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Calculations for Control Limits

Notation: UCL Upper Control Limit X Average of Measurements
LCL Lower Control Limit X Average of Averages
CL  Center Line R Range
n Sample Size R Average of Ranges
PCR  Process Capability Ratio USL  Upper Specification Limit

o Process Standard Deviation LSL Lower Specification Limit

Variables Data (¥ and R Control Charts)

x Control Chart n A, Dy Dy d,
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LCL = X - AR 3 1.023 0.000 2.574 1.693
CL=% 4 0.729 0.000 2282 2.059

5 0.577 0.000 2.114 2326

R Control Chart 6 0.483 0.000 2.004 2.534
UCL=RD, 7 0.419 0.076 1.924 2704
LCL =R D; 8 0.373 0.136 1.864 2.847
CL=R 9 0.337 0.184 1.816 2.970

10 0308 0.223 1777 3.078

Capability Study

C,=(USL ~LSL)/(6G ); where G = R/d,

Attribute Data (p, np, ¢, and u Control Charts)

Control Chart Formulas

np (number of ¢ (count of u (count of
p (fraction) nonconforming) nonconformances) nonconformances/unit)
CL P np I3 73
_ L [pa=p) - - \/E
+3, | il 5 5 +3./—
UCL p+3 np +3/np(1-p) c+3c a3
__ [p0-p) I - . \/i
LCL L np —34np(1-p) c-3e T=3
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Preface

Introduction

This book is about the use of modern statistical methods for quality control and improvement. It
provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts
and applications. The objective is to give the reader a sound understanding of the principles and the
basis for applying them in a variety of situations. Although statistical techniques are emphasized
throughout, the book has a strong engineering and management orientation. Extensive knowledge
of statistics is not a prerequisite for using this book. Readers whose background includes a basic
course in statistical methods will find much of the material in this book easily accessible.

Audience

The book is an outgrowth of more than 40 years of teaching, research, and consulting in the appli-
cation of statistical methods for industrial problems. It is designed as a textbook for students enrolled
in colleges and universities who are studying engineering, statistics, management, and related fields
and are taking a first course in statistical quality control. The basic quality-control course is often
taught at the junior or senior level. All of the standard topics for this course are covered in detail.
Some more advanced material is also available in the book, and this could be used with advanced
undergraduates who have had some previous exposure to the basics or in a course aimed at gradu-
ate students. I have also used the text materials extensively in programs for professional practition-
ers, including quality and reliability engineers, manufacturing and development engineers, product
designers, managers, procurement specialists, marketing personnel, technicians and laboratory ana-
lysts, inspectors, and operators. Many professionals have also used the material for self-study.

Chapter Organization and Topical Coverage

The book contains five parts. Part 1 is introductory. The first chapter is an introduction to the
philosophy and basic concepts of quality improvement. It notes that quality has become a major
business strategy and that organizations that successfully improve quality can increase their pro-
ductivity, enhance their market penetration, and achieve greater profitability and a strong compet-
itive advantage. Some of the managerial and implementation aspects of quality improvement are
included. Chapter 2 describes DMAIC, an acronym for Define, Measure, Analyze, Improve, and
Control. The DMAIC process is an excellent framework to use in conducting quality-improvement
projects. DMAIC often is associated with Six Sigma, but regardless of the approach taken by an
organization strategically, DMAIC is an excellent tactical tool for quality professionals to employ.

Part 2 is a description of statistical methods useful in quality improvement. Topics include
sampling and descriptive statistics, the basic notions of probability and probability distributions,
point and interval estimation of parameters, and statistical hypothesis testing. These topics are
usually covered in a basic course in statistical methods; however, their presentation in this text
is from the quality-engineering viewpoint. My experience has been that even readers with a
strong statistical background will find the approach to this material useful and somewhat different
from a standard statistics textbook.

\'
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Part 3 contains four chapters covering the basic methods of statistical process control
(SPC) and methods for process capability analysis. Even though several SPC problem-solving
tools are discussed (including Pareto charts and cause-and-effect diagrams, for example), the
primary focus in this section is on the Shewhart control chart. The Shewhart control chart cer-
tainly is not new, but its use in modern-day business and industry is of tremendous value.

There are four chapters in Part 4 that present more advanced SPC methods. Included are
the cumulative sum and exponentially weighted moving average control charts (Chapter 9), sev-
eral important univariate control charts such as procedures for short production runs, autocorre-
lated data, and multiple stream processes (Chapter 10), multivariate process monitoring and
control (Chapter 11), and feedback adjustment techniques (Chapter 12). Some of this material
is at a higher level than Part 3, but much of it is accessible by advanced undergraduates or first-
year graduate students. This material forms the basis of a second course in statistical quality
control and improvement for this audience.

Part 5 contains two chapters that show how statistically designed experiments can be used
for process design, development, and improvement. Chapter 13 presents the fundamental con-
cepts of designed experiments and introduces factorial and fractional factorial designs, with par-
ticular emphasis on the two-level system of designs. These designs are used extensively in the
industry for factor screening and process characterization. Although the treatment of the subject
is not extensive and is no substitute for a formal course in experimental design, it will enable the
reader to appreciate more sophisticated examples of experimental design. Chapter 14 introduces
response surface methods and designs, illustrates evolutionary operation (EVOP) for process
monitoring, and shows how statistically designed experiments can be used for process robust-
ness studies. Chapters 13 and 14 emphasize the important interrelationship between statistical
process control and experimental design for process improvement.

Two chapters deal with acceptance sampling in Part 6. The focus is on lot-by-lot accep-
tance sampling, although there is some discussion of continuous sampling and MIL STD 1235C
in Chapter 14. Other sampling topics presented include various aspects of the design of
acceptance-sampling plans, a discussion of MIL STD 105E, and MIL STD 414 (and their civil-
ian counterparts: ANSI/ASQC ZI.4 and ANSI/ASQC Z1.9), and other techniques such as chain
sampling and skip-lot sampling.

Throughout the book, guidelines are given for selecting the proper type of statistical tech-
nique to use in a wide variety of situations. In addition, extensive references to journal articles
and other technical literature should assist the reader in applying the methods described. I also
have shown how the different techniques presented are used in the DMAIC process.

New To This Edition

The 8™ edition of the book has new material on several topics, including implementing quality
improvement, applying quality tools in nonmanufacturing settings, monitoring Bernoulli
processes, monitoring processes with low defect levels, and designing experiments for process
and product improvement. In addition, I have rewritten and updated many sections of the book.
This is reflected in over two dozen new references that have been added to the bibliography.
I think that has led to a clearer and more current exposition of many topics. I have also added
over 80 new exercises to the end-of-chapter problem sets.

Supporting Text Materials

Computer Software

The computer plays an important role in a modern quality-control course. This edition of the
book uses Minitab as the primary illustrative software package. I strongly recommend that the
course have a meaningful computing component. To request this book with a student version of
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Minitab included, contact your local Wiley representative. The student version of Minitab has
limited functionality and does not include DOE capability. If your students will need DOE capa-
bility, they can download the fully functional 30-day trial at www.minitab.com or purchase a fully
functional time-limited version from e-academy.com.

Supplemental Text Material

I have written a set of supplemental materials to augment many of the chapters in the book. The
supplemental material contains topics that could not easily fit into a chapter without seriously
disrupting the flow. The topics are shown in the Table of Contents for the book and in the indi-
vidual chapter outlines. Some of this material consists of proofs or derivations, new topics of a
(sometimes) more advanced nature, supporting details concerning remarks or concepts presented
in the text, and answers to frequently asked questions. The supplemental material provides an
interesting set of accompanying readings for anyone curious about the field. It is available at
www.wiley.com/college/montgomery.

Student Resource Manual

The text contains answers to most of the odd-numbered exercises. A Student Resource Manual
is available from John Wiley & Sons that presents comprehensive annotated solutions to these
same odd-numbered problems. This is an excellent study aid that many text users will find
extremely helpful. The Student Resource Manual may be ordered in a set with the text or pur-
chased separately. Contact your local Wiley representative to request the set for your bookstore
or purchase the Student Resource Manual from the Wiley Web site.

Instructor’s Materials
The instructor’s section of the textbook Website contains the following:

1. Solutions to the text problems
2. The supplemental text material described above
3. A set of Microsoft PowerPoint slides for the basic SPC course
4. Data sets from the book, in electronic form
5. Image Gallery illustrations from the book in electronic format
The instructor’s section is for instructor use only and is password protected. Visit the Instructor

Companion Site portion of the Web site, located at www.wiley.com/college/montgomery, to reg-
ister for a password.

The World Wide Web Page

The Web page for the book is accessible through the Wiley home page. It contains the
supplemental text material and the data sets in electronic form. It will also be used to post items
of interest to text users. The Web site address is www.wiley.com/college/montgomery. Click on
the cover of the text you are using.
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Pacific Corporation; Mr. Robert V. Baxley, Monsanto Chemicals; Dr. Craig Fox, Dr. Thomas L.
Sadosky, Mr. James F. Walker, and Mr. John Belvins, Coca-Cola Company; Mr. Bill Wagner and
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Controlling and improving quality has become an important business strat-
egy for many organizations: manufacturers, distributors, transportation
companies, financial services organizations, health care providers, and gov-
ernment agencies. Maintaining a high level of product or service quality pro-
vides a competitive advantage. A business that can delight customers by
improving and controlling quality can dominate its competitors. This book is
about the technical methods for achieving success in quality control and
improvement, and offers guidance on how to successfully implement these
methods.

Part 1 contains two chapters. Chapter 1 contains the basic definitions of qual-
ity and quality improvement, provides a brief overview of the tools and meth-
ods discussed in greater detail in subsequent parts of the book, and discusses
the management systems for quality improvement. Chapter 2 is devoted to
the DMAIC (define, measure, analyze, improve, and control) problem-
solving process, which is an excellent framework for implementing quality
and process improvement. We also show how the methods discussed in the
book are used in DMAIC.
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This book is about the use of statistical methods and other problem-solving techniques
to improve the quality of the products used by our society. These products consist of
manufactured goods such as automobiles, computers, and clothing, as well as services
such as the generation and distribution of electrical energy, public transportation, bank-
ing, retailing, and health care. Quality improvement methods can be applied to any area
within a company or organization, including manufacturing, process development, engi-
neering design, finance and accounting, marketing, distribution and logistics, customer
service, and field service of products. This text presents the technical tools that are
needed to achieve quality improvement in these organizations.

In this chapter we give the basic definitions of quality, quality improvement, and
other quality engineering terminology. We also discuss the historical development of qual-
ity improvement methodology and provide an overview of the statistical tools essential for
modern professional practice. A brief discussion of some management and business
aspects for implementing quality improvement is also given.
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After careful study of this chapter, you should be able to do the following:

1. Define and discuss quality and quality improvement

2. Discuss the different dimensions of quality

3. Discuss the evolution of modern quality improvement methods

4. Discuss the role that variability and statistical methods play in controlling and
improving quality

5. Describe the quality management philosophies of W. Edwards Deming, Joseph
M. Juran, and Armand V. Feigenbaum

6. Discuss total quality management, the Malcolm Baldrige National Quality
Award, Six Sigma, and quality systems and standards

7. Explain the links between quality and productivity and between quality and
cost

8. Discuss product liability

9. Discuss the three functions: quality planning, quality assurance, and quality control
and improvement

1.1 The Meaning of Quality and Quality Improvement

We may define quality in many ways. Most people have a conceptual understanding of qual-
ity as relating to one or more desirable characteristics that a product or service should pos-
sess. Although this conceptual understanding is certainly a useful starting point, we prefer a
more precise and useful definition.

Quality has become one of the most important consumer decision factors in the selec-
tion among competing products and services. The phenomenon is widespread, regardless of
whether the consumer is an individual, an industrial organization, a retail store, a bank or
financial institution, or a military defense program. Consequently, understanding and improv-
ing quality are key factors leading to business success, growth, and enhanced competitive-
ness. There is a substantial return on investment from improved quality and from successfully
employing quality as an integral part of overall business strategy. In this section, we provide
operational definitions of quality and quality improvement. We begin with a brief discussion
of the different dimensions of quality and some basic terminology.

1.1.1 Dimensions of Quality

The quality of a product can be described and evaluated in several ways. It is often very
important to differentiate these different dimensions of quality. Garvin (1987) provides an
excellent discussion of eight components or dimensions of quality. We summarize his key
points concerning these dimensions of quality as follows:

1. Performance (Will the product do the intended job?) Potential customers usually eval-
uate a product to determine if it will perform certain specific functions and determine
how well it performs them. For example, you could evaluate spreadsheet software pack-
ages for a PC to determine which data manipulation operations they perform. You may
discover that one outperforms another with respect to the execution speed.

2. Reliability (How often does the product fail?) Complex products, such as many appli-
ances, automobiles, or airplanes, will usually require some repair over their service life.
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For example, you should expect that an automobile will require occasional repair, but
if the car requires frequent repair, we say that it is unreliable. There are many indus-
tries in which the customer’s view of quality is greatly impacted by the reliability
dimension of quality.

3. Durability (How long does the product last?) This is the effective service life of the prod-
uct. Customers obviously want products that perform satisfactorily over a long period of
time. The automobile and major appliance industries are examples of businesses where
this dimension of quality is very important to most customers.

4. Serviceability (How easy is it to repair the product?) There are many industries in which
the customer’s view of quality is directly influenced by how quickly and economically a
repair or routine maintenance activity can be accomplished. Examples include the appli-
ance and automobile industries and many types of service industries (how long did it take
a credit card company to correct an error in your bill?).

5. Aesthetics (What does the product look like?) This is the visual appeal of the product,
often taking into account factors such as style, color, shape, packaging alternatives, tactile
characteristics, and other sensory features. For example, soft-drink beverage manufactur-
ers rely on the visual appeal of their packaging to differentiate their product from other
competitors.

6. Features (What does the product do?) Usually, customers associate high quality with
products that have added features—that is, those that have features beyond the basic
performance of the competition. For example, you might consider a spreadsheet soft-
ware package to be of superior quality if it had built-in statistical analysis features
while its competitors did not.

7. Perceived Quality (What is the reputation of the company or its product?) In many
cases, customers rely on the past reputation of the company concerning quality of its
products. This reputation is directly influenced by failures of the product that are highly
visible to the public or that require product recalls, and by how the customer is treated
when a quality-related problem with the product is reported. Perceived quality, cus-
tomer loyalty, and repeated business are closely interconnected. For example, if you
make regular business trips using a particular airline, and the flight almost always
arrives on time and the airline company does not lose or damage your luggage, you will
probably prefer to fly on that carrier instead of its competitors.

8. Conformance to Standards (Is the product made exactly as the designer intended?)
We usually think of a high-quality product as one that exactly meets the requirements
placed on it. For example, how well does the hood fit on a new car? Is it perfectly flush
with the fender height, and is the gap exactly the same on all sides? Manufactured parts
that do not exactly meet the designer’s requirements can cause significant quality prob-
lems when they are used as the components of a more complex assembly. An automo-
bile consists of several thousand parts. If each one is just slightly too big or too small,
many of the components will not fit together properly, and the vehicle (or its major sub-
systems) may not perform as the designer intended.

These eight dimensions are usually adequate to describe quality in most industrial and
many business situations. However, in service and transactional business organizations (such
as banking and finance, health care, and customer service organizations) we can add the fol-
lowing three dimensions:

1. Responsiveness. How long they did it take the service provider to reply to your request
for service? How willing to be helpful was the service provider? How promptly was
your request handled?
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2. Professionalism. This is the knowledge and skills of the service provider, and relates
to the competency of the organization to provide the required services.

3. Attentiveness. Customers generally want caring and personalized attention from their
service providers. Customers want to feel that their needs and concerns are important
and are being carefully addressed.

We see from the foregoing discussion that quality is indeed a multifaceted entity.
Consequently, a simple answer to questions such as “What is quality?” or “What is quality
improvement?” is not easy. The traditional definition of quality is based on the viewpoint
that products and services must meet the requirements of those who use them.

Quality means fitness for use.

There are two general aspects of fitness for use: quality of design and quality of con-
formance. All goods and services are produced in various grades or levels of quality. These vari-
ations in grades or levels of quality are intentional, and, consequently, the appropriate technical
term is quality of design. For example, all automobiles have as their basic objective providing
safe transportation for the consumer. However, automobiles differ with respect to size, appoint-
ments, appearance, and performance. These differences are the result of intentional design
differences among the types of automobiles. These design differences include the types of
materials used in construction, specifications on the components, reliability obtained through
engineering development of engines and drive trains, and other accessories or equipment.

The quality of conformance is how well the product conforms to the specifications
required by the design. Quality of conformance is influenced by a number of factors, includ-
ing the choice of manufacturing processes; the training and supervision of the workforce; the
types of process controls, tests, and inspection activities that are employed; the extent to
which these procedures are followed; and the motivation of the workforce to achieve quality.

Unfortunately, this definition has become associated more with the conformance aspect
of quality than with design. This is in part due to the lack of formal education most design-
ers and engineers receive in quality engineering methodology. This also leads to much less
focus on the customer and more of a “conformance-to-specifications” approach to quality,
regardless of whether the product, even when produced to standards, was actually “fit-for-
use” by the customer. Also, there is still a widespread belief that quality is a problem that can
be dealt with solely in manufacturing, or that the only way quality can be improved is by
“gold-plating” the product.

We prefer a modern definition of quality.

Quality is inversely proportional to variability.

Note that this definition implies that if variability' in the important characteristics of a prod-
uct decreases, the quality of the product increases.

'We are referring to unwanted or harmful variability. There are situations in which variability is actually good. As
my good friend Bob Hogg has pointed out, “I really like Chinese food, but I don’t want to eat it every night.”
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As an example of the operational effectiveness of this definition, a few years ago, one
of the automobile companies in the United States performed a comparative study of a trans-
mission that was manufactured in a domestic plant and by a Japanese supplier. An analysis of
warranty claims and repair costs indicated that there was a striking difference between the two
sources of production, with the Japanese-produced transmission having much lower costs, as
shown in Figure 1.1. As part of the study to discover the cause of this difference in cost and
performance, the company selected random samples of transmissions from each plant, disas-
sembled them, and measured several critical quality characteristics.

Figure 1.2 is generally representative of the results of this study. Note that both distribu-
tions of critical dimensions are centered at the desired or target value. However, the distribution
of the critical characteristics for the transmissions manufactured in the United States takes up
about 75% of the width of the specifications, implying that very few nonconforming units would
be produced. In fact, the plant was producing at a quality level that was quite good, based on the
generally accepted view of quality within the company. In contrast, the Japanese plant produced
transmissions for which the same critical characteristics take up only about 25% of the specifi-
cation band. As a result, there is considerably less variability in the critical quality characteris-
tics of the Japanese-built transmissions in comparison to those built in the United States.

This is a very important finding. Jack Welch, the retired chief executive officer of
General Electric, has observed that your customers don’t see the mean of your process (the
target in Fig. 1.2), they only see the variability around that target that you have not removed.
In almost all cases, this variability has significant customer impact.

There are two obvious questions here: Why did the Japanese do this? How did they do
this? The answer to the “why” question is obvious from examination of Figure 1.1. Reduced
variability has directly translated into lower costs (the Japanese fully understood the point
made by Welch). Furthermore, the Japanese-built transmissions shifted gears more smoothly,
ran more quietly, and were generally perceived by the customer as superior to those built
domestically. Fewer repairs and warranty claims means less rework and the reduction of
wasted time, effort, and money. Thus, quality truly is inversely proportional to variability.
Furthermore, it can be communicated very precisely in a language that everyone (particularly
managers and executives) understands—namely, money.

How did the Japanese do this? The answer lies in the systematic and effective use of
the methods described in this book. It also leads to the following definition of quality
improvement.

Quality improvement is the reduction of variability in processes and products.
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Excessive variability in process performance often results in waste. For example, consider the
wasted money, time, and effort that are associated with the repairs represented in Figure 1.1.
Therefore, an alternate and frequently very useful definition is that quality improvement is the
reduction of waste. This definition is particularly effective in service industries, where there
may not be as many things that can be directly measured (like the transmission critical dimen-
sions in Fig. 1.2). In service industries, a quality problem may be an error or a mistake, the
correction of which requires effort and expense. By improving the service process, this
wasted effort and expense can be avoided.

We now present some quality engineering terminology that is used throughout the book.

1.1.2 Quality Engineering Terminology

Every product possesses a number of elements that jointly describe what the user or consumer
thinks of as quality. These parameters are often called quality characteristics. Sometimes
these are called critical-to-quality (CTQ) characteristics. Quality characteristics may be of
several types:

1. Physical: length, weight, voltage, viscosity
2. Sensory: taste, appearance, color
3. Time orientation: reliability, durability, serviceability

Note that the different types of quality characteristics can relate directly or indirectly to the
dimensions of quality discussed in the previous section.

Quality engineering is the set of operational, managerial, and engineering activities
that a company uses to ensure that the quality characteristics of a product are at the nominal
or required levels and that the variability around these desired levels is minimum. The tech-
niques discussed in this book form much of the basic methodology used by engineers and
other technical professionals to achieve these goals.

Most organizations find it difficult (and expensive) to provide the customer with prod-
ucts that have quality characteristics that are always identical from unit to unit, or are at
levels that match customer expectations. A major reason for this is variability. There is a cer-
tain amount of variability in every product; consequently, no two products are ever identical.
For example, the thickness of the blades on a jet turbine engine impeller is not identical even
on the same impeller. Blade thickness will also differ between impellers. If this variation in
blade thickness is small, then it may have no impact on the customer. However, if the varia-
tion is large, then the customer may perceive the unit to be undesirable and unacceptable.
Sources of this variability include differences in materials, differences in the performance and
operation of the manufacturing equipment, and differences in the way the operators perform
their tasks. This line of thinking led to the previous definition of quality improvement.

Since variability can only be described in statistical terms, statistical methods play a
central role in quality improvement efforts. In the application of statistical methods to qual-
ity engineering, it is fairly typical to classify data on quality characteristics as either attrib-
utes or variables data. Variables data are usually continuous measurements, such as length,
voltage, or viscosity. Attributes data, on the other hand, are usually discrete data, often taking
the form of counts, such as the number of loan applications that could not be properly
processed because of missing required information, or the number of emergency room
arrivals that have to wait more than 30 minutes to receive medical attention. We will describe
statistical-based quality engineering tools for dealing with both types of data.

Quality characteristics are often evaluated relative to specifications. For a manufac-
tured product, the specifications are the desired measurements for the quality characteristics
of the components and subassemblies that make up the product, as well as the desired values
for the quality characteristics in the final product. For example, the diameter of a shaft used
in an automobile transmission cannot be too large or it will not fit into the mating bearing,
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nor can it be too small, resulting in a loose fit, causing vibration, wear, and early failure of
the assembly. In the service industries, specifications are typically expressed in terms of the
maximum amount of time to process an order or to provide a particular service.

A value of a measurement that corresponds to the desired value for that quality charac-
teristic is called the nominal or target value for that characteristic. These target values are
usually bounded by a range of values that, most typically, we believe will be sufficiently close
to the target so as to not impact the function or performance of the product if the quality char-
acteristic is in that range. The largest allowable value for a quality characteristic is called the
upper specification limit (USL), and the smallest allowable value for a quality characteris-
tic is called the lower specification limit (LSL). Some quality characteristics have specifi-
cation limits on only one side of the target. For example, the compressive strength of a com-
ponent used in an automobile bumper likely has a target value and a lower specification limit,
but not an upper specification limit.

Specifications are usually the result of the engineering design process for the product.
Traditionally, design engineers have arrived at a product design configuration through the use of
engineering science principles, which often results in the designer specifying the target values for
the critical design parameters. Then prototype construction and testing follow. This testing is often
done in a very unstructured manner, without the use of statistically based experimental design
procedures, and without much interaction with or knowledge of the manufacturing processes that
must produce the component parts and final product. However, through this general procedure,
the specification limits are usually determined by the design engineer. Then the final product is
released to manufacturing. We refer to this as the over-the-wall approach to design.

Problems in product quality usually are greater when the over-the-wall approach to design
is used. In this approach, specifications are often set without regard to the inherent variability that
exists in materials, processes, and other parts of the system, which results in components or prod-
ucts that are nonconforming; that is, nonconforming products are those that fail to meet one or
more of their specifications. A specific type of failure is called a nonconformity. A noncon-
forming product is not necessarily unfit for use; for example, a detergent may have a concentra-
tion of active ingredients that is below the lower specification limit, but it may still perform
acceptably if the customer uses a greater amount of the product. A nonconforming product is con-
sidered defective if it has one or more defects, which are nonconformities that are serious enough
to significantly affect the safe or effective use of the product. Obviously, failure on the part of a
company to improve its manufacturing processes can also cause nonconformities and defects.

The over-the-wall design process has been the subject of much attention in the past 25
years. CAD/CAM systems have done much to automate the design process and to more
effectively translate specifications into manufacturing activities and processes. Design for
manufacturability and assembly has emerged as an important part of overcoming the inher-
ent problems with the over-the-wall approach to design, and most engineers receive some
background on those areas today as part of their formal education. The recent emphasis on
concurrent engineering has stressed a team approach to design, with specialists in manufac-
turing, quality engineering, and other disciplines working together with the product designer
at the earliest stages of the product design process. Furthermore, the effective use of the qual-
ity improvement methodology in this book, at all levels of the process used in technology com-
mercialization and product realization, including product design, development, manufacturing,
distribution, and customer support, plays a crucial role in quality improvement.

1.2 A Brief History of Quality Control and Improvement

Quality always has been an integral part of virtually all products and services. However, our
awareness of its importance and the introduction of formal methods for quality control and
improvement have been an evolutionary development. Table 1.1 presents a timeline of some
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A Timeline of Quality Methods

1700-1900

1875

1900-1930

1901
1907-1908
1908

1915-1919
1919
1920s

1922
1922-1923

1924
1928
1931

1932
1932-1933

1933
1938

1940
1940-1943
1942
1942-1946

1944
1946

1946-1949
1948
1950

1950-1975
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Quality is largely determined by the efforts of an individual craftsman.
Eli Whitney introduces standardized, interchangeable parts to simplify assembly.

Frederick W. Taylor introduces “Scientific Management” principles to divide work into smaller, more easily
accomplished units—the first approach to dealing with more complex products and processes. The focus was
on productivity. Later contributors were Frank Gilbreth and Henry Gantt.

Henry Ford—the assembly line—further refinement of work methods to improve productivity and quality;
Ford developed mistake-proof assembly concepts, self-checking, and in-process inspection.

First standards laboratories established in Great Britain.
AT&T begins systematic inspection and testing of products and materials.

W. S. Gosset (writing as “Student”) introduces the #-distribution—results from his work on quality control
at Guinness Brewery.

WWI—BEritish government begins a supplier certification program.
Technical Inspection Association is formed in England; this later becomes the Institute of Quality Assurance.

AT&T Bell Laboratories forms a quality department—emphasizing quality, inspection and test, and
product reliability.

B. P. Dudding at General Electric in England uses statistical methods to control the quality of electric lamps.

Henry Ford writes (with Samuel Crowtha) and publishes My Life and Work, which focused on elimination of
waste and improving process efficiency. Many Ford concepts and ideas are the basis of lean principles used today.

R. A. Fisher publishes series of fundamental papers on designed experiments and their application to the
agricultural sciences.

W. A. Shewhart introduces the control chart concept in a Bell Laboratories technical memorandum.
Acceptance sampling methodology is developed and refined by H. F. Dodge and H. G. Romig at Bell Labs.

W. A. Shewhart publishes Economic Control of Quality of Manufactured Product—outlining statistical
methods for use in production and control chart methods.

W. A. Shewhart gives lectures on statistical methods in production and control charts at the University of London.

British textile and woolen industry and German chemical industry begin use of designed experiments
for product/process development.

The Royal Statistical Society forms the Industrial and Agricultural Research Section.

W. E. Deming invites Shewhart to present seminars on control charts at the U.S. Department of Agriculture
Graduate School.

The U.S. War Department publishes a guide for using control charts to analyze process data.
Bell Labs develop the forerunners of the military standard sampling plans for the U.S. Army.
In Great Britain, the Ministry of Supply Advising Service on Statistical Methods and Quality Control is formed.

Training courses on statistical quality control are given to industry; more than 15 quality societies are formed
in North America.

Industrial Quality Control begins publication.
The American Society for Quality Control (ASQC) is formed as the merger of various quality societies.

The International Standards Organization (ISO) is founded.

Deming is invited to Japan by the Economic and Scientific Services Section of the U.S. War Department to
help occupation forces in rebuilding Japanese industry.

The Japanese Union of Scientists and Engineers (JUSE) is formed.
Deming is invited to give statistical quality control seminars to Japanese industry.
G. Taguchi begins study and application of experimental design.

Deming begins education of Japanese industrial managers; statistical quality control methods begin to be
widely taught in Japan.

Taiichi Ohno, Shigeo Shingo, and Eiji Toyoda develops the Toyota Production System an integrated
technical/social system that defined and developed many lean principles such as just-in-time production and
rapid setup of tools and equipment.

K. Ishikawa introduces the cause-and-effect diagram.

(continued)
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Classic texts on statistical quality control by Eugene Grant and A. J. Duncan appear.

A. V. Feigenbaum publishes the first edition of his book Total Quality Control.

JUSE establishes the Deming Prize for significant achievement in quality control and quality methodology.

G. E. P. Box and K. B. Wilson publish fundamental work on using designed experiments and response surface
methodology for process optimization; focus is on chemical industry. Applications of designed experiments in
the chemical industry grow steadily after this.

Joseph M. Juran is invited by the Japanese to lecture on quality management and improvement.

British statistician E. S. Page introduces the cumulative sum (CUSUM) control chart.

J. M. Juran and E. M. Gryna’s Quality Control Handbook is first published.

Technometrics (a journal of statistics for the physical, chemical, and engineering sciences) is established;

J. Stuart Hunter is the founding editor.

S. Roberts introduces the exponentially weighted moving average (EWMA) control chart. The U.S. manned
spaceflight program makes industry aware of the need for reliable products; the field of reliability engineering
grows from this starting point.

G. E. P. Box and J. S. Hunter write fundamental papers on 27 factorial designs.

The quality control circle concept is introduced in Japan by K. Ishikawa.

National Council for Quality and Productivity is formed in Great Britain as part of the British Productivity Council.
Courses in statistical quality control become widespread in industrial engineering academic programs.

Zero defects (ZD) programs are introduced in certain U.S. industries.

Industrial Quality Control ceases publication, replaced by Quality Progress and the Journal of Quality
Technology (Lloyd S. Nelson is the founding editor of JOT).

In Great Britain, the NCQP and the Institute of Quality Assurance merge to form the British Quality Association.

Books on designed experiments oriented toward engineers and scientists begin to appear.

Interest in quality circles begins in North America—this grows into the total quality management (TQM) movement.
Experimental design methods are introduced to and adopted by a wider group of organizations, including
the electronics, aerospace, semiconductor, and automotive industries.

The works of Taguchi on designed experiments first appear in the United States.

The American Statistical Association (ASA) establishes the Ad Hoc Committee on Quality and Productivity;
this later becomes a full section of the ASA.

The journal Quality and Reliability Engineering International appears.

Box and others visit Japan, noting the extensive use of designed experiments and other statistical methods.
ISO publishes the first quality systems standard.

Motorola’s Six Sigma initiative begins.

The Malcolm Baldrige National Quality Award is established by the U.S. Congress.

The European Foundation for Quality Management is founded; this organization administers the European
Quality Award.

The journal Quality Engineering appears.

ISO 9000 certification activities increase in U.S. industry; applicants for the Baldrige award grow steadily;
many states sponsor quality awards based on the Baldrige criteria.

Many undergraduate engineering programs require formal courses in statistical techniques, focusing on basic
methods for process characterization and improvement.

Motorola’s Six Sigma approach spreads to other industries.

The American Society for Quality Control becomes the American Society for Quality (see www.asq.org),
attempting to indicate the broader aspects of the quality improvement field.

ISO 9000:2000 standard is issued. Supply-chain management and supplier quality become even more critical
factors in business success. Quality improvement activities expand beyond the traditional industrial setting into
many other areas, including financial services, health care, insurance, and utilities.

Organizations begin to integrate lean principles into their Six Sigma initiatives, and lean Six Sigma becomes a
widespread approach to business improvement.
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of the important milestones in this evolutionary process. We will briefly discuss some of the
events on this timeline.

Frederick W. Taylor introduced some principles of scientific management as mass
production industries began to develop prior to 1900. Taylor pioneered dividing work into
tasks so that the product could be manufactured and assembled more easily. His work led
to substantial improvements in productivity. Also, because of standardized production and
assembly methods, the quality of manufactured goods was positively impacted as well.
However, along with the standardization of work methods came the concept of work standards—
a standard time to accomplish the work, or a specified number of units that must be pro-
duced per period. Frank Gilbreth and others extended this concept to the study of motion
and work design. Much of this had a positive impact on productivity, but it often did not
sufficiently emphasize the quality aspect of work. Furthermore, if carried to extremes, work
standards have the risk of halting innovation and continuous improvement, which we rec-
ognize today as being a vital aspect of all work activities.

Statistical methods and their application in quality improvement have had a long his-
tory. In 1924, Walter A. Shewhart of the Bell Telephone Laboratories developed the statisti-
cal control chart concept, which is often considered the formal beginning of statistical quality
control. Toward the end of the 1920s, Harold F. Dodge and Harry G. Romig, both of Bell
Telephone Laboratories, developed statistically based acceptance sampling as an alternative
to 100% inspection. By the middle of the 1930s, statistical quality-control methods were in
wide use at Western Electric, the manufacturing arm of the Bell System. However, the value
of statistical quality control was not widely recognized by industry.

World War II saw a greatly expanded use and acceptance of statistical quality-control
concepts in manufacturing industries. Wartime experience made it apparent that statistical
techniques were necessary to control and improve product quality. The American Society for
Quality Control was formed in 1946. This organization promotes the use of quality improve-
ment techniques for all types of products and services. It offers a number of conferences, tech-
nical publications, and training programs in quality assurance. The 1950s and 1960s saw the
emergence of reliability engineering, the introduction of several important textbooks on sta-
tistical quality control, and the viewpoint that quality is a way of managing the organization.

In the 1950s, designed experiments for product and process improvement were first
introduced in the United States. The initial applications were in the chemical industry. These
methods were widely exploited in the chemical industry, and they are often cited as one of the
primary reasons that the U.S. chemical industry is one of the most competitive in the world
and has lost little business to foreign companies. The spread of these methods outside the
chemical industry was relatively slow until the late 1970s or early 1980s, when many Western
companies discovered that their Japanese competitors had been systematically using designed
experiments since the 1960s for process improvement, new process development, evaluation
of new product designs, improvement of reliability and field performance of products, and
many other aspects of product design, including selection of component and system toler-
ances. This discovery sparked further interest in statistically designed experiments and
resulted in extensive efforts to introduce the methodology in engineering and development
organizations in industry, as well as in academic engineering curricula.

Since 1980, there has been a profound growth in the use of statistical methods for qual-
ity and overall business improvement in the United States. This has been motivated, in part,
by the widespread loss of business and markets suffered by many domestic companies that
began during the 1970s. For example, the U.S. automobile industry was nearly destroyed by
foreign competition during this period. One domestic automobile company estimated its oper-
ating losses at nearly $1 million per hour in 1980. The adoption and use of statistical methods
have played a central role in the re-emergence of U.S. industry. Various management systems
have also emerged as frameworks in which to implement quality improvement. In the next
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two sections we briefly discuss the statistical methods that are the central focus of this book
and give an overview of some key aspects of quality management.

1.3 Statistical Methods for Quality Control and Improvement

This textbook concentrates on statistical and engineering technology useful in quality improve-
ment. Specifically, we focus on three major areas: statistical process control, design of
experiments, and (to a lesser extent) acceptance sampling. In addition to these techniques, a
number of other statistical and analytical tools are useful in analyzing quality problems and
improving the performance of processes. The role of some of these tools is illustrated in
Figure 1.3, which presents a process as a system with a set of inputs and an output. In the case
of a manufacturing process, the controllable input factors x;, x,, . . ., X, are process variables
such as temperatures, pressures, and feed rates. The inputs z;, 2, . . ., z, are uncontrollable (or
difficult to control) inputs, such as environmental factors or properties of raw materials provided
by an external supplier. The production process transforms the input raw materials, component
parts, and subassemblies into a finished product that has several quality characteristics. The
output variable y is a quality characteristic—that is, a measure of process and product quality.
This model can also be used to represent non-manufacturing or service processes. For exam-
ple, consider a process in a financial institution that processes automobile loan applications.
The inputs are the loan applications, which contain information about the customer and his/her
credit history, the type of car to be purchased, its price, and the loan amount. The controllable
factors are the type of training that the loan officer receives, the specific rules and policies that
the bank imposed on these loans, and the number of people working as loan officers at each
time period. The uncontrollable factors include prevailing interest rates, the amount of capital
available for these types of loans in each time period, and the number of loan applications that
require processing each period. The output quality characteristics include whether or not the
loan is funded, the number of funded loans that are actually accepted by the applicant, and the
cycle time—that is, the length of time that the customer waits until a decision on his/her loan
application is made. In service systems, cycle time is often a very important CTQ.

A control chart is one of the primary techniques of statistical process control (SPC).
A typical control chart is shown in Figure 1.4. This chart plots the averages of measurements
of a quality characteristic in samples taken from the process versus time (or the sample num-
ber). The chart has a center line (CL) and upper and lower control limits (UCL and LCL in
Fig. 1.4). The center line represents where this process characteristic should fall if there are

Controllable inputs

X1 X5 X, I
Measurement
Evaluation
Input coe uati
raw materials, Monalrt%rmg
components,
subassemblies, Control
and/or 1
information
—_— Process
y = Quality characteristic, Output Product
CTQs)
oo
z 2 Z,

Uncontrollable inputs

BFIGURE 1.3 Production process inputs and outputs.
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Time (or sample number) chart.

no unusual sources of variability present. The control limits are determined from some sim-
ple statistical considerations that we will discuss in Chapters 4, 5, and 6. Classically, control
charts are applied to the output variable(s) in a system such as in Figure 1.4. However, in
some cases they can be usefully applied to the inputs as well.

The control chart is a very useful process monitoring technique; when unusual
sources of variability are present, sample averages will plot outside the control limits. This is
a signal that some investigation of the process should be made and corrective action taken to
remove these unusual sources of variability. Systematic use of a control chart is an excellent
way to reduce variability.

A designed experiment is extremely helpful in discovering the key variables influencing
the quality characteristics of interest in the process. A designed experiment is an approach to
systematically varying the controllable input factors in the process and determining the effect
these factors have on the output product parameters. Statistically designed experiments are
invaluable in reducing the variability in the quality characteristics and in determining the levels
of the controllable variables that optimize process performance. Often significant breakthroughs
in process performance and product quality also result from using designed experiments.

One major type of designed experiment is the factorial design, in which factors are var-
ied together in such a way that all possible combinations of factor levels are tested. Figure 1.5
shows two possible factorial designs for the process in Figure 1.3, for the cases of p =2 and
p =3 controllable factors. In Figure 1.5a, the factors have two levels, low and high, and the
four possible test combinations in this factorial experiment form the corners of a square. In
Figure 1.5b, there are three factors each at two levels, giving an experiment with eight test
combinations arranged at the corners of a cube. The distributions at the corners of the cube
represent the process performance at each combination of the controllable factors x;, x,, and xs.
It is clear that some combinations of factor levels produce better results than others. For

High T T
N LN
) T T
VAN
Low |- /\\ | X2
T T
I I
Low High ‘/]‘-_\ IT/\ X
X1
(a) Two factors, x; and x, (b) Three factors, x;, x,, and x3

BFIGURE 1.5 Factorial designs for the process in Figure 1.3.
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example, increasing x; from low to high increases the average level of the process output and
could shift it off the target value (7). Furthermore, process variability seems to be substan-
tially reduced when we operate the process along the back edge of the cube, where x, and x;
are at their high levels.

Designed experiments are a major off-line quality-control tool, because they are often
used during development activities and the early stages of manufacturing, rather than as a rou-
tine on-line or in-process procedure. They play a crucial role in reducing variability.

Once we have identified a list of important variables that affect the process output, it is
usually necessary to model the relationship between the influential input variables and the out-
put quality characteristics. Statistical techniques useful in constructing such models include
regression analysis and time series analysis. Detailed discussions of designed experiments,
regression analysis, and time series modeling are in Montgomery (2009), Montgomery, Peck,
and Vining (2006), and Box, Jenkins, and Reinsel (1994).

When the important variables have been identified and the nature of the relationship
between the important variables and the process output has been quantified, then an on-line sta-
tistical process-control technique for monitoring and surveillance of the process can be employed
with considerable effectiveness. Techniques such as control charts can be used to monitor the
process output and detect when changes in the inputs are required to bring the process back to an
in-control state. The models that relate the influential inputs to process outputs help determine
the nature and magnitude of the adjustments required. In many processes, once the dynamic
nature of the relationships between the inputs and the outputs are understood, it may be possible
to routinely adjust the process so that future values of the product characteristics will be approx-
imately on target. This routine adjustment is often called engineering control, automatic con-
trol, or feedback control. We will briefly discuss these types of process control schemes in
Chapter 11 and illustrate how statistical process control (or SPC) methods can be successfully
integrated into a manufacturing system in which engineering control is in use.

The third area of quality control and improvement that we discuss is acceptance sam-
pling. This is closely connected with inspection and testing of product, which is one of the ear-
liest aspects of quality control, dating back to long before statistical methodology was devel-
oped for quality improvement. Inspection can occur at many points in a process. Acceptance
sampling, defined as the inspection and classification of a sample of units selected at random
from a larger batch or lot and the ultimate decision about disposition of the lot, usually occurs
at two points: incoming raw materials or components, or final production.

Several different variations of acceptance sampling are shown in Figure 1.6. In
Figure 1.6a, the inspection operation is performed immediately following production, before
the product is shipped to the customer. This is usually called outgoing inspection. Figure 1.6
illustrates incoming inspection—that is, a situation in which lots of batches of product are
sampled as they are received from the supplier. Various lot-dispositioning decisions are illustrated
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(a) Outgoing inspection

Ship ;

(b) Receiving/incoming inspection
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in Figure 1.6¢. Sampled lots may either be accepted or rejected. Items in a rejected lot are
typically either scrapped or recycled, or they may be reworked or replaced with good units.
This latter case is often called rectifying inspection.

Modern quality assurance systems usually place less emphasis on acceptance sampling
and attempt to make statistical process control and designed experiments the focus of their
efforts. Acceptance sampling tends to reinforce the conformance-to-specification view of
quality and does not have any feedback into either the production process or engineering
design or development that would necessarily lead to quality improvement.

Figure 1.7 shows the typical evolution in the use of these techniques in most organiza-
tions. At the lowest level of maturity, management may be completely unaware of quality
issues, and there is likely to be no effective organized quality improvement effort. Frequently
there will be some modest applications of acceptance-sampling and inspection methods, usu-
ally for incoming parts and materials. The first activity as maturity increases is to intensify
the use of sampling inspection. The use of sampling will increase until it is realized that qual-
ity cannot be inspected or tested into the product.

At that point, the organization usually begins to focus on process improvement. Statistical
process control and experimental design potentially have major impacts on manufacturing, prod-
uct design activities, and process development. The systematic introduction of these methods
usually marks the start of substantial quality, cost, and productivity improvements in the organi-
zation. At the highest levels of maturity, companies use designed experiments and statistical
process control methods intensively and make relatively modest use of acceptance sampling.

The primary objective of quality engineering efforts is the systematic reduction of
variability in the key quality characteristics of the product. Figure 1.8 shows how this happens
over time. In the early stages, when acceptance sampling is the major technique in use, process
“fallout,” or units that do not conform to the specifications, constitute a high percentage of the
process output. The introduction of statistical process control will stabilize the process and
reduce the variability. However, it is not satisfactory just to meet requirements—further reduc-
tion of variability usually leads to better product performance and enhanced competitive posi-
tion, as was vividly demonstrated in the automobile transmission example discussed earlier.
Statistically designed experiments can be employed in conjunction with statistical process
monitoring and control to minimize process variability in nearly all industrial settings.

1.4 Management Aspects of Quality Improvement

Statistical techniques, including SPC and designed experiments, along with other problem-
solving tools, are the technical basis for quality control and improvement. However, to be used
most effectively, these techniques must be implemented within and be part of a management
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system that is focused on quality improvement. The management system of an organization
must be organized to properly direct the overall quality improvement philosophy and ensure
its deployment in all aspects of the business. The effective management of quality involves suc-
cessful execution of three activities: quality planning, quality assurance, and quality control
and improvement.

Quality planning is a strategic activity, and it is just as vital to an organization’s long-
term business success as the product development plan, the financial plan, the marketing plan,
and plans for the utilization of human resources. Without a strategic quality plan, an enormous
amount of time, money, and effort will be wasted by the organization dealing with faulty
designs, manufacturing defects, field failures, and customer complaints. Quality planning
involves identifying customers, both external and those that operate internal to the business, and
identifying their needs [this is sometimes called listening to the voice of the customer (VOC)].
Then products or services that meet or exceed customer expectations must be developed. The
eight dimensions of quality discussed in Section 1.1.1 are an important part of this effort. The
organization must then determine how these products and services will be realized. Planning for
quality improvement on a specific, systematic basis is also a vital part of this process.

Quality assurance is the set of activities that ensures the quality levels of products and
services are properly maintained and that supplier and customer quality issues are properly
resolved. Documentation of the quality system is an important component. Quality system
documentation involves four components: policy, procedures, work instructions and specifi-
cations, and records. Policy generally deals with what is to be done and why, while proce-
dures focus on the methods and personnel that will implement policy. Work instructions and
specifications are usually product-, department-, tool-, or machine-oriented. Records are a
way of documenting the policies, procedures, and work instructions that have been followed.
Records are also used to track specific units or batches of product, so that it can be determined
exactly how they were produced. Records are often vital in providing data for dealing with
customer complaints, corrective actions, and, if necessary, product recalls. Development,
maintenance, and control of documentation are important quality assurance functions. One
example of document control is ensuring that specifications and work instructions developed
for operating personnel reflect the latest design and engineering changes.

Quality control and improvement involve the set of activities used to ensure that the
products and services meet requirements and are improved on a continuous basis. Since vari-
ability is often a major source of poor quality, statistical techniques, including SPC and
designed experiments, are the major tools of quality control and improvement. Quality
improvement is often done on a project-by-project basis and involves teams led by personnel
with specialized knowledge of statistical methods and experience in applying them. Projects
should be selected so that they have significant business impact and are linked with the over-
all business goals for quality identified during the planning process. The techniques in this
book are integral to successful quality control and improvement.

The next section provides a brief overview of some of the key elements of quality man-
agement. We discuss some of the important quality philosophies; quality systems and standards;
the link between quality and productivity and quality and cost; economic and legal implications
of quality; and some aspects of implementation. The three aspects of quality planning, quality
assurance, and quality control and improvement are woven into the discussion.

1.4.1 Quality Philosophy and Management Strategies

Many people have contributed to the statistical methodology of quality improvement.
However, in terms of implementation and management philosophy, three individuals emerge
as the leaders: W. E. Deming, J. M. Juran, and A. V. Feigenbaum. We now briefly discuss the
approaches and philosophy of those leaders in quality management.
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W. Edwards Deming. W. Edwards Deming was educated in engineering and
physics at the University of Wyoming and Yale University. He worked for Western Electric
and was influenced greatly by Walter A. Shewhart, the developer of the control chart. After
leaving Western Electric, Deming held government jobs with the U.S. Department of
Agriculture and the Bureau of the Census. During World War II, Deming worked for the
War Department and the Census Bureau. Following the war, he became a consultant to
Japanese industries and convinced their top management of the power of statistical methods
and the importance of quality as a competitive weapon. This commitment to and use of sta-
tistical methods has been a key element in the expansion of Japan’s industry and economy. The
Japanese Union of Scientists and Engineers created the Deming Prize for quality improvement
in his honor. Until his death in 1993, Deming was an active consultant and speaker; he was an
inspirational force for quality improvement in the United States and around the world. He
firmly believed that the responsibility for quality rests with management—that is, most of the
opportunities for quality improvement require management action, and very few opportu-
nities lie at the workforce or operator level. Deming was a harsh critic of many American
management practices.

The Deming philosophy is an important framework for implementing quality and pro-
ductivity improvement. This philosophy is summarized in his 14 points for management. We
now give a brief statement and discussion of Deming’s 14 points:

1. Create a constancy of purpose focused on the improvement of products and ser-
vices. Deming was very critical of the short-term thinking of American management,
which tends to be driven by quarterly business results and doesn’t always focus on
strategies that benefit the organization in the long run. Management should con-
stantly try to improve product design and performance. This must include invest-
ment in research, development, and innovation, which will have long-term payback
to the organization.

2. Adopt a new philosophy that recognizes we are in a different economic era. Reject
poor workmanship, defective products, or bad service. It costs as much to produce a
defective unit as it does to produce a good one (and sometimes more). The cost of deal-
ing with scrap, rework, and other losses created by defectives is an enormous drain on
company resources.

3. Do not rely on mass inspection to “control” quality. All inspection can do is sort out
defectives, and at that point it is too late—the organization already has paid to produce
those defectives. Inspection typically occurs too late in the process, it is expensive, and
it is often ineffective. Quality results from prevention of defectives through process
improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is considered in
relation to a measure of quality. In other words, the total cost of the item must be consid-
ered, not just the purchase price. When quality is considered, the lowest bidder frequently
is not the low-cost supplier. Preference should be given to suppliers who use modern
methods of quality improvement in their business and who can demonstrate process con-
trol and capability. An adversarial relationship with suppliers is harmful. It is important to
build effective, long-term relationships.

5. Focus on continuous improvement. Constantly try to improve the production and ser-
vice system. Involve the workforce in these activities and make use of statistical meth-
ods, particularly the statistically based problem-solving tools discussed in this book.

6. Practice modern training methods and invest in on-the-job training for all employ-
ees. Everyone should be trained in the technical aspects of their job, and in modern
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quality- and productivity-improvement methods as well. The training should encourage
all employees to practice these methods every day. Too often, employees are not
encouraged to use the results of training, and management often believes employees do
not need training or already should be able to practice the methods. Many organizations
devote little or no effort to training.

Improve leadership, and practice modern supervision methods. Supervision should
not consist merely of passive surveillance of workers but should be focused on helping
the employees improve the system in which they work. The number-one goal of super-
vision should be to improve the work system and the product.

Drive out fear. Many workers are afraid to ask questions, report problems, or point
out conditions that are barriers to quality and effective production. In many organi-
zations the economic loss associated with fear is large; only management can elimi-
nate fear.

Break down the barriers between functional areas of the business. Teamwork
among different organizational units is essential for effective quality and productivity
improvement to take place.

Eliminate targets, slogans, and numerical goals for the workforce. A target such as
“zero defects” is useless without a plan for the achievement of this objective. In fact,
these slogans and “programs” are usually counterproductive. Work to improve the sys-
tem and provide information on that.

Eliminate numerical quotas and work standards. These standards have historically
been set without regard to quality. Work standards are often symptoms of manage-
ment’s inability to understand the work process and to provide an effective management
system focused on improving this process.

Remove the barriers that discourage employees from doing their jobs.
Management must listen to employee suggestions, comments, and complaints. The per-
son who is doing the job knows the most about it and usually has valuable ideas about
how to make the process work more effectively. The workforce is an important partic-
ipant in the business, and not just an opponent in collective bargaining.

Institute an ongoing program of education for all employees. Education in simple,
powerful statistical techniques should be mandatory for all employees. Use of the basic
SPC problem-solving tools, particularly the control chart, should become widespread in
the business. As these charts become widespread and as employees understand their
uses, they will be more likely to look for the causes of poor quality and to identify
process improvements. Education is a way of making everyone partners in the quality
improvement process.

Create a structure in top management that will vigorously advocate the first 13
points. This structure must be driven from the very top of the organization. It must also
include concurrent education/training activities and expedite application of the training
to achieve improved business results. Everyone in the organization must know that con-
tinuous improvement is a common goal.

As we read Deming’s 14 points we notice a strong emphasis on organizational change.
Also, the role of management in guiding this change process is of dominating importance.
However, what should be changed, and how should this change process be started? For
example, if we want to improve the yield of a semiconductor manufacturing process, what
should we do? It is in this area that statistical methods come into play most frequently. To
improve the semiconductor process, we must determine which controllable factors in the
process influence the number of defective units produced. To answer this question, we
must collect data on the process and see how the system reacts to change in the process
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= TABLE 1.2
Deming’s Seven Deadly Diseases of Management

. Lack of constancy of purpose

. Emphasis on short-term profits

. Evaluation of performance, merit rating, and annual reviews of performance
. Mobility of top management

Running a company on visible figures alone

. Excessive medical costs

N oA W

. Excessive legal damage awards

variables. Then actions to improve the process can be designed and implemented.
Statistical methods, such as designed experiments and control charts, can contribute to
these activities.

Deming frequently wrote and spoke about the seven deadly diseases of management,
listed in Table 1.2. He believed that each disease was a barrier to the effective implementa-
tion of his philosophy. The first, lack of constancy of purpose, relates to the first of Deming’s
14 points. Continuous improvement of products, processes, and services gives assurance to
all stakeholders in the enterprise (employees, executives, investors, suppliers) that dividends
and increases in the value of the business will continue to grow.

The second disease, too much emphasis on short-term profits, might make the “numbers”
look good, but if this is achieved by reducing research and development investment, by elim-
inating employees’ training, and by not deploying quality and other business improvement
activities, then potentially irreparable long-term damage to the business is the ultimate result.
Concerning the third disease, Deming believed that performance evaluation encouraged
short-term performance, rivalries and fear, and discouraged effective teamwork. Performance
reviews can leave employees bitter and discouraged, and they may feel unfairly treated, espe-
cially if they are working in an organization where their performance is impacted by system
forces that are flawed and out of their control.

The fourth disease, management mobility, refers to the widespread practice of job-
hopping—that is, a manger spending very little time in the business function for which he or
she is responsible. This often results in key decisions being made by someone who really
doesn’t understand the business. Managers often spend more time thinking about their next
career move than about their current job and how to do it better. Frequent reorganizing and
shifting management responsibilities are barriers to constancy of purpose and often a waste
of resources that should be devoted to improving products and services. Bringing in a new
chief executive officer to improve quarterly profits often leads to a business strategy that
leaves a path of destruction throughout the business.

The fifth disease, management by visible figures alone (such as the number of
defects, customer complaints, and quarterly profits), suggests that the really important fac-
tors that determine long-term organizational success are unknown and unknowable. As
some evidence of this, of the 100 largest companies in 1900, only 16 still exist today, and
of the 25 largest companies in 1900, only 2 are still among the top 25. Obviously, some
visible figures are important; for example, suppliers and employees must be paid on time
and the bank accounts must be managed. However, if visible figures alone were key deter-
minants of success, it’s likely that many more of the companies of 1900 still would be in
business.

Deming’s cautions about excessive medical expenses—his sixth deadly disease—are
certainly prophetic: Health care costs may be the most important issue facing many sectors
of business in the United States today. For example, the medical costs for current and
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Adopt the change or
abandon it. If adopted,
make sure that it leads to
permanent improvement.

Plan a change or
an experiment
aimed at system
improvement.

Study and analyze
the results
obtained.

What was learned?

Carry out the
change (often a
pilot study).

BMFIGURE 1.9 The Shewhart cycle.

retired employees of United States automobile manufacturers General Motors, Ford, and
Chrysler currently are estimated to be between $1200 and $1600 per vehicle, contrasted
with $250 to $350 per vehicle for Toyota and Honda, two Japanese automobile manufac-
turers with extensive North American manufacturing and assembly operations. The seventh
disease, liability and excessive damage awards, is also a major issue facing many organi-
zations. Deming was fond of observing that the United States had more lawyers per capita
than any other nation. He believed that government intervention likely would be necessary
to provide effective long-term solutions to the medical cost and excessive liability awards
problems.

Deming recommended the Shewhart cycle, shown in Figure 1.9, as a model to guide
improvement. The four steps, Plan-Do-Check-Act, are often called the PDCA cycle.
Sometimes the Check step is called Study, and the cycle becomes the PDSA cycle. In Plan, we
propose a change in the system that is aimed at improvement. In Do, we carry out the change,
usually on a small or pilot scale, to ensure that the results that are desired will be obtained.
Check consists of analyzing the results of the change to determine what has been learned about
the changes that were carried out. In Act, we either adopt the change or, if it was unsuccess-
ful, abandon it. The process is almost always iterative, and may require several cycles for solv-
ing complex problems.

In addition to Deming’s 14 points and the his seven deadly diseases of management,
Deming wrote and lectured about an extensive collection of obstacles to success. Some of
these include:

1. The belief that automation, computers, and new machinery will solve problems.

2. Searching for examples—trying to copy existing solutions.

3. The “our problems are different” excuse and not realizing that the principles that will
solve them are universal.

4. Obsolete schools, particularly business schools, where graduates have not been taught
how to successfully run businesses.

5. Poor teaching of statistical methods in industry: Teaching tools without a framework for
using them is going to be unsuccessful.

Reliance on inspection to produce quality.
Reliance on the “quality control department” to take care of all quality problems.

Blaming the workforce for problems.

L ® AR

False starts, such as broad teaching of statistical methods without a plan as to how to
use them, quality circles, employee suggestion systems, and other forms of “instant
pudding.”
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10. The fallacy of zero defects: Companies fail even though they produce products and
services without defects. Meeting the specifications isn’t the complete story in any
business.

11. Inadequate testing of prototypes: A prototype may be a one-off article, with artificially
good dimensions, but without knowledge of variability, testing a prototype tells very lit-
tle. This is a symptom of inadequate understanding of product design, development, and
the overall activity of technology commercialization.

12. “Anyone that comes to help us must understand all about our business.” This is bizarre
thinking: There already are competent people in the organization who know everything
about the business—except how to improve it. New knowledge and ideas (often from
the outside) must be fused with existing business expertise to bring about change and
improvement.

Joseph M. Juran. Juran was born in 1904 and died in 2008. He was one of the found-
ing fathers of the quality-control and improvement field. He worked for Walter A. Shewhart at
AT&T Bell Laboratories and was at the leading edge of quality improvement throughout his
career. Juran became the chief industrial engineer at Western Electric (part of the Bell System).
He was an assistant administrator for the Lend-Lease Administration during World War II and
played an important role in simplifying the administrative and paper work processes of that
agency. After the war, he became the head of the Department of Administrative Engineering at
New York University. He was invited to speak to Japanese industry leaders as they began their
industrial transformation in the early 1950s. He also created an active consulting practice (the
Juran Institute) and lectured widely through the American Management Association. He was
the co-author (with Frank M. Gryna) of the Quality Control Handbook, a standard reference
for quality methods and improvement since its initial publication in 1957.

The Juran quality management philosophy focuses on three components: planning, con-
trol, and improvement. These are known as the Juran Trilogy. As we have noted previously,
planning involves identifying external customers and determining their needs. Then products
or services that meet these customer needs are designed and/or developed, and the processes
for producing these products or services are then developed. The planning process should also
involve planning for quality improvement on a regular (typically annual) basis. Control is
employed by the operating forces of the business to ensure that the product or service meets
the requirements. SPC is one of the primary tools of control. Improvement aims to achieve per-
formance and quality levels that are higher than current levels. Juran emphasizes that improve-
ment must be on a project-by-project basis. These projects are typically identified at the planning
stage of the trilogy. Improvement can either be continuous (or incremental) or by breakthrough.
Typically, a breakthrough improvement is the result of studying the process and identifying a set
of changes that result in a large, relatively rapid improvement in performance. Designed exper-
iments are an important tool that can be used to achieve breakthrough.

Armand V. Feigenbaum. Feigenbaum was born in 1922. He first introduced the
concept of companywide quality control in his historic book Total Quality Control (first pub-
lished in 1951). This book influenced much of the early philosophy of quality management
in Japan in the early 1950s. In fact, many Japanese companies used the term “total quality
control” to describe their efforts. He proposed a three-step approach to improving quality:
quality leadership, quality technology, and organizational commitment. By quality technol-
ogy, Feigenbaum means statistical methods and other technical and engineering methods,
such as the ones discussed in this book.

Feigenbaum is concerned with organizational structure and a systems approach to
improving quality. He proposed a 19-step improvement process, of which use of statistical meth-
ods was step 17. He initially suggested that much of the technical capability be concentrated in
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a specialized department. This is in contrast to the more modern view that knowledge and use
of statistical tools need to be widespread. However, the organizational aspects of Feigenbaum’s
work are important, as quality improvement does not usually spring forth as a “grass roots”
activity; it requires a lot of management commitment to make it work.

The brief descriptions of the philosophies of Deming, Juran, and Feigenbaum have
highlighted both the common aspects and differences among their viewpoints. In this author’s
opinion, there are more similarities than differences among them, and the similarities are what
are important. All three of these pioneers stress the importance of quality as an essential com-
petitive weapon, the important role that management must play in implementing quality
improvement, and the importance of statistical methods and techniques in the “quality trans-
formation” of an organization.

Total Quality Management. Total quality management (TQM) is a strategy for
implementing and managing quality improvement activities on an organizationwide basis.
TQM began in the early 1980s, with the philosophies of Deming and Juran as the focal point.
It evolved into a broader spectrum of concepts and ideas, involving participative organizations
and work culture, customer focus, supplier quality improvement, integration of the quality
system with business goals, and many other activities to focus all elements of the organization
around the quality improvement goal. Typically, organizations that have implemented a TQM
approach to quality improvement have quality councils or high-level teams that deal with
strategic quality initiatives, workforce-level teams that focus on routine production or business
activities, and cross-functional teams that address specific quality improvement issues.

TQM has only had moderate success for a variety of reasons, but frequently because
there is insufficient effort devoted to widespread utilization of the technical tools of variabil-
ity reduction. Many organizations saw the mission of TQM as one of training. Consequently,
many TQM efforts engaged in widespread training of the workforce in the philosophy of
quality improvement and a few basic methods. This training was usually placed in the hands
of human resources departments, and much of it was ineffective. The trainers often had no
real idea about what methods should be taught, or how the methods should be used, and
success was usually measured by the percentage of the workforce that had been “trained,” not
by whether any measurable impact on business results had been achieved. Some general rea-
sons for the lack of conspicuous success of TQM include (1) lack of topdown, high-level
management commitment and involvement; (2) inadequate use of statistical methods and
insufficient recognition of variability reduction as a prime objective; (3) general as opposed
to specific business-results-oriented objectives; and (4) too much emphasis on widespread
training as opposed to focused technical education.

Another reason for the erratic success of TQM is that many managers and executives
have regarded it as just another “program” to improve quality. During the 1950s and 1960s,
programs such as Zero Defects and Value Engineering abounded, but they had little real
impact on quality and productivity improvement. During the heyday of TQM in the 1980s,
another popular program was the Quality is Free initiative, in which management worked on
identifying the cost of quality (or the cost of nonquality, as the Quality is Free devotees so
cleverly put it). Indeed, identification of quality costs can be very useful (we discuss quality
costs in Section 1.4.3), but the Quality is Free practitioners often had no idea about what to
do to actually improve many types of complex industrial processes. In fact, the leaders of this
initiative had no knowledge about statistical methodology and completely failed to under-
stand its role in quality improvement. When TQM is wrapped around an ineffective program
such as this, disaster is often the result.

Quality Systems and Standards. The International Standards Organization
(founded in 1946 in Geneva, Switzerland), known as ISO, has developed a series of stan-
dards for quality systems. The first standards were issued in 1987. The current version of
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the standard is known as the ISO 9000 series. It is a generic standard, broadly applicable to
any type of organization, and it is often used to demonstrate a supplier’s ability to control its
processes. The three standards of ISO 9000 are:

ISO 9000:2005 Quality Management System—Fundamentals and Vocabulary
ISO 9001:2008 Quality Management System—Requirements

ISO 9004:2009 Quality Management System—Guidelines for Performance
Improvement

ISO 9000 is also an American National Standards Institute and an ASQ standard.

The ISO 9001:2008 standard has eight clauses: (1) Scope, (2) Normative References,
(3) Definitions, (4) Quality Management Systems, (5) Management Responsibility,
(6) Resource Management, (7) Product (or Service) Realization, and (8) Measurement,
Analysis, and Improvement. Clauses 4 through 8 are the most important, and their key com-
ponents and requirements are shown in Table 1.3. To become certified under the ISO standard,
a company must select a registrar and prepare for a certification audit by this registrar.
There is no single independent authority that licenses, regulates, monitors, or qualifies regis-
trars. As we will discuss later, this is a serious problem with the ISO system. Preparing for
the certification audit involves many activities, including (usually) an initial or phase I audit
that checks the present quality management system against the standard. This is usually fol-
lowed by establishing teams to ensure that all components of the key clause are developed and
implemented, training personnel, developing applicable documentation, and developing and
installing all new components of the quality system that may be required. Then the certifica-
tion audit takes place. If the company is certified, then periodic surveillance audits by the
registrar continue, usually on an annual (or perhaps six-month) schedule.

Many organizations have required their suppliers to become certified under ISO 9000,
or one of the standards that are more industry-specific. Examples of these industry-specific
quality system standards are AS 9100 for the aerospace industry; ISO/TS 16949 and QS 9000
for the automotive industry; and TL 9000 for the telecommunications industry. Many com-
ponents of these standards are very similar to those of ISO 9000.

Much of the focus of ISO 9000 (and of the industry-specific standards) is on formal
documentation of the quality system—that is, on quality assurance activities. Organizations
usually must make extensive efforts to bring their documentation into line with the require-
ments of the standards; this is the Achilles’ heel of ISO 9000 and other related or derivative
standards. There is far too much effort devoted to documentation, paperwork, and bookkeep-
ing and not nearly enough to actually reducing variability and improving processes and prod-
ucts. Furthermore, many of the third-party registrars, auditors, and consultants that work in
this area are not sufficiently educated or experienced enough in the technical tools required
for quality improvement or how these tools should be deployed. They are all too often
unaware of what constitutes modern engineering and statistical practice, and usually are
familiar with only the most elementary techniques. Therefore, they concentrate largely on the
documentation, record keeping, and paperwork aspects of certification.

There is also evidence that ISO certification or certification under one of the other
industry-specific standards does little to prevent poor quality products from being designed, man-
ufactured, and delivered to the customer. For example, in 1999-2000, there were numerous inci-
dents of rollover accidents involving Ford Explorer vehicles equipped with Bridgestone/Firestone
tires. There were nearly 300 deaths in the United States alone attributed to these accidents, which
led to a recall by Bridgestone/Firestone of approximately 6.5 million tires. Apparently, many of
the tires involved in these incidents were manufactured at the Bridgestone/Firestone plant in
Decatur, Illinois. In an article on this story in 7ime magazine (September 18, 2000), there was a
photograph (p. 38) of the sign at the entrance of the Decatur plant which stated that the plant was
“QS 9000 Certified” and “ISO 14001 Certified” (ISO 14001 is an environmental standard).
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= TABLE 1.3
ISO 9001:2008 Requirements

4.0
4.1

4.2

5.0
5.1

52

53
5.4

55
5.6

6.0
6.1
6.2
6.3

6.4

7.0
7.1
7.2
7.3
7.4
7.5
7.6

8.0
8.1

8.2
8.3

8.4

8.5

Quality Management System
General Requirements

The organization shall establish, document, implement, and maintain a quality management system and continually
improve its effectiveness in accordance with the requirements of the international standard.

Documentation Requirements

Quality management system documentation will include a quality policy and quality objectives; a quality manual;
documented procedures; documents to ensure effective planning, operation, and control of processes; and records
required by the international standard.

Management System

Management Commitment

a. Communication of meeting customer, statutory, and regulatory requirements

b. Establishing a quality policy

c. Establishing quality objectives

d. Conducting management reviews

e. Ensuring that resources are available

Top management shall ensure that customer requirements are determined and are met with the aim of enhancing
customer satisfaction.

Management shall establish a quality policy.

Management shall ensure that quality objectives shall be established. Management shall ensure that planning occurs for
the quality management system.

Management shall ensure that responsibilities and authorities are defined and communicated.
Management shall review the quality management system at regular intervals.

Resource Management
The organization shall determine and provide needed resources.
Workers will be provided necessary education, training, skills, and experience.

The organization shall determine, provide, and maintain the infrastructure needed to achieve conformity to product
requirements.

The organization shall determine and manage the work environment needed to achieve conformity to product requirements.

Product or Service Realization

The organization shall plan and develop processes needed for product or service realization.

The organization shall determine requirements as specified by customers.

The organization shall plan and control the design and development for its products or services.

The organization shall ensure that purchased material or product conforms to specified purchase requirements.

The organization shall plan and carry out production and service under controlled conditions.

The organization shall determine the monitoring and measurements to be undertaken and the monitoring and measuring
devices needed to provide evidence of conformity of products or services to determined requirements.

Measurement, Analysis, and Improvement

The organization shall plan and implement the monitoring, measurement, analysis, and improvement process for
continual improvement and conformity to requirements.

The organization shall monitor information relating to customer perceptions.

The organization shall ensure that product that does not conform to requirements is identified and controlled to prevent
its unintended use or delivery.

The organization shall determine, collect, and analyze data to demonstrate the suitability and effectiveness of the quality
management system, including

a. Customer satisfaction
b. Conformance data

c. Trend data

d. Supplier data

The organization shall continually improve the effectiveness of the quality management system.

Adapted from the ISO 9001:2008 Standard, International Standards Organization, Geneva, Switzerland.
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Although the assignable causes underlying these incidents have not been fully discovered, there
are clear indicators that despite quality systems certification, Bridgestone/Firestone experienced
significant quality problems. ISO certification alone is no guarantee that good quality products
are being designed, manufactured, and delivered to the customer. Relying on ISO certification is
a strategic management mistake.

It has been estimated that ISO certification activities are approximately a $40 billion
annual business, worldwide. Much of this money flows to the registrars, auditors, and consul-
tants. This amount does not include all of the internal costs incurred by organizations to achieve
registration, such as the thousands of hours of engineering and management effort, travel, inter-
nal training, and internal auditing. It is not clear whether any significant fraction of this expendi-
ture has made its way to the bottom line of the registered organizations. Furthermore, there is no
assurance that certification has any real impact on quality (as in the Bridgestone/
Firestone tire incidents). Many quality engineering authorities believe that ISO certification is
largely a waste of effort. Often, organizations would be far better off to “just say no to ISO” and
spend a small fraction of that $40 billion on their quality systems and another larger fraction on
meaningful variability reduction efforts, develop their own internal (or perhaps industry-based)
quality standards, rigorously enforce them, and pocket the difference.

The Malcolm Baldrige National Quality Award. The Malcolm Baldrige National
Quality Award (MBNQA) was created by the U.S. Congress in 1987. It is given annually to
recognize U.S. organizations for performance excellence. Awards are given to organizations
in five categories: manufacturing, service, small business, health care, and education. Three
awards may be given each year in each category. Many organizations compete for the awards,
and many companies use the performance excellence criteria for self-assessment. The award
is administered by NIST (the National Institute of Standards and Technology).

The performance excellence criteria and their interrelationships are shown in Figure 1.10.
The point values for these criteria in the MBNQA are shown in Table 1.4. The criteria are directed
towards results, where results are a composite of customer satisfaction and retention, market share
and new market development, product/service quality, productivity and operational effectiveness,
human resources development, supplier performance, and public/corporate citizenship. The crite-
ria are nonprescriptive—that is, the focus is on results, not the use of specific procedures or tools.

The MBNQA process is shown in Figure 1.11. An applicant sends the completed appli-
cation to NIST. This application is then subjected to a first-round review by a team of Baldrige

Organizational Profile
Environment, Relationships, and Challenges

2 5
Strategic Human
planning resources
1 U
Leadership “ NS
results
3 6
Customer and Process BFIGURE 1.10 The
market focus management structure of the MBNQA perfor-
mance excellence criteria.
(Source: Foundation for the
4 Malcolm Baldrige National Quality

Award, 2002 Criteria for
Performance Excellence.)
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Performance Excellence Categories and Point Values
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1 Leadership

1.1 Leadership System

1.2 Company Responsibility and Citizenship

2 Strategic Planning

2.1 Strategy Development Process

2.2 Company Strategy

3 Customer and Market Focus

3.1 Customer and Market Knowledge

3.2 Customer Satisfaction and Relationship Enhancement

4 Information and Analysis
4.1 Measurement and Analysis of Performance

4.2 Information Management

5 Human Resource Focus
5.1 Work Systems
5.2 Employee Education, Training, and Development
5.3 Employee Well-Being and Satisfaction

6 Process Management
6.1 Management of Product and Service Processes

6.2 Management of Business Processes

6.3 Management of Support Processes

7 Business Results

7.1 Customer Results
7.2 Financial and Market Results
7.3 Human Resource Results

7.4 Organizational Results

Total Points

80
40

40
45

40
45

50
40

35
25
25

45
25
15

125
125

80
120

120

85

85

90

85

85

450
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examiners. The board of Baldrige examiners consists of highly qualified volunteers from a vari-
ety of fields. Judges evaluate the scoring on the application to determine if the applicant will
continue to consensus. During the consensus phase, a group of examiners who scored the orig-
inal application determines a consensus score for each of the items. Once consensus is reached
and a consensus report written, judges then make a site-visit determination. A site visit typically
is a one-week visit by a team of four to six examiners who produce a site-visit report. The site-
visit reports are used by the judges as the basis of determining the final MBNQA winners.

As shown in Figure 1.10, feedback reports are provided to the applicant at up to three
stages of the MBNQA process. Many organizations have found these reports very helpful and
use them as the basis of planning for overall improvement of the organization and for driving
improvement in business results.

Six Sigma. Products with many components typically have many opportunities for
failure or defects to occur. Motorola developed the Six Sigma program in the late 1980s as a
response to the demand for its products. The focus of Six Sigma is reducing variability in key
product quality characteristics to the level at which failure or defects are extremely unlikely.

Figure 1.12a shows a normal probability distribution as a model for a quality charac-
teristic with the specification limits at three standard deviations on either side of the mean.
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+3 Sigma 99.73 2700
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+6 Sigma 99.9999998 0.002

(a) Normal distribution centered at the target (7)
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+1 Sigma 30.23 697700
+2 Sigma 69.13 608700
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+5 Sigma 99.97670 233
+6 Sigma 99.999660 34

(b) Normal distribution with the mean shifted by +1.5¢0 from the target

BMFIGURE 1.12 The Motorola Six Sigma concept.
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Now it turns out that in this situation the probability of producing a product within these spec-
ifications is 0.9973, which corresponds to 2,700 parts per million (ppm) defective. This is
referred to as Three Sigma quality performance, and it actually sounds pretty good.
However, suppose we have a product that consists of an assembly of 100 independent com-
ponents or parts and all 100 of these parts must be nondefective for the product to function
satisfactorily. The probability that any specific unit of product is nondefective is

0.9973 x 0.9973 X ... x 0.9973 = (0.9973)'%° = 0.7631

That is, about 23.7% of the products produced under Three Sigma quality will be defec-
tive. This is not an acceptable situation, because many products used by today’s society are made
up of many components. Even a relatively simple service activity, such as a visit by a family of
four to a fast-food restaurant, can involve the assembly of several dozen components. A typical
automobile has about 100,000 components and an airplane has between one and two million!

The Motorola Six Sigma concept is to reduce the variability in the process so that the
specification limits are at least six standard deviations from the mean. Then, as shown in
Figure 1.12a, there will only be about 2 parts per billion defective. Under Six Sigma quality,
the probability that any specific unit of the hypothetical product above is nondefective is
0.9999998, or 0.2 ppm, a much better situation.

When the Six Sigma concept was initially developed, an assumption was made that
when the process reached the Six Sigma quality level, the process mean was still subject to
disturbances that could cause it to shift by as much as 1.5 standard deviations off target. This
situation is shown in Figure 1.12b. Under this scenario, a Six Sigma process would produce
about 3.4 ppm defective.

There is an apparent inconsistency in this. As we will discuss in Chapter 8 on process

capability, we can only make predictions about process performance when the process is
stable—that is, when the mean (and standard deviation, too) is constant. If the mean is
drifting around, and ends up as much as 1.5 standard deviations off target, a prediction of
3.4 ppm defective may not be very reliable, because the mean might shift by more than the
“allowed” 1.5 standard deviations. Process performance isn’t predictable unless the process
behavior is stable.

However, no process or system is ever truly stable, and even in the best of situations,
disturbances occur. These disturbances can result in the process mean shifting off-target, an
increase in the process standard deviation, or both. The concept of a Six Sigma process is one
way to model this behavior. Like all models, it’s probably not exactly right, but it has proven
to be a useful way to think about process performance and improvement.

Motorola established Six Sigma as both an objective for the corporation and as a focal
point for process and product quality improvement efforts. In recent years, Six Sigma has
spread beyond Motorola and has come to encompass much more. It has become a program
for improving corporate business performance by both improving quality and paying atten-
tion to reducing costs. Companies involved in a Six Sigma effort utilize specially trained indi-
viduals, called Green Belts (GBs), Black Belts (BBs), and Master Black Belts (MBBs) to lead
teams focused on projects that have both quality and business (economic) impacts for the
organization. The “belts” have specialized training and education on statistical methods and
the quality and process improvement tools in this textbook that equip them to function as team
leaders, facilitators, and problem solvers. Typical Six Sigma projects are four to six months in
duration and are selected for their potential impact on the business. The paper by Hoerl (2001)
describes the components of a typical BB education program. Six Sigma uses a specific five-
step problem-solving approach: Define, Measure, Analyze, Improve, and Control (DMAIC).
The DMAIC framework utilizes control charts, designed experiments, process capability
analysis, measurement systems capability studies, and many other basic statistical tools. The
DMAIC approach is an extremely effective framework for improving processes. While it is
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usually associated with Six Sigma deployments, it is a very effective work to organize and
manage any improvement effort. In Chapter 2, we will give a fuller presentation of DMAIC.

The goals of Six Sigma, a 3.4 ppm defect level, may seem artificially or arbitrarily high,
but it is easy to demonstrate that even the delivery of relatively simple products or services at
high levels of quality can lead to the need for Six Sigma thinking. For example, consider the
visit to a fast-food restaurant mentioned above. The customer orders a typical meal: a ham-
burger (bun, meat, special sauce, cheese, pickle, onion, lettuce, and tomato), fries, and a soft
drink. This product has ten components. Is 99% good quality satisfactory? If we assume that
all ten components are independent, the probability of a good meal is

P{Single meal good} = (0.99)'% = 0.9044

which looks pretty good. There is better than a 90% chance that the customer experience will
be satisfactory. Now suppose that the customer is a family of four. Again, assuming indepen-
dence, the probability that all four meals are good is

P{All meals good} = (0.9044)* = 0.6690

This isn’t so nice. The chances are only about two out of three that all of the family meals are
good. Now suppose that this hypothetical family of four visits this restaurant once a month
(this is about all their cardiovascular systems can stand!). The probability that all visits result
in good meals for everybody is

P{All visits during the year good} = (0.6690)'* = 0.0080

This is obviously unacceptable. So, even in a very simple service system involving a relatively
simple product, very high levels of quality and service are required to produce the desired
high-quality experience for the customer.

Business organizations have been very quick to understand the potential benefits of Six
Sigma and to adopt the principles and methods. Between 1987 and 1993, Motorola reduced defec-
tivity on its products by approximately, 1,300%. This success led to many organizations adopting
the approach. Since its origins, there have been three generations of Six Sigma implementations.
Generation I Six Sigma focused on defect elimination and basic variability reduction. Motorola
is often held up as an exemplar of Generation I Six Sigma. In Generation II Six Sigma, the
emphasis on variability and defect reduction remained, but now there was a strong effort to tie
these efforts to projects and activities that improved business performance through cost reduction.
General Electric is often cited as the leader of the Generation II phase of Six Sigma.

In Generation III, Six Sigma has the additional focus of creating value throughout the
organization and for its stakeholders (owners, employees, customers, suppliers, and society at
large). Creating value can take many forms: increasing stock prices and dividends, job retention
or expansion, expanding markets for company products/services, developing new products/
services that reach new and broader markets, and increasing the levels of customer satisfac-
tion throughout the range of products and services offered.

Many different kinds of businesses have embraced Six Sigma and made it part of the cul-
ture of doing business. Consider the following statement from Jim Owens, chairman of heavy
equipment manufacturer Caterpillar, Inc., who wrote in the 2005 annual company report:

I believe that our people and world-class six-sigma deployment distinguish Caterpillar
from the crowd. What an incredible success story six-sigma has been for Caterpillar! It is
the way we do business—how we manage quality, eliminate waste, reduce costs, create new
products and services, develop future leaders, and help the company grow profitably. We
continue to find new ways to apply the methodology to tackle business challenges. Our
leadership team is committed to encoding six-sigma into Caterpillar’s “DNA” and extend-
ing its deployment to our dealers and suppliers—more than 500 of whom have already
embraced the six-sigma way of doing business.
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At the annual meeting of Bank of America in 2004, then—chief executive officer Kenneth
D. Lewis told the attendees that the company had record earnings in 2003, had significantly
improved the customer experience, and had raised its community development funding target
to $750 billion over ten years. “Simply put, Bank of America has been making it happen,”
Lewis said. “And we’ve been doing it by following a disciplined, customer-focused and
organic growth strategy.” Citing the companywide use of Six Sigma techniques for process
improvement, he noted that in fewer than three years, Bank of America had “saved millions
of dollars in expenses, cut cycle times in numerous areas of the company by half or more, and
reduced the number of processing errors.”

These are strong endorsements of Six Sigma from two highly recognized business lead-
ers that lead two very different types of organizations: manufacturing and financial services.
Caterpillar and Bank of America are good examples of Generation III Six Sigma companies,
because their implementations are focused on value creation for all stakeholders in the broad
sense. Note Lewis’s emphasis on reducing cycle times and reducing processing errors (items
that will greatly improve customer satisfaction), and Owens’s remarks on extending Six
Sigma to suppliers and dealers—the entire supply chain. Six Sigma has spread well beyond
its manufacturing origins into areas including health care, many types of service business, and
government/public service (the U.S. Navy has a strong and very successful Six Sigma
program). The reason for the success of Six Sigma in organizations outside the traditional
manufacturing sphere is that variability is everywhere, and where there is variability, there is
an opportunity to improve business results. Some examples of situations where a Six Sigma
program can be applied to reduce variability, eliminate defects, and improve business perfor-
mance include:

= Meeting delivery schedule and delivery accuracy targets

= Eliminating rework in preparing budgets and other financial documents

= Proportion of repeat visitors to an e-commerce Website, or proportion of visitors that
make a purchase

= Minimizing cycle time or reducing customer waiting time in any service system
= Reducing average and variability in days outstanding of accounts receivable

= Optimizing payment of outstanding accounts

= Minimizing stock-out or lost sales in supply chain management

= Minimizing costs of public accountants, legal services, and other consultants

= Inventory management (both finished goods and work-in-process)

= Improving forecasting accuracy and timing

= Improving audit processes

= Closing financial books, improving accuracy of journal entry and posting (a 3% to 4%
error rate is fairly typical)

= Reducing variability in cash flow
= Improving payroll accuracy

= Improving purchase order accuracy and reducing rework of purchase orders

The structure of a Six Sigma organization is shown in Figure 1.13. The lines in this
figure identify the key links among the functional units. The leadership team is the execu-
tive responsible for that business unit and appropriate members of his/her staff and direct
reports. This person has overall responsibility for approving the improvement projects
undertaken by the Six Sigma teams. Each project has a champion, a business leader whose
job is to facilitate project identification and selection, identify Black Belts and other team
members who are necessary for successful project completion, remove barriers to project
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Structure of a typical Six Sigma organization

Leadership team

Champion,
project sponsors

Functional business
groups

BFIGURE 1.13 The structure
BBs + team of a Six Sigma organization.
members (Adapted from R. D. Snee and R. W. Hoerl,

Six Sigma Beyond the Factory Floor, Upper
Human resources, information technology, legal, logistics, Saddle River, NJ: Pearson Prentice Hall,
finance, manufacturing, engineering/design 2005.)

completion, make sure that the resources required for project completion are available, and con-
duct regular meetings with the team or the Black Belts to ensure that progress is being made
and the project is on schedule. The champion role is not full time, and champions often have
several projects under their supervision. Black Belts are team leaders who are involved in the
actual project completion activities. Team members often spend 25% of their time on the pro-
ject, and may be drawn from different areas of the business, depending on project requirements.
Green Belts typically have less training and experience in Six Sigma tools and approaches than
the Black Belts, and may lead projects of their own under the direction of a champion or Black
Belt, or they may be part of a Black Belt-led team. A Master Black Belt is a technical leader,
and may work with the champion and the leadership team in project identification and selec-
tion, project reviews, consulting with Black Belts on technical issues, and training of Green
Belts and Black Belts. Typically, the Black Belt and Master Black Belt roles are full time.

In recent years, two other tool sets have become identified with Six Sigma: lean sys-
tems and design for Six Sigma (DFSS). Many organizations regularly use one or both of
these approaches as an integral part of their Six Sigma implementation.

Design for Six Sigma is an approach for taking the variability reduction and process
improvement philosophy of Six Sigma upstream from manufacturing or production into the
design process, where new products (or services or service processes) are designed and
developed. Broadly speaking, DFSS is a structured and disciplined methodology for the effi-
cient commercialization of technology that results in new products, services, or processes.
By a product, we mean anything that is sold to a consumer for use; by a service, we mean
an activity that provides value or benefit to the consumer. DFSS spans the entire develop-
ment process from the identification of customer needs to the final launch of the new prod-
uct or service. Customer input is obtained through voice of the customer (VOC) activities
designed to determine what the customer really wants, to set priorities based on actual cus-
tomer wants, and to determine if the business can meet those needs at a competitive price
that will enable it to make a profit. VOC data is usually obtained by customer interviews, by
a direct interaction with and observation of the customer, through focus groups, by surveys,
and by analysis of customer satisfaction data. The purpose is to develop a set of critical to
quality requirements for the product or service. Traditionally, Six Sigma is used to achieve
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operational excellence, while DFSS is focused on improving business results by increasing
the sales revenue generated from new products and services and finding new applications or
opportunities for existing ones. In many cases, an important gain from DFSS is the reduc-
tion of development lead time—that is, the cycle time to commercialize new technology and
get the resulting new products to market. DFSS is directly focused on increasing value in the
organization. Many of the tools that are used in operational Six Sigma are also used in
DFSS. The DMAIC process is also applicable, although some organizations and practition-
ers have slightly different approaches (DMADYV, or Define, Measure, Analyze, Design, and
Verify, is a popular variation).

DFSS makes specific the recognition that every design decision is a business decision,
and that the cost, manufacturability, and performance of the product are determined during
design. Once a product is designed and released to manufacturing, it is almost impossible for
the manufacturing organization to make it better. Furthermore, overall business improvement
cannot be achieved by focusing on reducing variability in manufacturing alone (operational
Six Sigma), and DFSS is required to focus on customer requirements while simultaneously
keeping process capability in mind. Specifically, matching the capability of the production
system and the requirements at each stage or level of the design process (refer to Figure 1.14)
is essential. When mismatches between process capabilities and design requirements are dis-
covered, either design changes or different production alternatives are considered to resolve
the conflicts. Throughout the DFSS process, it is important that the following points be kept
in mind:

= Is the product concept well identified?

= Are customers real?

= Will customers buy this product?

= Can the company make this product at competitive cost?

= Are the financial returns acceptable?

= Does this product fit with the overall business strategy?

= Is the risk assessment acceptable?

= Can the company make this product better than the competition can?

= Can product reliability, maintainability goals be met?

= Has a plan for transfer to manufacturing been developed and verified?
Lean principles are designed to eliminate waste. By waste, we mean unnecessarily long

cycle times, or waiting times between value-added work activities. Waste can also include
rework (doing something over again to eliminate defects introduced the first time) or scrap.

DFSS exposes the differences
between capability and requirements

® Permits focusing of efforts

e Permits global optimization Customer
e Explicitly shows the CTQs Capability
customer the cost of 3
requirements System
e Shows the specific areas Parameters
where process h
improvement is Subsystem
needed Parameters
Component
Parameters
) O ——— BFIGURE 1.14 Matching
Requirements Part product requirements and production
Characteristics capability in DFSS.
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Rework and scarp are often the result of excess variability, so there is an obvious connec-
tion between Six Sigma and lean. An important metric in lean is the process cycle effi-
ciency (PCE) defined as

Value-add time

Process cycle efficiency = -
Process cycle time
where the value-add time is the amount of time actually spent in the process that transforms the
form, fit, or function of the product or service that results in something for which the customer
is willing to pay. PCE is a direct measure of how efficiently the process is converting the work
that is in-process into completed products or services. In typical processed, including manufac-
turing and transactional businesses, PCE varies between 1% and 10%. The ideal or world-class
PCE varies by the specific application, but achieving a PCE of 25% or higher is often possible.
Process cycle time is also related to the amount of work that is in-process through
Little’s Law:

Work-in-process

Process cycle time = -
Average completion rate
The average completion rate is a measure of capacity; that is, it is the output of a process over
a defined time period. For example, consider a mortgage refinance operation at a bank. If the
average completion rate for submitted applications is 100 completions per day, and there are
1,500 applications waiting for processing, the process cycle time is

) 1500
Process cycle time = —— = 15 days

100
Often the cycle time can be reduced by eliminating waste and inefficiency in the process,
resulting in an increase in the completion rate.

Lean also makes use of many tools of industrial engineering and operations research.
One of the most important of these is discrete-event simulation, in which a computer model
of the system is built and used to quantify the impact of changes to the system that improve
its performance. Simulation models are often very good predictors of the performance of a
new or redesigned system. Both manufacturing and service organizations can greatly benefit
by using simulation models to study the performance of their processes.

Ideally, Six Sigma/DMAIC, DFSS, and lean tools are used simultaneously and harmo-
niously in an organization to achieve high levels of process performance and significant busi-
ness improvement. Figure 1.15 highlights many of the important complimentary aspects of
these three sets of tools.

Six Sigma (often combined with DFSS and lean) has been much more successful than
its predecessors, notably TQM. The project-by-project approach the analytical focus, and the
emphasis on obtaining improvement in bottom-line business results have been instrumental
in obtaining management commitment to Six Sigma. Another major component in obtaining
success is driving the proper deployment of statistical methods into the right places in the
organization. The DMAIC problem-solving framework is an important part of this. For more
information on Six Sigma, the applications of statistical methods in the solution of business
and industrial problems, and related topics, see Hahn, Doganaksoy, and Hoerl (2000); Hoerl
and Snee (2010); Montgomery and Woodall (2008); and Steinberg et al. (2008).

Just-in-Time, Poka-Yoke, and Others. There have been many initiatives devoted to
improving the production system. These are often grouped into the lean toolkit. Some of these
include the Just-in-Time approach emphasizing in-process inventory reduction, rapid setup,
and a pull-type production system; Poka-Yoke or mistake-proofing of processes; the Toyota
production system and other Japanese manufacturing techniques (with once-popular
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The process improvement triad: DFSS, lean,
and Six Sigma/DMAIC
Overall Programs

Six Sigma/
DFSS Lean DMAIC*
Design Eliminate Eliminate
predictive waste, defects,
quality into improve reduce
products cycle time variability
Robust Lead-time Capable
Design for Six Sigma Lean Variation Reduction
® Requirements allocation * Flow mapping e Predictability
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e Predictable product quality | ® Work-in-process reduction o Capability
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The “I” in DMAIC may become DFSS.

BFIGURE 1.15 Six Sigma/DMAIC, lean, and DFSS: how they fit together.

management books by those names); reengineering; theory of constraints; agile manufacturing;
and so on. Most of these programs devote far too little attention to variability reduction. It’s vir-
tually impossible to reduce the in-process inventory or operate a pull-type or agile production
system when a large and unpredictable fraction of the process output is defective and where
there are significant uncontrolled sources of variability. Such efforts will not achieve their full
potential without a major focus on statistical methods for process improvement and variability
reduction to accompany them. It is important to deploy Six Sigma jointly with the lean tools.

1.4.2 The Link Between Quality and Productivity

Producing high-quality products in the modern industrial environment is not easy. A significant
aspect of the problem is the rapid evolution of technology. The past 20 years have seen an explo-
sion of technology in such diverse fields as electronics, metallurgy, ceramics, composite mate-
rials, biotechnology, and the chemical and pharmaceutical sciences, which has resulted in many
new products and services. For example, in the electronics field the development of the inte-
grated circuit has revolutionized the design and manufacture of computers and many electronic
office products. Basic integrated circuit technology has been supplanted by large-scale integra-
tion (LSI) and very large-scale integration (VLSI) technology, with corresponding develop-
ments in semiconductor design and manufacturing. When technological advances occur rapidly
and when the new technologies are used quickly to exploit competitive advantages, the prob-
lems of designing and manufacturing products of superior quality are greatly complicated.
Often, too little attention is paid to achieving all dimensions of an optimal process:
economy, efficiency, productivity, and quality. Effective quality improvement can be instru-
mental in increasing productivity and reducing cost. To illustrate, consider the manufacture
of a mechanical component used in a copier machine. The parts are manufactured in a
machining process at a rate of approximately 100 parts per day. For various reasons, the
process is operating at a first-pass yield of about 75%. (That is, about 75% of the process
output conforms to specifications, and about 25% of the output is nonconforming.) About
60% of the fallout (the 25% nonconforming) can be reworked into an acceptable product,
and the rest must be scrapped. The direct manufacturing cost through this stage of production
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per part is approximately $20. Parts that can be reworked incur an additional processing
charge of $4. Therefore, the manufacturing cost per good part produced is
$20(100) + $4(15)

Cost/ good part = % =$22.89

Note that the total yield from this process, after reworking, is 90 good parts per day.

An engineering study of this process reveals that excessive process variability is respon-
sible for the extremely high fallout. A new statistical process-control procedure is implemented
that reduces variability, and consequently the process fallout decreases from 25% to 5%. Of
the 5% fallout produced, about 60% can be reworked, and 40% are scrapped. After the process-
control program is implemented, the manufacturing cost per good part produced is

$20(100) + $4(3)

Cost/ good part = 03 = $20.53

Note that the installation of statistical process control and the reduction of variability
that follows result in a 10.3% reduction in manufacturing costs. Furthermore, productivity is
up by almost 10%; 98 good parts are produced each day as opposed to 90 good parts previ-
ously. This amounts to an increase in production capacity of almost 10%, without any addi-
tional investment in equipment, workforce, or overhead. Efforts to improve this process by
other methods (such as Just-in-Time, lean manufacturing) are likely to be completely inef-
fective until the basic problem of excessive variability is solved.

1.4.3 Supply Chain Quality Management

Most companies and business organizations rely on suppliers to provide at least some of the
materials and components used in their products. Almost all of these businesses rely on exter-
nal organizations to distribute and deliver their products to distribution centers and ultimately
to the end customers. A supply chain is the network of facilities that accomplishes these tasks.
There is usually an internal component of the supply chain as well, because many design
activities, development, and production operations for components and subassemblies are
performed by different groups within the parent organization. Supply chain management
(SCM) deals with designing, planning, executing, controlling, and monitoring all supply
chain activities with the objective of optimizing system performance. Changes in the business
environment over the last 25 years, including globalization, the proliferation of multinational
companies, joint ventures, strategic alliances, and business partnerships, have contributed to
the development and expansion of supply chain networks.

The supply chain often provides a significant component of the value or content to many
products or services. Consequently, there is considerable dependence on the supply chain
regarding product quality and safety. Failures in the supply chain have significant conse-
quences for the parent company and for consumers. For example, in recent years there have
been instances of lead in paint on toys and lead in toothpaste, as well as recalls of food and
pharmaceutical products because of contamination problems. Even in situations where product
quality or safety is not an issue, the labor practices and lack of social responsibility of organi-
zations in the supply chain have negatively impacted the reputation of the parent company.

Successful SCM requires integrating activities into key supply chain processes. This
requires collaboration between buyers and suppliers, joint product development, common
systems, and shared information. Some key supply chain processes are:

= Service management
= Demand management
= Order fulfillment
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Quality

Manufacturing flow management
Supplier relationship management
Logistics and distribution

Returns management

Sometimes the management of these processes can be simplified by single-sourcing or
dual-sourcing—that is, having only one or at most two suppliers for critical components.
Deming argued for this type of strategic relationship with suppliers. The danger, of course,
is interruption of supply due to quality problems, labor disputes and strikes, transportation
disruptions, pricing disagreements, global security problems, and natural phenomena such
as earthquakes.

SCM consists of three major activities:

Supplier qualification or certification. This can involve visits to suppliers and inspec-
tion of their facilities along with evaluation of the capability of their production systems
to deliver adequate quantities of product, their quality systems, and their overall busi-
ness operations. The purpose of supplier qualification is to provide an analytical basis
for supplier selection.

Supplier development. These are the activities that the company undertakes to
improve the performance of its suppliers. Some common supplier development activi-
ties include supplier evaluation, supplier training, data and process information sharing,
and consulting services. Many times these activities are performed in teams composed
of representatives of both the parent company and the supplier. These teams are formed
to address specific projects. Often the goals of these projects are quality improvement,
capacity expansion, or cost reduction. As an example of a supplier development activ-
ity, the company may help a supplier initiate a Six Sigma deployment. Many compa-
nies provide awards to suppliers as a component of the development process. These
awards may be based on criteria similar to the Baldrige criteria and may provide an
awardee preferred supplier status with some advantages in obtaining future business.

Supplier audits. This activity consists of regular periodic visits to the supplier to
ensure that product quality, standards, and other operational objectives are being met.
Supplier audits are a way to gain insight into supplier processes and reduce supplier
risk. Quality audits are frequently used to ensure that supplier have processes in place
to deliver quality products. Audits are an effective way to ensure that the supplier is fol-
lowing the processes and procedures that were agreed to during the selection processes.
The supplier audit identifies nonconformances in manufacturing processes, shipment
and logistics operations, engineering and engineering change processes, and invoicing
and billing. After the audit, the supplier and parent company jointly identify corrective
actions that must be implemented by the supplier within an agreed-upon timeframe. A
future audit ensures that these corrective actions have been successfully implemented.
In addition, as regulatory and market pressures related to environmental compliance
and social and ethical responsibility increase, audits often include environmental and
social and ethical responsibility components. Sometimes companies engage third par-
ties to conduct these audits.

Returns management is a critical SCM process. Many companies have found that a cost-

recovery system, where suppliers are charged back for providing poor-quality materials or
components, is an effective way to introduce business discipline and accountability into the
supply chain. However, relatively few companies pursue full cost recovery with their suppli-
ers. The majority of the companies that do practice cost recovery only recover material costs
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from their suppliers. Many of the costs attributed to poor supplier quality are non—material
related. For example, some of these non-material costs include:

=

Operator handling

Disassembly of the product

Administrative work to remove the part from stock
Quality engineering time

Planning/buyer activities to get new parts
Transportation back to receiving/shipping
Communications with the supplier

Issuing new purchase orders/instructions

2 XU E WD

Other engineering time

[y
g

Packing and arranging transportation to the supplier

—
=

Invoicing
12. Costs associated with product recall

These costs can be substantial, and are often well in excess of the material cost of the part. If a
company institutes a process to aggregate these costs and use it for charge-backs, they would be
able to fully recover the costs of poor quality from their suppliers, and they would institute a dis-
cipline that strongly encourages their suppliers to quickly improve their product quality.

144 Quality Costs

Financial controls are an important part of business management. These financial controls
involve a comparison of actual and budgeted costs, along with analysis and action on the
differences between actual and budget. It is customary to apply these financial controls on
a department or functional level. For many years, there was no direct effort to measure or
account for the costs of the quality function. However, many organizations now formally
evaluate the cost associated with quality. There are several reasons why the cost of quality
should be explicitly considered in an organization. These include the following:

1. The increase in the cost of quality because of the increase in the complexity of manu-
factured products associated with advances in technology

2. Increasing awareness of life-cycle costs, including maintenance, spare parts, and the
cost of field failures

3. Quality engineers and managers being able to most effectively communicate quality
issues in a way that management understands

As a result, quality costs have emerged as a financial control tool for management and as an
aid in identifying opportunities for reducing quality costs.

Generally speaking, quality costs are those categories of costs that are associated with
producing, identifying, avoiding, or repairing products that do not meet requirements. Many
manufacturing and service organizations use four categories of quality costs: prevention
costs, appraisal costs, internal failure costs, and external failure costs. Some quality authori-
ties feel that these categories define the Cost of Poor Quality (COPQ). These cost categories
are shown in Table 1.5. We now discuss these categories in more detail.

Prevention Costs. Prevention costs are those costs associated with efforts in design
and manufacturing that are directed toward the prevention of nonconformance. Broadly
speaking, prevention costs are all costs incurred in an effort to “make it right the first time.”
The important subcategories of prevention costs follow.
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= TABLE 1.5
Quality Costs

Prevention Costs
Quality planning and engineering
New products review
Product/process design
Process control
Burn-in
Training
Quality data acquisition and analysis

Appraisal Costs

Inspection and test of incoming material

Product inspection and test
Materials and services consumed
Maintaining accuracy of test equipment

Internal Failure Costs

Scrap

Rework

Retest

Failure analysis

Downtime

Yield losses

Downgrading (off-specing)

External Failure Costs

Complaint adjustment
Returned product/material
Warranty charges
Liability costs
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Indirect costs

Quality planning and engineering. Costs associated with the creation of the overall qual-
ity plan, the inspection plan, the reliability plan, the data system, and all specialized plans
and activities of the quality-assurance function; the preparation of manuals and procedures
used to communicate the quality plan; and the costs of auditing the system.

New products review. Costs of the preparation of bid proposals, the evaluation of new
designs from a quality viewpoint, the preparation of tests and experimental programs to
evaluate the performance of new products, and other quality activities during the develop-
ment and preproduction stages of new products or designs.

Product/process design. Costs incurred during the design of the product or the selection of
the production processes that are intended to improve the overall quality of the product. For
example, an organization may decide to make a particular circuit component redundant
because this will increase the reliability of the product by increasing the mean time between
failures. Alternatively, it may decide to manufacture a component using process A rather
than process B, because process A is capable of producing the product at tighter tolerances,
which will result in fewer assembly and manufacturing problems. This may include a ven-
dor’s process, so the cost of dealing with other than the lowest bidder may also be a pre-
vention cost.

Process control. The cost of process-control techniques, such as control charts, that monitor
the manufacturing process in an effort to reduce variation and build quality into the product.

Burn-in. The cost of preshipment operation of the product to prevent early-life failures in
the field.

Training. The cost of developing, preparing, implementing, operating, and maintaining for-
mal training programs for quality.

Quality data acquisition and analysis. The cost of running the quality data system to
acquire data on product and process performance; also the cost of analyzing these data to
identify problems. It includes the work of summarizing and publishing quality information
for management.

Appraisal Costs. Appraisal costs are those costs associated with measuring, evalu-
ating, or auditing products, components, and purchased materials to ensure conformance to
the standards that have been imposed. These costs are incurred to determine the condition of
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the product from a quality viewpoint and ensure that it conforms to specifications. The major
subcategories follow.

Inspection and test of incoming material. Costs associated with the inspection and test-
ing of all material. This subcategory includes receiving inspection and test; inspection, test,
and evaluation at the vendor’s facility; and a periodic audit of the quality-assurance system.
This could also include intraplant vendors.

Product inspection and test. The cost of checking the conformance of the product
throughout its various stages of manufacturing, including final acceptance testing, packing
and shipping checks, and any test done at the customer’s facilities prior to turning the prod-
uct over to the customer. This also includes life testing, environmental testing, and reliabil-
ity testing.

Materials and services consumed. The cost of material and products consumed in a
destructive test or devalued by reliability tests.

Maintaining accuracy of test equipment. The cost of operating a system that keeps the
measuring instruments and equipment in calibration.

Internal Failure Costs. Internal failure costs are incurred when products, compo-
nents, materials, and services fail to meet quality requirements, and this failure is discovered
prior to delivery of the product to the customer. These costs would disappear if there were no
defects in the product. The major subcategories of internal failure costs follow.

Scrap. The net loss of labor, material, and overhead resulting from defective product that
cannot economically be repaired or used.

Rework. The cost of correcting nonconforming units so that they meet specifications. In
some manufacturing operations rework costs include additional operations or steps in the
manufacturing process that are created to solve either chronic defects or sporadic defects.

Retest. The cost of reinspection and retesting of products that have undergone rework or
other modifications.

Failure analysis. The cost incurred to determine the causes of product failures.

Downtime. The cost of idle production facilities that results from nonconformance to
requirements. The production line may be down because of nonconforming raw materials
supplied by a supplier, which went undiscovered in receiving inspection.

Yield losses. The cost of process yields that are lower than might be attainable by improved
controls (for example, soft-drink containers that are overfilled because of excessive vari-
ability in the filling equipment).

Downgrading/off-specing. The price differential between the normal selling price and any
selling price that might be obtained for a product that does not meet the customer’s require-
ments. Downgrading is a common practice in the textile, apparel goods, and electronics indus-
tries. The problem with downgrading is that products sold do not recover the full contribution
margin to profit and overhead as do products that conform to the usual specifications.

External Failure Costs. External failure costs occur when the product does not
perform satisfactorily after it is delivered to the customer. These costs would also disappear
if every unit of product conformed to requirements. Subcategories of external failure costs
follow.

Complaint adjustment. All costs of investigation and adjustment of justified complaints
attributable to the nonconforming product.
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Returned product/material. All costs associated with receipt, handling, and replacement
of the nonconforming product or material that is returned from the field.

Warranty charges. All costs involved in service to customers under warranty contracts.
Liability costs. Costs or awards incurred from product liability litigation.

Indirect costs. In addition to direct operating costs of external failures, there are a significant
number of indirect costs. These are incurred because of customer dissatisfaction with the level
of quality of the delivered product. Indirect costs may reflect the customer’s attitude toward
the company. They include the costs of loss of business reputation, loss of future business,
and loss of market share that inevitably results from delivering products and services that
do not conform to the customer’s expectations regarding fitness for use.

The Analysis and Use of Quality Costs. How large are quality costs? The answer,
of course, depends on the type of organization and the success of their quality improvement
effort. In some organizations quality costs are 4% or 5% of sales, whereas in others they can
be as high as 35% or 40% of sales. Obviously, the cost of quality will be very different for a
high-technology computer manufacturer than for a typical service industry, such as a depart-
ment store or hotel chain. In most organizations, however, quality costs are higher than nec-
essary, and management should make continuing efforts to appraise, analyze, and reduce
these costs.

The usefulness of quality costs stems from the leverage effect; that is, dollars
invested in prevention and appraisal have a payoff in reducing dollars incurred in internal
and external failures that exceeds the original investment. For example, a dollar invested in
prevention may return $10 or $100 (or more) in savings from reduced internal and external
failures.

Quality-cost analyses have as their principal objective cost reduction through identifi-
cation of improvement opportunities. This is often done with a Pareto analysis. The Pareto
analysis consists of identifying quality costs by category, or by product, or by type of defect
or nonconformity. For example, inspection of the quality-cost information in Table 1.6 con-
cerning defects or nonconformities in the assembly of electronic components onto printed
circuit boards reveals that insufficient solder is the highest quality cost incurred in this oper-
ation. Insufficient solder accounts for 42% of the total defects in this particular type of board
and for almost 52% of the total scrap and rework costs. If the wave solder process can be
improved, then there will be dramatic reductions in the cost of quality.

= TABLE 1.6

Monthly Quality-Costs Information for Assembly of Printed
Circuit Boards

Percentage of Scrap and
Type of Defect Total Defects Rework Costs
Insufficient solder 42% $37,500.00 (52%)
Misaligned components 21 12,000.00
Defective components 15 8,000.00
Missing components 10 5,100.00
Cold solder joints 7 5,000.00

All other causes 5 4,600.00
Totals 100% $72,200.00
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How much reduction in quality costs is possible? Although the cost of quality in many
organizations can be significantly reduced, it is unrealistic to expect it can be reduced to
zero. Before that level of performance is reached, the incremental costs of prevention and
appraisal will rise more rapidly than the resulting cost reductions. However, paying attention
to quality costs in conjunction with a focused effort on variability reduction has the capabil-
ity of reducing quality costs by 50% or 60% provided that no organized effort has previously
existed. This cost reduction also follows the Pareto principle; that is, most of the cost reduc-
tions will come from attacking the few problems that are responsible for the majority of
quality costs.

In analyzing quality costs and in formulating plans for reducing the cost of quality, it is
important to note the role of prevention and appraisal. Many organizations devote far too
much effort to appraisal and not enough to prevention. This is an easy mistake for an organi-
zation to make, because appraisal costs are often budget line items in manufacturing. On the
other hand, prevention costs may not be routinely budgeted items. It is not unusual to find in
the early stages of a quality-cost program that appraisal costs are eight or ten times the mag-
nitude of prevention costs. This is probably an unreasonable ratio, as dollars spent in prevention
have a much greater payback than do dollars spent in appraisal.

When Six Sigma and lean are deployed together there is usually a simultaneous
reduction in quality costs and an increase in process cycle efficiency. Processes with low
PCE are slow processes, and slow-moving processes are expensive and wasteful. Work-in-
process inventory that moves slowly often has to be handled, counted, moved, stored,
retrieved, and often moved again. Handling and storage can lead to damage or other quality
problems. Inventoried items may become obsolete because of design changes and improve-
ments to the product. Quality problems in the production of a component can lead to many
in-process items being in danger of having to be reworked or scrapped. Quality costs are
often a direct result of the hidden factory—that is, the portion of the business that deals
with waste, scrap, rework, work-in-process inventories, delays, and other business ineffi-
ciencies. Figure 1.16 shows a distribution of costs as a percentage of revenue for a typical
manufacturing organization. Deploying quality improvement tools such as Six Sigma and
lean can often reduce manufacturing overhead and quality costs by 20% within one to two
years. This can lead to a 5% to 10% of revenue increase in operating profit. These numbers
are business specific. But the techniques can be applied anywhere: service industries, trans-
actional operations, creative processes such as design and development, order entry, and
fulfillment.

Distribution of Total Revenue by Percentage

Category
[ Profit=8
I Material = 35
[ Labor = 10
[0 Manufacturing Overhead and Quality = 25
[l Operating Expense = 22

BFIGURE 1.16 The distribution of total revenue by percentage in a typical
manufacturing organization.
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Generating the quality-cost figures is not always easy, because most quality-cost cate-
gories are not a direct component in the accounting records of the organization. Consequently,
it may be difficult to obtain extremely accurate information on the costs incurred with respect
to the various categories. The organization’s accounting system can provide information on
those quality-cost categories that coincide with the usual business accounts, such as, for
example, product testing and evaluation. In addition, many companies will have detailed
information on various categories of failure cost. The information for cost categories for
which exact accounting information is not available should be generated by using estimates,
or, in some cases, by creating special monitoring and surveillance procedures to accumulate
those costs over the study period.

The reporting of quality costs is usually done on a basis that permits straightforward
evaluation by management. Managers want quality costs expressed in an index that compares
quality cost with the opportunity for quality cost. Consequently, the usual method of report-
ing quality costs is in the form of a ratio, where the numerator is quality-cost dollars and the
denominator is some measure of activity, such as (1) hours of direct production labor, (2) dol-
lars of direct production labor, (3) dollars of processing costs, (4) dollars of manufacturing
cost, (5) dollars of sales, or (6) units of product.

Upper management may want a standard against which to compare the current quality-
cost figures. It is difficult to obtain absolute standards and almost as difficult to obtain quality-
cost levels of other companies in the same industry. Therefore, the usual approach is to com-
pare current performance with past performance so that, in effect, quality-cost programs
report variances from past performance. These trend analyses are primarily a device for
detecting departures from standard and for bringing them to the attention of the appropriate
managers. They are not necessarily in and of themselves a device for ensuring quality
improvements.

This brings us to an interesting observation: Some quality-cost collection and analysis
efforts fail; that is, a number of companies have started quality-cost analysis activities, used
them for some time, and then abandoned the programs as ineffective. There are several rea-
sons why this occurs. Chief among these is failure to use quality-cost information as a mech-
anism for generating improvement opportunities. If we use quality cost information as a
scorekeeping tool only, and do not make conscious efforts to identify problem areas and
develop improved operating procedures and processes, then the programs will not be totally
successful.

Another reason why quality-cost collection and analysis don’t lead to useful results is
that managers become preoccupied with perfection in the cost figures. Overemphasis in treat-
ing quality costs as part of the accounting systems rather than as a management control tool
is a serious mistake. This approach greatly increases the amount of time required to develop
the cost data, analyze them, and identify opportunities for quality improvements. As the time
required to generate and analyze the data increases, management becomes more impatient
and less convinced of the effectiveness of the activity. Any program that appears to management
as going nowhere is likely to be abandoned.

A final reason for the failure of a quality-cost program is that management often under-
estimates the depth and extent of the commitment to prevention that must be made. The author
has had numerous opportunities to examine quality cost data in many companies. In compa-
nies without effective quality improvement programs, the dollars allocated to prevention rarely
exceed 1% to 2% of revenue. This must be increased to a threshold of about 5% to 6% of rev-
enue, and these additional prevention dollars must be spent largely on the technical methods
of quality improvement, and not on establishing programs such as TQM, Zero Defects, or other
similar activities. If management is persistent in this effort, then the cost of quality will
decrease substantially. These cost savings will typically begin to occur in one to two years,
although it could be longer in some companies.
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1.4.5 Legal Aspects of Quality

Consumerism and product liability are important reasons why quality assurance is an impor-
tant business strategy. Consumerism is in part due to the seemingly large number of failures
in the field of consumer products and the perception that service quality is declining. Highly
visible field failures often prompt the questions of whether today’s products are as good as
their predecessors and whether manufacturers are really interested in quality. The answer to
both of these questions is yes. Manufacturers are always vitally concerned about field failures
because of heavy external failure costs and the related threat to their competitive position.
Consequently, most producers have made product improvements directed toward reducing
field failures. For example, solid-state and integrated-circuit technologies have greatly reduced
the failure of electronic equipment that once depended on the electron tube. Virtually every
product line of today is superior to that of yesterday.

Consumer dissatisfaction and the general feeling that today’s products are inferior to
their predecessors arise from other phenomena. One of these is the explosion in the number
of products. For example, a 1% field-failure rate for a consumer appliance with a production
volume of 50,000 units per year means 500 field failures. However, if the production rate is
500,000 units per year and the field-failure rate remains the same, then 5,000 units will fail
in the field. This is equivalent, in the total number of dissatisfied customers, to a 10% failure
rate at the lower production level. Increasing production volume increases the liability exposure
of the manufacturer. Even in situations in which the failure rate declines, if the production
volume increases more rapidly than the decrease in failure rate, the total number of customers
who experience failures will still increase.

A second aspect of the problem is that consumer tolerance for minor defects and aes-
thetic problems has decreased considerably, so that blemishes, surface-finish defects, noises,
and appearance problems that were once tolerated now attract attention and result in adverse
consumer reaction. Finally, the competitiveness of the marketplace forces many manufacturers
to introduce new designs before they are fully evaluated and tested in order to remain compet-
itive. These “early releases” of unproved designs are a major reason for new product quality
failures. Eventually, these design problems are corrected, but the high failure rate connected
with new products often supports the belief that today’s quality is inferior to that of yesterday.

Product liability is a major social, market, and economic force. The legal obligation of
manufacturers and sellers to compensate for injury or damage caused by defective products is
not a recent phenomenon. The concept of product liability has been in existence for many
years, but its emphasis has changed recently. The first major product liability case occurred in
1916 and was tried before the New York Court of Appeals. The court held that an automobile
manufacturer had a product liability obligation to a car buyer, even though the sales contract
was between the buyer and a third party—namely, a car dealer. The direction of the law has
always been that manufacturers or sellers are likely to incur a liability when they have been
unreasonably careless or negligent in what they have designed, or produced, or how they have
produced it. In recent years, the courts have placed a more stringent rule in effect called strict
liability. Two principles are characteristic of strict liability. The first is a strong responsibility
for both manufacturer and merchandiser, requiring immediate responsiveness to unsatisfactory
quality through product service, repair, or replacement of defective product. This extends into
the period of actual use by the consumer. By producing a product, the manufacturer and seller
must accept responsibility for the ultimate use of that product—not only for its performance,
but also for its environmental effects, the safety aspects of its use, and so forth.

The second principle involves advertising and promotion of the product. Under strict
product liability all advertising statements must be supportable by valid company quality or
certification data, comparable to that now maintained for product identification under regula-
tions for such products as automobiles.



1.4 Management Aspects of Quality Improvement 45

These two strict product liability principles result in strong pressure on manufacturers,
distributors, and merchants to develop and maintain a high degree of factually based evidence
concerning the performance and safety of their products. This evidence must cover not only
the quality of the product as it is delivered to the consumer, but also its durability or reliability,
its protection from possible side effects or environmental hazards, and its safety aspects in
actual use. A strong quality-assurance program can help management in ensuring that this
information will be available, if needed.

1.4.6 Implementing Quality Improvement

In the past few sections we have discussed the philosophy of quality improvement, the link
between quality and productivity, and both economic and legal implications of quality. These
are important aspects of the management of quality within an organization. There are certain
other aspects of the overall management of quality that warrant some attention.

Management must recognize that quality is a multifaceted entity, incorporating the
eight dimensions we discussed in Section 1.1.1. For convenient reference, Table 1.7 summa-
rizes these quality dimensions.

A critical part of the strategic management of quality within any business is the
recognition of these dimensions by management and the selection of dimensions along which
the business will compete. It will be very difficult to compete against companies that can suc-
cessfully accomplish this part of the strategy.

A good example is the Japanese dominance of the videocassette recorder (VCR) market.
The Japanese did not invent the VCR; the first units for home use were designed and produced
in Europe and North America. However, the early VCRs produced by these companies were
very unreliable and frequently had high levels of manufacturing defects. When the Japanese
entered the market, they elected to compete along the dimensions of reliability and confor-
mance to standards (no defects). This strategy allowed them to quickly dominate the market.
In subsequent years, they expanded the dimensions of quality to include added features,
improved performance, easier serviceability, improved aesthetics, and so forth. They have
used total quality as a competitive weapon to raise the entry barrier to this market so high that
it is virtually impossible for a new competitor to enter.

Management must do this type of strategic thinking about quality. It is not necessary
that the product be superior in all dimensions of quality, but management must select and
develop the “niches” of quality along which the company can successfully compete.
Typically, these dimensions will be those that the competition has forgotten or ignored. The
American automobile industry has been severely impacted by foreign competitors who
expertly practiced this strategy.

The critical role of suppliers in quality management must not be forgotten. In fact, sup-
plier selection and supply chain management may be the most critical aspects of successful
quality management in industries such as automotive, aerospace, and electronics, where a
very high percentage of the parts in the end item are manufactured by outside suppliers. Many
companies have instituted formal supplier quality-improvement programs as part of their own
internal quality-improvement efforts. Selection of suppliers based on quality, schedule, and

= TABLE 1.7
The Eight Dimensions of Quality from Section 1.1.1

1. Performance 5. Aesthetics
2. Reliability 6. Features
3. Durability 7. Perceived quality

4. Serviceability 8. Conformance to standards
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cost, rather than on cost alone, is also a vital strategic management decision that can have a
long-term significant impact on overall competitiveness.

It is also critical that management recognize that quality improvement must be a total,
companywide activity, and that every organizational unit must actively participate. Obtaining
this participation is the responsibility of (and a significant challenge to) senior management.
What is the role of the quality-assurance organization in this effect? The responsibility of
quality assurance is to assist management in providing quality assurance for the companies’
products. Specifically, the quality-assurance function is a technology warehouse that contains
the skills and resources necessary to generate products of acceptable quality in the market-
place. Quality management also has the responsibility for evaluating and using quality-cost
information for identifying improvement opportunities in the system, and for making these
opportunities known to higher management. It is important to note, however, that the quality
function is not responsible for quality. After all, the quality organization does not design,
manufacture, distribute, or service the product. Thus, the responsibility for quality is distrib-
uted throughout the entire organization.

The philosophies of Deming, Juran, and Feigenbaum imply that responsibility for qual-
ity spans the entire organization. However, there is a danger that if we adopt the philosophy
that “quality is everybody’s job,” then quality will become nobody’s job. This is why quality
planning and analysis are important. Because quality improvement activities are so broad, suc-
cessful efforts require, as an initial step, top management commitment. This commitment
involves emphasis on the importance of quality, identification of the respective quality respon-
sibilities of the various organizational units, and explicit accountability for quality improve-
ment of all managers and employees in the company.

Finally, strategic management of quality in an organization must involve all three com-
ponents discussed earlier: quality planning, quality assurance, and quality control and
improvement. Furthermore, all of the individuals in the organization must have an under-
standing of the basic tools of quality improvement. Central among these tools are the ele-
mentary statistical concepts that form the basis of process control and that are used for the
analysis of process data. It is increasingly important that everyone in an organization, from
top management to operating personnel, have an awareness of basic statistical methods and
of how these methods are useful in manufacturing, engineering design and development, and
in the general business environment. Certain individuals must have higher levels of skills; for
example, those engineers and managers in the quality-assurance function would generally be
experts in one or more areas of process control, reliability engineering, design of experiments,
or engineering data analysis. However, the key point is the philosophy that statistical method-
ology is a language of communication about problems that enables management to mobilize
resources rapidly and to efficiently develop solutions to such problems. Because Six Sigma
or lean Six Sigma incorporates most of the elements for success that we have identified, it has
proven to be a very effective framework for implementing quality improvement.

Important Terms and Concepts

Acceptance sampling
Appraisal costs

IST 9000:2005
The Juran Trilogy

Critical-to-quality (CTQ) Lean

Deming’s 14 points
Designed experiments
Dimensions of quality
Fitness for use

The Malcolm Baldrige National Quality Award
Nonconforming product or service

Prevention costs

Product liability

Internal and external failure costs Quality assurance



Quality characteristics

Quality control and improvement
Quality engineering

Quality of conformance

Quality of design
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Discussion Questions and Exercises

Quality systems and standards
Six Sigma

Specifications

Statistical process control (SPC)
Total quality management (TQM)

Quality planning Variability
Discussion Questions and Exercises

1.1.  Why is it difficult to define quality? 1.20.  What are the three components of the ISO 9000:2005

1.2. Briefly discuss the eight dimensions of quality. Does standard?
this improve our understanding of quality? 1.21. Explain why it is necessary to consider variability

1.3.  Select a specific product or service, and discuss how around the mean or nominal dimension as a measure
the eight dimensions of quality impact its overall of quality.
acceptance by consumers. 1.22. Hundreds of companies and organizations have won

1.4. Is there a difference between quality for a manufac- the Baldrige Award. Collect information on at least
tured product and quality for a service? Give some two winners. What success have they had since receiv-
specific examples. ing the award?

1.5. Can an understanding of the multidimensional nature ~ 1.23. Reconsider the fast-food restaurant visit discussed in
of quality lead to improved product design or better the chapter. What would be the results for the family
service? of four on each visit and annually if the probability of

1.6.  What are the internal customers of a business? Why good quality on each meal component was increased
are they important from a quality perspective? to0 0.999?

1.7. Is the Deming philosophy more or less focused on ~ 1.24. Reconsider the fast-food restaurant visit discussed in
statistical methods than Juran? the chapter. What levels of quality would you con-

1.8.  What is the Juran Trilogy? sider acceptable for the family of four on each visit

1.9. What are the three primary technical tools used for and annually? What probability of good quality on
quality control and improvement? each meal component would be required in order to

1.10. Distinguish among quality planning, quality assur- achieve these targets?
ance, and quality control and improvement. 1.25.  Suppose you had the opportunity to improve qual-

1.11. What is the Malcolm Baldrige National Quality ity in a hospital. Which areas of the hospital would
Award? Who is eligible for the award? you look to as opportunities for quality improve-

1.12.  Who was Walter A. Shewhart? ment? What metrics would you use as measures of

1.13.  What is meant by the cost of quality? quality?

1.14.  Are internal failure costs more or less important than ~ 1.26. How can lean and Six Sigma work together to elim-
external failure costs? inate waste?

1.15. What is a Six Sigma process? 1.27. What is the Toyota Production System?

1.16. Discuss the statement “Quality is the responsibility ~ 1.28. What were Henry Ford’s contributions to quality?
of the quality assurance organization.” 1.29. How could reducing the mean delivery time of a

1.17.  Compare and contrast Deming’s and Juran’s philoso- product from ten days to two days result in quality
phies of quality. improvement?

1.18. What would motivate a business to compete for the ~ 1.30. What are the objectives of a supplier development
Malcolm Baldrige National Quality Award? program?

1.19. Most of the quality management literature states that ~ 1.31. We identified reliability as a dimension of quality.

without top management leadership, quality improve-
ment will not occur. Do you agree or disagree with
this statement? Discuss why.

Can reliability be a dimension of service quality?
How?
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CHAPTER OUTLINE

2.1 OVERVIEW OF DMAIC 2.7 EXAMPLES OF DMAIC

2.2 THE DEFINE STEP 2.7.1 Litigation Documents

2.3 THE MEASURE STEP 2.7.2 Improving On-Time Delivery
2.4 THE ANALYZE STEP 2.7.3 Improving Service Quality
2.5 THE IMPROVE STEP in a Bank

2.6 THE CONTROL STEP

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Quality and process improvement occurs most effectively on a project-by-project basis.
DMAIC (typically pronounced “duh-MAY-ick”) is a structured five-step problem-solving
procedure that can be used to successfully complete projects by proceeding through and
implementing solutions that are designed to solve root causes of quality and process
problems, and to establish best practices to ensure that the solutions are permanent and
can be replicated in other relevant business operations. This chapter explains the DMAIC
procedure and introduces many of the tools used in each step. Many of the DMAIC tools
are discussed in greater detail in subsequent textbook chapters, and references to those
chapters are provided. Examples of projects that utilize DMAIC also are presented.
After careful study of this chapter, you should be able to do the following:

1.
2.

2.1 Overview of DMAIC

Understand the importance of selecting good projects for improvement activities

Explain the five steps of DMAIC: Define, Measure, Analyze, Improve, and
Control

Explain the purpose of tollgate reviews

Understand the decision-making requirements of the tollgate review for
each DMAIC step

Know when and when not to use DMAIC
Understand how DMAIC fits into the framework of the Six Sigma philosophy

DMAIC is a structured problem-solving procedure widely used in quality and process
improvement. It is often associated with Six Sigma activities, and almost all implementations
of Six Sigma use the DMAIC process for project management and completion. However,

438
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The DMAIC process.

DMAIC is not necessarily formally tied to Six Sigma, and can be used regardless of an organi-
zation’s use of Six Sigma. It is a very general procedure. For example, lean projects that focus
on cycle time reduction, throughput improvement, and waste elimination can be easily and effi-
ciently conducted using DMAIC.

The letters DMAIC form an acronym for the five steps; Define, Measure, Analyze,
Improve, and Control. These steps are illustrated graphically in Figure 2.1. Notice that there
are tollgates between each of the major steps in DMAIC. At a tollgate, a project team pre-
sents its work to managers and “owners” of the process. In a Six Sigma organization, the toll-
gate participants also would include the project champion, Master Black Belts, and other
Black Belts not working directly on the project. Tollgates are where the project is reviewed
to ensure that it is on track, and they provide a continuing opportunity to evaluate whether the
team can successfully complete the project on schedule. Tollgates also present an opportunity
to provide guidance regarding the use of specific technical tools and other information about
the problem. Organization problems and other barriers to success—and strategies for dealing
with them—also often are identified during tollgate reviews. Tollgates are critical to the over-
all problem-solving process; It is important that these reviews be conducted very soon after
the team completes each step.

The DMAIC structure encourages creative thinking about the problem and its solution
within the definition of the original product, process, or service. When the process is operat-
ing so badly that it is necessary to abandon the original process and start over, or if it is deter-
mined that a new product or service is required, then the Improve step of DMAIC actually
becomes a Design step. In a Six Sigma organization, that probably means that a Design for
Six Sigma (DFSS) effort is required. (See Chapter 1 for a discussion of DFSS.)

One of the reasons that DMAIC is so successful is that it focuses on the effective use
of a relatively small set of tools. Table 2.1 shows the tools, along with the DMAIC steps
where they are most likely to be used, and where the tools are discussed and or illustrated in
this textbook. [Other tools, or variations of the ones shown here, are used occasionally in
DMAIC. Some books on Six Sigma give useful overviews of many of these other tools; for
example, see George (2002) and Snee and Hoerl (2005).]

Projects are an essential aspect of quality and process improvement. Projects are an
integral component of Six Sigma, but quality and business improvement via projects traces its
origins back to Juran, who always urged a project-by-project approach to improving quality.
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m TABLE 2.1
Tools Used in DMAIC

Tool Define Measure Analyze Improve Control

Project charter Chapter 2

Process maps & Chapter 2 Chapter 5
flow charts

Cause-and-effect Chapter 5
analysis

Process capability Chapters 6, 8
analysis

Hypothesis tests, Chapter 4
confidence intervals

Regression analysis, Chapter 4
other multivariate
methods

Gauge R&R Chapter 8

Failure mode & Chapter 2
effects analysis

Designed Chapters Chapters
experiments 13, 14 13, 14

SPC and process Chapters 5, 6, Chapters 5, Chapters 5,
control plans 7,9, 10, 11, 6,7,9, 10, 6,7,9, 10,
12 11, 12 11, 12

Selecting, managing, and completing projects successfully is critical in deploying any sys-
tematic business improvement effort, not just Six Sigma.

A project should represent a potential breakthrough in the sense that it will result in a
major improvement in the product or service. Project impact should be evaluated in terms of
its financial benefit to the business, as measured and evaluated by the finance or accounting
unit; this helps ensure more objective project evaluations. Obviously, projects with high
potential impact are most desirable. This financial systems integration is standard practice
in Six Sigma and should be a part of any DMAIC project, even if the organization isn’t cur-
rently engaged in a Six Sigma deployment.

The value opportunity of projects must be clearly identified and projects must be well
aligned with corporate business objectives at all levels. At the highest (corporate) level, the
stockholders, top executives, members of the board of directors, and business analysts who
guide investors typically are interested in return on equity, return on invested capital, stock
price, dividends, earnings, earnings per share of stock, growth in operating income, sales
growth, generation of new designs, products and patents, and development of future business
leaders. At the business unit or operations level, managers and executives are interested in fac-
tory metrics such as yield, cycle time and throughput, profit and loss optimization, customer
satisfaction, delivery and due-date performance, cost reduction, safety of employees and cus-
tomers, efficient use of assets, new product introduction, sales and marketing effectiveness,
development of people, and supply chain performance (cost, quality, service). Aligning
projects with both business-unit goals and corporate-level metrics helps ensure that the best
projects are considered for selection.

The first types of projects that companies usually undertake are designed to demon-
strate the potential success of an overall improvement effort. These projects often focus on
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the areas of the business that are full of opportunities, but they also often are driven by
current problems. Issues that are identified by customers or from customer satisfaction (or
dissatisfaction) feedback, such as analysis of field failures and customer returns, sometimes
are the source of these projects.

Such initial opportunistic projects often are successful, but they typically are not the
basis for long-term success; most easy opportunities soon are exhausted. A different approach
to project definition and selection needs to evolve. One widely used approach is basing projects
on strategic business objectives. In this approach, defining the key set of critical business
processes and the metrics that drive them is the first step toward successful project develop-
ment. Linking those processes together to form an integrated view of the business then fol-
lows. Projects that focus on the key business metrics and strategic objectives, as well as the
interfaces among critical business processes, are likely to have significant value to the com-
pany. The only risks here are that the projects may be very large, and still may focus only on
some narrow aspect of the business, which may reduce the organization’s overall exposure to
the improvement process and reduce or delay its impact. A good project selection and man-
agement system prevents such problems from occurring. Many companies have set up formal
project selection committees and conducted regular meetings between customers and the pro-
ject selection committees to help meet that goal. Ideally, projects are strategic and well
aligned with corporate metrics, and are not local (tactical). Local projects often are reduced
to firefighting, their solutions rarely are broadly implemented in other parts of the business,
and too often the solutions aren’t permanent; within a year or two, the same old problems
reoccur. Some companies use a dashboard system—which graphically tracks trends and
results—to effectively facilitate the project selection and management process.

Project selection is probably the most important part of any business improvement
process. Projects should be able to be completed within a reasonable time frame and should
have real impact on key business metrics. This means that a lot of thought must go into defin-
ing the organization’s key business processes, understanding their interrelationships, and
developing appropriate performance measures.

What should be considered when evaluating proposed projects? Suppose that a com-
pany is operating at the 4o level (that is, about 6,210 ppm defective, assuming the 1.5¢ shift
in the mean that is customary with Six Sigma applications). This is actually reasonably good
performance, and many of today’s organizations have achieved the 4—4.5¢ level of perfor-
mance for many of their key business processes. The objective is to achieve the 6o perfor-
mance level (3.4 ppm). What implications does this have for project selection criteria?
Suppose that the criterion is a 25% annual improvement in quality level. Then to reach the
Six Sigma performance level, it will take x years, where x is the solution to this:

3.4 =6210(1 - 0.25)"

It turns out that x is about 26 years. Clearly, a goal of improving performance by 25% annu-
ally isn’t going to work—no organization will wait for 26 years to achieve its goal. Quality
improvement is a never-ending process, but no management team that understands how to do
the above arithmetic will support such a program.

Raising the annual project goal to 50% helps a lot, reducing x to about 11 years, a
somewhat more realistic time frame. If the business objective is to be a Six Sigma organi-
zation in 5 years, then the annual project improvement goal should be about 75%.

These calculations are the reasons why many quality-improvement authorities urge
organizations to concentrate their efforts on projects that have real impact and high payback
to the organization. By that they usually mean projects that achieve at least a 50% annual
return in terms of quality improvement.

Is this level of improvement possible? The answer is yes, and many companies have
achieved this rate of improvement. For example, Motorola’s annual improvement rate exceeded
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65% during the first few years of its Six Sigma initiative. To do this consistently, however,
companies must devote considerable effort to project definition, management, execution, and
implementation. It’s also why the best possible people in the organization should be involved in
these activities.

2.2 The Define Step

The objective of the Define step of DMAIC is to identify the project opportunity and to
verify or validate that it represents legitimate breakthrough potential. A project must be
important to customers (voice of the customer) and important to the business. Stakeholders
who work in the process and its downstream customers need to agree on the potential useful-
ness of the project.

One of the first items that must be completed in the Define step is a project charter. This
is a short document (typically up to two pages) that contains a description of the project and its
scope, the start and the anticipated completion dates, an initial description of both primary and
secondary metrics that will be used to measure success and how those metrics align with busi-
ness unit and corporate goals, the potential benefits to the customer, the potential financial ben-
efits to the organization, milestones that should be accomplished during the project, the team
members and their roles, and any additional resources that are likely to be needed to complete
the project. Figure 2.2 shows a project charter for a customer product return process. Typically,
the project sponsor (or champion in a Six Sigma implementation) plays a significant role in
developing the project charter, and may use a draft charter as a basis for organizing the team and
assigning responsibility for project completion. Generally, a team should be able to complete a
project charter in two to four working days; if it takes longer, the scope of the project may be
too big. The charter should also identify the customer’s critical-to-quality characteristics
(CTQs) that are impacted by the project.

Graphic aids are also useful in the Define step; The most common ones used include
process maps and flow charts, value stream maps (see Chapter 5), and the SIPOC diagram. Flow

Business Case Opportunity Statement
* This project supports the business quality * An opportunity exists to close the gap between
goals, namely (a) reduce customer resolution our customer expectations and our actual
cycle time by x% and (b) improve customer performance by reducing the cycle time of the
satisfaction by y%. customer return process.
Goal Statement Project Scope
* Reduce the overall response cycle time * Overall response cycle time is measured from
for returned product from our customers the receipt of a product return to the time that
by x% year to year. either the customer has the product replaced or
the customer is reimbursed.
Project Plan Team
* Activity Start End e Team Sponsor
Define 6/04 6/30 .
Measure 618 7730 Team Leader
Analyze 715 8/30 ¢ Team Members
Improve 8/15 9/30
Control 9/15 10/30
Track Benefits 11/01

BMFIGURE 2.2 A project charter for a customer returns process.
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Suppliers Inputs Process Output Customer
Starbucks Ground coffee Collect Hot Consumer
Purifier Water filter materials Taste
Utility company Electricity 7 Correct strength
Correct volume
Brew
coffee
¥
Pour coffee
from pot

BMFIGURE 2.3 A SIPOC diagram.

charts and value stream maps provide much visual detail and facilitate understanding about
what needs to be changed in a process. The SIPOC diagram is a high-level map of a process.
SIPOC is an acronym for Suppliers, Input, Process, Output, and Customers, defined as:

1. The Suppliers are those who provide the information, material, or other items that are
worked on in the process.

The Input is the information or material provided.

The Process is the set of steps actually required to do the work.

The Output is the product, service, or information sent to the customer.

ANl o

The Customer is either the external customer or the next step in the internal business.

SIPOC diagrams give a simple overview of a process and are useful for understanding
and visualizing basic process elements. They are especially useful in the nonmanufacturing
setting and in service systems in general, where the idea of a process or process thinking is
often hard to understand. That is, people who work in banks, financial institutions, hospitals,
accounting firms, e-commerce, government agencies, and most transactional/service organi-
zations don’t always see what they do as being part of a process. Constructing a process map
can be an eye-opening experience, as it often reveals aspects of the process that people were
not aware of or didn’t fully understand.

Figure 2.3 is a SIPOC diagram developed by a company for its internal coffee service
process. The team was asked to reduce the number of defects and errors in the process and the
cycle time to prepare the coffee. The first step performed was to create the SIPOC diagram to
identify the basic elements of the process that the team was planning to improve.

The team also will need to prepare an action plan for moving forward to the other
DMAIC steps. This will include individual work assignments and tentative completion dates.
Particular attention should be paid to the Measure step as it will be performed next.

Finally, the team should prepare for the Define step tollgate review, which should focus
on the following:

1. Does the problem statement focus on symptoms, and not on possible causes or
solutions?

2. Are all the key stakeholders identified?

3. What evidence is there to confirm the value opportunity represented by this project?

4. Has the scope of the project been verified to ensure that it is neither too small nor too
large?

5. Has a SIPOC diagram or other high-level process map been completed?

6. Have any obvious barriers or obstacles to successful completion of the project been
ignored?

7. s the team’s action plan for the Measure step of DMAIC reasonable?
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2.3 The Measure Step

The purpose of the Measure step is to evaluate and understand the current state of the process.
This involves collecting data on measures of quality, cost, and throughput/cycle time. It is impor-
tant to develop a list of all of the key process input variables (sometimes abbreviated KPIV)
and the key process output variables (KPOV). The KPIV and KPOV may have been identified
at least tentatively during the Define step, but they must be completely defined and measured dur-
ing the Measure step. Important factors may be the time spent to perform various work activities
and the time that work spends waiting for additional processing. Deciding what and how much
data to collect are important tasks; there must be sufficient data to allow for a thorough analysis
and understanding of current process performance with respect to the key metrics.

Data may be collected by examining historical records, but this may not always be sat-
isfactory, as the history may be incomplete, the methods of record keeping may have changed
over time, and, in many cases, the desired information never may have been retained.
Consequently, it is often necessary to collect current data through an observational study. This
may be done by collecting process data over a continuous period of time (such as every hour
for two weeks) or it may be done by sampling from the relevant data streams. When there are
many human elements in the system, work sampling may be useful. This form of sampling
involves observing workers at random times and classifying their activity at that time into
appropriate categories. In transactional and service businesses, it may be necessary to develop
appropriate measurements and a measurement system for recording the information that are
specific to the organization. This again points out a major difference between manufacturing
and services: Measurement systems and data on system performance often exist in manufac-
turing, as the necessity for the data is usually more obvious in manufacturing than in services.

The data that are collected are used as the basis for determining the current state or
baseline performance of the process. Additionally, the capability of the measurement system
should be evaluated. This may be done using a formal gauge capability study (called gauge
repeatability and reproducibility, or gauge R&R, discussed in Chapter 8). At this point, it is
also a good idea to begin to divide the process cycle time into value-added and non-value-
added activities and to calculate estimates of process cycle efficiency and process cycle time,
if appropriate (see Chapter 1).

The data collected during the Measure step may be displayed in various ways such as
histograms, stem-and-leaf diagrams, run charts, scatter diagrams, and Pareto charts. Chapters
3 and 4 provide information on these techniques.

At the end of the Measure step, the team should update the project charter (if neces-
sary), reexamine the project goals and scope, and reevaluate team makeup. They may con-
sider expanding the team to include members of downstream or upstream business units if the
Measure activities indicate that these individuals will be valuable in subsequent DMAIC
steps. Any issues or concerns that may impact project success need to be documented and
shared with the process owner or project sponsor. In some cases, the team may be able to
make quick, immediate recommendations for improvement, such as eliminating an obvious
non-value-added step or removing a source of unwanted variability.

Finally, it is necessary to prepare for the Measure step tollgate review. Issues and expec-
tations that will be addressed during this tollgate include the following:

1. There must be a comprehensive process flow chart or value stream map. All major
process steps and activities must be identified, along with suppliers and customers. If
appropriate, areas where queues and work-in-process accumulate should be identified
and queue lengths, waiting times, and work-in-process levels reported.

2. A list of KPIVs and KPOVs must be provided, along with identification of how the
KPOVs related to customer satisfaction or the customers CTQs.
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3. Measurement systems capability must be documented.

=

Any assumptions that were made during data collection must be noted.

5. The team should be able to respond to requests such as, “Explain where that data came
from,” and questions such as, “How did you decide what data to collect?” “How valid is
your measurement system?”” and “Did you collect enough data to provide a reasonable
picture of process performance?”

2.4 The Analyze Step

In the Analyze step, the objective is to use the data from the Measure step to begin to deter-
mine the cause-and-effect relationships in the process and to understand the different sources
of variability. In other words, in the Analyze step we want to determine the potential causes
of the defects, quality problems, customer issues, cycle time and throughput problems, or
waste and inefficiency that motivated the project. It is important to separate the sources of
variability into common causes and assignable causes. We discuss these sources of vari-
ability in Chapter 4 but, generally speaking, common causes are sources of variability that are
embedded in the system or process itself, while assignable causes usually arise from an exter-
nal source. Removing a common cause of variability usually means changing the process,
while removing an assignable cause usually involves eliminating that specific problem. A
common cause of variability might be inadequate training of personnel processing insurance
claims, while an assignable cause might be a tool failure on a machine.

There are many tools that are potentially useful in the Analyze step. Among these are
control charts, which are useful in separating common cause variability from assignable
cause variability; statistical hypothesis testing and confidence interval estimation, which
can be used to determine if different conditions of operation produce statistically significantly
different results and to provide information about the accuracy with which parameters of
interest have been estimated; and regression analysis, which allows models relating outcome
variables of interest to independent input variables to be built. (Chapter 4 contains a discus-
sion of hypothesis tests, confidence intervals, and regression. Chapter 5 introduces control
charts, which are very powerful tools with many applications. Many chapters in Parts III and
IV of the book discuss different types and applications of control charts.)

Discrete-event computer simulation is another powerful tool useful in the Analyze step.
It is particularly useful in service and transactional businesses, although its use is not confined
to those types of operations. For example, there have been many successful applications of
discrete-event simulation in studying scheduling problems in factories to improve cycle time
and throughput performance. In a discrete-event simulation model, a computer model simulates
a process in an organization. For example, a computer model could simulate what happens
when a home mortgage loan application enters a bank. Each loan application is a discrete
event. The arrival rates, processing times, and even the routing of the applications through the
bank’s process are random variables. The specific realizations of these random variables influ-
ence the backlogs or queues of applications that accumulate at the different processing steps.

Other random variables can be defined to model the effect of incomplete applications, erro-
neous information and other types of errors and defects, and delays in obtaining information from
outside sources, such as credit histories. By running the simulation model for many loans, reli-
able estimates of cycle time, throughput, and other quantities of interest can be obtained.

Failure modes and effects analysis (FMEA) is another useful tool during the Analyze
stage. FMEA is used to prioritize the different potential sources of variability, failures, errors,
or defects in a product or process relative to three criteria:

1. The likelihood that something will go wrong (ranked on a 1 to 10 scale, with 1 = not
likely and 10 = almost certain)
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2. The ability to detect a failure, defect, or error (ranked on a 1 to 10 scale, with 1 = very
likely to detect and 10 = very unlikely to detect)

3. The severity of a failure, defect, or error (ranked on a 1 to 10 scale, with 1 = little impact
and 10 = extreme impact, including extreme financial loss, injury, or loss of life)

The three scores for each potential source of variability, failure, error, or defect are multiplied
together to obtain a risk priority number (RPN). Sources of variability or failures with the
highest RPNs are the focus for further process improvement or redesign efforts.

The analyze tools are used with historical data or data that was collected in the Measure
step. This data is often very useful in providing clues about potential causes of the problems
that the process is experiencing. Sometimes these clues can lead to breakthroughs and actu-
ally identify specific improvements. In most cases, however, the purpose of the Analyze step
is to explore and understand tentative relationships between and among process variables and
to develop insight about potential process improvements. A list of specific opportunities and
root causes that are targeted for action in the Improve step should be developed. Improvement
strategies will be further developed and actually tested in the Improve step.

In preparing for the analyze tollgate review, the team should consider the following
issues and potential questions:

1. What opportunities are going to be targeted for investigation in the Improve step?

2. What data and analysis support that investigating the targeted opportunities and
improving/eliminating them will have the desired outcome on the KPOVs and customer
CTQs that were the original focus of the project?

3. Are there other opportunities that are not going to be further evaluated? If so, why?

4. Is the project still on track with respect to time and anticipated outcomes? Are any addi-
tional resources required at this time?

2.5 The Improve Step

In the Measure and Analyze steps, the team focused on deciding which KPIVs and KPOVss
to study, what data to collect, how to analyze and display the data, potential sources of
variability, and how to interpret the data they obtained. In the Improve step, they turn to
creative thinking about the specific changes that can be made in the process and other
things that can be done to have the desired impact on process performance.

A broad range of tools can be used in the Improve step. Redesigning the process to
improve work flow and reduce bottlenecks and work-in-process will make extensive use of
flow charts and/or value stream maps. Sometimes mistake-proofing (designing an operation
so that it can be done only one way—the right way) an operation will be useful. Designed
experiments are probably the most important statistical tool in the Improve step. Designed
experiments can be applied either to an actual physical process or to a computer simulation
model of that process, and can be used both for determining which factors influence the out-
come of a process and for determining the optimal combination of factor settings. (Designed
experiments are discussed in detail in Part V.)

The objectives of the Improve step are to develop a solution to the problem and to pilot
test the solution. The pilot test is a form of confirmation experiment: It evaluates and doc-
uments the solution and confirms that the solution attains the project goals. This may be an
iterative activity, with the original solution being refined, revised, and improved several times
as a result of the pilot test’s outcome.

The tollgate review for the Improve step should involve the following:

1. Adequate documentation of how the problem solution was obtained

2. Documentation on alternative solutions that were considered
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3. Complete results of the pilot test, including data displays, analysis, experiments, and
simulation analyses

4. Plans to implement the pilot test results on a full-scale basis [ This should include dealing
with any regulatory requirements (FDA, OSHA, legal, for example), personnel concerns
(such as additional training requirements), or impact on other business standard practices.]

5. Analysis of any risks of implementing the solution, and appropriate risk-management plans

2.6 The Control Step

The objectives of the Control step are to complete all remaining work on the project and to
hand off the improved process to the process owner along with a process control plan and
other necessary procedures to ensure that the gains from the project will be institutionalized.
That is, the goal is to ensure that the gains are of help in the process and, if possible, the
improvements will be implemented in other similar processes in the business.

The process owner should be provided with before and after data on key process met-
rics, operations and training documents, and updated current process maps. The process con-
trol plan should be a system for monitoring the solution that has been implemented, includ-
ing methods and metrics for periodic auditing. Control charts are an important statistical tool
used in the Control step of DMAIC; many process control plans involve control charts on crit-
ical process metrics.

The transition plan for the process owner should include a validation check several
months after project completion. It is important to ensure that the original results are still in
place and stable so that the positive financial impact will be sustained. It is not unusual to find
that something has gone wrong in the transition to the improved process. The ability to
respond rapidly to unanticipated failures should be factored into the plan.

The tollgate review for the Control step typically includes the following issues:

1. Data illustrating that the before and after results are in line with the project charter
should be available. (Were the original objectives accomplished?)

2. Is the process control plan complete? Are procedures to monitor the process, such as
control charts, in place?

3. Is all essential documentation for the process owner complete?
4. A summary of lessons learned from the project should be available.

5. A list of opportunities that were not pursued in the project should be prepared. This can
be used to develop future projects; it is very important to maintain an inventory of good
potential projects to keep the improvement process going.

6. A list of opportunities to use the results of the project in other parts of the business
should be prepared.

2.7 Examples of DMAIC

2.7.1 Litigation Documents

Litigation usually creates a very large number of documents. These can be internal work
papers, consultants’ reports, affidavits, court filings, documents obtained via subpoena, and
papers from many other sources. In some cases, there can be hundreds of thousands of docu-
ments and millions of pages. DMAIC was applied in the corporate legal department of
DuPont, led by DuPont lawyer Julie Mazza, who spoke about the project at an American
Society for Quality meeting [Mazza (2000)]. The case is also discussed in Snee and Hoerl
(2005). The objective was to develop an efficient process to allow timely access to needed
documents with minimal errors. Document management is extremely important in litigation;
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it also can be time-consuming and expensive. The process was usually manual, so it was sub-
ject to human error, with lost or incorrect documents fairly common problems. In the specific
case presented by Mazza, there was an electronic database that listed and classified all of the
documents, but the documents themselves were in hard copy form.

Define. The DuPont legal function and the specific legal team involved in this spe-
cific litigation were the customers for this process. Rapid and error-free access to needed doc-
uments was essential. For example, if a request for a document could not be answered in 30
days, the legal team would have to file a request for an extension with the court. Such exten-
sions add cost and time, and detract from the credibility of the legal team. A project team
consisting of process owners, legal subject-matter experts, clerks, an information systems
specialist, and Mazza (who was also a Black Belt in Dupont’s Six Sigma program) was
formed. The team decided to focus on CTQs involving reduction of cycle time, reduction of
errors, elimination of non-value-added process activities, and reduction of costs. They began
by mapping the entire document-production process, including defining the steps performed
by DuPont legal, outside counsel, and the outside documents-management company. This
process map was instrumental in identifying non-value-added activities.

Measure. 1In the Measure step, the team formally measured the degree to which the
CTQs were being met by reviewing data in the electronic database; obtaining actual invoices;
reviewing copying and other labor charges, the costs of data entry, the charges for shipping,
and court fees for filing for extensions; and studying how frequently individual documents
in the database were being handled. It was difficult to accurately measure the frequency of
handling. Many of the cost categories contained non-value-added costs because of errors,
such as having to copy a different document because the wrong document had been pulled
and copied. Another error was allowing a confidential document to be copied.

Analyze. The team worked with the data obtained during the Measure step and the
knowledge of team members to identify many of the underlying causes and cost exposures.
A failure modes and effects analysis highlighted many of the most important issues that
needed to be addressed to improve the system. The team also interviewed many of the people
who worked in the process to better understand how they actually did the work and the problems
they encountered. This is often very important in nonmanufacturing and service organizations
because these types of operations can have a much greater human factor. Some of the root causes
of problems they uncovered were:

1. A high turnover rate for the contractor’s clerks

2. Inadequate training

3. Inattention to the job, causes by clerks feeling they had no ownership in the process
4. The large volume of documents

The team concluded that many of the problems in the system were the result of a manual
document-handling system.

Improve. To improve the process, the team proposed a digital scanning system for
the documents. This solution had been considered previously, but always had been discarded
because of cost. However, the team had done a very thorough job of identifying the real costs
of the manual system and the inability of a manual system to ever really improve the situa-
tion. The better information produced during the Measure and Analyze steps allowed the team
to successfully propose a digital scanning system that the company accepted.

The team worked with DuPont’s information technology group to identify an appropriate
system, get the system in place, and scan all of the documents. They remapped the new
process and, on the basis of a pilot study, estimated that the unit cost of processing a page of
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a document would be reduced by about 50%, which would result in about $1.13 million in
savings. About 70% of the non-value-added activities in the process were eliminated. After
the new system was implemented, it was proposed for use in all of the DuPont legal functions;
the total savings were estimated at about $10 million.

Control. The Control plan involved designing the new system to automatically track
and report the estimated costs per document. The system also tracked performance on other
critical CTQs and reported the information to users of the process. Invoices from contactors
also were forwarded to the process owners as a mechanism for monitoring ongoing costs.
Explanations about how the new system worked and necessary training were provided for all
those who used the system. Extremely successful, the new system provided significant cost
savings, improvement in cycle time, and reduction of many frequently occurring errors.

2.7.2 Improving On-Time Delivery

A key customer contacted a machine tool manufacturer about poor recent performance it
had experienced regarding on-time delivery of the product. On-time deliveries were at 85%,
instead of the desired target value of 100%, and the customer could choose to exercise a
penalty clause to reduce the price by up to 15% of each tool, or about a $60,000 loss for the
manufacturer. The customer was also concerned about the manufacturer’s factory capacity
and its capability to meet its production schedule in the future. The customer represented
about $8 million of business volume for the immediate future—the manufacturer needed a
revised business process to resolve the problem or the customer might consider seeking a second
source supplier for the critical tool.

A team was formed to determine the root causes of the delivery problem and implement
a solution. One team member was a project engineer who was sent to a supplier factory, with
the purpose to work closely with the supplier, to examine all the processes used in manufac-
turing of the tool, and to identify any gaps in the processes that affected delivery. Some of the
supplier’s processes might need improvement.

Define. The objective of the project was to achieve 100% on-time delivery. The cus-
tomer had a concern regarding on-time delivery capability, and a late deliveries penalty clause
could be applied to current and future shipments at a cost to the manufacturer. Late deliveries
also would jeopardize the customer’s production schedule, and without an improved process
to eliminate the on-time delivery issue, the customer might consider finding a second source
for the tool. The manufacturer could potentially lose as much as half of the business from the
customer, in addition to incurring the 15% penalty costs. The manufacturer also would expe-
rience a delay in collecting the 80% equipment payment customarily made upon shipment.

The potential savings for meeting the on-time delivery requirement was $300,000 per
quarter. Maintaining a satisfied customer also was critical.

Measure. The contractual lead time for delivery of the tool was eight weeks. That is,
the tool must be ready for shipment eight weeks from receipt of the purchase order. The CTQ
for this process was to meet the target contractual lead time. Figure 2.4 shows the process map
for the existing process, from purchase order receipt to shipment. The contractual lead time
could be met only when there was no excursion or variation in the process. Some historical
data on this process was available, and additional data was collected over approximately a
two-month period.

Analyze. Based on the data collected from the Measure step, the team concluded that
problems areas came from:

1. Supplier quality issues: Parts failed prematurely. This caused delay in equipment final
testing due to troubleshooting or waiting for replacement parts.
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2.

3.

Purchase order process delay: Purchase orders were not processed promptly, resulting
in delayed internal project start dates.

Delay in customer confirmation: It took up to three days to confirm the final equipment
configuration with the customer. This delayed most of the early manufacturing steps
and complicated production scheduling.

Incorrect tool configuration orders: There were many processes on the customer side,
leading to frequent confusion when the customer placed the order and often resulting in
an incorrect tool configuration. This caused rework at the midstream of the manufac-
turing cycle, and contributed greatly to the delivery delay problem.

Improve. In order to meet the eight-week contractual lead time, the team knew that

it was necessary to eliminate any possible process variation, starting from receipt of the pur-
chase order to shipment of the equipment. Three major corrective actions were taken:

1.

Supplier Quality Control and Improvement: An internal buy-off checklist for the sup-
plier was implemented that contained all required testing of components and subsys-
tems that had to be completed prior to shipment. This action was taken to minimize part
failures both in manufacturing and final test as well as in the field. The supplier agreed
to provide consigned critical spare parts to the manufacturer so that it could save on
shipping time for replacement parts if part failures were encountered during manufac-
turing and final testing.

Improve the Internal Purchase Order Process: A common e-mail address was estab-
lished to receive all purchase order notifications. Three people (a sales support engineer,
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a project engineer, and an account manager) were to have access to the e-mail account.
Previously, only one person checked purchase order status. This step enhanced the trans-
parency of purchase order arrival and allowed the company to act promptly when a new

order was received.

Improve the Ordering Process with the Customer: The team realized that various tool
configurations were generated over the years due to new process requirements from the
customer. In order to ensure accuracy of tool configurations in a purchase order, a cus-
tomized spreadsheet was designed together with the customer to identify the key data
for the tool on order. The spreadsheet was saved under a purchase order number and
stored in a predefined Web location. The tool owner also was to take ownership of what
he/she ordered to help to eliminate the confirmation step with the customer and to
ensure accuracy in the final order.

Figure 2.5 shows a process map of the new, improved system. The steps in the original
process that were eliminated are shown as shaded boxes in this figure.

Control.

To ensure that the new process is in control, the team revised the production

tracking spreadsheet with firm milestone dates and provided a more visual format. An updating
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report to the customer to review
and wait for shipment approval.

|

Upon receipt of shipment
approval from the customer,
project engineer instructs the
supplier for crating preparation.

{

|

Sales generates order
acknowledgment letter with
confirmed eight-week ship date
to the customer.

After shipments are picked up
by forwarder at the supplier, the
supplier forwards shipping
document to project engineer.

Sales opens sales order and
forwards order information to
corresponding project engineer
to verify system configuration.

{

[}

Project engineer opens new
Gantt chart with key milestone
checkpoints.

—

Project engineer confirms order
configuration with customer.

{

Project engineer fills out internal
order form for the supplier with
delivery date information.

}

Sales processes the internal
order form and completes the
internal sales order entry.

[}

Sales seeks signature approval
from the account manager or
general manager if account

manager is not available.

BMFIGURE 2.5 The improved process.

Project engineer forwards
shipping document to Accounts
Receivable with copy to Sales
and Service Departments.

[}

Accounts Receivable generates
invoice to customer to collect
80% payment. Remaining 20%
will be collected upon tool
installation.
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procedure was provided on a biweekly basis by the factory to reflect up-to-date information.
The project engineer would be able to monitor the progress of each tool on order and take action
accordingly should any unplanned deviation from the schedule occur.

After implementing the new process, including the new production tracking procedure,
the manufacturer was able to ship tools with 100% on-time delivery. The cost savings were
more than $300,000 each quarter. Equally important, the customer was satisfied and contin-
ued to remain confident in the manufacturer’s capability and capacity.

2.7.3 Improving Service Quality in a Bank

Kovach (2007) describes how the DMAIC process can be used to improve service quality for
a banking process. During the define and measure phases of this project, the team identified
several CTQs to be improved:

1. Speed of service

2. Consistent service

3. An easy-to-use process
4. A pleasant environment
5. Knowledgeable staff

There were many factors that could be investigated to improve these CTQs. The team decided
to focus on two areas of improvement: improved teller and customer work stations and new
training for the staff. In the Improve stage, they decided to use a designed experiment to inves-
tigate the effects of these two factors on the CTQs. Four different branches were selected in
which to conduct the experiment. Notice that this is a physical experiment, not an experiment
with a computer simulation model of the branch operations. New teller and customer work sta-
tions were designed and installed in two of the branches. The team designed a new training
program and delivered it to the staff at two of the branches: one with the new work stations and
one without the new facilities. (This was a two-factor factorial experiment, with each of the
two factors having two levels. We discuss these types of experiments extensively in this book.)

The team decided to conduct the experiment for 30 working days. Each day was con-
sidered to be a block (as we will discuss in later chapters, blocking is a design technique for
eliminating the effects of nuisance factors on the experimental results; here the nuisance fac-
tors were transaction types, volumes, and different customers at each of the four branches).
The response data was obtained by asking customers to complete a survey instrument that
registered their degree of satisfaction with the previously identified CTQs.

The results of the experiment demonstrated that there was a statistically significant dif-
ference in the CTQs resulting from both the new work stations and the new training, with the
best results obtained from the combination of the new work stations and the new training.
Implementation of the new stations and training was expected to significantly improve customer
satisfaction with the banking process across the bank’s branches.

Important Terms and Concepts

Analyze step
Control step
Define step

Key process input variables (KPIV)
Key process output variables (KPOV)
Measure step

Design for Six Sigma (DFSS) Project charter
DMAIC SIPOC diagram
Failure modes and effects analysis (FMEA) Six Sigma

Improve step

Tollgate
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2.1.

2.2.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

Discuss the similarities between the Shewhart cycle
and DMAIC.

What role does risk play in project selection and the
Define step of DMAIC?

Suppose that a project will generate $A per year. In
savings or increased profit for a period of x years.
The projected cost of project completion is $C. What
methods would be appropriate to justify this project
on economic terms?

Describe a service system that you use. What are the
CTQs that are important to you? How do you think
that DMAIC could be applied to this process?

One of the objectives of the control plan in DMAIC
is to “hold the gain.” What does this mean?

Is there a point at which seeking further improve-
ment in quality and productivity isn’t economically
advisable? Discuss your answer.

Explain the importance of tollgates in the DMAIC
process.

An important part of a project is to identify the key
process input variables (KPIV) and key process
output variables (KPOV). Suppose that you are the
owner/manager of a small business that provides
mailboxes, copy services, and mailing services.
Discuss the KPIVs and KPOVs for this business.
How do they relate to possible customer CTQs?
An important part of a project is to identify the key
process input variables (KPIV) and key process out-
put variables (KPOV). Suppose that you are in
charge of a hospital emergency room. Discuss the
KPIVs and KPOVs for this business. How do they
relate to possible customer CTQs?

Why are designed experiments most useful in the
Improve step of DMAIC?

Suppose that your business is operating at the Three
Sigma quality level. If projects have an average
improvement rate of 50% annually, how many years
will it take to achieve Six Sigma quality?

2.12.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

Suppose that your business is operating at the
4.5-Sigma quality level. If projects have an average
improvement rate of 50% annually, how many years
will it take to achieve Six Sigma quality?

Explain why it is important to separate sources of
variability into special or assignable causes and com-
mon or chance causes.

Consider improving service quality in a restaurant.
What are the KPIVs and KPOVs that you should
consider? How do these relate to likely customer
CTQs?

Suppose that during the analyze phase an obvious
solution is discovered. Should that solution be imme-
diately implemented and the remaining steps of
DMAIC abandoned? Discuss your answer.

What information would you have to collect in order
to build a discrete-event simulation model of a retail
branch-banking operation? Discuss how this model
could be used to determine appropriate staffing levels
for the bank.

Suppose that you manage an airline reservation sys-
tem and want to improve service quality. What are
the important CTQs for this process? What are the
KPIVs and KPOVs? How do these relate to the cus-
tomer CTQs that you have identified?

It has been estimated that safe aircraft carrier land-
ings operate at about the 5o level. What level of ppm
defective does this imply?

Discuss why, in general, determining what to mea-
sure and how to make measurements is more difficult
in service processes and transactional businesses
than in manufacturing.

Suppose that you want to improve the process of
loading passengers onto an airplane. Would a discrete-
event simulation model of this process be useful?
What data would have to be collected to build this
model?
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PART £&

v \ v

Usefu in Quality

Control and
Improvement

Statistics is a collection of techniques useful for making decisions about a
process or population based on an analysis of the information contained in
a sample from that population. Statistical methods play a vital role in quality
control and improvement. They provide the principal means by which a prod-
uct is sampled, tested, and evaluated, and the information in those data is
used to control and improve the process and the product. Furthermore, sta-
tistics is the language in which development engineers, manufacturing, pro-
curement, management, and other functional components of the business
communicate about quality.

This part contains two chapters. Chapter 3 gives a brief introduction to
descriptive statistics, showing how simple graphical and numerical tech-
niques can be used to summarize the information in sample data. The use
of probability distributions to model the behavior of product parame-
ters in a process or lot is then discussed. Chapter 4 presents techniques of
statistical inference—that is, how the information contained in a sample
can be used to draw conclusions about the population from which the sample
was drawn.
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CHAPTER QUTLINE

3.1

3.2

3.3

3.4

DESCRIBING VARIATION

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5

The Stem-and-Leaf Plot

The Histogram

Numerical Summary of Data
The Box Plot

Probability Distributions

IMPORTANT DISCRETE
DISTRIBUTIONS

3.2.1

3.2.2
3.2.3
3.2.4

The Hypergeometric
Distribution

The Binomial Distribution
The Poisson Distribution

The Negative Binomial and
Geometric Distributions

IMPORTANT CONTINUOUS
DISTRIBUTIONS

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

The Normal Distribution
The Lognormal Distribution
The Exponential Distribution
The Gamma Distribution
The Weibull Distribution

PROBABILITY PLOTS

3.4.1
3.4.2

Normal Probability Plots
Other Probability Plots

3.5 SOME USEFUL APPROXIMATIONS

3.5.1

3.5.2

3.5.3

3.5.4

The Binomial Approximation
to the Hypergeometric

The Poisson Approximation
to the Binomial

The Normal Approximation
to the Binomial

Comments on
Approximations

Supplemental Material for Chapter 3

S3.1

S3.2

S3.3

S3.4

S3.5

S3.6

S3.7

Independent Random
Variables

Development of the Poisson
Distribution

The Mean and Variance of
the Normal Distribution
More about the Lognormal
Distribution

More about the Gamma
Distribution

The Failure Rate for the
Exponential Distribution
The Failure Rate for the
Weibull Distribution

The supplemental material is on the textbook Website, www.wiley.com/college/montgomery.

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This textbook is about the use of statistical methodology in quality control and improvement.
This chapter has two objectives. First, we show how simple tools of descriptive statistics can
be used to express variation quantitatively in a quality characteristic when a sample of data
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on this characteristic is available. Generally, the sample is just a subset of data taken from
some larger population or process. The second objective is to introduce probability distrib-
utions and show how they provide a tool for modeling or describing the quality characteristics
of a process.

After careful study of this chapter, you should be able to do the following:

1. Construct and interpret visual data displays, including the stem-and-leaf plot, the
histogram, and the box plot

2. Compute and interpret the sample mean, the sample variance, the sample stan-
dard deviation, and the sample range

3. Explain the concepts of a random variable and a probability distribution

4. Understand and interpret the mean, variance, and standard deviation of a proba-
bility distribution
Determine probabilities from probability distributions

Understand the assumptions for each of the discrete probability distributions
presented

7. Understand the assumptions for each of the continuous probability distributions
presented

Select an appropriate probability distribution for use in specific applications
Use probability plots

10. Use approximations for some hypergeometric and binomial distributions

3.1 Describing Variation

3.1.1 The Stem-and-Leaf Plot

No two units of product produced by a process are identical. Some variation is inevitable. As
examples, the net content of a can of soft drink varies slightly from can to can, and the output
voltage of a power supply is not exactly the same from one unit to the next. Similarly, no two
service activities are ever identical. There will be differences in performance from customer to
customer, and variability in important characteristics that are important to the customer over
time. Statistics is the science of analyzing data and drawing conclusions, taking variation in
the data into account.

There are several graphical methods that are very useful for summarizing and present-
ing data. One of the most useful graphical techniques is the stem-and-leaf display.

Suppose that the data are represented by xy, x», . . . , x,, and that each number x; consists
of at least two digits. To construct a stem-and-leaf plot, we divide each number x; into two
parts: a stem, consisting of one or more of the leading digits; and a leaf, consisting of the
remaining digits. For example, if the data consists of percent defective information between
0 and 100 on lots of semiconductor wafers, then we can divide the value 76 into the stem 7
and the leaf 6. In general, we should choose relatively few stems in comparison with the
number of observations. It is usually best to choose between 5 and 20 stems. Once a set of
stems has been chosen, they are listed along the left-hand margin of the display, and beside
each stem all leaves corresponding to the observed data values are listed in the order in which
they are encountered in the data set.

The version of the stem-and-leaf plot produced by Minitab is sometimes called an
ordered stem-and-leaf plot, because the leaves are arranged by magnitude. This version of
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- EXAMPLE 3.1

The data in Table 3.1 provides a sample of the cycle time in days to process and pay employee health insurance claims in a large

company. Construct a stem-and-leaf plot for the data.

SovLuTion

To construct the stem-and-leaf plot, we could select the values
1,2, 3,4, and 5 as the stems. However, this would result in all
40 data values being compacted into only five stems, the min-
imum number that is usually recommended. An alternative
would be to split each stem into a lower and an upper half, with
the leaves 0—4 being assigned to the lower portion of the stem
and the leaves 5-9 being assigned to the upper portion. Figure
3.1 is the stem-and-leaf plot generated by Minitab, and it uses
the stem-splitting strategy. The column to the left of the stems
gives a cumulative count of the number of observations that are
at or below that stem for the smaller stems, and at or above that

= TABLE 3.1

stem for the larger stems. For the middle stem, the number in
parentheses indicates the number of observations included in
that stem. Inspection of the plot reveals that the distribution of
the number of days to process and pay an employee health
insurance claim has an approximately symmetric shape, with a
single peak. The stem-and-leaf display allows us to quickly
determine some important features of the data that are not obvi-
ous from the data table. For example, Figure 3.1 gives a visual
impression of shape, spread or variability, and the central ten-
dency or middle of the data (which is close to 35).

Cycle Time in Days to Pay Employee Health Insurance Claims

Stem-and-Leaf Display: Days

Claim Days Claim Days Claim Days Claim Days
Stem-and-leaf of Days
1 48 11 35 21 37 31 16 N = 40
2 41 12 34 2 43 32 2 Leaf Unit = 1.0
3 1 677
3 35 13 36 23 17 33 33 8 5 22234
4 36 14 42 24 26 34 30 13 2 66778
5 37 15 43 25 28 35 24 (8) 3 00012334
19 3 555666677
6 26 16 36 26 27 36 23 10 4 1233
7 36 17 56 27 45 37 22 6 4 56678
8 46 18 32 28 33 38 30 1 5
9 35 19 46 29 22 39 31 56
10 47 20 30 30 27 40 17 BFIGURE 3.1 Stem-and-left plot

for the health insurance claim data.

the display makes it very easy to find percentiles of the data. Generally, the 100 kth percentile
is a value such that at least 100 k% of the data values are at or below this value and at least
100 (1 — k)% of the data values are at or above this value.

The fiftieth percentile of the data distribution is called the sample median x. The
median can be thought of as the data value that exactly divides the sample in half, with half
of the observations smaller than the median and half of them larger.

If n, the number of observations, is odd, finding the median is easy. First, sort the obser-
vations in ascending order (or rank the data from smallest observation to largest observation).
Then the median will be the observation in rank position [(n — 1)/2 + 1] on this list. If n is
even, the median is the average of the (n/2)st and (n/2 + 1)st ranked observations. Since in our
example n = 40 is an even number, the median is the average of the two observations with
rank 20 and 21, or

33+34 -335

X=
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The tenth percentile is the observation with rank (0.1)(40) + 0.5 = 4.5 (halfway between
the fourth and fifth observations), or (22 + 22)/2 = 22. The first quartile is the observation
with rank (0.25)(40) + 0.5 = 10.5 (halfway between the tenth and eleventh observation) or
(26 + 27)/2 = 26.5, and the third quartile is the observation with rank (0.75)(40) + 0.5 =
30.5 (halfway between the thirtieth and thirty-first observation), or (37 + 41) = 39. The first
and third quartiles are occasionally denoted by the symbols Q1 and Q3, respectively, and the
interquartile range IQR = Q3 — Q1 is occasionally used as a measure of variability. For the
insurance claim data, the interquartile range is IQR = Q3 — Q1 =39 —26.5 = 12.5.

Finally, although the stem-and-leaf display is an excellent way to visually show the
variability in data, it does not take the time order of the observations into account. Time is
often a very important factor that contributes to variability in quality improvement problems.
We could, of course, simply plot the data values versus time; such a graph is called a time
series plot or a run chart.

Suppose that the cycle time to process and pay employee health insurance claims in
Table 3.1 are shown in time sequence. Figure 3.2 shows the time series plot of the data. We
used Minitab to construct this plot (called a marginal plot) and requested a dot plot of the
data to be constructed in the y-axis margin. This display clearly indicates that time is an
important source of variability in this process. More specifically, the processing cycle time for
the first 20 claims is substantially longer than the cycle time for the last 20 claims. Something
may have changed in the process (or have been deliberately changed by operating personnel)
that is responsible for the apparant cycle time improvement. Later in this book we formally
introduce the control chart as a graphical technique for monitoring processes such as this one,
and for producing a statistically based signal when a process change occurs.

3.1.2 The Histogram

A histogram is a more compact summary of data than a stem-and-leaf plot. To construct a
histogram for continuous data, we must divide the range of the data into intervals, which are
usually called class intervals, cells, or bins. If possible, the bins should be of equal width to
enhance the visual information in the histogram. Some judgment must be used in selecting
the number of bins so that a reasonable display can be developed. The number of bins depends
on the number of observations and the amount of scatter or dispersion in the data. A histogram
that uses either too few or too many bins will not be informative. We usually find that between
5 and 20 bins is satisfactory in most cases and that the number of bins should increase with
n. Choosing the number of bins approximately equal to the square root of the number of
observations often works well in practice."

'There is no universal agreement about how to select the number of bins for a histogram. Some basic statistics text-
books suggest using Sturges’s rule, which sets the number of bins 4 = 1 + log,n, where n is the sample size. There
are many variations of Sturges’s rule. Computer software packages use many different algorithms to determine the
number and width of bins, and some of them may not be based on Sturges’s rule.
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Once the number of bins and the lower and upper boundaries of each bin has been
determined, the data are sorted into the bins and a count is made of the number of observa-
tions in each bin. To construct the histogram, use the horizontal axis to represent the mea-
surement scale for the data and the vertical scale to represent the counts, or frequencies.
Sometimes the frequencies in each bin are divided by the total number of observations (n),
and then the vertical scale of the histogram represents relative frequencies. Rectangles are
drawn over each bin, and the height of each rectangle is proportional to frequency (or relative
frequency). Most statistics packages construct histograms.

:
~ EXAMPLE P2 Metal Thickness in Silicon Wafers

Table 3.2 presents the thickness of a metal layer on 100 sili- process in a semiconductor plant. Construct a histogram for
con wafers resulting from a chemical vapor deposition (CVD) these data.

= TABLE 3.2
Layer Thickness (A) on Semiconductor Wafers

438 450 487 451 452 441 444 461 432 471
413 450 430 437 465 444 471 453 431 458
444 450 446 444 466 458 471 452 455 445
468 459 450 453 473 454 458 438 447 463
445 466 456 434 471 437 459 445 454 423
472 470 433 454 464 443 449 435 435 451
474 457 455 448 478 465 462 454 425 440
454 441 459 435 446 435 460 428 449 442
455 450 423 432 459 444 445 454 449 441
449 445 455 441 464 457 437 434 452 439
SoLuTion

Because the data set contains 100 observations and
V100 = 10, we suspect that about 10 bins will provide a
satisfactory histogram. We constructed the histogram using
the Minitab option that allows the user to specify the number
of bins. The resulting Minitab histogram is shown in Figure
3.3. Notice that the midpoint of the first bin is 415,&, and that
the histogram only has eight bins that contain a nonzero
frequency. A histogram, like a stem-and-leaf plot, gives a
visual impression of the shape of the distribution of the mea-
surements, as well as some information about the inherent
variability in the data. Note the reasonably symmetric or
bell-shaped distribution of the metal thickness data.

Frequency

0
405415 425 435 445 455 465 475 485 495
Metal thickness

B FIGURE 3.3 Minitab histogram for the
metal layer thickness data in Table 3.2.

\—

S

Most computer packages have a default setting for the number of bins. Figure 3.4 is the
Minitab histogram obtained with the default setting, which leads to a histogram with 15 bins.
Histograms can be relatively sensitive to the choice of the number and width of the bins. For
small data sets, histograms may change dramatically in appearance if the number and/or
width of the bins changes. For this reason, we prefer to think of the histogram as a technique best
suited for larger data sets containing, say, 75 to 100 or more observations. Because the
number of observations on layer thickness is moderately large (n = 100), the choice of the
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B FIGURE 3.4 Minitab histogram with B FIGURE 3.5 A cumulative frequency
15 bins for the metal layer thickness data. plot of the metal thickness data from Minitab.

number of bins is not especially important, and the histograms in Figures 3.3 and 3.4 convey
very similar information.

Notice that in passing from the original data or a stem-and-leaf plot to a histogram, we
have in a sense lost some information because the original observations are not preserved on
the display. However, this loss in information is usually small compared with the conciseness
and ease of interpretation of the histogram, particularly in large samples.

Histograms are always easier to interpret if the bins are of equal width. If the bins are
of unequal width, it is customary to draw rectangles whose areas (as opposed to heights) are
proportional to the number of observations in the bins.

Figure 3.5 shows a variation of the histogram available in Minitab (i.e., the cumula-
tive frequency plot). In this plot, the height of each bar represents the number of observa-
tions that are less than or equal to the upper limit of the bin. Cumulative frequencies are
often very useful in data interpretation. For example, we can read directly from Figure 3.5
that about 75 of the 100 wafers have a metal layer thickness that is less than 460A.

Frequency distributions and histograms can also be used with qualitative, categorical,
or count (discrete) data. In some applications, there will be a natural ordering of the categories
(such as freshman, sophomore, junior, and senior), whereas in others the order of the cate-
gories will be arbitrary (such as male and female). When using categorical data, the bars
should be drawn to have equal width.

To construct a histogram for discrete or count data, first determine the frequency (or rel-
ative frequency) for each value of x. Each of the x values corresponds to a bin. The histogram
is drawn by plotting the frequencies (or relative frequencies) on the vertical scale and the val-
ues of x on the horizontal scale. Then above each value of x, draw a rectangle whose height
is the frequency (or relative frequency) corresponding to that value.

.
p EXAMPLE Y Defects in Automobile Hoods

Table 3.3 presents the number of surface finish defects in the that were painted by a new experimental painting process.
primer paint found by visual inspection of automobile hoods Construct a histogram for these data.

= TABLE 3.3
Surface Finish Defects in Painted Automobile Hoods

6

(9 RNV, N |

1 5 7 8 6 0 2 4 2
2 4 1 4 1 7 2 3
3 3 3 6 3 2 3 4 5
2 3 4 4 4 2 3 5 7
4 5 5 4 5 3 3 3 12
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SOLUTION

Figure 3.6 is the histogram of the defects. Notice that the num-
ber of defects is a discrete variable. From either the histogram
or the tabulated data we can determine

Proportions of hoods with at least 3 defects = % =0.78

and

Proportions of hoods with between 0 and

10 -
Iy
g
g s
[
11 0
2 defects=—=10.22 0 5 10
50 Defects

B FIGURE 3.6 Histogram of the number

These proportions are examples of relative frequencies. of defects in painted automobile hoods (Table 3.3).

_/

3.1.3 Numerical Summary of Data

The stem-and-leaf plot and the histogram provide a visual display of three properties of sam-
ple data: the shape of the distribution of the data, the central tendency in the data, and the scat-
ter or variability in the data. It is also helpful to use numerical measures of central tendency

and scatter.
Suppose that xy, x», . . . , x,, are the observations in a sample. The most important mea-

sure of central tendency in the sample is the sample average,

3.1

Note that the sample average x is simply the arithmetic mean of the n observations. The sam-
ple average for the metal thickness data in Table 3.2 is

1%‘)

Xi

x = 4=1 =45‘001=450.01A
100 100

Refer to Figure 3.3 and note that the sample average is the point at which the histogram
exactly “balances.” Thus, the sample average represents the center of mass of the sample data.
The variability in the sample data is measured by the sample variance:

2 (-7 (3.2)
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Note that the sample variance is simply the sum of the squared deviations of each obser-
vation from the sample average x, divided by the sample size minus 1. If there is no vari-
ability in the sample, then each sample observation x; = X, and the sample variance s* = 0.
Generally, the larger the sample variance s is, the greater is the variability in the sample data.

The units of the sample variance s> are the square of the original units of the data. This
is often inconvenient and awkward to interpret, and so we usually prefer to use the square root
of 52, called the sample standard deviation s, as a measure of variability.

It follows that

(3.3)

The primary advantage of the sample standard deviation is that it is expressed in the original
units of measurement. For the metal thickness data, we find that

s2 =180.2928 A"

and
s=13.43A

To more easily see how the standard deviation describes variability, consider the two
samples shown here:

Sample 1 Sample 2
X = X = 1
Xy = X =
x3=15 x3=9

x=3 x=5

Obviously, sample 2 has greater variability than sample 1. This is reflected in the standard
deviation, which for sample 1 is

) :\/(1—3)2+(3—3)2+(5—3)2 i
2

:\/(1—5)2+(5—25)2+(9—5)2 _Ji6a

Thus, the larger variability in sample 2 is reflected by its larger standard deviation. Now
consider a third sample, say

I
Sample 3
Cx =101
x>, =103
x3 =105
x=103
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Notice that sample 3 was obtained from sample 1 by adding 100 to each observation. The
standard deviation for this third sample is s = 2, which is identical to the standard deviation
of sample 1. Comparing the two samples, we see that both samples have identical variability
or scatter about the average, and this is why they have the same standard deviations. This
leads to an important point: The standard deviation does not reflect the magnitude of the
sample data, only the scatter about the average.

Handheld calculators are frequently used for calculating the sample average and stan-
dard deviation. Note that equations 3.2 and 3.3 are not very efficient computationally, because
every number must be entered into the calculator twice. A more efficient formula is

(3.4)

In using equation 3.4, each number would only have to be entered once, provided that
T ,x; and 'L ,x7 could be simultaneously accumulated in the calculator. Many inexpensive
handheld calculators perform this function and provide automatic calculation of x and s.

3.1.4 The Box Plot

The stem-and-leaf display and the histogram provide a visual impression about a data set,
whereas the sample average and standard deviation provide quantitative information about
specific features of the data. The box plot is a graphical display that simultaneously displays
several important features of the data, such as location or central tendency, spread or vari-
ability, departure from symmetry, and identification of observations that lie unusually far
from the bulk of the data (these observations are often called “outliers”).

A box plot displays the three quartiles, the minimum, and the maximum of the data on
a rectangular box, aligned either horizontally or vertically. The box encloses the interquar-
tile range with the left (or lower) line at the first quartile Q1 and the right (or upper) line at
the third quartile Q3. A line is drawn through the box at the second quartile (which is the
fiftieth percentile or the median) Q2 = Xx. A line at either end extends to the extreme values.
These lines are usually called whiskers. Some authors refer to the box plot as the box and
whisker plot. In some computer programs, the whiskers only extend a distance of 1.5
(Q3 — Q1) from the ends of the box, at most, and observations beyond these limits are flagged
as potential outliers. This variation of the basic procedure is called a modified box plot.

- EXAMPLE 3.4

The data in Table 3.4 are diameters (in mm) of holes in a group = TABLE 3.4

of 12 wing leading edge ribs for a commercial transport air- Hole Diameters (in mm) in Wing

plane. Construct and interpret a box plot of those data. Leading Edge Ribs
120.5 120.4 120.7
120.9 120.2 121.1
120.3 120.1 120.9
121.3 120.5 120.8

(continued)
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SoLuTion

The box plot is shown in Figure 3.7. Note that the median of 120.35 120.6 120.9
the sample is halfway between the sixth and seventh rank-

ordered observation, or (120.5 + 120.7)/2 = 120.6, and that 120.1
the quartiles are Q1 = 120.35 and Q3 = 120.9. The box plot
indicates that the hole diameter distribution is not exactly
symmetric around a central value, because the left and right
whiskers and the left and right boxes around the median are
not the same lengths.

N

121.3

B FIGURE 3.7 Box plot for the aircraft wing
leading edge hole diameter data in Table 3.4.

Box plots are very useful in graphical comparisons among data sets, because they have
visual impact and are easy to understand. For example, Figure 3.8 shows the comparative box
plots for a manufacturing quality index on products at three manufacturing plants. Inspection
of this display reveals that there is too much variability at plant 2, and that plants 2 and 3 need
to raise their quality index performance.

3.1.5 Probability Distributions

The histogram (or stem-and-leaf plot, or box plot) is used to describe sample data. A sample
is a collection of measurements selected from some larger source or population. For exam-
ple, the measurements on layer thickness in Table 3.2 are obtained from a sample of wafers
selected from the manufacturing process. The population in this example is the collection of
all layer thicknesses produced by that process. By using statistical methods, we may be able
to analyze the sample layer thickness data and draw certain conclusions about the process that
manufactures the wafers.

A probability distribution is a mathematical model that relates the value of the vari-
able with the probability of occurrence of that value in the population. In other words, we
might visualize layer thickness as a random variable because it takes on different values in
the population according to some random mechanism, and then the probability distribution of
layer thickness describes the probability of occurrence of any value of layer thickness in the
population. There are two types of probability distributions.

120

110 - T

Quality index
—
o
o)
T
|

O
o
I

80 [~

L L L
70 1 2 3

Plant

BFIGURE 3.8 Comparative box plots of a
quality index for products produced at three plants.
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fx)

A1

X2

3

(a)

Xg

5

a b
(b)

BFIGURE 3.9 Probability distributions. (@) Discrete case. (b) Continuous case.

1. Continuous distributions. When the variable being measured is expressed on a
continuous scale, its probability distribution is called a continuous distribution.
The probability distribution of metal layer thickness is continuous.

2. Discrete distributions. When the parameter being measured can only take on cer-
tain values, such as the integers 0, 1, 2, . . ., the probability distribution is called
a discrete distribution. For example, the distribution of the number of nonconfor-
mities or defects in printed circuit boards would be a discrete distribution.

Examples of discrete and continuous probability distributions are shown in Figures 3.9a
and 3.9b, respectively. The appearance of a discrete distribution is that of a series of vertical
“spikes,” with the height of each spike proportional to the probability. We write the probabil-
ity that the random variable x takes on the specific value x; as

Plx=x}=p(x)

The appearance of a continuous distribution is that of a smooth curve, with the area under the curve
equal to probability, so that the probability that x lies in the interval from a to b is written as

Pla<x<b}= _[ff(x)dx

EXAMPLE 3.5

random variable representing the number of nonconforming
chips in the sample, then the probability distribution of x is

A manufacturing process produces thousands of semiconduc-
tor chips per day. On the average, 1% of these chips do not
conform to specifications. Every hour, an inspector selects a
random sample of 25 chips and classifies each chip in the
sample as conforming or nonconforming. If we let x be the

p(x)

25
= ( J(0.01)"(o.99)25"‘ x=0,1,2,...,25
X

(continued)
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where () =25!/[x! (25 — x)!]. This is a discrete distribution, P(x<1)=P(x=0)+P(x=1)
since the observed number of nonconformances is x = 0, 1,
2,....25, and is called the binomial distribution. We may = p(0)+p(1)
calculate the probability of finding one or fewer nonconforming _ i (ZSJ(O 01)* (0 99)25—x
parts in the sample as Solx '
25!

= ons —=_(0.99)*(0.01)° t o (0 99)*(0.01)"

=0.7778+0.1964 = 0.9742

- _

:
p EXAMPLE K ¥+J A Continuous Distribution

Suppose that x is a random variable that represents the actual ()
contents in ounces of a 1-pound bag of coffee beans. The
probability distribution of x is assumed to be

f(x)=% 155<x<17.0

This is a continuous distribution, since the range of x is the
interval [15.5, 17.0]. This distribution is called the uniform

distribution, and it is shown graphically in Figure 3.10. Note 155 1 é 0 165 170 x
that the area under the function f(x) corresponds to probability,
so that the probability of a bag containing less than 16.0 oz is

BFIGURE 3.10 The uniform distribu-
tion for Example 3.6.

16.0 16.0 1
Px<16.0} = ;5 f(x)dx = 15515
160
_ X :16.0 15.520.3333
1.5lis5 5

This follows intuitively from inspection of Figure 3.9.

- _

In Sections 3.2 and 3.3 we present several useful discrete and continuous distributions.
The mean p of a probability distribution is a measure of the central tendency in the
distribution, or its location. The mean is defined as

'[_w xf(x) dx, x continuous (3.5a)
2 x;p(x;), x discrete (3.5b)

For the case of a discrete random variable with exactly N equally likely values [that is, p(x;) =
1/N], then equation 3.5b reduces to

Xi

M=

1
N

L

‘[1:

Note the similarity of this last expression to the sample average x defined in equation 3.1. The
mean is the point at which the distribution exactly “balances” (see Fig. 3.11). Thus, the mean
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NN N AN

Median/# Mode u Mode
(a) (b) (c)
BFIGURE 3.11 The mean of a distribution.

o=2
o=4
u=10 u=20 =10
BFIGURE 3.12 Two probability distribu- BFIGURE 3.13 Two probability distributions
tions with different means. with the same mean but different standard deviations.

is simply the center of mass of the probability distribution. Note from Figure 3.11b that the
mean is not necessarily the fiftieth percentile of the distribution (which is the median), and
from Figure 3.11c that it is not necessarily the most likely value of the variable (which is
called the mode). The mean simply determines the location of the distribution, as shown in
Figure 3.12.

The scatter, spread, or variability in a distribution is expressed by the variance . The
definition of the variance is

[ (x = p)” £(x)dx, x continuous (3.62)

i(xi - ,u)zp(x,.),x discrete (3.6b)
i=1

o™ =

when the random variable is discrete with N equally likely values, then equation 3.6b becomes

(xi = l‘)z
N

M=

o’=1

Il
—_

and we observe that in this case the variance is the average squared distance of each member of
the population from the mean. Note the similarity to the sample variance s>, defined in equation
3.2.1f * = 0, there is no variability in the population. As the variability increases, the variance
o~ increases. The variance is expressed in the square of the units of the original variable. For
example, if we are measuring voltages, the units of the variance are (VO]IS)Z. Thus, it is custom-
ary to work with the square root of the variance, called the standard deviation o. It follows that

(3.7)

The standard deviation is a measure of spread or scatter in the population expressed in the
original units. Two distributions with the same mean but different standard deviations are
shown in Figure 3.13.
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3.2 Important Discrete Distributions

Several discrete probability distributions arise frequently in statistical quality control. In this
section, we discuss the hypergeometric distribution, the binomial distribution, the Poisson
distribution, and the negative binomial and geometric distributions.

3.2.1 The Hypergeometric Distribution

Suppose that there is a finite population consisting of N items. Some number—say,
D(D £ N)—of these items fall into a class of interest. A random sample of n items is selected
from the population without replacement, and the number of items in the sample that fall into
the class of interest—say, x—is observed. Then x is a hypergeometric random variable with
the probability distribution defined as follows.

The hypergeometric probability distribution is

(D](N_D]

X n—x .

T x=0,1,2,...,min (n,D) (3.8)
n

The mean and variance of the distribution are

p(x)=

nD
_nD (3.9)
=N
and
o2 :g(l_BJ(N‘”) (3.10)
NU VAN

In the above definition, the quantity

W

is the number of combinations of a items taken b at a time.

The hypergeometric distribution is the appropriate probability model for selecting a
random sample of n items without replacement from a lot of N items of which D are non-
conforming or defective. By a random sample, we mean a sample that has been selected in
such a way that all possible samples have an equal chance of being chosen. In these applica-
tions, x usually represents the number of nonconforming items found in the sample. For
example, suppose that a lot contains 100 items, 5 of which do not conform to requirements.
If 10 items are selected at random without replacement, then the probability of finding one or
fewer nonconforming items in the sample is
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P{x<1}=P{x=0}+P{x=1}

ko) ()
0A10 19
=100 + 100 = 0.92314
10 10

In Chapter 15, we show how probability models such as this can be used to design acceptance-
sampling procedures.

Some computer programs can perform these calculations. The display below is the out-
put from Minitab for calculating cumulative hypergeometric probabilities with N = 100,

D =5 (note that Minitab uses the symbol M instead of D and n = 10). Minitab will also cal-
culate the individual probabilities for each value of x.

Cumulative Distribution Function

Hypergeometric with N=100, M=5, and n=10

x P(X<=x) X P (X<=x)
0 0.58375 6 1.00000
1 0.92314 7 1.00000
2 0.99336 8 1.00000
3 0.99975 9 1.00000
4 1.00000 10 1.00000
5 1.00000

3.2.2 The Binomial Distribution

Consider a process that consists of a sequence of n independent trials. By independent trials,
we mean that the outcome of each trial does not depend in any way on the outcome of previ-
ous trials. When the outcome of each trial is either a “success” or a “failure,” the trials are
called Bernoulli trials. If the probability of “success” on any trial—say, p—is constant, then
the number of “successes” x in n Bernoulli trials has the binomial distribution with para-
meters n and p, defined as follows:

The binomial distribution with parameters n 20 and 0 < p < 1 is
n n—x
p(x)=( )px(l—p) x=0,1,...,n (3.11)
x

The mean and variance of the binomial distribution are
W=np (3.12)

and

o” =np(l-p) (3.13)
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The binomial distribution is used frequently in quality engineering. It is the appropriate
probability model for sampling from an infinitely large population, where p represents the
fraction of defective or nonconforming items in the population. In these applications, x usu-
ally represents the number of nonconforming items found in a random sample of n items. For
example, if p = 0.10 and n = 15, then the probability of obtaining x nonconforming items is
computed from equation 3.11 as follows:

Probability Density Function

Binomial with n=15 and p=0.1

x P(X=x) x P(X=x)

0 0.205891 6 0.001939
1 0.343152 7 0.000277
2 0.266896 8 0.000031
3 0.128505 9 0.000003
4 0.042835 10 0.000000
5 0.010471

Minitab was used to perform these calculations. Notice that for all values of x that lie between
10 £ x < 15 the probability of finding x “successes” in 15 trials is zero.

Several binomial distributions are shown graphically in Figure 3.14. The shape of those
examples is typical of all binomial distributions. For a fixed n, the distribution becomes more
symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed p, the distrib-
ution becomes more symmetric as n increases.

A random variable that arises frequently in statistical quality control is

(3.14)

>
Il
|

where x has a binomial distribution with parameters n and p. Often p is the ratio of the
observed number of defective or nonconforming items in a sample (x) to the sample size (n),

0.4 0.3

rn=10,p=0.25

5p
5p
5p

[EENN

0.
0.
0.

s = =
I
I
O o1 =

0.2

0.25 - 1n=20,p=0.25
n=40,p=0.25
0.2
0.15
0.1
0.1
0.05
0 0 | | ! !
3 6 9 12 15 0 5 10

fx)
px)

0 20 25 30
X X
(a) Binomial distributions for different values (b) Binomial distributions for different values
of p with n = 15. of n with p = 0.25.

B FIGURE 3.14 Binomial distributions for selected values of n and p.
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and this is usually called the sample fraction defective or sample fraction nonconform-
ing. The “ "~ symbol is used to indicate that p is an estimate of the true, unknown value
of the binomial parameter p. The probability distribution of p is obtained from the bino-
mial, since

where [na] denotes the largest integer less than or equal to na. It is easy to show that the mean
of p is p and that the variance of p is

3.2.3 The Poisson Distribution

A useful discrete distribution in statistical quality control is the Poisson distribution, defined
as follows:

The Poisson distribution is

B G
Y

p(x) x=0,1,... (3.15)

where the parameter A > 0. The mean and variance of the Poisson distribution
are

=2 (3.16)

and

o2=A (3.17)

Note that the mean and variance of the Poisson distribution are both equal to the para-
meter A.

A typical application of the Poisson distribution in quality control is as a model of the
number of defects or nonconformities that occur in a unit of product. In fact, any random phe-
nomenon that occurs on a per unit (or per unit area, per unit volume, per unit time, etc.) basis
is often well approximated by the Poisson distribution. As an example, suppose that the num-
ber of wire-bonding defects per unit that occur in a semiconductor device is Poisson distrib-
uted with parameter A = 4. Then the probability that a randomly selected semiconductor device
will contain two or fewer wire-bonding defects is

e tqx

x!

=0.018316 + 0.073263 + 0.146525 = 0.238104

P{x<2}= é)
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Minitab can perform these calculations. Using the Poisson distribution with the mean = 4
results in:

Probability Density Function

Poisson with mean=14

x P(X=x)

0 0.018316
1 0.073263
2 0.146525

Several Poisson distributions are shown in Figure 3.15. Note that the distribution is
skewed; that is, it has a long tail to the right. As the parameter A becomes larger, the Poisson
distribution becomes symmetric in appearance.

It is possible to derive the Poisson distribution as a limiting form of the binomial dis-
tribution. That is, in a binomial distribution with parameters n and p, if we let n approach
infinity and p approach zero in such a way that np = A is a constant, then the Poisson distrib-
ution results. It is also possible to derive the Poisson distribution using a pure probability
argument. [For more information about the Poisson distribution, see Hines, Montgomery,
Goldsman, and Borror (2004); Montgomery and Runger (2011); and the supplemental text
material. ]

3.24 The Negative Binomial and Geometric Distributions

The negative binomial distribution, like the binomial distribution, has its basis in Bernoulli
trials. Consider a sequence of independent trials, each with probability of success p, and let x
denote the trial on which the rth success occurs. Then x is a negative binomial random vari-
able with probability distribution defined as follows.

0.2

e o o
PPN
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=00 A

o N
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Obases b1 Mii“- oo eoose

0 10 20 30 40

BFIGURE 3.15 Poisson probability distributions for selected values of A.
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The negative binomial distribution is

x—1

p00=(

l)pr(l—p)x_r x=rr+1l,r+2,... (3.18)
r—

where 7 > 1 is an integer. The mean and variance of the negative binomial distri-
bution are

p=_ (3.19)
p
and
Gz=rﬂ;p) (3.20)
p
respectively.

The negative binomial distribution, like the Poisson distribution, is sometimes useful as
the underlying statistical model for various types of “count” data, such as the occurrence of
nonconformities in a unit of product (see Section 7.3.1). There is an important duality between
the binomial and negative binomial distributions. In the binomial distribution, we fix the sample
size (number of Bernoulli trials) and observe the number of successes; in the negative binomial
distribution, we fix the number of successes and observe the sample size (number of Bernoulli
trials) required to achieve them. This concept is particularly important in various kinds of sam-
pling problems. The negative binomial distribution is also called the Pascal distribution (after
Blaise Pascal, the 17th-century French mathematician and physicist. There is a variation of the
negative binomial for real values of A that is called the Polya distribution.

A useful special case of the negative binomial distribution is if » = 1, in which case we
have the geometric distribution. It is the distribution of the number of Bernoulli trials until
the first success. The geometric distribution is

p)=1-p)*-lp, x=1,2,.

The mean and variance of the geometric distribution are

1 2_1-p
=— and o°=
= p?

respectively. Because the sequence of Bernoulli trials are independent, the count of the number
of trials until the next success can be started from anywhere without changing the probability
distribution. For example, suppose we are examining a series of medical records searching for
missing information. If, for example, 100 records have been examined, the probability that the
first error occurs on record number 105 is just the probability that the next five records are
GGGGB, where G denotes good and B denotes an error. If the probability of finding a bad
record is 0.05, the probability of finding a bad record on the fifth record examined is
P{x=5}= (0.95)4(0.05) = 0.0407. This is identical to the probability that the first bad record
occurs on record 5. This is called the lack of memory property of the geometric distribution.
This property implies that the system being modeled does not fail because it is wearing out due
to fatigue or accumulated stress.
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The negative binomial random variable can be defined as the sum of geometric random
variables. That is, the sum of r geometric random variables each with parameter p is a nega-
tive binomial random variable with parameters p and r.

3.3 Important Continuous Distributions

In this section we discuss several continuous distributions that are important in statistical
quality control. These include the normal distribution, the lognormal distribution, the expo-
nential distribution, the gamma distribution, and the Weibull distribution.

3.3.1 The Normal Distribution

The normal distribution is probably the most important distribution in both the theory and
application of statistics. If x is a normal random variable, then the probability distribution of
x is defined as follows:

The normal distribution is

Y x-uY?
f(x)=61 eZ("j —o< X< oo (3.21)

The mean of the normal distribution is p (—oo < i < o0) and the variance is

o> > 0.

The normal distribution is used so much that we frequently employ a special notation,
x—N(u, 6 2), to imply that x is normally distributed with mean p and variance & 2. The visual
appearance of the normal distribution is a symmetric, unimodal or bell-shaped curve and is
shown in Figure 3.16.

There is a simple interpretation of the standard deviation o of a normal distribution,
which is illustrated in Figure 3.17. Note that 68.26% of the population values fall between the
limits defined by the mean plus and minus one standard deviation (1 + 10 ); 95.46% of
the values fall between the limits defined by the mean plus and minus two standard deviations
(4 £ 20); and 99.73% of the population values fall within the limits defined by the mean

f(X) \
| | | |

u—-3c u-— 20';1 lo u u+10',u+2cru+30'

O_2
~ 68. 26%
95.46%
i * 99.73%

BMFIGURE 3.16 The normal distribution. BFIGURE 3.17 Areas under the normal distribution.
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plus and minus three standard deviations (¢ * 30). Thus, the standard deviation measures
the distance on the horizontal scale associated with the 68.26%, 95.46%, and 99.73% con-
tainment limits. It is common practice to round these percentages to 68%, 95%, and 99.7%.

The cumulative normal distribution is defined as the probability that the normal random
variable x is less than or equal to some value a, or

)
P{x<a}=F(a)=["_ py e 2V 9/ dx (3.22)

This integral cannot be evaluated in closed form. However, by using the change of variable

(=AM (3.23)
O

the evaluation can be made independent of u and 6. That is,

P{xSa}:P{ZS a;u}zq)(a—yj

o

where ®(-) is the cumulative distribution function of the standard normal distribution
(mean = 0, standard deviation = 1). A table of the cumulative standard normal distribution is
given in Appendix Table II. The transformation (3.23) is usually called standardization,

because it converts a N(U, 0'2) random variable into an N(0, 1) random variable.

 [EXAMPLE 3.7

The time to resolve customer complaints is a critical quality
characteristic for many organizations. Suppose that this time in
a financial organization, say, x—is normally distributed with

SOLUTION

mean U =40hours and standard deviation © =2 hours
denoted x ~ N(40, 2%). What is the probability that a customer
complaint will be resolved in less than 35 hours?

The desired probability is
P{x<35}

To evaluate this probability from the standard normal tables,

we standardize the point 35 and find

35— 40}
2

P{x<35}= P{z <

P{z <-2.5} = ®(-2.5) = 0.0062

Consequently, the desired probability is
p{x=>35}=0.0062

Figure 3.18 shows the tabulated probability for both the N(40,
2?) distribution and the standard normal distribution. Note that
the shaded area to the left of 35 hr in Figure 3.18 represents
the fraction of customer complaints resolved in less than or
equal to 35 hours.

N\

0.0062

X

35 40

0.0062

z
-2.5 0

BFIGURE 3.18 Calculation of P{x <35} in
Example 3.7.
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In addition to the appendix table, many computer programs can calculate normal proba-
bilities. Minitab has this capability.

Appendix Table II gives only probabilities to the left of positive values of z. We will
need to utilize the symmetry property of the normal distribution to evaluate probabilities.
Specifically, note that

P{x2a}=1-P{x<a}

(3.24)
P{XS—G}ZP{XSQ} (325)

and
P{x > —a} = P{x < a} (3.26)

It is helpful in problem solution to draw a graph of the distribution, as in Figure 3.18.

.
/EXAI\IIPLE < X:.J Shaft Diameters

lished as 0.2500 + 0.0015 in. What fraction of the shafts pro-
duced conform to specifications?

The diameter of a metal shaft used in a disk-drive unit is nor-
mally distributed with mean 0.2508 in. and standard deviation
0.0005 in. The specifications on the shaft have been estab-

SoLuTion

The appropriate normal distribution is shown in Figure 3.19.
Note that

o =0.0005

P{0.2485 < x <0.2515} = P{x <0.2515} — P{x < 0.2485}

_ of 0-2515-0.2508)  (0.2485-0.2508 0.2485 0.2508 0.2515
B 0.0005 ) 0.0005 Lower Upper
. ! specification specification
- 0(140)- (460
=0.9192 - 0.0000
_ BMFIGURE 3.19 Distribution of shaft diameters,
=09192 Example 3.8.

Thus, we would expect the process yield to be approximately
91.92%; that is, about 91.92% of the shafts produced conform
to specifications.

Note that almost all of the nonconforming shafts are too
large, because the process mean is located very near to the

upper specification limit. Suppose that we can recenter the
manufacturing process, perhaps by adjusting the machine, so
that the process mean is exactly equal to the nominal value of
0.2500. Then we have

P{0.2485 < x < 0.2515} = P{x < 0.2515} — P{x < 0.2485}

_ q)(O.ZS 15-0.2500 ) B q)( 0.2485— 0.2500)

0.0005

0.0005

= (3.00) — D(—3.00)
=0.99865—0.00135

=0.9973

By recentering the process we have increased the yield of the

process to approximately 99.73%.

4
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- EXAMPLE 3.9

Sometimes instead of finding the probability associated with a
particular value of a normal random variable, we find it neces-
sary to do the opposite—find a particular value of a normal

SoLuTion

random variable that results in a given probability. For exam-
ple, suppose that x ~N(10, 9). Find the value of x—say, a—
such that P{x > a} = 0.05.

From the problem statement, we have

P{x>a}=P{z> a—310

}: 0.05

or

P{z <4 _310} =0.95

_/

From Appendix Table II, we have P{z < 1.645} = 0.95, so

a=10 _ 645

or

a=10+3(1.645)=14.935

The normal distribution has many useful properties. One of these is relative to linear
combinations of normally and independently distributed random variables. If x;, x, . . . , x,

are normally and independently distributed random variables with means gy, i, . .

variances 0'2, o3, ..

., W, and

., 0'2,,, respectively, then the distribution of the linear combination

y=a1x1 +a2x2 +"'+an.xn

is normal with mean

Hy=ailly +alp +--+a, Ly,

and variance

(3.27)

where ay, a,, . .

2
y

., a, are constants.

o’ =alol +a30l +---+a’c} (3.28)

The Central Limit Theorem. The normal distribution is often assumed as the
appropriate probability model for a random variable. Later on, we will discuss how to check
the validity of this assumption; however, the central limit theorem is often a justification of
approximate normality.

The Central Limit Theorem If x|, x,, . . ., x,, are independent random variables with
mean u; and variance o?, and if Y =X; + X, + - - + X, then the distribution of

approaches the N(0, 1) distribution as n approaches infinity.
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The central limit theorem implies that the sum of n independently distributed random vari-
ables is approximately normal, regardless of the distributions of the individual variables. The
approximation improves as n increases. In many cases the approximation will be good for small
n—say, n < 10—whereas in some cases we may require very large n—say, n > 100—for the
approximation to be satisfactory. In general, if the x; are identically distributed, and the distribu-
tion of each x; does not depart radically from the normal, then the central limit theorem works
quite well for n = 3 or 4. These conditions are met frequently in quality-engineering problems.

3.3.2 The Lognormal Distribution

Variables in a system sometimes follow an exponential relationship, say x = exp(w). If the
exponent w is a random variable, then x = exp(w) is a random variable and the distribution of
x is of interest. An important special case occurs when w has a normal distribution. In that
case, the distribution of x is called a lognormal distribution. The name follows from the
transformation In (x) = w. That is, the natural logarithm of x is normally distributed.

Probabilities for x are obtained from the transformation to w, but we need to recognize
that the range of x is (0, co). Suppose that w is normally distributed with mean 6 and vari-
ance »”; then the cumulative distribution function for x is

F(a) = P[x < a] = Plexp(w) < a]= P[w <In(a)]

for x > 0, where z is a standard normal random variable. Therefore, Appendix Table II can be
used to determine the probability. Also, f(x) =0, for x < 0. The lognormal random variable is
always nonnegative.

The lognormal distribution is defined as follows:

Let w have a normal distribution mean 6 and variance w?; then x = exp(w) is a
lognormal random variable, and the lognormal distribution is

2
In(x) -0
e —— e -m 0<x<o (3.29)
X~ 27w 2m

The mean and variance of x are

u= OO and o2 = 20 (em2 - 1) (3.30)

The parameters of a lognormal distribution are 6 and w?, but care is needed to interpret that
these are the mean and variance of the normal random variable w. The mean and variance of
x are the functions of these parameters shown in equation 3.30. Figure 3.20 illustrates log-
normal distributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. Other continuous distributions can also be used in this type of application. However,
because the lognormal distribution is derived from a simple exponential function of a normal
random variable, it is easy to understand and easy to evaluate probabilities.
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f)

BFIGURE 3.20 Lognormal probability density functions
with 8 = 0 for selected values of @”.

 [EXAMPLE 3.10 I T

The lifetime of a medical laser used in ophthalmic surgery has
a lognormal distribution with 6 = 6 and @ = 1.2 hours What is
the probability that the lifetime exceeds 500 hours?

SOLUTION
From the cumulative distribution function for the lognormal From Appendix Table II, 1 — ®(a) = 0.99 when a = —2.33.
random variable Therefore,
P(x>500) = 1~ Plexp(w) < 500] =1~ P{w < In(500)] —1“(;‘)2" 0-233 and  a=exp(3.204)=24.63 hours
= q’(%j =1-®(0.1788) Determine the mean and standard deviation of the lifetime. Now,

=1-0.5710 = 0.4290 2h
w=e""% = exp(6+0.72) = 828.82 hours
What lifetime is exceeded by 99% of lasers? Now the question

2 _ 20+0° [ o* )
. . = —1)= 12+1.44 1.44)-1
is to determine a such that P(x > a) = 0.99. Therefore, o = (e exp( )[exp( ) ]

=2,212,419.85
P(x > a) = Plexp(w)>a]| = P[w > In(a)]
so the standard deviation of the lifetime is 1487.42 hours.
—1- CD( In(a) - 6) -0.99 Notice that the standard deviation of the lifetime is large
’ relative to the mean.
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3.3.3 The Exponential Distribution

The probability distribution of the exponential random variable is defined as follows:

The exponential distribution is

f(x)=™™ x>0 (3.31)
where A > 0 is a constant. The mean and variance of the exponential distribu-
tion are

u= 1 (3.32)
) .
and
2 1

o= =z (3.33)

respectively.
Several exponential distributions are shown in Figure 3.21.
The cumulative exponential distribution is
F(a)=P{x<a}

_ (49,

= [y AeMd1

S —— a>0 (3.34)

Figure 3.22 illustrates the exponential cumulative distribution function.

The exponential distribution is widely used in the field of reliability engineering as a
model of the time to failure of a component or system. In these applications, the parameter A
is called the failure rate of the system, and the mean of the distribution 1/A is called the

0.2

2=02(u=5)
A=01(u = 10)

0.16 A= 0.0667( = 15)

0.12
. ~
Z N

 0.08 =
0.04 -
0 . ;
0 20 40 60 80 100 0
X a

BFIGURE 3.21 Exponential distributions for selected BMFIGURE 3.22 The cumulative
values of A. exponential distribution function.
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mean time to failure.” For example, suppose that an electronic component in an airborne
radar system has a useful life described by an exponential distribution with failure
rate 10™%/h; that is, A =10"*. The mean time to failure for this component is
1/A = 10* = 10,000 h. If we wanted to determine the probability that this component would
fail before its expected life, we would evaluate
P{x < %} = [ AeMdr=1-¢" =0.63212

This result holds regardless of the value of A; that is, the probability that a value of an expo-
nential random variable will be less than its mean is 0.63212. This happens, of course,
because the distribution is not symmetric.

There is an important relationship between the exponential and Poisson distributions. If

we consider the Poisson distribution as a model of the number of occurrences of some event
in the interval (0, 7], then from equation 3.15 we have

*/‘U X
e (At
p(X)=—(, )
x!
Now x = 0 implies that there are no occurrences of the event in (0, #], and

P{x=0}=p(0) = e We may think of p(0) as the probability that the interval to the first
occurrence is greater than ¢, or

P{y>t}=p(0)= e M
where y is the random variable denoting the interval to the first occurrence. Since
F()=P{y<i}=1-e*
and using the fact that f(y) = dF(y)/dy, we have

fo)=2" (3.35)

as the distribution of the interval to the first occurrence. We recognize equation 3.35 as an
exponential distribution with parameter A. Therefore, we see that if the number of occurrences
of an event has a Poisson distribution with parameter A, then the distribution of the interval
between occurrences is exponential with parameter A.

The exponential distribution has a lack of memory property. To illustrate, suppose that
the exponential random variable x is used to model the time to the occurrence of some event.
Consider two points in time #; and #, > t,. Then the probability that the event occurs at a time
that is less than #; + #, but greater than time #, is just the probability that the event occurs at
time less than #;. This is the same lack of memory property that we observed earlier for the
geometric distribution. The exponential distribution is the only continuous distribution that
has this property.

3.3.4 The Gamma Distribution

The probability distribution of the gamma random variable is defined as follows:

2See the supplemental text material for more information.
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The gamma distribution is

fx)= 2~ (Ax) e x>0 (3.36)

with shape parameter r > 0 and scale parameter A > 0. The mean and variance
of the gamma distribution are

-
- (3.37)
H=7
and
o2 = /1_72 (3.38)

respectively.”

Several gamma distributions are shown in Figure 3.23. Note that if » = 1, the gamma distrib-
ution reduces to the exponential distribution with parameter A (Section 3.3.3). The gamma
distribution can assume many different shapes, depending on the values chosen for r and A.
This makes it useful as a model for a wide variety of continuous random variables.

If the parameter r is an integer, then the gamma distribution is the sum of r indepen-
dently and identically distributed exponential distributions, each with parameter A. That is, if
X1, Xa, . . . , X, are exponential with parameter A and independent, then

y=x+tx,++x,

is distributed as gamma with parameters r and A. There are a number of important applica-
tions of this result.

1
r=1,1=1
0.8 —_—r=2,1=1
r=3,A=1
0.6 —
C
04t
- \;\L\
0 I I 1
0 2 4 6 8 10 12 BMFIGURE 3.23 Gamma distributions
x for selected values or rand A = 1.

3F(r) in the denominator of equation 3.36 is the gamma function, defined as I'(r) = Jrgox’_lef"dx, r>0.If risa
positive integer, then I'(r) = (r — 1)!
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EXAIVIPLE <3 k| A Standby Redundant System

Consider the system shown in Figure 3.24. This is called a

standby redundant system, because while component 1 is on, SRR
component 2 is off, and when component 1 fails, the switch —— Switeh

automatically turns component 2 on. If each component has a

life described by an exponential distribution with A = 107*/h, [ Component 1

say, then the system life is gamma distributed with parameters
r =2 and A=10"* Thus, the mean time to failure is
u=rA=2/10"=2x10*h.

_/

The cumulative gamma distribution is

BMFIGURE 3.24 The standby redun-
dant system for Example 3.11.

Fla)=1-]"Z—()" e Mar (3.39)

If r is an integer, then equation 3.39 becomes

(2a)'

F(a)=1—r2_1e“‘1—

k=0 k!

(3.40)

Consequently, the cumulative gamma distribution can be evaluated as the sum of » Poisson terms
with parameter Aa. This result is not too surprising, if we consider the Poisson distribution as a
model of the number of occurrences of an event in a fixed interval, and the gamma distribution
as the model of the portion of the interval required to obtain a specific number of occurrences.

3.3.5 The Weibull Distribution

The Weibull distribution is defined as follows:

The Weibull distribution is
2(5) )
x)=—| = exp| —| —
f(x) ol Py
and variance of the Weibull distribution are

- L
u-@l‘(1+ ﬂ)

and

respectively.

where 0 > 0 is the scale parameter and 3 > 0 is the shape parameter. The mean

x20 (3.41)

(3.42)

2
)} (3.43)
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5
—B=10=1
—B=1,0=1
4 B=2,6=1
———p=4,0=1
3
=
=
27
| A
0 ] — : BFIGURE 3.25 Weibull dis-
0 1 2 3

X

4 tributions for selected values of the shape
parameter 3 and scale parameter 6 = 1.

The Weibull distribution is very flexible, and by appropriate selection of the parameters 6 and f3,
the distribution can assume a wide variety of shapes. Several Weibull distributions are shown in
Figure 3.25 for 6 = 1 and 8 = 1/2, 1, 2, and 4. Note that when 3 = 1, the Weibull distribution
reduces to the exponential distribution with mean 1/6. The cumulative Weibull distribution is

Fla)=1- exp{—(%)ﬁ:l

(3.44)

The Weibull distribution has been used extensively in reliability engineering as a model of time
to failure for electrical and mechanical components and systems. Examples of situations in which
the Weibull distribution has been used include electronic devices such as memory elements,
mechanical components such as bearings, and structural elements in aircraft and automobiles.*

- [EXAMPLE 3.12 K e e

The time to failure for an electronic component used in a flat
panel display unit is satisfactorily modeled by a Weibull distri-

bution with B=21 and 6 =5000. Find the mean time to

SOLUTION

failure and the fraction of components that are expected to
survive beyond 20,000 hours.

The mean time to failure is

1

,LL:OF(1+%]=SOOOF 1+l

2
=5000T(3) = 10,000 hours

The fraction of components expected to survive a = 20,000
hours is

-

or

1

1— F(20,000) = exp| - 22000 )2
5,000
= e_2
=0.1353

That is, all but about 13.53% of the subassemblies will fail by
20,000 hours.

“See the supplemental text material for more information.
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3.4 Probability Plots

3.4.1 Normal Probability Plots

How do we know whether a particular probability distribution is a reasonable model for data?
Probability plotting is a graphical method for determining whether sample data conform to a
hypothesized distribution based on a subjective visual examination of the data. The general
procedure is very simple and can be performed quickly. Probability plotting typically uses spe-
cial graph paper, known as probability paper, that has been designed for the hypothesized dis-
tribution. Probability paper is widely available for the normal, lognormal, Weibull, and various
chi-square and gamma distributions. In this section we illustrate the normal probability plot.
Section 3.4.2 discusses probability plots for some other continuous distributions.

To construct a probability plot, the observations in the sample are first ranked from
smallest to largest. That is, the sample xy, x,, . . ., x,, is arranged as x;), X2y, - - . , X(,), Where
X(1) 1s the smallest observation, x,) is the second smallest observation, and so forth, with x,,
the largest. The ordered observations x ;, are then plotted against their observed cumulative
frequency (j — 0.5)/n [or 100 (j — 0.5)/n] on the appropriate probability paper. If the hypoth-
esized distribution adequately describes the data, the plotted points will fall approximately
along a straight line; if the plotted points deviate significantly and systematically from a
straight line, the hypothesized model is not appropriate. Usually, the determination of
whether or not the data plot as a straight line is subjective. The procedure is illustrated in the
following example.

- [EXAMPLE 3.13 X

Observations on the road octane number of ten gasoline blends
are as follows: 88.9, 87.0, 90.0, 88.2, 87.2, 87.4, 87.8, §9.7,
86.0, and 89.6. We hypothesize that the octane number is

SoLuTion

adequately modeled by a normal distribution. Is this a reason-
able assumption?

To use probability plotting to investigate this hypothesis, first
arrange the observations in ascending order and calculate their
cumulative frequencies (j — 0.5)/10 as shown in the following
table.

J Xj) (j—0.5)/10
1 86.0 0.05
2 87.0 0.15
3 87.2 0.25
4 87.4 0.35
5 87.8 0.45
6 88.2 0.55
7 88.9 0.65
8 89.6 0.75
9 89.7 0.85

10 90.0 0.95

The pairs of values x;, and (j —0.5)/10 are now plotted on nor-
mal probability paper. This plot is shown in Figure 3.26. Most
normal probability paper plots 100(j — 0.5)/n on the left verti-
cal scale (and some also plot 100[1 — (j — 0.5)/n] on the right
vertical scale), with the variable value plotted on the horizon-
tal scale. A straight line, chosen subjectively as a “best fit” line,
has been drawn through the plotted points. In drawing the
straight line, you should be influenced more by the points near
the middle of the plot than by the extreme points. A good rule
of thumb is to draw the line approximately between the twenty-
fifth and seventy-fifth percentile points. This is how the line in
Figure 3.26 was determined. In assessing the systematic devi-
ation of the points from the straight line, imagine a fat pencil
lying along the line. If all the points are covered by this imag-
inary pencil, a normal distribution adequately describes the
data. Because the points in Figure 3.26 would pass the fat pen-
cil test, we conclude that the normal distribution is an appro-
priate model for the road octane number data.

(continued)
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852 862 8.2 882 82 02 912 PFIGURE 3.26 Normal probability
0 plot of the road octane number data.
4
A normal probability plot can also be constructed on ordinary graph paper by plotting
the standardized normal scores z; against x ;,, where the standardized normal scores satisfy
j—05 _
= p(z22)=0())
For example, if (j — 0.5)/n=0.05, ®(z;) = 0.05 implies that z; = —1.64. To illustrate, consider
the data from the previous example. In the following table we show the standardized normal
scores in the last column.

Figure 3.27 presents the plot of z; versus x ;. This normal probability plot is equivalent
to the one in Figure 3.26. We can obtain an estimate of the mean and standard deviation
directly from a normal probability plot. The mean is estimated as the fiftieth percentile. From
Figure 3.25, we would estimate the mean road octane number as 88.2. The standard deviation
is proportional to the slope of the straight line on the plot, and one standard deviation is the
difference between the eighty-fourth and fiftieth percentiles. In Figure 3.26, the eighty-fourth
percentile is about 90, and the estimate of the standard deviation is 90 — 88.2 = 1.8.

A very important application of normal probability plotting is in verification of
assumptions when using statistical inference procedures that require the normality assump-
tion. This will be illustrated subsequently.

330 j X (j—0.5)/10 z
1641 1 86.0 0.05 -1.64
0.67 - 2 87.0 0.15 -1.04
3 87.2 0.25 -0.67
e 0 4 87.4 0.35 -0.39
5 87.8 0.45 -0.13
087 6 88.2 0.55 0.13
el 7 88.9 0.65 0.39
8 89.6 0.75 0.67
-3.30 O ‘ ‘ ‘ ‘ ‘ ‘ 9 89.7 0.85 1.04
85.2 86.2 87.2 832 892 902 912 10 90.0 0.95 1.64

x(j)

BFIGURE 3.27 Normal probability plot of the road
octane number data with standardized scores.
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= TABLE 3.5
Aluminum Contamination (ppm)

30 30 60 63 70 79 87
90 101 102 115 118 119 119
120 125 140 145 172 182
183 191 222 244 291 511

From “The Lognormal Distribution for Modeling Quality Data When the Mean Is Near Zero,”
Journal of Quality Technology, 1990, pp. 105-110.

3.4.2 Other Probability Plots

Probability plots are extremely useful and are often the first technique used when we need to
determine which probability distribution is likely to provide a reasonable model for data. In
using probability plots, usually the distribution is chosen by subjective assessment of the
probability plot. More formal statistical goodness-of-fit tests can also be used in conjunction
with probability plotting.

To illustrate how probability plotting can be useful in determining the appropriate dis-
tribution for data, consider the data on aluminum contamination (ppm) in plastic shown in
Table 3.5. Figure 3.28 presents several probability plots of this data, constructed using
Minitab. Figure 3.28a is a normal probability plot. Notice how the data in the tails of the plot

99 99 -
95 - 95
90 90 -
80 - 80 -
e n
@ 50 S 8ol
5 30 S 400
& 20 & 50
10 10
5 5
1+ 1
I I I I I I I B B W [
0 100 200 300 400 500 100 1000
Aluminum contamination (ppm) Aluminum contamination (ppm)
(a) (b)
99 - R 99 -
95 -
§§ : 98 -
éS C 97 -
By 3l
520 § 90
< o
&S 101 & g0
5 70 -
3+ 60 -
e 50 [~
30~
17\ [ [N 107\ I I I I l l
10 100 1000 0 100 200 300 400 500 600
Aluminum contamination (ppm) Aluminum contamination (ppm)
(c) (d)

BFIGURE 3.28 Probability plots of the aluminum contamination data in Table 3.5. (¢) Normal.
(b) Lognormal. (¢) Weibull. (d) Exponential.
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bend away from the straight line; This is an indication that the normal distribution is not a
good model for the data. Figure 3.28b is a lognormal probability plot of the data. The data fall
much closer to the straight line in this plot, particularly the observations in the tails, suggest-
ing that the lognormal distribution is more likely to provide a reasonable model for the data
than is the normal distribution.

Finally, Figures 3.28¢ and 3.28d are Weibull and exponential probability plots for the
data. The observations in these plots are not very close to the straight line, suggesting that
neither the Weibull nor the exponential is a very good model for the data. Therefore, based on
the four probability plots that we have constructed, the lognormal distribution appears to be
the most appropriate choice as a model for the aluminum contamination data.

3.5 Some Useful Approximations

In certain quality control problems, it is sometimes useful to approximate one probability dis-
tribution with another. This is particularly helpful in situations where the original distribution
is difficult to manipulate analytically. In this section, we present three such approximations:
(1) the binomial approximation to the hypergeometric, (2) the Poisson approximation to the
binomial, and (3) the normal approximation to the binomial.

3.5.1 The Binomial Approximation to the Hypergeometric

Consider the hypergeometric distribution in equation 3.8. If the ratio n/N (often called the
sampling fraction) is small—say, n/N < 0.1—then the binomial distribution with parameters
p = D/N and n is a good approximation to the hypergeometric. The approximation is better
for small values of n/N.

This approximation is useful in the design of acceptance-sampling plans. Recall that the
hypergeometric distribution is the appropriate model for the number of nonconforming items
obtained in a random sample of n items from a lot of finite size N. Thus, if the sample size n
is small relative to the lot size N, the binomial approximation may be employed, which usu-
ally simplifies the calculations considerably.

As an example, suppose that a group of 200 automobile loan applications contains
5 applications that have incomplete customer information. Those could be called noncon-
forming applications. The probability that a random sample of 10 applications will contain
no nonconforming applications is, from equation 3.8,

o)
0OA 10
10
Note that since n/N = 10/200 = 0.05 is relatively small, we could use the binomial approxi-
mation with p = D/N = 5/200 = 0.025 and n = 10 to calculate

p(0) = ((5)](0'025)0(0'975)10 =0.7763

3.5.2 The Poisson Approximation to the Binomial

It was noted in Section 3.2.3 that the Poisson distribution could be obtained as a limiting form
of the binomial distribution for the case where p approaches zero and n approaches infinity
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with A = np constant. This implies that, for small p and large n, the Poisson distribution with
A = np may be used to approximate the binomial distribution. The approximation is usually
good for large n and if p < 0.1. The larger the value of n and the smaller the value of p, the
better is the approximation.

3.5.3 The Normal Approximation to the Binomial

In Section 3.2.2 we defined the binomial distribution as the sum of a sequence of n Bernoulli
trials, each with probability of success p. If the number of trials n is large, then we may use
the central limit theorem to justify the normal distribution with mean np and variance np(1 — p)
as an approximation to the binomial. That is,

Pls=ap=[ 2o
1 —%[(a—np)z/"p(l—lf)]

1l27z,'np(1 -p) ¢

Since the binomial distribution is discrete and the normal distribution is continuous, it is com-
mon practice to use continuity corrections in the approximation, so that

a+%—np o a—%—np
\np(1-p) ynp(1=p)

where @ denotes the standard normal cumulative distribution function. Other types of prob-
ability statements are evaluated similarly, such as

P{x=a}z=®

1 1
b+——np a———np
Pla<x<b}=® —2 2

Jnp(1-p) ¢ np(1-p)

The normal approximation to the binomial is known to be satisfactory for p of approximately
1/2 and n > 10. For other values of p, larger values of n are required. In general, the approxi-
mation is not adequate for p < 1/(n+ 1) or p > n/(n + 1), or for values of the random vari-
able outside an interval six standard deviations wide centered about the mean (i.e., the interval
np £ 3V (np(1 - p)).

We may also use the normal approximation for the random variable p = x/n—that is,
the sample fraction defective of Section 3.2.2. The random variable p is approximately nor-
mally distributed with mean p and variance p(1 — p)/n, so that

v-p

P{usﬁsv}5®(Jp(1_p)/nJ _q)(\/P(L;:Z)/")

Since the normal will serve as an approximation to the binomial, and since the binomial and
Poisson distributions are closely connected, it seems logical that the normal may serve to
approximate the Poisson. This is indeed the case, and if the mean A of the Poisson distribu-
tion is large—say, at least 15—then the normal distribution with g =A and 6> =2 is a
satisfactory approximation.
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Letp'=1-p. The
»<0.1 The smaller p and p>0.9 | smaller p' and larger
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np > 10

0.1<p<0.9

\ /1 > 15 (The larger the better)

BMFIGURE 3.29 Approximations to probability distributions.

3.54 Comments on Approximations

A summary of the approximations discussed above is presented in Figure 3.29. In this figure,
H, B, P, and N represent the hypergeometric, binomial, Poisson, and normal distributions,
respectively. The widespread availability of modern microcomputers, good statistics software
packages, and handheld calculators has made reliance on these approximations largely unnec-
essary, but there are situations in which they are useful, particularly in the application of the
popular three-sigma limit control charts.

Important Terms and Concepts

Approximations to probability distributions

Binomial distribution
Box plot

Percentile
Poisson distribution
Population

Central limit theorem
Continuous distribution
Control limit theorem
Descriptive statistics

Discrete distribution
Exponential distribution
Gamma distribution
Geometric distribution
Histogram

Hypergeometric probability distribution
Interquartile range

Lognormal distribution

Mean of a distribution
Median

Negative binomial distribution
Normal distribution

Normal probability plot
Pascal distribution

Probability distribution
Probability plotting
Quartile

Random variable

Run chart

Sample

Sample average

Sample standard deviation
Sample variance

Standard deviation
Standard normal distribution
Statistics

Stem-and-leaf display
Time series plot

Uniform distribution
Variance of a distribution
Weibull distribution
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Exercises
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The Student
Resource Manual
presents compre-
hensive annotated
solutions to the
odd-numbered
exercises included
in the Answers to
Selected Exercises
section in the
back of this book.

3.1. The content of liquid detergent bot-
tles is being analyzed. Twelve bottles,
randomly selected from the process,
are measured, and the results are as
follows (in fluid ounces): 16.05,
16.03, 16.02, 16.04, 16.05, 16.01,
16.02, 16.02, 16.03, 16.01, 16.00,
16.07
(a) Calculate the sample average.
(b) Calculate the sample standard

deviation.

3.2

3.3.

34.

3.5.

3.7.

The bore diameters of eight randomly selected bear-
ings are shown here (in mm): 50.001, 50.002,
49.998, 50.006, 50.005, 49.996, 50.003, 50.004

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

The service time in minutes from admit to discharge

for ten patients seeking care in a hospital emergency

department are 21, 136, 185, 156, 3, 16, 48, 28, 100,

and 12. Calculate the mean and standard deviation

of the service time.

The Really Cool Clothing Company sells its products

through a telephone ordering process. Since business

is good, the company is interested in studying the way
that sales agents interact with their customers. Calls
are randomly selected and recorded, then reviewed
with the sales agent to identify ways that better ser-
vice could possibly be provided or that the customer
could be directed to other items similar to those they
plan to purchase that they might also find attractive.

Call handling time (length) in minutes for 20 ran-

domly selected customer calls handled by the same

sales agent are as follows: 6, 26, 8, 2, 6, 3, 10, 14, 4,

5,3,17,9,8,9,5, 3,28, 21, and 4. Calculate the mean

and standard deviation of call handling time.

The nine measurements that follow are furnace tem-

peratures recorded on successive batches in a semi-

conductor manufacturing process (units are °F): 953,

955, 948, 951, 957, 949, 954, 950, 959

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

Consider the furnace temperature data in Exercise 3.5.

(a) Find the sample median of these data.

(b) How much could the largest temperature mea-
surement increase without changing the sample
median?

Yield strengths of circular tubes with end caps are

measured. The first yields (in kN) are as follows: 96,

102, 104, 108, 126, 128, 150, 156

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

3.8.

3.9.

= TABLE 3E.1

Electronic Component Failure Time

127 124 121 118
125 123 136 131
131 120 140 125
124 119 137 133
129 128 125 141
121 133 124 125
142 137 128 140

151 124 129 131
160 142 130 129
125 123 122 126

The time to failure in hours of an electronic compo-

nent subjected to an accelerated life test is shown in

Table 3E.1. To accelerate the failure test, the units

were tested at an elevated temperature (read down,

then across).

(a) Calculate the sample average and standard
deviation.

(b) Construct a histogram.

(c) Construct a stem-and-leaf plot.

(d) Find the sample median and the lower and upper
quartiles.

The data shown in Table 3E.2 are chemical process

yield readings on successive days (read down, then

across). Construct a histogram for these data.

m TABLE 3E.2
Process Yield

94.1
93.2
90.6
91.4
88.2
86.1
95.1
90.0
92.4
87.3
86.6
91.2
86.1
90.4
89.1

87.3 94.1 92.4 84.6 85.4
84.1 92.1 90.6 83.6 86.6
90.1 96.4 89.1 85.4 91.7
95.2 88.2 88.8 89.7 87.5
86.1 86.4 86.4 87.6 84.2
94.3 85.0 85.1 85.1 85.1
93.2 84.9 84.0 89.6 90.5
86.7 87.3 93.7 90.0 95.6
83.0 89.6 87.7 90.1 88.3
95.3 90.3 90.6 94.3 84.1
94.1 93.1 89.4 97.3 83.7
97.8 94.6 88.6 96.8 82.9
93.1 96.3 84.1 94.4 87.3
86.4 94.7 82.6 96.1 86.4
87.6 91.1 83.1 98.0 84.5
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= TABLE 3E.3

Viscosity

133 14.9 15.8 16.0
14.5 13.7 13.7 14.9
15.3 15.2 15.1 13.6
153 14.5 134 153
14.3 153 14.1 14.3
14.8 15.6 14.8 15.6
15.2 15.8 14.3 16.1
14.5 133 14.3 13.9
14.6 14.1 16.4 15.2
14.1 15.4 16.9 14.4
14.3 15.2 14.2 14.0
16.1 15.2 16.9 144
13.1 15.9 14.9 13.7
15.5 16.5 15.2 13.8
12.6 14.8 14.4 15.6
14.6 15.1 15.2 14.5
143 17.0 14.6 12.8
15.4 14.9 16.4 16.1
15.2 14.8 14.2 16.6
16.8 14.0 15.7 15.6

Comment on the shape of the histogram. Does it

resemble any of the distributions that we have dis-

cussed in this chapter?

An article in Quality Engineering (Vol. 4, 1992,

pp- 487—-495) presents viscosity data from a batch

chemical process. A sample of these data is presented

in Table 3E.3 (read down, then across).

(a) Construct a stem-and-leaf display for the viscos-
ity data.

(b) Construct a frequency distribution and histogram.

(c) Convert the stem-and-leaf plot in part (a) into an
ordered stem-and-leaf plot. Use this graph to
assist in locating the median and the upper and
lower quartiles of the viscosity data.

(d) What are the tenth and ninetieth percentiles of
viscosity?

Construct and interpret a normal probability plot of the

volumes of the liquid detergent bottles in Exercise 3.1.

Construct and interpret a normal probability plot of

the nine furnace temperature measurements in

Exercise 3.5.

Construct a normal probability plot of the failure

time data in Exercise 3.8. Does the assumption that

failure time for this component is well modeled by a

normal distribution seem reasonable?

3.16.

3.17.

3.18.

= TABLE 3E.4
Cycles to Failure of Test Coupons

8078 1891 13912 3407 6168
15504 1893 12551 6861 1334
9438 6227 2562 2074 6770
7971 17081 9245 19041 21997

Construct a normal probability plot of the chemical
process yield data in Exercise 3.9. Does the assump-
tion that process yield is well modeled by a normal
distribution seem reasonable?

Consider the viscosity data in Exercise 3.10.
Construct a normal probability plot, a lognormal
probability plot, and a Weibull probability plot for
these data. Based on the plots, which distribution
seems to be the best model for the viscosity data?
Table 3E.4 contains 20 observations on cycles to fail-
ure of aluminum test coupons subjected to repeated
alternating stress of 15,000 psi at 20 cycles per second.
Construct a normal probability plot, a lognormal
probability plot, and a Weibull probability plot for
these data. Based on the plots, which distribution
seems to be the best model for the cycles to failure
for this material?

An important quality characteristic of water is the
concentration of suspended solid material (in
ppm). Table 3E.5 contains 40 measurements on
suspended solids for a certain lake. Construct a
normal probability plot, a lognormal probability
plot, and a Weibull probability plot for these data.
Based on the plots, which distribution seems to be
the best model for the concentration of suspended
solids?

Consider the outpatient service times in Exercise 3.3.
Construct a normal probability plot, an exponential
probability plot, and a Weibull probability plot for
these data. Do any of these distributions seem to be a

= TABLE 3E.5
Concentration of Suspended Solids (ppm)

0.78 959 226 8.13  3.16
4.33 11.70 022 125.93 1.30
0.15 0.20  0.29 13.72  0.96
0.29 293 3.65 3.47 1.73
14.21 1.79  0.54 14.81 0.68
0.09 5.81 5.17 21.01 0.41
4.75 2.82 1.30 4.57 7474
0.78 194 352 20.10  4.98
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reasonable probability model for the data? Based
on the plots, which distribution is the best one to
describe the outpatient service time?
Consider the call handling times in Exercise 3.4.
Construct a normal probability plot, an exponential
probability plot, and a gamma probability plot for
these data. Do any of these distributions seem to be a
reasonable probability model for the data? Based
on the plots, which distribution is the best one to
describe the call handling time?
Consider the viscosity data in Exercise 3.10. Assume
that reading down, then across, gives the data in time
order. Construct and interpret a time-series plot.
Reconsider the yield data in Exercise 3.9. Construct
a time-series plot for these data. Interpret the plot.
Consider the concentration of suspended solids from
Exercise 3.17. Assume that reading across, then down,
gives the data in time order. Construct and interpret a
time-series plot.
Consider the chemical process yield data in
Exercise 3.9. Calculate the sample average and stan-
dard deviation.
Consider the chemical process yield data in
Exercise 3.9. Construct a stem-and-leaf plot for the
data and compare it with the histogram from
Exercise 3.9. Which display provides more infor-
mation about the process?
Construct a box plot for the data in Exercise 3.1.
Construct a box plot for the data in Exercise 3.2.
Suppose that two fair dice are tossed and the
random variable observed—say, x—is the sum of
the two up faces. Describe the sample space of
this experiment, and determine the probability
distribution of x.
Find the mean and variance of the random variable in
Exercise 3.27.
A mechatronic assembly is subjected to a final
functional test. Suppose that defects occur at ran-
dom in these assemblies, and that defects occur
according to a Poisson distribution with parameter
A =0.02.
(a) What is the probability that an assembly will
have exactly one defect?
(b) What is the probability that an assembly will
have one or more defects?
(c) Suppose that you improve the process so that the
occurrence rate of defects is cut in half to
A =0.01. What effect does this have on the prob-
ability that an assembly will have one or more
defects?
The probability distribution of x is f(x) = ke ™,
0 < x < oo. Find the appropriate value of k. Find the
mean and variance of x.

3.34.

3.35.

3.37.

3.39.
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The random variable x takes on the values 1, 2, or 3
with probabilities (1 + 3k)/3, (1 + 2k)/3, and (0.5 +
5k)/3, respectively.

(a) Find the appropriate value of k.

(b) Find the mean and variance of x.

(¢) Find the cumulative distribution function.

The probability distribution of the discrete random
variable x is p(x) = kr", 0 < r < 1. Find the appropri-
ate value for kif x=0,1, .. ..

A manufacturer of electronic calculators offers a
one-year warranty. If the calculator fails for any
reason during this period, it is replaced. The time to
failure is well modeled by the following probability
distribution:

F(x)=0.125¢71%% x>0

(a) What percentage of the calculators will fail
within the warranty period?

(b) The manufacturing cost of a calculator is $50,
and the profit per sale is $25. What is the effect
of warranty replacement on profit?

The net contents in ounces of canned soup is a ran-

dom variable with probability distribution

)= 4(x—11.75) 11.75<x<12.25
C4(12.75-x) 12.25<x<12.75

Find the probability that a can contains less than
12 ounces of product.

A production process operates with 1% nonconform-
ing output. Every hour a sample of 25 units of prod-
uct is taken, and the number of nonconforming units
counted. If one or more nonconforming units are
found, the process is stopped and the quality control
technician must search for the cause of nonconform-
ing production. Evaluate the performance of this
decision rule.

Continuation of Exercise 3.35. Consider the deci-
sion rule described in Exercise 3.35. Suppose that the
process suddenly deteriorates to 4% nonconforming
output. How many samples, on average, will be
required to detect this?

A random sample of 50 units is drawn from a pro-
duction process every half hour. The fraction of non-
conforming product manufactured is 0.02. What is
the probability that p < 0.04 if the fraction noncon-
forming really is 0.02?

A sample of 100 units is selected from a production
process that is 1% nonconforming. What is the proba-
bility that p will exceed the true fraction nonconform-
ing by k standard deviations, where k= 1, 2, and 3?
Suppose that 10% of the adult population has blood
chemistry parameters consistent with a diagnosis of
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a pre-diabetic condition. Of four volunteer partici-
pants in a health screening study, what is the proba-
bility that one of them is pre-diabetic?

Patients arriving at an outpatient clinic are routinely

screened for high blood pressure. Assume that this

condition occurs in 15% of the population.

(a) What is the probability that the third patient of
the day has high blood pressure?

(b) What is the average number of patients that
must be seen to find the first patient with high
blood pressure?

(c) If the clinic typically sees 50 patients each day,
what is the probability of finding 10 patients
with high blood pressure?

A stock brokerage has four computers that are used

for making trades on the New York Stock Exchange.

The probability that a computer fails on any single

day is 0.005. Failures occur independently. Any

failed computers are repaired after the exchange
closes, so each day can be considered an indepen-
dent trial.

(a) What is the probability that all four computers
fail on one day?

(b) What is the probability that at least one com-
puter fails on a day?

(c) What is the mean number of days until a spe-
cific computer fails?

A computer system uses passwords consisting of

the lowercase letters (a—z) and the integers (0-9).

There are 10,000 users with unique passwords. A

hacker randomly selects (with replacement) pass-

words in an attempt to break into the system.

(a) Suppose that 8000 of the users have six-character
passwords. What is the mean and standard devi-
ation of the number of attempts required before
the hacker selects a legitimate password?

(b) Suppose that 2000 of the users have three-character
passwords. What is the mean and standard devi-
ation of the number of attempts required before
the hacker selects a legitimate password?

An electronic component for a medical X-ray unit is
produced in lots of size N = 25. An acceptance test-
ing procedure is used by the purchaser to protect
against lots that contain too many nonconforming
components. The procedure consists of selecting five
components at random from the lot (without replace-
ment) and testing them. If none of the components is
nonconforming, the lot is accepted.

(a) If the lot contains two nonconforming compo-
nents, what is the probability of lot acceptance?

(b) Calculate the desired probability in (a) using the
binomial approximation. Is this approximation
satisfactory? Why or why not?

3.44.
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(c) Suppose the lot size was N = 150. Would the
binomial approximation be satisfactory in this
case?

(d) Suppose that the purchaser will reject the lot
with the decision rule of finding one or more
nonconforming components in a sample of size
n, and wants the lot to be rejected with probabil-
ity at least 0.95 if the lot contains five or more
nonconforming components. How large should
the sample size n be?

A lot of size N = 30 contains three nonconforming
units. What is the probability that a sample of five
units selected at random contains exactly one non-
conforming unit? What is the probability that it con-
tains one or more nonconformances?
A textbook has 500 pages on which typographical
errors could occur. Suppose that there are exactly 10
such errors randomly located on those pages. Find the
probability that a random selection of 50 pages will
contain no errors. Find the probability that 50 ran-
domly selected pages will contain at least two errors.
Surface-finish defects in a small electric appliance
occur at random with a mean rate of 0.1 defects per
unit. Find the probability that a randomly selected
unit will contain at least one surface-finish defect.
Glass bottles are formed by pouring molten glass
into a mold. The molten glass is prepared in a furnace
lined with firebrick. As the firebrick wears, small
pieces of brick are mixed into the molten glass and
finally appear as defects (called “stones”) in the bot-
tle. If we can assume that stones occur randomly at
the rate of 0.00001 per bottle, what is the probability
that a bottle selected at random will contain at least
one such defect?

The billing department of a major credit card com-

pany attempts to control errors (clerical, data trans-

mission, etc.) on customers’ bills. Suppose that errors
occur according to a Poisson distribution with para-
meter A = 0.01. What is the probability that a cus-
tomer’s bill selected at random will contain one error?

A production process operates in one of two states:

the in-control state, in which most of the units pro-

duced conform to specifications, and an out-of-
control state, in which most of the units produced are
defective. The process will shift from the in-control

to the out-of-control state at random. Every hour, a

quality control technician checks the process, and if

it is in the out-of-control state, the technician detects
this with probability p. Assume that when the process
shifts out of control it does so immediately following

a check by the inspector, and once a shift has

occurred, the process cannot automatically correct

itself. If ¢t denotes the number of periods the process
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remains out of control following a shift before detec-
tion, find the probability distribution of z Find the
mean number of periods the process will remain in
the out-of-control state.

An inspector is looking for nonconforming welds in
the gasoline pipeline between Phoenix and Tucson.
The probability that any particular weld will be
defective is 0.01. The inspector is determined to keep
working until finding three defective welds. If the
welds are located 100 feet apart, what is the proba-
bility that the inspector will have to walk 5000 feet?
What is the probability that the inspector will have to
walk more than 5000 feet?

The tensile strength of a metal part is normally dis-
tributed with mean 40 pounds and standard deviation
5 pounds. If 50,000 parts are produced, how many
would you expect to fail to meet a minimum specifi-
cation limit of 35-pounds tensile strength? How many
would have a tensile strength in excess of 48 pounds?
The output voltage of a power supply is normally
distributed with mean 5 V and standard deviation
0.02 V. If the lower and upper specifications for volt-
age are 4.95 V and 5.05 V, respectively, what is the
probability that a power supply selected at random
will conform to the specifications on voltage?
Continuation of Exercise 3.52. Reconsider the
power supply manufacturing process in Exercise
3.52. Suppose we wanted to improve the process. Can
shifting the mean reduce the number of nonconform-
ing units produced? How much would the process
variability need to be reduced in order to have all but
one out of 1000 units conform to the specifications?
If x is normally distributed with mean u and standard
deviation o = 4, and given that the probability that x
is less than 32 is 0.0228, find the value of p.

The life of an automotive battery is normally distrib-
uted with mean 900 days and standard deviation

3.57.
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35 days. What fraction of these batteries would be
expected to survive beyond 1000 days?

A lightbulb has a normally distributed light output
with mean 5000 end foot-candles and standard devi-
ation of 50 end foot-candles. Find a lower specifica-
tion limit such that only 0.5% of the bulbs will not
exceed this limit.

The specifications on an electronic component in a
target-acquisition system are that its life must be
between 5000 and 10,000 h. The life is normally
distributed with mean 7500 h. The manufacturer
realizes a price of $10 per unit produced; however,
defective units must be replaced at a cost of $5
to the manufacturer. Two different manufacturing
processes can be used, both of which have the same
mean life. However, the standard deviation of life
for process 1 is 1000 h, whereas for process 2 it is
only 500 h. Production costs for process 2 are twice
those for process 1. What value of production costs
will determine the selection between processes 1
and 27

A quality characteristic of a product is normally dis-
tributed with mean p and standard deviation ¢ = 1.
Specifications on the characteristic are 6 < x < 8. A
unit that falls within specifications on this quality
characteristic results in a profit of C,. However, if
x < 6, the profit is —Cy, whereas if x > 8, the profit is
—C,. Find the value of i that maximizes the expected
profit.

Derive the mean and variance of the binomial
distribution.

Derive the mean and variance of the Poisson
distribution.

Derive the mean and variance of the exponential
distribution.

Derive the mean and variance of the geometric
distribution.
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In the previous chapter we discussed the use of probability distributions in modeling or
describing the output of a process. In all the examples presented, we assumed that the para-
meters of the probability distribution, and, hence, the parameters of the process, were
known. This is usually a very unrealistic assumption. For example, in using the binomial dis-
tribution to model the number of nonconforming units found in sampling from a production
process we assumed that the parameter p of the binomial distribution was known. The phys-
ical interpretation of p is that it is the true fraction of nonconforming units produced by the
process. It is impossible to know this exactly in a real production process. Furthermore, if
we did know the true value of p and it was relatively constant over time, we could argue that
formal process monitoring and control procedures were unnecessary, provided p was
“acceptably” small.

In general, the parameters of a process are unknown; furthermore, they will usually
change over time. Therefore, we need to develop procedures to estimate the parameters of
probability distributions and solve other inference or decision-oriented problems relative to
them. The standard statistical techniques of parameter estimation and hypothesis testing are
useful in this respect. These techniques are the underlying basis for much of the methodology
of statistical quality control. In this chapter, we present some of the elementary results of sta-
tistical inference, indicating its usefulness in quality improvement problems. Key topics
include point and confidence interval estimation of means, variances, and binomial parame-
ters, hypothesis testing on means, variances, and binomial parameters, and the use of normal
probability plots.

After careful study of this chapter, you should be able to do the following:

1. Explain the concept of random sampling

2. Explain the concept of a sampling distribution

3. Explain the general concept of estimating the parameters of a population or prob-
ability distribution

4. Know how to explain the precision with which a parameter is estimated

5. Construct and interpret confidence intervals on a single mean and on the differ-
ence in two means

6. Construct and interpret confidence intervals on a single variance or the ratio of
two variances

7. Construct and interpret confidence intervals on a single proportion and on the
difference in two proportions

8. Test hypotheses on a single mean and on the difference in two means

9. Test hypotheses on a single variance and on the ratio of two variances
10. Test hypotheses on a single proportion and on the difference in two proportions
11. Use the P-value approach for hypothesis testing

12. Understand how the analysis of variance (ANOVA) is used to test hypotheses
about the equality of more than two means

13. Understand how to fit and interpret linear regression models.

4.1 Statistics and Sampling Distributions

The objective of statistical inference is to draw conclusions or make decisions about a popu-
lation based on a sample selected from the population. Frequently, we will assume that
random samples are used in the analysis. The word “random” is often applied to any method
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Population Histogram _
u, population mean X, sample average
o, population Sample (xq, x5, X3,..., x,,)—\ s, sample standard
standard deviation
deviation o o
u X X X

BMFIGURE 4.1 Relationship between a population and a sample.

or sample selection that lacks systematic direction. We will define a sample—say,
X1, X0, . . . , X,—as a random sample of size n if it is selected so that the observations {x;} are
independently and identically distributed. This definition is suitable for random samples
drawn from infinite populations or from finite populations where sampling is performed with
replacement. In sampling without replacement from a finite population of N items we say that
a sample of 7 items is a random sample if each of the (%) possible samples has an equal prob-
ability of being chosen. Figure 4.1 illustrates the relationship between the population and the
sample.

Although most of the methods we will study assume that random sampling has been
used, there are several other sampling strategies that are occasionally useful in quality con-
trol. Care must be exercised to use a method of analysis that is consistent with the sampling
design; inference techniques intended for random samples can lead to serious errors when
applied to data obtained from other sampling techniques.

Statistical inference uses quantities computed from the observations in the sample. A sta-
tistic is defined as any function of the sample data that does not contain unknown parameters.
For example, let x;, x,, . . . , x,, represent the observations in a sample. Then the sample average
or sample mean

X= 4.1)
n
the sample variance
n
\2
) (x; = %)
=B 4.2)
n—1
and the sample standard deviation
4.3)

are statistics. The statistics X and s (or s*) describe the central tendency and variability, respec-
tively, of the sample.

If we know the probability distribution of the population from which the sample was
taken, we can often determine the probability distribution of various statistics computed
from the sample data. The probability distribution of a statistic is called a sampling distri-
bution. We now present the sampling distributions associated with three common sampling
situations.
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4.1.1 Sampling from a Normal Distribution

Suppose that x is a normally distributed random variable with mean u and variance ¢”. If
X1, X2, . . ., X, 1s @ random sample of size n from this process, then the distribution of the
sample mean X is N(u, 6°/n). This follows directly from the results on the distribution of
linear combinations of normal random variables in Section 3.3.1.

This property of the sample mean is not restricted exclusively to the case of sampling
from normal populations. Note that we may write

— X;—n
)

o

From the central limit theorem we know that, regardless of the distribution of the population,
the distribution of Z_, x; is approximately normal with mean nu and variance no”. Therefore,
regardless of the distribution of the population, the sampling distribution of the sample mean

is approximately
2
:- N[y,o_]
n

An important sampling distribution defined in terms of the normal distribution is the chi-
square or > distribution. If x, x, . . ., x,, are normally and independently distributed ran-
dom variables with mean zero and variance one, then the random variable

_ 2., .2 2
Y=X{ +X5 4+t Xy

is distributed as chi-square with n degrees of freedom. The chi-square probability distribution
with n degrees of freedom is

F(3) = — P s 4.4)
=4
2
Several chi-square distributions are shown in Figure 4.2. The distribution is skewed with
mean i = n and variance 6> = 2n. A table of the percentage points of the chi-square distrib-
ution is given in Appendix Table III.

To illustrate the use of the chi-square distribution, suppose that x;, x, . . ., x,, is a ran-
dom sample from an N(u, 6°) distribution. Then the random variable

y=E—— (4.5)

has a chi-square distribution with n — 1 degrees of freedom. However, using equation 4.2,
which defines the sample variance, we may rewrite equation 4.5 as

(n—1)s*
y=—"->3
o}

—that is, the sampling distribution of (n — 1)s*/0” is x._, when sampling from a normal
distribution.
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B FIGURE 4.2 Chi-square distribution for BMFIGURE 4.3 Thetdistribution for
selected values of n (number of degrees of freedom). selected values of k (number of degrees of freedom).

Another useful sampling distribution is the ¢ distribution. If x is a standard normal ran-
dom variable and if y is a chi-square random variable with k degrees of freedom, and if x and
y are independent, then the random variable

X

t= W (4.6)
is distributed as ¢ with k degrees of freedom. The probability distribution of 7 is
—(k+1)/2
[|(k+1)/2|( ¢
f(f)=W(?+l) -0 << (47)

and the mean and variance of ¢ are =0 and o° = k/(k — 2) for k > 2, respectively. The
degrees of freedom for ¢ are the degrees of freedom associated with the chi-square random
variable in the denominator of equation 4.6. Several ¢ distributions are shown in Figure 4.3.
Note that if k = o, the ¢ distribution reduces to the standard normal distribution, however, the
number of degree of freedom exceeds about 30, the ¢ distribution is closely approximate by
the standard normal distribution. A table of percentage points of the ¢ distribution is given in
Appendix Table IV.

As an example of a random variable that is distributed as ¢, suppose that x;, x5, . . ., X,
is a random sample from the N(u, 6°) distribution. If x and s> are computed from this sample,
then

X-u
X-u_ of/\n N(0,1)

s~ 5o 2 fn-1)

using the fact that (n — 1)s*/c* ~ Xﬁ,l. Now, X and s> are independent, so the random variable

X-H (4.8)
s/n
has a ¢ distribution with n — 1 degrees of freedom.

The last sampling distribution based on the normal process that we will consider is the
F distribution. If w and y are two independent chi-square random variables with «# and v
degrees of freedom, respectively, then the ratio

_wu
y/v

F,

u,v

(4.9)
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BFIGURE 4.4 The F distribution for selected values of u (numerator degrees of freedom)
and v (denominator degrees of freedom).

is distributed as F with # numerator degrees of freedom and v denominator degrees of free-
dom. If x is an F random variable with # numerator and v denominator degrees of freedom,

then the distribution is
u+v Y u\?
3N e
u y (u+v)/2
5r(3) ()
2 2 v X

Several F distributions are shown in Figure 4.4. A table of percentage points of the F distribu-
tion is given in Appendix Table V.
As an example of a random variable that is distributed as F, suppose we have two inde-

flx)= 0<x<eo (4.10)

pendent normal processes—say, x; ~ N (U, o7), and x, ~ N(Us, 03). Let x;q, xp0, . . . s X1,
be a random sample of n; observations from the first normal process and x5y, X2, . . ., X2, be
a random sample of size n, from the second. If s7 and s3 are the sample variances, then the ratio
2/ 2
S / O]

~F
S; /G% n =1, ny—1

This follows directly from the sampling distribution of s discussed previously. The F distri-

bution will be used in making inferences about the variances of two normal distributions.

4.1.2 Sampling from a Bernoulli Distribution

In this section, we discuss the sampling distributions of statistics associated with the
Bernoulli distribution. The random variable x with probability function

p()f)={p x:(l)

(1-p)=gq x

is called a Bernoulli random variable. That is, x takes on the value 1 with probability p and
the value 0 with probability 1 — p = g. A realization of this random variable is often called a

Bernoulli trial. The sequence of Bernoulli trials xy, x5, ..., is a Bernoulli process. The
outcome x = 1 is often called “success,” and the outcome x = 0 is often called “failure.”
Suppose that a random sample of n observations—say, xi, x», . . . , X,—is taken from a

Bernoulli process with constant probability of success p. Then the sum of the sample observations

X=X +Xy+-t+ X, 4.11)
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has a binomial distribution with parameters n and p. Furthermore, since each x; is either 0
or 1, the sample mean

1 n
X=—Y (4.12)
ni=1
is a discrete random variable with range space {0, 1/n, 2/n, ..., (n — 1)/n, 1}. The distribu-

tion of x can be obtained from the binomial since
[an] n B
P{x<a}=P{x<an}= “1-p)y*
k=0\k
where [an] is the largest integer less than or equal to an. The mean and variance of x are
=P
and

p(1-p)

=N

o

respectively. This same result was given previously in Section 3.2.2, where the random vari-
able p (often called the sample fraction nonconforming) was introduced.

4.1.3 Sampling from a Poisson Distribution

The Poisson distribution was introduced in Section 3.2.3. Consider a random sample of size
n from a Poisson distribution with parameter A—say, x;, x,, . . . , X,,. The distribution of the
sample sum

X=X +Xy+--+x, (4.13)

is also Poisson with parameter nA. More generally, the sum of n independent Poisson random
variables is distributed Poisson with parameter equal to the sum of the individual Poisson
parameters.
Now consider the distribution of the sample mean
1 n
T=—Yx (4.14)
=
This is a discrete random variable that takes on the values {0, 1/n, 2/n, . . .}, and with proba-
bility distribution found from
[an] g=n4 (n/l)k

P{x<a}=P{x<an}=Y

k' (4.15)
k=0 .

where [an] is the largest integer less than or equal to an. The mean and variance of x are

Me =2

and

respectively.
Sometimes more general linear combinations of Poisson random variables are used in
quality-engineering work. For example, consider the linear combination

m
L=ax +a,xy ++a,x, = ax; (4.16)
i=l :
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where the {x;} are independent Poisson random variables each having parameter {4;,} respec-
tively, and the {a;} are constants. This type of function occurs in situations where a unit of
product can have m different types of defects or nonconformities (each modeled with a
Poisson distribution with parameter A;) and the function used for quality monitoring purposes
is a linear combination of the number of observed nonconformities of each type. The con-
stants {a;} in equation 4.16 might be chosen to weight some types of nonconformities more
heavily than others. For example, functional defects on a unit would receive heavier weight than
appearance flaws. These schemes are sometimes called demerit procedures (see Section 7.3.3).
In general, the distribution of L is not Poisson unless all a; = 1 in equation (4.16); that is, sums
of independent Poisson random variables are Poisson distributed, but more general linear
combinations are not.

4.2 Point Estimation of Process Parameters

A random variable is characterized or described by its probability distribution. This distribu-
tion is described by its parameters. For example, the mean u and variance 6~ of the normal
distribution (equation 3.21) are its parameters, whereas A is the parameter of the Poisson dis-
tribution (equation 3.15). In statistical quality control, the probability distribution is used to
describe or model some critical-to-quality characteristic, such as a critical dimension of a
product or the fraction defective of a process. Therefore, we are interested in making infer-
ences about the parameters of probability distributions. Since the parameters are generally
unknown, we require procedures to estimate them from sample data.

We may define an estimator of an unknown parameter as a statistic that corresponds to
the parameter. A particular numerical value of an estimator, computed from sample data, is
called an estimate. A point estimator is a statistic that produces a single numerical value as
the estimate of the unknown parameter. To illustrate, consider the random variable x with prob-
ability distribution f{x) shown in Figure 4.1 on p. 105. Suppose that the mean u and variance
o2 of this distribution are both unknown. If a random sample of n observations is taken, then
the sample mean x and sample variance s are point estimators of the population mean
and population variance o°, respectively. Suppose that this distribution represents a process
producing bearings and the random variable x is the inside diameter. We want to obtain point
estimates of the mean and variance of the inside diameter of bearings produced by this process.
We could measure the inside diameters of a random sample of n = 20 bearings (say). Then the
sample mean and sample variance could be computed. If this yields x = 1.495 and s* = 0.001,
then the point estimate of u is fl = x = 1.495 and the point estimate of 6> is 6 = s* = 0.001.
Recall that the “*” symbol is used to denote an estimate of a parameter.

The mean and variance of a distribution are not necessarily the parameters of the dis-
tribution. For example, the parameter of the Poisson distribution is A, while its mean and vari-
ance are i = A and 6 = A (both the mean and variance are 1), and the parameters of the
binomial distribution are n and p, while its mean and variance are i = np and 6> = np(1 — p),
respectively. We may show that a good point estimator of the parameter A of a Poisson dis-
tribution is

A=

.xi=.x

S | =
IVE

1
and that a good point estimator of the parameter p of a binomial distribution is
1

n;

M=

pP= X=X

Il
—_

for fixed n. In the binomial distribution the observations in the random sample {x;} are either
1 or O, corresponding to “success” and “failure,” respectively.
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A number of important properties are required of good point estimators. Two of the
most important of these properties are the following:

1. The point estimator should be unbiased. That is, the expected value of the point esti-
mator should be the parameter being estimated.

2. The point estimator should have minimum variance. Any point estimator is a random
variable. Thus, a minimum variance point estimator should have a variance that is
smaller than the variance of any other point estimator of that parameter.

The sample mean and variance x and s> are unbiased estimators of the population mean and
variance u and 67, respectively. That is,

E(x)=u and E(sz)zaz

where the operator E is simply the expected value operator, a shorthand way of writing the
process of finding the mean of a random variable. (See the supplemental material for this
chapter for more information about mathematical expectation.)
The sample standard deviation s is not an unbiased estimator of the population standard
deviation o. It can be shown that
2 jl/ > T(n2)

Els)= ( I[(n-1)/2
=¢,0 (4.17)

o
n—1 ]
Appendix Table VI gives values of ¢, for sample sizes 2 < n < 25. We can obtain an unbiased
estimate of the standard deviation from
.S
0=— (4.18)
Cy4
In many applications of statistics to quality and process improvement problems, it is conve-
nient to estimate the standard deviation by the range method. Let x|, x,, . . ., x,, be a random

sample of n observations from a normal distribution with mean y and variance 6. The range
of the sample is

R= max(xi) - min(xi)
=x_—x_ (4.19)

max min

That is, the range R is simply the difference between the largest and smallest sample observations.
The random variable W = R/ o is called the relative range. The distribution of W has been well
studied. The mean of Wis a constant d, that depends on the size of the sample; that is, E(W) = d,.
Therefore, an unbiased estimator of the standard deviation ¢ of a normal distribution is

G=— (4.20)

Values of d, for sample sizes 2 < n < 25 are given in Appendix Table VI.
Using the range to estimate ¢ dates from the earliest days of statistical quality control, and
it was popular because it is very simple to calculate. With modern calculators and computers, this
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isn’t a major consideration today. Generally, the “quadratic estimator” based on s is preferable.
However, if the sample size n is relatively small, the range method actually works very well. The
relative efficiency of the range method compared to s is shown here for various sample sizes:

Sample Size n Relative Efficiency
2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

For moderate values of n—say, n > 10—the range loses efficiency rapidly, as it ignores all of
the information in the sample between the extremes. However, for small sample sizes—say,
n < 6—it works very well and is entirely satisfactory. We will use the range method to esti-
mate the standard deviation for certain types of control charts in Chapter 6. The supplemen-
tal text material contains more information about using the range to estimate variability.
Also see Woodall and Montgomery (2000-01).

4.3 Statistical Inference for a Single Sample

The techniques of statistical inference can be classified into two broad categories: parame-
ter estimation and hypothesis testing. We have already briefly introduced the general idea
of point estimation of process parameters.

A statistical hypothesis is a statement about the values of the parameters of a proba-
bility distribution. For example, suppose we think that the mean inside diameter of a bearing
is 1.500 in. We may express this statement in a formal manner as

Hy: nu=1.500
H;: p#1500 4.21)

The statement Hy: u=1.500 in equation 4.21 is called the null hypothesis, and
Hy: p # 1.500 is called the alternative hypothesis. In our example, H; specifies values of
the mean diameter that are either greater than 1.500 or less than 1.500, which is called a two-
sided alternative hypothesis. Depending on the problem, various one-sided alternative
hypotheses may be appropriate.

Hypothesis testing procedures are quite useful in many types of statistical quality-
control problems. They also form the mathematical basis for most of the statistical process-
control techniques to be described in Parts IIT and IV of this textbook. An important part of
any hypothesis testing problem is determining the parameter values specified in the null and
alternative hypotheses. Generally, this is done in one of three ways. First, the values may
result from past evidence or knowledge. This happens frequently in statistical quality con-
trol, where we use past information to specify values for a parameter corresponding to a state
of control, and then periodically test the hypothesis that the parameter value has not
changed. Second, the values may result from some theory or model of the process. Finally,
the values chosen for the parameter may be the result of contractual or design specifications,
a situation that occurs frequently. Statistical hypothesis testing procedures may be used to
check the conformity of the process parameters to their specified values, or to assist in mod-
ifying the process until the desired values are obtained.
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To test a hypothesis, we take a random sample from the population under study, com-
pute an appropriate test statistic, and then either reject or fail to reject the null hypothesis H,,.
The set of values of the test statistic leading to rejection of H,, is called the critical region or
rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis
is rejected when it is true, then a type I error has occurred. If the null hypothesis is not
rejected when it is false, then a type II error has been made. The probabilities of these two
types of errors are denoted as

o = P{type I error} = P{reject Hy | H, is true}
B = P{type I error} = P{fail to reject Hy | Hy, is false}
Sometimes it is more convenient to work with the power of a statistical test, where
Power = 1 — B = P{reject Hy| H,, is false}

Thus, the power is the probability of correctly rejecting H,. In quality control work, o is
sometimes called the producer’s risk because it denotes the probability that a good lot will
be rejected, or the probability that a process producing acceptable values of a particular qual-
ity characteristic will be rejected as performing unsatisfactorily. In addition, 3 is sometimes
called the consumer’s risk because it denotes the probability of accepting a lot of poor
quality, or allowing a process that is operating in an unsatisfactory manner relative to some
quality characteristic to continue in operation.

The general procedure in hypothesis testing is to specify a value of the probability of
type I error ¢, and then to design a test procedure so that a small value of the probability of
type II error B is obtained. Thus, we can directly control or choose the « risk. Because we can
control the probability of making a type I error, rejecting the null hypothesis is considered to
be a strong conclusion. The f risk is generally a function of sample size and how different
the true value of the parameter (such as  in the above example) is from the hypothesized value,
so it is controlled indirectly. The larger is the sample size(s) used in the test, the smaller is the
B risk. The probability of type II error is often difficult to control because of lack of flexibil-
ity in choosing sample size and because the difference between the true parameter value and
the hypothesized value is unknown in most cases, so failing to reject H, is a weak conclusion.

In this section we will review hypothesis testing procedures when a single sample of n
observations has been taken from the process. We will also show how the information about
the values of the process parameters that is in this sample can be expressed in terms of an
interval estimate called a confidence interval. In Section 4.4 we will consider statistical
inference for two samples from two possibly different processes.

4.3.1 Inference on the Mean of a Population, Variance Known

Hypothesis Testing. Suppose that x is a random variable with unknown mean u and
known variance o°. We wish to test the hypothesis that the mean is equal to a standard
value—say, (. The hypothesis may be formally stated as

Hy: p=po
He g (4.22)

The procedure for testing this hypothesis is to take a random sample of n observations on the
random variable x, compute the test statistic

X —Hy

= ol (4.23)

Zy
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and reject Hy if |Zo| > Z,,» where Z,,, is the upper o//2 percentage point of the standard
normal distribution. This procedure is sometimes called the one-sample Z-test.

We may give an intuitive justification of this test procedure. From the central limit theo-
rem, we know that the sample mean x is distributed approximately N(u, 6>/n). Now if
Hy: i = Uy is true, then the test statistic Z; is distributed approximately N(0, 1); consequently,
we would expect 100(1 — &) % of the values of Z, to fall between —Z,, and Z,,. A sample
producing a value of Z; outside of these limits would be unusual if the null hypothesis were true
and is evidence that Hy: it = U should be rejected. Note that ¢ is the probability of type I error
for the test, and the intervals (Z,, 0) and (=, —Z,,») form the critical region for the test.
The standard normal distribution is called the reference distribution for the Z-test.

In some situations we may wish to reject Hy only if the true mean is larger than uo.
Thus, the one-sided alternative hypothesis is H,: it > U, and we would reject Hy: it = Uy only
if Zy> Z,. If rejection is desired only when u < g, then the alternative hypothesis is
H,: u < Uy, and we reject Hy only if Zy < —Z,.

~ [EXAMPLE 4.1

The response time of a distributed computer system is an
important quality characteristic. The system manager wants to
know whether the mean response time to a specific type of

command exceeds 75 millisec. From previous experience, he
knows that the standard deviation of response time is 8 mil-
lisec. Use a type I error of o = 0.05.

SoLuTion

The appropriate hypotheses are
Hy: pn=75
Hy: u>715

The command is executed 25 times, and the response time for
each trial is recorded. We assume that these observations can
be considered as a random sample of the response times. The
sample average response time is x = 79.25 millisec. The value
of the test statistic is

N _

_X—p,  7925-75
o/\n  8/25

Because we specified a type I error of o = 0.05 and the test
is one-sided, then from Appendix Table II we find
Zy = Zy o5 = 1.645. Therefore, we reject Hy: it = 75 and con-
clude that the mean response time exceeds 75 millisec.

A =2.66

Minitab will perform the one-sample Z-test. The Minitab output for Example 4.1 is
shown in the following boxed display.

One-Sample 2

Test of mu=75 vs>"75
The assumed standard deviation =8

95% Lower

N Mean SE Mean Bound VA P
25 79.25 1.60 76.62 2.66 0.004

Minitab also can calculate confidence intervals for parameters. We will now introduce the
confidence interval and explain its interpretation and application.
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Confidence Intervals. An interval estimate of a parameter is the interval between
two statistics that includes the true value of the parameter with some probability. For example,
to construct an interval estimator of the mean u, we must find two statistics L and U such that

PlL<u<U}=1-«a (4.24)
The resulting interval
L<su<U

is called a 100(1 — )% confidence interval (CI) for the unknown mean u. L and U are
called the lower and upper confidence limits, respectively, and 1 — o is called the confidence
coefficient. Sometimes the half-interval width U — u or u — L is called the accuracy of
the confidence interval. The interpretation of a CI is that if a large number of such intervals
are constructed, each resulting from a random sample, then 100(1 — o) % of these intervals
will contain the true value of u. Thus, confidence intervals have a frequency interpretation.

The CI (4.24) might be more properly called a two-sided confidence interval, as it spec-
ifies both a lower and an upper bound on 1. Sometimes in quality-control applications, a one-
sided confidence bound might be more appropriate. A one-sided lower 100(1 — &) % confi-
dence bound on u would be given by

L<u (4.25)
where L, the lower confidence bound, is chosen so that
P{L<u}=1-a (4.26)

A one-sided upper 100(1 — ) % confidence bound on u would be
usu (4.27)
where U, the upper confidence bound, is chosen so that
P{u<u}=1-a (4.28)

Confidence Interval on the Mean with Variance Known. Consider the random
variable x, with unknown mean u and known variance 6~. Suppose a random sample of

observations is taken—say, xq, x,, . . . , x,—and x is computed. Then the 100(1 — &) % two-
sided CI on u is
_ o _ o
X~Zop = SUSX+Zyp —— (4.29)
\n N

where Z,,/, is the percentage point of the N(0, 1) distribution such that P{z 2 Z,,»} = a/ 2.

Note that x is distributed approximately N(u, 6>/ n) regardless of the distribution of x,
from the central limit theorem. Consequently, equation 4.29 is an approximate 100(1 — o) %
confidence interval for u regardless of the distribution of x. If x is distributed N(u, %), then
equation (4.29) is an exact 100(1 — o) % CI. Furthermore, a 100(1 — o) % upper confidence
bound on  is

usx+za5; (4.30)
n
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whereas a 100(1 — o) % lower confidence bound on p is

4.31)

~ EXAMPLE 4.2

Reconsider the computer response time scenario from
Example 4.1. Since x = 79.25 millisec, we know that a rea-
sonable point estimate of the mean response time is

[ =Xx=79.25 millisec. Find a 95% two-sided confidence
interval.

SOLUTION
From equation 4.29 we can compute
o (o2
X—Zyp—<USX+ZyH—
o2 In u a2 In

79.25 —1.96i Su<7925+ 1.96i

V25 V25
76.114 < 1 <82.386
Another way to express this result is that our estimate of mean

response time is 79.25 millisec + 3.136 millisec with 95%
confidence.

In the original Example 4.1, the alternative hypothesis was
one-sided. In these situations, some analysts prefer to calculate
a one-sided confidence bound. The Minitab output for
Example 4.1 on p. 119 providers a 95% lower confidence
bound on u, which is computed from equation 4.31 as 76.62.

Notice that the CI from Minitab does not include the value
pu=75. Furthermore, in Example 4.1 the hypothesis
Hy: 1 =75 was rejected at oo = 0.05. This is not a coincidence.
In general, the test of significance for a parameter at level of
significance o will lead to rejection of Hj if, and only if, the
parameter value specific in Hy is not included in the
100(1 — &¢)% confidence interval.

N _

4.3.2 The Use of P-Values for Hypothesis Testing

The traditional way to report the results of a hypothesis test is to state that the null hypoth-
esis was or was not rejected at a specified -value or level of significance. This is often
called fixed significance level testing. For example, in the previous computer response
time problem, we can say that Hy: = 75 was rejected at the 0.05 level of significance.
This statement of conclusions is often inadequate, because it gives the analyst no idea
about whether the computed value of the test statistic was just barely in the rejection
region or very far into this region. Furthermore, stating the results this way imposes the
predefined level of significance on other users of the information. This approach may be
unsatisfactory, as some decision makers might be uncomfortable with the risks implied by
o =0.05.

To avoid these difficulties the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis Hj, is true. Thus, a
P-value conveys much information about the weight of evidence against H, and so a deci-
sion maker can draw a conclusion at any specified level of significance. We now give a
formal definition of a P-value.
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The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H,,.

It is customary to call the test statistic (and the data) significant when the null hypothesis H,
is rejected; therefore, we may think of the P-value as the smallest level o at which the data
are significant. Once the P-value is known, the decision maker can determine for himself or
herself how significant the data are without the data analyst formally imposing a preselected
level of significance.

For the normal distribution tests discussed above, it is relatively easy to compute the
P-value. If Z is the computed value of the test statistic, then the P-value is

2[1 - <I>(|Z0|)] for a two-tailed test: Hy: u=uy Hp: u#pug
P={1-9(Z,) for an upper-tailed test: Hy: u=p, Hy: u>p,
D(Z,) for a lower-tailed test: ~ Hy: pu=p, Hy: U<y,

Here, ®(Z) is the standard normal cumulative distribution function defined in Chapter 3. To
illustrate this, consider the computer response time problem in Example 4.1. The computed
value of the test statistic is Z, = 2.66 and since the alternative hypothesis is one-tailed, the
P-value is

P =1-d(2.66) = 0.0039

Thus, Hy: 1t =75 would be rejected at any level of significance o = P = 0.0039. For example,
H, would be rejected if o = 0.01, but it would not be rejected if o = 0.001.

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained using
some handheld calculators. Notice that Minitab reported a P-value for Example 4.1 (the
reported value was 0.004). It is also possible to use the statistical tables in the Appendix to
approximate the P-value in some cases.

4.3.3 Inference on the Mean of a Normal Distribution, Variance Unknown

Hypothesis Testing. Suppose that x is a normal random variable with unknown
mean g and unknown variance 6. We wish to test the hypothesis that the mean equals a stan-
dard value pp—that is,

Ho: pe= o
Hy: p# o

Note that this problem is similar to that of Section 4.3.1, except that now the variance is
unknown. Because the variance is unknown, we must make the additional assumption that the
random variable is normally distributed. The normality assumption is needed to formally
develop the statistical test, but moderate departures from normality will not seriously affect
the results.

(4.32)
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As o7 is unknown, it may be estimated by s> If we replace o in equation 4.23 by s, we
have the test statistic

fy = "/—fio (4.33)
S/\n

The reference distribution for this test statistic is the ¢ distribution with n — 1 degrees
of freedom. For a fixed significance level test, the null hypothesis Hy: it = 1o will be rejected
if |(t)| > tj2.0—1, Where .5 ,—; denotes the upper o/ 2 percentage point of the ¢ distribu-
tion with n — 1 degrees of freedom. The critical regions for the one-sided alternative
hypotheses are as follows: if H;: u, > Uy, reject Hy if ty > t4,-1, and if Hy: py < U,
reject Hy if ty <—t4,—;. One could also compute the P-value for a t-test. Most computer
software packages report the P-value along with the computed value of £,

~ EXAMPLE 4.3

Rubber can be added to asphalt to reduce road noise when the = TABLE 4.1
material is used as pavement. Table 4.1 shows the stabilized Stabilized Viscosity of Rubberized Asphalt
viscosity (cP) of 15 specimens of asphalt paving material. To . . . .
be suitable for the intended pavement application, the mean Specimen Stabilized Viscosity
stabilized viscosity should be equal to 32,00. Test this 1 3,193
hypothesis using o = 0.05. Based on experience we are will- D) 3.124
ing to initially assume that stabilized viscosity is normally ’
distributed. 3 3,153
4 3,145
5 3,093
SOLUTION 6 3,466
Th iate hypoth ’ 3355
e appropriate hypotheses are
Pprop yp: 8 2,979
Hy: p=3,200 9 3,182
HIZ H# 3,200 10 3,227
The sample mean and sample standard deviation are 11 3,256
_ 1 15 48,161 12 3,332
X_EE] xX; = s =3,210.73 13 3004
14 3,282
15 3,170

and the test statistic is

2 _
154,825,783 — (48:161) = FHo 32107323200 _ ;.o
- 15 _11761 s/\n 117.61/415

14
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Since the calculated value of the test statistic does not exceed o9 |-
to.025, 14 = 2.145 or 1y 025, 14 = —2.145, we cannot reject the
null hypothesis. Therefore, there is no strong evidence to gg L
conclude that the mean stabilized viscosity is different from » 80
3200 cP. g0
The assumption of normality for the #-test can be checked g 20 C
by constructing a normal probability plot of the stabilized & 28 C
viscosity data. Figure 4.5 shows the normal probability plot. 10
Because the observations lie along the straight line, there is no 5
problem with the normality assumption. 1 | | | | |
2950 3050 3150 3250 3350 3450

Stabilized viscosity

BFIGURE 4.5 Normal probability plot of
the stabilized viscosity data.

\_ /

Minitab can conduct the one-sample #-test. The output from this software package is
shown in the following display:

One-Sample T: Example 4.3

Test of mu=3,200 vs mu not =3,200

Variable N Mean StDev SE Mean
Example 4.3 15 3,210.7 117.6 30.4
Variable 95.0% CI T P
Example 4.3 (3,145.6, 3,275.9) 0.35 0.729

Notice that Minitab computes both the test statistic and a 95% confidence interval for the
mean stabilized viscosity. We will give the confidence interval formula below; however,
recalling the discussion about the connection between hypothesis tests and confidence inter-
vals at the conclusion of Example 4.3, we observe that because the 95% confidence interval
includes the value 3,200, we would be unable to reject the null hypothesis Hy: u = 3,200.
Note that Minitab also reports a P-value for the #-test.

Tables of the standard normal distribution can be used to obtain P-values for a Z-test,
so long as the computed value of the test statistic Z, is in the body of the table. For example,
Appendix Table II contains values of Z from —3.99 to +3.99 (to two decimal places), so if Z;
is in this interval the P-value can be read directly from the table. However, the table of the
t-distribution, Appendix Table IV, only contains values of the f random variable that corre-
sponds to ten specific percentage points (or tail areas), 0.40, 0.25, 0.10, 0.05, 0.025, 0.01,
0.005, 0.0025, 0.001, and 0.0005. So unless the value of the test statistic 7, happens to corre-
spond exactly to one of these percentage points, we cannot find an exact P-value from the
t-table. It is possible to use the table to obtain bounds on the P-value. To illustrate, consider
the z-test in Example 4.3. The value of the test statistic is #, = 0.35, and there are 14 degrees
of freedom. In the #-table of Appendix Table IV search the 14 degrees of freedom row for the
value 0.35. There is not a value equal to 0.35, but there is a value below it, 0.258, and a value
above it, 0.692. The probabilities above these two values are 0.40 and 0.25, respectively.
Since this is a two-sided alternative hypothesis, double these probabilities, and we now have
an upper and a lower bound on the P-value—specifically, 0.50 < P-value < 0.80. The Minitab
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one-sample #-test routine reports the exact P-value to be 0.729. Minitab can also be used to
calculate P-values from the Probability Distribution function on the CALC menu.

Confidence Interval on the Mean of a Normal Distribution with Variance
Unknown. Suppose that x is a normal random variable with unknown mean t and unknown
variance 6~. From a random sample of n observations the sample mean x and sample variance
s* are computed. Then a 100(1 — o) % two-sided CI on the true mean is

— _ S
X =lop, na1 In SUSX+1yn 4 Tn (4.34)

where 1./, ,-1 denotes the percentage point of the ¢ distribution with n — 1 degrees of free-
dom such that P{t, | 2ty ,_1} = /2. The corresponding upper and lower 100(1 — o) %
confidence bounds are

U< +1g, % (4.35)
and

X—ly % <u (4.36)
respectively.

~ [EXAMPLE 4.4

Reconsider the stabilized viscosity data from Example 4.3. Find
a 95% confidence interval on the mean stabilized viscosity.

SOLUTION
Using equation 4.34, we can find the 95% CI on the mean sta- The manufacturer may only be concerned about stabilized
bilized viscosity as follows: viscosity values that are too low and consequently may be
interested in a one-sided confidence bound. The 95% lower
X — loy2.n-1 S < H<X+ o201 S confidence bound on mean stabilized viscosity is found from
Jn Jn : )
equation 4.36, using # s, 14 = 1.761 as
3,210.73-2.145 17.61 S u<3,210.73 +2.145 1761
V15 J15 117.61
3,210.73-1.761 <u
3,145.50 < ;1 3,275.87 Vis
or

Another way to express this result is that our estimate of the

mean stabilized viscosity is 3,210.73 £ 65.14 cP with 95% 3,15725< u
confidence. This confidence interval was reported by Minitab

in the box on page 118.

_/
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4.3.4 Inference on the Variance of a Normal Distribution

Hypothesis Testing. We now review hypothesis testing on the variance of a normal
distribution. Whereas tests on means are relatively insensitive to the normality assumption,
test procedures for variances are not.

Suppose we wish to test the hypothesis that the variance of a normal distribution equals
a constant—say, 3. The hypotheses are

. 2 2
Hy,: o0° =0

Hi: o’ # 0(2) (4.37)
The test statistic for this hypothesis is
n—1)s
2= % (4.38)
S0

where s> is the sample variance computed from a random sample of n observations. For
a fixed significance level test, the null hypothesis is rejected if X% > X(zx/l,nfl or if
X% < x%,a,z,n,l where xi,zs,,,l and %%70(/2,}171 are the upper o/2 and lower 1 — (a/2) per-
centage points of the chi-square distribution with n — 1 degrees of freedom. If a one-sided
alternative is specified—say, H;: 0’ < 03, then we would reject if x% < x%,a,n,l. For the
other one-sided alternative H,: 6> > 03, reject if x% > xé,n,l.

To illustrate this procedure, consider the stabilized viscosity data from Example 4.3.
Suppose that we want to test hypotheses about the variance of viscosity—specifically,

Hy: o*=100"
H;: o2 >100

The value of the test statistic computed from equation 4.38 is

(n-1)s* _ (14)(117.61)
o} 1002

X6 = =19.36

From Appendix Table III, the upper 5% value of the chi-square distribution with 14 degrees
of freedom is X%.os,m =23.68, and since the computed value of the test statistic does not
exceed 23.68, there is no strong evidence against the null hypothesis. We cannot reject
Hy: 0% = 100>

The Minitab output for this test is shown in the box below. Minitab provides a one-
sided confidence bound on both the variance and the standard deviation. (The CI proce-
dure will be described shortly.) Appendix Table III can be used to find bounds on the
P-value. For 14 degrees of freedom, we find that x(z)jo’m = 13.34, and we already know that
x(z)oim =23.68. Since 13.34 < 19.68 < 23.68 we know that the P-value must be in the
interval 0.05 < P-value < 0.50. Minitab reports the exact value as P-value = 0.151. This
was an upper-tail test.

For a lower-tail test find the probability in the lower tail of the chi-square distribution
below the computed value of the test statistic. For the two-sided alternative, find the tail area
associated with the computed value of the test statistic and double it. The cumulative distrib-
ution function in the Minitab Calc menu can also be used to find P-values.



4.3 Statistical Inference for a Single Sample 127

Statistics
Variable N StDev Variance
Viscosity 15 118 13,832

95% One-Sided Confidence Intervals

Lower
Bound
for Lower Bound

Variable StDev for Variance
Viscosity 90 8,176
Tests
Variable Chi-Square DF P-Value
Viscosity 19.37 14.00 0.151

This test is very useful in many quality and process improvement applications. For exam-
ple, consider a normal random variable with mean y and variance 6. If 6% is less than or equal
to some value—say, o g—then the natural inherent variability of the process will be well within
the design requirements, and, consequently, almost all of the production will conform to spec-
ifications. However, if 62 exceeds 0'%, then the natural variability in the process will exceed the
specification limits, resulting in a high percentage of nonconforming production or “fallout.” In
other words, process capability is directly related to process variability. Equations 4.37 and
4.38 may be used to analyze various other similar situations, and as we will see subsequently,
they form the basis for a monitoring or control procedure for process variability.

Confidence Interval on the Variance of a Normal Distribution. Suppose that
x is a normal random variable with unknown mean u and unknown variance 6. Let the sam-
ple variance s* be computed from a random sample of 1 observations. Then a 100(1 — o) %
two-sided CI on the variance is

(n—1)s>

2 . (n=1)s’
2
Xoj2.n-1

<o’ <=5
Xi—aj2,n-1

(4.39)

where %gc/lnfl denotes the percentage point of the chi-square distribution such that
P{Xﬁ,l 2 ng/z,n—l} = /2. A CI or the standard deviation can be found by taking the square
root throughout in equation (4.39).

If one-sided confidence bounds are desired, they may be obtained from equation 4.39
by using only the upper (or lower) limit with the probability level increased from o/2 to o
That is, the upper and lower 100(1 — ) % confidence bounds are

2 ¢ (n—1)s>

)
Xi—an-1

(4.40)
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and

2
(=Ds” 52

(4.41)
ch,n—l

respectively.

We may use the stabilized viscosity data from Example 4.3 to demonstrate the compu-
tation of a 95% (say) confidence interval on o2 Note that for the data in Table 4.1, we have
s =117.61 and s> = 13,832.11. From Appendix Table III, we find that ¥ 5514 = 26.12 and
;(3975,14 = 5.63. Therefore, from equation 4.39, we find the 95% two-sided confidence inter-
val on 6~ as

(14)13,832.11 <o’< (14)13,832.11
26.12 5.63
which reduces to 74,13.84 < 6° < 34,396.01. The confidence interval on the standard deviation is
86.10< 0 <185.46

Notice that Minitab reported a one-sided lower bound.

4.3.5 Inference on a Population Proportion

Hypothesis Testing. Suppose we wish to test the hypothesis that the proportion p of
a population equals a standard value—say, p,. The test we will describe is based on the nor-
mal approximation to the binomial. If a random sample of » items is taken from the popula-
tion and x items in the sample belong to the class associated with p, then to test

Hy: p=po
Hy: p#po (4.42)
we use the statistic
(x+0.5)—np, if x < npg
_ ”Po(l - Po)
=05 if x> np,
npo(1- o) (4.43)

For a fixed significance level test, the null hypothesis Hy: p = p is rejected if |Zy| > Z,». The
one-sided alternative hypotheses are treated similarly. A P-value approach also can be used.
Since this is a Z-test, the P-values are calculated just as in the Z-test for the mean.

EXAMPLE 4.5 DX

A foundry produces steel forgings used in automobile manu- sample of 250 forgings, 41 were found to be nonconforming.
facturing. We wish to test the hypothesis that the fraction What are your conclusions using ¢« = 0.05?
conforming or fallout from this process is 10%. In a random
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Hy,: p=0.1
Hi: p#0.1 equal to 10%.

_(x=05)-np, _ (41-0.5)—(250)(0.1)

Using a=0.05 we find Zjps=1.96, and therefore
Hy: p=0.1 is rejected (the P-value here is P =0.00108).
That is, the process fraction nonconforming or fallout is not

we calculate the test statistic

\/”Po(l—Po)

4/250(0.1)(1-0.1)

/

As noted above, this test is based as the normal approximation to the binomial. When
this is not appropriate, there is an exact test available. For details, see Montgomery and
Runger (2011).

Confidence Intervals on a Population Proportion. It is frequently necessary to
construct 100(1 — a)% ClIs on a population proportion p. This parameter frequently corre-
sponds to a lot or process fraction nonconforming. Now p is only one of the parameters of a
binomial distribution, and we usually assume that the other binomial parameter n is known. If
a random sample of n observations from the population has been taken, and x “nonconforming”
observations have been found in this sample, then the unbiased point estimator of p is p = x/n.

There are several approaches to constructing the CI on p. If n is large and p = 0.1 (say),
then the normal approximation to the binomial can be used, resulting in the 100(1 — &) %
confidence interval:

[)—Za/z —( ) <p< [)+Za/2 (4.44)

If n is small, then the binomial distribution should be used to establish the confidence
interval on p. If n is large but p is small, then the Poisson approximation to the binomial is
useful in constructing confidence intervals. Examples of these latter two procedures are given
by Duncan (1986).

~ ExavPLE 4.6

In a random sample of 80 home mortgage applications Assuming that the normal approximation to the binomial is
processed by an automated decision system, 15 of the applica- appropriate, find a 95% confidence interval on the fraction of
tions were not approved. The point estimate of the fraction that nonconforming mortgage applications in the process.

was not approved is

15

h—->—0.1875
=30

(continued)
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SoLuTion

The desired confidence interval is found from equation 4.44 as which reduces to
0.1020 < p<0.2730

0.1875-1.96 —0.18758(8.8125) <p

0.1875(0.8125)
80

NS J

<0.1875+1.96

4.3.6 The Probability of Type II Error and Sample Size Decisions

In most hypothesis testing situations, it is important to determine the probability of type II error
associated with the test. Equivalently, we may elect to evaluate the power of the test. To illustrate
how this may be done, we will find the probability of type II error associated with the test of
Hy: =g
Hy: p#
where the variance 6 is known. The test procedure was discussed in Section 4.3.1.
The test statistic for this hypothesis is

Zo_f_ﬂo

=i

and under the null hypothesis the distribution of Z, is N(0, 1). To find the probability of type II error,
we must assume that the null hypothesis Hy: tt = U is false and then find the distribution of Z,.
Suppose that the mean of the distribution is really u; = to + 8, where 8 > 0. Thus, the alternative
hypothesis Hy: 1L # U is true, and under this assumption the distribution of the test statistic Z; is

Zy ~ N[‘s‘m, 1] (4.45)

o

The distribution of the test statistic Z, under both hypotheses Hy and H, is shown in
Figure 4.6. We note that the probability of type II error is the probability that Z, will fall between
—Zy2 and Z,, given that the alternative hypothesis H, is true. To evaluate this probability, we
must find F(Z,,,) — F(=Z,,), where F denotes the cumulative distribution function of the
N(8V/nlo, 1) distribution. In terms of the standard normal cumulative distribution, we then have

Sn S\n
ﬁ=d>[za/2— ;”j—cb[—za/z— ;”j (4.46)

as the probability of type II error. This equation will also work when 6 < 0.

Under Hy Under H;

BFIGURE 4.6
Z The distribution of Z,
~Zopo 0 Zoso §~/nlo under H, and H;.
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~ [EXAMPLE 4.7

The mean contents of coffee cans filled on a particular pro- A random sample of nine cans is to be used, and the type I error
duction line are being studied. Standards specify that the mean probability is specified as o = 0.05. Therefore, the test statistic is
contents must be 16.0 oz, and from past experience it is known

that the standard deviation of the can contents is 0.1 oz. The ¥-16.0

hypotheses are Zy = 0.149
Hy: u=16.0 and H, is rejected if |Zo| > Zy a5 = 1.96. Find the probability
Hyi: p#16.0 of type II error and the power of the test, if the true mean con-
tents are ; = 16.1 oz.
SOLUTION
Since we are given that 6 = u; — gy =16.1 — 16.0 = 0.1, we That is, the probability that we will incorrectly fail to reject
have H, if the true mean contents are 16.1 oz is 0.1492.
Equivalently, we can say that the power of the testis 1 — 8 =
Sin Svn 1 —0.1492 = 0.8508.
B= q’(za/z - _) - q’(—Za/z - ]
o o
—af196- 2O ) _gf 96 (CD3)
0.1 0.1

= O(—1.04) — B(—4.96)
=0.1492

NS J

We note from examining equation 4.46 and Figure 4.6 that 3 is a function of n, d, and
o. It is customary to plot curves illustrating the relationship between these parameters. Such
a set of curves is shown in Figure 4.7 for v = 0.05. Graphs such as these are usually called
operating-characteristic (OC) curves. The parameter on the vertical axis of these curves is
B, and the parameter on the horizontal axis is d = |0]/c. From examining the operating-
characteristic curves, we see that

1. The further the true mean p, is from the hypothesized value p (i.e., the larger the value
of &), the smaller is the probability of type II error for a given n and o. That is, for a
specified sample size and ¢, the test will detect large differences more easily than small
ones.

2. As the sample size n increases, the probability of type II error gets smaller for a speci-
fied 0 and o. That is, to detect a specified difference we may make the test more pow-
erful by increasing the sample size.

Operating-characteristic curves are useful in determining how large a sample is
required to detect a specified difference with a particular probability. As an illustration, sup-
pose that in Example 4.7 we wish to determine how large a sample will be necessary to have
a 0.90 probability of rejecting Hy: = 16.0 if the true mean is u = 16.05. Since
6 =16.05 — 16.0 = 0.05, we have d = |0|/c = |0.05|/0.1 = 0.5. From Figure 4.7 with § = 0.10
and d = 0.5, we find n = 45, approximately. That is, 45 observations must be taken to ensure
that the test has the desired probability of type II error.

Operating-characteristic curves are available for most of the standard statistical tests
discussed in this chapter. For a detailed discussion of the use of operating-characteristic
curves, refer to Montgomery and Runger (2011).



132 Chapter 4 W Inferences About Process Quality
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BFIGURE 4.7 Operating-characteristic curves for the two-sided normal test with o = 0.05.
(Reproduced with permission from C. L. Ferris, F. E. Grubbs, and C. L. Weaver, “Operating Characteristic Curves
for the Common Statistical Tests of Significance,” Annals of Mathematical Statistics, June 1946.)

Minitab can also perform power and sample size calculations for several hypothesis
testing problems. The following Minitab display reproduces the power calculations from the
coffee can—filling problem in Example 4.7.

Power and Sample Size

l1-Sample Z Test

Testing mean=null (versus not =null)
Calculating power for mean = null + difference
Alpha=0.05 Sigma=0.1

Sample
Difference Size Power
0.1 9 0.8508

The following display shows several sample size and power calculations based on the rub-
berized asphalt problem in Example 4.3.

Power and Sample Size

l1-Sample t Test

Testing mean=null (versus not =null)
Calculating power for mean =null + difference
Alpha=0.05 Sigma=117.61

Sample
Difference Size Power
50 15 0.3354
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1-Sample t Test

Testing mean=null (versus not =null)
Calculating power for mean =null + difference
Alpha=0.05 Sigma=117.61

Sample Target Actual
Difference Size Power Power
50 46 0.8000 0.8055

l1-Sample t Test

Testing mean=null (versus not =null)
Calculating power for mean =null + difference
Alpha=0.05 Sigma=117.61

Sample
Difference Size Power
100 15 0.8644

In the first portion of the display, Minitab calculates the power of the test in Example 4.3,
assuming that the engineer would wish to reject the null hypothesis if the true mean stabilized
viscosity differed from 3200 by as much as 50, using s = 117.61 as an estimate of the true
standard deviation. The power is 0.3354, which is low. The next calculation determines the
sample size that would be required to produce a power of 0.8, a much better value. Minitab
reports that a considerably larger sample size, n = 46, would be required. The final calcula-
tion determines the power with n = 15 if a larger difference between the true mean stabilized
viscosity and the hypothesized value is of interest. For a difference of 100, Minitab reports
the power to be 0.8644.

4.4 Statistical Inference for Two Samples

The previous section presented hypothesis tests and confidence intervals for a single popula-
tion parameter (the mean u, the variance 67, or a proportion p). This section extends those
results to the case of two independent populations.

The general situation is shown in Figure 4.8. Population 1 has mean i, and variance o7,
whereas population 2 has mean 1, and variance o3. Inferences will be based on two random

Population 1 Population 2

of

/. /.

/ul /uz

o}

Sample 1 Sample 2

X115 X10peeey X1, X011 Xppyeeey Xon,

FIGURE 4.8 Two independent populations
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samples of sizes n; and n,, respectively. That is, xy, X12, . . . , X,,, is a random sample of n,
observations from population 1, and x5, X2, . . ., X2,,, 1S @ random sample of n, observations

from population 2.

4.4.1 Inference for a Difference in Means, Variances Known

In this section we consider statistical inferences on the difference in means ; — u, of the

populations shown in Figure 4.8, where the variances o7 and 3 are known. The assumptions
for this section are summarized here.

1. xy1, X12, . . . , X1, is a random sample from population 1.
2. X31, X22, - . - , X2, 1S a random sample from population 2.
3. The two populations represented by x; and x, are independent.

4. Both populations are normal, or if they are not normal, the conditions of the
central limit theorem apply.

A logical point estimator of (; — U, is the difference in sample means x; — x,. Based
on the properties of expected values, we have

E(% —X,) = E(%) - E(%) = 4y — 1,
and the variance of x; — x, is

2 2
O o
_%1 03

V(X - %) =V(x)+V(x,) PR

Based on the assumptions and the preceding results, we may state the following.

The quantity

_ (4.47)
2 2
\/‘71+02

has an N(0, 1) distribution.

This result will be used to form tests of hypotheses and confidence intervals on
Uy — U,. Essentially, we may think of t1; — i, as a parameter 0, and its estimator is 0=x,—x
with variance 63 = 65/ n; + 03/ n,. If 6, is the null hypothesis value specified for 0, then the
test statistic will be (8 — 6,)/0y- Note how similar this is to the test statistic for a single mean
used in the previous section.

Hypothesis Tests for a Difference in Means, Variances Known. We now con-
sider hypothesis testing on the difference in the means y; — y, of the two populations in



4.4 Statistical Inference for Two Samples 135

Figure 4.8. Suppose we are interested in testing that the difference in means ; — U, is equal to
a specified value Ag. Thus, the null hypothesis will be stated as Hy: 1, — U, = Agy. Obviously,
in many cases, we will specify Ay = 0 so that we are testing the equality of two means (i.e.,
Hy: 111 = 1,). The appropriate test statistic would be found by replacing u; — i, in equation
4.47 with A, and this test statistic would have a standard normal distribution under Hy,. Suppose
that the alternative hypothesis is H;: iy — U # Ay. Now, a sample value of x; — x, that is con-
siderably different from A, is evidence that H, is true. Because Z has the N(0, 1) distribution
when H, is true, we would take —Z,,, and Z,,, as the boundaries of the critical region just as
we did in the single sample hypothesis testing problem of Section 4.3.1. This would give a test
with level of significance . Critical regions for the one-sided alternatives would be located sim-
ilarly. A P-value approach can also be used. Formally, we summarize these results here.

Testing Hypotheses on u; — uy, Variances Known

Null hypothesis: Hy: i, — Uy = Ay
q ;Cl B }2 - A0
Null hypothesis: Zy=——"———— (4.48)
oi 03
PE— + PR—
ng np
Fixed Significance Level
Alternative Hypotheses Rejection Criterion P-value

Hy: gy — o # Ay
Hy:py — > Ay
Hy:py — 1 < Ay

Zy<—=Zop ot Zo> Zop

P=27[1-(D|Z)]
P=1-®(Z)
P =®(Zy)

Zo > Zy,
Zo< —Zy

- ExawpLE 4.8

A product developer is interested in reducing the drying time
of a primer paint. Two formulations of the paint are tested; for-
mulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time.
From experience, it is known that the standard deviation of
drying time is eight minutes, and this inherent variability
should be unaffected by the addition of the new ingredient.

Ten specimens are painted with formulation 1, and another
ten specimens are painted with formulation 2; the 20 speci-
mens are painted in random order. The two sample average
drying times are x; = 121 min and x, = 112 min, respectively.
What conclusions can the product developer draw about the
effectiveness of the new ingredient, using o = 0.05?

SOLUTION

The hypotheses of interest here are
Hy: =1y =0
Hy: py =y >0

or equivalently,

Hy: g =ty
Hy: oy >t

(continued)
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Zy=

Now since X; = 121 min and X, = 112 min, the test statistic is new ingredient to the paint significantly reduces the drying
time. Alternatively, we can find the P-value for this test as
121-112
T ®F =252 P-value = 1 — ©(2.52) = 0.0059
10 + 10 Therefore, Hy: p; = U, would be rejected at any signifi-

cance level o > 0.0059.

Because the test statistic Zy = 2.52 > Z; s = 1.645, we reject
Hy: 1y = W, at the o = 0.05 level and conclude that adding the

N

v

Confidence Interval on a Difference in Means, Variances Known. The
100(1 — ) % CI on the difference in two means L, — l, when the variances are known can
be found directly from results given previously in this section. Recall that x;q, x5, . . ., X1,
is arandom sample of n; observations from the first population and x5, X2, . . . , X2, 1S a ran-
dom sample of n, observations from the second population. If x; and x, are the means of these
two samples, then a 100(1 — o) % confidence interval on the difference in means p; — [, is
given by the following.

\“0'2 O'2 02 0'2

= _x 1 2 = _x 1 2

X1 — Xy _Za/z “‘ + < ‘[ll _’u,z < X1 — Xy +ZO£/2 + (449)
\'ng  my nooon

This is a two-sided CI. One-sided confidence bounds can be obtained by using the approach
illustrated in Section 4.3 for the single-sample case.

4.4.2 Inference for a Difference in Means of Two Normal
Distributions, Variances Unknown

We now extend the results of the previous section to the difference in means of the two distrib-
utions in Figure 4.8 when the variances of both distributions o7 and 63 are unknown. If the sam-
ple sizes n; and n, exceed 30, then the normal distribution procedures in Section 4.4.1 could be
used. However, when small samples are taken, we will assume that the populations are normally
distributed and base our hypotheses tests and confidence intervals on the ¢ distribution. This
nicely parallels the case of inference on the mean of a single sample with unknown variance.

Hypotheses Tests for the Difference in Means. We now consider tests of hypothe-
ses on the difference in means y1; — i, of two normal distributions where the variances o7 and
05 are unknown. A t-statistic will be used to test these hypotheses. As noted above, the normal-
ity assumption is required to develop the test procedure, but moderate departures from normality
do not adversely affect the procedure. Two different situations must be treated. In the first case,
we assume that the variances of the two normal distributions are unknown but equal—that is,
o7 = 03 = 6~ In the second, we assume that 6> and 65 are unknown and not necessarily equal.

Case I: 0'12 = 0'22 = o’ Suppose we have two independent normal populations with
unknown means U; and [I,, and unknown but equal variances, 01 =035 = 0" We wish to test

Ho: =y =4

(4.50)
Hy: =y # A
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Let x4, X12, . . ., X1, be a random sample of n, observations from the first population and
X21, X22, - - ., X2,, De @ random sample of n, observations from the second population. Let
X1, Xo, 57, 53 be the sample means and sample variances, respectively. Now the expected value
of the difference in sample means x; — x, is E(x; — x») = l4; — l», SO X; — X, is an unbiased
estimator of the difference in means. The variance of x; — x, is

2 2
1 1
Va-m)= e o Lo L]
nom o m

It seems reasonable to combine the two sample variances s2 and s3 to form an estimator of
o°. The pooled estimator of 6 is defined as follows.

The pooled estimator of 6>, denoted by s, is defined by

2o (nl —l)sl2 -+—(n2 —1)322 @.51)

p

It is easy to see that the pooled estimator sf, can be written as
ny—1 n, —1
gttt o, mol g
n+ny—2 ny+ny,—2

=wsi +(1—w)s3

where 0 <w < 1. Thus s,z, is a weighted average of the two sample variances s7 and s3,
where the weights w and 1 — w depend on the two sample sizes n; and n,. Obviously, if
n; =n, =n, then w=0.5 and sf, is simply the arithmetic average of s7 and s3. If n, = 10
and n, =20 (say), then w=0.32 and 1 —w = 0.68. The first sample contributes n; — 1
degrees of freedom to sﬁ, and the second sample contributes n, — 1 degrees of freedom.
Therefore, sﬁ has n; + n, — 2 degrees of freedom.

Now we know that

X =X — (1 — 10y)
\/1 1
o|—+—
non

has a N(0, 1) distribution. Replacing & by s, gives the following.

zZ=

Given the assumptions of this section, the quantity
x| =Xy —(#1 —ﬂz)
1

S, I—
"\

=

(4.52)

has a ¢ distribution with n; + n, — 2 degrees of freedom.

The use of this information to test the hypotheses in equation 4.50 is now straightfor-
ward: Simply replace u; — u, by Ay, and the resulting test statistic has a ¢ distribution with
n; + n, — 2 degrees of freedom under Hy: i, — U, = Ag. The location of the critical region for
both two-sided and one-sided alternatives parallels those in the one-sample case. This proce-
dure is usually called the pooled ¢-test.
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The Two-Sample Pooled t-Test'

Alternative
Hypotheses

Null hypothesis:  Hy: w; —u, = Ag

e X —-Xx-A
Test statistic: to = %
Sy |—+—

n Ny

Fixed Significance Level
Rejection Criterion

P-Value

(4.53)

Hy:py — o # A

Hy:py — > Ag
Hy:py — iy < Ag

fo >tz +n, — 2 OF
fo< — lop2ntn, — 2
tO > toc,n,+n2 =2
Ip< — ta,n1+n2 =2

P = Sum of the probability
above [ty| and below —|z|

P = Probability above f,
P = Probability below ¢,

~ EXAMPLE 4.9

Two catalysts are being analyzed to determine how they affect = TABLE 4.2
the mean yield of a chemical process. Specifically, catalyst 1 is
currently in use, but catalyst 2 is acceptable. Since catalyst 2 is
cheaper, it should be adopted, providing it does not change the
process yield. An experiment is run in the pilot plant and results 1
in the data shown in Table 4.2. Is there any difference between
the mean yields? Use o = 0.05 and assume equal variances.

SoLuTion

Comparing Mean Yields

Catalyst Yield Data, Example 4.9

The hypotheses are

Hy:
H;:

Hy=Hy
Hy # Uy

From Table 4.2, we have X, =92.255,5,=2.39, n, =8, , (1 —1)sf +(n, —1)s3
2=

X, =92.733, 5, = 2.98, and n, = 8. Therefore, P n+n,—2

s, =730 =2.70

Observation Number Catalyst 1 Catalyst 2
91.50 89.19
2 94.18 90.95
3 92.18 90.46
4 95.39 93.21
5 91.79 97.19
6 89.07 97.04
7 94.72 91.07
8 89.21 92.75
X, =92.255 Xy =92.733
51 =2.39 55 =298
_ (1239 +(7)(2.98)* _ 730
8+8-2

! Although we have given the development of this procedure for the case where the sample sizes could be different,
there is an advantage to using equal sample sizes n, = n, = n. When the sample sizes are the same from both popula-
tions, the #-test is very robust to the assumption of equal variances.



and
X —X
11

270 | —+—
\n my

| 92.255-92733
2.70\/1+1
8 8

Because #0514 = —2.145, and -2.145 < - 0.35 < 2.145,
the null hypothesis cannot be rejected. That is, at the 0.05 level
of significance, we do not have strong evidence to conclude
that catalyst 2 results in a mean yield that differs from the
mean yield when catalyst 1 is used.

Figure 4.9 shows comparative box plots for the yield data
for the two types of catalysts. These comparative box plots
indicate that there is no obvious difference in the median of the

fo = -0.35
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two samples, although the second sample has a slightly larger
sample dispersion or variance. There are no exact rules for
comparing two samples with box plots; their primary value is
in the visual impression they provide as a tool for explaining
the results of a hypothesis test, as well as in verification of
assumptions.

Figure 4.10 presents a Minitab normal probability plot of
the two samples of yield data. Note that both samples plot
approximately along straight lines, and the straight lines for
each sample have similar slopes. (Recall that the slope of the
line is proportional to the standard deviation.) Therefore, we
conclude that the normality and equal variances assumptions
are reasonable.

99 -
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90 -

98
. 807
5} [
% |- g
5 50 -
S 40 -
- A & 30~

[}

2 20 -
92 - ok
57

90 -
1 L

88

1 2
Catalyst type

BFIGURE 4.9 Comparative box

88 93 98
Data

BMFIGURE 4.10 Minitab normal probability plot of the

plots for the catalyst yield data. catalyst yield-data.

N J

A P-value could also be used for decision making in this example. The actual value is
P =0.7289. (This value was obtained from a handheld calculator.) Therefore, since the
P-value exceeds o = 0.05, the null hypothesis cannot be rejected. The z-table in Appendix
Table IV can also be used to find bounds on the P-value.

Case 2: 0'12 # 0'22 . In some situations, we cannot reasonably assume that the
unknown variances o and o3 are equal. There is not an exact z-statistic available for testing
Hy: 1y — 1, = Ay in this case. However, if Hy: 4, — i, = Ay is true, then the statistic

(4.54)




140 Chapter 4 B Inferences About Process Quality

is distributed approximately as r with degrees of freedom given by

V= -2 (4.55)

Therefore, if o7 # 03, the hypotheses on differences in the means of two normal distributions
are tested as in the equal variances case, except that t§ is used as the test statistic and
ny + n, — 2 is replaced by v in determining the degrees of freedom for the test.

Confidence Interval on the Difference on Means, Variances Unknown

Case 1: 0'12 = 0'22 =0o’ If X1, X2, 52, and 53 are the means and variances of two
random samples of sizes n; and n,, respectively, from two independent normal populations
with unknown but equal variances, then a 100(1 — )% CI on the difference in means

My — M is
o o1
Xy =Xy —lgp, n1+n2—2sp\5n—+ P
o m
(4.56)
_ 1
SHy = Hy SXp =Xy F g gy 25y, [Tt
o

where s, = \/[(nl - Dst+ (n, — l)si]/(nl + n, — 2) is the pooled estimate of the common
population standard deviation, and #,,5 ,, +,,—2 1S the upper ot/ 2 percentage point of the  dis-
tribution with n; + n, — 2 degrees of freedom.

Case 2: 0'12 F* 0'22. If X;, X5, 57, and s3 are the means and variances of two random
samples of sizes n; and n,, respectively, from two independent normal populations with
unknown and unequal variances, then an approximate 100(1 — o) % CI on the difference in
means [, — [, is

———
st 8 st s

)?1—)_62—1‘0(/2", _+_S‘Ll1_ﬂ2 Sfl_fz +ta/2,v ““_+_ (457)
nom \m

where v is given by equation 4.55 and ¢,,,, is the upper /2 percentage point of the 7 distri-
bution with v degrees of freedom.
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~ [EXAMPLE 4.10 X

An article in the journal Hazardous Waste and Hazardous
Materials (Vol. 6, 1989) reported the results of an analysis of
the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would indicate that the
hydration mechanism in the cement is blocked and would
allow water to attack various locations in the cement structure.
Ten samples of standard cement had an average weight percent

calcium of x; =90.0, with a sample standard deviation of
s1 =5.0, and 15 samples of the lead-doped cement had an
average weight percent calcium of x, = 87.0, with a sample
standard deviation of s, = 4.0. Is there evidence to support a
claim that doping the cement with lead changes the mean
weight of calcium in the cement?

SOLUTION

We will assume that weight percent calcium is normally dis-
tributed and find a 95% confidence interval on the difference
in means, [l; — U, for the two types of cement. Furthermore,
we will assume that both normal populations have the same
standard deviation.

The pooled estimate of the common standard deviation is
found using equation 4.51 as follows:
S,z, (”1 - 1)512 + (n2 - 1)s§

2 2
_ (950 +144.0° _ o o)
10+15-2

n+n, =2

Therefore, the pooled standard deviation estimate is
s, = V19.52 = 4.4. The 95% Cl is found using equation 4.56:

% % —1 |1 N 1
A1 = X2 = 10025235, | T T
B P\‘\ ”1 }’l2

_ 11
— Xy Floo2s238py Tt —

SHy =y <X |
\nm

- /

Computer Solution.

or upon substituting the
10.025.23 = 2.069,

sample values and using

T 1
90.0 —87.0 —2.069(4.4).|— + — < p1; —
( )10 5 SH— i
T 1
<90.0—87.0+2.069(4.4) |— + —
10 15

which reduces to
—0.72 <y — 1, £6.72

Note that the 95% CI includes zero; therefore, at this level of
confidence we cannot conclude that there is a difference in the
means. Put another way, there is no evidence that doping the
cement with lead affected the mean weight percent of cal-
cium; therefore, we cannot claim that the presence of lead
affects this aspect of the hydration mechanism at the 95%
level of confidence.

Two-sample statistical tests can be performed using most sta-

tistics software packages. The following display presents the output from the Minitab two-
sample 7-test routine for the catalyst yield data in Example 4.9.

Two-Sample t-test and Cl: Catalyst 1, Catalyst 2

Two-sample T for Catalyst 1 vs Catalyst 2

N Mean StDev SE Mean
Catalyst 1 8 92.26 2.39 0.84
Catalyst 2 8 92.73 2.98 1.1

Difference=mu Catalyst 1-mu Catalyst 2

Estimate for difference: —0.48

95% CI for difference: —(3.39, 2.44)

t-test of difference=0 (vs not=):
P-Value=0.729 DF=14

T-value=-0.35
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The output includes summary statistics for each sample, confidence intervals on the dif-
ference in means, and the hypothesis testing results. This analysis was performed assuming
equal variances. Minitab has an option to perform the analysis assuming unequal variances.
The confidence levels and o-value may be specified by the user. The hypothesis testing pro-
cedure indicates that we cannot reject the hypothesis that the mean yields are equal, which
agrees with the conclusions we reached originally in Example 4.9.

Minitab will also perform power and sample size calculations for the two-sample
pooled z-test. The following display from Minitab illustrates some calculations for the cata-
lyst yield problem in Example 4.9.

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample
Difference Size Power
2 8 0.2816

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample Actual
Difference Size Target Power Power
2 27 0.7500 0.7615

In the first part of the display, Minitab calculates the power of the test in Example 4.9,
assuming that we want to reject the null hypothesis if the true mean difference in yields
for the two catalysts were as large as 2, using the pooled estimate of the standard devia-
tion s, = 2.70. For the sample size of n; = n, = 8 for each catalyst, the power is reported
as 0.2816, which is quite low. The next calculation determines the sample size that would
be required to produce a power of 0.75, a much better value. Minitab reports that a con-
siderably larger sample size for each catalyst type, n; = n, = 27, would be required.

Paired Data. 1t should be emphasized that we have assumed that the two samples
used in the above tests are independent. In some applications, paired data are encountered.
Observations in an experiment are often paired to prevent extraneous factors from inflating
the estimate of the variance; hence, this method can be used to improve the precision of
comparisons between means. For a further discussion of paired data, see Montgomery and
Runger (2011). The analysis of such a situation is illustrated in the following example.
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~ [EXAMPLE 4.11

Two different types of machines are used to measure the tensile
strength of synthetic fiber. We wish to determine whether or not
the two machines yield the same average tensile strength val-
ues. Eight specimens of fiber are randomly selected, and one
strength measurement is made using each machine on each
specimen. The coded data are shown in Table 4.3.

The data in this experiment have been paired to prevent the
difference between fiber specimens (which could be substan-
tial) from affecting the test on the difference between
machines. The test procedure consists of obtaining the differ-
ences of the pair of observations on each of the n specimens—
say, dj=x;;—X,j=1,2,...,n—and then testing the
hypothesis that the mean of the difference u, is zero. Note that
testing Hy: 1, = 0 is equivalent to testing Hy: 1y = ,; further-
more, the test on u, is simply the one-sample #-test discussed
in Section 4.3.3. The test statistic is

- d
" sa/\n
where
_ 1=
dz—Zdj
I’lj;]
and

2= -

and Hy: 1, = 0 is rejected if |fg] > 52.—1-

N J

In our example, we find that

j:l d; =l(—11)=—1.38
nj:I : 8
. 2
n (ledjj 2
de _NE T 65— (-11)
5 =4 - 8 713
n—1
Therefore, the test statistic is
o L3

Choosing o = 0.05 results in #( p5 7 = 2.365, and we conclude
that there is no strong evidence to indicate that the two
machines differ in their mean tensile strength measurements
(the P-value is P = 0.18).

= TABLE 4.3
Paired Tensile Strength Data for Example 4.11

Specimen Machine 1 Machine 2 Difference

1 74 78 —4
2 76 79 =3
3 74 75 -1
4 69 66 3
5 58 63 -5
6 71 70

7 66 66 0
8 65 67 =2

4.4.3 Inference on the Variances of Two Normal Distributions

Hypothesis Testing. Consider testing the hypothesis that the variances of two inde-
pendent normal distributions are equal. If random samples of sizes n; and n, are taken from
populations 1 and 2, respectively, then the test statistic for

L2 2
H,: o] =0;
H: 0']2¢0'§

is simply the ratio of the two sample variances,

(4.58)
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We would reject Hy if Fo > Foa 1,1 08 if Fo < Fi_q2)yn,—1.,—1>» Where Fo) 1 0,-1
and F_(y/2y.n,—1.4,—1 denote the upper a/2 and lower 1 — (&/2) percentage points of the F
distribution with n; — 1 and n, — 1 degrees of freedom, respectively. The following display
summarizes the test procedures for the one-sided alternative hypotheses.

Testing Hypotheses on 67 =62 from Normal Distributions

Alternative Hypotheses

Null hypothesis: Hy: 67 = 03

Test Statistics

Rejection Criterion

2
Hl:o—%<6% FOIS_g
S

2

s

F0:_12

B ar > o 55

k> F

o,ny —1,}1] -1

Fy > F

o,n —1,ny—1

Confidence Interval on the Ratio of the Variances of Two Normal Distributions.
Suppose that x; ~ N(u;, o7) and x, ~ N (Uo, 03, where Uy, and o3 are unknown, and we wish to
construct a 100(1 — @)% confidence interval on o7/ 0%. If s7 and s3 are the sample variances,
computed from random samples of n; and n, observations, respectively, then the 100(1 — ) %

two-sided CI is

2 2 2
5y O _ 95
_2Fi—a/2,n2—1,n1—1 < 2 < _2Fa/2,n2—1,n1—1 (459)
5 O, 5

where F,/, ., 18 the percentage point of the F distribution with « and v degrees of freedom such
that P{F,,,, 2 Fy/2...,} = 0./ 2. The corresponding upper and lower confidence bounds are

of _si
2 = 2 tan-ln-1 (460)
o, %
and
2 2
DI Y
—Fanm-im-1S— 4.61)
%) 0,

respectively.”

2Appendix Table V gives only upper tail points of F; that is, F, oy LOWer tail points Fy_, , may be found using the

relationship Fy ¢, = 1/ Fo e
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4.4.4 Inference on Two Population Proportions

We now consider the case where there are two binomial parameters of interest—say, p; and p,—
and we wish to draw inferences about these proportions. We will present large-sample hypothesis
testing and confidence interval procedures based on the normal approximation to the binomial.

Large-Sample Test for Hy: py = p>. Suppose that the two independent random sam-
ples of sizes n; and n, are taken from two populations, and let x; and x, represent the num-
ber of observations that belong to the class of interest in samples 1 and 2, respectively.
Furthermore, suppose that the normal approximation to the binomial is applied to each pop-
ulation, so that the estimators of the population proportions p, = x,/n; and p, = x,/n, have
approximate normal distributions. We are interested in testing the hypotheses

Hy: pi=p;
Hy: p#p;
The statistic

P =Py — (P —P2)
\/ p(l-p) N pa(1-py) (4.62)

n n

is distributed approximately as standard normal and is the basis of a test for Hy: p; = p».
Specifically, if the null hypothesis Hy: p; = p, is true, then using the fact that p; = p, = p, the
random variable

1 1
Joi-nf L+ 1)
o

is distributed approximately N(0, 1). An estimator of the common parameter p is

x1+x2

h=
I’l1+}‘l2

The test statistic for Hy: p; = p, is then

This leads to the test procedures described here.

Testing Hypothesis on Two Population Proportions

Null hypothesis:  H: p; = p,
b =D

1 1 (4.63)
pl- f?)[nl + nz)

Test statistic: Zy =
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Fixed Significance Level
Alternative Hypotheses Rejection Criterion P-value
H:p, # p> Zo > Zyy2 O Zo < —Zopp P=2[1-®(Zy)]
H:p,>p> Zo > Zy, P=1-®d(Zy)
Hy:pi <py Zy< ~Zy P =®(Zy)

Confidence Interval on the Difference in Two Population Proportions. If
there are two population proportions of interest—say, p; and p,—it is possible to construct a
100(1 — &) % CI on their difference. The CI is as follows.

P1 = P2~ 2y \;‘ . + " Spi—p (4.64)
‘ 1 2 :
o p(l-py) | pa(1-p
spl—p2+za/2\5 1(n 1)+ 2(n 2)
‘ 1 2

This result is based on the normal approximation to the binomial distribution.

4.5 What if There Are More than Two Populations? The Analysis of Variance

As this chapter has illustrated, testing and experimentation are a natural part of the engineer-
ing analysis process and arise often in quality control and improvement problems. Suppose,
for example, that an engineer is investigating the effect of different heat-treating methods on
the mean hardness of a steel alloy. The experiment would consist of testing several specimens
of alloy using each of the proposed heat-treating methods and then measuring the hardness of
each specimen. The data from this experiment could be used to determine which heat-treating
method should be used to provide maximum mean hardness.

If there are only two heat-treating methods of interest, this experiment could be
designed and analyzed using the two-sample #-test presented in this chapter. That is, the
experimenter has a single factor of interest—heat-treating methods—and there are only two
levels of the factor.

Many single-factor experiments require that more than two levels of the factor be
considered. For example, the engineer may want to investigate five different heat-treating
methods. In this section we show how the analysis of variance (ANOVA) can be used for
comparing means when there are more than two levels of a single factor. We will also discuss
randomization of the experimental runs and the important role this concept plays in the over-
all experimentation strategy. In Part IV, we will discuss how to design and analyze experi-
ments with several factors.

4.5.1 An Example

A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the hard-
wood concentration in the pulp and that the range of hardwood concentrations of practical
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= TABLE 4.4
Tensile Strength of Paper (psi)

Observations
Hardwood
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96

interest is between 5% and 20%. A team of engineers responsible for the study decides to
investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to
make up six test specimens at each concentration level, using a pilot plant. All 24 specimens
are tested on a laboratory tensile tester, in random order. The data from this experiment are
shown in Table 4.4.

This is an example of a completely randomized single-factor experiment with four
levels of the factor. The levels of the factor are sometimes called treatments, and each treat-
ment has six observations or replicates. The role of randomization in this experiment is
extremely important. By randomizing the order of the 24 runs, the effect of any nuisance variable

30
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BFIGURE 4.11 (a) Box plots of hardwood concentration data. (b)
Display of the model in equation 4.65 for the completely randomized single-factor
experiment.
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that may influence the observed tensile strength is approximately balanced out. For example,
suppose that there is a warm-up effect on the tensile testing machine; that is, the longer the
machine is on, the greater the observed tensile strength. If all 24 runs are made in order of
increasing hardwood concentration (that is, all six 5% concentration specimens are tested
first, followed by all six 10% concentration specimens, etc.), then any observed differences in
tensile strength could also be due to the warm-up effect.

It is important to graphically analyze the data from a designed experiment. Figure 4.11a
presents box plots of tensile strength at the four hardwood concentration levels. This figure indi-
cates that changing the hardwood concentration has an effect on tensile strength; specifically,
higher hardwood concentrations produce higher observed tensile strength. Furthermore, the dis-
tribution of tensile strength at a particular hardwood level is reasonably symmetric, and the vari-
ability in tensile strength does not change dramatically as the hardwood concentration changes.

Graphical interpretation of the data is always useful. Box plots show the variability of
the observations within a treatment (factor level) and the variability between treatments. We
now discuss how the data from a single-factor randomized experiment can be analyzed sta-
tistically.

4.5.2 The Analysis of Variance

Suppose we have a different levels of a single factor that we wish to compare. Sometimes,
each factor level is called a treatment, a very general term that can be traced to the early appli-
cations of experimental design methodology in the agricultural sciences. The response for
each of the a treatments is a random variable. The observed data would appear as shown in
Table 4.5. An entry in Table 4.5—say, y;,—represents the jth observation taken under treat-
ment i. We initially consider the case in which there are an equal number of observations, 7,
on each treatment.
We may describe the observations in Table 4.5 by the linear statistical model
i=1,2,...,a 4
ytj_#+7i+£i/{j:1’2"“,n (4.65)
where y;; is a random variable denoting the (ij)th observation, u is a parameter common to all
treatments called the overall mean, 7; is a parameter associated with the ith treatment called
the ith treatment effect, and g;; is a random error component. Note that the model could have
been written as

i=1,2,...,a

Vi = Hi +£U{j=l,2,~--’”

= TABLE 4.5
Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages
Y11 Y12 Yin Y- Vi
2 Y21 V22 Y2n Y V2.
a Yail Ya2 Yan Ya ya
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where u; = i + 7; is the mean of the ith treatment. In this form of the model, we see that
each treatment defines a population that has mean p;, consisting of the overall mean u
plus an effect 7; that is due to that particular treatment. We will assume that the errors g;
are normally and independently distributed with mean zero and variance o~. Therefore,
each treatment can be thought of as a normal population with mean g, and variance o°.
(See Fig. 4.11b.)

Equation 4.65 is the underlying model for a single-factor experiment. Furthermore,
since we require that the observations are taken in random order and that the environment
(often called the experimental units) in which the treatments are used is as uniform as possi-
ble, this design is called a completely randomized experimental design.

We now present the analysis of variance for testing the equality of a population
means. This is called a fixed effects model analysis of variance (ANOVA). However, the
ANOVA is a far more useful and general technique; it will be used extensively in Chapters
13 and 14. In this section we show how it can be used to test for equality of treatment
effects. The treatment effects 7; are usually defined as deviations from the overall mean y,
so that

7,=0 (4.66)

1

e

i=1

Let y; represent the total of the observations under the ith treatment and y,. represent the
average of the observations under the ith treatment. Similarly, let y_ represent the grand
total of all observations and y_represent the grand mean of all observations. Expressed
mathematically,

y. = 2 Zy, y.=y./N (4.67)

where N = an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means i, U, . . . , l,. Using
equation 4.66, we find that this is equivalent to testing the hypotheses

Ho: T]:TZZ"':TaZO
H;: t1;#0 for atleastone i (4.68)

Thus, if the null hypothesis is true, each observation consists of the overall mean u plus a
realization of the random error component €;;. This is equivalent to saying that all N obser-
vations are taken from a normal distribution with mean u and variance 6°. Therefore, if
the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in equation 4.68 is based on a comparison of two independent
estimates of the population variance. The total variability in the data is described by the total
sum of squares

a n
$Sr =33 (v;-5.)

i=1j=1

The basic ANOVA partition of the total sum of squares is given in the following definition.
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The ANOVA sum of squares identity is

a n a n 2

> (v -5.) =n§(i,-. ~3)+X Y (v -5) (4.69)

1j=1

L

i=1j=1

The proof of this identity is straightforward. Note that we may write

3 (o -5) =L 2[00 -5+ (05 5]
i=1j= i=1j=1
55 (y-5) =nE (-5 + 25 (-5
+25 5 (55 ) - %) 4.70)

Note that the cross-product term in equation 4.70 is zero, since

n

> (yij - 711) =Y. —ny. =Y _”(yzﬂ/”) =0

j=1
Therefore, we have shown that equation 4.70 will reduce to equation 4.69.

The identity in equation 4.69 shows that the total variability in the data, measured by
the total sum of squares, can be partitioned into a sum of squares of differences between treat-
ment means and the grand mean and a sum of squares of differences of observations within a
treatment from the treatment mean. Differences between observed treatment means and the
grand mean measure the differences between treatments, whereas differences of observations
within a treatment from the treatment mean can be due only to random error. Therefore, we
write equation 4.69 symbolically as

SSr = SSrreatments T 55g 4.71)
where
SSp = ﬁ‘iil(yl] - )7‘)2 = total sum of squares
i=1j=
SSTreatments = ni(y,., - )7,,)2 = treatment sum of squares
i=I
and

a n 2
SS=Y Y (yl.j - y,.,) = error sum of squares
i=1j=1

We can gain considerable insight into how the ANOVA works by examining the
expected values of SSticaiments and SSg. This will lead us to an appropriate statistic for testing
the hypothesis of no differences among treatment means (or 7; = 0).
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The expected value of the treatment sum of squares is

a
E(SSTreatments) = (a - 1)0-2 + nz,l Tiz
=

Now if the null hypothesis in equation 4.68 is true, each 7; is equal to zero and

E( SSTreatmems j — 0.2
a—1

If the alternative hypothesis is true, then

ny, v
E( SSTreatments ] — 0.2 + i=1

a—1 a—1

The ratio MStreaments = SSTreamments/(@ — 1) is called the mean square for treatments. Thus,
if Hy is true, MStreaments iS an unbiased estimator of 62, whereas if H, is true, MSt eaments
estimates o~ plus a positive term that incorporates variation due to the systematic difference
in treatment means. (Refer to the supplemental material for this chapter for the proofs of these
two statements.)

We can also show that the expected value of the error sum of squares is
E(SSp) =a(n — 1)02. Therefore, the error mean square MSg = SSg/[a(n — 1)]is an unbiased
estimator of 6~ regardless of whether or not H, is true.

The error mean square

SS,

MSy = —22E_
Ea(n-1)

is an unbiased estimator of o°.

There is also a partition of the number of degrees of freedom that corresponds to the sum
of squares identity in equation 4.69. That is, there are an = N observations; thus, SS; has
an — 1 degrees of freedom. There are a levels of the factor, SO SStcarments has a — 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n — 1 degrees of free-
dom with which to estimate the experimental error. Since there are a treatments, we have
a(n — 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

an—1=a-1+a(n-1)

Now assume that each of the a populations can be modeled as a normal distribution.
Using this assumption we can show that if the null hypothesis H is true, the ratio

0= SSTreatmenls/(a - 1) — MSTreatments (472)
SSg/[a(n—1)] MSy
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has an F distribution with a — 1 and a(n — 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSg is an unbiased estimator of 0. Also, under the
null hypothesis, MSteatments 1S an unbiased estimator of o”. However, if the null hypothesis
is false, then the expected value of MSt catments 1S greater than o°. Therefore, under the alter-
native hypothesis, the expected value of the numerator of the test statistic (equation 4.72) is
greater than the expected value of the denominator. Consequently, we should reject Hy, if the
statistic is large. This implies an upper-tail, one-tail critical region. Therefore, we would
reject Hy if Fo> Fy 4 1 4-1) Where Fy is computed from equation 4.72. A P-value
approach can also be used, with the P-value equal to the probability above F| in the
F,_1 4(n—1, distribution. Often we can only find bounds on the P-value when we only have
access to tables of the F-distribution, such as Appendix Table V. Computer software will
usually provide an exact P-value.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSt catments and SS7. This yields the follow-
ing results.

The sums of squares computing formulas for the analysis of variance with equal
sample sizes in each treatment are

an ooy
i=1j=1 N
and
2 2
Ly, Y.
SS =\ L Za (4.74)
Treatments z]l n N

i

The error sum of squares is obtained by subtraction as

SSE = SST - SSTreatments (4.75)

The computations for this test procedure are usually summarized in tabular form as shown in
Table 4.6. This is called an analysis of variance (or ANOVA) table.

= TABLE 4.6
The Analysis of Variance for a Single-Factor Experiment

Source of Degrees of

Variation Sum of Squares Freedom Mean Square F,
MS

Treatments SSTreatmems a—1 MSTrealmenls —reutments

Error SSg a(n—1) MSy;

Total MY: an — 1
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~ ExAwpLE 4.12

Consider the paper tensile strength experiment described in
Section 4.5.1. Use the analysis of variance to test the hypothe-

SoLuTion

sis that different hardwood concentrations do not affect the
mean tensile strength of the paper.

The hypotheses are
Hy:
H;:

We will use o = 0.01. The sums of squares for the ANOVA are
computed from equations 4.73, 4.74, and 4.75 as follows:

2
h

4 6
SST=ZZ)’§—N

i=1j=1

2

4 2
Y. Y.
S, STreatments = Z - —
=1 n N

(7)* +(8)* +---+(20)* —

T1272:T3:T4:0
7; # 0 for at least one i

(383)°

=512.96

=382.79

6

We usually do not perform these calculations by hand. The
ANOVA from Minitab is presented in Table 4.7. Since
Fo.01320=4.94, we reject Hy and conclude that hardwood
concentration in the pulp significantly affects the strength of
the paper. Note that the computer output reports a P-value for
the test statistic ' = 19.61 in Table 4.7 of zero. This is a trun-
cated value. Appendix Table V reports that F ;320 = 4.94,

= TABLE 4.7

(60)* +(94)° +(102)* +(127)*  (383)*
24

SSE = SST - SSTreatmems
=512.96-382.79 =130.17

so clearly the P-value is smaller than 0.01. The actual P-value
is P=3.59 x 107°. However, since the P-value is consider-
ably smaller than o = 0.01, we have strong evidence to con-
clude that H, is not true. Note that Minitab also provides
some summary information about each level of hardwood
concentration, including the confidence interval on each mean.

Minitab Analysis of Variance Output for the Paper Tensile Strength Experiment

One-Way Analysis of Variance

Analysis of Variance

Source DF SS MS F P
Factor 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96
Individual 95% Cls For Mean
Based on Pooled StDev
Level N Mean StDev —+ + + +
5 6 10.000 2.828 (—*—)
10 6 15.667 2.805 (—*—)
15 6 17.000 1.789 (—*—)
20 6 21.167 2.639 (—*—)
—+ + + +
Pooled StDhev = 2.551 10.0 15.0 20.0 25.0
N _
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Note that the ANOVA tells us whether there is a difference among means. It does not
tell us which means differ. If the analysis of variance indicates that there is a statistically sig-
nificant difference among means, there is a simple graphical procedure that can be used to
isolate the specific differences. Suppose that y;,y,, ..., Y, are the observed averages for
these factor levels. Each treatment average has standard deviation o/\V/n, where o is the stan-
dard deviation of an individual observation. If all treatment means are equal, the observed
means y; would behave as if they were a set of observations drawn at random from a normal
distribution with mean u and standard deviation 6/V n.

Visualize this normal distribution capable of being slid along an axis below which the
treatment means y;, y, - . . , Y, are plotted. If all treatment means are equal, there should be
some position for this distribution that makes it obvious that the y; values were drawn from
the same distribution. If this is not the case, then the y; values that do not appear to have been
drawn from this distribution are associated with treatments that produce different mean
responses.

The only flaw in this logic is that o is unknown. However, we can use VMSg from
the analysis of variance to estimate 0. This implies that a ¢ distribution should be used
instead of the normal in making the plot, but since the ¢ looks so much like the normal,
sketching a normal curve that is approximately 6’ VMSg/n units wide will usually work
very well.

Figure 4.12 shows this arrangement for the hardwood concentration experiment in
Section 4.5.1. The standard deviation of this normal distribution is

JMSg/n =/6.51/6 =1.04

If we visualize sliding this distribution along the horizontal axis, we note that there is no loca-
tion for the distribution that would suggest that all four observations (the plotted means) are
typical, randomly selected values from that distribution. This, of course, should be expected,
because the analysis of variance has indicated that the means differ, and the display in
Figure 4.12 is simply a graphical representation of the analysis of variance results. The fig-
ure does indicate that treatment 4 (20% hardwood) produces paper with higher mean tensile
strength than do the other treatments, and treatment 1 (5% hardwood) results in lower mean
tensile strength than do the other treatments. The means of treatments 2 and 3 (10% and 15%
hardwood, respectively) do not differ.

This simple procedure is a rough but very useful and effective technique for comparing
means following an analysis of variance. However, there are many other more formal ways to
do this. For more details on these procedures, see Montgomery (2009).

4.5.3 Checking Assumptions: Residual Analysis

The analysis of variance assumes that the model errors (and as a result, the observations) are
normally and independently distributed with the same variance in each factor level. These

&/ =1.04

1 2 3 4
° ° ° °
L L L L L L J

0 5 10 15 20 25 30

BFIGURE 4.12 Tensile strength averages from the hardwood concentration experi-
ment in relation to a normal distribution with standard deviation VMSg/n = V6.51/6 = 1.04
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= TABLE 4.8
Residuals for the Hardwood Experiment

Hardwood Concentration Residuals
5% -3.00 -2.00 5.00 1.00 —-1.00 0.00
10% -3.67 1.33 -2.67 2.33 +3.33 -0.67
15% -3.00 1.00 2.00 0.00 —-1.00 1.00
20% -2.17 3.83 0.83 1.83 -3.17 —-1.17

assumptions can be checked by examining the residuals. We define a residual as the differ-
ence between the actual observation y; and the value y; that would be obtained from a least
squares fit of the underlying analysis of variance model to the sample data. For the type of
experimental design in this situation, the value y;; is the factor-level mean y; . Therefore, the
residual is e;; = y; — y; —that is, the difference between an observation and the correspond-
ing factor-level mean. The residuals for the hardwood percentage experiment are shown in
Table 4.8.

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the resid-
uals against the factor levels and compare the spread in the residuals. It is also useful to plot
the residuals against y; (sometimes called the fitted value); the variability in the residuals
should not depend in any way on the value of y;. When a pattern appears in these plots, it usu-
ally suggests the need for data transformation—that is, analyzing the data in a different met-
ric. For example, if the variability in the residuals increases with y;, then a transformation
such as log y or Vy should be considered. In some problems the dependency of residual scat-
ter on y; is very important information. It may be desirable to select the factor level that
results in maximum mean response; however, this level may also cause more variation in
response from run to run.

The independence assumption can be checked by plotting the residuals against the run
order in which the experiment was performed. A pattern in this plot, such as sequences of pos-
itive and negative residuals, may indicate that the observations are not independent. This sug-
gests that run order is important or that variables that change over time are important and have
not been included in the experimental design.

A normal probability plot of the residuals from the hardwood concentration experi-
ment is shown in Figure 4.13. Figures 4.14 and 4.15 present the residuals plotted against

[}
oo L
g 99.9 Normal probability plot N | 2
g 99 > s
8 28 [ + % Average
e 33 g Percentage 3 55 tensile
£ 5 b 5 10 [15 |20 hardwood | g strength
E ox [ R B & 2F o=
=1 -3.7-1.70.3 2.3 43 6.3
) -4

Residuals
BFIGURE 4.13 BFIGURE 4.14 Plotof BFIGURE 4.15 Plotof
Normal probability plot of residuals versus factor levels. residuals verus y;.

residuals from the hardwood
concentration experiment.
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the factor levels and the fitted value y;. These plots do not reveal any model inadequacy or
unusual problem with the assumptions.

4.6 Linear Regression Models

In many problems, two or more variables are related and it is of interest to model and
explore this relationship. For example, in a chemical process the yield of product is related
to the operating temperature. The chemical engineer may want to build a model relating
yield to temperature and then use the model for prediction, process optimization, or process

control.
In general, suppose that there is a single dependent variable or response y that
depends on k independent or repressor variables, for example, xi, x,, ..., x; The relation-

ship between these variables is characterized by a mathematical model called a regression
model. The regression model is fit to a set of sample data. In some instances, the experimenter
knows the exact form of the true functional relationship between y and xi, x, ..., X
However, in most cases, the true functional relationship is unknown, and the experimenter
chooses an appropriate function to approximate the true model. Low-order polynomial mod-
els are widely used as approximating functions.

There are many applications of regression models in quality and process improvement.
In this section, we present some aspects of fitting these models. More complete presentations
of regression are available in Montgomery, Peck, and Vining (2006).

As an example of a linear regression model, suppose that we wish to develop an empir-
ical model relating the viscosity of a polymer to the temperature and the catalyst feed rate. A
model that might describe this relationship is

y=PBo+Bix; + Box, + € (4.76)

where y represents the viscosity, x; represents the temperature, and x, represents the cata-
lyst feed rate. This is a multiple linear regression model with two independent variables.
We often call the independent variables predictor variables or regressors. The term “linear”
is used because equation 4.76 is a linear function of the unknown parameter 3, 3;, and 3,.
The model describes a plane in the two-dimensional x;, x, space. The parameter f3,
defines the intercept of the plane. We sometimes call 3, and B, partial regression coeffi-
cients because f3; measures the expected change in y per unit change in x; when x, is held
constant and 3, measures the expected change in y per unit change in x, when x,; is held
constant.

In general, the response variable y may be related to k regressor variables. The
model

y=PBo+Bixi +Boxs+ -+ Bxg + € 4.77)

is called a multiple linear regression model with k regressor variables. The parameters
ﬁj, j=0,1,..., k, are called the regression coefficients. This model describes a hyper plane
in the k-dimensional space of the regressor variables {x;}. The parameter f3; represents the
expected change in response y per unit change in x; when all the remaining independent vari-
ables x; (i # j) are held constant.

Models that are more complex in appearance than equation 4.77 may often still be ana-
lyzed by multiple linear regression techniques. For example, consider adding an interaction
term to the first-order model in two variables, say

y=Bo + Bixi + Boxy + Broxix, + € (4.78)



4.6 Linear Regression Models 157

If we let x3 = x,x, and B3 = B,, then equation 4.78 can be written as
y=Po+Bixi + Poxz + Paxs + 4.79)

which is a standard multiple linear regression model with three regressors. As another exam-
ple, consider the second-order response surface model in two variables:

y = Bo + Bix; +ﬁ2xx+ﬁllx%+ﬁ22x%+ﬁ12x1x2+8 (4.80)

If we let X3 = .X%, Xq = X%, X5 = X1X2, ﬁg, = ﬁl 1s ﬁ4 = ﬁ22, and ﬁs = ﬁlz, then this becomes

y = Bo + Bix; + Boxs + Bsxs + Paxy + Psxs =€ (4.81)

which is a linear regression model. In general, any regression model that is linear in the para-
meters (the Bs) is a linear regression model, regardless of the shape of the response surface
that it generates.

In this section, we will summarize methods for estimating the parameters in multiple
linear regression models. This is often called model fitting. We will also discuss methods for
testing hypotheses and constructing confidence intervals for these models as well as for
checking the adequacy of the model fit. For more complete presentations of regression, refer
to Montgomery, Peck, and Vining (2006).

4.6.1 Estimation of the Parameters in Linear Regression Models

The method of least squares is typically used to estimate the regression coefficients in a mul-
tiple linear regression model. Suppose that n > k observations on the response variable are
available, say yq, ¥,, . . . , ¥,. Along with each observed response y;, we will have an observa-
tion on each regressor variable and let x;; denote the ith observation or level of variable x;. The
date will appear as in Table 4.9. We assume that the error term € in the model has E(g) =0
and V(¢) = o~ and that the {€;} are uncorrelated random variables.

We may write the model equation [equation 4.77] in terms of the observations in
Table 4.9 as

Vi =Bo + Bixi + Boxpp + 0 + Brxi + &

k
=Bo+ 2By +e i=1,2...n (4.82)
=1

= TABLE 4.9
Data for Multiple Linear Regression

y X1 X e Xr
Y1 X11 X12 X1k
2 X21 X22 Yok

Yn Xn1 Xn2 o Xnk
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The method of least squares chooses the s in equation 4.82 so that the sum of the squares of
the errors, €, is minimized. The least squares function is

n n k 2
L= 21 & = 21 (yi - Bo— E],Bjxu> (4.83)
= = Jj=

The function L is to be minimized with respect to B, B, ..., Br. The least squares estimators,
say Bo, B, .- » B, must satisfy

oL n . k R
— =2 vi—Bo— X Bjx;|=0 (4.84a)
Bo 8o, B, .. .. Be =1 =
and
oL n R ko .
— =22 yi—Bo— XBixy|x=0 j=1,2,...k (4.84b)
Bj 1o B ... B = =

Simplifying equation 4.84, we obtain

E)’i

i=1

n n n
nBo +P; Exil +B> ExiZ + 4B Exik
=1 =1 =1

>

n n n n

N A ) X N B

Bo zxil +Bi z:xil +B> z:xilxiZ + P S,xilxik = z:xilyi
g =1 =1 =1 i=1

n n n n n
Bo E Xix + Exik X1 +B2 Exik Xip + 0+ Exzzk = Exikyi (4.85)
=1 =1 =1 =1 =1

These equations are called the least squares normal equations. Note that there are p = k + 1
normal equations, one for each of the unknown regression coefficients. The solution to
the normal equations will be the least squares estimators of the regression coefficients
Bo.Bi. - Bre

It is simpler to solve the normal equations if they are expressed in matrix notation. We
now give a matrix development of the normal equations that parallels the development of
equation 4.85. The model in terms of the observations, equation 4.82 may be written in matrix
notation as

y=XB+e€
where
V1 I xip xi2 oo Xk Bo €
1 x X R £
y= x| *1, B= ﬁ.l , and e=| "’
Vn 1 X0 Xo .. Xy Br g,

In general, y is an (n X 1) vector of the observations, X is an (n X p) matrix of the lev-
els of the independent variables, B is a (p x 1) vector of the regression coefficients, and € is
an (n X 1) vector of random errors.
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We wish to find the vector of least squares estimators, B, that minimizes

L= ge%=e's= (y-XB)'(y - XB)

Note that L may be expressed as

L=y'y-BXy-yXB+BXXpB
=y'y-28X'y +BX'XB (4.86)

because B'X'y is a (1 x 1) matrix, or a scalar, and its transpose (B'X'y)’ = y'Xp is the same
scalar. The least squares estimators must satisfy

oL .
| = 2X'y+2X'XB=0
B ls

which simplifies to
X'XB =Xy (4.87)

Equation 4.87 is the matrix form of the least squares normal equations. It is identical to equa-
tion 4.85. To solve the normal equations, multiply both sides of equation 4.87 by the inverse
of X'X. Thus, the least squares estimator of B is

B=XX)"'Xy (4.88)

It is easy to see that the matrix form for the normal equations is identical to the scalar
form. Writing out equation 4.87 in detail, we obtain

n n n n
n E Xi1 2 Xi2 cee 2 Xik Po 2 Vi
i=1 i=1 i=1

i=1

n n n n n

s A
Exil Exil ExilxiZ Exilxik B Exilyi
i=1 i=1 i=1 i=1 i=1

n n n n n
> A
E Xik E XikXi1 E XikXiz -+ E Xik B 2 XikYi
L i=1 i=1 i=1 i=1 Li=1

If the indicated matrix multiplication is performed, the scalar form of the normal equations
[i.e., equation 4.85] will result. In this form it is easy to see that X'X is a (p X p) sym-
metric matrix and X'y is a (p X 1) column vector. Note the special structure of the X'X
matrix. The diagonal elements of X'X are the sums of squares of the elements in the columns
of X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of X'y are the sums of cross-products of
the columns of X and the observations {y;}.
The fitted regression model is

¥=XB (4.89)



160

Chapter 4 B Inferences About Process Quality

In scalar notation, the fitted model is
A k A
Ji=Po+ Eﬂjxii i=L2...n
j=1

The difference between the actual observation y; and the corresponding fitted value J; is the
residual, say ¢; = y; — 9;. The (n X 1) vector of residuals is denoted by

e=y—§ (4.90)

Estimating o®. It is also usually necessary to estimate 6°. To develop an estimator
of this parameter, consider the sum of squares of the residuals, say

SSp= > (y;—3)°= D ei=ee
i=1 i=1

Substitutinge=y - y=y — Xﬁ, we have

SSp=(y = XB)'(y - XB)
=y'y = BX'y-yXB+B'XXp
=y'y -2 X'y + BX'XB
Because X’Xﬁ = X'y, this last equation becomes
SSe=y'y - BX'y (4.91)

Equation (4.91) is called the error or residual sum of squares, and it has n — p degrees of
freedom associated with it. It can be shown that

E(SSg) =0°(n—p)

s0 an unbiased estimator of ¢ is given by

52 e
n—p

(4.92)

Properties of the Estimators. The method of least squares produces an unbiased
estimator of the parameter f in the linear regression model. This may be easily demonstrated
by taking the expected value of B as follows:

EPB) = E[(X'X)"'X'y] = E[(X'X)"'X'(XB + &)]
= E[(X'’X)"'X'XB + (X'X)"'X'e] = B

because E(g) = 0 and (X’X)_IX’X =1. Thus, ﬁ is an unbiased estimator of 3.
The variance property of 8 is expressed in the covariance matrix:

Cov(B) = E{[B-EB)B-EPB]} (4.93)

which is just a symmetric matrix whose ith main diagonal element is the variance of the indi-
vidual regression coefficient 3; and whose (ij)th element is the covariance between f3; and f3;.
The covariance matrix of f is

Cov(B) = *(X'X)™! (4.94)
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~ EXAwPLE 4.13

Sixteen observations on the operating cost of a branch office of (x,)—are shown in Table 4.10. Fit a multiple linear regression
a finance company (y) and two predictor variables—number model

of new loan applications (x;) and number of loans outstanding
y=PBo+Bixi+ Py + €

to these data.

SoLuTion

The X matrix and y vector are « TABLE 4.10

1 80 8 2,256 Consumers Finance Data for Example 4.13
1 93 9 2,340
1 100 10 2,426 New Number of Loans
1 82 12 2,293 Applications QOutstanding
1 90 11 2330 Observation (xp) (x3) Cost ($)
b9 8 2,368 1 80 8 2256
1 81 8 2,250
x= |1 Sw0) |20 ; 10 o
1 9 12 2,364 ;
193 11 2,379 4 82 12 2,293
197 13 2,440 5 90 11 2,330
1 95 11 2,364 6 99 8 2,368
1 100 8 2,404 7 81 8 2,250
1 85 12 2,317 8 96 10 2,409
1 86 9 2,309 9 94 12 2,364
L1 87 12 | | 2,328 | 10 93 11 2,379
11 97 13 2,440
12 95 11 2,364
13 100 8 2,404
14 85 12 2,317
15 86 9 2,309
16 87 12 2,328

The X'X matrix is

1 ... 1 i gg 2 16 1,458 164
X'X=[80 93 ... 87 .. .| =]1458 133,560 14,946
8 12 N, 164 14946 1,726
? 1 87 12 9 ’
and the X'y vector is
2,2
1 ... 1 5 323 37,577
X'y=|8 93 ... 87 " = | 3,429,550
8 9 ... 12 2328 385,562
The least squares estimate of B is
B=X'X)"'Xy

(continued)
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= TABLE 4.11
Predicted Values, Residuals, and Other Diagnostics from Example 4.13

Observation Predicted Residual Studentized
i ¥i Value y; e; h;; Residual D; R-Student
1 2,256 2,244.5 11.5 0.350 0.87 0.137 0.87
2 2,340 2,352.1 -12.1 0.102 -0.78 0.023 -0.77
3 2,426 2,414.1 11.9 0.177 0.80 0.046 0.79
4 2,293 2,294.0 -1.0 0.251 —0.07 0.001 -0.07
5 2,330 2,346.4 -16.4 0.077 -1.05 0.030 -1.05
6 2,368 2,389.3 -21.3 0.265 —1.52 0.277 —-1.61
7 2,250 2,252.1 2.1 0.319 -0.15 0.004 —-0.15
8 2,409 2,383.6 254 0.098 1.64 0.097 1.76
9 2,364 2,385.5 -21.5 0.142 —-1.42 0.111 —1.48
10 2,379 2,369.3 9.7 0.080 0.62 0.011 0.60
11 2,440 2,416.9 23.1 0.278 1.66 0.354 1.80
12 2,364 2,384.5 —20.5 0.096 —1.32 0.062 —1.36
13 2,404 2,396.9 7.1 0.289 0.52 0.036 0.50
14 2,317 2,316.9 0.1 0.185 0.01 0.000 <0.01
15 2,309 2,298.8 10.2 0.134 0.67 0.023 0.66
16 2,328 2,332.1 —4.1 0.156 -0.28 0.005 -0.27
[14.176004 -0.129746 —0.223453 37,577
B=|-0129746 1429184 x 107 —4.763947 x 107 || 3,429,550
| -0.223453  —4,763947 x 107> 2.222381 x 1072 385,562
[1,566.07777
= 7.62129
8.58485

Normal percentage probability

10 =
[+

Residual

-21.50 -13.68-5.85 1.97 9.79 17.6125.43

BFIGURE 4.16 Normal probability
plot of residuals, Example 4.13.
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BMFIGURE 4.17 Plot of residuals versus

predicted cost, Example 4.13.
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The least squares fit, with the regression coefficients reported
to two decimal places, is

¥y =1,566.08 + 7.62x, + 8.58x;

The first three columns of Table 4.11 present the actual
observations y;, the predicted or fitted values ¥;, and the resid-
uals. Figure 4.16 is a normal probability plot of the residuals.
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N
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1.97 | N =

-5.85 |- n

-13.68

21500 ottt
80.0 83.3 86.7 90.0 93.3 96.7 100.0
X1, new application

BFIGURE 4.18 Plot of residuals versus x,
(new applications), Example 4.13.
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Plots of the residuals versus the predicted values y; and versus
the two variables x; and x, are shown in Figures 4.17, 4.18, and
4.19, respectively. Just as in ANOVA, residual plotting is an
integral part of regression model building. These plots indi-
cate that variance of the observed cost tends to increase with
the magnitude of cost. Figure 4.18 suggests that the variabil-
ity in cost may be increasing as the number of new applica-
tions increases.

25.43 |- + 1

+

17.61 - m
9.79 - * + m

1.97 - =

Residual

+
+ +

-5.85 - n

-13.68 [~ N n

21500 oot
8.00 8.33 9.67 10.5011.3312.1713.00
X,, outstanding loan

BFIGURE 4.19 Plot of residuals versus x,
(outstanding loan), Example 4.13.

Regression model fitting is almost always done using a sta-

tistical software package. Table 4.12 shows some of the output obtained when Minitab is used
to fit the consumer finance regression model in Example 4.13. In subsequent sections, we will
discuss the analysis of variance and #-test information in Table 4.12 and will show how these

quantities were computed.

4.6.2

Hypothesis Testing in Multiple Regression

In multiple linear regression problems, certain tests of hypotheses about the model parame-
ters are helpful in measuring the usefulness of the model. In this section, we describe several
important hypothesis-testing procedures. These procedures require that the errors €; in the
model be normally and independently distributed with mean zero and variance 2, abbrevi-
ated £ ~ NID(0, 62). As a result of this assumption, the observations y; are normally and
independently distributed with mean 3, + Z]];,Bj x;; and variance o’

Test for Significance of Regression.

The test for significance of regression is a

test to determine whether a linear relationship exists between the response variable y and a

subset of the regressor variables xy, x5, .

.., Xx. The appropriate hypotheses are

Hy By =B=-"=B=0

Hi:B;#0

for at least one j (4.95)
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s TABLE 4.12
Minitab Output for the Consumer Finance Regression Model, Example 4.13

Regression Analysis: Cost Versus New Applications, Outstanding Loans

The regression equation is
Cost = 1,566 + 7.62 New Applications + 8.58 Outstanding Loans

Predictor Coef SE Coef T P
Constant 1,566.08 61.59 25.43 0.000
New Applications 7.6213 0.6184 12.32 0.000
Outstanding Loans 8.585 2.439 3.52 0.004
S = 16.3586 R-Sq = 92.7% R-Sq (adj) = 91.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 44,157 22,079 82.50 0.000
Residual Error 13 3,479 268

Total 15 47,636

Source DF Seqg SS

New Applications 1 40,841

Outstanding Loans 1 3,316

Rejection of Hy in equation 4.95 implies that at least one of the regressor variables
X1, Xo, ... , X; contributes significantly to the model. The test procedure involves an analysis
of variance partitioning of the total sum of squares SS7into a sum of squares due to the model
(or to regression) and a sum of squares due to residual (or error), say

SS; =SSk + S (4.96)

Now if the null hypothesis Hy: B; = B> = - = B = 0 is true, then SSg/c? is distributed as
x,%, where the number of degrees of freedom for )(2 is equal to the number of regressor vari-
ables in the model. Also, we can show that SS;/c? is distributed as )(,21,,(,1 and that SS; and
SSk are independent. The test procedure for Hy: B, = B, = - = B = 0 is to compute

~ SSelk  MSg
0T SSn—k—-1) MSg

(4.97)

and to reject Hy if Fp exceeds Fy i ,——1. Alternatively, we could use the P-value approach to
hypothesis testing and, thus, reject H, if the P-value for the statistic F, is less than o. The test
is usually summarized in an analysis of variance table such as Table 4.13.

= TABLE 4.13
Analysis of Variance for Significance of Regression in Multiple Regression

Source of Degrees of

Variation Sum of Squares Freedom Mean Square F,
Regression SSr k MSg MSg/MSg
Error or residual SSE n—k—1 MSg

Total MY n—1
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A computational formula for SSz may be found easily. We have derived a computational
formula for SSg in equation 4.91—that is,

SSp=y'y -BX'y

Now, because SS; = X/_ 1y — (Z/_,y)*n =y'y — (Z_,y;)*/n, we may rewrite the
foregoing equation as

SSe=y'y - —| A <
E=YY n ﬁ,X,y _ i=1
n
or
SSE = SST - SSR
Therefore, the regression sum of squares is
n 2
(%)
SSg=B'X'y -~ (4.98)
n
and the error sum of squares is
SSp=y'y — ﬁ’X’y (4.99)
and the total sum of squares is
n 2
(£)
SSp=y'y ——— (4.100)
n

These computations are almost always performed with regression software. For
instance, Table 4.12 shows some of the output from Minitab for the consumer finance
regression model in Example 4.13. The lower portion in this display is the analysis of vari-
ance for the model. The test of significance of regression in this example involves the
hypotheses

Ho:B1=p2=0
H,: B; # 0 for at least one j

The P-value in Table 4.13 for the F statistic [equation 4.97] is very small, so we would conclude
that at least one of the two variables—new applications (x;) and outstanding loans (x,)—has a
nonzero regression coefficient.

Table 4.13 also reports the coefficient to multiple determination R”, where

_SSk_ S8

R?= =1-
SSy SS,

(4.101)
The statistic R* is a measure of the amount of reduction in the variability of y obtained by
using the regressor variables xy, x, ..., x; in the model. However, a large value of R? does not
necessarily imply that the regression model is a good one. Adding a variable to the model will
always increase R, regardless of whether the additional variable is statistically significant or
not. Thus, it is possible for models that have large values of R* to yield poor predictions of
new observations or estimates of the mean response.
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Because R” always increases as we add terms to the model, some regression model
builders prefer to use an adjusted R? statistic defined as

SS - -1
RidJ-:l—SS%_’f;:l—(” )(1—R2) (4.102)

In general, the adjusted R? statistic will not always increase as variables are added to the
model. In fact, if unnecessary terms are added, the value of Ridj will often decrease.

For example, consider the consumer finance regression model. The adjusted R* for the
model is shown in Table 4.12. It is computed as

-1
Rigj=1- (n )(1 -R)
n—p
15
- 1—-(13)(1—-092697)=(l915735

which is very close to the ordinary R*. When R* and Ridj differ dramatically, there is a good

chance that nonsignificant terms have been included in the model.

Tests on Individual Regression Coefficients and Groups of Coefficients. We
are frequently interested in testing hypotheses on the individual regression coefficients. Such
tests would be useful in determining the value of each regressor variable in the regression
model. For example, the model might be more effective with the inclusion of additional vari-
ables or perhaps with the deletion of one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for regres-
sion to increase and the error sum of squares to decrease. We must decide whether the increase
in the regression sum of squares is sufficient to warrant using the additional variable in the model.
Furthermore, adding an unimportant variable to the model can actually increase the mean
square error, thereby decreasing the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient,

say f3;, are
HO: ﬁ] =0
Hi: B #0

If Hy: [3j = 0is not rejected, then this indicates that x; can be deleted from the model. The test
statistic for this hypothesis is

~

B;
V62C;;

where Cj; is the diagonal element of (X’X)™" corresponding to Bj. The null hypothesis
Hy: B;= 0 is rejected if |f9| > #o)2,,—4—1. Note that this is really a partial or marginal test
because the regression coefficient ﬁj depends on all the other regressor variables x; (i # j) that
are in the model.

The denominatorA of equation 4.103, V 6’2ij, is often called the standard error of the
regression coefficient ﬁj—that is,

fo = (4.103)

se()) = V6°C; (4.104)
Therefore, an equivalent way to write the test statistic in equation 4.103 is
B
fo= (4.105)

seB)
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Most regression computer programs provide the 7-test for each model parameter. For
example, consider Table 4.12, which contains the Minitab output for Example 4.13. The
upper portion of this table gives the least squares estimate of each parameter, the standard
error, the #-statistic, and the corresponding P-value. We would conclude that both variables—
new applications and outstanding loans—contribute significantly to the model.

We may also directly examine the contribution to the regression sum of squares for a
particular variable, say x;, given that other variables x; (i # j) are included in the model. The
procedure for doing this is the general regression significance test or, as it is often called, the
extra sum of squares method. This procedure can also be used to investigate the contribu-
tion of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables:

y=XB +¢
where y is (nx 1), X is (nxp),Bis (px 1), €is (nx1), and p =k + 1. We would like
to determine if the subset of regressor variables xy, x,, . . ., x,(r < k) contributes signifi-
cantly to the regression model. Let the vector of regression coefficients be partitioned as
follows:
B:
p=|
B-
where B is (rx 1) and B, is [(p — r) x 1]. We wish to test the hypotheses
H(): ﬂ] =0
Hi:B, #0 (4.106)
The model may be written as

where X represents the columns of X associated with B, and X, represents the columns of
X associated with f8,. .

For the full model (including both B, and B,), we know that 8 = (X'X)'X'y. Also,
the regression sum of squares for all variables including the intercept is

SSg(B) = B'X'y (p degrees of freedom)

and

n—p
SSr(B) is called the regression sum of squares due to . To find the contribution of the terms

in B, to the regression, we fit the model assuming the null hypothesis H,: B, = 0 to be true.
The reduced model is found from equation 4.107 with B, = 0:

y=Xof,+¢ (4.108)
The least squares estimator of B, is ﬁz = (X’2X2)’1X’2y, and
SSr(B) = B5X5y  (p — rdegrees of freedom) (4.109)
The regression sum of squares due to ; given that 8, is already in the model is

SSr(B11B2) = SSr(B) — SSk(B2) (4.110)

This sum of squares has r degrees of freedom. It is the “extra sum of squares” due to ;. Note
that SSk(B;|B,) is the increase in the regression sum of squares due to including the variables
X1, X2, . . . , X, in the model.
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Now, SSx(B,|B-) is independent of MS, and the null hypothesis 8, = 0 may be tested
by the statistic

P SsR(ﬂllﬂz)/r

4.111
0 MS, ( )

If Fo > Fg ., p, We reject Hy, concluding that at least one of the parameters in B; is not zero,
and, consequently, at least one of the variables xy, x5, . . ., x, in X contributes significantly
to the regression model. Some authors call the test in equation 4.111 a partial F-test.

The partial F-test is very useful. We can use it to measure the contribution of x; as if it
were the last variable added to the model by computing

SSr(BjlBo: Brs - Bi-1: Bisrs - Bi)

This is the increase in the regression sum of squares due to adding x; to a model that already
includes xi, . . ., X;_1, Xj41, - . . , X Note that the partial F-test on a single variable x; is equiv-
alent to the 7-test in equation 4.103. However, the partial F-test is a more general procedure

in that we can measure the effect of sets of variables.

- [EXAMPLE 4.14 EIE O T

Consider the consumer finance data in Example 4.13. Evaluate
the contribution of x, (outstanding loans) to the model.

SOLUTION

The hypotheses we wish to test are
Ho: ﬁz =0
H]i ﬁ2 #0

This will require the extra sum of squares due to f3,, or

SSR(leﬁl, ﬁo) = SSR(ﬁO, /31’ ﬁ2) - SSR(ﬁO’ ﬁl)
= Ssr(B1, B21Bo) — SSr(B>1Bo)

Now from Table 4.12, where we tested for significance of
regression, we have

SSr(B1,B21Bo) = 44,157.1

which was called the model sum of squares in the table. This
sum of squares has two degrees of freedom.
The reduced model is

y=Po+Pixi +e
The least squares fit for this model is
$=1,652.3955 + 7.6397x,

and the regression sum of squares for this model (with one
degree of freedom) is

SSr(B11Bo) = 40,840.8

N _

Note that SSg(B;1Bo) is shown at the bottom of the Minitab
output in Table 4.12 under the heading “Seq SS.” Therefore,

SSr(Ba|Bo, B1) = 44,157.1 — 40,840.8
=3,316.3

With 2 — 1 =1 degree of freedom. This is the increase in the
regression sum of squares that results from adding x, to model
already containing x;, and it is shown at the bottom of the
Minitab output in Table 4.12. To test Hy: 3, = 0, from the test
statistic we obtain

= S&BalPo f)/T _3316.3/1
0" MS, T 267.604

12.3926

Note that MSg from the full model (Table 4.12) is used in the
denominator of F,. Now, because Fy s 13 = 4.67, we would
reject Hy: B, = 0 and conclude that x, (outstanding loans) con-
tributes significantly to the model.

Because this partial F-test involves only a single regressor,
it is equivalent to the 7-test because the square of a ¢ random
variable with v degrees of freedom is an F random variable
with 1 and v degrees of freedom. To see this, note from Table
4.12 that the t-statistic for Hy: 8, = 0 resulted in 7, = 3.5203
and that 15 = (3.5203)% = 12.3925 = F,,.
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4.6.3 Confidence Intervals in Multiple Regression

It is often necessary to construct confidence interval estimates for the regression coefficients
{B;} and for other quantities of interest from the regression model. The development of a pro-
cedure for obtaining these Cls requires that we assume the errors {g;} to be normally and inde-
pendently distributed with mean zero and variance 6~, the same assumption made in the section
on hypothesis testing in Section 4.6.2

Confidence Intervals on the Individual Regression Coefficients. Because the
least squares estimator B is a linear combination of the observatlons it follows that [3 is normally
distributed with mean vector B and covariance matrix o’ (X’X)™!. Then each of the statistics

Bj - Bj
6°C;,

is distributed as ¢ with n — p degrees of freedom, where Cj; is the (jj)th element of the
(X’X)_] matrix, and 62 is the estimate of the error variance, obtained from equation 4.92.
Therefore, a 100(1 — )% CI for the regression coefficient ﬁj, j=0,1,...,k is

Bi — toonp N 6Cyi < By < Bi + toyon_p V G7C;; (4.113)
Note that this CI could also be written as
Bj - ta/Z,nfpse(Bj) < ﬁj < Bj + ta/2,n7pse(Bj)

because se(ﬁj) = V6 C

i

J=0,1,....k (4.112)

/EXAMPLE 4.15

Construct a 95% confidence interval for the parameter 3, in Example 4.13.

SOLUTION
The estimate of f3; is ﬁ] 7.62129, and because 52 = 267.604 and C,; = 1.429184 x 107>, we find that

Bi — 1000513 V6>Cii < By < By + to.oos 13 VECyy
7.62129 — 2.16\/(267.604)(1.429184 X 10_3) < ﬁl

<7.62129 +2.16V/(267.604) (1.429184 x 107)
7.62129 - 2.16(0.6184) < B, < 7.62129 + 2.16(0.6184)

and the 95% confidence interval on S, is

N _

6.2855 < B, < 8.9570

Confidence Interval on the Mean Response. We may also obtain a confidence inter-

val on the mean response at a particular point, say, Xo1, Xgo, - - - , Xor- We first define the vector
1
Xo1
Xo = | Xo2

Xok
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The mean response at this point is

Hyix, = Bo + BiXor + Baxon ++ -+ Brxor = Xo B

The estimated mean response at this point is
9(x0) =x0B (4.114)
This estimator is unbiased because E[$(xo)] = E(xq [}) =Xx0B = Uyx,, and the variance of
Y(Xo) is
V[$(x0)] = 02x5 (X' X) " x, (4.115)

Therefore, a 100(1 — o) % CI on the mean response at the point xqy, Xg», - - . , Xox 1S
5}(XO) _toc/Z,n—p v 6-2X(,)(X,X)_1XO < ,u“ylx(, < )’(Xo) +toc/2,n—p v 62X6(X’X)_1X0 (4116)

Minitab will calculate the CI in equation 4.116 for points of interest. For example,
suppose that for the consumer finance regression model we are interested in finding an esti-
mate of the mean cost and the associated 95% CI at two points: (1) New Applications = 85
and Outstanding Loans = 10, and (2) New Applications = 95 and Outstanding Loans = 12.
Minitab reports the point estimates and the 95% CI calculated from equation 4.116 in
Table 4.14.

When there are 85 new applications and 10 outstanding loans, the point estimate of cost
is 2,299.74, and the 95% Cl is (2,287.63, 2,311.84), and when there are 95 new applications
and 12 outstanding loans, the point estimate of cost is 2,293.12, and the 95% Cl is (2,379.37,
2,406.87). Notice that the lengths of the two confidence intervals are different. The length of
the CI on the mean response depends on not only the level of confidence that is specified and
the estimate of %, but on the location of the point of interest. As the distance of the point
from the center of the region of the predictor variables increases, the length of the confidence
interval increases. Because the second point is further from the center of the region of the pre-
dictors, the second CI is longer than the first.

4.6.4 Prediction of New Response Observations

A regression model can be used to predict future observations on the response y cor-

responding to particular values of the regressor variables, say xqp, Xo, - .. ,Xo- If
x6 = [1, Xo1, X02, - - - » Xox)» then a point estimate for the future observation y, at the point
X015 X025 - - - » Xor 1S computed from equation 4.114:

$(x0) =xoB

= TABLE 4.14
Minitab Output

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI
1 2,299.74 5.60 (2,287.63, 2,311.84) (2,262.38, 2,337.09)
2 2,393.12 6.36 (2,379.37, 2,406.87) (2,355.20, 2,431.04)

Values of Predictors for New Observations

New New Outstanding
Obs Applications Loans
1 85.0 10.0

2 95.0 12.0
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A 100(1 — )% prediction interval (PI) for this future observation is

H(X0) = lajanpy VEX1 +x(X'X)"x0) < ¥
<H(Xo) + loymny VEH1 +x6(XX)'xg)  (4.117)

In predicting new observations and in estimating the mean response at a given point
Xo1> X025 - - - s Xor, We must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the origi-
nal data will no longer fit well outside of that region.

The Minitab output in Table 4.14 shows the 95% prediction intervals on cost for the
consumer finance regression model at the two points considered previously: (1) New
Applications = 85 and Outstanding Loans = 10, and (2) New Applications =95 and
Outstanding Loans = 12. The predicted value of the future observation is exactly equal to the
estimate of the mean at the point of interest. Notice that the prediction intervals are longer
than the corresponding confidence intervals. You should be able to see why this happens from
examining equations 4.116 and 4.117. The prediction intervals also get longer as the point
where the prediction is made moves further away from the center of the predictor variable
region.

4.6.5 Regression Model Diagnostics

As we emphasized in analysis of variance, model adequacy checking is an important part
of the data analysis procedure. This is equally important in building regression models, and
as we illustrated in Example 4.13, residual plots should always be examined for a regres-
sion model. In general, it is always necessary (1) to examine the fitted model to ensure that
it provides an adequate approximation to the true system, and (2) to verify that none of the
least squares regression assumptions are violated. The regression model will probably give
poor or misleading results unless it is an adequate fit.

In addition to residual plots, other model diagnostics are frequently useful in regression.
This section briefly summarizes some of these procedures. For more complete presentations,
see Montgomery, Peck, and Vining (2006) and Myers (1990).

Scaled Residuals and PRESS. Many model builders prefer to work with scaled
residuals in contrast to the ordinary least squares residuals. These scaled residuals often con-
vey more information than do the ordinary residuals.

One type of scaled residual is the standardized residual:

d=% i=1,2,...,n (4.118)

where we generally use 6 = V MS in the computation. These standardized residuals have
mean zero and approximately unit variance; consequently, they are useful in looking for out-
liers. Most of the standardized residuals should lie in the interval =3 < d; < 3, and any obser-
vation with a standardized residual outside of this interval is potentially unusual with respect
to its observed response. These outliers should be carefully examined because they may rep-
resent something as simple as a data-recording error or something of more serious concern,
such as a region of the regressor variable space where the fitted model is a poor approxima-
tion to the true response surface.

The standardizing process in equation 4.118 scales the residuals by dividing them by
their approximate average standard deviation. In some data sets, residuals may have standard
deviations that differ greatly. We now present a scaling that takes this into account.



172

Chapter 4 B Inferences About Process Quality

The vector of fitted values ¥; corresponding to the observed values y; is

5 =XB
=X(X'X)'X'y
= Hy (4.119)

The n X n matrix H = X(X’X) "X’ is usually called the “hat” matrix because it maps the vec-
tor of observed values into a vector of fitted values. The hat matrix and its properties play a
central role in regression analysis.

The residuals from the fitted model may be conveniently written in matrix notation as

e=y —Jy
and it turns out that the covariance matrix of the residuals is
Cov(e) = o°(I- H) (4.120)

The matrix (I — H) is generally not diagonal, so the residuals have different variances and are
correlated.
Thus, the variance of the ith residual is

V(e;) =0*(1 — hy) 4.121)

where h;; is the ith diagonal element of H. Because 0 < h;; < 1, using the residual mean square
MSE to estimate the variance of the residuals actually overestimates V(e;). Furthermore,
because /;; is a measure of the location of the ith point in x space, the variance of e; depends
on where the point x; lies. Generally, residuals near the center of the x space have larger vari-
ance than do residuals at more remote locations. Violations of model assumptions are more
likely at remote points, and these violations may be hard to detect from inspection of e; (or d;)
because their residuals will usually be smaller.

We recommend taking this inequality of variance into account when scaling the resid-
uals. We suggest plotting the studentized residuals:

i .
nE i=1,2,...,n (4.122)
VGo(1 - hy)

with 6% = MSy, instead of ¢; (or d;). The studentized residuals have constant variance
V(r;) = 1 regardless of the location of x; when the form of the model is correct. In many sit-
uations the variance of the residuals stabilizes, particularly for large data sets. In these cases,
there may be little difference between the standardized and studentized residuals. Thus stan-
dardized and studentized residuals often convey equivalent information. However, because
any point with a large residual and a large h;; is potentially highly influential on the least
squares fit, examination of the studentized residuals is generally recommended. Table 4.11
displays the hat diagonals 4;; and the studentized residuals for the consumer finance regres-
sion model in Example 4.13.

The prediction error sum of squares (PRESS) provides a useful residual scaling. To
calculate PRESS, we select an observation—for example, i. We fit the regression model to
the remaining n — 1 observations and use this equation to predict the withheld observation
v;. Denoting this predicted value j,, we may find the prediction error for point i as
e = Yi — Y- The prediction error is often called the ith PRESS residual. This procedure is
repeated for each observation i=1,2,...,n, producing a set of n PRESS residuals
€1y, €2)s -+ » €n)- Then the PRESS statistic is defined as the sum of squares of the n PRESS
residuals as in

n

i i=1

i=1
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Thus, PRESS uses each possible subset of n — 1 observations as an estimation data set, and
every observation in turn is used to form a prediction data set.

It would initially seem that calculating PRESS requires fitting n different regressions.
However, it is possible to calculate PRESS from the results of a single least squares fit to all
n observations. It turns out that the ith PRESS residual is

€j

=T 4.124
€ 1— Iy ( )

Thus, because PRESS is just the sum of the squares of the PRESS residuals, a simple com-
puting formula is

n 2
PRESS = E( 4 ) (4.125)
i=1 1- hii
From equation 4.124 it is easy to see that the PRESS residual is just the ordinary residual
weighted according to the diagonal elements of the hat matrix %;;. Data points for which &;;
are large will have large PRESS residuals. These observations will generally be high influ-
ence points. Generally, a large difference between the ordinary residual and the PRESS resid-
uals will indicate a point where the model fits the data well, but a model built without that
point predicts poorly. In the next section we will discuss some other measures of influence.
Finally, we note that PRESS can be used to compute an approximate R for prediction, say

PRESS
SS;

Rbrediciion = 1 (4.120)
This statistic gives some indication of the predictive capability of the regression model. For
the consumer finance regression model from Example 4.13, we can compute the PRESS

residuals using the ordinary residuals and the values of 4;; found in Table 4.11. The corre-
sponding value of the PRESS statistic is PRESS = 5,207.7. Then

R PRESS
RPrediction =1-
SS;
— 1= 22T 8907
C 47,6359

Therefore, we could expect this model to “explain” about 89% of the variability in predicting
new observations, as compared to the approximately 93% of the variability in the original data
explained by the least squares fit. The overall predictive capability of the model based on this
criterion seems very satisfactory.

The studentized residual r; discussed above is often considered an outlier diagnostic. It
is customary to use MS as an estimate of > in computing r;. This is referred to as internal
scaling of the residual because MSy; is an internally generated estimate of ¢ obtained from
fitting the model to all n observations. Another approach would be to use an estimate of &>
based on a data set with the ith observation removed. We denote the estimate of 62 so
obtained by S¢;,. We can show that

(n — p)MSg — eiz/(l — hi)

$2) = pa— (4.127)

The estimate of ¢ in equation 4.127 is used instead of MS to produce an externally studen-
tized residual, usually called R-student, given by
€

fj= i=1,2,...,n (4.128)

VSG (1 = hy)
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In many situations, #; will differ little from the studentized residual r;. However, if the ith
observation is influential, then S(z,») can differ significantly from MSg, and thus the R-student
will be more sensitive to this point. Furthermore, under the standard assumptions, #; has a
ty—p—1 distribution. Thus R-student offers a more formal procedure for outlier detection via
hypothesis testing. Table 4.11 displays the values of R-student for the consumer finance
regression model in Example 4.13. None of those values is unusually large.

Influence Diagnostics. We occasionally find that a small subset of the data exerts
a disproportionate influence on the fitted regression model. That is, parameter estimates or
predictions may depend more on the influential subset than on the majority of the data. We
would like to locate these influential points and assess their impact on the model. If these
influential points are “bad” values, they should be eliminated. On the other hand, there may
be nothing wrong with these points. But if they control key model properties, we would like
to know it because it could affect the use of the model. In this section, we describe and illus-
trate some useful measures of influence.

The disposition of points in x space is important in determining model properties. In
particular, remote observations potentially have disproportionate leverage on the parameter
estimates, predicted values, and the usual summary statistics.

The hat matrix H = X(X’' X)'X’ is very useful in identifying influential observations.
As noted earlier, H determines the variances and covariances of ¥ and e because V(§) = o°H
and V(e) = 6°(I — H). The elements h;; of H may be interpreted as the amount of leverage
exerted by y; on 9;. Thus, inspection of the elements of H can reveal points that are potentially
influential by virtue of their location in x space. Attention is usually focused on the diagonal
elements h;;. Because X,_; h; = rank(H) = rank(X) = p, the average size of the diagonal
element of the H matrix is p/n. As a rough guideline, then, if a diagonal element 4;; is greater
than 2p/n, observation i is a high leverage point. To apply this to the consumer finance regres-
sion model in Example 4.13, note that 2p/n = 2(3)/16 = 0.375. Table 4.11 gives the hat diag-
onals h;; for the first-order model; because none of the 4;; exceeds 0.375, we would conclude
that there are no leverage points in these data.

The hat diagonals will identify points that are potentially influential due to their loca-
tion in x space. It is desirable to consider both the location of the point and the response vari-
able in measuring influence. Cook (1977, 1979) has suggested using a measure of the squared
distance between the least squares estimate based on all n points B and the estimate obtained
by deleting the i point, say By;. This distance measure can be expressed as

bo— B - BYX'X(Bw - B
b PMSEg

i=1,2,...,n (4.129)

A reasonable cutoff for D; is unity. That is, we usually consider observations for which D; > 1
to be influential.
The D; statistic is actually calculated from
Liz V[_),)\()Cl)} I’,-2 hii

_ _Ii i=1,2,..., 4.130
TP Ve p (1-hy ’ 8 (*4130)

Note that, apart from the constant p, D, is the product of the square of the ith studentized resid-
ual and h;;/(1 — h;;). This ratio can be shown to be the distance from the vector x; to the cen-
troid of the remaining data. Thus, D; is made up of a component that reflects how well the model
fits the ith observation y; and a component that measures how far that point is from the rest
of the data. Either component (or both) may contribute to a large value of D;.

Table 4.11 presents the values of D; for the regression model fit to the consumer finance
data in Example 4.13. None of these values of D; exceeds 1, so there is no strong evidence of
influential observations in these data.
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Alternative hypothesis

Analysis of variance (ANOVA)

Binomial distribution

Checking assumptions for statistical inference procedures

Chi-square distribution

Confidence interval

Confidence intervals on means, known variance(s)

Confidence intervals on means, unknown variance(s)

Confidence intervals on proportions

Confidence intervals on the variance of a normal
distribution

Confidence intervals on the variances of two normal
distributions

Critical region for a test statistic

F-distribution

Hypothesis testing

Least squares estimator

Linear statistical model

Minimum variance estimator

Null hypothesis

P-value

P-value approach

Parameters of a distribution

Exercises

Point estimator

Poisson distribution

Pooled estimator

Power of a statistical test

Random sample

Regression model

Residual analysis

Sampling distribution

Scaled residuals

Statistic

t-distribution

Test statistic

Tests of hypotheses on means, known variance(s)

Tests of hypotheses on means, unknown variance(s)

Tests of hypotheses on proportions

Tests of hypotheses on the variance of a normal
distribution

Tests of hypotheses on the variances of two normal
distributions

Type I error

Type II error

Unbiased estimator

m 4.1.

The Student
Resource Manual
presents compre-
hensive annotated
solutions to the
odd-numbered
exercises included
in the Answers to

Suppose that you are testing the
following hypotheses where the
variance is known:

Ho: it = 100
HI:IJ#: 100

Find the P-value for the following
values of the test statistic.

Selected Exercises (@ Zy=2.75

section in the (b) Z,=1.86

back of this book. (¢c) Zy=-2.05
(d) Zy=-1.86

4.2. Suppose that you are testing the following hypothe-
ses where the variance is known:

Hy: =100
Hy:u >100
Find the P-value for the following values of the test
statistic.
(a) ZO =2.50
(b) Zy=1.95
(c) Zy=2.05
(d) Zy=2.36

4.3. Suppose that you are testing the following hypothe-
ses where the variance is known:

Hy: =100
Hi:p <100
Find the P-value for the following values of the test
statistic.
(@) Zy=-235
(b) Zy=-1.99
(c) Zy=-2.18
(d) Zy=-1.85

4.4. Suppose that you are testing the following hypothe-
ses where the variance is unknown:

Ho: 1= 100
H,: 1 # 100

The sample size is n = 20. Find bounds on the
P-value for the following values of the test statistic.

@) 1o=2.75
(b) 1,=1.86
©) to=-2.05

) t,=-1.86
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4.5.

4.6.

4.7.

4.8.

4.9.
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Suppose that you are testing the following hypothe-
ses where the variance is unknown:

H():.Ll,z 100
Hy:u > 100

The sample size is n = 12. Find bounds on the
P-value for the following values of the test statistic.
(a) 1p=2.55

(b) to=1.87

(c) tp=2.05

(d) t,=2.80

Suppose that you are testing the following hypothe-
ses where the variance is unknown:

H(): ‘Ll, = 100
Hy:u <100
The sample size is n = 25. Find bounds on the

P-value for the following values of the test statistic.
(a) to=-2.80

(b) to=-1.75
(©) to=-2.54
d) to=-2.05

The inside diameters of bearings used in an aircraft

landing gear assembly are known to have a standard

deviation of o =0.002 cm. A random sample of 15

bearings has an average inside diameter of 8.2535 cm.

(a) Test the hypothesis that the mean inside bearing
diameter is 8.25 cm. Use a two-sided alternative
and o = 0.05.

(b) Find the P-value for this test.

(c) Construct a 95% two-sided confidence interval
on the mean bearing diameter.

The tensile strength of a fiber used in manufacturing
cloth is of interest to the purchaser. Previous experi-
ence indicates that the standard deviation of tensile
strength is 2 psi. A random sample of eight fiber
specimens is selected, and the average tensile
strength is found to be 127 psi.

(a) Test the hypothesis that the mean tensile strength
equals 125 psi versus the alternative that the
mean exceeds 125 psi. Use o = 0.05.

(b) What is the P-value for this test?

(c) Discuss why a one-sided alternative was chosen
in part (a).

(d) Construct a 95% lower confidence interval on
the mean tensile strength.

The service life of a battery used in a cardiac pace-

maker is assumed to be normally distributed. A ran-

dom sample of ten batteries is subjected to an accel-
erated life test by running them continuously at an
elevated temperature until failure, and the following

4.10.

4.11.

4.12.

4.13.

lifetimes (in hours) are obtained: 25.5, 26.1, 26.8,

23.2,24.2,28.4,25.0,27.8,27.3, and 25.7.

(a) The manufacturer wants to be certain that the
mean battery life exceeds 25 h. What conclusions
can be drawn from these data (use o = 0.05)?

(b) Construct a 90% two-sided confidence interval
on mean life in the accelerated test.

(c) Construct a normal probability plot of the battery
life data. What conclusions can you draw?

Using the data from Exercise 4.7, construct a 95%

lower confidence interval on mean battery life. Why

would the manufacturer be interested in a one-sided
confidence interval?

A new process has been developed for applying

photoresist to 125-mm silicon wafers used in

manufacturing integrated circuits. Ten wafers were
tested, and the following photoresist thickness mea-
surements (in angstroms X 1000) were observed:

13.3987, 13.3957, 13.3902, 13.4015, 13.4001,

13.3918, 13.3965, 13.3925, 13.3946, and 13.4002.

(a) Test the hypothesis that mean thickness is
13.4 x 1000 A. Use & = 0.05 and assume a two-
sided alternative.

(b) Find a 99% two-sided confidence interval on
mean photoresist thickness. Assume that thick-
ness is normally distributed.

(c) Does the normality assumption seem reasonable
for these data?

A machine is used to fill containers with a liquid

product. Fill volume can be assumed to be normally

distributed. A random sample of ten containers is
selected, and the net contents (oz) are as follows:

12.03, 12.01, 12.04, 12.02, 12.05, 11.98, 11.96,

12.02, 12.05, and 11.99.

(a) Suppose that the manufacturer wants to be sure
that the mean net contents exceeds 12 oz. What
conclusions can be drawn from the data (use
a=0.01)?

(b) Construct a 95% two-sided confidence interval
on the mean fill volume.

(c) Does the assumption of normality seem appro-
priate for the fill volume data?

Ferric chloride is used as a flux in some types

of extraction metallurgy processes. This material is

shipped in containers, and the container weight
varies. It is important to obtain an accurate estimate
of mean container weight. Suppose that from long
experience a reliable value for the standard deviation
of flux container weight is determined to be 4 1Ib.

How large a sample would be required to construct a

95% two-sided confidence interval on the mean that

has a total width of 1 1b?



4.14.

4.15.

4.16.

4.17.

The diameters of aluminum alloy rods produced on

an extrusion machine are known to have a standard

deviation of 0.0001 in. A random sample of 25 rods
has an average diameter of 0.5046 in.

(a) Test the hypothesis that mean rod diameter is
0.5025 in. Assume a two-sided alternative and
use o = 0.05.

(b) Find the P-value for this test.

(c) Construct a 95% two-sided confidence interval
on the mean rod diameter.

The output voltage of a power supply is assumed to

be normally distributed. Sixteen observations taken

at random on voltage are as follows: 10.35, 9.30,

10.00, 9.96, 11.65, 12.00, 11.25, 9.58, 11.54, 9.95,

10.28, 8.37, 10.44, 9.25, 9.38, and 10.85.

(a) Test the hypothesis that the mean voltage
equals 12 V against a two-sided alternative

using o = 0.05.
(b) Construct a 95% two-sided confidence interval
on L.

(c) Test the hypothesis that 6 = 11 using o = 0.05.

(d) Construct a 95% two-sided confidence interval
on o.

(e) Construct a 95% upper confidence interval on o.

(f) Does the assumption of normality seem reason-
able for the output voltage?

Two machines are used for filling glass bottles with

a soft-drink beverage. The filling processes have

known standard deviations ¢, = 0.010 liter and

0, = 0.015 liter, respectively. A random sample of

n; = 25 bottles from machine 1 and n, = 20 bottles

from machine 2 results in average net contents of

x1 = 2.04 liters and x, = 2.07 liters.

(a) Test the hypothesis that both machines fill to the
same net contents, using o = 0.05. What are
your conclusions?

(b) Find the P-value for this test.

(c) Construct a 95% confidence interval on the dif-
ference in mean fill volume.

Two quality control technicians measured the sur-

face finish of a metal part, obtaining the data in

Table 4E.1. Assume that the measurements are nor-

mally distributed.

(a) Test the hypothesis that the mean surface finish
measurements made by the two technicians are
equal. Use o = 0.05, and assume equal variances.

(b) What are the practical implications of the test in
part (a)? Discuss what practical conclusions you
would draw if the null hypothesis were rejected.

(c) Assuming that the variances are equal, construct
a 95% confidence interval on the mean differ-
ence in surface-finish measurements.

4.18.

4.19.
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m TABLE 4E.1
Surface Finish Data for Exercise 4.17

Technician 1 Technician 2

1.45 1.54
1.37 1.41
1.21 1.56
1.54 1.37
1.48 1.20
1.29 1.31
1.34 1.27

1.35

(d) Test the hypothesis that the variances of the
measurements made by the two technicians are
equal. Use o =0.05. What are the practical
implications if the null hypothesis is rejected?

(e) Construct a 95% confidence interval estimate of
the ratio of the variances of technician measure-
ment error.

(f) Construct a 95% confidence interval on the vari-
ance of measurement error for technician 2.

(g) Does the normality assumption seem reasonable
for the data?

Suppose that x;~N(u;, o7) and x, ~N(U,, 03), and

that x; and x, are independent. Develop a procedure

for constructing a 100(1 — o) % confidence interval
on (; — U, assuming that o7 and o3 are unknown
and cannot be assumed equal.

Two different hardening processes—(1) saltwater

quenching and (2) oil quenching—are used on sam-

ples of a particular type of metal alloy. The results
are shown in Table 4E.2. Assume that hardness is
normally distributed.

(a) Test the hypothesis that the mean hardness for
the saltwater quenching process equals the mean

m TABLE 4E.2
Hardness Data for Exercise 4.19

Saltwater Quench 0Oil Quench
145 152
150 150
153 147
148 155
141 140
152 146
146 158
154 152
139 151
148 143
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4.20.

4.21.

4.22.

4.24.
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hardness for the oil quenching process. Use
o = (.05 and assume equal variances.

(b) Assuming that the variances 67 and o3 are equal,
construct a 95% confidence interval on the dif-
ference in mean hardness.

(c) Construct a 95% confidence interval on the ratio
o3/03. Does the assumption made earlier of
equal variances seem reasonable?

(d) Does the assumption of normality seem appro-
priate for these data?

A random sample of 200 printed circuit boards con-

tains 18 defective or nonconforming units. Estimate

the process fraction nonconforming.

(a) Test the hypothesis that the true fraction noncon-
forming in this process is 0.10. Use o = 0.05.
Find the P-value.

(b) Construct a 90% two-sided confidence interval
on the true fraction nonconforming in the pro-
duction process.

A random sample of 500 connecting rod pins con-

tains 65 nonconforming units. Estimate the process

fraction nonconforming.

(a) Test the hypothesis that the true fraction defec-
tive in this process is 0.08. Use o = 0.05.

(b) Find the P-value for this test.

(c) Construct a 95% upper confidence interval on
the true process fraction nonconforming.

Two processes are used to produce forgings used in

an aircraft wing assembly. Of 200 forgings selected

from process 1, 10 do not conform to the strength
specifications, whereas of 300 forgings selected from
process 2, 20 are nonconforming.

(a) Estimate the fraction nonconforming for each
process.

(b) Test the hypothesis that the two processes
have identical fractions nonconforming. Use
o =0.05.

(c) Construct a 90% confidence interval on the dif-
ference in fraction nonconforming between the
two processes.

A new purification unit is installed in a chemical

process. Before its installation, a random sample

yielded the following data about the percentage of
impurity: x; = 9.85, 57 = 6.79, and n, = 10. After
installation, a random sample resulted in

X, = 8.08, 53 = 6.18, and n, = 8.

(a) Can you conclude that the two variances are
equal? Use o = 0.05.

(b) Can you conclude that the new purification
device has reduced the mean percentage of
impurity? Use o = 0.05.

Two different types of glass bottles are suitable for use

by a soft-drink beverage bottler. The internal pressure

4.25.

4.26.

4.27.

= TABLE 4E.3

Measurements Made by the Inspectors for
Exercise 4.25

Inspector Micrometer Caliper Vernier Caliper

1 0.150 0.151
2 0.151 0.150
3 0.151 0.151
4 0.152 0.150
5 0.151 0.151
6 0.150 0.151
7 0.151 0.153
8 0.153 0.155
9 0.152 0.154
10 0.151 0.151
11 0.151 0.150
12 0.151 0.152

strength of the bottle is an important quality charac-

teristic. It is known that o} = 0, = 3.0 psi. From a

random sample of n; =n, = 16 bottles, the mean

pressure strengths are observed to be x; = 175.8 psi
and x, = 181.3 psi. The company will not use bottle
design 2 unless its pressure strength exceeds that of
bottle design 1 by at least 5 psi. Based on the sample
data, should they use bottle design 2 if we use

o = 0.05? What is the P-value for this test?

The diameter of a metal rod is measured by 12 inspec-

tors, each using both a micrometer caliper and a

vernier caliper. The results are shown in Table 4E.3. Is

there a difference between the mean measurements

produced by the two types of caliper? Use o = 0.01.

The cooling system in a nuclear submarine consists

of an assembly pipe through which a coolant is cir-

culated. Specifications require that weld strength
must meet or exceed 150 psi.

(a) Suppose the designers decide to test the hypoth-
esis Hy: =150 versus H;: u > 150. Explain
why this choice of alternative is preferable to
H,: u<150.

(b) A random sample of 20 welds results in
x = 153.7 psi and s = 11.5 psi. What conclusions
can you draw about the hypothesis in part (a)?
Use oo = 0.05.

An experiment was conducted to investigate the fill-

ing capability of packaging equipment at a winery

in Newberg, Oregon. Twenty bottles of Pinot Gris

were randomly selected and the fill volume (in ml)

measured. Assume that fill volume has a normal

distribution. The data are as follows: 753, 751, 752,

753, 753, 753, 752, 753, 754, 754, 752, 751, 752,

750, 753, 755, 753, 756, 751, and 750.



4.28.

4.29.

4.32.

4.33.

(a) Do the data support the claim that the standard
deviation of fill volume is less than 1 ml? Use
o =0.05.

(b) Find a 95% two-sided confidence interval on the
standard deviation of fill volume.

(c) Does it seem reasonable to assume that fill vol-
ume has a normal distribution?

Suppose we wish to test the hypotheses

H: p#15

where we know that 6* = 9.0. If the true mean is
really 20, what sample size must be used to ensure
that the probability of type II error is no greater than
0.10? Assume that o = 0.05.

Consider the hypotheses

Ho: = Hy
Hy: u# g

where 67 is known. Derive a general expression for
determining the sample size for detecting a true
mean of i, # U, with probability 1 — f3 if the type I
error is o.

Sample size allocation. Suppose we are testing the
hypotheses

Hoy: 1y = o
Hy gy #

where o7 and o3 are known. Resources are limited,
and consequently the total sample size n; + n, = N.
How should we allocate the N observations between
the two populations to obtain the most powerful test?
Develop a test for the hypotheses

Hy: Wy =,
Hy:o oy # U,
where o7 and 63 are known.

Nonconformities occur in glass bottles according to
a Poisson distribution. A random sample of 100 bot-
tles contains a total of 11 nonconformities.

(a) Develop a procedure for testing the hypothesis
that the mean of a Poisson distribution A equals a
specified value A,. Hint: Use the normal approx-
imation to the Poisson.

(b) Use the results of part (a) to test the hypothesis
that the mean occurrence rate of nonconformities
isA=0.15. Use o = 0.01.

An inspector counts the surface-finish defects in

dishwashers. A random sample of five dishwashers

contains three such defects. Is there reason to con-
clude that the mean occurrence rate of surface-finish
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= TABLE 4E.4
Uniformity Data for Exercise 4.35

C, F Flow Observations
(SCCM) 1 2 3 4 5 6
125 2.7 2.6 4.6 3.2 3.0 3.8
160 4.6 4.9 5.0 4.2 3.6 42
200 4.6 29 3.4 3.5 4.1 5.1

4.34.

4.35.

4.36.

defects per dishwasher exceeds 0.57 Use the results

of part (a) of Exercise 4.32 and assume that

o =0.05.

An in-line tester is used to evaluate the electrical

function of printed circuit boards. This machine

counts the number of defects observed on each

board. A random sample of 1,000 boards contains a

total of 688 defects. Is it reasonable to conclude that

the mean occurrence rate of defects is A = 1? Use the
results of part (a) of Exercise 4.26 and assume that
a=0.05.

An article in Solid State Technology (May 1987)

describes an experiment to determine the effect of

C,F¢ flow rate on etch uniformity on a silicon wafer

used in integrated-circuit manufacturing. Three flow

rates are tested, and the resulting uniformity (in per-
cent) is observed for six test units at each flow rate.

The data are shown in Table 4E.4.

(a) Does C,Fg flow rate affect etch uniformity?
Answer this question by using an analysis of
variance with o = 0.05.

(b) Construct a box plot of the etch uniformity data.
Use this plot, together with the analysis of vari-
ance results, to determine which gas flow rate
would be best in terms of etch uniformity (a
small percentage is best).

(c) Plot the residuals versus predicted C,F¢ flow.
Interpret this plot.

(d) Does the normality assumption seem reasonable
in this problem?

Compare the mean etch uniformity values at each of
the C,Fg flow rates from Exercise 4.33 with a scaled
t distribution. Does this analysis indicate that there
are differences in mean etch uniformity at the differ-
ent flow rates? Which flows produce different
results?
An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213-216) describes several experiments
investigating the rodding of concrete to remove
entrapped air. A 3-in.-diameter cylinder was used,
and the number of times this rod was used is the
design variable. The resulting compressive strength
of the concrete specimen is the response. The data
are shown in Table 4E.5.
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s TABLE 4E.5
Compressive Strength Data for Exercise 4.37

Rodding Level Compressive Strength
10 1,530 1,530 1,440
15 1,610 1,650 1,500
20 1,560 1,730 1,530
25 1,500 1,490 1,510

4.38.

4.39.

4.40.

(a) Is there any difference in compressive strength
due to the rodding level? Answer this question by
using the analysis of variance with o = 0.05.

(b) Construct box plots of compressive strength by
rodding level. Provide a practical interpretation
of these plots.

(c) Construct a normal probability plot of the resid-
uals from this experiment. Does the assumption
of a normal distribution for compressive strength
seem reasonable?

Compare the mean compressive strength at each rod-
ding level from Exercise 4.37 with a scaled ¢ distribu-
tion. What conclusions would you draw from this plot?
An aluminum producer manufactures carbon anodes
and bakes them in a ring furnace prior to use in the
smelting operation. The baked density of the anode is
an important quality characteristic, as it may affect
anode life. One of the process engineers suspects that
firing temperature in the ring furnace affects baked
anode density. An experiment was run at four differ-
ent temperature levels, and six anodes were baked at
each temperature level. The data from the experiment
are shown in Table 4E.6.

(a) Does firing temperature in the ring furnace affect
mean baked anode density?

(b) Find the residuals for this experiment and plot
them on a normal probability scale. Comment on
the plot.

(c) What firing temperature would you recommend
using?

Plot the residuals from Exercise 4.36 against the fir-

ing temperatures. Is there any indication that vari-

ability in baked anode density depends on the firing
temperature? What firing temperature would you
recommend using?

s TABLE 4E.6
Baked Density Data for Exercise 4.39

Temperature (°C) Density
500 41.8 419 41.7 416 415 417
525 414 413 417 416 417 418
550 412 410 41.6 419 417 413
575 41.0 40.6 41.8 412 419 415

4.41.

4.42.

4.43

= TABLE 4E.7
Radon Data for the Experiment in Exercise 4.41

Orrifice Diameter Radon Released (%)

0.37 80 83 83 85
0.51 75 75 79 79
0.71 74 73 76 71
1.02 67 72 74 74
1.40 62 62 67 69
1.99 60 61 64 66

An article in Environmental International (Vol. 18,
No. 4, 1992) describes an experiment in which the
amount of radon released in showers was investi-
gated. Radon-enriched water was used in the experi-
ment, and six different orifice diameters were tested
in showerheads. The data from the experiment are
shown in Table 4E.7.

(a) Does the size of the orifice affect the mean per-
centage of radon released? Use the analysis of
variance and o = 0.05.

(b) Analyze the residuals from this experiment.

An article in the Journal of the Electrochemical

Society (Vol. 139, No. 2, 1992, pp. 524-532) describes

an experiment to investigate the low-pressure vapor

deposition of polysilicon. The experiment was carried
out in a large-capacity reactor at SEMATECH in

Austin, Texas. The reactor has several wafer positions,

and four of these positions are selected at random. The

response variable is film thickness uniformity. Three
replicates of the experiment were run, and the data are
shown in Table 4E.8.

(a) Is there a difference in the wafer positions? Use
the analysis of variance and o = 0.05.

(b) Estimate the variability due to wafer positions.

(c) Estimate the random error component.

(d) Analyze the residuals from this experiment and
comment on model adequacy.

The tensile strength of a paper product is related to

the amount of hardwood in the pulp. Ten samples are

produced in the pilot plant, and the data obtained are
shown in Table 4E.9.

(a) Fit a linear regression model relating strength to
percentage hardwood.

= TABLE 4E.8
Uniformity Data for the Experiment in Exercise 4.42

Wafer Position Uniformity
1 2.76 5.67 4.49
2 1.43 1.70 2.19
3 2.34 1.97 1.47
4 0.94 1.36 1.65
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= TABLE 4E.10
Automobile Engine Data for Exercise 4.47

= TABLE 4E.9
Tensile Strength Data for Exercise 4.43

Percentage Percentage Brake Road Octane

Strength Hardwood Strength Hardwood Horsepower rpm Number Compression
160 10 181 20 225 2,000 90 100
171 15 188 25 212 1,800 94 95
175 15 193 25 229 2,400 88 110
182 20 195 28 222 1,900 91 96
184 20 200 30 219 1,600 86 100
278 2,500 96 110
246 3,000 94 98
(b) Test the model in part (a) for significance of 287 3,200 90 100
regression. 233 2,800 88 105
(c) Find a 95% confidence interval on the parame- 224 3.400 86 97
erf. , 223 1,800 90 100
4.44. A plant distills liquid air to produce oxygen, nitrogen, 230 2.500 89 104

and argon. The percentage of impurity in the oxygen
is thought to be linearly related to the amount of
impurities in the air as measured by the “pollution
count” in parts per million (ppm). A sample of plant
operating data is shown below:

Purity (%) 933 92.0 924 91.7 940 94.6 93.6

Pollution

count (ppm) 1.10 145 136 1.59 1.08 0.75 1.20

Purity (%) 93.1 932 929 922 913 90.1 91.6 91.9

Pollution

count (ppm) 0.99 0.83 1.22 147 1.81 2.03 1.75 1.68

(a) Fit a linear regression model to the data.

(b) Test for significance of regression.

(¢) Find a 95% confidence interval on f3;.

Plot the residuals from Exercise 4.43 and comment

on model adequacy.

Plot the residuals from Exercise 4.44 and comment

on model adequacy.

4.47. The brake horsepower developed by an automobile
engine on a dynamometer is thought to be a function

m of the engine speed in revolutions per minute (rpm),
the road octane number of the fuel, and the engine
compression. An experiment is run in the laboratory
and the data are drawn in Table 4E.10:

(a) Fit a multiple regression model to these data.

4.45.

4.46.

(b) Test for significance of regression. What con-
clusions can you draw?
(c) Based on #-tests, do you need all three regressor
variables in the model?
4.48. Analyze the residuals from the regression model in
Exercise 4.47. Comment on model adequacy.
4.49. Table 4E.11 contains the data from a patient satisfac-
tion survey for a group of 25 randomly selected

patients at a hospital. In addition to satisfaction, data

were collected on patient age and an index that mea-

sured the severity of illness.

(a) Fit a linear regression model relating satisfaction
to patient age.

(b) Test for significance of regression.

(c) What portion of the total variability is accounted
for by the regressor variable age?

4.50. Analyze the residuals from the regression model on
the patient satisfaction data from Exercise 4.49.
Comment on the adequacy of the regression model.

4.51. Reconsider the patient satisfaction data in Table 4E.11.
Fit a multiple regression model using both patient
age and severity as the regressors.

(a) Test for significance of regression.

(b) Test for the individual contribution of the two
regressors. Are both regressor variables needed
in the model?

(c) Has adding severity to the model improved the
quality of the model fit? Explain your answer.

4.52. Analyze the residuals from the multiple regression
model on the patient satisfaction data from Exercise
4.51. Comment on the adequacy of the regression
model.

4.53. Consider the Minitab output below.

One-Sample Z

Test of mu = 30 vs not = 30

The assumed standard deviation = 1.3
N Mean SE Mean 95% CI Z P
15 31.400 0.336 (30.742, 32.058) ? 2
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m TABLE 4E.11
Patient Satisfaction Data

Observation Age (x;) Severity (x,) Satisfaction (y)
1 55 50 68
2 46 24 77
3 30 46 96
4 35 48 30
5 59 58 43
6 61 60 44
7 74 65 26
8 38 42 38
9 27 42 75

10 51 50 57
11 53 38 56
12 41 30 88
13 37 31 38
14 24 34 102
15 42 30 88
16 50 48 70
17 58 61 52
18 60 71 43
19 62 62 46
20 68 38 56
21 70 41 59
22 79 66 26
23 63 31 52
24 39 42 33
25 49 40 75

upper bounds on the P-value for the following
observed values of the test statistic:

(a) 10=2.30 (b) 1o =341
(c) tr=198 d) to=1.55

4.55. Suppose that you are testing Hy: [ = [, Vversus
Hi: 1 # pywith any = ny = 10. Use the table of the
¢ distribution percentage points of find lower and
upper bounds on the P-value of the following
observed values of the test statistic:
(a) 1, =2.48 (b) to=-2.41
(c) 10=2.98 d) t,=1.89

4.56. Consider the Minitab output below.

One-Sample T

Test of mu = 95 vs not = 95

N Mean StDev SE Mean 95% CI T P
20 94.580 ? 0.671 (93.176, 95.984) ? 0.539

(a) Fill in the missing values. Can the null hypothe-
sis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or two-sided test?

(¢) How many degrees of freedom are there on the
1-test statistic?

(d) Use the output and a normal table to find a 95%
CI on the mean.

(e) Suppose that the hypotheses had been
Hy: p =90 versus H: 1 > 90. What conclusions
would you have drawn?

4.57. Consider the Minitab output shown below.

Test and CI for One Proportion

Test of p =0.3 vs p not = 0.3
Sample X N Sample p 95% CI Z-Value P-Value
1 98 300 0.326667 (0.273596, 0.379737) 1.01 0.313

(a) Fill in the missing values. What conclusions
would you draw?

(b) Is this a one-sided or two-sided test?

(c) Use the output and a normal table to find a 95%
CI on the mean.

(d) How was the SE mean calculated?

(e) What is the P-value if the alternative hypothesis
is Hy: u > 30?

Suppose that you are testing Hy: pi; = U, versus

Hy: u >, with a ny = ny = 15. Use the table of the

¢ distribution percentage points to find lower and

4.54.

(a) Is this a one-sided or two-sided test?

(b) Can the null hypothesis be rejected at the 0.05
level?

(c) Construct an approximate 90% CI for p.

(d) What is the P-value if the alternative hypothesis
is Hy: p > 0.3?

Consider the Minitab output shown below.

(a) Fill in the missing values.

(b) Can the null hypothesis be rejected at the 0.05
level? Why?

4.58.
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Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
1 15 50.20 1.75 0.45
2 15 51.98 2.15 0.56
Difference = mu (1) — mu (2)

Estimate for difference: ?

95% CI for difference: (-3.246, —-0.314)
T-Test of difference = 0 (vs not =):

Both use Pooled StDev = 1.9602

T-Value =-2.49

P-Value = 0.019 DF = ?

(c) Use the output and the -table to find a 99% CI
on the difference in means.

(d) Suppose that the alternative hypothesis was
Hy: = u, versus Hy: uy > l,. What is the

P-value? What conclusions would you
draw?
4.59. Consider the Minitab output below.

Sample X N
1 185 300
2 301 ?

Difference = p (1)

95%
Test for difference =

Test and Cl for Two Proportions

Sample p
0.616667
0.602000

- P
Estimate for difference: ?
CI for difference:

(2)

(-0.0551024, 0.0844357)

(vs not = 0): Z = ? P-value = 0.680

(a) Fill in the missing values.

(b) Is this a one-sided or two-sided test?

(c) What is the P-value if the alternative hypothesis
is Hy: py = po versus Hy: py > p,?

(d) Construct an approximate 90% CI for the differ-
ence in the two proportions.

Consider a one-way or single-factor ANOVA with

four treatments and five replications. Use the table of

the F distribution percentage points to find lower and

4.60.

upper bounds on the P-value for the following
observed values of the test statistic:

(a) Fp=2.50 (b) Fp=3.75

(c) Fy =598 d) Fo=1.90

Consider the Minitab ANOVA output below. Fill in
the blanks. You may give bounds on the P-value.
What conclusions can you draw based on the infor-
mation in this display?

4.61.

One-Way ANOVA

Source DF SS
Factor 3 54.91
Error ? 19.77
Total 15 74 .67
S = 1.283 R-Sq =

MS F P
? ? ?

73.53% R-Sg(adj) = 66.91%
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of Statistical
Process Control
and Capability
Analysis

It is impossible to inspect or test quality into a product; the product must be
built right the first time. This implies that the manufacturing process must
be stable and that all individuals involved with the process (including oper-
ators, engineers, quality-assurance personnel, and management) must con-
tinuously seek to improve process performance and reduce variability in key
parameters. On-line statistical process control (SPC) is a primary tool for
achieving this objective. Control charts are the simplest type of on-line sta-
tistical process-control procedure. Chapters 5 through 8 present many of the
basic SPC techniques, concentrating primarily on the type of control chart
proposed by Walter A. Shewhart and called the Shewhart control chart.

Chapter 5 is an introduction to the general methodology of statistical
process control. This chapter describes several fundamental SPC problem-
solving tools, including an introduction to the Shewhart control chart. A dis-
cussion of how to implement SPC is given, along with some comments on
deploying SPC in nonmanufacturing environments. Chapter 6 introduces
Shewhart control charts for measurement data, sometimes called variables
control charts. The x and R control charts are discussed in detail, along
with several important variations of these charts. Chapter 7 presents
Shewhart control charts for attribute data, such as a fraction defective or
nonconforming, nonconformities (defects), or nonconformities per unit of
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product. Chapter 8 explores process capability analysis—that is, how
control charts and other statistical techniques can be used to estimate the
natural capability of a process and to determine how it will perform relative
to specifications on the product. Some aspects of setting specifications and
tolerances, including the tolerance “stack-up” problem, are also presented.
Throughout this section we stress the three fundamental uses of a control
chart:

1. Reduction of process variability
2. Monitoring and surveillance of a process
3. Estimation of product or process parameters
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This chapter has three objectives. The first is to present the basic statistical process control
(SPC) problem-solving tools, called the magnificent seven, and to illustrate how these tools
form a cohesive, practical framework for quality improvement. These tools form an impor-
tant basic approach to both reducing variability and monitoring the performance of a
process, and are widely used in both the Analyze and Control steps of DMAIC. The second
objective is to describe the statistical basis of the Shewhart control chart. The reader will see
how decisions about sample size, sampling interval, and placement of control limits affect
the performance of a control chart. Other key concepts include the idea of rational sub-
groups, interpretation of control chart signals and patterns, and the average run length as

187
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a measure of control chart performance. The third objective is to discuss and illustrate some
practical issues in the implementation of SPC.
After careful study of this chapter, you should be able to do the following:
1. Understand chance and assignable causes of variability in a process

2. Explain the statistical basis of the Shewhart control chart, including choice of
sample size, control limits, and sampling interval

3. Explain the rational subgroup concept

4. Understand the basic tools of SPC: the histogram or stem-and-leaf plot, the
check sheet, the Pareto chart, the cause-and-effect diagram, the defect concentra-
tion diagram, the scatter diagram, and the control chart

5. Explain phase I and phase II use of control charts

6. Explain how average run length is used as a performance measure for a con-
trol chart

7. Explain how sensitizing rules and pattern recognition are used in conjunction
with control charts

5.1 Introduction

If a product is to meet or exceed customer expectations, generally it should be produced by a
process that is stable or repeatable. More precisely, the process must be capable of operating
with little variability around the target or nominal dimensions of the product’s quality char-
acteristics. Statistical process control (SPC) is a powerful collection of problem-solving
tools useful in achieving process stability and improving capability through the reduction of
variability.

SPC is one of the greatest technological developments of the twentieth century because
it is based on sound underlying principles, is easy to use, has significant impact, and can be
applied to any process. Its seven major tools are these:

1. Histogram or stem-and-leaf plot
Check sheet

Pareto chart

Cause-and-effect diagram
Defect concentration diagram

SANRE S

Scatter diagram
7. Control chart

Although these tools—often called the magnificent seven—are an important part of SPC,
they comprise only its technical aspects. The proper deployment of SPC helps create an envi-
ronment in which all individuals in an organization seek continuous improvement in quality
and productivity. This environment is best developed when management becomes involved in
the process. Once this environment is established, routine application of the magnificent
seven becomes part of the usual manner of doing business, and the organization is well on its
way to achieving its business improvement objectives.

Of the seven tools, the Shewhart control chart is probably the most technically
sophisticated. It was developed in the 1920s by Walter A. Shewhart of the Bell Telephone
Laboratories. To understand the statistical concepts that form the basis of SPC, we must first
describe Shewhart’s theory of variability.
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5.2 Chance and Assignable Causes of Quality Variation

In any production process, regardless of how well designed or carefully maintained it is, a
certain amount of inherent or natural variability will always exist. This natural variability or
“background noise” is the cumulative effect of many small, essentially unavoidable causes. In
the framework of statistical quality control, this natural variability is often called a “stable
system of chance causes.” A process that is operating with only chance causes of variation
present is said to be in statistical control. In other words, the chance causes are an inherent
part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly
adjusted or controlled machines, operator errors, or defective raw material. Such variability is
generally large when compared to the background noise, and it usually represents an unac-
ceptable level of process performance. We refer to these sources of variability that are not part
of the chance cause pattern as assignable causes of variation. A process that is operating in
the presence of assignable causes is said to be an out-of-control process.'

These chance and assignable causes of variation are illustrated in Figure 5.1. Until time
1, the process shown in this figure is in control; that is, only chance causes of variation are
present. As a result, both the mean and standard deviation of the process are at their in-
control values (say, Ly and 0p). At time ¢, an assignable cause occurs. As shown in Figure 5.1,
the effect of this assignable cause is to shift the process mean to a new value p; > py. At
time t,, another assignable cause occurs, resulting in (U = L, but now the process standard
deviation has shifted to a larger value 0| > 0. At time 73 there is another assignable cause pre-
sent, resulting in both the process mean and standard deviation taking on out-of-control
values. From time ¢, forward, the presence of assignable causes has resulted in an out-of-control
process.

Processes will often operate in the in-control state for relatively long periods of time.
However, no process is truly stable forever, and, eventually, assignable causes will occur,
seemingly at random, resulting in a shift to an out-of-control state where a larger proportion
of the process output does not conform to requirements. For example, note from Figure 5.1
that when the process is in control, most of the production will fall between the lower and
upper specification limits (LSL and USL, respectively). When the process is out of control, a
higher proportion of the process lies outside of these specifications.

A major objective of statistical process control is to quickly detect the occurrence of
assignable causes of process shifts so that investigation of the process and corrective action
may be undertaken before many nonconforming units are manufactured. The control chart
is an on-line process-monitoring technique widely used for this purpose. Control charts may
also be used to estimate the parameters of a production process, and, through this informa-
tion, to determine process capability. The control chart may also provide information useful
in improving the process. Finally, remember that the eventual goal of statistical process con-
trol is the elimination of variability in the process. It may not be possible to completely
eliminate variability, but the control chart is an effective tool in reducing variability as much
as possible.

We now present the statistical concepts that form the basis of control charts.
Chapters 6 and 7 develop the details of construction and use of the standard types of con-
trol charts.

'"The terminology chance and assignable causes was developed by Shewhart. Today, some writers use the termi-
nology common cause instead of chance cause and special cause instead of assignable cause.
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Assignable cause three o, >0,
is present; process is
out of control.

Assignable cause two I3
is present; process is
out of control.
Assignable cause one

is present; process is
out of control.

Only chance causes of
variation present;
process is in

control.

LSL Uo usL
Process quality characteristic, x

B FIGURE 5.1 Chance and assignable causes of variation.

5.3 Statistical Basis of the Control Chart

5.3.1 Basic Principles

A typical control chart is shown in Figure 5.2. The control chart is a graphical display of
a quality characteristic that has been measured or computed from a sample versus the sam-
ple number or time. The chart contains a center line that represents the average value of
the quality characteristic corresponding to the in-control state. (That is, only chance
causes are present.) Two other horizontal lines, called the upper control limit (UCL) and
the lower control limit (LCL), are also shown on the chart. These control limits are cho-
sen so that if the process is in control, nearly all of the sample points will fall between
them. As long as the points plot within the control limits, the process is assumed to be in
control, and no action is necessary. However, a point that plots outside of the control limits
is interpreted as evidence that the process is out of control, and investigation and correc-
tive action are required to find and eliminate the assignable cause or causes responsible
for this behavior. It is customary to connect the sample points on the control chart with

Upper control limit

Lower control limit

Sample quality characteristic
<)
(]
3
5]
3
7

S S I S I [ [ [ S I S |
Sample number or time BFIGURE 5.2 A typical control chart.
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straight-line segments, so that it is easier to visualize how the sequence of points has
evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-
random manner, then this could be an indication that the process is out of control. For exam-
ple, if 18 of the last 20 points plotted above the center line but below the upper control limit
and only two of these points plotted below the center line but above the lower control limit,
we would be very suspicious that something was wrong. If the process is in control, all the
plotted points should have an essentially random pattern. Methods for looking for sequences
or nonrandom patterns can be applied to control charts as an aid in detecting out-of-control
conditions. Usually, there is a reason why a particular nonrandom pattern appears on a con-
trol chart, and if it can be found and eliminated, process performance can be improved. This
topic is discussed further in Sections 5.3.5 and 6.2.4.

There is a close connection between control charts and hypothesis testing. To illustrate
this connection, suppose that the vertical axis in Figure 5.2 is the sample average x. Now, if
the current value of x plots between the control limits, we conclude that the process mean is
in control; that is, it is equal to the value t,. On the other hand, if x exceeds either control
limit, we conclude that the process mean is out of control; that is, it is equal to some value
Uy # Uo. In a sense, then, the control chart is a test of the hypothesis that the process is in a
state of statistical control. A point plotting within the control limits is equivalent to failing to
reject the hypothesis of statistical control, and a point plotting outside the control limits is
equivalent to rejecting the hypothesis of statistical control.

The hypothesis testing framework is useful in many ways, but there are some differences
in viewpoint between control charts and hypothesis tests. For example, when testing statistical
hypotheses, we usually check the validity of assumptions, whereas control charts are used to
detect departures from an assumed state of statistical control. In general, we should not worry
too much about assumptions such as the form of the distribution or independence when we are
applying control charts to a process to reduce variability and achieve statistical control.
Furthermore, an assignable cause can result in many different types of shifts in the process
parameters. For example, the mean could shift instantaneously to a new value and remain there
(this is sometimes called a sustained shift); or it could shift abruptly; but the assignable cause
could be short-lived and the mean could then return to its nominal or in-control value; or the
assignable cause could result in a steady drift or trend in the value of the mean. Only the sus-
tained shift fits nicely within the usual statistical hypothesis testing model.

One place where the hypothesis testing framework is useful is in analyzing the perfor-
mance of a control chart. For example, we may think of the probability of type I error of the
control chart (concluding the process is out of control when it is really in control) and the
probability of type II error of the control chart (concluding the process is in control when it
is really out of control). It is occasionally helpful to use the operating-characteristic curve of
a control chart to display its probability of type II error. This would be an indication of the
ability of the control chart to detect process shifts of different magnitudes. This can be of
value in determining which type of control chart to apply in certain situations. For more dis-
cussion of hypothesis testing, the role of statistical theory, and control charts, see Woodall
(2000).

To illustrate the preceding ideas, we give an example of a control chart. In semiconduc-
tor manufacturing, an important fabrication step is photolithography, in which a light-sensitive
photoresist material is applied to the silicon wafer, the circuit pattern is exposed on the resist
typically through the use of high-intensity UV light, and the unwanted resist material is
removed through a developing process. After the resist pattern is defined, the underlying
material is removed by either wet chemical or plasma etching. It is fairly typical to follow
development with a hard-bake process to increase resist adherence and etch resistance. An
important quality characteristic in hard bake is the flow width of the resist, a measure of how
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much it expands due to the baking process. Suppose that flow width can be controlled at a
mean of 1.5 microns, and it is known that the standard deviation of flow width is 0.15 microns.
A control chart for the average flow width is shown in Figure 5.3. Every hour, a sample of
five wafers is taken, the average flow width (¥) computed, and x plotted on the chart. Because
this control chart utilizes the sample average x to monitor the process mean, it is usually
called an x control chart. Note that all of the plotted points fall inside the control limits, so the
chart indicates that the process is considered to be in statistical control.

To assist in understanding the statistical basis of this control chart, consider how the
control limits were determined. The process mean is 1.5 microns, and the process standard
deviation is o = 0.15 microns. Now if samples of size n = 5 are taken, the standard deviation
of the sample average x is

g _915_ 40671

AN RN

Therefore, if the process is in control with a mean flow width of 1.5 microns, then by using
the central limit theorem to assume that x is approximately normally distributed, we would
expect 100(1 — o )% of the sample means x to fall between 1.5 + Z,,,(0.0671) and 1.5 - Z,,»
(0.0671). We will arbitrarily choose the constant Z,, to be 3, so that the upper and lower con-
trol limits become

UCL =1.5+3(0.0671)=1.7013

and

LCL =1.5-3(0.0671) = 1.2987

as shown on the control chart. These are typically called three-sigma control limits.” The
width of the control limits is inversely proportional to the sample size n for a given multiple
of sigma. Note that choosing the control limits is equivalent to setting up the critical region
for testing the hypothesis

Hy: upu#l5

where o = 0.15 is known. Essentially, the control chart tests this hypothesis repeatedly at dif-
ferent points in time. The situation is illustrated graphically in Figure 5.4.

“Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., 0.), not the standard devi-
ation of the quality characteristic.
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We may give a general model for a control chart. Let w be a sample statistic that mea-
sures some quality characteristic of interest, and suppose that the mean of w is y,, and the
standard deviation of w is o,,. Then the center line, the upper control limit, and the lower con-
trol limit become

UCL=u, +Lo,,
Center line = 1, ’.1)
LCL=u, -Lo

w

where L is the “distance” of the control limits from the center line, expressed in standard devia-
tion units. This general theory of control charts was first proposed by Walter A. Shewhart, and
control charts developed according to these principles are often called Shewhart control charts.

The control chart is a device for describing in a precise manner exactly what is meant
by statistical control; as such, it may be used in a variety of ways. In many applications, it is
used for on-line process monitoring or surveillance. That is, sample data are collected and
used to construct the control chart, and if the sample values of x (say) fall within the control
limits and do not exhibit any systematic pattern, we say the process is in control at the level
indicated by the chart. Note that we may be interested here in determining both whether the
past data came from a process that was in control and whether future samples from this
process indicate statistical control.

The most important use of a control chart is to improve the process. We have found
that, generally,

1. Most processes do not operate in a state of statistical control, and

2. Consequently, the routine and attentive use of control charts will assist in identifying
assignable causes. If these causes can be eliminated from the process, variability will
be reduced and the process will be improved.

This process improvement activity using the control chart is illustrated in Figure 5.5. Note that

3. The control chart will only detect assignable causes. Management, operator, and engi-
neering action will usually be necessary to eliminate the assignable causes.
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cause of problem BFIGURE 5.5 Process improvement
using the control chart.
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corrective
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In identifying and eliminating assignable causes, it is important to find the root cause of the
problem and to attack it. A cosmetic solution will not result in any real, long-term process
improvement. Developing an effective system for corrective action is an essential component
of an effective SPC implementation.

A very important part of the corrective action process associated with control chart
usage is the out-of-control-action plan (OCAP). An OCAP is a flowchart or text-based
description of the sequence of activities that must take place following the occurrence of an
activating event. These are usually out-of-control signals from the control chart. The OCAP
consists of checkpoints, which are potential assignable causes, and terminators, which are
actions taken to resolve the out-of-control condition, preferably by eliminating the assignable
cause. It is very important that the OCAP specify as complete a set as possible of checkpoints
and terminators, and that these be arranged in an order that facilitates process diagnostic
activities. Often, analysis of prior failure modes of the process and/or product can be helpful
in designing this aspect of the OCAP. Furthermore, an OCAP is a living document in the sense
that it will be modified over time as more knowledge and understanding of the process are
gained. Consequently, when a control chart is introduced, an initial OCAP should accompany
it. Control charts without an OCAP are not likely to be useful as a process improvement tool.

The OCAP for the hard-bake process is shown in Figure 5.6. This process has two con-
trollable variables: temperature and time. In this process, the mean flow width is monitored
with an x control chart, and the process variability is monitored with a control chart for the
range, or an R chart. Notice that if the R chart exhibits an out-of-control signal, operating per-
sonnel are directed to contact process engineering immediately. If the x control chart exhibits
an out-of-control signal, operators are directed to check process settings and calibration and
then make adjustments to temperature in an effort to bring the process back into a state of con-
trol. If these adjustments are unsuccessful, process engineering personnel are contacted.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the mean,
standard deviation, fraction nonconforming or fallout, and so forth. These estimates may then
be used to determine the capability of the process to produce acceptable products. Such
process-capability studies have considerable impact on many management decision prob-
lems that occur over the product cycle, including make or buy decisions, plant and process
improvements that reduce process variability, and contractual agreements with customers or
vendors regarding product quality.

Control charts may be classified into two general types. If the quality characteristic can
be measured and expressed as a number on some continuous scale of measurement, it is usu-
ally called a variable. In such cases, it is convenient to describe the quality characteristic with
a measure of central tendency and a measure of variability. Control charts for central tendency
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and variability are collectively called variables control charts. The x chart is the most widely
used chart for controlling central tendency, whereas charts based on either the sample range
or the sample standard deviation are used to control process variability. Control charts for
variables are discussed in Chapter 6. Many quality characteristics are not measured on a con-
tinuous scale or even a quantitative scale. In these cases, we may judge each unit of product
as either conforming or nonconforming on the basis of whether or not it possesses certain
attributes, or we may count the number of nonconformities (defects) appearing on a unit of
product. Control charts for such quality characteristics are called attributes control charts
and are discussed in Chapter 7.

An important factor in control chart use is the design of the control chart. By this we
mean the selection of the sample size, control limits, and frequency of sampling. For exam-
ple, in the x chart of Figure 5.3, we specified a sample size of five measurements, three-sigma
control limits, and the sampling frequency to be every hour. In most quality-control problems,
it is customary to design the control chart using primarily statistical considerations. For exam-
ple, we know that increasing the sample size will decrease the probability of type II error, thus
enhancing the chart’s ability to detect an out-of-control state, and so forth. The use of statis-
tical criteria such as these along with industrial experience have led to general guidelines and
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procedures for designing control charts. These procedures usually consider cost factors only
in an implicit manner. Recently, however, we have begun to examine control chart design
from an economic point of view, considering explicitly the cost of sampling, losses from
allowing defective product to be produced, and the costs of investigating out-of-control sig-
nals that are really false alarms.

Another important consideration in control chart usage is the type of variability exhib-
ited by the process. Figure 5.7 presents data from three different processes. Figures 5.7a and
5.7b illustrate stationary behavior. By this we mean that the process data vary around a fixed
mean in a stable or predictable manner. This is the type of behavior that Shewhart implied was
produced by an in-control process.

Even a cursory examination of Figures 5.7a and 5.7b reveals some important differ-
ences. The data in Figure 5.7a are uncorrelated; that is, the observations give the appearance
of having been drawn at random from a stable population, perhaps a normal distribution. This
type of data is referred to by time series analysts as white noise. (Time-series analysis is a
field of statistics devoted exclusively to studying and modeling time-oriented data.) In this
type of process, the order in which the data occur does not tell us much that is useful to analyze
the process. In other words, the past values of the data are of no help in predicting any of the
future values.

Figure 5.7b illustrates stationary but autocorrelated process data. Notice that succes-
sive observations in these data are dependent; that is, a value above the mean tends to be fol-
lowed by another value above the mean, whereas a value below the mean is usually followed
by another such value. This produces a data series that has a tendency to move in moderately
long “runs” on either side of the mean.

Figure 5.7¢ illustrates nonstationary variation. This type of process data occurs fre-
quently in the chemical and process industries. Note that the process is very unstable in that
it drifts or “wanders about” without any sense of a stable or fixed mean. In many industrial
settings, we stabilize this type of behavior by using engineering process control (such as
feedback control). This approach to process control is required when there are factors that
affect the process that cannot be stabilized, such as environmental variables or properties of
raw materials. When the control scheme is effective, the process output will not look like
Figure 5.7¢, but will resemble either Figure 5.7a or 5.7b.

Shewhart control charts are most effective when the in-control process data look like
Figure 5.7a. By this we mean that the charts can be designed so that their performance is pre-
dictable and reasonable to the user, and that they are effective in reliably detecting out-of-control
conditions. Most of our discussion of control charts in this chapter and in Chapters 6 and 7
will assume that the in-control process data are stationary and uncorrelated.

With some modifications, Shewhart control charts and other types of control charts can
be applied to autocorrelated data. We discuss this in more detail in Part IV of the book. We
also discuss feedback control and the use of SPC in systems where feedback control is
employed in Part IV.
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Control charts have had a long history of use in U.S. industries and in many offshore
industries as well. There are at least five reasons for their popularity.

1. Control charts are a proven technique for improving productivity. A successful
control chart program will reduce scrap and rework, which are the primary productiv-
ity killers in any operation. If you reduce scrap and rework, then productivity increases,
cost decreases, and production capacity (measured in the number of good parts per
hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the
process in control, which is consistent with the “Do it right the first time” philosophy. It
is never cheaper to sort out “good” units from “bad” units later on than it is to build it
right initially. If you do not have effective process control, you are paying someone to
make a nonconforming product.

3. Control charts prevent unnecessary process adjustment. A control chart can dis-
tinguish between background noise and abnormal variation; no other device including a
human operator is as effective in making this distinction. If process operators adjust the
process based on periodic tests unrelated to a control chart program, they will often over-
react to the background noise and make unneeded adjustments. Such unnecessary adjust-
ments can actually result in a deterioration of process performance. In other words, the
control chart is consistent with the “If it isn’t broken, don’t fix it philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points on
the control chart will contain information of diagnostic value to an experienced opera-
tor or engineer. This information allows the implementation of a change in the process
that improves its performance.

5. Control charts provide information about process capability. The control chart
provides information about the value of important process parameters and their stabil-
ity over time. This allows an estimate of process capability to be made. This informa-
tion is of tremendous use to product and process designers.

Control charts are among the most important management control tools; they are as
important as cost controls and material controls. Modern computer technology has made it
easy to implement control charts in any type of process, as data collection and analysis can
be performed on a microcomputer or a local area network terminal in real time on-line at the
work center. Some additional guidelines for implementing a control chart program are given
at the end of Chapter 7.

5.3.2 Choice of Control Limits

Specifying the control limits is one of the critical decisions that must be made in designing
a control chart. By moving the control limits farther from the center line, we decrease the risk
of a type I error—that is, the risk of a point falling beyond the control limits, indicating an
out-of-control condition when no assignable cause is present. However, widening the control
limits will also increase the risk of a type II error—that is, the risk of a point falling between
the control limits when the process is really out of control. If we move the control limits
closer to the center line, the opposite effect is obtained: The risk of type I error is increased,
while the risk of type II error is decreased.

For the x chart shown in Figure 5.3, where three-sigma control limits were used, if we
assume that the flow width is normally distributed, we find from the standard normal table
that the probability of type I error is 0.0027. That is, an incorrect out-of-control signal or false
alarm will be generated in only 27 out of 10,000 points. Furthermore, the probability that a
point taken when the process is in control will exceed the three-sigma limits in one direction
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only is 0.00135. Instead of specifying the control limit as a multiple of the standard deviation
of x, we could have directly chosen the type I error probability and calculated the corre-
sponding control limit. For example, if we specified a 0.001 type I error probability in one
direction, then the appropriate multiple of the standard deviation would be 3.09. The control
limits for the x chart would then be

UCL =1.5+3.09(0.0671) = 1.7073
LCL =1.5-3.09(0.0671) = 1.2927

These control limits are usually called 0.001 probability limits, although they should logi-
cally be called 0.002 probability limits, because the total risk of making a type I error is 0.002.
There is only a slight difference between the two limits.

Regardless of the distribution of the quality characteristic, it is standard practice in the
United States to determine the control limits as a multiple of the standard deviation of the sta-
tistic plotted on the chart. The multiple usually chosen is three; hence, three-sigma limits are
customarily employed on control charts, regardless of the type of chart employed. In the
United Kingdom and parts of Western Europe, probability limits are often used, with the stan-
dard probability level in each direction being 0.001.

We typically justify the use of three-sigma control limits on the basis that they give
good results in practice. Moreover, in many cases, the true distribution of the quality charac-
teristic is not known well enough to compute exact probability limits. If the distribution of the
quality characteristic is reasonably approximated by the normal distribution, then there will
be little difference between three-sigma and 0.001 probability limits.

Two Limits on Control Charts. Some analysts suggest using two sets of limits on
control charts, such as those shown in Figure 5.8. The outer limits—say, at three-sigma—are
the usual action limits; that is, when a point plots outside of this limit, a search for an
assignable cause is made and corrective action is taken if necessary. The inner limits, usu-
ally at two-sigma, are called warning limits. In Figure 5.8, we have shown the three-sigma
upper and lower control limits for the x chart for flow width. The upper and lower warning
limits are located at

UWL =1.5+2(0.0671) =1.6342
LWL =1.5-2(0.0671) =1.3658

When probability limits are used, the action limits are generally 0.001 limits and the warning
limits are 0.025 limits.

If one or more points fall between the warning limits and the control limits, or very
close to the warning limit, we should be suspicious that the process may not be operating
properly. One possible action to take when this occurs is to increase the sampling frequency
and/or the sample size so that more information about the process can be obtained quickly.
Process control schemes that change the sample size and/or the sampling frequency depend-
ing on the position of the current sample value are called adaptive or variable sampling
interval (or variable sample size, etc.) schemes. These techniques have been used in prac-
tice for many years and have recently been studied extensively by researchers in the field. We
will discuss this technique again in Part IV of this book.

The use of warning limits can increase the sensitivity of the control chart; that is, it can
allow the control chart to signal a shift in the process more quickly. One of the disadvantages
of warning limits is that they may be confusing to operating personnel. This is not usually a
serious objection, however, and many practitioners use them routinely on control charts. A
more serious objection is that although the use of warning limits can improve the sensitivity
of the chart, they also result in an increased risk of false alarms. We will discuss the use of
sensitizing rules (such as warning limits) more thoroughly in Section 5.3.6.
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warning limits.

5.3.3 Sample Size and Sampling Frequency

In designing a control chart, we must specify both the sample size and the frequency of sam-
pling. In general, larger samples will make it easier to detect small shifts in the process. This
is demonstrated in Figure 5.9, where we have plotted the operating-characteristic curve for
the x chart in Figure 5.3 for various sample sizes. Note that the probability of detecting a shift
from 1.500 microns to 1.650 microns (for example) increases as the sample size n increases.
When choosing the sample size, we must keep in mind the size of the shift that we are trying
to detect. If the process shift is relatively large, then we use smaller sample sizes than those
that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the
point of view of detecting shifts would be to take large samples very frequently; however, this is
usually not economically feasible. The general problem is one of allocating sampling effort. That
is, either we take small samples at short intervals or larger samples at longer intervals. Current
industry practice tends to favor smaller, more frequent samples, particularly in high-volume man-
ufacturing processes, or where a great many types of assignable causes can occur. Furthermore, as
automatic sensing and measurement technology develops, it is becoming possible to greatly
increase sampling frequencies. Ultimately, every unit can be tested as it is manufactured.
Automatic measurement systems and microcomputers with SPC software applied at the work cen-
ter for real-time, on-line process control is an effective way to apply statistical process control.

Another way to evaluate the decisions regarding sample size and sampling frequency is
through the average run length (ARL) of the control chart. Essentially, the ARL is the aver-
age number of points that must be plotted before a point indicates an out-of-control condition.
If the process observations are uncorrelated, then for any Shewhart control chart, the ARL can
be calculated easily from

ARL = - (5.2)

S

where p is the probability that any point exceeds the control limits. This equation can be used
to evaluate the performance of the control chart.

To illustrate, for the x chart with three-sigma limits, p = 0.0027 is the probability that a
single point falls outside the limits when the process is in control. Therefore, the average run
length of the x chart when the process is in control (called ARL,) is

ARLy=L=_1

=—— =370
p 0.0027
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That is, even if the process remains in control, an out-of-control signal will be generated every
370 samples, on the average.

The use of average run lengths to describe the performance of control charts has been
subjected to criticism in recent years. The reasons for this arise because the distribution of run
length for a Shewhart control chart is a geometric distribution (refer to Section 3.2.4).
Consequently, there are two concerns with ARL: (1) the standard deviation of the run length
is very large, and (2) the geometric distribution is very skewed, so the mean of the distribu-
tion (the ARL) is not necessarily a very typical value of the run length.

For example, consider the Shewhart x control chart with three-sigma limits. When the
process is in control, we have noted that p = 0.0027 and the in-control ARL, is ARL, =
1/p = 1/0.0027 = 370. This is the mean of the geometric distribution. Now the standard devi-
ation of the geometric distribution is

J(1=p)/p=J(1-0.0027) /0.0027 = 370

That is, the standard deviation of the geometric distribution in this case is approximately equal
to its mean. As a result, the actual ARL, observed in practice for the Shewhart x control chart
will likely vary considerably. Furthermore, for the geometric distribution with p = 0.0027, the
tenth and fiftieth percentiles of the distribution are 38 and 256, respectively. This means that
approximately 10% of the time the in-control run length will be less than or equal to 38 sam-
ples and 50% of the time it will be less than or equal to 256 samples. This occurs because the
geometric distribution with p = 0.0027 is quite skewed to the right. For this reason, some ana-
lysts like to report percentiles of the run-length distribution instead of just the ARL.

It is also occasionally convenient to express the performance of the control chart in
terms of its average time to signal (ATS). If samples are taken at fixed intervals of time that
are h hours apart, then

ATS = ARLA (5.3)

Consider the hard-bake process discussed earlier, and suppose we are sampling every hour.
Equation 5.3 indicates that we will have a false alarm about every 370 hours on the average.

Now consider how the control chart performs in detecting shifts in the mean. Suppose we
are using a sample size of n = 5 and that when the process goes out of control the mean shifts
to 1.725 microns. From the operating characteristic curve in Figure 5.9 we find that if the
process mean is 1.725 microns, the probability of x falling between the control limits is approx-
imately 0.35. Therefore, p in equation 5.2 is 0.35, and the out-of-control ARL (called ARL) is

ARL, =1- 1 _1g6

p 0.35
That is, the control chart will require 2.86 samples to detect the process shift, on the average,
and since the time interval between samples is . = 1 hour, the average time required to detect
this shift is

ATS = ARLh =2.86 (1) = 2.86 hours

Suppose that this is unacceptable, because production of wafers with mean flow width of
1.725 microns results in excessive scrap costs and can result in further upstream manufac-
turing problems. How can we reduce the time needed to detect the out-of-control condition?
One method is to sample more frequently. For example, if we sample every half hour, then
the average time to signal for this scheme is ATS = ARL, h = 2.86(3) = 1.43; that is, only
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1.43 hours will elapse (on the average) between the shift and its detection. The second pos-
sibility is to increase the sample size. For example, if we use n = 10, then Figure 5.9 shows
that the probability of x falling between the control limits when the process mean is 1.725
microns is approximately 0.1, so that p = 0.9, and from equation 5.2 the out-of-control ARL
or ARL, is
ARL, :lzizl.ll
p 09

and, if we sample every hour, the average time to signal is

ATS = ARL,2=1.11(1)=1.11 hours

Thus, the larger sample size would allow the shift to be detected more quickly than with the
smaller one.

To answer the question of sampling frequency more precisely, we must take several fac-
tors into account, including the cost of sampling, the losses associated with allowing the
process to operate out of control, the rate of production, and the probabilities with which var-
ious types of process shifts occur. We discuss various methods for selecting an appropriate
sample size and sampling frequency for a control chart in the next four chapters.

5.3.4 Rational Subgroups

A fundamental idea in the use of control charts is the collection of sample data according to
what Shewhart called the rational subgroup concept. To illustrate this concept, suppose that
we are using an x control chart to detect changes in the process mean. Then the rational sub-
group concept means that subgroups or samples should be selected so that if assignable causes
are present, the chance for differences between subgroups will be maximized, while the chance
for differences due to these assignable causes within a subgroup will be minimized.

When control charts are applied to production processes, the time order of production
is a logical basis for rational subgrouping. Even though time order is preserved, it is still
possible to form subgroups erroneously. If some of the observations in the sample are taken
at the end of one shift and the remaining observations are taken at the start of the next shift,
then any differences between shifts might not be detected. Time order is frequently a good
basis for forming subgroups because it allows us to detect assignable causes that occur over
time.

Two general approaches to constructing rational subgroups are used. In the first
approach, each sample consists of units that were produced at the same time (or as closely
together as possible). Ideally, we would like to take consecutive units of production. This
approach is used when the primary purpose of the control chart is to detect process shifts. It
minimizes the chance of variability due to assignable causes within a sample, and it maxi-
mizes the chance of variability between samples if assignable causes are present. It also pro-
vides a better estimate of the standard deviation of the process in the case of variables control
charts. This approach to rational subgrouping essentially gives a snapshot of the process at
each point in time where a sample is collected.

Figure 5.10 illustrates this type of sampling strategy. In Figure 5.10a we show a process
for which the mean experiences a series of sustained shifts, and the corresponding observa-
tions obtained from this process at the points in time along the horizontal axis, assuming that
five consecutive units are selected. Figure 5.10b shows the x control chart and an R chart
(or range chart) for these data. The center line and control limits on the R chart are con-
structed using the range of each sample in the upper part of the figure (details will be given in
Chapter 6). Note that although the process mean is shifting, the process variability is stable.
Furthermore, the within-sample measure of variability is used to construct the control limits
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on the x chart. Note that the x chart in Figure 5.100 has points out of control corresponding
to the shifts in the process mean.

In the second approach, each sample consists of units of product that are representative
of all units that have been produced since the last sample was taken. Essentially, each sub-
group is a random sample of all process output over the sampling interval. This method
of rational subgrouping is often used when the control chart is employed to make decisions
about the acceptance of all units of product that have been produced since the last sample. In
fact, if the process shifts to an out-of-control state and then back in control again between
samples, it is sometimes argued that the snapshot method of rational subgrouping will be inef-
fective against these types of shifts, and so the random sample method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process mean
drifts between several levels during the interval between samples, this may cause the range of
the observations within the sample to be relatively large, resulting in wider limits on the
x chart. This scenario is illustrated in Figure 5.11. In fact, we can often make any process
appear to be in statistical control just by stretching out the interval between observa-
tions in the sample. It is also possible for shifts in the process average to cause points on a
control chart for the range or standard deviation to plot out of control, even though there has
been no shift in process variability.

There are other bases for forming rational subgroups. For example, suppose a process
consists of several machines that pool their output into a common stream. If we sample from
this common stream of output, it will be very difficult to detect whether any of the machines
are out of control. A logical approach to rational subgrouping here is to apply control chart
techniques to the output for each individual machine. Sometimes this concept needs to be
applied to different heads on the same machine, different work stations, different operators,
and so forth. In many situations, the rational subgroup will consist of a single observation.
This situation occurs frequently in the chemical and process industries where the quality
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characteristic of the product changes relatively slowly and samples taken very close together
in time are virtually identical, apart from measurement or analytical error.

The rational subgroup concept is very important. The proper selection of samples
requires careful consideration of the process, with the objective of obtaining as much useful
information as possible from the control chart analysis.

5.3.5 Analysis of Patterns on Control Charts

Patterns on control charts must be assessed. A control chart may indicate an out-of-control
condition when one or more points fall beyond the control limits or when the plotted points
exhibit some nonrandom pattern of behavior. For example, consider the x chart shown in
Figure 5.12. Although all 25 points fall within the control limits, the points do not indicate
statistical control because their pattern is very nonrandom in appearance. Specifically, we
note that 19 of 25 points plot below the center line, while only 6 of them plot above. If the points
truly are random, we should expect a more even distribution above and below the center line.
We also observe that following the fourth point, five points in a row increase in magnitude.
This arrangement of points is called a run. Since the observations are increasing, we could
call this a run up. Similarly, a sequence of decreasing points is called a run down. This con-
trol chart has an unusually long run up (beginning with the fourth point) and an unusually
long run down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition
to runs up and runs down, we could define the types of observations as those above and below
the center line, respectively, so that two points in a row above the center line would be a run
of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a signal
of an out-of-control condition. For example, eight consecutive points on one side of the cen-
ter line may indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart,
other types of patterns may also indicate an out-of-control condition. For example, consider
the x chart in Figure 5.13. Note that the plotted sample averages exhibit a cyclic behavior, yet
they all fall within the control limits. Such a pattern may indicate a problem with the process
such as operator fatigue, raw material deliveries, heat or stress buildup, and so forth. Although
the process is not really out of control, the yield may be improved by elimination or reduc-
tion of the sources of variability causing this cyclic behavior (see Fig. 5.14).

The problem is one of pattern recognition—that is, recognizing systematic or nonran-
dom patterns on the control chart and identifying the reason for this behavior. The ability to
interpret a particular pattern in terms of assignable causes requires experience and knowledge
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of the process. That is, we must not only know the statistical principles of control charts, but
we must also have a good understanding of the process. We discuss the interpretation of pat-
terns on control charts in more detail in Chapter 6.

The Western Electric Statistical Quality Control Handbook (1956) suggests a set of
decision rules for detecting nonrandom patterns on control charts. Specifically, it suggests
concluding that the process is out of control if either

1. one point plots outside the three-sigma control limits,
2. two out of three consecutive points plot beyond the two-sigma warning limits,

3. four out of five consecutive points plot at a distance of one-sigma or beyond from the
center line, or

4. eight consecutive points plot on one side of the center line.

Those rules apply to one side of the center line at a time. Therefore, a point above the upper
warning limit followed immediately by a point below the lower warning limit would not signal
an out-of-control alarm. These are often used in practice for enhancing the sensitivity of control
charts. That is, the use of these rules can allow smaller process shifts to be detected more quickly
than would be the case if our only criterion was the usual three-sigma control limit violation.
Figure 5.15 shows an x control chart with the one-sigma, two-sigma, and three-sigma
limits used in the Western Electric procedure. Note that these limits partition the control chart
into three zones (A, B, and C) on each side of the center line. Consequently, the Western
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= TABLE 5.1
Some Sensitizing Rules for Shewhart Control Charts

Standard Action Signal: 1. One or more points outside of the control limits

2. Two of three consecutive points outside the
two-sigma warning limits but still inside the Western

control limits Electric

3. Four of five consecutive points beyond the Rules
one-sigma limits

4. A run of eight consecutive points on one side of the
center line

5. Six points in a row steadily increasing or decreasing

6. Fifteen points in a row in zone C (both above and
below the center line)

7. Fourteen points in a row alternating up and down

8. Eight points in a row on both sides of the center
line with none in zone C

9. An unusual or nonrandom pattern in the data

10. One or more points near a warning or control limit

Electric rules are sometimes called the zone rules for control charts. Note that the last four
points fall in zone B or beyond. Thus, since four of five consecutive points exceed the one-
sigma limit, the Western Electric procedure will conclude that the pattern is nonrandom and
the process is out of control.

5.3.6 Discussion of Sensitizing Rules for Control Charts

As may be gathered from earlier sections, several criteria may be applied simultaneously to a
control chart to determine whether the process is out of control. The basic criterion is one or
more points outside of the control limits. The supplementary criteria are sometimes used to
increase the sensitivity of the control charts to a small process shift so that we may respond
more quickly to the assignable cause. Some of the sensitizing rules for control charts that
are widely used in practice are shown in Table 5.1. For a good discussion of some of these
rules, see Nelson (1984). Frequently, we will inspect the control chart and conclude that the
process is out of control if any one or more of the criteria in Table 5.1 are met.

When several of these sensitizing rules are applied simultaneously, we often use a grad-
uated response to out-of-control signals. For example, if a point exceeded a control limit, we
would immediately begin to search for the assignable cause, but if one or two consecutive
points exceeded only the two-sigma warning limit, we might increase the frequency of sam-
pling from every hour to say, every ten minutes. This adaptive sampling response might not
be as severe as a complete search for an assignable cause, but if the process were really out
of control, it would give us a high probability of detecting this situation more quickly than we
would by maintaining the longer sampling interval.

In general, care should be exercised when using several decision rules simultaneously.
Suppose that the analyst uses k decision rules and that criterion i has type I error probability ;.
Then the overall type I error or false alarm probability for the decision based on all & tests is

a=1-TI(1-,) (5.4)
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provided that all k£ decision rules are independent. However, the independence assumption is
not valid with the usual sensitizing rules. Furthermore, the value of ¢; is not always clearly
defined for the sensitizing rules, because these rules involve several observations.

Champ and Woodall (1987) investigated the average run length performance for the
Shewhart control chart with various sensitizing rules. They found that the use of these rules
does improve the ability of the control chart to detect smaller shifts, but the in-control aver-
age run length can be substantially degraded. For example, assuming independent process data
and using a Shewhart control chart with the Western Electric rules results in an in-control ARL
of 91.25, in contrast to 370 for the Shewhart control chart alone.

Some of the individual Western Electric rules are particularly troublesome. An illustra-
tion is the rule of several (usually seven or eight) consecutive points that either increase or
decrease. This rule is very ineffective in detecting a trend, the situation for which it was
designed. It does, however, greatly increase the false alarm rate. See Davis and Woodall (1988)
for more details.

5.3.7 Phase I and Phase II of Control Chart Application

Standard control chart usage involves phase I and phase II applications, with two different
and distinct objectives. In phase I, a set of process data is gathered and analyzed all at once
in a retrospective analysis, constructing trial control limits to determine if the process has
been in control over the period of time during which the data were collected, and to see if reli-
able control limits can be established to monitor future production. This is typically the first
thing that is done when control charts are applied to any process. Control charts in phase I
primarily assist operating personnel in bringing the process into a state of statistical control.
Phase II begins after we have a “clean” set of process data gathered under stable conditions
and representative of in-control process performance. In phase II, we use the control chart to
monitor the process by comparing the sample statistic for each successive sample as it is
drawn from the process to the control limits.

Thus, in phase I we are comparing a collection of, say, m points to a set of control lim-
its computed from those points. Typically m = 20 or 25 subgroups are used in phase I. It is
fairly typical in phase I to assume that the process is initially out of control, so the objective
of the analyst is to bring the process into a state of statistical control. Control limits are cal-
culated based on the m subgroups and the data plotted on the control charts. Points that are
outside the control limits are investigated, looking for potential assignable causes. Any
assignable causes that are identified are worked on by engineering and operating personnel in
an effort to eliminate them. Points outside the control limits are then excluded and a new set
of revised control limits are calculated. Then new data are collected and compared to these
revised limits. Sometimes this type of analysis will require several cycles in which the con-
trol chart is employed, assignable causes are detected and corrected, revised control limits are
calculated, and the out-of-control action plan is updated and expanded. Eventually the process
is stabilized, and a clean set of data that represents in-control process performance is obtained
for use in phase II.

Generally, Shewhart control charts are very effective in phase I because they are easy to
construct and interpret, and because they are effective in detecting both large, sustained shifts
in the process parameters and outliers (single excursions that may have resulted from assigna-
ble causes of short duration), measurement errors, data recording and/or transmission errors,
and the like. Furthermore, patterns on Shewhart control charts often are easy to interpret and
have direct physical meaning. The sensitizing rules discussed in the previous sections are also
easy to apply to Shewhart charts. (This is an optional feature in most SPC software.) The types
of assignable causes that usually occur in phase I result in fairly large process shifts—exactly
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the scenario in which the Shewhart control chart is most effective. Average run length is not
usually a reasonable performance measure for phase I; we are typically more interested in the
probability that an assignable cause will be detected than in the occurrence of false alarms. For
good discussions of phase