
**   VARYING PROBABILITY SAMPALING ** 

 

Auxiliary Information:- 

(i) Planning stage – e.g. Stratified Sampling  

(ii) Specified  Stage  

(iii) Estimation Stage – e.g.  Ratio, Regression, Product method of estimation. 

 

Unlike SRS, here the units gets different probability of selection with the help of the 

use auxiliary variable i.e. We associate to vector Y’ = (y1,…….yn),   a vector  

P’= (p1,p2……..pn) such that   1
1
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ip ,   pi > 0.The rational behind the use of varying 

probability of selection is that large units contribute more towards the population total and 

hence they should have large probability of selection in the sample. If X i denotes the size 

of ith   unit. Then pi  xi  
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i         where i = 1,2,……..N. 

This sampling is also known as PPS (Probability Proportional to Size)   

There are predominately two methods by which we select the PPS sample. 

(i) Cumulative total method. 

(ii) Laheri`s method. 

 

(1)  Cumulative Total Method:- 

Here we make the cumulative total of the units of the population given as bellow, 

 

 Unit No. Size Cumulative total 

 1 x1 T1 = x1  

 2 x2 T2= x1+x2 

 3 x3 T3= x1+x2+x3 

 . . ……….. 

 . . …………  

 I xi Ti = x1+…..+xi 

 . . … 

 N xN TN = x1+…..+xN 

 

Now select a random number between 1 to X. Where X = total of Xi’s in population. 

If rth random number is selected and Ti-1 < r  Ti. Then ith unit is selected. This ensure that 

pi = xi / X. If we allow repetition of units in the sample. It is known as PPSWR sampling 

procedure and if we do not allow repetition then resultant will be PPSWOR sampling 

procedure.  

One of the major defect of this sampling procedure is that for large N. Preparation 

of cumulative total table requires large cost and time, so Laheri suggested the following 

procedure. 

 



(2) Laheri`s method of selection of a PPS sample:- 

 Laheri`s Scheme consists in 1st deciding a number in which it is larger than the sizes 

of units. Then select a pair of random number say (i, j), if xi  xj retain ith unit in the sample 

otherwise reject the pair. Repeat it till we get the sample size n. Here also if retain all units 

even with repetition, it results an PPSWR. If we retain only distinct units in sample, then 

it is PPSWOR. 

 

** Estimation Of population mean or total. 

 Let a sample of (y1,…,yn) is selected with PPSWR in which probability of selecting 

ith unit of y  is pi (i = 1,2,...,N) and we are interested in population mean. 

  
N

Y

Y

N

i

i
 1  

 let 
i

i
i

NP

Y
Z       i = 1,2,….,N. 

then          



n

i i

i
n

i

i
NP

y

n
z

n
z

11

11
 

 is an unbiased estimator of population mean, that is,   
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  as zi and zj  are independent. 
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 On putting this value in (ii), we have  
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** Unbiased Estimator V( z


) :-  

 Let us consider    
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** PPSWOR :- 

 This was first considered Horvits & Thompson (1952). The use of PPWOR for 

estimating population mean. The suggested that 
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 where i  = inclusion probability of ith unit being included in the sample. This is 

different from initial probability of selection which is given by p i. Then, 
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 If us define an indicator fn. i. 
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 Where ij  is the probability of including units i and j in the sample. 
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** Estimation of )( HTYv  :- 
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* Evaluation of inclusion probability n =2. 
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** Yates and Grondy proved the following relationship.  

 An elegent expression for the variance of the H-T estimator is given by Yates and 

Grondy. Since,I= 1 exactly n units in the probability and zero for the rest , we have, 
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 This value put in (1) 
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** The Major Draw Back of H.T Estimator are:-  

(1) Estimate of  variance can assume negative value and have no inference can be  

(2) Calculation of i, ij, are difficult. The author have suggested that the population 

many be deeply stratified that a sample of 2 or 3 is sufficient to represent the strata.  

Yotes and Grandy claimed that the estimator proposed by them is always positive, 

Then, illustrated it by an exp. Of 5 popes for n = 2, Then claim is however not true 

for n > 2.  

So it is also taken negative value but less frequently then that of H.T.  

** To show that )(ˆ
HTyG YV   is always positive for n = 2. 

We know that;    
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** Midzuno Scheme of Sampling:- 

 Select the first unit of the sample with PPS and the remaining (n-1) units with 

SRSWOR. 

)(ni  Probability of selecting ith unit at the 1st draw + probability of selecting at     

any of (n-1) draw  
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)(nij  Probability of selecting ith first draw and jth at any of the (n-1) draws  + probability 

jth is selecting the first draw p ith  included at any of (n-1) draws + neither ith  nor jth unit is 

selected at the first draw but are included at remaining (n-1) draw  
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 Thus in this sampling scheme the probability of selection of units in the sample can 

always be made propertinoned to the sum of their sizes. 

 The another property of this sampling scheme is that Yates-Grandy is estimator or 

Horwity-Thompson.  

 Estimator’s variance is always positive. They can be proved so follows, 

 We know that Yot’s estimators of )( HTYV   will always be positive if 

ijijji k,0  

 

2

2
,

1

1

)(
1

1
,

21

1

11

1

1























































N

n

N

n

pp
N

n

N

nN

N

n
p

N

nN

N

n
p

N

nN
jijiijji 

 

 

 













































































































































2

2

1

1
)(

1

1

2

1

1

1

1

11

1

1

1

11

2

N

n

N

n
pp

N

n

N

nN

N

n

N

n
p

N

nN

N

n

N

n
p

N

nN
pp

N

nN

ji

jiji

 

 

 






























































































2

2

1

1

1

1

)(
1

1

2
)(

1

1

11

2

N

n

N

n

N

n

pp
N

n

N

nN
pp

N

n

N

nN
pp

N

nN
jijiji

  



 











































































2

2

1

1

1

1

21
)(

1

1

1

2

N

n

N

n

N

n

N

nN

N

nN
pp

N

n
pp

N

nN
jiji  






































































2

2

1

1

1

1

)2)(1(
)(

1

1

1

2

N

n

N

n

N

n

NN

nN
pp

N

n
pp

N

nN
jiji

 














































)2)(1()2)(1(
)(

1

1

1

2

NN

nN

NN

nN
pp

N

n
pp

N

nN
jiji

 

0
2

1
)(

2

1
)(

)1( 2

























N

n
pp

N

n
ppnN

N

nN
jiji  

0
2

1
)(

2

1
)( 



















N

n
pp

N

n
ppnN jiji  

          ijji    

 

 

 

 

 

** RATIO ESTIMATION ** 

 In sample random sampling we considered estimators using observed 

values of characteristic under study. Many a time the characteristic Y under 

study is closely related to a auxiliary characteristic X and data on X are either 

readily available or can be easily collected for all the unit in the population. 

In such situations, it is customary to consider estimators of Y  that are the data 

on X and are more efficient then the estimators which use data on the 

characteristic Y alone fact that, the data on the auxiliary variable can be used 

data at a later stage after selecting the sample, encourages such processors two 

type of these commonly used methods are  

(1) The ratio type methods. 

(2) The regression methods.  

 

** NOTATION ** 

 

 Yi = the value of Y, the characteristic under study for the ith unit in the 

population. i = 1, 2, ….., N 

 Xi = the value of X, the auxiliary characteristic for the ith unit in the 

population. 

 XYR /ˆ   : The ratio of population means. 

 xyR /ˆ    : The ratio of sample means. 



 The ratio estimators of the population mean  Y  is that defined as 

XRyr
ˆ  

 

Example:-Let   Y = number of bullocks on a holding. 

       X = total area in acres  

 The ratio R̂ is an estimator of the number of bullocks for a car for 

holding in the population, the product of R̂ with X . The coverage size of a 

holding in acres would prosed in estimator of 1Y  the coverage number of 

bullocks per holding in the population. 

 y = population of Rajkot in 1992. 

 x = population of Rajkot in 1987. 

 X = total population of Rajkot in 1987. 

 Let us have a SRSWOR of n households for 1987 and hence get the 

sample total y. Then the ratio estimator of the total population of Rajkot in 

1992 us given by, 

  X
x

y
yR ˆ   

 

 

** BIAS OF RATIO ESTIMATORS:- 

 

 The ratio estimator of the population mean Y  is given by, 

  X
x

y
yR ˆ             …………………(i) 

  Let us define   
Y

Yy
e


0  …………………(ii) 

            
X

Xx
e


1   …………………(iii) 

 0
)(

)( 0 












 


Y

YY

Y

YyE

Y

Yy
EeE  

 0
)(

)( 1 












 


X

XX

X

XxE

X

Xx
EeE  

 2

22

2

2

0

1)(var
)( yS

Nn

nN

YY

y

Y

Yy
EeE










 
  

 2

22

2

2

1

1)(var
)( xS

Nn

nN

XX

x

X

Xx
EeE










 
  



 2

10

1),(cov
)( yxS

Nn

nN

XYXY

Xxy

X

Xx

Y

Yy
EeeE













 
  

  where   


 22 )(
1

1
Yy

N
S iy  

    


 22 )(
1

1
Xx

N
S ix  

    


 ))((
1

12 YyXx
N

S iiyx  

 From (ii)    )1( 0eYy   

 From (iii)    )1( 1eXx      put this value in equation (i)  

  1

10

1

0

1

0 )1()1(
1

1

)1(

)1( 
















 eey

e

e
yX

eX

eY
yR

 

        )1()1(
2

110 eeey    




negletedare 3power than 

 having  termssexparition In the
 

        )1(
2

11010 eeeeey   

 Subtract Y   from both the side in above expression we get, 

  )(
2

11010 eeeeeYYY R   

 Bias of the ratio estimator to the first degree of approximation is given 

by, 
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  where,  = correlation coefficient between y and x. 

   Cx = XSx  = coefficient of variation of x. 

   Cy = YS y  = coefficient of variation of y. 

    f   =  n/N sample fraction. 

 

 



REMARK:- 

 Ratio estimator is unbiased if   

bias ( RY ) = 0.     i.e.  if    0
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XY   regression coefficient of y on x  

i.e. if   the line of regression of y on x is a straight line passing through 

origin. 

i.e.    if     
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** MEAN SQUARE ERROR OF RATIO ESTIMATOR :- 

 

 The mean square error of ratio estimator of the populoation mean is 

given by, 
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** COMPARISON OF RATIO ESTIMATOR WITH SRSWOR:- 

 

 In SRSWOR, we have 
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** ESTIMATION OF VARIANCE OF RATIO ESTIMATOR:- 

 

 The estimate of the variance of ratio estimator is given by, 
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** UNBIASED RATIO TYPE ESTIMATOR:- 

 

 An Unbiased Ratio Type Estimator of the population mean Y  is defined 

as, 
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EXAMPLE :-  Complete the variance of ratio estimators of the population 

mean : 

 When N = 100, n = 25, = ½  Cx = Cy complete it with SRSWOR :- 
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** REGRESSION METHOD OF ESTIMATOR:- 

 

 The difference estimator of the population mean Y is defined as, 
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   is Regression coefficient of y over x. 

 the difference estimators becomes  



)( xXyy    

 Where   the population regression coefficient of y on x is unknown it 

will be replaced by simple regression coefficient of y on x, b-we get the linear 

regression estimator of Y . 

 i.e.   )( xXbyYlr     where b = syx/sx
2 ,   lr = linear regression. 

 

** BIAS OF REGRESSION ESTIMATOR:- 
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 There fore the regression estimator becomes. 
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** MEAN SQUARE ERROR OF REGRESSION ESTIMATOR:- 

 

 Mean square error of the regression estimator of the population mean 

to the first degree of approximation is given by: 
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 Which is mean square error of regression estimator. 

 

** COMPARISON OF REGRESSION ESTIMATOR WITH SRSWOR 

AND RATIO ESTIMATOR:- 

 

 In SRSWOR we have 21
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 i.e.  Regression estimator is superior to SRSWOR for ratio estimator, 

we have, 
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i.e. regression estimation is superior to ratio estimation and equally 

efficient. 
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i.e.  if  XY   

 i.e.   if the line of regression of Y on X is a straight line passing through 

origin. 

NOTE:-   When  Rlr YandY ˆ    are equally efficient there use RŶ   because it 

dose not require the compi 

tation  of bi . 

 

** APPLICATION:- 

 

 When the measurement of one variable (study variable) is complicative 

costly and time consuming where as the measurement of another variable ( 

auxiliary variable ) is simple , cheaper and quicker then the regression 

estimator is used. 

 Suppose, We wish to estimate the average area of a leaf on a certain 

plants the weight of a leaf. Here the measurement of y is complicative, costly 



and time consuming where as measurement of x is simple, cheaper and 

quicker. 

 We can weight all the leaves together and get the total XNX  . Let 

us have a SRSWOR of n leaves and hence the value of y and x we compute 

XY , and b for the sample then the regression estimator of the average of a leaf 

is given by, 
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** SYSTEMETIC SAMPLING ** 

 In systematic sampling the 1st sample is selected according to given 

pattern. Suppose, there are N units in population. Let n be a sample size. 

Assume that N = nk, We list the units of population. We draw a random 

number term 1 to k. Suppose it is i 

 (i =1,2,…,k.) then the ith unit is selected in the sample the remaining (n-1) 

units are selected as the units having no. 

 i+k, i+2k, i+3k,………………….i+(n-1)k. 

  
 

** SYSTEMETIC SAMPLING **  

 

 

 In systematic sampling the 1st sample is selected according to given 

pattern. Suppose, there are N units in population. Let n be a sample size. 

Assume that N = nk, We list the units of population. We draw a random 

number term 1 to k. Suppose it is i 

 (i =1,2,…,k.) then the ith unit is selected in the sample the remaining (n-1) 

units are selected as the units having no. 

 i+k, i+2k, i+3k,………………….i+(n-1)k. 

 thus the systematic sample of size n  the units with no consist of i , i+k, 

i+2k, i+3k,………………….i+(n-1)k.  Where k is called the interval of 

systematic sample. This is called the linear systematic sampling.  

 e.g.    N = 100,   n = 10,   k = N/n = 10. 

 The 1st unit is selected by drawing a random no. from 1 to 10. Suppose 

it is 7. Then 7th unit is selected in the sample. Thus, systematic sample of size 

10 contains the units as 7,17, 27, 37, 47, 57, 67, 77, 87, 97. 

 

 

 



** SELECTION OF ALL SYSTEMATIC SAMPLE:- 
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1) There k systematic sample each of size n 

2) Each systematic sample has probability 1/k of being selected. 

 

 

** RELATION WITH STRATIFIED SAMPLING:- 

 

 Systematic sampling is similar to Stratified sampling in which N units 

are grouped into n strata each of size k and one unit per stratum is selected. 

But the difference between them lies in fact that the unit occupy the same 

relative position in different strata where as in stratified sampling units are 

selected at random in different strata. 

 

* VALUE OF VARIABLE Y IN THE POPULATION:- 
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* NOTATIONS:- 

 

 Let, Yij = value of jth unit in the ith systematic sample.   

  Whrer i =1,2,…k. and k = 1,2,…..n. 

 



n

j

iji kyY
1

 = mean of the ith systematic sample. 

 



k

i

ijj kyY
1

 = mean of the jth unit. 



 




 


n

j

i

k

i

n

j

ij

Y
knk

Y

Y
1

1 1 1
 

     = mean of the population. 

     = mean of the systematic sample mean. 

 

** EXPECTED VALUE OF SYSTEMATIC SAMPLE MEAN:- 
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* Variance of Systematic Mean:- 
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(I) ALTERNATIVE EXPRESSION OF VARIANCE :- 
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* COMPARISION WITH SRSWOR:- 

 

In SRSWOR we have,  
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= intraclass correlation coefficient between pair of units         

within   the    systematic sample. 

Proof:-  we have, 
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* Comparison With SRSWOR:- 

 

 In SRSWOR, 
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* Comparison With Stratified Sampling 

 

  There are N units divided into n strata each of size k and 1 unit per 

strata is selected. 
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 On comparison we note that Systematic Sampling has the same 

precision as corresponding equivalent stratified sampling if wst = 0. 

 

** SPECIAL POPULATION:- 

 

 If we have special population we have these type of situations. 
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The value of population increase accordingly to linear law i.e. differ 

by constant amount h(say). 

 

Example:-Suppose t values of X are +h, +2h,….., +lh,…., +th  

 Mean of this series is, 
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**Theorem:-For special population with usual notation prove that 

Vst:Vsy:Vran: :1/n:1:n if   k is large and hence, 

  Est : Esys : Eran :  : n
2 : n : 1 

Proof:-(1) In SRSWOR, we have, 
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 There are nk = N values in the population differing by constant amount 
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 (2) In systematic sampling, we have, 
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(3) In stratified sampling, we have. 
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 There are k values each is differing by a constant h.  
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 There are N = nk values divided in n strata each of size k and one unit 

per stratum to selected.  
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** CIRCULAR SYSTEM SAMPLING:- 

 

 The case N = nk is called linear systematic sampling. Let as examine 

what happens when N  nk. 

 e.g. N = 11, n = 3, k = N/n = 11/3  4 

Random strata Systematic Sample  Probability 

  i, i+k, i+2k,………i+(n-1)k 

 1 Y1 Y5 Y9 ¼ 

 2 Y2 Y6 Y10 ¼  

 3 Y3 Y7 Y11 ¼   

 4 Y4 Y8  ¼  
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** DRAW BACK OF LINEAR SYS SAMPLING (L.S.S.) 

 

(1) All the sys sampling are not at the same size. 

(2) Sys sampling mean is not an unbiased estimator of the population 

mean. 

  

 To remove these draw back a rular Sys. Sampling is suggested. In 

C.S.S. the 1st unit is selected by drawing a random no. from 1 to N and then 

select every kth unit in a cyclic manner till a sample of size n is obtain where, 

 K = the nearest integer N/n 

 i.e.  k  N/n    

 e.g. N = 11, n = 3, k = N/n  4 

 Suppose the first random no. is 4 then C.S.S. of size 3. Contains the unit 

as Y4, Y8 , Yi . 
 

 

 

 

 

 

 

 

 

 



** TWO STAGE SAMPLING ** 

 

 In cluster sampling the whole population is divided in to clusters and a 

sample of clusters is selected and the elements of the selected clusters are 

enumerated. If the elements of the clusters are more or less homogeneous then 

it is uneconomical to enumerate all the elements of the selected dusters. In this 

case two-stage or sub-sampling is suggested. 

   The sampling procedure of first selecting a sample of clusters and then 

selecting a sample of clusters and then selecting a sample of element from 

each selected clusters is known as two-stage or sub-sampling. The clusters 

which form sampling units at the first stage are called first-stage units and the 

elements within the cluster which form sampling units at the second stage are 

called second stage units. 

 For an example, while sampling of fields in a taluka, first a sample of 

villages is selected and from each selected village a sample of fields is 

selected. 

 This procedure can be extended and we have three stage or multi-stage 

sampling. 

 

** Notations :- 

 N = number of first stage units in the population. 

 M = number of second stage units in the population. 

 Yij = Value of the jth second stage unit in the ith first stage unit. 

  i = 1,2,….,N. 

  j = 1,2,……,M. 
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       = Population mean = (mean per second stage unit in the whole 

population.) 

 






M

j

iiji YY
M

S
1

22 .)(
1

1
 

      = Mean square among the second stage units in the ith first age units 

in the population. 
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      = Mean square among the second stage units within the first age 

units in the population. 
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      = Mean square among the first age units in the population. 

 We assume that a SRSWOR of n first age unit is known from the 

population and from each First stage unit a SRSWOR of m second stage unit 

is taken, thus we have a sample of nm second stage units. 
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       =  Mean per second stage unit in the ith first age unit in the sample. 
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      = Two stage sample mean. or mean per second stage unit in the ith 

first stage unit in the sample. 
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      = Mean square among the second stage units in the ith first age units 

in the sample. 
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      = Mean square among the second stage units within the ith first age 

units in the sample. 
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* Theorem:- Prove that, 
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 So from (i) and (ii) 
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 Theorem:- An unbiased estimator of the variance of two-stage sample mean 

is given by, 
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** Efficiency of Two-Stage Sampling and SRSWOR:- 

 

 In SRSWOR we have, 
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 In two-stage sampling, we have, 

  22 11111
)( wbnm S

Mmn
S

Nn
stagetwoYV 

















  

            )
1

(
111 22 negligibleis

M
S

nm
S

Nn
wb 








  

 now we have M2 (N-1) Sb
2 = (NM-1) S2 [1+(M-1)] 



 i.e.   






 






M

M
S

NM

NM
Sb

)1(1

)1(

1 22  

        )
1

(
1

2 negligibleis
M

S
N

N



  

 Next we have,  

    222 )1()1()1( bw SNMSMNSNM   

       
)1(

)1()1( 22
2






MN

SNMSNM
S b

w  

            























M
N

SNS
M

N b

1
1

)1(
1 22

 

    
N

SNNS b

22 )1( 
  

    
M

S
N

N
S b

1
(

1 22 






 
 is negligible ) 

    22

1

1
S

N

N

N

N
S




  

    22 SS   

    )1(2  S  

 There fore )( nmYV   two-stage becomes. 

         )1(
1

)(
2

2  





nm

S
S

N

N

nN

nN
stagetwoYV nm  

     )1(
)1(

2
2  






nm

S
S

Nn

nN
 

     












  1

1

)(2

N

nNm

nm

S
 

     




















 1

1

)(
1

2

N

nNm

nm

S
 

 Efficiency of two-stage sampling over SRSWOR is given by, 
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 Obtain the efficiency of two stage sampling compared to SRSWOR in 

forms of intra class correlation to efficient. 

 

 Optimum Value of n and m :- ( For Two-Stage Sampling ) 
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 Consider the cost function.      

   c = c1n + c2nm. 

 Where c = total cost  

   c1 = cost for collecting information per first stage unit. 

    c2 = cost for collecting information per second stage unit. 

 Determine the optimum value of n and m such that variance. 

i.e )( nmYV  is minimized for fined cost w, say, 
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 From (i) and (ii)  we have, 
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 If D < 0 , the above procedure fails in this case we proceed as follows.  
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 Substituting the above , value of n from (iii) becomes, 
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 As m increases, )( nmYV   decreases and  )( nmYV  is minimum when m is 

the largest positive integer.  

 i.e.   Mm ˆ . Then , n is obtained from the following. 
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** CLUSTER SAMPLING** 

 

 A sample procedure pre-suppose the division of the population in to a 

finik no. of distinct and identifying units that called sampling unit. The 

smallest units in to which the population can be divided are called the element 

of population and the group of element are called clusters. Some times instead 

of taking an element as the sampling unit cluster is taken as the sampling unit. 

This is useful when the list of element is not available while the list of cluster 

is available. 

 Thus, in cluster sampling, A population is divided into cluster and 

sample random sample of clusters is selected and information for all elements 

of the selected cluster is collected. 

 

EXAMPLE:- 

 While sampling of population is a certain city, the list of person residing 

in that city is not available, but the list of households is readily available. 

 Value of study variable y in the population:- 

    1 2 ….. i ….. N 

  1 Y11 Y21 …. Yi1 ….. YN1 

  2 Y12 Y22 …. Yi2 ….. YN2 

  . . . . . . . 

  . . . . . . . 

  j Y1j Y2j …. Yij ….. YNj 

  . . . . . . . 

  . . . . . . . 

  M Y1M Y2M …. YiM ….. YNM 

 NM = Number of elements in the population. 

   N = Number of clusters in the population. 

   M = Number of elements in each clusters. 

  Yij = Value of jth elements in the ith cluster ( i= 1,2,…,N.     j = 

1,2,…..,M.) 
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        = population mean. 
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N

i

iw S
N

S
1

22 1
 

       = mean square between elements within the clusters in the 

population. 
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       = Mean square between elements in the whole population. 
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       = Mean square between clusters in the whole population. 

 Suppose a simple random sample of n cluster is drawn from N elements 

and all the elements of selected clusters are enumerated. Thus, we have a 

cluster sample of NM elements. 
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       = Mean square between elements within the cluster in the 

sample. 
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       = Mean square between clusters in the sample. 
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       = Mean square between elements in the whole sample. 

* Theorem:-Prove that- 
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* Proof:-Let Qi be the quantity associated with the ith unit of the population 

(i= 1,2,…,N) 
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 Suppose a simple random sample of size n is taken from the population 

of size N. 

 Let      
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For SRSWOR we have, 
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 For cluster sampling, let us define Qi = Yi,   nMn YQ  ,    NMN YQ  , SQ
2 = 

Sb
2  

 Appling (i) and (ii) we get, 
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** Efficiency of Cluster Sampling Compared To SRSWOR:- 

 

 In SRSWOR, we have 
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 For cluster sampling, we have  
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 Efficiency of cluster sampling over SRSWOR is given by: 
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* ALTERNATIVE FORMS OF EFFICIENCY:- 

 

 (1) We have,  
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      = Intra class (intra cluster) correlation co efficient between pairs of 

elements within clusters. 

* Proof:-    
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 From (i) and (ii) we get  
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;      if N is large . 

 

* ANOVA TABLE * 

Source of 

variation 

Sum of squares Degree of 

fraction 

M.S.S. E 

Between cluster  
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(2) Efficiency of cluster sampling over SRSWOR in forms of Intra-class 

correlation co-efficient is given by: 
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** ESTIMATION OF EFFICIENCY:- 

 

 A estimate of the efficiency of cluster sampling over SRSWOR is given 

by: 
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Proof:-  We have to show that  
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 Let Qi be the quantity associated with the ith unit of the population i = 

1,2,…,N. 
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 Suppose a simple random sample of n unit is drawn from N unit. 
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 For SRSWOR we have, 
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For cluster sampling let us define. 
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Appling (i) we get, 
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Again for cluster sampling let us define  
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Appling (i) we have  
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** OPTIMUM VALUE OF n AND M:- 

 

 Faifield Smith (1938). 
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 let the cost function bc 

   c = c1nM + c2 n  

 where, c1 = Cost for colleting information per element 

  c2 = Cost proportional to unit distance between cluster. 

 Our problem is to determine the optimum value of n and M, so that 

variance is minimized for fixed cost c0 say. 

 We minimize, 
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 Solving c1nM + c2 n  -c0 = 0 for n  
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 From (3) and (4) we find  
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 This equation is to be solved by mal and error method. It will give the 

optimum value of M. Optimum value M is called M̂ say. 

 Then the optimum value of n, n̂ say is obtained by,  
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 For cluster sampling obtain for minimize variable cost is fixed. 

 

 

** DOUBLE SAMPLING ** 

OR 

** SUB SAMPLING ** 

 

Question:-Why double sampling is used or necessary ? 

 

Answer:-When the information auxiliary variate is available, we have seen 

how it could be utilized to obtain the more efficient estimator. 

 e.g. Ratio and regression methods estimators. 

 If the information on auxiliary variable x is not available, we select an 

initial sample from the population and information on x is collected. Then we 

consider a second sample from the initial sample and collect the information 

on y. This procedure of first selecting an initial sample and then a second 

sample from the initial sample is known as double sampling or sub-sampling. 

 

* Double Sampling for PPS Sampling. :- 

 

 Suppose we wish to estimate the population mean Y  using probability 

proportioned to size with replacement (PPSWR) scheme. Where the size 

being the value of some auxiliary variate x. Suppose the information on 

auxiliary variate x is not available. Then, we select an initial sample of size n’ 

using SRSWOR and collect the information on x. Then, we select a second 

sample of size n from the initial sample using probability proportional to size 

with replacement scheme. 
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  E2  second sample. 

  E1  initial (first) sample. 

 When E2 denotes the conditional expectation over second sample when 

initial sample is fixed.  
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 Further the conditional variance of Ŷ  when the initial sample fixed is 

given by, 
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 Where aj = 1 if the ith unit is included in the sample. 

  ai = 0 if the ith unit is not included in the sample. 
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 Substitution (i) and (ii)  

 )ˆ(YVar   becomes;  
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** DOUBLE SAMPLING FOR UNBIASED RATIO ESTIMATOR:- 

 

 Suppose we wish to estimate the population mean Y  using ratio method 

of estimation. Suppose the information on auxiliary variable x is not available. 

 Select a SRSWOR of size n’ from the population and collect the 

information on y and x 

 Consider the estimator as  x
x

Y
Y ˆ  

 Where )(xY = mean of the second sample of size n of variate Y(x) 

       x’ = mean of the initial sample of size n’ of variate x. 

 now,    
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 Where E2 denotes the conditional expectation over second sample when 

the initial sample is fixed. 
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 The probability of selecting the second sample for the fixed initial 

sample fixed is given by  
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 There fore variance becomes, 
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** Non-Sampling Errors:- 

 

 The theory of sampling scheme is assume that, 

(i) Some probability sampling scheme is used. 

(ii) The observation on the ith unit of the population i.e. Yi is the correct 

value. 

 Then the error in the estimate is surely due to random sampling 

this error is known as sampling error. In general, these are other type of errors, 

these errors are due to measurement feabalation, editing, etc. These errors are 

known as non-sampling errors. The main sources of non-sampling errors are, 

(i) Lake of precision in reporting observation. 

(ii) Incomplete coverage of the sample. 

(iii) Faulty method of estimation is used. 

 When a complete count is made there is no sampling error but 

there will be non-sampling errors.  

 As the sample size increases the sampling error will tend to 

decrease and   non-sampling errors will tend to increase. 

 When a sample is selected both the type of errors will remain 

present.  
 

 

 

 

 


