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The time that statistical analyses, including analysis of variance and regression 
analyses, were analyzed by statistical laboratory workers, has gone for good, thanks 
to the availability of user-friendly statistical software. The teaching department, the 
educations committee, and the scientific committee of the Albert Schweitzer 
Hospital, Dordrecht, Netherlands, are pleased to announce that since November 
2009 the entire staff and personal is able to perform statistical analyses with help 
of SPSS Statistical Software in their offices through the institution’s intranet.

It is our experience as masters’ and doctorate class teachers of the European 
College of Pharmaceutical Medicine (EC Socrates Project) that students are eager 
to master adequate command of statistical software for carrying out their own 
statistical analyses. However, students often lack adequate knowledge of basic 
principles, and this carries the risk of fallacies. Computers cannot think, and can 
only execute commands as given. As an example, regression analysis usually 
applies independent and dependent variables, often interprets as causal factors and 
outcome factors. E.g., gender and age may determine the type of operation or the 
type of surgeon. The type of surgeon does not determine the age and gender. Yet, 
software programs have no difficulty to use nonsense determinants, and the inves-
tigator in charge of the analysis has to decide what is caused by what, because a 
computer can not do a thing like that, although it is essential to the analysis.

It is our experience that a pocket calculator is very helpful for the purpose of 
studying the basic principles. Also, a number of statistical methods can be 
performed more easily on a pocket calculator, than using a software program.

Advantages of the pocket calculator method include the following.

	1.	 You better understand what you are doing. The statistical software program is 
kind of black box program.

	2.	 The pocket calculator works faster, because far less steps have to be taken.
	3.	 The pocket calculator works faster, because averages can be used.
	4.	 With statistical software all individual data have to be included separately, a 

time-consuming activity in case of large data files.

Also, some analytical methods, for example, power calculations and required 
sample size calculations are difficult on a statistical software program, and easy on 
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vi Preface

a pocket calculator. The current book reviews the pocket calculator methods 
together with practical examples. This book was produced together with the simi-
larly sized book “SPSS for Starters” from the same authors (edited by Springer, 
Dordrecht 2010). The two books complement one another. However, they can be 
studied separately as well.

Lyon	 Ton J. Cleophas
December 2010	 Aeilko H. Zwinderman
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This book contains all statistical tests that are relevant to starting clinical inves-
tigators. It begins with standard deviations and t-tests, the basic tests for the analysis 
of continuous data. Next, non-parametric tests are reviewed. They are, particularly, 
important to investigators whose affection towards medical statistics is little, 
because they are universally applicable, i.e., irrespective of the spread of the data. 
Then, confidence intervals and equivalence testing as methods based on confidence 
intervals are explained.

In the next chapters power-equations that estimate the statistical power of data 
samples are reviewed. Methods for calculating the required sample size for a mean-
ingful study, are the next subject. Non-inferiority testing including comparisons 
against historical data and sample size assessments are, subsequently, explained. 
The methods for assessing binary data include: z-tests, chi-square for cross-tabs, 
log likelihood ratio tests and odds ratio tests. Mc Nemar’s tests for the assessment 
of paired binary data is the subject of Chap. 14. Then, the Bonferroni test for adjust-
ment of multiple testing is reviewed, as well as chi-square en F-tests for variability 
analysis of respectively one and two groups of patients.

In the final chapters the assessment of possible confounding and possible inter-
action is assessed. Also reliability assessments for continuous and binary data are 
reviewed.

Each test method is reported together with (1) a data example from practice, 
(2) all steps to be taken using a scientific pocket calculator, and (3) the main results 
and their interpretation. All of the methods described are fast, and can be correctly 
carried out on a scientific pocket calculator, such as the Casio fx-825, the Texas 
TI-30, the Sigma AK222, the Commodoor and many other makes. Although several 
of the described methods can also be carried out with the help of statistical software, 
the latter procedure will be considerably slower.

In order to obtain a better overview of the different test methods each chapter 
will start on an uneven page. The pocket calculator book will be applied as a major 
help to the workshops “Designing and performing clinical research” organized by 
the teaching department of Albert Schweitzer STZ (collaborative top clinical) 

Chapter 1
Introduction



2 1 Introduction

Hospital Dordrecht, and the statistics modules at the European College of 
Pharmaceutical Medicine, Claude Bernard University, Lyon, and Academic Medical 
Center, Amsterdam.

The authors of this book are aware that it consists of a minimum of text and do 
hope that this will enhance the process of mastering the methods. Yet we recom-
mend that for a better understanding of the test procedures the book be used 
together with the same authors’ textbook “Statistics Applied to Clinical Trials” 4th 
edition edited 2009, by Springer Dordrecht Netherlands. More complex data files 
like data files with multiple treatment modalities or multiple predictor variables can 
not be analyzed with a pocket calculator. We recommend that the in 2010 by the 
same editor published book “SPSS for Starters” (Springer, Dordrecht, 2010) from 
the same authors be used as a complementary help for the readers’ benefit.

The human brain excels in making hypotheses, but 
hypotheses have to be tested with hard data.
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Standard deviations (SDs) are often being used for summarizing the spread of the 
data from a sample. If the spread in the data is small, then the same will be true for 
the standard deviation. Underneath the calculation is illustrated with the help of a 
data example.

55
54
51
55
53
53
54
52+

Mean => …/8 = 53.375

SD=
55 (55–53.375)2

54 (54–53.375)2

51 (51–53.375)2

55 (55–53.375)2

53 (53–53.375)2

53 (53–53.375)2

54 (54–53.375)2

52 (52–53.375)2+ 
SD= …………       =>…./ n−1=> √….=> 1.407885953

Each scientific pocket calculator has a modus for data-analysis. It is helpful to 
calculate in a few minutes the mean and standard deviation of a sample.

Chapter 2
Standard Deviations

T.J. Cleophas and A.H. Zwinderman, Statistical Analysis of Clinical Data on a Pocket
Calculator: Statistics on a Pocket Calculator, DOI 10.1007/978-94-007-1211-9_2,
© Springer Science+Business Media B.V. 2011
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Calculate standard deviation: mean = 53.375  SD = 1.407885953

The next steps are required:

Casio fx-825 scientific
On … mode … shift … AC … 55 … M+ … 54 … M+ … 51 … M+ … 55 … M+ 

… 53 … M+ … 53 … M+ … 54 … M+ … 52 … M+ … shift … [x] … shift 
… sxn–1

Texas TI-30 scientific
On … 55 … S+ … 54 … S+ … 51 … S+ … 55 … S+ … 53 … S+ … 53 … S+ 

… 54 … S+ … 52 … S+ … 2nd … x … 2nd … sxn–1

Sigma AK 222 and Commodoor
On … 2ndf … on … 55 … M+ … 54 … M+ … 51 … M+ … 55 … M+ … 53 

… M+ … 53 … M+ … 54 … M+ … 52 … M+ … x=>M … MR

Calculator: Electronic Calculator
On … mode … 2 … 55 … M+ … 54 … M+ … 51 … M+ … 55 … M+ … 53  

… M+ … 53 ... M+ … 54 … M+ … 52 … M+ … Shift … S-var … 1 …  
= … (mean) … Shift … S-var … 3 … (sd)

Example:
What is the mean value, what is de SD?
5
4
5
4
5
4
5
4
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1 Sample t-Test

As an example, the mean decrease in blood pressure after treatment is calculated 
with the accompanying p-value. A p-value <0.05 indicates that there is less than 5% 
probability that such a decrease will be observed purely by the play of chance. 
There is, thus, >95% chance that the decrease is the result of a real blood pressure 
lowering effect of the treatment. We call such a decrease statistically significant.

Patient mm Hg decrease

1 3
2 4
3 −2
4 3
5 1
6 −2
7 4
8 3

Is this decrease statistically significant?

Mean decrease 1.75 mmHg

SD 2.49 mmHg

=
=

From the standard deviation the standard error (SE) can be calculated using the 
equation

( )SE SD / n n sample s

 

ize

SE 2.49 / 8 0.88

= √    =

= √ =

De t-value is the test-statistic of the t-test and is calculated as follows:

t 1.75 / 0.88 1.9886= =

Chapter 3
t-Tests
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Because the sample size is 8, the test has here 8−1 = 7 degrees of freedom.
The t-table on the pages 7–8 shows that with 7 degrees of freedom the p-value 

should equal: 0.05 < p < 0.10. This result is close to statistically significant, and is 
called a trend to significance.

Paired t-Test

Two rows of observations in ten persons are given underneath:

Observation 1:

6.0,	 7.1,	 8.1,	 7.5,	 6.4,	 7.9,	 6.8,	 6.6,	 7.3,	 5.6

Observation 2:

5.1,	 8.0,	 3.8,	 4.4,	 5.2,	 5.4,	 4.3,	 6.0,	 3.7,	 6.2

Individual differences

0.9,	 −0.9,	 4.3,	 3.1,	 1.2,	 2.5,	 2.5,	 0.6,	 3.8,	 −0.6

	A.	not significant
	B.	0.05 < p < 0.10
	C.	P < 0.05
	D.	P < 0.01

Is there a significant difference between the observation 1 and 2, and which level 
of significance is correct?

Mean difference 1.59

SD of mean difference 1.789

SE SD / 10 0.566

t 1.59 / 0.566 2.809

=
=

= √ =
= =

10−1 = 9 degrees of freedom, because we have 10 patients and 1 group of patients.
According to the t-table of page XXX the p-value equals <0.05, and we can 

conclude that a significant difference between the two observations is in the data: 
the values of row 1 are significantly higher than those of row 2. The answer C is 
correct.
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Unpaired t-Test

Two matched groups of patients are compared with one another.

Group 1:
6.0,  7.1,  8.1,  7.5,  6.4,  7.9,  6.8,  6.6,  7.3,  5.6
Group 2:
5.1,  8.0,  3.8,  4.4,  5.2,  5.4,  4.3,  6.0,  3.7,  6.2

Mean Group 1 = 6.93  SD = 0.806  SE = SD/√10 = 0.255
Mean Group 2 = 5.21  SD = 1.299  SE = SD/√10 = 0.411

	A.	not significant
	B.	0.05 < p < 0.10
	C.	p < 0.05
	D.	P < 0.01

Is there a significant difference between the two groups, which level of significance 
is correct?

Mean Standard deviation (SD)

6.93 0.806
5.21– 1.299

1.72 pooled SE 
2 2

0.806 1.299
0.483

10 10

 
= + = 

 

The t-value = (6.93−5.21)/0.483 = 3.56.

20−2 = 18 degrees of freedom, because we have 20 patients and 2 groups.
According to the t-table of page the p-value is <0.01, and we can conclude that 

that a very significant difference exists between the two groups. The values of 
group 1 are higher than those of group 2. The answer D is correct.

t-Table
df 0.1 0.05 0.01 0.002

1 6.314 12.706 63.657 318.31
2 2.920 4.303 9.925 22.326
3 2.353 3.182 5.841 10.213
4 2.132 2.776 4.604 7.173

5 2.015 2.571 4.032 5.893
6 1.943 2.447 3.707 5.208
7 1.895 2.365 3.499 4.785
8 1.860 2.306 3.355 4.501
9 1.833 2.262 3.250 4.297

(continued)
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df 0.1 0.05 0.01 0.002

10 1.812 2.228 3.169 4.144
11 1.796 2.201 3.106 4.025
12 1.782 2.179 3.055 3.930
13 1.771 2.160 3.012 3.852
14 1.761 2.145 2.977 3.787

15 1.753 2.131 2.947 3.733
16 1.746 2.120 2.921 3.686
17 1.740 2.110 2.898 3.646
18 1.734 2.101 2.878 3.610
19 1.729 2.093 2.861 3.579
20 1.725 2.086 2.845 3.552
21 1.721 2.080 2.831 3.527
22 1.717 2.074 2.819 3.505
23 1.714 2.069 2.807 3.485
24 1.711 2.064 2.797 3.467

25 1.708 2.060 2.787 3.450
26 1.706 2.056 2.779 3.435
27 1.701 2.052 2.771 3.421
28 1.701 2.048 2.763 3.408
29 1.699 2.045 2.756 3.396

30 1.697 2.042 2.750 3.385
40 1.684 2.021 2.704 3.307
60 1.671 2.000 2.660 3.232
120 1.658 1.950 2.617 3.160
∞ 1.645 1.960 2.576 3.090

The rows give t-values adjusted for degrees of freedom. The 
numbers of degrees of freedom largely correlate with the 
sample size of a study. With large samples the frequency 
distribution of the data will be a little bit narrower, and that 
is corrected in the table. The t-values are to be looked upon 
as mean results of studies, but not expressed in mmol/l, 
kilograms, but in so-called SE-units (Standard error units), 
that are obtained by dividing your mean result by its own 
standard error. A t-value of 3.56 with 18 degrees of freedom 
indicates that we will need the row no. 18 of the table. The 
upper row gives the area under the curve of the Gaussian-like 
t-distribution. The t-value 3.56 is left from 3.610. Now look 
right up to the upper row: we are right from 0.01. The 
p-value equals <0.01

t-Table  (continued)
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Wilcoxon Test

The t-tests reviewed in the previous chapter are suitable for studies with normally 
distributed results. However, if there are outliers, then the t-tests are not sensitive 
and non-parametric tests have to be applied. We should add that non-parametric are 
also adequate for testing normally distributed data. And, so, these tests are, actually, 
universal, and are, therefore, absolutely to be recommended.

Calculate the p-value with the paired Wilcoxon test.

Observation 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

Observation 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 7.3, 6.2

Individual differences:

0.9, −0.9, 4.3, 3.1, 1.2, 2.5, 2.5, 0.6, 3.6, −0.6

Rank number:

3.5, 3.5, 10, 7, 5, 8, 6, 2, 9, 1

	A.	not significant
	B.	0.05 < p < 0.10
	C.	p < 0.05
	D.	P < 0.01

Is there a significant difference between observation 1 and 2? Which significance 
level is correct?

The individual differences are given a rank number dependent on their magnitude of 
difference. If two differences are identical, and if they have for example the rank 
numbers 3 and 4, then an average rank number is given to both of them, which 

Chapter 4
Non-Parametric Tests

T.J. Cleophas and A.H. Zwinderman, Statistical Analysis of Clinical Data on a Pocket
Calculator: Statistics on a Pocket Calculator, DOI 10.1007/978-94-007-1211-9_4,
© Springer Science+Business Media B.V. 2011
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means 3.5 and 3.5. Next, all positive and all negative rank numbers have to be 
added up separately. We will find 4.5 and 50.5. According to the Wilcoxon table 
underneath the smaller one of the two add-up numbers must be smaller than 8 in 
order to be able to speak of a p-value <0.05. This is true in our example.

Wilcoxon test table

Number of pairs P < 0.05 P < 0.01

  7   2   0
  8   2   0
  9   6   2
10   8   3
11 11   5
12 14   7
13 17 10
14 21 13
15 25 16
16 30 19

Mann-Whitney Test

Like the Wilcoxon test, being the non-parametric alternative for the paired 
t-test, the Mann-Whitney test is the non-parametric alternative for the unpaired 
t-test. Also this test is applicable for all kinds of data, and, therefore, particu-
larly, to be recommended for investigators with little affection for medical 
statistics.

Calculate the p-value of the difference between two groups of ten patients with 
the help of this test.
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Group 1:
6.0 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6
Group 2:
5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

	A.	not significant
	B.	0.05 < p < 0.10
	C.	p < 0.05
	D.	p < 0.01

Is there a significant difference between the two groups? What significance level 
is correct?

All values are ranked together in ascending order of magnitude. The values from 
group 1 are printed thin, those from group 2 are printed fat. Add a rank number to 
each value. If there are identical values, for example, the rank numbers 9 and 10, 
then replace those rank numbers with average rank numbers, 9.5 and 9.5.

Subsequently, all fat printed rank numbers are added up, and so are the thin 
printed rank numbers. We will find the values 142.5 for fat print, and 67.5 for 
thin print.

According to the Mann-Whitney table of page 13, the difference should be larger 
than 71 in order for the significance level of difference to be <0.05. We find a dif-
ference of 75, which means that there is a p-value <0.05 and that the difference 
between the two groups is, thus, significant.

3.7   1
3.8   2
4.3   3
4.4   4
5.1   5
5.2   6
5.4   7
5.6   8
6.0   9.5
6.0   9.5
6.2 11
6.4 12
6.6 13
6.8 14
7.1 15
7.3 16
7.5 17
7.9 18
8.0 19
8.1 20
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Mann-Whitney test

P < 0.01 levels
n

1
→

n
2
↓ 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  4 10
  5   6 11 17
  6   7 12 18 26
  7   7 13 20 27 36
  8 3   8 14 21 29 38 49
  9 3   8 15 22 31 40 51 63
10 3   9 15 23 32 42 53 65   78
11 4   9 16 24 34 44 55 68   81   96
12 4 10 17 26 35 46 58 71   85   99 115
13 4 10 18 27 37 48 60 73   88 103 119 137
14 4 11 19 28 38 50 63 76   91 106 123 141 160
15 4 11 20 29 40 52 65 79   94 110 127 145 164 185
16 4 12 21 31 42 54 67 82   97 114 131 150 169
17 5 12 21 32 43 56 70 84 100 117 135 154
18 5 13 22 33 45 58 72 87 103 121 139
19 5 13 23 34 46 60 74 90 107 124
20 5 14 24 35 48 62 77 93 110
21 6 14 25 37 50 64 79 95
22 6 15 26 38 51 66 82
23 6 15 27 39 53 68
24 6 16 28 40 55
25 6 16 28 42
26 7 17 29
27 7 17
28 7

The values are the minimal differences that are statistically significant with a p-value <0.01. The 
upper row gives the size of Group 1, the left column the size of Group 2
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Mann-Whitney test

P < 0.05 levels
n

1
→

n
2
↓ 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  5 15
  6 10 16 23
  7 10 17 24 32
  8 11 17 25 34 43
  9 6 11 18 26 35 45 56
10 6 12 19 27 37 47 58 71
11 6 12 20 28 38 49 61 74   87
12 7 13 21 30 40 51 63 76   90 106
13 7 14 22 31 41 53 65 79   93 109 125
14 7 14 22 32 43 54 67 81   96 112 129 147
15 8 15 23 33 44 56 70 84   99 115 133 151 171
16 8 15 24 34 46 58 72 86 102 119 137 155
17 8 16 25 36 47 60 74 89 105 122 140
18 8 16 26 37 49 62 76 92 108 125
19 3 9 17 27 38 50 64 78 94 111
20 3 9 18 28 39 52 66 81 97
21 3 9 18 29 40 53 68 83
22 3 10 19 29 42 55 70
23 3 10 19 30 43 57
24 3 10 20 31 44
25 3 11 20 32
26 3 11 21
27 4 11
28 4

The values are the minimal differences that are statistically significant with a p-value <0.01. The 
upper row gives the size of Group 1, the left column the size of Group 2
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The 95% confidence interval of a study represents an interval covering 95% of 
many studies similar to our study. It tells you something about what you can expect 
from future data: if you repeat the study, you will be 95% sure that the outcome will 
be within the 95% confidence interval. The 95% confidence of a study is found by 
the equation

95% confidence interval mean 2 standard error (SE)= ± ´

The SE is equal to the standard deviation (SD)/√n, where n = the sample size of 
your study. The SD can be calculated from the procedure reviewed in the Chap. 2.

With an SD of 1.407885953 and a sample size of n = 8,

your SE 1.407885953 / 8

0.4977

= Ö
=

With a mean value of your study of 53.375

your 95% confidence interval 53.375 2 0.4977

between 52.3796 and 54.3704.

= ± ´
=

The mean study results are often reported together with 95% confidence intervals. 
They are also the basis for equivalence studies, which will be reviewed in the next 
chapter. Also for study results expressed in the form of numbers of events, propor-
tion of deaths, odds ratios of events, etc., 95% confidence intervals can be readily 
calculated. Plenty software on the Internet is available to help you calculate the 
correct confidence intervals.

Chapter 5
Confidence Intervals
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Equivalence testing is important, if you expect a new treatment to be equally 
efficaceous as the standard treatment. This new treatment may still be better suit-
able for practice, if it has fewer adverse effects or other ancillary advantages.

For the purpose of equivalence testing we need to set boundaries of equivalence 
prior to the study. After the study we check whether the 95% confidence interval of 
the study is entirely within the boundaries.

As an example, in a blood pressure study a difference between the new and 
standard treatment between −10 and +10 mm Hg is assumed to smaller than clini-
cally relevant. The boundary of equivalence is, thus, between −10 and +10 mm Hg. 
This boundary is a priori defined in the protocol.

Then, the study is carried out, and both the new and the standard treatment pro-
duce a mean reduction in blood pressure of 10  mm Hg (parallel-group study of 
20 patients) with standard errors 10 mm Hg.

The mean difference 10 10 mm Hg

0 mm Hg

= -
=

The standard errors of the mean differences = 10 mm Hg

The pooled standard error (n 10) (100 /10 100 /10) mm Hg

20 mm Hg

4.47 mm Hg

= = Ö +

= Ö
=

The 95% confidence interval of this study 0 2 4.47 mm Hg

between 8.94 and 8.97 mm Hg

= ± ´
= - +

This result is entirely within the a priori defined boundary of equivalence, which 
means that equivalence is demonstrated in this study.

Chapter 6
Equivalence Tests
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Power can be defined as statistical conclusive force. A study result is often 
expressed in the form of the mean result and its standard deviation (SD) or standard 
error (SE). With the mean result getting larger and the standard error getting 
smaller, the study obtains increasing power.

What is the power of the underneath study?
A blood pressure study shows a mean decrease in blood pressure of 10.8 mm Hg 

with a standard error of 3.0 mm Hg. Results from study samples are often given in 
grams, liters, Euros, mm Hg etc. For the calculation of power we have to standardize 
our study result, which means that the mean result has to be divided by its own 
standard error:

Mean SE

 mean / SE SE / SE

 t-value 1.

±
= ±
= ±

The t-values are found in the t-table, can be looked upon as standardized results 
of all kinds of studies.

Chapter 7
Power Equations
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In our blood pressure study the t-value = 10.8/3.0 = 3.6. The unit of the t-value is 
not mm Hg, but rather SE-units. The question is: what power does the study have, 
if we assume a type I error (alpha) = 5% and a sample size of n = 20.

The question is: what is the power of this study if we assume a type I error (alpha) 
of 5%, and will have a sample size of n = 20.

	A.	90% < power < 95%,
	B.	power > 80%,
	C.	power < 75%,
	D.	power > 75%.

n = 20 indicates 20−2 = 18 degrees of freedom in the case of two groups of ten 
patients each.

We will use the following power equation (prob = probability, z = value on the 
z-line (the x-axis of the t-distribution)

1Power 1 prob (z t t )= - < -

1

1 1

1

t the t-value of your results,

t the t-value,  that matches a p- value of 0.05 2.1;

t 3.6; t 2.1;  t t 1.5;

prob (z t t ) beta type II error 0.05 0.1

1-beta power 0.9 0.95 between 90% and 95%.

=

= =

= = - =

< - = = = -
= = - =

So, there is a very good power here. See below for explanation of the 
calculation.

Explanation of the above calculation.
The t-table on the next page is a more detailed version of the t-table of page 21, 

and is adequate for power calculations. The degrees of freedom are in the left 
column and correlate with the sample size of a study. With large samples the fre-
quency distribution of the data will be a little bit narrower, and that is corrected in 
the table. The t-values are to be looked upon as mean results of studies, but not 
expressed in mmol/l, kilograms, but in so-called SE-units (Standard error units), 
that are obtained by dividing your mean result by its own standard error. With a 
t-value of 3.6 and 18 degrees of freedom t−t1 equals 1.5. This value is between 
1.330 and 1.734. Look right up at the upper row for finding beta (type II error = the 
chance of finding no difference where there is one). We are between 0.1 and 0.05 
(10% and 5%). This is an adequate estimate of the type II error. The power equals 
100% − beta = between 90% and 95% in our example.

t-Table

Q = 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.001
v 2Q = 0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.002

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 22.326

(continued)
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3 0.277 0.765 1.638 2.353 3.182 4.547 5.841 10.213
4 0.171 0.741 1.533 2.132 2.776 3.747 4.604 7.173

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.261 0.700 1.372 1.812 2.228 2.764 3.169 4.144
11 0.269 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.269 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.787

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.579

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.685 1.319 1.714 2.069 2.600 2.807 3.485
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.467

25 0.256 0.684 1,316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.654 1,315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.684 1,314 1.701 2.052 2.473 2.771 3.421
28 0.256 0.683 1,313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.396

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.385
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.307
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.232
120 0.254 0.677 1.289 1.658 1.950 2.358 2.617 3.160
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.090

The upper row shows p-values = Areas under the curve (AUCs) of t-distributions. The second row 
gives two-sided p-values, it means that left and right end of the AUCs of the Gaussian-like curves 
are added up. The left column gives the adjustment for the sample size. If it gets larger, then the 
corresponding Gaussian-like curves will get a bit narrower. In this manner the estimates become 
more precise and more in agreement with reality. The t-table is empirical, and has been constructed 
in the 1930s of the past century with the help of simulation models and practical examples. It is 
till now the basis of modern statistics, and all modern software makes extensively use of it

t-Table  (continued)
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Continuous Data, Power 50%

An essential part of clinical studies is the question, how many subjects need to be 
studied in order to answer the studies’ objectives. As an example, we will use an 
intended study that has an expected mean effect of 5, and a standard deviation (SD) 
of 15.

What required sample size do we need to obtain a significant result, or, in other 
words, a p-value of at least 0.05.

	A.	16,
	B.	36,
	C.	64,
	D.	100.

A suitable equation to assess this question can be constructed as follows.
With a study’s  t-value of 2.0 SEM-units, a significant p-value of 0.05 will be 

obtained. This should not be difficult for you to understand when you think of the 
95% confidence interval of study being between – and + 2 SEM-units (Chap. 5).

We assume

t-value 2 SEMs

(mean study result) / (standard error)

(mean study result) / (standard deviation / n)

(n study s sample size)’

=
=

= Ö

=

Chapter 8
Sample Size
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From the above equation it can be derived that

2

2

n 2 standard deviation (SD) / (mean study result)

n required sample size

4 ( ))SD / (mean study result

4 (15 / 5) 36

Ö = ´
=

= ´

= ´ =

Answer B is correct.

You are testing here whether a result of 5 is significantly different from a result of 
0. Often two groups of data are compared and the standard deviations of the two 
groups have to be pooled (see page 25). As stated above, with a t-value of 2.0 SEMs 
a significant result of p = 0.05 is obtained. However, the power of this study is only 
50%, indicating that you will have 50% chance of an insignificant result the next 
time you perform a similar study.

Continuous Data, Power 80%

What is the required sample size of a study with an expected mean result of 5, and 
SD of 15, and that should have a p-value of at least 0.05 and a power of at least 80% 
(power index = (za + zb)

2 = 7.8).

	A.	140,
	B.	70,
	C.	280,
	D.	420.

An adequate equation is the following.
2

2

Required sample size power index (SD / mean)

7.8 (15 / 5) 70

= ´

= ´ =

If you wish to have a power in your study of 80% instead of 50%, you will need 
a larger sample size. With a power of only 50% your required sample size was 
only 36.

Continuous Data, Power 80%, 2 Groups

What is the required sample size of a study with two groups and a mean difference 
of 5 and SDs of 15 per Group, and that will have a p-value of at least 0.05 and a 
power of at least 80%. (Power index = (za + zb)

2 = 7.8).
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	A.	140,
	B.	70,
	C.	280,
	D.	420.

The suitable equation is given underneath.

( )

2 2

2 2 2

1 2

2 2 2

Required sample size power index (pooled SD) / (mean difference)

pooled SD SD SD

Required sample size 7.8 (15 15 ) / 5 140.

= ´

= +

= ´ + =

The required sample size is 140 patients per group. And so, with two groups you 
will need considerably larger samples than you do with 1 group.

Binary Data, Power 80%

What is the required sample size of a study in which you expect an event in 10% 
of the patients and wish to have a power of 80%.

10% events means a proportion of events of 0.1.
The standard deviation (SD) of this proportion is defined by the equation

[proportion (1  proportion)] (0.1 0.9).Ö ´ - = Ö ´

The suitable formula is given.

2 2

2

Required sample size power index SD / proportie

7.8 (0.1 0.9) / 0.1

7.8 9 71.

= ´

= ´ ´
= ´ =

We conclude that with 10% events you will need about 71 patients in order to 
obtain a significant number of events for a power of 80% in your study.

Binary Data, Power 80%, 2 Groups

What is the required sample size of a study of two groups in which you expect.
A difference in events between the two groups of 10%, and in which you wish 

to have a power of 80%.
10% difference in events means a difference in proportions of events of 0.10.
Let us assume that in Group one 10% will have an event and in Group two 20%. 

The standard deviations per group can be calculated.
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2 2

1 2

2 2

For group 1:  SD [proportion (1  proportion)] (0.1 0.9) 0.3.

For group 2 :  SD [proportion (1  proportion)] (0.2 0.8) 0.4

The pooled standard deviation of both groups (SD SD )

(0.3 0.4 )

0.25 0.

= Ö ´ - = Ö ´ =

= Ö ´ - = Ö ´ =

= Ö +

= Ö +

= Ö = 5

The adequate equation is underneath.

2 2

2 2

Required sample size power index (pooled SD) / (difference in proportions)

7.8 0.5 / 0.1

7.8 25 195.

= ´

= ´
= ´ =

Obviously, with a difference of 10% events between two groups we will need 
about 195 patients per group in order to demonstrate a significant difference with a 
power of 80%.
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Just like equivalence studies noninferiority studies are very popular in modern 
clinical research with many treatments at hand and new compounds being mostly 
only slightly different from the old ones. Unlike equivalence studies (Chap. 6), non-
inferiority studies have a single boundary, instead of two boundaries, with an interval 
of equivalence in between. Noninferiority studies have been criticized for their wide 
margin of inferiority making it virtually impossible to reject noninferiority.

As an example, two parallel-groups of patients with rheumatoid arthritis are 
treated with either a standard or a new nonsteroidal anti-inflammatory drug 
(NSAID). The reduction of gamma globuline levels (g/l) after treatment is used as 
the primary estimate of treatment success. The underneath three steps constitute an 
adequate procedure for noninferiority analysis.

Step 1: Determination of the Margin of Noninferiority,  
the Required Sample, and the Expected p-Value  
and Power of the Study Result

	1.	 The left boundaries of the 95% confidence intervals of previously published 
studies of the standard NSAID versus various alternative NSAIDS were never 
lower than − 8 g/l. And, so, the margin was set at − 8 g/l.

	2.	 Based on a pilot-study with the novel compound the expected mean difference 
was 0  g/l with an expected standard deviation of 32  g/l. This would mean a 
required sample size of

	
2n power index (SD / (margin mean))= ´ -

	
2n 7.8 (32 / ( 8 0)) 125 patients per group.= ´ - - =

A power index of 7.8 takes care that noninferiority is demonstrated with a power 
of about 80% in this study (see also Chap. 8).

Chapter 9
Noninferiority Testing
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	3.	 The mean difference between the new and standard NSAID was calculated to be 
3.0 g/l with a standard error (SE) of 4.6 g/l. This means that the t-value of the study 
equaled t = (margin − mean)/SE = (−8 − 3)/4.6 = −2.39 SE-units or SEM-units. This 
t-value corresponds with a p-value of < 0.05 (page 21 bottom row, why the bottom 
row can be applied is explained in the next Chapter). Non-inferiority is, thus, 
demonstrated at p < 0.05.

Step 2: Testing the Significance of Difference Between  
the New and the Standard Treatment

The mean difference between the new and standard treatment equaled 3.0 g/l with 
an SE of 4.6 g/l. The 95% confidence of this result is 3.0 ± 2*4.6, and is between − 6.2 
and 12.2 g/l (* = sign of multiplication). This interval does cross the zero value on 
the z-axis, which means no significant difference from zero (p > 0.05).

Step 3: Testing the Significance of Difference Between  
the New Treatment and a Placebo

A similarly sized published trial of the standard treatment versus placebo produced 
a t-value of 2.83, and thus a p-value of 0.0047. The t-value of the current trial 
equals 3.0/4.6 = 0.65 SE-units. The add-up sum 2.83 + 0.65 = 3.48 is an adequate 
estimate of the comparison of the new treatment versus placebo. A t-value of 3.48 
corresponds with a p-value of <0.002 (see page 21, bottom row, the use of bottom 
row will be explained in the next Chapter). This would mean that the new treatment 
is significantly better than placebo at p < 0.002.

Conclusion

We can now conclude that

	(1)	 noninferiority is demonstrated at p < 0.05, that
	(2)	 a significant difference between the new and standard treatment is rejected at 

p > 0.05, and that
	(3)	 the new treatment is significantly better than placebo at p < 0.002. Non-inferiority 

has, thus, been unequivocally demonstrated in this study.
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Two groups of patients are assessed for being sleepy through the day. We wish to 
estimate whether group 1 is more sleepy than group 2. The underneath cross-tab 
gives the data.

Sleepiness No sleepiness

Treatment 1 (group 1) 5 (a) 10 (b)
Treatment 2 (group 2) 9 (c)   6 (d)

	

difference between proportions of sleepers per group (d)
z 

pooled standard error difference
=

	
2 2
1 2

d (9 /15 5 /15)
z 

pooled SE (SE SE )

-
= =

+

	

1 1
1 1 1

1

p (1 p )
SE (or SEM )  where p  5/15 etc.... . .. .,

n

-
= Ö =

z = 1.45, not statistically significant from zero, because for a p < 0.05 a z-value of at 
least 1.96 is required. This means that no significant difference between the two 
groups is observed. The p-value of the z-test can be obtained by using the bottom 
row of the t-table from page 21.

Note:

For the z-test a normal distribution approach can be used. The t-distributions are 
usually a bit wider than the normal distributions, and therefore, adjustment for 
study size using degrees of freedom (left column of the t-table) is required. With 
a large study size the t-distribution is equal to the normal distribution, and 
the  t-values are equal to the z-values. They are given in the bottom row of the 
t-table.

Chapter 10
Z-Test for Cross-Tabs
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Note:

A single group z-test is also possible. For example in ten patients we have four 
responders. We question whether four responders is significantly more than zero 
responders.

	 z proportion / its SE= ( )

	 SE [(4 /10 (1 4 /10)) / n]= Ö ´ -

	 (0.24 /10)= Ö

	 z 0.4 / 0.24 /10= Ö( )

	 z 0.4 / 0.1549=

	 z 2.582=

According to the bottom row of the t-table from page 21 the p-value is < 0.01. The 
proportion of 0.4 is, thus, significantly larger than a proportion of 0.0.
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First Example Cross-Tab

The underneath table shows two separate groups with patients assessed for suffering 
from sleepiness through the day. We wish to know whether there is a significant 
difference between the proportions of subjects being sleepy.

Sleepiness No sleepiness

Group 1   5 (a) 10 (b) 15 (a + b)
Group 2   9 (c)   6 (d) 15 (c + d)

14 (a + c) 16 (b + d) 30 (a + b + c + d)

The chi-square pocket calculator method is used for testing these data.

2 2

2
(ad bc) (a b c d) 30 90 30 3,600 30

(a b)(c d)(b d)(a c) 15 15 16 14 15 15 16 14

108.000
2.143

50.400

χ - + + + ( - ) ( ) ´
= = =

+ + + + ´ ´ ´ ´ ´ ´

= =

The chi-square value equals 2.143. The chi-square table can tell us whether or not 
the difference between the groups is significant. See next page for the procedure to 
be followed.

Chi-Square Table (c2-Table)

The underneath chi-square table gives columns and rows: the upper row gives the 
p-values. The first column gives the degrees of freedom which is here largely in 
agreement with the numbers of cells in a cross-tab. The simplest cross-tab has 4 
cells, which means 2 × 2 = 4 cells. The table has been constructed such that we have 
here (2–1) × (2–1) = 1 degree of freedom. Look at the row with 1 degree of freedom: 
a chi-square value of 2.143 is left from 2.706. Now look from here right up at the 

Chapter 11
Chi-Square Tests for Cross-Tabs
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Chi-squared distribution

Two-tailed P-value

df 0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827
2 4.605 5.991 9.210 13.815
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.466
5 9.236 11.070 15.086 20.515
6 10.645 12.592 16.812 22.457
7 12.017 14.067 18.475 24.321
8 13.362 15.507 20.090 26.124
9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264
12 18.549 21.026 26.217 32.909
13 19.812 22.362 27.688 34.527
14 21.064 23.685 29.141 36.124
15 22.307 24.996 30.578 37.698
16 23.542 26.296 32.000 39.252
17 24.769 27.587 33.409 40.791
18 25.989 28.869 34.805 42.312
19 27.204 30.144 36.191 43.819
20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796
22 30.813 33.924 40.289 48.268
23 32.007 35.172 41.638 49.728
24 33.196 36.415 42.980 51.179
25 34.382 37.652 44.314 52.619
26 35.563 38.885 45.642 54.051
27 36.741 40.113 46.963 55.475
28 37.916 41.337 48.278 56.892
29 39.087 42.557 49.588 58.301
30 40.256 43.773 50.892 59.702
40 51.805 55.758 63.691 73.403
50 63.167 67.505 76.154 86.660
60 74.397 79.082 88.379 99.608
70 85.527 90.531 100.43 112.32
80 96.578 101.88 112.33 124.84
90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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upper row. The corresponding p-value is larger than 0.1 (10%). There is, thus, no 
significant difference in sleepiness between the two groups. The small difference 
observed is due to the play of chance.

Second Example Cross-Tab

Two partnerships of internists have the intention to associate. However, in one of 
the two a considerable number of internists has suffered from a burn-out.

Burn out No burn out

Partnership 1 3 (a)   7 (b) 10 (a + b)
Partnership 2 0 (c) 10 (d) 10 (c + d)

3 (a + c) 17 (b + d) 20 (a + b+ c+ d)

2 2

2
(ad bc) (a b c d) 30 0 20 900 20

3.529

(a b)(c d)(b d)(a c) 10 10 17 3 ........

χ - + + + ( - ) ( ) ´
= = = =

+ + + + ´ ´ ´

According to the chi-square table of the previous page a p-value is found of <0.10.
This means that no significant difference is found, but a p-value between 0.05 

and 0.10 is looked upon as a trend to significance. The difference may be due to 
some avoidable or unavoidable cause. We should add here that values in a cell 
lower than 5 is considered slightly inappropriate according to some, and another 
test like the log likelihood ratio test (Chap. 13) is more safe.

Example for Practicing 1

Example 2 × 2 table Events No events

Group 1 15 (a) 20 (b) 35 (a + b)
Group 2 15 (c)   5 (d) 20 (c + d)

30 (a + c) 25 (b + d) 55 (a + b + c + d)
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Pocket calculator

2ad bc a b c d
p ...

a b c d b d a c

( - ) ( + + + )
= =

( + )( + )( + )( + )

Example for Practicing 2

Another example 2 × 2 table Events No events

Group 1 16 (a ) 26 (b) 42 (a + b)
Group 2   5 (c) 30 (d) 35 (c + d)

21 (a + c) 56 (b + d) 77 (a + b +c + d)

Pocket calculator

2ad bc a b c d
p ...

a b c d b d a c

( - ) ( + + + )
= =

( + )( + )( + )( + )
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The odds ratio test is just like the chi-square test applicable for testing cross-tabs. 
The advantage of the odds ratio test is that a odds ratio value can be calculated. The 
odds ratio value is just like the relative risk an estimate of the chance of having an 
event in group 1 compared to that of group 2. An odds ratio value of 1 indicates no 
difference between the two groups.

Example 1

Events No events
Numbers of patients

Group 1 15 (a) 20 (b) 35 (a + b)
Group 2 15 (c )   5 (d) 20 (c + d)

30 (a + c) 25 (b + d) 55 (a + b+ c+ d)

The odds of an event = the number of patients in a group with an event divided 
by the number without. In group 1 the odds of an event equals = a/b.

The odds ratio (OR) of group 1 compared to group 2

	 a / b / c / d= ( ) ( )

	 15 / 20 / 15 / 5= ( ) ( )

	 0.25=

lnOR ln 0.25 1.386 ln natural logarithm= = - ( = )

The standard error (SE) of the above term

	
1 / a 1 / b 1 / c 1 / d= Ö( + + + )

	
1 /15 1 / 20 1 /15 1 / 5= Ö( + + + )

	 0.38333= Ö

	 0.619=

Chapter 12
Odds Ratios
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The odds ratio can be tested using the z-test (Chap. 10).

	 The test-statistic z-value=

	 odds ratio / SE= ( )

	 1.386 / 0.619= -

	 2.239= -

If this value is smaller than −2 or larger than +2, then the odds ratio is significantly 
different from 1 with p < 0.05. An odds ratio of 1 means that there is no difference 
in events between group 1 and group 2. The bottom row of the t-table (page 21) 
gives the z-values matching Gaussian distributions. Look at a z-value of 1.96 right 
up at the upper row. We will find a p-value here of 0.05. And, so, a z-value larger 
than 1.96 indicates a p-value of <0.05. There is a significant difference in event 
between the two groups.

Example 2

Events No events
Number of patients

Group 1 16 (a ) 26 (b) 42 (a + b)
Group 2   5 (c ) 30 (d) 35 (c + d)

21 (a + c) 56 (b + d) 77 (a + b + c + d)

Test with OR whether there is a significant difference between group 1 and 2.
See for procedure also example 1.

	
OR 16 / 26 / 5 / 30= ( ) ( )

	 3.69=

	 lnOR 1.3056 (ln natural logarithm see the above example)= =

	 SE 1 /16 1 / 26 1 / 5 1 / 30= Ö( + + + )

	 0.334333= Ö

	 0.578=

	 z-value 1.3056 / 0.578=

	 2.259=

Because this value is larger than 2, a p-value of <0.05 is observed, 0.024 to be pre-
cise (numerous “p-calculator for z-values” sites in Google will help you calculate 
an exact p-value if required.
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The sensitivity of the chi-square test (Chap. 11) and the odds ratio test (Chap. 12) 
for testing cross-tabs is limited, and not entirely accurate if the values in one or 
more cells is smaller than 5. The log likelihood ratio test is an adequate alternative 
with generally better sensitivity, and, so, it must be absolutely recommended.

Example 1
A group of citizens is taking a pharmaceutical company to court for misrepresent-
ing the danger of fatal rhabdomyolysis due to statin treatment.

Patients with rhabdomyolysis Patients without

Company 1 (a) 309,999 (b)
Citizens 4 (c) 300,289 (d)

p
co

= proportion given by the pharmaceutical company = a/(a + b) = 1/310,000
p

ci
= proportion given by the citizens = c/(c + d) = 4/300,293

We make use of the z-test (Chap. 10) for testing log likelihood ratios.
As it can be shown that −2 log likelihood ratio equals z2, we can test the signifi-

cance of difference between the two proportions.

	

1 / 310,000 1 1 / 310,000
Log likelihood ratio 4 log 300289 log

4 / 300,293 1 4 / 300,293

-
= +

-

	 2.641199= -

	 2 log likelihood ratio 2 2.641199- = - ´ -

	 5.2824 (p 0.05,  because z 2).= < >

	
2z=

A z-value larger than 2 means a significant difference in your data (Chap. 10). Here 
the z-value equals √5.2824 = 2.29834. The “p-calculator for z-values” in Google 
tells you that the exact p-value = 0.0215, much smaller than 0.05.

We should note here that both the odds ratio test and chi-square test produced a 
non-significant result here (p > 0.05). Indeed, the log likelihood ratio test is much 
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more sensitive than the other tests for the same kind of data, which might once in 
a while be a blessing for desperate investigators.

Example 2
Two group of 15 patients at risk for arrhythmias were assessed for the development 
of torsade de points after calcium channel blockers treatment.

Patients with torsade de points Patients without

Calcium channel blocker 1 5 10
Calcium channel blocker 2 9   6

The proportion of patients with event from calcium channel blocker 1 is 5/15, 
from blocker 2 it is 9/15.

	

5
L

/
og

15
 likelihood ratio 9 log 6 log

9 /

1 5 /1

15 1 /1

5

9 5
= +

-
-

	 2.25= -

	 2 log likelihood ratio 4.50- =

	
2z=

	 z-value 4.50 2.1213= Ö =

	 p-value 0.05,  because z 2.< >

Both odds ratio test and chi-square test were again non-significant (p > 0.05).

Example 3
Two groups of patients with stage IV New York Heart Association heart failure 
were assessed for clinical admission while on two beta-blockers.

Patients with clinical admission Patients without

Beta blocker 1   77 62
Beta blocker 2 103 46

The proportion of patients with event while on beta blocker 1 is 77/139, while 
on beta blocker 2 it is 103/149.

77 /139 1 77 /139
Log likelihood ratio 103 log 46 log

103 /149 1 103 /149

-
= +

-

	
5.882= -

	
2 log likelihood ratio 11.766- =

	

2z=

	
z-value 11.766 3.43016= Ö =

	
p-value 0.002,  because z 3.090

(see the t-table on page 21).

< >

Both the odds ratio test and chi-square test were also significant. However, at 
lower levels of significance, both p-values 0.01 < p < 0.05.



39T.J. Cleophas and A.H. Zwinderman, Statistical Analysis of Clinical Data on a Pocket 
Calculator: Statistics on a Pocket Calculator, DOI 10.1007/978-94-007-1211-9_14,  
© Springer Science+Business Media B.V. 2011

The past four Chapters have reviewed four methods for analyzing cross-tabs of two 
groups of patients. Sometimes a single group is assessed twice, and, then, we obtain 
a slightly different cross-tab. McNemar’s test must be applied by analyzing these 
kind of data.

Example McNemar’s Test

315 subjects are tested for hypertension using both an automated device (test-1) and 
a sphygmomanometer (test-2).

Test 1
+ − Total

Test 2 + 184   54 238
−   14   63   77

Total 198 117 315
2(54 14)

Chi - square McNemar 23.5
54 14

-
= =

+

184 subjects scored positive with both tests and 63 scored negative with both tests. 
These 247 subjects, therefore, give us no information about which of the tests is 
more likely to score positive.

The information we require is entirely contained in the 68 subjects for whom the 
tests did not agree (the discordant pairs). The above table also shows how the chi-
square value is calculated. The chi-square table (page 32) is used for finding the 
appropriate p-value. Here we have again 1 degree of freedom. The 1 degree of 
freedom row of the chi-square table shows that our result of 23.5 is a lot larger than 
10.827. When looking up at the upper row we will find a p-value < 0.001. The two 
devices produce significantly different results at p < 0.001.
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McNemar Odds Ratios, Example

Just like with the usual cross-tabs (Chap. 12) odds ratios can be calculated with the 
single group cross-tabs. So far we assessed two groups, one treatment. two antihy-
pertensive treatments are assessed in a single group of patients

Normotension with drug 1
Yes No

Normotension
with drug 2

Yes (a) 65 (b) 28
No (c) 12 (d) 34

Here the OR = b/c, and the SE is not 
1 1 1 1

,
a b c d

æ ö+ + +ç ÷è ø
 but rather 

1 1
.

b c
æ ö+ç ÷è ø

	 OR 28 /12=

	 2.33=

lnOR ln 2.33 (ln natural logarithm)= =

	 0.847=

	

1 1
SE 0.345

b c
æ ö= + =ç ÷è ø

	 lnOR 2 SE 0.847 0.690± = ±

	 between 0.157 and 1.537,=

Turn the ln numbers into real numbers by the anti-ln button (the invert button, on 
many calculators called the 2ndF button) of your pocket calculator.

	 between 1.16 and 4.65=

	 significantly different from 1.0.=

A p-value can be calculated using the z-test (Chap. 10).

	 z lnOR / SEM=

	 0.847 : 0.345=

	 2.455.=

The bottom row of the t-table (page 21) shows that this z-value is smaller than 
2.326, and this means the corresponding p-value of < 0.02. The two drugs, thus, 
produce significantly different results at p < 0.02.
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The t-test can be used to test the hypothesis that two group means are not different 
(Chap. 3). When the experimental design involves multiple groups, and, thus, mul-
tiple tests, we increase our chance of finding a difference. This is, simply, due to 
the play of chance rather than a real effect. Multiple testing without any adjustment 
for this increased chance is called data dredging, and is the source of multiple type 
I errors (chances of finding a difference where there is none). The Bonferroni t-test 
(and many other methods) are appropriate for the purpose of adjusting the increased 
risk of type I errors.

Bonferroni t-Test

The underneath example studies three groups of patients treated with different 
hemoglobin improving compounds. The mean increases of hemoglobin are given.

Sample  
size

Mean hemoglobin
(mmol / l)

Standard deviation
(mmol / l)

Group 1 16   8.725 0.8445
Group 2 10 10.6300 1.2841
Group 3 15 12.3000 0.9419

An overall analysis of variance test produced a p-value of < 0.01. The conclusion 
is that we have a significant difference in the data, but we will need additional testing 
to find out where exactly the difference is, between group 1 and 2, between group 1 
and 3, or between group 2 and 3. The easiest approach is to calculate the t–test for 
each comparison. It produces a highly significant difference at p < 0.01 between 
group 1 versus 3 with no significant differences between the other comparisons. This 
highly significant result is, however, unadjusted for multiple comparisons. If one 
analyzes a set of data with three t-tests, each using a 5% critical value for concluding 
that there is a significant difference, then there is about 3 × 5 = 15% chance of finding it. 
This mechanism is called the Bonferroni inequality.
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Bonferroni recommended a solution for the inequality, and proposed to follow 
in case of three t-tests to use a smaller critical level for concluding that there is a 
significant difference:

	 With 1 t-test: critical level 5%=

With 3 t-tests: critical level 5 / 3 1.6%.= =

The above equations lead rapidly to very small critical values, otherwise called 
p-values, and is, therefore, considered to be over-conservative. A somewhat less 
conservative version of the above equation was also developed by Bonferroni., and 
it is called the Bonferroni t-test.

In case of three comparisons the rejection p-value will be 
2

0.05 0.0166.
3(3 1)

´ =
-

In the given example a p-value of 0.0166 is still larger than 0.01, and, so, the 
difference observed remained statistically significant, but using a cut-off p-value of 
0.0166, instead of 0.05, means that the difference is not highly significant 
anymore.
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In some clinical studies, the spread of the data may be more relevant than the average 
of the data. E.g., when we assess how a drug reaches various organs, variability of 
drug concentrations is important, as in some cases too little and in other cases dan-
gerously high levels get through. Also, variabilities in drug response may be impor-
tant. For example, the spread of glucose levels of a slow-release-insulin is 
important.

One Sample Variability Analysis

For testing whether the standard deviation (or variance) of a sample is significantly 
different from the standard deviation (or variance) to be expected the chi-square test 
with multiple degrees of freedom is adequate. The test statistic, the chi-square-
value (= c2–value) is calculated according to

χ
σ
-

= -
2

2
2

(n 1)s
for n 1 degrees of freedom

(n = sample size, s = standard deviation, s2 = variance sample, s = expected standard 
deviation, s2 = expected variance).

For example, the aminoglycoside compound gentamicin has a small therapeutic 
index. The standard deviation of 50 measurements is used as a criterion for vari-
ability. Adequate variability is accepted if the standard deviation is less than 7 mg/l. 
In our sample a standard deviation of 9 mg/l is observed.

The test procedure is given.

2 2 250 1 9 / 7 81= ( - ) =χ

The chi-square table (page 32) shows that, for 50 − 1 = 49 degrees of freedom, we 
will find a p-value < 0.01. This sample’s standard deviation is significantly larger 
than that required. This means that the variability in plasma gentamicin concentra-
tions is larger than acceptable.

Chapter 16
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Two Sample Variability Test

F-tests can be applied to test if the variabilities of two samples are significantly 
different from one another. The division sum of the samples’ variances (larger 
variance/smaller variance) is used for the analysis. For example, two formulas of 
gentamicin produce the following standard deviations of plasma concentrations.

Patients (n) Standard deviation (SD) (mg/l)

Formula-A 10 3.0
Formula-B 15 2.0

2 2
A BF-value SD / SD=

	 = 2 23.0 / 2.0

	 = =9 / 4 2.25

with degrees of freedom (dfs) for

formula-A of 10 1 9- =

formula-B of 15 1 14.- =

The F-table on the next page shows that an F-value of at least 3.01 is required 
not to reject the null - hypothesis. Our F-value is 2.25 and, so, the p-value is > 0.05. 
No significant difference between the two formulas can be demonstrated. This 
F-test is given on the next page.
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20
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treatment efficacy (units)

In the above study the treatment effects are better in the males than they are in the 
females. This difference in efficacy does not influence the overall assessment as 
long as the numbers of males and females in the treatment comparison are equally 
distributed. If, however, many females received the new treatment, and many males 
received the control treatment, a peculiar effect on the overall data analysis is 
observed as demonstrated by the difference in magnitudes of the circles in the 
above figure: the overall regression line will become close to horizontal, giving rise 
to the erroneous conclusion that no difference in efficacy exists between treatment 
and control. This phenomenon is called confounding, and may have a profound 
effect on the outcome of the study.

Confounding can be assessed by the method of subclassification. In the above 
example an overall mean difference between the two treatment modalities is 
calculated.

For treatment zero

Mean effect standard error SE 1.5 units 0.5 units± ( ) = ±

Chapter 17
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For treatment one

± = ±Mean effect SE 2.5 units 0.6 units

The mean difference of the two treatments

	 1.0 units pooled standard error= ±

	
2 21.0 (0.5 0.6 )= ± Ö +

	 1.0 0.61= ±

	 The t-value as calculated 1.0 / 0.61 1.639= =

With 100 − 2 (100 patients, 2 groups) = 98 degrees of freedom the p-value of this 
difference is calculated to be

	  = p > 0.10 (according to t-table page 21).

In order to assess the possibility of confounding, a weighted mean has to be 
calculated. The underneath equation is adequate for the purpose.

2 2
males females

2 2
males females

Difference /  its SE Difference /  its SE
Weighted mean 

1 /  SE 1 /  SE

±
=

+

For the males we find means of 2.0 and 3.0 units, for the females 1.0 and 2.0 
units. The mean difference for the males and females separately are 1.0 and 1.0 as 
expected from the above figure. However, the pooled standard errors are different, 
for the males 0.4, and for the females 0.3 units.

According to the above equation a weighted t-value is calculated

	

2 2

2 2

(1.0 / 0.4 1.0 / 0.3 )

(1 /
Weigh

0.4
ted m

1 / 0
ean

.3 )
=

+
+

	 1.0=

	
2 2 2Weighted SE 1 / (1 / 0.4 1 / 0.3 )+

	 0.576=

	 Weighted SE 0.24=

	 t-value 1.0 / 0.24 4.16= =

	 p-value 0.001<

The weighted mean is equal to the unweighted mean. However, its SE is much 
smaller. It means that after adjustment for confounding a very significant difference 
is observed.

Other methods for assessing confounding include multiple regression analysis and 
propensity score assessments. Particularly, with more than a single confounder these 
two methods are unavoidable, and they can not be carried out on a pocket calculator.
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90

70

50
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10

0 1
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treatment modality
0 = control medicine
1 = new medicine

The medical concept of interaction is synonymous to the terms heterogeneity and 
synergism. Interaction must be distinguished from confounding. In a trial with 
interaction effects the parallel groups have similar characteristics. However, there 
are subsets of patients that have an unusually high or low response. The above 
figure gives an example of a study in which males seem to respond better to the 
treatment 1 than females. With confounding things are different. For whatever 
reason the randomization has failed, the parallel groups have asymmetric charac-
teristics. E.g., in a placebo-controlled trial of two parallel-groups asymmetry of 
age may be a confounder. The control group is significantly older than the treat-
ment group, and this can easily explain the treatment difference as demonstrated 
in the previous chapter.

Chapter 18
Interaction
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Example of Interaction

A parallel-group study of verapamil versus metoprolol for the treatment of 
paroxysmal atrial tachycardias. The numbers of episodes of paroxysmal atrial tachy-
cardias per patient are the outcome variable.

Verapamil Metoprolol

Males 52 28
48 35
43 34
50 32
43 34
44 27
46 31
46 27
43 29
49 25

464 302 766

Females 38 43
42 34
42 33
35 42
33 41
38 37
39 37
34 40
33 36
34 35

368 378 746
832 680

Overall metoprolol seems to perform better. However, this is only true only for 
one subgroup (males).

Males Females

Mean
verapamil

 (SD) 46.4 (3.23866) 36.8 (3.489667)
Mean

metoprolol
 (SD) 30.2 (3.48966) −  37.8 (3.489667) − 

Difference means (SE) 16.2 (1.50554) −1.0 (1.5606)
Difference between males and females  17.2 (2.166)

t - value 17.2 / 2.166 8...= =

	 <p 0.0001

There is a significant difference between the males and females, and, thus, a 
significant interaction between gender and treat-efficacy. Interaction can also be 
assessed with analysis of variance and regression modeling. These two methods are 
the methods of choice in case you expect more than a single interaction in your 
data. They should be carried out on a computer.
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The reliability, otherwise called reproducibility of diagnostic tests is an important 
quality criterion. A diagnostic test is very unreliable, if it is not well reproducible.

Example 1

Test 1 Test 2 Difference (Difference)2

Result
1 11 −10 100

10 0 10 100
2 11 −9   81

12 2 10 100
11 1 10 100
1 12 −11 121

Mean
6.17 6.17 0 100.3

	
Duplicate standard deviation duplicate standard deviation (SD)=

	
2

(1/ 2 mean (difference) )= Ö ´

	 (1 / 2 100.3)= Ö ´

	 7.08=

The proportional duplicate standard deviation%

	

duplicate standard deviation
100%

overall mean
= ´

	

7.08
100%

6.17
= ´

	 115%=

Chapter 19
Duplicate Standard Deviation for Reliability 
Assessment of Continuous Data
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An adequate reliability is obtained with a proportional duplicate standard deviation 
of 10–20%. In the current example, although the mean difference between the two 
tests equals zero, there is, thus, a very poor reproducibility.

Example 2

Question is this test well reproducible?

Test 1 Test 2

Result
6.2 5.1
7.0 7.8
8.1 3.9
7.5 5.5
6.5 6.6

Analysis:

Test 1 Test 2 Difference Difference2

Result
6.2 5.1 1.1 1.21
7.0 7.8 −0.8 0.64
8.1 3.9 4.2 17.64
7.5 5.5 2.0 4.0
6.5 6.6 −0.1 0.01
Mean
7.06 5.78 4.7

Grand mean 6.42

	
1

2Duplicate standard deviation 4.7= Ö ´

	 1.553=

Proportional duplicate standard deviation %

	

duplicate standard deviation
100%

overall mean
= ´

	

1.533
100%

6.42
= ´

	 24%=

A good reproducibility is between 10% and 20%. In the above example repro-
ducibility is, thus, almost good.
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The reproducibility of continuous data can be estimated with duplicate standard 
deviations (Chap. 19). With binary data Cohen’s kappas are used for the purpose. 
Reliability assessment of diagnostic procedures is an important part of the validity 
assessment of scientific research.

Example

Positive (pos) or negative (neg) laboratory tests of 30 patients are assessed. All 
patiënts are tested a second time in order to estimate the level of reproducibility 
of the test.

1st time

pos neg
2nd time pos 10   5 15

neg   4 11 15
14 16 30

If the test is not reproducible at all, then we will find twice the same result in 
50% of the patients, and a different result the second time in the other 50% of the 
patients.

Overall 30 tests have been carried out twice.

	

We observe 10 times 2 positive and

11 times 2 negative.

´
´

And thus, twice the same is found in

21 patients which is considerable more than in half of the cases,

which should have been15 times.

Chapter 20
Kappas for Reliability Assessment  
of Binary Data
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Minimal indicates the number of duplicate observations if reproducibility were 
zero, maximal indicates the number of duplicate observations if the reproducibility 
were 100%.

	

observed minimal
Kappa

maximal minimal

-
=

-

	

21 15

30 15

-
=

-

	 0.4=

A kappa-value of 0.0 means that reproducibility is very poor.
A kappa of 1.0 would have meant excellent reproducibility.
In our example we observed a kappa of 0.4, which means reproducibility is very 

moderate.
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Statistics is no bloodless algebra. It is a discipline at the interface of biology and 
mathematics. Mathematics is used to answer biological questions. Biological pro-
cesses are full of variations, and statistics gives no certainties, only chances. What 
kind of chances: chances that your prior hypotheses are true or untrue. The human 
brain hypothesizes all the time. And we currently believe that hypotheses must be 
assessed with hard data.

When it comes to statistical data analyses, clinicians and clinical investigators 
soon get very nervous, and tend to leave their data to a statistician who runs the data 
through SAS of SPSS or any other software program to see if there are significant 
p-values. This practice is called data dredging and is the source of multiple type I 
errors of finding a difference where there is none.

The best defense against this practice is the use of simple tests. These tests, 
generally, provide the best power for confirmative research, because this research 
is based on sound arguments. Multiple variable tests are not always in place here, 
as they tend to enhance the risk of power loss, data dredging, and type I errors 
producing a host of irrelevant p-values. Also multiple variable tests, although inter-
esting, are considered exploratory rather than confirmatory, in other words they, 
generally, prove nothing, and have to be confirmed.

The current book was written for various reasons:

	1.	 To review the basic principles of statistical testing which tends to be increasingly 
forgotten in the current computer era.

	2.	 To serve as a primer for nervous investigators who would like to perform their 
own data analyses but feel inexpert to do so.

	3.	 To make investigators better understand what they are doing, when analyzing 
clinical data.

	4.	 To facilitate data analysis by use of a number of rapid pocket calculator 
methods.

	5.	 As a primer for those who wish to master more advanced statistical methods. 
More advanced methods are reviewed by the same authors in the books “SPSS 

Final Remarks
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for Starters” 2010, “Statistics Applied to Clinical Trials” fourth edition, 2009, 
“Statistics Applied to Clinical Trials: Self-Assessment Book, 2002, all of them 
edited by Springer, Dordrecht. These books closely fit and complement the 
format and contents of the current book.

The current book is very condensed, but this should be threshold lowering to 
readers. As a consequence, however, the theoretical background of the methods 
described are not sufficiently explained in the text. Extensive theoretical informa-
tion is also given in the above mentioned books from the same authors.
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A
Alpha, 20
Analysis of variance, 41, 50
Areas under the curve, 21

B
Beta, 20
Bloodless algebra, 55
Bonferroni inequality, 41
Bonferroni t-test, 41–42
Boundaries of equivalence, 17

C
Chi-square table, 31–33
Chi-square test, 31–35, 37, 38, 43
Chi-square test for cross-tabs, 31–34
Cohen’s kappa, 53
Confidence intervals, 1, 15
Confounding, 1, 47–49
Cross-tabs, 29–35, 37, 39, 40

D
Data dredging, 41
Degrees of freedom, 6–8, 20, 29, 31,  

43–45, 48
Dependent variables, v
Diagnostic tests, 51
Duplicate standard deviation, 51–52

E
Equivalence tests, 17

F
Frequency distribution, 8
F-table (Fisher), 44, 45
F-test (Fisher), 44

G
Gaussian distribution, 36

I
Independent variables, v
Interaction, 49–50
Irrelevant p-values, 42

K
Kappa, 53–54
Kappa-values, 54

L
LnOR, 35, 36, 40
Ln values, 40
Log likelihood ratio, 37–38
Log likelihood ratio tests, 37–38

M
Mann Whitney tables, 11
Mann Whitney test, 11–13
Margin of inferiority, 27
Matched groups, 7
McNemar odds ratios, 40
McNemar’s test, 39–40

Index
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Means, 10, 41, 48
Multiple regression analysis, 48
Multiple testing, 1, 41
Multiple variable tests, 55

N
Noninferiority testing, 27–28
Non-parametric tests, 1, 9–13
Normal distribution, 29

O
Odds ratios, 15, 35–36
Odds ratio test for cross-tabs, 35–36
One-sample t-test, 5–6

P
Paired t-test, 6
Parallel groups, 27, 49
Parallel-group study, 17, 50
P-calculator for z-values, 36, 37
Pocket calculator method, 31
Pocket calculators, 1–3, 31, 34, 40, 48
Pooled SE. See Pooled standard error
Pooled standard deviation, 26
Pooled standard error, 17, 29, 48
Power, 19–21, 23–27
Power equations, 19–21
Power index, 23–27
Prior hypothesis, 55
Propensity scores, 48
Proportions, 31–33
Proportional duplicate standard  

deviation, 51, 52
P-values, 5–13, 21, 23, 24, 27–33, 36–44, 48

R
Rank numbers, 9–11
Regression modeling, 50
Reliability assessment, 51–54
Reproducibility, 51–54

S
Sample size, 1, 6, 8, 15, 20, 23–27, 43
Sample size and binary data, 25–26

Sample size and continuous data, 23–25
SAS statistical software, 55
SD. See Standard deviation (SD)
SE. See Standard error (SE)
SEM. See Standard error of the mean (SEM)
SEM-unit, 23, 28
Sensitivity of tests for cross-tabs, 37
SE-unit, 8, 20, 28
SPSS for Starters, 2
SPSS statistical software, v
Standard deviation (SD), 3–7, 15, 19, 23–27, 

44, 51
Standard error (SE), 5–7, 15, 19, 20, 28–30, 

35, 36, 40, 47, 48
Standard error of the mean (SEM), 17, 23, 24, 

28, 29, 40
Subclassification, 47

T
T-distribution, 20, 21, 29
T-table, 6–8, 19–21, 29, 30, 36, 40, 48
T-tests, 5–8, 41–42
Two-sided p-values, 21
Type I error, 20, 41
Type II error, 20

U
Unpaired t-test, 7–8

V
Variability analysis, 1, 43–45
Variability test one sample, 43
Variability test two samples, 44–45

W
Weighted mean, 48
Weighted standard error, 48
Wilcoxon table, 10
Wilcoxon test, 9–10

Z
Z-distribution, 
Z-test for cross-tabs, 29–30
Z-values, 29, 36, 37
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