷ ︸
D

in︸︷︷︸
O

the︸︷︷︸
O

May
︸ ︷︷ ︸

T

5︸︷︷︸
T

train︸ ︷︷ ︸
A

collision.︸ ︷︷ ︸
A

In this encoding, individual mentions of an event may sometimes contain multiple tokens.
For example, an accident is indicated by the phrase “train collision.” As in the case of
named entity recognition in information extraction, it is helpful to distinguish between the
beginning, continuation, and end of the phrases with {B,C,E} tags. This creates a hybrid
encoding with 4× 3 = 12 possible tags obtained by appending the entity type with the tag
position. The resulting annotated sentence is as follows:

Fifty
︸ ︷︷ ︸
OB

passengers
︸ ︷︷ ︸

OE

lost︸︷︷︸
DB

their︸ ︷︷ ︸
DC

lives︸ ︷︷ ︸
DE

in︸︷︷︸
OB

the︸︷︷︸
OE

May
︸ ︷︷ ︸
TB

5︸︷︷︸
TE

train︸ ︷︷ ︸
AB

collision.︸ ︷︷ ︸
AE

For a given test segment with unmarked tokens, the goal will be to annotate the text with
appropriate event markers using token level classification. It is noteworthy that this prob-
lem is identical to the token-level classification setting discussed in Sect. 12.2.2 of Chap. 12.
Therefore, all the Markovian models discussed in Chap. 12 can be used. The method of
choice is generally that of conditional random fields according to the work in [408]. Further-
more, a method for performing token-level classification with recurrent neural networks is
discussed in Sect. 10.7.6 of Chap. 10. One can also use other features associated with tokens
in combination with recurrent neural networks by using additional inputs for the features.
For example, Fig. 10.16 of Chap. 10 shows various types of input features for token-level
classification.

The use of proper input features is helpful for accurate token-level classification. The
key point in any particular application specific setting is to extract the right features for a
particular event detection task. We refer the reader to [85, 298, 408, 409, 390] for a discussion
of these feature extraction issues. In particular, the work in [390] provides an insightful
discussion of how specific types of attributes provide indicators of events. The work also
proposes the use of contextual, dictionary, part-of-speech information, and orthographic
features associated with tokens. In addition, the work in [433] gathers a dictionary of event
terms using WordNet that are shown to be effective features for event extraction. The
tagging of dates is much easier than the tagging of events (because of more restricted
format of dates), and it can sometimes be performed up front before event tagging with the
use of a separate system like the Tempex system discussed in [320]. In such cases, the date
tags become available as features, and they provide useful contextual features to the event
tagging problem (which is more difficult anyway). Some part-of-speech tagging systems are
also available for noisy domains like Twitter data [409].

14.4.3.2 Open Domain Event Extraction

Open domain event extraction can be viewed as a special case of open domain informa-
tion extraction, and it is a more challenging setting because one is no longer restricted to
extracting specific types of events. Rather, one has to use a large corpus like the Web in
order to discover the different types of events in which one might be interested. There are
a huge number of categories in which real-world events can be placed, and therefore one
is tasked with defining these categories based on the available data from open sources like
news repositories, the Web, or Twitter.

The approach in [408] is designed for Twitter data, and it mines the relevant dates and
named entities associated with the events. Therefore, each event is associated with an event

450 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

Table 14.2: The list of event types discovered in [408] using open-domain event extraction

Category Frequency Category Frequency

Sports 7.45% Party 3.66%
TV 3.04% Politics 2.92%
Celebrity 2.38% Music 1.96%
Movie 1.92% Food 1.87%
Concert 1.53% Performance 1.42%
Fitness 1.11% Interview 1.01%
ProductRelease 0.95% Meeting 0.88%
Fashion 0.87% Finance 0.85%
School 0.85% AlbumRelease 0.78%
Religion 0.71% Conflict 0.69%
Prize 0.68% Legal 0.67%
Death 0.66% Sale 0.66%
VideoGameRelease 0.65% Graduation 0.63%
Racing 0.61% Fundraiser/Drive 0.60%
Exhibit 0.60% Celebration 0.60%
Books 0.58% Film 0.50%
Opening/Closing 0.49% Wedding 0.46%
Holiday 0.45% Medical 0.42%
Wrestling 0.41% OTHER 53.4%

type (e.g., politics or sports), a named entity, and a date. Given a stream of tweets, the
work in [408] extracts the named event phrases, named entities, and dates associated with
the events in the first phase. Note that the event type is not discovered at this stage. It is
much easier to annotate a corpus in order to extract an event phrase, rather than an event
phrase of a particular type. Therefore, the work in [408] annotates about 1000 tweets in
accordance with the guidelines established in Timebank [389]. A conditional random field
model (see previous section) is then used to annotate all the tweets with event phrases
in an automated way using a supervised approach. At this point, the goal is to classify
the events into different types. The first step is to use a latent variable model to cluster
the event phrases into different components in which the associated entities and dates are
also used for clustering. The idea is that events of similar types are more likely to share
similar entities (e.g., Michael Jordan) and dates (e.g., September 11, 2001). In principle,
one could use any type of clustering approach, although the work in [408] chooses to use
LinkLDA [155] which is particularly well suited to this type of data. The automatically
discovered clusters are inspected to remove the ones that are incoherent, and the remaining
ones are associated with informative labels. The complete list of discovered event types that
were discovered in [408] are shown in Table 14.2. Note that one is labeling clusters rather
than individual tweets, and therefore the annotation process is quite fast. The process
of annotating clusters automatically results in annotating the event phrases because the
phrases are probabilistically associated with clusters. In principle, it is also possible to use
this large type-labeled training data to extract typed events from Twitter in online fashion,
although the work in [408] mentions this approach only as an avenue for future work.

14.6. BIBLIOGRAPHIC NOTES 451

14.5 Summary

This chapter discusses several text mining tasks in the sequential and temporal setting that
are closely related to the topic detection and tracking effort. Many of these methods are
closely related to text stream mining. In particular, we studied the tasks of text segmenta-
tion, streaming clustering, and event detection. All these tasks are closely related, and the
methods for one are often used as subroutines for the other.

Text segmentation can be unsupervised or supervised. In unsupervised text segmen-
tation, one looks for topical changes at potential segment points in a text document. In
supervised text segmentation, examples of segmentation points are provided. These exam-
ples are used to predict the segmentation points in unmarked test segments.

The problems of stream clustering and event detection are closely related. It is relatively
easy to adapt k-means algorithms to the problem of streaming test clustering. By identifying
documents that do not naturally fit into the existing clusters, one can identify first stories
on specific events. This general approach has been used in many event detection tasks.
Furthermore, many segmentation methods can be used for unsupervised and supervised
event detection, by treating potential event points in a stream of documents as potential
segmentation points in a large document that is artificially created from the stream. Finally,
the use of information extraction methods can identify events from documents at the level
of individual mentions.

14.6 Bibliographic Notes

The benefits of text segmentation for better information retrieval are explained in [213, 386,
422]. The TextTiling method is proposed in [213]. A graph-based approach to segmentation
is described in [425]. The C99 method is proposed in [95], which was later enhanced with
LSA-based similarity in [96]. The use of HMMs for topic segmentation was proposed in the
initial TDT effort [18], and it is discussed in [511]. The use of feature extraction methods
in combination with off-the-shelf classifiers are discussed in [44, 301]. The use of sequential
models for supervised segmentation are proposed in [270, 326]. Several interesting methods
for topical text segmentation are discussed in [53, 152, 421, 425].

The streaming text clustering method discussed in this chapter is adapted from [13]. The
problem of event detection in text is closely related to outlier detection in text data [253],
although the latter is designed for a non-temporal setting. Much of the initial work on
unsupervised event detection was done in the context of the topic detection and tracking
task [18]. Methods for event detection in the context of TDT are described in [521, 531]. The
latter [531] shows how one might use probabilistic and generative models for event detection.
Methods for event detection in social streams are discussed in [10, 43, 420, 434]. The use
of information extraction for event detection is studied in [85, 298, 408, 409, 389, 390]. A
method for using dependency parsing in event detection is proposed in [331]. The problem
of open-domain event detection is discussed in [408].

14.6.1 Software Resources

For linguistic text segmentation, a significant amount of software is available from tradi-
tional resources like Stanford NLP, NLTK, and Apache OpenNLP [548, 554, 556]. Many ap-
proaches like TextTiling are also available from resources like NLTK [613]. The MALLET
toolkit supports many of the Markovian models that can be used for text segmentation [605].

452 CHAPTER 14. TEXT SEGMENTATION AND EVENT DETECTION

The official Website of the TDT project is available at [614], although the specific results
are somewhat outdated at this point. A pointer to the work on the Timebank corpus may
be found in [389]. This work also provides guidelines for event annotation in a document.

14.7 Exercises

1. Design an approach that transforms the problem of text segmentation to that of
graph partitioning. Assume that each sentence is a node in the graph. Discuss the
various ways in which one might place links between nodes and set their weights.
Discuss their advantages and disadvantages. [This is an open-ended question without
a uniquely correct answer]

2. Implement the C99 approach for text segmentation.

3. Discuss the similarities between named entity recognition, aspect-based opinion min-
ing, text segmentation, and event (mention) extraction. Name one core learning
method that is used in all these problems.

4. Implement the streaming text clustering method discussed in this chapter. Suppose
that some of the documents are marked with labels of specific event types. How would
you use this information to improve the clustering.

. 5. Suppose that you receive a stream of text documents in which the labels of the docu-
ments are received as a separate (delayed) stream. Discuss how you would predict the
label of each incoming document by modifying the streaming text clustering algorithm
and combining with a centroid classification method.

Bibliography

[1] C. Aggarwal. Data classification: Algorithms and applications, CRC Press, 2014.

[2] C. Aggarwal. Data mining: The textbook. Springer, 2015.

[3] C. Aggarwal. Recommender systems: The textbook. Springer, 2016.

[4] C. Aggarwal. Outlier analysis. Springer, 2017.

[5] C. Aggarwal. On the effects of dimensionality reduction on high dimensional similarity
search. ACM PODS Conference, pp. 256–266, 2001.

[6] C. Aggarwal, S. Gates, and P. Yu. On using partial supervision for text categoriza-
tion. IEEE Transactions on Knowledge and Data Engineering, 16(2), 245–255, 2004.
[Extended version of ACM KDD 1998 paper “On the merits of building categorization
systems by supervised clustering.”]

[7] C. Aggarwal and N. Li. On node classification in dynamic content-based networks.
SDM Conference, pp. 355–366, 2011.

[8] C. Aggarwal and C. Reddy. Data clustering: algorithms and applications, CRC Press,
2013.

[9] C. Aggarwal and S. Sathe. Outlier ensembles: An introduction. Springer, 2017.

[10] C. Aggarwal and K. Subbian. Event detection in social streams. SDM Conference,
2012.

[11] C. Aggarwal, Y. Xie, and P. Yu. On Dynamic Link Inference in Heterogeneous Net-
works. SDM Conference, pp. 415–426, 2012.

[12] C. Aggarwal and P. Yu. On effective conceptual indexing and similarity search in text
data. ICDM Conference, pp. 3–10, 2001.

[13] C. Aggarwal and P. Yu. On clustering massive text and categorical data streams.
Knowledge and Information Systems, 24(2), pp. 171–196, 2010.

[14] C. Aggarwal, and C. Zhai, Mining text data. Springer, 2012.

454 BIBLIOGRAPHY

[15] C. Aggarwal and P. Zhao. Towards graphical models for text processing. Knowledge
and Information Systems, 36(1), pp. 1–21, 2013. [Preliminary version in ACM SIGIR,
2010]

[16] C. Aggarwal, Y. Zhao, and P. Yu. On the use of side information for mining text data.
IEEE Transactions on Knowledge and Data Engineering, 26(6), pp. 1415–1429, 2014.

[17] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text
collections. ACM Conference on Digital Libraries, pp. 85–94, 2000.

[18] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and
tracking pilot study final report. CMU Technical Report, Paper 341, 1998.

[19] J. Allan, R. Papka, V. Lavrenko. Online new event detection and tracking. ACM
SIGIR Conference, 1998.

[20] A. Andreevskaia and S. Bergler. Mining WordNet for a Fuzzy Sentiment: Sentiment
Tag Extraction from WordNet Glosses. European Chapter of the Association for Com-
putational Linguistics, pp. 209–216, 2006.

[21] R. Angelova and S. Siersdorfer. A neighborhood-based approach for clustering of
linked document collections. ACM CIKM Conference, pp. 778–779, 2006.

[22] V. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early ter-
mination. ACM SIGIR Conference, pp. 35–42, 2001.

[23] V. Anh and A. Moffat. Inverted index compression using word-aligned binary codes.
Information Retrieval, 8(1), pp. 151–166, 2005.

[24] V. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. ACM
SIGIR Conference, pp. 372–379, 2006.

[25] V. Anh and A. Moffat. Improved word-aligned binary compression for text indexing.
IEEE Transactions on Knowledge and Data Engineering, 18(6), pp. 857–861, 2006.

[26] M. Antonie and O Zäıane. Text document categorization by term association. IEEE
ICDM Conference, pp. 19–26, 2002.

[27] C. Apte, F. Damerau, and S. Weiss. Automated learning of decision rules for text
categorization, ACM Transactions on Information Systems, 12(3), pp. 233–251, 1994.

[28] C. Apte, F. Damerau, and S. Weiss. Text mining with decision rules and decision trees.
Conference on Automated Learning and Discovery, Also appears as IBM Research
Report, RC21219, 1998.

[29] A. Asuncion, M. Welling, P. Smyth, and Y. Teh. On smoothing and inference for topic
models. Uncertainty in Artificial Intelligence, pp. 27–34, 2009.

[30] S. Baccianella, A. Esuli, and F. Sebastiani. SentiWordNet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. LREC, pp. 2200–2204, 2010.

[31] R. Baeza-Yates, and B. Ribeiro-Neto. Modern information retrieval. ACM press, 2011.

[32] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, , V. Plachouras, and F. Silvestri.
The impact of caching on search engines. ACM SIGIR Conference, pp. 183–190, 2007.

BIBLIOGRAPHY 455

[33] L. Baker and A. McCallum. Distributional clustering of words for text classification.
ACM SIGIR Conference, pp. 96–103, 1998.

[34] L. Ballesteros and W. B. Croft. Dictionary methods for cross-lingual information
retrieval. International Conference on Database and Expert Systems Applications,
pp. 791–801, 1996.

[35] M. Banko and O. Etzioni. The tradeoffs between open and traditional relation extrac-
tion. ACL Conference, pp. 28–36, 2008.

[36] R. Banchs. Text Mining with MATLAB. Springer, 2012.

[37] M. Baroni, G. Dinu, and G. Kruszewski. Don’t count, predict! A systematic compar-
ison of context-counting vs. context-predicting semantic vectors. ACL, pp. 238–247,
2014.

[38] M. Baroni and A. Lenci. Distributional memory: A general framework for corpus-
based semantics. Computational Linguistics, 36(4), pp. 673–721, 2010.

[39] R. Barzilay and M. Elhadad. Using lexical chains for text summarization. Advances
in Automatic Text Summarization, pp. 111–121, 1999.

[40] R. Barzilay, N. Elhadad, and K. McKeown. Inferring strategies for sentence ordering
in multidocument news summarization. Journal of Artificial Intelligence Research, 17,
pp. 35–55, 2002.

[41] R. Barzilay and K. R. McKeown. Sentence fusion for multidocument news summa-
rization. Computational Linguistics, 31(3), pp. 397–328, 2005.

[42] I. Bayer. Fastfm: a library for factorization machines. arXiv preprint
arXiv:1505.00641, 2015. https://arxiv.org/pdf/1505.00641v2.pdf

[43] H. Becker, M. Naaman, and L. Gravano. Beyond Trending Topics: Real-World Event
Identification on Twitter. ICWSM Conference, pp. 438–441, 2011.

[44] D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation.
Machine Learning, 34(1–3), pp. 177–210, 1999.

[45] O. Bender, F. Och, and H. Ney. Maximum entropy models for named entity recog-
nition. Conference on Natural Language Learning at HLT-NAACL 2003, pp. 148–51,
2003.

[46] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting spammers on
twitter. Collaboration, Electronic Messaging, Anti-abuse and Spam Conference, 2010.

[47] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of Machine Learning Research, 3, pp. 1137–1155, 2003.

[48] D. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[49] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-performance
learning name-finder. Applied Natural Language Processing Conference, pp. 194–201,
1997.

[50] C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.

https://arxiv.org/pdf/1505.00641v2.pdf

456 BIBLIOGRAPHY

[51] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[52] D. Blei. Probabilistic topic models. Communications of the ACM, 55(4), pp. 77–84,
2012.

[53] D. Blei and P. Moreno. Topic segmentation with an aspect hidden Markov model.
ACM SIGIR Conference, pp. 343–348, 2001.

[54] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learn-
ing Research, 3, pp. 993–1022, 2003.

[55] D. Blei and J. Lafferty. Dynamic topic models. ICML Conference, pp. 113–120, 2006.

[56] A. Blum, and T. Mitchell. Combining labeled and unlabeled data with co-training.
COLT, 1998.

[57] A. Blum and S. Chawla. Combining labeled and unlabeled data with graph mincuts.
ICML Conference, 2001.

[58] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings, G. Karypis, V. Kumar, B.
Mobasher, and J. Moore. Partitioning-based clustering for Web document categoriza-
tion. Decision Support Systems, Vol. 27, pp. 329–341, 1999.

[59] E. Breck, Y. Choi, and C. Cardie. Identifying expressions of opinion in ontext. IJCAI,
pp. 2683–2688, 2007.

[60] L. Breiman. Random forests. Journal Machine Learning archive, 45(1), pp. 5–32, 2001.

[61] L. Breiman. Bagging predictors. Machine Learning, 24(2), pp. 123–140, 1996.

[62] L. Breiman and A. Cutler. Random Forests Manual v4.0, Technical Report, UC Berke-
ley, 2003. https://www.stat.berkeley.edu/∼breiman/Using random forests v4.0.pdf

[63] S. Brin. Extracting patterns and relations from the World Wide Web. International
Workshop on the Web and Databases, 1998. http://link.springer.com/chapter/10.
1007/10704656 11#page-1

[64] S. Brin, and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1–7), pp. 107–117, 1998.

[65] P. Bühlmann and B. Yu. Analyzing bagging. Annals of Statistics, pp. 927–961, 2002.

[66] J. Bullinaria and J. Levy. Extracting semantic representations from word co-
occurrence statistics: A computational study. Behavior Research Methods, 39(3),
pp. 510–526, 2007.

[67] R. Bunescu and R. Mooney. A shortest path dependency kernel for relation extraction.
Human Language Technology and Empirical Methods in Natural Language Processing,
pp. 724–731, 2005.

[68] R. Bunescu and R. Mooney. Subsequence kernels for relation extraction. NIPS Con-
ference, pp. 171–178, 2005.

[69] C. Burges. A tutorial on support vector machines for pattern recognition. Data mining
and knowledge discovery, 2(2), pp. 121–167, 1998.

https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
http://link.springer.com/chapter/10.1007/10704656_11#page-1
http://link.springer.com/chapter/10.1007/10704656_11#page-1

BIBLIOGRAPHY 457

[70] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hul-
lender. Learning to rank using gradient descent. ICML Conference, pp. 86–96, 2005.

[71] S. Buttcher, C. Clarke, and G. V. Cormack. Information retrieval: Implementing and
evaluating search engines. The MIT Press, 2010.

[72] J. Callan. Distributed information retrieval. Advances in Information Retrieval,
Springer, pp. 127–150, 2000.

[73] M. Califf and R. Mooney. Bottom-up relational learning of pattern matching rules for
information extraction. Journal of Machine Learning Research, 4, pp. 177-210, 2003.

[74] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking SVM to
document retrieval. ACM SIGIR Conference, pp. 186–193, 2006.

[75] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise approach
to listwise approach. ICML Conference, pp. 129–136, 2007.

[76] J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reorder-
ing documents and producing summaries. ACM SIGIR Conference, pp. 335–336, 1998.

[77] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. Maarek, and A. Sof-
fer. Static index pruning for information retrieval systems. ACM SIGIR Conference,
pp. 43–50, 2001.

[78] D. Chakrabarti and K. Punera. Event Summarization Using Tweets. ICWSM Con-
ference, 11, pp. 66–73, 2011.

[79] S. Chakrabarti. Mining the Web: Discovering knowledge from hypertext data. Morgan
Kaufmann, 2003.

[80] S. Chakrabarti, B. Dom. R. Agrawal, and P. Raghavan. Scalable feature selection,
classification and signature generation for organizing large text databases into hierar-
chical topic taxonomies. The VLDB Journal, 7(3), pp. 163–178, 1998.

[81] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hy-
perlinks. ACM SIGMOD Conference, pp. 307–318, 1998.

[82] S. Chakrabarti, S. Roy, and M. Soundalgekar. Fast and accurate text classification
via multiple linear discriminant projections. The VLDB Journal, 12(2), pp. 170–185,
2003.

[83] S. Chakrabarti, M. Van den Berg, and B. Dom. Focused crawling: a new approach
to topic-specific Web resource discovery. Computer Networks, 31(11), pp. 1623–1640,
1999.

[84] Y. Chali and S. Joty. Improving the performance of the random walk model for an-
swering complex questions. Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies, pp. 9–12, 2008.

[85] N. Chambers, S. Wang, and D. Jurafsky. Classifying temporal relations between
events. Annual Meeting of the ACL on Interactive Poster and Demonstration Ses-
sions, pp. 173–176, 2007.

458 BIBLIOGRAPHY

[86] Y. Chan and D. Roth. Exploiting syntactico-semantic structures for relation extrac-
tion. ACL Conference: Human Language Technologies, pp. 551–560, 2011.

[87] C. Chang and C. Lin. LIBSVM: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2(3), 27, 2011. http://www.csie.ntu.
edu.tw/∼cjlin/libsvm/

[88] Y. Chang, C. Hsieh, K. Chang, M. Ringgaard, and C. J. Lin. Training and testing
low-degree polynomial data mappings via linear SVM. Journal of Machine Learning
Research, 11, pp. 1471–1490, 2010.

[89] O. Chapelle. Training a support vector machine in the primal. Neural Computation,
19(5), pp. 1155–1178, 2007.

[90] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. MIT Press, 2010.

[91] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results.
Advances in Knowledge Discovery and Data Mining, Eds. U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthuruswamy. AAAI Press/MIT Press, 1996.

[92] D. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. Uncertainty in Artificial Intelligence, pp. 80–89, 1997.

[93] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL ordering.
Computer Networks, 30(1–7), pp. 161–172, 1998.

[94] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical machine trans-
lation. EMNLP, 2014. https://arxiv.org/pdf/1406.1078.pdf

[95] F. Choi. Advances in domain independent linear text segmentation. North American
Chapter of the Association for Computational Linguistics Conference, pp. 26–33, 2000.

[96] F. Choi, P. Wiemer-Hastings, and J. Moore. Latent semantic analysis for text seg-
mentation. EMNLP, 2001.

[97] Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan. Identifying sources of opinions
with conditional random fields and extraction patterns. Conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing, pp. 355–
362, 2005.

[98] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv:1412.3555, 2014. https://arxiv.org/abs/
1412.3555

[99] K. Church and P. Hanks. Word association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1), pp. 22–29, 1990.

[100] F. Ciravegna. Adaptive information extraction from text by rule induction and gen-
eralisation. International Joint Conference on Artificial Intelligence, 17(1), pp. 1251–
1256, 2001.

[101] J. Clarke and M. Lapata. Models for sentence compression: A comparison across
domains, training requirements and evaluation measures. ACL Conference, pp. 377–
384, 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

BIBLIOGRAPHY 459

[102] W. Cohen. Fast effective rule induction. ICML Conference, pp. 115–123, 1995.

[103] W. Cohen. Learning rules that classify e-mail. AAAI Spring Symposium on Machine
Learning in Information Access, 1996.

[104] W. Cohen. Learning with set-valued features. In National Conference on Artificial
Intelligence, 1996.

[105] W. Cohen, R. Schapire, and Y. Singer. Learning to Order Things. Journal of Artificial
Intelligence Research, 10, pp. 243–270, 1999.

[106] W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization.
ACM Transactions on Information Systems, 17(2), pp 141–173, 1999.

[107] M. Collins and N. Duffy. Convolution kernels for natural language. NIPS Conference,
pp. 625–632, 2001.

[108] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natu-
ral language processing (almost) from scratch. Journal of Machine Learning Research,
12, pp. 2493–2537, 2011.

[109] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. ICML Conference, pp. 160–167, 2008.

[110] J. Conroy and D. O’Leary. Text summarization via hidden markov models. ACM
SIGIR Conference, pp. 406–407, 2001.

[111] J. Conroy, J. Schlessinger, D. O’Leary, and J. Goldstein. Back to basics: CLASSY
2006. Document Understanding Conference, 2006.

[112] T. Cooke. Two variations on Fisher’s linear discriminant for pattern recognition IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(2), pp. 268–273, 2002.

[113] W. Cooper. Some inconsistencies and misnomers in probabilistic information retrieval.
ACM Transactions on Information Systems, 13(1), pp. 100–111, 1995.

[114] B. O’Connor, R. Balasubramanyan, B. Routledge, and N. Smith. From tweets to polls:
Linking text sentiment to public opinion time series. ICWSM, pp. 122–129, 2010.

[115] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3), pp. 273–
297, 1995.

[116] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1), pp. 1–27, 1967.

[117] N. Cristianini, and J. Shawe-Taylor. An introduction to support vector machines and
other kernel-based learning methods. Cambridge University Press, 2000.

[118] W. B. Croft. Clustering large files of documents using the single-link method. Journal
of the American Society of Information Science, 28, pp. 341–344, 1977.

[119] W. B. Croft and D. Harper. Using probabilistic models of document retrieval without
relevance information. Journal of Documentation, 35(4), pp. 285–295, 1979.

[120] W. B. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval in
practice, Addison-Wesley Publishing Company, 2009.

460 BIBLIOGRAPHY

[121] S. Cucerzan. Large-scale named entity disambiguation based on Wikipedia data.
EMNLP-CoNLL, pp. 708–716, 2007.

[122] A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. ACL
Conference, 2004.

[123] J. Curran and S. Clark. Language independent NER using a maximum entropy tagger.
Conference on Natural Language Learning at HLT-NAACL 2003, pp. 164–167, 2003.

[124] D. Cutting, D. Karger, J. Pedersen, and J. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. ACM SIGIR Conference, pp. 318–
329, 1992.

[125] W. Dai, Y. Chen, G. Xue, Q. Yang, and Y. Yu. Translated learning: Transfer learning
across different feature spaces. NIPS Conference, pp. 353–360, 2008.

[126] D. Das and A. Martins. A survey on automatic text summarization. Literature Survey
for the Language and Statistics II course at CMU, 4, pp. 1–31, 2007.

[127] S. Das and M. Chen. Yahoo! for Amazon: Extracting market sentiment from stock
message boards. Asia Pacific Finance Association Annual Conference (APFA), 2001.

[128] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1), pp. 107–113, 2008.

[129] G. DeJong. Prediction and substantiation: A new approach to natural language pro-
cessing. Cognitive Science, 3(3), pp. 251–273, 1979.

[130] H. Deng, B. Zhao, J. Han. Collective topic modeling for heterogeneous networks. ACM
SIGIR Conference, pp. 1109-1110, 2011.

[131] H. Deng, J. Han, B. Zhao, Y. Yu, and C. Lin. Probabilistic topic models with bi-
ased propagation on heterogeneous information networks. ACM KDD Conference,
pp. 1271–1279, 2011.

[132] I. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-
tioning. ACM KDD Conference, pp. 269–274, 2001.

[133] I. Dhillon and D. Modha. Concept decompositions for large sparse text data using
clustering. Machine Learning, 42(1–2), pp. 143–175, 2001.

[134] T. Dietterich. Machine learning for sequential data: A review. Joint IAPR Interna-
tional Workshops on Statistical Techniques in Pattern Recognition (SPR) and Struc-
tural and Syntactic Pattern Recognition (SSPR), pp. 15–30, 2002.

[135] C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. SDM Conference, pp. 606–610, 2005.

[136] C. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factorizations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), pp. 45–55,
2010.

[137] C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factor-
ization and probabilistic latent semantic indexing. Computational Statistics and Data
Analysis, 52(8), pp. 3913–3927, 2008.

BIBLIOGRAPHY 461

[138] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations
for clustering. ACM KDD Conference, pp. 126–135, 2006.

[139] X. Ding, B. Liu, and P. S. Yu. A holistic lexicon-based approach to opinion mining.
WSDM Conference, pp. 231–240, 2008.

[140] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29(2–3), pp. 103–130, 1997.

[141] B. Dorr, D. Zajic, and R. Schwartz. Hedge Trimmer: A parse-and-trim approach to
headline generation. HLT-NAACL Workshop on Text Summarization, pp. 1–8, 2003.

[142] N. Draper and H. Smith. Applied regression analysis. John Wiley & Sons, 2014.

[143] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support Vector Re-
gression Machines. NIPS Conference, 1997.

[144] R. Duda, P. Hart, W. Stork. Pattern Classification, Wiley Interscience, 2000.

[145] S. Dumais. Latent semantic indexing (LSI) and TREC-2. Text Retrieval Conference
(TREC), pp. 105–115, 1993.

[146] S. Dumais. Latent semantic indexing (LSI): TREC-3 Report. Text Retrieval Confer-
ence (TREC), pp. 219–230, 1995.

[147] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. ACM CIKM Conference, pp. 148–155, 1998.

[148] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science,
41(6), 41(6), pp. 391–407, 1990.

[149] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3), pp. 211–218, 1936.

[150] H. P. Edmundson. New methods in automatic extracting. Journal of the ACM, 16(2),
pp. 264–286, 1969.

[151] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The
Annals of Statistics, 32(2), pp. 407–499, 2004.

[152] J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. Conference
on Empirical Methods in Natural Language Processing, pp. 334–343, 2008.

[153] P. Elias. Universal codeword sets and representations of the integers. IEEE Transac-
tions on Information Theory, 21(2), pp. 194–203, 1975.

[154] G. Erkan and D. Radev. LexRank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, 22, pp. 457–479, 2004.

[155] E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of scientific
publications. Proceedings of the National Academy of Sciences, 101, pp. 5220–5227,
2004.

[156] A. Esuli, and F. Sebastiani. Determining the semantic orientation of terms through
gloss classification. ACM CIKM Conference, pp. 617–624, 2005.

462 BIBLIOGRAPHY

[157] A. Esuli and F. Sebastiani. Determining term subjectivity and term orientation for
opinion mining. European Chapter of the Association of Computational Linguistics,
2006.

[158] O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderland, D. Weld,
and A. Yates. Unsupervised named-entity extraction from the web: An experimental
study. Artificial Intelligence, 165(1), pp. 91–134, 2005.

[159] O. Etzioni, M. Banko, S. Soderland, and D. Weld. Open information extraction from
the web. Communications of the ACM, 51(12), pp. 68–74, 2008.

[160] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information ex-
traction. Conference on Empirical Methods in Natural Language Processing, pp. 1535–
1545, 2011.

[161] A. Fader, L. Zettlemoyer, and O. Etzioni. Paraphrase-Driven Learning for Open Ques-
tion Answering. ACL, pp. 1608–1618, 2013.

[162] A. Fader, L. Zettlemoyer, and O. Etzioni. Open question answering over curated and
extracted knowledge bases. ACM KDD Conference, 2014.

[163] C. Faloutsos and S. Christodoulakis. Signature files: An access method for documents
and its analytical performance evaluation. ACM Transactions on Information Sys-
tems, 2(4), pp. 267–288, 1984.

[164] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research, 9, pp. 1871–1874, 2008.
http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

[165] R. Fan, P. Chen, and C. Lin. Working set selection using second order information for
training support vector machines. Journal of Machine Learning Research, 6, pp. 1889–
1918, 2005.

[166] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Tech-
nical Report HPL-2003-4, Palo Alto, CA, HP Laboratories, 2003.

[167] R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eu-
genics, 7: pp. 179–188, 1936.

[168] R. Feldman and J. Sanger. The text mining handbook: advanced approaches in ana-
lyzing unstructured data. Cambridge University Press, 2007.

[169] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we Need Hundreds
of Classifiers to Solve Real World Classification Problems? The Journal of Machine
Learning Research, 15(1), pp. 3133–3181, 2014.

[170] K. Filippova and M. Strube. Sentence fusion via dependency graph compression. Con-
ference on Empirical Methods in Natural Language Processing, pp. 177–185, 2008.

[171] D. Freitag and A. McCallum. Information extraction with HMMs and shrinkage.
AAAI-99 Workshop on Machine Learning for Information Extraction, pp. 31–36,
1999.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

BIBLIOGRAPHY 463

[172] C. Freudenthaler, L. Schmidt-Thieme, and S. Rendle. Factorization machines: Factor-
ized polynomial regression models. German-Polish Symposium on Data Analysis and
Its Applications (GPSDAA), 2011. https://www.ismll.uni-hildesheim.de/pub/pdfs/
FreudenthalerRendle FactorizedPolynomialRegression.pdf

[173] Y. Freund, and R. Schapire. A decision-theoretic generalization of online learning and
application to boosting. Computational Learning Theory, pp. 23–37, 1995.

[174] J. Friedman. Stochastic gradient boosting. Computational Statistics and Data Anal-
ysis, 38(4), pp. 367–378, 2002.

[175] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). The Annals of
Statistics, 28(2), pp. 337–407, 2000.

[176] M. Fuentes, E. Alfonseca, and H. Rodriguez. Support Vector Machines for query-
focused summarization trained and evaluated on Pyramid data. ACL Conference,
pp. 57–60, 2007.

[177] G. Fung and O. Mangasarian. Proximal support vector classifiers. ACM KDD Con-
ference, pp. 77–86, 2001.

[178] J. Fürnkranz and G. Widmer. Incremental reduced error pruning. ICML Conference,
pp. 70–77, 1994.

[179] M. Galley and K. McKeown. Lexicalized Markov grammars for sentence compression.
Human Language Technologies: The Conference of the North American Chapter of
the Association for Computational Linguistics, pp. 180–187, 2007.

[180] T. Gärtner. A survey of kernels for structured data. ACM SIGKDD Explorations
Newsletter, 5(1), pp. 49–58, 2003.

[181] Y. Goldberg. A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research (JAIR), 57, pp. 345–420, 2016.

[182] Y. Goldberg and O. Levy. word2vec Explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv:1402.3722, 2014. https://arxiv.org/abs/
1402.3722

[183] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.

[184] W. Greiff. A theory of term weighting based on exploratory data analysis. ACM SIGIR
Conference, pp. 11–19, 1998.

[185] E. Gaussier and C. Goutte. Relation between PLSA and NMF and implications. ACM
SIGIR Conference, pp. 601–602, 2005.

[186] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of
link structure. Journal of Machine Learning Research, 3, pp. 679–707, 2002.

[187] J. Ghosh and A. Acharya. Cluster ensembles: Theory and applications. Data Cluster-
ing: Algorithms and Applications, CRC Press, 2013.

https://www.ismll.uni-hildesheim.de/pub/pdfs/FreudenthalerRendle_FactorizedPolynomialRegression.pdf
https://www.ismll.uni-hildesheim.de/pub/pdfs/FreudenthalerRendle_FactorizedPolynomialRegression.pdf
https://arxiv.org/abs/1402.3722
https://arxiv.org/abs/1402.3722

464 BIBLIOGRAPHY

[188] D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-Tur. A global optimization
framework for meeting summarization. IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 4769–4772, 2009.

[189] S. Gilpin, T. Eliassi-Rad, and I. Davidson. Guided learning for role discovery (glrd):
framework, algorithms, and applications. ACM KDD Conference, pp. 113–121, 2013.

[190] M. Girolami and A. Kabán. On an equivalence between PLSI and LDA. ACM SIGIR
Conference, pp. 433–434, 2003.

[191] F. Girosi and T. Poggio. Networks and the best approximation property. Biological
Cybernetics, 63(3), pp. 169–176, 1990.

[192] Y. Gong and X. Liu. Generic text summarization using relevance measure and latent
semantic analysis. ACM SIGIR Conference, pp. 19–25, 2001.

[193] R. Grishman and B. Sundheim. Message Understanding Conference-6: A Brief History.
COLING, pp. 466–471, 1996.

[194] D. Grossman and O. Frieder. Information retrieval: Algorithms and heuristics,
Springer Science and Business Media, 2012.

[195] A. Graves. Supervised sequence labelling with recurrent neural networks Springer,
2012. http://rd.springer.com/book/10.1007%2F978-3-642-24797-2

[196] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013. https://arxiv.org/abs/1308.0850

[197] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649,
2013.

[198] M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation prin-
ciple for unnormalized statistical models. AISTATS, 1(2), pp. 6, 2010.

[199] B. Hagedorn, M. Ciaramita, and J. Atserias. World knowledge in broad-coverage
information filtering. ACM SIGIR Conference, 2007.

[200] A. Haghighi and L. Vanderwende. Exploring content models for multi-document sum-
marization. Human Language Technologies, pp. 362–370, 2009.

[201] D. Hakkani-Tur and G. Tur. Statistical sentence extraction for information distillation.
Conference on Acoustics, Speech and Signal Processing, 4, 2007.

[202] E.-H. Han, G. Karypis, and V. Kumar. Text categorization using weighted-adjusted
k-nearest neighbor classification, PAKDD Conference, 2001.

[203] E.-H. Han and G. Karypis. Centroid-based document classification: Analysis and ex-
perimental results. PKDD Conference, 2000.

[204] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques. Morgan Kauf-
mann, 2011.

[205] T. H. Haveliwala. Topic-sensitive pagerank. World Wide Web Conference, pp. 517-
526, 2002.

http://rd.springer.com/book/10.1007%2F978-3-642-24797-2
https://arxiv.org/abs/1308.0850

BIBLIOGRAPHY 465

[206] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.
Springer, 2009.

[207] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6), pp. 607–
616, 1996.

[208] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC Press, 2015.

[209] T. Hastie and R. Tibshirani. Generalized additive models. CRC Press, 1990.

[210] V. Hatzivassiloglou, J. Klavans, M. Holcombe, R. Barzilay, M.-Y. Kan, and K. R.
McKeown. SIMFINDER: A flexible clustering tool for summarization. NAACL Work-
shop on Automatic Summarization, pp. 41–49, 2001.

[211] M. Hatzivassiloglou, and K. McKeown. Predicting the semantic orientation of adjec-
tives. European Chapter of the Association for Computational Linguistics, pp. 174–
181, 1997.

[212] V. Hatzivassiloglou and J. Wiebe. Effects of adjective orientation and gradability on
sentence subjectivity. Conference on Computational Linguistics, pp. 299–305, 2000.

[213] M. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Com-
putational Linguistics, 23(1), pp. 33–64, 1997.

[214] D. Hiemstra. A linguistically motivated probabilistic model of information retrieval.
International Conference on Theory and Practice of Digital Libraries, pp. 569–584,
1998.

[215] M. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Com-
putational Linguistics, 23(1), pp. 33–64, 1997.

[216] S. Heinz and J. Zobel. Efficient single-pass index construction for text databases. Jour-
nal of the American Society for Information Science and Technology, 54(8), pp. 713–
729, 2003.

[217] G. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1–3), pp. 185–
234, 1989.

[218] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786), pp. 504–507, 2006.

[219] G. Hirst and D. St-Onge. Lexical chains as representation of context for the detection
and correction of malapropisms. In WordNet: An Electronic Lexical Database and
Some of its Applications, MIT Press, 1998.

[220] T. K. Ho. Random decision forests. Third International Conference on Document
Analysis and Recognition, 1995. Extended version appears as “The random subspace
method for constructing decision forests” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(8), pp. 832–844, 1998.

[221] T. K. Ho. Nearest neighbors in random subspaces. Lecture Notes in Computer Sci-
ence, Vol. 1451, pp. 640–648, Proceedings of the Joint IAPR Workshops SSPR’98 and
SPR’98, 1998. http://link.springer.com/chapter/10.1007/BFb0033288

http://link.springer.com/chapter/10.1007/BFb0033288

466 BIBLIOGRAPHY

[222] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8), pp. 1735–1785, 1997.

[223] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies, A Field Guide to Dynamical
Recurrent Neural Networks, IEEE Press, 2001.

[224] T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, pp.
50–57, 1999.

[225] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis.Machine
learning, 41(1–2), pp. 177–196, 2001.

[226] K. Hornik and B. Grün. topicmodels: An R package for fitting topic models. Journal
of Statistical Software, 40(13), pp. 1–30, 2011.

[227] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5), pp. 359–366, 1989.

[228] E. Hovy and C.-Y. Lin. Automated Text Summarization in SUMMARIST. in Ad-
vances in Automatic Text Summarization, pp. 82–94, 1999.

[229] M. Hu and B. Liu. Mining opinion features in customer reviews. AAAI, pp. 755–760,
2004.

[230] M. Hu and B. Liu. Mining and summarizing customer reviews. ACM KDD Conference,
pp. 168–177, 2004.

[231] A. Huang. Similarity measures for text document clustering. Sixth New Zealand Com-
puter Science Research Student Conference, pp. 49–56, 2008.

[232] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. Daume III. A Neural
Network for Factoid Question Answering over Paragraphs. EMNLP, 2014.

[233] N. Jakob and I. Gurevych. Extracting opinion targets in a single-and cross-domain
setting with conditional random fields. Conference on Empirical Methods in Natural
Language Processing, pp. 1035–1045, 2010.

[234] W. Jin, H. Ho, and R. Srihari. OpinionMiner: a novel machine learning system for
Web opinion mining and extraction. ACM KDD Conference, pp. 1195–1204, 2009.

[235] N. Jindal and B. Liu. Opinion spam and analysis. WSDM Conference, pp. 219–230,
2008.

[236] J. Jiang. Information extraction from text. Mining Text Data, Springer, pp. 11–41,
2012.

[237] J. Jiang and C. Zhai. A systematic exploration of the feature space for relation ex-
traction. HLT-NAACL, pp. 113–120, 2007.

[238] H. Jing. Sentence reduction for automatic text summarization. Conference on Applied
Natural Language Processing, pp. 310–315, 2000.

[239] H. Jing. Cut-and-paste text summarization. PhD Thesis, Columbia University, 2001.
http://www1.cs.columbia.edu/nlp/theses/hongyan jing.pdf

http://www1.cs.columbia.edu/nlp/theses/hongyan_jing.pdf

BIBLIOGRAPHY 467

[240] T. Joachims. Text categorization with support vector machines: learning with many
relevant features. ECML Conference, 1998.

[241] T. Joachims. Making Large scale SVMs practical. Advances in Kernel Methods, Sup-
port Vector Learning, pp. 169–184, MIT Press, Cambridge, 1998.

[242] T. Joachims. Training Linear SVMs in Linear Time. ACM KDD Conference, pp.
217–226, 2006.

[243] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization. ICML Conference, 1997.

[244] T. Joachims. Optimizing search engines using clickthrough data. ACM KDD Confer-
ence, pp. 133–142, 2002.

[245] C. Johnson. Logistic matrix factorization for implicit feedback data. NIPS Conference,
2014.

[246] D. Johnson, F. Oles, T. Zhang, T. Goetz. A decision tree-based symbolic rule induction
system for text categorization, IBM Systems Journal, 41(3), pp. 428–437, 2002.

[247] I. T. Jolliffe. Principal component analysis. John Wiley & Sons, 2002.

[248] I. T. Jolliffe. A note on the use of principal components in regression. Applied Statis-
tics, 31(3), pp. 300–303, 1982. .

[249] D. Jurafsky and J. Martin. Speech and language processing. Prentice Hall, 2008.

[250] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. EMNLP,
3, 39, pp. 413, 2013.

[251] N. Kambhatla, Combining lexical, syntactic and semantic features with maximum
entropy models for information extraction. ACL Conference, pp. 178–181, 2004.

[252] J. Kamps, M. Marx, R. Mokken, and M. Rijke. Using wordnet to measure semantic
orientations of adjectives. LREC, pp. 1115–1118, 2004.

[253] R. Kannan, H. Woo, C. Aggarwal, and H. Park. Outlier detection for text data. SDM
Conference, 2017.

[254] H. Kanayama and T. Nasukawa. Fully automatic lexicon expansion for domain-
oriented sentiment analysis. Conference on Empirical Methods in Natural Language
Processing, pp. 355–363, 2006.

[255] A. Karatzoglou, A. Smola A, K. Hornik, and A. Zeileis. kernlab – An S4 Package for
Kernel Methods in R. Journal of Statistical Software, 11(9), 2004. http://epub.wu.ac.
at/1048/1/document.pdf http://CRAN.R-project.org/package=kernlab

[256] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015. https://arxiv.org/abs/1506.02078

[257] A. Karpathy. The unreasonable effectiveness of recurrent neural networks, Blog post,
2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[258] G. Karypis and E.-H. Han. Fast supervised dimensionality reduction with applications
to document categorization and retrieval, ACM CIKM Conference, pp. 12–19, 2000.

http://epub.wu.ac.at/1048/1/document.pdf
http://epub.wu.ac.at/1048/1/document.pdf
http://CRAN.R-project.org/package=kernlab
https://arxiv.org/abs/1506.02078
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

468 BIBLIOGRAPHY

[259] H. Kim, K. Ganesan, P. Sondhi, and C. Zhai. Comprehensive Review of Opinion
Summarization. Technical Report, University of Illinois at Urbana-Champaign, 2011.
https://www.ideals.illinois.edu/handle/2142/18702

[260] S. Kim and E. Hovy. Automatic identification of pro and con reasons in online reviews.
COLING/ACL Conference, pp. 483–490, 2006.

[261] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[262] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5), pp. 604–632, 1999.

[263] K. Knight and D. Marcu. Summarization beyond sentence extraction: A probabilistic
approach to sentence compression. Artificial Intelligence, 139(1), pp. 91–107, 2002.

[264] R. Kohavi and D. Wolpert. Bias plus variance decomposition for zero-one loss func-
tions. ICML Conference, 1996.

[265] E. Kong and T. Dietterich. Error-correcting output coding corrects bias and variance.
ICML Conference, pp. 313–321, 1995.

[266] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov models
in computational biology: Applications to protein modeling. Journal of Molecular
Biology, 235(5), pp. 1501–1531, 1994.

[267] M. Kuhn. Building predictive models in R Using the caret Package. Journal of Statis-
tical Software, 28(5), pp. 1–26, 2008. https://cran.r-project.org/web/packages/caret/
index.html

[268] J. Kupiec. Robust part-of-speech tagging using a hidden Markov model. Computer
Speech and Language, 6(3), pp. 225–242, 1992.

[269] J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. ACM SIGIR
Conference, pp. 68–73, 1995.

[270] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. ICML Conference, pp. 282–289,
2001.

[271] W. Lam and C. Y. Ho. Using a generalized instance set for automatic text catego-
rization. ACM SIGIR Conference, 1998.

[272] A. Langville, C. Meyer, R. Albright, J. Cox, and D. Duling. Initializations for the
nonnegative matrix factorization. ACM KDD Conference, pp. 23–26, 2006.

[273] J. Lau and T. Baldwin. An empirical evaluation of doc2vec with practical insights
into document embedding generation. arXiv:1607.05368, 2016. https://arxiv.org/abs/
1607.05368

[274] Q. Le. Personal communication, 2017.

[275] Q. Le and T. Mikolov. Distributed representations of sentences and documents. ICML
Conference, pp. 1188–196, 2014.

https://www.ideals.illinois.edu/handle/2142/18702
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://arxiv.org/abs/1607.05368
https://arxiv.org/abs/1607.05368

BIBLIOGRAPHY 469

[276] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. Advances in
Meural Information Processing Systems, pp. 556–562, 2001.

[277] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401(6755), pp. 788–791, 2001.

[278] R. Lempel and S. Moran. Predictive caching and prefetching of query results in search
engines. World Wide Web Conference, pp. 19–28, 2003.

[279] J. Leskovec, N. Milic-Frayling, and M. Grobelnik. Impact of linguistic analysis on the
semantic graph: coverage and learning of document extracts. National Conference on
Artificial Intelligence, pp. 1069–1074, 2005.

[280] J. Leskovec, A. Rajaraman, and J. Ullman. Mining of massive datasets. Cambridge
University Press, 2012.

[281] N. Lester, J. Zobel, and H. Williams. Efficient online index maintenance for contiguous
inverted lists. Information Processing and Management, 42(4), pp. 916–933, 2006.

[282] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization.
NIPS Conference, pp. 2177–2185, 2014.

[283] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3, pp. 211–225, 2015.

[284] O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic regularities in sparse and explicit
word representations. CoNLL, 2014.

[285] D. Lewis. An evaluation of phrasal and clustered representations for the text catego-
rization task. ACM SIGIR Conference, pp. 37–50, 1992.

[286] D. Lewis. Naive (Bayes) at forty: The independence assumption in information re-
trieval. ECML Conference, pp. 4–15, 1998.

[287] D. Lewis and M. Ringuette. A comparison of two learning algorithms for text catego-
rization. Third Annual Symposium on Document Analysis and Information Retrieval,
pp. 81–93, 1994.

[288] F. Li, C. Han, M. Huang, X. Zhu, Y. Xia, S. Zhang, and H. Yu. Structure-aware review
mining and summarization. Conference on Computational Linguistics, pp. 6563–661,
2010.

[289] H. Li, and K. Yamanishi. Document classification using a finite mixture model. ACL
Conference, pp. 39–47, 1997.

[290] Y. Li and A. Jain. Classification of text documents. The Computer Journal, 41(8),
pp. 537–546, 1998.

[291] Y. Li, C. Luo, and S. Chung. Text clustering with feature selection by using statistical
data. IEEE Transactions on Knowledge and Data Engineering, 20(5), pp. 641–652,
2008.

470 BIBLIOGRAPHY

[292] D. Liben-Nowell, and J. Kleinberg. The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology, 58(7), pp.
1019–1031, 2007.

[293] E. Lim, V. Nguyen, N. Jindal, B. Liu, and H. Lauw. Detecting product review spam-
mers using rating behaviors. ACM CIKM Conference, pp. 939–948, 2010.

[294] C. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Com-
putation, 19(10), pp. 2756–2779, 2007.

[295] C.-Y. Lin and E. Hovy. The automated acquisition of topic signatures for text sum-
marization. Conference on Computational linguistics, pp. 495–501, 2000.

[296] C.-Y. Lin and E. Hovy. From single to multi-document summarization: A prototype
system and its evaluation. ACL Conference, pp. 457–464, 2002.

[297] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of
submodular functions. Human Language Technologies, pp. 912–920, 2010.

[298] X. Ling and D. Weld. Temporal information extraction. AAAI, pp. 1385–1390, 2010.

[299] Z. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks
for sequence learning. arXiv:1506.00019, 2015. https://arxiv.org/abs/1506.00019

[300] L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla. Truecasing. ACL Conference,
pp. 152–159, 2003.

[301] D. Litman and R. Passonneau. Combining multiple knowledge sources for discourse
segmentation. Association for Computational Linguistics, pp. 108–115, 1995.

[302] C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. ACM CIKM
Conference, pp. 375–384, 2009.

[303] B. Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer,
New York, 2007.

[304] B. Liu. Sentiment Analysis and Subjectivity. Handbook of Natural Language Process-
ing, 2, pp. 627–666, 2010.

[305] B. Liu. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge
University Press, 2015.

[306] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
ACM KDD Conference, pp. 80–86, 1998.

[307] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3), pp. 225–231, 2009.

[308] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classi-
fication using string kernels. Journal of Machine Learning Research, 2, pp. 419–444,
2002.

[309] X. Long and T. Suel. Optimized query execution in large search engines with global
page ordering. VLDB Conference, pp. 129–140, 2003.

https://arxiv.org/abs/1506.00019

BIBLIOGRAPHY 471

[310] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic construction of a context-
aware sentiment lexicon: an optimization approach. World Wide Web Conference,
pp. 347–356, 2011.

[311] Y. Lu and C. Zhai. Opinion integration through semi-supervised topic modeling.
World Wide Web Conference, pp. 121–130, 2008.

[312] H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of Research
and Development, 2(2), pp. 159–165, 1958.

[313] K. Lund and C. Burgess. Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instruments, and Computers, 28(2). pp. 203–
208, 1996.

[314] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4),
pp. 395–416, 2007.

[315] A. Maas, R. Daly, P. Pham, D. Huang, A. Ng, and C. Potts. Learning word vectors for
sentiment analysis. Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pp. 142–150, 2011.

[316] C. Mackenzie. Coded character sets: History and development. Addison-Wesley Long-
man Publishing Co., Inc., 1980.

[317] S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 1(1), pp. 24–45, 2004.

[318] R. Malouf. A comparison of algorithms for maximum entropy parameter estimation.
Conference on Natural Language Learning, pp. 1–7, 2002.

[319] O. Mangasarian and D. Musicant. Successive overrelaxation for support vector ma-
chines. IEEE Transactions on Neural Networks, 10(5), pp. 1032–1037, 1999.

[320] I. Mani and G. Wilson. Robust temporal processing of news. ACL Conference, pp. 69–
76, 2000.

[321] C. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge University Press, Cambridge, 2008.

[322] C. Manning and H. Schütze. Foundations of statistical natural language processing.
MIT Press, 1999.

[323] E. Marsi and E. Krahmer. Explorations in sentence fusion. European Workshop on
Natural Language Generation, pp. 109–117, 2005.

[324] J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free
optimization. ICML Conference, pp. 1033–1040, 2011.

[325] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classi-
fication and clustering. http://www.cs.cmu.edu/∼mccallum/bow, 1996.

[326] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for in-
formation extraction and segmentation. ICML Conference, pp. 591–598, 2000.

http://www.cs.cmu.edu/~mccallum/bow

472 BIBLIOGRAPHY

[327] A. McCallum and K. Nigam. A comparison of event models for naive Bayes text
classification. AAAI Workshop on Learning for Text Categorization, 1998.

[328] P. McCullagh and J. Nelder. Generalized linear models CRC Press, 1989.

[329] R. McDonald, K. Hannan, T. Neylon, M. Wells, and J. Reynar. Structured models
for fine-to-coarse sentiment analysis. ACL Conference, 2007.

[330] G. McLachlan. Discriminant analysis and statistical pattern recognition John Wiley
& Sons, 2004.

[331] D. McClosky, M. Surdeanu, and C. Manning. Event extraction as dependency parsing.
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pp. 1626–1635, 2011.

[332] Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling with network regularization.
World Wide Web Conference, pp. 101–110, 2008.

[333] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: modeling
facets and opinions in weblogs. In World Wide Web Conference, pp. 171–180, 2007.

[334] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a distributed full-
text index for the web. ACM Transactions on Information Systems, 19(3), pp. 217–
241, 2001.

[335] P. Melville, W. Gryc, and R. Lawrence. Sentiment analysis of blogs by combining
lexical knowledge with text classification. ACM KDD Conference, pp. 1275–1284,
2009.

[336] A. K. Menon, and C. Elkan. Link prediction via matrix factorization. Machine Learn-
ing and Knowledge Discovery in Databases, pp. 437–452, 2011.

[337] D. Metzler, S. Dumais, and C. Meek. Similarity measures for short segments of text.
European Conference on Information Retrieval, pp. 16-27, 2007.

[338] L. Michelbacher, F. Laws, B. Dorow, U. Heid, and H. Schütze. Building a cross-lingual
relatedness thesaurus using a graph similarity measure. LREC, 2010.

[339] R. Mihalcea and P. Tarau. TextRank: Bringing order into texts. Conference on Em-
pirical Methods in Natural Language Processing, pp. 404–411, 2004.

[340] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. Müller. Fisher discriminant
analysis with kernels. NIPS Conference, 1999.

[341] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. arXiv:1301.3781, 2013. https://arxiv.org/abs/1301.3781

[342] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. NIPS Conference, pp. 3111–
3119, 2013.

[343] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent neural
network based language model. Interspeech, Vol 2, 2010.

https://arxiv.org/abs/1301.3781

BIBLIOGRAPHY 473

[344] T. Mikolov, W. Yih, and G. Zweig. Linguistic Regularities in Continuous Space Word
Representations. HLT-NAACL, pp. 746–751, 2013.

[345] T. Mikolov, Q. Le, and I. Sutskever. Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168, 2013. https://arxiv.org/abs/1309.
4168

[346] D. Miller, T. Leek, and R. Schwartz. A Hidden Markov Model information retrieval
system. ACM SIGIR Conference, pp. 214–221, 1999.

[347] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction to
WordNet: An on-line lexical database. International Journal of Lexicography (special
issue), 3(4), pp. 235–312, 1990. https://wordnet.princeton.edu/

[348] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation ex-
traction without labeled data. Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on Natural Language Processing,
pp. 1003–1011, 2009.

[349] T. M. Mitchell. Machine learning. McGraw Hill International Edition, 1997.

[350] T. M. Mitchell. The role of unlabeled data in supervised learning. International Col-
loquium on Cognitive Science, pp. 2–11, 1999.

[351] A. Mnih and G. Hinton. Three new graphical models for statistical language mod-
elling. ICML Conference, pp. 641–648, 2007.

[352] A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. NIPS Conference, pp. 2265–2273, 2013.

[353] A. Mnih and Y. Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv:1206.6426, 2012. https://arxiv.org/abs/1206.6426

[354] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems, 14(4), pp. 14(4), 1996.

[355] F. Moosmann, B. Triggs, and F. Jurie. Fast Discriminative visual codebooks using
randomized clustering forests. NIPS Conference, pp. 985–992, 2006.

[356] T. Mullen and N. Collier. Sentiment analysis using support vector machines with
diverse information sources. Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 412–418, 2004.

[357] J.-C. Na, H. Sui, C. Khoo, S. Chan, and Y. Zhou. Effectiveness of simple linguistic
processing in automatic sentiment classification of product reviews. Conference of the
International Society for Knowledge Organization (ISKO), pp. 49–54, 2004.

[358] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maxi-
mizing submodular set functions–I. Mathematical Programming, 14(1), pp. 265–294,
1978.

[359] A. Nenkova and K. McKeown. Automatic Summarization Foundations and Trends in
Information Retrieval, 5(2–3), pp. 103–233, 2011.

https://arxiv.org/abs/1309.4168
https://arxiv.org/abs/1309.4168
https://wordnet.princeton.edu/
https://arxiv.org/abs/1206.6426

474 BIBLIOGRAPHY

[360] A. Nenkova and K. McKeown. A survey of text summarization techniques. Mining
Text Data, Springer, pp. 43–76, 2012.

[361] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.
NIPS Conference, pp. 849–856, 2002.

[362] T. Nguyen and A, Moschitti. End-to-end relation extraction using distant supervision
from external semantic repositories. ACL Conference, pp. 277–282, 2011.

[363] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classifi-
cation. IJCAI Workshop on Machine Learning for Information Filtering, pp. 61–67,
1999.

[364] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification with labeled
and unlabeled data using EM. Machine Learning, 39(2), pp. 103–134, 2000.

[365] H. Niitsuma and M. Lee. Word2Vec is a special case of kernel correspondence analysis
and kernels for natural language processing, arXiv preprint arXiv:1605.05087, 2016.
https://arxiv.org/abs/1605.05087

[366] A. Ntoulas and J. Cho. Pruning policies for two-tiered inverted index with correctness
guarantee. ACM SIGIR Conference, pp. 191–198, 2007.

[367] M. Osborne. Using maximum entropy for sentence extraction. ACL Workshop on
Automatic Summarization, pp. 1–8, 2002.

[368] E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for support vector
machines, IEEE Workshop on Neural Networks and Signal Processing, 1997.

[369] M. Ott, Y. Choi, C. Cardie, and J. Hancock. Finding deceptive opinion spam by
any stretch of the imagination. Association for Computational Linguistics: Human
Language Technologies-Volume 1, pp. 309–319, 2011.

[370] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation engine: Bring-
ing order to the web. Technical Report, 1999–0120, Computer Science Department,
Stanford University, 1998.

[371] C. D. Paice. Constructing literature abstracts by computer: techniques and prospects.
Information Processing and Management, 26(1), pp. 171–186, 1990.

[372] A. Pak and P. Paroubek. Twitter as a Corpus for Sentiment Analysis and Opinion
Mining. LREC, pp. 1320–1326, 2010.

[373] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. ACL Conference, 2004.

[374] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment catego-
rization with respect to rating scales. ACL Conference, pp. 115–124, 2005.

[375] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval, 2(1–2), pp. 1–135, 2008.

[376] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment classification using
machine learning techniques. Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 79–86, 2002.

https://arxiv.org/abs/1605.05087

BIBLIOGRAPHY 475

[377] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neu-
ral networks. ICML, (3), 28, pp. 1310–1318, 2013. http://www.jmlr.org/proceedings/
papers/v28/pascanu13.pdf

[378] M. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Machine
Learning, 9(1), pp. 57–94, 1992.

[379] H. Paulheim and R. Meusel. A decomposition of the outlier detection problem into a
set of supervised learning problems. Machine Learning, 100(2–3), pp. 509–531, 2015.

[380] J. Pennington, R. Socher, and C. Manning. Glove: Global Vectors for Word Repre-
sentation. EMNLP, pp. 1532–1543, 2014.

[381] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. ACL
Conference, pp. 183–190, 1993.

[382] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Advances in Kernel Method: Support Vector Learning, MIT Press,
pp. 85–208, 1998.

[383] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), pp. 61–
74, 1999.

[384] L. Polanyi and A. Zaenen. Contextual valence shifters. Computing Attitude and Affect
in Text: Theory and Applications, pp. 1–10, Springer, 2006.

[385] J. Ponte and W. Croft. A language modeling approach to information retrieval. ACM
SIGIR Conference, pp. 275–281, 1998.

[386] J. Ponte and W. Croft. Text segmentation by topic. International Conference on
Theory and Practice of Digital Libraries, pp. 113–125, 1997.

[387] A. Popescu and O. Etzioni. Extracting product features and opinions from reviews.
Natural Language Processing and Text Mining, pp. 9–28, 2007.

[388] J. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2), pp. 945–959, 2000.

[389] J. Pustejovsky et al. The timebank corpus. Corpus Linguistics, pp. 40, 2003.

[390] J. Pustejovsky et al. TimeML: Robust specification of event and temporal expressions
in text. New Directions in Question Answering, 3. pp. 28–34, 2003.

[391] G. Qi, C. Aggarwal, and T. Huang. Towards semantic knowledge propagation from
text corpus to web images. WWW Conference, pp. 297–306, 2011.

[392] G. Qi, C. Aggarwal, and T. Huang. Community detection with edge content in social
media networks. ICDE Conference, pp. 534–545, 2012.

[393] L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian. Exploiting constituent dependen-
cies for tree kernel-based semantic relation extraction. International Conference on
Computational Linguistics, pp. 697–704, 2008.

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

476 BIBLIOGRAPHY

[394] G. Qiu, B. Liu, J. Bu, and C. Chen. Opinion word expansion and target extraction
through double propagation. Computational linguistics, 37(1), pp. 9–27, 2011.

[395] J. Quinlan. C4.5: programs for machine learning. Morgan-Kaufmann Publishers, 1993.

[396] J. Quinlan. Induction of decision trees. Machine Learning, 1, pp. 81–106, 1986.

[397] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), pp. 257–286, 1989.

[398] D. Radev, H. Jing, and M. Budzikowska. Centroid-based summarization of multiple
documents: sentence extraction, utility-based evaluation, and user studies. NAACL-
ANLP Workshop on Automatic summarization, pp. 21–30, 2000.

[399] D. Radev, H. Jing, M. Stys, and D. Tam. Centroid-based summarization of multiple
documents. Information Processing and Management, 40(6), pp. 919–938, 2004.

[400] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. Conference
on Empirical Methods in Natural Language Processing, pp. 133–142, 1996.

[401] R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora.
LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010.
https://radimrehurek.com/gensim/index.html

[402] X. Ren, M. Jiang, J. Shang, and J. Han. Contructing Structured Information Networks
from Massive Text Corpora (Tutorial), WWW Conference, 2017.

[403] S. Rendle. Factorization machines. IEEE ICDM Conference, pp. 995–100, 2010.

[404] S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Sys-
tems and Technology, 3(3), 57, 2012.

[405] B. Ribeiro-Neto, E. Moura, M. Neubert, and N. Ziviani. Efficient distributed algo-
rithms to build inverted files. ACM SIGIR Conference, pp. 105–112, 1999.

[406] M. Richardson, A. Prakash, and E. Brill. Beyond PageRank: machine learning for
static ranking. World Wide Web Conference, pp. 707–715, 2006.

[407] R. Rifkin. Everything old is new again: a fresh look at historical approaches in machine
learning. Ph.D. Thesis, Massachusetts Institute of Technology, 2002. http://cbcl.mit.
edu/projects/cbcl/publications/theses/thesis-rifkin.pdf

[408] A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extraction from
twitter. ACM KDD Conference, pp. 1104–1102, 2012.

[409] A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recognition in tweets: an
experimental study. Conference on Empirical Methods in Natural Language Process-
ing, pp. 1524–1534, 2011.

[410] S. Robertson. Understanding inverse document frequency: On theoretical arguments
for IDF. Journal of Documentation, 60, pp. 503–520, 2004.

[411] S. Robertson and K. Spärck Jones. Relevance weighting of search terms. Journal of
the American Society for Information Science, 27(3), pp. 129–146, 1976.

https://radimrehurek.com/gensim/index.html
http://cbcl.mit.edu/projects/cbcl/publications/theses/thesis-rifkin.pdf
http://cbcl.mit.edu/projects/cbcl/publications/theses/thesis-rifkin.pdf

BIBLIOGRAPHY 477

[412] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. ACM CIKM Conference, pp. 42–49, 2004.

[413] J. Rodŕıguez, L. Kuncheva, and C. Alonso. Rotation forest: A new classifier ensemble
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10),
pp. 1619–1630, 2006.

[414] J. Rocchio. Relevance feedback information retrieval. The Smart Retrieval System-
Experiments in Automatic Document Processing, G. Salton, Ed. Prentice Hall, Engle-
wood Cliffs, NJ, pp. 313–323, 1971.

[415] X. Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014. https://arxiv.org/abs/1411.2738

[416] B. Rosenfeld and R. Feldman. Clustering for unsupervised relation identification.
ACM CIKM Conference, pp. 411–418, 2007.

[417] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290, no. 5500, pp. 2323–2326, 2000.

[418] M. Sahami and T. D. Heilman. A Web-based kernel function for measuring the simi-
larity of short text snippets. WWW Conference, pp. 377–386, 2006.

[419] T. Sakai and K. Spärck Jones. Generic summaries for indexing in information retrieval.
ACM SIGIR Conference, pp. 190–198, 2001.

[420] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users: real-time
event detection by social sensors. World Wide Web Conference, pp. 851–860, 2010.

[421] G. Salton and J. Allan. Selective text utilization and text traversal. Proceedings of
ACM Hypertext, 1993.

[422] G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text
information systems. ACM SIGIR Conference, pp. 49–58, 1997.

[423] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval,
Technical Report 87–881, Cornell University, 1987. https://ecommons.cornell.edu/
bitstream/handle/1813/6721/87-881.pdf?sequence=1

[424] G. Salton and M. J. McGill. Introduction to modern information retrieval. McGraw
Hill, 1986.

[425] G. Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic text structuring and
summarization. Information Processing and Management, 33(2), pp. 193–207, 1997.

[426] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11), pp. 613–620, 1975.

[427] H. Samet. Foundations of multidimensional and metric data structures. Morgan Kauf-
mann, 2006.

[428] R. Samworth. Optimal weighted nearest neighbour classifiers. The Annals of Statistics,
40(5), pp. 2733–2763, 2012.

https://arxiv.org/abs/1411.2738
https://ecommons.cornell.edu/bitstream/handle/1813/6721/87-881.pdf?sequence=1
https://ecommons.cornell.edu/bitstream/handle/1813/6721/87-881.pdf?sequence=1

478 BIBLIOGRAPHY

[429] P. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Riberio-Neto.
Rank-preserving two-level caching for scalable search engines. ACM SIGIR Confer-
ence, pp. 51–58, 2001.

[430] S. Sarawagi. Information extraction. Foundations and Trends in Satabases, 1(3),
pp. 261–377, 2008.

[431] S. Sarawagi and W. Cohen. Semi-markov conditional random fields for information
extraction. NIPS Conference, pp. 1185–1192, 2004.

[432] S. Sathe and C. Aggarwal. Similarity forests. ACM KDD Conference, 2017.

[433] R. Sauri, R. Knippen, M. Verhagen, and J. Pustejovsky. Evita: a robust event rec-
ognizer for QA systems. Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pp. 700–707, 2005.

[434] H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams.
ICWSM Conference, 2009.

[435] F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for
fast query evaluation. ACM SIGIR Conference, pp. 222–229, 2002.

[436] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5), pp. 1299–1319, 1998.

[437] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE Transac-
tions on Signal Processing, 45(11), pp. 2673–2681, 1997.

[438] H. Schütze and C. Silverstein. Projections for Efficient Document Clustering. ACM
SIGIR Conference, pp. 74–81, 1997.

[439] F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing
Surveys, 34(1), 2002.

[440] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3), pp. 93, 2008.

[441] G. Seni and J. Elder. Ensemble methods in data mining: Improving accuracy through
combining predictions. Synthesis Lectures in Data Mining and Knowledge Discovery,
Morgan and Claypool, 2010.

[442] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden Markov model struc-
ture for information extraction. AAAI-99 Workshop on Machine Learning for Infor-
mation Extraction, pp. 37–42, 1999.

[443] F. Shahnaz, M. Berry, V. Pauca, and R. Plemmons. Document clustering using
nonnegative matrix factorization. Information Processing and Management, 42(2),
pp. 378–386, 2006.

[444] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical Programming, 127(1), pp. 3–30, 2011.

[445] A. Shashua. On the equivalence between the support vector machine for classification
and sparsified Fisher’s linear discriminant. Neural Processing Letters, 9(2), pp. 129–
139, 1999.

BIBLIOGRAPHY 479

[446] Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted
relation discovery. Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics, pp. 304–311, 2006.

[447] S. Siencnik. Adapting word2vec to named entity recognition. Nordic Conference of
Computational Linguistics, NODALIDA, 2015.

[448] A. Singh and G. Gordon. A unified view of matrix factorization models. Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 358–373, 2008.

[449] A. Siddharthan, A. Nenkova, and K. Mckeown. Syntactic simplification for improv-
ing content selection in multi-document summarization. International Conference on
Computational Linguistic, pp. 896–902, 2004.

[450] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. ACM
SIGIR Conference, pp. 21–29, 1996.

[451] N. Slonim and N. Tishby. The power of word clusters for text classification. European
Colloquium on Information Retrieval Research (ECIR), 2001.

[452] S. Soderland. Learning information extraction rules for semi-structured and free text.
Machine Learning, 34(1–3), pp. 233–272, 1999.

[453] K. Spärck Jones. A statistical interpretation of term specificity and its application in
information retrieval. Journal of Documentation, 28(1), pp. 11–21, 1972.

[454] K. Spärck Jones. Automatic summarizing: factors and directions. Advances in Auto-
matic Text Summarization, pp. 1–12, 1998.

[455] K. Spärck Jones. Automatic summarising: The state of the art. Information Processing
and Management, 43(6), pp. 1449–1481, 2007.

[456] K. Spärck Jones, S. Walker, and S. Robertson. A probabilistic model of information
retrieval: development and comparative experiments: Part 2. Information Processing
and Management, 36(6), pp. 809–840, 2000.

[457] M. Stairmand. A computational analysis of lexical cohesion with applications in infor-
mation retrieval. Ph.D. Dissertation, Center for Computational Linguistics UMIST,
Manchester, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503546

[458] J. Steinberger and K. Jezek. Using latent semantic analysis in text summarization
and summary evaluation. ISIM, pp. 93–100, 2004.

[459] J. Steinberger, M. Poesio, M. Kabadjov, and K. Jezek. Two uses of anaphora resolution
in summarization. Information Processing and Management, 43(6), pp. 1663–1680,
2007.

[460] G. Strang. An introduction to linear algebra. Wellesley Cambridge Press, 2009.

[461] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on web-page
clustering. Workshop on Artificial Intelligence for Web Search, 2000. http://www.
aaai.org/Papers/Workshops/2000/WS-00-01/WS00-01-011.pdf

http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503546
http://www.aaai.org/Papers/Workshops/2000/WS-00-01/WS00-01-011.pdf
http://www.aaai.org/Papers/Workshops/2000/WS-00-01/WS00-01-011.pdf

480 BIBLIOGRAPHY

[462] Y. Sun, J. Han, J. Gao, and Y. Yu. itopicmodel: Information network-integrated topic
modeling. IEEE ICDM Conference, pp. 493–502, 2011.

[463] M. Sundermeyer, R. Schluter, and H. Ney. LSTM neural networks for language mod-
eling. Interspeech, 2010.

[464] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. NIPS Conference, pp. 3104–3112, 2014.

[465] C. Sutton and A. McCallum. An introduction to conditional random fields. arXiv
preprint, arXiv:1011.4088, 2010. https://arxiv.org/abs/1011.4088

[466] J. Suykens and J. Venderwalle. Least squares support vector machine classifiers. Neu-
ral Processing Letters, 1999.

[467] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based methods
for sentiment analysis. Computational Linguistics, 37(2), pp. 267–307, 2011.

[468] K. Takeuchi and N. Collier. Use of support vector machines in extended named entity
recognition. Conference on Natural Language Learning, pp. 1–7, 2002.

[469] P.-N Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Addison-Wesley,
2005.

[470] J. Tang, Y. Chang, C. Aggarwal, and H. Liu. A survey of signed network mining in
social media. ACM Computing Surveys (CSUR), 49(3), 42, 2016.

[471] J. Tang, S. Chang, C. Aggarwal, and H. Liu. (2015, February). Negative link prediction
in social media. WSDM Conference, pp. 87–96, 2015.

[472] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges. Optimisation
methods for ranking functions with multiple parameters. ACM CIKM Conference,
pp. 585–593, 2006.

[473] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290 (5500), pp. 2319–2323, 2000.

[474] A. Tikhonov and V. Arsenin. Solution of ill-posed problems. Winston and Sons, 1977.

[475] M. Tsai, C. Aggarwal, and T. Huang. Ranking in heterogeneous social media. WSDM
Conference, pp. 613–622, 2014.

[476] J. Turner and E. Charniak. Supervised and unsupervised learning for sentence com-
pression. ACL Conference, pp. 290–297, 2005.

[477] P. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised
classification of reviews. ACL Conference, pp. 417–424, 2002.

[478] P. Turney and M. Littman. Measuring praise and criticism: Inference of semantic ori-
entation from association. ACM Transactions on Information Systems, 21(4), pp. 314–
346, 2003.

[479] P. Turney and P. Pantel. From frequency to meaning: Vector space models of seman-
tics. Journal of Artificial Intelligence Research, 37(1), pp. 141–188, 2010.

https://arxiv.org/abs/1011.4088

BIBLIOGRAPHY 481

[480] C. J. van Rijsbergen. Information retrieval. Butterworths, London, 1979.

[481] C.J. van Rijsbergen, S.E. Robertson, and M.F. Porter. New models in probabilistic
information retrieval. London: British Library. (British Library Research and Devel-
opment Report, no. 5587), 1980. https://tartarus.org/martin/PorterStemmer/

[482] V. Vapnik. The nature of statistical learning theory. Springer, 2000.

[483] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond SumBasic: Task-
focused summarization with sentence simplification and lexical expansion. Informa-
tion Processing and Management, 43, pp. 1606–1618, 2007

[484] A. Vinokourov, N. Cristianini, and J. Shawe-Taylor. Inferring a semantic representa-
tion of text via cross-language correlation analysis. NIPS Conference, pp. 1473–1480,
2002.

[485] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. CVPR Conference, pp. 3156–3164, 2015.

[486] E. Voorhees. Implementing agglomerative hierarchic clustering algorithms for use in
document retrieval. Information Processing and Management, 22(6), pp. 465–476,
1986.

[487] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the ran-
domized GACV. Advances in Kernel Methods-Support Vector Learning, 6, pp. 69–87,
1999.

[488] H. Wallach, D. Mimno, and A. McCallum. Rethinking LDA: Why priors matter. NIPS
Conference, pp. 1973–1981, 2009.

[489] D. Wang, S. Zhu, T. Li, and Y. Gong. Multi-document summarization using sentence-
based topic models. ACL-IJCNLP Conference, pp. 297–300, 2009.

[490] H. Wang, H. Huang, F. Nie, and C. Ding. Cross-language Web page classification
via dual knowledge transfer using nonnegative matrix tri-factorization. ACM SIGIR
Conference, pp. 933–942, 2011.

[491] S. Weiss, N. Indurkhya, and T. Zhang. Fundamentals of predictive text mining.
Springer, 2015.

[492] S. Weiss, C. Apte, F. Damerau, D. Johnson, F. Oles, T. Goetz, and T. Hampp.
Maximizing text-mining performance. IEEE Intelligent Systems, 14(4), pp. 63–69,
1999.

[493] X. Wei and W. B. Croft. LDA-based document models for ad-hoc retrieval. ACM
SIGIR Conference, pp. 178–185, 2006.

[494] J. Weston, A. Bordes, S. Chopra, A. Rush, B. van Merrienboer, A. Joulin, and T.
Mikolov. Towards ai-complete question answering: A set of pre-requisite toy tasks.
arXiv preprint arXiv:1502.05698, 2015. https://arxiv.org/abs/1502.05698

[495] J. Weston, S. Chopra, and A. Bordes. Memory networks. ICLR, 2015.

https://tartarus.org/martin/PorterStemmer/
https://arxiv.org/abs/1502.05698

482 BIBLIOGRAPHY

[496] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of Lon-
don, May, 1998.

[497] B. Widrow and M. Hoff. Adaptive switching circuits. IRE WESCON Convention
Record, 4(1), pp. 96–104, 1960.

[498] W. Wilbur and K. Sirotkin. The automatic identification of stop words. Journal of
Information Science, 18(1), pp. 45–55, 1992.

[499] J. Wiebe, R. Bruce, and T. O’Hara. Development and use of a gold-standard data set
for subjectivity classifications. Association for Computational Linguistics on Compu-
tational Linguistics, pp. 246–253, 1999.

[500] J. Wiebe and E. Riloff. Creating subjective and objective sentence classifiers from
unannotated texts. International Conference on Intelligent Text Processing and Com-
putational Linguistics, pp. 486–497, 2005.

[501] C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
NIPS Conference, 2000.

[502] H. Williams, J. Zobel, and D. Bahle. Fast phrase querying with combined indexes.
ACM Transactions on Information Systems, 22(4), pp. 573–594, 2004.

[503] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level
sentiment analysis. Human Language Technology and Empirical Methods in Natural
Language Processing, pp. 347–354, 2005.

[504] T. Wilson, J. Wiebe, and R. Hwa. Just how mad are you? Finding strong and weak
opinion clauses. Computational Intelligence, 22(2), pp. 73–99, 2006.

[505] M. J. Witbrock and V. O. Mittal. Ultra-summarization: A statistical approach to
generating highly condensed non-extractive summaries. ACM SIGIR Conference,
pp. 315–316, 1999.

[506] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and in-
dexing documents and images. Morgan Kaufmann, 1999.

[507] K. Wong, M. Wu, and W. Li. Extractive summarization using supervised and semi-
supervised learning. International Conference on Computational Linguistics, pp. 985–
992, 2008.

[508] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix
factorization. ACM SIGIR Conference, pp. 267–273, 2003.

[509] Z. Wu, C. Aggarwal, and J. Sun. The troll-trust model for ranking in signed networks.
WSDM Conference, pp. 447–456, 2016.

[510] J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. ACM SIGIR
Conference, 2007.

[511] J. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt. A hidden Markov model
approach to text segmentation and event tracking. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 333–336, 1998.

BIBLIOGRAPHY 483

[512] J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node
attributes. IEEE ICDM Conference, pp. 1151–1156, 2013.

[513] Q. Yang, Q., Y. Chen, G. Xue, W. Dai, and T. Yu. Heterogeneous transfer learning
for image clustering via the social web. Joint Conference of the ACL and Natural
Language Processing of the AFNLP, pp. 1–9, 2009.

[514] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community
detection: a discriminative approach. ACM KDD Conference, pp. 927–936, 2009.

[515] Y. Yang. Noise reduction in a statistical approach to text categorization, ACM SIGIR
Conference, pp. 256–263, 1995.

[516] Y. Yang. An evaluation of statistical approaches to text categorization. Information
Retrieval, 1(1–2), pp. 69–90, 1999.

[517] Y. Yang. A study on thresholding strategies for text categorization. ACM SIGIR
Conference, pp. 137–145, 2001.

[518] Y. Yang and C. Chute. An application of least squares fit mapping to text information
retrieval. ACM SIGIR Conference, pp. 281–290, 1993.

[519] Y. Yang and X. Liu. A re-examination of text categorization methods. ACM SIGIR
Conference, pp. 42–49, 1999.

[520] Y. Yang and J. O. Pederson. A comparative study on feature selection in text cate-
gorization, ACM SIGIR Conference, pp. 412–420, 1995.

[521] Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective and online event de-
tection. ACM SIGIR Conference, pp. 28–36, 1998.

[522] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for opti-
mizing average precision. ACM SIGIR Conference, pp. 271–278, 2007.

[523] D. Zajic, B. Dorr, J. Lin, and R. Schwartz. Multi-candidate reduction: Sentence com-
pression as a tool for document summarization tasks. Information Processing and
Management, 43(6), pp. 1549–1570, 2007.

[524] M. Zaki and W. Meira Jr. Data mining and analysis: Fundamental concepts and
algorithms. Cambridge University Press, 2014.

[525] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. ACM
SIGIR Conference, pp. 46–54, 1998.

[526] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction.
Journal of Machine Learning Research, 3. pp. 1083–1106, 2003.

[527] C. Zhai. Statistical language models for information retrieval. Synthesis Lectures on
Human Language Technologies, 1(1), pp. 1–141, 2008.

[528] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to
information retrieval. ACM Transactions on Information Systems, 22(2), pp. 179–214,
2004.

484 BIBLIOGRAPHY

[529] C. Zhai and S. Massung. Text data management and mining: A practical introduc-
tion to information retrieval and text mining. Association of Computing Machin-
ery/Morgan and Claypool Publishers, 2016.

[530] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. World Wide
Web Conference, pp. 76–85, 2005.

[531] J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document
clustering with application to novelty detection. NIPS Conference, pp. 1617–1624,
2004.

[532] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in
search engines. World Wide Web Conference, pp, 387–396, 2008.

[533] M. Zhang, J. Zhang, and J. Su. Exploring syntactic features for relation extraction
using a convolution tree kernel. Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 288-295,
2006.

[534] M. Zhang, J. Zhang, J. Su, and G. Zhou. A composite kernel to extract relations
between entities with both flat and structured features. International Conference on
Computational Linguistics and the Annual Meeting of the Association for Computa-
tional Linguistics, pp. 825–832, 2006.

[535] S. Zhao and R. Grishman. Extracting relations with integrated information using
kernel methods. ACL Conference, pp. 419–426, 2005.

[536] Y. Zhao, G. Karypis. Empirical and theoretical comparisons of selected criterion func-
tions for document clustering, Machine Learning, 55(3), pp. 311–331, 2004.

[537] S. Zhong. Efficient streaming text clustering. Neural Networks, Vol. 18, 5–6, 2005.

[538] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute
similarities. Proceedings of the VLDB Endowment, 2(1), pp. 718–729, 2009.

[539] Z.-H. Zhou. Ensemble methods: Foundations and algorithms. CRC Press, 2012.

[540] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G. Xue, Y. Yu, and Q. Yang. Heterogeneous
transfer learning for image classification. AAAI Conference, 2011.

[541] L. Zhuang, F. Jing, and X. Zhu. Movie review mining and summarization. ACM CIKM
Conference, pp. 43–50, 2006.

[542] J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software: Prac-
tice and Experience, 25(3), pp. 331–345, 1995.

[543] J. Zobel and P. Dart. Phonetic string matching: Lessons from information retrieval.
ACM SIGIR Conference, pp. 166–172, 1996.

[544] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for
text indexing. ACM Transactions on Database Systems, 23(4), pp. 453–490, 1998.

[545] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys
(CSUR), 38(2), 6, 2006.

BIBLIOGRAPHY 485

[546] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Stat. Methodology), 67(2), pp. 301–320, 2005.

[547] http://snowballstem.org/

[548] http://opennlp.apache.org/index.html

[549] https://archive.ics.uci.edu/ml/datasets.html

[550] http://scikit-learn.org/stable/tutorial/text analytics/working with text data.html

[551] https://cran.r-project.org/web/packages/tm/

[552] https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?
lang=en

[553] http://www.cs.waikato.ac.nz/ml/weka/

[554] http://nlp.stanford.edu/software/

[555] http://nlp.stanford.edu/links/statnlp.html

[556] http://www.nltk.org/

[557] https://cran.r-project.org/web/packages/lsa/index.html

[558] http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
TruncatedSVD.html

[559] http://weka.sourceforge.net/doc.stable/weka/attributeSelection/
LatentSemanticAnalysis.html

[560] http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html

[561] http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
LatentDirichletAllocation.html

[562] https://cran.r-project.org/

[563] http://www.cs.princeton.edu/∼blei/lda-c/

[564] http://scikit-learn.org/stable/modules/manifold.html

[565] https://code.google.com/archive/p/word2vec/

[566] https://www.tensorflow.org/tutorials/word2vec/

[567] http://www.netlib.org/svdpack

[568] http://scikit-learn.org/stable/modules/kernel approximation.html

[569] http://scikit-learn.org/stable/auto examples/text/document clustering.html

[570] https://www.mathworks.com/help/stats/cluster-analysis.html

[571] https://cran.r-project.org/web/packages/RTextTools/RTextTools.pdf

[572] https://cran.r-project.org/web/packages/rotationForest/index.html

http://snowballstem.org/
http://opennlp.apache.org/index.html
https://archive.ics.uci.edu/ml/datasets.html
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://cran.r-project.org/web/packages/tm/
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
https://www.ibm.com/developerworks/community/blogs/nlp/entry/tokenization?lang=en
http://www.cs.waikato.ac.nz/ml/weka/
http://nlp.stanford.edu/software/
http://nlp.stanford.edu/links/statnlp.html
http://www.nltk.org/
https://cran.r-project.org/web/packages/lsa/index.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
http://weka.sourceforge.net/doc.stable/weka/attributeSelection/LatentSemanticAnalysis.html
http://weka.sourceforge.net/doc.stable/weka/attributeSelection/LatentSemanticAnalysis.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://cran.r-project.org/
http://www.cs.princeton.edu/~blei/lda-c/
http://scikit-learn.org/stable/modules/manifold.html
https://code.google.com/archive/p/word2vec/
https://www.tensorflow.org/tutorials/word2vec/
http://www.netlib.org/svdpack
http://scikit-learn.org/stable/modules/kernel_approximation.html
http://scikit-learn.org/stable/auto_examples/text/document_clustering.html
https://www.mathworks.com/help/stats/cluster-analysis.html
https://cran.r-project.org/web/packages/RTextTools/RTextTools.pdf
https://cran.r-project.org/web/packages/rotationForest/index.html

486 BIBLIOGRAPHY

[573] http://trec.nist.gov/data.html

[574] http://research.nii.ac.jp/ntcir/data/data-en.html

[575] http://www.clef-initiative.eu/home

[576] https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

[577] https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+
Collection

[578] http://www.daviddlewis.com/resources/testcollections/rcv1/

[579] http://labs.europeana.eu/data

[580] http://www.icwsm.org/2009/data/

[581] https://www.csie.ntu.edu.tw/∼cjlin/libmf/

[582] http://www.lemurproject.org

[583] https://nutch.apache.org/

[584] https://scrapy.org/

[585] https://webarchive.jira.com/wiki/display/Heritrix

[586] http://www.dataparksearch.org/

[587] http://lucene.apache.org/core/

[588] http://lucene.apache.org/solr/

[589] http://sphinxsearch.com/

[590] https://snap.stanford.edu/snap/description.html

[591] https://catalog.ldc.upenn.edu/LDC93T3A

[592] http://www.berouge.com/Pages/default.aspx

[593] https://code.google.com/archive/p/icsisumm/

[594] http://finzi.psych.upenn.edu/library/LSAfun/html/genericSummary.html

[595] https://github.com/tensorflow/models/tree/master/textsum

[596] http://www.summarization.com/mead/

[597] http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.html

[598] https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html

[599] http://www.itl.nist.gov/iad/mig/tests/ace

[600] http://www.biocreative.org

[601] http://www.signll.org/conll

http://trec.nist.gov/data.html
http://research.nii.ac.jp/ntcir/data/data-en.html
http://www.clef-initiative.eu/home
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
http://www.daviddlewis.com/resources/testcollections/rcv1/
http://labs.europeana.eu/data
http://www.icwsm.org/2009/data/
https://www.csie.ntu.edu.tw/~cjlin/libmf/
http://www.lemurproject.org
https://nutch.apache.org/
https://scrapy.org/
https://webarchive.jira.com/wiki/display/Heritrix
http://www.dataparksearch.org/
http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://sphinxsearch.com/
https://snap.stanford.edu/snap/description.html
https://catalog.ldc.upenn.edu/LDC93T3A
http://www.berouge.com/Pages/default.aspx
https://code.google.com/archive/p/icsisumm/
http://finzi.psych.upenn.edu/library/LSAfun/html/genericSummary.html
https://github.com/tensorflow/models/tree/master/textsum
http://www.summarization.com/mead/
http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.itl.nist.gov/iad/mig/tests/ace
http://www.biocreative.org
http://www.signll.org/conll

BIBLIOGRAPHY 487

[602] http://reverb.cs.washington.edu/

[603] http://knowitall.github.io/ollie/

[604] http://nlp.stanford.edu/software/openie.html

[605] http://mallet.cs.umass.edu/

[606] https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

[607] http://crf.sourceforge.net/

[608] https://en.wikipedia.org/wiki/ClearForest

[609] http://clic.cimec.unitn.it/composes/toolkit/

[610] https://github.com/stanfordnlp/GloVe

[611] https://deeplearning4j.org/

[612] https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html

[613] http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.texttiling.
TextTilingTokenizer

[614] http://www.itl.nist.gov/iad/mig/tests/tdt/

[615] http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[616] http://deeplearning.net/tutorial/lstm.html

[617] http://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-
networks-python-keras/

[618] https://deeplearning4j.org/lstm

[619] https://github.com/karpathy/char-rnn

[620] https://arxiv.org/abs/1609.08144

http://reverb.cs.washington.edu/
http://knowitall.github.io/ollie/
http://nlp.stanford.edu/software/openie.html
http://mallet.cs.umass.edu/
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://crf.sourceforge.net/
https://en.wikipedia.org/wiki/ClearForest
http://clic.cimec.unitn.it/composes/toolkit/
https://github.com/stanfordnlp/GloVe
https://deeplearning4j.org/
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.texttiling.TextTilingTokenizer
http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.texttiling.TextTilingTokenizer
http://www.itl.nist.gov/iad/mig/tests/tdt/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://deeplearning.net/tutorial/lstm.html
http://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://deeplearning4j.org/lstm
https://github.com/karpathy/char-rnn
https://arxiv.org/abs/1609.08144

Index

Symbols
L1-Regularization, 169
L2-Regularization, 165
χ2-statistic, 120
k-Means, 88
n-Grams, 62, 308

A
Abstractive Summarization, 361, 362, 377
Accumulators, 268
AdaBoost, 220
Apache OpenNLP, 20
ASCII, 18
Associative Classifiers, 151
Authorities, 300

B
Backpropagation through Time, 344
Bag-of-Words Kernel, 62
Bag-of-Words Model, 24
Bagging, 138
Bayes optimal error rate, 134
Bernoulli Model (Classification), 123
Bernoulli Model (Clustering), 84
Bias Neuron, 322
Bidirectional Recurrent Networks, 354
Binary Independence Model, 281
BM25 Model, 283
Boolean Retrieval, 266
Boosting, 220

Bootstrapping (IE), 410
Bottom-Up Hierarchical Clustering, 92
BPTT, 344
Buckshot, 96

C
C99, 438
CBOW Model, 331
Champion Lists, 277
Character Encoding, 18
Classification, 10
Classifier Evaluation, 209
Cluster Digest, 90, 137
Cluster Purity, 106
Clustering, 8, 73
Clustering Evaluation, 105
Co-clustering, 82
Co-reference Resolution, 381
Coefficient of Determination, 225
Collective Topic Modeling, 252
Compression, 278
Conditional Entropy, 107, 119
Conditional Random Fields, 397
Conjugate Prior, 53
Constituency-Based Parse Tree, 385
Continuous Bag-of-Words Model, 331
Convolutional Neural Network, 347
Corpus, 3
Cosine Similarity, 7, 27
Cross-Lingual Text Mining, 248
Cross-Validation, 224

490 INDEX

D
d-Gaps, 279
Damping Functions, 25, 316
DCG, 231
Decision Boundary, 116
Decision Trees, 11, 142
Deductive Learner, 116
Deep Learning, 321
Delta Encoding, 279
Dendrogram, 94
Dependency Graphs, 403
Dependent Variable, 11
Determiner, 384
Dimensionality Reduction, 7, 31
Dirichlet distribution, 53
Distance Graph, 319
Distant Supervision, 410
Distributional Semantic Models, 312
Doc2vec, 70, 77, 79, 99, 341
Document Parsing, 19
Document-at-a-time Query Processing, 268
Document-Term Matrix, 5
DT-min10 Algorithm, 153

E
Elastic Net, 170
Embedded Feature Selection, 118, 122, 170
Embedding, 57
Energy of a Matrix, 33
Entropy, 107, 119
Euclidean Distance, 26
Event Detection, 15, 445
External Validity Measures, 105
Extractive Summarization, 361, 362

F
Feature Engineering, 32, 57, 77
Feature Selection, 75
Feature Weighting, 75
Filter Models (Feature Selection), 76, 118
First Story Detection, 444
Fisher’s Linear Discriminant, 123, 170
Focussed Crawling, 290
FOIL, 149
FOIL’s Information Gain, 149
Fowlkes-Mallows Measure, 108
Fractionation, 96
Frobenius Norm, 33

G
Gaussian Radial Basis Kernel, 59, 194
Gazetteer, 386
Generalization Power, 115
Generative Models, 8
Gini Index, 107, 118
GloVe, 316
Graph-Based Summarization, 372

H
HAL, 314
Headline Generation, 378
Hidden Variable, 46
Hierarchical Clustering, 92
HITS, 300
Hold-Out, 223
HTTP, 287
Hubs, 300
Hypertext Transfer Protocol, 287

I
IDCG, 232
Ideal Discounted Cumulative Gain, 232
Image Captioning, 347
Independent Variables, 11
Index Compression, 278
Inductive Learner, 116
Information Extraction, 14, 381
Information Fusion for Summarization, 378
Information Gain, 108, 120
Information Retrieval, 259
Instance-Based Learners, 12, 133
Internal Validity Measures, 105
Inverse Document Frequency, 25
Inverted Index, 133, 263
ISOMAP, 70

J
Jaccard Similarity, 28
Jelinek-Mercer Smoothing, 286

K
Kernel k-Means, 99
Kernel Methods, 59, 313
Kernel Regression, 168
Kernel Trick, 100

INDEX 491

L
Labels in Classification, 10
Language Models in Information Retrieval,

285
LASSO, 12, 169
Latent Concepts, 32
Latent Semantic Analysis, 35
Latent Topics, 32
Lazy Learners, 12, 133
Learning Algorithm, 5
Least Angle Regression, 170
Least-Squares Regression, 165
Leave-one-out, 133
Leave-one-out Cross-validation, 224
Left Eigenvector, 298
Left Singular Vectors, 36
Lemmatization, 24
Lexical Chains for Summarization, 371
Lexicon, 3
LexRank, 373
libFM, 252
LIBLINEAR, 204
LIBSVM, 204
Linear Classifiers, 12, 159
Linear Discriminant Analysis Metric, 141
Linear Kernel, 59, 194
Linear Least-Squares Fit, 175
Linear Probing, 262
Link Prediction, 243
LLE, 70
LLSF, 175
Local Linear Embedding, 70
Logarithmic Merging, 293
Logistic Regression, 12, 187
Loss Function, 12, 163
Low-Rank Factorization, 31
Luhn’s Summarization Algorithm, 364

M
Machine Translation, 348
MALLET, 71, 154, 205, 410, 451
Matrix Factorization, 7, 31
Maximum Entropy Markov Models, 396
Maximum Entropy Model, 192
Memory Networks, 351
Memory-Based Learners, 12, 133
Mixed Membership Models, 74, 79
Multiclass Learning with Linear Models, 163
MultiGen, 378

Multilayer Neural Network, 326
Multinomial Model (Classification), 126
Multinomial Model (Clustering), 86
Mutual Information, 108, 120

N
Näıve Bayes Classifier, 11, 123
Named Entity Recognition, 386
NDCG, 232
Near Duplicate Detection, 291
Nearest Centroid Classification, 136
Nearest Neighbor Classifiers, 12, 133
Neural Language Models, 320
Neural Networks, 320
Noise Contrastive Estimation, 337
Nonlinear Dimensionality Reduction, 56
Normalized Discounted Cumulative Gain,

232
Normalized Mutual Information, 108
Nymble, 392
Nyström Technique, 66

O
Okapi Model, 283
One-Against-All Multiclass Learning, 164
One-Against-One Multiclass Learning, 164
One-Against-Rest Multiclass Learning, 164
Open Domain Event Extraction, 449
Open Information Extraction, 410
Opinion Lexicon, 415
Opinion Lexicon Expansion, 415
Opinion Mining, 413
opinion Mining, 14
Overlapping Clusters, 79

P
PageRank, 288, 295
PageRank Algorithm, 13
PageRank for Summarization, 373
Parsing in Linguistics, 385
Parts-of-Speech Tagging, 384
Pegasos, 181
Perceptron, 320, 321
Pessimistic Error Rate, 150
Plate Diagram, 47
Pointwise Mutual Information, 119, 421
Polynomial Kernel, 59, 194
Porter’s Stemming Algorithm, 24
Positive Pointwise Mutual Information, 317

492 INDEX

Power-Iteration Method, 298
PPMI, 317
PPMI Matrix Factorization, 317
Preferential Crawlers, 287
Principal Component Analysis, 168
Principal Components Regression, 167

Q
Query Likelihood Models, 285
Question Answering, 350

R
Rand Index, 108
Random Forests, 142, 146
Random Walks, 295
Ranking Algorithms, 295
Ranking Outputs in Classification, 127
Ranking Support Vector Machines, 274
Recommender Systems, 246
Recurrent Neural Networks, 342
Regressand, 11
Regression Modeling, 10, 115
Regressor, 11
Regularized Least-Squares Classification,

175
Representer Theorem, 200
Residual Matrix (Factorization), 35
Retrieval Status Value, 282
Right Eigenvector, 298
Right Singular Vectors, 36
RNN, 342
Rocchio Classification, 136
Rotation Forest, 123, 147
Rule-Based Classifiers, 11, 147
Rule-Based Named Entity Recognition, 387

S
Search Engines, 259
Segmentation of Text, 436
Semi-supervised Learner, 116
Sentence Compression, 378
Sentiment Analysis, 14, 413
Sequence-to-Sequence Learning, 348
Sequential Minimal Optimization, 185
SGNS, 338
Shingling, 291
Short Text Mining, 13

Sigmoid Kernel, 59, 194
Similarity Computation, 6, 26
Similarity Forests, 145, 146
SimRank, 299
Singular Value Decomposition, 7, 35
Skip Pointers, 276
Skip-Grams, 62, 310
SMO, 185
Social Streams, 447
Softmax, 192, 325
Sparse Coding, 4
Spectral Clustering, 102
Spectral Decomposition of SVD, 37
Spider Traps, 290
Spiders, 287
SPPMI Matrix Factorization, 318
Stacking, 98
Stemming, 23
Stop Words, 6, 17, 22
Streaming Clustering, 443
String Subsequence Kernels, 62
Subsampling, 66, 138
Suffix Stripping, 24
Summarization (Text), 361
Supervised Learning, 10
Supervised Segmentation, 439, 441
Support Vector Machines, 12, 177
Support Vectors, 180
SVDPACK, 70
SVM, 12, 177
SVMPerf, 185
Synsets, 370

T
Tag Trees, 21
Taxonomy, 73
Tempex, 449
Term Frequency, 25
Term Strength, 75
Term-at-a-time Query Processing, 268
Test Data Set, 10
Testing, 115
Text Segmentation, 15
TextRank for Summarization, 379
TextTiling, 437
tf-idf Model, 24
Tiered Indexes, 277
Tikhonov Regularization, 12, 165

INDEX 493

Token, 19
Tokenization, 6, 19
Topic Detection and Tracking, 436
Topic Modeling, 32
Topic Signatures, 366
Topic-Sensitive PageRank, 298
Topical Crawling, 290
Training, 10, 115
Transductive Learner, 116
Tri-factorization, 81
Truecasing, 23

U
Unconstrained Matrix Factorization, 35
Unicode, 19
Unigram Language Model, 285
Universal Crawlers, 287
Unsupervised Information Extraction, 410
Unsupervised Learning, 8
UTF-8, 19

V
Valence Shifter, 419
Vapnik’s Principle, 132
Variable Byte Codes, 279
Vector Space Representation, 18, 24
Visible Markov Models, 310
Viterbi Algorithm, 395

W
Web Crawling, 287
Web Resource Discovery, 287
Weston-Watkins Multi-Class SVM, 164, 192
WHISK, 389
Widrow-Hoff Learning, 176
Word2vec, 70, 77, 79, 99, 331
WordNet, 79, 370
Wrapper Models (Feature Selection), 76, 118

Z
Zoned Scoring, 272

	Preface
	Contents
	Machine Learning for Text Intro
	What is special about Learning from Text
	Analytical Models for Text
	Summary
	Bibliographic Notes
	Exercises

	Text Preparation & Similarity Computation
	Raw Text Extraction & Tokenization
	Extracting Terms from Tokens
	Vector Space Representation & Normalization
	Similarity Computation in Text
	Summary
	Bibliographic Notes
	Exercises

	Matrix Factorization & Topic Modeling
	Singular Value Decomposition
	Nonnegative Matrix Factorization
	Probabilistic Latent Semantic Analysis
	Bird's Eye View of Latent Dirichlet Allocation
	Nonlinear Transformations & Feature Engineering
	Summary
	Bibliographic Notes
	Exercises

	Text Clustering
	Feature Selection and Engineering
	Topic Modeling and Matrix Factorization
	Generative Mixture Models for Clustering
	The k-Means Algorithm
	Hierarchical Clustering Algorithms
	Clustering Ensembles
	Clustering Text as Sequences
	Transforming Clustering into Supervised Learning
	Clustering Evaluation
	Summary
	Bibliographic Notes
	Exercises

	Text Classiﬁcation - Basic Models
	Feature Selection & Engineering
	Naive Bayes Model
	Nearest Neighbor Classiﬁer
	Decision Trees & Random Forests
	Rule-based Classiﬁers
	Summary
	Bibliographic Notes
	Exercises

	Linear Classiﬁcation & Regression for Text
	Least-Squares Regression and Classiﬁcation
	Support Vector Machines
	Logistic Regression
	Nonlinear Generalizations of Linear Models
	Summary
	Bibliographic Notes
	Exercises

	Classiﬁer Performance & Evaluation
	The Bias-Variance Trade-Oﬀ
	Implications of Bias-Variance Trade-Oﬀ on Perfor- mance
	Systematic Performance Enhancement with En- sembles
	Classiﬁer Evaluation
	Summary
	Bibliographic Notes
	Exercises

	Joint Text Mining with Heterogeneous Data
	The Shared Matrix Factorization Trick
	Factorization Machines
	Joint Probabilistic Modeling Techniques
	Transformation to Graph Mining Techniques
	Summary
	Bibliographic Notes
	Exercises

	Information Retrieval & Search Engines
	Indexing and Query Processing
	Scoring with Information Retrieval Models
	Web Crawling and Resource Discovery
	Query Processing in Search Engines
	Link-Based Ranking Algorithms
	Summary
	Bibliographic Notes
	Exercises

	Text Sequence Modeling & Deep Learning
	Statistical Language Models
	Kernel Methods
	Word-Context Matrix Factorization Models
	Graphical Representations of Word Distances
	Neural Language Models
	Recurrent Neural Networks
	Summary
	Bibliographic Notes
	Exercises

	Text Summarization
	Topic Word Methods for Extractive Summariza- tion
	Latent Methods for Extractive Summarization
	Machine Learning for Extractive Summarization
	Multi-Document Summarization
	Abstractive Summarization
	Summary
	Bibliographic Notes
	Exercises

	Information Extraction
	Named Entity Recognition
	Relationship Extraction
	Summary
	Bibliographic Notes
	Exercises

	Opinion Mining & Sentiment Analysis
	Document-Level Sentiment Classiﬁcation
	Phrase- and Sentence-Level Sentiment Classiﬁca- tion
	Aspect-Based Opinion Mining as Information Ex- traction
	Opinion Spam
	Opinion Summarization
	Summary
	Bibliographic Notes
	Exercises

	Text Segmentation & Event Detection
	Text Segmentation
	Mining Text Streams
	Event Detection
	Summary
	Bibliographic Notes
	Exercises

	Biblio
	Index

