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Preface
Introduction

This book is about the use of modern statistical methods for quality control and improvement. It

provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts

and applications. The objective is to give the reader a sound understanding of the principles and the

basis for applying them in a variety of situations. Although statistical techniques are emphasized

throughout, the book has a strong engineering and management orientation. Extensive knowledge

of statistics is not a prerequisite for using this book. Readers whose background includes a basic

course in statistical methods will find much of the material in this book easily accessible.

Audience

The book is an outgrowth of more than 40 years of teaching, research, and consulting in the appli-

cation of statistical methods for industrial problems. It is designed as a textbook for students enrolled

in colleges and universities who are studying engineering, statistics, management, and related fields

and are taking a first course in statistical quality control. The basic quality-control course is often

taught at the junior or senior level. All of the standard topics for this course are covered in detail.

Some more advanced material is also available in the book, and this could be used with advanced

undergraduates who have had some previous exposure to the basics or in a course aimed at gradu-

ate students. I have also used the text materials extensively in programs for professional practition-

ers, including quality and reliability engineers, manufacturing and development engineers, product

designers, managers, procurement specialists, marketing personnel, technicians and laboratory ana-

lysts, inspectors, and operators. Many professionals have also used the material for self-study.

Chapter Organization and Topical Coverage

The book contains five parts. Part 1 is introductory. The first chapter is an introduction to the 

philosophy and basic concepts of quality improvement. It notes that quality has become a major

business strategy and that organizations that successfully improve quality can increase their pro-

ductivity, enhance their market penetration, and achieve greater profitability and a strong compet-

itive advantage. Some of the managerial and implementation aspects of quality improvement are

included. Chapter 2 describes DMAIC, an acronym for Define, Measure, Analyze, Improve, and

Control. The DMAIC process is an excellent framework to use in conducting quality-improvement

projects. DMAIC often is associated with Six Sigma, but regardless of the approach taken by an

organization strategically, DMAIC is an excellent tactical tool for quality professionals to employ.

Part 2 is a description of statistical methods useful in quality improvement. Topics include

sampling and descriptive statistics, the basic notions of probability and probability distributions,

point and interval estimation of parameters, and statistical hypothesis testing. These topics are

usually covered in a basic course in statistical methods; however, their presentation in this text

is from the quality-engineering viewpoint. My experience has been that even readers with a

strong statistical background will find the approach to this material useful and somewhat different

from a standard statistics textbook.

v
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Part 3 contains four chapters covering the basic methods of statistical process control

(SPC) and methods for process capability analysis. Even though several SPC problem-solving

tools are discussed (including Pareto charts and cause-and-effect diagrams, for example), the

primary focus in this section is on the Shewhart control chart. The Shewhart control chart cer-

tainly is not new, but its use in modern-day business and industry is of tremendous value.

There are four chapters in Part 4 that present more advanced SPC methods. Included are

the cumulative sum and exponentially weighted moving average control charts (Chapter 9), sev-

eral important univariate control charts such as procedures for short production runs, autocorre-

lated data, and multiple stream processes (Chapter 10), multivariate process monitoring and

control (Chapter 11), and feedback adjustment techniques (Chapter 12). Some of this material

is at a higher level than Part 3, but much of it is accessible by advanced undergraduates or first-

year graduate students. This material forms the basis of a second course in statistical quality

control and improvement for this audience.

Part 5 contains two chapters that show how statistically designed experiments can be used

for process design, development, and improvement. Chapter 13 presents the fundamental con-

cepts of designed experiments and introduces factorial and fractional factorial designs, with par-

ticular emphasis on the two-level system of designs. These designs are used extensively in the

industry for factor screening and process characterization. Although the treatment of the subject

is not extensive and is no substitute for a formal course in experimental design, it will enable the

reader to appreciate more sophisticated examples of experimental design. Chapter 14 introduces

response surface methods and designs, illustrates evolutionary operation (EVOP) for process

monitoring, and shows how statistically designed experiments can be used for process robust-

ness studies. Chapters 13 and 14 emphasize the important interrelationship between statistical

process control and experimental design for process improvement.

Two chapters deal with acceptance sampling in Part 6. The focus is on lot-by-lot accep-

tance sampling, although there is some discussion of continuous sampling and MIL STD 1235C

in Chapter 14. Other sampling topics presented include various aspects of the design of

acceptance-sampling plans, a discussion of MIL STD 105E, and MIL STD 414 (and their civil-

ian counterparts: ANSI/ASQC ZI.4 and ANSI/ASQC ZI.9), and other techniques such as chain

sampling and skip-lot sampling.

Throughout the book, guidelines are given for selecting the proper type of statistical tech-

nique to use in a wide variety of situations. In addition, extensive references to journal articles

and other technical literature should assist the reader in applying the methods described. I also

have shown how the different techniques presented are used in the DMAIC process.

New To This Edition

The 8th edition of the book has new material on several topics, including implementing quality

improvement, applying quality tools in nonmanufacturing settings, monitoring Bernoulli

processes, monitoring processes with low defect levels, and designing experiments for process

and product improvement. In addition, I have rewritten and updated many sections of the book.

This is reflected in over two dozen new references that have been added to the bibliography. 

I think that has led to a clearer and more current exposition of many topics. I have also added

over 80 new exercises to the end-of-chapter problem sets.

Supporting Text Materials

Computer Software

The computer plays an important role in a modern quality-control course. This edition of the

book uses Minitab as the primary illustrative software package. I strongly recommend that the

course have a meaningful computing component. To request this book with a student version of

vi Preface
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Minitab included, contact your local Wiley representative. The student version of Minitab has

limited functionality and does not include DOE capability. If your students will need DOE capa-

bility, they can download the fully functional 30-day trial at www.minitab.com or purchase a fully

functional time-limited version from e-academy.com.

Supplemental Text Material

I have written a set of supplemental materials to augment many of the chapters in the book. The

supplemental material contains topics that could not easily fit into a chapter without seriously

disrupting the flow. The topics are shown in the Table of Contents for the book and in the indi-

vidual chapter outlines. Some of this material consists of proofs or derivations, new topics of a

(sometimes) more advanced nature, supporting details concerning remarks or concepts presented

in the text, and answers to frequently asked questions. The supplemental material provides an

interesting set of accompanying readings for anyone curious about the field. It is available at

www.wiley.com/college/montgomery.

Student Resource Manual

The text contains answers to most of the odd-numbered exercises. A Student Resource Manual

is available from John Wiley & Sons that presents comprehensive annotated solutions to these

same odd-numbered problems. This is an excellent study aid that many text users will find

extremely helpful. The Student Resource Manual may be ordered in a set with the text or pur-

chased separately. Contact your local Wiley representative to request the set for your bookstore

or purchase the Student Resource Manual from the Wiley Web site.

Instructor’s Materials

The instructor’s section of the textbook Website contains the following:

1. Solutions to the text problems

2. The supplemental text material described above

3. A set of Microsoft PowerPoint slides for the basic SPC course

4. Data sets from the book, in electronic form

5. Image Gallery illustrations from the book in electronic format

The instructor’s section is for instructor use only and is password protected. Visit the Instructor

Companion Site portion of the Web site, located at www.wiley.com/college/montgomery, to reg-

ister for a password.

The World Wide Web Page

The Web page for the book is accessible through the Wiley home page. It contains the

supplemental text material and the data sets in electronic form. It will also be used to post items

of interest to text users. The Web site address is www.wiley.com/college/montgomery. Click on

the cover of the text you are using.
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Controlling and improving quality has become an important business strat-
egy for many organizations: manufacturers, distributors, transportation
companies, financial services organizations, health care providers, and gov-
ernment agencies. Maintaining a high level of product or service quality pro-
vides a competitive advantage. A business that can delight customers by
improving and controlling quality can dominate its competitors. This book is
about the technical methods for achieving success in quality control and
improvement, and offers guidance on how to successfully implement these
methods.

Part 1 contains two chapters. Chapter 1 contains the basic definitions of qual-
ity and quality improvement, provides a brief overview of the tools and meth-
ods discussed in greater detail in subsequent parts of the book, and discusses
the management systems for quality improvement. Chapter 2 is devoted to
the DMAIC (define, measure, analyze, improve, and control) problem-
solving process, which is an excellent framework for implementing quality
and process improvement. We also show how the methods discussed in the
book are used in DMAIC.

PART 1PART 1
IntroductionIntroduction
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This book is about the use of statistical methods and other problem-solving techniques 

to improve the quality of the products used by our society. These products consist of

manufactured goods such as automobiles, computers, and clothing, as well as services
such as the generation and distribution of electrical energy, public transportation, bank-

ing, retailing, and health care. Quality improvement methods can be applied to any area

within a company or organization, including manufacturing, process development, engi-

neering design, finance and accounting, marketing, distribution and logistics, customer

service, and field service of products. This text presents the technical tools that are

needed to achieve quality improvement in these organizations.

In this chapter we give the basic definitions of quality, quality improvement, and

other quality engineering terminology. We also discuss the historical development of qual-

ity improvement methodology and provide an overview of the statistical tools essential for

modern professional practice. A brief discussion of some management and business

aspects for implementing quality improvement is also given.

Quality Improvement in
the Modern Business
Environment

3
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After careful study of this chapter, you should be able to do the following:

1. Define and discuss quality and quality improvement

2. Discuss the different dimensions of quality

3. Discuss the evolution of modern quality improvement methods

4. Discuss the role that variability and statistical methods play in controlling and

improving quality

5. Describe the quality management philosophies of W. Edwards Deming, Joseph

M. Juran, and Armand V. Feigenbaum

6. Discuss total quality management, the Malcolm Baldrige National Quality

Award, Six Sigma, and quality systems and standards

7. Explain the links between quality and productivity and between quality and

cost

8. Discuss product liability

9. Discuss the three functions: quality planning, quality assurance, and quality control

and improvement

1.1 The Meaning of Quality and Quality Improvement

We may define quality in many ways. Most people have a conceptual understanding of qual-

ity as relating to one or more desirable characteristics that a product or service should pos-

sess. Although this conceptual understanding is certainly a useful starting point, we prefer a

more precise and useful definition.

Quality has become one of the most important consumer decision factors in the selec-

tion among competing products and services. The phenomenon is widespread, regardless of

whether the consumer is an individual, an industrial organization, a retail store, a bank or

financial institution, or a military defense program. Consequently, understanding and improv-

ing quality are key factors leading to business success, growth, and enhanced competitive-

ness. There is a substantial return on investment from improved quality and from successfully

employing quality as an integral part of overall business strategy. In this section, we provide

operational definitions of quality and quality improvement. We begin with a brief discussion

of the different dimensions of quality and some basic terminology.

1.1.1 Dimensions of Quality

The quality of a product can be described and evaluated in several ways. It is often very

important to differentiate these different dimensions of quality. Garvin (1987) provides an

excellent discussion of eight components or dimensions of quality. We summarize his key

points concerning these dimensions of quality as follows:

1. Performance (Will the product do the intended job?) Potential customers usually eval-

uate a product to determine if it will perform certain specific functions and determine

how well it performs them. For example, you could evaluate spreadsheet software pack-

ages for a PC to determine which data manipulation operations they perform. You may

discover that one outperforms another with respect to the execution speed.

2. Reliability (How often does the product fail?) Complex products, such as many appli-

ances, automobiles, or airplanes, will usually require some repair over their service life.

4 Chapter 1 ■ Quality Improvement in the Modern Business Environment
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For example, you should expect that an automobile will require occasional repair, but

if the car requires frequent repair, we say that it is unreliable. There are many indus-

tries in which the customer’s view of quality is greatly impacted by the reliability

dimension of quality.

3. Durability (How long does the product last?) This is the effective service life of the prod-

uct. Customers obviously want products that perform satisfactorily over a long period of

time. The automobile and major appliance industries are examples of businesses where

this dimension of quality is very important to most customers.

4. Serviceability (How easy is it to repair the product?) There are many industries in which

the customer’s view of quality is directly influenced by how quickly and economically a

repair or routine maintenance activity can be accomplished. Examples include the appli-

ance and automobile industries and many types of service industries (how long did it take

a credit card company to correct an error in your bill?).

5. Aesthetics (What does the product look like?) This is the visual appeal of the product,

often taking into account factors such as style, color, shape, packaging alternatives, tactile

characteristics, and other sensory features. For example, soft-drink beverage manufactur-

ers rely on the visual appeal of their packaging to differentiate their product from other

competitors.

6. Features (What does the product do?) Usually, customers associate high quality with

products that have added features—that is, those that have features beyond the basic

performance of the competition. For example, you might consider a spreadsheet soft-

ware package to be of superior quality if it had built-in statistical analysis features

while its competitors did not.

7. Perceived Quality (What is the reputation of the company or its product?) In many

cases, customers rely on the past reputation of the company concerning quality of its

products. This reputation is directly influenced by failures of the product that are highly

visible to the public or that require product recalls, and by how the customer is treated

when a quality-related problem with the product is reported. Perceived quality, cus-

tomer loyalty, and repeated business are closely interconnected. For example, if you

make regular business trips using a particular airline, and the flight almost always

arrives on time and the airline company does not lose or damage your luggage, you will

probably prefer to fly on that carrier instead of its competitors.

8. Conformance to Standards (Is the product made exactly as the designer intended?)

We usually think of a high-quality product as one that exactly meets the requirements

placed on it. For example, how well does the hood fit on a new car? Is it perfectly flush

with the fender height, and is the gap exactly the same on all sides? Manufactured parts

that do not exactly meet the designer’s requirements can cause significant quality prob-

lems when they are used as the components of a more complex assembly. An automo-

bile consists of several thousand parts. If each one is just slightly too big or too small,

many of the components will not fit together properly, and the vehicle (or its major sub-

systems) may not perform as the designer intended.

These eight dimensions are usually adequate to describe quality in most industrial and

many business situations. However, in service and transactional business organizations (such

as banking and finance, health care, and customer service organizations) we can add the fol-

lowing three dimensions:

1. Responsiveness. How long they did it take the service provider to reply to your request

for service? How willing to be helpful was the service provider? How promptly was

your request handled?

1.1 The Meaning of Quality and Quality Improvement 5
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2. Professionalism. This is the knowledge and skills of the service provider, and relates

to the competency of the organization to provide the required services.

3. Attentiveness. Customers generally want caring and personalized attention from their

service providers. Customers want to feel that their needs and concerns are important

and are being carefully addressed.

We see from the foregoing discussion that quality is indeed a multifaceted entity.

Consequently, a simple answer to questions such as “What is quality?” or “What is quality

improvement?” is not easy. The traditional definition of quality is based on the viewpoint

that products and services must meet the requirements of those who use them.

6 Chapter 1 ■ Quality Improvement in the Modern Business Environment

Definition

Quality means fitness for use.

Definition

Quality is inversely proportional to variability.

Note that this definition implies that if variability1 in the important characteristics of a prod-

uct decreases, the quality of the product increases.

1We are referring to unwanted or harmful variability. There are situations in which variability is actually good. As

my good friend Bob Hogg has pointed out, “I really like Chinese food, but I don’t want to eat it every night.”

There are two general aspects of fitness for use: quality of design and quality of con-
formance. All goods and services are produced in various grades or levels of quality. These vari-

ations in grades or levels of quality are intentional, and, consequently, the appropriate technical

term is quality of design. For example, all automobiles have as their basic objective providing

safe transportation for the consumer. However, automobiles differ with respect to size, appoint-

ments, appearance, and performance. These differences are the result of intentional design 

differences among the types of automobiles. These design differences include the types of 

materials used in construction, specifications on the components, reliability obtained through

engineering development of engines and drive trains, and other accessories or equipment.

The quality of conformance is how well the product conforms to the specifications

required by the design. Quality of conformance is influenced by a number of factors, includ-

ing the choice of manufacturing processes; the training and supervision of the workforce; the

types of process controls, tests, and inspection activities that are employed; the extent to

which these procedures are followed; and the motivation of the workforce to achieve quality.

Unfortunately, this definition has become associated more with the conformance aspect

of quality than with design. This is in part due to the lack of formal education most design-

ers and engineers receive in quality engineering methodology. This also leads to much less

focus on the customer and more of a “conformance-to-specifications” approach to quality,

regardless of whether the product, even when produced to standards, was actually “fit-for-

use” by the customer. Also, there is still a widespread belief that quality is a problem that can

be dealt with solely in manufacturing, or that the only way quality can be improved is by

“gold-plating” the product.

We prefer a modern definition of quality.
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As an example of the operational effectiveness of this definition, a few years ago, one

of the automobile companies in the United States performed a comparative study of a trans-

mission that was manufactured in a domestic plant and by a Japanese supplier. An analysis of

warranty claims and repair costs indicated that there was a striking difference between the two

sources of production, with the Japanese-produced transmission having much lower costs, as

shown in Figure 1.1. As part of the study to discover the cause of this difference in cost and

performance, the company selected random samples of transmissions from each plant, disas-

sembled them, and measured several critical quality characteristics.

Figure 1.2 is generally representative of the results of this study. Note that both distribu-

tions of critical dimensions are centered at the desired or target value. However, the distribution

of the critical characteristics for the transmissions manufactured in the United States takes up

about 75% of the width of the specifications, implying that very few nonconforming units would

be produced. In fact, the plant was producing at a quality level that was quite good, based on the

generally accepted view of quality within the company. In contrast, the Japanese plant produced

transmissions for which the same critical characteristics take up only about 25% of the specifi-

cation band. As a result, there is considerably less variability in the critical quality characteris-

tics of the Japanese-built transmissions in comparison to those built in the United States.

This is a very important finding. Jack Welch, the retired chief executive officer of

General Electric, has observed that your customers don’t see the mean of your process (the

target in Fig. 1.2), they only see the variability around that target that you have not removed.

In almost all cases, this variability has significant customer impact.

There are two obvious questions here: Why did the Japanese do this? How did they do

this? The answer to the “why” question is obvious from examination of Figure 1.1. Reduced

variability has directly translated into lower costs (the Japanese fully understood the point

made by Welch). Furthermore, the Japanese-built transmissions shifted gears more smoothly,

ran more quietly, and were generally perceived by the customer as superior to those built

domestically. Fewer repairs and warranty claims means less rework and the reduction of

wasted time, effort, and money. Thus, quality truly is inversely proportional to variability.

Furthermore, it can be communicated very precisely in a language that everyone (particularly

managers and executives) understands—namely, money.

How did the Japanese do this? The answer lies in the systematic and effective use of

the methods described in this book. It also leads to the following definition of quality
improvement.

1.1 The Meaning of Quality and Quality Improvement 7

Definition

Quality improvement is the reduction of variability in processes and products.

0

$

United
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■ F I G U R E  1 . 1 Warranty costs for 

transmissions.

■ F I G U R E  1 . 2 Distributions of critical

dimensions for transmissions.
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Excessive variability in process performance often results in waste. For example, consider the

wasted money, time, and effort that are associated with the repairs represented in Figure 1.1.

Therefore, an alternate and frequently very useful definition is that quality improvement is the

reduction of waste. This definition is particularly effective in service industries, where there

may not be as many things that can be directly measured (like the transmission critical dimen-

sions in Fig. 1.2). In service industries, a quality problem may be an error or a mistake, the

correction of which requires effort and expense. By improving the service process, this

wasted effort and expense can be avoided.

We now present some quality engineering terminology that is used throughout the book.

1.1.2 Quality Engineering Terminology 

Every product possesses a number of elements that jointly describe what the user or consumer

thinks of as quality. These parameters are often called quality characteristics. Sometimes

these are called critical-to-quality (CTQ) characteristics. Quality characteristics may be of

several types:

1. Physical: length, weight, voltage, viscosity

2. Sensory: taste, appearance, color

3. Time orientation: reliability, durability, serviceability

Note that the different types of quality characteristics can relate directly or indirectly to the

dimensions of quality discussed in the previous section.

Quality engineering is the set of operational, managerial, and engineering activities

that a company uses to ensure that the quality characteristics of a product are at the nominal

or required levels and that the variability around these desired levels is minimum. The tech-

niques discussed in this book form much of the basic methodology used by engineers and

other technical professionals to achieve these goals.

Most organizations find it difficult (and expensive) to provide the customer with prod-

ucts that have quality characteristics that are always identical from unit to unit, or are at 

levels that match customer expectations. A major reason for this is variability. There is a cer-

tain amount of variability in every product; consequently, no two products are ever identical.

For example, the thickness of the blades on a jet turbine engine impeller is not identical even

on the same impeller. Blade thickness will also differ between impellers. If this variation in

blade thickness is small, then it may have no impact on the customer. However, if the varia-

tion is large, then the customer may perceive the unit to be undesirable and unacceptable.

Sources of this variability include differences in materials, differences in the performance and

operation of the manufacturing equipment, and differences in the way the operators perform

their tasks. This line of thinking led to the previous definition of quality improvement.

Since variability can only be described in statistical terms, statistical methods play a

central role in quality improvement efforts. In the application of statistical methods to qual-

ity engineering, it is fairly typical to classify data on quality characteristics as either attrib-
utes or variables data. Variables data are usually continuous measurements, such as length,

voltage, or viscosity. Attributes data, on the other hand, are usually discrete data, often taking

the form of counts, such as the number of loan applications that could not be properly

processed because of missing required information, or the number of emergency room

arrivals that have to wait more than 30 minutes to receive medical attention. We will describe

statistical-based quality engineering tools for dealing with both types of data.

Quality characteristics are often evaluated relative to specifications. For a manufac-

tured product, the specifications are the desired measurements for the quality characteristics

of the components and subassemblies that make up the product, as well as the desired values

for the quality characteristics in the final product. For example, the diameter of a shaft used

in an automobile transmission cannot be too large or it will not fit into the mating bearing,

8 Chapter 1 ■ Quality Improvement in the Modern Business Environment
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nor can it be too small, resulting in a loose fit, causing vibration, wear, and early failure of

the assembly. In the service industries, specifications are typically expressed in terms of the

maximum amount of time to process an order or to provide a particular service.

A value of a measurement that corresponds to the desired value for that quality charac-

teristic is called the nominal or target value for that characteristic. These target values are

usually bounded by a range of values that, most typically, we believe will be sufficiently close

to the target so as to not impact the function or performance of the product if the quality char-

acteristic is in that range. The largest allowable value for a quality characteristic is called the

upper specification limit (USL), and the smallest allowable value for a quality characteris-

tic is called the lower specification limit (LSL). Some quality characteristics have specifi-

cation limits on only one side of the target. For example, the compressive strength of a com-

ponent used in an automobile bumper likely has a target value and a lower specification limit,

but not an upper specification limit.

Specifications are usually the result of the engineering design process for the product.

Traditionally, design engineers have arrived at a product design configuration through the use of

engineering science principles, which often results in the designer specifying the target values for

the critical design parameters. Then prototype construction and testing follow. This testing is often

done in a very unstructured manner, without the use of statistically based experimental design

procedures, and without much interaction with or knowledge of the manufacturing processes that

must produce the component parts and final product. However, through this general procedure,

the specification limits are usually determined by the design engineer. Then the final product is

released to manufacturing. We refer to this as the over-the-wall approach to design.

Problems in product quality usually are greater when the over-the-wall approach to design

is used. In this approach, specifications are often set without regard to the inherent variability that

exists in materials, processes, and other parts of the system, which results in components or prod-

ucts that are nonconforming; that is, nonconforming products are those that fail to meet one or

more of their specifications. A specific type of failure is called a nonconformity. A noncon-

forming product is not necessarily unfit for use; for example, a detergent may have a concentra-

tion of active ingredients that is below the lower specification limit, but it may still perform

acceptably if the customer uses a greater amount of the product. A nonconforming product is con-

sidered defective if it has one or more defects, which are nonconformities that are serious enough

to significantly affect the safe or effective use of the product. Obviously, failure on the part of a

company to improve its manufacturing processes can also cause nonconformities and defects.

The over-the-wall design process has been the subject of much attention in the past 25

years. CAD/CAM systems have done much to automate the design process and to more

effectively translate specifications into manufacturing activities and processes. Design for

manufacturability and assembly has emerged as an important part of overcoming the inher-

ent problems with the over-the-wall approach to design, and most engineers receive some

background on those areas today as part of their formal education. The recent emphasis on

concurrent engineering has stressed a team approach to design, with specialists in manufac-

turing, quality engineering, and other disciplines working together with the product designer

at the earliest stages of the product design process. Furthermore, the effective use of the qual-

ity improvement methodology in this book, at all levels of the process used in technology com-

mercialization and product realization, including product design, development, manufacturing,

distribution, and customer support, plays a crucial role in quality improvement.

1.2 A Brief History of Quality Control and Improvement

Quality always has been an integral part of virtually all products and services. However, our

awareness of its importance and the introduction of formal methods for quality control and

improvement have been an evolutionary development. Table 1.1 presents a timeline of some

1.2 A Brief History of Quality Control and Improvement 9
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■ TA B L E  1 . 1

A Timeline of Quality Methods

1700–1900 Quality is largely determined by the efforts of an individual craftsman.

Eli Whitney introduces standardized, interchangeable parts to simplify assembly.

1875 Frederick W. Taylor introduces “Scientific Management” principles to divide work into smaller, more easily
accomplished units—the first approach to dealing with more complex products and processes. The focus was
on productivity. Later contributors were Frank Gilbreth and Henry Gantt.

1900–1930 Henry Ford—the assembly line—further refinement of work methods to improve productivity and quality;
Ford developed mistake-proof assembly concepts, self-checking, and in-process inspection.

1901 First standards laboratories established in Great Britain.

1907–1908 AT&T begins systematic inspection and testing of products and materials.

1908 W. S. Gosset (writing as “Student”) introduces the t-distribution—results from his work on quality control 
at Guinness Brewery.

1915–1919 WWI—British government begins a supplier certification program.

1919 Technical Inspection Association is formed in England; this later becomes the Institute of Quality Assurance.

1920s AT&T Bell Laboratories forms a quality department—emphasizing quality, inspection and test, and 
product reliability.

B. P. Dudding at General Electric in England uses statistical methods to control the quality of electric lamps.

1922 Henry Ford writes (with Samuel Crowtha) and publishes My Life and Work, which focused on elimination of
waste and improving process efficiency. Many Ford concepts and ideas are the basis of lean principles used today.

1922–1923 R. A. Fisher publishes series of fundamental papers on designed experiments and their application to the 
agricultural sciences.

1924 W. A. Shewhart introduces the control chart concept in a Bell Laboratories technical memorandum.

1928 Acceptance sampling methodology is developed and refined by H. F. Dodge and H. G. Romig at Bell Labs.

1931 W. A. Shewhart publishes Economic Control of Quality of Manufactured Product—outlining statistical 
methods for use in production and control chart methods.

1932 W. A. Shewhart gives lectures on statistical methods in production and control charts at the University of London.

1932–1933 British textile and woolen industry and German chemical industry begin use of designed experiments 
for product/process development.

1933 The Royal Statistical Society forms the Industrial and Agricultural Research Section.

1938 W. E. Deming invites Shewhart to present seminars on control charts at the U.S. Department of Agriculture
Graduate School.

1940 The U.S. War Department publishes a guide for using control charts to analyze process data.

1940–1943 Bell Labs develop the forerunners of the military standard sampling plans for the U.S. Army.

1942 In Great Britain, the Ministry of Supply Advising Service on Statistical Methods and Quality Control is formed.

1942–1946 Training courses on statistical quality control are given to industry; more than 15 quality societies are formed
in North America.

1944 Industrial Quality Control begins publication.

1946 The American Society for Quality Control (ASQC) is formed as the merger of various quality societies.

The International Standards Organization (ISO) is founded.

Deming is invited to Japan by the Economic and Scientific Services Section of the U.S. War Department to
help occupation forces in rebuilding Japanese industry.

The Japanese Union of Scientists and Engineers (JUSE) is formed.

1946–1949 Deming is invited to give statistical quality control seminars to Japanese industry.

1948 G. Taguchi begins study and application of experimental design.

1950 Deming begins education of Japanese industrial managers; statistical quality control methods begin to be
widely taught in Japan.

1950–1975 Taiichi Ohno, Shigeo Shingo, and Eiji Toyoda develops the Toyota Production System an integrated
technical/social system that defined and developed many lean principles such as just-in-time production and
rapid setup of tools and equipment.

K. Ishikawa introduces the cause-and-effect diagram.

10 (continued)
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1.2 A Brief History of Quality Control and Improvement 11

1950s Classic texts on statistical quality control by Eugene Grant and A. J. Duncan appear.

1951 A. V. Feigenbaum publishes the first edition of his book Total Quality Control.
JUSE establishes the Deming Prize for significant achievement in quality control and quality methodology.

1951+ G. E. P. Box and K. B. Wilson publish fundamental work on using designed experiments and response surface
methodology for process optimization; focus is on chemical industry. Applications of designed experiments in
the chemical industry grow steadily after this.

1954 Joseph M. Juran is invited by the Japanese to lecture on quality management and improvement.

British statistician E. S. Page introduces the cumulative sum (CUSUM) control chart.

1957 J. M. Juran and F. M. Gryna’s Quality Control Handbook is first published.

1959 Technometrics (a journal of statistics for the physical, chemical, and engineering sciences) is established; 
J. Stuart Hunter is the founding editor.

S. Roberts introduces the exponentially weighted moving average (EWMA) control chart. The U.S. manned
spaceflight program makes industry aware of the need for reliable products; the field of reliability engineering
grows from this starting point.

1960 G. E. P. Box and J. S. Hunter write fundamental papers on 2k−p factorial designs.

The quality control circle concept is introduced in Japan by K. Ishikawa.

1961 National Council for Quality and Productivity is formed in Great Britain as part of the British Productivity Council.

1960s Courses in statistical quality control become widespread in industrial engineering academic programs.

Zero defects (ZD) programs are introduced in certain U.S. industries.

1969 Industrial Quality Control ceases publication, replaced by Quality Progress and the Journal of Quality
Technology (Lloyd S. Nelson is the founding editor of JQT ).

1970s In Great Britain, the NCQP and the Institute of Quality Assurance merge to form the British Quality Association.

1975–1978 Books on designed experiments oriented toward engineers and scientists begin to appear.

Interest in quality circles begins in North America—this grows into the total quality management (TQM) movement.

1980s Experimental design methods are introduced to and adopted by a wider group of organizations, including 
the electronics, aerospace, semiconductor, and automotive industries.

The works of Taguchi on designed experiments first appear in the United States.

1984 The American Statistical Association (ASA) establishes the Ad Hoc Committee on Quality and Productivity;
this later becomes a full section of the ASA.

The journal Quality and Reliability Engineering International appears.

1986 Box and others visit Japan, noting the extensive use of designed experiments and other statistical methods.

1987 ISO publishes the first quality systems standard.

Motorola’s Six Sigma initiative begins.

1988 The Malcolm Baldrige National Quality Award is established by the U.S. Congress.

The European Foundation for Quality Management is founded; this organization administers the European
Quality Award.

1989 The journal Quality Engineering appears.

1990s ISO 9000 certification activities increase in U.S. industry; applicants for the Baldrige award grow steadily;
many states sponsor quality awards based on the Baldrige criteria.

1995 Many undergraduate engineering programs require formal courses in statistical techniques, focusing on basic
methods for process characterization and improvement.

1997 Motorola’s Six Sigma approach spreads to other industries.

1998 The American Society for Quality Control becomes the American Society for Quality (see www.asq.org),
attempting to indicate the broader aspects of the quality improvement field.

2000s ISO 9000:2000 standard is issued. Supply-chain management and supplier quality become even more critical
factors in business success. Quality improvement activities expand beyond the traditional industrial setting into
many other areas, including financial services, health care, insurance, and utilities. 

Organizations begin to integrate lean principles into their Six Sigma initiatives, and lean Six Sigma becomes a
widespread approach to business improvement. 
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of the important milestones in this evolutionary process. We will briefly discuss some of the

events on this timeline.

Frederick W. Taylor introduced some principles of scientific management as mass

production industries began to develop prior to 1900. Taylor pioneered dividing work into

tasks so that the product could be manufactured and assembled more easily. His work led

to substantial improvements in productivity. Also, because of standardized production and

assembly methods, the quality of manufactured goods was positively impacted as well.

However, along with the standardization of work methods came the concept of work standards—

a standard time to accomplish the work, or a specified number of units that must be pro-

duced per period. Frank Gilbreth and others extended this concept to the study of motion

and work design. Much of this had a positive impact on productivity, but it often did not

sufficiently emphasize the quality aspect of work. Furthermore, if carried to extremes, work

standards have the risk of halting innovation and continuous improvement, which we rec-

ognize today as being a vital aspect of all work activities.

Statistical methods and their application in quality improvement have had a long his-

tory. In 1924, Walter A. Shewhart of the Bell Telephone Laboratories developed the statisti-

cal control chart concept, which is often considered the formal beginning of statistical quality

control. Toward the end of the 1920s, Harold F. Dodge and Harry G. Romig, both of Bell

Telephone Laboratories, developed statistically based acceptance sampling as an alternative

to 100% inspection. By the middle of the 1930s, statistical quality-control methods were in

wide use at Western Electric, the manufacturing arm of the Bell System. However, the value

of statistical quality control was not widely recognized by industry.

World War II saw a greatly expanded use and acceptance of statistical quality-control

concepts in manufacturing industries. Wartime experience made it apparent that statistical

techniques were necessary to control and improve product quality. The American Society for

Quality Control was formed in 1946. This organization promotes the use of quality improve-

ment techniques for all types of products and services. It offers a number of conferences, tech-

nical publications, and training programs in quality assurance. The 1950s and 1960s saw the

emergence of reliability engineering, the introduction of several important textbooks on sta-

tistical quality control, and the viewpoint that quality is a way of managing the organization.

In the 1950s, designed experiments for product and process improvement were first

introduced in the United States. The initial applications were in the chemical industry. These

methods were widely exploited in the chemical industry, and they are often cited as one of the

primary reasons that the U.S. chemical industry is one of the most competitive in the world

and has lost little business to foreign companies. The spread of these methods outside the

chemical industry was relatively slow until the late 1970s or early 1980s, when many Western

companies discovered that their Japanese competitors had been systematically using designed

experiments since the 1960s for process improvement, new process development, evaluation

of new product designs, improvement of reliability and field performance of products, and

many other aspects of product design, including selection of component and system toler-

ances. This discovery sparked further interest in statistically designed experiments and

resulted in extensive efforts to introduce the methodology in engineering and development

organizations in industry, as well as in academic engineering curricula.

Since 1980, there has been a profound growth in the use of statistical methods for qual-

ity and overall business improvement in the United States. This has been motivated, in part,

by the widespread loss of business and markets suffered by many domestic companies that

began during the 1970s. For example, the U.S. automobile industry was nearly destroyed by

foreign competition during this period. One domestic automobile company estimated its oper-

ating losses at nearly $1 million per hour in 1980. The adoption and use of statistical methods

have played a central role in the re-emergence of U.S. industry. Various management systems

have also emerged as frameworks in which to implement quality improvement. In the next
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two sections we briefly discuss the statistical methods that are the central focus of this book

and give an overview of some key aspects of quality management.

1.3 Statistical Methods for Quality Control and Improvement

This textbook concentrates on statistical and engineering technology useful in quality improve-

ment. Specifically, we focus on three major areas: statistical process control, design of
experiments, and (to a lesser extent) acceptance sampling. In addition to these techniques, a

number of other statistical and analytical tools are useful in analyzing quality problems and

improving the performance of processes. The role of some of these tools is illustrated in

Figure 1.3, which presents a process as a system with a set of inputs and an output. In the case

of a manufacturing process, the controllable input factors x1, x2, . . . , xp are process variables

such as temperatures, pressures, and feed rates. The inputs z1, z2, . . . , zq are uncontrollable (or

difficult to control) inputs, such as environmental factors or properties of raw materials provided

by an external supplier. The production process transforms the input raw materials, component

parts, and subassemblies into a finished product that has several quality characteristics. The

output variable y is a quality characteristic—that is, a measure of process and product quality.

This model can also be used to represent non-manufacturing or service processes. For exam-

ple, consider a process in a financial institution that processes automobile loan applications.

The inputs are the loan applications, which contain information about the customer and his/her

credit history, the type of car to be purchased, its price, and the loan amount. The controllable

factors are the type of training that the loan officer receives, the specific rules and policies that

the bank imposed on these loans, and the number of people working as loan officers at each

time period. The uncontrollable factors include prevailing interest rates, the amount of capital

available for these types of loans in each time period, and the number of loan applications that

require processing each period. The output quality characteristics include whether or not the

loan is funded, the number of funded loans that are actually accepted by the applicant, and the

cycle time—that is, the length of time that the customer waits until a decision on his/her loan

application is made. In service systems, cycle time is often a very important CTQ.

A control chart is one of the primary techniques of statistical process control (SPC).
A typical control chart is shown in Figure 1.4. This chart plots the averages of measurements

of a quality characteristic in samples taken from the process versus time (or the sample num-

ber). The chart has a center line (CL) and upper and lower control limits (UCL and LCL in

Fig. 1.4). The center line represents where this process characteristic should fall if there are
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no unusual sources of variability present. The control limits are determined from some sim-

ple statistical considerations that we will discuss in Chapters 4, 5, and 6. Classically, control

charts are applied to the output variable(s) in a system such as in Figure 1.4. However, in

some cases they can be usefully applied to the inputs as well.

The control chart is a very useful process monitoring technique; when unusual

sources of variability are present, sample averages will plot outside the control limits. This is

a signal that some investigation of the process should be made and corrective action taken to

remove these unusual sources of variability. Systematic use of a control chart is an excellent

way to reduce variability.

A designed experiment is extremely helpful in discovering the key variables influencing

the quality characteristics of interest in the process. A designed experiment is an approach to

systematically varying the controllable input factors in the process and determining the effect

these factors have on the output product parameters. Statistically designed experiments are

invaluable in reducing the variability in the quality characteristics and in determining the levels

of the controllable variables that optimize process performance. Often significant breakthroughs

in process performance and product quality also result from using designed experiments.

One major type of designed experiment is the factorial design, in which factors are var-

ied together in such a way that all possible combinations of factor levels are tested. Figure 1.5

shows two possible factorial designs for the process in Figure 1.3, for the cases of p = 2 and

p = 3 controllable factors. In Figure 1.5a, the factors have two levels, low and high, and the

four possible test combinations in this factorial experiment form the corners of a square. In

Figure 1.5b, there are three factors each at two levels, giving an experiment with eight test

combinations arranged at the corners of a cube. The distributions at the corners of the cube

represent the process performance at each combination of the controllable factors x1, x2, and x3.

It is clear that some combinations of factor levels produce better results than others. For
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example, increasing x1 from low to high increases the average level of the process output and

could shift it off the target value (T ). Furthermore, process variability seems to be substan-

tially reduced when we operate the process along the back edge of the cube, where x2 and x3

are at their high levels.

Designed experiments are a major off-line quality-control tool, because they are often

used during development activities and the early stages of manufacturing, rather than as a rou-

tine on-line or in-process procedure. They play a crucial role in reducing variability.

Once we have identified a list of important variables that affect the process output, it is

usually necessary to model the relationship between the influential input variables and the out-

put quality characteristics. Statistical techniques useful in constructing such models include

regression analysis and time series analysis. Detailed discussions of designed experiments,

regression analysis, and time series modeling are in Montgomery (2009), Montgomery, Peck,

and Vining (2006), and Box, Jenkins, and Reinsel (1994).

When the important variables have been identified and the nature of the relationship

between the important variables and the process output has been quantified, then an on-line sta-

tistical process-control technique for monitoring and surveillance of the process can be employed

with considerable effectiveness. Techniques such as control charts can be used to monitor the

process output and detect when changes in the inputs are required to bring the process back to an

in-control state. The models that relate the influential inputs to process outputs help determine

the nature and magnitude of the adjustments required. In many processes, once the dynamic

nature of the relationships between the inputs and the outputs are understood, it may be possible

to routinely adjust the process so that future values of the product characteristics will be approx-

imately on target. This routine adjustment is often called engineering control, automatic con-
trol, or feedback control. We will briefly discuss these types of process control schemes in

Chapter 11 and illustrate how statistical process control (or SPC) methods can be successfully

integrated into a manufacturing system in which engineering control is in use.

The third area of quality control and improvement that we discuss is acceptance sam-
pling. This is closely connected with inspection and testing of product, which is one of the ear-

liest aspects of quality control, dating back to long before statistical methodology was devel-

oped for quality improvement. Inspection can occur at many points in a process. Acceptance

sampling, defined as the inspection and classification of a sample of units selected at random

from a larger batch or lot and the ultimate decision about disposition of the lot, usually occurs

at two points: incoming raw materials or components, or final production.

Several different variations of acceptance sampling are shown in Figure 1.6. In

Figure 1.6a, the inspection operation is performed immediately following production, before

the product is shipped to the customer. This is usually called outgoing inspection. Figure 1.6b
illustrates incoming inspection—that is, a situation in which lots of batches of product are

sampled as they are received from the supplier. Various lot-dispositioning decisions are illustrated
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in Figure 1.6c. Sampled lots may either be accepted or rejected. Items in a rejected lot are 

typically either scrapped or recycled, or they may be reworked or replaced with good units.

This latter case is often called rectifying inspection.
Modern quality assurance systems usually place less emphasis on acceptance sampling

and attempt to make statistical process control and designed experiments the focus of their

efforts. Acceptance sampling tends to reinforce the conformance-to-specification view of

quality and does not have any feedback into either the production process or engineering

design or development that would necessarily lead to quality improvement.

Figure 1.7 shows the typical evolution in the use of these techniques in most organiza-

tions. At the lowest level of maturity, management may be completely unaware of quality

issues, and there is likely to be no effective organized quality improvement effort. Frequently

there will be some modest applications of acceptance-sampling and inspection methods, usu-

ally for incoming parts and materials. The first activity as maturity increases is to intensify

the use of sampling inspection. The use of sampling will increase until it is realized that qual-

ity cannot be inspected or tested into the product.

At that point, the organization usually begins to focus on process improvement. Statistical

process control and experimental design potentially have major impacts on manufacturing, prod-

uct design activities, and process development. The systematic introduction of these methods

usually marks the start of substantial quality, cost, and productivity improvements in the organi-

zation. At the highest levels of maturity, companies use designed experiments and statistical

process control methods intensively and make relatively modest use of acceptance sampling.

The primary objective of quality engineering efforts is the systematic reduction of
variability in the key quality characteristics of the product. Figure 1.8 shows how this happens

over time. In the early stages, when acceptance sampling is the major technique in use, process

“fallout,” or units that do not conform to the specifications, constitute a high percentage of the

process output. The introduction of statistical process control will stabilize the process and

reduce the variability. However, it is not satisfactory just to meet requirements—further reduc-

tion of variability usually leads to better product performance and enhanced competitive posi-

tion, as was vividly demonstrated in the automobile transmission example discussed earlier.

Statistically designed experiments can be employed in conjunction with statistical process

monitoring and control to minimize process variability in nearly all industrial settings.

1.4 Management Aspects of Quality Improvement

Statistical techniques, including SPC and designed experiments, along with other problem-

solving tools, are the technical basis for quality control and improvement. However, to be used

most effectively, these techniques must be implemented within and be part of a management
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system that is focused on quality improvement. The management system of an organization

must be organized to properly direct the overall quality improvement philosophy and ensure

its deployment in all aspects of the business. The effective management of quality involves suc-

cessful execution of three activities: quality planning, quality assurance, and quality control

and improvement.

Quality planning is a strategic activity, and it is just as vital to an organization’s long-

term business success as the product development plan, the financial plan, the marketing plan,

and plans for the utilization of human resources. Without a strategic quality plan, an enormous

amount of time, money, and effort will be wasted by the organization dealing with faulty

designs, manufacturing defects, field failures, and customer complaints. Quality planning

involves identifying customers, both external and those that operate internal to the business, and

identifying their needs [this is sometimes called listening to the voice of the customer (VOC)].
Then products or services that meet or exceed customer expectations must be developed. The

eight dimensions of quality discussed in Section 1.1.1 are an important part of this effort. The

organization must then determine how these products and services will be realized. Planning for

quality improvement on a specific, systematic basis is also a vital part of this process.

Quality assurance is the set of activities that ensures the quality levels of products and

services are properly maintained and that supplier and customer quality issues are properly

resolved. Documentation of the quality system is an important component. Quality system

documentation involves four components: policy, procedures, work instructions and specifi-

cations, and records. Policy generally deals with what is to be done and why, while proce-

dures focus on the methods and personnel that will implement policy. Work instructions and

specifications are usually product-, department-, tool-, or machine-oriented. Records are a

way of documenting the policies, procedures, and work instructions that have been followed.

Records are also used to track specific units or batches of product, so that it can be determined

exactly how they were produced. Records are often vital in providing data for dealing with

customer complaints, corrective actions, and, if necessary, product recalls. Development,

maintenance, and control of documentation are important quality assurance functions. One

example of document control is ensuring that specifications and work instructions developed

for operating personnel reflect the latest design and engineering changes.

Quality control and improvement involve the set of activities used to ensure that the

products and services meet requirements and are improved on a continuous basis. Since vari-

ability is often a major source of poor quality, statistical techniques, including SPC and

designed experiments, are the major tools of quality control and improvement. Quality

improvement is often done on a project-by-project basis and involves teams led by personnel

with specialized knowledge of statistical methods and experience in applying them. Projects

should be selected so that they have significant business impact and are linked with the over-

all business goals for quality identified during the planning process. The techniques in this

book are integral to successful quality control and improvement.

The next section provides a brief overview of some of the key elements of quality man-

agement. We discuss some of the important quality philosophies; quality systems and standards;

the link between quality and productivity and quality and cost; economic and legal implications

of quality; and some aspects of implementation. The three aspects of quality planning, quality

assurance, and quality control and improvement are woven into the discussion.

1.4.1 Quality Philosophy and Management Strategies 

Many people have contributed to the statistical methodology of quality improvement.

However, in terms of implementation and management philosophy, three individuals emerge

as the leaders: W. E. Deming, J. M. Juran, and A. V. Feigenbaum. We now briefly discuss the

approaches and philosophy of those leaders in quality management.
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W. Edwards Deming. W. Edwards Deming was educated in engineering and

physics at the University of Wyoming and Yale University. He worked for Western Electric

and was influenced greatly by Walter A. Shewhart, the developer of the control chart. After

leaving Western Electric, Deming held government jobs with the U.S. Department of

Agriculture and the Bureau of the Census. During World War II, Deming worked for the

War Department and the Census Bureau. Following the war, he became a consultant to

Japanese industries and convinced their top management of the power of statistical methods

and the importance of quality as a competitive weapon. This commitment to and use of sta-

tistical methods has been a key element in the expansion of Japan’s industry and economy. The

Japanese Union of Scientists and Engineers created the Deming Prize for quality improvement

in his honor. Until his death in 1993, Deming was an active consultant and speaker; he was an

inspirational force for quality improvement in the United States and around the world. He

firmly believed that the responsibility for quality rests with management—that is, most of the

opportunities for quality improvement require management action, and very few opportu-

nities lie at the workforce or operator level. Deming was a harsh critic of many American

management practices.

The Deming philosophy is an important framework for implementing quality and pro-

ductivity improvement. This philosophy is summarized in his 14 points for management. We

now give a brief statement and discussion of Deming’s 14 points:

1. Create a constancy of purpose focused on the improvement of products and ser-
vices. Deming was very critical of the short-term thinking of American management,

which tends to be driven by quarterly business results and doesn’t always focus on

strategies that benefit the organization in the long run. Management should con-

stantly try to improve product design and performance. This must include invest-

ment in research, development, and innovation, which will have long-term payback

to the organization.

2. Adopt a new philosophy that recognizes we are in a different economic era. Reject

poor workmanship, defective products, or bad service. It costs as much to produce a

defective unit as it does to produce a good one (and sometimes more). The cost of deal-

ing with scrap, rework, and other losses created by defectives is an enormous drain on

company resources.

3. Do not rely on mass inspection to “control” quality. All inspection can do is sort out

defectives, and at that point it is too late—the organization already has paid to produce

those defectives. Inspection typically occurs too late in the process, it is expensive, and

it is often ineffective. Quality results from prevention of defectives through process

improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is considered in

relation to a measure of quality. In other words, the total cost of the item must be consid-

ered, not just the purchase price. When quality is considered, the lowest bidder frequently

is not the low-cost supplier. Preference should be given to suppliers who use modern

methods of quality improvement in their business and who can demonstrate process con-

trol and capability. An adversarial relationship with suppliers is harmful. It is important to

build effective, long-term relationships.

5. Focus on continuous improvement. Constantly try to improve the production and ser-

vice system. Involve the workforce in these activities and make use of statistical meth-

ods, particularly the statistically based problem-solving tools discussed in this book.

6. Practice modern training methods and invest in on-the-job training for all employ-
ees. Everyone should be trained in the technical aspects of their job, and in modern
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quality- and productivity-improvement methods as well. The training should encourage

all employees to practice these methods every day. Too often, employees are not

encouraged to use the results of training, and management often believes employees do

not need training or already should be able to practice the methods. Many organizations

devote little or no effort to training.

7. Improve leadership, and practice modern supervision methods. Supervision should

not consist merely of passive surveillance of workers but should be focused on helping

the employees improve the system in which they work. The number-one goal of super-

vision should be to improve the work system and the product.

8. Drive out fear. Many workers are afraid to ask questions, report problems, or point

out conditions that are barriers to quality and effective production. In many organi-

zations the economic loss associated with fear is large; only management can elimi-

nate fear.

9. Break down the barriers between functional areas of the business. Teamwork

among different organizational units is essential for effective quality and productivity

improvement to take place.

10. Eliminate targets, slogans, and numerical goals for the workforce. A target such as

“zero defects” is useless without a plan for the achievement of this objective. In fact,

these slogans and “programs” are usually counterproductive. Work to improve the sys-

tem and provide information on that.

11. Eliminate numerical quotas and work standards. These standards have historically

been set without regard to quality. Work standards are often symptoms of manage-

ment’s inability to understand the work process and to provide an effective management

system focused on improving this process.

12. Remove the barriers that discourage employees from doing their jobs.
Management must listen to employee suggestions, comments, and complaints. The per-

son who is doing the job knows the most about it and usually has valuable ideas about

how to make the process work more effectively. The workforce is an important partic-

ipant in the business, and not just an opponent in collective bargaining.

13. Institute an ongoing program of education for all employees. Education in simple,

powerful statistical techniques should be mandatory for all employees. Use of the basic

SPC problem-solving tools, particularly the control chart, should become widespread in

the business. As these charts become widespread and as employees understand their

uses, they will be more likely to look for the causes of poor quality and to identify

process improvements. Education is a way of making everyone partners in the quality

improvement process.

14. Create a structure in top management that will vigorously advocate the first 13
points. This structure must be driven from the very top of the organization. It must also

include concurrent education/training activities and expedite application of the training

to achieve improved business results. Everyone in the organization must know that con-

tinuous improvement is a common goal.

As we read Deming’s 14 points we notice a strong emphasis on organizational change.
Also, the role of management in guiding this change process is of dominating importance.

However, what should be changed, and how should this change process be started? For

example, if we want to improve the yield of a semiconductor manufacturing process, what

should we do? It is in this area that statistical methods come into play most frequently. To

improve the semiconductor process, we must determine which controllable factors in the

process influence the number of defective units produced. To answer this question, we

must collect data on the process and see how the system reacts to change in the process
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variables. Then actions to improve the process can be designed and implemented.

Statistical methods, such as designed experiments and control charts, can contribute to

these activities.

Deming frequently wrote and spoke about the seven deadly diseases of management,
listed in Table 1.2. He believed that each disease was a barrier to the effective implementa-

tion of his philosophy. The first, lack of constancy of purpose, relates to the first of Deming’s

14 points. Continuous improvement of products, processes, and services gives assurance to

all stakeholders in the enterprise (employees, executives, investors, suppliers) that dividends

and increases in the value of the business will continue to grow. 

The second disease, too much emphasis on short-term profits, might make the “numbers”

look good, but if this is achieved by reducing research and development investment, by elim-

inating employees’ training, and by not deploying quality and other business improvement

activities, then potentially irreparable long-term damage to the business is the ultimate result.

Concerning the third disease, Deming believed that performance evaluation encouraged

short-term performance, rivalries and fear, and discouraged effective teamwork. Performance

reviews can leave employees bitter and discouraged, and they may feel unfairly treated, espe-

cially if they are working in an organization where their performance is impacted by system

forces that are flawed and out of their control.

The fourth disease, management mobility, refers to the widespread practice of job-

hopping—that is, a manger spending very little time in the business function for which he or

she is responsible. This often results in key decisions being made by someone who really

doesn’t understand the business. Managers often spend more time thinking about their next

career move than about their current job and how to do it better. Frequent reorganizing and

shifting management responsibilities are barriers to constancy of purpose and often a waste

of resources that should be devoted to improving products and services. Bringing in a new

chief executive officer to improve quarterly profits often leads to a business strategy that

leaves a path of destruction throughout the business.

The fifth disease, management by visible figures alone (such as the number of

defects, customer complaints, and quarterly profits), suggests that the really important fac-

tors that determine long-term organizational success are unknown and unknowable. As

some evidence of this, of the 100 largest companies in 1900, only 16 still exist today, and

of the 25 largest companies in 1900, only 2 are still among the top 25. Obviously, some

visible figures are important; for example, suppliers and employees must be paid on time

and the bank accounts must be managed. However, if visible figures alone were key deter-

minants of success, it’s likely that many more of the companies of 1900 still would be in

business.

Deming’s cautions about excessive medical expenses—his sixth deadly disease—are

certainly prophetic: Health care costs may be the most important issue facing many sectors

of business in the United States today. For example, the medical costs for current and
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Deming’s Seven Deadly Diseases of Management

1. Lack of constancy of purpose

2. Emphasis on short-term profits

3. Evaluation of performance, merit rating, and annual reviews of performance

4. Mobility of top management

5. Running a company on visible figures alone

6. Excessive medical costs

7. Excessive legal damage awards 
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retired employees of United States automobile manufacturers General Motors, Ford, and

Chrysler currently are estimated to be between $1200 and $1600 per vehicle, contrasted

with $250 to $350 per vehicle for Toyota and Honda, two Japanese automobile manufac-

turers with extensive North American manufacturing and assembly operations. The seventh

disease, liability and excessive damage awards, is also a major issue facing many organi-

zations. Deming was fond of observing that the United States had more lawyers per capita

than any other nation. He believed that government intervention likely would be necessary

to provide effective long-term solutions to the medical cost and excessive liability awards

problems.

Deming recommended the Shewhart cycle, shown in Figure 1.9, as a model to guide

improvement. The four steps, Plan-Do-Check-Act, are often called the PDCA cycle.
Sometimes the Check step is called Study, and the cycle becomes the PDSA cycle. In Plan, we

propose a change in the system that is aimed at improvement. In Do, we carry out the change,

usually on a small or pilot scale, to ensure that the results that are desired will be obtained.

Check consists of analyzing the results of the change to determine what has been learned about

the changes that were carried out. In Act, we either adopt the change or, if it was unsuccess-

ful, abandon it. The process is almost always iterative, and may require several cycles for solv-

ing complex problems.

In addition to Deming’s 14 points and the his seven deadly diseases of management,

Deming wrote and lectured about an extensive collection of obstacles to success. Some of

these include:

1. The belief that automation, computers, and new machinery will solve problems.

2. Searching for examples—trying to copy existing solutions.

3. The “our problems are different” excuse and not realizing that the principles that will

solve them are universal.

4. Obsolete schools, particularly business schools, where graduates have not been taught

how to successfully run businesses.

5. Poor teaching of statistical methods in industry: Teaching tools without a framework for

using them is going to be unsuccessful.

6. Reliance on inspection to produce quality.

7. Reliance on the “quality control department” to take care of all quality problems.

8. Blaming the workforce for problems.

9. False starts, such as broad teaching of statistical methods without a plan as to how to

use them, quality circles, employee suggestion systems, and other forms of “instant

pudding.”

1.4 Management Aspects of Quality Improvement 21

Act

Adopt the change or
abandon it. If adopted,

make sure that it leads to
permanent improvement.

Plan a change or
an experiment

aimed at system
improvement.

Study and analyze
the results
obtained.

What was learned?

Carry out the
change (often a

pilot study).

Plan

DoCheck

■ F I G U R E  1 . 9 The Shewhart cycle.

c01QualityImprovementintheModernBusinessEnvironment.qxd  3/22/12  7:58 PM  Page 21



10. The fallacy of zero defects: Companies fail even though they produce products and

services without defects. Meeting the specifications isn’t the complete story in any

business.

11. Inadequate testing of prototypes: A prototype may be a one-off article, with artificially

good dimensions, but without knowledge of variability, testing a prototype tells very lit-

tle. This is a symptom of inadequate understanding of product design, development, and

the overall activity of technology commercialization.

12. “Anyone that comes to help us must understand all about our business.” This is bizarre

thinking: There already are competent people in the organization who know everything

about the business—except how to improve it. New knowledge and ideas (often from

the outside) must be fused with existing business expertise to bring about change and

improvement.

Joseph M. Juran. Juran was born in 1904 and died in 2008. He was one of the found-

ing fathers of the quality-control and improvement field. He worked for Walter A. Shewhart at

AT&T Bell Laboratories and was at the leading edge of quality improvement throughout his

career. Juran became the chief industrial engineer at Western Electric (part of the Bell System).

He was an assistant administrator for the Lend-Lease Administration during World War II and

played an important role in simplifying the administrative and paper work processes of that

agency. After the war, he became the head of the Department of Administrative Engineering at

New York University. He was invited to speak to Japanese industry leaders as they began their

industrial transformation in the early 1950s. He also created an active consulting practice (the

Juran Institute) and lectured widely through the American Management Association. He was

the co-author (with Frank M. Gryna) of the Quality Control Handbook, a standard reference

for quality methods and improvement since its initial publication in 1957.

The Juran quality management philosophy focuses on three components: planning, con-
trol, and improvement. These are known as the Juran Trilogy. As we have noted previously,

planning involves identifying external customers and determining their needs. Then products

or services that meet these customer needs are designed and/or developed, and the processes

for producing these products or services are then developed. The planning process should also

involve planning for quality improvement on a regular (typically annual) basis. Control is

employed by the operating forces of the business to ensure that the product or service meets

the requirements. SPC is one of the primary tools of control. Improvement aims to achieve per-

formance and quality levels that are higher than current levels. Juran emphasizes that improve-

ment must be on a project-by-project basis. These projects are typically identified at the planning

stage of the trilogy. Improvement can either be continuous (or incremental) or by breakthrough.

Typically, a breakthrough improvement is the result of studying the process and identifying a set

of changes that result in a large, relatively rapid improvement in performance. Designed exper-

iments are an important tool that can be used to achieve breakthrough.

Armand V. Feigenbaum. Feigenbaum was born in 1922. He first introduced the

concept of companywide quality control in his historic book Total Quality Control (first pub-

lished in 1951). This book influenced much of the early philosophy of quality management

in Japan in the early 1950s. In fact, many Japanese companies used the term “total quality

control” to describe their efforts. He proposed a three-step approach to improving quality:

quality leadership, quality technology, and organizational commitment. By quality technol-
ogy, Feigenbaum means statistical methods and other technical and engineering methods,

such as the ones discussed in this book.

Feigenbaum is concerned with organizational structure and a systems approach to

improving quality. He proposed a 19-step improvement process, of which use of statistical meth-

ods was step 17. He initially suggested that much of the technical capability be concentrated in
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a specialized department. This is in contrast to the more modern view that knowledge and use

of statistical tools need to be widespread. However, the organizational aspects of Feigenbaum’s

work are important, as quality improvement does not usually spring forth as a “grass roots”

activity; it requires a lot of management commitment to make it work.

The brief descriptions of the philosophies of Deming, Juran, and Feigenbaum have

highlighted both the common aspects and differences among their viewpoints. In this author’s

opinion, there are more similarities than differences among them, and the similarities are what

are important. All three of these pioneers stress the importance of quality as an essential com-

petitive weapon, the important role that management must play in implementing quality

improvement, and the importance of statistical methods and techniques in the “quality trans-

formation” of an organization.

Total Quality Management. Total quality management (TQM) is a strategy for

implementing and managing quality improvement activities on an organizationwide basis.

TQM began in the early 1980s, with the philosophies of Deming and Juran as the focal point.

It evolved into a broader spectrum of concepts and ideas, involving participative organizations

and work culture, customer focus, supplier quality improvement, integration of the quality

system with business goals, and many other activities to focus all elements of the organization

around the quality improvement goal. Typically, organizations that have implemented a TQM

approach to quality improvement have quality councils or high-level teams that deal with

strategic quality initiatives, workforce-level teams that focus on routine production or business

activities, and cross-functional teams that address specific quality improvement issues.

TQM has only had moderate success for a variety of reasons, but frequently because

there is insufficient effort devoted to widespread utilization of the technical tools of variabil-

ity reduction. Many organizations saw the mission of TQM as one of training. Consequently,

many TQM efforts engaged in widespread training of the workforce in the philosophy of

quality improvement and a few basic methods. This training was usually placed in the hands

of human resources departments, and much of it was ineffective. The trainers often had no

real idea about what methods should be taught, or how the methods should be used, and 

success was usually measured by the percentage of the workforce that had been “trained,” not

by whether any measurable impact on business results had been achieved. Some general rea-

sons for the lack of conspicuous success of TQM include (1) lack of topdown, high-level

management commitment and involvement; (2) inadequate use of statistical methods and

insufficient recognition of variability reduction as a prime objective; (3) general as opposed

to specific business-results-oriented objectives; and (4) too much emphasis on widespread

training as opposed to focused technical education.
Another reason for the erratic success of TQM is that many managers and executives

have regarded it as just another “program” to improve quality. During the 1950s and 1960s,

programs such as Zero Defects and Value Engineering abounded, but they had little real

impact on quality and productivity improvement. During the heyday of TQM in the 1980s,

another popular program was the Quality is Free initiative, in which management worked on

identifying the cost of quality (or the cost of nonquality, as the Quality is Free devotees so

cleverly put it). Indeed, identification of quality costs can be very useful (we discuss quality

costs in Section 1.4.3), but the Quality is Free practitioners often had no idea about what to

do to actually improve many types of complex industrial processes. In fact, the leaders of this

initiative had no knowledge about statistical methodology and completely failed to under-

stand its role in quality improvement. When TQM is wrapped around an ineffective program

such as this, disaster is often the result.

Quality Systems and Standards. The International Standards Organization

(founded in 1946 in Geneva, Switzerland), known as ISO, has developed a series of stan-

dards for quality systems. The first standards were issued in 1987. The current version of
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the standard is known as the ISO 9000 series. It is a generic standard, broadly applicable to

any type of organization, and it is often used to demonstrate a supplier’s ability to control its

processes. The three standards of ISO 9000 are:

ISO 9000:2005 Quality Management System—Fundamentals and Vocabulary

ISO 9001:2008 Quality Management System—Requirements

ISO 9004:2009 Quality Management System—Guidelines for Performance

Improvement

ISO 9000 is also an American National Standards Institute and an ASQ standard.

The ISO 9001:2008 standard has eight clauses: (1) Scope, (2) Normative References,

(3) Definitions, (4) Quality Management Systems, (5) Management Responsibility,

(6) Resource Management, (7) Product (or Service) Realization, and (8) Measurement,

Analysis, and Improvement. Clauses 4 through 8 are the most important, and their key com-

ponents and requirements are shown in Table 1.3. To become certified under the ISO standard,

a company must select a registrar and prepare for a certification audit by this registrar.

There is no single independent authority that licenses, regulates, monitors, or qualifies regis-

trars. As we will discuss later, this is a serious problem with the ISO system. Preparing for

the certification audit involves many activities, including (usually) an initial or phase I audit

that checks the present quality management system against the standard. This is usually fol-

lowed by establishing teams to ensure that all components of the key clause are developed and

implemented, training personnel, developing applicable documentation, and developing and

installing all new components of the quality system that may be required. Then the certifica-

tion audit takes place. If the company is certified, then periodic surveillance audits by the

registrar continue, usually on an annual (or perhaps six-month) schedule.

Many organizations have required their suppliers to become certified under ISO 9000,

or one of the standards that are more industry-specific. Examples of these industry-specific

quality system standards are AS 9100 for the aerospace industry; ISO/TS 16949 and QS 9000

for the automotive industry; and TL 9000 for the telecommunications industry. Many com-

ponents of these standards are very similar to those of ISO 9000.

Much of the focus of ISO 9000 (and of the industry-specific standards) is on formal

documentation of the quality system—that is, on quality assurance activities. Organizations

usually must make extensive efforts to bring their documentation into line with the require-

ments of the standards; this is the Achilles’ heel of ISO 9000 and other related or derivative

standards. There is far too much effort devoted to documentation, paperwork, and bookkeep-

ing and not nearly enough to actually reducing variability and improving processes and prod-

ucts. Furthermore, many of the third-party registrars, auditors, and consultants that work in

this area are not sufficiently educated or experienced enough in the technical tools required

for quality improvement or how these tools should be deployed. They are all too often

unaware of what constitutes modern engineering and statistical practice, and usually are

familiar with only the most elementary techniques. Therefore, they concentrate largely on the

documentation, record keeping, and paperwork aspects of certification.

There is also evidence that ISO certification or certification under one of the other

industry-specific standards does little to prevent poor quality products from being designed, man-

ufactured, and delivered to the customer. For example, in 1999–2000, there were numerous inci-

dents of rollover accidents involving Ford Explorer vehicles equipped with Bridgestone/Firestone

tires. There were nearly 300 deaths in the United States alone attributed to these accidents, which

led to a recall by Bridgestone/Firestone of approximately 6.5 million tires. Apparently, many of

the tires involved in these incidents were manufactured at the Bridgestone/Firestone plant in

Decatur, Illinois. In an article on this story in Time magazine (September 18, 2000), there was a

photograph (p. 38) of the sign at the entrance of the Decatur plant which stated that the plant was 

“QS 9000 Certified” and “ISO 14001 Certified” (ISO 14001 is an environmental standard).
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ISO 9001:2008 Requirements

4.0 Quality Management System
4.1 General Requirements

The organization shall establish, document, implement, and maintain a quality management system and continually
improve its effectiveness in accordance with the requirements of the international standard.

4.2 Documentation Requirements

Quality management system documentation will include a quality policy and quality objectives; a quality manual;
documented procedures; documents to ensure effective planning, operation, and control of processes; and records
required by the international standard.

5.0 Management System
5.1 Management Commitment

a. Communication of meeting customer, statutory, and regulatory requirements

b. Establishing a quality policy

c. Establishing quality objectives

d. Conducting management reviews

e. Ensuring that resources are available

5.2 Top management shall ensure that customer requirements are determined and are met with the aim of enhancing
customer satisfaction.

5.3 Management shall establish a quality policy.

5.4 Management shall ensure that quality objectives shall be established. Management shall ensure that planning occurs for
the quality management system.

5.5 Management shall ensure that responsibilities and authorities are defined and communicated.

5.6 Management shall review the quality management system at regular intervals.

6.0 Resource Management
6.1 The organization shall determine and provide needed resources.

6.2 Workers will be provided necessary education, training, skills, and experience.

6.3 The organization shall determine, provide, and maintain the infrastructure needed to achieve conformity to product
requirements.

6.4 The organization shall determine and manage the work environment needed to achieve conformity to product requirements.

7.0 Product or Service Realization
7.1 The organization shall plan and develop processes needed for product or service realization.

7.2 The organization shall determine requirements as specified by customers.

7.3 The organization shall plan and control the design and development for its products or services.

7.4 The organization shall ensure that purchased material or product conforms to specified purchase requirements.

7.5 The organization shall plan and carry out production and service under controlled conditions.

7.6 The organization shall determine the monitoring and measurements to be undertaken and the monitoring and measuring
devices needed to provide evidence of conformity of products or services to determined requirements.

8.0 Measurement, Analysis, and Improvement
8.1 The organization shall plan and implement the monitoring, measurement, analysis, and improvement process for

continual improvement and conformity to requirements.

8.2 The organization shall monitor information relating to customer perceptions.

8.3 The organization shall ensure that product that does not conform to requirements is identified and controlled to prevent
its unintended use or delivery.

8.4 The organization shall determine, collect, and analyze data to demonstrate the suitability and effectiveness of the quality
management system, including

a. Customer satisfaction

b. Conformance data

c. Trend data

d. Supplier data

8.5 The organization shall continually improve the effectiveness of the quality management system.

Adapted from the ISO 9001:2008 Standard, International Standards Organization, Geneva, Switzerland.
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Although the assignable causes underlying these incidents have not been fully discovered, there

are clear indicators that despite quality systems certification, Bridgestone/Firestone experienced

significant quality problems. ISO certification alone is no guarantee that good quality products

are being designed, manufactured, and delivered to the customer. Relying on ISO certification is

a strategic management mistake.

It has been estimated that ISO certification activities are approximately a $40 billion
annual business, worldwide. Much of this money flows to the registrars, auditors, and consul-

tants. This amount does not include all of the internal costs incurred by organizations to achieve

registration, such as the thousands of hours of engineering and management effort, travel, inter-

nal training, and internal auditing. It is not clear whether any significant fraction of this expendi-

ture has made its way to the bottom line of the registered organizations. Furthermore, there is no

assurance that certification has any real impact on quality (as in the Bridgestone/

Firestone tire incidents). Many quality engineering authorities believe that ISO certification is

largely a waste of effort. Often, organizations would be far better off to “just say no to ISO” and

spend a small fraction of that $40 billion on their quality systems and another larger fraction on

meaningful variability reduction efforts, develop their own internal (or perhaps industry-based)

quality standards, rigorously enforce them, and pocket the difference.

The Malcolm Baldrige National Quality Award. The Malcolm Baldrige National

Quality Award (MBNQA) was created by the U.S. Congress in 1987. It is given annually to

recognize U.S. organizations for performance excellence. Awards are given to organizations

in five categories: manufacturing, service, small business, health care, and education. Three

awards may be given each year in each category. Many organizations compete for the awards,

and many companies use the performance excellence criteria for self-assessment. The award

is administered by NIST (the National Institute of Standards and Technology).

The performance excellence criteria and their interrelationships are shown in Figure 1.10.

The point values for these criteria in the MBNQA are shown in Table 1.4. The criteria are directed

towards results, where results are a composite of customer satisfaction and retention, market share

and new market development, product/service quality, productivity and operational effectiveness,

human resources development, supplier performance, and public/corporate citizenship. The crite-

ria are nonprescriptive—that is, the focus is on results, not the use of specific procedures or tools.

The MBNQA process is shown in Figure 1.11. An applicant sends the completed appli-

cation to NIST. This application is then subjected to a first-round review by a team of Baldrige
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■ TA B L E  1 . 4  

Performance Excellence Categories and Point Values

1 Leadership 120
1.1 Leadership System 80

1.2 Company Responsibility and Citizenship 40

2 Strategic Planning 85
2.1 Strategy Development Process 40

2.2 Company Strategy 45

3 Customer and Market Focus 85
3.1 Customer and Market Knowledge 40

3.2 Customer Satisfaction and Relationship Enhancement 45

4 Information and Analysis 90
4.1 Measurement and Analysis of Performance 50

4.2 Information Management 40

5 Human Resource Focus 85
5.1 Work Systems 35

5.2 Employee Education, Training, and Development 25

5.3 Employee Well-Being and Satisfaction 25

6 Process Management 85
6.1 Management of Product and Service Processes 45

6.2 Management of Business Processes 25

6.3 Management of Support Processes 15

7 Business Results 450
7.1 Customer Results 125

7.2 Financial and Market Results 125

7.3 Human Resource Results 80

7.4 Organizational Results 120

Total Points 1,000
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■ F I G U R E  1 . 1 1 MBNQA process.
(Source: Foundation for the Malcolm Baldrige National Quality Award, 2002 Criteria for Performance

Excellence.)
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examiners. The board of Baldrige examiners consists of highly qualified volunteers from a vari-

ety of fields. Judges evaluate the scoring on the application to determine if the applicant will

continue to consensus. During the consensus phase, a group of examiners who scored the orig-

inal application determines a consensus score for each of the items. Once consensus is reached

and a consensus report written, judges then make a site-visit determination. A site visit typically

is a one-week visit by a team of four to six examiners who produce a site-visit report. The site-

visit reports are used by the judges as the basis of determining the final MBNQA winners.

As shown in Figure 1.10, feedback reports are provided to the applicant at up to three

stages of the MBNQA process. Many organizations have found these reports very helpful and

use them as the basis of planning for overall improvement of the organization and for driving

improvement in business results.

Six Sigma. Products with many components typically have many opportunities for

failure or defects to occur. Motorola developed the Six Sigma program in the late 1980s as a

response to the demand for its products. The focus of Six Sigma is reducing variability in key

product quality characteristics to the level at which failure or defects are extremely unlikely.

Figure 1.12a shows a normal probability distribution as a model for a quality charac-

teristic with the specification limits at three standard deviations on either side of the mean.
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Now it turns out that in this situation the probability of producing a product within these spec-

ifications is 0.9973, which corresponds to 2,700 parts per million (ppm) defective. This is

referred to as Three Sigma quality performance, and it actually sounds pretty good.

However, suppose we have a product that consists of an assembly of 100 independent com-

ponents or parts and all 100 of these parts must be nondefective for the product to function

satisfactorily. The probability that any specific unit of product is nondefective is

That is, about 23.7% of the products produced under Three Sigma quality will be defec-

tive. This is not an acceptable situation, because many products used by today’s society are made

up of many components. Even a relatively simple service activity, such as a visit by a family of

four to a fast-food restaurant, can involve the assembly of several dozen components. A typical

automobile has about 100,000 components and an airplane has between one and two million!

The Motorola Six Sigma concept is to reduce the variability in the process so that the

specification limits are at least six standard deviations from the mean. Then, as shown in

Figure 1.12a, there will only be about 2 parts per billion defective. Under Six Sigma quality,
the probability that any specific unit of the hypothetical product above is nondefective is

0.9999998, or 0.2 ppm, a much better situation.

When the Six Sigma concept was initially developed, an assumption was made that

when the process reached the Six Sigma quality level, the process mean was still subject to

disturbances that could cause it to shift by as much as 1.5 standard deviations off target. This

situation is shown in Figure 1.12b. Under this scenario, a Six Sigma process would produce

about 3.4 ppm defective.

There is an apparent inconsistency in this. As we will discuss in Chapter 8 on process

capability, we can only make predictions about process performance when the process is

stable—that is, when the mean (and standard deviation, too) is constant. If the mean is

drifting around, and ends up as much as 1.5 standard deviations off target, a prediction of

3.4 ppm defective may not be very reliable, because the mean might shift by more than the

“allowed” 1.5 standard deviations. Process performance isn’t predictable unless the process

behavior is stable.

However, no process or system is ever truly stable, and even in the best of situations,

disturbances occur. These disturbances can result in the process mean shifting off-target, an

increase in the process standard deviation, or both. The concept of a Six Sigma process is one

way to model this behavior. Like all models, it’s probably not exactly right, but it has proven

to be a useful way to think about process performance and improvement.

Motorola established Six Sigma as both an objective for the corporation and as a focal

point for process and product quality improvement efforts. In recent years, Six Sigma has

spread beyond Motorola and has come to encompass much more. It has become a program 

for improving corporate business performance by both improving quality and paying atten-

tion to reducing costs. Companies involved in a Six Sigma effort utilize specially trained indi-

viduals, called Green Belts (GBs), Black Belts (BBs), and Master Black Belts (MBBs) to lead

teams focused on projects that have both quality and business (economic) impacts for the

organization. The “belts” have specialized training and education on statistical methods and

the quality and process improvement tools in this textbook that equip them to function as team

leaders, facilitators, and problem solvers. Typical Six Sigma projects are four to six months in

duration and are selected for their potential impact on the business. The paper by Hoerl (2001)

describes the components of a typical BB education program. Six Sigma uses a specific five-

step problem-solving approach: Define, Measure, Analyze, Improve, and Control (DMAIC).

The DMAIC framework utilizes control charts, designed experiments, process capability

analysis, measurement systems capability studies, and many other basic statistical tools. The

DMAIC approach is an extremely effective framework for improving processes. While it is

0.9973 × 0.9973 × . . . × 0.9973 = (0.9973)100 = 0.7631
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usually associated with Six Sigma deployments, it is a very effective work to organize and

manage any improvement effort. In Chapter 2, we will give a fuller presentation of DMAIC.

The goals of Six Sigma, a 3.4 ppm defect level, may seem artificially or arbitrarily high,

but it is easy to demonstrate that even the delivery of relatively simple products or services at

high levels of quality can lead to the need for Six Sigma thinking. For example, consider the

visit to a fast-food restaurant mentioned above. The customer orders a typical meal: a ham-

burger (bun, meat, special sauce, cheese, pickle, onion, lettuce, and tomato), fries, and a soft

drink. This product has ten components. Is 99% good quality satisfactory? If we assume that

all ten components are independent, the probability of a good meal is

which looks pretty good. There is better than a 90% chance that the customer experience will

be satisfactory. Now suppose that the customer is a family of four. Again, assuming indepen-

dence, the probability that all four meals are good is

This isn’t so nice. The chances are only about two out of three that all of the family meals are

good. Now suppose that this hypothetical family of four visits this restaurant once a month

(this is about all their cardiovascular systems can stand!). The probability that all visits result

in good meals for everybody is

This is obviously unacceptable. So, even in a very simple service system involving a relatively

simple product, very high levels of quality and service are required to produce the desired

high-quality experience for the customer.

Business organizations have been very quick to understand the potential benefits of Six

Sigma and to adopt the principles and methods. Between 1987 and 1993, Motorola reduced defec-

tivity on its products by approximately, 1,300%. This success led to many organizations adopting

the approach. Since its origins, there have been three generations of Six Sigma implementations.

Generation I Six Sigma focused on defect elimination and basic variability reduction. Motorola

is often held up as an exemplar of Generation I Six Sigma. In Generation II Six Sigma, the

emphasis on variability and defect reduction remained, but now there was a strong effort to tie

these efforts to projects and activities that improved business performance through cost reduction.

General Electric is often cited as the leader of the Generation II phase of Six Sigma.

In Generation III, Six Sigma has the additional focus of creating value throughout the

organization and for its stakeholders (owners, employees, customers, suppliers, and society at

large). Creating value can take many forms: increasing stock prices and dividends, job retention

or expansion, expanding markets for company products/services, developing new products/

services that reach new and broader markets, and increasing the levels of customer satisfac-

tion throughout the range of products and services offered.

Many different kinds of businesses have embraced Six Sigma and made it part of the cul-

ture of doing business. Consider the following statement from Jim Owens, chairman of heavy

equipment manufacturer Caterpillar, Inc., who wrote in the 2005 annual company report:

I believe that our people and world-class six-sigma deployment distinguish Caterpillar 

from the crowd. What an incredible success story six-sigma has been for Caterpillar! It is

the way we do business—how we manage quality, eliminate waste, reduce costs, create new

products and services, develop future leaders, and help the company grow profitably. We

continue to find new ways to apply the methodology to tackle business challenges. Our

leadership team is committed to encoding six-sigma into Caterpillar’s “DNA” and extend-

ing its deployment to our dealers and suppliers—more than 500 of whom have already

embraced the six-sigma way of doing business.

P5All visits during the year good6 = (0.6690)12 = 0.0080

P5All meals good6 = (0.9044)4 = 0.6690

P5Single meal good6 = (0.99)10 = 0.9044
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At the annual meeting of Bank of America in 2004, then–chief executive officer Kenneth

D. Lewis told the attendees that the company had record earnings in 2003, had significantly

improved the customer experience, and had raised its community development funding target

to $750 billion over ten years. “Simply put, Bank of America has been making it happen,”

Lewis said. “And we’ve been doing it by following a disciplined, customer-focused and

organic growth strategy.” Citing the companywide use of Six Sigma techniques for process

improvement, he noted that in fewer than three years, Bank of America had “saved millions

of dollars in expenses, cut cycle times in numerous areas of the company by half or more, and

reduced the number of processing errors.”

These are strong endorsements of Six Sigma from two highly recognized business lead-

ers that lead two very different types of organizations: manufacturing and financial services.

Caterpillar and Bank of America are good examples of Generation III Six Sigma companies,

because their implementations are focused on value creation for all stakeholders in the broad

sense. Note Lewis’s emphasis on reducing cycle times and reducing processing errors (items

that will greatly improve customer satisfaction), and Owens’s remarks on extending Six

Sigma to suppliers and dealers—the entire supply chain. Six Sigma has spread well beyond

its manufacturing origins into areas including health care, many types of service business, and

government/public service (the U.S. Navy has a strong and very successful Six Sigma

program). The reason for the success of Six Sigma in organizations outside the traditional

manufacturing sphere is that variability is everywhere, and where there is variability, there is

an opportunity to improve business results. Some examples of situations where a Six Sigma

program can be applied to reduce variability, eliminate defects, and improve business perfor-

mance include:

■ Meeting delivery schedule and delivery accuracy targets

■ Eliminating rework in preparing budgets and other financial documents

■ Proportion of repeat visitors to an e-commerce Website, or proportion of visitors that

make a purchase

■ Minimizing cycle time or reducing customer waiting time in any service system

■ Reducing average and variability in days outstanding of accounts receivable

■ Optimizing payment of outstanding accounts

■ Minimizing stock-out or lost sales in supply chain management

■ Minimizing costs of public accountants, legal services, and other consultants

■ Inventory management (both finished goods and work-in-process)

■ Improving forecasting accuracy and timing

■ Improving audit processes

■ Closing financial books, improving accuracy of journal entry and posting (a 3% to 4%

error rate is fairly typical)

■ Reducing variability in cash flow

■ Improving payroll accuracy

■ Improving purchase order accuracy and reducing rework of purchase orders

The structure of a Six Sigma organization is shown in Figure 1.13. The lines in this

figure identify the key links among the functional units. The leadership team is the execu-

tive responsible for that business unit and appropriate members of his/her staff and direct

reports. This person has overall responsibility for approving the improvement projects

undertaken by the Six Sigma teams. Each project has a champion, a business leader whose

job is to facilitate project identification and selection, identify Black Belts and other team

members who are necessary for successful project completion, remove barriers to project
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completion, make sure that the resources required for project completion are available, and con-

duct regular meetings with the team or the Black Belts to ensure that progress is being made

and the project is on schedule. The champion role is not full time, and champions often have

several projects under their supervision. Black Belts are team leaders who are involved in the

actual project completion activities. Team members often spend 25% of their time on the pro-

ject, and may be drawn from different areas of the business, depending on project requirements.

Green Belts typically have less training and experience in Six Sigma tools and approaches than

the Black Belts, and may lead projects of their own under the direction of a champion or Black

Belt, or they may be part of a Black Belt–led team. A Master Black Belt is a technical leader,

and may work with the champion and the leadership team in project identification and selec-

tion, project reviews, consulting with Black Belts on technical issues, and training of Green

Belts and Black Belts. Typically, the Black Belt and Master Black Belt roles are full time.

In recent years, two other tool sets have become identified with Six Sigma: lean sys-
tems and design for Six Sigma (DFSS). Many organizations regularly use one or both of

these approaches as an integral part of their Six Sigma implementation.

Design for Six Sigma is an approach for taking the variability reduction and process

improvement philosophy of Six Sigma upstream from manufacturing or production into the

design process, where new products (or services or service processes) are designed and

developed. Broadly speaking, DFSS is a structured and disciplined methodology for the effi-

cient commercialization of technology that results in new products, services, or processes.

By a product, we mean anything that is sold to a consumer for use; by a service, we mean

an activity that provides value or benefit to the consumer. DFSS spans the entire develop-

ment process from the identification of customer needs to the final launch of the new prod-

uct or service. Customer input is obtained through voice of the customer (VOC) activities

designed to determine what the customer really wants, to set priorities based on actual cus-

tomer wants, and to determine if the business can meet those needs at a competitive price

that will enable it to make a profit. VOC data is usually obtained by customer interviews, by

a direct interaction with and observation of the customer, through focus groups, by surveys,

and by analysis of customer satisfaction data. The purpose is to develop a set of critical to

quality requirements for the product or service. Traditionally, Six Sigma is used to achieve
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operational excellence, while DFSS is focused on improving business results by increasing

the sales revenue generated from new products and services and finding new applications or

opportunities for existing ones. In many cases, an important gain from DFSS is the reduc-

tion of development lead time—that is, the cycle time to commercialize new technology and

get the resulting new products to market. DFSS is directly focused on increasing value in the

organization. Many of the tools that are used in operational Six Sigma are also used in

DFSS. The DMAIC process is also applicable, although some organizations and practition-

ers have slightly different approaches (DMADV, or Define, Measure, Analyze, Design, and

Verify, is a popular variation).

DFSS makes specific the recognition that every design decision is a business decision,

and that the cost, manufacturability, and performance of the product are determined during

design. Once a product is designed and released to manufacturing, it is almost impossible for

the manufacturing organization to make it better. Furthermore, overall business improvement

cannot be achieved by focusing on reducing variability in manufacturing alone (operational

Six Sigma), and DFSS is required to focus on customer requirements while simultaneously

keeping process capability in mind. Specifically, matching the capability of the production

system and the requirements at each stage or level of the design process (refer to Figure 1.14)

is essential. When mismatches between process capabilities and design requirements are dis-

covered, either design changes or different production alternatives are considered to resolve

the conflicts. Throughout the DFSS process, it is important that the following points be kept

in mind:

■ Is the product concept well identified?

■ Are customers real?

■ Will customers buy this product?

■ Can the company make this product at competitive cost?

■ Are the financial returns acceptable?

■ Does this product fit with the overall business strategy?

■ Is the risk assessment acceptable?

■ Can the company make this product better than the competition can?

■ Can product reliability, maintainability goals be met?

■ Has a plan for transfer to manufacturing been developed and verified?

Lean principles are designed to eliminate waste. By waste, we mean unnecessarily long

cycle times, or waiting times between value-added work activities. Waste can also include

rework (doing something over again to eliminate defects introduced the first time) or scrap.
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Rework and scarp are often the result of excess variability, so there is an obvious connec-

tion between Six Sigma and lean. An important metric in lean is the process cycle effi-

ciency (PCE) defined as

where the value-add time is the amount of time actually spent in the process that transforms the

form, fit, or function of the product or service that results in something for which the customer

is willing to pay. PCE is a direct measure of how efficiently the process is converting the work

that is in-process into completed products or services. In typical processed, including manufac-

turing and transactional businesses, PCE varies between 1% and 10%. The ideal or world-class

PCE varies by the specific application, but achieving a PCE of 25% or higher is often possible. 

Process cycle time is also related to the amount of work that is in-process through

Little’s Law:

The average completion rate is a measure of capacity; that is, it is the output of a process over

a defined time period. For example, consider a mortgage refinance operation at a bank. If the

average completion rate for submitted applications is 100 completions per day, and there are

1,500 applications waiting for processing, the process cycle time is

Often the cycle time can be reduced by eliminating waste and inefficiency in the process,

resulting in an increase in the completion rate.

Lean also makes use of many tools of industrial engineering and operations research.

One of the most important of these is discrete-event simulation, in which a computer model

of the system is built and used to quantify the impact of changes to the system that improve

its performance. Simulation models are often very good predictors of the performance of a

new or redesigned system. Both manufacturing and service organizations can greatly benefit

by using simulation models to study the performance of their processes.

Ideally, Six Sigma/DMAIC, DFSS, and lean tools are used simultaneously and harmo-

niously in an organization to achieve high levels of process performance and significant busi-

ness improvement. Figure 1.15 highlights many of the important complimentary aspects of

these three sets of tools.

Six Sigma (often combined with DFSS and lean) has been much more successful than

its predecessors, notably TQM. The project-by-project approach the analytical focus, and the

emphasis on obtaining improvement in bottom-line business results have been instrumental

in obtaining management commitment to Six Sigma. Another major component in obtaining

success is driving the proper deployment of statistical methods into the right places in the

organization. The DMAIC problem-solving framework is an important part of this. For more

information on Six Sigma, the applications of statistical methods in the solution of business

and industrial problems, and related topics, see Hahn, Doganaksoy, and Hoerl (2000); Hoerl

and Snee (2010); Montgomery and Woodall (2008); and Steinberg et al. (2008).

Just-in-Time, Poka-Yoke, and Others. There have been many initiatives devoted to

improving the production system. These are often grouped into the lean toolkit. Some of these

include the Just-in-Time approach emphasizing in-process inventory reduction, rapid setup,

and a pull-type production system; Poka-Yoke or mistake-proofing of processes; the Toyota

production system and other Japanese manufacturing techniques (with once-popular

Process cycle time =
1500

100
= 15 days

Process cycle time =
Work-in-process

Average completion rate

Process cycle efficiency =
Value-add time

Process cycle time
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management books by those names); reengineering; theory of constraints; agile manufacturing;

and so on. Most of these programs devote far too little attention to variability reduction. It’s vir-

tually impossible to reduce the in-process inventory or operate a pull-type or agile production

system when a large and unpredictable fraction of the process output is defective and where

there are significant uncontrolled sources of variability. Such efforts will not achieve their full

potential without a major focus on statistical methods for process improvement and variability

reduction to accompany them. It is important to deploy Six Sigma jointly with the lean tools.

1.4.2 The Link Between Quality and Productivity 

Producing high-quality products in the modern industrial environment is not easy. A significant

aspect of the problem is the rapid evolution of technology. The past 20 years have seen an explo-

sion of technology in such diverse fields as electronics, metallurgy, ceramics, composite mate-

rials, biotechnology, and the chemical and pharmaceutical sciences, which has resulted in many

new products and services. For example, in the electronics field the development of the inte-

grated circuit has revolutionized the design and manufacture of computers and many electronic

office products. Basic integrated circuit technology has been supplanted by large-scale integra-

tion (LSI) and very large-scale integration (VLSI) technology, with corresponding develop-

ments in semiconductor design and manufacturing. When technological advances occur rapidly

and when the new technologies are used quickly to exploit competitive advantages, the prob-

lems of designing and manufacturing products of superior quality are greatly complicated.

Often, too little attention is paid to achieving all dimensions of an optimal process:

economy, efficiency, productivity, and quality. Effective quality improvement can be instru-

mental in increasing productivity and reducing cost. To illustrate, consider the manufacture

of a mechanical component used in a copier machine. The parts are manufactured in a

machining process at a rate of approximately 100 parts per day. For various reasons, the

process is operating at a first-pass yield of about 75%. (That is, about 75% of the process

output conforms to specifications, and about 25% of the output is nonconforming.) About

60% of the fallout (the 25% nonconforming) can be reworked into an acceptable product,

and the rest must be scrapped. The direct manufacturing cost through this stage of production
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per part is approximately $20. Parts that can be reworked incur an additional processing

charge of $4. Therefore, the manufacturing cost per good part produced is

Note that the total yield from this process, after reworking, is 90 good parts per day. 

An engineering study of this process reveals that excessive process variability is respon-

sible for the extremely high fallout. A new statistical process-control procedure is implemented

that reduces variability, and consequently the process fallout decreases from 25% to 5%. Of

the 5% fallout produced, about 60% can be reworked, and 40% are scrapped. After the process-

control program is implemented, the manufacturing cost per good part produced is

Note that the installation of statistical process control and the reduction of variability

that follows result in a 10.3% reduction in manufacturing costs. Furthermore, productivity is

up by almost 10%; 98 good parts are produced each day as opposed to 90 good parts previ-

ously. This amounts to an increase in production capacity of almost 10%, without any addi-

tional investment in equipment, workforce, or overhead. Efforts to improve this process by

other methods (such as Just-in-Time, lean manufacturing) are likely to be completely inef-

fective until the basic problem of excessive variability is solved.

1.4.3 Supply Chain Quality Management

Most companies and business organizations rely on suppliers to provide at least some of the

materials and components used in their products. Almost all of these businesses rely on exter-

nal organizations to distribute and deliver their products to distribution centers and ultimately

to the end customers. A supply chain is the network of facilities that accomplishes these tasks.

There is usually an internal component of the supply chain as well, because many design

activities, development, and production operations for components and subassemblies are

performed by different groups within the parent organization. Supply chain management
(SCM) deals with designing, planning, executing, controlling, and monitoring all supply

chain activities with the objective of optimizing system performance. Changes in the business

environment over the last 25 years, including globalization, the proliferation of multinational

companies, joint ventures, strategic alliances, and business partnerships, have contributed to

the development and expansion of supply chain networks. 

The supply chain often provides a significant component of the value or content to many

products or services. Consequently, there is considerable dependence on the supply chain

regarding product quality and safety. Failures in the supply chain have significant conse-

quences for the parent company and for consumers. For example, in recent years there have

been instances of lead in paint on toys and lead in toothpaste, as well as recalls of food and

pharmaceutical products because of contamination problems. Even in situations where product

quality or safety is not an issue, the labor practices and lack of social responsibility of organi-

zations in the supply chain have negatively impacted the reputation of the parent company.

Successful SCM requires integrating activities into key supply chain processes. This

requires collaboration between buyers and suppliers, joint product development, common

systems, and shared information. Some key supply chain processes are:

■ Service management

■ Demand management

■ Order fulfillment

Cost/good part =
$20(100) + $4(3)

98
= $20.53

Cost/good part =
$20(100) + $4(15)

90
= $22.89
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■ Quality

■ Manufacturing flow management

■ Supplier relationship management

■ Logistics and distribution

■ Returns management

Sometimes the management of these processes can be simplified by single-sourcing or

dual-sourcing—that is, having only one or at most two suppliers for critical components.

Deming argued for this type of strategic relationship with suppliers. The danger, of course,

is interruption of supply due to quality problems, labor disputes and strikes, transportation

disruptions, pricing disagreements, global security problems, and natural phenomena such

as earthquakes.

SCM consists of three major activities:

1. Supplier qualification or certification. This can involve visits to suppliers and inspec-

tion of their facilities along with evaluation of the capability of their production systems

to deliver adequate quantities of product, their quality systems, and their overall busi-

ness operations. The purpose of supplier qualification is to provide an analytical basis

for supplier selection.

2. Supplier development. These are the activities that the company undertakes to

improve the performance of its suppliers. Some common supplier development activi-

ties include supplier evaluation, supplier training, data and process information sharing,

and consulting services. Many times these activities are performed in teams composed

of representatives of both the parent company and the supplier. These teams are formed

to address specific projects. Often the goals of these projects are quality improvement,

capacity expansion, or cost reduction. As an example of a supplier development activ-

ity, the company may help a supplier initiate a Six Sigma deployment. Many compa-

nies provide awards to suppliers as a component of the development process. These

awards may be based on criteria similar to the Baldrige criteria and may provide an

awardee preferred supplier status with some advantages in obtaining future business. 

3. Supplier audits. This activity consists of regular periodic visits to the supplier to

ensure that product quality, standards, and other operational objectives are being met.

Supplier audits are a way to gain insight into supplier processes and reduce supplier

risk. Quality audits are frequently used to ensure that supplier have processes in place

to deliver quality products. Audits are an effective way to ensure that the supplier is fol-

lowing the processes and procedures that were agreed to during the selection processes.

The supplier audit identifies nonconformances in manufacturing processes, shipment

and logistics operations, engineering and engineering change processes, and invoicing

and billing. After the audit, the supplier and parent company jointly identify corrective

actions that must be implemented by the supplier within an agreed-upon timeframe. A

future audit ensures that these corrective actions have been successfully implemented.

In addition, as regulatory and market pressures related to environmental compliance

and social and ethical responsibility increase, audits often include environmental and

social and ethical responsibility components. Sometimes companies engage third par-

ties to conduct these audits.

Returns management is a critical SCM process. Many companies have found that a cost-

recovery system, where suppliers are charged back for providing poor-quality materials or

components, is an effective way to introduce business discipline and accountability into the

supply chain. However, relatively few companies pursue full cost recovery with their suppli-

ers. The majority of the companies that do practice cost recovery only recover material costs
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from their suppliers. Many of the costs attributed to poor supplier quality are non–material

related. For example, some of these non-material costs include:

1. Operator handling

2. Disassembly of the product

3. Administrative work to remove the part from stock

4. Quality engineering time

5. Planning/buyer activities to get new parts

6. Transportation back to receiving/shipping

7. Communications with the supplier

8. Issuing new purchase orders/instructions

9. Other engineering time

10. Packing and arranging transportation to the supplier

11. Invoicing

12. Costs associated with product recall

These costs can be substantial, and are often well in excess of the material cost of the part. If a

company institutes a process to aggregate these costs and use it for charge-backs, they would be

able to fully recover the costs of poor quality from their suppliers, and they would institute a dis-

cipline that strongly encourages their suppliers to quickly improve their product quality.

1.4.4 Quality Costs 

Financial controls are an important part of business management. These financial controls

involve a comparison of actual and budgeted costs, along with analysis and action on the

differences between actual and budget. It is customary to apply these financial controls on

a department or functional level. For many years, there was no direct effort to measure or

account for the costs of the quality function. However, many organizations now formally

evaluate the cost associated with quality. There are several reasons why the cost of quality

should be explicitly considered in an organization. These include the following:

1. The increase in the cost of quality because of the increase in the complexity of manu-

factured products associated with advances in technology

2. Increasing awareness of life-cycle costs, including maintenance, spare parts, and the

cost of field failures

3. Quality engineers and managers being able to most effectively communicate quality

issues in a way that management understands

As a result, quality costs have emerged as a financial control tool for management and as an

aid in identifying opportunities for reducing quality costs.

Generally speaking, quality costs are those categories of costs that are associated with

producing, identifying, avoiding, or repairing products that do not meet requirements. Many

manufacturing and service organizations use four categories of quality costs: prevention

costs, appraisal costs, internal failure costs, and external failure costs. Some quality authori-

ties feel that these categories define the Cost of Poor Quality (COPQ). These cost categories

are shown in Table 1.5. We now discuss these categories in more detail.

Prevention Costs. Prevention costs are those costs associated with efforts in design

and manufacturing that are directed toward the prevention of nonconformance. Broadly

speaking, prevention costs are all costs incurred in an effort to “make it right the first time.”

The important subcategories of prevention costs follow.
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Quality planning and engineering. Costs associated with the creation of the overall qual-

ity plan, the inspection plan, the reliability plan, the data system, and all specialized plans

and activities of the quality-assurance function; the preparation of manuals and procedures

used to communicate the quality plan; and the costs of auditing the system.

New products review. Costs of the preparation of bid proposals, the evaluation of new

designs from a quality viewpoint, the preparation of tests and experimental programs to

evaluate the performance of new products, and other quality activities during the develop-

ment and preproduction stages of new products or designs.

Product/process design. Costs incurred during the design of the product or the selection of

the production processes that are intended to improve the overall quality of the product. For

example, an organization may decide to make a particular circuit component redundant

because this will increase the reliability of the product by increasing the mean time between

failures. Alternatively, it may decide to manufacture a component using process A rather

than process B, because process A is capable of producing the product at tighter tolerances,

which will result in fewer assembly and manufacturing problems. This may include a ven-

dor’s process, so the cost of dealing with other than the lowest bidder may also be a pre-

vention cost.

Process control. The cost of process-control techniques, such as control charts, that monitor

the manufacturing process in an effort to reduce variation and build quality into the product.

Burn-in. The cost of preshipment operation of the product to prevent early-life failures in

the field.

Training. The cost of developing, preparing, implementing, operating, and maintaining for-

mal training programs for quality.

Quality data acquisition and analysis. The cost of running the quality data system to

acquire data on product and process performance; also the cost of analyzing these data to

identify problems. It includes the work of summarizing and publishing quality information

for management.

Appraisal Costs. Appraisal costs are those costs associated with measuring, evalu-

ating, or auditing products, components, and purchased materials to ensure conformance to

the standards that have been imposed. These costs are incurred to determine the condition of
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Quality Costs

Prevention Costs Internal Failure Costs
Quality planning and engineering Scrap

New products review Rework

Product/process design Retest

Process control Failure analysis

Burn-in Downtime

Training Yield losses

Quality data acquisition and analysis Downgrading (off-specing)

Appraisal Costs External Failure Costs
Inspection and test of incoming material Complaint adjustment

Product inspection and test Returned product/material

Materials and services consumed Warranty charges

Maintaining accuracy of test equipment Liability costs

Indirect costs 
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the product from a quality viewpoint and ensure that it conforms to specifications. The major

subcategories follow.

Inspection and test of incoming material. Costs associated with the inspection and test-

ing of all material. This subcategory includes receiving inspection and test; inspection, test,

and evaluation at the vendor’s facility; and a periodic audit of the quality-assurance system.

This could also include intraplant vendors.

Product inspection and test. The cost of checking the conformance of the product

throughout its various stages of manufacturing, including final acceptance testing, packing

and shipping checks, and any test done at the customer’s facilities prior to turning the prod-

uct over to the customer. This also includes life testing, environmental testing, and reliabil-

ity testing.

Materials and services consumed. The cost of material and products consumed in a

destructive test or devalued by reliability tests.

Maintaining accuracy of test equipment. The cost of operating a system that keeps the

measuring instruments and equipment in calibration.

Internal Failure Costs. Internal failure costs are incurred when products, compo-

nents, materials, and services fail to meet quality requirements, and this failure is discovered

prior to delivery of the product to the customer. These costs would disappear if there were no

defects in the product. The major subcategories of internal failure costs follow.

Scrap. The net loss of labor, material, and overhead resulting from defective product that

cannot economically be repaired or used.

Rework. The cost of correcting nonconforming units so that they meet specifications. In

some manufacturing operations rework costs include additional operations or steps in the

manufacturing process that are created to solve either chronic defects or sporadic defects.

Retest. The cost of reinspection and retesting of products that have undergone rework or

other modifications.

Failure analysis. The cost incurred to determine the causes of product failures.

Downtime. The cost of idle production facilities that results from nonconformance to

requirements. The production line may be down because of nonconforming raw materials

supplied by a supplier, which went undiscovered in receiving inspection.

Yield losses. The cost of process yields that are lower than might be attainable by improved

controls (for example, soft-drink containers that are overfilled because of excessive vari-

ability in the filling equipment).

Downgrading/off-specing. The price differential between the normal selling price and any

selling price that might be obtained for a product that does not meet the customer’s require-

ments. Downgrading is a common practice in the textile, apparel goods, and electronics indus-

tries. The problem with downgrading is that products sold do not recover the full contribution

margin to profit and overhead as do products that conform to the usual specifications.

External Failure Costs. External failure costs occur when the product does not

perform satisfactorily after it is delivered to the customer. These costs would also disappear

if every unit of product conformed to requirements. Subcategories of external failure costs

follow.

Complaint adjustment. All costs of investigation and adjustment of justified complaints

attributable to the nonconforming product.
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Returned product/material. All costs associated with receipt, handling, and replacement

of the nonconforming product or material that is returned from the field.

Warranty charges. All costs involved in service to customers under warranty contracts.

Liability costs. Costs or awards incurred from product liability litigation.

Indirect costs. In addition to direct operating costs of external failures, there are a significant

number of indirect costs. These are incurred because of customer dissatisfaction with the level

of quality of the delivered product. Indirect costs may reflect the customer’s attitude toward

the company. They include the costs of loss of business reputation, loss of future business,

and loss of market share that inevitably results from delivering products and services that

do not conform to the customer’s expectations regarding fitness for use.

The Analysis and Use of Quality Costs. How large are quality costs? The answer,

of course, depends on the type of organization and the success of their quality improvement

effort. In some organizations quality costs are 4% or 5% of sales, whereas in others they can

be as high as 35% or 40% of sales. Obviously, the cost of quality will be very different for a

high-technology computer manufacturer than for a typical service industry, such as a depart-

ment store or hotel chain. In most organizations, however, quality costs are higher than nec-

essary, and management should make continuing efforts to appraise, analyze, and reduce

these costs.

The usefulness of quality costs stems from the leverage effect; that is, dollars

invested in prevention and appraisal have a payoff in reducing dollars incurred in internal

and external failures that exceeds the original investment. For example, a dollar invested in

prevention may return $10 or $100 (or more) in savings from reduced internal and external

failures.

Quality-cost analyses have as their principal objective cost reduction through identifi-

cation of improvement opportunities. This is often done with a Pareto analysis. The Pareto

analysis consists of identifying quality costs by category, or by product, or by type of defect

or nonconformity. For example, inspection of the quality-cost information in Table 1.6 con-

cerning defects or nonconformities in the assembly of electronic components onto printed 

circuit boards reveals that insufficient solder is the highest quality cost incurred in this oper-

ation. Insufficient solder accounts for 42% of the total defects in this particular type of board

and for almost 52% of the total scrap and rework costs. If the wave solder process can be

improved, then there will be dramatic reductions in the cost of quality.
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Monthly Quality-Costs Information for Assembly of Printed
Circuit Boards

Percentage of Scrap and 
Type of Defect Total Defects Rework Costs

Insufficient solder 42% $37,500.00 (52%)

Misaligned components 21 12,000.00

Defective components 15 8,000.00

Missing components 10 5,100.00

Cold solder joints 7 5,000.00

All other causes 5 4,600.00

Totals 100% $72,200.00 
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How much reduction in quality costs is possible? Although the cost of quality in many

organizations can be significantly reduced, it is unrealistic to expect it can be reduced to

zero. Before that level of performance is reached, the incremental costs of prevention and

appraisal will rise more rapidly than the resulting cost reductions. However, paying attention

to quality costs in conjunction with a focused effort on variability reduction has the capabil-

ity of reducing quality costs by 50% or 60% provided that no organized effort has previously

existed. This cost reduction also follows the Pareto principle; that is, most of the cost reduc-

tions will come from attacking the few problems that are responsible for the majority of

quality costs.

In analyzing quality costs and in formulating plans for reducing the cost of quality, it is

important to note the role of prevention and appraisal. Many organizations devote far too

much effort to appraisal and not enough to prevention. This is an easy mistake for an organi-

zation to make, because appraisal costs are often budget line items in manufacturing. On the

other hand, prevention costs may not be routinely budgeted items. It is not unusual to find in

the early stages of a quality-cost program that appraisal costs are eight or ten times the mag-

nitude of prevention costs. This is probably an unreasonable ratio, as dollars spent in prevention

have a much greater payback than do dollars spent in appraisal.

When Six Sigma and lean are deployed together there is usually a simultaneous

reduction in quality costs and an increase in process cycle efficiency. Processes with low

PCE are slow processes, and slow-moving processes are expensive and wasteful. Work-in-

process inventory that moves slowly often has to be handled, counted, moved, stored,

retrieved, and often moved again. Handling and storage can lead to damage or other quality

problems. Inventoried items may become obsolete because of design changes and improve-

ments to the product. Quality problems in the production of a component can lead to many

in-process items being in danger of having to be reworked or scrapped. Quality costs are

often a direct result of the hidden factory—that is, the portion of the business that deals

with waste, scrap, rework, work-in-process inventories, delays, and other business ineffi-

ciencies. Figure 1.16 shows a distribution of costs as a percentage of revenue for a typical

manufacturing organization. Deploying quality improvement tools such as Six Sigma and

lean can often reduce manufacturing overhead and quality costs by 20% within one to two

years. This can lead to a 5% to 10% of revenue increase in operating profit. These numbers

are business specific. But the techniques can be applied anywhere: service industries, trans-

actional operations, creative processes such as design and development, order entry, and

fulfillment.
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■ F I G U R E  1 . 1 6 The distribution of total revenue by percentage in a typical

manufacturing organization.

Distribution of Total Revenue by Percentage

Category

Profit = 8

Material = 35

Labor = 10

Manufacturing Overhead and Quality = 25

Operating Expense = 22
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Generating the quality-cost figures is not always easy, because most quality-cost cate-

gories are not a direct component in the accounting records of the organization. Consequently,

it may be difficult to obtain extremely accurate information on the costs incurred with respect

to the various categories. The organization’s accounting system can provide information on

those quality-cost categories that coincide with the usual business accounts, such as, for

example, product testing and evaluation. In addition, many companies will have detailed

information on various categories of failure cost. The information for cost categories for

which exact accounting information is not available should be generated by using estimates,

or, in some cases, by creating special monitoring and surveillance procedures to accumulate

those costs over the study period.

The reporting of quality costs is usually done on a basis that permits straightforward

evaluation by management. Managers want quality costs expressed in an index that compares

quality cost with the opportunity for quality cost. Consequently, the usual method of report-

ing quality costs is in the form of a ratio, where the numerator is quality-cost dollars and the

denominator is some measure of activity, such as (1) hours of direct production labor, (2) dol-

lars of direct production labor, (3) dollars of processing costs, (4) dollars of manufacturing

cost, (5) dollars of sales, or (6) units of product.

Upper management may want a standard against which to compare the current quality-

cost figures. It is difficult to obtain absolute standards and almost as difficult to obtain quality-

cost levels of other companies in the same industry. Therefore, the usual approach is to com-

pare current performance with past performance so that, in effect, quality-cost programs

report variances from past performance. These trend analyses are primarily a device for

detecting departures from standard and for bringing them to the attention of the appropriate

managers. They are not necessarily in and of themselves a device for ensuring quality

improvements.

This brings us to an interesting observation: Some quality-cost collection and analysis

efforts fail; that is, a number of companies have started quality-cost analysis activities, used

them for some time, and then abandoned the programs as ineffective. There are several rea-

sons why this occurs. Chief among these is failure to use quality-cost information as a mech-

anism for generating improvement opportunities. If we use quality cost information as a

scorekeeping tool only, and do not make conscious efforts to identify problem areas and

develop improved operating procedures and processes, then the programs will not be totally

successful.

Another reason why quality-cost collection and analysis don’t lead to useful results is

that managers become preoccupied with perfection in the cost figures. Overemphasis in treat-

ing quality costs as part of the accounting systems rather than as a management control tool

is a serious mistake. This approach greatly increases the amount of time required to develop

the cost data, analyze them, and identify opportunities for quality improvements. As the time

required to generate and analyze the data increases, management becomes more impatient

and less convinced of the effectiveness of the activity. Any program that appears to management

as going nowhere is likely to be abandoned.

A final reason for the failure of a quality-cost program is that management often under-

estimates the depth and extent of the commitment to prevention that must be made. The author

has had numerous opportunities to examine quality cost data in many companies. In compa-

nies without effective quality improvement programs, the dollars allocated to prevention rarely

exceed 1% to 2% of revenue. This must be increased to a threshold of about 5% to 6% of rev-

enue, and these additional prevention dollars must be spent largely on the technical methods

of quality improvement, and not on establishing programs such as TQM, Zero Defects, or other

similar activities. If management is persistent in this effort, then the cost of quality will

decrease substantially. These cost savings will typically begin to occur in one to two years,

although it could be longer in some companies.
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1.4.5 Legal Aspects of Quality 

Consumerism and product liability are important reasons why quality assurance is an impor-

tant business strategy. Consumerism is in part due to the seemingly large number of failures

in the field of consumer products and the perception that service quality is declining. Highly

visible field failures often prompt the questions of whether today’s products are as good as

their predecessors and whether manufacturers are really interested in quality. The answer to

both of these questions is yes. Manufacturers are always vitally concerned about field failures

because of heavy external failure costs and the related threat to their competitive position.

Consequently, most producers have made product improvements directed toward reducing

field failures. For example, solid-state and integrated-circuit technologies have greatly reduced

the failure of electronic equipment that once depended on the electron tube. Virtually every

product line of today is superior to that of yesterday.

Consumer dissatisfaction and the general feeling that today’s products are inferior to

their predecessors arise from other phenomena. One of these is the explosion in the number

of products. For example, a 1% field-failure rate for a consumer appliance with a production

volume of 50,000 units per year means 500 field failures. However, if the production rate is

500,000 units per year and the field-failure rate remains the same, then 5,000 units will fail

in the field. This is equivalent, in the total number of dissatisfied customers, to a 10% failure

rate at the lower production level. Increasing production volume increases the liability exposure
of the manufacturer. Even in situations in which the failure rate declines, if the production

volume increases more rapidly than the decrease in failure rate, the total number of customers

who experience failures will still increase.

A second aspect of the problem is that consumer tolerance for minor defects and aes-

thetic problems has decreased considerably, so that blemishes, surface-finish defects, noises,

and appearance problems that were once tolerated now attract attention and result in adverse

consumer reaction. Finally, the competitiveness of the marketplace forces many manufacturers

to introduce new designs before they are fully evaluated and tested in order to remain compet-

itive. These “early releases” of unproved designs are a major reason for new product quality

failures. Eventually, these design problems are corrected, but the high failure rate connected

with new products often supports the belief that today’s quality is inferior to that of yesterday.

Product liability is a major social, market, and economic force. The legal obligation of

manufacturers and sellers to compensate for injury or damage caused by defective products is

not a recent phenomenon. The concept of product liability has been in existence for many

years, but its emphasis has changed recently. The first major product liability case occurred in

1916 and was tried before the New York Court of Appeals. The court held that an automobile

manufacturer had a product liability obligation to a car buyer, even though the sales contract

was between the buyer and a third party—namely, a car dealer. The direction of the law has

always been that manufacturers or sellers are likely to incur a liability when they have been

unreasonably careless or negligent in what they have designed, or produced, or how they have

produced it. In recent years, the courts have placed a more stringent rule in effect called strict
liability. Two principles are characteristic of strict liability. The first is a strong responsibility

for both manufacturer and merchandiser, requiring immediate responsiveness to unsatisfactory

quality through product service, repair, or replacement of defective product. This extends into

the period of actual use by the consumer. By producing a product, the manufacturer and seller

must accept responsibility for the ultimate use of that product—not only for its performance,

but also for its environmental effects, the safety aspects of its use, and so forth.

The second principle involves advertising and promotion of the product. Under strict

product liability all advertising statements must be supportable by valid company quality or

certification data, comparable to that now maintained for product identification under regula-

tions for such products as automobiles.
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These two strict product liability principles result in strong pressure on manufacturers,

distributors, and merchants to develop and maintain a high degree of factually based evidence

concerning the performance and safety of their products. This evidence must cover not only

the quality of the product as it is delivered to the consumer, but also its durability or reliability,

its protection from possible side effects or environmental hazards, and its safety aspects in

actual use. A strong quality-assurance program can help management in ensuring that this

information will be available, if needed.

1.4.6 Implementing Quality Improvement 

In the past few sections we have discussed the philosophy of quality improvement, the link

between quality and productivity, and both economic and legal implications of quality. These

are important aspects of the management of quality within an organization. There are certain

other aspects of the overall management of quality that warrant some attention.

Management must recognize that quality is a multifaceted entity, incorporating the

eight dimensions we discussed in Section 1.1.1. For convenient reference, Table 1.7 summa-

rizes these quality dimensions.

A critical part of the strategic management of quality within any business is the

recognition of these dimensions by management and the selection of dimensions along which

the business will compete. It will be very difficult to compete against companies that can suc-

cessfully accomplish this part of the strategy.

A good example is the Japanese dominance of the videocassette recorder (VCR) market.

The Japanese did not invent the VCR; the first units for home use were designed and produced

in Europe and North America. However, the early VCRs produced by these companies were

very unreliable and frequently had high levels of manufacturing defects. When the Japanese

entered the market, they elected to compete along the dimensions of reliability and confor-

mance to standards (no defects). This strategy allowed them to quickly dominate the market.

In subsequent years, they expanded the dimensions of quality to include added features,

improved performance, easier serviceability, improved aesthetics, and so forth. They have

used total quality as a competitive weapon to raise the entry barrier to this market so high that

it is virtually impossible for a new competitor to enter.

Management must do this type of strategic thinking about quality. It is not necessary

that the product be superior in all dimensions of quality, but management must select and
develop the “niches” of quality along which the company can successfully compete.

Typically, these dimensions will be those that the competition has forgotten or ignored. The

American automobile industry has been severely impacted by foreign competitors who

expertly practiced this strategy.

The critical role of suppliers in quality management must not be forgotten. In fact, sup-

plier selection and supply chain management may be the most critical aspects of successful

quality management in industries such as automotive, aerospace, and electronics, where a

very high percentage of the parts in the end item are manufactured by outside suppliers. Many

companies have instituted formal supplier quality-improvement programs as part of their own

internal quality-improvement efforts. Selection of suppliers based on quality, schedule, and
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The Eight Dimensions of Quality from Section 1.1.1

1. Performance 5. Aesthetics

2. Reliability 6. Features

3. Durability 7. Perceived quality

4. Serviceability 8. Conformance to standards 
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cost, rather than on cost alone, is also a vital strategic management decision that can have a

long-term significant impact on overall competitiveness.

It is also critical that management recognize that quality improvement must be a total,

companywide activity, and that every organizational unit must actively participate. Obtaining

this participation is the responsibility of (and a significant challenge to) senior management.

What is the role of the quality-assurance organization in this effect? The responsibility of

quality assurance is to assist management in providing quality assurance for the companies’

products. Specifically, the quality-assurance function is a technology warehouse that contains

the skills and resources necessary to generate products of acceptable quality in the market-

place. Quality management also has the responsibility for evaluating and using quality-cost

information for identifying improvement opportunities in the system, and for making these

opportunities known to higher management. It is important to note, however, that the quality
function is not responsible for quality. After all, the quality organization does not design,

manufacture, distribute, or service the product. Thus, the responsibility for quality is distrib-

uted throughout the entire organization.

The philosophies of Deming, Juran, and Feigenbaum imply that responsibility for qual-

ity spans the entire organization. However, there is a danger that if we adopt the philosophy

that “quality is everybody’s job,” then quality will become nobody’s job. This is why quality

planning and analysis are important. Because quality improvement activities are so broad, suc-

cessful efforts require, as an initial step, top management commitment. This commitment

involves emphasis on the importance of quality, identification of the respective quality respon-

sibilities of the various organizational units, and explicit accountability for quality improve-

ment of all managers and employees in the company.

Finally, strategic management of quality in an organization must involve all three com-

ponents discussed earlier: quality planning, quality assurance, and quality control and
improvement. Furthermore, all of the individuals in the organization must have an under-

standing of the basic tools of quality improvement. Central among these tools are the ele-

mentary statistical concepts that form the basis of process control and that are used for the

analysis of process data. It is increasingly important that everyone in an organization, from

top management to operating personnel, have an awareness of basic statistical methods and

of how these methods are useful in manufacturing, engineering design and development, and

in the general business environment. Certain individuals must have higher levels of skills; for

example, those engineers and managers in the quality-assurance function would generally be

experts in one or more areas of process control, reliability engineering, design of experiments,

or engineering data analysis. However, the key point is the philosophy that statistical method-

ology is a language of communication about problems that enables management to mobilize

resources rapidly and to efficiently develop solutions to such problems. Because Six Sigma

or lean Six Sigma incorporates most of the elements for success that we have identified, it has

proven to be a very effective framework for implementing quality improvement.

Acceptance sampling

Appraisal costs

Critical-to-quality (CTQ)

Deming’s 14 points

Designed experiments

Dimensions of quality

Fitness for use

Internal and external failure costs

ISI 9000:2005

The Juran Trilogy

Lean

The Malcolm Baldrige National Quality Award

Nonconforming product or service

Prevention costs

Product liability

Quality assurance

Important Terms and Concepts
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Quality characteristics

Quality control and improvement

Quality engineering

Quality of conformance

Quality of design

Quality planning

Quality systems and standards

Six Sigma

Specifications

Statistical process control (SPC)

Total quality management (TQM)

Variability

1.1. Why is it difficult to define quality?

1.2. Briefly discuss the eight dimensions of quality. Does

this improve our understanding of quality?

1.3. Select a specific product or service, and discuss how

the eight dimensions of quality impact its overall

acceptance by consumers.

1.4. Is there a difference between quality for a manufac-

tured product and quality for a service? Give some

specific examples.

1.5. Can an understanding of the multidimensional nature

of quality lead to improved product design or better

service?

1.6. What are the internal customers of a business? Why

are they important from a quality perspective?

1.7. Is the Deming philosophy more or less focused on

statistical methods than Juran?

1.8. What is the Juran Trilogy?

1.9. What are the three primary technical tools used for

quality control and improvement?

1.10. Distinguish among quality planning, quality assur-

ance, and quality control and improvement.

1.11. What is the Malcolm Baldrige National Quality

Award? Who is eligible for the award?

1.12. Who was Walter A. Shewhart?

1.13. What is meant by the cost of quality?

1.14. Are internal failure costs more or less important than

external failure costs?

1.15. What is a Six Sigma process?

1.16. Discuss the statement “Quality is the responsibility

of the quality assurance organization.”

1.17. Compare and contrast Deming’s and Juran’s philoso-

phies of quality.

1.18. What would motivate a business to compete for the

Malcolm Baldrige National Quality Award?

1.19. Most of the quality management literature states that

without top management leadership, quality improve-

ment will not occur. Do you agree or disagree with

this statement? Discuss why.

1.20. What are the three components of the ISO 9000:2005

standard?

1.21. Explain why it is necessary to consider variability

around the mean or nominal dimension as a measure

of quality.

1.22. Hundreds of companies and organizations have won

the Baldrige Award. Collect information on at least

two winners. What success have they had since receiv-

ing the award?

1.23. Reconsider the fast-food restaurant visit discussed in

the chapter. What would be the results for the family

of four on each visit and annually if the probability of

good quality on each meal component was increased

to 0.999?

1.24. Reconsider the fast-food restaurant visit discussed in

the chapter. What levels of quality would you con-

sider acceptable for the family of four on each visit

and annually? What probability of good quality on

each meal component would be required in order to

achieve these targets?

1.25. Suppose you had the opportunity to improve qual-

ity in a hospital. Which areas of the hospital would

you look to as opportunities for quality improve-

ment? What metrics would you use as measures of

quality?

1.26. How can lean and Six Sigma work together to elim-

inate waste?

1.27. What is the Toyota Production System?

1.28. What were Henry Ford’s contributions to quality?

1.29. How could reducing the mean delivery time of a

product from ten days to two days result in quality

improvement?

1.30. What are the objectives of a supplier development

program?

1.31. We identified reliability as a dimension of quality.

Can reliability be a dimension of service quality?

How?

Discussion Questions and Exercises
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The DMAIC Process

2.1 OVERVIEW OF DMAIC
2.2 THE DEFINE STEP
2.3 THE MEASURE STEP
2.4 THE ANALYZE STEP
2.5 THE IMPROVE STEP
2.6 THE CONTROL STEP

2.7 EXAMPLES OF DMAIC
2.7.1 Litigation Documents
2.7.2 Improving On-Time Delivery
2.7.3 Improving Service Quality

in a Bank

22
CHAPTER OUTLINE

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Quality and process improvement occurs most effectively on a project-by-project basis.

DMAIC (typically pronounced “duh-MAY-ick”) is a structured five-step problem-solving

procedure that can be used to successfully complete projects by proceeding through and

implementing solutions that are designed to solve root causes of quality and process

problems, and to establish best practices to ensure that the solutions are permanent and

can be replicated in other relevant business operations. This chapter explains the DMAIC

procedure and introduces many of the tools used in each step. Many of the DMAIC tools

are discussed in greater detail in subsequent textbook chapters, and references to those

chapters are provided. Examples of projects that utilize DMAIC also are presented.

After careful study of this chapter, you should be able to do the following:

1. Understand the importance of selecting good projects for improvement activities

2. Explain the five steps of DMAIC: Define, Measure, Analyze, Improve, and

Control

3. Explain the purpose of tollgate reviews

4. Understand the decision-making requirements of the tollgate review for

each DMAIC step

5. Know when and when not to use DMAIC

6. Understand how DMAIC fits into the framework of the Six Sigma philosophy

48

2.1 Overview of DMAIC

DMAIC is a structured problem-solving procedure widely used in quality and process

improvement. It is often associated with Six Sigma activities, and almost all implementations

of Six Sigma use the DMAIC process for project management and completion. However,
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DMAIC is not necessarily formally tied to Six Sigma, and can be used regardless of an organi-

zation’s use of Six Sigma. It is a very general procedure. For example, lean projects that focus

on cycle time reduction, throughput improvement, and waste elimination can be easily and effi-

ciently conducted using DMAIC.

The letters DMAIC form an acronym for the five steps; Define, Measure, Analyze,
Improve, and Control. These steps are illustrated graphically in Figure 2.1. Notice that there

are tollgates between each of the major steps in DMAIC. At a tollgate, a project team pre-

sents its work to managers and “owners” of the process. In a Six Sigma organization, the toll-

gate participants also would include the project champion, Master Black Belts, and other

Black Belts not working directly on the project. Tollgates are where the project is reviewed

to ensure that it is on track, and they provide a continuing opportunity to evaluate whether the

team can successfully complete the project on schedule. Tollgates also present an opportunity

to provide guidance regarding the use of specific technical tools and other information about

the problem. Organization problems and other barriers to success—and strategies for dealing

with them—also often are identified during tollgate reviews. Tollgates are critical to the over-

all problem-solving process; It is important that these reviews be conducted very soon after

the team completes each step.

The DMAIC structure encourages creative thinking about the problem and its solution

within the definition of the original product, process, or service. When the process is operat-

ing so badly that it is necessary to abandon the original process and start over, or if it is deter-

mined that a new product or service is required, then the Improve step of DMAIC actually

becomes a Design step. In a Six Sigma organization, that probably means that a Design for

Six Sigma (DFSS) effort is required. (See Chapter 1 for a discussion of DFSS.)

One of the reasons that DMAIC is so successful is that it focuses on the effective use

of a relatively small set of tools. Table 2.1 shows the tools, along with the DMAIC steps

where they are most likely to be used, and where the tools are discussed and or illustrated in

this textbook. [Other tools, or variations of the ones shown here, are used occasionally in

DMAIC. Some books on Six Sigma give useful overviews of many of these other tools; for

example, see George (2002) and Snee and Hoerl (2005).]

Projects are an essential aspect of quality and process improvement. Projects are an

integral component of Six Sigma, but quality and business improvement via projects traces its

origins back to Juran, who always urged a project-by-project approach to improving quality.

■ F I G U R E  2 . 1 The DMAIC process.

• Identify and/or
   validate the
   business
   improvement
   opportunity
• Define critical
   customer
   requirements
• Document (map)
   processes
• Establish project
   charter, build
   team

Objectives

Define
Opportunities

Define

Measure
Performance

Measure

Analyze
Opportunity

Analyze

Improve
Performance

Improve

Control
Performance

Control

Objectives

• Determine what
   to measure
• Manage
   measurement
   data collection
• Develop and
   validate
   measurement
   systems
• Determine Sigma
   performance
   level

Objectives

• Analyze data to
   understand reasons
   for variation and
   identify potential
   root causes
• Determine process
   capability, throughput,
   cycle time
• Formulate,
   investigate, and
   verify root cause
   hypotheses 

Objectives

• Generate and
   quantify
   potential solutions
• Evaluate and
   select final
   solution
• Verify and gain
   approval for
   final solution

Objectives

• Develop
   ongoing process
   management
   plans
• Mistake-proof
   process
• Monitor and
   control critical
   process
   characteristics
• Develop out-of-
   control action
   plans

2.1 Overview of DMAIC 49
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Selecting, managing, and completing projects successfully is critical in deploying any sys-

tematic business improvement effort, not just Six Sigma.

A project should represent a potential breakthrough in the sense that it will result in a

major improvement in the product or service. Project impact should be evaluated in terms of

its financial benefit to the business, as measured and evaluated by the finance or accounting

unit; this helps ensure more objective project evaluations. Obviously, projects with high

potential impact are most desirable. This financial systems integration is standard practice

in Six Sigma and should be a part of any DMAIC project, even if the organization isn’t cur-

rently engaged in a Six Sigma deployment.

The value opportunity of projects must be clearly identified and projects must be well

aligned with corporate business objectives at all levels. At the highest (corporate) level, the

stockholders, top executives, members of the board of directors, and business analysts who

guide investors typically are interested in return on equity, return on invested capital, stock

price, dividends, earnings, earnings per share of stock, growth in operating income, sales

growth, generation of new designs, products and patents, and development of future business

leaders. At the business unit or operations level, managers and executives are interested in fac-

tory metrics such as yield, cycle time and throughput, profit and loss optimization, customer

satisfaction, delivery and due-date performance, cost reduction, safety of employees and cus-

tomers, efficient use of assets, new product introduction, sales and marketing effectiveness,

development of people, and supply chain performance (cost, quality, service). Aligning 

projects with both business-unit goals and corporate-level metrics helps ensure that the best

projects are considered for selection.

The first types of projects that companies usually undertake are designed to demon-

strate the potential success of an overall improvement effort. These projects often focus on

50 Chapter 2 ■ The DMAIC Process

■ TA B L E  2 . 1  

Tools Used in DMAIC

Tool Define Measure Analyze Improve Control

Project charter Chapter 2

Process maps & Chapter 2 Chapter 5
flow charts

Cause-and-effect Chapter 5
analysis

Process capability Chapters 6, 8
analysis

Hypothesis tests, Chapter 4
confidence intervals

Regression analysis, Chapter 4
other multivariate 
methods

Gauge R&R Chapter 8

Failure mode & Chapter 2
effects analysis

Designed Chapters Chapters 
experiments 13, 14 13, 14

SPC and process Chapters 5, 6, Chapters 5, Chapters 5,
control plans 7, 9, 10, 11, 6, 7, 9, 10, 6, 7, 9, 10,

12 11, 12 11, 12
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the areas of the business that are full of opportunities, but they also often are driven by 

current problems. Issues that are identified by customers or from customer satisfaction (or

dissatisfaction) feedback, such as analysis of field failures and customer returns, sometimes

are the source of these projects.

Such initial opportunistic projects often are successful, but they typically are not the

basis for long-term success; most easy opportunities soon are exhausted. A different approach

to project definition and selection needs to evolve. One widely used approach is basing projects

on strategic business objectives. In this approach, defining the key set of critical business

processes and the metrics that drive them is the first step toward successful project develop-

ment. Linking those processes together to form an integrated view of the business then fol-

lows. Projects that focus on the key business metrics and strategic objectives, as well as the

interfaces among critical business processes, are likely to have significant value to the com-

pany. The only risks here are that the projects may be very large, and still may focus only on

some narrow aspect of the business, which may reduce the organization’s overall exposure to

the improvement process and reduce or delay its impact. A good project selection and man-

agement system prevents such problems from occurring. Many companies have set up formal

project selection committees and conducted regular meetings between customers and the pro-

ject selection committees to help meet that goal. Ideally, projects are strategic and well

aligned with corporate metrics, and are not local (tactical). Local projects often are reduced

to firefighting, their solutions rarely are broadly implemented in other parts of the business,

and too often the solutions aren’t permanent; within a year or two, the same old problems

reoccur. Some companies use a dashboard system—which graphically tracks trends and

results—to effectively facilitate the project selection and management process.

Project selection is probably the most important part of any business improvement

process. Projects should be able to be completed within a reasonable time frame and should

have real impact on key business metrics. This means that a lot of thought must go into defin-

ing the organization’s key business processes, understanding their interrelationships, and

developing appropriate performance measures.

What should be considered when evaluating proposed projects? Suppose that a com-

pany is operating at the 4s level (that is, about 6,210 ppm defective, assuming the 1.5s shift

in the mean that is customary with Six Sigma applications). This is actually reasonably good

performance, and many of today’s organizations have achieved the 4–4.5s level of perfor-

mance for many of their key business processes. The objective is to achieve the 6s perfor-

mance level (3.4 ppm). What implications does this have for project selection criteria?

Suppose that the criterion is a 25% annual improvement in quality level. Then to reach the

Six Sigma performance level, it will take x years, where x is the solution to this:

3.4 = 6210(1 − 0.25)x

It turns out that x is about 26 years. Clearly, a goal of improving performance by 25% annu-

ally isn’t going to work—no organization will wait for 26 years to achieve its goal. Quality

improvement is a never-ending process, but no management team that understands how to do

the above arithmetic will support such a program.

Raising the annual project goal to 50% helps a lot, reducing x to about 11 years, a

somewhat more realistic time frame. If the business objective is to be a Six Sigma organi-

zation in 5 years, then the annual project improvement goal should be about 75%.

These calculations are the reasons why many quality-improvement authorities urge

organizations to concentrate their efforts on projects that have real impact and high payback

to the organization. By that they usually mean projects that achieve at least a 50% annual

return in terms of quality improvement.

Is this level of improvement possible? The answer is yes, and many companies have

achieved this rate of improvement. For example, Motorola’s annual improvement rate exceeded
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52 Chapter 2 ■ The DMAIC Process

65% during the first few years of its Six Sigma initiative. To do this consistently, however,

companies must devote considerable effort to project definition, management, execution, and

implementation. It’s also why the best possible people in the organization should be involved in

these activities.

2.2 The Define Step

The objective of the Define step of DMAIC is to identify the project opportunity and to 

verify or validate that it represents legitimate breakthrough potential. A project must be

important to customers (voice of the customer) and important to the business. Stakeholders

who work in the process and its downstream customers need to agree on the potential useful-

ness of the project.

One of the first items that must be completed in the Define step is a project charter. This

is a short document (typically up to two pages) that contains a description of the project and its

scope, the start and the anticipated completion dates, an initial description of both primary and

secondary metrics that will be used to measure success and how those metrics align with busi-

ness unit and corporate goals, the potential benefits to the customer, the potential financial ben-

efits to the organization, milestones that should be accomplished during the project, the team

members and their roles, and any additional resources that are likely to be needed to complete

the project. Figure 2.2 shows a project charter for a customer product return process. Typically,

the project sponsor (or champion in a Six Sigma implementation) plays a significant role in

developing the project charter, and may use a draft charter as a basis for organizing the team and

assigning responsibility for project completion. Generally, a team should be able to complete a

project charter in two to four working days; if it takes longer, the scope of the project may be

too big. The charter should also identify the customer’s critical-to-quality characteristics
(CTQs) that are impacted by the project.

Graphic aids are also useful in the Define step; The most common ones used include

process maps and flow charts, value stream maps (see Chapter 5), and the SIPOC diagram. Flow

Business Case

• This project supports the business quality 
goals, namely (a) reduce customer resolution 
cycle time by x% and (b) improve customer 
satisfaction by y%.

Goal Statement

• Reduce the overall response cycle time 
for returned product from our customers 
by x% year to year.

Project Plan

• Activity Start End
Define 6/04 6/30
Measure 6/18 7/30
Analyze 7/15 8/30
Improve 8/15 9/30
Control 9/15 10/30

Track Benefits 11/01

Opportunity Statement 

• An opportunity exists to close the gap between 
our customer expectations and our actual 
performance by reducing the cycle time of the 
customer return process.

Project Scope

• Overall response cycle time is measured from 
the receipt of a product return to the time that
either the customer has the product replaced or
the customer is reimbursed.

Team 

• Team Sponsor

• Team Leader

• Team Members

■ F I G U R E  2 . 2 A project charter for a customer returns process.
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2.2 The Define Step 53

charts and value stream maps provide much visual detail and facilitate understanding about

what needs to be changed in a process. The SIPOC diagram is a high-level map of a process.

SIPOC is an acronym for Suppliers, Input, Process, Output, and Customers, defined as:

1. The Suppliers are those who provide the information, material, or other items that are

worked on in the process.

2. The Input is the information or material provided.

3. The Process is the set of steps actually required to do the work.

4. The Output is the product, service, or information sent to the customer.

5. The Customer is either the external customer or the next step in the internal business.

SIPOC diagrams give a simple overview of a process and are useful for understanding

and visualizing basic process elements. They are especially useful in the nonmanufacturing

setting and in service systems in general, where the idea of a process or process thinking is

often hard to understand. That is, people who work in banks, financial institutions, hospitals,

accounting firms, e-commerce, government agencies, and most transactional/service organi-

zations don’t always see what they do as being part of a process. Constructing a process map

can be an eye-opening experience, as it often reveals aspects of the process that people were

not aware of or didn’t fully understand.

Figure 2.3 is a SIPOC diagram developed by a company for its internal coffee service

process. The team was asked to reduce the number of defects and errors in the process and the

cycle time to prepare the coffee. The first step performed was to create the SIPOC diagram to

identify the basic elements of the process that the team was planning to improve.

The team also will need to prepare an action plan for moving forward to the other

DMAIC steps. This will include individual work assignments and tentative completion dates.

Particular attention should be paid to the Measure step as it will be performed next.

Finally, the team should prepare for the Define step tollgate review, which should focus

on the following:

1. Does the problem statement focus on symptoms, and not on possible causes or

solutions?

2. Are all the key stakeholders identified?

3. What evidence is there to confirm the value opportunity represented by this project?

4. Has the scope of the project been verified to ensure that it is neither too small nor too

large?

5. Has a SIPOC diagram or other high-level process map been completed?

6. Have any obvious barriers or obstacles to successful completion of the project been

ignored?

7. Is the team’s action plan for the Measure step of DMAIC reasonable?

■ F I G U R E  2 . 3 A SIPOC diagram.

Starbucks
Purifier
Utility company

Suppliers

Ground coffee
Water filter
Electricity

Inputs

Hot
Taste
Correct strength
Correct volume

Output

Consumer

Customer

Collect
materials

Brew
coffee

Pour coffee
from pot

Process
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2.3 The Measure Step

The purpose of the Measure step is to evaluate and understand the current state of the process.

This involves collecting data on measures of quality, cost, and throughput/cycle time. It is impor-

tant to develop a list of all of the key process input variables (sometimes abbreviated KPIV)

and the key process output variables (KPOV). The KPIV and KPOV may have been identified

at least tentatively during the Define step, but they must be completely defined and measured dur-

ing the Measure step. Important factors may be the time spent to perform various work activities

and the time that work spends waiting for additional processing. Deciding what and how much

data to collect are important tasks; there must be sufficient data to allow for a thorough analysis

and understanding of current process performance with respect to the key metrics.

Data may be collected by examining historical records, but this may not always be sat-

isfactory, as the history may be incomplete, the methods of record keeping may have changed

over time, and, in many cases, the desired information never may have been retained.

Consequently, it is often necessary to collect current data through an observational study. This

may be done by collecting process data over a continuous period of time (such as every hour

for two weeks) or it may be done by sampling from the relevant data streams. When there are

many human elements in the system, work sampling may be useful. This form of sampling

involves observing workers at random times and classifying their activity at that time into

appropriate categories. In transactional and service businesses, it may be necessary to develop

appropriate measurements and a measurement system for recording the information that are

specific to the organization. This again points out a major difference between manufacturing

and services: Measurement systems and data on system performance often exist in manufac-

turing, as the necessity for the data is usually more obvious in manufacturing than in services.

The data that are collected are used as the basis for determining the current state or

baseline performance of the process. Additionally, the capability of the measurement system

should be evaluated. This may be done using a formal gauge capability study (called gauge
repeatability and reproducibility, or gauge R&R, discussed in Chapter 8). At this point, it is

also a good idea to begin to divide the process cycle time into value-added and non-value-

added activities and to calculate estimates of process cycle efficiency and process cycle time,

if appropriate (see Chapter 1).

The data collected during the Measure step may be displayed in various ways such as

histograms, stem-and-leaf diagrams, run charts, scatter diagrams, and Pareto charts. Chapters

3 and 4 provide information on these techniques.

At the end of the Measure step, the team should update the project charter (if neces-

sary), reexamine the project goals and scope, and reevaluate team makeup. They may con-

sider expanding the team to include members of downstream or upstream business units if the

Measure activities indicate that these individuals will be valuable in subsequent DMAIC

steps. Any issues or concerns that may impact project success need to be documented and

shared with the process owner or project sponsor. In some cases, the team may be able to

make quick, immediate recommendations for improvement, such as eliminating an obvious

non-value-added step or removing a source of unwanted variability.

Finally, it is necessary to prepare for the Measure step tollgate review. Issues and expec-

tations that will be addressed during this tollgate include the following:

1. There must be a comprehensive process flow chart or value stream map. All major

process steps and activities must be identified, along with suppliers and customers. If

appropriate, areas where queues and work-in-process accumulate should be identified

and queue lengths, waiting times, and work-in-process levels reported.

2. A list of KPIVs and KPOVs must be provided, along with identification of how the

KPOVs related to customer satisfaction or the customers CTQs.

54 Chapter 2 ■ The DMAIC Process
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2.4 The Analyze Step 55

3. Measurement systems capability must be documented.

4. Any assumptions that were made during data collection must be noted.

5. The team should be able to respond to requests such as, “Explain where that data came

from,” and questions such as, “How did you decide what data to collect?” “How valid is

your measurement system?” and “Did you collect enough data to provide a reasonable

picture of process performance?”

2.4 The Analyze Step

In the Analyze step, the objective is to use the data from the Measure step to begin to deter-

mine the cause-and-effect relationships in the process and to understand the different sources

of variability. In other words, in the Analyze step we want to determine the potential causes

of the defects, quality problems, customer issues, cycle time and throughput problems, or

waste and inefficiency that motivated the project. It is important to separate the sources of

variability into common causes and assignable causes. We discuss these sources of vari-

ability in Chapter 4 but, generally speaking, common causes are sources of variability that are

embedded in the system or process itself, while assignable causes usually arise from an exter-

nal source. Removing a common cause of variability usually means changing the process,

while removing an assignable cause usually involves eliminating that specific problem. A

common cause of variability might be inadequate training of personnel processing insurance

claims, while an assignable cause might be a tool failure on a machine.

There are many tools that are potentially useful in the Analyze step. Among these are

control charts, which are useful in separating common cause variability from assignable

cause variability; statistical hypothesis testing and confidence interval estimation, which

can be used to determine if different conditions of operation produce statistically significantly

different results and to provide information about the accuracy with which parameters of

interest have been estimated; and regression analysis, which allows models relating outcome

variables of interest to independent input variables to be built. (Chapter 4 contains a discus-

sion of hypothesis tests, confidence intervals, and regression. Chapter 5 introduces control

charts, which are very powerful tools with many applications. Many chapters in Parts III and

IV of the book discuss different types and applications of control charts.)

Discrete-event computer simulation is another powerful tool useful in the Analyze step.

It is particularly useful in service and transactional businesses, although its use is not confined

to those types of operations. For example, there have been many successful applications of 

discrete-event simulation in studying scheduling problems in factories to improve cycle time

and throughput performance. In a discrete-event simulation model, a computer model simulates

a process in an organization. For example, a computer model could simulate what happens

when a home mortgage loan application enters a bank. Each loan application is a discrete

event. The arrival rates, processing times, and even the routing of the applications through the

bank’s process are random variables. The specific realizations of these random variables influ-

ence the backlogs or queues of applications that accumulate at the different processing steps.

Other random variables can be defined to model the effect of incomplete applications, erro-

neous information and other types of errors and defects, and delays in obtaining information from

outside sources, such as credit histories. By running the simulation model for many loans, reli-

able estimates of cycle time, throughput, and other quantities of interest can be obtained.

Failure modes and effects analysis (FMEA) is another useful tool during the Analyze

stage. FMEA is used to prioritize the different potential sources of variability, failures, errors,

or defects in a product or process relative to three criteria:

1. The likelihood that something will go wrong (ranked on a 1 to 10 scale, with 1 = not

likely and 10 = almost certain)
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2. The ability to detect a failure, defect, or error (ranked on a 1 to 10 scale, with 1 = very

likely to detect and 10 = very unlikely to detect)

3. The severity of a failure, defect, or error (ranked on a 1 to 10 scale, with 1 = little impact

and 10 = extreme impact, including extreme financial loss, injury, or loss of life)

The three scores for each potential source of variability, failure, error, or defect are multiplied

together to obtain a risk priority number (RPN). Sources of variability or failures with the

highest RPNs are the focus for further process improvement or redesign efforts.

The analyze tools are used with historical data or data that was collected in the Measure

step. This data is often very useful in providing clues about potential causes of the problems

that the process is experiencing. Sometimes these clues can lead to breakthroughs and actu-

ally identify specific improvements. In most cases, however, the purpose of the Analyze step

is to explore and understand tentative relationships between and among process variables and

to develop insight about potential process improvements. A list of specific opportunities and

root causes that are targeted for action in the Improve step should be developed. Improvement

strategies will be further developed and actually tested in the Improve step.

In preparing for the analyze tollgate review, the team should consider the following

issues and potential questions:

1. What opportunities are going to be targeted for investigation in the Improve step?

2. What data and analysis support that investigating the targeted opportunities and

improving/eliminating them will have the desired outcome on the KPOVs and customer

CTQs that were the original focus of the project?

3. Are there other opportunities that are not going to be further evaluated? If so, why?

4. Is the project still on track with respect to time and anticipated outcomes? Are any addi-

tional resources required at this time?

2.5 The Improve Step

In the Measure and Analyze steps, the team focused on deciding which KPIVs and KPOVs

to study, what data to collect, how to analyze and display the data, potential sources of

variability, and how to interpret the data they obtained. In the Improve step, they turn to

creative thinking about the specific changes that can be made in the process and other

things that can be done to have the desired impact on process performance.

A broad range of tools can be used in the Improve step. Redesigning the process to

improve work flow and reduce bottlenecks and work-in-process will make extensive use of

flow charts and/or value stream maps. Sometimes mistake-proofing (designing an operation

so that it can be done only one way—the right way) an operation will be useful. Designed

experiments are probably the most important statistical tool in the Improve step. Designed

experiments can be applied either to an actual physical process or to a computer simulation

model of that process, and can be used both for determining which factors influence the out-

come of a process and for determining the optimal combination of factor settings. (Designed

experiments are discussed in detail in Part V.)

The objectives of the Improve step are to develop a solution to the problem and to pilot
test the solution. The pilot test is a form of confirmation experiment: It evaluates and doc-

uments the solution and confirms that the solution attains the project goals. This may be an

iterative activity, with the original solution being refined, revised, and improved several times

as a result of the pilot test’s outcome.

The tollgate review for the Improve step should involve the following:

1. Adequate documentation of how the problem solution was obtained

2. Documentation on alternative solutions that were considered
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3. Complete results of the pilot test, including data displays, analysis, experiments, and

simulation analyses

4. Plans to implement the pilot test results on a full-scale basis [This should include dealing

with any regulatory requirements (FDA, OSHA, legal, for example), personnel concerns

(such as additional training requirements), or impact on other business standard practices.]

5. Analysis of any risks of implementing the solution, and appropriate risk-management plans

2.6 The Control Step

The objectives of the Control step are to complete all remaining work on the project and to

hand off the improved process to the process owner along with a process control plan and

other necessary procedures to ensure that the gains from the project will be institutionalized.

That is, the goal is to ensure that the gains are of help in the process and, if possible, the

improvements will be implemented in other similar processes in the business.

The process owner should be provided with before and after data on key process met-

rics, operations and training documents, and updated current process maps. The process con-

trol plan should be a system for monitoring the solution that has been implemented, includ-

ing methods and metrics for periodic auditing. Control charts are an important statistical tool

used in the Control step of DMAIC; many process control plans involve control charts on crit-

ical process metrics.

The transition plan for the process owner should include a validation check several

months after project completion. It is important to ensure that the original results are still in

place and stable so that the positive financial impact will be sustained. It is not unusual to find

that something has gone wrong in the transition to the improved process. The ability to

respond rapidly to unanticipated failures should be factored into the plan.

The tollgate review for the Control step typically includes the following issues:

1. Data illustrating that the before and after results are in line with the project charter

should be available. (Were the original objectives accomplished?)

2. Is the process control plan complete? Are procedures to monitor the process, such as

control charts, in place?

3. Is all essential documentation for the process owner complete?

4. A summary of lessons learned from the project should be available.

5. A list of opportunities that were not pursued in the project should be prepared. This can

be used to develop future projects; it is very important to maintain an inventory of good

potential projects to keep the improvement process going.

6. A list of opportunities to use the results of the project in other parts of the business

should be prepared.

2.7 Examples of DMAIC

2.7.1 Litigation Documents

Litigation usually creates a very large number of documents. These can be internal work

papers, consultants’ reports, affidavits, court filings, documents obtained via subpoena, and

papers from many other sources. In some cases, there can be hundreds of thousands of docu-

ments and millions of pages. DMAIC was applied in the corporate legal department of

DuPont, led by DuPont lawyer Julie Mazza, who spoke about the project at an American

Society for Quality meeting [Mazza (2000)]. The case is also discussed in Snee and Hoerl

(2005). The objective was to develop an efficient process to allow timely access to needed

documents with minimal errors. Document management is extremely important in litigation;

c02TheDMAICProcess.qxd  3/16/12  11:48 AM  Page 57



it also can be time-consuming and expensive. The process was usually manual, so it was sub-

ject to human error, with lost or incorrect documents fairly common problems. In the specific

case presented by Mazza, there was an electronic database that listed and classified all of the

documents, but the documents themselves were in hard copy form.

Define. The DuPont legal function and the specific legal team involved in this spe-

cific litigation were the customers for this process. Rapid and error-free access to needed doc-

uments was essential. For example, if a request for a document could not be answered in 30

days, the legal team would have to file a request for an extension with the court. Such exten-

sions add cost and time, and detract from the credibility of the legal team. A project team

consisting of process owners, legal subject-matter experts, clerks, an information systems

specialist, and Mazza (who was also a Black Belt in Dupont’s Six Sigma program) was

formed. The team decided to focus on CTQs involving reduction of cycle time, reduction of

errors, elimination of non-value-added process activities, and reduction of costs. They began

by mapping the entire document-production process, including defining the steps performed

by DuPont legal, outside counsel, and the outside documents-management company. This

process map was instrumental in identifying non-value-added activities.

Measure. In the Measure step, the team formally measured the degree to which the

CTQs were being met by reviewing data in the electronic database; obtaining actual invoices;

reviewing copying and other labor charges, the costs of data entry, the charges for shipping,

and court fees for filing for extensions; and studying how frequently individual documents

in the database were being handled. It was difficult to accurately measure the frequency of

handling. Many of the cost categories contained non-value-added costs because of errors,

such as having to copy a different document because the wrong document had been pulled

and copied. Another error was allowing a confidential document to be copied.

Analyze. The team worked with the data obtained during the Measure step and the

knowledge of team members to identify many of the underlying causes and cost exposures.

A failure modes and effects analysis highlighted many of the most important issues that

needed to be addressed to improve the system. The team also interviewed many of the people

who worked in the process to better understand how they actually did the work and the problems

they encountered. This is often very important in nonmanufacturing and service organizations

because these types of operations can have a much greater human factor. Some of the root causes

of problems they uncovered were:

1. A high turnover rate for the contractor’s clerks

2. Inadequate training

3. Inattention to the job, causes by clerks feeling they had no ownership in the process

4. The large volume of documents

The team concluded that many of the problems in the system were the result of a manual 

document-handling system.

Improve. To improve the process, the team proposed a digital scanning system for

the documents. This solution had been considered previously, but always had been discarded

because of cost. However, the team had done a very thorough job of identifying the real costs

of the manual system and the inability of a manual system to ever really improve the situa-

tion. The better information produced during the Measure and Analyze steps allowed the team

to successfully propose a digital scanning system that the company accepted.

The team worked with DuPont’s information technology group to identify an appropriate

system, get the system in place, and scan all of the documents. They remapped the new

process and, on the basis of a pilot study, estimated that the unit cost of processing a page of
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a document would be reduced by about 50%, which would result in about $1.13 million in

savings. About 70% of the non-value-added activities in the process were eliminated. After

the new system was implemented, it was proposed for use in all of the DuPont legal functions;

the total savings were estimated at about $10 million.

Control. The Control plan involved designing the new system to automatically track

and report the estimated costs per document. The system also tracked performance on other

critical CTQs and reported the information to users of the process. Invoices from contactors

also were forwarded to the process owners as a mechanism for monitoring ongoing costs.

Explanations about how the new system worked and necessary training were provided for all

those who used the system. Extremely successful, the new system provided significant cost

savings, improvement in cycle time, and reduction of many frequently occurring errors.

2.7.2 Improving On-Time Delivery

A key customer contacted a machine tool manufacturer about poor recent performance it

had experienced regarding on-time delivery of the product. On-time deliveries were at 85%,

instead of the desired target value of 100%, and the customer could choose to exercise a

penalty clause to reduce the price by up to 15% of each tool, or about a $60,000 loss for the

manufacturer. The customer was also concerned about the manufacturer’s factory capacity

and its capability to meet its production schedule in the future. The customer represented

about $8 million of business volume for the immediate future—the manufacturer needed a

revised business process to resolve the problem or the customer might consider seeking a second

source supplier for the critical tool.

A team was formed to determine the root causes of the delivery problem and implement

a solution. One team member was a project engineer who was sent to a supplier factory, with

the purpose to work closely with the supplier, to examine all the processes used in manufac-

turing of the tool, and to identify any gaps in the processes that affected delivery. Some of the

supplier’s processes might need improvement.

Define. The objective of the project was to achieve 100% on-time delivery. The cus-

tomer had a concern regarding on-time delivery capability, and a late deliveries penalty clause

could be applied to current and future shipments at a cost to the manufacturer. Late deliveries

also would jeopardize the customer’s production schedule, and without an improved process

to eliminate the on-time delivery issue, the customer might consider finding a second source

for the tool. The manufacturer could potentially lose as much as half of the business from the

customer, in addition to incurring the 15% penalty costs. The manufacturer also would expe-

rience a delay in collecting the 80% equipment payment customarily made upon shipment.

The potential savings for meeting the on-time delivery requirement was $300,000 per

quarter. Maintaining a satisfied customer also was critical.

Measure. The contractual lead time for delivery of the tool was eight weeks. That is,

the tool must be ready for shipment eight weeks from receipt of the purchase order. The CTQ

for this process was to meet the target contractual lead time. Figure 2.4 shows the process map

for the existing process, from purchase order receipt to shipment. The contractual lead time

could be met only when there was no excursion or variation in the process. Some historical

data on this process was available, and additional data was collected over approximately a

two-month period.

Analyze. Based on the data collected from the Measure step, the team concluded that

problems areas came from:

1. Supplier quality issues: Parts failed prematurely. This caused delay in equipment final

testing due to troubleshooting or waiting for replacement parts.
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2. Purchase order process delay: Purchase orders were not processed promptly, resulting

in delayed internal project start dates.

3. Delay in customer confirmation: It took up to three days to confirm the final equipment

configuration with the customer. This delayed most of the early manufacturing steps

and complicated production scheduling.

4. Incorrect tool configuration orders: There were many processes on the customer side,

leading to frequent confusion when the customer placed the order and often resulting in

an incorrect tool configuration. This caused rework at the midstream of the manufac-

turing cycle, and contributed greatly to the delivery delay problem.

Improve. In order to meet the eight-week contractual lead time, the team knew that

it was necessary to eliminate any possible process variation, starting from receipt of the pur-

chase order to shipment of the equipment. Three major corrective actions were taken:

1. Supplier Quality Control and Improvement: An internal buy-off checklist for the sup-

plier was implemented that contained all required testing of components and subsys-

tems that had to be completed prior to shipment. This action was taken to minimize part

failures both in manufacturing and final test as well as in the field. The supplier agreed

to provide consigned critical spare parts to the manufacturer so that it could save on

shipping time for replacement parts if part failures were encountered during manufac-

turing and final testing.

2. Improve the Internal Purchase Order Process: A common e-mail address was estab-

lished to receive all purchase order notifications. Three people (a sales support engineer,

■ F I G U R E  2 . 4 The original process map.

Sales retrieves PO from the
customer Website upon
receipt of e-mail notification.

Project engineer fills out internal
order form for the supplier with
delivery date information.

Project engineer confirms order
configurations with the
customer.

Sales opens sales order, and
forwards order information
to corresponding project engineer
to verify system configuration.

Sales processes the internal
order form and completes the
internal sales order entry.

Sales seeks signature approval
from the account manager.

Sales forwards the signed sales
order to purchasing to initiate
internal purchase orders to the
supplier.

Project engineer updates sales
with scheduled tool ship date.

Purchasing updates the project
engineer with delivery date
confirmation from the supplier.

Purchasing receives order
acknowledgments from the
supplier.

Sales generates order
acknowledgment letter with
confirmed 8-week ship date
to the customer.

Project engineer opens new
Gantt chart with key milestone
checkpoints.

Project engineer receives weekly
updates from the supplier.

Upon receipt of shipment
approval from the customer,
project engineer instructs the
supplier for crating preparation.

After shipments are picked up
by freight forwarder at supplier
location, the supplier forwards
shipping document to project
engineer. 

Project engineer forwards
shipping document to Accounts
Receivable, and copy to Sales
and Service Departments.

Accounts Receivable generates
invoice to customer to collect
80% payment. Remaining 20%
will be collected upon
installation.

Project engineer verifies internal
equipment buy-off report prior to
shipment.

Project engineer forwards buy-off
report to the customer to review
and await for shipment approval.
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a project engineer, and an account manager) were to have access to the e-mail account.

Previously, only one person checked purchase order status. This step enhanced the trans-

parency of purchase order arrival and allowed the company to act promptly when a new

order was received.

3. Improve the Ordering Process with the Customer: The team realized that various tool

configurations were generated over the years due to new process requirements from the

customer. In order to ensure accuracy of tool configurations in a purchase order, a cus-

tomized spreadsheet was designed together with the customer to identify the key data

for the tool on order. The spreadsheet was saved under a purchase order number and

stored in a predefined Web location. The tool owner also was to take ownership of what

he/she ordered to help to eliminate the confirmation step with the customer and to

ensure accuracy in the final order.

Figure 2.5 shows a process map of the new, improved system. The steps in the original

process that were eliminated are shown as shaded boxes in this figure.

Control. To ensure that the new process is in control, the team revised the production

tracking spreadsheet with firm milestone dates and provided a more visual format. An updating

Sales retrieves PO from
customer website upon receipt
of e-mail notification.

Sales forwards the signed sales
order to Purchasing to initiate
internal purchase orders to the
supplier.

Project engineer fills out internal
order form for the supplier with
delivery date information.

Project engineer confirms order
configuration with customer.

Project engineer retrieves 
purchase order from customer 
website upon receipt of e-mail 
notification delivered to company- 
specified new e-mail address.

Sales processes the internal
order form and completes the
internal sales order entry.

Sales seeks signature approval
from the account manager or
general manager if account
manager is not available.

Sales opens sales order and
forwards order information to
corresponding project engineer
to verify system configuration.

Project engineer verifies tool
configuration checklist that
came with PO.

Note: A mutually agreed upon 
tool configuration checklist has
been defined together with the
customer. A new PO must come
with this document to avoid
tool delivery delay.

Purchasing updates the project
engineer with delivery date
confirmation from the supplier.

Project engineer updates Sales
with scheduled tool ship date.

Purchasing receives order
acknowledgments from the
supplier.

Sales generates order
acknowledgment letter with
confirmed eight-week ship date
to the customer.

Project engineer opens new
Gantt chart with key milestone
checkpoints.

Project engineer receives biweekly
updates from the supplier.

Project engineer forwards buy-off
report to the customer to review
and wait for shipment approval.

After shipments are picked up
by forwarder at the supplier, the
supplier forwards shipping
document to project engineer. 

Upon receipt of shipment
approval from the customer,
project engineer instructs the
supplier for crating preparation.

Accounts Receivable generates
invoice to customer to collect
80% payment. Remaining 20%
will be collected upon tool
installation.

Project engineer verifies internal
equipment buy-off report prior
to shipment.

Project engineer forwards
shipping document to Accounts
Receivable with copy to Sales
and Service Departments.

■ F I G U R E  2 . 5 The improved process.
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procedure was provided on a biweekly basis by the factory to reflect up-to-date information.

The project engineer would be able to monitor the progress of each tool on order and take action

accordingly should any unplanned deviation from the schedule occur.

After implementing the new process, including the new production tracking procedure,

the manufacturer was able to ship tools with 100% on-time delivery. The cost savings were

more than $300,000 each quarter. Equally important, the customer was satisfied and contin-

ued to remain confident in the manufacturer’s capability and capacity.

2.7.3 Improving Service Quality in a Bank

Kovach (2007) describes how the DMAIC process can be used to improve service quality for

a banking process. During the define and measure phases of this project, the team identified

several CTQs to be improved:

1. Speed of service

2. Consistent service

3. An easy-to-use process

4. A pleasant environment

5. Knowledgeable staff

There were many factors that could be investigated to improve these CTQs. The team decided

to focus on two areas of improvement: improved teller and customer work stations and new

training for the staff. In the Improve stage, they decided to use a designed experiment to inves-

tigate the effects of these two factors on the CTQs. Four different branches were selected in

which to conduct the experiment. Notice that this is a physical experiment, not an experiment

with a computer simulation model of the branch operations. New teller and customer work sta-

tions were designed and installed in two of the branches. The team designed a new training

program and delivered it to the staff at two of the branches: one with the new work stations and

one without the new facilities. (This was a two-factor factorial experiment, with each of the

two factors having two levels. We discuss these types of experiments extensively in this book.)

The team decided to conduct the experiment for 30 working days. Each day was con-

sidered to be a block (as we will discuss in later chapters, blocking is a design technique for

eliminating the effects of nuisance factors on the experimental results; here the nuisance fac-

tors were transaction types, volumes, and different customers at each of the four branches).

The response data was obtained by asking customers to complete a survey instrument that

registered their degree of satisfaction with the previously identified CTQs.

The results of the experiment demonstrated that there was a statistically significant dif-

ference in the CTQs resulting from both the new work stations and the new training, with the

best results obtained from the combination of the new work stations and the new training.

Implementation of the new stations and training was expected to significantly improve customer

satisfaction with the banking process across the bank’s branches.

Analyze step

Control step

Define step

Design for Six Sigma (DFSS)

DMAIC

Failure modes and effects analysis (FMEA)

Improve step

Key process input variables (KPIV)

Key process output variables (KPOV)

Measure step

Project charter

SIPOC diagram

Six Sigma

Tollgate

Important Terms and Concepts
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Discussion Questions and Exercises

2.1. Discuss the similarities between the Shewhart cycle

and DMAIC.

2.2. What role does risk play in project selection and the

Define step of DMAIC?

2.3. Suppose that a project will generate $A per year. In

savings or increased profit for a period of x years.

The projected cost of project completion is $C. What

methods would be appropriate to justify this project

on economic terms?

2.4. Describe a service system that you use. What are the

CTQs that are important to you? How do you think

that DMAIC could be applied to this process?

2.5. One of the objectives of the control plan in DMAIC

is to “hold the gain.” What does this mean?

2.6. Is there a point at which seeking further improve-

ment in quality and productivity isn’t economically

advisable? Discuss your answer.

2.7. Explain the importance of tollgates in the DMAIC

process.

2.8. An important part of a project is to identify the key

process input variables (KPIV) and key process

output variables (KPOV). Suppose that you are the

owner/manager of a small business that provides

mailboxes, copy services, and mailing services.

Discuss the KPIVs and KPOVs for this business.

How do they relate to possible customer CTQs?

2.9. An important part of a project is to identify the key

process input variables (KPIV) and key process out-

put variables (KPOV). Suppose that you are in

charge of a hospital emergency room. Discuss the

KPIVs and KPOVs for this business. How do they

relate to possible customer CTQs?

2.10. Why are designed experiments most useful in the

Improve step of DMAIC?

2.11. Suppose that your business is operating at the Three

Sigma quality level. If projects have an average

improvement rate of 50% annually, how many years

will it take to achieve Six Sigma quality?

2.12. Suppose that your business is operating at the

4.5-Sigma quality level. If projects have an average

improvement rate of 50% annually, how many years

will it take to achieve Six Sigma quality?

2.13. Explain why it is important to separate sources of

variability into special or assignable causes and com-

mon or chance causes.

2.14. Consider improving service quality in a restaurant.

What are the KPIVs and KPOVs that you should

consider? How do these relate to likely customer

CTQs?

2.15. Suppose that during the analyze phase an obvious

solution is discovered. Should that solution be imme-

diately implemented and the remaining steps of

DMAIC abandoned? Discuss your answer.

2.16. What information would you have to collect in order

to build a discrete-event simulation model of a retail

branch-banking operation? Discuss how this model

could be used to determine appropriate staffing levels

for the bank.

2.17. Suppose that you manage an airline reservation sys-

tem and want to improve service quality. What are

the important CTQs for this process? What are the

KPIVs and KPOVs? How do these relate to the cus-

tomer CTQs that you have identified?

2.18. It has been estimated that safe aircraft carrier land-

ings operate at about the 5s level. What level of ppm

defective does this imply?

2.19. Discuss why, in general, determining what to mea-

sure and how to make measurements is more difficult

in service processes and transactional businesses

than in manufacturing.

2.20. Suppose that you want to improve the process of

loading passengers onto an airplane. Would a discrete-

event simulation model of this process be useful?

What data would have to be collected to build this

model?
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Statistical Methods
Useful in Quality
Control and
Improvement

Statistics is a collection of techniques useful for making decisions about a
process or population based on an analysis of the information contained in
a sample from that population. Statistical methods play a vital role in quality
control and improvement. They provide the principal means by which a prod-
uct is sampled, tested, and evaluated, and the information in those data is
used to control and improve the process and the product. Furthermore, sta-
tistics is the language in which development engineers, manufacturing, pro-
curement, management, and other functional components of the business
communicate about quality.

This part contains two chapters. Chapter 3 gives a brief introduction to
descriptive statistics, showing how simple graphical and numerical tech-
niques can be used to summarize the information in sample data. The use
of probability distributions to model the behavior of product parame-
ters in a process or lot is then discussed. Chapter 4 presents techniques of
statistical inference—that is, how the information contained in a sample
can be used to draw conclusions about the population from which the sample
was drawn.

Statistical Methods
Useful in Quality
Control and
Improvement

PART 2PART 2
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This textbook is about the use of statistical methodology in quality control and improvement.

This chapter has two objectives. First, we show how simple tools of descriptive statistics can

be used to express variation quantitatively in a quality characteristic when a sample of data

Modeling Process Quality
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on this characteristic is available. Generally, the sample is just a subset of data taken from

some larger population or process. The second objective is to introduce probability distrib-
utions and show how they provide a tool for modeling or describing the quality characteristics

of a process.

After careful study of this chapter, you should be able to do the following:

1. Construct and interpret visual data displays, including the stem-and-leaf plot, the

histogram, and the box plot

2. Compute and interpret the sample mean, the sample variance, the sample stan-

dard deviation, and the sample range

3. Explain the concepts of a random variable and a probability distribution

4. Understand and interpret the mean, variance, and standard deviation of a proba-

bility distribution

5. Determine probabilities from probability distributions

6. Understand the assumptions for each of the discrete probability distributions

presented

7. Understand the assumptions for each of the continuous probability distributions

presented

8. Select an appropriate probability distribution for use in specific applications

9. Use probability plots

10. Use approximations for some hypergeometric and binomial distributions

3.1 Describing Variation

3.1.1 The Stem-and-Leaf Plot

No two units of product produced by a process are identical. Some variation is inevitable. As

examples, the net content of a can of soft drink varies slightly from can to can, and the output

voltage of a power supply is not exactly the same from one unit to the next. Similarly, no two

service activities are ever identical. There will be differences in performance from customer to

customer, and variability in important characteristics that are important to the customer over

time. Statistics is the science of analyzing data and drawing conclusions, taking variation in

the data into account.

There are several graphical methods that are very useful for summarizing and present-

ing data. One of the most useful graphical techniques is the stem-and-leaf display.
Suppose that the data are represented by x1, x2, . . . , xn and that each number xi consists

of at least two digits. To construct a stem-and-leaf plot, we divide each number xi into two

parts: a stem, consisting of one or more of the leading digits; and a leaf, consisting of the

remaining digits. For example, if the data consists of percent defective information between

0 and 100 on lots of semiconductor wafers, then we can divide the value 76 into the stem 7

and the leaf 6. In general, we should choose relatively few stems in comparison with the

number of observations. It is usually best to choose between 5 and 20 stems. Once a set of

stems has been chosen, they are listed along the left-hand margin of the display, and beside

each stem all leaves corresponding to the observed data values are listed in the order in which

they are encountered in the data set.

The version of the stem-and-leaf plot produced by Minitab is sometimes called an

ordered stem-and-leaf plot, because the leaves are arranged by magnitude. This version of

68 Chapter 3 ■ Modeling Process Quality
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3.1 Describing Variation 69

SOLUTION 

To construct the stem-and-leaf plot, we could select the values

1, 2, 3, 4, and 5 as the stems. However, this would result in all

40 data values being compacted into only five stems, the min-

imum number that is usually recommended. An alternative

would be to split each stem into a lower and an upper half, with

the leaves 0–4 being assigned to the lower portion of the stem

and the leaves 5–9 being assigned to the upper portion. Figure

3.1 is the stem-and-leaf plot generated by Minitab, and it uses

the stem-splitting strategy. The column to the left of the stems

gives a cumulative count of the number of observations that are

at or below that stem for the smaller stems, and at or above that

EXAMPLE 3.1

The data in Table 3.1 provides a sample of the cycle time in days to process and pay employee health insurance claims in a large

company. Construct a stem-and-leaf plot for the data.

Health Insurance Claims

stem for the larger stems. For the middle stem, the number in

parentheses indicates the number of observations included in

that stem. Inspection of the plot reveals that the distribution of

the number of days to process and pay an employee health

insurance claim has an approximately symmetric shape, with a

single peak. The stem-and-leaf display allows us to quickly

determine some important features of the data that are not obvi-

ous from the data table. For example, Figure 3.1 gives a visual

impression of shape, spread or variability, and the central ten-

dency or middle of the data (which is close to 35).

the display makes it very easy to find percentiles of the data. Generally, the 100 kth percentile

is a value such that at least 100 k% of the data values are at or below this value and at least

100 (1 − k)% of the data values are at or above this value.

The fiftieth percentile of the data distribution is called the sample median . The

median can be thought of as the data value that exactly divides the sample in half, with half

of the observations smaller than the median and half of them larger.

If n, the number of observations, is odd, finding the median is easy. First, sort the obser-

vations in ascending order (or rank the data from smallest observation to largest observation).

Then the median will be the observation in rank position [(n − 1)/2 + 1] on this list. If n is

even, the median is the average of the (n/2)st and (n/2 + 1)st ranked observations. Since in our

example n = 40 is an even number, the median is the average of the two observations with

rank 20 and 21, or

¯ .x = + =33 34

2
33 5

x

Stem-and-Leaf Display: Days

Stem-and-leaf of Days
N = 40
Leaf Unit = 1.0
3 1 677
8 2 22234
13 2 66778
(8) 3 00012334
19 3 555666677
10 4 1233
6 4 56678
1 5
1 5 6

■ F I G U R E  3 . 1 Stem-and-left plot

for the health insurance claim data.

■ TA B L E  3 . 1

Cycle Time in Days to Pay Employee Health Insurance Claims

Claim Days Claim Days Claim Days Claim Days

1 48 11 35 21 37 31 16

2 41 12 34 22 43 32 22

3 35 13 36 23 17 33 33

4 36 14 42 24 26 34 30

5 37 15 43 25 28 35 24

6 26 16 36 26 27 36 23

7 36 17 56 27 45 37 22

8 46 18 32 28 33 38 30

9 35 19 46 29 22 39 31

10 47 20 30 30 27 40 17
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The tenth percentile is the observation with rank (0.1)(40) + 0.5 = 4.5 (halfway between 

the fourth and fifth observations), or (22 + 22)/2 = 22. The first quartile is the observation

with rank (0.25)(40) + 0.5 = 10.5 (halfway between the tenth and eleventh observation) or 

(26 + 27)/2 = 26.5, and the third quartile is the observation with rank (0.75)(40) + 0.5 =
30.5 (halfway between the thirtieth and thirty-first observation), or (37 + 41) = 39. The first

and third quartiles are occasionally denoted by the symbols Q1 and Q3, respectively, and the

interquartile range IQR = Q3 − Q1 is occasionally used as a measure of variability. For the

insurance claim data, the interquartile range is IQR = Q3 − Q1 = 39 − 26.5 = 12.5.

Finally, although the stem-and-leaf display is an excellent way to visually show the

variability in data, it does not take the time order of the observations into account. Time is

often a very important factor that contributes to variability in quality improvement problems.

We could, of course, simply plot the data values versus time; such a graph is called a time
series plot or a run chart.

Suppose that the cycle time to process and pay employee health insurance claims in

Table 3.1 are shown in time sequence. Figure 3.2 shows the time series plot of the data. We

used Minitab to construct this plot (called a marginal plot) and requested a dot plot of the

data to be constructed in the y-axis margin. This display clearly indicates that time is an

important source of variability in this process. More specifically, the processing cycle time for

the first 20 claims is substantially longer than the cycle time for the last 20 claims. Something

may have changed in the process (or have been deliberately changed by operating personnel)

that is responsible for the apparant cycle time improvement. Later in this book we formally

introduce the control chart as a graphical technique for monitoring processes such as this one,

and for producing a statistically based signal when a process change occurs.

3.1.2 The Histogram

A histogram is a more compact summary of data than a stem-and-leaf plot. To construct a

histogram for continuous data, we must divide the range of the data into intervals, which are

usually called class intervals, cells, or bins. If possible, the bins should be of equal width to

enhance the visual information in the histogram. Some judgment must be used in selecting

the number of bins so that a reasonable display can be developed. The number of bins depends

on the number of observations and the amount of scatter or dispersion in the data. A histogram

that uses either too few or too many bins will not be informative. We usually find that between

5 and 20 bins is satisfactory in most cases and that the number of bins should increase with

n. Choosing the number of bins approximately equal to the square root of the number of

observations often works well in practice.1

■ F I G U R E  3 . 2 A time series

plot of the health insurance data in

Table 3.1.

403020

Time

100

65

55

45

35

25

15

D
ay

s

1There is no universal agreement about how to select the number of bins for a histogram. Some basic statistics text-

books suggest using Sturges’s rule, which sets the number of bins h = 1 + log2n, where n is the sample size. There

are many variations of Sturges’s rule. Computer software packages use many different algorithms to determine the

number and width of bins, and some of them may not be based on Sturges’s rule.
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Once the number of bins and the lower and upper boundaries of each bin has been

determined, the data are sorted into the bins and a count is made of the number of observa-

tions in each bin. To construct the histogram, use the horizontal axis to represent the mea-

surement scale for the data and the vertical scale to represent the counts, or frequencies.
Sometimes the frequencies in each bin are divided by the total number of observations (n),

and then the vertical scale of the histogram represents relative frequencies. Rectangles are

drawn over each bin, and the height of each rectangle is proportional to frequency (or relative

frequency). Most statistics packages construct histograms.

3.1 Describing Variation 71

SOLUTION

Because the data set contains 100 observations and

we suspect that about 10 bins will provide a 

satisfactory histogram. We constructed the histogram using

the Minitab option that allows the user to specify the number

of bins. The resulting Minitab histogram is shown in Figure

3.3. Notice that the midpoint of the first bin is 415Å, and that

the histogram only has eight bins that contain a nonzero

frequency. A histogram, like a stem-and-leaf plot, gives a

visual impression of the shape of the distribution of the mea-

surements, as well as some information about the inherent

variability in the data. Note the reasonably symmetric or

bell-shaped distribution of the metal thickness data.

2100 = 10,

process in a semiconductor plant. Construct a histogram for

these data.

EXAMPLE 3.2

Table 3.2 presents the thickness of a metal layer on 100 sili-

con wafers resulting from a chemical vapor deposition (CVD)

Metal Thickness in Silicon Wafers 

30

Fr
eq

ue
nc

y

405 425 445 465 485415 435 455 475 495

Metal thickness

20

10

0

■ F I G U R E  3 . 3 Minitab histogram for the

metal layer thickness data in Table 3.2.

Most computer packages have a default setting for the number of bins. Figure 3.4 is the

Minitab histogram obtained with the default setting, which leads to a histogram with 15 bins.

Histograms can be relatively sensitive to the choice of the number and width of the bins. For

small data sets, histograms may change dramatically in appearance if the number and/or

width of the bins changes. For this reason, we prefer to think of the histogram as a technique best

suited for larger data sets containing, say, 75 to 100 or more observations. Because the

number of observations on layer thickness is moderately large (n = 100), the choice of the

■ TA B L E  3 . 2

Layer Thickness (Å) on Semiconductor Wafers

438 450 487 451 452 441 444 461 432 471

413 450 430 437 465 444 471 453 431 458

444 450 446 444 466 458 471 452 455 445

468 459 450 453 473 454 458 438 447 463

445 466 456 434 471 437 459 445 454 423

472 470 433 454 464 443 449 435 435 451

474 457 455 448 478 465 462 454 425 440

454 441 459 435 446 435 460 428 449 442

455 450 423 432 459 444 445 454 449 441

449 445 455 441 464 457 437 434 452 439
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EXAMPLE 3.3

Table 3.3 presents the number of surface finish defects in the

primer paint found by visual inspection of automobile hoods

72 Chapter 3 ■ Modeling Process Quality

100

Fr
eq

ue
nc

y

410 430 450 470 490420 440 460 480

Metal thickness

50

0

■ F I G U R E  3 . 5 A cumulative frequency

plot of the metal thickness data from Minitab.

15

Fr
eq

ue
nc

y

410 430 450 470 490420 440 460 480

Metal thickness

10

5

0

■ F I G U R E  3 . 4 Minitab histogram with

15 bins for the metal layer thickness data.

Defects in Automobile Hoods 

that were painted by a new experimental painting process.

Construct a histogram for these data.

number of bins is not especially important, and the histograms in Figures 3.3 and 3.4 convey

very similar information.

Notice that in passing from the original data or a stem-and-leaf plot to a histogram, we

have in a sense lost some information because the original observations are not preserved on

the display. However, this loss in information is usually small compared with the conciseness

and ease of interpretation of the histogram, particularly in large samples.

Histograms are always easier to interpret if the bins are of equal width. If the bins are

of unequal width, it is customary to draw rectangles whose areas (as opposed to heights) are

proportional to the number of observations in the bins.

Figure 3.5 shows a variation of the histogram available in Minitab (i.e., the cumula-
tive frequency plot). In this plot, the height of each bar represents the number of observa-

tions that are less than or equal to the upper limit of the bin. Cumulative frequencies are

often very useful in data interpretation. For example, we can read directly from Figure 3.5

that about 75 of the 100 wafers have a metal layer thickness that is less than 460Å.

Frequency distributions and histograms can also be used with qualitative, categorical,

or count (discrete) data. In some applications, there will be a natural ordering of the categories

(such as freshman, sophomore, junior, and senior), whereas in others the order of the cate-

gories will be arbitrary (such as male and female). When using categorical data, the bars

should be drawn to have equal width.

To construct a histogram for discrete or count data, first determine the frequency (or rel-

ative frequency) for each value of x. Each of the x values corresponds to a bin. The histogram

is drawn by plotting the frequencies (or relative frequencies) on the vertical scale and the val-

ues of x on the horizontal scale. Then above each value of x, draw a rectangle whose height

is the frequency (or relative frequency) corresponding to that value.

■ TA B L E  3 . 3

Surface Finish Defects in Painted Automobile Hoods

6 1 5 7 8 6 0 2 4 2

5 2 4 4 1 4 1 7 2 3

4 3 3 3 6 3 2 3 4 5

5 2 3 4 4 4 2 3 5 7

5 4 5 5 4 5 3 3 3 12
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(3.1)

Note that the sample average is simply the arithmetic mean of the n observations. The sam-

ple average for the metal thickness data in Table 3.2 is

Refer to Figure 3.3 and note that the sample average is the point at which the histogram

exactly “balances.” Thus, the sample average represents the center of mass of the sample data.

The variability in the sample data is measured by the sample variance:

(3.2)
s

x x
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■ F I G U R E  3 . 6 Histogram of the number

of defects in painted automobile hoods (Table 3.3).

SOLUTION

Figure 3.6 is the histogram of the defects. Notice that the num-

ber of defects is a discrete variable. From either the histogram

or the tabulated data we can determine

and

These proportions are examples of relative frequencies.

d 2 defects = =11

50
0 22.

Proportions of hoods with between 0 and 

Proportions of hoods with at least 3 defects = =39

50
0 78.

10

Fr
eq

ue
nc

y

0 105

Defects

5

0

3.1.3 Numerical Summary of Data

The stem-and-leaf plot and the histogram provide a visual display of three properties of sam-

ple data: the shape of the distribution of the data, the central tendency in the data, and the scat-

ter or variability in the data. It is also helpful to use numerical measures of central tendency

and scatter.

Suppose that x1, x2, . . . , xn are the observations in a sample. The most important mea-

sure of central tendency in the sample is the sample average,

c03ModelingProcessQuality.qxd  3/16/12  12:10 PM  Page 73



74 Chapter 3 ■ Modeling Process Quality

Note that the sample variance is simply the sum of the squared deviations of each obser-

vation from the sample average divided by the sample size minus 1. If there is no vari-

ability in the sample, then each sample observation and the sample variance s2 = 0.

Generally, the larger the sample variance s2 is, the greater is the variability in the sample data.

The units of the sample variance s2 are the square of the original units of the data. This

is often inconvenient and awkward to interpret, and so we usually prefer to use the square root

of s2, called the sample standard deviation s, as a measure of variability.

It follows that

(3.3)

The primary advantage of the sample standard deviation is that it is expressed in the original

units of measurement. For the metal thickness data, we find that

and

To more easily see how the standard deviation describes variability, consider the two

samples shown here:

Sample 1 Sample 2

Obviously, sample 2 has greater variability than sample 1. This is reflected in the standard

deviation, which for sample 1 is

and for sample 2 is

Thus, the larger variability in sample 2 is reflected by its larger standard deviation. Now

consider a third sample, say

Sample 3

x = 103

x3 = 105

x2 = 103

x1 = 101

s
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3.1 Describing Variation 75

EXAMPLE 3.4

The data in Table 3.4 are diameters (in mm) of holes in a group

of 12 wing leading edge ribs for a commercial transport air-

plane. Construct and interpret a box plot of those data.

Hole Diameter 

Notice that sample 3 was obtained from sample 1 by adding 100 to each observation. The

standard deviation for this third sample is s = 2, which is identical to the standard deviation

of sample 1. Comparing the two samples, we see that both samples have identical variability

or scatter about the average, and this is why they have the same standard deviations. This

leads to an important point: The standard deviation does not reflect the magnitude of the
sample data, only the scatter about the average.

Handheld calculators are frequently used for calculating the sample average and stan-

dard deviation. Note that equations 3.2 and 3.3 are not very efficient computationally, because

every number must be entered into the calculator twice. A more efficient formula is

(3.4)

In using equation 3.4, each number would only have to be entered once, provided that

Σn
i=1xi and Σn

i=1x2
i could be simultaneously accumulated in the calculator. Many inexpensive

handheld calculators perform this function and provide automatic calculation of and s.

3.1.4 The Box Plot

The stem-and-leaf display and the histogram provide a visual impression about a data set,

whereas the sample average and standard deviation provide quantitative information about

specific features of the data. The box plot is a graphical display that simultaneously displays

several important features of the data, such as location or central tendency, spread or vari-

ability, departure from symmetry, and identification of observations that lie unusually far

from the bulk of the data (these observations are often called “outliers”).

A box plot displays the three quartiles, the minimum, and the maximum of the data on

a rectangular box, aligned either horizontally or vertically. The box encloses the interquar-

tile range with the left (or lower) line at the first quartile Q1 and the right (or upper) line at

the third quartile Q3. A line is drawn through the box at the second quartile (which is the

fiftieth percentile or the median) A line at either end extends to the extreme values.

These lines are usually called whiskers. Some authors refer to the box plot as the box and
whisker plot. In some computer programs, the whiskers only extend a distance of 1.5 

(Q3 − Q1) from the ends of the box, at most, and observations beyond these limits are flagged

as potential outliers. This variation of the basic procedure is called a modified box plot.

Q2 = x.
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(continued)

■ TA B L E  3 . 4

Hole Diameters (in mm) in Wing
Leading Edge Ribs

120.5 120.4 120.7

120.9 120.2 121.1

120.3 120.1 120.9

121.3 120.5 120.8
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Box plots are very useful in graphical comparisons among data sets, because they have

visual impact and are easy to understand. For example, Figure 3.8 shows the comparative box

plots for a manufacturing quality index on products at three manufacturing plants. Inspection

of this display reveals that there is too much variability at plant 2, and that plants 2 and 3 need

to raise their quality index performance.

3.1.5 Probability Distributions

The histogram (or stem-and-leaf plot, or box plot) is used to describe sample data. A sample
is a collection of measurements selected from some larger source or population. For exam-

ple, the measurements on layer thickness in Table 3.2 are obtained from a sample of wafers

selected from the manufacturing process. The population in this example is the collection of

all layer thicknesses produced by that process. By using statistical methods, we may be able

to analyze the sample layer thickness data and draw certain conclusions about the process that

manufactures the wafers.

A probability distribution is a mathematical model that relates the value of the vari-

able with the probability of occurrence of that value in the population. In other words, we

might visualize layer thickness as a random variable because it takes on different values in

the population according to some random mechanism, and then the probability distribution of

layer thickness describes the probability of occurrence of any value of layer thickness in the

population. There are two types of probability distributions.
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■ F I G U R E  3 . 8 Comparative box plots of a

quality index for products produced at three plants.

SOLUTION

The box plot is shown in Figure 3.7. Note that the median of

the sample is halfway between the sixth and seventh rank-

ordered observation, or (120.5 + 120.7)/2 = 120.6, and that

the quartiles are Q1 = 120.35 and Q3 = 120.9. The box plot

indicates that the hole diameter distribution is not exactly

symmetric around a central value, because the left and right

whiskers and the left and right boxes around the median are

not the same lengths.

■ F I G U R E  3 . 7 Box plot for the aircraft wing

leading edge hole diameter data in Table 3.4.

121.3

120.9120.6120.35

120.1
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Definition

1. Continuous distributions. When the variable being measured is expressed on a

continuous scale, its probability distribution is called a continuous distribution.
The probability distribution of metal layer thickness is continuous.

2. Discrete distributions. When the parameter being measured can only take on cer-

tain values, such as the integers 0, 1, 2, . . . , the probability distribution is called

a discrete distribution. For example, the distribution of the number of nonconfor-

mities or defects in printed circuit boards would be a discrete distribution.

Examples of discrete and continuous probability distributions are shown in Figures 3.9a
and 3.9b, respectively. The appearance of a discrete distribution is that of a series of vertical

“spikes,” with the height of each spike proportional to the probability. We write the probabil-

ity that the random variable x takes on the specific value xi as

The appearance of a continuous distribution is that of a smooth curve, with the area under the curve

equal to probability, so that the probability that x lies in the interval from a to b is written as

P a x b f x dx
a
b≤ ≤{ } = ( )∫

P x x p xi i={ } = ( )

random variable representing the number of nonconforming

chips in the sample, then the probability distribution of x is

p x
x

xx x( ) = ⎛
⎝⎜

⎞
⎠⎟
( ) ( ) =−25
0 01 0 99 25

25
. . ,0,1,2,K

EXAMPLE 3.5

A manufacturing process produces thousands of semiconduc-

tor chips per day. On the average, 1% of these chips do not

conform to specifications. Every hour, an inspector selects a

random sample of 25 chips and classifies each chip in the

sample as conforming or nonconforming. If we let x be the

A Discrete Distribution

p(xi)

p(x1)

p(x2)

p(x3)

p(x4)

p(x5)

x1 x2 x3 x4 x5
x

(a)

a b
x

f (x)

(b)

■ F I G U R E  3 . 9 Probability distributions. (a) Discrete case. (b) Continuous case.

(continued)
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In Sections 3.2 and 3.3 we present several useful discrete and continuous distributions.

The mean m of a probability distribution is a measure of the central tendency in the

distribution, or its location. The mean is defined as

(3.5a)

(3.5b)

For the case of a discrete random variable with exactly N equally likely values [that is, p(xi) =
1/N], then equation 3.5b reduces to

Note the similarity of this last expression to the sample average defined in equation 3.1. The

mean is the point at which the distribution exactly “balances” (see Fig. 3.11). Thus, the mean

x

μ = =
∑ x
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i
i
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μ =
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xf x dx x
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■ F I G U R E  3 . 1 0 The uniform distribu-

tion for Example 3.6.

EXAMPLE 3.6

Suppose that x is a random variable that represents the actual

contents in ounces of a 1-pound bag of coffee beans. The

probability distribution of x is assumed to be

This is a continuous distribution, since the range of x is the

interval [15.5, 17.0]. This distribution is called the uniform
distribution, and it is shown graphically in Figure 3.10. Note

that the area under the function f(x) corresponds to probability,

so that the probability of a bag containing less than 16.0 oz is

This follows intuitively from inspection of Figure 3.9.
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where = . This is a discrete distribution,25!>3x! 125 - x2!4125
x 2

since the observed number of nonconformances is x = 0, 1,

2, . . . , 25, and is called the binomial distribution. We may

calculate the probability of finding one or fewer nonconforming

parts in the sample as
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is simply the center of mass of the probability distribution. Note from Figure 3.11b that the

mean is not necessarily the fiftieth percentile of the distribution (which is the median), and

from Figure 3.11c that it is not necessarily the most likely value of the variable (which is

called the mode). The mean simply determines the location of the distribution, as shown in

Figure 3.12.

The scatter, spread, or variability in a distribution is expressed by the variance The

definition of the variance is

(3.6a)

(3.6b)

when the random variable is discrete with N equally likely values, then equation 3.6b becomes

and we observe that in this case the variance is the average squared distance of each member of

the population from the mean. Note the similarity to the sample variance s2, defined in equation

3.2. If there is no variability in the population. As the variability increases, the variance

increases. The variance is expressed in the square of the units of the original variable. For

example, if we are measuring voltages, the units of the variance are (volts)2. Thus, it is custom-

ary to work with the square root of the variance, called the standard deviation It follows that

(3.7)

The standard deviation is a measure of spread or scatter in the population expressed in the

original units. Two distributions with the same mean but different standard deviations are

shown in Figure 3.13.

σ σ
μ

= =
−( )

=
∑

2

2

1
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i
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s2

s2 = 0,

σ
μ

2

2

1=
−( )

=
∑ x
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i
i
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σ
μ
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2

2

2

1

=
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−( ) ( )

⎧
⎨
⎪

⎩⎪

−∞
∞

=

∞
∫

∑

x f x dx x
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,

,

 continuous

 discrete

s2.
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μ   = 10 μ   = 20

■ F I G U R E  3 . 1 1 The mean of a distribution.

■ F I G U R E  3 . 1 2 Two probability distribu-

tions with different means.

   = 2σ

   = 4σ

   = 10μ

■ F I G U R E  3 . 1 3 Two probability distributions

with the same mean but different standard deviations.

μ

(a)

μ

(b)

Median μ

(c)

Mode Mode
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3.2 Important Discrete Distributions

Several discrete probability distributions arise frequently in statistical quality control. In this

section, we discuss the hypergeometric distribution, the binomial distribution, the Poisson

distribution, and the negative binomial and geometric distributions.

3.2.1 The Hypergeometric Distribution

Suppose that there is a finite population consisting of N items. Some number—say,

—of these items fall into a class of interest. A random sample of n items is selected

from the population without replacement, and the number of items in the sample that fall into

the class of interest—say, x—is observed. Then x is a hypergeometric random variable with

the probability distribution defined as follows.

D(D ≤ N)

In the above definition, the quantity

is the number of combinations of a items taken b at a time.

The hypergeometric distribution is the appropriate probability model for selecting a

random sample of n items without replacement from a lot of N items of which D are non-

conforming or defective. By a random sample, we mean a sample that has been selected in

such a way that all possible samples have an equal chance of being chosen. In these applica-

tions, x usually represents the number of nonconforming items found in the sample. For

example, suppose that a lot contains 100 items, 5 of which do not conform to requirements.

If 10 items are selected at random without replacement, then the probability of finding one or

fewer nonconforming items in the sample is

a

b
a

b a�b

⎛
⎝⎜

⎞
⎠⎟

=
( )

!

! !

Definition

The hypergeometric probability distribution is

(3.8)

The mean and variance of the distribution are

(3.9)

and

(3.10)σ 2 1
1

= −⎛
⎝

⎞
⎠

−
−

⎛
⎝

⎞
⎠

nD

N

D

N

N n

N

μ = nD

N

p x

D

x

N D

n x
N

n

x( ) =

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= 0,1,2, . . . , min (n,D)  
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In Chapter 15, we show how probability models such as this can be used to design acceptance-

sampling procedures.

Some computer programs can perform these calculations. The display below is the out-

put from Minitab for calculating cumulative hypergeometric probabilities with N = 100,

D = 5 (note that Minitab uses the symbol M instead of D and n = 10). Minitab will also cal-

culate the individual probabilities for each value of x.

P x P x P x≤{ } = ={ } + ={ }

=

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

1 0 1

5

0

95

10

100

10

5

1

95

9

100

10

0 92314.
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Cumulative Distribution Function

Hypergeometric with N = 100, M = 5, and n = 10

3.2.2 The Binomial Distribution

Consider a process that consists of a sequence of n independent trials. By independent trials,

we mean that the outcome of each trial does not depend in any way on the outcome of previ-

ous trials. When the outcome of each trial is either a “success” or a “failure,” the trials are

called Bernoulli trials. If the probability of “success” on any trial—say, p—is constant, then

the number of “successes” x in n Bernoulli trials has the binomial distribution with para-

meters n and p, defined as follows:

x  P(X < = x)

0 0.58375

1 0.92314

2 0.99336

3 0.99975

4 1.00000

5 1.00000

x  P(X < = x)

6 1.00000

7 1.00000

8 1.00000

9 1.00000

10 1.00000

Definition

The binomial distribution with parameters and is

(3.11)

The mean and variance of the binomial distribution are

(3.12)

and

(3.13)σ 2 1= −( )np p

μ = np

p x
n

x
p p xx n x( ) = ⎛

⎝⎜
⎞
⎠⎟

−( ) =−
1 0,1, . . . , n

0 < p < 1n ≥ 0
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The binomial distribution is used frequently in quality engineering. It is the appropriate

probability model for sampling from an infinitely large population, where p represents the

fraction of defective or nonconforming items in the population. In these applications, x usu-

ally represents the number of nonconforming items found in a random sample of n items. For

example, if p = 0.10 and n = 15, then the probability of obtaining x nonconforming items is

computed from equation 3.11 as follows:

Probability Density Function

Binomial with n = 15 and p = 0.1

x  P(X = x)
0 0.205891

1 0.343152

2 0.266896

3 0.128505

4 0.042835

5 0.010471

x  P(X = x)
6 0.001939

7 0.000277

8 0.000031

9 0.000003

10 0.000000

Minitab was used to perform these calculations. Notice that for all values of x that lie between

the probability of finding x “successes” in 15 trials is zero.

Several binomial distributions are shown graphically in Figure 3.14. The shape of those

examples is typical of all binomial distributions. For a fixed n, the distribution becomes more

symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed p, the distrib-

ution becomes more symmetric as n increases.

A random variable that arises frequently in statistical quality control is

(3.14)

where x has a binomial distribution with parameters n and p. Often is the ratio of the

observed number of defective or nonconforming items in a sample (x) to the sample size (n),

p̂

p̂
x

n
=

10 ≤  x ≤ 15

0.4

0.3

0.2

0.1

0
0 6 9 12 15

x

f(
x)

0.3

0.2

0.15

0.1

0
0 5 10 20 25 30

p(
x)

0.25

0.05

x

(a) Binomial distributions for different values
of p with n = 15.

(b) Binomial distributions for different values
of n with p = 0.25.

n = 15, p = 0.1
n = 15, p = 0.5
n = 15, p = 0.9

n = 10, p = 0.25
n = 20, p = 0.25
n = 40, p = 0.25

3

■ F I G U R E  3 . 1 4 Binomial distributions for selected values of n and p.
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and this is usually called the sample fraction defective or sample fraction nonconform-
ing. The “ ˆ ” symbol is used to indicate that is an estimate of the true, unknown value

of the binomial parameter p. The probability distribution of is obtained from the bino-

mial, since

where [na] denotes the largest integer less than or equal to na. It is easy to show that the mean

of is p and that the variance of is

3.2.3 The Poisson Distribution

A useful discrete distribution in statistical quality control is the Poisson distribution, defined

as follows:

σ p̂
p p

n
2 1

=
−( )

p̂p̂

P p a P
x

n
a p x na

n

x
p p

x

na
x n x

ˆ ≤{ } = ≤⎧⎨
⎩

⎫⎬
⎭

= ≤{ } = ⎛
⎝⎜

⎞
⎠⎟

−( )
=

[ ] −∑
0

1

p̂
p̂
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Definition

The Poisson distribution is

(3.15)

where the parameter The mean and variance of the Poisson distribution

are

(3.16)

and

(3.17)σ λ2 =

μ λ=

l > 0.

p x
e

x
x

x

( ) = =
−λλ

!
, . . .0,1

Note that the mean and variance of the Poisson distribution are both equal to the para-

meter l.

A typical application of the Poisson distribution in quality control is as a model of the

number of defects or nonconformities that occur in a unit of product. In fact, any random phe-

nomenon that occurs on a per unit (or per unit area, per unit volume, per unit time, etc.) basis

is often well approximated by the Poisson distribution. As an example, suppose that the num-

ber of wire-bonding defects per unit that occur in a semiconductor device is Poisson distrib-

uted with parameter l � 4. Then the probability that a randomly selected semiconductor device

will contain two or fewer wire-bonding defects is

P x
e

x

x

x
≤{ } = =

−

=
∑2

4
0.018316 � 0.073263 � 0.146525 � 0.238104

4

0

2

!
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Several Poisson distributions are shown in Figure 3.15. Note that the distribution is

skewed; that is, it has a long tail to the right. As the parameter becomes larger, the Poisson

distribution becomes symmetric in appearance.

It is possible to derive the Poisson distribution as a limiting form of the binomial dis-

tribution. That is, in a binomial distribution with parameters n and p, if we let n approach

infinity and p approach zero in such a way that np = l is a constant, then the Poisson distrib-

ution results. It is also possible to derive the Poisson distribution using a pure probability

argument. [For more information about the Poisson distribution, see Hines, Montgomery,

Goldsman, and Borror (2004); Montgomery and Runger (2011); and the supplemental text

material.]

3.2.4 The Negative Binomial and Geometric Distributions

The negative binomial distribution, like the binomial distribution, has its basis in Bernoulli

trials. Consider a sequence of independent trials, each with probability of success p, and let x
denote the trial on which the r th success occurs. Then x is a negative binomial random vari-

able with probability distribution defined as follows.

l

Probability Density Function

Poisson with mean = 4

x  P(X = x)
0 0.018316

1 0.073263

2 0.146525

0.2

0.16

0.12

0.08

0.04

0
0 10 20 30 40

x

p(
x)

   = 4
   = 8
   = 12
   = 16

λ
λ
λ
λ

■ F I G U R E  3 . 1 5 Poisson probability distributions for selected values of l.

Minitab can perform these calculations. Using the Poisson distribution with the mean = 4

results in:
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The negative binomial distribution, like the Poisson distribution, is sometimes useful as

the underlying statistical model for various types of “count” data, such as the occurrence of

nonconformities in a unit of product (see Section 7.3.1). There is an important duality between

the binomial and negative binomial distributions. In the binomial distribution, we fix the sample

size (number of Bernoulli trials) and observe the number of successes; in the negative binomial

distribution, we fix the number of successes and observe the sample size (number of Bernoulli

trials) required to achieve them. This concept is particularly important in various kinds of sam-

pling problems. The negative binomial distribution is also called the Pascal distribution (after

Blaise Pascal, the 17th-century French mathematician and physicist. There is a variation of the

negative binomial for real values of that is called the Polya distribution.

A useful special case of the negative binomial distribution is if r = 1, in which case we

have the geometric distribution. It is the distribution of the number of Bernoulli trials until

the first success. The geometric distribution is 

The mean and variance of the geometric distribution are 

respectively. Because the sequence of Bernoulli trials are independent, the count of the number

of trials until the next success can be started from anywhere without changing the probability

distribution. For example, suppose we are examining a series of medical records searching for

missing information. If, for example, 100 records have been examined, the probability that the

first error occurs on record number 105 is just the probability that the next five records are

GGGGB, where G denotes good and B denotes an error. If the probability of finding a bad

record is 0.05, the probability of finding a bad record on the fifth record examined is

. This is identical to the probability that the first bad record

occurs on record 5. This is called the lack of memory property of the geometric distribution.

This property implies that the system being modeled does not fail because it is wearing out due

to fatigue or accumulated stress.

P5x = 56 = (0.95)4(0.05) =  0.0407

σ 2
2andμ =

1
p p

=
1 − p

p(x) = (1 − p)x – 1p,    x = 1, 2,... 

l

3.2 Important Discrete Distributions 85

Definition

The negative binomial distribution is

(3.18)

where is an integer. The mean and variance of the negative binomial distri-

bution are

(3.19)

and

(3.20)

respectively.

σ 2
2

1
=

−( )r p

p

μ = r

p

r ≥ 1

p x
x

r
p p x r r rr x r( ) =

−
−

⎛
⎝⎜

⎞
⎠⎟

−( ) = + +−1

1
1 1 2, , , . . .
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68.26%

95.46%

99.73%

86 Chapter 3 ■ Modeling Process Quality

The normal distribution is used so much that we frequently employ a special notation,

x − N , to imply that x is normally distributed with mean and variance . The visual

appearance of the normal distribution is a symmetric, unimodal or bell-shaped curve and is

shown in Figure 3.16.

There is a simple interpretation of the standard deviation of a normal distribution,

which is illustrated in Figure 3.17. Note that 68.26% of the population values fall between the

limits defined by the mean plus and minus one standard deviation 95.46% of 

the values fall between the limits defined by the mean plus and minus two standard deviations

and 99.73% of the population values fall within the limits defined by the mean(m ± 2s );

(m ± 1s );

s

s 2m(m, s 2)

Definition

The normal distribution is

(3.21)

The mean of the normal distribution is and the variance is

s2 > 0.

m (−q < m < q)

f x e x

x

( ) = − ∞ < < ∞
− −⎛

⎝
⎞
⎠1

2

1

2

2

σ π

μ
σ

f (x)

x
μ

σ 2

■ F I G U R E  3 . 1 6 The normal distribution. ■ F I G U R E  3 . 1 7 Areas under the normal distribution.

The negative binomial random variable can be defined as the sum of geometric random

variables. That is, the sum of r geometric random variables each with parameter p is a nega-

tive binomial random variable with parameters p and r.

3.3 Important Continuous Distributions

In this section we discuss several continuous distributions that are important in statistical

quality control. These include the normal distribution, the lognormal distribution, the expo-

nential distribution, the gamma distribution, and the Weibull distribution.

3.3.1 The Normal Distribution

The normal distribution is probably the most important distribution in both the theory and

application of statistics. If x is a normal random variable, then the probability distribution of

x is defined as follows:
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plus and minus three standard deviations Thus, the standard deviation measures

the distance on the horizontal scale associated with the 68.26%, 95.46%, and 99.73% con-

tainment limits. It is common practice to round these percentages to 68%, 95%, and 99.7%.

The cumulative normal distribution is defined as the probability that the normal random

variable x is less than or equal to some value a, or

(3.22)

This integral cannot be evaluated in closed form. However, by using the change of variable

(3.23)

the evaluation can be made independent of and That is,

where is the cumulative distribution function of the standard normal distribution
(mean = 0, standard deviation = 1). A table of the cumulative standard normal distribution is

given in Appendix Table II. The transformation (3.23) is usually called standardization,
because it converts a random variable into an N(0, 1) random variable. N(m, s2)

Φ ( � )

P x a P z
a a≤{ } = ≤ −⎧⎨

⎩
⎫⎬
⎭

≡ −⎛
⎝

⎞
⎠

μ
σ

μ
σ

Φ

s2.m

z
x= − μ

σ

P x a F a e dx
x

a≤{ } = ( ) =
− −⎛

⎝
⎞
⎠

−∞∫
1

2

1

2

2

σ π

μ
σ

(m ± 3s).
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mean and standard deviation 

denoted What is the probability that a customer

complaint will be resolved in less than 35 hours?

x ∼ N(40, 22).
s = 2 hoursm = 40 hours

EXAMPLE 3.7

The time to resolve customer complaints is a critical quality

characteristic for many organizations. Suppose that this time in

a financial organization, say, x—is normally distributed with

Tensile Strength of Paper

SOLUTION

The desired probability is

To evaluate this probability from the standard normal tables,

we standardize the point 35 and find

Consequently, the desired probability is

Figure 3.18 shows the tabulated probability for both the N(40,

22) distribution and the standard normal distribution. Note that

the shaded area to the left of 35 hr in Figure 3.18 represents

the fraction of customer complaints resolved in less than or

equal to 35 hours.

p{x ≥ 35} = 0.0062

P z ≤ −{ } = −( ) =2 5 2 5 0 0062. . .Φ

P x P z≤{ } = ≤ −⎧
⎨
⎩

⎫
⎬
⎭

=35
35 40

2

P{x ≤ 35}

35

0.0062

40

   = 2σ

x

■ F I G U R E  3 . 1 8 Calculation of in

Example 3.7.

P5x ≤ 356

–2.5 0
z

   = 1σ

0.0062
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SOLUTION 

EXAMPLE 3.8 Shaft Diameters

lished as 0.2500 ± 0.0015 in. What fraction of the shafts pro-

duced conform to specifications?

The diameter of a metal shaft used in a disk-drive unit is nor-

mally distributed with mean 0.2508 in. and standard deviation

0.0005 in. The specifications on the shaft have been estab-

Thus, we would expect the process yield to be approximately

91.92%; that is, about 91.92% of the shafts produced conform

to specifications.

Note that almost all of the nonconforming shafts are too

large, because the process mean is located very near to the

P x P x P x0 2485 0 2515 0 2515 0 2485

0 2515 0 2500

0 0005

0 2485 0 2500

0 0005

3 00 3 00

0 99865 0 00135

0 9973

. . . .

. .

.

. .

.

. .

. .

.

≤ ≤{ } = ≤{ } − ≤{ }

= −⎛
⎝

⎞
⎠ − −⎛

⎝
⎞
⎠

= ( ) − −( )
= −
=

Φ Φ

Φ Φ

The appropriate normal distribution is shown in Figure 3.19.

Note that

In addition to the appendix table, many computer programs can calculate normal proba-

bilities. Minitab has this capability.

Appendix Table II gives only probabilities to the left of positive values of z. We will

need to utilize the symmetry property of the normal distribution to evaluate probabilities.

Specifically, note that

(3.24)

(3.25)
and

(3.26)

It is helpful in problem solution to draw a graph of the distribution, as in Figure 3.18.

P x a P x a≥ −{ } = ≤{ }

P x a P x a≤ −{ } = ≤{ }

P x a P x a≥{ } = − ≤{ }1

■ F I G U R E  3 . 1 9 Distribution of shaft diameters,

Example 3.8.

0.2485 0.2508 0.2515

   = 0.0005σ

Lower
specification

limit
(LSL)

Upper
specification

limit
(USL)

upper specification limit. Suppose that we can recenter the

manufacturing process, perhaps by adjusting the machine, so

that the process mean is exactly equal to the nominal value of

0.2500. Then we have

By recentering the process we have increased the yield of the

process to approximately 99.73%.

P x P x P x0 2485 0 2515 0 2515 0 2485

0 2515 0 2508

0 0005

0 2485 0 2508

0 0005

1 40 4 60

0 9192 0 0000

0 9192

. . . .

. .

.

. .

.

. .

. .

.

≤ ≤{ } = ≤{ } − ≤{ }

= −⎛
⎝

⎞
⎠ − −⎛

⎝
⎞
⎠

= ( ) − −( )
= −
=

Φ Φ

Φ Φ
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SOLUTION 

EXAMPLE 3.9 Another Use of the Standard Normal Table

random variable that results in a given probability. For exam-

ple, suppose that Find the value of x—say, a—

such that P 5x > a6 = 0.05.

x ∼ N(10, 9).
Sometimes instead of finding the probability associated with a

particular value of a normal random variable, we find it neces-

sary to do the opposite—find a particular value of a normal

From the problem statement, we have

or

P z
a≤ −⎧⎨

⎩
⎫⎬
⎭

=10

3
0 95.

P x a P z
a>{ } = > −⎧⎨

⎩
⎫⎬
⎭

=10

3
0 05.

From Appendix Table II, we have so

or

a = + ( ) =10 3 1 645 14 935. .

a − =10

3
1 645.

P5z ≤ 1.6456 = 0.95,

The normal distribution has many useful properties. One of these is relative to linear
combinations of normally and independently distributed random variables. If x1, x2 . . . , xn

are normally and independently distributed random variables with means and

variances respectively, then the distribution of the linear combination

is normal with mean

(3.27)

and variance

(3.28)

where a1, a2, . . . , an are constants.

The Central Limit Theorem. The normal distribution is often assumed as the

appropriate probability model for a random variable. Later on, we will discuss how to check

the validity of this assumption; however, the central limit theorem is often a justification of

approximate normality.

σ σ σ σy n na a a2
1
2

1
2

2
2

2
2 2 2= + + +L

μ μ μ μy n na a a= + + +1 1 2 2 L

y a x a x a xn n= + + +1 1 2 2 L

s2
1, s2

2, . . . , s2
n,

m1, m2, . . . , mn

Definition

The Central Limit Theorem If x1, x2, . . . , xn are independent random variables with

mean and variance and if y = x1 + x2 + . . . + xn, then the distribution of

approaches the N(0, 1) distribution as n approaches infinity.

y i
i

n

i
i

n

−
=

=

∑

∑

μ

σ

1

2

1

s2
i ,mi
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The central limit theorem implies that the sum of n independently distributed random vari-

ables is approximately normal, regardless of the distributions of the individual variables. The

approximation improves as n increases. In many cases the approximation will be good for small

n—say, —whereas in some cases we may require very large n—say, —for the

approximation to be satisfactory. In general, if the xi are identically distributed, and the distribu-

tion of each xi does not depart radically from the normal, then the central limit theorem works

quite well for or 4. These conditions are met frequently in quality-engineering problems.

3.3.2 The Lognormal Distribution

Variables in a system sometimes follow an exponential relationship, say x = exp(w). If the

exponent w is a random variable, then x = exp(w) is a random variable and the distribution of

x is of interest. An important special case occurs when w has a normal distribution. In that

case, the distribution of x is called a lognormal distribution. The name follows from the

transformation ln (x) = w. That is, the natural logarithm of x is normally distributed.

Probabilities for x are obtained from the transformation to w, but we need to recognize

that the range of x is Suppose that w is normally distributed with mean and vari-

ance then the cumulative distribution function for x is

for where z is a standard normal random variable. Therefore, Appendix Table II can be

used to determine the probability. Also, f (x) = 0, for The lognormal random variable is

always nonnegative.

The lognormal distribution is defined as follows:

x ≤ 0.

x > 0,

F a P x a P w a P w a

P z
a a

( ) = ≤[ ] = ( ) ≤[ ] = ≤ ( )[ ]
= ≤ ( ) −⎡

⎣⎢
⎤
⎦⎥

= ( ) −⎡
⎣⎢

⎤
⎦⎥

exp ln

ln lnθ
ω

θ
ω

Φ

�2;

q(0, q ).

n ≥ 3

n > 100n < 10

Definition

Let w have a normal distribution mean and variance then x = exp(w) is a 

lognormal random variable, and the lognormal distribution is

(3.29)

The mean and variance of x are

(3.30)μ σθ ω θ ω ω= −( )+ +e e e
2 2 22 2 1   and   =2

f x x
x x( ) = −
( ) −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞
1

2 2
2

2ω π

θ

ω
         0 < <exp ln

�2;u

The parameters of a lognormal distribution are and but care is needed to interpret that

these are the mean and variance of the normal random variable w. The mean and variance of

x are the functions of these parameters shown in equation 3.30. Figure 3.20 illustrates log-

normal distributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-

dom variable. For example, this is a common distribution for the lifetime of a semiconductor

laser. Other continuous distributions can also be used in this type of application. However,

because the lognormal distribution is derived from a simple exponential function of a normal

random variable, it is easy to understand and easy to evaluate probabilities.

�2,u
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■ F I G U R E  3 . 2 0 Lognormal probability density functions

with for selected values of w2.q = 0

1
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0.6
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0.4

0.3

0.2

0.1

0

–0.1
0 1 2 3

x
4 5 6

f(
x)

ω
ω
ω

  2 = 0.25
  2 = 1
  2 = 2.25

SOLUTION 

EXAMPLE 3.10 Medical Laser Lifetime

The lifetime of a medical laser used in ophthalmic surgery has

a lognormal distribution with and w = 1.2 hours What is

the probability that the lifetime exceeds 500 hours?

q = 6

What lifetime is exceeded by 99% of lasers? Now the question

is to determine a such that Therefore,P(x > a) = 0.99.

so the standard deviation of the lifetime is 1487.42 hours.

Notice that the standard deviation of the lifetime is large 

relative to the mean.

From Appendix Table II, when a = −2.33.

Therefore,

1 − Φ (a) = 0.99

ln

.
. exp . .

a
a

( ) − = − = ( ) =6

1 2
2 33 3 204 24 63      and       hours

μ θ ω= = +( ) =+e
2 2 6 0 72 828 82exp . .  hours

σ θ ω ω2 2 2 2

1 12 1 44 1 44 1= −( ) = +( ) ( ) −[ ]+e e exp . exp .

2 212 419 85= , , .

From the cumulative distribution function for the lognormal

random variable

P x P w P w>( ) = − ( ) ≤[ ] = − ≤ ( )[ ]

= ( ) −⎛
⎝⎜

⎞
⎠⎟

= − ( ) = −

500 1 500 1 500

500 6

1 2
1 0 1788 1 0 5

exp ln

ln

.
. .Φ Φ

= − =1 0 5710 0 4290. .

a= − ( ) −⎛
⎝⎜

⎞
⎠⎟

=ln

.
.1

6

1 2
0 99Φ

P x a P w a P w a>( ) = ( ) >[ ] = > ( )[ ]exp ln

Determine the mean and standard deviation of the lifetime. Now,
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3.3.3 The Exponential Distribution

The probability distribution of the exponential random variable is defined as follows:

■ F I G U R E  3 . 2 1 Exponential distributions for selected

values of l.

■ F I G U R E  3 . 2 2 The cumulative

exponential distribution function.

0.2

0.16

0.12

0.08

0.04

0
0 20 40 60 80 100

x

f(
x)

λ   = 0.2(    = 5)
   = 0.1(    = 10)
   = 0.0667(    = 15)
λ
λ

μ
μ

μ

F
(a

)

a
0

Definition

The exponential distribution is

(3.31)

where is a constant. The mean and variance of the exponential distribu-

tion are

(3.32)

and

(3.33)

respectively.

σ
λ

2
2

1=

μ
λ

= 1

l > 0

f x e xx( ) = ≥−λ λ         0

Several exponential distributions are shown in Figure 3.21.

The cumulative exponential distribution is

(3.34)

Figure 3.22 illustrates the exponential cumulative distribution function.

The exponential distribution is widely used in the field of reliability engineering as a

model of the time to failure of a component or system. In these applications, the parameter 

is called the failure rate of the system, and the mean of the distribution is called the1/l
l

= − ≥−1 e aaλ           0

F a P x a

e dtta

( ) = ≤{ }
= −∫ λ λ

0
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3.3 Important Continuous Distributions 93

2See the supplemental text material for more information.

mean time to failure.2 For example, suppose that an electronic component in an airborne

radar system has a useful life described by an exponential distribution with failure 

rate 10−4/h; that is, The mean time to failure for this component is

If we wanted to determine the probability that this component would

fail before its expected life, we would evaluate

This result holds regardless of the value of that is, the probability that a value of an expo-

nential random variable will be less than its mean is 0.63212. This happens, of course,

because the distribution is not symmetric.

There is an important relationship between the exponential and Poisson distributions. If

we consider the Poisson distribution as a model of the number of occurrences of some event

in the interval (0, t], then from equation 3.15 we have

Now x = 0 implies that there are no occurrences of the event in (0, t], and

We may think of p(0) as the probability that the interval to the first

occurrence is greater than t, or

where y is the random variable denoting the interval to the first occurrence. Since

and using the fact that f (y) = dF(y)/dy, we have

(3.35)

as the distribution of the interval to the first occurrence. We recognize equation 3.35 as an

exponential distribution with parameter Therefore, we see that if the number of occurrences

of an event has a Poisson distribution with parameter then the distribution of the interval

between occurrences is exponential with parameter 

The exponential distribution has a lack of memory property. To illustrate, suppose that

the exponential random variable x is used to model the time to the occurrence of some event.

Consider two points in time t1 and . Then the probability that the event occurs at a time

that is less than but greater than time t2 is just the probability that the event occurs at

time less than t1. This is the same lack of memory property that we observed earlier for the

geometric distribution. The exponential distribution is the only continuous distribution that

has this property.

3.3.4 The Gamma Distribution

The probability distribution of the gamma random variable is defined as follows:

t1 + t2

t2 > t1

l.

l,

l.

f y e y( ) = −λ λ

F t P y t e t( ) = ≤{ } = − −1 λ

P y t p e t>{ } = ( ) = −0 λ

P5x = 06 = p(0) = e−lt.

p x
e t

x

t x

( ) = ( )−λ λ
!

l;

P x e dt et≤⎧⎨
⎩

⎫⎬
⎭

= = − =− −∫
1

1 0 63212
0

1 1

λ
λ λλ

.

1/l = 104 = 10,000 h.

l = 10−4.
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3 in the denominator of equation 3.36 is the gamma function, defined as If r is a

positive integer, then ≠1r2 = 1r - 12!
�(r) = �q

0
xr−1e�xdx, r > 0.�(r)

Definition

The gamma distribution is

(3.36)

with shape parameter and scale parameter The mean and variance
of the gamma distribution are

(3.37)

and

(3.38)

respectively.3

σ
λ

2
2

= r

μ
λ

= r

l > 0.r > 0

f x
r

x e xr x( ) =
( ) ( ) ≥− −λ λ λ

Γ
1

0           

Several gamma distributions are shown in Figure 3.23. Note that if r = 1, the gamma distrib-

ution reduces to the exponential distribution with parameter (Section 3.3.3). The gamma

distribution can assume many different shapes, depending on the values chosen for r and 

This makes it useful as a model for a wide variety of continuous random variables.

If the parameter r is an integer, then the gamma distribution is the sum of r indepen-

dently and identically distributed exponential distributions, each with parameter That is, if

x1, x2, . . . , xr are exponential with parameter and independent, then

is distributed as gamma with parameters r and There are a number of important applica-

tions of this result.

l.

y x x xr= + + +1 2 L

l
l.

l.

l

■ F I G U R E  3 . 2 3 Gamma distributions

for selected values or r and l = 1.
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r = 2,    = 1
r = 3,    = 1
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■ F I G U R E  3 . 2 4 The standby redun-

dant system for Example 3.11.

Component 2

Component 1

Switch

EXAMPLE 3.11 A Standby Redundant System

Consider the system shown in Figure 3.24. This is called a

standby redundant system, because while component 1 is on,

component 2 is off, and when component 1 fails, the switch

automatically turns component 2 on. If each component has a

life described by an exponential distribution with ,

say, then the system life is gamma distributed with parameters

r = 2 and Thus, the mean time to failure is

.m = r/l = 2/10−4 = 2 × 104 h

l = 10−4.

l = 10−4/h

Definition

The Weibull distribution is

(3.41)

where is the scale parameter and is the shape parameter. The mean
and variance of the Weibull distribution are

(3.42)

and

(3.43)

respectively.

σ θ
β β

2 2
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⎞
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The cumulative gamma distribution is

(3.39)

If r is an integer, then equation 3.39 becomes

(3.40)

Consequently, the cumulative gamma distribution can be evaluated as the sum of r Poisson terms

with parameter This result is not too surprising, if we consider the Poisson distribution as a

model of the number of occurrences of an event in a fixed interval, and the gamma distribution

as the model of the portion of the interval required to obtain a specific number of occurrences.

3.3.5 The Weibull Distribution

The Weibull distribution is defined as follows:

la.

F a e
a

k
a

k

k

r
( ) = − ( )−

=

−
∑1

0

1
λ λ

!

F a
r

t e dt
a

r t( ) = −
( )( )∞ − −∫1

1λ λ λ

Γ

c03ModelingProcessQuality.qxd  3/16/12  12:10 PM  Page 95



96 Chapter 3 ■ Modeling Process Quality

■ F I G U R E  3 . 2 5 Weibull dis-

tributions for selected values of the shape

parameter and scale parameter q = 1.�
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SOLUTION 

EXAMPLE 3.12 Time to Failure for Electronic Components

failure and the fraction of components that are expected to

survive beyond 20,000 hours.

The time to failure for an electronic component used in a flat

panel display unit is satisfactorily modeled by a Weibull distri-

bution with and Find the mean time to q = 5000.b = 1
2

The mean time to failure is

The fraction of components expected to survive a = 20,000

hours is

1− ( ) = −⎛
⎝

⎞
⎠

⎡

⎣
⎢
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That is, all but about 13.53% of the subassemblies will fail by

20,000 hours.

1 20 000
20 000

5 000

0 1353

1

2

2

− ( ) = −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
=

−

F

e

, exp
,

,

.

4See the supplemental text material for more information.

The Weibull distribution is very flexible, and by appropriate selection of the parameters and 

the distribution can assume a wide variety of shapes. Several Weibull distributions are shown in

Figure 3.25 for and and 4. Note that when the Weibull distribution

reduces to the exponential distribution with mean The cumulative Weibull distribution is

(3.44)

The Weibull distribution has been used extensively in reliability engineering as a model of time

to failure for electrical and mechanical components and systems. Examples of situations in which

the Weibull distribution has been used include electronic devices such as memory elements,

mechanical components such as bearings, and structural elements in aircraft and automobiles.4

F a
a( ) = − −⎛

⎝
⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 exp
θ

β

1/q.

b = 1,b = 1/2, 1, 2,q = 1

b,q
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3.4 Probability Plots 97

3.4 Probability Plots

3.4.1 Normal Probability Plots

How do we know whether a particular probability distribution is a reasonable model for data?

Probability plotting is a graphical method for determining whether sample data conform to a

hypothesized distribution based on a subjective visual examination of the data. The general

procedure is very simple and can be performed quickly. Probability plotting typically uses spe-

cial graph paper, known as probability paper, that has been designed for the hypothesized dis-

tribution. Probability paper is widely available for the normal, lognormal, Weibull, and various

chi-square and gamma distributions. In this section we illustrate the normal probability plot.
Section 3.4.2 discusses probability plots for some other continuous distributions.

To construct a probability plot, the observations in the sample are first ranked from

smallest to largest. That is, the sample x1, x2, . . . , xn is arranged as x(1), x(2), . . . , x(n), where

x(1) is the smallest observation, x(2) is the second smallest observation, and so forth, with x(n)

the largest. The ordered observations x( j) are then plotted against their observed cumulative

frequency ( j − 0.5)/n [or 100 ( j − 0.5)/n] on the appropriate probability paper. If the hypoth-

esized distribution adequately describes the data, the plotted points will fall approximately

along a straight line; if the plotted points deviate significantly and systematically from a

straight line, the hypothesized model is not appropriate. Usually, the determination of

whether or not the data plot as a straight line is subjective. The procedure is illustrated in the

following example.

SOLUTION 

EXAMPLE 3.13 A Normal Probability Plot

adequately modeled by a normal distribution. Is this a reason-

able assumption?

Observations on the road octane number of ten gasoline blends

are as follows: 88.9, 87.0, 90.0, 88.2, 87.2, 87.4, 87.8, 89.7,

86.0, and 89.6. We hypothesize that the octane number is 

To use probability plotting to investigate this hypothesis, first

arrange the observations in ascending order and calculate their

cumulative frequencies ( j − 0.5)/10 as shown in the following

table.

The pairs of values x(j) and ( j − 0.5)/10 are now plotted on nor-

mal probability paper. This plot is shown in Figure 3.26. Most

normal probability paper plots 100( j − 0.5)/n on the left verti-

cal scale (and some also plot 100[1 − ( j − 0.5)/n] on the right

vertical scale), with the variable value plotted on the horizon-

tal scale. A straight line, chosen subjectively as a “best fit” line,

has been drawn through the plotted points. In drawing the

straight line, you should be influenced more by the points near

the middle of the plot than by the extreme points. A good rule

of thumb is to draw the line approximately between the twenty-

fifth and seventy-fifth percentile points. This is how the line in

Figure 3.26 was determined. In assessing the systematic devi-

ation of the points from the straight line, imagine a fat pencil

lying along the line. If all the points are covered by this imag-

inary pencil, a normal distribution adequately describes the

data. Because the points in Figure 3.26 would pass the fat pen-

cil test, we conclude that the normal distribution is an appro-

priate model for the road octane number data.

j x(j) ( j - 0.5)/10

1 86.0 0.05

2 87.0 0.15

3 87.2 0.25

4 87.4 0.35

5 87.8 0.45

6 88.2 0.55

7 88.9 0.65

8 89.6 0.75

9 89.7 0.85

10 90.0 0.95

(continued)
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–3.30

–1.64

–0.67

0

0.67

1.64

3.30

85.2 86.2 87.2 88.2

x(j)

89.2 90.2 91.2

z j

■ F I G U R E  3 . 2 7 Normal probability plot of the road

octane number data with standardized scores.

j x( j) ( j - 0.5)/10 zj

1 86.0 0.05 –1.64

2 87.0 0.15 –1.04

3 87.2 0.25 –0.67

4 87.4 0.35 –0.39

5 87.8 0.45 –0.13

6 88.2 0.55 0.13

7 88.9 0.65 0.39

8 89.6 0.75 0.67

9 89.7 0.85 1.04

10 90.0 0.95 1.64

A normal probability plot can also be constructed on ordinary graph paper by plotting

the standardized normal scores zj against x( j), where the standardized normal scores satisfy

For example, if ( j − 0.5)/n = 0.05, implies that zj = −1.64. To illustrate, consider

the data from the previous example. In the following table we show the standardized normal

scores in the last column.

Figure 3.27 presents the plot of zj versus x( j). This normal probability plot is equivalent

to the one in Figure 3.26. We can obtain an estimate of the mean and standard deviation

directly from a normal probability plot. The mean is estimated as the fiftieth percentile. From

Figure 3.25, we would estimate the mean road octane number as 88.2. The standard deviation

is proportional to the slope of the straight line on the plot, and one standard deviation is the

difference between the eighty-fourth and fiftieth percentiles. In Figure 3.26, the eighty-fourth

percentile is about 90, and the estimate of the standard deviation is 90 − 88.2 = 1.8.

A very important application of normal probability plotting is in verification of
assumptions when using statistical inference procedures that require the normality assump-

tion. This will be illustrated subsequently.

Φ (zj) = 0.05

j

n
P Z z zj j

− = ≤( ) = ( )0 5. Φ

■ F I G U R E  3 . 2 6 Normal probability

plot of the road octane number data.
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3.4.2 Other Probability Plots

Probability plots are extremely useful and are often the first technique used when we need to

determine which probability distribution is likely to provide a reasonable model for data. In

using probability plots, usually the distribution is chosen by subjective assessment of the

probability plot. More formal statistical goodness-of-fit tests can also be used in conjunction

with probability plotting.

To illustrate how probability plotting can be useful in determining the appropriate dis-

tribution for data, consider the data on aluminum contamination (ppm) in plastic shown in

Table 3.5. Figure 3.28 presents several probability plots of this data, constructed using

Minitab. Figure 3.28a is a normal probability plot. Notice how the data in the tails of the plot

■ TA B L E  3 . 5  

Aluminum Contamination (ppm)

30 30 60 63 70 79 87

90 101 102 115 118 119 119

120 125 140 145 172 182

183 191 222 244 291 511

From “The Lognormal Distribution for Modeling Quality Data When the Mean Is Near Zero,”

Journal of Quality Technology, 1990, pp. 105–110.
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■ F I G U R E  3 . 2 8 Probability plots of the aluminum contamination data in Table 3.5. (a) Normal. 

(b) Lognormal. (c) Weibull. (d ) Exponential.
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bend away from the straight line; This is an indication that the normal distribution is not a

good model for the data. Figure 3.28b is a lognormal probability plot of the data. The data fall

much closer to the straight line in this plot, particularly the observations in the tails, suggest-

ing that the lognormal distribution is more likely to provide a reasonable model for the data

than is the normal distribution.

Finally, Figures 3.28c and 3.28d are Weibull and exponential probability plots for the

data. The observations in these plots are not very close to the straight line, suggesting that

neither the Weibull nor the exponential is a very good model for the data. Therefore, based on

the four probability plots that we have constructed, the lognormal distribution appears to be

the most appropriate choice as a model for the aluminum contamination data.

3.5 Some Useful Approximations

In certain quality control problems, it is sometimes useful to approximate one probability dis-

tribution with another. This is particularly helpful in situations where the original distribution

is difficult to manipulate analytically. In this section, we present three such approximations:

(1) the binomial approximation to the hypergeometric, (2) the Poisson approximation to the

binomial, and (3) the normal approximation to the binomial.

3.5.1 The Binomial Approximation to the Hypergeometric

Consider the hypergeometric distribution in equation 3.8. If the ratio n/N (often called the

sampling fraction) is small—say, n/N ≤ 0.1—then the binomial distribution with parameters

p = D/N and n is a good approximation to the hypergeometric. The approximation is better

for small values of n/N.
This approximation is useful in the design of acceptance-sampling plans. Recall that the

hypergeometric distribution is the appropriate model for the number of nonconforming items

obtained in a random sample of n items from a lot of finite size N. Thus, if the sample size n
is small relative to the lot size N, the binomial approximation may be employed, which usu-

ally simplifies the calculations considerably.

As an example, suppose that a group of 200 automobile loan applications contains

5 applications that have incomplete customer information. Those could be called noncon-
forming applications. The probability that a random sample of 10 applications will contain

no nonconforming applications is, from equation 3.8,

Note that since n/N = 10/200 = 0.05 is relatively small, we could use the binomial approxi-

mation with p = D/N = 5/200 = 0.025 and n = 10 to calculate

3.5.2 The Poisson Approximation to the Binomial

It was noted in Section 3.2.3 that the Poisson distribution could be obtained as a limiting form

of the binomial distribution for the case where p approaches zero and n approaches infinity

p 0
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with � np constant. This implies that, for small p and large n, the Poisson distribution with

� np may be used to approximate the binomial distribution. The approximation is usually

good for large n and if The larger the value of n and the smaller the value of p, the

better is the approximation.

3.5.3 The Normal Approximation to the Binomial

In Section 3.2.2 we defined the binomial distribution as the sum of a sequence of n Bernoulli

trials, each with probability of success p. If the number of trials n is large, then we may use

the central limit theorem to justify the normal distribution with mean np and variance np(1 − p)

as an approximation to the binomial. That is,

Since the binomial distribution is discrete and the normal distribution is continuous, it is com-

mon practice to use continuity corrections in the approximation, so that

where denotes the standard normal cumulative distribution function. Other types of prob-

ability statements are evaluated similarly, such as

The normal approximation to the binomial is known to be satisfactory for p of approximately

1/2 and For other values of p, larger values of n are required. In general, the approxi-

mation is not adequate for or or for values of the random vari-

able outside an interval six standard deviations wide centered about the mean (i.e., the interval

.

We may also use the normal approximation for the random variable —that is,

the sample fraction defective of Section 3.2.2. The random variable is approximately nor-

mally distributed with mean p and variance p(1 − p)/n, so that

Since the normal will serve as an approximation to the binomial, and since the binomial and

Poisson distributions are closely connected, it seems logical that the normal may serve to

approximate the Poisson. This is indeed the case, and if the mean of the Poisson distribu-

tion is large—say, at least 15—then the normal distribution with and is a

satisfactory approximation.
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102 Chapter 3 ■ Modeling Process Quality

3.5.4 Comments on Approximations

A summary of the approximations discussed above is presented in Figure 3.29. In this figure,

H, B, P, and N represent the hypergeometric, binomial, Poisson, and normal distributions,

respectively. The widespread availability of modern microcomputers, good statistics software

packages, and handheld calculators has made reliance on these approximations largely unnec-

essary, but there are situations in which they are useful, particularly in the application of the

popular three-sigma limit control charts.

Approximations to probability distributions

Binomial distribution

Box plot

Central limit theorem

Continuous distribution

Control limit theorem

Descriptive statistics

Discrete distribution 

Exponential distribution 

Gamma distribution 

Geometric distribution 

Histogram 

Hypergeometric probability distribution 

Interquartile range 

Lognormal distribution 

Mean of a distribution 

Median 

Negative binomial distribution 

Normal distribution 

Normal probability plot 

Pascal distribution 

Percentile 

Poisson distribution 

Population 

Probability distribution 

Probability plotting 

Quartile

Random variable 

Run chart 

Sample 

Sample average 

Sample standard deviation 

Sample variance 

Standard deviation 

Standard normal distribution 

Statistics 

Stem-and-leaf display 

Time series plot 

Uniform distribution 

Variance of a distribution 

Weibull distribution 

Important Terms and Concepts

H

B

< 0.1n__
N

P

N

p < 0.1 p > 0.9The smaller p and
larger n the better)( (

Let p' = 1 – p. The
smaller p' and larger
n the better( (

    >_ 15   (The larger the better)λ

np > 10

0.1 ≤ p ≤ 0.9 

■ F I G U R E  3 . 2 9 Approximations to probability distributions.
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Exercises 103

Exercises

■ TA B L E  3 E . 1  

Electronic Component Failure Time

127 124 121 118

125 123 136 131

131 120 140 125

124 119 137 133

129 128 125 141

121 133 124 125

142 137 128 140

151 124 129 131

160 142 130 129

125 123 122 126

■ TA B L E  3 E . 2

Process Yield

94.1 87.3 94.1 92.4 84.6 85.4

93.2 84.1 92.1 90.6 83.6 86.6

90.6 90.1 96.4 89.1 85.4 91.7

91.4 95.2 88.2 88.8 89.7 87.5

88.2 86.1 86.4 86.4 87.6 84.2

86.1 94.3 85.0 85.1 85.1 85.1

95.1 93.2 84.9 84.0 89.6 90.5

90.0 86.7 87.3 93.7 90.0 95.6

92.4 83.0 89.6 87.7 90.1 88.3

87.3 95.3 90.3 90.6 94.3 84.1

86.6 94.1 93.1 89.4 97.3 83.7

91.2 97.8 94.6 88.6 96.8 82.9

86.1 93.1 96.3 84.1 94.4 87.3

90.4 86.4 94.7 82.6 96.1 86.4

89.1 87.6 91.1 83.1 98.0 84.5

3.8. The time to failure in hours of an electronic compo-

nent subjected to an accelerated life test is shown in

Table 3E.1. To accelerate the failure test, the units

were tested at an elevated temperature (read down,

then across).

(a) Calculate the sample average and standard 

deviation.

(b) Construct a histogram.

(c) Construct a stem-and-leaf plot.

(d) Find the sample median and the lower and upper

quartiles.

3.9. The data shown in Table 3E.2 are chemical process

yield readings on successive days (read down, then

across). Construct a histogram for these data.

3.1. The content of liquid detergent bot-

tles is being analyzed. Twelve bottles,

randomly selected from the process,

are measured, and the results are as

follows (in fluid ounces): 16.05,

16.03, 16.02, 16.04, 16.05, 16.01,

16.02, 16.02, 16.03, 16.01, 16.00,

16.07

(a) Calculate the sample average.

(b) Calculate the sample standard

deviation.

3.2. The bore diameters of eight randomly selected bear-

ings are shown here (in mm): 50.001, 50.002,

49.998, 50.006, 50.005, 49.996, 50.003, 50.004

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

3.3. The service time in minutes from admit to discharge

for ten patients seeking care in a hospital emergency

department are 21, 136, 185, 156, 3, 16, 48, 28, 100,

and 12. Calculate the mean and standard deviation

of the service time.

3.4. The Really Cool Clothing Company sells its products

through a telephone ordering process. Since business

is good, the company is interested in studying the way

that sales agents interact with their customers. Calls

are randomly selected and recorded, then reviewed

with the sales agent to identify ways that better ser-

vice could possibly be provided or that the customer

could be directed to other items similar to those they

plan to purchase that they might also find attractive.

Call handling time (length) in minutes for 20 ran-

domly selected customer calls handled by the same

sales agent are as follows: 6, 26, 8, 2, 6, 3, 10, 14, 4,

5, 3, 17, 9, 8, 9, 5, 3, 28, 21, and 4. Calculate the mean

and standard deviation of call handling time.

3.5. The nine measurements that follow are furnace tem-

peratures recorded on successive batches in a semi-

conductor manufacturing process (units are °F): 953,

955, 948, 951, 957, 949, 954, 950, 959

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

3.6. Consider the furnace temperature data in Exercise 3.5.

(a) Find the sample median of these data.

(b) How much could the largest temperature mea-

surement increase without changing the sample

median?

3.7. Yield strengths of circular tubes with end caps are

measured. The first yields (in kN) are as follows: 96,

102, 104, 108, 126, 128, 150, 156

(a) Calculate the sample average.

(b) Calculate the sample standard deviation.

The Student
Resource Manual
presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.
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104 Chapter 3 ■ Modeling Process Quality

Comment on the shape of the histogram. Does it

resemble any of the distributions that we have dis-

cussed in this chapter?

3.10. An article in Quality Engineering (Vol. 4, 1992,

pp. 487–495) presents viscosity data from a batch

chemical process. A sample of these data is presented

in Table 3E.3 (read down, then across).

(a) Construct a stem-and-leaf display for the viscos-

ity data.

(b) Construct a frequency distribution and histogram.

(c) Convert the stem-and-leaf plot in part (a) into an

ordered stem-and-leaf plot. Use this graph to

assist in locating the median and the upper and

lower quartiles of the viscosity data.

(d) What are the tenth and ninetieth percentiles of

viscosity?

3.11. Construct and interpret a normal probability plot of the

volumes of the liquid detergent bottles in Exercise 3.1.

3.12. Construct and interpret a normal probability plot of

the nine furnace temperature measurements in

Exercise 3.5.

3.13. Construct a normal probability plot of the failure

time data in Exercise 3.8. Does the assumption that

failure time for this component is well modeled by a

normal distribution seem reasonable?

3.14. Construct a normal probability plot of the chemical

process yield data in Exercise 3.9. Does the assump-

tion that process yield is well modeled by a normal

distribution seem reasonable?

3.15. Consider the viscosity data in Exercise 3.10.

Construct a normal probability plot, a lognormal

probability plot, and a Weibull probability plot for

these data. Based on the plots, which distribution

seems to be the best model for the viscosity data?

3.16. Table 3E.4 contains 20 observations on cycles to fail-

ure of aluminum test coupons subjected to repeated

alternating stress of 15,000 psi at 20 cycles per second.

Construct a normal probability plot, a lognormal

probability plot, and a Weibull probability plot for

these data. Based on the plots, which distribution

seems to be the best model for the cycles to failure

for this material?

3.17. An important quality characteristic of water is the

concentration of suspended solid material (in

ppm). Table 3E.5 contains 40 measurements on

suspended solids for a certain lake. Construct a

normal probability plot, a lognormal probability

plot, and a Weibull probability plot for these data.

Based on the plots, which distribution seems to be

the best model for the concentration of suspended

solids?

3.18. Consider the outpatient service times in Exercise 3.3.

Construct a normal probability plot, an exponential

probability plot, and a Weibull probability plot for

these data. Do any of these distributions seem to be a

■ TA B L E  3 E . 3  

Viscosity

13.3 14.9 15.8 16.0

14.5 13.7 13.7 14.9

15.3 15.2 15.1 13.6

15.3 14.5 13.4 15.3

14.3 15.3 14.1 14.3

14.8 15.6 14.8 15.6

15.2 15.8 14.3 16.1

14.5 13.3 14.3 13.9

14.6 14.1 16.4 15.2

14.1 15.4 16.9 14.4

14.3 15.2 14.2 14.0

16.1 15.2 16.9 14.4

13.1 15.9 14.9 13.7

15.5 16.5 15.2 13.8

12.6 14.8 14.4 15.6

14.6 15.1 15.2 14.5

14.3 17.0 14.6 12.8

15.4 14.9 16.4 16.1

15.2 14.8 14.2 16.6

16.8 14.0 15.7 15.6

■ TA B L E  3 E . 4  

Cycles to Failure of Test Coupons

8078 1891 13912 3407 6168

15504 1893 12551 6861 1334

9438 6227 2562 2074 6770

7971 17081 9245 19041 21997

■ TA B L E  3 E . 5  

Concentration of Suspended Solids (ppm)

0.78 9.59 2.26 8.13 3.16

4.33 11.70 0.22 125.93 1.30

0.15 0.20 0.29 13.72 0.96

0.29 2.93 3.65 3.47 1.73

14.21 1.79 0.54 14.81 0.68

0.09 5.81 5.17 21.01 0.41

4.75 2.82 1.30 4.57 74.74

0.78 1.94 3.52 20.10 4.98
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reasonable probability model for the data? Based

on the plots, which distribution is the best one to

describe the outpatient service time?

3.19. Consider the call handling times in Exercise 3.4.

Construct a normal probability plot, an exponential

probability plot, and a gamma probability plot for

these data. Do any of these distributions seem to be a

reasonable probability model for the data? Based

on the plots, which distribution is the best one to

describe the call handling time?

3.20. Consider the viscosity data in Exercise 3.10. Assume

that reading down, then across, gives the data in time

order. Construct and interpret a time-series plot.

3.21. Reconsider the yield data in Exercise 3.9. Construct

a time-series plot for these data. Interpret the plot.

3.22. Consider the concentration of suspended solids from

Exercise 3.17. Assume that reading across, then down,

gives the data in time order. Construct and interpret a

time-series plot.

3.23. Consider the chemical process yield data in

Exercise 3.9. Calculate the sample average and stan-

dard deviation.

3.24. Consider the chemical process yield data in

Exercise 3.9. Construct a stem-and-leaf plot for the

data and compare it with the histogram from

Exercise 3.9. Which display provides more infor-

mation about the process?

3.25. Construct a box plot for the data in Exercise 3.1.

3.26. Construct a box plot for the data in Exercise 3.2.

3.27. Suppose that two fair dice are tossed and the

random variable observed—say, x—is the sum of

the two up faces. Describe the sample space of

this experiment, and determine the probability

distribution of x.
3.28. Find the mean and variance of the random variable in

Exercise 3.27.

3.29. A mechatronic assembly is subjected to a final

functional test. Suppose that defects occur at ran-

dom in these assemblies, and that defects occur

according to a Poisson distribution with parameter

(a) What is the probability that an assembly will

have exactly one defect?

(b) What is the probability that an assembly will

have one or more defects?

(c) Suppose that you improve the process so that the

occurrence rate of defects is cut in half to

What effect does this have on the prob-

ability that an assembly will have one or more

defects?

3.30. The probability distribution of x is 

Find the appropriate value of k. Find the

mean and variance of x.
0 ≤ x ≤ q.

f1x2 = ke-x,

l = 0.01.

l = 0.02.

3.31. The random variable x takes on the values 1, 2, or 3

with probabilities (1 + 3k)/3, (1 + 2k)/3, and (0.5 +
5k)/3, respectively.

(a) Find the appropriate value of k.
(b) Find the mean and variance of x.
(c) Find the cumulative distribution function.

3.32. The probability distribution of the discrete random

variable x is p(x) = krx, 0 < r < 1. Find the appropri-

ate value for k if x = 0, 1, . . . .

3.33. A manufacturer of electronic calculators offers a

one-year warranty. If the calculator fails for any 

reason during this period, it is replaced. The time to

failure is well modeled by the following probability

distribution:

(a) What percentage of the calculators will fail

within the warranty period?

(b) The manufacturing cost of a calculator is $50,

and the profit per sale is $25. What is the effect

of warranty replacement on profit?

3.34. The net contents in ounces of canned soup is a ran-

dom variable with probability distribution

Find the probability that a can contains less than

12 ounces of product.

3.35. A production process operates with 1% nonconform-

ing output. Every hour a sample of 25 units of prod-

uct is taken, and the number of nonconforming units

counted. If one or more nonconforming units are

found, the process is stopped and the quality control

technician must search for the cause of nonconform-

ing production. Evaluate the performance of this

decision rule.

3.36. Continuation of Exercise 3.35. Consider the deci-

sion rule described in Exercise 3.35. Suppose that the

process suddenly deteriorates to 4% nonconforming

output. How many samples, on average, will be

required to detect this?

3.37. A random sample of 50 units is drawn from a pro-

duction process every half hour. The fraction of non-

conforming product manufactured is 0.02. What is

the probability that if the fraction noncon-

forming really is 0.02?

3.38. A sample of 100 units is selected from a production

process that is 1% nonconforming. What is the proba-

bility that will exceed the true fraction nonconform-

ing by k standard deviations, where k = 1, 2, and 3?

3.39. Suppose that 10% of the adult population has blood

chemistry parameters consistent with a diagnosis of

pN

p̂ ≤ 0.04

f x
x x

x x
( ) =

−( ) ≤ ≤
−( ) ≤ ≤

⎧
⎨
⎩

4 11 75 11 75 12 25

4 12 75 12 25 12 75

. . .

. . .

f x e        x > 0x( ) = −0 125 0 125. .          
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a pre-diabetic condition. Of four volunteer partici-

pants in a health screening study, what is the proba-

bility that one of them is pre-diabetic?

3.40. Patients arriving at an outpatient clinic are routinely

screened for high blood pressure. Assume that this

condition occurs in 15% of the population.

(a) What is the probability that the third patient of

the day has high blood pressure?

(b) What is the average number of patients that

must be seen to find the first patient with high

blood pressure?

(c) If the clinic typically sees 50 patients each day,

what is the probability of finding 10 patients

with high blood pressure?

3.41. A stock brokerage has four computers that are used

for making trades on the New York Stock Exchange.

The probability that a computer fails on any single

day is 0.005. Failures occur independently. Any

failed computers are repaired after the exchange

closes, so each day can be considered an indepen-

dent trial. 

(a) What is the probability that all four computers

fail on one day?

(b) What is the probability that at least one com-

puter fails on a day?

(c) What is the mean number of days until a spe-

cific computer fails?

3.42. A computer system uses passwords consisting of

the lowercase letters (a–z) and the integers (0–9).

There are 10,000 users with unique passwords. A

hacker randomly selects (with replacement) pass-

words in an attempt to break into the system.

(a) Suppose that 8000 of the users have six-character

passwords. What is the mean and standard devi-

ation of the number of attempts required before

the hacker selects a legitimate password?

(b) Suppose that 2000 of the users have three-character

passwords. What is the mean and standard devi-

ation of the number of attempts required before

the hacker selects a legitimate password?

3.43. An electronic component for a medical X-ray unit is

produced in lots of size N = 25. An acceptance test-

ing procedure is used by the purchaser to protect

against lots that contain too many nonconforming

components. The procedure consists of selecting five

components at random from the lot (without replace-

ment) and testing them. If none of the components is

nonconforming, the lot is accepted.

(a) If the lot contains two nonconforming compo-

nents, what is the probability of lot acceptance?

(b) Calculate the desired probability in (a) using the

binomial approximation. Is this approximation

satisfactory? Why or why not?

(c) Suppose the lot size was N = 150. Would the

binomial approximation be satisfactory in this

case?

(d) Suppose that the purchaser will reject the lot

with the decision rule of finding one or more

nonconforming components in a sample of size

n, and wants the lot to be rejected with probabil-

ity at least 0.95 if the lot contains five or more

nonconforming components. How large should

the sample size n be?

3.44. A lot of size N = 30 contains three nonconforming

units. What is the probability that a sample of five

units selected at random contains exactly one non-

conforming unit? What is the probability that it con-

tains one or more nonconformances?

3.45. A textbook has 500 pages on which typographical

errors could occur. Suppose that there are exactly 10

such errors randomly located on those pages. Find the

probability that a random selection of 50 pages will

contain no errors. Find the probability that 50 ran-

domly selected pages will contain at least two errors.

3.46. Surface-finish defects in a small electric appliance

occur at random with a mean rate of 0.1 defects per

unit. Find the probability that a randomly selected

unit will contain at least one surface-finish defect.

3.47. Glass bottles are formed by pouring molten glass

into a mold. The molten glass is prepared in a furnace

lined with firebrick. As the firebrick wears, small

pieces of brick are mixed into the molten glass and

finally appear as defects (called “stones”) in the bot-

tle. If we can assume that stones occur randomly at

the rate of 0.00001 per bottle, what is the probability

that a bottle selected at random will contain at least

one such defect?

3.48. The billing department of a major credit card com-

pany attempts to control errors (clerical, data trans-

mission, etc.) on customers’ bills. Suppose that errors

occur according to a Poisson distribution with para-

meter What is the probability that a cus-

tomer’s bill selected at random will contain one error?

3.49. A production process operates in one of two states:

the in-control state, in which most of the units pro-

duced conform to specifications, and an out-of-

control state, in which most of the units produced are

defective. The process will shift from the in-control

to the out-of-control state at random. Every hour, a

quality control technician checks the process, and if

it is in the out-of-control state, the technician detects

this with probability p. Assume that when the process

shifts out of control it does so immediately following

a check by the inspector, and once a shift has

occurred, the process cannot automatically correct

itself. If t denotes the number of periods the process

l = 0.01.
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remains out of control following a shift before detec-

tion, find the probability distribution of t. Find the

mean number of periods the process will remain in

the out-of-control state.

3.50. An inspector is looking for nonconforming welds in

the gasoline pipeline between Phoenix and Tucson.

The probability that any particular weld will be

defective is 0.01. The inspector is determined to keep

working until finding three defective welds. If the

welds are located 100 feet apart, what is the proba-

bility that the inspector will have to walk 5000 feet?

What is the probability that the inspector will have to

walk more than 5000 feet?

3.51. The tensile strength of a metal part is normally dis-

tributed with mean 40 pounds and standard deviation

5 pounds. If 50,000 parts are produced, how many

would you expect to fail to meet a minimum specifi-

cation limit of 35-pounds tensile strength? How many

would have a tensile strength in excess of 48 pounds?

3.52. The output voltage of a power supply is normally

distributed with mean 5 V and standard deviation

0.02 V. If the lower and upper specifications for volt-

age are 4.95 V and 5.05 V, respectively, what is the

probability that a power supply selected at random

will conform to the specifications on voltage?

3.53. Continuation of Exercise 3.52. Reconsider the

power supply manufacturing process in Exercise 

3.52. Suppose we wanted to improve the process. Can

shifting the mean reduce the number of nonconform-

ing units produced? How much would the process

variability need to be reduced in order to have all but

one out of 1000 units conform to the specifications?

3.54. If x is normally distributed with mean and standard

deviation , and given that the probability that x
is less than 32 is 0.0228, find the value of 

3.55. The life of an automotive battery is normally distrib-

uted with mean 900 days and standard deviation 

m.

s = 4

m

35 days. What fraction of these batteries would be

expected to survive beyond 1000 days?

3.56. A lightbulb has a normally distributed light output

with mean 5000 end foot-candles and standard devi-

ation of 50 end foot-candles. Find a lower specifica-

tion limit such that only 0.5% of the bulbs will not

exceed this limit.

3.57. The specifications on an electronic component in a

target-acquisition system are that its life must be

between 5000 and 10,000 h. The life is normally

distributed with mean 7500 h. The manufacturer

realizes a price of $10 per unit produced; however,

defective units must be replaced at a cost of $5

to the manufacturer. Two different manufacturing

processes can be used, both of which have the same

mean life. However, the standard deviation of life

for process 1 is 1000 h, whereas for process 2 it is

only 500 h. Production costs for process 2 are twice

those for process 1. What value of production costs

will determine the selection between processes 1

and 2?

3.58. A quality characteristic of a product is normally dis-

tributed with mean and standard deviation .

Specifications on the characteristic are A

unit that falls within specifications on this quality

characteristic results in a profit of C0. However, if

the profit is whereas if the profit is

Find the value of that maximizes the expected

profit.

3.59. Derive the mean and variance of the binomial

distribution.

3.60. Derive the mean and variance of the Poisson

distribution.

3.61. Derive the mean and variance of the exponential

distribution.

3.62. Derive the mean and variance of the geometric

distribution.

m−C2.

x > 8,−C1,x < 6,

6 ≤ x ≤ 8.

s = 1m

Exercises 107
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In the previous chapter we discussed the use of probability distributions in modeling or

describing the output of a process. In all the examples presented, we assumed that the para-

meters of the probability distribution, and, hence, the parameters of the process, were

known. This is usually a very unrealistic assumption. For example, in using the binomial dis-

tribution to model the number of nonconforming units found in sampling from a production

process we assumed that the parameter p of the binomial distribution was known. The phys-

ical interpretation of p is that it is the true fraction of nonconforming units produced by the

process. It is impossible to know this exactly in a real production process. Furthermore, if

we did know the true value of p and it was relatively constant over time, we could argue that

formal process monitoring and control procedures were unnecessary, provided p was

“acceptably” small.

In general, the parameters of a process are unknown; furthermore, they will usually

change over time. Therefore, we need to develop procedures to estimate the parameters of

probability distributions and solve other inference or decision-oriented problems relative to

them. The standard statistical techniques of parameter estimation and hypothesis testing are

useful in this respect. These techniques are the underlying basis for much of the methodology

of statistical quality control. In this chapter, we present some of the elementary results of sta-

tistical inference, indicating its usefulness in quality improvement problems. Key topics

include point and confidence interval estimation of means, variances, and binomial parame-

ters, hypothesis testing on means, variances, and binomial parameters, and the use of normal

probability plots.

After careful study of this chapter, you should be able to do the following:

1. Explain the concept of random sampling

2. Explain the concept of a sampling distribution

3. Explain the general concept of estimating the parameters of a population or prob-

ability distribution

4. Know how to explain the precision with which a parameter is estimated

5. Construct and interpret confidence intervals on a single mean and on the differ-

ence in two means

6. Construct and interpret confidence intervals on a single variance or the ratio of

two variances

7. Construct and interpret confidence intervals on a single proportion and on the

difference in two proportions

8. Test hypotheses on a single mean and on the difference in two means

9. Test hypotheses on a single variance and on the ratio of two variances

10. Test hypotheses on a single proportion and on the difference in two proportions

11. Use the P-value approach for hypothesis testing

12. Understand how the analysis of variance (ANOVA) is used to test hypotheses

about the equality of more than two means

13. Understand how to fit and interpret linear regression models.

4.1 Statistics and Sampling Distributions

The objective of statistical inference is to draw conclusions or make decisions about a popu-

lation based on a sample selected from the population. Frequently, we will assume that 

random samples are used in the analysis. The word “random” is often applied to any method

4.1 Statistics and Sampling Distributions 109
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110 Chapter 4 ■ Inferences About Process Quality

or sample selection that lacks systematic direction. We will define a sample—say,

—as a random sample of size n if it is selected so that the observations {xi} are

independently and identically distributed. This definition is suitable for random samples

drawn from infinite populations or from finite populations where sampling is performed with

replacement. In sampling without replacement from a finite population of N items we say that

a sample of n items is a random sample if each of the possible samples has an equal prob-

ability of being chosen. Figure 4.1 illustrates the relationship between the population and the

sample.

Although most of the methods we will study assume that random sampling has been

used, there are several other sampling strategies that are occasionally useful in quality con-

trol. Care must be exercised to use a method of analysis that is consistent with the sampling

design; inference techniques intended for random samples can lead to serious errors when

applied to data obtained from other sampling techniques.

Statistical inference uses quantities computed from the observations in the sample. A sta-
tistic is defined as any function of the sample data that does not contain unknown parameters.

For example, let represent the observations in a sample. Then the sample average

or sample mean

(4.1)

the sample variance

(4.2)

and the sample standard deviation

(4.3)

are statistics. The statistics and s (or describe the central tendency and variability, respec-

tively, of the sample.

If we know the probability distribution of the population from which the sample was

taken, we can often determine the probability distribution of various statistics computed

from the sample data. The probability distribution of a statistic is called a sampling distri-
bution. We now present the sampling distributions associated with three common sampling

situations.
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4.1 Statistics and Sampling Distributions 111

4.1.1 Sampling from a Normal Distribution

Suppose that x is a normally distributed random variable with mean and variance If

is a random sample of size n from this process, then the distribution of the

sample mean is This follows directly from the results on the distribution of

linear combinations of normal random variables in Section 3.3.1.

This property of the sample mean is not restricted exclusively to the case of sampling

from normal populations. Note that we may write

From the central limit theorem we know that, regardless of the distribution of the population,

the distribution of is approximately normal with mean and variance Therefore,

regardless of the distribution of the population, the sampling distribution of the sample mean

is approximately

An important sampling distribution defined in terms of the normal distribution is the chi-
square or distribution. If are normally and independently distributed ran-

dom variables with mean zero and variance one, then the random variable

is distributed as chi-square with n degrees of freedom. The chi-square probability distribution

with n degrees of freedom is

(4.4)

Several chi-square distributions are shown in Figure 4.2. The distribution is skewed with

mean and variance A table of the percentage points of the chi-square distrib-

ution is given in Appendix Table III.

To illustrate the use of the chi-square distribution, suppose that is a ran-

dom sample from an distribution. Then the random variable

(4.5)

has a chi-square distribution with degrees of freedom. However, using equation 4.2,

which defines the sample variance, we may rewrite equation 4.5 as

—that is, the sampling distribution of is when sampling from a normal 

distribution.
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112 Chapter 4 ■ Inferences About Process Quality

Another useful sampling distribution is the t distribution. If x is a standard normal ran-

dom variable and if y is a chi-square random variable with k degrees of freedom, and if x and

y are independent, then the random variable

(4.6)

is distributed as t with k degrees of freedom. The probability distribution of t is

(4.7)

and the mean and variance of t are and for respectively. The

degrees of freedom for t are the degrees of freedom associated with the chi-square random

variable in the denominator of equation 4.6. Several t distributions are shown in Figure 4.3.

Note that if the t distribution reduces to the standard normal distribution, however, the

number of degree of freedom exceeds about 30, the t distribution is closely approximate by

the standard normal distribution. A table of percentage points of the t distribution is given in

Appendix Table IV.

As an example of a random variable that is distributed as t, suppose that 

is a random sample from the distribution. If and are computed from this sample,

then

using the fact that Now, and are independent, so the random variable

(4.8)

has a t distribution with degrees of freedom.

The last sampling distribution based on the normal process that we will consider is the

F distribution. If w and y are two independent chi-square random variables with u and v
degrees of freedom, respectively, then the ratio

(4.9)F
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4.1 Statistics and Sampling Distributions 113

is distributed as F with u numerator degrees of freedom and v denominator degrees of free-

dom. If x is an F random variable with u numerator and v denominator degrees of freedom,

then the distribution is

(4.10)

Several F distributions are shown in Figure 4.4. A table of percentage points of the F distribu-

tion is given in Appendix Table V.

As an example of a random variable that is distributed as F, suppose we have two inde-

pendent normal processes—say, x1 ~ N and x2 ~ N Let 

be a random sample of n1 observations from the first normal process and x21, x22, . . . , x2n2
be

a random sample of size from the second. If and are the sample variances, then the ratio

This follows directly from the sampling distribution of discussed previously. The F distri-

bution will be used in making inferences about the variances of two normal distributions.

4.1.2 Sampling from a Bernoulli Distribution

In this section, we discuss the sampling distributions of statistics associated with the

Bernoulli distribution. The random variable x with probability function

is called a Bernoulli random variable. That is, x takes on the value 1 with probability p and

the value 0 with probability A realization of this random variable is often called a

Bernoulli trial. The sequence of Bernoulli trials is a Bernoulli process. The 

outcome is often called “success,” and the outcome is often called “failure.”

Suppose that a random sample of n observations—say, —is taken from a

Bernoulli process with constant probability of success p. Then the sum of the sample observations
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114 Chapter 4 ■ Inferences About Process Quality

has a binomial distribution with parameters n and p. Furthermore, since each is either 0

or 1, the sample mean

(4.12)

is a discrete random variable with range space The distribu-

tion of can be obtained from the binomial since

where [an] is the largest integer less than or equal to an. The mean and variance of are

and

respectively. This same result was given previously in Section 3.2.2, where the random vari-

able (often called the sample fraction nonconforming) was introduced.

4.1.3 Sampling from a Poisson Distribution

The Poisson distribution was introduced in Section 3.2.3. Consider a random sample of size

n from a Poisson distribution with parameter —say, . The distribution of the

sample sum

(4.13)

is also Poisson with parameter . More generally, the sum of n independent Poisson random

variables is distributed Poisson with parameter equal to the sum of the individual Poisson

parameters.

Now consider the distribution of the sample mean

(4.14)

This is a discrete random variable that takes on the values {0, 1/n, 2/n, . . .}, and with proba-

bility distribution found from

(4.15)

where [an] is the largest integer less than or equal to an. The mean and variance of are

and

respectively.

Sometimes more general linear combinations of Poisson random variables are used in

quality-engineering work. For example, consider the linear combination

(4.16)
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4.2 Point Estimation of Process Parameters 115

where the { } are independent Poisson random variables each having parameter { } respec-

tively, and the { } are constants. This type of function occurs in situations where a unit of

product can have m different types of defects or nonconformities (each modeled with a

Poisson distribution with parameter and the function used for quality monitoring purposes

is a linear combination of the number of observed nonconformities of each type. The con-

stants { } in equation 4.16 might be chosen to weight some types of nonconformities more

heavily than others. For example, functional defects on a unit would receive heavier weight than

appearance flaws. These schemes are sometimes called demerit procedures (see Section 7.3.3).

In general, the distribution of L is not Poisson unless all in equation (4.16); that is, sums

of independent Poisson random variables are Poisson distributed, but more general linear

combinations are not.

4.2 Point Estimation of Process Parameters

A random variable is characterized or described by its probability distribution. This distribu-

tion is described by its parameters. For example, the mean and variance of the normal

distribution (equation 3.21) are its parameters, whereas is the parameter of the Poisson dis-

tribution (equation 3.15). In statistical quality control, the probability distribution is used to

describe or model some critical-to-quality characteristic, such as a critical dimension of a

product or the fraction defective of a process. Therefore, we are interested in making infer-

ences about the parameters of probability distributions. Since the parameters are generally

unknown, we require procedures to estimate them from sample data.

We may define an estimator of an unknown parameter as a statistic that corresponds to

the parameter. A particular numerical value of an estimator, computed from sample data, is

called an estimate. A point estimator is a statistic that produces a single numerical value as

the estimate of the unknown parameter. To illustrate, consider the random variable x with prob-

ability distribution f(x) shown in Figure 4.1 on p. 105. Suppose that the mean and variance

of this distribution are both unknown. If a random sample of n observations is taken, then

the sample mean and sample variance s2 are point estimators of the population mean
and population variance respectively. Suppose that this distribution represents a process

producing bearings and the random variable x is the inside diameter. We want to obtain point

estimates of the mean and variance of the inside diameter of bearings produced by this process.

We could measure the inside diameters of a random sample of bearings (say). Then the

sample mean and sample variance could be computed. If this yields and 

then the point estimate of is and the point estimate of is 

Recall that the “ˆ” symbol is used to denote an estimate of a parameter.

The mean and variance of a distribution are not necessarily the parameters of the dis-

tribution. For example, the parameter of the Poisson distribution is while its mean and vari-

ance are and (both the mean and variance are and the parameters of the 

binomial distribution are n and p, while its mean and variance are and 

respectively. We may show that a good point estimator of the parameter of a Poisson dis-

tribution is

and that a good point estimator of the parameter p of a binomial distribution is

for fixed n. In the binomial distribution the observations in the random sample {xi} are either

1 or 0, corresponding to “success” and “failure,” respectively.
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116 Chapter 4 ■ Inferences About Process Quality

A number of important properties are required of good point estimators. Two of the

most important of these properties are the following:

1. The point estimator should be unbiased. That is, the expected value of the point esti-

mator should be the parameter being estimated.

2. The point estimator should have minimum variance. Any point estimator is a random

variable. Thus, a minimum variance point estimator should have a variance that is

smaller than the variance of any other point estimator of that parameter.

The sample mean and variance and s2 are unbiased estimators of the population mean and

variance and , respectively. That is,

where the operator E is simply the expected value operator, a shorthand way of writing the

process of finding the mean of a random variable. (See the supplemental material for this

chapter for more information about mathematical expectation.)

The sample standard deviation s is not an unbiased estimator of the population standard

deviation It can be shown that

(4.17)

Appendix Table VI gives values of c4 for sample sizes 2 ≤ n ≤ 25. We can obtain an unbiased

estimate of the standard deviation from

(4.18)

In many applications of statistics to quality and process improvement problems, it is conve-

nient to estimate the standard deviation by the range method. Let be a random

sample of n observations from a normal distribution with mean and variance The range
of the sample is

(4.19)

That is, the range R is simply the difference between the largest and smallest sample observations.

The random variable is called the relative range. The distribution of W has been well

studied. The mean of W is a constant d2 that depends on the size of the sample; that is,

Therefore, an unbiased estimator of the standard deviation of a normal distribution is

(4.20)

Values of d2 for sample sizes 2 ≤ n ≤ 25 are given in Appendix Table VI.

Using the range to estimate dates from the earliest days of statistical quality control, and

it was popular because it is very simple to calculate. With modern calculators and computers, this
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4.3 Statistical Inference for a Single Sample 117

isn’t a major consideration today. Generally, the “quadratic estimator” based on s is preferable.

However, if the sample size n is relatively small, the range method actually works very well. The

relative efficiency of the range method compared to s is shown here for various sample sizes:

Sample Size n Relative Efficiency

2 1.000

3 0.992

4 0.975

5 0.955

6 0.930

10 0.850

For moderate values of n—say, —the range loses efficiency rapidly, as it ignores all of

the information in the sample between the extremes. However, for small sample sizes—say,

n ≤ 6—it works very well and is entirely satisfactory. We will use the range method to esti-

mate the standard deviation for certain types of control charts in Chapter 6. The supplemen-
tal text material contains more information about using the range to estimate variability.

Also see Woodall and Montgomery (2000–01).

4.3 Statistical Inference for a Single Sample

The techniques of statistical inference can be classified into two broad categories: parame-
ter estimation and hypothesis testing. We have already briefly introduced the general idea

of point estimation of process parameters.

A statistical hypothesis is a statement about the values of the parameters of a proba-

bility distribution. For example, suppose we think that the mean inside diameter of a bearing

is 1.500 in. We may express this statement in a formal manner as

(4.21)

H

H
0

1

:

:

   = 1.500

   1.500

μ
μ ≠

n ≥ 10

The statement in equation 4.21 is called the null hypothesis, and 

H1: m � 1.500 is called the alternative hypothesis. In our example, specifies values of

the mean diameter that are either greater than 1.500 or less than 1.500, which is called a two-
sided alternative hypothesis. Depending on the problem, various one-sided alternative

hypotheses may be appropriate.

Hypothesis testing procedures are quite useful in many types of statistical quality-

control problems. They also form the mathematical basis for most of the statistical process-

control techniques to be described in Parts III and IV of this textbook. An important part of

any hypothesis testing problem is determining the parameter values specified in the null and

alternative hypotheses. Generally, this is done in one of three ways. First, the values may

result from past evidence or knowledge. This happens frequently in statistical quality con-

trol, where we use past information to specify values for a parameter corresponding to a state

of control, and then periodically test the hypothesis that the parameter value has not

changed. Second, the values may result from some theory or model of the process. Finally,

the values chosen for the parameter may be the result of contractual or design specifications,

a situation that occurs frequently. Statistical hypothesis testing procedures may be used to

check the conformity of the process parameters to their specified values, or to assist in mod-

ifying the process until the desired values are obtained.

H1

H0: m = 1.500
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118 Chapter 4 ■ Inferences About Process Quality

To test a hypothesis, we take a random sample from the population under study, com-

pute an appropriate test statistic, and then either reject or fail to reject the null hypothesis 

The set of values of the test statistic leading to rejection of is called the critical region or

rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis

is rejected when it is true, then a type I error has occurred. If the null hypothesis is not

rejected when it is false, then a type II error has been made. The probabilities of these two

types of errors are denoted as

Sometimes it is more convenient to work with the power of a statistical test, where

Thus, the power is the probability of correctly rejecting In quality control work, is

sometimes called the producer’s risk because it denotes the probability that a good lot will

be rejected, or the probability that a process producing acceptable values of a particular qual-

ity characteristic will be rejected as performing unsatisfactorily. In addition, is sometimes

called the consumer’s risk because it denotes the probability of accepting a lot of poor

quality, or allowing a process that is operating in an unsatisfactory manner relative to some

quality characteristic to continue in operation.

The general procedure in hypothesis testing is to specify a value of the probability of

type I error and then to design a test procedure so that a small value of the probability of

type II error is obtained. Thus, we can directly control or choose the risk. Because we can

control the probability of making a type I error, rejecting the null hypothesis is considered to

be a strong conclusion. The risk is generally a function of sample size and how different

the true value of the parameter (such as in the above example) is from the hypothesized value,

so it is controlled indirectly. The larger is the sample size(s) used in the test, the smaller is the

risk. The probability of type II error is often difficult to control because of lack of flexibil-

ity in choosing sample size and because the difference between the true parameter value and

the hypothesized value is unknown in most cases, so failing to reject H0 is a weak conclusion.
In this section we will review hypothesis testing procedures when a single sample of n

observations has been taken from the process. We will also show how the information about

the values of the process parameters that is in this sample can be expressed in terms of an

interval estimate called a confidence interval. In Section 4.4 we will consider statistical

inference for two samples from two possibly different processes.

4.3.1 Inference on the Mean of a Population, Variance Known

Hypothesis Testing. Suppose that x is a random variable with unknown mean and

known variance We wish to test the hypothesis that the mean is equal to a standard

value—say, 0. The hypothesis may be formally stated as

(4.22)

The procedure for testing this hypothesis is to take a random sample of n observations on the

random variable x, compute the test statistic

(4.23)Z
x

n0
0= − μ

σ

H

H
0

1

:

:

   =

   

0

0

μ μ
μ μ≠

m
s2.

m

b

m
b

ab
a,

b

aH0.

Power = 1 − b = P5reject H0|H0 is false6

 b = P5type II error6 = P5fail to reject H0|H0 is false6

 a = P5type I error6 = P5reject H0|H0 is true6

H0

H0.
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4.3 Statistical Inference for a Single Sample 119

and reject if where is the upper percentage point of the standard

normal distribution. This procedure is sometimes called the one-sample Z-test.

We may give an intuitive justification of this test procedure. From the central limit theo-

rem, we know that the sample mean is distributed approximately Now if

is true, then the test statistic is distributed approximately consequently,

we would expect of the values of to fall between and A sample

producing a value of outside of these limits would be unusual if the null hypothesis were true

and is evidence that should be rejected. Note that is the probability of type I error

for the test, and the intervals and form the critical region for the test.

The standard normal distribution is called the reference distribution for the Z-test.

In some situations we may wish to reject only if the true mean is larger than 

Thus, the one-sided alternative hypothesis is and we would reject only

if If rejection is desired only when then the alternative hypothesis is

and we reject only if Z0 < − Za.H0H1: m < m0,

m < m0,Z0 > Za.

H0: m = m0H1: m > m0,

m0.H0

(−•, − Za/2)(Za/2, •)

aH0: m = m0

Z0

Za/2.−Za/2Z0100(1 − a)%

N(0, 1);Z0H0: m = m0

N(m, s2/n).x

a/2Za/2�Z0� > Za/2H0

SOLUTION

The appropriate hypotheses are

The command is executed 25 times, and the response time for

each trial is recorded. We assume that these observations can

be considered as a random sample of the response times. The

sample average response time is The value

of the test statistic is

Because we specified a type I error of and the test

is one-sided, then from Appendix Table II we find

Therefore, we reject and con-

clude that the mean response time exceeds 75 millisec.

H0: m = 75Za = Z0.05 = 1.645.

a = 0.05

Z
x

n0
0 79 25 75

8 25
2 66= − = − =μ

σ
.

.

x = 79.25 millisec.

H

H
0

1

7

75

:

:

= 5μ
μ >

EXAMPLE 4.1

The response time of a distributed computer system is an

important quality characteristic. The system manager wants to

know whether the mean response time to a specific type of

command exceeds 75 millisec. From previous experience, he

knows that the standard deviation of response time is 8 mil-

lisec. Use a type I error of a = 0.05.

Computer Response Time

One-Sample Z

Test of mu = 75 vs > 75
The assumed standard deviation = 8

95% Lower
N Mean SE Mean Bound Z P

25 79.25 1.60 76.62 2.66 0.004

Minitab also can calculate confidence intervals for parameters. We will now introduce the

confidence interval and explain its interpretation and application.

Minitab will perform the one-sample Z-test. The Minitab output for Example 4.1 is

shown in the following boxed display.
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Confidence Intervals. An interval estimate of a parameter is the interval between

two statistics that includes the true value of the parameter with some probability. For example,

to construct an interval estimator of the mean , we must find two statistics L and U such that

(4.24)

The resulting interval

is called a 100(1 − a)% confidence interval (CI) for the unknown mean L and U are

called the lower and upper confidence limits, respectively, and is called the confidence
coefficient. Sometimes the half-interval width or is called the accuracy of

the confidence interval. The interpretation of a CI is that if a large number of such intervals

are constructed, each resulting from a random sample, then of these intervals

will contain the true value of . Thus, confidence intervals have a frequency interpretation.

The CI (4.24) might be more properly called a two-sided confidence interval, as it spec-

ifies both a lower and an upper bound on . Sometimes in quality-control applications, a one-
sided confidence bound might be more appropriate. A one-sided lower confi-

dence bound on would be given by

(4.25)

where L, the lower confidence bound, is chosen so that

(4.26)

A one-sided upper confidence bound on would be

(4.27)

where U, the upper confidence bound, is chosen so that

(4.28)

Confidence Interval on the Mean with Variance Known. Consider the random

variable x, with unknown mean and known variance Suppose a random sample of n
observations is taken—say, —and is computed. Then the two-

sided CI on is

(4.29)

where is the percentage point of the N(0, 1) distribution such that 

Note that x is distributed approximately regardless of the distribution of x,

from the central limit theorem. Consequently, equation 4.29 is an approximate 

confidence interval for regardless of the distribution of x. If x is distributed then

equation (4.29) is an exact CI. Furthermore, a upper confidence

bound on is

(4.30)μ σ
α≤ +x Z

n

m
100(1 − a)%100(1 − a)%

N(m, s2),m
100(1 − a)%

N(m, s2/n)

P5z ≥ Za/26 = a/2.Za/2

x Z
n

x Z
n

− ≤ ≤ +α α
σ μ σ

2 2

m
100(1 − a)%xx1, x2, . . . , xn

s2.m

P Uμ α≤{ } = −1

μ ≤ U

m100(1 − a)%

P L ≤{ } = −μ α1

L ≤ μ

m
100(1 − a)%

m

m
100(1 − a)%

m − LU − m
1 − a

m.

L U≤ ≤μ

P L U≤ ≤{ } = −μ α1

m
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4.3 Statistical Inference for a Single Sample 121

whereas a lower confidence bound on is

(4.31)x Z
n

− ≤α
σ μ

m100(1 − a)%

SOLUTION

From equation 4.29 we can compute

Another way to express this result is that our estimate of mean

response time is 79.25 millisec millisec with 95%

confidence.

In the original Example 4.1, the alternative hypothesis was

one-sided. In these situations, some analysts prefer to calculate

a one-sided confidence bound. The Minitab output for

Example 4.1 on p. 119 providers a 95% lower confidence
bound on which is computed from equation 4.31 as 76.62.

Notice that the CI from Minitab does not include the value

Furthermore, in Example 4.1 the hypothesis

was rejected at This is not a coincidence.

In general, the test of significance for a parameter at level of

significance a will lead to rejection of if, and only if, the

parameter value specific in is not included in the

% confidence interval.100(1 − a)

H0

H0

a = 0.05.H0: m = 75

m = 75.

m,

± 3.136

76 114 82 386. .≤ ≤μ

79 25 1 96
8

25
79 25 1 96

8

25
. . . .− ≤ ≤ +μ

x Z
n

x Z
n

− ≤ ≤ +α α
σ μ σ

2 2

EXAMPLE 4.2

Reconsider the computer response time scenario from

Example 4.1. Since millisec, we know that a rea-

sonable point estimate of the mean response time is

millisec. Find a 95% two-sided confidence

interval. 

m̂ = x = 79.25

x = 79.25

Computer Response Time

4.3.2 The Use of P-Values for Hypothesis Testing

The traditional way to report the results of a hypothesis test is to state that the null hypoth-

esis was or was not rejected at a specified -value or level of significance. This is often

called fixed significance level testing. For example, in the previous computer response

time problem, we can say that was rejected at the 0.05 level of significance.

This statement of conclusions is often inadequate, because it gives the analyst no idea

about whether the computed value of the test statistic was just barely in the rejection

region or very far into this region. Furthermore, stating the results this way imposes the

predefined level of significance on other users of the information. This approach may be

unsatisfactory, as some decision makers might be uncomfortable with the risks implied by

To avoid these difficulties the P-value approach has been adopted widely in practice.

The P-value is the probability that the test statistic will take on a value that is at least as

extreme as the observed value of the statistic when the null hypothesis is true. Thus, a

P-value conveys much information about the weight of evidence against and so a deci-

sion maker can draw a conclusion at any specified level of significance. We now give a

formal definition of a P-value.

H0,

H0

a = 0.05.

H0: m = 75

a
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122 Chapter 4 ■ Inferences About Process Quality

It is customary to call the test statistic (and the data) significant when the null hypothesis 

is rejected; therefore, we may think of the P-value as the smallest level at which the data

are significant. Once the P-value is known, the decision maker can determine for himself or

herself how significant the data are without the data analyst formally imposing a preselected

level of significance.

For the normal distribution tests discussed above, it is relatively easy to compute the 

P-value. If is the computed value of the test statistic, then the P-value is

Here, is the standard normal cumulative distribution function defined in Chapter 3. To

illustrate this, consider the computer response time problem in Example 4.1. The computed

value of the test statistic is and since the alternative hypothesis is one-tailed, the

P-value is

Thus, would be rejected at any level of significance For example,

would be rejected if but it would not be rejected if 

It is not always easy to compute the exact P-value for a test. However, most modern

computer programs for statistical analysis report P-values, and they can be obtained using

some handheld calculators. Notice that Minitab reported a P-value for Example 4.1 (the

reported value was 0.004). It is also possible to use the statistical tables in the Appendix to

approximate the P-value in some cases.

4.3.3 Inference on the Mean of a Normal Distribution, Variance Unknown

Hypothesis Testing. Suppose that x is a normal random variable with unknown

mean and unknown variance We wish to test the hypothesis that the mean equals a stan-

dard value —that is,

(4.32)

Note that this problem is similar to that of Section 4.3.1, except that now the variance is

unknown. Because the variance is unknown, we must make the additional assumption that the

random variable is normally distributed. The normality assumption is needed to formally

develop the statistical test, but moderate departures from normality will not seriously affect

the results.

H

H
0

1

  

  

:

:

μ μ
μ μ

=
≠

0

0

m0

s2.m

a = 0.001.a = 0.01,H0

a ≥ P = 0.0039.H0: m = 75

P = − ( ) =1 2 66 0 0039Φ . .

Z0 = 2.66

Φ (Z)

P

Z H H

Z H H

Z H

=
−[                 ] = ≠

− ( )
(      )

= >
( ) = <

⎧

⎨
⎪

⎩
⎪

2 1 0 0 0

0 0

0 0

Φ
Φ

Φ

 for a two-tailed test:     

1 for an upper-tailed test:     

for a lower-tailed test:     

0 1

0 0

H00

1

1

: :

: :

: :

μ μ μ μ
μ μ μ μ
μ μ μ μ

Z0

a
H0

Definition

The P-value is the smallest level of significance that would lead to rejection of the

null hypothesis H0.
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4.3 Statistical Inference for a Single Sample 123

As is unknown, it may be estimated by s2. If we replace in equation 4.23 by s, we

have the test statistic

(4.33)

The reference distribution for this test statistic is the t distribution with degrees

of freedom. For a fixed significance level test, the null hypothesis will be rejected

if where denotes the upper percentage point of the t distribu-

tion with degrees of freedom. The critical regions for the one-sided alternative

hypotheses are as follows: if reject if and if 

reject if One could also compute the P-value for a t-test. Most computer

software packages report the P-value along with the computed value of t0.

t0 < −ta,n−1.H0

H1: m1 < m0,t0 > ta,n−1,H0H1: m1 > m0,

n − 1

a/2ta/2,n−1�(t0)� > ta/2,n−1,

H0: m = m0

n − 1

t
x
s n0

0= − μ

ss2

SOLUTION

The appropriate hypotheses are

The sample mean and sample standard deviation are

and the test statistic is

=
− ( )

=

2
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117 61
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3,210.73

1

15 ,

H

H
0

1

:

:

μ
μ

=
≠

3,200

3,200

t
x

s n0
0 3,210.73 3,200

117 61 15
0 35= − = − =μ

.
.

EXAMPLE 4.3

Rubber can be added to asphalt to reduce road noise when the

material is used as pavement. Table 4.1 shows the stabilized

viscosity (cP) of 15 specimens of asphalt paving material. To

be suitable for the intended pavement application, the mean

stabilized viscosity should be equal to 32,00. Test this 

hypothesis using Based on experience we are will-

ing to initially assume that stabilized viscosity is normally 

distributed.

a = 0.05.

Rubberized Asphalt

■ TA B L E  4 . 1

Stabilized Viscosity of Rubberized Asphalt

Specimen Stabilized Viscosity

1 3,193

2 3,124

3 3,153

4 3,145

5 3,093

6 3,466

7 3,355

8 2,979

9 3,182

10 3,227

11 3,256

12 3,332

13 3,204

14 3,282

15 3,170
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■ F I G U R E  4 . 5 Normal probability plot of

the stabilized viscosity data.
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Since the calculated value of the test statistic does not exceed

or we cannot reject the

null hypothesis. Therefore, there is no strong evidence to

conclude that the mean stabilized viscosity is different from

3200 cP.

The assumption of normality for the t-test can be checked

by constructing a normal probability plot of the stabilized

viscosity data. Figure 4.5 shows the normal probability plot.

Because the observations lie along the straight line, there is no

problem with the normality assumption.

−t0.025, 14 = −2.145,t0.025, 14 = 2.145

124 Chapter 4 ■ Inferences About Process Quality

One-Sample T: Example 4.3

Test of mu = 3,200 vs mu not = 3,200

Variable N Mean StDev SE Mean
Example 4.3 15 3,210.7 117.6 30.4

Variable 95.0% CI T P
Example 4.3 (3,145.6, 3,275.9) 0.35 0.729

Notice that Minitab computes both the test statistic and a 95% confidence interval for the

mean stabilized viscosity. We will give the confidence interval formula below; however,

recalling the discussion about the connection between hypothesis tests and confidence inter-

vals at the conclusion of Example 4.3, we observe that because the 95% confidence interval

includes the value 3,200, we would be unable to reject the null hypothesis 

Note that Minitab also reports a P-value for the t-test.

Tables of the standard normal distribution can be used to obtain P-values for a Z-test,

so long as the computed value of the test statistic Z0 is in the body of the table. For example,

Appendix Table II contains values of Z from −3.99 to +3.99 (to two decimal places), so if Z0

is in this interval the P-value can be read directly from the table. However, the table of the

t-distribution, Appendix Table IV, only contains values of the t random variable that corre-

sponds to ten specific percentage points (or tail areas), 0.40, 0.25, 0.10, 0.05, 0.025, 0.01,

0.005, 0.0025, 0.001, and 0.0005. So unless the value of the test statistic t0 happens to corre-

spond exactly to one of these percentage points, we cannot find an exact P-value from the

t-table. It is possible to use the table to obtain bounds on the P-value. To illustrate, consider

the t-test in Example 4.3. The value of the test statistic is t0 = 0.35, and there are 14 degrees

of freedom. In the t-table of Appendix Table IV search the 14 degrees of freedom row for the

value 0.35. There is not a value equal to 0.35, but there is a value below it, 0.258, and a value

above it, 0.692. The probabilities above these two values are 0.40 and 0.25, respectively.

Since this is a two-sided alternative hypothesis, double these probabilities, and we now have

an upper and a lower bound on the P-value—specifically, 0.50 < P-value < 0.80. The Minitab

H0: m = 3,200.

Minitab can conduct the one-sample t-test. The output from this software package is

shown in the following display:
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4.3 Statistical Inference for a Single Sample 125

one-sample t-test routine reports the exact P-value to be 0.729. Minitab can also be used to

calculate P-values from the Probability Distribution function on the CALC menu.

Confidence Interval on the Mean of a Normal Distribution with Variance
Unknown. Suppose that x is a normal random variable with unknown mean and unknown

variance From a random sample of n observations the sample mean and sample variance

s2 are computed. Then a two-sided CI on the true mean is

(4.34)

where denotes the percentage point of the t distribution with degrees of free-

dom such that The corresponding upper and lower 

confidence bounds are

(4.35)

and

(4.36)

respectively.

x t
s
nn− ≤−α μ, 1

μ α≤ + −x t
s
nn, 1

100(1 − a)%P5tn−1 ≥ ta/2, n−16 = a/2.

n − 1ta/2,n−1

x t
s
n

x t
s
nn n− ≤ ≤ +− −α αμ2 1 2 1, ,  

100(1 − a)%

xs2.

m

SOLUTION

Using equation 4.34, we can find the 95% CI on the mean sta-

bilized viscosity as follows:

Another way to express this result is that our estimate of the

mean stabilized viscosity is with 95%

confidence. This confidence interval was reported by Minitab

in the box on page 118.

The manufacturer may only be concerned about stabilized

viscosity values that are too low and consequently may be

interested in a one-sided confidence bound. The 95% lower

confidence bound on mean stabilized viscosity is found from

equation 4.36, using as

or

3,15725. ≤ μ

3,210 73 1 761
117 61

15
. .

.− ≤ μ

t0.05, 14 = 1.761

3,210.73 ± 65.14 cP

3,145.59 3,275.87≤ ≤μ

3,210 73 2 145
117 61

15
3,210 73 2 145

117 61

15
. .

.
. .

.− ≤ ≤ +μ

x t s
n

x t s
nn n− ≤ ≤ +− −α αμ2 1 2 1, ,

EXAMPLE 4.4

Reconsider the stabilized viscosity data from Example 4.3. Find

a 95% confidence interval on the mean stabilized viscosity.

Rubberized Viscosity
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4.3.4 Inference on the Variance of a Normal Distribution

Hypothesis Testing. We now review hypothesis testing on the variance of a normal

distribution. Whereas tests on means are relatively insensitive to the normality assumption,

test procedures for variances are not.

Suppose we wish to test the hypothesis that the variance of a normal distribution equals

a constant—say, The hypotheses are

(4.37)

The test statistic for this hypothesis is

(4.38)

where s2 is the sample variance computed from a random sample of n observations. For 

a fixed significance level test, the null hypothesis is rejected if or if

where and are the upper and lower per-

centage points of the chi-square distribution with degrees of freedom. If a one-sided

alternative is specified—say, then we would reject if For the

other one-sided alternative reject if 

To illustrate this procedure, consider the stabilized viscosity data from Example 4.3.

Suppose that we want to test hypotheses about the variance of viscosity—specifically,

The value of the test statistic computed from equation 4.38 is 

From Appendix Table III, the upper 5% value of the chi-square distribution with 14 degrees

of freedom is and since the computed value of the test statistic does not

exceed 23.68, there is no strong evidence against the null hypothesis. We cannot reject

.

The Minitab output for this test is shown in the box below. Minitab provides a one-

sided confidence bound on both the variance and the standard deviation. (The CI proce-

dure will be described shortly.) Appendix Table III can be used to find bounds on the 

P-value. For 14 degrees of freedom, we find that and we already know that

. Since 13.34 < 19.68 < 23.68 we know that the P-value must be in the

interval 0.05 < P-value < 0.50. Minitab reports the exact value as P-value = 0.151. This

was an upper-tail test. 

For a lower-tail test find the probability in the lower tail of the chi-square distribution

below the computed value of the test statistic. For the two-sided alternative, find the tail area

associated with the computed value of the test statistic and double it. The cumulative distrib-

ution function in the Minitab Calc menu can also be used to find P-values.

c2
0.05,14 = 23.68

c2
0.50,14 = 13.34,

H0: s2 = 1002

χ2
0.05,14 = 23.68,

2100

(14)(117.61)
19.36χ

σ0
2

2

0
2
1= = =−( )n s 2

H

H
0

2

1
2 2

:

:

σ
σ

=
> 100

2
100

c2
0 > c2

a,n−1.H1: s2 > s2
0,

c2
0 < c2

1−a,n−1.H1: s2 < s2
0,

n − 1

1 − (a/2)a/2c2
1−a/2,n−1c2

a/2,n−1χ2
0 < χ2

1−a/2,n−1

χ2
0 > χ2

a/2,n−1

χ
σ0

2
2

0
2

1= −( )n s

H

H
0

2
0
2

1
2

0
2

:

:

σ σ
σ σ

=
≠

s2
0.

c04InferencesaboutProcessQuality.qxd  3/24/12  7:11 PM  Page 126



4.3 Statistical Inference for a Single Sample 127

This test is very useful in many quality and process improvement applications. For exam-

ple, consider a normal random variable with mean and variance If is less than or equal

to some value—say, —then the natural inherent variability of the process will be well within

the design requirements, and, consequently, almost all of the production will conform to spec-

ifications. However, if exceeds then the natural variability in the process will exceed the

specification limits, resulting in a high percentage of nonconforming production or “fallout.” In

other words, process capability is directly related to process variability. Equations 4.37 and

4.38 may be used to analyze various other similar situations, and as we will see subsequently,

they form the basis for a monitoring or control procedure for process variability.

Confidence Interval on the Variance of a Normal Distribution. Suppose that

x is a normal random variable with unknown mean and unknown variance Let the sam-

ple variance s2 be computed from a random sample of n observations. Then a 

two-sided CI on the variance is

(4.39)

where denotes the percentage point of the chi-square distribution such that

A CI or the standard deviation can be found by taking the square

root throughout in equation (4.39).

If one-sided confidence bounds are desired, they may be obtained from equation 4.39

by using only the upper (or lower) limit with the probability level increased from to 

That is, the upper and lower confidence bounds are

(4.40)σ
χ α

2
2

1 1
2

1≤ −( )
− −

n s

n,

100(1 − a)%

a.a/2

P5c2
n−1 ≥ c2

a/2,n−16 = a/2.

c2
a/2,n−1

n s n s

n n

−( ) ≤ ≤ −( )
− − −

1 12

2 1
2

2
2

1 2 1
2χ

σ
χα α, ,

100(1 − a)%

s2.m

s2
0,s2

s2
0

s2s2.m

Statistics

Variable N StDev Variance
Viscosity 15 118 13,832

95% One-Sided Confidence Intervals

Lower
Bound

for Lower Bound
Variable StDev for Variance
Viscosity 90 8,176

Tests

Variable Chi-Square DF P-Value
Viscosity 19.37 14.00 0.151
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and

(4.41)

respectively.

We may use the stabilized viscosity data from Example 4.3 to demonstrate the compu-

tation of a 95% (say) confidence interval on Note that for the data in Table 4.1, we have

and From Appendix Table III, we find that and

Therefore, from equation 4.39, we find the 95% two-sided confidence inter-

val on as

which reduces to 74,13.84 ≤ s2 ≤ 34,396.01. The confidence interval on the standard deviation is

Notice that Minitab reported a one-sided lower bound.

4.3.5 Inference on a Population Proportion

Hypothesis Testing. Suppose we wish to test the hypothesis that the proportion p of

a population equals a standard value—say, The test we will describe is based on the nor-

mal approximation to the binomial. If a random sample of n items is taken from the popula-

tion and x items in the sample belong to the class associated with p, then to test

(4.42)

we use the statistic

(4.43)

For a fixed significance level test, the null hypothesis is rejected if The

one-sided alternative hypotheses are treated similarly. A P-value approach also can be used.

Since this is a Z-test, the P-values are calculated just as in the Z-test for the mean.

�Z0� > Za/2.H0: p = p0

Z

x np

np p
x np

x np

np p
x np

0

0

0 0

0

0

0 0

0

0 5

1

0 5

1

=

+( ) −
−( )

<

−( ) −
−( )

>

⎧

⎨
⎪
⎪

⎩
⎪
⎪

.

.

if 

if 

H p p

H p p
0 0

1 0

:

:

=
≠

p0.

86 10 185 46. .≤ ≤σ

14 13 832 11

26 12

14 13 832 11

5 63

2( ) ≤ ≤ ( ), .

.

, .

.
σ

s2

c2
0.975,14 = 5.63.

c2
0.025,14 = 26.12s2 = 13,832.11.s = 117.61

s2.

n s

n

−( ) ≤
−

1 2

1
2

2

χ
σ

α ,

EXAMPLE 4.5

A foundry produces steel forgings used in automobile manu-

facturing. We wish to test the hypothesis that the fraction

conforming or fallout from this process is 10%. In a random

sample of 250 forgings, 41 were found to be nonconforming.

What are your conclusions using a = 0.05?

A Forging Process

c04InferencesaboutProcessQuality.qxd  4/25/12  7:47 PM  Page 128



4.3 Statistical Inference for a Single Sample 129

As noted above, this test is based as the normal approximation to the binomial. When

this is not appropriate, there is an exact test available. For details, see Montgomery and

Runger (2011).

Confidence Intervals on a Population Proportion. It is frequently necessary to

construct CIs on a population proportion p. This parameter frequently corre-

sponds to a lot or process fraction nonconforming. Now p is only one of the parameters of a

binomial distribution, and we usually assume that the other binomial parameter n is known. If

a random sample of n observations from the population has been taken, and x “nonconforming”

observations have been found in this sample, then the unbiased point estimator of p is 

There are several approaches to constructing the CI on p. If n is large and (say),

then the normal approximation to the binomial can be used, resulting in the 

confidence interval:

(4.44)

If n is small, then the binomial distribution should be used to establish the confidence

interval on p. If n is large but p is small, then the Poisson approximation to the binomial is

useful in constructing confidence intervals. Examples of these latter two procedures are given

by Duncan (1986).

ˆ
ˆ ˆ

ˆ
ˆ ˆ

p Z
p p

n
p p Z

p p
na−

−( ) ≤ ≤ +
−( )

α 2 2

1 1

100(1 − a)%

p ≥ 0.1

p̂ = x/n.

100(1 − a)%

SOLUTION

To test

we calculate the test statistic

Using we find and therefore

is rejected (the P-value here is 

That is, the process fraction nonconforming or fallout is not

equal to 10%.

P = 0.00108).H0: p = 0.1

Z0.025 = 1.96,a = 0.05

Z
x np

np p
0

0

0 0

0 5

1

41 0 5 250 0 1

250 0 1 1 0 1
3 27= −( ) −

−( )
= −( ) − ( )( )

( ) −( )
=. . .

. .
.

H p

H p
0

1

0 1

0 1

: .

: .

=
≠

EXAMPLE 4.6

In a random sample of 80 home mortgage applications

processed by an automated decision system, 15 of the applica-

tions were not approved. The point estimate of the fraction that

was not approved is

Assuming that the normal approximation to the binomial is

appropriate, find a 95% confidence interval on the fraction of

nonconforming mortgage applications in the process.

ˆ .p = =15

80
0 1875

Mortgage Applications

(continued)
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130 Chapter 4 ■ Inferences About Process Quality

4.3.6 The Probability of Type II Error and Sample Size Decisions

In most hypothesis testing situations, it is important to determine the probability of type II error

associated with the test. Equivalently, we may elect to evaluate the power of the test. To illustrate

how this may be done, we will find the probability of type II error associated with the test of

where the variance is known. The test procedure was discussed in Section 4.3.1.

The test statistic for this hypothesis is

and under the null hypothesis the distribution of is N(0, 1). To find the probability of type II error,

we must assume that the null hypothesis is false and then find the distribution of 

Suppose that the mean of the distribution is really where Thus, the alternatived > 0.m1 = m0 + d,

Z0.H0: m = m0

Z0

Z
x

n0
0= − μ

σ

s2

H

H
0 0

1 0

:

:

μ μ
μ μ

=
≠

■ F I G U R E  4 . 6
The distribution of 

under and H1.H0

Z0

– Z  /2 0

Under H0 Under H1

Z0
δα Z  /2α σn/

SOLUTION

The desired confidence interval is found from equation 4.44 as which reduces to

0 1020 0 2730. .≤ ≤p

0 1875 1 96
0 1875 0 8125

80
. .

. .≤ + ( )

0 1875 1 96
0 1875 0 8125

80
. .

. .− ( ) ≤ p

hypothesis � m0 is true, and under this assumption the distribution of the test statistic is

(4.45)

The distribution of the test statistic under both hypotheses and is shown in 

Figure 4.6. We note that the probability of type II error is the probability that will fall between

and given that the alternative hypothesis is true. To evaluate this probability, we

must find where F denotes the cumulative distribution function of the

distribution. In terms of the standard normal cumulative distribution, we then have

(4.46)

as the probability of type II error. This equation will also work when d < 0.

β δ
σ

δ
σα α= −

⎛
⎝⎜

⎞
⎠⎟

− − −
⎛
⎝⎜

⎞
⎠⎟

Φ ΦZ
n

Z
n

2 2

N(d1n/s, 1)

F(Za/2) − F(−Za/2),

H1Za/2−Za/2
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H1H0Z0

Z N
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0 1~ ,
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σ
 

⎛
⎝⎜

⎞
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4.3 Statistical Inference for a Single Sample 131

We note from examining equation 4.46 and Figure 4.6 that is a function of n, and

It is customary to plot curves illustrating the relationship between these parameters. Such

a set of curves is shown in Figure 4.7 for Graphs such as these are usually called

operating-characteristic (OC) curves. The parameter on the vertical axis of these curves is

and the parameter on the horizontal axis is From examining the operating-

characteristic curves, we see that

1. The further the true mean is from the hypothesized value (i.e., the larger the value

of the smaller is the probability of type II error for a given n and That is, for a

specified sample size and the test will detect large differences more easily than small

ones.

2. As the sample size n increases, the probability of type II error gets smaller for a speci-

fied and That is, to detect a specified difference we may make the test more pow-

erful by increasing the sample size.

Operating-characteristic curves are useful in determining how large a sample is

required to detect a specified difference with a particular probability. As an illustration, sup-

pose that in Example 4.7 we wish to determine how large a sample will be necessary to have

a 0.90 probability of rejecting if the true mean is Since

we have From Figure 4.7 with 

and we find approximately. That is, 45 observations must be taken to ensure

that the test has the desired probability of type II error.

Operating-characteristic curves are available for most of the standard statistical tests

discussed in this chapter. For a detailed discussion of the use of operating-characteristic

curves, refer to Montgomery and Runger (2011).

n = 45,d = 0.5,

b = 0.10d = �d�/s = �0.05�/0.1 = 0.5.d = 16.05 − 16.0 = 0.05,

m = 16.05.H0: m = 16.0

a.d

a,

a.d),

m0m1

d = �d�/s.b,

a = 0.05.

a.

d,b

SOLUTION

Since we are given that we

have

That is, the probability that we will incorrectly fail to reject

if the true mean contents are 16.1 oz is 0.1492.

Equivalently, we can say that the power of the test is 

1 − 0.1492 = 0.8508.

1 − b =
H0

β δ
σ

δ
σα α= −

⎛
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⎛
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1 04 4 96

0 1492

.
.

.
.

.

.

. .

.

d = m1 − m0 = 16.1 − 16.0 = 0.1,

EXAMPLE 4.7

The mean contents of coffee cans filled on a particular pro-

duction line are being studied. Standards specify that the mean

contents must be 16.0 oz, and from past experience it is known

that the standard deviation of the can contents is 0.1 oz. The

hypotheses are

A random sample of nine cans is to be used, and the type I error

probability is specified as Therefore, the test statistic is

and is rejected if Find the probability

of type II error and the power of the test, if the true mean con-

tents are m1 = 16.1 oz.

�Z0� > Z0.025 = 1.96.H0

Z
x

0

16 0

0 1 9
= − .

.

a = 0.05.

H

H
0

1

16 0

16 0

: .

: .

μ
μ

=
≠

Finding the Power of a Test

c04InferencesaboutProcessQuality.qxd  3/24/12  7:11 PM  Page 131



132 Chapter 4 ■ Inferences About Process Quality

Minitab can also perform power and sample size calculations for several hypothesis

testing problems. The following Minitab display reproduces the power calculations from the

coffee can–filling problem in Example 4.7.

■ F I G U R E  4 . 7 Operating-characteristic curves for the two-sided normal test with a = 0.05.
(Reproduced with permission from C. L. Ferris, F. E. Grubbs, and C. L. Weaver, “Operating Characteristic Curves 

for the Common Statistical Tests of Significance,” Annals of Mathematical Statistics, June 1946.)

Power and Sample Size

1-Sample Z Test

Testing mean = null (versus not = null)
Calculating power for mean � null + difference
Alpha = 0.05 Sigma = 0.1

Sample 
Difference Size Power

0.1 9 0.8508

Power and Sample Size

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 117.61

Sample 
Difference Size Power

50 15 0.3354

The following display shows several sample size and power calculations based on the rub-

berized asphalt problem in Example 4.3.
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4.4 Statistical Inference for Two Samples 133

In the first portion of the display, Minitab calculates the power of the test in Example 4.3,

assuming that the engineer would wish to reject the null hypothesis if the true mean stabilized

viscosity differed from 3200 by as much as 50, using as an estimate of the true

standard deviation. The power is 0.3354, which is low. The next calculation determines the

sample size that would be required to produce a power of 0.8, a much better value. Minitab

reports that a considerably larger sample size, would be required. The final calcula-

tion determines the power with if a larger difference between the true mean stabilized

viscosity and the hypothesized value is of interest. For a difference of 100, Minitab reports

the power to be 0.8644.

4.4 Statistical Inference for Two Samples

The previous section presented hypothesis tests and confidence intervals for a single popula-

tion parameter (the mean the variance or a proportion p). This section extends those

results to the case of two independent populations.

The general situation is shown in Figure 4.8. Population 1 has mean and variance 

whereas population 2 has mean and variance Inferences will be based on two randoms2
2.m2

s2
1,m1

s2,m,

n = 15

n = 46,

s = 117.61

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 117.61

Sample Target Actual
Difference Size Power Power

50 46 0.8000 0.8055

1-Sample t Test

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 117.61

Sample 
Difference Size Power

100 15 0.8644

F I G U R E  4 . 8 Two independent populations

Population 1

Sample 1
x11, x12,..., x1n1

σ

μ

2
1

1

Population 2

Sample 2
x21, x22,..., x2n2

σ

μ

2
2

2
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A logical point estimator of is the difference in sample means Based

on the properties of expected values, we have

and the variance of is

Based on the assumptions and the preceding results, we may state the following.

The quantity

(4.47)

has an N(0, 1) distribution.

This result will be used to form tests of hypotheses and confidence intervals on

Essentially, we may think of as a parameter and its estimator is 

with variance If is the null hypothesis value specified for then the

test statistic will be Note how similar this is to the test statistic for a single mean

used in the previous section.

Hypothesis Tests for a Difference in Means, Variances Known. We now con-

sider hypothesis testing on the difference in the means of the two populations inm1 − m2

(q − q0)/sq̂  .
q,q0s2

q = s2
1/n1 + s2

2/n2.

q̂ = x1 − x2q,m1 − m2m1 − m2.

Z
x x

n n

=
− − −( )

+

1 2 1 2

1
2

1

2
2

2

μ μ

σ σ

V x x V x V x
n n1 2 1 2

1
2

1

2
2

2

−( ) = ( ) + ( ) = +σ σ

x1 − x2

E x x E x E x1 2 1 2 1 2−( ) = ( ) − ( ) = −μ μ

x1 − x2.m1 − m2

Assumptions

1. is a random sample from population 1.

2. is a random sample from population 2.

3. The two populations represented by and are independent.

4. Both populations are normal, or if they are not normal, the conditions of the 

central limit theorem apply.

x2x1

x21, x22, . . . , x2n2

x11, x12, . . . , x1n1

samples of sizes and respectively. That is, is a random sample of 

observations from population 1, and is a random sample of observations

from population 2.

4.4.1 Inference for a Difference in Means, Variances Known

In this section we consider statistical inferences on the difference in means of the

populations shown in Figure 4.8, where the variances and are known. The assumptions

for this section are summarized here.

s2
2s2

1

m1 − m2

n2x21, x22, . . . , x2n2

n1x11, x12, . . . , x1n1
n2,n1
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4.4 Statistical Inference for Two Samples 135

Figure 4.8. Suppose we are interested in testing that the difference in means is equal to

a specified value Thus, the null hypothesis will be stated as Obviously,

in many cases, we will specify so that we are testing the equality of two means (i.e.,

The appropriate test statistic would be found by replacing in equation

4.47 with and this test statistic would have a standard normal distribution under Suppose

that the alternative hypothesis is � Δ0. Now, a sample value of that is con-

siderably different from is evidence that is true. Because Z has the N(0, 1) distribution

when is true, we would take and as the boundaries of the critical region just as

we did in the single sample hypothesis testing problem of Section 4.3.1. This would give a test

with level of significance Critical regions for the one-sided alternatives would be located sim-

ilarly. A P-value approach can also be used. Formally, we summarize these results here.

a.

Za/2−Za/2H0

H1¢0

x1 − x2H1: m1 − m2

H0.¢0,

m1 − m2H0: m1 = m2).

¢0 = 0

H0: m1 − m2 = ¢0.¢0.

m1 − m2

Testing Hypotheses on �1 � �2, Variances Known

Null hypothesis:

Null hypothesis: (4.48)

Fixed Significance Level
Alternative Hypotheses Rejection Criterion P-value

� Δ0 or 

P = Φ (Z0)Z0 < − ZaH1: m1 − m2 < ¢0

P = 1 − Φ (Z0)Z0 > ZaH1: m1 − m2 > ¢0

P = Z 31 − (Φ�Z0�) 4Z0 > Za/2Z0 < − Za/2H1: m1 − m2

Z0 =
x1 − x2 − ¢0

B

s1
2

n1

+
s2

2

n2

H0: m1 − m2 = ¢0

SOLUTION

The hypotheses of interest here are or equivalently,

H

H
0 1 2

1 1 2

:

:

μ μ
μ μ

=
>

H

H
0 1 2

1 1 2

0

0

:

:

μ μ
μ μ

− =
− >

EXAMPLE 4.8

A product developer is interested in reducing the drying time

of a primer paint. Two formulations of the paint are tested; for-

mulation 1 is the standard chemistry, and formulation 2 has a

new drying ingredient that should reduce the drying time.

From experience, it is known that the standard deviation of

drying time is eight minutes, and this inherent variability

should be unaffected by the addition of the new ingredient. 

Ten specimens are painted with formulation 1, and another

ten specimens are painted with formulation 2; the 20 speci-

mens are painted in random order. The two sample average

drying times are min and min, respectively.

What conclusions can the product developer draw about the

effectiveness of the new ingredient, using a = 0.05?

x2 = 112x1 = 121

Comparing Paint Formulations

(continued)

c04InferencesaboutProcessQuality.qxd  3/24/12  7:11 PM  Page 135



136 Chapter 4 ■ Inferences About Process Quality

Confidence Interval on a Difference in Means, Variances Known. The

CI on the difference in two means when the variances are known can

be found directly from results given previously in this section. Recall that 

is a random sample of observations from the first population and is a ran-

dom sample of observations from the second population. If and are the means of these

two samples, then a confidence interval on the difference in means is

given by the following.

(4.49)

This is a two-sided CI. One-sided confidence bounds can be obtained by using the approach

illustrated in Section 4.3 for the single-sample case.

4.4.2 Inference for a Difference in Means of Two Normal 
Distributions, Variances Unknown

We now extend the results of the previous section to the difference in means of the two distrib-

utions in Figure 4.8 when the variances of both distributions and are unknown. If the sam-

ple sizes and exceed 30, then the normal distribution procedures in Section 4.4.1 could be

used. However, when small samples are taken, we will assume that the populations are normally

distributed and base our hypotheses tests and confidence intervals on the t distribution. This

nicely parallels the case of inference on the mean of a single sample with unknown variance.

Hypotheses Tests for the Difference in Means. We now consider tests of hypothe-

ses on the difference in means of two normal distributions where the variances and

are unknown. A t-statistic will be used to test these hypotheses. As noted above, the normal-

ity assumption is required to develop the test procedure, but moderate departures from normality

do not adversely affect the procedure. Two different situations must be treated. In the first case,

we assume that the variances of the two normal distributions are unknown but equal—that is,

In the second, we assume that and are unknown and not necessarily equal.

Case 1: s 2
1 = s 2

2 = s 2. Suppose we have two independent normal populations with

unknown means and and unknown but equal variances, We wish to test

(4.50)
H

H
0 1 2 0

1 1 2 0

:

:

μ μ
μ μ

− =
− ≠

Δ
Δ

s2
1 = s2

2 = s2.m2,m1

s2
2s2

1s2
1 = s2

2 = s2.

s2
2

s2
1m1 − m2

n2n1

s2
2s2

1

x x Z
n n

x x Z
n n1 2 2

1
2

1

2
2

2
1 2 1 2 2

1
2

1

2
2

2

− − + ≤ − ≤ − + +α α
σ σ μ μ σ σ

m1 − m2100(1 − a)%

x2x1n2

x21, x22, . . . , x2n2
n1

x11, x12, . . . , x1n1
,

m1 − m2100(1 − a)%

Now since min and min, the test statistic is

Because the test statistic we reject

at the level and conclude that adding the

new ingredient to the paint significantly reduces the drying

time. Alternatively, we can find the P-value for this test as

Therefore, would be rejected at any signifi-

cance level a ≥ 0.0059.

H0: m1 = m2

P-value = 1 − Φ (2.52) = 0.0059

a = 0.05H0: m1 = m2

Z0 = 2.52 > Z0.05 = 1.645,

Z0
2 2

121 112

8

10

8

10

2 52= −

( ) + ( )
= .

x2 = 112x1 = 121
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4.4 Statistical Inference for Two Samples 137

Let be a random sample of n1 observations from the first population and

be a random sample of n2 observations from the second population. Letx21, x22, . . . , x2n2

x11, x12, . . . , x1n1

be the sample means and sample variances, respectively. Now the expected value

of the difference in sample means is so is an unbiased

estimator of the difference in means. The variance of is

It seems reasonable to combine the two sample variances and to form an estimator of

The pooled estimator of is defined as follows.

The pooled estimator of denoted by is defined by

(4.51)

It is easy to see that the pooled estimator can be written as

where ≤ 1. Thus is a weighted average of the two sample variances and 

where the weights w and depend on the two sample sizes and Obviously, if

then and is simply the arithmetic average of and If 

and (say), then and The first sample contributes 

degrees of freedom to , and the second sample contributes degrees of freedom.

Therefore, has degrees of freedom.

Now we know that

has a N(0, 1) distribution. Replacing by gives the following.

Given the assumptions of this section, the quantity

(4.52)

has a t distribution with degrees of freedom.

The use of this information to test the hypotheses in equation 4.50 is now straightfor-

ward: Simply replace by and the resulting test statistic has a t distribution with

degrees of freedom under The location of the critical region for

both two-sided and one-sided alternatives parallels those in the one-sample case. This proce-

dure is usually called the pooled t-test.
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The Two-Sample Pooled t-Test1

(4.53)

Alternative Fixed Significance Level
Hypotheses Rejection Criterion P-Value

� Δ0 or Sum of the probability

above | | and below −| |

P = Probability below t0t0 < − ta,n1+n2
− 2H1: m1 − m2 < ¢0

P = Probability above t0t0 > ta,n1+n2
− 2H1: m1 − m2 > ¢0

t0t0t0 < − ta/2,n1+n2
− 2

P =t0 > ta/2,n1+n2
− 2H1: m1 − m2

Null hypothesis:  
Test statistic:

H
t x x

s n np

0 1 2 0

0
1 2 0

1 2

1 1

: μ μ− =

=
− −

+

Δ
Δ

SOLUTION

The hypotheses are

From Table 4.2, we have 

and Therefore,
s

n s n s

n n

s

p

p

2 1 1
2

2 2
2

1 2

2 21 1

2

7 2 39 7 2 98

8 8 2
7 30

7 30 2 70

=
−( ) + −( )

+ −
= ( )( ) + ( )( )

+ −
=

= =

. .
.

. .

n2 = 8.x2 = 92.733, s2 = 2.98,

n1 = 8,x1 = 92.255, s1 = 2.39,

H

H
0 1 2

1 1 2

:

:

μ μ
μ μ

=
≠

EXAMPLE 4.9

Two catalysts are being analyzed to determine how they affect

the mean yield of a chemical process. Specifically, catalyst 1 is

currently in use, but catalyst 2 is acceptable. Since catalyst 2 is

cheaper, it should be adopted, providing it does not change the

process yield. An experiment is run in the pilot plant and results

in the data shown in Table 4.2. Is there any difference between

the mean yields? Use and assume equal variances.a = 0.05

Comparing Mean Yields

1Although we have given the development of this procedure for the case where the sample sizes could be different,

there is an advantage to using equal sample sizes When the sample sizes are the same from both popula-

tions, the t-test is very robust to the assumption of equal variances.

n1 = n2 = n.

■ TA B L E  4 . 2

Catalyst Yield Data, Example 4.9

Observation Number Catalyst 1 Catalyst 2

1 91.50 89.19

2 94.18 90.95

3 92.18 90.46

4 95.39 93.21

5 91.79 97.19

6 89.07 97.04

7 94.72 91.07

8 89.21 92.75

s2 = 2.98s1 = 2.39

x2 = 92.733x1 = 92.255
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4.4 Statistical Inference for Two Samples 139

A P-value could also be used for decision making in this example. The actual value is

(This value was obtained from a handheld calculator.) Therefore, since the 

P-value exceeds the null hypothesis cannot be rejected. The t-table in Appendix

Table IV can also be used to find bounds on the P-value. 

Case 2: s 2
1 s 2

2 . In some situations, we cannot reasonably assume that the

unknown variances and are equal. There is not an exact t-statistic available for testing

in this case. However, if is true, then the statistic

(4.54)
t x x

s
n

s
n

0
1 2 0

1
2

1
2
2

2

* =
− −

+

Δ

H0: m1 − m2 = ¢0H0: m1 − m2 = ¢0

s2
2s2

1

�

a = 0.05,

P = 0.7289.

and

Because and 

the null hypothesis cannot be rejected. That is, at the 0.05 level

of significance, we do not have strong evidence to conclude

that catalyst 2 results in a mean yield that differs from the

mean yield when catalyst 1 is used.

Figure 4.9 shows comparative box plots for the yield data

for the two types of catalysts. These comparative box plots

indicate that there is no obvious difference in the median of the

two samples, although the second sample has a slightly larger

sample dispersion or variance. There are no exact rules for

comparing two samples with box plots; their primary value is

in the visual impression they provide as a tool for explaining

the results of a hypothesis test, as well as in verification of

assumptions.

Figure 4.10 presents a Minitab normal probability plot of

the two samples of yield data. Note that both samples plot

approximately along straight lines, and the straight lines for

each sample have similar slopes. (Recall that the slope of the

line is proportional to the standard deviation.) Therefore, we

conclude that the normality and equal variances assumptions

are reasonable.

−2.145 < − 0.35 < 2.145,t0.025,14 = −2.145,

t
x x

n n

0
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1 1
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■ F I G U R E  4 . 9 Comparative box 

plots for the catalyst yield data.

■ F I G U R E  4 . 1 0 Minitab normal probability plot of the

catalyst yield-data.
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is distributed approximately as t with degrees of freedom given by

(4.55)

Therefore, if � the hypotheses on differences in the means of two normal distributions

are tested as in the equal variances case, except that is used as the test statistic and

is replaced by v in determining the degrees of freedom for the test.

Confidence Interval on the Difference on Means, Variances Unknown

Case 1: s 2
1 � s 2

2 � s 2. If and are the means and variances of two

random samples of sizes and respectively, from two independent normal populations

with unknown but equal variances, then a CI on the difference in means

is

(4.56)

where is the pooled estimate of the common

population standard deviation, and is the upper percentage point of the t dis-

tribution with degrees of freedom.

Case 2: s 2
1 s 2

2. If and are the means and variances of two random

samples of sizes n1 and n2, respectively, from two independent normal populations with

unknown and unequal variances, then an approximate CI on the difference in

means is

(4.57)

where v is given by equation 4.55 and is the upper percentage point of the t distri-

bution with v degrees of freedom.
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4.4 Statistical Inference for Two Samples 141

SOLUTION

We will assume that weight percent calcium is normally dis-

tributed and find a 95% confidence interval on the difference

in means, for the two types of cement. Furthermore,

we will assume that both normal populations have the same

standard deviation.

The pooled estimate of the common standard deviation is

found using equation 4.51 as follows:

Therefore, the pooled standard deviation estimate is

The 95% CI is found using equation 4.56:

or upon substituting the sample values and using

which reduces to

Note that the 95% CI includes zero; therefore, at this level of

confidence we cannot conclude that there is a difference in the

means. Put another way, there is no evidence that doping the

cement with lead affected the mean weight percent of cal-

cium; therefore, we cannot claim that the presence of lead

affects this aspect of the hydration mechanism at the 95%

level of confidence.

− ≤ − ≤0 72 6 721 2. .μ μ

t0.025,23 = 2.069,

x x t s
n np1 2 1 2 0 025 23

1 2

1 1≤ − ≤ − + +. ,μ μ

x x t s
n np1 2 0 025 23

1 2

1 1− − +. ,

sp = 119.52 = 4.4.

s
n s n s

n np
2 1 1

2
2 2

2

1 2

2 21 1

2

9 5 0 14 4 0

10 15 2
19 52=

−( ) + −( )
+ −

= ( )( ) + ( )
+ −

=. .
.

m1 − m2,

EXAMPLE 4.10

An article in the journal Hazardous Waste and Hazardous
Materials (Vol. 6, 1989) reported the results of an analysis of

the weight of calcium in standard cement and cement doped

with lead. Reduced levels of calcium would indicate that the

hydration mechanism in the cement is blocked and would

allow water to attack various locations in the cement structure.

Ten samples of standard cement had an average weight percent 

calcium of with a sample standard deviation of

and 15 samples of the lead-doped cement had an

average weight percent calcium of with a sample

standard deviation of Is there evidence to support a

claim that doping the cement with lead changes the mean

weight of calcium in the cement?

s2 = 4.0.

x2 = 87.0,

s1 = 5.0,

x1 = 90.0,

Doped Versus Undoped Cement

Two-Sample t-test and Cl: Catalyst 1, Catalyst 2

Two-sample T for Catalyst 1 vs Catalyst 2

N Mean StDev SE Mean
Catalyst 1 8 92.26 2.39 0.84
Catalyst 2 8 92.73 2.98 1.1

Difference = mu Catalyst 1 − mu Catalyst 2
Estimate for difference: −0.48
95% CI for difference: −(3.39, 2.44)
t-test of difference = 0 (vs not = ): T-value = −0.35 
P-Value = 0.729 DF = 14

90 0 87 0 2 069 4 4
1

10

1

15
1 2. . . .− − ( ) + ≤ −μ μ

90 0 87 0 2 069 4 4
1

10

1

15
. . . .≤ − + ( ) +

Computer Solution. Two-sample statistical tests can be performed using most sta-

tistics software packages. The following display presents the output from the Minitab two-

sample t-test routine for the catalyst yield data in Example 4.9.
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142 Chapter 4 ■ Inferences About Process Quality

The output includes summary statistics for each sample, confidence intervals on the dif-

ference in means, and the hypothesis testing results. This analysis was performed assuming

equal variances. Minitab has an option to perform the analysis assuming unequal variances.

The confidence levels and -value may be specified by the user. The hypothesis testing pro-

cedure indicates that we cannot reject the hypothesis that the mean yields are equal, which

agrees with the conclusions we reached originally in Example 4.9.

Minitab will also perform power and sample size calculations for the two-sample

pooled t-test. The following display from Minitab illustrates some calculations for the cata-

lyst yield problem in Example 4.9.

a

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not = )
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample 
Difference Size Power
2 8 0.2816

2-Sample t Test

Testing mean 1 = mean 2 (versus not = )
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample Actual
Difference Size Target Power Power
2 27 0.7500 0.7615

In the first part of the display, Minitab calculates the power of the test in Example 4.9,

assuming that we want to reject the null hypothesis if the true mean difference in yields

for the two catalysts were as large as 2, using the pooled estimate of the standard devia-

tion For the sample size of for each catalyst, the power is reported

as 0.2816, which is quite low. The next calculation determines the sample size that would

be required to produce a power of 0.75, a much better value. Minitab reports that a con-

siderably larger sample size for each catalyst type, would be required.

Paired Data. It should be emphasized that we have assumed that the two samples

used in the above tests are independent. In some applications, paired data are encountered.

Observations in an experiment are often paired to prevent extraneous factors from inflating

the estimate of the variance; hence, this method can be used to improve the precision of

comparisons between means. For a further discussion of paired data, see Montgomery and

Runger (2011). The analysis of such a situation is illustrated in the following example.

n1 = n2 = 27,

n1 = n2 = 8sp = 2.70.
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4.4 Statistical Inference for Two Samples 143

4.4.3 Inference on the Variances of Two Normal Distributions

Hypothesis Testing. Consider testing the hypothesis that the variances of two inde-

pendent normal distributions are equal. If random samples of sizes and are taken from

populations 1 and 2, respectively, then the test statistic for

is simply the ratio of the two sample variances,

(4.58)F
s

s0
1
2

2
2

=

H

H
0 1

2
2
2

1 1
2

2
2

:

:

σ σ
σ σ

=
≠

n2n1

EXAMPLE 4.11

Two different types of machines are used to measure the tensile

strength of synthetic fiber. We wish to determine whether or not

the two machines yield the same average tensile strength val-

ues. Eight specimens of fiber are randomly selected, and one

strength measurement is made using each machine on each

specimen. The coded data are shown in Table 4.3.

The data in this experiment have been paired to prevent the

difference between fiber specimens (which could be substan-

tial) from affecting the test on the difference between

machines. The test procedure consists of obtaining the differ-

ences of the pair of observations on each of the n specimens—

say, —and then testing the

hypothesis that the mean of the difference is zero. Note that

testing is equivalent to testing further-

more, the test on is simply the one-sample t-test discussed

in Section 4.3.3. The test statistic is

where

and

and is rejected if 

In our example, we find that

Therefore, the test statistic is

Choosing results in and we conclude

that there is no strong evidence to indicate that the two

machines differ in their mean tensile strength measurements

(the P-value is P = 0.18).
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H0: m1 = m2;H0: md = 0

md

dj = x1j − x2j, j = 1, 2, . . . , n

■ TA B L E  4 . 3

Paired Tensile Strength Data for Example 4.11

Specimen Machine 1 Machine 2 Difference

1 74 78

2 76 79

3 74 75

4 69 66 3

5 58 63

6 71 70 1

7 66 66 0

8 65 67 −2

−5

−1

−3

−4

The Paired t-Test
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We would reject if or if where 

and denote the upper and lower percentage points of the F
distribution with and degrees of freedom, respectively. The following display

summarizes the test procedures for the one-sided alternative hypotheses.

n2 − 1n1 − 1

1 − (a/2)a/2F1−(a/2),n1−1,n2−1

F(a/2),n1−1,n2−1F0 < F1−(a/2),n1−1,n2−1,F0 > Fa/2,n1−1,n2−1H0

Testing Hypotheses on s1
2 = s2

2 from Normal Distributions

Null hypothesis:

Alternative Hypotheses Test Statistics Rejection Criterion

F F n n0 1 11 2
> − −α , ,F

s

s0
1
2

2
2

=
H1: s2

1 > s2
2

F F n n0 1 12 1
> − −α , ,F

s

s0
2
2

1
2

=H1: s2
1 < s2

2

H0: s2
1 = s2

2

Confidence Interval on the Ratio of the Variances of Two Normal Distributions.
Suppose that and where and are unknown, and we wish to

construct a confidence interval on If and are the sample variances,

computed from random samples of and observations, respectively, then the 

two-sided CI is

(4.59)

where is the percentage point of the F distribution with u and v degrees of freedom such

that The corresponding upper and lower confidence bounds are

(4.60)

and

(4.61)

respectively.2
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σ
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2s2

1s2
1/s2

2.100(1 − a)%

s2
2m1,x2 ~ N(m2, s2

2,x1 ~ N(m1, s2
1)

2Appendix Table V gives only upper tail points of F; that is, . Lower tail points may be found using the

relationship .F1−a,u,v = 1/Fa,u,v.

F1−a,u,vFa,u,v
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4.4 Statistical Inference for Two Samples 145

4.4.4 Inference on Two Population Proportions

We now consider the case where there are two binomial parameters of interest—say, and —

and we wish to draw inferences about these proportions. We will present large-sample hypothesis

testing and confidence interval procedures based on the normal approximation to the binomial.

Large-Sample Test for H0: p1 � p2. Suppose that the two independent random sam-

ples of sizes and are taken from two populations, and let and represent the num-

ber of observations that belong to the class of interest in samples 1 and 2, respectively.

Furthermore, suppose that the normal approximation to the binomial is applied to each pop-

ulation, so that the estimators of the population proportions and have

approximate normal distributions. We are interested in testing the hypotheses

The statistic

(4.62)

is distributed approximately as standard normal and is the basis of a test for 

Specifically, if the null hypothesis is true, then using the fact that the

random variable

is distributed approximately N(0, 1). An estimator of the common parameter p is

The test statistic for is then

This leads to the test procedures described here.
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(4.63)

Null hypothesis:  

Test statistic:
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Testing Hypothesis on Two Population Proportions
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Confidence Interval on the Difference in Two Population Proportions. If

there are two population proportions of interest—say, and —it is possible to construct a

CI on their difference. The CI is as follows.

This result is based on the normal approximation to the binomial distribution.

4.5 What if There Are More than Two Populations? The Analysis of Variance

As this chapter has illustrated, testing and experimentation are a natural part of the engineer-

ing analysis process and arise often in quality control and improvement problems. Suppose,

for example, that an engineer is investigating the effect of different heat-treating methods on

the mean hardness of a steel alloy. The experiment would consist of testing several specimens

of alloy using each of the proposed heat-treating methods and then measuring the hardness of

each specimen. The data from this experiment could be used to determine which heat-treating

method should be used to provide maximum mean hardness.

If there are only two heat-treating methods of interest, this experiment could be

designed and analyzed using the two-sample t-test presented in this chapter. That is, the

experimenter has a single factor of interest—heat-treating methods—and there are only two

levels of the factor.

Many single-factor experiments require that more than two levels of the factor be

considered. For example, the engineer may want to investigate five different heat-treating

methods. In this section we show how the analysis of variance (ANOVA) can be used for

comparing means when there are more than two levels of a single factor. We will also discuss

randomization of the experimental runs and the important role this concept plays in the over-

all experimentation strategy. In Part IV, we will discuss how to design and analyze experi-

ments with several factors.

4.5.1 An Example

A manufacturer of paper used for making grocery bags is interested in improving the tensile

strength of the product. Product engineering thinks that tensile strength is a function of the hard-

wood concentration in the pulp and that the range of hardwood concentrations of practical
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α            

100(1 − a)%

p2p1

Fixed Significance Level 
Alternative Hypotheses Rejection Criterion P-value

� p2 or 

P = Φ (Z0)Z0 < −ZaH1: p1 < p2

P = 1 − Φ (Z0)Z0 > ZaH1: p1 > p2

P = 2 31 − Φ (�Z0�) 4Z0 < −Za/2Z0 > Za/2H1: p1

(4.64)
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4.5 What if There Are More than Two Populations? The Analysis of Variance 147

interest is between 5% and 20%. A team of engineers responsible for the study decides to

investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to

make up six test specimens at each concentration level, using a pilot plant. All 24 specimens

are tested on a laboratory tensile tester, in random order. The data from this experiment are

shown in Table 4.4.

This is an example of a completely randomized single-factor experiment with four 

levels of the factor. The levels of the factor are sometimes called treatments, and each treat-

ment has six observations or replicates. The role of randomization in this experiment is

extremely important. By randomizing the order of the 24 runs, the effect of any nuisance variable

■ F I G U R E  4 . 1 1 (a) Box plots of hardwood concentration data. (b)

Display of the model in equation 4.65 for the completely randomized single-factor

experiment.
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■ TA B L E  4 . 4

Tensile Strength of Paper (psi)

Observations

Hardwood 
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00

10 12 17 13 18 19 15 94 15.67

15 14 18 19 17 16 18 102 17.00

20 19 25 22 23 18 20 127 21.17

383 15.96
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148 Chapter 4 ■ Inferences About Process Quality

that may influence the observed tensile strength is approximately balanced out. For example,

suppose that there is a warm-up effect on the tensile testing machine; that is, the longer the

machine is on, the greater the observed tensile strength. If all 24 runs are made in order of

increasing hardwood concentration (that is, all six 5% concentration specimens are tested

first, followed by all six 10% concentration specimens, etc.), then any observed differences in

tensile strength could also be due to the warm-up effect.

It is important to graphically analyze the data from a designed experiment. Figure 4.11a
presents box plots of tensile strength at the four hardwood concentration levels. This figure indi-

cates that changing the hardwood concentration has an effect on tensile strength; specifically,

higher hardwood concentrations produce higher observed tensile strength. Furthermore, the dis-

tribution of tensile strength at a particular hardwood level is reasonably symmetric, and the vari-

ability in tensile strength does not change dramatically as the hardwood concentration changes.

Graphical interpretation of the data is always useful. Box plots show the variability of

the observations within a treatment (factor level) and the variability between treatments. We

now discuss how the data from a single-factor randomized experiment can be analyzed sta-

tistically.

4.5.2 The Analysis of Variance

Suppose we have a different levels of a single factor that we wish to compare. Sometimes,

each factor level is called a treatment, a very general term that can be traced to the early appli-

cations of experimental design methodology in the agricultural sciences. The response for

each of the a treatments is a random variable. The observed data would appear as shown in

Table 4.5. An entry in Table 4.5—say, —represents the jth observation taken under treat-

ment i. We initially consider the case in which there are an equal number of observations, n,

on each treatment.

We may describe the observations in Table 4.5 by the linear statistical model

(4.65)

where is a random variable denoting the (ij)th observation, is a parameter common to all

treatments called the overall mean, is a parameter associated with the ith treatment called

the ith treatment effect, and is a random error component. Note that the model could have

been written as

y
i a

j nij i ij= +
=
=

⎧
⎨
⎩

μ ε
1,2, ,

1,2, ,

K

K

eij

ti

myij

y
i a

j nij i ij= + +
=
=

⎧
⎨
⎩

μ τ ε
1,2, ,

1,2, ,

K

K

yij

■ TA B L E  4 . 5

Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 ... . .

2 ... . .

. . . ... . . .

. . . ... . . .

. . . ... . . .

a ... . .

y.. ..y

yayayanya2ya1

y2y2y2ny22y21

y1y1y1ny12y11
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4.5 What if There Are More than Two Populations? The Analysis of Variance 149

where is the mean of the ith treatment. In this form of the model, we see that

each treatment defines a population that has mean consisting of the overall mean 

plus an effect ti that is due to that particular treatment. We will assume that the errors 

are normally and independently distributed with mean zero and variance Therefore,

each treatment can be thought of as a normal population with mean and variance 

(See Fig. 4.11b.)

Equation 4.65 is the underlying model for a single-factor experiment. Furthermore,

since we require that the observations are taken in random order and that the environment

(often called the experimental units) in which the treatments are used is as uniform as possi-

ble, this design is called a completely randomized experimental design.
We now present the analysis of variance for testing the equality of a population

means. This is called a fixed effects model analysis of variance (ANOVA). However, the

ANOVA is a far more useful and general technique; it will be used extensively in Chapters

13 and 14. In this section we show how it can be used to test for equality of treatment

effects. The treatment effects ti are usually defined as deviations from the overall mean 

so that

(4.66)

Let represent the total of the observations under the ith treatment and represent the

average of the observations under the ith treatment. Similarly, let y.. represent the grand

total of all observations and represent the grand mean of all observations. Expressed

mathematically,

(4.67)

where is the total number of observations. Thus, the “dot” subscript notation implies

summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means Using

equation 4.66, we find that this is equivalent to testing the hypotheses

(4.68)

Thus, if the null hypothesis is true, each observation consists of the overall mean plus a

realization of the random error component This is equivalent to saying that all N obser-

vations are taken from a normal distribution with mean and variance Therefore, if

the null hypothesis is true, changing the levels of the factor has no effect on the mean

response.

The ANOVA partitions the total variability in the sample data into two component parts.

Then, the test of the hypothesis in equation 4.68 is based on a comparison of two independent

estimates of the population variance. The total variability in the data is described by the total
sum of squares

The basic ANOVA partition of the total sum of squares is given in the following definition.
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The proof of this identity is straightforward. Note that we may write

or

(4.70)

Note that the cross-product term in equation 4.70 is zero, since

Therefore, we have shown that equation 4.70 will reduce to equation 4.69.

The identity in equation 4.69 shows that the total variability in the data, measured by

the total sum of squares, can be partitioned into a sum of squares of differences between treat-

ment means and the grand mean and a sum of squares of differences of observations within a

treatment from the treatment mean. Differences between observed treatment means and the

grand mean measure the differences between treatments, whereas differences of observations

within a treatment from the treatment mean can be due only to random error. Therefore, we

write equation 4.69 symbolically as

(4.71)

where

and

We can gain considerable insight into how the ANOVA works by examining the

expected values of and This will lead us to an appropriate statistic for testing

the hypothesis of no differences among treatment means (or ti = 0).
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4.5 What if There Are More than Two Populations? The Analysis of Variance 151

Now if the null hypothesis in equation 4.68 is true, each is equal to zero and

If the alternative hypothesis is true, then

The ratio is called the mean square for treatments. Thus,

if is true, is an unbiased estimator of , whereas if is true,

estimates plus a positive term that incorporates variation due to the systematic difference

in treatment means. (Refer to the supplemental material for this chapter for the proofs of these

two statements.)

We can also show that the expected value of the error sum of squares is

Therefore, the error mean square is an unbiased

estimator of regardless of whether or not is true.H0s2

MSE = SSE/ 3a(n − 1) 4E(SSE) = a(n − 1)s2.

s2

MSTreatmentsH1s2MSTreatmentsH0
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There is also a partition of the number of degrees of freedom that corresponds to the sum

of squares identity in equation 4.69. That is, there are observations; thus, has

degrees of freedom. There are a levels of the factor, so has degrees of

freedom. Finally, within any treatment there are n replicates providing degrees of free-

dom with which to estimate the experimental error. Since there are a treatments, we have

degrees of freedom for error. Therefore, the degrees of freedom partition is

Now assume that each of the a populations can be modeled as a normal distribution.

Using this assumption we can show that if the null hypothesis is true, the ratio

(4.72)F
SS a

SS a n

MS

MSE E
0

1

1
= −( )

−( )[ ] =Treatments Treatments

H0

an a a n− = − + −( )1 1 1

a(n − 1)

n − 1

a − 1SSTreatmentsan − 1

SSTan = N
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152 Chapter 4 ■ Inferences About Process Quality

has an F distribution with and degrees of freedom. Furthermore, from the

expected mean squares, we know that is an unbiased estimator of Also, under the

null hypothesis, is an unbiased estimator of However, if the null hypothesis

is false, then the expected value of is greater than Therefore, under the alter-

native hypothesis, the expected value of the numerator of the test statistic (equation 4.72) is

greater than the expected value of the denominator. Consequently, we should reject if the

statistic is large. This implies an upper-tail, one-tail critical region. Therefore, we would

reject if where is computed from equation 4.72. A P-value 

approach can also be used, with the P-value equal to the probability above in the

distribution. Often we can only find bounds on the P-value when we only have

access to tables of the F-distribution, such as Appendix Table V. Computer software will

usually provide an exact P-value.

Efficient computational formulas for the sums of squares may be obtained by

expanding and simplifying the definitions of and This yields the follow-

ing results.

SST.SSTreatments

Fa−1,a(n−1)

F0

F0F0 > Fa,a−1,a(n−1)H0

H0

s2.MSTreatments

s2.MSTreatments

s2.MSE

a(n − 1)a − 1

Definition

The sums of squares computing formulas for the analysis of variance with equal

sample sizes in each treatment are

(4.73)

and

(4.74)

The error sum of squares is obtained by subtraction as
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The computations for this test procedure are usually summarized in tabular form as shown in

Table 4.6. This is called an analysis of variance (or ANOVA) table.

■ TA B L E  4 . 6

The Analysis of Variance for a Single-Factor Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments

Error

Total an − 1SST

MSEa(n − 1)SSE

MSTreatments

MSE
MSTreatmentsa − 1SSTreatments
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SOLUTION 

The hypotheses are

H

H ii

0 1 2 3 4

1

0

0

:

:

τ τ τ τ
τ

= = = =
≠  for at least one 

sis that different hardwood concentrations do not affect the

mean tensile strength of the paper.

Consider the paper tensile strength experiment described in

Section 4.5.1. Use the analysis of variance to test the hypothe-

We will use The sums of squares for the ANOVA are

computed from equations 4.73, 4.74, and 4.75 as follows:

a = 0.01.

so clearly the P-value is smaller than 0.01. The actual P-value

is However, since the P-value is consider-

ably smaller than we have strong evidence to con-

clude that is not true. Note that Minitab also provides

some summary information about each level of hardwood

concentration, including the confidence interval on each mean.

H0

a = 0.01,

P = 3.59 × 10−6.

SS y
y

N

SS
y

n

y

N

SS SS SS

T ij
ji

i

i

E T

= −

= ( ) + ( ) + + ( ) − ( ) =

= −

= ( ) + ( ) + ( ) + ( ) − ( ) =

= −
= −

=

⋅⋅

=

⋅ ⋅⋅

=

∑∑

∑

2

1

6 2

1

4

2 2 2
2

2 2

1

4

2 2 2 2 2

7 8 20
383

24
512 96

60 94 102 127

6

383

24
382 79

512 96 382

K .

.

. .

Treatments

Treatments

7979 130 17= .

We usually do not perform these calculations by hand. The

ANOVA from Minitab is presented in Table 4.7. Since

we reject and conclude that hardwood

concentration in the pulp significantly affects the strength of

the paper. Note that the computer output reports a P-value for

the test statistic in Table 4.7 of zero. This is a trun-

cated value. Appendix Table V reports that F0.01,3,20 = 4.94,

F = 19.61

H0F0.01,3,20 = 4.94,

EXAMPLE 4.12 The Paper Tensile Strength Experiment

■ TA B L E  4 . 7  

Minitab Analysis of Variance Output for the Paper Tensile Strength Experiment

One-Way Analysis of Variance

Analysis of Variance

Source DF SS MS F P

Factor 3 382.79 127.60 19.61 0.000

Error 20 130.17 6.51

Total 23 512.96

Level N Mean StDev

5 6 10.000 2.828

10 6 15.667 2.805

15 6 17.000 1.789

20 6 21.167 2.639

Individual 95% Cls For Mean
Based on Pooled StDev

— —–— —–— —–—

(—*—)

(—*—)

(—*—)

(—*—)

— —–— —–— —–—����

����

Pooled StDev = 2.551 10.0 15.0 20.0 25.0
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Note that the ANOVA tells us whether there is a difference among means. It does not

tell us which means differ. If the analysis of variance indicates that there is a statistically sig-

nificant difference among means, there is a simple graphical procedure that can be used to

isolate the specific differences. Suppose that are the observed averages for

these factor levels. Each treatment average has standard deviation where is the stan-

dard deviation of an individual observation. If all treatment means are equal, the observed

means would behave as if they were a set of observations drawn at random from a normal

distribution with mean and standard deviation 

Visualize this normal distribution capable of being slid along an axis below which the

treatment means are plotted. If all treatment means are equal, there should be

some position for this distribution that makes it obvious that the values were drawn from

the same distribution. If this is not the case, then the values that do not appear to have been

drawn from this distribution are associated with treatments that produce different mean

responses.

The only flaw in this logic is that is unknown. However, we can use from

the analysis of variance to estimate This implies that a t distribution should be used

instead of the normal in making the plot, but since the t looks so much like the normal,

sketching a normal curve that is approximately units wide will usually work

very well.

Figure 4.12 shows this arrangement for the hardwood concentration experiment in

Section 4.5.1. The standard deviation of this normal distribution is

If we visualize sliding this distribution along the horizontal axis, we note that there is no loca-

tion for the distribution that would suggest that all four observations (the plotted means) are

typical, randomly selected values from that distribution. This, of course, should be expected,

because the analysis of variance has indicated that the means differ, and the display in

Figure 4.12 is simply a graphical representation of the analysis of variance results. The fig-

ure does indicate that treatment 4 (20% hardwood) produces paper with higher mean tensile

strength than do the other treatments, and treatment 1 (5% hardwood) results in lower mean

tensile strength than do the other treatments. The means of treatments 2 and 3 (10% and 15%

hardwood, respectively) do not differ.

This simple procedure is a rough but very useful and effective technique for comparing

means following an analysis of variance. However, there are many other more formal ways to

do this. For more details on these procedures, see Montgomery (2009).

4.5.3 Checking Assumptions: Residual Analysis

The analysis of variance assumes that the model errors (and as a result, the observations) are

normally and independently distributed with the same variance in each factor level. These

MS nE = =6 51 6 1 04. .

61MSE/n

s.

1MSEs

yi.

yi.

y1., y2., . . . , ya.

s/1n.m
yi.

ss/1n,

y1., y2., . . . , ya.

^

0 5 10

1 2 3

15 20 25 30

4

/   n = 1.04σ

■ F I G U R E  4 . 1 2 Tensile strength averages from the hardwood concentration experi-

ment in relation to a normal distribution with standard deviation 1MSE/n = 16.51/6 = 1.04

c04InferencesaboutProcessQuality.qxd  3/24/12  7:12 PM  Page 154



4.5 What if There Are More than Two Populations? The Analysis of Variance 155

assumptions can be checked by examining the residuals. We define a residual as the differ-

ence between the actual observation and the value that would be obtained from a least

squares fit of the underlying analysis of variance model to the sample data. For the type of

experimental design in this situation, the value is the factor-level mean Therefore, the

residual is —that is, the difference between an observation and the correspond-

ing factor-level mean. The residuals for the hardwood percentage experiment are shown in

Table 4.8.

The normality assumption can be checked by constructing a normal probability plot of

the residuals. To check the assumption of equal variances at each factor level, plot the resid-

uals against the factor levels and compare the spread in the residuals. It is also useful to plot

the residuals against (sometimes called the fitted value); the variability in the residuals

should not depend in any way on the value of When a pattern appears in these plots, it usu-

ally suggests the need for data transformation—that is, analyzing the data in a different met-

ric. For example, if the variability in the residuals increases with then a transformation

such as log y or should be considered. In some problems the dependency of residual scat-

ter on is very important information. It may be desirable to select the factor level that

results in maximum mean response; however, this level may also cause more variation in

response from run to run.

The independence assumption can be checked by plotting the residuals against the run

order in which the experiment was performed. A pattern in this plot, such as sequences of pos-

itive and negative residuals, may indicate that the observations are not independent. This sug-

gests that run order is important or that variables that change over time are important and have

not been included in the experimental design.

A normal probability plot of the residuals from the hardwood concentration experi-

ment is shown in Figure 4.13. Figures 4.14 and 4.15 present the residuals plotted against
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■ F I G U R E  4 . 1 3
Normal probability plot of

residuals from the hardwood

concentration experiment.

■ F I G U R E  4 . 1 4 Plot of

residuals versus factor levels.
■ F I G U R E  4 . 1 5 Plot of

residuals verus yi.

■ TA B L E  4 . 8

Residuals for the Hardwood Experiment

Hardwood Concentration Residuals

5% 5.00 1.00 0.00

10% 1.33 2.33 +

15% 1.00 2.00 0.00 1.00

20% 3.83 0.83 1.83 −1.17−3.17−2.17

−1.00−3.00

−0.673.33−2.67−3.67

−1.00−2.00−3.00
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the factor levels and the fitted value These plots do not reveal any model inadequacy or

unusual problem with the assumptions.

4.6 Linear Regression Models

In many problems, two or more variables are related and it is of interest to model and

explore this relationship. For example, in a chemical process the yield of product is related

to the operating temperature. The chemical engineer may want to build a model relating

yield to temperature and then use the model for prediction, process optimization, or process

control.

In general, suppose that there is a single dependent variable or response y that

depends on k independent or repressor variables, for example, The relation-

ship between these variables is characterized by a mathematical model called a regression
model. The regression model is fit to a set of sample data. In some instances, the experimenter

knows the exact form of the true functional relationship between y and 

However, in most cases, the true functional relationship is unknown, and the experimenter

chooses an appropriate function to approximate the true model. Low-order polynomial mod-

els are widely used as approximating functions.

There are many applications of regression models in quality and process improvement.

In this section, we present some aspects of fitting these models. More complete presentations

of regression are available in Montgomery, Peck, and Vining (2006).

As an example of a linear regression model, suppose that we wish to develop an empir-

ical model relating the viscosity of a polymer to the temperature and the catalyst feed rate. A

model that might describe this relationship is

(4.76)

where y represents the viscosity, represents the temperature, and represents the cata-

lyst feed rate. This is a multiple linear regression model with two independent variables.

We often call the independent variables predictor variables or regressors. The term “linear”

is used because equation 4.76 is a linear function of the unknown parameter and 

The model describes a plane in the two-dimensional space. The parameter 

defines the intercept of the plane. We sometimes call and partial regression coeffi-
cients because measures the expected change in y per unit change in when is held

constant and measures the expected change in y per unit change in when is held

constant.

In general, the response variable y may be related to k regressor variables. The

model

(4.77)

is called a multiple linear regression model with k regressor variables. The parameters

are called the regression coefficients. This model describes a hyper plane

in the k-dimensional space of the regressor variables The parameter represents the

expected change in response y per unit change in when all the remaining independent vari-

ables xi (i � j) are held constant.

Models that are more complex in appearance than equation 4.77 may often still be ana-

lyzed by multiple linear regression techniques. For example, consider adding an interaction

term to the first-order model in two variables, say

(4.78)y = b0 + b1x1 + b2x2 + b12x1x2 + e

xj

bj5xj6.
bj, j = 0,1, p , k,

y = b0 + b1x1 + b2x2 + �  �  � + bkxk + e

x1x2b2

x2x1b1

b2b1

b0x1, x2

b2.b0, b1,

x2x1

y = b0 + b1x1 + b2x2 + e

x1, x2, . . . , xk.

x1, x2, p , xk

yi.
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4.6 Linear Regression Models 157

If we let and , then equation 4.78 can be written as

(4.79)

which is a standard multiple linear regression model with three regressors. As another exam-

ple, consider the second-order response surface model in two variables:

(4.80)

If we let and then this becomes

(4.81)

which is a linear regression model. In general, any regression model that is linear in the para-

meters is a linear regression model, regardless of the shape of the response surface

that it generates.

In this section, we will summarize methods for estimating the parameters in multiple

linear regression models. This is often called model fitting. We will also discuss methods for

testing hypotheses and constructing confidence intervals for these models as well as for

checking the adequacy of the model fit. For more complete presentations of regression, refer

to Montgomery, Peck, and Vining (2006).

4.6.1 Estimation of the Parameters in Linear Regression Models

The method of least squares is typically used to estimate the regression coefficients in a mul-

tiple linear regression model. Suppose that observations on the response variable are

available, say Along with each observed response we will have an observa-

tion on each regressor variable and let denote the ith observation or level of variable The

date will appear as in Table 4.9. We assume that the error term in the model has 

and and that the are uncorrelated random variables.

We may write the model equation [equation 4.77] in terms of the observations in 

Table 4.9 as

(4.82) = b0 + a
k

j=1

bjxij + ei  i = 1, 2, p , n

 yi = b0 + b1xi1 + b2xi2 + p + bkxik + ei

5ei6V(e) = s2

E(e) = 0e
xj.xij

yi,y1, y2, . . . , yn.

n > k

(the bs)

y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 = e

b5 = b12,x3 = x2
1, x4 = x2

2, x5 = x1x2, b3 = b11, b4 = b22,

y = b0 + b1x1 + b2xx + b11x2
1 + b22x2

2 + b12x1x2 + e

y = b0 + b1x1 + b2x2 + b3x3 + e

b3 = b12x3 = x1x2

■ TA B L E  4 . 9  

Data for Multiple Linear Regression

y x1 x2 . . . xk

xnk
pxn2xn1yn

oooo
x2k

px22x21y2

x1k
px12x11y1
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158 Chapter 4 ■ Inferences About Process Quality

The method of least squares chooses the in equation 4.82 so that the sum of the squares of

the errors, is minimized. The least squares function is

(4.83)

The function L is to be minimized with respect to The least squares estimators,

say must satisfy

(4.84a)

and

(4.84b)

Simplifying equation 4.84, we obtain

(4.85)

These equations are called the least squares normal equations. Note that there are 

normal equations, one for each of the unknown regression coefficients. The solution to

the normal equations will be the least squares estimators of the regression coefficients

It is simpler to solve the normal equations if they are expressed in matrix notation. We

now give a matrix development of the normal equations that parallels the development of

equation 4.85. The model in terms of the observations, equation 4.82 may be written in matrix

notation as

where

In general, y is an vector of the observations, X is an matrix of the lev-

els of the independent variables, is a vector of the regression coefficients, and is

an vector of random errors.(n × 1)

e(p × 1)b
(n × p)(n × 1)

y = ≥

y1

y2

o
yn

¥ ,  � = ≥

1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

o o o o
1 xn1 xn2 . . . xnk

¥ ,  b = ≥

b0

b1

o
bk

¥ ,  and     e = ≥

e1

e2

o
en

¥

y = Xb + e

b̂0, b̂1, p , b̂k.

p = k + 1

b̂0a
n

i=1

xik + b̂1a
n

i=1

xik xi1 + b̂2a
n

i=1

xik xi2 + . . . + b̂ka
n

i=1

x2
ik     = a

n

i=1

xikyi

ooooo

b̂0a
n

i=1

xi1 + b̂1a
n

i=1

x2
i1   + b̂2a

n

i=1

xi1xi2 + . . . + b̂ka
n

i=1

xi1xik = a
n

i=1

xi1yi

n b̂0 + b̂ia
n

i=1

xi1   + b̂2a
n

i=1

xi2   + . . . + b̂ka
n

i=1

xik   = a
n

i=1

yi

0L

0bj
`
b̂0, b̂1, . . . , b̂k

= −2a
n

i=1
°yi − b̂0 − a

k

j=1

b̂j xij¢ xij = 0  j = 1, 2, . . . , k

0L

0b0

`
b̂0, b̂1, . . . , b̂k

= −2a
n

i=1
°yi − b̂0 − a

k

j=1

b̂j x ij¢ = 0

b0, b1, p , bk,

b0, b1, p , bk.

L = a
n

i=1

e2
i = a

n

i=1

°yi − b0 − a
k

j=1

bjxijb
2

ei,

bs
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4.6 Linear Regression Models 159

We wish to find the vector of least squares estimators, that minimizes

Note that L may be expressed as

(4.86)

because is a matrix, or a scalar, and its transpose is the same

scalar. The least squares estimators must satisfy

which simplifies to

(4.87)

Equation 4.87 is the matrix form of the least squares normal equations. It is identical to equa-

tion 4.85. To solve the normal equations, multiply both sides of equation 4.87 by the inverse

of Thus, the least squares estimator of is

(4.88)

It is easy to see that the matrix form for the normal equations is identical to the scalar

form. Writing out equation 4.87 in detail, we obtain

=

If the indicated matrix multiplication is performed, the scalar form of the normal equations 

[i.e., equation 4.85] will result. In this form it is easy to see that is a sym-

metric matrix and is a column vector. Note the special structure of the 

matrix. The diagonal elements of are the sums of squares of the elements in the columns

of X, and the off-diagonal elements are the sums of cross-products of the elements in the

columns of X. Furthermore, note that the elements of are the sums of cross-products of

the columns of X and the observations 

The fitted regression model is

(4.89)ŷ = Xb̂

5yi6.
X¿y

X¿X
X¿X(p × 1)X¿y

(p × p)X¿X

a
n

i=1

yi

a
n

i=1

xi1yi

o

a
n

i=1

xikyi

b̂0

b̂1

o

b̂k

n a
n

i=1

xi1 a
n

i=1

xi2 p a
n

i=1

xik

a xi1

n

i=1
a x2

i1

n

i=1
a
n

i=1

xi1xi2 p a
n

i=1

xi1xik

o o o o

a
n

i=1

xik a
n

i=1

xikxi1 a
n

i=1

xikxi2 p a
n

i=1

x2
ik

b̂ = (X¿X)−1X¿y

bX¿X.

X¿Xb̂ = X¿y

0L

0b
`
b̂

= −2X¿y + 2X¿Xb̂ = 0

(b¿X¿y) ¿ = y¿Xb(1 × 1)b¿X¿y

 = y¿y − 2b¿X¿y + b¿X¿Xb
 L = y¿y − b¿X¿y − y¿X b + b¿X¿X b

L = a
n

i=1

e2
i = e¿e = (y − Xb) ¿ (y − Xb)

�̂,

l
p
p
p

j

l
p
p
p

j

l
p
p
p

j

l
p
p
p

j

l
p
p
p

j

l
p
p
p

j
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160 Chapter 4 ■ Inferences About Process Quality

In scalar notation, the fitted model is

The difference between the actual observation and the corresponding fitted value is the

residual, say The vector of residuals is denoted by

(4.90)

Estimating . It is also usually necessary to estimate To develop an estimator

of this parameter, consider the sum of squares of the residuals, say

Substituting we have

Because this last equation becomes

(4.91)

Equation (4.91) is called the error or residual sum of squares, and it has degrees of

freedom associated with it. It can be shown that

so an unbiased estimator of is given by

(4.92)

Properties of the Estimators. The method of least squares produces an unbiased

estimator of the parameter in the linear regression model. This may be easily demonstrated

by taking the expected value of as follows:

because and Thus, is an unbiased estimator of 

The variance property of is expressed in the covariance matrix:

(4.93)

which is just a symmetric matrix whose ith main diagonal element is the variance of the indi-

vidual regression coefficient and whose (ij)th element is the covariance between and 

The covariance matrix of is

(4.94)Cov(b̂) = s2(X¿X)−1

b̂
b̂j.b̂ib̂i

Cov(b̂) � E5 3 b̂ − E(b̂) 4 3 b̂ − E(b̂) 4 ¿6

b̂
b.b̂(X�X)−1X�X = I.E(e) = 0

 = E 3 (X¿X)−1X¿Xb + (X¿X)−1X¿e 4 = b
 E(b̂) = E 3 (X¿X)−1X¿y 4 = E 3 (X¿X)−1X¿ (Xb + e) 4

b̂
b

ŝ2 =
SSE

n − p

s2

E(SSE) = s2(n − p)

n − p

SSE = y¿y − b̂¿X¿y

X¿Xb̂ = X¿y,

 = y¿y − 2b̂¿X¿y + b̂¿X¿Xb̂
 = y¿y � b̂¿X¿y − y¿Xb̂ + b̂¿X¿Xb̂

 SSE = (y − Xb̂) ¿ (y − Xb̂)

e = y − ŷ = y − Xb̂,

SSE = a
n

i=1

(yi − ŷi)
2 = a

n

i=1

e2
i = e¿e

s2.s 2

e = y − ŷ

(n × 1)ei = yi − ŷi.

ŷiyi

ŷi = b̂0 + a
k

j=1

b̂j xij      i = 1, 2, p , n
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4.6 Linear Regression Models 161

SOLUTION 

The X matrix and y vector are

1 80 8

1 93 9

1 100 10

1 82 12

1 90 11

1 99 8

1 81 8

X = 1 96 10

1 94 12

1 93 11

1 97 13

1 95 11

1 100 8

1 85 12

1 86 9

1 87 12

EXAMPLE 4.13 Fitting a Linear Regression Model

■ TA B L E  4 . 1 0  

Consumers Finance Data for Example 4.13

New Number of Loans
Applications Outstanding

Observation (x1) (x2) Cost ($)

1 80 8 2,256

2 93 9 2,340

3 100 10 2,426

4 82 12 2,293

5 90 11 2,330

6 99 8 2,368

7 81 8 2,250

8 96 10 2,409

9 94 12 2,364

10 93 11 2,379

11 97 13 2,440

12 95 11 2,364

13 100 8 2,404

14 85 12 2,317

15 86 9 2,309

16 87 12 2,328

—are shown in Table 4.10. Fit a multiple linear regression

model

to these data.

y = b0 + b1x1 + b2x2 + e

(x2)Sixteen observations on the operating cost of a branch office of

a finance company (y) and two predictor variables—number 

of new loan applications and number of loans outstanding(x1)

2,256

2,340

2,426

2,293

2,330

2,368

2,250

y = 2,409

2,364

2,379

2,440

2,364

2,404

2,317

2,309

2,328

l
p
p
p

pp
p
p
p

j

l
p
p
p

pp
p
p
p

j
l
p
p
p

pp
p
p
p

j

l
p
p
p

pp
p
p
p

j

The matrix is

and the vector is

The least squares estimate of is

b̂ = (X¿X)−1X¿y

b

1 1 . . . 1

£80 93 . . . 87

8 9 . . . 12

§  ≥

2,256

2,340

o
2,328

¥ = £
37,577

3,429,550

385,562

§X¿y =

X¿y

1 1 . . . 1

£80 93 . . . 87

8 9 . . . 12

§  ≥

1 80 8

1 93 9

o o o
1 87 12

¥ = £
16 1,458 164

1,458 133,560 14,946

164 14,946 1,726

§X¿X =

X¿X

(continued)
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162 Chapter 4 ■ Inferences About Process Quality

■ F I G U R E  4 . 1 7 Plot of residuals versus

predicted cost, Example 4.13.

25.43

17.61

9.79

1.97

–5.85

–13.68

–21.50
2244 2273 2302 2331

Predicted cost

R
es

id
ua

l

2359 2388 2417

■ TA B L E  4 . 1 1  

Predicted Values, Residuals, and Other Diagnostics from Example 4.13

Observation Predicted Residual Studentized
i yi Value ei hii Residual Di R-Student

1 2,256 2,244.5 11.5 0.350 0.87 0.137 0.87

2 2,340 2,352.1 −12.1 0.102 −0.78 0.023 −0.77

3 2,426 2,414.1 11.9 0.177 0.80 0.046 0.79

4 2,293 2,294.0 −1.0 0.251 −0.07 0.001 −0.07

5 2,330 2,346.4 −16.4 0.077 −1.05 0.030 −1.05

6 2,368 2,389.3 −21.3 0.265 −1.52 0.277 −1.61

7 2,250 2,252.1 −2.1 0.319 −0.15 0.004 −0.15

8 2,409 2,383.6 25.4 0.098 1.64 0.097 1.76

9 2,364 2,385.5 −21.5 0.142 −1.42 0.111 −1.48

10 2,379 2,369.3 9.7 0.080 0.62 0.011 0.60

11 2,440 2,416.9 23.1 0.278 1.66 0.354 1.80

12 2,364 2,384.5 −20.5 0.096 −1.32 0.062 −1.36

13 2,404 2,396.9 7.1 0.289 0.52 0.036 0.50

14 2,317 2,316.9 0.1 0.185 0.01 0.000 <0.01

15 2,309 2,298.8 10.2 0.134 0.67 0.023 0.66

16 2,328 2,332.1 −4.1 0.156 −0.28 0.005 −0.27

yŷ i

or

= £
1,566.07777

7.62129

8.58485

§

£

37,577

3,429,550

385,562

§£

14.176004 −0.129746 −0.223453

−0.129746 1.429184 × 10−3 −4.763947 × 10−5

−0.223453 −4,763947 × 10−5 2.222381 × 10−2

§b̂ =

■ F I G U R E  4 . 1 6 Normal probability

plot of residuals, Example 4.13.
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4.6 Linear Regression Models 163

Using the Computer. Regression model fitting is almost always done using a sta-

tistical software package. Table 4.12 shows some of the output obtained when Minitab is used

to fit the consumer finance regression model in Example 4.13. In subsequent sections, we will

discuss the analysis of variance and t-test information in Table 4.12 and will show how these

quantities were computed.

4.6.2 Hypothesis Testing in Multiple Regression

In multiple linear regression problems, certain tests of hypotheses about the model parame-

ters are helpful in measuring the usefulness of the model. In this section, we describe several

important hypothesis-testing procedures. These procedures require that the errors in the

model be normally and independently distributed with mean zero and variance abbrevi-

ated As a result of this assumption, the observations are normally and

independently distributed with mean and variance 

Test for Significance of Regression. The test for significance of regression is a

test to determine whether a linear relationship exists between the response variable y and a

subset of the regressor variables The appropriate hypotheses are

� 0 (4.95)for at least one j H1: bj

 H0: b1 = b2 = p = bk = 0

x1, x2, p , xk.

s2.b0 + Σ k
j=1bj xij

yie ∼ NID(0, s2).

s2,

ei

■ F I G U R E  4 . 1 9 Plot of residuals versus 

(outstanding loan), Example 4.13.

x2

x2, outstanding loan

8.00 13.0012.1711.3310.509.678.33

25.43

17.61

9.79

1.97

–5.85

–13.68

–21.50

R
es

id
ua

l

Plots of the residuals versus the predicted values and versus

the two variables x1 and x2 are shown in Figures 4.17, 4.18, and

4.19, respectively. Just as in ANOVA, residual plotting is an

integral part of regression model building. These plots indi-

cate that variance of the observed cost tends to increase with

the magnitude of cost. Figure 4.18 suggests that the variabil-

ity in cost may be increasing as the number of new applica-

tions increases. 

ŷiThe least squares fit, with the regression coefficients reported

to two decimal places, is

The first three columns of Table 4.11 present the actual

observations the predicted or fitted values and the resid-

uals. Figure 4.16 is a normal probability plot of the residuals.

ŷi,yi,

ŷ = 1,566.08 + 7.62x1 + 8.58x2

■ F I G U R E  4 . 1 8 Plot of residuals versus 

(new applications), Example 4.13.

x1

x1, new application
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164 Chapter 4 ■ Inferences About Process Quality

Rejection of in equation 4.95 implies that at least one of the regressor variables

contributes significantly to the model. The test procedure involves an analysis

of variance partitioning of the total sum of squares into a sum of squares due to the model

(or to regression) and a sum of squares due to residual (or error), say

(4.96)

Now if the null hypothesis is true, then is distributed as 

where the number of degrees of freedom for is equal to the number of regressor vari-

ables in the model. Also, we can show that is distributed as and that and 

are independent. The test procedure for is to compute

(4.97)

and to reject if exceeds Alternatively, we could use the P-value approach to

hypothesis testing and, thus, reject if the P-value for the statistic is less than The test

is usually summarized in an analysis of variance table such as Table 4.13.

a.F0H0

Fa,k,n−k−1.F0H0

F0 =
SSR/k

SSE/(n − k − 1)
=

MSR

MSE

H0: b1 = b2 = p = bk = 0SSR

SSEc2
n−k−1SSE /s2

c2c2
k,

SSR /s2H0: b1 = b2 = p = bk = 0

SST = SSR + SSE

SST

x1, x2, p , xk

H0

■ TA B L E  4 . 1 2

Minitab Output for the Consumer Finance Regression Model, Example 4.13

Regression Analysis: Cost Versus New Applications, Outstanding Loans

The regression equation is

Cost = 1,566 + 7.62 New Applications + 8.58 Outstanding Loans

Predictor Coef SE Coef T P

Constant 1,566.08 61.59 25.43 0.000

New Applications 7.6213 0.6184 12.32 0.000

Outstanding Loans 8.585 2.439 3.52 0.004

S = 16.3586 R–Sq = 92.7% R—Sq (adj) = 91.6%

Analysis of Variance

Source DF SS MS F P

Regression 2 44,157 22,079 82.50 0.000

Residual Error 13 3,479 268

Total 15 47,636

Source DF Seq SS

New Applications 1 40,841

Outstanding Loans 1 3,316

■ TA B L E  4 . 1 3

Analysis of Variance for Significance of Regression in Multiple Regression

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Regression k
Error or residual

Total n − 1SST

MSEn − k − 1SSE

MSR/MSEMSRSSR
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4.6 Linear Regression Models 165

A computational formula for may be found easily. We have derived a computational

formula for in equation 4.91—that is,

Now, because we may rewrite the 

foregoing equation as

or

Therefore, the regression sum of squares is

(4.98)

and the error sum of squares is

(4.99)

and the total sum of squares is

(4.100)

These computations are almost always performed with regression software. For

instance, Table 4.12 shows some of the output from Minitab for the consumer finance

regression model in Example 4.13. The lower portion in this display is the analysis of vari-

ance for the model. The test of significance of regression in this example involves the

hypotheses

� 0

The P-value in Table 4.13 for the F statistic [equation 4.97] is very small, so we would conclude

that at least one of the two variables—new applications and outstanding loans —has a

nonzero regression coefficient.

Table 4.13 also reports the coefficient to multiple determination where

(4.101)

The statistic is a measure of the amount of reduction in the variability of y obtained by

using the regressor variables in the model. However, a large value of does not

necessarily imply that the regression model is a good one. Adding a variable to the model will

always increase regardless of whether the additional variable is statistically significant or

not. Thus, it is possible for models that have large values of to yield poor predictions of

new observations or estimates of the mean response.

R2

R2,

R2x1, x2, p , xk

R2

R2 =
SSR

SST
= 1 −

SSE

SST

R2,

(x2)(x1)

for at least one jH1:  bj

H0 :  b1 = b2 = 0

SST = y¿y −
aa

n

i=1

yib
2

n

SSE = y¿y − b̂¿X¿y

SSR = b̂¿X¿y −
aa

n

i=1

yib
2

n

SSE = SST − SSR

SSE = y¿y −
aa

n

i=1

yib
2

n
− £

b̂¿X¿y −
aa

n

i=1

yib
2

n

§

SST � g
n
i�1y2

i � (g
n
i�1yi)

2/n � y¿y � (g
n
i�1yi)

2/n,

SSE = y¿y − b̂¿X¿y

SSE

SSR
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166 Chapter 4 ■ Inferences About Process Quality

Because always increases as we add terms to the model, some regression model

builders prefer to use an adjusted R2 statistic defined as

(4.102)

In general, the adjusted statistic will not always increase as variables are added to the

model. In fact, if unnecessary terms are added, the value of will often decrease.

For example, consider the consumer finance regression model. The adjusted for the

model is shown in Table 4.12. It is computed as

which is very close to the ordinary When and differ dramatically, there is a good

chance that nonsignificant terms have been included in the model.

Tests on Individual Regression Coefficients and Groups of Coefficients. We

are frequently interested in testing hypotheses on the individual regression coefficients. Such

tests would be useful in determining the value of each regressor variable in the regression

model. For example, the model might be more effective with the inclusion of additional vari-

ables or perhaps with the deletion of one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for regres-

sion to increase and the error sum of squares to decrease. We must decide whether the increase

in the regression sum of squares is sufficient to warrant using the additional variable in the model.

Furthermore, adding an unimportant variable to the model can actually increase the mean

square error, thereby decreasing the usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient,

say are

H0: bj = 0

bj,

R2
adjR2R2.

 = 1 − a
15

13
b(1 − 0.92697) = 0.915735

 R2
adj = 1 − a

n − 1

n − p
b(1 − R2)

R2

R2
adj

R2

R2
ad j = 1 −

SSE/(n − p)

SST/(n − 1)
= 1 − a

n − 1

n − p
b(1 − R2)

R2

because the regression coefficient depends on all the other regressor variables xi (i � j) that

are in the model.

The denominator of equation 4.103, is often called the standard error of the

regression coefficient —that is,

(4.104)

Therefore, an equivalent way to write the test statistic in equation 4.103 is

(4.105)t0 =
b̂j

se(b̂j)

se(b̂j) = 2ŝ2Cjj

b̂j

2ŝ2Cjj,

b̂j

H1: bj � 0

If is not rejected, then this indicates that can be deleted from the model. The test

statistic for this hypothesis is

(4.103)

where is the diagonal element of corresponding to The null hypothesis

is rejected if Note that this is really a partial or marginal test|t0| > ta/2,n−k−1.H0: bj = 0

b̂j.(X¿X)−1Cjj

t0 =
b̂j

2ŝ2Cjj

xjH0 : bj = 0
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Most regression computer programs provide the t-test for each model parameter. For

example, consider Table 4.12, which contains the Minitab output for Example 4.13. The

upper portion of this table gives the least squares estimate of each parameter, the standard

error, the t-statistic, and the corresponding P-value. We would conclude that both variables—

new applications and outstanding loans—contribute significantly to the model.

We may also directly examine the contribution to the regression sum of squares for a

particular variable, say given that other variables xi (i � j) are included in the model. The

procedure for doing this is the general regression significance test or, as it is often called, the

extra sum of squares method. This procedure can also be used to investigate the contribu-

tion of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables:

where y is is is and We would like 

to determine if the subset of regressor variables contributes signifi-

cantly to the regression model. Let the vector of regression coefficients be partitioned as

follows:

where is and is We wish to test the hypotheses

H0: b1 = 0

3 (p − r) × 1 4 .b2(r × 1)b1

b = c
b1

b2

d

x1, x2, . . . , xr(r < k)

p = k + 1.e is (n × 1),(p × 1),(n × p), b(n × 1), X

y = Xb + e

xj,

H1: b1 � 0 (4.106)

The model may be written as

(4.107)

where represents the columns of X associated with and represents the columns of

X associated with b2.

For the full model (including both and ), we know that Also,

the regression sum of squares for all variables including the intercept is

( p degrees of freedom)

and

is called the regression sum of squares due to To find the contribution of the terms

in to the regression, we fit the model assuming the null hypothesis to be true.

The reduced model is found from equation 4.107 with 

(4.108)

The least squares estimator of is and

(4.109)

The regression sum of squares due to given that is already in the model is

(4.110)

This sum of squares has r degrees of freedom. It is the “extra sum of squares” due to Note

that is the increase in the regression sum of squares due to including the variables

in the model.x1, x2, . . . , xr

SSR(b1|b2)

b1.

SSR(b1|b2) = SSR(b) − SSR(b2)

b2b1

(p − r degrees of freedom)SSR(b2) = b̂¿2X¿2y

b̂2 = (X¿2X2)−1X¿2y,b2

y = X2b2 + e

b1 = 0:

H0 : b1 = 0b1

b.SSR(b)

MSE =
y¿y − b̂X¿y

n − p

SSR(b) = b̂¿X¿y

b̂ = (X¿X)�1 X¿y. b2b1

X2b1X1

y = Xb + e = X1b1 + X2b2 + e
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SOLUTION 

The hypotheses we wish to test are

H0: b2 = 0

EXAMPLE 4.14 The Extra Sum of Squares Method

Note that is shown at the bottom of the Minitab

output in Table 4.12 under the heading “Seq SS.” Therefore,

With degree of freedom. This is the increase in the

regression sum of squares that results from adding to model

already containing and it is shown at the bottom of the

Minitab output in Table 4.12. To test from the test

statistic we obtain

Note that from the full model (Table 4.12) is used in the

denominator of Now, because we would

reject and conclude that (outstanding loans) con-

tributes significantly to the model.

Because this partial F-test involves only a single regressor,

it is equivalent to the t-test because the square of a t random

variable with v degrees of freedom is an F random variable

with 1 and v degrees of freedom. To see this, note from Table

4.12 that the t-statistic for resulted in 

and that t 2
0 = (3.5203)2 = 12.3925 � F0.

t0 = 3.5203H0 : b2 = 0

x2H0: b2 = 0

F0.05,1,13 = 4.67,F0.

MSE

F0 =
SsR(b2|b0, b1)/1

MSE
=

3,316.3/1

267.604
= 12.3926

H0: b2 = 0,

x1,

x2

2 − 1 = 1

 = 3,316.3

 SSR(b2|b0, b1) = 44,157.1 − 40,840.8

SSR(b1|b0)

Consider the consumer finance data in Example 4.13. Evaluate

the contribution of (outstanding loans) to the model.x2

H1: b2 � 0

This will require the extra sum of squares due to or

Now from Table 4.12, where we tested for significance of

regression, we have

which was called the model sum of squares in the table. This

sum of squares has two degrees of freedom.

The reduced model is

The least squares fit for this model is

and the regression sum of squares for this model (with one

degree of freedom) is

SSR(b1|b0) = 40,840.8

ŷ = 1,652.3955 + 7.6397x1

y = b0 + b1x1 + e

SSR(b1,b2|b0) = 44,157.1

 = SsR(b1, b2|b0) − SSR(b2|b0)

 SSR(b2|b1, b0) = SSR(b0, b1, b2) − SSR(b0, b1)

b2,

Now, is independent of and the null hypothesis may be tested

by the statistic

(4.111)

If we reject concluding that at least one of the parameters in is not zero,

and, consequently, at least one of the variables in contributes significantly

to the regression model. Some authors call the test in equation 4.111 a partial F-test.
The partial F-test is very useful. We can use it to measure the contribution of as if it

were the last variable added to the model by computing

This is the increase in the regression sum of squares due to adding to a model that already

includes Note that the partial F-test on a single variable is equiv-

alent to the t-test in equation 4.103. However, the partial F-test is a more general procedure

in that we can measure the effect of sets of variables.

xjx1, . . . , xj−1, xj+1, . . . , xk.

xj

SSR(bj|b0, b1, p , bj−1, bj+1, p , bk)

xj

X1x1, x2, . . . , xr

b1H0,F0 > Fa,r,n−p,

F0 =
SsR(b1|b2)/r

MSE

b1 = 0MSE,SSR(b1|b2)
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SOLUTION 

The estimate of is and because and we find thatC11 = 1.429184 × 10−3,ŝ 2 = 267.604b̂1 = 7.62129,b1

EXAMPLE 4.15 A Confidence Interval on a Regression Coefficient

Construct a 95% confidence interval for the parameter in Example 4.13.b1

≤ b1 ≤
≤ b1

≤ 
≤ b1 ≤

and the 95% confidence interval on is

6.2855 ≤ b1 ≤ 8.9570

b1

7.62129 + 2.16(0.6184)7.62129 − 2.16(0.6184)
7.62129 + 2.162(267.604) (1.429184 × 10−3)

7.62129 − 2.162(267.604)(1.429184 × 10−3)

b̂1 + t0.025,132ŝ 2C11b̂1 − t0.025,132ŝ 2C11

Confidence Interval on the Mean Response. We may also obtain a confidence inter-

val on the mean response at a particular point, say, We first define the vectorx01, x02, p , x0k.

4.6.3 Confidence Intervals in Multiple Regression

It is often necessary to construct confidence interval estimates for the regression coefficients

and for other quantities of interest from the regression model. The development of a pro-

cedure for obtaining these CIs requires that we assume the errors to be normally and inde-

pendently distributed with mean zero and variance the same assumption made in the section

on hypothesis testing in Section 4.6.2

Confidence Intervals on the Individual Regression Coefficients. Because the

least squares estimator is a linear combination of the observations, it follows that is normally

distributed with mean vector and covariance matrix Then each of the statistics

(4.112)

is distributed as t with degrees of freedom, where is the th element of the

matrix, and is the estimate of the error variance, obtained from equation 4.92.

Therefore, a % CI for the regression coefficient is

≤ bj ≤ (4.113)

Note that this CI could also be written as

≤ bj ≤

because se(b̂j) = 2ŝ2Cjj.

b̂j + ta/2,n−pse(b̂j)b̂j − ta/2,n−pse(b̂j)

b̂j + ta/2,n−p2ŝ2Cjjb̂j − ta/2,n−p2ŝ2Cjj

bj, j = 0, 1, p , k,100(1 − a)

ŝ2(X¿X)−1

( jj)Cjjn − p

b̂j − bj

2ŝ2Cjj

             j = 0, 1, p , k

s2(X¿X)−1.b
b̂b̂

s2,

5ei6
5bj6

l
p

j

l
p

j

x0 =

   1

   x01

  x02

 o
  x0k
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170 Chapter 4 ■ Inferences About Process Quality

The mean response at this point is

The estimated mean response at this point is

(4.114)

This estimator is unbiased because and the variance of

is

(4.115)

Therefore, a % CI on the mean response at the point is

≤ ≤ (4.116)

Minitab will calculate the CI in equation 4.116 for points of interest. For example,

suppose that for the consumer finance regression model we are interested in finding an esti-

mate of the mean cost and the associated 95% CI at two points: (1) New Applications

and Outstanding Loans and (2) New Applications and Outstanding Loans

Minitab reports the point estimates and the 95% CI calculated from equation 4.116 in

Table 4.14.

When there are 85 new applications and 10 outstanding loans, the point estimate of cost

is 2,299.74, and the 95% CI is (2,287.63, 2,311.84), and when there are 95 new applications

and 12 outstanding loans, the point estimate of cost is 2,293.12, and the 95% CI is (2,379.37,

2,406.87). Notice that the lengths of the two confidence intervals are different. The length of

the CI on the mean response depends on not only the level of confidence that is specified and

the estimate of but on the location of the point of interest. As the distance of the point

from the center of the region of the predictor variables increases, the length of the confidence

interval increases. Because the second point is further from the center of the region of the pre-

dictors, the second CI is longer than the first.

4.6.4 Prediction of New Response Observations

A regression model can be used to predict future observations on the response y cor-

responding to particular values of the regressor variables, say If

then a point estimate for the future observation at the point

is computed from equation 4.114:

ŷ(x0) = x¿0 b̂

x01, x02, . . . , x0k

y0x¿0 = 31, x01, x02, . . . , x0k 4 ,
x01, x02, . . . , x0k.

s2,

= 12.= 95= 10,

= 85

y(x0) + ta/2, n−p2ŝ2x¿0(X¿X)−1x0my |x0
ŷ(x0) − ta/2,n−p2ŝ2x¿0(X¿X)−1x0

x01, x02, . . . , x0k100(1 − a)

V 3 ŷ(x0) 4 = s2x¿0 (X¿X)−1 x0

ŷ(x0)

E 3 ŷ(x0) 4 = E(x¿0 b̂) = x¿0 b = my |X0
,

ŷ(x0) = x¿0 b̂

my |x0
= b0 + b1 x01 + b2x02 + . . . + bkx0k = x¿0 b

■ TA B L E  4 . 1 4  

Minitab Output

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI

1 2,299.74 5.60 (2,287.63, 2,311.84) (2,262.38,  2,337.09)

2 2,393.12 6.36 (2,379.37, 2,406.87) (2,355.20,  2,431.04)

Values of Predictors for New Observations

New New Outstanding
Obs Applications Loans

1 85.0 10.0

2 95.0 12.0
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A % prediction interval (PI) for this future observation is

≤ y0

≤ (4.117)

In predicting new observations and in estimating the mean response at a given point

we must be careful about extrapolating beyond the region containing the

original observations. It is very possible that a model that fits well in the region of the origi-

nal data will no longer fit well outside of that region.

The Minitab output in Table 4.14 shows the 95% prediction intervals on cost for the

consumer finance regression model at the two points considered previously: (1) New

Applications and Outstanding Loans and (2) New Applications and

Outstanding Loans The predicted value of the future observation is exactly equal to the

estimate of the mean at the point of interest. Notice that the prediction intervals are longer

than the corresponding confidence intervals. You should be able to see why this happens from

examining equations 4.116 and 4.117. The prediction intervals also get longer as the point

where the prediction is made moves further away from the center of the predictor variable

region.

4.6.5 Regression Model Diagnostics

As we emphasized in analysis of variance, model adequacy checking is an important part

of the data analysis procedure. This is equally important in building regression models, and

as we illustrated in Example 4.13, residual plots should always be examined for a regres-

sion model. In general, it is always necessary (1) to examine the fitted model to ensure that

it provides an adequate approximation to the true system, and (2) to verify that none of the

least squares regression assumptions are violated. The regression model will probably give

poor or misleading results unless it is an adequate fit.

In addition to residual plots, other model diagnostics are frequently useful in regression.

This section briefly summarizes some of these procedures. For more complete presentations,

see Montgomery, Peck, and Vining (2006) and Myers (1990).

Scaled Residuals and PRESS. Many model builders prefer to work with scaled
residuals in contrast to the ordinary least squares residuals. These scaled residuals often con-

vey more information than do the ordinary residuals.

One type of scaled residual is the standardized residual:

(4.118)

where we generally use in the computation. These standardized residuals have

mean zero and approximately unit variance; consequently, they are useful in looking for out-
liers. Most of the standardized residuals should lie in the interval −3 ≤ di ≤ 3, and any obser-

vation with a standardized residual outside of this interval is potentially unusual with respect

to its observed response. These outliers should be carefully examined because they may rep-

resent something as simple as a data-recording error or something of more serious concern,

such as a region of the regressor variable space where the fitted model is a poor approxima-

tion to the true response surface.

The standardizing process in equation 4.118 scales the residuals by dividing them by

their approximate average standard deviation. In some data sets, residuals may have standard

deviations that differ greatly. We now present a scaling that takes this into account.

ŝ = 2MSE

di =
ei

ŝ      i = 1, 2, . . . , n

= 12.

= 95= 10,= 85

x01, x02, p , x0k,

ŷ(x0) + ta/2, n−p2ŝ2(1 + x�0(X�X)−1x0)

ŷ(x0) = ta/2,n−p2ŝ2(1 + x�0(X¿X)−1x0)

100(1 − a)
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The vector of fitted values corresponding to the observed values is

(4.119)

The matrix is usually called the “hat” matrix because it maps the vec-

tor of observed values into a vector of fitted values. The hat matrix and its properties play a

central role in regression analysis.

The residuals from the fitted model may be conveniently written in matrix notation as

and it turns out that the covariance matrix of the residuals is

(I – H) (4.120)

The matrix (I – H) is generally not diagonal, so the residuals have different variances and are

correlated.

Thus, the variance of the ith residual is

(4.121)

where is the ith diagonal element of H. Because 0 ≤ hii ≤ 1, using the residual mean square

to estimate the variance of the residuals actually overestimates Furthermore,

because is a measure of the location of the ith point in x space, the variance of depends

on where the point lies. Generally, residuals near the center of the x space have larger vari-

ance than do residuals at more remote locations. Violations of model assumptions are more

likely at remote points, and these violations may be hard to detect from inspection of (or )

because their residuals will usually be smaller.

We recommend taking this inequality of variance into account when scaling the resid-

uals. We suggest plotting the studentized residuals:

(4.122)

with instead of (or ). The studentized residuals have constant variance

regardless of the location of when the form of the model is correct. In many sit-

uations the variance of the residuals stabilizes, particularly for large data sets. In these cases,

there may be little difference between the standardized and studentized residuals. Thus stan-

dardized and studentized residuals often convey equivalent information. However, because

any point with a large residual and a large is potentially highly influential on the least

squares fit, examination of the studentized residuals is generally recommended. Table 4.11

displays the hat diagonals and the studentized residuals for the consumer finance regres-

sion model in Example 4.13.

The prediction error sum of squares (PRESS) provides a useful residual scaling. To

calculate PRESS, we select an observation—for example, i. We fit the regression model to

the remaining observations and use this equation to predict the withheld observation

Denoting this predicted value we may find the prediction error for point i as

The prediction error is often called the ith PRESS residual. This procedure is

repeated for each observation producing a set of n PRESS residuals

Then the PRESS statistic is defined as the sum of squares of the n PRESS

residuals as in

(4.123)PRESS = a
n

i=1

e2
(i) = a

n

i=1

3yi − ŷ(i) 4
2

e(1), e(2), p , e(n).

i = 1, 2, p , n,

e(i) = yi − ŷ(i).

ŷ(i),yi.

n − 1

hii

hii

xiV(ri) = 1

dieiŝ2 = MSE

ri =
ei

2ŝ2(1 − hii)
            i = 1, 2, . . . , n

diei

xi

eihii

V(ei).MSE

hii

V(ei) = s2(1 − hii)

Cov(e) = s2

e = yy � ŷ

H = X(X�X)−1X�n × n

 = Hy
 = X(X�X)−1X�y

ŷ
 = Xb̂

yiŷi
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Thus, PRESS uses each possible subset of observations as an estimation data set, and

every observation in turn is used to form a prediction data set.

It would initially seem that calculating PRESS requires fitting n different regressions.

However, it is possible to calculate PRESS from the results of a single least squares fit to all

n observations. It turns out that the ith PRESS residual is

(4.124)

Thus, because PRESS is just the sum of the squares of the PRESS residuals, a simple com-

puting formula is

(4.125)

From equation 4.124 it is easy to see that the PRESS residual is just the ordinary residual

weighted according to the diagonal elements of the hat matrix Data points for which 

are large will have large PRESS residuals. These observations will generally be high influ-
ence points. Generally, a large difference between the ordinary residual and the PRESS resid-

uals will indicate a point where the model fits the data well, but a model built without that

point predicts poorly. In the next section we will discuss some other measures of influence.

Finally, we note that PRESS can be used to compute an approximate for prediction, say

(4.126)

This statistic gives some indication of the predictive capability of the regression model. For

the consumer finance regression model from Example 4.13, we can compute the PRESS

residuals using the ordinary residuals and the values of found in Table 4.11. The corre-

sponding value of the PRESS statistic is Then

Therefore, we could expect this model to “explain” about 89% of the variability in predicting

new observations, as compared to the approximately 93% of the variability in the original data

explained by the least squares fit. The overall predictive capability of the model based on this

criterion seems very satisfactory.

The studentized residual discussed above is often considered an outlier diagnostic. It

is customary to use as an estimate of in computing This is referred to as internal

scaling of the residual because is an internally generated estimate of obtained from

fitting the model to all n observations. Another approach would be to use an estimate of 

based on a data set with the ith observation removed. We denote the estimate of so

obtained by We can show that

(4.127)

The estimate of in equation 4.127 is used instead of to produce an externally studen-

tized residual, usually called R-student, given by

(4.128)ti =
ei

2S2
(i)(1 − hii)

           i = 1, 2, . . . , n

MSEs2

S2
(i) =

(n − p)MSE − e2
i /(1 − hii)

n − p − 1

S2
(i).

s2

s2

s2MSE

ri.s2MSE

ri

 = 1 −
5,207.7

47,635.9
= 0.8907

 R2
Prediction = 1 −

PRESS

SST

PRESS = 5,207.7.

hii

R2
Prediction = 1 −

PRESS

SST

R2

hiihii.

PRESS = a
n

i=1

a
ei

1 − hii
b

2

e(i) =
ei

1 − hii

n − 1

c04InferencesaboutProcessQuality.qxd  3/24/12  7:13 PM  Page 173



174 Chapter 4 ■ Inferences About Process Quality

In many situations, will differ little from the studentized residual However, if the ith
observation is influential, then can differ significantly from and thus the R-student

will be more sensitive to this point. Furthermore, under the standard assumptions, has a

distribution. Thus R-student offers a more formal procedure for outlier detection via

hypothesis testing. Table 4.11 displays the values of R-student for the consumer finance

regression model in Example 4.13. None of those values is unusually large.

Influence Diagnostics. We occasionally find that a small subset of the data exerts

a disproportionate influence on the fitted regression model. That is, parameter estimates or

predictions may depend more on the influential subset than on the majority of the data. We

would like to locate these influential points and assess their impact on the model. If these

influential points are “bad” values, they should be eliminated. On the other hand, there may

be nothing wrong with these points. But if they control key model properties, we would like

to know it because it could affect the use of the model. In this section, we describe and illus-

trate some useful measures of influence.

The disposition of points in x space is important in determining model properties. In

particular, remote observations potentially have disproportionate leverage on the parameter

estimates, predicted values, and the usual summary statistics.

The hat matrix is very useful in identifying influential observations.

As noted earlier, H determines the variances and covariances of and e because 

and The elements of H may be interpreted as the amount of leverage

exerted by on Thus, inspection of the elements of H can reveal points that are potentially

influential by virtue of their location in x space. Attention is usually focused on the diagonal 

elements Because the average size of the diagonal

element of the H matrix is As a rough guideline, then, if a diagonal element is greater

than observation i is a high leverage point. To apply this to the consumer finance regres-

sion model in Example 4.13, note that Table 4.11 gives the hat diag-

onals for the first-order model; because none of the exceeds 0.375, we would conclude

that there are no leverage points in these data.

The hat diagonals will identify points that are potentially influential due to their loca-

tion in x space. It is desirable to consider both the location of the point and the response vari-

able in measuring influence. Cook (1977, 1979) has suggested using a measure of the squared

distance between the least squares estimate based on all n points and the estimate obtained

by deleting the i point, say This distance measure can be expressed as

(4.129)

A reasonable cutoff for is unity. That is, we usually consider observations for which 

to be influential.

The statistic is actually calculated from

(4.130)

Note that, apart from the constant p, is the product of the square of the ith studentized resid-

ual and This ratio can be shown to be the distance from the vector to the cen-

troid of the remaining data. Thus, is made up of a component that reflects how well the model

fits the ith observation and a component that measures how far that point is from the rest

of the data. Either component (or both) may contribute to a large value of .

Table 4.11 presents the values of for the regression model fit to the consumer finance

data in Example 4.13. None of these values of exceeds 1, so there is no strong evidence of

influential observations in these data.

Di

Di

Di

yi

Di

xihii/ (1 − hii).

Di

Di =
r2

i

P
 
V 3 ŷ(xi) 4

V(ei)
=

r2
i

p
 

hii

(1 − hii)
           i = 1, 2, . . . , n

Di

Di > 1Di

D1 =
(b̂(i) − b̂) ¿X¿X(b̂(i) − b̂)

pMSE
           i = 1, 2, . . . , n

b̂(i).

b̂

hiihii

2p/n = 2(3)/16 = 0.375.

2p/n,

hiip/n.

Σ n
i=1  hii = rank(H) = rank(X) = p,hii.

ŷi.yj

hijV(e) = s2(I − H).

V(ŷ) = s2Hŷ
H = X(X� X)−1X�

tn−p−1

ti

MSE,S2
(i)

ri.ti
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Exercises 175

Alternative hypothesis

Analysis of variance (ANOVA)

Binomial distribution

Checking assumptions for statistical inference procedures

Chi-square distribution

Confidence interval

Confidence intervals on means, known variance(s)

Confidence intervals on means, unknown variance(s)

Confidence intervals on proportions

Confidence intervals on the variance of a normal 

distribution

Confidence intervals on the variances of two normal 

distributions

Critical region for a test statistic

F-distribution

Hypothesis testing

Least squares estimator

Linear statistical model

Minimum variance estimator

Null hypothesis

P-value

P-value approach

Parameters of a distribution

Point estimator

Poisson distribution

Pooled estimator

Power of a statistical test

Random sample

Regression model

Residual analysis

Sampling distribution

Scaled residuals

Statistic

t-distribution

Test statistic

Tests of hypotheses on means, known variance(s)

Tests of hypotheses on means, unknown variance(s)

Tests of hypotheses on proportions

Tests of hypotheses on the variance of a normal 

distribution

Tests of hypotheses on the variances of two normal 

distributions

Type I error

Type II error

Unbiased estimator

Important Terms and Concepts

Exercises

4.3. Suppose that you are testing the following hypothe-

ses where the variance is known:

Find the P-value for the following values of the test

statistic.

(a) Z0 = −2.35

(b) Z0 = −1.99

(c) Z0 = −2.18

(d) Z0 = −1.85

4.4. Suppose that you are testing the following hypothe-

ses where the variance is unknown:

The sample size is n = 20. Find bounds on the 

P-value for the following values of the test statistic.

(a) t0 = 2.75

(b) t0 = 1.86

(c) t0 = −2.05

(d) t0 = −1.86

H1: m � 100

H0: m = 100

H1: m < 100

H0: m = 100

4.1. Suppose that you are testing the

following hypotheses where the

variance is known:

Find the P-value for the following

values of the test statistic.

(a) Z0 = 2.75

(b) Z0 = 1.86

(c) Z0 = −2.05

(d) Z0 = −1.86

4.2. Suppose that you are testing the following hypothe-

ses where the variance is known:

Find the P-value for the following values of the test

statistic.

(a) Z0 = 2.50

(b) Z0 = 1.95

(c) Z0 = 2.05

(d) Z0 = 2.36

H1: m > 100

H0: m = 100

H1: m � 100

H0: m = 100

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.
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4.5. Suppose that you are testing the following hypothe-

ses where the variance is unknown:

The sample size is n = 12. Find bounds on the 

P-value for the following values of the test statistic.

(a) t0 = 2.55

(b) t0 = 1.87

(c) t0 = 2.05

(d) t0 = 2.80

4.6. Suppose that you are testing the following hypothe-

ses where the variance is unknown:

The sample size is n = 25. Find bounds on the 

P-value for the following values of the test statistic.

(a) t0 = −2.80

(b) t0 = −1.75

(c) t0 = −2.54

(d) t0 = −2.05

4.7. The inside diameters of bearings used in an aircraft

landing gear assembly are known to have a standard

deviation of A random sample of 15

bearings has an average inside diameter of 8.2535 cm.

(a) Test the hypothesis that the mean inside bearing

diameter is 8.25 cm. Use a two-sided alternative

and 

(b) Find the P-value for this test.

(c) Construct a 95% two-sided confidence interval

on the mean bearing diameter.

4.8. The tensile strength of a fiber used in manufacturing

cloth is of interest to the purchaser. Previous experi-

ence indicates that the standard deviation of tensile

strength is 2 psi. A random sample of eight fiber

specimens is selected, and the average tensile

strength is found to be 127 psi.

(a) Test the hypothesis that the mean tensile strength

equals 125 psi versus the alternative that the

mean exceeds 125 psi. Use 

(b) What is the P-value for this test?

(c) Discuss why a one-sided alternative was chosen

in part (a).

(d) Construct a 95% lower confidence interval on

the mean tensile strength.

4.9. The service life of a battery used in a cardiac pace-

maker is assumed to be normally distributed. A ran-

dom sample of ten batteries is subjected to an accel-

erated life test by running them continuously at an

elevated temperature until failure, and the following

a = 0.05.

a = 0.05.

s = 0.002 cm.

H1: m < 100

H0: m = 100

H1: m > 100

H0: m = 100

lifetimes (in hours) are obtained: 25.5, 26.1, 26.8,

23.2, 24.2, 28.4, 25.0, 27.8, 27.3, and 25.7.

(a) The manufacturer wants to be certain that the

mean battery life exceeds 25 h. What conclusions

can be drawn from these data (use 

(b) Construct a 90% two-sided confidence interval

on mean life in the accelerated test.

(c) Construct a normal probability plot of the battery

life data. What conclusions can you draw?

4.10. Using the data from Exercise 4.7, construct a 95%

lower confidence interval on mean battery life. Why

would the manufacturer be interested in a one-sided

confidence interval?

4.11. A new process has been developed for applying

photoresist to 125-mm silicon wafers used in

manufacturing integrated circuits. Ten wafers were

tested, and the following photoresist thickness mea-

surements were observed:

13.3987, 13.3957, 13.3902, 13.4015, 13.4001,

13.3918, 13.3965, 13.3925, 13.3946, and 13.4002.

(a) Test the hypothesis that mean thickness is

Å. Use and assume a two-

sided alternative.

(b) Find a 99% two-sided confidence interval on

mean photoresist thickness. Assume that thick-

ness is normally distributed.

(c) Does the normality assumption seem reasonable

for these data?

4.12. A machine is used to fill containers with a liquid

product. Fill volume can be assumed to be normally

distributed. A random sample of ten containers is

selected, and the net contents (oz) are as follows:

12.03, 12.01, 12.04, 12.02, 12.05, 11.98, 11.96,

12.02, 12.05, and 11.99.

(a) Suppose that the manufacturer wants to be sure

that the mean net contents exceeds 12 oz. What

conclusions can be drawn from the data (use

(b) Construct a 95% two-sided confidence interval

on the mean fill volume.

(c) Does the assumption of normality seem appro-

priate for the fill volume data?

4.13. Ferric chloride is used as a flux in some types 

of extraction metallurgy processes. This material is

shipped in containers, and the container weight

varies. It is important to obtain an accurate estimate

of mean container weight. Suppose that from long

experience a reliable value for the standard deviation

of flux container weight is determined to be 4 lb.

How large a sample would be required to construct a

95% two-sided confidence interval on the mean that

has a total width of 1 lb?

a = 0.01)?

a = 0.0513.4 × 1000

(in angstroms × 1000)

a = 0.05)?
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4.14. The diameters of aluminum alloy rods produced on

an extrusion machine are known to have a standard

deviation of 0.0001 in. A random sample of 25 rods

has an average diameter of 0.5046 in.

(a) Test the hypothesis that mean rod diameter is

0.5025 in. Assume a two-sided alternative and

use 

(b) Find the P-value for this test.

(c) Construct a 95% two-sided confidence interval

on the mean rod diameter.

4.15. The output voltage of a power supply is assumed to

be normally distributed. Sixteen observations taken

at random on voltage are as follows: 10.35, 9.30,

10.00, 9.96, 11.65, 12.00, 11.25, 9.58, 11.54, 9.95,

10.28, 8.37, 10.44, 9.25, 9.38, and 10.85.

(a) Test the hypothesis that the mean voltage

equals 12 V against a two-sided alternative

using 

(b) Construct a 95% two-sided confidence interval

on 

(c) Test the hypothesis that using 

(d) Construct a 95% two-sided confidence interval

on 

(e) Construct a 95% upper confidence interval on 

(f) Does the assumption of normality seem reason-

able for the output voltage?

4.16. Two machines are used for filling glass bottles with

a soft-drink beverage. The filling processes have

known standard deviations liter and

liter, respectively. A random sample of

bottles from machine 1 and bottles

from machine 2 results in average net contents of

liters and liters.

(a) Test the hypothesis that both machines fill to the

same net contents, using What are

your conclusions?

(b) Find the P-value for this test.

(c) Construct a 95% confidence interval on the dif-

ference in mean fill volume.

4.17. Two quality control technicians measured the sur-

face finish of a metal part, obtaining the data in

Table 4E.1. Assume that the measurements are nor-

mally distributed.

(a) Test the hypothesis that the mean surface finish

measurements made by the two technicians are

equal. Use and assume equal variances.

(b) What are the practical implications of the test in

part (a)? Discuss what practical conclusions you

would draw if the null hypothesis were rejected.

(c) Assuming that the variances are equal, construct

a 95% confidence interval on the mean differ-

ence in surface-finish measurements.

a = 0.05,

a = 0.05.

x2 = 2.07x1 = 2.04

n2 = 20n1 = 25

s2 = 0.015

s1 = 0.010

s.

s.

a = 0.05.s2 = 11

m.

a = 0.05.

a = 0.05.

(d) Test the hypothesis that the variances of the

measurements made by the two technicians are

equal. Use What are the practical

implications if the null hypothesis is rejected?

(e) Construct a 95% confidence interval estimate of

the ratio of the variances of technician measure-

ment error.

(f) Construct a 95% confidence interval on the vari-

ance of measurement error for technician 2.

(g) Does the normality assumption seem reasonable

for the data?

4.18. Suppose that and and

that and are independent. Develop a procedure

for constructing a confidence interval

on assuming that and are unknown

and cannot be assumed equal.

4.19. Two different hardening processes—(1) saltwater

quenching and (2) oil quenching—are used on sam-

ples of a particular type of metal alloy. The results

are shown in Table 4E.2. Assume that hardness is

normally distributed.

(a) Test the hypothesis that the mean hardness for

the saltwater quenching process equals the mean

s2
2s2

1m1 − m2,

100(1 − a)%

x2x1

x2 �N(m2, s2
2),x1�N(m1, s2

1)

a = 0.05.

■ TA B L E  4 E . 1  

Surface Finish Data for Exercise 4.17

Technician 1 Technician 2

1.45 1.54

1.37 1.41

1.21 1.56

1.54 1.37

1.48 1.20

1.29 1.31

1.34 1.27

1.35

■ TA B L E  4 E . 2  

Hardness Data for Exercise 4.19

Saltwater Quench Oil Quench

145 152

150 150

153 147

148 155

141 140

152 146

146 158

154 152

139 151

148 143
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hardness for the oil quenching process. Use

and assume equal variances.

(b) Assuming that the variances and are equal,

construct a 95% confidence interval on the dif-

ference in mean hardness.

(c) Construct a 95% confidence interval on the ratio

Does the assumption made earlier of

equal variances seem reasonable?

(d) Does the assumption of normality seem appro-

priate for these data?

4.20. A random sample of 200 printed circuit boards con-

tains 18 defective or nonconforming units. Estimate

the process fraction nonconforming.

(a) Test the hypothesis that the true fraction noncon-

forming in this process is 0.10. Use 

Find the P-value.

(b) Construct a 90% two-sided confidence interval

on the true fraction nonconforming in the pro-

duction process.

4.21. A random sample of 500 connecting rod pins con-

tains 65 nonconforming units. Estimate the process

fraction nonconforming.

(a) Test the hypothesis that the true fraction defec-

tive in this process is 0.08. Use 

(b) Find the P-value for this test.

(c) Construct a 95% upper confidence interval on

the true process fraction nonconforming.

4.22. Two processes are used to produce forgings used in

an aircraft wing assembly. Of 200 forgings selected

from process 1, 10 do not conform to the strength

specifications, whereas of 300 forgings selected from

process 2, 20 are nonconforming.

(a) Estimate the fraction nonconforming for each

process.

(b) Test the hypothesis that the two processes

have identical fractions nonconforming. Use

(c) Construct a 90% confidence interval on the dif-

ference in fraction nonconforming between the

two processes.

4.23. A new purification unit is installed in a chemical

process. Before its installation, a random sample

yielded the following data about the percentage of

impurity: and After

installation, a random sample resulted in

and 

(a) Can you conclude that the two variances are

equal? Use 

(b) Can you conclude that the new purification

device has reduced the mean percentage of

impurity? Use 

4.24. Two different types of glass bottles are suitable for use

by a soft-drink beverage bottler. The internal pressure

a = 0.05.

a = 0.05.

n2 = 8.x2 = 8.08, s2
2 = 6.18,

n1 = 10.x1 = 9.85, s2
1 = 6.79,

a = 0.05.

a = 0.05.

a = 0.05.

s2
1/s2

2.

s2
2s2

1

a = 0.05

■ TA B L E  4 E . 3  

Measurements Made by the Inspectors for
Exercise 4.25

Inspector Micrometer Caliper Vernier Caliper

1 0.150 0.151

2 0.151 0.150

3 0.151 0.151

4 0.152 0.150

5 0.151 0.151

6 0.150 0.151

7 0.151 0.153

8 0.153 0.155

9 0.152 0.154

10 0.151 0.151

11 0.151 0.150

12 0.151 0.152

strength of the bottle is an important quality charac-

teristic. It is known that psi. From a

random sample of bottles, the mean

pressure strengths are observed to be psi

and psi. The company will not use bottle

design 2 unless its pressure strength exceeds that of

bottle design 1 by at least 5 psi. Based on the sample

data, should they use bottle design 2 if we use

What is the P-value for this test?

4.25. The diameter of a metal rod is measured by 12 inspec-

tors, each using both a micrometer caliper and a

vernier caliper. The results are shown in Table 4E.3. Is

there a difference between the mean measurements

produced by the two types of caliper? Use 

4.26. The cooling system in a nuclear submarine consists

of an assembly pipe through which a coolant is cir-

culated. Specifications require that weld strength

must meet or exceed 150 psi.

(a) Suppose the designers decide to test the hypoth-

esis versus Explain

why this choice of alternative is preferable to

(b) A random sample of 20 welds results in

psi and psi. What conclusions

can you draw about the hypothesis in part (a)?

Use 

4.27. An experiment was conducted to investigate the fill-

ing capability of packaging equipment at a winery

in Newberg, Oregon. Twenty bottles of Pinot Gris

were randomly selected and the fill volume (in ml)

measured. Assume that fill volume has a normal 

distribution. The data are as follows: 753, 751, 752,

753, 753, 753, 752, 753, 754, 754, 752, 751, 752,

750, 753, 755, 753, 756, 751, and 750.

a = 0.05.

s = 11.5x = 153.7

H1: m < 150.

H1: m > 150.H0: m = 150

a = 0.01.

a = 0.05?

x2 = 181.3

x1 = 175.8

n1 = n2 = 16

s1 = s2 = 3.0
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(a) Do the data support the claim that the standard

deviation of fill volume is less than 1 ml? Use

(b) Find a 95% two-sided confidence interval on the

standard deviation of fill volume.

(c) Does it seem reasonable to assume that fill vol-

ume has a normal distribution?

4.28. Suppose we wish to test the hypotheses

where we know that If the true mean is

really 20, what sample size must be used to ensure

that the probability of type II error is no greater than

0.10? Assume that 

4.29. Consider the hypotheses

where is known. Derive a general expression for

determining the sample size for detecting a true

mean of m0 with probability if the type I

error is 

4.30. Sample size allocation. Suppose we are testing the

hypotheses

m2

where and are known. Resources are limited,

and consequently the total sample size 

How should we allocate the N observations between

the two populations to obtain the most powerful test?

4.31. Develop a test for the hypotheses

where and are known.

4.32. Nonconformities occur in glass bottles according to

a Poisson distribution. A random sample of 100 bot-

tles contains a total of 11 nonconformities.

(a) Develop a procedure for testing the hypothesis

that the mean of a Poisson distribution equals a

specified value Hint: Use the normal approx-

imation to the Poisson.

(b) Use the results of part (a) to test the hypothesis

that the mean occurrence rate of nonconformities

is Use 

4.33. An inspector counts the surface-finish defects in

dishwashers. A random sample of five dishwashers

contains three such defects. Is there reason to con-

clude that the mean occurrence rate of surface-finish

a = 0.01.l = 0.15.

l0.

l

s2
2s2

1

H

H
0 1 2

1 1 2

:

:

μ μ
μ μ

=
≠

n1 + n2 = N.

s2
2s2

1

≠H1: m1

H0: m1 = m2

a.

1 − b≠m1

s2

H

H
0 0

1 0

:

:

μ μ
μ μ

=
≠

a = 0.05.

s2 = 9.0.

H

H
0

1

15

15

:

:

μ
μ

=
≠

a = 0.05.

defects per dishwasher exceeds 0.5? Use the results

of part (a) of Exercise 4.32 and assume that

4.34. An in-line tester is used to evaluate the electrical

function of printed circuit boards. This machine

counts the number of defects observed on each

board. A random sample of 1,000 boards contains a

total of 688 defects. Is it reasonable to conclude that

the mean occurrence rate of defects is Use the

results of part (a) of Exercise 4.26 and assume that

4.35. An article in Solid State Technology (May 1987)

describes an experiment to determine the effect of

flow rate on etch uniformity on a silicon wafer

used in integrated-circuit manufacturing. Three flow

rates are tested, and the resulting uniformity (in per-

cent) is observed for six test units at each flow rate.

The data are shown in Table 4E.4.

(a) Does flow rate affect etch uniformity?

Answer this question by using an analysis of

variance with 

(b) Construct a box plot of the etch uniformity data.

Use this plot, together with the analysis of vari-

ance results, to determine which gas flow rate

would be best in terms of etch uniformity (a

small percentage is best).

(c) Plot the residuals versus predicted flow.

Interpret this plot.

(d) Does the normality assumption seem reasonable

in this problem?

4.36. Compare the mean etch uniformity values at each of

the flow rates from Exercise 4.33 with a scaled

t distribution. Does this analysis indicate that there

are differences in mean etch uniformity at the differ-

ent flow rates? Which flows produce different

results?

4.37. An article in the ACI Materials Journal (Vol. 84,

1987, pp. 213–216) describes several experiments

investigating the rodding of concrete to remove

entrapped air. A 3-in.-diameter cylinder was used,

and the number of times this rod was used is the

design variable. The resulting compressive strength

of the concrete specimen is the response. The data

are shown in Table 4E.5.

C2F6

C2F6

a = 0.05.

C2F6

C2F6

a = 0.05.

l = 1?

a = 0.05.

■ TA B L E  4 E . 4  

Uniformity Data for Exercise 4.35

Observations

1 2 3 4 5 6

125 2.7 2.6 4.6 3.2 3.0 3.8

160 4.6 4.9 5.0 4.2 3.6 4.2

200 4.6 2.9 3.4 3.5 4.1 5.1

C2 F6 Flow
(SCCM)
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(a) Is there any difference in compressive strength

due to the rodding level? Answer this question by

using the analysis of variance with 

(b) Construct box plots of compressive strength by

rodding level. Provide a practical interpretation

of these plots.

(c) Construct a normal probability plot of the resid-

uals from this experiment. Does the assumption

of a normal distribution for compressive strength

seem reasonable?

4.38. Compare the mean compressive strength at each rod-

ding level from Exercise 4.37 with a scaled t distribu-

tion. What conclusions would you draw from this plot?

4.39. An aluminum producer manufactures carbon anodes

and bakes them in a ring furnace prior to use in the

smelting operation. The baked density of the anode is

an important quality characteristic, as it may affect

anode life. One of the process engineers suspects that

firing temperature in the ring furnace affects baked

anode density. An experiment was run at four differ-

ent temperature levels, and six anodes were baked at

each temperature level. The data from the experiment

are shown in Table 4E.6.

(a) Does firing temperature in the ring furnace affect

mean baked anode density?

(b) Find the residuals for this experiment and plot

them on a normal probability scale. Comment on

the plot.

(c) What firing temperature would you recommend

using?

4.40. Plot the residuals from Exercise 4.36 against the fir-

ing temperatures. Is there any indication that vari-

ability in baked anode density depends on the firing

temperature? What firing temperature would you

recommend using?

a = 0.05. 4.41. An article in Environmental International (Vol. 18,

No. 4, 1992) describes an experiment in which the

amount of radon released in showers was investi-

gated. Radon-enriched water was used in the experi-

ment, and six different orifice diameters were tested

in showerheads. The data from the experiment are

shown in Table 4E.7.

(a) Does the size of the orifice affect the mean per-

centage of radon released? Use the analysis of

variance and 

(b) Analyze the residuals from this experiment.

4.42. An article in the Journal of the Electrochemical
Society (Vol. 139, No. 2, 1992, pp. 524–532) describes

an experiment to investigate the low-pressure vapor

deposition of polysilicon. The experiment was carried

out in a large-capacity reactor at SEMATECH in

Austin, Texas. The reactor has several wafer positions,

and four of these positions are selected at random. The

response variable is film thickness uniformity. Three

replicates of the experiment were run, and the data are

shown in Table 4E.8.

(a) Is there a difference in the wafer positions? Use

the analysis of variance and 

(b) Estimate the variability due to wafer positions.

(c) Estimate the random error component.

(d) Analyze the residuals from this experiment and

comment on model adequacy.

4.43 The tensile strength of a paper product is related to

the amount of hardwood in the pulp. Ten samples are

produced in the pilot plant, and the data obtained are

shown in Table 4E.9.

(a) Fit a linear regression model relating strength to

percentage hardwood.

a = 0.05.

a = 0.05.

■ TA B L E  4 E . 7  

Radon Data for the Experiment in Exercise 4.41

Orifice Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

■ TA B L E  4 E . 8

Uniformity Data for the Experiment in Exercise 4.42

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

■ TA B L E  4 E . 5  

Compressive Strength Data for Exercise 4.37

Rodding Level Compressive Strength

10 1,530 1,530 1,440

15 1,610 1,650 1,500

20 1,560 1,730 1,530

25 1,500 1,490 1,510

■ TA B L E  4 E . 6  

Baked Density Data for Exercise 4.39

Temperature (ºC) Density

500 41.8 41.9 41.7 41.6 41.5 41.7

525 41.4 41.3 41.7 41.6 41.7 41.8

550 41.2 41.0 41.6 41.9 41.7 41.3

575 41.0 40.6 41.8 41.2 41.9 41.5
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(b) Test the model in part (a) for significance of

regression.

(c) Find a 95% confidence interval on the parame-

ter 

4.44. A plant distills liquid air to produce oxygen, nitrogen,

and argon. The percentage of impurity in the oxygen

is thought to be linearly related to the amount of

impurities in the air as measured by the “pollution

count” in parts per million (ppm). A sample of plant

operating data is shown below:

Purity (%) 93.3 92.0 92.4 91.7 94.0 94.6 93.6

Pollution

count (ppm) 1.10 1.45 1.36 1.59 1.08 0.75 1.20

Purity (%) 93.1 93.2 92.9 92.2 91.3 90.1 91.6 91.9

Pollution

count (ppm) 0.99 0.83 1.22 1.47 1.81 2.03 1.75 1.68

(a) Fit a linear regression model to the data.

(b) Test for significance of regression.

(c) Find a 95% confidence interval on 

4.45. Plot the residuals from Exercise 4.43 and comment

on model adequacy.

4.46. Plot the residuals from Exercise 4.44 and comment

on model adequacy.

4.47. The brake horsepower developed by an automobile

engine on a dynamometer is thought to be a function

of the engine speed in revolutions per minute (rpm),

the road octane number of the fuel, and the engine

compression. An experiment is run in the laboratory

and the data are drawn in Table 4E.10:

(a) Fit a multiple regression model to these data.

(b) Test for significance of regression. What con-

clusions can you draw?

(c) Based on t-tests, do you need all three regressor

variables in the model?

4.48. Analyze the residuals from the regression model in

Exercise 4.47. Comment on model adequacy.

4.49. Table 4E.11 contains the data from a patient satisfac-

tion survey for a group of 25 randomly selected

b1.

b1.

patients at a hospital. In addition to satisfaction, data

were collected on patient age and an index that mea-

sured the severity of illness.

(a) Fit a linear regression model relating satisfaction

to patient age.

(b) Test for significance of regression. 

(c) What portion of the total variability is accounted

for by the regressor variable age?

4.50. Analyze the residuals from the regression model on

the patient satisfaction data from Exercise 4.49.

Comment on the adequacy of the regression model.

4.51. Reconsider the patient satisfaction data in Table 4E.11.

Fit a multiple regression model using both patient

age and severity as the regressors. 

(a) Test for significance of regression.

(b) Test for the individual contribution of the two

regressors. Are both regressor variables needed

in the model?

(c) Has adding severity to the model improved the

quality of the model fit? Explain your answer.

4.52. Analyze the residuals from the multiple regression

model on the patient satisfaction data from Exercise

4.51. Comment on the adequacy of the regression

model.

4.53. Consider the Minitab output below.

■ TA B L E  4 E . 1 0

Automobile Engine Data for Exercise 4.47

Brake Road Octane
Horsepower rpm Number Compression

225 2,000 90 100

212 1,800 94 95

229 2,400 88 110

222 1,900 91 96

219 1,600 86 100

278 2,500 96 110

246 3,000 94 98

237 3,200 90 100

233 2,800 88 105

224 3,400 86 97

223 1,800 90 100

230 2,500 89 104

■ TA B L E  4 E . 9

Tensile Strength Data for Exercise 4.43

Percentage Percentage
Strength Hardwood Strength Hardwood

160 10 181 20

171 15 188 25

175 15 193 25

182 20 195 28

184 20 200 30

One-Sample Z

Test of mu = 30 vs not = 30
The assumed standard deviation = 1.3

N Mean SE Mean   95% CI Z P
15 31.400 0.336 (30.742, 32.058) ?  ?
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Test and CI for One Proportion

Test of p = 0.3 vs p not = 0.3

Sample X N Sample p 95% CI Z-Value P-Value
1 98 300 0.326667 (0.273596, 0.379737) 1.01 0.313

upper bounds on the P-value for the following

observed values of the test statistic:

(a) (b)

(c) (d)

4.55. Suppose that you are testing versus

m0 with a n1 = n2 = 10. Use the table of the

t distribution percentage points of find lower and

upper bounds on the P-value of the following

observed values of the test statistic:

(a) (b)

(c) (d)

4.56. Consider the Minitab output below.

t0 = 1.89t0 = 2.98

t0 = −2.41t0 = 2.48

≠H1: m
H0: m = m2

t0 = 1.55t0 = 1.98

t0 = 3.41t0 = 2.30

One-Sample T

Test of mu = 95 vs not = 95

N Mean StDev SE Mean 95% CI T P

20 94.580 ? 0.671 (93.176, 95.984) ? 0.539

(a) Fill in the missing values. Can the null hypothe-

sis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or two-sided test?

(c) How many degrees of freedom are there on the

t-test statistic?

(d) Use the output and a normal table to find a 95%

CI on the mean.

(e) Suppose that the hypotheses had been

versus What conclusions

would you have drawn?

4.57. Consider the Minitab output shown below.

H1: m > 90.H1: m = 90

■ TA B L E  4 E . 1 1  

Patient Satisfaction Data

Observation Age (x1) Severity (x2) Satisfaction (y)

1 55 50 68

2 46 24 77

3 30 46 96

4 35 48 80

5 59 58 43

6 61 60 44

7 74 65 26

8 38 42 88

9 27 42 75

10 51 50 57

11 53 38 56

12 41 30 88

13 37 31 88

14 24 34 102

15 42 30 88

16 50 48 70

17 58 61 52

18 60 71 43

19 62 62 46

20 68 38 56

21 70 41 59

22 79 66 26

23 63 31 52

24 39 42 83

25 49 40 75

(a) Fill in the missing values. What conclusions

would you draw?

(b) Is this a one-sided or two-sided test?

(c) Use the output and a normal table to find a 95%

CI on the mean.

(d) How was the SE mean calculated?

(e) What is the P-value if the alternative hypothesis

is 

4.54. Suppose that you are testing versus

with a n1 = n2 = 15. Use the table of the

t distribution percentage points to find lower and

H1: m > m2

H0: m1 = m2

H1: m > 30?

(a) Is this a one-sided or two-sided test?

(b) Can the null hypothesis be rejected at the 0.05

level?

(c) Construct an approximate 90% CI for p.

(d) What is the P-value if the alternative hypothesis

is 

4.58. Consider the Minitab output shown below.

(a) Fill in the missing values.

(b) Can the null hypothesis be rejected at the 0.05

level? Why?

H1: p > 0.3?
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(c) Use the output and the t-table to find a 99% CI

on the difference in means.

(d) Suppose that the alternative hypothesis was

versus What is the H1: m1 > m2.H1: m1 = m2

P-value? What conclusions would you

draw?

4.59. Consider the Minitab output below.

upper bounds on the P-value for the following

observed values of the test statistic:

(a) (b)

(c) (d)

4.61. Consider the Minitab ANOVA output below. Fill in

the blanks. You may give bounds on the P-value.

What conclusions can you draw based on the infor-

mation in this display?

F0 = 1.90F0 = 5.98

F0 = 3.75F0 = 2.50

(a) Fill in the missing values.

(b) Is this a one-sided or two-sided test?

(c) What is the P-value if the alternative hypothesis

is versus 

(d) Construct an approximate 90% CI for the differ-

ence in the two proportions.

4.60. Consider a one-way or single-factor ANOVA with

four treatments and five replications. Use the table of

the F distribution percentage points to find lower and

H1: p1 > p2?H1: p1 = p2

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
1 15 50.20 1.75 0.45
2 15 51.98 2.15 0.56

Difference = mu (1) − mu (2) 
Estimate for difference: ?
95% CI for difference: (−3.246, −0.314)
T-Test of difference = 0 (vs not =): T-Value = −2.49  P-Value = 0.019  DF = ?
Both use Pooled StDev = 1.9602

Test and CI for Two Proportions

Sample X N Sample p
1 185 300 0.616667
2 301 ? 0.602000

Difference = p (1) - p (2)
Estimate for difference: ?
95% CI for difference:  (-0.0551024, 0.0844357)
Test for difference = 0 (vs not = 0): Z = ? P-value = 0.680

One-Way ANOVA

Source DF SS MS F P
Factor 3 54.91 ? ? ?
Error ? 19.77 ?
Total 15 74.67

S = 1.283     R-Sq = 73.53% R-Sq(adj) = 66.91%
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It is impossible to inspect or test quality into a product; the product must be
built right the first time. This implies that the manufacturing process must
be stable and that all individuals involved with the process (including oper-
ators, engineers, quality-assurance personnel, and management) must con-
tinuously seek to improve process performance and reduce variability in key
parameters. On-line statistical process control (SPC) is a primary tool for
achieving this objective. Control charts are the simplest type of on-line sta-
tistical process-control procedure. Chapters 5 through 8 present many of the
basic SPC techniques, concentrating primarily on the type of control chart
proposed by Walter A. Shewhart and called the Shewhart control chart.

Chapter 5 is an introduction to the general methodology of statistical
process control. This chapter describes several fundamental SPC problem-
solving tools, including an introduction to the Shewhart control chart. A dis-
cussion of how to implement SPC is given, along with some comments on
deploying SPC in nonmanufacturing environments. Chapter 6 introduces
Shewhart control charts for measurement data, sometimes called variables
control charts. The and R control charts are discussed in detail, along
with several important variations of these charts. Chapter 7 presents
Shewhart control charts for attribute data, such as a fraction defective or
nonconforming, nonconformities (defects), or nonconformities per unit of

x

PART 3PART 3
Basic Methods 

of Statistical
Process Control
and Capability
Analysis

Basic Methods 
of Statistical
Process Control
and Capability
Analysis
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product. Chapter 8 explores process capability analysis—that is, how
control charts and other statistical techniques can be used to estimate the
natural capability of a process and to determine how it will perform relative
to specifications on the product. Some aspects of setting specifications and
tolerances, including the tolerance “stack-up” problem, are also presented.

Throughout this section we stress the three fundamental uses of a control
chart:

1. Reduction of process variability
2. Monitoring and surveillance of a process
3. Estimation of product or process parameters

186 Part 3 ■ Basic Methods of Statistical Process Control and Capability Analysis
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This chapter has three objectives. The first is to present the basic statistical process control

(SPC) problem-solving tools, called the magnificent seven, and to illustrate how these tools

form a cohesive, practical framework for quality improvement. These tools form an impor-

tant basic approach to both reducing variability and monitoring the performance of a

process, and are widely used in both the Analyze and Control steps of DMAIC. The second

objective is to describe the statistical basis of the Shewhart control chart. The reader will see

how decisions about sample size, sampling interval, and placement of control limits affect

the performance of a control chart. Other key concepts include the idea of rational sub-

groups, interpretation of control chart signals and patterns, and the average run length as
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188 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

a measure of control chart performance. The third objective is to discuss and illustrate some

practical issues in the implementation of SPC.

After careful study of this chapter, you should be able to do the following:

1. Understand chance and assignable causes of variability in a process

2. Explain the statistical basis of the Shewhart control chart, including choice of

sample size, control limits, and sampling interval

3. Explain the rational subgroup concept

4. Understand the basic tools of SPC: the histogram or stem-and-leaf plot, the

check sheet, the Pareto chart, the cause-and-effect diagram, the defect concentra-

tion diagram, the scatter diagram, and the control chart

5. Explain phase I and phase II use of control charts

6. Explain how average run length is used as a performance measure for a con-

trol chart

7. Explain how sensitizing rules and pattern recognition are used in conjunction

with control charts

5.1 Introduction

If a product is to meet or exceed customer expectations, generally it should be produced by a

process that is stable or repeatable. More precisely, the process must be capable of operating

with little variability around the target or nominal dimensions of the product’s quality char-

acteristics. Statistical process control (SPC) is a powerful collection of problem-solving

tools useful in achieving process stability and improving capability through the reduction of

variability.

SPC is one of the greatest technological developments of the twentieth century because

it is based on sound underlying principles, is easy to use, has significant impact, and can be

applied to any process. Its seven major tools are these:

1. Histogram or stem-and-leaf plot

2. Check sheet

3. Pareto chart

4. Cause-and-effect diagram

5. Defect concentration diagram

6. Scatter diagram

7. Control chart

Although these tools—often called the magnificent seven—are an important part of SPC,

they comprise only its technical aspects. The proper deployment of SPC helps create an envi-

ronment in which all individuals in an organization seek continuous improvement in quality

and productivity. This environment is best developed when management becomes involved in

the process. Once this environment is established, routine application of the magnificent

seven becomes part of the usual manner of doing business, and the organization is well on its

way to achieving its business improvement objectives.

Of the seven tools, the Shewhart control chart is probably the most technically

sophisticated. It was developed in the 1920s by Walter A. Shewhart of the Bell Telephone

Laboratories. To understand the statistical concepts that form the basis of SPC, we must first

describe Shewhart’s theory of variability.
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5.2 Chance and Assignable Causes of Quality Variation

In any production process, regardless of how well designed or carefully maintained it is, a 

certain amount of inherent or natural variability will always exist. This natural variability or

“background noise” is the cumulative effect of many small, essentially unavoidable causes. In

the framework of statistical quality control, this natural variability is often called a “stable

system of chance causes.” A process that is operating with only chance causes of variation
present is said to be in statistical control. In other words, the chance causes are an inherent

part of the process.

Other kinds of variability may occasionally be present in the output of a process. This

variability in key quality characteristics usually arises from three sources: improperly

adjusted or controlled machines, operator errors, or defective raw material. Such variability is

generally large when compared to the background noise, and it usually represents an unac-

ceptable level of process performance. We refer to these sources of variability that are not part

of the chance cause pattern as assignable causes of variation. A process that is operating in

the presence of assignable causes is said to be an out-of-control process.1

These chance and assignable causes of variation are illustrated in Figure 5.1. Until time

t1 the process shown in this figure is in control; that is, only chance causes of variation are

present. As a result, both the mean and standard deviation of the process are at their in-

control values (say, m0 and s0). At time t1, an assignable cause occurs. As shown in Figure 5.1,

the effect of this assignable cause is to shift the process mean to a new value m1 > m0. At 

time t2, another assignable cause occurs, resulting in m = m0, but now the process standard

deviation has shifted to a larger value s1 > s0. At time t3 there is another assignable cause pre-

sent, resulting in both the process mean and standard deviation taking on out-of-control 

values. From time t1 forward, the presence of assignable causes has resulted in an out-of-control

process.

Processes will often operate in the in-control state for relatively long periods of time.

However, no process is truly stable forever, and, eventually, assignable causes will occur,

seemingly at random, resulting in a shift to an out-of-control state where a larger proportion

of the process output does not conform to requirements. For example, note from Figure 5.1

that when the process is in control, most of the production will fall between the lower and

upper specification limits (LSL and USL, respectively). When the process is out of control, a

higher proportion of the process lies outside of these specifications.

A major objective of statistical process control is to quickly detect the occurrence of

assignable causes of process shifts so that investigation of the process and corrective action

may be undertaken before many nonconforming units are manufactured. The control chart
is an on-line process-monitoring technique widely used for this purpose. Control charts may

also be used to estimate the parameters of a production process, and, through this informa-

tion, to determine process capability. The control chart may also provide information useful

in improving the process. Finally, remember that the eventual goal of statistical process con-

trol is the elimination of variability in the process. It may not be possible to completely

eliminate variability, but the control chart is an effective tool in reducing variability as much

as possible.

We now present the statistical concepts that form the basis of control charts.

Chapters 6 and 7 develop the details of construction and use of the standard types of con-

trol charts.

5.2 Chance and Assignable Causes of Quality Variation 189

1The terminology chance and assignable causes was developed by Shewhart. Today, some writers use the termi-

nology common cause instead of chance cause and special cause instead of assignable cause.
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190 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

5.3 Statistical Basis of the Control Chart

5.3.1 Basic Principles

A typical control chart is shown in Figure 5.2. The control chart is a graphical display of

a quality characteristic that has been measured or computed from a sample versus the sam-

ple number or time. The chart contains a center line that represents the average value of

the quality characteristic corresponding to the in-control state. (That is, only chance

causes are present.) Two other horizontal lines, called the upper control limit (UCL) and

the lower control limit (LCL), are also shown on the chart. These control limits are cho-

sen so that if the process is in control, nearly all of the sample points will fall between

them. As long as the points plot within the control limits, the process is assumed to be in

control, and no action is necessary. However, a point that plots outside of the control limits

is interpreted as evidence that the process is out of control, and investigation and correc-

tive action are required to find and eliminate the assignable cause or causes responsible

for this behavior. It is customary to connect the sample points on the control chart with

LSL μ0 USL

Process quality characteristic, x

σ0

σ0

σ0

σ1 >   0σ

σ1 >   0σ

t1

t2

t3

Time, t

Only chance causes of
variation present;
process is in
control.

Assignable cause one
is present; process is
out of control.

Assignable cause two
is present; process is
out of control.

Assignable cause three
is present; process is
out of control.

μ2 <   0μ

μ1 >   0μ

■ F I G U R E 5 . 2 A typical control chart.

■ F I G U R E  5 . 1 Chance and assignable causes of variation.
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straight-line segments, so that it is easier to visualize how the sequence of points has

evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-

random manner, then this could be an indication that the process is out of control. For exam-

ple, if 18 of the last 20 points plotted above the center line but below the upper control limit

and only two of these points plotted below the center line but above the lower control limit,

we would be very suspicious that something was wrong. If the process is in control, all the

plotted points should have an essentially random pattern. Methods for looking for sequences

or nonrandom patterns can be applied to control charts as an aid in detecting out-of-control

conditions. Usually, there is a reason why a particular nonrandom pattern appears on a con-

trol chart, and if it can be found and eliminated, process performance can be improved. This

topic is discussed further in Sections 5.3.5 and 6.2.4.

There is a close connection between control charts and hypothesis testing. To illustrate

this connection, suppose that the vertical axis in Figure 5.2 is the sample average . Now, if

the current value of plots between the control limits, we conclude that the process mean is

in control; that is, it is equal to the value m0. On the other hand, if exceeds either control

limit, we conclude that the process mean is out of control; that is, it is equal to some value

. In a sense, then, the control chart is a test of the hypothesis that the process is in a

state of statistical control. A point plotting within the control limits is equivalent to failing to

reject the hypothesis of statistical control, and a point plotting outside the control limits is

equivalent to rejecting the hypothesis of statistical control.

The hypothesis testing framework is useful in many ways, but there are some differences

in viewpoint between control charts and hypothesis tests. For example, when testing statistical

hypotheses, we usually check the validity of assumptions, whereas control charts are used to

detect departures from an assumed state of statistical control. In general, we should not worry

too much about assumptions such as the form of the distribution or independence when we are

applying control charts to a process to reduce variability and achieve statistical control.

Furthermore, an assignable cause can result in many different types of shifts in the process

parameters. For example, the mean could shift instantaneously to a new value and remain there

(this is sometimes called a sustained shift); or it could shift abruptly; but the assignable cause

could be short-lived and the mean could then return to its nominal or in-control value; or the

assignable cause could result in a steady drift or trend in the value of the mean. Only the sus-

tained shift fits nicely within the usual statistical hypothesis testing model.

One place where the hypothesis testing framework is useful is in analyzing the perfor-
mance of a control chart. For example, we may think of the probability of type I error of the

control chart (concluding the process is out of control when it is really in control) and the

probability of type II error of the control chart (concluding the process is in control when it

is really out of control). It is occasionally helpful to use the operating-characteristic curve of

a control chart to display its probability of type II error. This would be an indication of the

ability of the control chart to detect process shifts of different magnitudes. This can be of

value in determining which type of control chart to apply in certain situations. For more dis-

cussion of hypothesis testing, the role of statistical theory, and control charts, see Woodall

(2000).

To illustrate the preceding ideas, we give an example of a control chart. In semiconduc-

tor manufacturing, an important fabrication step is photolithography, in which a light-sensitive

photoresist material is applied to the silicon wafer, the circuit pattern is exposed on the resist

typically through the use of high-intensity UV light, and the unwanted resist material is

removed through a developing process. After the resist pattern is defined, the underlying

material is removed by either wet chemical or plasma etching. It is fairly typical to follow

development with a hard-bake process to increase resist adherence and etch resistance. An

important quality characteristic in hard bake is the flow width of the resist, a measure of how

m1 � m0

x
x

x
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192 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

much it expands due to the baking process. Suppose that flow width can be controlled at a

mean of 1.5 microns, and it is known that the standard deviation of flow width is 0.15 microns.

A control chart for the average flow width is shown in Figure 5.3. Every hour, a sample of

five wafers is taken, the average flow width computed, and plotted on the chart. Because

this control chart utilizes the sample average to monitor the process mean, it is usually

called an control chart. Note that all of the plotted points fall inside the control limits, so the

chart indicates that the process is considered to be in statistical control.

To assist in understanding the statistical basis of this control chart, consider how the

control limits were determined. The process mean is 1.5 microns, and the process standard

deviation is s = 0.15 microns. Now if samples of size n = 5 are taken, the standard deviation

of the sample average is

Therefore, if the process is in control with a mean flow width of 1.5 microns, then by using

the central limit theorem to assume that is approximately normally distributed, we would

expect 100(1 − a )% of the sample means to fall between 1.5 + Za/2(0.0671) and 1.5 − Za/2

(0.0671). We will arbitrarily choose the constant Za/2 to be 3, so that the upper and lower con-

trol limits become

and

as shown on the control chart. These are typically called three-sigma control limits.2 The

width of the control limits is inversely proportional to the sample size n for a given multiple

of sigma. Note that choosing the control limits is equivalent to setting up the critical region

for testing the hypothesis

where s = 0.15 is known. Essentially, the control chart tests this hypothesis repeatedly at dif-

ferent points in time. The situation is illustrated graphically in Figure 5.4.
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We may give a general model for a control chart. Let w be a sample statistic that mea-

sures some quality characteristic of interest, and suppose that the mean of w is mw and the

standard deviation of w is sw. Then the center line, the upper control limit, and the lower con-

trol limit become

(5.1)

where L is the “distance” of the control limits from the center line, expressed in standard devia-

tion units. This general theory of control charts was first proposed by Walter A. Shewhart, and

control charts developed according to these principles are often called Shewhart control charts.
The control chart is a device for describing in a precise manner exactly what is meant

by statistical control; as such, it may be used in a variety of ways. In many applications, it is

used for on-line process monitoring or surveillance. That is, sample data are collected and

used to construct the control chart, and if the sample values of (say) fall within the control

limits and do not exhibit any systematic pattern, we say the process is in control at the level

indicated by the chart. Note that we may be interested here in determining both whether the

past data came from a process that was in control and whether future samples from this

process indicate statistical control.

The most important use of a control chart is to improve the process. We have found

that, generally,

1. Most processes do not operate in a state of statistical control, and

2. Consequently, the routine and attentive use of control charts will assist in identifying

assignable causes. If these causes can be eliminated from the process, variability will

be reduced and the process will be improved.

This process improvement activity using the control chart is illustrated in Figure 5.5. Note that

3. The control chart will only detect assignable causes. Management, operator, and engi-

neering action will usually be necessary to eliminate the assignable causes.

x
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LCL
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μ
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L
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■ F I G U R E  5 . 4 How the control chart works.
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194 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

In identifying and eliminating assignable causes, it is important to find the root cause of the

problem and to attack it. A cosmetic solution will not result in any real, long-term process

improvement. Developing an effective system for corrective action is an essential component

of an effective SPC implementation.

A very important part of the corrective action process associated with control chart

usage is the out-of-control-action plan (OCAP). An OCAP is a flowchart or text-based

description of the sequence of activities that must take place following the occurrence of an

activating event. These are usually out-of-control signals from the control chart. The OCAP

consists of checkpoints, which are potential assignable causes, and terminators, which are

actions taken to resolve the out-of-control condition, preferably by eliminating the assignable

cause. It is very important that the OCAP specify as complete a set as possible of checkpoints

and terminators, and that these be arranged in an order that facilitates process diagnostic

activities. Often, analysis of prior failure modes of the process and/or product can be helpful

in designing this aspect of the OCAP. Furthermore, an OCAP is a living document in the sense

that it will be modified over time as more knowledge and understanding of the process are

gained. Consequently, when a control chart is introduced, an initial OCAP should accompany

it. Control charts without an OCAP are not likely to be useful as a process improvement tool.

The OCAP for the hard-bake process is shown in Figure 5.6. This process has two con-

trollable variables: temperature and time. In this process, the mean flow width is monitored

with an control chart, and the process variability is monitored with a control chart for the

range, or an R chart. Notice that if the R chart exhibits an out-of-control signal, operating per-

sonnel are directed to contact process engineering immediately. If the control chart exhibits

an out-of-control signal, operators are directed to check process settings and calibration and

then make adjustments to temperature in an effort to bring the process back into a state of con-

trol. If these adjustments are unsuccessful, process engineering personnel are contacted.

We may also use the control chart as an estimating device. That is, from a control chart

that exhibits statistical control, we may estimate certain process parameters, such as the mean,

standard deviation, fraction nonconforming or fallout, and so forth. These estimates may then

be used to determine the capability of the process to produce acceptable products. Such

process-capability studies have considerable impact on many management decision prob-

lems that occur over the product cycle, including make or buy decisions, plant and process

improvements that reduce process variability, and contractual agreements with customers or

vendors regarding product quality.

Control charts may be classified into two general types. If the quality characteristic can

be measured and expressed as a number on some continuous scale of measurement, it is usu-

ally called a variable. In such cases, it is convenient to describe the quality characteristic with

a measure of central tendency and a measure of variability. Control charts for central tendency
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and variability are collectively called variables control charts. The chart is the most widely

used chart for controlling central tendency, whereas charts based on either the sample range

or the sample standard deviation are used to control process variability. Control charts for

variables are discussed in Chapter 6. Many quality characteristics are not measured on a con-

tinuous scale or even a quantitative scale. In these cases, we may judge each unit of product

as either conforming or nonconforming on the basis of whether or not it possesses certain

attributes, or we may count the number of nonconformities (defects) appearing on a unit of

product. Control charts for such quality characteristics are called attributes control charts
and are discussed in Chapter 7.

An important factor in control chart use is the design of the control chart. By this we

mean the selection of the sample size, control limits, and frequency of sampling. For exam-

ple, in the chart of Figure 5.3, we specified a sample size of five measurements, three-sigma

control limits, and the sampling frequency to be every hour. In most quality-control problems,

it is customary to design the control chart using primarily statistical considerations. For exam-

ple, we know that increasing the sample size will decrease the probability of type II error, thus

enhancing the chart’s ability to detect an out-of-control state, and so forth. The use of statis-

tical criteria such as these along with industrial experience have led to general guidelines and

x

x
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196 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

procedures for designing control charts. These procedures usually consider cost factors only

in an implicit manner. Recently, however, we have begun to examine control chart design

from an economic point of view, considering explicitly the cost of sampling, losses from

allowing defective product to be produced, and the costs of investigating out-of-control sig-

nals that are really false alarms.

Another important consideration in control chart usage is the type of variability exhib-

ited by the process. Figure 5.7 presents data from three different processes. Figures 5.7a and

5.7b illustrate stationary behavior. By this we mean that the process data vary around a fixed

mean in a stable or predictable manner. This is the type of behavior that Shewhart implied was

produced by an in-control process.
Even a cursory examination of Figures 5.7a and 5.7b reveals some important differ-

ences. The data in Figure 5.7a are uncorrelated; that is, the observations give the appearance

of having been drawn at random from a stable population, perhaps a normal distribution. This

type of data is referred to by time series analysts as white noise. (Time-series analysis is a

field of statistics devoted exclusively to studying and modeling time-oriented data.) In this

type of process, the order in which the data occur does not tell us much that is useful to analyze

the process. In other words, the past values of the data are of no help in predicting any of the

future values.

Figure 5.7b illustrates stationary but autocorrelated process data. Notice that succes-

sive observations in these data are dependent; that is, a value above the mean tends to be fol-

lowed by another value above the mean, whereas a value below the mean is usually followed

by another such value. This produces a data series that has a tendency to move in moderately

long “runs” on either side of the mean.

Figure 5.7c illustrates nonstationary variation. This type of process data occurs fre-

quently in the chemical and process industries. Note that the process is very unstable in that

it drifts or “wanders about” without any sense of a stable or fixed mean. In many industrial

settings, we stabilize this type of behavior by using engineering process control (such as

feedback control). This approach to process control is required when there are factors that

affect the process that cannot be stabilized, such as environmental variables or properties of

raw materials. When the control scheme is effective, the process output will not look like

Figure 5.7c, but will resemble either Figure 5.7a or 5.7b.
Shewhart control charts are most effective when the in-control process data look like

Figure 5.7a. By this we mean that the charts can be designed so that their performance is pre-

dictable and reasonable to the user, and that they are effective in reliably detecting out-of-control

conditions. Most of our discussion of control charts in this chapter and in Chapters 6 and 7

will assume that the in-control process data are stationary and uncorrelated.

With some modifications, Shewhart control charts and other types of control charts can

be applied to autocorrelated data. We discuss this in more detail in Part IV of the book. We

also discuss feedback control and the use of SPC in systems where feedback control is

employed in Part IV.
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Control charts have had a long history of use in U.S. industries and in many offshore

industries as well. There are at least five reasons for their popularity.

1. Control charts are a proven technique for improving productivity. A successful

control chart program will reduce scrap and rework, which are the primary productiv-

ity killers in any operation. If you reduce scrap and rework, then productivity increases,

cost decreases, and production capacity (measured in the number of good parts per

hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the

process in control, which is consistent with the “Do it right the first time” philosophy. It

is never cheaper to sort out “good” units from “bad” units later on than it is to build it

right initially. If you do not have effective process control, you are paying someone to

make a nonconforming product.

3. Control charts prevent unnecessary process adjustment. A control chart can dis-

tinguish between background noise and abnormal variation; no other device including a

human operator is as effective in making this distinction. If process operators adjust the

process based on periodic tests unrelated to a control chart program, they will often over-

react to the background noise and make unneeded adjustments. Such unnecessary adjust-

ments can actually result in a deterioration of process performance. In other words, the

control chart is consistent with the “If it isn’t broken, don’t fix it” philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points on

the control chart will contain information of diagnostic value to an experienced opera-

tor or engineer. This information allows the implementation of a change in the process

that improves its performance.

5. Control charts provide information about process capability. The control chart

provides information about the value of important process parameters and their stabil-

ity over time. This allows an estimate of process capability to be made. This informa-

tion is of tremendous use to product and process designers.

Control charts are among the most important management control tools; they are as

important as cost controls and material controls. Modern computer technology has made it

easy to implement control charts in any type of process, as data collection and analysis can

be performed on a microcomputer or a local area network terminal in real time on-line at the

work center. Some additional guidelines for implementing a control chart program are given

at the end of Chapter 7.

5.3.2 Choice of Control Limits

Specifying the control limits is one of the critical decisions that must be made in designing

a control chart. By moving the control limits farther from the center line, we decrease the risk

of a type I error—that is, the risk of a point falling beyond the control limits, indicating an

out-of-control condition when no assignable cause is present. However, widening the control

limits will also increase the risk of a type II error—that is, the risk of a point falling between

the control limits when the process is really out of control. If we move the control limits

closer to the center line, the opposite effect is obtained: The risk of type I error is increased,

while the risk of type II error is decreased.

For the chart shown in Figure 5.3, where three-sigma control limits were used, if we

assume that the flow width is normally distributed, we find from the standard normal table

that the probability of type I error is 0.0027. That is, an incorrect out-of-control signal or false

alarm will be generated in only 27 out of 10,000 points. Furthermore, the probability that a

point taken when the process is in control will exceed the three-sigma limits in one direction

x
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198 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

only is 0.00135. Instead of specifying the control limit as a multiple of the standard deviation

of , we could have directly chosen the type I error probability and calculated the corre-

sponding control limit. For example, if we specified a 0.001 type I error probability in one

direction, then the appropriate multiple of the standard deviation would be 3.09. The control

limits for the chart would then be

These control limits are usually called 0.001 probability limits, although they should logi-

cally be called 0.002 probability limits, because the total risk of making a type I error is 0.002.

There is only a slight difference between the two limits.

Regardless of the distribution of the quality characteristic, it is standard practice in the

United States to determine the control limits as a multiple of the standard deviation of the sta-

tistic plotted on the chart. The multiple usually chosen is three; hence, three-sigma limits are

customarily employed on control charts, regardless of the type of chart employed. In the

United Kingdom and parts of Western Europe, probability limits are often used, with the stan-

dard probability level in each direction being 0.001.

We typically justify the use of three-sigma control limits on the basis that they give

good results in practice. Moreover, in many cases, the true distribution of the quality charac-

teristic is not known well enough to compute exact probability limits. If the distribution of the

quality characteristic is reasonably approximated by the normal distribution, then there will

be little difference between three-sigma and 0.001 probability limits.

Two Limits on Control Charts. Some analysts suggest using two sets of limits on

control charts, such as those shown in Figure 5.8. The outer limits—say, at three-sigma—are

the usual action limits; that is, when a point plots outside of this limit, a search for an

assignable cause is made and corrective action is taken if necessary. The inner limits, usu-

ally at two-sigma, are called warning limits. In Figure 5.8, we have shown the three-sigma

upper and lower control limits for the chart for flow width. The upper and lower warning

limits are located at

When probability limits are used, the action limits are generally 0.001 limits and the warning

limits are 0.025 limits.

If one or more points fall between the warning limits and the control limits, or very

close to the warning limit, we should be suspicious that the process may not be operating

properly. One possible action to take when this occurs is to increase the sampling frequency

and/or the sample size so that more information about the process can be obtained quickly.

Process control schemes that change the sample size and/or the sampling frequency depend-

ing on the position of the current sample value are called adaptive or variable sampling
interval (or variable sample size, etc.) schemes. These techniques have been used in prac-

tice for many years and have recently been studied extensively by researchers in the field. We

will discuss this technique again in Part IV of this book.

The use of warning limits can increase the sensitivity of the control chart; that is, it can

allow the control chart to signal a shift in the process more quickly. One of the disadvantages

of warning limits is that they may be confusing to operating personnel. This is not usually a

serious objection, however, and many practitioners use them routinely on control charts. A

more serious objection is that although the use of warning limits can improve the sensitivity

of the chart, they also result in an increased risk of false alarms. We will discuss the use of

sensitizing rules (such as warning limits) more thoroughly in Section 5.3.6.
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5.3.3 Sample Size and Sampling Frequency

In designing a control chart, we must specify both the sample size and the frequency of sam-
pling. In general, larger samples will make it easier to detect small shifts in the process. This

is demonstrated in Figure 5.9, where we have plotted the operating-characteristic curve for

the chart in Figure 5.3 for various sample sizes. Note that the probability of detecting a shift

from 1.500 microns to 1.650 microns (for example) increases as the sample size n increases.

When choosing the sample size, we must keep in mind the size of the shift that we are trying

to detect. If the process shift is relatively large, then we use smaller sample sizes than those

that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the

point of view of detecting shifts would be to take large samples very frequently; however, this is

usually not economically feasible. The general problem is one of allocating sampling effort. That

is, either we take small samples at short intervals or larger samples at longer intervals. Current

industry practice tends to favor smaller, more frequent samples, particularly in high-volume man-

ufacturing processes, or where a great many types of assignable causes can occur. Furthermore, as

automatic sensing and measurement technology develops, it is becoming possible to greatly

increase sampling frequencies. Ultimately, every unit can be tested as it is manufactured.

Automatic measurement systems and microcomputers with SPC software applied at the work cen-

ter for real-time, on-line process control is an effective way to apply statistical process control.

Another way to evaluate the decisions regarding sample size and sampling frequency is

through the average run length (ARL) of the control chart. Essentially, the ARL is the aver-

age number of points that must be plotted before a point indicates an out-of-control condition.

If the process observations are uncorrelated, then for any Shewhart control chart, the ARL can

be calculated easily from

(5.2)

where p is the probability that any point exceeds the control limits. This equation can be used

to evaluate the performance of the control chart.

To illustrate, for the chart with three-sigma limits, p = 0.0027 is the probability that a

single point falls outside the limits when the process is in control. Therefore, the average run

length of the chart when the process is in control (called ARL0) is

ARL0

1 1

0 0027
370= = =

p .

x

x

ARL = 1

p

x

5.3 Statistical Basis of the Control Chart 199

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Sample number

LCL = 1.2487
LWL = 1.3658

Center line = 1.5

UCL = 1.7013
UWL = 1.6342

2  
x

σ 3  
x

σ

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.500 1.575 1.650 1.725 1.800 1.875

Process mean (microns)

P
ro

ba
bi

lit
y 

of
 x

 f
al

lin
g

be
tw

ee
n 

th
e 

co
nt

ro
l l

im
it

s

n = 10

n = 5

n = 15

■ F I G U R E  5 . 8 An chart

with two-sigma and three-sigma

warning limits.

x ■ F I G U R E  5 . 9 Operating-characteristic curves

for an chart.x

c05MethodsAndPhilosophyOfStatisticalProcessControl.qxd  3/24/12  5:42 PM  Page 199



200 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

That is, even if the process remains in control, an out-of-control signal will be generated every

370 samples, on the average.

The use of average run lengths to describe the performance of control charts has been

subjected to criticism in recent years. The reasons for this arise because the distribution of run

length for a Shewhart control chart is a geometric distribution (refer to Section 3.2.4).

Consequently, there are two concerns with ARL: (1) the standard deviation of the run length

is very large, and (2) the geometric distribution is very skewed, so the mean of the distribu-

tion (the ARL) is not necessarily a very typical value of the run length.

For example, consider the Shewhart control chart with three-sigma limits. When the

process is in control, we have noted that p = 0.0027 and the in-control ARL0 is ARL0 =
1/p = 1/0.0027 = 370. This is the mean of the geometric distribution. Now the standard devi-

ation of the geometric distribution is

That is, the standard deviation of the geometric distribution in this case is approximately equal

to its mean. As a result, the actual ARL0 observed in practice for the Shewhart control chart

will likely vary considerably. Furthermore, for the geometric distribution with p = 0.0027, the

tenth and fiftieth percentiles of the distribution are 38 and 256, respectively. This means that

approximately 10% of the time the in-control run length will be less than or equal to 38 sam-

ples and 50% of the time it will be less than or equal to 256 samples. This occurs because the

geometric distribution with p = 0.0027 is quite skewed to the right. For this reason, some ana-

lysts like to report percentiles of the run-length distribution instead of just the ARL.

It is also occasionally convenient to express the performance of the control chart in

terms of its average time to signal (ATS). If samples are taken at fixed intervals of time that

are h hours apart, then

(5.3)

Consider the hard-bake process discussed earlier, and suppose we are sampling every hour.

Equation 5.3 indicates that we will have a false alarm about every 370 hours on the average.

Now consider how the control chart performs in detecting shifts in the mean. Suppose we

are using a sample size of n = 5 and that when the process goes out of control the mean shifts

to 1.725 microns. From the operating characteristic curve in Figure 5.9 we find that if the

process mean is 1.725 microns, the probability of falling between the control limits is approx-

imately 0.35. Therefore, p in equation 5.2 is 0.35, and the out-of-control ARL (called ARL1) is

That is, the control chart will require 2.86 samples to detect the process shift, on the average,

and since the time interval between samples is h = 1 hour, the average time required to detect

this shift is

Suppose that this is unacceptable, because production of wafers with mean flow width of

1.725 microns results in excessive scrap costs and can result in further upstream manufac-

turing problems. How can we reduce the time needed to detect the out-of-control condition?

One method is to sample more frequently. For example, if we sample every half hour, then

the average time to signal for this scheme is ; that is, onlyATS = ARL1 h = 2.86(
1
2) = 1.43

ATS ARL1= =h 2.86 (1) = 2.86 hours

ARL1
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1.43 hours will elapse (on the average) between the shift and its detection. The second pos-

sibility is to increase the sample size. For example, if we use n = 10, then Figure 5.9 shows 

that the probability of falling between the control limits when the process mean is 1.725

microns is approximately 0.1, so that p = 0.9, and from equation 5.2 the out-of-control ARL

or ARL1 is

and, if we sample every hour, the average time to signal is

Thus, the larger sample size would allow the shift to be detected more quickly than with the

smaller one.

To answer the question of sampling frequency more precisely, we must take several fac-

tors into account, including the cost of sampling, the losses associated with allowing the

process to operate out of control, the rate of production, and the probabilities with which var-

ious types of process shifts occur. We discuss various methods for selecting an appropriate

sample size and sampling frequency for a control chart in the next four chapters.

5.3.4 Rational Subgroups

A fundamental idea in the use of control charts is the collection of sample data according to

what Shewhart called the rational subgroup concept. To illustrate this concept, suppose that

we are using an control chart to detect changes in the process mean. Then the rational sub-

group concept means that subgroups or samples should be selected so that if assignable causes

are present, the chance for differences between subgroups will be maximized, while the chance

for differences due to these assignable causes within a subgroup will be minimized.

When control charts are applied to production processes, the time order of production

is a logical basis for rational subgrouping. Even though time order is preserved, it is still

possible to form subgroups erroneously. If some of the observations in the sample are taken

at the end of one shift and the remaining observations are taken at the start of the next shift,

then any differences between shifts might not be detected. Time order is frequently a good

basis for forming subgroups because it allows us to detect assignable causes that occur over

time.

Two general approaches to constructing rational subgroups are used. In the first

approach, each sample consists of units that were produced at the same time (or as closely

together as possible). Ideally, we would like to take consecutive units of production. This

approach is used when the primary purpose of the control chart is to detect process shifts. It

minimizes the chance of variability due to assignable causes within a sample, and it maxi-

mizes the chance of variability between samples if assignable causes are present. It also pro-

vides a better estimate of the standard deviation of the process in the case of variables control

charts. This approach to rational subgrouping essentially gives a snapshot of the process at

each point in time where a sample is collected.

Figure 5.10 illustrates this type of sampling strategy. In Figure 5.10a we show a process

for which the mean experiences a series of sustained shifts, and the corresponding observa-

tions obtained from this process at the points in time along the horizontal axis, assuming that

five consecutive units are selected. Figure 5.10b shows the control chart and an R chart
(or range chart) for these data. The center line and control limits on the R chart are con-

structed using the range of each sample in the upper part of the figure (details will be given in

Chapter 6). Note that although the process mean is shifting, the process variability is stable.

Furthermore, the within-sample measure of variability is used to construct the control limits

x
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202 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

on the chart. Note that the chart in Figure 5.10b has points out of control corresponding

to the shifts in the process mean.

In the second approach, each sample consists of units of product that are representative

of all units that have been produced since the last sample was taken. Essentially, each sub-

group is a random sample of all process output over the sampling interval. This method

of rational subgrouping is often used when the control chart is employed to make decisions

about the acceptance of all units of product that have been produced since the last sample. In

fact, if the process shifts to an out-of-control state and then back in control again between
samples, it is sometimes argued that the snapshot method of rational subgrouping will be inef-

fective against these types of shifts, and so the random sample method must be used.

When the rational subgroup is a random sample of all units produced over the sampling

interval, considerable care must be taken in interpreting the control charts. If the process mean

drifts between several levels during the interval between samples, this may cause the range of

the observations within the sample to be relatively large, resulting in wider limits on the 

chart. This scenario is illustrated in Figure 5.11. In fact, we can often make any process
appear to be in statistical control just by stretching out the interval between observa-
tions in the sample. It is also possible for shifts in the process average to cause points on a

control chart for the range or standard deviation to plot out of control, even though there has

been no shift in process variability.

There are other bases for forming rational subgroups. For example, suppose a process

consists of several machines that pool their output into a common stream. If we sample from

this common stream of output, it will be very difficult to detect whether any of the machines

are out of control. A logical approach to rational subgrouping here is to apply control chart

techniques to the output for each individual machine. Sometimes this concept needs to be

applied to different heads on the same machine, different work stations, different operators,

and so forth. In many situations, the rational subgroup will consist of a single observation.

This situation occurs frequently in the chemical and process industries where the quality
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characteristic of the product changes relatively slowly and samples taken very close together

in time are virtually identical, apart from measurement or analytical error.

The rational subgroup concept is very important. The proper selection of samples

requires careful consideration of the process, with the objective of obtaining as much useful

information as possible from the control chart analysis.

5.3.5 Analysis of Patterns on Control Charts

Patterns on control charts must be assessed. A control chart may indicate an out-of-control

condition when one or more points fall beyond the control limits or when the plotted points

exhibit some nonrandom pattern of behavior. For example, consider the chart shown in

Figure 5.12. Although all 25 points fall within the control limits, the points do not indicate

statistical control because their pattern is very nonrandom in appearance. Specifically, we

note that 19 of 25 points plot below the center line, while only 6 of them plot above. If the points

truly are random, we should expect a more even distribution above and below the center line.

We also observe that following the fourth point, five points in a row increase in magnitude.

This arrangement of points is called a run. Since the observations are increasing, we could

call this a run up. Similarly, a sequence of decreasing points is called a run down. This con-

trol chart has an unusually long run up (beginning with the fourth point) and an unusually

long run down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition

to runs up and runs down, we could define the types of observations as those above and below

the center line, respectively, so that two points in a row above the center line would be a run

of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random

sample of points. Consequently, any type of run of length 8 or more is often taken as a signal

of an out-of-control condition. For example, eight consecutive points on one side of the cen-

ter line may indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart,

other types of patterns may also indicate an out-of-control condition. For example, consider

the chart in Figure 5.13. Note that the plotted sample averages exhibit a cyclic behavior, yet

they all fall within the control limits. Such a pattern may indicate a problem with the process

such as operator fatigue, raw material deliveries, heat or stress buildup, and so forth. Although

the process is not really out of control, the yield may be improved by elimination or reduc-

tion of the sources of variability causing this cyclic behavior (see Fig. 5.14).

The problem is one of pattern recognition—that is, recognizing systematic or nonran-

dom patterns on the control chart and identifying the reason for this behavior. The ability to

interpret a particular pattern in terms of assignable causes requires experience and knowledge
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x

5.3 Statistical Basis of the Control Chart 203

UCL

Center
line

LCL

x

1 3 5 7 9 11 13 15 17 19 21 23 25

Sample number

UCL

Center
line  

LCL

1 2 3 4 5 6 7 8 9 10111213 14 15

Sample number

x

■ F I G U R E  5 . 1 2 An control chart.x ■ F I G U R E  5 . 1 3 An chart with a cyclic

pattern.

x

c05MethodsAndPhilosophyOfStatisticalProcessControl.qxd  3/24/12  5:42 PM  Page 203



204 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

of the process. That is, we must not only know the statistical principles of control charts, but

we must also have a good understanding of the process. We discuss the interpretation of pat-

terns on control charts in more detail in Chapter 6.

The Western Electric Statistical Quality Control Handbook (1956) suggests a set of

decision rules for detecting nonrandom patterns on control charts. Specifically, it suggests

concluding that the process is out of control if either

1. one point plots outside the three-sigma control limits,

2. two out of three consecutive points plot beyond the two-sigma warning limits,

3. four out of five consecutive points plot at a distance of one-sigma or beyond from the

center line, or

4. eight consecutive points plot on one side of the center line.

Those rules apply to one side of the center line at a time. Therefore, a point above the upper
warning limit followed immediately by a point below the lower warning limit would not signal

an out-of-control alarm. These are often used in practice for enhancing the sensitivity of control

charts. That is, the use of these rules can allow smaller process shifts to be detected more quickly

than would be the case if our only criterion was the usual three-sigma control limit violation.

Figure 5.15 shows an control chart with the one-sigma, two-sigma, and three-sigma

limits used in the Western Electric procedure. Note that these limits partition the control chart

into three zones (A, B, and C) on each side of the center line. Consequently, the Western

x
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Electric rules are sometimes called the zone rules for control charts. Note that the last four

points fall in zone B or beyond. Thus, since four of five consecutive points exceed the one-

sigma limit, the Western Electric procedure will conclude that the pattern is nonrandom and

the process is out of control.

5.3.6 Discussion of Sensitizing Rules for Control Charts

As may be gathered from earlier sections, several criteria may be applied simultaneously to a

control chart to determine whether the process is out of control. The basic criterion is one or

more points outside of the control limits. The supplementary criteria are sometimes used to

increase the sensitivity of the control charts to a small process shift so that we may respond

more quickly to the assignable cause. Some of the sensitizing rules for control charts that

are widely used in practice are shown in Table 5.1. For a good discussion of some of these

rules, see Nelson (1984). Frequently, we will inspect the control chart and conclude that the

process is out of control if any one or more of the criteria in Table 5.1 are met.

When several of these sensitizing rules are applied simultaneously, we often use a grad-
uated response to out-of-control signals. For example, if a point exceeded a control limit, we

would immediately begin to search for the assignable cause, but if one or two consecutive

points exceeded only the two-sigma warning limit, we might increase the frequency of sam-

pling from every hour to say, every ten minutes. This adaptive sampling response might not

be as severe as a complete search for an assignable cause, but if the process were really out

of control, it would give us a high probability of detecting this situation more quickly than we

would by maintaining the longer sampling interval.

In general, care should be exercised when using several decision rules simultaneously.

Suppose that the analyst uses k decision rules and that criterion i has type I error probability ai.

Then the overall type I error or false alarm probability for the decision based on all k tests is

(5.4)α α= − −( )
=
∏1 1

1
i

i

k
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■ TA B L E  5 . 1  

Some Sensitizing Rules for Shewhart Control Charts

Standard Action Signal: 1. One or more points outside of the control limits

2. Two of three consecutive points outside the 
two-sigma warning limits but still inside the 
control limits

3. Four of five consecutive points beyond the 
one-sigma limits

4. A run of eight consecutive points on one side of the
center line

5. Six points in a row steadily increasing or decreasing

6. Fifteen points in a row in zone C (both above and
below the center line)

7. Fourteen points in a row alternating up and down

8. Eight points in a row on both sides of the center
line with none in zone C

9. An unusual or nonrandom pattern in the data

10. One or more points near a warning or control limit

Western
Electric
Rules
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206 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

provided that all k decision rules are independent. However, the independence assumption is

not valid with the usual sensitizing rules. Furthermore, the value of ai is not always clearly

defined for the sensitizing rules, because these rules involve several observations.

Champ and Woodall (1987) investigated the average run length performance for the

Shewhart control chart with various sensitizing rules. They found that the use of these rules

does improve the ability of the control chart to detect smaller shifts, but the in-control aver-

age run length can be substantially degraded. For example, assuming independent process data

and using a Shewhart control chart with the Western Electric rules results in an in-control ARL

of 91.25, in contrast to 370 for the Shewhart control chart alone.

Some of the individual Western Electric rules are particularly troublesome. An illustra-

tion is the rule of several (usually seven or eight) consecutive points that either increase or

decrease. This rule is very ineffective in detecting a trend, the situation for which it was

designed. It does, however, greatly increase the false alarm rate. See Davis and Woodall (1988)

for more details.

5.3.7 Phase I and Phase II of Control Chart Application

Standard control chart usage involves phase I and phase II applications, with two different

and distinct objectives. In phase I, a set of process data is gathered and analyzed all at once

in a retrospective analysis, constructing trial control limits to determine if the process has

been in control over the period of time during which the data were collected, and to see if reli-

able control limits can be established to monitor future production. This is typically the first

thing that is done when control charts are applied to any process. Control charts in phase I

primarily assist operating personnel in bringing the process into a state of statistical control.

Phase II begins after we have a “clean” set of process data gathered under stable conditions

and representative of in-control process performance. In phase II, we use the control chart to

monitor the process by comparing the sample statistic for each successive sample as it is

drawn from the process to the control limits.

Thus, in phase I we are comparing a collection of, say, m points to a set of control lim-

its computed from those points. Typically m = 20 or 25 subgroups are used in phase I. It is

fairly typical in phase I to assume that the process is initially out of control, so the objective

of the analyst is to bring the process into a state of statistical control. Control limits are cal-

culated based on the m subgroups and the data plotted on the control charts. Points that are

outside the control limits are investigated, looking for potential assignable causes. Any

assignable causes that are identified are worked on by engineering and operating personnel in

an effort to eliminate them. Points outside the control limits are then excluded and a new set

of revised control limits are calculated. Then new data are collected and compared to these

revised limits. Sometimes this type of analysis will require several cycles in which the con-

trol chart is employed, assignable causes are detected and corrected, revised control limits are

calculated, and the out-of-control action plan is updated and expanded. Eventually the process

is stabilized, and a clean set of data that represents in-control process performance is obtained

for use in phase II.

Generally, Shewhart control charts are very effective in phase I because they are easy to

construct and interpret, and because they are effective in detecting both large, sustained shifts

in the process parameters and outliers (single excursions that may have resulted from assigna-

ble causes of short duration), measurement errors, data recording and/or transmission errors,

and the like. Furthermore, patterns on Shewhart control charts often are easy to interpret and

have direct physical meaning. The sensitizing rules discussed in the previous sections are also

easy to apply to Shewhart charts. (This is an optional feature in most SPC software.) The types

of assignable causes that usually occur in phase I result in fairly large process shifts—exactly
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the scenario in which the Shewhart control chart is most effective. Average run length is not

usually a reasonable performance measure for phase I; we are typically more interested in the

probability that an assignable cause will be detected than in the occurrence of false alarms. For

good discussions of phase I control chart usage and related matters, see the papers by Woodall

(2000), Borror and Champ (2001), Boyles (2000), and Champ and Chou (2003), and the stan-

dard ANSI/ASQC B1–133–1996 Quality Control Chart Methodologies.

In phase II, we usually assume that the process is reasonably stable. Often, the assign-

able causes that occur in phase II result in smaller process shifts, because (it is hoped) most

of the really ugly sources of variability have been systematically removed during phase I. Our

emphasis is now on process monitoring, not on bringing an unruly process under control.

Average run length is a valid basis for evaluating the performance of a control chart in phase II.

Shewhart control charts are much less likely to be effective in phase II because they are not

very sensitive to small to moderate size process shifts; that is, their ARL performance is relatively

poor. Attempts to solve this problem by employing sensitizing rules such as those discussed in

the previous section are likely to be unsatisfactory, because the use of these supplemental sensi-

tizing rules increases the false alarm rate of the Shewhart control chart. [Recall the discussion of

the Champ and Woodall (1987) paper in the previous section.] The routine use of sensitizing rules

to detect small shifts or to react more quickly to assignable causes in phase II should be discour-

aged. The cumulative sum and EWMA control charts discussed in Chapter 9 are much more

likely to be effective in phase II.

5.4 The Rest of the Magnificent Seven

Although the control chart is a very powerful problem-solving and process-improvement tool,

it is most effective when its use is fully integrated into a comprehensive SPC program. The

seven major SPC problem-solving tools should be widely taught throughout the organization

and used routinely to identify improvement opportunities and to assist in reducing variability

and eliminating waste. They can be used in several ways throughout the DMAIC problem-

solving process. The magnificent seven, introduced in Section 5.1, are listed again here for

convenience:

1. Histogram or stem-and-leaf plot

2. Check sheet

3. Pareto chart

4. Cause-and-effect diagram

5. Defect concentration diagram

6. Scatter diagram

7. Control chart

We introduced the histogram and the stem-and-leaf plot in Chapter 3 and discussed the con-

trol chart in Section 5.3. In this section, we illustrate the rest of the tools.

Check Sheet. In the early stages of process improvement, it will often become

necessary to collect either historical or current operating data about the process under

investigation. This is a common activity in the measure step of DMAIC. A check sheet
can be very useful in this data collection activity. The check sheet shown in Figure 5.16

was developed by an aerospace firm engineer who was investigating defects that occurred

on one of the firm’s tanks. The engineer designed the check sheet to help summarize all

5.4 The Rest of the Magnificent Seven 207
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208 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

the historical defect data available on the tanks. Because only a few tanks were manufac-

tured each month, it seemed appropriate to summarize the data monthly and to identify as

many different types of defects as possible. The time-oriented summary is particularly

valuable in looking for trends or other meaningful patterns. For example, if many defects

occur during the summer, one possible cause might be the use of temporary workers dur-

ing a heavy vacation period.

When designing a check sheet, it is important to clearly specify the type of data to be

collected, the part or operation number, the date, the analyst, and any other information use-

ful in diagnosing the cause of poor performance. If the check sheet is the basis for perform-

ing further calculations or is used as a worksheet for data entry into a computer, then it is

important to be sure that the check sheet will be adequate for this purpose. In some cases, a

trial run to validate the check sheet layout and design may be helpful.

Pareto Chart. The Pareto chart is simply a frequency distribution (or his-

togram) of attribute data arranged by category. Pareto charts are often used in both the

■ F I G U R E  5 . 1 6 A check sheet to record defects on a tank used in an aerospace application.

CHECK SHEET
DEFECT DATA FOR 2002–2003 YTD

Part No.: TAX-41
Location: Bellevue
Study Date: 6/5/03
Analyst: TCB

2002 2003

Defect 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 Total

Parts damaged 1 3 1 2 1 10 3 2 2 7 2 34

Machining problems 3 3 1 8 3 8 3 29

Supplied parts rusted 1 1 2 9 13

Masking insufficient 3 6 4 3 1 17

Misaligned weld 2 2

Processing out of order 2 2 4

Wrong part issued 1 2 3

Unfinished fairing 3 3

Adhesive failure 1 1 2 1 1 6

Powdery alodine 1 1

Paint out of limits 1 1 2

Paint damaged by etching 1 1

Film on parts 3 1 1 5

Primer cans damaged 1 1

Voids in casting 1 1 2

Delaminated composite 2 2

Incorrect dimensions 13 7 13 1 1 1 36

Improper test procedure 1 1

Salt-spray failure 4 2 4

TOTAL 4 5 14 12 5 9 9 6 10 14 20 7 29 7 7 6 2 166 
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Measure and Analyze steps of DMAIC. To illustrate a Pareto chart, consider the tank

defect data presented in Figure 5.16. Plotting the total frequency of occurrence of each

defect type (the last column of the table in Fig. 5.16) against the various defect types will

produce Figure 5.17, which is called a Pareto chart.3 Through this chart, the user can

quickly and visually identify the most frequently occurring types of defects. For example,

Figure 5.17 indicates that incorrect dimensions, parts damaged, and machining are the

most commonly encountered defects. Thus the causes of these defect types probably

should be identified and attacked first.

Note that the Pareto chart does not automatically identify the most important defects,

but only the most frequent. For example, in Figure 5.17 casting voids occur very infre-

quently (2 of 166 defects, or 1.2%). However, voids could result in scrapping the tank, a

potentially large cost exposure—perhaps so large that casting voids should be elevated to a

major defect category. When the list of defects contains a mixture of defects that might have

extremely serious consequences and others of much less importance, one of two methods

can be used:

1. Use a weighting scheme to modify the frequency counts. Weighting schemes for defects

are discussed in Chapter 7.

2. Accompany the frequency Pareto chart analysis with a cost or exposure Pareto chart.

There are many variations of the basic Pareto chart. Figure 5.18a shows a Pareto chart

applied to an electronics assembly process using surface-mount components. The vertical

axis is the percentage of components incorrectly located, and the horizontal axis is the com-

ponent number, a code that locates the device on the printed circuit board. Note that loca-

tions 27 and 39 account for 70% of the errors. This may be the result of the type or size of

components at these locations, or of where these locations are on the board layout. Figure

5.18b presents another Pareto chart from the electronics industry. The vertical axis is the

number of defective components, and the horizontal axis is the component number. Note that

each vertical bar has been broken down by supplier to produce a stacked Pareto chart. This
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3The name Pareto chart is derived from Italian economist Vilfredo Pareto (1848–1923), who theorized that in cer-

tain economies the majority of the wealth was held by a disproportionately small segment of the population. Quality

engineers have observed that defects usually follow a similar Pareto distribution.

■ F I G U R E  5 . 1 7 Pareto chart of

the tank defect data.
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210 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

analysis clearly indicates that supplier A provides a disproportionately large share of the

defective components.

Pareto charts are widely used in nonmanufacturing applications of quality improve-

ment methods. A Pareto chart used by a quality improvement team in a procurement organi-

zation is shown in Figure 5.18c. The team was investigating errors on purchase orders in an

effort to reduce the organization’s number of purchase order changes. (Each change typically

cost between $100 and $500, and the organization issued several hundred purchase order

changes each month.) This Pareto chart has two scales: one for the actual error frequency and

another for the percentage of errors. Figure 5.18d presents a Pareto chart constructed by a

quality improvement team in a hospital to reflect the reasons for cancellation of scheduled

outpatient surgery.

In general, the Pareto chart is one of the most useful of the magnificent seven. Its appli-

cations to quality improvement are limited only by the ingenuity of the analyst.

Cause-and-Effect Diagram. Once a defect, error, or problem has been identified

and isolated for further study, we must begin to analyze potential causes of this undesirable

effect. In situations where causes are not obvious (sometimes they are), the cause-and-effect
diagram is a formal tool frequently useful in unlayering potential causes. The cause-and-effect

diagram is very useful in the Analyze and Improve steps of DMAIC. The cause-and-effect dia-

gram constructed by a quality improvement team assigned to identify potential problem areas
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■ F I G U R E  5 . 1 8 Examples of Pareto charts.
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In analyzing the tank defect problem, the team elected to lay out the major categories of

tank defects as machines, materials, methods, personnel, measurement, and environment. A

brainstorming session ensued to identify the various subcauses in each of these major categories

and to prepare the diagram in Figure 5.19. Then through discussion and the process of elimina-

tion, the group decided that materials and methods contained the most likely cause categories.

5.4 The Rest of the Magnificent Seven 211

How to Construct a Cause-and-Effect Diagram

1. Define the problem or effect to be analyzed.

2. Form the team to perform the analysis. Often the team will uncover potential

causes through brainstorming.

3. Draw the effect box and the center line.

4. Specify the major potential cause categories and join them as boxes connected to

the center line.

5. Identify the possible causes and classify them into the categories in step 4. Create

new categories, if necessary.

6. Rank order the causes to identify those that seem most likely to impact the problem.

7. Take corrective action.
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■ F I G U R E  5 . 1 9 Cause-and-effect diagram for the tank defect problem.

in the tank manufacturing process mentioned earlier is shown in Figure 5.19. The steps in con-

structing the cause-and-effect diagram are as follows:
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Cause-and-effect analysis is an extremely powerful tool. A highly detailed cause-and-

effect diagram can serve as an effective troubleshooting aid. Furthermore, the construction of

a cause-and-effect diagram as a team experience tends to get people involved in attacking a

problem rather than in affixing blame.

Defect Concentration Diagram. A defect concentration diagram is a picture of

the unit, showing all relevant views. Then the various types of defects are drawn on the pic-

ture, and the diagram is analyzed to determine whether the location of the defects on the unit

conveys any useful information about the potential causes of the defects. Defect concentra-

tion diagrams are very useful in the analyze step of DMAIC.

Figure 5.20 presents a defect concentration diagram for the final assembly stage of a

refrigerator manufacturing process. Surface-finish defects are identified by the dark shaded

areas on the refrigerator. From inspection of the diagram it seems clear that materials han-

dling is responsible for the majority of these defects. The unit is being moved by securing a

belt around the middle, and this belt is either too loose or tight, worn out, made of abrasive

material, or too narrow. Furthermore, when the unit is moved the corners are being damaged.

It is possible that worker fatigue is a factor. In any event, proper work methods and improved

materials handling will likely improve this process dramatically.

Figure 5.21 shows the defect concentration diagram for the tank problem mentioned

earlier. Note that this diagram shows several different broad categories of defects, each iden-

tified with a specific code. Often different colors are used to indicate different types of

defects.

When defect data are portrayed on a defect concentration diagram over a sufficient

number of units, patterns frequently emerge, and the location of these patterns often contains

much information about the causes of the defects. We have found defect concentration dia-

grams to be important problem-solving tools in many industries, including plating, painting

and coating, casting and foundry operations, machining, and electronics assembly.

Scatter Diagram. The scatter diagram is a useful plot for identifying a potential

relationship between two variables. Data are collected in pairs on the two variables—say,

(yi, xi)—for i = 1, 2, . . . , n. Then yi is plotted against the corresponding xi. The shape of the

scatter diagram often indicates what type of relationship may exist between the two variables.

Scatter diagrams are very useful in regression modeling, introduced in Chapter 3. Regression

is a very useful technique in the analyze step of DMAIC.

Figure 5.22 shows a scatter diagram relating metal recovery (in percent) from a mag-

nathermic smelting process for magnesium against corresponding values of the amount of

Top

Bottom

Left
side

Front Back Right
side

Left-hand
side

Bottom Right-hand
side

Top
end

Bottom
end

Tank number
Serial number

Defect Codes
A = Scratch
B = Nick
C = Scuff
D = Moon

■ F I G U R E  5 . 2 0 Surface-finish

defects on a refrigerator.

■ F I G U R E  5 . 2 1 Defect concentration diagram

for the tank.
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reclaim flux added to the crucible. The scatter diagram indicates a strong positive correla-
tion between metal recovery and flux amount; that is, as the amount of flux added is increased,

the metal recovery also increases. It is tempting to conclude that the relationship is one based

on cause and effect: By increasing the amount of reclaim flux used, we can always ensure

high metal recovery. This thinking is potentially dangerous, because correlation does not nec-
essarily imply causality. This apparent relationship could be caused by something quite dif-

ferent. For example, both variables could be related to a third one, such as the temperature of

the metal prior to the reclaim pouring operation, and this relationship could be responsible for

what we see in Figure 5.22. If higher temperatures lead to higher metal recovery and the prac-

tice is to add reclaim flux in proportion to temperature, adding more flux when the process is

running at low temperature will do nothing to enhance yield. The scatter diagram is useful for

identifying potential relationships. Designed experiments [see Montgomery (2009)] must
be used to verify causality.

5.5 Implementing SPC in a Quality Improvement Program

The methods of statistical process control can provide significant payback to those compa-

nies that can successfully implement them. Although SPC seems to be a collection of sta-

tistically based problem-solving tools, there is more to the successful use of SPC than

learning and using these tools. SPC is most effective when it is integrated into an overall,

companywide quality improvement program. It can be implemented using the DMAIC

approach. Indeed, the basic SPC tools are an integral part of DMAIC. Management
involvement and commitment to the quality improvement process are the most vital com-

ponents of SPC’s potential success. Management is a role model, and others in the orga-

nization look to management for guidance and as an example. A team approach is also

important, as it is usually difficult for one person alone to introduce process improvements.

Many of the magnificent seven are helpful in building an improvement team, including

cause-and-effect diagrams, Pareto charts, and defect concentration diagrams. This team

approach also fits well with DMAIC. The basic SPC problem-solving tools must become

widely known and widely used throughout the organization. Ongoing education of person-

nel about SPC and other methods for reducing variability are necessary to achieve this

widespread knowledge of the tools.

The objective of an SPC-based variability reduction program is continuous improve-

ment on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied

when the business is in trouble and later abandoned. Quality improvement that is focused on

reduction of variability must become part of the culture of the organization.
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214 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

The control chart is an important tool for process improvement. Processes do not natu-

rally operate in an in-control state, and the use of control charts is an important step that must

be taken early in an SPC program to eliminate assignable causes, reduce process variability,

and stabilize process performance. To improve quality and productivity, we must begin to

manage with facts and data, and not simply rely on judgment. Control charts are an important

part of this change in management approach.

In implementing a companywide effort to reduce variability and improve quality, we

have found that several elements are usually present in all successful efforts. These elements

are as follows:

Elements of a Successful SPC Program

1. Management leadership

2. A team approach, focusing on project-oriented applications

3. Education of employees at all levels

4. Emphasis on reducing variability

5. Measuring success in quantitative (economic) terms

6. A mechanism for communicating successful results throughout the organization

We cannot overemphasize the importance of management leadership and the team/project
approach. Successful quality improvement is a “top-down” management-driven activity. It is

also important to measure progress and success in quantitative (economic) terms and to

spread knowledge of this success throughout the organization. When successful improve-

ments are communicated throughout the company, this can provide motivation and incentive

to improve other processes and to make continuous improvement a usual part of the way of

doing business.

5.6 An Application of SPC

In this section, we give an account of how SPC methods were used to improve quality and

productivity in a copper plating operation at a printed circuit board fabrication facility. This

process was characterized by high levels of defects such as brittle copper and copper voids

and by long cycle time. The long cycle time was particularly troublesome, as it had led to an

extensive work backlog and was a major contributor to poor conformance to the factory pro-

duction schedule.

Management chose this process area for an initial implementation of SPC. The DMAIC

approach was used. An improvement team was formed, consisting of the plating tank opera-

tor, the manufacturing engineer responsible for the process, and a quality engineer. All members

of the team had been exposed to DMAIC and the magnificent seven in a company-sponsored

seminar. During the define step, it was decided to concentrate on reducing the flow time

through the process, as the missed delivery targets were considered to be the most serious

obstacle to improving productivity. The team quickly determined (during the Measure step)
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that excessive downtime on the controller that regulated the copper concentration in the plat-

ing tank was a major factor in the excessive flow time; controller downtime translated directly

into lost production.

As part of the Analyze step, the team decided to use a cause-and-effect analysis to begin

to isolate the potential causes of controller downtime. Figure 5.23 shows the cause-and-effect

diagram that was produced during a brainstorming session. The team was able to quickly

identify 11 major potential causes of controller downtime. However, when they examined the

equipment logbook to make a more definitive diagnosis of the causes of downtime based on

actual process performance, the results were disappointing. The logbook contained little use-

ful information about causes of downtime; instead, it contained only a chronological record

of when the machine was up and when it was down.

The team then decided that it would be necessary to collect valid data about the causes

of controller downtime. They designed the check sheet shown in Figure 5.24 as a supple-

mental page for the logbook. The team agreed that whenever the equipment was down, one

team member would assume responsibility for filling out the check sheet. Note that the major

causes of controller downtime identified on the cause-and-effect diagram were used to struc-

ture the headings and subheadings on the check sheet. The team agreed that data would be

collected over a four- to six-week period.

As more reliable data concerning the causes of controller downtime became avail-

able, the team was able to analyze it using other SPC techniques. Figure 5.25 presents the

Pareto analysis of the controller failure data produced during the six-week study of the

process. Note that concentration variation is a major cause of downtime. Actually, the sit-

uation is probably more complex than it appears. The third largest category of downtime

causes is reagent replenishment. Frequently, the reagent in the colorimeter on the controller

is replenished because concentration has varied so far outside the process specifications

that reagent replenishment and colorimeter recalibration constitute the only step that can

be used to bring the process back on-line. Therefore, it is possible that up to 50% of the

downtime associated with controller failures can be attributed to concentration variation.
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Figure 5.26 presents a Pareto analysis of only the concentration variation data. From this

diagram we know that colorimeter drift and problems with reagents are major causes of

concentration variation. This information led the manufacturing engineer on the team to

conclude that rebuilding the colorimeter would be an important step in improving the

process.

During the time that these process data were collected, the team decided to set up sta-

tistical control charts on the process. The information collected to this point about process

performance was the basis for constructing the initial OCAPs (out-of-control-action plans)

for these control charts. These control charts and their OCAP would also be useful in the

WEEKLY TALLY OPERATOR

WEEK ENDING ERRORS DESCRIPTION ACTION

1. CONCENTRATION VARIATION

a. Colorimeter drift

b. Electrode failure

c. Reagents

d. Deformed tubes

e. Oper/error/unauthorized

2. ALARM SYSTEM FAILURE

a. PMC down

b. Lockout

3. RECIRCULATING PUMP FAILURE

a. Air lock

b. Impeller

4. REAGENT REPLENISHING

a. New reagent

5. TUBING MAINTENANCE

a. Weekly maintenance

b. Emergency maintenance

6. ELECTRODE REPLACEMENT

a. Routine maintenance

7. TEMPERATURE CONTROLLER

a. Burned out heater

b. Bad thermistors

8. OXYGEN CONTROLLER

a. Plates out

b. Electrode replacement

9. PARASTOLIC PUMP FAILURE

a. Motor failure

10. ELECTRICAL FAILURE

a. PV circuit card

b. Power supply CL

c. Colorimeter CL

d. Motherboard

11. PLATE-OUT RECIRCULATING

a. Buildup at joints

TOTAL COUNT

■ F I G U R E  5 . 2 4 Check sheet for logbook.
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Control step of DMAIC. Copper concentration is measured in this process manually three

times per day. Figure 5.27 presents the control chart for average daily copper concentra-

tion; that is, each point plotted in the figure is a daily average. The chart shows the center

line and three-sigma statistical control limits. (We will discuss the construction of these lim-

its in more detail in the next few chapters.) Note that there are a number of points outside

the control limits, indicating that assignable causes are present in the process. Figure 5.28

presents the range or R chart for daily copper concentration. On this chart, R represents the

difference between the maximum and minimum copper concentration readings in a day.

Note that the R chart also exhibits a lack of statistical control. In particular, the second half

of the R chart appears much more unstable than the first half. Examining the dates along the

horizontal axis, the team noted that severe variation in average daily copper concentration

only appeared after January 3. The last observations on copper concentration had been taken

x
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on November 22. From November 23 until January 3, the process had been in a shutdown

mode because of holidays. Apparently, when the process was restarted, substantial deterio-

ration in controller/colorimeter performance had occurred. This hastened engineering’s

decision to rebuild the colorimeter.

Figure 5.29 presents a tolerance diagram of daily copper concentration readings. In this

figure, each day’s copper concentration readings are plotted, and the extremes are connected

with a vertical line. In some cases, more than one observation is plotted at a single position, so

a numeral is used to indicate the number of observations plotted at each particular point. The

center line on this chart is the process average over the time period studied, and the upper and

lower limits are the specification limits on copper concentration. Every instance in which a

point is outside the specification limits would correspond to nonscheduled downtime on the

process. Several things are evident from examining the tolerance diagram. First, the process

average is significantly different from the nominal specification on copper concentration (the

midpoint of the upper and lower tolerance band). This implies that the calibration of the col-

orimeter may be inadequate. That is, we are literally aiming at the wrong target. Second, we
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note that there is considerably more variation in the daily copper concentration readings after

January 3 than there was prior to shutdown. Finally, if we could reduce variation in the

process to a level roughly consistent with that observed prior to shutdown and correct the

process centering, many of the points outside specifications would not have occurred, and

downtime on the process should be reduced.

To initiate the Improve step, the team first decided to rebuild the colorimeter and con-

troller. This was done in early February. The result of this maintenance activity was to restore

the variability in daily copper concentration readings to the pre-shutdown level. The rebuilt

colorimeter was recalibrated and subsequently was able to hold the correct target. This recen-

tering and recalibration of the process reduced the downtime on the controller from approxi-

mately 60% to less than 20%. At this point, the process was capable of meeting the required

production rate.

Once this aspect of process performance was improved, the team directed its efforts to

reducing the number of defective units produced by the process. Generally, as noted earlier,

defects fell into two major categories: brittle copper and copper voids. The team decided that,

although control charts and statistical process-control techniques could be applied to this

problem, the use of a designed experiment might lead to a more rapid solution. As noted in

Chapter 1, the objective of a designed experiment is to generate information that will allow

us to understand and model the relationship between the process variables and measures of

the process performance.

The designed experiment for the plating process is shown in Table 5.2 and Figure 5.30.

The objective of this experiment was to provide information that would be useful in mini-

mizing plating defects. The process variables considered in the experiment were copper con-

centration, sodium hydroxide concentration, formaldehyde concentration, temperature, and

oxygen. A low level and high level, represented symbolically by the minus and plus signs in

Table 5.2, were chosen for each process variable. The team initially considered a factorial
experiment—that is, an experimental design in which all possible combinations of these factor

levels would be run. This design would have required 32 runs—that is, a run at each of the

32 corners of the cubes in Figure 5.30. Since this is too many runs, a fractional factorial
design that used only 16 runs was ultimately selected. This fractional factorial design is

shown in the bottom half of Table 5.2 and geometrically in Figure 5.30. In this experimental

design, each row of the table is a run on the process. The combination of minus and plus signs

in each column of that row determines the low and high levels of the five process variables
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to be used during that run. For example, in run 1 copper concentration, sodium hydroxide

concentration, formaldehyde concentration, and temperature are run at the low level and 

oxygen is run at the high level. The process would be run at each of the 16 sets of conditions

described by the design (for reasons to be discussed later, the runs would not be made in the

order shown in Table 5.2), and a response variable—an observed number of plating defects—

would be recorded for each run. Then these data could be analyzed using simple statistical

techniques to determine which factors have a significant influence on plating defects,

whether or not any of the factors jointly influence the occurrence of defects, and whether it

is possible to adjust these variables to new levels that will reduce plating defects below their

current level. Although a complete discussion of design of experiments is beyond the scope

of this text, we will present examples of designed experiments for improving process perfor-

mance in Part V.

After the team conducted the experiment shown in Table 5.2 and analyzed the result-

ing process data, they determined that several of the process variables that they identified

for the study were important and had significant impact on the occurrence of plating

defects. They were able to adjust these factors to new levels, and as a result, plating

defects were reduced by approximately a factor of 10. Therefore, at the conclusion of the

team’s initial effort at applying SPC to the plating process, it had made substantial

■ TA B L E  5 . 2  

A Designed Experiment for the Plating Process

Objective: Minimize Plating Defects

Process Variables Low Level High Level

A = Copper concentration − +
B = Sodium hydroxide concentration − +
C = Formaldehyde concentration − +
D = Temperature − +
E = Oxygen − +

Experimental Design

Variables

Response
Run A B C D E (Defects)

1 − − − − +
2 + − − − −
3 − + − − −
4 + + − − +
5 − − + − −
6 + − + − +
7 − + + − +
8 + + + − −
9 − − − + −

10 + − − + +
11 − + − + +
12 + + − + −
13 − − + + +
14 + − + + −
15 − + + + −
16 + + + + +

A B

C– +

+
+

E

–

+

D– +
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improvements in product cycle time through the process and had taken a major step in

improving the process capability.

5.7 Applications of Statistical Process Control and Quality Improvement Tools 
in Transactional and Service Businesses

This book presents the underlying principles of SPC. Many of the examples used to reinforce

these principles are in an industrial, product-oriented framework. There have been many suc-

cessful applications of SPC methods in the manufacturing environment. However, the princi-

ples themselves are general; there are many applications of SPC techniques and other quality

engineering and statistical tools in nonmanufacturing settings, including transactional and

service businesses.

These nonmanufacturing applications do not differ substantially from the more usual

industrial applications. As an example, the control chart for fraction nonconforming (which is

discussed in Chapter 7) could be applied to reducing billing errors in a bank credit card opera-

tion as easily as it could be used to reduce the fraction of nonconforming printed circuit boards

produced in an electronics plant. The and R charts discussed in this chapter and applied to the

hard-bake process could be used to monitor and control the flow time of accounts payable

through a finance function. Transactional and service industry applications of SPC and related

methodology sometimes require ingenuity beyond that normally required for the more typical

manufacturing applications. There seem to be three primary reasons for this difference:

1. Most transactional and service businesses do not have a natural measurement system

that allows the analyst to easily define quality.

2. The system that is to be improved is usually fairly obvious in a manufacturing setting,

whereas the observability of the process in a nonmanufacturing setting may be fairly low.

3. Many service processes involve people to a high degree, and people are often highly

variable in their work activities. Service systems often have to deal with customers that

have unusual and very different requirements.

For example, if we are trying to improve the performance of a personal computer assembly

line, then it is likely that the line will be contained within one facility and the activities of the

system will be readily observable. However, if we are trying to improve the business perfor-

mance of a financial services organization, then the observability of the process may be low.

The actual activities of the process may be performed by a group of people who work in dif-

ferent locations, and the operation steps or workflow sequence may be difficult to observe.

Furthermore, the lack of a quantitative and objective measurement system in most nonmanu-

facturing processes complicates the problem.

The key to applying statistical process-control and other related methods in service systems

and transactional business environments is to focus initial efforts on resolving these three

issues. We have found that once the system is adequately defined and a valid measurement

system has been developed, most of the SPC tools discussed in this chapter can easily be

applied to a wide variety of nonmanufacturing operations including finance, marketing, mate-

rial and procurement, customer support, field service, engineering development and design,

and software development and programming.

Flowcharts, operation process charts, and value stream mapping are particularly

useful in developing process definition and process understanding. A flowchart is simply a

chronological sequence of process steps or work flow. Sometimes flowcharting is called

process mapping. Flowcharts or process maps must be constructed in sufficient detail to

identify value-added versus non-value-added work activity in the process.

x
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Most nonmanufacturing processes have scrap, rework, and other non-value-added
operations, such as unnecessary work steps and choke points or bottlenecks. A systematic

analysis of these processes can often eliminate many of these non-value-added activities. The

flowchart is helpful in visualizing and defining the process so that non-value-added activities

can be identified. Some ways to remove non-value-added activities and simplify the process

are summarized in the following box.

Ways to Eliminate Non-Value-Added Activities

1. Rearrange the sequence of worksteps.

2. Rearrange the physical location of the operator in the system.

3. Change work methods.

4. Change the type of equipment used in the process.

5. Redesign forms and documents for more efficient use.

6. Improve operator training.

7. Improve supervision.

8. Identify more clearly the function of the process to all employees.

9. Try to eliminate unnecessary steps.

10. Try to consolidate process steps.

Figure 5.31 is an example of a flowchart for a process in a service industry. It was con-

structed by a process improvement team in an accounting firm that was studying the process of

preparing Form 1040 income tax returns; this particular flowchart documents only one partic-

ular subprocess: that of assembling final tax documents. This flowchart was constructed as part

of the Define step of DMAIC. Note the high level of detail in the flowchart to assist the team

find waste or non-value-added activities. In this example, the team used special symbols in their

flowchart. Specifically, they used the operation process chart symbols shown as follows:

Operation Process Chart Symbols

= operation

= movement or transportation

= delay

= storage

= inspection
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We have found that these symbols are very useful in helping team members identify improve-

ment opportunities. For example, delays, most inspections, and many movements usually rep-

resent non-value-added activities. The accounting firm was able to use quality improvement

methods and the DMAIC approach successfully in their Form 1040 process, reducing the tax

document preparation cycle time (and work content) by about 25%, and reducing the cycle

time for preparing the client bill from over 60 days to zero (that’s right, zero!). The client’s

bill is now included with his or her tax return.

As another illustration, consider an example of applying quality improvement methods

in a planning organization. This planning organization, part of a large aerospace manufactur-

ing concern, produces the plans and documents that accompany each job to the factory floor.

The plans are quite extensive, often several hundred pages long. Errors in the planning

process can have a major impact on the factory floor, contributing to scrap and rework, lost

production time, overtime, missed delivery schedules, and many other problems.

Figure 5.32 presents a high-level flowchart of this planning process. After plans are 

produced, they are sent to a checker who tries to identify obvious errors and defects in the

plans. The plans are also reviewed by a quality-assurance organization to ensure that process

specifications are being met and that the final product will conform to engineering standards.

Then the plans are sent to the shop, where a liaison engineering organization deals with any
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■ F I G U R E  5 . 3 1 Flowchart of the assembly portion of the Form 1040 tax return process.
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224 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

errors in the plan encountered by manufacturing. This flowchart is useful in presenting an

overall picture of the planning system, but it is not particularly helpful in uncovering non-

value-added activities, as there is insufficient detail in each of the major blocks. However, each

block, such as the planner, checker, and quality-assurance block, could be broken down into

a more detailed sequence of work activities and steps. The step-down approach is frequently

helpful in constructing flowcharts for complex processes. However, even at the relatively high

level shown, it is possible to identify at least three areas in which SPC methods could be use-

fully applied in the planning process.

The managers of the planning organization decided to use the reduction of planning

errors as a quality improvement project for their organization. A team of managers, plan-

ners, and checkers was chosen to begin this implementation. During the Measure step, the

team decided that each week three plans would be selected at random from the week’s out-

put of plans to be analyzed extensively to record all planning errors that could be found.

The check sheet shown in Figure 5.33 was used to record the errors found in each plan.

These weekly data were summarized monthly, using the summary check sheet presented in

Figure 5.34. After several weeks, the team was able to summarize the planning error data

obtained using the Pareto analysis in Figure 5.35. The Pareto chart implies that errors in the

operations section of the plan are predominant, with 65% of the planning errors in the oper-

ations section. Figure 5.36 presents a further Pareto analysis of the operations section

errors, showing that omitted operations and process specifications are the major contribu-

tors to the problem.

The team decided that many of the operations errors were occurring because planners

were not sufficiently familiar with the manufacturing operations and the process specifica-

tions that were currently in place. To improve the process, a program was undertaken to refa-

miliarize planners with the details of factory floor operations and to provide more feedback

on the type of planning errors actually experienced. Figure 5.37 presents a run chart of the

planning errors per operation for 25 consecutive weeks. Note that there is a general tendency

for the planning errors per operation to decline over the first half of the study period. This

decline may be due partly to the increased training and supervision activities for the planners

and partly to the additional feedback given regarding the types of planning errors that were

occurring. The team also recommended that substantial changes be made in the work methods

used to prepare plans. Rather than having an individual planner with overall responsibility for

the operations section, it recommended that this task become a team activity so that knowl-

edge and experience regarding the interface between factor and planning operations could be

shared in an effort to further improve the process.

The planning organization began to use other SPC tools as part of their quality improve-

ment effort. For example, note that the run chart in Figure 5.37 could be converted to a Shewhart

control chart with the addition of a center line and appropriate control limits. Once the planners

Planner Checker
Quality

assurance Shop

Liaison
engineering

SPC

SPC

SPC

■ F I G U R E  5 . 3 2 A

high-level flowchart of the

planning process.
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were exposed to the concepts of SPC, control charts came into use in the organization and

proved effective in identifying assignable causes; that is, periods of time in which the error

rates produced by the system were higher than those that could be justified by chance cause

alone. It is its ability to differentiate between assignable and chance causes that makes the

control chart so indispensable. Management must react differently to an assignable cause than

it does to a chance or random cause. Assignable causes are due to phenomena external to the

system, and they must be tracked down and their root causes eliminated. Chance or random

causes are part of the system itself. They can only be reduced or eliminated by making

changes in how the system operates. This may mean changes in work methods and proce-

dures, improved levels of operator training, different types of equipment and facilities, or

improved input materials, all of which are the responsibility of management. In the planning

process, many of the common causes identified were related to the experience, training, and

supervision of the individual planners, as well as poor input information from design and

development engineering. These common causes were systematically removed from the
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DATA SHEET

P/N

ERRORS DESCRIPTION ACTION

1. HEADER SECT.

a. PART NO.

b. ITEM

c. MODEL

2. DWG/DOC SECT.

3. COMPONENT PART SECT.

a. PROCUREMENT CODES

b. STAGING

c. MOA (#SIGNS)

4. MOTE SECT.

5. MATERIAL SECT.

a. MCC CODE (NON MP&R)

6. OPERATION SECT.

a. ISSUE STORE(S)

b. EQUIPMENT USAGE

c. OPC FWC MNEMONICS

d. SEQUENCING

e. OPER’S OMITTED

f. PROCESS SPECS

g. END ROUTE STORE

h. WELD GRID

7. TOOL/SHOP AIDS ORDERS

8. CAR/SHOP STOCK PREP.

REMARKS:

CHECKER

NO. OF OPERATIONS DATE

■ F I G U R E  5 . 3 3 The check sheet for the planning example.
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Monthly Data Summary

1. HEADER SECT.

a. PART NO.

b. ITEM

c. MODEL

2. DWG/DOC SECT.

3. COMPONENT PART SECT.

a. PROCUREMENT CODES

b. STAGING

c. MOA (#SIGNS)

4. MOTE SECT.

5. MATERIAL SECT.

a. MCC CODE (NON MP&R)

6. OPERATION SECT.

a. ISSUE STORE(S)

b. EQUIPMENT USAGE

c. OPC FWC MNEMONICS

d. SEQUENCING

e. OPER’S OMITTED

f. PROCESS SPECS

g. END ROUTE STORE

h. WELD GRID

7. TOOL/SHOP AIDS ORDERS

TOTAL NUMBER ERRORS

TOTAL OPERATIONS CHECKED

WEEK ENDING

■ F I G U R E  5 . 3 4 The summary check sheet.

■ F I G U R E  5 . 3 5 Pareto analysis of planning

errors.

■ F I G U R E  5 . 3 6 Pareto analysis of opera-

tions section errors.
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process, and the long-term impact of the SPC implementation in this organization was to

reduce planning errors to a level of less than one planning error per 1,000 operations.

Value stream mapping is another way to see the flow of material and information in a

process. A value stream map is much like a flowchart, but it usually incorporates other infor-

mation about the activities that are occurring at each step in the process and the information

that is required or generated. It is a big picture tool that helps an improvement team focus on

optimizing the entire process, without focusing too narrowly on only one process activity or

step, which could lead to suboptimal solutions.

Like a flowchart or operations process chart, a value stream map usually is constructed

using special symbols. The box below presents the symbols usually employed on value

stream maps.
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■ F I G U R E  5 . 3 7 A run chart

of planning errors.
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228 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

The value stream map presents a picture of the value stream from the product’s viewpoint: It

is not a flowchart of what people do, but what actually happens to the product. It is necessary

to collect process data to construct a value stream map. Some of the data typically collected

includes:

1. Lead time (LT)—the elapsed time it takes one unit of product to move through the entire

value stream from beginning to end.

2. Processing time (PT)—the elapsed time from the time the product enters a process until

it leaves that process.

3. Cycle time (CT)—how often a product is completed by a process. Cycle time is a rate,

calculated by dividing the processing time by the number of people or machines doing

the work.

4. Setup time (ST)—these are activities such as loading/unloading, machine preparation,

testing, and trial runs. In other words, all activities that take place between completing

a good product until starting to work on the next unit or batch of product.

5. Available time (AT)—the time each day that the value stream can operate if there is

product to work on.

6. Uptime (UT)—the percentage of time the process actually operates as compared to the

available time or planned operating time.

7. Pack size—the quantity of product required by the customer for shipment.

8. Batch size—the quantity of product worked on and moved at one time.

9. Queue time—the time a product spends waiting for processing.

10. Work-in-process (WIP)—product that is being processed but is not yet complete.

11. Information flows—schedules, forecasts, and other information that tells each process

what to do next.

Figure 5.38 shows an example of a value stream map that could be almost anything

from a manufactured product (receive parts, preprocess parts, assemble the product, pack and

ship the product to the customer) to a transaction (receive information, preprocess informa-

tion, make calculations and decision, inform customer of decision or results). Notice that in

the example we have allocated the setup time on a per-piece basis and included that in the

timeline. This is an example of a current-state value stream map. That is, it shows what is

happening in the process as it is now defined. The DMAIC process can be useful in elimi-

nating waste and inefficiencies in the process, eliminating defects and rework, reducing

delays, eliminating non-value-added activities, reducing inventory (WIP, unnecessary back-

logs), reducing inspections, and reducing unnecessary product movement. There is a lot of

opportunity for improvement in this process, because the process cycle efficiency isn’t very

good. Specifically,

Reducing the amount of work-in-process inventory is one approach that would improve the

process cycle efficiency. As a team works on improving a process, often a future-state value
stream map is constructed to show what a redefined process should look like.

Finally, there are often questions about how the technical quality improvement tools in this

book can be applied in service and transactional businesses. In practice, almost all of the tech-

niques translate directly to these types of businesses. For example, designed experiments have

been applied in banking, finance, marketing, health care, and many other service/transactional

businesses. Designed experiments can be used in any application where we can manipulate the

Process cycle efficiency = 
Value-add time

Process cycle time
= = 0.0617

35.5

575.5
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decision variables in the process. Sometimes we will use a simulation model of the

process to facilitate conducting the experiment. Similarly, control charts have many appli-

cations in the service economy, as will be illustrated in this book. It is a big mistake to

assume that these techniques are not applicable just because you are not working in a man-

ufacturing environment.

Still, one difference in the service economy is that you are more likely to encounter

attribute data. Manufacturing often has lots of continuous measurement data, and it is often

safe to assume that these data are at least approximately normally distributed. However, in ser-

vice and transactional processes, more of the data that you will use in quality improvement pro-

jects is either proportion defective, percentage good, or counts of errors or defects. In Chapter 7,

we discuss control charting procedures for dealing with attribute data. These control charts

have many applications in the service economy. However, even some of the continuous data

encountered in service and transactional businesses, such as cycle time, may not be normally

distributed.

Let’s talk about the normality assumption. It turns out that many statistical procedures

(such as the t-tests and ANOVA from Chapter 4) are very insensitive to the normality assump-

tion. That is, moderate departures from normality have little impact on their effectiveness.

There are some procedures that are fairly sensitive to normality, such as tests on variances,

and this book carefully identifies such procedures. One alternative to dealing with moderate

to severe non-normality is to transform the original data (say, by taking logarithms) to pro-

duce a new set of data whose distribution is closer to normal. A disadvantage of this is that

nontechnical people often don’t understand data transformation and are not comfortable with

data presented in an unfamiliar scale. One way to deal with this is to perform the statistical

analysis using the transformed data, but to present results (graphs, for example) with the data

in the original units.
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■ F I G U R E  5 . 3 8 A value stream map.
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230 Chapter 5 ■ Methods and Philosophy of Statistical Process Control

In extreme cases, there are nonparametric statistical procedures that don’t have an

underlying assumption of normality and can be used as alternatives to procedures such as 

t-tests and ANOVA. Refer to Montgomery and Runger (2011) for an introduction to many of

these techniques. Many computer software packages such as Minitab have nonparametric

methods included in their libraries of procedures. There are also special statistical tests for

binomial parameters and Poisson parameters. (Some of these tests were discussed in Chapter 4;

Minitab, for example, incorporates many of these procedures.) It also is important to be clear

about to what the normality assumption applies. For example, suppose that you are fitting a

linear regression model to cycle time to process a claim in an insurance company. The cycle

time is y, and the predictors are different descriptors of the customer and what type of claim

is being processed. The model is

The data on y, the cycle time, isn’t normally distributed. Part of the reason for this is that the

observations on y are impacted by the values of the predictor variables, x1, x2, and x3. It is 

the errors in this model that need to be approximately normal, not the observations on y. That

is why we analyze the residuals from regression and ANOVA models. If the residuals are

approximately normal, there are no problems. Transformations are a standard procedure that

can often be used successfully when the residuals indicate moderate to severe departures from

normality.

There are situations in transactional and service businesses where we are using regres-

sion and ANOVA and the response variable y may be an attribute. For example, a bank may

want to predict the proportion of mortgage applications that are actually funded. This is a

measure of yield in their process. Yield probably follows a binomial distribution. Most likely,

yield isn’t well approximated by a normal distribution, and a standard linear regression model

wouldn’t be satisfactory. However, there are modeling techniques based on generalized
linear models that handle many of these cases. For example, logistic regression can be used

with binomial data and Poisson regression can be used with many kinds of count data.

Montgomery, Peck, and Vining (2006) contains information on applying these techniques.

Logistic regression is available in Minitab, and JMP software provides routines for both logistic

and Poisson regressions.

y = b0 + b1x1 + b2x2 + b3x3 + e

Action limits

Assignable causes of variation

Average run length (ARL)

Average time to signal

Cause-and-effect diagram

Chance causes of variation

Check sheet

Control chart

Control limits

Defect concentration diagram

Designed experiments

Flowcharts, operations process charts, and 

value stream mapping

Factorial experiment

In-control process

Magnificent seven

Out-of-control-action plan (OCAP)

Out-of-control process

Pareto chart

Patterns on control charts

Phase I and phase II applications

Rational subgroups

Sample size for control charts

Sampling frequency for control charts

Scatter diagram

Sensitizing rules for control charts

Shewhart control charts

Statistical control of a process

Statistical process control (SPC)

Three-sigma control limits

Warning limits
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Exercises 231

Exercises

5.1. What are chance and assignable

causes of variability? What part do

they play in the operation and inter-

pretation of a Shewhart control

chart?

5.2. Discuss the relationship between a

control chart and statistical hypothe-

sis testing.

5.3. Discuss type I and type II errors rel-

ative to the control chart. What prac-

tical implication in terms of process

operation do these two types of

errors have?

5.4. What is meant by a process that is in a state of statis-

tical control?

5.5. If a process is in a state of statistical control, does it

necessarily follow that all or nearly all of the units of

product produced will be within the specification

limits?

5.6. Discuss the logic underlying the use of three-sigma

limits on Shewhart control charts. How will the chart

respond if narrower limits are chosen? How will it

respond if wider limits are chosen?

5.7. What are warning limits on a control chart? How can

they be used?

5.8. Discuss the rational subgroup concept. What part

does it play in control chart analysis?

5.9. When taking samples or subgroups from a process, do

you want assignable causes occurring within the sub-

groups or between them? Fully explain your answer.

5.10. A molding process uses a five-cavity mold for a part

used in an automotive assembly. The wall thickness

of the part is the critical quality characteristic. It has

been suggested to use and R charts to monitor this

process, and to use as the subgroup or sample all five

parts that result from a single “shot” of the machine.

What do you think of this sampling strategy? What

impact does it have on the ability of the charts to

detect assignable causes?

5.11. A manufacturing process produces 500 parts per

hour. A sample part is selected about every half hour,

and after five parts are obtained, the average of these

five measurements is plotted on an control chart.

(a) Is this an appropriate sampling scheme if the

assignable cause in the process results in an

instantaneous upward shift in the mean that is of

very short duration?

(b) If your answer is no, propose an alternative pro-

cedure.

5.12. Consider the sampling scheme proposed in Exercise

5.11. Is this scheme appropriate if the assignable cause

results in a slow, prolonged upward drift in the mean?

If your answer is no, propose an alternative procedure.

5.13. If the time order of production has not been recorded

in a set of data from a process, is it possible to detect

the presence of assignable causes?

5.14. What information is provided by the operating char-

acteristic curve of a control chart?

5.15. How do the costs of sampling, the costs of producing

an excessive number of defective units, and the costs

of searching for assignable causes impact on the

choice of parameters of a control chart?

5.16. Is the average run length performance of a control

chart a more meaningful measure of performance

than the type I and type II error probabilities? What

information does ARL convey that the statistical

error probabilities do not?

5.17. Consider the control chart shown here. Does the pat-

tern appear random?

5.18. Consider the control chart shown here. Does the pat-

tern appear random?

5.19. Consider the control chart shown here. Does the pat-

tern appear random?
x

x

UCL

Center
line

LCL

2 4 6 8 10 12 14 16 18 20

UCL

Center
line

LCL

1 173 5 7 9 11 13 15

UCL

Center
line

LCL

5 10 15 20

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.
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Time

(c)

Time

(d)

x

x

x

Time

(e)

Time

(a)

Time

(b)

x x

5.20. Consider the control chart shown in Exercise 5.17.

Would the use of warning limits reveal any potential

out-of-control conditions?

5.21. Apply the Western Electric rules to the control chart

in Exercise 5.17. Are any of the criteria for declaring

the process out of control satisfied?

5.22. Sketch warning limits on the control chart in Exercise

5.19. Do these limits indicate any potential out-of-

control conditions?

5.23. Apply the Western Electric rules to the control chart

presented in Exercise 5.19. Would these rules result

in any out-of-control signals?

5.24. Consider the time-varying process behavior shown

below  and on the next page. Match each of these

several patterns of process performance to the corre-

sponding and R charts shown in figures (a) to (e)

below.

x

x x

UCL

LCL

UCL

LCL

RR

(2)

x x

UCL

LCL

R

(4)

UCL

LCL

R

x x

R

UCL

LCL

UCL

LCL

R

(1)

x x

UCL

LCL

R

(3)

UCL

LCL

R
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5.25. You consistently arrive at your office about one-half

hour later than you would like. Develop a cause-and-

effect diagram that identifies and outlines the possi-

ble causes of this event.

5.26. A car has gone out of control during a snowstorm and

struck a tree. Construct a cause-and-effect diagram

that identifies and outlines the possible causes of the

accident.

5.27. Laboratory glassware shipped from the manufacturer

to your plant via an overnight package service has

arrived damaged. Develop a cause-and-effect dia-

gram that identifies and outlines the possible causes

of this event.

5.28. Construct a cause-and-effect diagram that identifies

the possible causes of consistently bad coffee from a

large-capacity office coffee pot.

5.29. Develop a flowchart for the process that you follow

every morning from the time you awake until you

Exercises 233

arrive at your workplace (or school). Identify the

value-added and non-value-added activities.

5.30. Develop a flowchart for the pre-registration process

at your university. Identify the value-added and non-

value-added activities.

5.31. The magnificent seven can be used in our personal

lives. Develop a check sheet to record “defects” you

have in your personal life (such as overeating, being

rude, not meeting commitments, missing class, etc.).

Use the check sheet to keep a record of these

“defects” for one month. Use a Pareto chart to ana-

lyze these data. What are the underlying causes of

these “defects”?

5.32. A process is normally distributed and in control, with

known mean and variance, and the usual three-sigma

limits are used on the control chart, so that the prob-

ability of a single point plotting outside the control

limits when the process is in control is 0.0027.

Suppose that this chart is being used in phase I and

the averages from a set of m samples or subgroups

from this process are plotted on this chart. What is the

probability that at least one of the averages will plot

outside the control limits when m = 5? Repeat these

calculations for the cases where m = 10, m = 20,

m = 30, and m = 50. Discuss the results that you have

obtained.

5.33. Reconsider the situation in Exercise 5.32. Suppose

that the process mean and variance were unknown

and had to be estimated from the data available from

the m subgroups. What complications would this

introduce in the calculations that you performed in

Exercise 5.32?

x

x x

UCL

LCL

R

UCL

LCL

R

(5)
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CHAPTER OUTLINE

The supplemental material is on the textbook Website www.wiley.com/college/montgomery.

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

A quality characteristic that is measured on a numerical scale is called a variable. Examples

include dimensions such as length or width, temperature, and volume. This chapter presents

Shewhart control charts for these types of quality characteristics. The and R control charts

are widely used to monitor the mean and variability of variables. Several variations of the x
x
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6.1 Introduction 235

and R charts are also given, including a procedure to adapt them to individual measurements.

The chapter concludes with typical applications of variables control charts.

After careful study of this chapter, you should be able to do the following:

1. Understand the statistical basis of Shewhart control charts for variables

2. Know how to design variables control charts

3. Know how to set up and use and R control charts

4. Know how to estimate process capability from the control chart information

5. Know how to interpret patterns on and R control charts

6. Know how to set up and use and s or s2 control charts

7. Know how to set up and use control charts for individual measurements

8. Understand the importance of the normality assumption for individuals control

charts and know how to check this assumption

9. Understand the rational subgroup concept for variables control charts

10. Determine the average run length for variables control charts

6.1 Introduction

Many quality characteristics can be expressed in terms of a numerical measurement. As

examples, the diameter of a bearing could be measured with a micrometer and expressed in

millimeters or the time to process an insurance claim can be expressed in hours. A single

measurable quality characteristic, such as a dimension, weight, or volume, is called a vari-
able. Control charts for variables are used extensively. Control charts are one of the primary

tools used in the Analyze and Control steps of DMAIC.

When dealing with a quality characteristic that is a variable, it is usually necessary to

monitor both the mean value of the quality characteristic and its variability. Control of the

process average or mean quality level is usually done with the control chart for means, or the

control chart. Process variability can be monitored with either a control chart for the stan-

dard deviation, called the s control chart, or a control chart for the range, called an R con-
trol chart. The R chart is more widely used. Usually, separate and R charts are maintained

for each quality characteristic of interest. (However, if the quality characteristics are closely

related, this can sometimes cause misleading results; refer to Chapter 12 of Part IV.) The 

and R (or s) charts are among the most important and useful on-line statistical process moni-

toring and control techniques.

It is important to maintain control over both the process mean and process variability.

Figure 6.1 illustrates the output of a production process. In Figure 6.1a, both the mean m and

standard deviation s are in control at their nominal values (say, m0 and s0); consequently,

most of the process output falls within the specification limits. However, in Figure 6.1b the

x

x

xx

x

x

x

Lower
specification

limit

Upper
specification

limit

μ0

σ0~

(a)

Lower
specification

limit

Upper
specification

limit

μ0 μ1

σ0~

(b)

Lower
specification

limit

Upper
specification

limit

μ0

σ1~

(c)

■ F I G U R E  6 . 1 The need for controlling both process mean and process variability. (a) Mean and 

standard deviation at nominal levels. (b) Process mean m1 > m0. (c) Process standard deviation s1 > s0.
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236 Chapter 6 ■ Control Charts for Variables

mean has shifted to a value m1 > m0, resulting in a higher fraction of nonconforming prod-

uct. In Figure 6.1c the process standard deviation has shifted to a value s1 > s0. This 

also results in higher process fallout, even though the process mean is still at the nominal

value.

6.2 Control Charts for and R

6.2.1 Statistical Basis of the Charts

Suppose that a quality characteristic is normally distributed with mean m and standard devia-

tion s, where both m and s are known. If x1, x2, . . . , xn is a sample of size n, then the average

of this sample is

and we know that is normally distributed with mean m and standard deviation .

Furthermore, the probability is 1 − a that any sample mean will fall between

(6.1)

Therefore, if m and s are known, equation 6.1 could be used as upper and lower control lim-

its on a control chart for sample means. As noted in Chapter 5, it is customary to replace Za/2

by 3, so that three-sigma limits are employed. If a sample mean falls outside of these limits,

it is an indication that the process mean is no longer equal to m.

We have assumed that the distribution of the quality characteristic is normal. However,

the above results are still approximately correct even if the underlying distribution is non-

normal, because of the central limit theorem. We discuss the effect of the normality assump-

tion on variables control charts in Section 6.2.5.

In practice, we usually will not know m and s. Therefore, they must be estimated from

preliminary samples or subgroups taken when the process is thought to be in control. These

estimates should usually be based on at least 20 to 25 samples. Suppose that m samples are

available, each containing n observations on the quality characteristic. Typically, n will

be small, often either 4, 5, or 6. These small sample sizes usually result from the construction

of rational subgroups and from the fact that the sampling and inspection costs associated with

variables measurements are usually relatively large. Let be the average of each

sample. Then the best estimator of m, the process average, is the grand average—say,

(6.2)

Thus, would be used as the center line on the chart.

To construct the control limits, we need an estimate of the standard deviation s. Recall

from Chapter 4 (Section 4.2) that we may estimate s from either the standard deviations or

the ranges of the m samples. For the present, we will use the range method. If x1, x2, . . . , xn

is a sample of size n, then the range of the sample is the difference between the largest and

smallest observations—that is,

R x x= −max min

xx

x
x x x

m
m= + + +1 2 L

x1, x2, . . . , xm

μ σ μ σ μ σ μ σ
α α α α+ = + − = −Z Z

n
Z Z

nx x2 2 2 2  and  

sx = s/1nx

x
x x x

n
n= + + +1 2 L

x
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Let R1, R2, . . . , Rm be the ranges of the m samples. The average range is

(6.3)

We may now give the formulas for constructing the control limits on the chart. They

are as follows:

x

R
R R R

m
m= + + +1 2 L

Control Limits for the Chart

(6.4)

The constant A2 is tabulated for various sample sizes in Appendix Table VI.

UCL

Center line =

LCL

= +

= −

x A R

x

x A R

2

2

x

Control Limits for the R Chart

(6.5)

The constants D3 and D4 are tabulated for various values of n in Appendix Table VI.

UCL

Center line =

LCL

=

=

D R

R

D R

4

3

Process variability may be monitored by plotting values of the sample range R on a con-

trol chart. The center line and control limits of the R chart are as follows:

Development of Equations 6.4 and 6.5. The development of the equations for

computing the control limits on the and R control charts is relatively easy. In Chapter 4

(Section 4.2) we observed that there is a well-known relationship between the range of a

sample from a normal distribution and the standard deviation of that distribution. The random

variable W = R/s is called the relative range. The parameters of the distribution of W are a

function of the sample size n. The mean of W is d2. Consequently, an estimator of s is

. Values of d2 for various sample sizes are given in Appendix Table VI. Therefore, if

is the average range of the m preliminary samples, we may use

(6.6)

to estimate s. This is an unbiased estimator of s.

σ̂ = R

d2

R
ŝ = R/d2

x

6.2 Control Charts for and R 237xx
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238 Chapter 6 ■ Control Charts for Variables

If we use as an estimator of m and as an estimator of s, then the parameters of

the chart are

(6.7)

If we define

(6.8)

then equation 6.7 reduces to equation 6.4.

Now consider the R chart. The center line will be . To determine the control limits, we

need an estimate of . Assuming that the quality characteristic is normally distributed, ŝR

can be found from the distribution of the relative range W = R/s. The standard deviation of

W, say d3, is a known function of n. Thus, since

the standard deviation of R is

Since s is unknown, we may estimate sR by

(6.9)

Consequently, the parameters of the R chart with the usual three-sigma control limits are

(6.10)

If we let

equation 6.10 reduces to equation 6.5.

Phase I Application of and R Charts. In phase I control chart usage, when

preliminary samples are used to construct and R control charts, it is customary to treat the

control limits obtained from equations 6.4 and 6.5 as trial control limits. They allow us to

determine whether the process was in control when the m initial samples were selected. To

determine whether the process was in control when the preliminary samples were collected,

plot the values of and R from each sample on the charts and analyze the resulting display.

If all points plot inside the control limits and no systematic behavior is evident, we conclude

that the process was in control in the past, and the trial control limits are suitable for controlling
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6.2 Control Charts for and R 239xx

current or future production. It is highly desirable to have 20–25 samples or subgroups of size

n (typically n is between 3 and 5) to compute the trial control limits. We can, of course, work

with fewer data, but the control limits are not as reliable.

Suppose that one or more of the values of either or R plot out of control when com-

pared to the trial control limits. Clearly, if control limits for current or future production are to

be meaningful, they must be based on data from a process that is in control. Therefore, when

the hypothesis of past control is rejected, it is necessary to revise the trial control limits. This

is done by examining each of the out-of-control points, looking for an assignable cause. If an

assignable cause is found, the point is discarded and the trial control limits are recalculated,

using only the remaining points. Then these remaining points are reexamined for control. (Note

that points that were in control initially may now be out of control, because the new trial con-

trol limits will generally be tighter than the old ones.) This process is continued until all points

plot in control, at which point the trial control limits are adopted for current use.

In some cases, it may not be possible to find an assignable cause for a point that plots

out of control. There are two courses of action open to us. The first of these is to eliminate

the point, just as if an assignable cause had been found. There is no analytical justification for

choosing this action, other than that points that are outside of the control limits are likely to

have been drawn from a probability distribution characteristic of an out-of-control state. The

alternative is to retain the point (or points) considering the trial control limits as appropriate for

current control. Of course, if the point really does represent an out-of-control condition, the

resulting control limits will be too wide. However, if there are only one or two such points, this

will not distort the control chart significantly. If future samples still indicate control, then the

unexplained points can probably be safely dropped. Generally, if both charts initially exhibit

out-of-control points it is a good strategy to establish control on the R chart as soon as possi-

ble. If the R chart is out of control, this means that process variability is unstable, and the con-

trol limits on the chart (which require an estimate of process variability) are unreliable.

Occasionally, when the initial sample values of and R are plotted against the trial con-

trol limits, many points will plot out of control. Clearly, if we arbitrarily drop the out-of-

control points, we will have an unsatisfactory situation, as few data will remain with which

we can recompute reliable control limits. We also suspect that this approach would ignore

much useful information in the data. On the other hand, searching for an assignable cause for

each out-of-control point is unlikely to be successful. We have found that when many of the

initial samples plot out of control against the trial limits, it is better to concentrate on the pat-
terns on control charts formed by these points. Such a pattern will almost always exist.

Usually, the assignable cause associated with the pattern of out-of-control points is fairly easy

to identify. Removal of this process problem usually results in a major process improvement.

6.2.2 Development and Use of and R Charts

In the previous section we presented the statistical background for and R control charts. We

now illustrate the construction and application of these charts. We also discuss some guide-

lines for using these charts in practice.

x

x

x
x

x

EXAMPLE 6.1

A hard-bake process (see Section 5.3.1) is used in conjunction

with photolithography in semiconductor manufacturing. We

wish to establish statistical control of the flow width of the

resist in this process using and R charts. Twenty-five samples,

each of size five wafers, have been taken when we think the

process is in control. The interval of time between samples or

subgroups is one hour. The flow width measurement data (in

microns) from these samples are shown in Table 6.1.x

and R Charts for a Manufacturing Process x

(continued)
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240 Chapter 6 ■ Control Charts for Variables

SOLUTION

When setting up and R control charts, it is best to begin

with the R chart. Because the control limits on the chart

depend on the process variability, unless process variability

is in control, these limits will not have much meaning. Using

the data in Table 6.1, we find that the center line for the R
chart is

For samples of n = 5, we find from Appendix Table VI that 

D3 = 0 and D4 = 2.114. Therefore, the control limits for the 

R chart are, using equation 6.5,

The R chart is shown in Figure 6.2b. Both control charts in

Figure 6.2 were constructed by Minitab. Note that the UCL for

the R chart is reported as 0.6876, because Minitab uses more

LCL

UCL

= = ( ) =

= = ( ) =

RD

RD

3

4

0 32521 0 0

0 32521 2 114 0 68749

.

. . .

R
Ri

i= = ==
∑

1

25

25

8 1302

25
0 32521

.
.

x
x

■ TA B L E  6 . 1  

Flow Width Measurements (microns) for the Hard-Bake Process

Wafers
Sample 
Number 1 2 3 4 5 x̄i Ri

1 1.3235 1.4128 1.6744 1.4573 1.6914 1.5119 0.3679

2 1.4314 1.3592 1.6075 1.4666 1.6109 1.4951 0.2517

3 1.4284 1.4871 1.4932 1.4324 1.5674 1.4817 0.1390

4 1.5028 1.6352 1.3841 1.2831 1.5507 1.4712 0.3521

5 1.5604 1.2735 1.5265 1.4363 1.6441 1.4882 0.3706

6 1.5955 1.5451 1.3574 1.3281 1.4198 1.4492 0.2674

7 1.6274 1.5064 1.8366 1.4177 1.5144 1.5805 0.4189

8 1.4190 1.4303 1.6637 1.6067 1.5519 1.5343 0.2447

9 1.3884 1.7277 1.5355 1.5176 1.3688 1.5076 0.3589

10 1.4039 1.6697 1.5089 1.4627 1.5220 1.5134 0.2658

11 1.4158 1.7667 1.4278 1.5928 1.4181 1.5242 0.3509

12 1.5821 1.3355 1.5777 1.3908 1.7559 1.5284 0.4204

13 1.2856 1.4106 1.4447 1.6398 1.1928 1.3947 0.4470

14 1.4951 1.4036 1.5893 1.6458 1.4969 1.5261 0.2422

15 1.3589 1.2863 1.5996 1.2497 1.5471 1.4083 0.3499

16 1.5747 1.5301 1.5171 1.1839 1.8662 1.5344 0.6823

17 1.3680 1.7269 1.3957 1.5014 1.4449 1.4874 0.3589

18 1.4163 1.3864 1.3057 1.6210 1.5573 1.4573 0.3153

19 1.5796 1.4185 1.6541 1.5116 1.7247 1.5777 0.3062

20 1.7106 1.4412 1.2361 1.3820 1.7601 1.5060 0.5240

21 1.4371 1.5051 1.3485 1.5670 1.4880 1.4691 0.2185

22 1.4738 1.5936 1.6583 1.4973 1.4720 1.5390 0.1863

23 1.5917 1.4333 1.5551 1.5295 1.6866 1.5592 0.2533

24 1.6399 1.5243 1.5705 1.5563 1.5530 1.5688 0.1156

25 1.5797 1.3663 1.6240 1.3732 1.6887 1.5264 0.3224

Σ x̄i = 37.6400 ΣRi = 8.1302
=
x = 1.5056

–
R = 0.32521
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6.2 Control Charts for and R 241xx

Estimating Process Capability. The and R charts provide information about the

performance or process capability of the process. From the chart, we may estimate the

mean flow width of the resist in the hard-bake process as microns. The process

standard deviation may be estimated using equation 6.6—that is,

where the value of d2 for samples of size five is found in Appendix Table VI. The specifica-

tion limits on flow width are 1.50 ± 0.50 microns. The control chart data may be used to

describe the capability of the process to produce wafers relative to these specifications.

Assuming that flow width is a normally distributed random variable, with mean 1.5056 and

ˆ
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■ F I G U R E  6 . 2 and R charts (from Minitab) for flow width in the hard-bake

process.

x

decimal places in the calculation than we did. When the 25

sample ranges are plotted on the R chart in Figure 6.2b there is

no indication of an out-of-control condition.

Since the R chart indicates that process variability is in con-

trol, we may now construct the chart. The center line is

To find the control limits on the chart, we use A2 = 0.577

from Appendix Table VI for samples of size n = 5 and equa-

tion 6.4 to find

and

The chart is shown in Figure 6.2a. When the preliminary

sample averages are plotted on this chart, no indication of an

out-of-control condition is observed. Therefore, since both

the and R charts exhibit control, we would conclude that the

process is in control at the stated levels and adopt the trial

control limits for use in phase II, where monitoring of future

production is of interest.
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242 Chapter 6 ■ Control Charts for Variables

standard deviation 0.1398, we may estimate the fraction of nonconforming wafers pro-

duced as

That is, about 0.035% [350 parts per million (ppm)] of the wafers produced will be outside

of the specifications.

Another way to express process capability is in terms of the process capability ratio
(PCR) Cp, which for a quality characteristic with both upper and lower specification limits

(USL and LSL, respectively) is

(6.11)

Note that the 6s spread of the process is the basic definition of process capability. Since s
is usually unknown, we must replace it with an estimate. We frequently use as anŝ = R/d2

Cp = −USL LSL

6σ
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■ F I G U R E  6 . 3 Process fallout and the process capability ratio Cp.

estimate of s, resulting in an estimate of Cp. For the hard-bake process, since

, we find that

This implies that the “natural” tolerance limits in the process (three-sigma above and below the

mean) are inside the lower and upper specification limits. Consequently, a moderately small

number of nonconforming wafers will be produced. The PCR Cp may be interpreted another

way. The quantity

is simply the percentage of the specification band that the process uses up. For the hard-bake

process an estimate of P is

That is, the process uses up about 84% of the specification band.

Figure 6.3 illustrates three cases of interest relative to the PCR Cp and process specifi-

cations. In Figure 6.3a the PCR Cp is greater than unity. This means that the process uses up

much less than 100% of the tolerance band. Consequently, relatively few nonconforming units
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R/d2 = ŝ = 0.1398

Ĉp
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will be produced by this process. Figure 6.3b shows a process for which the PCR Cp = 1; that

is, the process uses up all the tolerance band. For a normal distribution this would imply

about 0.27% (or 2,700 ppm) nonconforming units. Finally, Figure 6.3c presents a process for

which the PCR Cp < 1; that is, the process uses up more than 100% of the tolerance band.

In this case, the process is very yield-sensitive, and a large number of nonconforming units

will be produced.

Note that all the cases in Figure 6.3 assume that the process is centered at the midpoint

of the specification band. In many situations this will not be the case, and as we will see in

Chapter 8 (which is devoted to a more extensive treatment of process capability analysis),

some modification of the PCR Cp is necessary to describe this situation adequately.

Revision of Control Limits and Center Lines. The effective use of any control

chart will require periodic revision of the control limits and center lines. Some practitioners

establish regular periods for review and revision of control chart limits, such as every week,

every month, or every 25, 50, or 100 samples. When revising control limits, remember that it

is highly desirable to use at least 25 samples or subgroups (some authorities recommend

200–300 individual observations) in computing control limits.

Sometimes the user will replace the center line of the chart with a target value, say .

If the R chart exhibits control, this can be helpful in shifting the process average to the desired

value, particularly in processes where the mean may be changed by a fairly simple adjustment

of a manipulatable variable in the process. If the mean is not easily influenced by a simple

process adjustment, then it is likely to be a complex and unknown function of several process

variables and a target value may not be helpful, as use of that value could result in many

points outside the control limits. In such cases, we would not necessarily know whether the

point was really associated with an assignable cause or whether it plotted outside the limits

because of a poor choice for the center line. Designed experiments can be very helpful in

determining which process variable adjustments lead to a desired value of the process mean.

When the R chart is out of control, we often eliminate the out-of-control points and

recompute a revised value of . This value is then used to determine new limits and center

line on the R chart and new limits on the chart. This will usually tighten the limits on both

charts, making them consistent with a process standard deviation s that reflects use of the

revised in the relationship . This estimate of s could be used as the basis of a prelimi-

nary analysis of process capability.

Phase II Operation of the and R Charts. Once a set of reliable control limits

is established, we use the control chart for monitoring future production. This is called phase
II control chart usage.

Twenty additional samples of wafers from the hard-bake process were collected after the

control charts were established and the sample values of and R plotted on the control charts

immediately after each sample was taken. The data from these new samples are shown in

Table 6.2, and the continuations of the and R charts are shown in Figure 6.4. The control charts

indicate that the process is in control, until the -value from the 43rd sample is plotted. Since

this point (as well as the -value from sample 45) plots above the upper control limit, we would

suspect that an assignable cause has occurred at or before that time. The general pattern of points

on the chart from about subgroup 38 onward is indicative of a shift in the process mean.

Once the control chart is established and is being used in on-line process monitoring, one

is often tempted to use the sensitizing rules (or Western Electric rules) discussed in Chapter 5

(Section 5.3.6) to speed up shift detection. Here, for example, the use of such rules would

likely result in the shift being detected around sample 40. However, recall the discussion from

Section 5.3.3 in which we discouraged the routine use of these sensitizing rules for on-line

monitoring of a stable process because they greatly increase the occurrence of false alarms.

x

x
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■ TA B L E  6 . 2

Additional Samples for Example 6.1

Wafers
Sample
Number 1 2 3 4 5 x̄ i Ri

26 1.4483 1.5458 1.4538 1.4303 1.6206 1.4998 0.1903

27 1.5435 1.6899 1.5830 1.3358 1.4187 1.5142 0.3541

28 1.5175 1.3446 1.4723 1.6657 1.6661 1.5332 0.3215

29 1.5454 1.0931 1.4072 1.5039 1.5264 1.4152 0.4523

30 1.4418 1.5059 1.5124 1.4620 1.6263 1.5097 0.1845

31 1.4301 1.2725 1.5945 1.5397 1.5252 1.4724 0.3220

32 1.4981 1.4506 1.6174 1.5837 1.4962 1.5292 0.1668

33 1.3009 1.5060 1.6231 1.5831 1.6454 1.5317 0.3445

34 1.4132 1.4603 1.5808 1.7111 1.7313 1.5793 0.3181

35 1.3817 1.3135 1.4953 1.4894 1.4596 1.4279 0.1818

36 1.5765 1.7014 1.4026 1.2773 1.4541 1.4824 0.4241

37 1.4936 1.4373 1.5139 1.4808 1.5293 1.4910 0.0920

38 1.5729 1.6738 1.5048 1.5651 1.7473 1.6128 0.2425

39 1.8089 1.5513 1.8250 1.4389 1.6558 1.6560 0.3861

40 1.6236 1.5393 1.6738 1.8698 1.5036 1.6420 0.3662

41 1.4120 1.7931 1.7345 1.6391 1.7791 1.6716 0.3811

42 1.7372 1.5663 1.4910 1.7809 1.5504 1.6252 0.2899

43 1.5971 1.7394 1.6832 1.6677 1.7974 1.6970 0.2003

44 1.4295 1.6536 1.9134 1.7272 1.4370 1.6321 0.4839

45 1.6217 1.8220 1.7915 1.6744 1.9404 1.7700 0.3187

■ F I G U R E  6 . 4 Continuation of the and R charts in Example 6.1.x

S
am

pl
e 

ra
ng

e

0 10 20 30 40 50

UCL = 0.6876

R = 0.3252

LCL = 0

(b)

0.7
0.6
0.5

0.3
0.2
0.1
0.0

0.4

S
am

pl
e 

m
ea

n

0Subgroup 10 20 30 40 50

UCL = 1.693

Mean = 1.506

LCL = 1.318

(a)

1.3

1.4

1.5

1.6

1.8

1.7

1
1

c06ControlChartsForVariables.qxd  3/28/12  5:20 PM  Page 244



In examining control chart data, it is sometimes helpful to construct a run chart of the

individual observations in each sample. This chart is sometimes called a tier chart or

tolerance diagram. This may reveal some pattern in the data, or it may show that a particular

value of or R was produced by one or two unusual observations in the sample. A series of

box plots is usually a very simple way to construct the tier diagram.

A tier chart of the flow width data observations is shown in Figure 6.5. This chart does

not indicate that the out-of-control signals were generated by unusual individual observations,

but instead they probably resulted from a shift in the mean around the time that sample 38 was

taken. The average of the averages of samples 38 through 45 is 1.6633 microns. The specifica-

tion limits of 1.50 ± 0.50 microns are plotted in Figure 6.5, along with a sketch of the normal

distribution that represents process output when the process mean equals the in-control value

1.5056 microns. A sketch of the normal distribution representing process output at the new

apparent mean diameter of 1.6633 microns is also shown in Figure 6.5. It is obvious that a much

higher percentage of nonconforming wafers will be produced at this new mean flow rate. Since

the process is out of control, a search for the cause of this shift in the mean must be conducted.

The out-of-control-action plan (OCAP) for this control chart, shown in Figure 5.6, would play

a key role in these activities by directing operating personnel through a series of sequential

activities to find the assignable cause. Often additional input and support from engineers, man-

agement, and the quality engineering staff are necessary to find and eliminate assignable causes.

Control Limits, Specification Limits, and Natural Tolerance Limits. A point

that should be emphasized is that there is no connection or relationship between the control
limits on the and R charts and the specification limits on the process. The control limits are

driven by the natural variability of the process (measured by the process standard deviation

s)—that is, by the natural tolerance limits of the process. It is customary to define the upper

and lower natural tolerance limits, say UNTL and LNTL, as 3s above and below the process

mean. The specification limits, on the other hand, are determined externally. They may be set by

management, the manufacturing engineers, the customer, or by product developers/designers.

One should have knowledge of inherent process variability when setting specifications, but

remember that there is no mathematical or statistical relationship between the control
limits and specification limits. The situation is summarized in Figure 6.6. We have encoun-

tered practitioners who have plotted specification limits on the control chart. This practice is

completely incorrect and should not be done. When dealing with plots of individual observa-

tions (not averages), as in Figure 6.5, it is helpful to plot the specification limits on that chart.

x

x

x

■ F I G U R E  6 . 5 Tier chart constructed using the Minitab box plot procedure for the

flow width data.
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246 Chapter 6 ■ Control Charts for Variables

Rational Subgroups. Rational subgroups play an important role in the use of and

R control charts. Defining a rational subgroup in practice may be easier with a clear under-

standing of the functions of the two types of control charts. The chart monitors the average

quality level in the process. Therefore, samples should be selected in such a way that maxi-

mizes the chances for shifts in the process average to occur between samples, and thus to show

up as out-of-control points on the chart. The R chart, on the other hand, measures the vari-

ability within a sample. Therefore, samples should be selected so that variability within sam-

ples measures only chance or random causes. Another way of saying this is that the chart

monitors between-sample variability (variability in the process over time), and the R chart

measures within-sample variability (the instantaneous process variability at a given time).

An important aspect of this is evident from carefully examining how the control limits

for the and R charts are determined from past data. The estimate of the process standard

deviation s used in constructing the control limits is calculated from the variability within
each sample (i.e., from the individual sample ranges). Consequently, the estimate of s reflects

only within-sample variability. It is not correct to estimate s based on the usual quadratic

estimator—say,

where xij is the jth observation in the ith sample, because if the sample means differ, then this

will cause s to be too large. Consequently, s will be overestimated. Pooling all of the prelimi-

nary data in this manner to estimate s is not a good practice because it potentially combines

both between-sample and within-sample variability. The control limits must be based on only

within-sample variability. Refer to the supplemental text material for more details.

Guidelines for the Design of the Control Chart. To design the and R charts,

we must specify the sample size, control limit width, and frequency of sampling to be used.

It is not possible to give an exact solution to the problem of control chart design, unless the

analyst has detailed information about both the statistical characteristics of the control chart
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■ F I G U R E  6 . 6 Relationship of natural tolerance limits, control limits,

and specification limits.
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tests and the economic factors that affect the problem. A complete solution of the problem

requires knowledge of the cost of sampling, the costs of investigating and possibly correcting

the process in response to out-of-control signals, and the costs associated with producing a

product that does not meet specifications. Given this kind of information, an economic deci-

sion model could be constructed to allow economically optimum control chart design. In

Chapter 10 (Section 10.6) we briefly discuss this approach to the problem. However, it is pos-

sible to give some general guidelines now that will aid in control chart design.

If the chart is being used primarily to detect moderate to large process shifts—say, on

the order of 2s or larger—then relatively small samples of size n = 4, 5, or 6 are reasonably

effective. On the other hand, if we are trying to detect small shifts, then larger sample sizes

of possibly n = 15 to n = 25 are needed. When smaller samples are used, there is less risk of

a process shift occurring while a sample is taken. If a shift does occur while a sample is taken,

the sample average can obscure this effect. Consequently, this is an argument for using as

small a sample size as is consistent with the magnitude of the process shift that one is trying

to detect. An alternative to increasing the sample size is to use warning limits and other sen-

sitizing procedures to enhance the ability of the control chart to detect small process shifts.

However, as we discussed in Chapter 5, we do not favor the routine use of these sensitizing

rules. If you are interested in small shifts, use the CUSUM or EWMA charts in Chapter 9.

The R chart is relatively insensitive to shifts in the process standard deviation for small

samples. For example, samples of size n = 5 have only about a 40% chance of detecting on

the first sample a shift in the process standard deviation from s to 2s. Larger samples would

seem to be more effective, but we also know that the range method for estimating the stan-

dard deviation drops dramatically in efficiency as n increases. Consequently, for large n—say,

n > 10 or 12—it is probably best to use a control chart for s or s2 instead of the R chart. Details

of the construction of these charts are shown in Sections 6.3.1 and 6.3.2.

From a statistical point of view, the operating-characteristic curves of the and R charts

can be helpful in choosing the sample size. They provide a feel for the magnitude of process

shift that will be detected with a stated probability for any sample size n. These operating-

characteristic curves are discussed in Section 6.2.6.

The problem of choosing the sample size and the frequency of sampling is one of allo-
cating sampling effort. Generally, the decision maker will have only a limited number of

resources to allocate to the inspection process. The available strategies will usually be either to

take small, frequent samples or to take larger samples less frequently. For example, the choice

may be between samples of size 5 every half hour or samples of size 20 every two hours. It is

impossible to say which strategy is best in all cases, but current industry practice favors small,

frequent samples. The general belief is that if the interval between samples is too great, too

much defective product will be produced before another opportunity to detect the process shift

occurs. From economic considerations, if the cost associated with producing defective items is

high, smaller, more frequent samples are better than larger, less frequent ones. Variable sam-

ple interval and variable sample size schemes could, of course, be used. Refer to Chapter 10.

The rate of production also influences the choice of sample size and sampling fre-

quency. If the rate of production is high—say, 50,000 units per hour—then more frequent

sampling is called for than if the production rate is extremely slow. At high rates of produc-

tion, many nonconforming units of product will be produced in a very short time when

process shifts occur. Furthermore, at high production rates, it is sometimes possible to obtain

fairly large samples economically. For example, if we produce 50,000 units per hour, it does

not take an appreciable difference in time to collect a sample of size 20 compared to a sam-

ple of size 5. If per unit inspection and testing costs are not excessive, high-speed production

processes are often monitored with moderately large sample sizes.

The use of three-sigma control limits on the and R control charts is a widespread prac-

tice. There are situations, however, when departures from this customary choice of control

x

x

x
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248 Chapter 6 ■ Control Charts for Variables

limits are helpful. For example, if false alarms or type I errors (when an out-of-control signal is

generated when the process is really in control) are very expensive to investigate, then it may be

best to use wider control limits than three-sigma—perhaps as wide as 3.5-sigma. However, if

the process is such that out-of-control signals are quickly and easily investigated with a mini-

mum of lost time and cost, then narrower control limits—perhaps at 2.5-sigma of 2.75-sigma—

may be of appropriate.

Changing Sample Size on the and R Charts. We have presented the develop-

ment of and R charts assuming that the sample size n is constant from sample to sample.

However, there are situations in which the sample size n is not constant. One situation is that

of variable sample size on control charts; that is, each sample may consist of a different

number of observations. The and R charts are generally not used in this case because they

lead to a changing center line on the R chart, which is difficult to interpret for many users.

The and s charts in Section 6.3.2 would be preferable in this case.

Another situation is that of making a permanent (or semipermanent) change in the

sample size because of cost or because the process has exhibited good stability and fewer

resources are being allocated for process monitoring. In this case, it is easy to recompute the

new control limits directly from the old ones without collecting additional samples based on

the new sample size. Let

For the chart the new control limits arex

 d2(new) = factor d2 for the new sample size

 d2(old) = factor d2 for the old sample size

 nnew = new sample size

 nold = old sample size

 Rnew = average range for the new sample size

 Rold = average range for the old sample size

x

x

x
x
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where the center line is unchanged and the factor A2 is selected for the new sample size. For

the R chart, the new parameters are
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where D3 and D4 are selected for the new sample size.
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that since the process exhibits good control, the process engi-

neering personnel want to reduce the sample size to three

wafers. Set up the new control charts.

EXAMPLE 6.2

To illustrate the above procedure, consider the and R charts

developed for the hard-bake process in Example 6.1. These

charts were based on a sample size of five wafers. Suppose

x

Changing Sample Size

SOLUTION

From Example 6.1, we know that

and from Appendix Table VI we have

Therefore, the new control limits on the chart are found from

equation 6.12 as

and
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For the R chart, the new parameters are given by equation 6.13:

Figure 6.7 shows the new control limits. Note that the effect of

reducing the sample size is to increase the width of the limits

on the chart (because is smaller when n = 5 than when

n = 3) and to lower the center line and the upper control limit

on the R chart (because the expected range from a sample of 

n = 3 is smaller than the expected range from a sample of n = 5).
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■ F i g u r e  6 . 7
Recalculated control lim-

its for the hard-bake

process in Example 6.1 to

reflect changing the sam-

ple size from n = 5 to 

n = 3.
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Probability Limits on the and R Charts. It is customary to express the control

limits on the and R charts as a multiple of the standard deviation of the statistic plotted on

the charts. If the multiple chosen is k, then the limits are referred to as k-sigma limits, the

usual choice being k = 3. As mentioned in Chapter 5, however, it is also possible to define the

control limits by specifying the type I error level for the test. These are called probability
limits for control charts and are used extensively in the United Kingdom and some parts of

Western Europe.

It is easy to choose probability limits for the chart. Since is approximately normally

distributed, we may obtain a desired type I error of a by choosing the multiple of sigma for

the control limit as k = Za/2, where Za/2 is the upper a/2 percentage point of the standard nor-

mal distribution. Note that the usual three-sigma control limits imply that the type I error

probability is a = 0.0027. If we choose a = 0.002, for example, as most writers who recom-

mend probability limits do, then Za/2 = Z0.001 = 3.09. Consequently, there is very little differ-

ence between such control limits and three-sigma control limits.

We may also construct R charts using probability limits. If a = 0.002, the 0.001 and 0.999

percentage points of the distribution of the relative range W = R/s are required. These points

obviously depend on the subgroup size n. Denoting these points by W0.001(n) and W0.999(n), and

estimating s by , we would have the 0.001 and 0.999 limits for R as W0.001(n)( ) and

W0.999(n)( ). If we let D0.001 = W0.001(n)/d2 and D0.999 = W0.999(n)/d2, then the probability

limits for the R chart are

Tables of pairs of values (D0.001, D0.999), (D0.005, D0.995), and (D0.025, D0.975) for 2 ≤ n ≤ 10

are in Grant and Leavenworth (1980). These control limits will not differ substantially from

the customary three-sigma limits. However, for sample sizes 3 ≤ n ≤ 6, they will produce a pos-

itive lower control limit for the R chart whereas the conventional three-sigma limits do not.

6.2.3 Charts Based on Standard Values

When it is possible to specify standard values for the process mean and standard deviation,

we may use these standards to establish the control charts for and R without analysis of past

data. Suppose that the standards given are m and s. Then the parameters of the chart arex
x

UCL =

LCL =

0.999
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The quantity , say, is a constant that depends on n, which has been tabulated in

Appendix Table VI. Consequently, we could write the parameters of the chart asx
3/1n = A
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To construct the R chart with a standard value of s, recall that s = R/d2, where d2 is the

mean of the distribution of the relative range. Furthermore, the standard deviation of R is sR =
d3s, where d3 is the standard deviation of the distribution of the relative range. Therefore, the

parameters of the control chart are

It is customary to define the constants

These constants are tabulated in Appendix Table VI. Thus, the parameters of the R chart with

standard s given are

D d d

D d d
1 2 3

2 2 3

3

3

= −
= +

One must exercise considerable care when standard values of m and s are given. It

may be that these standards are not really applicable to the process, and as a result, the 

and R charts will produce many out-of-control signals relative to the specified standards. If

the process is really in control at some other mean and standard deviation, then the analyst

may spend considerable effort looking for assignable causes that do not exist. Standard val-

ues of s seem to give more trouble than standard values of m. In processes where the mean

of the quality characteristic is controlled by adjustments to the machine, standard or target

values of m are sometimes helpful in achieving operational goals with respect to process

performance.

6.2.4 Interpretation of and R Charts

We have noted previously that a control chart can indicate an out-of-control condition

even though no single point plots outside the control limits, if the pattern of the plotted

points exhibits nonrandom or systematic behavior. In many cases, the pattern of the

plotted points will provide useful diagnostic information on the process, and this infor-

mation can be used to make process modifications that reduce variability (the goal of

statistical process control). Furthermore, these patterns occur fairly often in phase I (ret-

rospective study of past data), and their elimination is frequently crucial in bringing a

process into control.

In this section, we briefly discuss interpretation of control charts, focusing on some of

the more common patterns that appear on and R charts and some of the process characteristicsx

xx

x
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that may produce the patterns. To effectively interpret and R charts, the analyst must be famil-

iar with both the statistical principles underlying the control chart and the process itself.

Additional information on the interpretation of patterns on control charts is in the Western

Electric Statistical Quality Control Handbook (1956, pp. 149–183).

In interpreting patterns on the chart, we must first determine whether or not the R
chart is in control. Some assignable causes show up on both the and R charts. If both the 

and R charts exhibit a nonrandom pattern, the best strategy is to eliminate the R chart assign-

able causes first. In many cases, this will automatically eliminate the nonrandom pattern on

the chart. Never attempt to interpret the chart when the R chart indicates an out-of-control

condition.

Cyclic patterns occasionally appear on the control chart. A typical example is shown in

Figure 6.8. Such a pattern on the chart may result from systematic environmental changes

such as temperature, operator fatigue, regular rotation of operators and/or machines, or fluc-

tuation in voltage or pressure or some other variable in the production equipment. R charts

will sometimes reveal cycles because of maintenance schedules, operator fatigue, or tool wear

resulting in excessive variability. In one study in which this author was involved, systematic

variability in the fill volume of a metal container was caused by the on–off cycle of a com-

pressor in the filling machine.

A mixture is indicated when the plotted points tend to fall near or slightly outside the

control limits, with relatively few points near the center line, as shown in Figure 6.9. A mix-

ture pattern is generated by two (or more) overlapping distributions generating the process

output. The probability distributions that could be associated with the mixture pattern in

Figure 6.9 are shown on the right-hand side of that figure. The severity of the mixture pattern

depends on the extent to which the distributions overlap. Sometimes mixtures result from

“overcontrol,” where the operators make process adjustments too often, responding to random

variation in the output rather than systematic causes. A mixture pattern can also occur when

output product from several sources (such as parallel machines) is fed into a common stream

that is then sampled for process monitoring purposes.

A shift in process level is illustrated in Figure 6.10. These shifts may result from the

introduction of new workers; changes in methods, raw materials, or machines; a change in the

inspection method or standards; or a change in either the skill, attentiveness, or motivation of

the operators. Sometimes an improvement in process performance is noted following intro-

duction of a control chart program, simply because of motivational factors influencing the

workers.

A trend, or continuous movement in one direction, is shown on the control chart in

Figure 6.11. Trends are usually due to a gradual wearing out or deterioration of a tool or

some other critical process component. In chemical processes they often occur because of

x

xx

xx
x

x
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settling or separation of the components of a mixture. They can also result from human

causes, such as operator fatigue or the presence of supervision. Finally, trends can result

from seasonal influences, such as temperature. When trends are due to tool wear or other

systematic causes of deterioration, this may be directly incorporated into the control chart

model. A device useful for monitoring and analyzing processes with trends is the regression
control chart [see Mandel (1969)]. The modified control chart, discussed in Chapter 9, is

also used when the process exhibits tool wear.

Stratification, or a tendency for the points to cluster artificially around the center

line, is illustrated in Figure 6.12. We note that there is a marked lack of natural variability

in the observed pattern. One potential cause of stratification is incorrect calculation of con-

trol limits. This pattern may also result when the sampling process collects one or more

units from several different underlying distributions within each subgroup. For example,

suppose that a sample of size 5 is obtained by taking one observation from each of five par-

allel processes. If the largest and smallest units in each sample are relatively far apart

because they come from two different distributions, then R will be incorrectly inflated,

causing the limits on the chart to be too wide. In this case R incorrectly measures the vari-

ability between the different underlying distributions, in addition to the chance cause vari-

ation that it is intended to measure.

In interpreting patterns on the and R charts, one should consider the two charts jointly.

If the underlying distribution is normal, then the random variables and R computed from the

same sample are statistically independent. Therefore, and R should behave independently

on the control chart. If there is correlation between the and R values—that is, if the points

on the two charts “follow” each other—then this indicates that the underlying distribution is

skewed. If specifications have been determined assuming normality, then those analyses may

be in error.

x
x

x
x

x
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■ F I G U R E  6 . 1 2 A stratification pattern.
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6.2.5 The Effect of Non-normality on and R Charts

There often is an assumption that links normality and control charts in the development of

the performance properties of and R control charts; that is, that the underlying distribution

of the quality characteristic is normal. In many situations, we may have reason to doubt the

validity of this assumption. For example, we may know that the underlying distribution is not

normal, because we have collected extensive data that indicate the normality assumption is

inappropriate. Now if we know the form of the underlying distribution, it is possible to derive

the sampling distributions of and R (or some other measure of process variability) and to

obtain exact probability limits for the control charts. This approach could be difficult in some

cases, and most analysts would probably prefer to use the standard approach based on the nor-

mality assumption if they believed that the effect of departure from this assumption was not

serious. However, we may know nothing about the form of the underlying distribution, and

then our only choice may be to use the normal theory results. Obviously, in either case, we

would be interested in knowing the effect of departures from normality on the usual control

charts for and R.
Several authors have investigated the effect of departures from normality on control

charts. Burr (1967) notes that the usual normal theory control limit constants are very robust

to the normality assumption and can be employed unless the population is extremely non-

normal. Schilling and Nelson (1976), Chan, Hapuarachchi, and Macpherson (1988), and

Yourstone and Zimmer (1992) have also studied the effect of non-normality on the control

limits of the chart. Schilling and Nelson investigated the uniform, right triangular, gamma

(with l = 1 and , 1, 2, 3, and 4), and two bimodal distributions formed as mixtures of two

normal distributions. Their study indicates that, in most cases, samples of size 4 or 5 are suf-

ficient to ensure reasonable robustness to the normality assumption.

The worst cases observed were for small values of r in the gamma distribution [r =
and r = 1 (the exponential distribution)]. For example, they report the actual a-risk to be 0.014

or less if n ≥ 4 for the gamma distribution with , as opposed to a theoretical value of

0.0027 for the normal distribution.

While the use of three-sigma control limits on the chart will produce an a-risk of

0.0027 if the underlying distribution is normal, the same is not true for the R chart. The sam-

pling distribution of R is not symmetric, even when sampling from the normal distribution,

and the long tail of the distribution is on the high or positive side. Thus, symmetric three-

sigma limits are only an approximation, and the a-risk on such an R chart is not 0.0027. (In

fact, for n = 4, it is a = 0.00461.) Furthermore, the R chart is more sensitive to departures from

normality than the chart.

Once again, it is important to remember the role of theory and assumptions such as nor-

mality and independence. These are fundamental to the study of the performance of the con-

trol chart, which is very useful for assessing its suitability for phase II but plays a much less

important role in phase I. In fact, these considerations are not a primary concern in phase I.

6.2.6 The Operating-Characteristic Function

The ability of the and R charts to detect shifts in process quality is described by their operating-

characteristic (OC) curves. In this section, we present these OC curves for charts used for

phase II monitoring of a process.

Consider the operating-characteristic (OC) curve for an control chart. The stan-

dard deviation s is assumed known and constant. If the mean shifts from the in-control

value—say, m0—to another value m1 = m0 + ks, the probability of not detecting this shift on

the first subsequent sample or the b-risk is

(6.18)β μ μ μ σ= ≤ ≤ = +{ }P kLCL UCL = 1x 0

x

x

x

x

x

r = 1
2

1
2

r = 1
2

x

x

x

x

x
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Since , and the upper and lower control limits are and

, we may write equation 6.18 as

where Φ denotes the standard normal cumulative distribution function. This reduces to

β
μ σ

σ
μ σ

σ

μ σ μ σ
σ

μ σ μ σ
σ

=
− +( )⎡

⎣
⎢

⎤

⎦
⎥ −

− +( )⎡

⎣
⎢

⎤

⎦
⎥

=
+ − +( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
− − +( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Φ Φ

Φ Φ

UCL LCL0 0

0 0 0 0

k

n

k

n

L n k

n

L n k

n
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UCL = m0 + Ls/1nx ∼ N(m, s2/n)

(6.19)β = −( ) − − −( )Φ ΦL k n L k n

To illustrate the use of equation 6.19, suppose that we are using an chart with L = 3

(the usual three-sigma limits), the sample size n = 5, and we wish to determine the probabil-

ity of detecting a shift to m1 = m0 + 2s on the first sample following the shift. Then, since 

L = 3, k = 2, and n = 5, we have

This is the b-risk, or the probability of not detecting such a shift. The probability that such a

shift will be detected on the first subsequent sample is 1 − b = 1 − 0.0708 = 0.9292.

To construct the OC curve for the chart, plot the b-risk against the magnitude of the

shift we wish to detect expressed in standard deviation units for various sample sizes n.
These probabilities may be evaluated directly from equation 6.19. This OC curve is shown

in Figure 6.13 for the case of three-sigma limits (L = 3).

Figure 6.13 indicates that for the typical sample sizes 4, 5, and 6, the chart is not par-

ticularly effective in detecting a small shift—say, those on the order of 1.5s or less—on the first

sample following the shift. For example, if the shift is 1.0s and n = 5, then from Figure 6.13,

we have b = 0.75, approximately. Thus, the probability that the shift will be detected on the first

sample is only 1 − b = 0.25. However, the probability that the shift is detected on the second

x

x

β = −[ ] − − −[ ]
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≅
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■ F I G U R E  6 . 1 3 Operating-characteristic

curves for the chart with three-sigma limits. b = P
(not detecting a shift of kσ in the mean on the first sample

following the shift).
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sample is b(1 − b) = 0.75(0.25) = 0.19, whereas the probability that it is detected on the third

sample is b2(1 − b) = (0.752)0.25 = 0.14. Thus, the probability that the shift will be detected

on the rth subsequent sample is simply 1 − b times the probability of not detecting the shift

on each of the initial r − 1 samples, or

In general, the expected number of samples taken before the shift is detected is simply the

average run length, or

Therefore, in our example, we have

In other words, the expected number of samples taken to detect a shift of 1.0s with n = 5

is four.

The above discussion provides a supportive argument for the use of small sample

sizes on the chart. Even though small sample sizes often result in a relatively large b-risk.

Because samples are collected and tested periodically, there is a very good chance that the

shift will be detected reasonably quickly, although perhaps not on the first sample follow-

ing the shift.

To construct the OC curve for the R chart, the distribution of the relative range W = R/s
is employed. Suppose that the in-control value of the standard deviation is s0. Then the OC

curve plots the probability of not detecting a shift to a new value of s—say, s1 > s0—on the

first sample following the shift. Figure 6.14 presents the OC curve, in which b is plotted

against l = s1/s0 (the ratio of new to old process standard deviation) for various values of n.
From examining Figure 6.14, we observe that the R chart is not very effective in detecting

process shifts for small sample sizes. For example, if the process standard deviation doubles (i.e.,

l = s1/s0 = 2), which is a fairly large shift, then samples of size 5 have only about a 40% chance

of detecting this shift on each subsequent sample. Most quality engineers believe that the R chart

is insensitive to small or moderate shifts for the usual subgroup sizes of n = 4, 5, or 6. If n > 10

or 12, the s chart discussed in Section 6.3.1 should generally be used instead of the R chart.
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■ F I G U R E  6 . 1 4 Operating-characteristic

curves for the R chart with three-sigma limits. (Adapted

from A. J. Duncan, “Operating Characteristics of

R Charts,” Industrial Quality Control, vol. 7, no. 5,

pp. 40–41, 1951, with permission of the American

Society for Quality Control.)
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The OC curves in Figures. 6.13 and 6.14 assume that the and R charts are used for

on-line process monitoring—that is, phase II process monitoring. It is occasionally useful to

study the statistical performance of a chart used to analyze past data (phase I). This can give

some indication of how the number of preliminary subgroups used to establish the control

chart affects the chart’s ability to detect out-of-control conditions that existed when the data

were collected. It is from such analytical studies, as well as practical experience, that the rec-

ommendation to use at least 20 to 25 preliminary subgroups in establishing and R charts

has evolved.

6.2.7 The Average Run Length for the Chart

For any Shewhart control chart, we have noted previously that the ARL can be expressed as

or

ARL
one point plots out of control

= ( )
1

P

x

x

x

(6.20)ARL0 = 1

α

(6.21)ARL1 =
−
1

1 β

for the in-control ARL and

for the out-of-control ARL. These results are actually rather intuitive. If the observations

plotted on the control chart are independent, then the number of points that must be plot-

ted until the first point exceeds a control limit is a geometric random variable with parame-

ter p (see Chapter 3). The mean of this geometric distribution is simply 1/p, the average run

length.

Since it is relatively easy to develop a general expression for b for the control chart to

detect a shift in the mean of ks [see equation 6.19], then it is not difficult to construct a set of

ARL curves for the chart. Figure 6.15 presents these ARL curves for sample sizes of n =
1, 2, 3, 4, 5, 7, 9, and 16 for the control chart, where the ARL is in terms of the expected

number of samples taken in order to detect the shift. To illustrate the use of Figure 6.15, note

that if we wish to detect a shift of 1.5s using a sample size of n = 3, then the average num-

ber of samples required will be ARL1 = 3. Note also that we could reduce the ARL1 to approx-

imately 1 if we increased the sample size to n = 16.

Recall our discussion in Chapter 5 (Section 5.3.3) indicating that ARLs are subject to

some criticism as performance measures for control charts. We noted there (and above as

well) that the distribution of run length for a Shewhart control chart is geometric and that

this can be a very skewed distribution, so the average (that is, the ARL) may not be the best

measure of a typical run length. Another issue concerning ARL relates to the fact that the

computations for a specific control chart are usually based on estimates of the process

x
x

x
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parameters. This results in inflation of both ARL0 and ARL1. For example, suppose that the

center line of the chart is estimated perfectly, but the process standard deviation is overes-

timated by 10%. This would result in ARL0 = 517, considerably longer than the nominal or

“theoretical” value of 370. With a normally distributed process, we are just as likely to

underestimate the process standard deviation by 10%, and this would result in ARL0 = 268,

a value considerably shorter than 370. The average is (268 + 517)/2 = 392.5, suggesting that

errors in estimating the process standard deviation result in ARLs that are overestimated.

There is a very comprehensive literature review and discussion of this topic in the paper by

Jensen et al. (2006).

Two other performance measures based on ARL are sometimes of interest. The average

time to signal is the number of time periods that occur until a signal is generated on the con-

trol chart. If samples are taken at equally spaced intervals of time h, then the average time to
signal or the ATS is

(6.22)ATS ARL = h

(6.23)I n=  ARL

It may also be useful to express the ARL in terms of the expected number of individual

units sampled—say, I—rather than the number of samples taken to detect a shift. If the sam-

ple size is n, the relationship between I and ARL is

Figure 6.16 presents a set of curves that plot the expected number of individual units I
that must be sampled for the chart to detect a shift of ks. To illustrate the use of the curve,

note that to detect a shift of 1.5s, an chart with n = 16 will require that approximately 16

units be sampled, whereas if the sample size is n = 3, only about 9 units will be required, on

the average.
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1Some authors refer to the s chart as the s chart.

6.3 Control Charts for and s

Although and R charts are widely used, it is occasionally desirable to estimate the

process standard deviation directly instead of indirectly through the use of the range R.
This leads to control charts for and s, where s is the sample standard deviation.1

Generally, and s charts are preferable to their more familiar counterparts, and R charts,

when either

1. the sample size n is moderately large—say, n > 10 or 12 (recall that the range method

for estimating s loses statistical efficiency for moderate to large samples), or

2. the sample size n is variable.

In this section, we illustrate the construction and operation of and s control charts. We also

show how to deal with variable sample size and discuss an alternative to the s chart.

6.3.1 Construction and Operation of and s Charts

Setting up and operating control charts for and s requires about the same sequence of steps

as those for and R charts, except that for each sample we must calculate the sample average

and the sample standard deviation s. Table 6.3 presents the inside diameter measurements of

forged automobile engine piston rings. Each sample or subgroup consists of five piston rings.

We have calculated the sample average and sample standard deviation for each of the 25 sam-

ples. We will use these data to illustrate the construction and operation of and s charts.

If s 2 is the unknown variance of a probability distribution, then an unbiased estimator

of s2 is the sample variance

s
x x
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260 Chapter 6 ■ Control Charts for Variables

However, the sample standard deviation s is not an unbiased estimator of s. In Chapter 4

(Section 4.2) we observed that if the underlying distribution is normal, then s actually estimates

c4s, where c4 is a constant that depends on the sample size n. Furthermore, the standard devi-

ation of s is . This information can be used to establish control charts on and s.
Consider the case where a standard value is given for s. Since E(s) = c4s, the center

line for the chart is c4s. The three-sigma control limits for s are then

It is customary to define the two constants

(6.24)B c c B c c5 4 4
2

6 4 4
23 1 3 1= − − = + −  and  

UCL

LCL

= + −

= − −

c c

c c

4 4
2

4 4
2

3 1

3 1

σ σ

σ σ

xs21 − c2
4

■ TA B L E  6 . 3

Inside Diameter Measurements (mm) for Automobile Engine Piston Rings

Sample 
Number Observations x̄i si

1 74.030 74.002 74.019 73.992 74.008 74.010 0.0148

2 73.995 73.992 74.001 74.011 74.004 74.001 0.0075

3 73.988 74.024 74.021 74.005 74.002 74.008 0.0147

4 74.002 73.996 73.993 74.015 74.009 74.003 0.0091

5 73.992 74.007 74.015 73.989 74.014 74.003 0.0122

6 74.009 73.994 73.997 73.985 73.993 73.996 0.0087

7 73.995 74.006 73.994 74.000 74.005 74.000 0.0055

8 73.985 74.003 73.993 74.015 73.988 73.997 0.0123

9 74.008 73.995 74.009 74.005 74.004 74.004 0.0055

10 73.998 74.000 73.990 74.007 73.995 73.998 0.0063

11 73.994 73.998 73.994 73.995 73.990 73.994 0.0029

12 74.004 74.000 74.007 74.000 73.996 74.001 0.0042

13 73.983 74.002 73.998 73.997 74.012 73.998 0.0105

14 74.006 73.967 73.994 74.000 73.984 73.990 0.0153

15 74.012 74.014 73.998 73.999 74.007 74.006 0.0073

16 74.000 73.984 74.005 73.998 73.996 73.997 0.0078

17 73.994 74.012 73.986 74.005 74.007 74.001 0.0106

18 74.006 74.010 74.018 74.003 74.000 74.007 0.0070

19 73.984 74.002 74.003 74.005 73.997 73.998 0.0085

20 74.000 74.010 74.013 74.020 74.003 74.009 0.0080

21 73.982 74.001 74.015 74.005 73.996 74.000 0.0122

22 74.004 73.999 73.990 74.006 74.009 74.002 0.0074

23 74.010 73.989 73.990 74.009 74.014 74.002 0.0119

24 74.015 74.008 73.993 74.000 74.010 74.005 0.0087

25 73.982 73.984 73.995 74.017 74.013 73.998 0.0162

Σ = 1,850.028 0.2351
=
x = 74.001 s̄ = 0.0094
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Values of B5 and B6 are tabulated for various sample sizes in Appendix Table VI. The para-

meters of the corresponding chart are given in equation 6.15, Section 6.2.3.

If no standard is given for s, then it must be estimated by analyzing past data. Suppose

that m preliminary samples are available, each of size n, and let si be the standard deviation

of the ith sample. The average of the m standard deviations is

The statistic is an unbiased estimator of s. Therefore, the parameters of the s chart

would be

We usually define the constants

(6.26)

Consequently, we may write the parameters of the s chart as
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Note that B4 = B6/c4 and B3 = B5/c4.

When is used to estimate s, we may define the control limits on the correspond-

ing chart as
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(6.25)
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Consequently, the parameters of the s chart with a standard value for s given become
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The constants B3, B4, and A3 for construction of and s charts from past data are listed in

Appendix Table VI for various sample sizes.

Note that we have assumed that the sample standard deviation is defined as

(6.29)

Some authors define s with n in the denominator of equation 6.29 instead of n − 1. When this

is the case, the definitions of the constants c4, B3, B4, and A3 are altered. The corresponding

constants based on the use of n in calculating s are called c2, B1, B2, and A1, respectively. See

Bowker and Lieberman (1972) for their definitions.

Traditionally, quality engineers have preferred the R chart to the s chart because of the

simplicity of calculating R from each sample. The availability of handheld calculators with

automatic calculation of s and computers at workstations to implement control charts on site

have eliminated any computational difficulty.
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EXAMPLE 6.3 and s Charts for the Piston Ring Datax

and for the s chart

The control charts are shown in Figure 6.17. There is no indi-

cation that the process is out of control, so those limits could

be adopted for phase II monitoring of the process.
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Construct and interpret and s charts using the piston ring

inside diameter measurements in Table 6.3.

x

SOLUTION 

The grand average and the average standard deviation are

and

respectively. Consequently, the parameters for the chart

are
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(6.28)
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Let the constant . Then the chart parameters becomexA3 = 3/(c41n)
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■ F I G U R E  6 . 1 7 The and s control charts for Example 6.3. (a) The chart with control limits based on . (b) The 

s control chart.

sxx

Estimation of s. We can estimate the process standard deviation using the fact that

s/c4 is an unbiased estimate of s. Therefore, since c4 = 0.9400 for samples of size 5, our esti-

mate of the process standard deviation is

6.3.2 The and s Control Charts with Variable Sample Size

The and s control charts are relatively easy to apply in cases where the sample sizes are vari-

able. In this case, we should use a weighted average approach in calculating and . If ni is

the number of observations in the ith sample, then use

(6.30)

and

(6.31)

as the center lines on the and s control charts, respectively. The control limits would be cal-

culated from equations 6.27 and 6.28, respectively, but the constants A3, B3, and B4 will

depend on the sample size used in each individual subgroup.
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264 Chapter 6 ■ Control Charts for Variables

sizes vary from n = 3 to n = 5. Use the procedure described on

page 255 to set up the and s control charts.x

EXAMPLE 6.4

Consider the data in Table 6.4, which is a modification of the

piston-ring data used in Example 6.3. Note that the sample

x
_

and s Chart for the Piston Rings, Variable Sample Size

SOLUTION

The weighted grand mean and weighted average standard

deviation are computed from equations 6.30 and 6.31 as

follows:

x
n x

n

i i
i

i
i

= = ( ) + ( ) + + ( )
+ + +

=

=

=

∑

∑
1

25

1

25
5 74 010 3 73 996 5 73 998

5 3 5

113
= 74.001

. . .

8,362.075

L

L

■ TA B L E  6 . 4

Inside Diameter Measurements (mm) on Automobile Engine Piston Rings

Sample 
Number Observations x̄i si

1 74.030 74.002 74.019 73.992 74.008 74.010 0.0148

2 73.995 73.992 74.001 73.996 0.0046

3 73.988 74.024 74.021 74.005 74.002 74.008 0.0147

4 74.002 73.996 73.993 74.015 74.009 74.003 0.0091

5 73.992 74.007 74.015 73.989 74.014 74.003 0.0122

6 74.009 73.994 73.997 73.985 73.996 0.0099

7 73.995 74.006 73.994 74.000 73.999 0.0055

8 73.985 74.003 73.993 74.015 73.988 73.997 0.0123

9 74.008 73.995 74.009 74.005 74.004 0.0064

10 73.998 74.000 73.990 74.007 73.995 73.998 0.0063

11 73.994 73.998 73.994 73.995 73.990 73.994 0.0029

12 74.004 74.000 74.007 74.000 73.996 74.001 0.0042

13 73.983 74.002 73.998 73.994 0.0100

14 74.006 73.967 73.994 74.000 73.984 73.990 0.0153

15 74.012 74.014 73.998 74.008 0.0087

16 74.000 73.984 74.005 73.998 73.996 73.997 0.0078

17 73.994 74.012 73.986 74.005 73.999 0.0115

18 74.006 74.010 74.018 74.003 74.000 74.007 0.0070

19 73.984 74.002 74.003 74.005 73.997 73.998 0.0085

20 74.000 74.010 74.013 74.008 0.0068

21 73.982 74.001 74.015 74.005 73.996 74.000 0.0122

22 74.004 73.999 73.990 74.006 74.009 74.002 0.0074

23 74.010 73.989 73.990 74.009 74.014 74.002 0.0119

24 74.015 74.008 73.993 74.000 74.010 74.005 0.0087

25 73.982 73.984 73.995 74.017 74.013 73.998 0.0162
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Note that we have used the values of A3, B3, and B4 for n1 = 5.

The limits for the second sample would use the values of these

constants for n2 = 3. The control limit calculations for all 25

samples are summarized in Table 6.5. The control charts are

plotted in Figure 6.18.

(continued)
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Sample number

■ F I G U R E  6 . 1 8 The (a) and (b) s control charts for piston-ring data with variable sample size, Example 6.4.x

(a) (b)

Therefore, the center line of the chart is and the

center line of the s chart is The control limits 

may now be easily calculated. To illustrate, consider the first

sample. The limits for the chart are

The control limits for the s chart are

UCL
CL = .0103

LCL

= ( )( ) =

= ( ) =

2 089 0 0103 0 022
0
0 0 0103 0

. . .

.

UCL

CL =

LCL

= + ( )( ) =

= − ( )( ) =

74 001 1 427 0 0103 74 016

74 001

74 001 1 427 0 0103 73 986

. . . .

.

. . . .

x

s = 0.0103.

= 74.001,xx

and

s
n s

n

i i
i

i
i

=
−( )

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= ( ) + ( ) + + ( )
+ + + −

⎡

⎣
⎢

⎤

⎦
⎥

= ⎡
⎣⎢

⎤
⎦⎥

=

=

=

∑

∑

1

25

4 0 0148 2 0 0046 4 0 0162

5 3 5 25

0 009324

88
0 0103

2

1

25

1

25

1 2

2 2 2 1 2

1 2

. . .

.
.

L

L

6.3 Control Charts for and s 265xx

c06ControlChartsForVariables.qxd  3/28/12  5:21 PM  Page 265



266 Chapter 6 ■ Control Charts for Variables

An alternative to using variable-width control limits on the and s control charts is to

base the control limit calculations on an average sample size . If the ni are not very differ-

ent, this approach may be satisfactory in some situations; it is particularly helpful if the charts

are to be used in a presentation to management. Since the average sample size ni may not be

an integer, a useful alternative is to base these approximate control limits on a modal (most

common) sample size.

Estimation of s. We may estimate the process standard deviation, s, from the indi-

vidual sample values si. First, average all the values of si for which ni = 5 (the most frequently

occurring value of ni). This gives

s = =0 1715

17
0 0101

.
.

n
x

■ TA B L E  6 . 5  

Computation of Control Limits for x– and s Charts with Variable Sample Size

x̄ Chart s Chart

Sample n x̄ s A3 LCL UCL B3 B4 LCL UCL

1 5 74.010 0.0148 1.427 73.986 74.016 0 2.089 0 0.022

2 3 73.996 0.0046 1.954 73.981 74.021 0 2.568 0 0.026

3 5 74.008 0.0147 1.427 73.986 74.016 0 2.089 0 0.022

4 5 74.003 0.0091 1.427 73.986 74.016 0 2.089 0 0.022

5 5 74.003 0.0122 1.427 73.986 74.016 0 2.089 0 0.022

6 4 73.996 0.0099 1.628 73.984 74.018 0 2.266 0 0.023

7 4 73.999 0.0055 1.628 73.984 74.018 0 2.266 0 0.023

8 5 73.997 0.0123 1.427 73.986 74.016 0 2.089 0 0.022

9 4 74.004 0.0064 1.628 73.984 74.018 0 2.266 0 0.023

10 5 73.998 0.0063 1.427 73.986 74.016 0 2.089 0 0.022

11 5 73.994 0.0029 1.427 73.986 74.016 0 2.089 0 0.022

12 5 74.001 0.0042 1.427 73.986 74.016 0 2.089 0 0.022

13 3 73.994 0.0100 1.954 73.981 74.021 0 2.568 0 0.026

14 5 73.990 0.0153 1.427 73.986 74.016 0 2.089 0 0.022

15 3 74.008 0.0087 1.954 73.981 74.021 0 2.568 0 0.026

16 5 73.997 0.0078 1.427 73.986 74.016 0 2.089 0 0.022

17 4 73.999 0.0115 1.628 73.984 74.018 0 2.226 0 0.023

18 5 74.007 0.0070 1.427 73.986 74.016 0 2.089 0 0.022

19 5 73.998 0.0085 1.427 73.986 74.016 0 2.089 0 0.022

20 3 74.008 0.0068 1.954 73.981 74.021 0 2.568 0 0.026

21 5 74.000 0.0122 1.427 73.986 74.016 0 2.089 0 0.022

22 5 74.002 0.0074 1.427 73.986 74.016 0 2.089 0 0.022

23 5 74.002 0.0119 1.427 73.986 74.016 0 2.089 0 0.022

24 5 74.005 0.0087 1.427 73.986 74.016 0 2.089 0 0.022

25 5 73.998 0.0162 1.427 73.986 74.016 0 2.089 0 0.022
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The estimate of the process s is then

where the value of c4 used is for samples of size n = 5.

6.3.3 The s2 Control Chart

Most quality engineers use either the R chart or the s chart to monitor process variability, with

s preferable to R for moderate to large sample sizes. Some practitioners recommend a control

chart based directly on the sample variance s2, the s2 control chart. The parameters for the

s2 control chart are

(6.32)

where c2
a/2, and c2

(a/2),n−1 denote the upper and lower a/2 percentage points of the chi-square

distribution with n − 1 degrees of freedom, and is an average sample variance obtained from

the analysis of preliminary data. A standard value s2 could be used in equation 6.32 instead of

if one were available. Note that this control chart is defined with probability limits.

6.4 The Shewhart Control Chart for Individual Measurements

There are many situations in which the sample size used for process monitoring is n = 1; that

is, the sample consists of an individual unit. Some examples of these situations are as follows:

1. Automated inspection and measurement technology is used, and every unit manufac-

tured is analyzed so there is no basis for rational subgrouping.

2. Data become available relatively slowly, and it is inconvenient to allow sample sizes of

n > 1 to accumulate before analysis. The long interval between observations will cause

problems with rational subgrouping. This occurs frequently in both manufacturing and

nonmanufacturing situations.

3. Repeat measurements on the process differ only because of laboratory or analysis error,

as in many chemical processes.

4. Multiple measurements are taken on the same unit of product, such as measuring oxide

thickness at several different locations on a wafer in semiconductor manufacturing.

5. In process plants, such as papermaking, measurements on some parameters, such as

coating thickness across the roll, will differ very little and produce a standard deviation

that is much too small if the objective is to control coating thickness along the roll.

6. Individual measurements are very common in many transactional, business, and service

processes because there is no basis for rational subgrouping. Sometimes this happens

because there are large time gaps between service activities.
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268 Chapter 6 ■ Control Charts for Variables

In such situations, the control chart for individual units is useful. (The cumulative sum and

exponentially weighted moving-average control charts discussed in Chapter 9 will be a better

alternative in phase II or when the magnitude of the shift in process mean that is of interest is

small.) In many applications of the individuals control chart, we use the moving range of two

successive observations as the basis of estimating the process variability. The moving range

is defined as

It is also possible to establish a moving range control chart. The procedure is illustrated in

the following example.

MRi i ix x= − −1

EXAMPLE 6.5

The mortgage loan processing unit of a bank monitors the

costs of processing loan applications. The quantity tracked is

the average weekly processing costs, obtained by dividing

total weekly costs by the number of loans processed during

the week. The processing costs for the most recent 20 weeks

are shown in Table 6.6. Set up individual and moving range

control charts for these data.

Loan Processing Costs

SOLUTION

To set up the control chart for individual observations, note

that the sample average cost of the 20 observations is

and that the average of the moving ranges of two

observations is . To set up the moving range chart,

we use D3 = 0 and D4 = 3.267 for n = 2. Therefore, the 

moving range chart has center line LCL = 0, and

UCL = D4 The control chart

(from Minitab) is shown in Figure 6.19b. Notice that no points

are out of control.

For the control chart for individual measurements, the

parameters are

(6.33)

If a moving range of n = 2 observations is used, then d2 =
1.128. For the data in Table 6.6, we have

UCL
MR

Center line =

LCL
MR

= +

= −

x
d

x

x
d

3

3

2

2

MR = (3.267)7.79 = 25.45.

MR = 7.79,

MR = 7.79

x = 300.5

■ TA B L E  6 . 6  

Costs of Processing Mortgage Loan Applications

Weeks Cost x Moving Range MR

1 310

2 288 22

3 297 9

4 298 1

5 307 9

6 303 4

7 294 9

8 297 3

9 308 11

10 306 2

11 294 12

12 299 5

13 297 2

14 299 2

15 314 15

16 295 19

17 293 2

18 306 13

19 301 5

20 304 3

x̄ = 300.5
—
MR  = 7.79
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Phase II Operation and Interpretation of the Charts. Table 6.7 contains data on

mortgage application processing costs for weeks 21–40. These data are plotted in Figure 6.20

on the continuation of the control chart for individuals and the moving range control chart

developed in Example 6.5. As this figure makes clear, an upward shift in cost has occurred

around week 39, since there is an obvious “shift in process level” pattern on the chart for indi-

viduals followed by another out-of-control signal at week 40. Note that the moving range

chart also reacts to this level shift with a single large spike at week 39. This spike on the moving

range chart is sometimes helpful in identifying exactly where a process shift in the mean has

occurred. Clearly one should look for possible assignable causes around weeks 39. Possible

causes could include an unusual number of applications requiring additional manual under-

writing work, or possibly new underwriters working in the process, or possibly temporary

underwriters replacing regular employees taking vacations.

Some care should be exercised in interpreting patterns on the moving range chart.

The moving ranges are correlated, and this correlation may often induce a pattern of runs

or cycles on the chart. Such a pattern is evident on the moving range chart in Figure 6.21.

The individual measurements on the x chart are assumed to be uncorrelated, however, and

any apparent pattern on this chart should be carefully investigated.

shift in the process mean will result in a single point or a

series of points that plot outside the control limits on the

control chart for individuals. Sometimes a point will plot

outside the control limits on both the individuals chart and

the moving range chart. This will often occur because a large

value of x will also lead to a large value of the moving range

for that sample. This is very typical behavior for the individ-

uals and moving range control charts. It is most likely an

indication that the mean is out of control and not an indica-

tion that both the mean and the variance of the process are

out of control.

The control chart for individual cost values is shown in

Figure 6.19a. There are no out-of-control observations on

the individuals control chart.

The interpretation of the individuals control chart is very

similar to the interpretation of the ordinary control chart. Ax
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■ F I G U R E  6 . 1 9 Control charts for (a) individual observations on cost and for (b) the moving range.
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270 Chapter 6 ■ Control Charts for Variables

Some authorities have recommended not constructing and plotting the moving range

chart. They point out (correctly, we add) that the moving range chart cannot really provide

useful information about a shift in process variability. For example, see Rigdon, Cruthis, and

Champ (1994). In effect, shifts in the process mean also show up on the moving range chart.

Our feeling is that as long as the analyst is careful in interpretation and relies primarily on the

individuals chart, little trouble will ensue from plotting both charts.

Average Run Lengths. Crowder (1987b) has studied the average run length of the

combined control chart for individuals and moving range chart. He produces ARLs for various

settings of the control limits and shifts in the process mean and standard deviation. In general, his

work shows that the ARL0 of the combined procedure will generally be much less than the ARL0

of a standard Shewhart control chart when the process is in control (recall that ARL0 for a

Shewhart chart is 370 samples), if we use the conventional three-sigma limits on the charts. In
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■ F I G U R E  6 . 2 0 Continuation of the control chart for individuals and the moving range using the 

additional data in Table 6.7.

■ TA B L E  6 . 7  

Costs of Processing Mortgage Loan Applications, Weeks 21–40

Week Cost x Week Cost x

21 305

22 282

23 305

24 296

25 314

26 295

27 287

28 301

29 298

30 311

31 310

32 292

33 305

34 299

35 304

36 310

37 304

38 305

39 333

40 328
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general, results closer to the Shewhart in-control ARL are obtained if we use three-sigma limits

on the chart for individuals and compute the upper control limit on the moving range chart from

where the constant D should be chosen such that 4 ≤ D ≤ 5.

One can get a very good idea about the ability of the individuals control chart to detect

process shifts by looking at the OC curves in Figure 6.13 or the ARL curves in Figure 6.15.

For an individuals control chart with three-sigma limits, we can compute the following:

Size of Shift b ARL1

1s 0.9772 43.96

2s 0.8413 6.30

3s 0.5000 2.00

Note that the ability of the individuals control chart to detect small shifts is very poor. For

instance, consider a continuous chemical process in which samples are taken every hour. If a

shift in the process mean of about one standard deviation occurs, the information above tells

us that it will take about 44 samples, on the average, to detect the shift. This is nearly two full

days of continuous production in the out-of-control state, a situation that has potentially dev-

astating economic consequences. This limits the usefulness of the individuals control chart in

phase II process monitoring.

Some individuals have suggested that control limits narrower than three-sigma be used

on the chart for individuals to enhance the ability to detect small process shifts. This is a dan-

gerous suggestion, as narrower limits will dramatically reduce the value of ARL0 and increase

the occurrence of false alarms to the point where the charts are ignored and hence become

useless. If we are interested in detecting small shifts in phase II, then the correct approach is

to use either the cumulative sum control chart or the exponentially weighted moving average

control chart (see Chapter 9).

Normality. Our discussion in this section has made an assumption that the observations

follow a normal distribution. Borror, Montgomery, and Runger (1999) have studied the phase II

performance of the Shewhart control chart for individuals when the process data are not normal.

They investigated various gamma distributions to represent skewed process data and t distribu-

tions to represent symmetric normal-like data. They found that the in-control ARL is dramatically

affected by non-normal data. For example, if the individuals chart has three-sigma limits so that

UCL MR= D
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■ F I G U R E  6 . 2 1
Normal probability plot of the

mortgage application processing

cost data from Table 6.6,

Example 6.5.
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272 Chapter 6 ■ Control Charts for Variables

a single-wafer deposition process. Construct an individuals

control chart for this process.

EXAMPLE 6.6

Table 6.8 presents consecutive measurements on the resistiv-

ity of 25 silicon wafers after an epitaxial layer is deposited in

The Use of Transformations

for normal data ARL0 = 370, the actual ARL0 for gamma-distributed data is between 45 and 97,

depending on the shape of the gamma distribution (more highly skewed distributions yield poorer

performance). For the t distribution, the ARL0 values range from 76 to 283 as the degrees of free-

dom increase from 4 to 50 (that is, as the t becomes more like the normal distribution).

In the face of these results, we conclude that if the process shows evidence of even mod-

erate departure from normality, the control limits given here may be entirely inappropriate for

phase II process monitoring. One approach to dealing with the problem of non-normality

would be to determine the control limits for the individuals control chart based on the per-

centiles of the correct underlying distribution. These percentiles could be obtained from a his-

togram if a large sample (at least 100 but preferably 200 observations) were available, or from

a probability distribution fit to the data. See Willemain and Runger (1996) for details on

designing control charts from empirical reference distributions. Another approach would be

to transform the original variable to a new variable that is approximately normally distributed,

and then apply control charts to the new variable. Borror, Montgomery, and Runger (1999)

show how a properly designed EWMA control chart is very insensitive to the normality

assumption. This approach will be discussed in Chapter 9.

It is important to check the normality assumption when using the control chart for indi-

viduals. A simple way to do this is with the normal probability plot. Figure 6.21 is the nor-

mal probability plot for the mortgage application processing cost data in Table 6.6. There is

no obvious problem with the normality assumption in these data. However, remember that the

normal probability plot is but a crude check of the normality assumption and the individuals

control chart is very sensitive to non-normality. Furthermore, mean shifts could show up as a

problem with normality on the normal probability plot. Process stability is needed to properly

interpret the plot. We suggest that the Shewhart individuals chart be used with extreme cau-

tion, particularly in phase II process monitoring.

■ TA B L E  6 . 8  

Resistivity Data for Example 6.6

Sample, i Resistivity (xi) ln (xi) MR

1 216 5.37528

2 290 5.66988 0.29460

3 236 5.46383 0.20605

4 228 5.42935 0.03448

5 244 5.49717 0.06782

6 210 5.34711 0.15006

7 139 4.93447 0.41264

8 310 5.73657 0.80210

9 240 5.48064 0.25593

10 211 5.35186 0.12878

11 175 5.16479 0.18707

12 447 6.10256 0.93777

13 307 5.72685 0.37571

Sample, i Resistivity (xi) ln (xi) MR

14 242 5.48894 0.23791

15 168 5.12396 0.36498

16 360 5.88610 0.76214

17 226 5.42053 0.46557

18 253 5.53339 0.11286

19 380 5.94017 0.40678

20 131 4.87520 1.06497

21 173 5.15329 0.27809

22 224 5.41165 0.25836

23 195 5.27300 0.13865

24 199 5.29330 0.02030

25 226 5.42053 0.12723

——
ln (xi) = 5.44402 

—
MR = 0.33712
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6.4 The Shewhart Control Chart for Individual Measurements 273

SOLUTION

A normal probability plot of the resistivity measurements is

shown in Figure 6.22. This plot was constructed by Minitab,

which fits the line to the points by least squares (not the best

method). It is clear from inspection of the normal probability

plot that the normality assumption for resistivity is at best

questionable, so it would be dangerous to apply an individuals

control chart to the original process data.

Figure 6.22 indicates that the distribution of resistivity

has a long tail to the right, and consequently we would

expect the log transformation (or a similar transformation)

to produce a distribution that is closer to normal. The nat-
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■ F I G U R E  6 . 2 2 Normal probability plot of
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■ F I G U R E  6 . 2 3 Normal probability plot of

ln (resistivity).

ural log of resistivity is shown in column three of Table 6.8,

and the normal probability plot of the natural log of resistiv-

ity is shown in Figure 6.23. Clearly the log transformation

has resulted in a new variable that is more nearly approxi-

mated by a normal distribution than were the original resis-

tivity measurements.

The last column of Table 6.8 shows the moving ranges of

the natural log of resistivity. Figure 6.24 presents the individ-

uals and moving range control charts for the natural log of

resistivity. Note that there is no indication of an out-of-control

process.
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■ F I G U R E  6 . 2 4 Individuals and moving range control charts on ln (resistivity),

Example 6.6
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274 Chapter 6 ■ Control Charts for Variables

More about Estimating s . Very often in practice we use moving ranges in 

estimating s for the individuals control chart. Recall that moving ranges are defined as

MRi = (xi − xi−1) , i = 2, 3 . . . , m. More properly, this statistic should be called a moving

range of span two since the number of observations used to calculate the range in the

moving window could be increased. The most common estimator is the one we used in

Example 6.5, based on the average moving range and can be

written as

where the constant 0.8865 is the reciprocal of d2 for samples of size 2. For in-control

processes, Cryer and Ryan (1990), among others, have pointed out that a more efficient esti-

mator is one based on the sample standard deviation

Both of these estimators are unbiased, assuming that no assignable causes are present in the

sequence of m individual observations.

If assignable causes are present, then both and result in biased estimates of

the process standard deviation. To illustrate, suppose that in the sequence of individual

observations

the process is in control with mean m0 and standard deviation s for the first t observations, but

between xt and xt +1 an assignable cause occurs that results in a sustained shift in the process

mean to a new level m = m0 + ds and the mean remains at this new level for the remaining sam-

ple observations xt + 1, . . . , xm. Under these conditions, Woodall and Montgomery (2000–2001)

show that

In fact, this result holds for any case in which the mean of t of the observations is m0 and the

mean of the remaining observations is m0 + ds, since the order of the observations is not rel-

evant in computing s2. Therefore, s2 is biased upward, and consequently will tend

to overestimate s. Note that the extent of the bias in depends on the magnitude of the shift

in the mean (ds), the time period following which the shift occurs (t), and the number of

available observations (m). Now the moving range is only impacted by the shift in the mean

during one period (t + 1), so the bias in depends only on the shift magnitude and m. If 

1 < t < m − 1, the bias in will always be smaller than the bias in . Cruthis and Rigdon

(1992–1993) show how the ratio

can be used to determine whether the process was in control when both estimates were cal-

culated. They use simulation to obtain the approximate 90th, 95th, 99th, and 99.9th per-

centiles of the distribution of F* for sample sizes m = 10(5)100, assuming that the process is

in control. Since this is an empirical reference distribution, observed values of F* that exceed

one of these percentiles is an indication that the process was not in control over the time

period during which the m observations were collected.
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ŝ2
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One way to reduce or possibly eliminate the bias in estimating s when a sustained shift

in the mean is present is to base the estimator on the median of the moving ranges of span

two, as suggested by Clifford (1959) and Bryce, Gaudard, and Joiner (1997–1998). This esti-

mator is

where is the median of the span-two moving ranges, and 1.047 is the reciprocal of the

control chart constant d4 for subgroups of size two defined such that and is the

median range. A table of d4 values is in Wadsworth, Stephens, and Godfrey (2002).

Essentially, only one of the span-two moving ranges should be affected by the sustained shift,

and this single large moving range will have little impact on the value of the median moving

range, certainly much less impact than it will have on the average moving range. Constructing

an individuals control chart using the median moving range to estimate s is an option in

Minitab.

Now suppose that the assignable cause affects a single observation rather than causing

a sustained shift in the mean. If there is a single observation that has mean m0 + ds, then

and this observation will affect two of the span-two moving ranges. If there are two adjacent

such observations, then

and two of the span-two moving ranges will be affected by the out-of-control observations.

Thus, when the assignable cause affects one or only a few adjacent observations, we expect

the bias in s2 to be smaller than when a sustained shift occurs. However, if an assignable cause

producing a sustained shift in the mean occurs either very early in the sequence of observa-

tions or very late, it will produce much the same effect as an assignable cause affecting only

one or a few adjacent points.

Some authors have suggested basing the estimate of s on moving ranges of span

greater than two, and some computer programs for control charts offer this as an option. It

is easy to show that this will always lead to potentially increased bias in the estimate of s
when assignable causes are present. Note that if one uses a span-three moving range and

there is a single observation whose mean is affected by the assignable cause, then this sin-

gle observation will affect up to three of the moving ranges. Thus, a span-three moving

range will result in more bias in the estimate of s than will the moving range of span two.

Furthermore, two span-three moving ranges will be affected by a sustained shift. In gen-

eral, if one uses a span-w moving range and there is a single observation whose mean is

affected by the assignable cause, up to w of these moving ranges will be impacted by this

observation. Furthermore, if there is a sustained shift in the mean, up to w – 1 of the mov-

ing ranges will be affected by the shift in the mean. Consequently, increasing the span of a

moving average beyond two results in increasing the bias in the estimate of s if assignable

causes that either produce sustained shifts in the process mean or that affect the mean of a

single observation (or a few adjacent ones) are present. In fact, Wetherill and Brown (1991)

advise plotting the estimate of s versus the span of the moving average used to obtain the

estimate. A sharply rising curve indicates the presence of assignable causes. For more dis-

cussion of using ranges to estimate process variability, see Woodall and Montgomery

(2000–2001).
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276 Chapter 6 ■ Control Charts for Variables

6.5 Summary of Procedures for x– , R, and s Charts

It is convenient to summarize in one place the various computational formulas for the major types

of variables control charts discussed in this chapter. Table 6.9 summarizes the formulas for , R,

and s charts when standard values for m and s are given. Table 6.10 provides the corresponding

summary when no standard values are given and trial control limits must be established from

analysis of past data. The constants given for the s chart assume that n – 1 is used in the denom-

inator of s. All constants are tabulated for various sample sizes in Appendix Table VI.

6.6 Applications of Variables Control Charts

There are many interesting applications of variables control charts. In this section, a few of

them will be described to give additional insights into how the control chart works, as well as

ideas for further applications.

x

■ TA B L E  6 . 9  

Formulas for Control Charts, Standards Given

Chart Center Line Control Limits

(m and s given) m m ± As
R (s given) d2s UCL = D2s, LCL = D1s
s (s given) c4s UCL = B6s, LCL = B5s

x

■ TA B L E  6 . 1 0  

Formulas for Control Charts, Control Limits Based on Past Data
(No Standards Given)

Chart Center Line Control Limits

(using R)
=
x

=
x ± A2

(using s)
=
x

=
x ± A3 S

R UCL = D4 , LCL = D3

s s̄ UCL = B4s̄, LCL = B3s̄

RRR

x

Rx

and, in general, produced a part that exhibited considerably

less variability than parts from supplier A, but its process was

centered so far off the nominal required dimension that many

parts were out of specification.

This situation convinced the procurement organization to

work with both suppliers, persuading supplier A to imple-

ment SPC and to begin working at continuous improvement,

and assisting supplier B to find out why its process was

consistently centered incorrectly. Supplier B’s problem was

ultimately tracked to some incorrect code in an NC (numerical-

controlled) machine, and the use of SPC at supplier A resulted

in considerable reduction in variability over a six-month

period. As a result of these actions, the problem with these

parts was essentially eliminated.

EXAMPLE 6.7

A large aerospace manufacturer purchased an aircraft compo-

nent from two suppliers. These components frequently exhib-

ited excessive variability on a key dimension that made it

impossible to assemble them into the final product. This prob-

lem always resulted in expensive rework costs and occasion-

ally caused delays in finishing the assembly of an airplane.

The materials receiving group performed 100% inspection

of these parts in an effort to improve the situation. They main-

tained and R charts on the dimension of interest for both sup-

pliers. They found that the fraction of nonconforming units

was about the same for both suppliers, but for very different

reasons. Supplier A could produce parts with mean dimension

equal to the required value, but the process was out of statisti-

cal control. Supplier B could maintain good statistical control

x

Using Control Charts to Improve Suppliers’ Processes
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6.6 Applications of Variables Control Charts 277

saw supplier cut 45 pieces that were analyzed using and R
charts to demonstrate statistical control and to provide the

basis for process capability analysis. The saw proved capable,

and the supplier learned many useful things about the perfor-

mance of his equipment. Control and capability tests such as

this one are a basic part of the equipment selection and acqui-

sition process in many companies.

x

EXAMPLE 6.8

An article in Manufacturing Engineering (“Picking a Marvel

at Deere,” January 1989, pp. 74–77) describes how the John

Deere Company uses SPC methods to help choose production

equipment. When a machine tool is purchased, it must go

through the company capability demonstration prior to ship-

ment to demonstrate that the tool has the ability to meet or

exceed the established performance criteria. The procedure

was applied to a programmable controlled bandsaw. The band-

Using SPC to Purchase a Machine Tool

impossible to construct an and R chart on hole diameter,

since each part is potentially different. The correct approach is

to focus on the characteristic of interest in the process. In this

case, the manufacturer is interested in drilling holes that have

the correct diameter, and therefore wants to reduce the vari-

ability in hole diameter as much as possible. This may be

accomplished by control charting the deviation of the actual

hole diameter from the nominal diameter. Depending on the

process production rate and the mix of parts produced, either

a control chart for individuals with a moving range control

chart or a conventional and R chart can be used. In these

applications, it is usually important to mark the start of each

lot or to batch carefully on the control chart, so that if chang-

ing the size, position, or number of holes drilled on each part

affects the process, the resulting pattern on the control charts

will be easy to interpret.

x

x

EXAMPLE 6.9

One of the more interesting aspects of SPC is the successful

implementation of control charts in a job-shop manufacturing

environment. Most job-shops are characterized by short pro-

duction runs, and many of these shops produce parts on pro-

duction runs of fewer than 50 units. This situation can make

the routine use of control charts appear to be somewhat of a

challenge, as not enough units are produced in any one batch

to establish the control limits.

This problem can usually be easily solved. Since statistical

process-control methods are most frequently applied to a char-

acteristic of a product, we can extend SPC to the job-shop

environment by focusing on the process characteristic in each

unit of product. To illustrate, consider a drilling operation in a

job-shop. The operator drills holes of various sizes in each part

passing through the machine center. Some parts require one

hole, and others several holes of different sizes. It is almost

SPC Implementation in a Short-Run Job-Shop

recently experienced a considerable increase in business vol-

ume, and along with this expansion came a gradual lengthen-

ing of the time the finance department needed to process check

requests. As a result, many suppliers were being paid beyond

the normal 30-day period, and the company was failing to cap-

ture the discounts available from its suppliers for prompt pay-

ment. The quality-improvement team assigned to this project

used the flow time through the finance department as the vari-

able for control chart analysis. Five completed check requests

were selected each day, and the average and range of flow time

were plotted on and R charts. Although management and

operating personnel had addressed this problem before, the use

of and R charts was responsible for substantial improve-

ments. Within nine months, the finance department had

reduced the percentage of invoices paid late from over 90% to

under 3%, resulting in an annual savings of several hundred

thousand dollars in realized discounts to the company.

x

x

EXAMPLE 6.10

Variables control charts have found frequent application in

both manufacturing and nonmanufacturing settings. A fairly

widespread but erroneous notion about these charts is that they

do not apply to the nonmanufacturing environment because

the “product is different.” Actually, if we can make measure-

ments on the product that are reflective of quality, function, or

performance, then the nature of the product has no bearing on

the general applicability of control charts. There are, however,

two commonly encountered differences between manufactur-

ing and transactional/service business situations: (1) In the

nonmanufacturing environment, specification limits rarely

apply to the product, so the notion of process capability is

often undefined; and (2) more imagination may be required to

select the proper variable or variables for measurement.

One application of and R control charts in a transactional

business environment involved the efforts of a finance group to

reduce the time required to process its accounts payable. The

division of the company in which the problem occurred had

x

Use of x– and R Charts in Transactional and Service Businesses
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278 Chapter 6 ■ Control Charts for Variables

revealed that the chief problem was the use of the five mea-

surements on a single part as a rational subgroup, and that the

out-of-control conditions on the chart did not provide a valid

basis for corrective action.

Remember that the control chart for deals with the issue

of whether or not the between-sample variability is consistent

with the within-sample variability. In this case it is not: The

vanes on a single casting are formed together in a common

wax mold assembly. It is likely that the vane heights on a spe-

cific casting will be very similar, and it is reasonable to believe

that there will be more variation in average vane height

between the castings.

This situation was handled by using the s chart in the ordi-

nary way to measure variation in vane height. However, as this

x

x

EXAMPLE 6.11

Figure 6.25a shows a casting used in a gas turbine jet aircraft

engine. This part is typical of those produced by both casting

and machining processes for use in gas turbine engines and

auxiliary power units in the aerospace industry—cylindrical

parts created by rotating the cross-section around a central

axis. The vane height on this part is a critical quality charac-

teristic.

Data on vane heights are collected by randomly selecting

five vanes on each casting produced. Initially, the company

constructed and s control charts on these data to control and

improve the process. This usually produced many out-of-control

points on the chart, with an occasional out-of-control point on

the s chart. Figure 6.26 shows typical and s charts for 20 cast-

ings. A more careful analysis of the control-charting procedure

x
x

x

The Need for Care in Selecting Rational Subgroups

■ F I G U R E  6 . 2 5 An aerospace casting.
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■ F I G U R E  6 . 2 6 Typical and s control charts (from Minitab) for the vane heights of the

castings in Figure 6.26.

x
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Situations such as the one described in Example 6.11 occur frequently in the application

of control charts. For example, there are many similar problems in the semiconductor indus-

try. In such cases, it is important to study carefully the behavior of the variables being mea-

sured and to have a clear understanding of the purpose of the control charts. For instance, if the

variation in vane height on a specific casting were completely unrelated, using the average

height as an individual measurement could be very inappropriate. It would be necessary to 

(1) use a control chart on each individual vane included in the sample, (2) investigate the use

of a control chart technique for multistream processes, or (3) use some multivariate control

chart technique. Some of these possibilities are discussed in the chapters in Part IV of the text.

Average run length

Control chart for individuals units

Control limits

Interpretation of control charts

Moving-range control chart

Natural tolerance limits of a process

Normality and control charts

Operating-characteristic (OC) curve for the control chart

Patterns on control charts

Phase I control chart usage

Phase II control chart usage

Probability limits for control charts

x

Important Terms and Concepts

standard deviation is clearly too small to provide a valid basis

for control of , the quality engineer at the company decided to

treat the average vane height on each casting as an individual
measurement and to control average vane height by using a

control chart for individuals with a moving range chart. This

solution worked extremely well in practice, and the group of

three control charts provided an excellent basis for process

improvement.

Figure 6.27 shows this set of three control charts as gener-

ated by Minitab. The Minitab package generates these charts

x
automatically, referring to them as “between/within” control

charts. Note that the individuals chart exhibits control, whereas

the chart in Figure 6.26 did not. Essentially, the moving

range of the average vane heights provides a much more rea-

sonable estimate of the variability in height between parts.
The s chart can be thought of as a measure of the variability in

vane height on a single casting. We want this variability to be

as small as possible, so that all vanes on the same part will be

nearly identical. The paper by Woodall and Thomas (1995) is

a good reference on this general subject.

x

■ F I G U R E  6 . 2 7 Individuals, moving-range, and s control charts for the vane heights of the

castings in Figure 6.25.
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280 Chapter 6 ■ Control Charts for Variables

Process capability

Process capability ratio (PCR) Cp

R control chart

Rational subgroups

s control chart

s2 control chart

Shewhart control charts

Specification limits

Three-sigma control limits

Tier chart or tolerance diagram

Trial control limits

Variable sample size on control charts

Variables control charts

control chartx

Exercises

6.1. A manufacturer of components for

automobile transmissions wants to

use control charts to monitor a

process producing a shaft. The

resulting data from 20 samples of 4

shaft diameters that have been

measured are:

(a) Find the control limits that

should be used on the and R
control charts.

(b) Assume that the 20 preliminary samples plot in

control on both charts. Estimate the process

mean and standard deviation.

6.2. A company manufacturing oil seals wants to establish

and R control charts on the process. There are 25

preliminary samples of size 5 on the internal diameter

of the seal. The summary data (in mm) are as follows:

(a) Find the control limits that should be used on the

x and R control charts.

(b) Assume that the 25 preliminary samples plot in

control on both charts. Estimate the process

mean and standard deviation.

6.3. Reconsider the situation described in Exercise 6.1.

Suppose that several of the preliminary 20 samples

plot out of control on the R chart. Does this have any

impact on the reliability of the control limits on the

chart?

6.4. Discuss why it is important to establish control on

the R chart first when using and R control charts to

bring a process into statistical control.

6.5. A hospital emergency department is monitoring the

time required to admit a patient using and R charts.

Table 6E.1 presents summary data for 20 subgroups

of two patients each (time is in minutes). 

(a) Use these data to determine the control limits

for the and R control charts for this patient

admitting process.

x

x

x

x

Rx i
i

i = =∑∑
=

1,253.75, 14.08
1 i=1

25
 
25

x

x

Rx
i

i
i

i = =∑∑
=

10.275, 1.012
11

20

 
=

20

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

■ TA B L E  6 E . 1  

Hospital Admission Time Data for Exercise 6.5

Subgroup R Subgroup R

1 8.3 2 11 8.8 3

2 8.1 3 12 9.1 5

3 7.9 1 13 5.9 3

4 6.3 5 14 9.0 6

5 8.5 3 15 6.4 3

6 7.5 4 16 7.3 3

7 8.0 3 17 5.3 2

8 7.4 2 18 7.6 4

9 6.4 2 19 8.1 3

10 7.5 4 20 8.0 2

xxx

(b) Plot the preliminary data from the first 20 samples

on the control charts that you set up in part (a).

Is this process in statistical control?

6.6. Components used in a cellular telephone are manu-

factured with nominal dimension of 0.3 mm and

lower and upper specification limits of 0.295 mm

and 0.305 mm respectively. The and R control

charts for this process are based on subgroups of

size 3 and they exhibit statistical control, with the

center line on the chart at 0.3015 mm and the cen-

ter line on the R chart at 0.00154 mm. 

(a) Estimate the mean and standard deviation of

this process.

(b) Suppose that parts below the lower specifica-

tion limits can be reworked, but parts above the

upper specification limit must be scrapped.

Estimate the proportion of scrap and rework

produced by this process.

(c) Suppose that the mean of this process can be

reset by fairly simple adjustments. What value

of the process mean would you recommend?

Estimate the proportion of scrap and rework

produced by the process at this new mean.

6.7. The data shown in Table 6E.2 are and R values for

24 samples of size n = 5 taken from a process produc-

ing bearings. The measurements are made on the

x

x

x
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Exercises 281

■ TA B L E  6 E . 2  

Bearing Diameter Data

Sample Sample 
Number R Number R

1 34.5 3 13 35.4 8

2 34.2 4 14 34.0 6

3 31.6 4 15 37.1 5

4 31.5 4 16 34.9 7

5 35.0 5 17 33.5 4

6 34.1 6 18 31.7 3

7 32.6 4 19 34.0 8

8 33.8 3 20 35.1 4

9 34.8 7 21 33.7 2

10 33.6 8 22 32.8 1

11 31.9 3 23 33.5 3

12 38.6 9 24 34.2 2

xxx

■ TA B L E  6 E . 3  

Voltage Data for Exercise 6.8

Sample 
Number x1 x2 x3 x4

1 6 9 10 15

2 10 4 6 11

3 7 8 10 5

4 8 9 6 13

5 9 10 7 13

6 12 11 10 10

7 16 10 8 9

8 7 5 10 4

9 9 7 8 12

10 15 16 10 13

11 8 12 14 16

12 6 13 9 11

13 16 9 13 15

14 7 13 10 12

15 11 7 10 16

16 15 10 11 14

17 9 8 12 10

18 15 7 10 11

19 8 6 9 12

20 13 14 11 15

inside diameter of the bearing, with only the last three

decimals recorded (i.e., 34.5 should be 0.50345).

(a) Set up and R charts on this process. Does the

process seem to be in statistical control? If nec-

essary, revise the trial control limits.

(b) If specifications on this diameter are 0.5030 ±
0.0010, find the percentage of nonconforming

bearings produced by this process. Assume that

diameter is normally distributed.

6.8. A high-voltage power supply should have a nominal

output voltage of 350 V. A sample of four units is

selected each day and tested for process-control pur-

poses. The data shown in Table 6E.3 give the differ-

ence between the observed reading on each unit and

the nominal voltage times ten; that is,

xi = (observed voltage on unit i - 350)10

(a) Set up and R charts on this process. Is the

process in statistical control?

(b) If specifications are at 350 V ± 5 V, what can you

say about process capability?

(c) Is there evidence to support the claim that volt-

age is normally distributed?

6.9. The data shown in Table 6E.4 are the deviations from

nominal diameter for holes drilled in a carbon-fiber

composite material used in aerospace manufacturing.

The values reported are deviations from nominal in

ten-thousandths of an inch.

(a) Set up and R charts on the process. Is the

process in statistical control?

(b) Estimate the process standard deviation using

the range method.

(c) If specifications are at nominal ±100, what can

you say about the capability of this process?

Calculate the PCR Cp.

x

x

x

■ TA B L E  6 E . 4  

Hole Diameter Data for Exercise 6.9

Sample 
Number x1 x2 x3 x4 x5

1 −30 +50 −20 +10 +30

2 0 +50 −60 −20 +30

3 −50 +10 +20 +30 +20

4 −10 −10 +30 −20 +50

5 +20 −40 +50 +20 +10

6 0 0 +40 −40 +20

7 0 0 +20 −20 −10

8 +70 −30 +30 −10 0

9 0 0 +20 −20 +10

10 +10 +20 +30 +10 +50

11 +40 0 +20 0 +20

12 +30 +20 +30 +10 +40

13 +30 −30 0 +10 +10

14 +30 −10 +50 −10 −30

15 +10 −10 +50 +40 0

16 0 0 +30 −10 0

17 +20 +20 +30 +30 −20

18 +10 −20 +50 +30 +10

19 +50 −10 +40 +20 0

20 +50 0 0 +30 +10
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■ TA B L E  6 E . 6

Fill Height Data for Exercise 6.11

Sample 
Number x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2.5 0.5 2.0 −1.0 1.0 −1.0 0.5 1.5 0.5 −1.5

2 0.0 0.0 0.5 1.0 1.5 1.0 −1.0 1.0 1.5 −1.0

3 1.5 1.0 1.0 −1.0 0.0 −1.5 −1.0 −1.0 1.0 −1.0

4 0.0 0.5 −2.0 0.0 −1.0 1.5 −1.5 0.0 −2.0 −1.5

5 0.0 0.0 0.0 −0.5 0.5 1.0 −0.5 −0.5 0.0 0.0

6 1.0 −0.5 0.0 0.0 0.0 0.5 −1.0 1.0 −2.0 1.0

7 1.0 −1.0 −1.0 −1.0 0.0 1.5 0.0 1.0 0.0 0.0

8 0.0 −1.5 −0.5 1.5 0.0 0.0 0.0 −1.0 0.5 −0.5

9 −2.0 −1.5 1.5 1.5 0.0 0.0 0.5 1.0 0.0 1.0

10 −0.5 3.5 0.0 −1.0 −1.5 −1.5 −1.0 −1.0 1.0 0.5

11 0.0 1.5 0.0 0.0 2.0 −1.5 0.5 −0.5 2.0 −1.0

12 0.0 −2.0 −0.5 0.0 −0.5 2.0 1.5 0.0 0.5 −1.0

13 −1.0 −0.5 −0.5 −1.0 0.0 0.5 0.5 −1.5 −1.0 −1.0

14 0.5 1.0 −1.0 −0.5 −2.0 −1.0 −1.5 0.0 1.5 1.5

15 1.0 0.0 1.5 1.5 1.0 −1.0 0.0 1.0 −2.0 −1.5

6.10. The thickness of a printed circuit board is an impor-

tant quality parameter. Data on board thickness (in

inches) are given in Table 6E.5 for 25 samples of

three boards each.

(a) Set up and R control charts. Is the process in

statistical control?

(b) Estimate the process standard deviation.

(c) What are the limits that you would expect to con-

tain nearly all the process measurements?

(d) If the specifications are at 0.0630 in. ± 0.0015 in.,

what is the value of the PCR Cp?

6.11. The fill volume of soft-drink beverage bottles is an

important quality characteristic. The volume is mea-

sured (approximately) by placing a gauge over the

crown and comparing the height of the liquid in the

neck of the bottle against a coded scale. On this

scale, a reading of zero corresponds to the correct fill

height. Fifteen samples of size n = 10 have been ana-

lyzed, and the fill heights are shown in Table 6E.6.

x

■ TA B L E  6 E . 5

Printed Circuit Board Thickness for
Exercise 6.10

Sample 
Number x1 x2 x3

1 0.0629 0.0636 0.0640

2 0.0630 0.0631 0.0622

3 0.0628 0.0631 0.0633

4 0.0634 0.0630 0.0631

5 0.0619 0.0628 0.0630

6 0.0613 0.0629 0.0634

7 0.0630 0.0639 0.0625

8 0.0628 0.0627 0.0622

9 0.0623 0.0626 0.0633

10 0.0631 0.0631 0.0633

11 0.0635 0.0630 0.0638

12 0.0623 0.0630 0.0630

13 0.0635 0.0631 0.0630

14 0.0645 0.0640 0.0631

15 0.0619 0.0644 0.0632

16 0.0631 0.0627 0.0630

17 0.0616 0.0623 0.0631

18 0.0630 0.0630 0.0626

19 0.0636 0.0631 0.0629

20 0.0640 0.0635 0.0629

21 0.0628 0.0625 0.0616

22 0.0615 0.0625 0.0619

23 0.0630 0.0632 0.0630

24 0.0635 0.0629 0.0635

25 0.0623 0.0629 0.0630

(a) Set up and s control charts on this process.

Does the process exhibit statistical control? If

necessary, construct revised control limits.

(b) Set up an R chart, and compare it with the s
chart in part (a).

(c) Set up an s2 chart and compare it with the s
chart in part (a).

6.12. The net weight (in oz) of a dry bleach product is to

be monitored by and R control charts using a sam-

ple size of n = 5. Data for 20 preliminary samples

are shown in Table 6E.7.

(a) Set up and R control charts using these data.

Does the process exhibit statistical control?

(b) Estimate the process mean and standard deviation.

(c) Does fill weight seem to follow a normal distri-

bution?

(d) If the specifications are at 16.2 ± 0.5, what

conclusions would you draw about process

capability?

(e) What fraction of containers produced by this

process is likely to be below the lower specifi-

cation limit of 15.7 oz?

6.13. Rework Exercise 6.8 using the s chart.

6.14. Rework Exercise 6.9 using the s chart.

6.15. Consider the piston ring data shown in Table 6.3.

Assume that the specifications on this component

are 74.000 + 0.05 mm.

(a) Set up and R control charts on this process. Is

the process in statistical control?

(b) Note that the control limits on the chart in part

(a) are identical to the control limits on the x
x

x

x

x

x
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chart in Example 6.3, where the limits were

based on s. Will this always happen?

(c) Estimate process capability for the piston-ring

process. Estimate the percentage of piston rings

produced that will be outside of the specification.

6.16. Table 6E.8 shows 15 additional samples for the piston

ring process (Table 6.3), taken after the initial control

charts were established. Plot these data on the and R
chart developed in Exercise 6.15. Is the process in

control?

6.17. Control charts on and s are to be maintained on

the torque readings of a bearing used in a wingflap

actuator assembly. Samples of size n = 10 are to

be used, and we know from past experience that

when the process is in control, bearing torque has

a normal distribution with mean m = 80 inch-

pounds and standard deviation s = 10 inch-

pounds. Find the center line and control limits for

these control charts.

6.18. Samples of n = 6 items each are taken from a process

at regular intervals. A quality characteristic is mea-

sured, and and R values are calculated for each

sample. After 50 samples, we have

x Ri i
ii

= =∑∑
=

2,000 200
11

50
   and   

=

50

x

x

x
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Piston Ring Diameter Data for Exercise 6.16

Sample 
Number, i Observations x̄ i Ri

26 74.012 74.015 74.030 73.986 74.000 74.009 0.044

27 73.995 74.010 73.990 74.015 74.001 74.002 0.025

28 73.987 73.999 73.985 74.000 73.990 73.992 0.015

29 74.008 74.010 74.003 73.991 74.006 74.004 0.019

30 74.003 74.000 74.001 73.986 73.997 73.997 0.017

31 73.994 74.003 74.015 74.020 74.004 74.007 0.026

32 74.008 74.002 74.018 73.995 74.005 74.006 0.023

33 74.001 74.004 73.990 73.996 73.998 73.998 0.014

34 74.015 74.000 74.016 74.025 74.000 74.011 0.025

35 74.030 74.005 74.000 74.016 74.012 74.013 0.030

36 74.001 73.990 73.995 74.010 74.024 74.004 0.034

37 74.015 74.020 74.024 74.005 74.019 74.017 0.019

38 74.035 74.010 74.012 74.015 74.026 74.020 0.025

39 74.017 74.013 74.036 74.025 74.026 74.023 0.023

40 74.010 74.005 74.029 74.000 74.020 74.013 0.029

■ TA B L E  6 E . 7

Data for Exercise 6.12

Sample 
Number x1 x2 x3 x4 x5

1 15.8 16.3 16.2 16.1 16.6

2 16.3 15.9 15.9 16.2 16.4

3 16.1 16.2 16.5 16.4 16.3

4 16.3 16.2 15.9 16.4 16.2

5 16.1 16.1 16.4 16.5 16.0

6 16.1 15.8 16.7 16.6 16.4

7 16.1 16.3 16.5 16.1 16.5

8 16.2 16.1 16.2 16.1 16.3

9 16.3 16.2 16.4 16.3 16.5

10 16.6 16.3 16.4 16.1 16.5

11 16.2 16.4 15.9 16.3 16.4

12 15.9 16.6 16.7 16.2 16.5

13 16.4 16.1 16.6 16.4 16.1

14 16.5 16.3 16.2 16.3 16.4

15 16.4 16.1 16.3 16.2 16.2

16 16.0 16.2 16.3 16.3 16.2

17 16.4 16.2 16.4 16.3 16.2

18 16.0 16.2 16.4 16.5 16.1

19 16.4 16.0 16.3 16.4 16.4

20 16.4 16.4 16.5 16.0 15.8

Assume that the quality characteristic is normally

distributed.

(a) Compute control limits for the and R control

charts.

(b) All points on both control charts fall between the

control limits computed in part (a). What are the

natural tolerance limits of the process?

(c) If the specification limits are 41 ± 5.0, what 

are your conclusions regarding the ability of 

the process to produce items within these speci-

fications?

(d) Assuming that if an item exceeds the upper spec-

ification limit it can be reworked, and if it is

below the lower specification limit it must be

scrapped, what percentage scrap and rework is

the process producing?

(e) Make suggestions as to how the process perfor-

mance could be improved.

6.19. Samples of n = 4 items are taken from a process at

regular intervals. A normally distributed quality char-

acteristic is measured and and s values are calcu-

lated for each sample. After 50 subgroups have been

analyzed, we have

(a) Compute the control limit for the and s control

charts.

(b) Assume that all points on both charts plot within

the control limits. What are the natural tolerance

limits of the process?

x

x si i
ii

= =∑∑
=

1,000 72
11

50
   and   

=

50

x

x
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(c) If the specification limits are 19 ± 4.0, what are

your conclusions regarding the ability of the

process to produce items conforming to specifi-

cations?

(d) Assuming that if an item exceeds the upper spec-

ification limit it can be reworked, and if it is

below the lower specification limit it must be

scrapped, what percentage scrap and rework is

the process now producing?

(e) If the process were centered at m = 19.0, what

would be the effect on percentage scrap and

rework?

6.20. Table 6E.9 presents 20 subgroups of five measure-

ments on the critical dimension of a part produced by

a machining process.

(a) Set up and R control charts on this process.

Verify that the process is in statistical control.

(b) Following the establishment of control charts in

part (a) above, 10 new samples in Table 6E.10

were collected. Plot the and R values on the

control chart you established in part (a) and draw

conclusions.

(c) Suppose that the assignable cause responsible for

the action signals generated in part (b) has been

identified and adjustments made to the process to

correct its performance. Plot the and R values

from the new subgroups shown in Table 6E.11

x

x

x

■ TA B L E  6 E . 1 1

New Data for Exercise 6.20, part (c)

Sample 
Number x1 x2 x3 x4 x5 x̄ R

1 131.5 143.1 118.5 103.2 121.6 123.6 39.8

2 111.0 127.3 110.4 91.0 143.9 116.7 52.8

3 129.8 98.3 134.0 105.1 133.1 120.1 35.7

4 145.2 132.8 106.1 131.0 99.2 122.8 46.0

5 114.6 111.0 108.8 177.5 121.6 126.7 68.7

6 125.2 86.4 64.4 137.1 117.5 106.1 72.6

7 145.9 109.5 84.9 129.8 110.6 116.1 61.0

8 123.6 114.0 135.4 83.2 107.6 112.8 52.2

9 85.8 156.3 119.7 96.2 153.0 122.2 70.6

10 107.4 148.7 127.4 125.0 127.5 127.2 41.3

■ TA B L E  6 E . 9

Data for Exercise 6.20

Sample 
Number x1 x2 x3 x4 x5 x̄ R

1 138.1 110.8 138.7 137.4 125.4 130.1 27.9

2 149.3 142.1 105.0 134.0 92.3 124.5 57.0

3 115.9 135.6 124.2 155.0 117.4 129.6 39.1

4 118.5 116.5 130.2 122.6 100.2 117.6 30.0

5 108.2 123.8 117.1 142.4 150.9 128.5 42.7

6 102.8 112.0 135.0 135.0 145.8 126.1 43.0

7 120.4 84.3 112.8 118.5 119.3 111.0 36.1

8 132.7 151.1 124.0 123.9 105.1 127.4 46.0

9 136.4 126.2 154.7 127.1 173.2 143.5 46.9

10 135.0 115.4 149.1 138.3 130.4 133.6 33.7

11 139.6 127.9 151.1 143.7 110.5 134.6 40.6

12 125.3 160.2 130.4 152.4 165.1 146.7 39.8

13 145.7 101.8 149.5 113.3 151.8 132.4 50.0

14 138.6 139.0 131.9 140.2 141.1 138.1 9.2

15 110.1 114.6 165.1 113.8 139.6 128.7 54.8

16 145.2 101.0 154.6 120.2 117.3 127.6 53.3

17 125.9 135.3 121.5 147.9 105.0 127.1 42.9

18 129.7 97.3 130.5 109.0 150.5 123.4 53.2

19 123.4 150.0 161.6 148.4 154.2 147.5 38.3

20 144.8 138.3 119.6 151.8 142.7 139.4 32.2

■ TA B L E  6 E . 1 0

Additional Data for Exercise 6.20, part (b)

Sample 
Number x1 x2 x3 x4 x5 x̄ R

1 131.0 184.8 182.2 143.3 212.8 170.8 81.8

2 181.3 193.2 180.7 169.1 174.3 179.7 24.0

3 154.8 170.2 168.4 202.7 174.4 174.1 48.0

4 157.5 154.2 169.1 142.2 161.9 157.0 26.9

5 216.3 174.3 166.2 155.5 184.3 179.3 60.8

6 186.9 180.2 149.2 175.2 185.0 175.3 37.8

7 167.8 143.9 157.5 171.8 194.9 167.2 51.0

8 178.2 186.7 142.4 159.4 167.6 166.9 44.2

9 162.6 143.6 132.8 168.9 177.2 157.0 44.5

10 172.1 191.7 203.4 150.4 196.3 182.8 53.0

which were taken following the adjustment,

against the control chart limits established in

part (a). What are your conclusions?

6.21. Parts manufactured by an injection molding

process are subjected to a compressive strength

test. Twenty samples of five parts each are col-

lected, and the compressive strengths (in psi) are

shown in Table 6E.12.

(a) Establish and R control charts for compressive

strength using these data. Is the process in statis-

tical control?

(b) After establishing the control charts in part (a),

15 new subgroups were collected and the com-

pressive strengths are shown in Table 6E.13. Plot

the and R values against the control units from

part (a) and draw conclusions.

6.22. Reconsider the data presented in Exercise 6.21.

(a) Rework both parts (a) and (b) of Exercise 6.21

using the and s charts.x

x

x
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(a) Suppose that you wished to continue charting

this quality characteristic using and R charts

based on a sample size of n = 3. What limits

would be used on the and R charts?

(b) What would be the impact of the decision you

made in part (a) on the ability of the chart to

detect a 2s shift in the mean?

(c) Suppose you wished to continue charting this

quality characteristic using and R charts based

on a sample size of n = 8. What limits would be

used on the and R charts?

(d) What is the impact of using n = 8 on the ability

of the chart to detect a 2s shift in the mean?

6.24. Consider the and R chart that you established in

Exercise 6.15 for the piston ring process. Suppose

that you want to continue control charting piston ring

diameter using n = 3. What limits would be used on

the and R chart?

6.25. Control charts for and R are maintained for an

important quality characteristic. The sample size is 

n = 7; and R are computed for each sample. After

35 samples, we have found that

(a) Set up and R charts using these data.

(b) Assuming that both charts exhibit control, esti-

mate the process mean and standard deviation.

(c) If the quality characteristic is normally distrib-

uted and if the specifications are 220 ± 35, can

the process meet the specifications? Estimate the

fraction nonconforming.

(d) Assuming the variance to remain constant,

state where the process mean should be located

to minimize the fraction nonconforming. What

would be the value of the fraction nonconform-

ing under these conditions?

6.26. Samples of size n = 5 are taken from a manufactur-

ing process every hour. A quality characteristic is

measured, and and R are computed for each sam-

ple. After 25 samples have been analyzed, we have

The quality characteristic is normally distributed.

(a) Find the control limits for the and R charts.

(b) Assume that both charts exhibit control. If the

specifications are 26.40 ± 0.50, estimate the frac-

tion nonconforming.

(c) If the mean of the process were 26.40, what frac-

tion nonconforming would result?

6.27. Samples of size n = 5 are collected from a process

every half hour. After 50 samples have been collected,

x

x Ri i
ii

= =∑∑
=

662 50 9 00
11

25

. .   and   
=

25

x

x

x Ri i
ii

= =∑∑
=

7,805 1,200
11

35
   and   

=

35

x

x
x

x
x

x

x

x

x

x

(b) Does the s chart detect the shift in process vari-

ability more quickly than the R chart did origi-

nally in part (b) of Exercise 6.21?

6.23. Consider the and R charts you established in

Exercise 6.7 using n = 5.

x
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Strength Data for Exercise 6.21

Sample 
Number x1 x2 x3 x4 x5 x̄ R

1 83.0 81.2 78.7 75.7 77.0 79.1 7.3

2 88.6 78.3 78.8 71.0 84.2 80.2 17.6

3 85.7 75.8 84.3 75.2 81.0 80.4 10.4

4 80.8 74.4 82.5 74.1 75.7 77.5 8.4

5 83.4 78.4 82.6 78.2 78.9 80.3 5.2

6 75.3 79.9 87.3 89.7 81.8 82.8 14.5

7 74.5 78.0 80.8 73.4 79.7 77.3 7.4

8 79.2 84.4 81.5 86.0 74.5 81.1 11.4

9 80.5 86.2 76.2 64.1 80.2 81.4 9.9

10 75.7 75.2 71.1 82.1 74.3 75.7 10.9

11 80.0 81.5 78.4 73.8 78.1 78.4 7.7

12 80.6 81.8 79.3 73.8 81.7 79.4 8.0

13 82.7 81.3 79.1 82.0 79.5 80.9 3.6

14 79.2 74.9 78.6 77.7 75.3 77.1 4.3

15 85.5 82.1 82.8 73.4 71.7 79.1 13.8

16 78.8 79.6 80.2 79.1 80.8 79.7 2.0

17 82.1 78.2 75.5 78.2 82.1 79.2 6.6

18 84.5 76.9 83.5 81.2 79.2 81.1 7.6

19 79.0 77.8 81.2 84.4 81.6 80.8 6.6

20 84.5 73.1 78.6 78.7 80.6 79.1 11.4

■ TA B L E  6 E . 1 3

New Data for Exercise 6.21, part (b)

Sample 
Number x1 x2 x3 x4 x5 x̄ R

1 68.9 81.5 78.2 80.8 81.5 78.2 12.6

2 69.8 68.6 80.4 84.3 83.9 77.4 15.7

3 78.5 85.2 78.4 80.3 81.7 80.8 6.8

4 76.9 86.1 86.9 94.4 83.9 85.6 17.5

5 93.6 81.6 87.8 79.6 71.0 82.7 22.5

6 65.5 86.8 72.4 82.6 71.4 75.9 21.3

7 78.1 65.7 83.7 93.7 93.4 82.9 27.9

8 74.9 72.6 81.6 87.2 72.7 77.8 14.6

9 78.1 77.1 67.0 75.7 76.8 74.9 11.0

10 78.7 85.4 77.7 90.7 76.7 81.9 14.0

11 85.0 60.2 68.5 71.1 82.4 73.4 24.9

12 86.4 79.2 79.8 86.0 75.4 81.3 10.9

13 78.5 99.0 78.3 71.4 81.8 81.7 27.6

14 68.8 62.0 82.0 77.5 76.1 73.3 19.9

15 83.0 83.7 73.1 82.2 95.3 83.5 22.2
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we calculate = 20.0 and s = 1.5. Assume that both

charts exhibit control and that the quality character-

istic is normally distributed.

(a) Estimate the process standard deviation.

(b) Find the control limits on the and s charts.

(c) If the process mean shifts to 22, what is the prob-

ability of concluding that the process is still in

control?

6.28. Control charts for and R are maintained on a

process. After 20 preliminary subgroups each of size

3 are evaluated, you have the following data:

(a) Set up the control charts using these data.

(b) Assume that the process exhibits statistical con-

trol. Estimate the process mean and standard

deviation.

(c) Suppose that the quality characteristic is nor-

mally distributed with specifications at .

Estimate the fraction nonconforming produced

by this process.

(d) How much reduction in process variability would

be required to make this a Six Sigma process?

6.29. Control charts for and s are maintained on a

process. After 25 preliminary subgroups each of size

3 are evaluated, you have the following data:

(a) Set up the control charts using these data.

(b) Assume that the process exhibits statistical con-

trol. Estimate the process mean and standard

deviation.

(c) Suppose that the quality characteristic is nor-

mally distributed with specifications at 

Estimate the fraction nonconforming produced

by this process.

(d) How much reduction in process variability

would be required to make this a Six Sigma

process?

6.30. An chart is used to control the mean of a normally

distributed quality characteristic. It is known that 

s = 6.0 and n = 4. The center line = 200, UCL = 209,

and LCL = 191. If the process mean shifts to 188,

find the probability that this shift is detected on the

first subsequent sample.

6.31. A critical dimension of a machined part has specifi-

cations 100 ± 10. Control chart analysis indicates

that the process is in control with and

. The control charts use samples of size 

n = 5. If we assume that the characteristic is normally

distributed, can the mean be located (by adjusting the

R = 9.30

x = 104

x

2.25 ± 4.

x
ii

i si= =∑∑
=

55.45 28.67
11

25

 
=

25

x

275 ± 6

Rx
i

i
i

i = =∑∑
=

5,502 60
11

20
 

=

20

x

x

x tool position) so that all output meets specifications?

What is the present capability of the process?

6.32. A process is to be monitored with standard values 

m = 10 and s = 2.5. The sample size is n = 2.

(a) Find the center line and control limits for the 

chart.

(b) Find the center line and control limits for the R
chart.

(c) Find the center line and control limits for the s
chart.

6.33. Samples of n = 5 units are taken from a process every

hour. The and values for a particular quality char-

acteristic are determined. After 25 samples have been

collected, we calculate = 20 and 
–
R = 4.56.

(a) What are the three-sigma control limits for 

and R?

(b) Both charts exhibit control. Estimate the process

standard deviation.

(c) Assume that the process output is normally distrib-

uted. If the specifications are 19 ± 5, what are your

conclusions regarding the process capability?

(d) If the process mean shifts to 24, what is the prob-

ability of not detecting this shift on the first sub-

sequent sample?

6.34. A TiW layer is deposited on a substrate using a sput-

tering tool. Table 6E.14 contains layer thickness

x
x

Rx

x

■ TA B L E  6 E . 1 4

Layer Thickness Data for Exercise 6.34

Subgroup x1 x2 x3 x4

1 459 449 435 450

2 443 440 442 442

3 457 444 449 444

4 469 463 453 438

5 443 457 445 454

6 444 456 456 457

7 445 449 450 445

8 446 455 449 452

9 444 452 457 440

10 432 463 463 443

11 445 452 453 438

12 456 457 436 457

13 459 445 441 447

14 441 465 438 450

15 460 453 457 438

16 453 444 451 435

17 451 460 450 457

18 422 431 437 429

19 444 446 448 467

20 450 450 454 454
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measurements (in angstroms) on 20 subgroups of

four substrates.

(a) Set up and R control charts on this process. Is

the process in control? Revise the control limits

as necessary.

(b) Estimate the mean and standard deviation of the

process.

(c) Is the layer thickness normally distributed?

(d) If the specifications are at 450 ± 30, estimate the

process capability.

6.35. Continuation of Exercise 6.34. Table 6E.15 con-

tains 10 new subgroups of thickness data. Plot this

data on the control charts constructed in Exercise

6.26 (a). Is the process in statistical control?

6.36. Continuation of Exercise 6.34. Suppose that fol-

lowing the construction of the and R control charts

in Exercise 6.34, the process engineers decided to

change the subgroup size to n = 2. Table 6E.16 con-

tains 10 new subgroups of thickness data. Plot this

x

x

data on the control charts from Exercise 6.34 (a)

based on the new subgroup size. Is the process in sta-

tistical control?

6.37. Rework Exercises 6.34 and 6.35 using and s con-

trol charts.

6.38. Control charts for and R are to be established to

control the tensile strength of a metal part. Assume

that tensile strength is normally distributed. Thirty

samples of size n = 6 parts are collected over a period

of time with the following results:

(a) Calculate control limits for and R.
(b) Both charts exhibit control. The specifications on

tensile strength are 200 ± 5. What are your con-

clusions regarding process capability?

(c) For the above chart, find the b-risk when the

true process mean is 199.

6.39. An chart has a center line of 100, uses three-sigma

control limits, and is based on a sample size of four.

The process standard deviation is known to be six. If

the process mean shifts from 100 to 92, what is the

probability of detecting this shift on the first sample

following the shift?

6.40. The data in Table 6E.17 were collected from a

process manufacturing power supplies. The variable

of interest is output voltage, and n = 5.

(a) Compute center lines and control limits suitable

for controlling future production.

(b) Assume that the quality characteristic is nor-

mally distributed. Estimate the process standard

deviation.

(c) What are the apparent three-sigma natural toler-

ance limits of the process?

x

x

x

x Ri i
ii

= =∑∑
=

6,000 150
11

30
   and   

=

30

x

x

■ TA B L E  6 E . 1 7

Voltage Data for Exercise 6.40

Sample Sample 
Number x̄ R Number x̄ R

1 103 4 11 105 4

2 102 5 12 103 2

3 104 2 13 102 3

4 105 11 14 105 4

5 104 4 15 104 5

6 106 3 16 105 3

7 102 7 17 106 5

8 105 2 18 102 2

9 106 4 19 105 4

10 104 3 20 103 2
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■ TA B L E  6 E . 1 5

Additional Thickness Data for 
Exercise 6.35.

Subgroup x1 x2 x3 x4

21 454 449 443 461

22 449 441 444 455

23 442 442 442 450

24 443 452 438 430

25 446 459 457 457

26 454 448 445 462

27 458 449 453 438

28 450 449 445 451

29 443 440 443 451

30 457 450 452 437

■ TA B L E  6 E . 1 6

Additional Thickness Data for
Exercise 6.36

Subgroup x1 x2

21 454 449

22 449 441

23 442 442

24 443 452

25 446 459

26 454 448

27 458 449

28 450 449

29 443 440

30 457 450
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6.43. Continuation of Exercise 6.42. Reconsider the data

from Exercise 6.42 and establish and R charts with

appropriate trial control limits. Revise these trial lim-

its as necessary to produce a set of control charts for

monitoring future production. Suppose that the new

data in Table 6E.19 are observed.

(a) Plot these new observations on the control chart.

What conclusions can you draw about process

stability?

(b) Use all 25 observations to revise the control lim-

its for the and R charts. What conclusions can

you draw now about the process?

6.44. Two parts are assembled as shown in Figure 6.28.

Assume that the dimensions x and y are normally dis-

tributed with means mx and my and standard devia-

tions sx and sy, respectively. The parts are produced

on different machines and are assembled at random.

Control charts are maintained on each dimension for

the range of each sample (n = 5). Both range charts

are in control.

(a) Given that for 20 samples on the range chart con-

trolling x and 10 samples on the range chart con-

trolling y, we have

Estimate sx and sy.

(b) If it is desired that the probability of a smaller

clearance (i.e., x − y) than 0.09 should be 0.006,

R Rx y
ii

i i
= =∑∑

=
18 608 6 978

11

20

. .   and   
=

10

x

x

x y

■ F I G U R E 6.28 Parts for Exercise 6.44.

(d) What would be your estimate of the process frac-

tion nonconforming if the specifications on the

characteristic were 103 ± 4?

(e) What approaches to reducing the fraction non-

conforming can you suggest?

6.41. Control charts on and R for samples of size n = 5

are to be maintained on the tensile strength in pounds

of a yarn. To start the charts, 30 samples were

selected, and the mean and range of each computed.

This yields

(a) Compute the center line and control limits for the

and R control charts.

(b) Suppose both charts exhibit control. There is a sin-

gle lower specification limit of 16 lb. If strength is

normally distributed, what fraction of yarn would

fail to meet specifications?

6.42. Specifications on a cigar lighter detent are 0.3220

and 0.3200 in. Samples of size 5 are taken every

45 min with the results shown in Table 6E.18 (mea-

sured as deviations from 0.3210 in 0.0001 in.).

(a) Set up an R chart and examine the process for

statistical control.

(b) What parameters would you recommend for an

R chart for on-line control?

(c) Estimate the standard deviation of the process.

(d) What is the process capability?

x

x Ri i
ii

= =∑∑
=

607 8 144
11

30

.    and   
=

30

x

■ TA B L E  6 E . 1 8

Data for Exercise 6.42

Sample 
Number x1 x2 x3 x4 x5

1 1 9 6 9 6

2 9 4 3 0 3

3 0 9 0 3 2

4 1 1 0 2 1

5 −3 0 −1 0 −4

6 −7 2 0 0 2

7 −3 −1 −1 0 −2

8 0 −2 −3 −3 −2

9 2 0 −1 −3 −1

10 0 2 −1 −1 2

11 −3 −2 −1 −1 2

12 −16 2 0 −4 −1

13 −6 −3 0 0 −8

14 −3 −5 5 0 5

15 −1 −1 −1 −2 −1

■ TA B L E  6 E . 1 9

New Data for Exercise 6.43

Sample 
Number x1 x2 x3 x4 x5

16 2 10 9 6 5

17 1 9 5 9 4

18 0 9 8 2 5

19 −3 0 5 1 4

20 2 10 9 3 1

21 −5 4 0 6 −1

22 0 2 −5 4 6

23 10 0 3 1 5

24 −1 2 5 6 −3

25 0 −1 2 5 −2
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what distance between the average dimensions

(i.e., mx – my) should be specified?

6.45. Control charts for and R are maintained on the ten-

sile strength of a metal fastener. After 30 samples of

size n = 6 are analyzed, we find that

(a) Compute control limits on the R chart.

(b) Assuming that the R chart exhibits control, esti-

mate the parameters m and s.

(c) If the process output is normally distributed, and

if the specifications are 440 ± 40, can the process

meet the specifications? Estimate the fraction

nonconforming.

(d) If the variance remains constant, where should

the mean be located to minimize the fraction

nonconforming?

6.46. Control charts for and s are maintained on a qual-

ity characteristic. The sample size is n = 4. After 30

samples, we obtain

(a) Find the three-sigma limits for the s chart.

(b) Assuming that both charts exhibit control, esti-

mate the parameters m and s.

6.47. An chart on a normally distributed quality charac-

teristic is to be established with the standard values

m = 100, s = 8, and n = 4. Find the following:

(a) The two-sigma control limits

(b) The 0.005 probability limits

6.48. An chart with three-sigma limits has parameters as

follows:

Suppose the process quality characteristic being con-

trolled is normally distributed with a true mean of 98

and a standard deviation of 8. What is the probability

that the control chart would exhibit lack of control by

at least the third point plotted?

6.49. Consider the chart defined in Exercise 6.48. Find

the ARL1 for the chart.

6.50. Control charts for and s with n = 4 are maintained

on a quality characteristic. The parameters of these

charts are as follows:

x

x

 n = 5

 LCL = 96

Center line = 100

 UCL = 104

x

x

x si i
ii

= =∑∑
=

12 870 410
11

30

,    and   
=

30

x

x Ri i
ii

= =∑∑
=

12 870 1,350
11

30
,    and   

=

30

x

Chart s Chart

UCL = 201.88 UCL = 2.266

Center line = 200.00 Center line = 1.000

LCL = 198.12 LCL = 0

Both charts exhibit control. Specifications on the

quality characteristic are 197.50 and 202.50. What

can be said about the ability of the process to produce

product that conforms to specifications?

6.51. Statistical monitoring of a quality characteristic

uses both an and an s chart. The charts are to be

based on the standard values m = 200 and s = 10,

with n = 4.

(a) Find three-sigma control limits for the s chart.

(b) Find a center line and control limits for the 

chart such that the probability of a type I error is

0.05.

6.52. Specifications on a normally distributed dimension

are 600 ± 20. and R charts are maintained on this

dimension and have been in control over a long

period of time. The parameters of these control

charts are as follows (n = 9).

Chart s Chart

UCL = 616 UCL = 32.36

Center line = 610 Center line = 17.82

LCL = 604 LCL = 3.28

(a) What are your conclusions regarding the capabil-

ity of the process to produce items within speci-

fications?

(b) Construct an OC curve for the chart assuming

that s is constant.

6.53. Thirty samples each of size 7 have been collected to

establish control over a process. The following data

were collected:

(a) Calculate trial control limits for the two charts.

(b) On the assumption that the R chart is in control,

estimate the process standard deviation.

(c) Suppose an s chart were desired. What would be

the appropriate control limits and center line?

6.54. An chart is to be established based on the standard

values m = 600 and s = 12, with n = 9. The control

limits are to be based on an a-risk of 0.01. What are

the appropriate control limits?

x

x Ri i
ii

= =∑∑
=

2,700 120
11

30
   and   

=

30

x

x

x

x

x

x
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6.55. and R charts with n = 4 are used to monitor a nor-

mally distributed quality characteristic. The control

chart parameters are

Chart R Chart

UCL = 815 UCL = 46.98

Center line = 800 Center line = 20.59

LCL = 785 LCL = 0

Both charts exhibit control. What is the probability

that a shift in the process mean to 790 will be

detected on the first sample following the shift?

6.56. Consider the chart in Exercise 6.55. Find the aver-

age run length for the chart.

6.57. Control charts for and R are in use with the follow-

ing parameters:

Chart R Chart

UCL = 363.0 UCL = 16.18

Center line = 360.0 Center line = 8.91

LCL = 357.0 LCL = 1.64

The sample size is n = 9. Both charts exhibit control.

The quality characteristic is normally distributed.

(a) What is the a-risk associated with the chart?

(b) Specifications on this quality characteristic are

358 ± 6. What are your conclusions regarding the

ability of the process to produce items within

specifications?

(c) Suppose the mean shifts to 357. What is the

probability that the shift will not be detected on

the first sample following the shift?

(d) What would be the appropriate control limits for

the chart if the type I error probability were to

be 0.01?

6.58. A normally distributed quality characteristic is mon-

itored through use of an and an R chart. These

charts have the following parameters (n = 4):

Chart R Chart

UCL = 626.0 UCL = 18.795

Center line = 620.0 Center line = 8.236

LCL = 614.0 LCL = 0

Both charts exhibit control.

(a) What is the estimated standard deviation of the

process?

x

x

x

x

x

x

x

x

x (b) Suppose an s chart were to be substituted for the

R chart. What would be the appropriate parame-

ters of the s chart?

(c) If specifications on the product were 610 ± 15,

what would be your estimate of the process frac-

tion nonconforming?

(d) What could be done to reduce this fraction non-

conforming?

(e) What is the probability of detecting a shift in the

process mean to 610 on the first sample follow-

ing the shift (s remains constant)?

(f) What is the probability of detecting the shift in

part (e) by at least the third sample after the shift

occurs?

6.59. Control charts for and s have been maintained on a

process and have exhibited statistical control. The

sample size is n = 6. The control chart parameters are

as follows:

Chart s Chart

UCL = 708.20 UCL = 3.420

Center line = 706.00 Center line = 1.738

LCL = 703.80 LCL = 0.052

(a) Estimate the mean and standard deviation of the

process.

(b) Estimate the natural tolerance limits for the

process.

(c) Assume that the process output is well modeled

by a normal distribution. If specifications are 703

and 709, estimate the fraction nonconforming.

(d) Suppose the process mean shifts to 702.00 while

the standard deviation remains constant. What is

the probability of an out-of-control signal occur-

ring on the first sample following the shift?

(e) For the shift in part (d), what is the probability of

detecting the shift by at least the third subsequent

sample?

6.60. The following and s charts based on n = 4 have

shown statistical control:

Chart s Chart

UCL = 710 UCL = 18.08

Center line = 700 Center line = 7.979

LCL = 690 LCL = 0

(a) Estimate the process parameters m and s.

(b) If the specifications are at 705 ± 15, and the

process output is normally distributed, estimate

the fraction nonconforming.

x

x

x

x
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(c) For the chart, find the probability of a type I

error, assuming s is constant.

(d) Suppose the process mean shifts to 693 and the

standard deviation simultaneously shifts to 12.

Find the probability of detecting this shift on the

chart on the first subsequent sample.

(e) For the shift of part (d), find the average run

length.

6.61. One-pound coffee cans are filled by a machine,

sealed, and then weighed automatically. After adjust-

ing for the weight of the can, any package that weighs

less than 16 oz is cut out of the conveyor. The weights

of 25 successive cans are shown in Table 6E.20. Set

up a moving range control chart and a control chart

for individuals. Estimate the mean and standard devi-

ation of the amount of coffee packed in each can. Is

it reasonable to assume that can weight is normally

distributed? If the process remains in control at this

level, what percentage of cans will be underfilled?

6.62. Fifteen successive heats of a steel alloy are tested for

hardness. The resulting data are shown in Table

6E.21. Set up a control chart for the moving range

and a control chart for individual hardness measure-

ments. Is it reasonable to assume that hardness is

normally distributed?

6.63. The viscosity of a polymer is measured hourly.

Measurements for the last 20 hours are shown in

Table 6E.22.

(a) Does viscosity follow a normal distribution?

(b) Set up a control chart on viscosity and a moving

range chart. Does the process exhibit statistical

control?

(c) Estimate the process mean and standard deviation.

x

x

6.64. Continuation of Exercise 6.63. The next five mea-

surements on viscosity are 3,163, 3,199, 3,054, 3,147,

and 3,156. Do these measurements indicate that the

process is in statistical control?

6.65. (a) Thirty observations on the oxide thickness of

individual silicon wafers are shown in Table

6E.23. Use these data to set up a control chart on

oxide thickness and a moving range chart. Does

the process exhibit statistical control? Does oxide

thickness follow a normal distribution?

(b) Following the establishment of the control charts

in part (a), 10 new wafers were observed. The

oxide thickness measurements are as follows:

Oxide Oxide 
Wafer Thickness Wafer Thickness

1 54.3 6 51.5

2 57.5 7 58.4

3 64.8 8 67.5

4 62.1 9 61.1

5 59.6 10 63.3
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■ TA B L E  6 E . 2 0

Can Weight Data for Exercise 6.61

Can Can 
Number Weight Number Weight

1 16.11 14 16.12

2 16.08 15 16.10

3 16.12 16 16.08

4 16.10 17 16.13

5 16.10 18 16.15

6 16.11 19 16.12

7 16.12 20 16.10

8 16.09 21 16.08

9 16.12 22 16.07

10 16.10 23 16.11

11 16.09 24 16.13

12 16.07 25 16.10

13 16.13

■ TA B L E  6 E . 2 1

Hardness Data for Exercise 6.62

Hardness Hardness 
Heat (coded) Heat (coded)

1 52 9 58

2 51 10 51

3 54 11 54

4 55 12 59

5 50 13 53

6 52 14 54

7 50 15 55

8 51

■ TA B L E  6 E . 2 2

Viscosity Data for Exercise 6.63

Test Viscosity Test Viscosity

1 2838 11 3174

2 2785 12 3102

3 3058 13 2762

4 3064 14 2975

5 2996 15 2719

6 2882 16 2861

7 2878 17 2797

8 2920 18 3078

9 3050 19 2964

10 2870 20 2805
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Plot these observations against the control limits

determined in part (a). Is the process in control?

(c) Suppose the assignable cause responsible for the

out-of-control signal in part (b) is discovered and

removed from the process. Twenty additional

wafers are subsequently sampled. Plot the oxide

thickness against the part (a) control limits. What

conclusions can you draw? The new data are

shown in Table 6E.25.

6.66. The waiting time for treatment in a “minute-clinic”

located in a drugstore is monitored using control

charts for individuals and the moving range. Table

6E.24 contains 30 successive measurements on

waiting time.

(a) Set up individual and moving range control

charts using this data.

(b) Plot these observations on the charts constructed

in part (a). Interpret the results. Does the process

seem to be in statistical control?

(c) Plot the waiting time data on a normal probabil-

ity plot. Is it reasonable to assume normality for

these data? Wouldn’t a variable like waiting time

often tend to have a distribution with a long tail

(skewed) to the right? Why?

6.67. Continuation of Exercise 6.66. The waiting time

data in Exercise 6.66 may not be normally distrib-

uted. Transform these data using a natural log trans-

formation. Plot the transformed data on a normal

probability plot and discuss your findings. Set up

individual and moving range control charts using the

transformed data. Plot the natural log of the waiting

time data on these control charts. Compare your

results with those from Exercise 6.66.

6.68. Thirty observations on concentration (in g/l) of

the active ingredient in a liquid cleaner produced

in a continuous chemical process are shown in

Table 6E.26.

(a) A normal probability plot of the concentration

data is shown in Figure 6.29. The straight line

was fit by eye to pass approximately through the

20th and 80th percentiles. Does the normality

assumption seem reasonable here?

(b) Set up individuals and moving range control

charts for the concentration data. Interpret the

charts.

(c) Construct a normal probability plot for the nat-

ural log of concentration. Is the transformed vari-

able normally distributed?

■ TA B L E  6 E . 2 3

Data. for Exercise 6.65

Oxide Oxide 
Wafer Thickness Wafer Thickness

1 45.4 16 58.4

2 48.6 17 51.0

3 49.5 18 41.2

4 44.0 19 47.1

5 50.9 20 45.7

6 55.2 21 60.6

7 45.5 22 51.0

8 52.8 23 53.0

9 45.3 24 56.0

10 46.3 25 47.2

11 53.9 26 48.0

12 49.8 27 55.9

13 46.9 28 50.0

14 49.8 29 47.9

15 45.1 30 53.4

■ TA B L E  6 E . 2 5

Additional Data for Exercise 6.65,
part (c)

Oxide Oxide 
Wafer Thickness Wafer Thickness

1 43.4 11 50.0

2 46.7 12 61.2

3 44.8 13 46.9

4 51.3 14 44.9

5 49.2 15 46.2

6 46.5 16 53.3

7 48.4 17 44.1

8 50.1 18 47.4

9 53.7 19 51.3

10 45.6 20 42.5

■ TA B L E  6 E . 2 4

Clinic Waiting Time for Exercise 6.66

Waiting Waiting Waiting 
Observation Time Observation Time Observation Time

1 2.49 11 1.34 21 1.14

2 3.39 12 0.50 22 2.66

3 7.41 13 4.35 23 4.67

4 2.88 14 1.67 24 1.54

5 0.76 15 1.63 25 5.06

6 1.32 16 4.88 26 3.40

7 7.05 17 15.19 27 1.39

8 1.37 18 0.67 28 1.11

9 6.17 18 4.14 29 6.92

10 5.12 20 2.16 30 36.99
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(d) Repeat part (b), using the natural log of concen-

tration as the charted variable. Comment on any

differences in the charts you note in comparison

to those constructed in part (b).

6.69. In 1879, A. A. Michelson measured the velocity of

light in air using a modification of a method pro-

posed by the French physicist Foucault. Twenty of

these measurements are in Table 6E.27 (the value

reported is in kilometers per second and has 299,000

subtracted from it). Use these data to set up individ-

uals and moving range control charts. Is there some

evidence that the measurements of the velocity of

light are normally distributed? Do the measurements

exhibit statistical control? Revise the control limits if

necessary.

6.70. Continuation of Exercise 6.69. Michelson actually

made 100 measurements on the velocity of light in

five trials of 20 observations each. The second set of

20 measurements is shown in Table 6E.28.

(a) Plot these new measurements on the control

charts constructed in Exercise 6.69. Are these

new measurements in statistical control? Give a

practical interpretation of the control charts.

(b) Is there evidence that the variability in the mea-

surements has decreased between trial 1 and

trial 2?

6.71. The uniformity of a silicon wafer following an etch-

ing process is determined by measuring the layer

thickness at several locations and expressing unifor-

mity as the range of the thicknesses. Table 6E.29 pre-

sents uniformity determinations for 30 consecutive

wafers processed through the etching tool.

(a) Is there evidence that uniformity is normally dis-

tributed? If not, find a suitable transformation for

the data.

(b) Construct a control chart for individuals and a

moving range control chart for uniformity for the

etching process. Is the process in statistical control?

Exercises 293

■ TA B L E  6 E . 2 7

Velocity of Light Data for Exercise 6.69

Measurement Velocity Measurement Velocity

1 850 11 850

2 1000 12 810

3 740 13 950

4 980 14 1000

5 900 15 980

6 930 16 1000

7 1070 17 980

8 650 18 960

9 930 19 880

10 760 20 960

■ TA B L E  6 E . 2 6

Data for Exercise 6.68

Observation Concentration Observation Concentration

1 60.4 16 99.9

2 69.5 17 59.3

3 78.4 18 60.0

4 72.8 19 74.7

5 78.2 20 75.8

6 78.7 21 76.6

7 56.9 22 68.4

8 78.4 23 83.1

9 79.6 24 61.1

10 100.8 25 54.9

11 99.6 26 69.1

12 64.9 27 67.5

13 75.5 28 69.2

14 70.4 29 87.2

15 68.1 30 73.0
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■ F I G U R E  6 . 2 9 Normal Probability Plot

of the Concentration Data for Exercise 6.68

■ TA B L E  6 E . 2 8

Additional Velocity of Light Data for 
Exercise 6.70

Measurement Velocity Measurement Velocity

21 960 31 800

22 830 32 830

23 940 33 850

24 790 34 800

25 960 35 880

26 810 36 790

27 940 37 900

28 880 38 760

29 880 39 840

30 880 40 800
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6.72. The purity of a chemical product is measured on

each batch. Purity determinations for 20 successive

batches are shown in Table 6E.30.

(a) Is purity normally distributed?

(b) Is the process in statistical control?

(c) Estimate the process mean and standard deviation.

6.73. Reconsider the situation in Exercise 6.61. Construct

an individuals control chart using the median of the

span-two moving ranges to estimate variability.

Compare this control chart to the one constructed in

Exercise 6.61 and discuss.

6.74. Reconsider the hardness measurements in Exercise

6.62. Construct an individuals control chart using the

median of the span-two moving ranges to estimate

variability. Compare this control chart to the one con-

structed in Exercise 6.62 and discuss.

6.75. Reconsider the polymer viscosity data in Exercise

6.63. Use the median of the span-two moving

ranges to estimate s and set up the individuals con-

trol chart. Compare this chart to the one originally

constructed using the average moving range method

to estimate s.

6.76. Continuation of Exercise 6.65. Use all 60 observa-

tions on oxide thickness.

(a) Set up an individuals control chart with s esti-

mated by the average moving range method.

(b) Set up an individuals control chart with s esti-

mated by the median moving range method.

(c) Compare and discuss the two control charts.

6.77. Consider the individuals measurement data shown in

Table 6E.31.

(a) Estimate s using the average of the moving

ranges of span two.

(b) Estimate s using s/c4.

(c) Estimate s using the median of the span-two

moving ranges.

(d) Estimate s using the average of the moving

ranges of span 3, 4, . . . , 20.

(e) Discuss the results you have obtained.

6.78. The vane heights for 20 of the castings from Figure

6.25 are shown in Table 6E.32. Construct the

“between/within” control charts for these process data

using a range chart to monitor the within-castings

vane height. Compare these to the control charts

shown in Figure 6.27.

6.79. The diameter of the casting in Figure 6.25 is also an

important quality characteristic. A coordinate mea-

suring machine is used to measure the diameter of

each casting at five different locations. Data for 20

castings are shown in the Table 6E.33.

■ TA B L E  6 E . 3 0

Purity Data for Exercise 6.72

Batch Purity Batch Purity

1 0.81 11 0.81

2 0.82 12 0.83

3 0.81 13 0.81

4 0.82 14 0.82

5 0.82 15 0.81

6 0.83 16 0.85

7 0.81 17 0.83

8 0.80 18 0.87

9 0.81 19 0.86

10 0.82 20 0.84

■ TA B L E  6 E . 3 1

Data for Exercise 6.77

Observation x Observation x

1 10.07 14 9.58

2 10.47 15 8.80

3 9.45 16 12.94

4 9.44 17 10.78

5 8.99 18 11.26

6 7.74 19 9.48

7 10.63 20 11.28

8 9.78 21 12.54

9 9.37 22 11.48

10 9.95 23 13.26

11 12.04 24 11.10

12 10.93 25 10.82

13 11.54

■ TA B L E  6 E . 2 9

Uniformity Data for Exercise 6.71

Wafer Uniformity Wafer Uniformity

1 11 16 15

2 16 17 16

3 22 18 12

4 14 19 11

5 34 20 18

6 22 21 14

7 13 22 13

8 11 23 18

9 6 24 12

10 11 25 13

11 11 26 12

12 23 27 15

13 14 28 21

14 12 29 21

15 7 30 14
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■ TA B L E  6 E . 3 3

Diameter Data for Exercise 6.79

Diameter
Casting 1 2 3 4 5

1 11.7629 11.7403 11.7511 11.7474 11.7374

2 11.8122 11.7506 11.7787 11.7736 11.8412

3 11.7742 11.7114 11.7530 11.7532 11.7773

4 11.7833 11.7311 11.7777 11.8108 11.7804

5 11.7134 11.6870 11.7305 11.7419 11.6642

6 11.7925 11.7611 11.7588 11.7012 11.7611

7 11.6916 11.7205 11.6958 11.7440 11.7062

8 11.7109 11.7832 11.7496 11.7496 11.7318

9 11.7984 11.8887 11.7729 11.8485 11.8416

10 11.7914 11.7613 11.7356 11.7628 11.7070

11 11.7260 11.7329 11.7424 11.7645 11.7571

12 11.7202 11.7537 11.7328 11.7582 11.7265

13 11.8356 11.7971 11.8023 11.7802 11.7903

14 11.7069 11.7112 11.7492 11.7329 11.7289

15 11.7116 11.7978 11.7982 11.7429 11.7154

16 11.7165 11.7284 11.7571 11.7597 11.7317

17 11.8022 11.8127 11.7864 11.7917 11.8167

18 11.7775 11.7372 11.7241 11.7773 11.7543

19 11.7753 11.7870 11.7574 11.7620 11.7673

20 11.7572 11.7626 11.7523 11.7395 11.7884

■ TA B L E  6 E . 3 2

Vane Heights for Exercise 6.78

Casting Vane 1 Vane 2 Vane 3 Vane 4 Vane 5

1 5.77799 5.74907 5.76672 5.74836 5.74122

2 5.79090 5.78043 5.79163 5.79393 5.81158

3 5.77314 5.71216 5.74810 5.77292 5.75591

4 5.77030 5.75903 5.77157 5.79687 5.78063

5 5.72047 5.68587 5.73302 5.70472 5.68116

6 5.77265 5.76426 5.74373 5.71338 5.74765

7 5.70581 5.70835 5.71866 5.71252 5.72089

8 5.76466 5.78766 5.76115 5.77523 5.75590

9 5.79397 5.83308 5.77902 5.81122 5.82335

10 5.78671 5.76411 5.75941 5.75619 5.71787

11 5.75352 5.74144 5.74109 5.76817 5.75019

12 5.72787 5.70716 5.75349 5.72389 5.73488

13 5.79707 5.79231 5.79022 5.79694 5.79805

14 5.73765 5.73615 5.73249 5.74006 5.73265

15 5.72477 5.76565 5.76963 5.74993 5.75196

16 5.73199 5.72926 5.72963 5.72259 5.73513

17 5.79166 5.79516 5.79903 5.78548 5.79826

18 5.74973 5.74863 5.73994 5.74405 5.74682

19 5.76449 5.75632 5.76197 5.76684 5.75474

20 5.75168 5.75579 5.73979 5.77963 5.76933

(a) Set up and R charts for this process, assuming

the measurements on each casting form a ratio-

nal subgroup.

(b) Discuss the charts you have constructed in part (a).

(c) Construct “between/within” charts for this

process.

(d) Do you believe that the charts in part (c) are more

informative than those in part (a)? Discuss why.

(e) Provide a practical interpretation of the “within”

chart.

6.80. In the semiconductor industry, the production of

microcircuits involves many steps. The wafer

fabrication process typically builds these microcir-

cuits on silicon wafers, and there are many micro-

circuits per wafer. Each production lot consists of

between 16 and 48 wafers. Some processing steps

treat each wafer separately, so that the batch size

for that step is one wafer. It is usually necessary to

estimate several components of variation: within-

wafer, between-wafer, between-lot, and the total

variation.

(a) Suppose that one wafer is randomly selected

from each lot and that a single measurement on a

critical dimension of interest is taken. Which

components of variation could be estimated with

these data? What type of control charts would

you recommend?

(b) Suppose that each wafer is tested at five fixed

locations (say, the center and four points at the

circumference). The average and range of these

within-wafer measurements are ww and Rww,

respectively. What components of variability are

estimated using control charts based on these

data?

(c) Suppose that one measurement point on each

wafer is selected and that this measurement is

recorded for five consecutive wafers. The average

and range of these between-wafer measure-

ments are BW and RBW, respectively. What com-

ponents of variability are estimated using control

charts based on these data? Would it be neces-

sary to run separate and R charts for all five

locations on the wafer?

(d) Consider the question in part (c). How would

your answer change if the test sites on each

wafer were randomly selected and varied from

wafer to wafer?

(e) What type of control charts and rational sub-

group scheme would you recommend to control

the batch-to-batch variability?

6.81. Consider the situation described in Exercise 6.80. A

critical dimension (measured in mm) is of interest to

the process engineer. Suppose that five fixed positions

are used on each wafer (position 1 is the center) and

x

x

x

x
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that two consecutive wafers are selected from each

batch. The data that result from several batches are

shown in Table 6E.34.

(a) What can you say about overall process capa-

bility?

(b) Can you construct control charts that allow within-

wafer variability to be evaluated?

(c) What control charts would you establish to eval-

uate variability between wafers? Set up these

charts and use them to draw conclusions about

the process.

(d) What control charts would you use to evaluate lot-

to-lot variability? Set up these charts and use them

to draw conclusions about lot-to-lot variability.

■ TA B L E  6 E . 3 4

Data for Exercise 6.81

Lot Wafer
Position

Lot Wafer
Position

Number Number 1 2 3 4 5 Number Number 1 2 3 4 5

1 1 2.15 2.13 2.08 2.12 2.10 11 1 2.15 2.13 2.14 2.09 2.08

2 2.13 2.10 2.04 2.08 2.05 2 2.11 2.13 2.10 2.14 2.10

2 1 2.02 2.01 2.06 2.05 2.08 12 1 2.03 2.06 2.05 2.01 2.00

2 2.03 2.09 2.07 2.06 2.04 2 2.04 2.08 2.03 2.10 2.07

3 1 2.13 2.12 2.10 2.11 2.08 13 1 2.05 2.03 2.05 2.09 2.08

2 2.03 2.08 2.03 2.09 2.07 2 2.08 2.01 2.03 2.04 2.10

4 1 2.04 2.01 2.10 2.11 2.09 14 1 2.08 2.04 2.05 2.01 2.08

2 2.07 2.14 2.12 2.08 2.09 2 2.09 2.11 2.06 2.04 2.05

5 1 2.16 2.17 2.13 2.18 2.10 15 1 2.14 2.13 2.10 2.10 2.08

2 2.17 2.13 2.10 2.09 2.13 2 2.13 2.10 2.09 2.13 2.15

6 1 2.04 2.06 1.97 2.10 2.08 16 1 2.06 2.08 2.05 2.03 2.09

2 2.03 2.10 2.05 2.07 2.04 2 2.03 2.01 1.99 2.06 2.05

7 1 2.04 2.02 2.01 2.00 2.05 17 1 2.05 2.03 2.08 2.01 2.04

2 2.06 2.04 2.03 2.08 2.10 2 2.06 2.05 2.03 2.05 2.00

8 1 2.13 2.10 2.10 2.15 2.13 18 1 2.03 2.08 2.04 2.00 2.03

2 2.10 2.09 2.13 2.14 2.11 2 2.04 2.03 2.05 2.01 2.04

9 1 1.95 2.03 2.08 2.07 2.08 19 1 2.16 2.13 2.10 2.13 2.12

2 2.01 2.03 2.06 2.05 2.04 2 2.13 2.15 2.18 2.19 2.13

10 1 2.04 2.08 2.09 2.10 2.01 20 1 2.06 2.03 2.04 2.09 2.10

2 2.06 2.04 2.07 2.04 2.01 2 2.01 1.98 2.05 2.08 2.06
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Supplemental Material for Chapter 7

S7.1 Probability Limits on Control
Charts

CHAPTER OUTLINE

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Many quality characteristics cannot be conveniently represented numerically. In such cases,

we usually classify each item inspected as either conforming or nonconforming to the spec-

ifications on that quality characteristic. The terminology defective or nondefective is often

used to identify these two classifications of product. More recently, the terminology con-
forming and nonconforming has become relatively standard. Quality characteristics of this

type are called attributes. Some examples of quality characteristics that are attributes are

the proportion of warped automobile engine connecting rods in a day’s production, the num-

ber of nonfunctional semiconductor chips on a wafer, the number of errors or mistakes made

in completing a loan application, and the number of medical errors made in a hospital.

This chapter presents three widely used attributes control charts. The first of these

relates to the fraction of nonconforming or defective product produced by a manufacturing

process, and is called the control chart for fraction nonconforming, or p chart. In some 

77

297

Control Charts for
Attributes
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298 Chapter 7 ■ Control Charts for Attributes

situations it is more convenient to deal with the number of defects or nonconformities observed

rather than the fraction nonconforming. The second type of control chart that we study, called

the control chart for nonconformities, or the c chart, is designed to deal with this case. Finally,

we present a control chart for nonconformities per unit, or the u chart, which is useful in 

situations where the average number of nonconformities per unit is a more convenient basis for

process control. An excellent supplement to this chapter is the paper by Woodall (1997) that

summarizes over 250 papers on attributes control charts and provides a comprehensive bibliog-

raphy. The chapter concludes with some guidelines for implementing control charts.

After careful study of this chapter, you should be able to do the following:

1. Understand the statistical basis of attributes control charts

2. Know how to design attributes control charts

3. Know how to set up and use the p chart for fraction nonconforming

4. Know how to set up and use the np control chart for the number of noncon-

forming items

5. Know how to set up and use the c control chart for defects

6. Know how to set up and use the u control chart for defects per unit

7. Use attributes control charts with variable sample size

8. Understand the advantages and disadvantages of attributes versus variables con-

trol charts

9. Understand the rational subgroup concept for attributes control charts

10. Determine the average run length for attributes control charts

7.1 Introduction

In Chapter 6, we introduced control charts for quality characteristics that are expressed as vari-

ables. Although these control charts enjoy widespread application, they are not universally

applicable, because not all quality characteristics can be expressed with variables data. For

example, consider a glass container for a liquid product. Suppose we examine a container and

classify it into one of the two categories called conforming or nonconforming, depending on

whether the container meets the requirements on one or more quality characteristics. This is an

example of attributes data, and a control chart for the fraction of nonconforming containers

could be established (we show how to do this in Section 7.2). Alternatively, in some processes

we may examine a unit of product and count defects or nonconformities on the unit. These types

of data are widely encountered in the semiconductor industry, for example. In Section 7.3, we

show how to establish control charts for counts, or for the average number of counts per unit.

Attributes charts are generally not as informative as variables charts because there is

typically more information in a numerical measurement than in merely classifying a unit as

conforming or nonconforming. However, attributes charts do have important applications.

They are particularly useful in service industries and in nonmanufacturing or transactional

business process and quality improvement efforts because so many of the quality characteristics

found in these environments are not easily measured on a numerical scale.

7.2 The Control Chart for Fraction Nonconforming

The fraction nonconforming is defined as the ratio of the number of nonconforming items

in a population to the total number of items in that population. The items may have several
quality characteristics that are examined simultaneously by the inspector. If the item does
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not conform to standard on one or more of these characteristics, it is classified as noncon-

forming. We usually express the fraction nonconforming as a decimal, although occasionally

the percentage nonconforming (which is simply 100% times the fraction nonconforming) is

used. When demonstrating or displaying the control chart to production personnel or pre-

senting results to management, the percentage nonconforming is often used, as it has more

intuitive appeal. Although it is customary to work with fraction nonconforming, we could

also analyze the fraction conforming just as easily, resulting in a control chart on process
yield. For example, many organizations operate a yield-management system at each stage of

their manufacturing or fulfillment process, with the first-pass yield tracked on a control

chart.

The statistical principles underlying the control chart for fraction nonconforming are

based on the binomial distribution. Suppose the production process is operating in a stable

manner, such that the probability that any unit will not conform to specifications is p, and that

successive units produced are independent. Then each unit produced is a realization of a

Bernoulli random variable with parameter p. If a random sample of n units of product is

selected, and if D is the number of units of product that are nonconforming, then D has a bino-

mial distribution with parameters n and p; that is,

(7.1)

From Section 3.2.2 we know that the mean and variance of the random variable D are np and

np(1 − p), respectively.

The sample fraction nonconforming is defined as the ratio of the number of non-

conforming units in the sample D to the sample size n—that is,

(7.2)

As noted in Section 3.2.2, the distribution of the random variable can be obtained from the

binomial. Furthermore, the mean and variance of are

(7.3)

and

(7.4)

respectively. We will now see how this theory can be applied to the development of a control chart

for fraction nonconforming. Because the chart monitors the process fraction nonconforming p, it

is also called the p chart.

7.2.1 Development and Operation of the Control Chart

In Chapter 5, we discussed the general statistical principles on which the Shewhart control

chart is based. If w is a statistic that measures a quality characteristic, and if the mean of w is

mw and the variance of w is s2
w, then the general model for the Shewhart control chart is as

follows:

(7.5)
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300 Chapter 7 ■ Control Charts for Attributes

where L is the distance of the control limits from the center line, in multiples of the standard

deviation of w. It is customary to choose L = 3.

Suppose that the true fraction nonconforming p in the production process is known or

is a specified standard value. Then from equation 7.5, the center line and control limits of

the fraction nonconforming control chart would be as follows:

Fraction Nonconforming Control Chart: Standard Given

(7.6)

UCL

Center line 

LCL

= +
−( )

=

= −
−( )

p
p p

n

p

p
p p

n

3
1

3
1

Depending on the values of p and n, sometimes the lower control limit LCL < 0. In these cases,

we customarily set LCL = 0 and assume that the control chart only has an upper control limit.

The actual operation of this chart would consist of taking subsequent samples of n units, com-

puting the sample fraction nonconforming , and plotting the statistic on the chart. As long

as remains within the control limits and the sequence of plotted points does not exhibit any

systematic nonrandom pattern, we can conclude that the process is in control at the level p. If

a point plots outside of the control limits, or if a nonrandom pattern in the plotted points is

observed, we can conclude that the process fraction nonconforming has most likely shifted to

a new level and the process is out of control.

When the process fraction nonconforming p is not known, then it must be estimated from

observed data. The usual procedure is to select m preliminary samples, each of size n. As a gen-

eral rule, m should be at least 20 or 25. Then if there are Di nonconforming units in sample i, we

compute the fraction nonconforming in the ith sample as

and the average of these individual sample fractions nonconforming is

(7.7)

The statistic estimates the unknown fraction nonconforming p. The center line and control 

limits of the control chart for fraction nonconforming are computed as follows:
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Fraction Nonconforming Control Chart: No Standard Given

(7.8)
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As noted previously, this control chart is also often called the p-chart.
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7.2 The Control Chart for Fraction Nonconforming 301

EXAMPLE 7.1

Frozen orange juice concentrate is packed in 6-oz cardboard

cans. These cans are formed on a machine by spinning them

from cardboard stock and attaching a metal bottom panel.

By inspection of a can, we may determine whether, when

filled, it could possibly leak either on the side seam or 

around the bottom joint. Such a nonconforming can has an

improper seal on either the side seam or the bottom panel.

Set up a control chart to improve the fraction of noncon-

forming cans produced by this machine.

Construction and Operation of a Fraction Nonconforming Control Chart

The control limits defined in equation 7.8 should be regarded as trial control limits.
The sample values of i from the preliminary subgroups should be plotted against the trial

limits to test whether the process was in control when the preliminary data were collected.

This is the usual phase I aspect of control chart usage. Any points that exceed the trial con-

trol limits should be investigated. If assignable causes for these points are discovered, they

should be discarded and new trial control limits determined. Refer to the discussion of trial

control limits for the and R charts in Chapter 6.

If the control chart is based on a known or standard value for the fraction nonconform-

ing p, then the calculation of trial control limits is generally unnecessary. However, one

should be cautious when working with a standard value for p. Since in practice the true value

of p would rarely be known with certainty, we would usually be given a standard value of p
that represents a desired or target value for the process fraction nonconforming. If this is the

case, and future samples indicate an out-of-control condition, we must determine whether the

process is out of control at the target p but in control at some other value of p. For example,

suppose we specify a target value of p = 0.01, but the process is really in control at a larger

value of fraction nonconforming—say, p = 0.05. Using the control chart based on p = 0.01,

we see that many of the points will plot above the upper control limit, indicating an out-of-

control condition. However, the process is really out of control only with respect to the target

p = 0.01. Sometimes it may be possible to “improve” the level of quality by using target values,

or to bring a process into control at a particular level of quality performance. In processes

where the fraction nonconforming can be controlled by relatively simple process adjustments,

target values of p may be useful.

x

p̂

SOLUTION
To establish the control chart, 30 samples of n = 50 cans each

were selected at half-hour intervals over a three-shift period in

which the machine was in continuous operation. The data are

shown in Table 7.1.

We construct a phase I control chart using this preliminary

data to determine if the process was in control when these data

were collected. Since the 30 samples contain 347

nonconforming cans, we find from equation 7.7,

Using as an estimate of the true process fraction nonconform-

ing, we can now calculate the upper and lower control limits as

Therefore,

and
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302 Chapter 7 ■ Control Charts for Attributes

those from samples 15 and 23, plot above the upper control

limit, so the process is not in control. These points must be

investigated to see whether an assignable cause can be

determined.

The control chart with center line at and the

above upper and lower control limits is shown in Figure 7.1.

The sample fraction nonconforming from each preliminary

sample is plotted on this chart. We note that two points,

p = 0.2313

■ F I G U R E  7 . 1 Initial phase I fraction nonconforming control chart

for the data in Table 7.1.
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■ TA B L E  7 . 1

Data for Trial Control Limits, Example 7.1, Sample Size n = 50

Number of Number of
Sample Nonconforming Sample Fraction Sample Nonconforming Sample Fraction
Number Cans, Di Nonconforming, i Number Cans, Di Nonconforming, i

1 12 0.24 17 10 0.20

2 15 0.30 18 5 0.10

3 8 0.16 19 13 0.26

4 10 0.20 20 11 0.22

5 4 0.08 21 20 0.40

6 7 0.14 22 18 0.36

7 16 0.32 23 24 0.48

8 9 0.18 24 15 0.30

9 14 0.28 25 9 0.18

10 10 0.20 26 12 0.24

11 5 0.10 27 7 0.14

12 6 0.12 28 13 0.26

13 17 0.34 29 9 0.18

14 12 0.24 30 6 0.12

15 22 0.44 347

16 8 0.16

p = 0.2313

p̂p̂
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7.2 The Control Chart for Fraction Nonconforming 303

sample 23 was obtained, a relatively inexperienced operator

had been temporarily assigned to the machine, and this could

account for the high fraction nonconforming obtained from

that sample. Consequently, samples 15 and 23 are elimi-

nated, and the new center line and revised control limits are

calculated as

Analysis of the data from sample 15 indicates that a new

batch of cardboard stock was put into production during that

half-hour period. The introduction of new batches of raw

material sometimes causes irregular production perfor-

mance, and it is reasonable to believe that this has occurred

here. Furthermore, during the half-hour period in which

Note also that the fraction nonconforming from sample

21 now exceeds the upper control limit. However, analysis of

the data does not produce any reasonable or logical assigna-

ble cause for this, and we decide to retain the point.

Therefore, we conclude that the new control limits in

Figure 7.2 can be used for future samples. Thus, we have

concluded the control limit estimation phase (phase I) of

control chart usage.

The revised center line and control limits are shown on the

control chart in Figure 7.2. Note that we have not dropped

samples 15 and 23 from the chart, but they have been excluded

from the control limit calculations, and we have noted this

directly on the control chart. This annotation of the control

chart to indicate unusual points, process adjustments, or the

type of investigation made at a particular point in time forms a

useful record for future process analysis and should become a

standard practice in control chart usage.
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■ F I G U R E  7 . 2 Revised control limits for the data in Table 7.1.
(continued)
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304 Chapter 7 ■ Control Charts for Attributes

performance. Plant management agrees with this observation

and directs that, in addition to implementing the control chart

program, the engineering staff should analyze the process in an

effort to improve the process yield. This study indicates that

several adjustments can be made on the machine that should

improve its performance.

During the next three shifts following the machine adjust-

ments and the introduction of the control chart, an additional

24 samples of n = 50 observations each are collected. These

data are shown in Table 7.2, and the sample fractions noncon-

forming are plotted on the control chart in Figure 7.3.

From an examination of Figure 7.3, our immediate

impression is that the process is now operating at a new

quality level that is substantially better than the center line

level of . One point, that from sample 41, is below 

the lower control limit. No assignable cause for this out-of-

control signal can be determined. The only logical reasons

for this ostensible change in process performance are the

machine adjustments made by the engineering staff and,

possibly, the operators themselves. It is not unusual to find

that process performance improves following the introduc-

tion of formal statistical process-control procedures, often

because the operators are more aware of process quality and

because the control chart provides a continuing visual dis-

play of process performance.

We may formally test the hypothesis that the process frac-

tion nonconforming in this current three-shift period differs

p = 0.2150

Sometimes examination of control chart data reveals infor-

mation that affects other points that are not necessarily outside

the control limits. For example, if we had found that the tem-

porary operator working when sample 23 was obtained was

actually working during the entire two-hour period in which

samples 21–24 were obtained, then we should discard all four

samples, even if only sample 21 exceeded the control limits, on

the grounds that this inexperienced operator probably had

some adverse influence on the fraction nonconforming during

the entire period.

Before we conclude that the process is in control at this

level, we could examine the remaining 28 samples for runs

and other nonrandom patterns. The largest run is one of

length 5 above the center line, and there are no obvious pat-

terns present in the data. There is no strong evidence of any-

thing other than a random pattern of variation about the center

line.

We conclude that the process is in control at the level p =
0.2150 and that the revised control limits should be adopted 

for monitoring current production. However, we note that

although the process is in control, the fraction nonconforming

is much too high. That is, the process is operating in a stable

manner, and no unusual operator-controllable problems are

present. It is unlikely that the process quality can be improved

by action at the workforce level. The nonconforming cans pro-

duced are management controllable because an intervention

by management in the process will be required to improve

■ TA B L E  7 . 2

Orange Juice Concentrate Can Data in Samples of Size n = 50

Number of Number of
Sample Nonconforming Sample Fraction Sample Nonconforming Sample Fraction

Number Cans, Di Nonconforming, i Number Cans, Di Nonconforming, i

31 9 0.18 44 6 0.12

32 6 0.12 45 5 0.10

33 12 0.24 46 4 0.08

34 5 0.10 47 8 0.16

35 6 0.12 48 5 0.10

36 4 0.08 49 6 0.12

37 6 0.12 50 7 0.14

38 3 0.06 51 5 0.10

39 7 0.14 52 6 0.12

40 6 0.12 53 3 0.06

41 2 0.04 54 5 0.10

42 4 0.08 133

43 3 0.06 

p = 0.1108

p̂p̂
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7.2 The Control Chart for Fraction Nonconforming 305

where

In our example, we have

and

Comparing this to the upper 0.05 point of the standard nor-

mal distribution, we find that Z0 = 7.10 > Z0.05 = 1.645.

Consequently, we reject H0 and conclude that there has been a

significant decrease in the process fallout.

Based on the apparently successful process adjustments, it

seems logical to revise the control limits again, using only the

most recent samples (numbers 31–54). This results in the new

control chart parameters:

Z0
0 2150 0 1108

0 1669 0 8331
1
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from the process fraction nonconforming in the preliminary

data, using the procedure given in Section 4.3.4. The hypothe-

ses are

where p1 is the process fraction nonconforming from the pre-

liminary data and p2 is the process fraction nonconforming in

the current period. We may estimate p1 by , and

p2 by

The (approximate) test statistic for the above hypothesis is,

from equation 4.63,

Z
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■ F I G U R E  7 . 3 Continuation of the fraction nonconforming control chart,

Example 7.1.

Center line

UCL

LCL

= =

= +
−( ) = + ( )( ) =

= −
−( ) = − ( )( ) = − =

p

p
p p

n

p
p p

n

0 1108

3
1

0 1108 3
0 1108 0 8892

50
0 2440

3
1

0 1108 3
0 1108 0 8892

50
0 0224 0

.

.
. .

.

.
. .

.

(continued)

c07ControlChartsforAttributes.qxd  3/28/12  3:27 PM  Page 305



306 Chapter 7 ■ Control Charts for Attributes
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■ F I G U R E  7 . 4 New control limits on the fraction nonconforming control

chart, Example 7.1.

Figure 7.4 shows the control chart with these new parameters.

Note that since the calculated lower control limit is less than

zero, we have set LCL = 0. Therefore, the new control chart

will have only an upper control limit. From inspection of

Figure 7.4, we see that all the points would fall inside the

revised upper control limit; therefore, we conclude that the

process is in control at this new level.

The continued operation of this control chart for the next

five shifts is shown in Figure 7.5. Data for the process during

this period are shown in Table 7.3. The control chart does not

indicate lack of control. Despite the improvement in yield fol-

lowing the engineering changes in the process and the intro-

duction of the control chart, the process fallout of isp = 0.1108

still too high. Further analysis and action will be required to

improve the yield. These management interventions may be

further adjustments to the machine. Statistically designed
experiments (see Part IV) are an appropriate way to determine

which machine adjustments are critical to further process

improvement, and the appropriate magnitude and direction of

these adjustments. The control chart should be continued dur-

ing the period in which the adjustments are made. By marking

the time scale of the control chart when a process change is

made, the control chart becomes a logbook in which the timing

of process interventions and their subsequent effect on process

performance are easily seen. This logbook aspect of control

chart usage is extremely important.
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■ F I G U R E  7 . 5 Completed fraction nonconforming control chart, Example 7.1.
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Design of the Fraction Nonconforming Control Chart. The fraction noncon-

forming control chart has three parameters that must be specified: the sample size, the

frequency of sampling, and the width of the control limits. Ideally, we should have some gen-

eral guidelines for selecting those parameters.

It is relatively common to base a control chart for fraction nonconforming on 100%

inspection of all process output over some convenient period of time, such as a shift or a day.

In this case, both sample size and sampling frequency are interrelated. We would generally

select a sampling frequency appropriate for the production rate, and this fixes the sample size.

Rational subgrouping may also play a role in determining the sampling frequency. For exam-

ple, if there are three shifts, and we suspect that shifts differ in their general quality level, then

we should use the output of each shift as a subgroup rather than pooling the output of all three

shifts together to obtain a daily fraction defective.

If we are to select a sample of process output, then we must choose the sample size n.
Various rules have been suggested for the choice of n. If p is very small, we should choose n
sufficiently large so that we have a high probability of finding at least one nonconforming unit

in the sample. Otherwise, we might find that the control limits are such that the presence of

only one nonconforming unit in the sample would indicate an out-of-control condition. For

example, if p = 0.01 and n = 8, we find that the upper control limit is

UCL = +
−( ) = + ( )( ) =p

p p

n
3

1
0 01 3

0 01 0 99

8
0 1155.

. .
.

7.2 The Control Chart for Fraction Nonconforming 307

■ TA B L E  7 . 3

New Data for the Fraction Nonconforming Control Chart in Figure 7.5, n = 50

Number of Number of
Sample Nonconforming Sample Fraction Sample Nonconforming Sample Fraction
Number Cans, Di Nonconforming, i Number Cans, Di Nonconforming, i

55 8 0.16 75 5 0.10

56 7 0.14 76 8 0.16

57 5 0.10 77 11 0.22

58 6 0.12 78 9 0.18

59 4 0.08 79 7 0.14

60 5 0.10 80 3 0.06

61 2 0.04 81 5 0.10

62 3 0.06 82 2 0.04

63 4 0.08 83 1 0.02

64 7 0.14 84 4 0.08

65 6 0.12 85 5 0.10

66 5 0.10 86 3 0.06

67 5 0.10 87 7 0.14

68 3 0.06 88 6 0.12

69 7 0.14 89 4 0.08

70 9 0.18 90 4 0.08

71 6 0.12 91 6 0.12

72 10 0.20 92 8 0.16

73 4 0.08 93 5 0.10

74 3 0.06 94 6 0.12

p̂p̂
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If there is one nonconforming unit in the sample, then , and we can con-

clude that the process is out of control. Since for any p > 0 there is a positive probability

of producing some defectives, it is unreasonable in many cases to conclude that the process

is out of control on observing a single nonconforming item.

To avoid this pitfall, we can choose the sample size n so that the probability of finding at

least one nonconforming unit per sample is at least g. For example, suppose that p = 0.01, and

we want the probability of at least one nonconforming unit in the sample to be at least 0.95. If

D denotes the number of nonconforming items in the sample, then we want to find n such that

P{D > 1} > 0.95, or equivalently, . From the binomial distribution we have

Solving this last equation gives the sample size as n = 298. We could also solve for the sam-

ple size using the Poisson approximation to the binomial distribution. Using this approach,

we find from the cumulative Poisson table that l = np must exceed 3.00. Consequently, since

p = 0.01, this implies that the sample size should be 300.

Duncan (1986) has suggested that the sample size should be large enough that we have

approximately a 50% chance of detecting a process shift of some specified amount. For exam-

ple, suppose that p = 0.01, and we want the probability of detecting a shift to p = 0.05 to be

0.50. Assuming that the normal approximation to the binomial applies, we should choose n
so that the upper control limit exactly coincides with the fraction nonconforming in the out-

of-control state.1 If d is the magnitude of the process shift, then n must satisfy

(7.9)

Therefore,

(7.10)

In our example, p = 0.01, d = 0.05 − 0.01 = 0.04, and if three-sigma limits are used, then from

equation 7.10,

If the in-control value of the fraction nonconforming is small, another useful criterion is to

choose n large enough so that the control chart will have a positive lower control limit. This

ensures that we will have a mechanism to force us to investigate one or more samples that

contain an unusually small number of nonconforming items. Since we wish to have

(7.11)LCL = −
−( ) >p L

p p
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0!(n − 0)!
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 P5D = x6 =
n!

x!(n − x)!
 px(1 − p)n−x

P5D = 06 = 0.05

p̂ = 1
8 = 0.1250

1If is approximately normal, then the probability that exceeds the UCL is 0.50 if the UCL equals the out-of-

control fraction nonconforming p, due to the symmetry of the normal distribution. See Section 3.4.3 for a discussion

of the normal approximation to the binomial.

p̂p̂
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7.2 The Control Chart for Fraction Nonconforming 309

this implies that

(7.12)

For example, if p = 0.05 and three-sigma limits are used, the sample size must be

Thus, if n ≥ 172 units, the control chart will have a positive lower control limit.

Another method for monitoring process improvements in the case where the LCL = 0

is to use a method proposed by Lucas, Davis, and Saniga (2006) where one first counts the

number of samples in a row where zero counts of defectives occur and signals a process

improvement if one observes k in a row samples or 2 in t samples with zero defectives. This

method is superior to the standard fraction nonconforming control chart because its average

run length properties compare favorably to the cumulative sum (CUSUM) control chart pro-

cedure (which will be discussed in Chapter 9) and the method is equivalent to the CUSUM

chart for larger shifts. ARL calculations for the standard fraction nonconforming control chart

are discussed in Section 7.2.4. One can find k or t and determine which is appropriate by using

a simple table and graph given in Lucas et al. This method can also be applied to the design

of a lower control limit for the control chart for defects when the lower limit is zero. A case

study illustrating the use of np charts with this method as well as CUSUM charts is given by

Saniga, Davis, and Lucas (2009).

Three-sigma control limits are usually employed on the control chart for fraction noncon-

forming on the grounds that they have worked well in practice. As discussed in Section 5.3.2, nar-

rower control limits would make the control chart more sensitive to small shifts in p but at the

expense of more frequent “false alarms.” Occasionally, we have seen narrower limits used in an

effort to force improvement in process quality. Care must be exercised in this, however, as too

many false alarms will destroy the operating personnel’s confidence in the control chart program.

We should note that the fraction nonconforming control chart is not a universal model

for all data on fraction nonconforming. It is based on the binomial probability model; that is,

the probability of occurrence of a nonconforming unit is constant, and successive units of pro-

duction are independent. In processes where nonconforming units are clustered together, or

where the probability of a unit being nonconforming depends on whether or not previous

units were nonconforming, the fraction nonconforming control chart is often of little use. In

such cases, it is necessary to develop a control chart based on the correct probability model.

Interpretation of Points on the Control Chart for Fraction Nonconforming.
Example 7.1 illustrates how points that plot beyond the control limits are treated, both in

establishing the control chart and during its routine operation. Care must be exercised in

interpreting points that plot below the lower control limit. These points often do not rep-

resent a real improvement in process quality. Frequently, they are caused by errors in the

inspection process resulting from inadequately trained or inexperienced inspectors or from

improperly calibrated test and inspection equipment. We have also seen cases in which

inspectors deliberately passed nonconforming units or reported fictitious data. The analyst

must keep these warnings in mind when looking for assignable causes if points plot below

the lower control limits. Not all downward shifts in p are attributable to improved quality.

The np Control Chart. It is also possible to base a control chart on the number non-

conforming rather than the fraction nonconforming. This is often called an number noncon-
forming (np) control chart. The parameters of this chart are as follows.

n > ( ) =0 95

0 05
3 171

2.

.

n
p

p
L>

−( )1 2
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310 Chapter 7 ■ Control Charts for Attributes

7.2.2 Variable Sample Size

In some applications of the control chart for fraction nonconforming, the sample is a 100%

inspection of process output over some period of time. Since different numbers of units

could be produced in each period, the control chart would then have a variable sample size.

There are three approaches to constructing and operating a control chart with a variable 

sample size.

Variable-Width Control Limits. The first and perhaps the most simple approach is

to determine control limits for each individual sample that are based on the specific sample

size. That is, if the ith sample is of size ni, then the upper and lower control limits are

. Note that the width of the control limits is inversely proportional to the

square root of the sample size.

To illustrate this approach, consider the data in Table 7.4. These data came from the

purchasing group of a large aerospace company. This group issues purchase orders to the

p ± 32p(1 − p)/ni

The np Control Chart

(7.13)

UCL

Center line 

LCL

= + −( )
=

= − −( )

np np p

np

np np p

3 1

3 1

EXAMPLE 7.2 An np Control Chart

Using the data in Table 7.1, we found that

p n= =0 2313 50.

Set up an np control chart for the orange juice concentrate can

process in Example 7.1.

If a standard value for p is unavailable, then can be used to estimate p. Many nonstatisti-

cally trained personnel find the np chart easier to interpret than the usual fraction noncon-

forming control chart.

p

SOLUTION 

Therefore, the parameters of the np control chart would be

UCL

Center line 

LCL

= + −( )
= ( ) + ( )( )( )
=
= = ( ) =

= − −( )
= ( ) − ( )( )( )
=

np np p

np

np np p

3 1

50 0 2313 3 50 0 2313 0 7687

20 510

50 0 2313 11 565

3 1

50 0 2313 3 50 0 2313 0 7687

2 620

. . .

.

. .

. . .

.

Now in practice, the number of nonconforming units in each

sample is plotted on the np control chart, and the number of

nonconforming units is an integer. Thus, if 20 units are non-

conforming the process is in control, but if 21 occur the process

is out of control. Similarly, there are three nonconforming units

in the sample and the process is in control, but two noncon-

forming units would imply an out-of-control process. Some

practitioners prefer to use integer values for control limits on

the np chart instead of their decimal fraction counterparts. In

this example we could choose 2 and 21 as the LCL and UCL,

respectively, and the process would be considered out of control

if a sample value of np plotted at or beyond the control limits.
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company’s suppliers. The sample sizes in Table 7.4 are the total number of purchase orders

issued each week. Obviously, this is not constant. A nonconforming unit is a purchase order

with an error. Among the most common errors are specifying incorrect part numbers, wrong

delivery dates, and wrong supplier information. Any of these mistakes can result in a pur-

chase order change, which takes time and resources and may result in delayed delivery of

material.

For the 25 samples, we calculate

Consequently, the center line is at 0.096, and the control limits are

UCL = + = + ( )( )
p

np
i

3 0 096 3
0 096 0 904

ˆ .
. .

ˆσ

p
D

n

i
i

i
i

= = ==

=

∑

∑
1

25

1

25
234

2,450
0 096.
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■ TA B L E  7 . 4

Purchase Order Data for a Control Chart for Fraction Nonconforming with Variable Sample Size

Standard Deviation
Number of Sample Fraction

Control LimitsSample Sample Nonconforming Nonconforming,
Number, i Size, ni Units, Di

1 100 12 0.120 0.029 0.009 0.183

2 80 8 0.100 0.033 0 0.195

3 80 6 0.075 0.033 0 0.195

4 100 9 0.090 0.029 0.009 0.183

5 110 10 0.091 0.028 0.012 0.180

6 110 12 0.109 0.028 0.012 0.180

7 100 11 0.110 0.029 0.009 0.183

8 100 16 0.160 0.029 0.009 0.183

9 90 10 0.110 0.031 0.003 0.189

10 90 6 0.067 0.031 0.003 0.189

11 110 20 0.182 0.028 0.012 0.180

12 120 15 0.125 0.027 0.015 0.177

13 120 9 0.075 0.027 0.015 0.177

14 120 8 0.067 0.027 0.015 0.177

15 110 6 0.055 0.028 0.012 0.180

16 80 8 0.100 0.033 0 0.195

17 80 10 0.125 0.033 0 0.195

18 80 7 0.088 0.033 0 0.195

19 90 5 0.056 0.031 0.003 0.189

20 100 8 0.080 0.029 0.009 0.183

21 100 5 0.050 0.029 0.009 0.183

22 100 8 0.080 0.029 0.009 0.183

23 100 10 0.100 0.029 0.009 0.183

24 90 6 0.067 0.031 0.003 0.189

25 90 9 0.100 0.031 0.003 0.189

2,450 234 2.383

p̂i � Di/ni

ŝp̂ �
A

(0.096)(0.904)

ni LCL UCL
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312 Chapter 7 ■ Control Charts for Attributes

and

where is the estimate of the standard deviation of the sample fraction nonconforming .
The calculations to determine the control limits are displayed in the last three columns of

Table 7.4. The manually constructed control chart is plotted in Figure 7.6.

Many popular quality control computer programs will handle the variable sample size

case. Figure 7.7 presents the computer-generated control chart corresponding to Figure 7.6.

This control chart was obtained using Minitab.

Control Limits Based on an Average Sample Size. The second approach is to

base the control chart on an average sample size, resulting in an approximate set of control
limits. This assumes that future sample sizes will not differ greatly from those previously

observed. If this approach is used, the control limits will be constant, and the resulting con-

trol chart will not look as formidable to operating personnel as the control chart with variable

limits. However, if there is an unusually large variation in the size of a particular sample or if

a point plots near the approximate control limits, then the exact control limits for that point

should be determined and the point examined relative to that value. For the purchase order

data in Table 7.4, we find that the average sample size is

Therefore, the approximate control limits are

and

LCL = −
−( ) = − ( )( ) =p

p p

n
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0 007.
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■ F I G U R E  7 . 6 Control chart for fraction

nonconforming with variable sample size.

■ F I G U R E  7 . 7 Control chart for fraction noncon-

forming with variable sample size using Minitab.
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The resulting control chart is shown in Figure 7.8. Note that for sample 11 plots close to the

approximate upper control limit, yet it appears to be in control. However, when compared to

its exact upper control limit (0.180, from Table 7.4), the point indicates an out-of-control con-

dition. Similarly, points that are outside the approximate control limits may be inside their

exact control limits. In general, care must be taken in the interpretation of points near the

approximate control limits.

We must also be careful in analyzing runs or other apparently abnormal patterns on con-

trol charts with variable sample sizes. The problem is that a change in the sample fraction

nonconforming must be interpreted relative to the sample size. For example, suppose that 

p = 0.20 and that two successive sample fractions nonconforming are andp̂t = 0.28

p̂

p̂

7.2 The Control Chart for Fraction Nonconforming 313
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■ F I G U R E  7 . 8 Control chart for

fraction nonconforming based on average

sample size.

. The first observation seems to indicate poorer quality than the second, sincep̂i+1 = 0.24

. However, suppose that the sample sizes are ni = 50 and ni + 1 = 250. In standard devi-
ation units, the first point is 1.41 units above average and the second point is 1.58 units above

average. That is, the second point actually represents a greater deviation from the standard of

p = 0.20 than does the first, even though the second point is the smaller of the two. Clearly,

looking for runs or other nonrandom patterns is virtually meaningless here.

The Standardized Control Chart. The third approach to dealing with variable

sample size is to use a standardized control chart, where the points are plotted in standard

deviation units. Such a control chart has the center line at zero, and upper and lower control

limits of +3 and −3, respectively. The variable plotted on the chart is

(7.14)

where p (or if no standard is given) is the process fraction nonconforming in the in-control state.

The standardized control chart for the purchase order data in Table 7.4 is shown in Figure 7.9.

The calculations associated with this control chart are shown in Table 7.5. Tests for runs and

pattern-recognition methods could safely be applied to this chart, because the relative changes

from one point to another are all expressed in terms of the same units of measurement.

The standardized control chart is no more difficult to construct or maintain than either of

the other two procedures discussed in this section. In fact, many quality control software pack-

ages either automatically execute this as a standard feature or can be programmed to plot a stan-

dardized control chart. For example, the version of Figure 7.9 shown in Figure 7.10 was created

p

Z
p p

p p

n

i
i

i

= −
−( )

ˆ

1

p̂i > p̂i+1
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■ F I G U R E  7 . 9 Standardized control chart

for fraction nonconforming.

■ F I G U R E  7 . 1 0 Standardized control chart from

Minitab for fraction nonconforming, Table 7.4.

■ TA B L E  7 . 5

Calculations for the Standardized Control Chart in Figure 7.9,

Sample 
Number of Fraction Standard Deviation

Noncon- Noncon-
Sample Sample forming forming,
Number, i Size, ni Units, Di

1 100 12 0.120 0.029 0.83

2 80 8 0.100 0.033 0.12

3 80 6 0.075 0.033 −0.64

4 100 9 0.090 0.029 −0.21

5 110 10 0.091 0.028 −0.18

6 110 12 0.109 0.028 0.46

7 100 11 0.110 0.029 0.48

8 100 16 0.160 0.029 2.21

9 90 10 0.110 0.031 0.45

10 90 6 0.067 0.031 −0.94

11 110 20 0.182 0.028 3.07

12 120 15 0.125 0.027 1.07

13 120 9 0.075 0.027 −0.78

14 120 8 0.067 0.027 −1.07

15 110 6 0.055 0.028 −1.46

16 80 8 0.100 0.033 0.12

17 80 10 0.125 0.033 0.88

18 80 7 0.088 0.033 −0.24

19 90 5 0.056 0.031 −1.29

20 100 8 0.080 0.029 −0.55

21 100 5 0.050 0.029 −1.59

22 100 8 0.080 0.029 −0.55

23 100 10 0.100 0.029 0.14

24 90 6 0.067 0.031 −0.94

25 90 9 0.100 0.031 0.13

p̂i � Di/ni

p̂ � 0.096

ŝp �
A

(0.096)(0.904)
ni

zi �
p̂i � p

A
(0.096)(0.904)

ni
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using Minitab. Conceptually, however, it may be more difficult for operating personnel to under-

stand and interpret, because reference to the actual process fraction defective has been “lost.”

However, if there is large variation in sample size, then runs and pattern-recognition methods

can only be safely applied to the standardized control chart. In such a case, it might be advis-

able to maintain a control chart with individual control limits for each sample (as in Fig. 7.6)

for the operating personnel, while simultaneously maintaining a standardized control chart for

engineering use.

The standardized control chart is also recommended when the length of the production

run is short, as in many job-shop settings. Control charts for short production runs are dis-

cussed in Chapter 9.

7.2.3 Applications in Transactional and Service Businesses

The control chart for fraction nonconforming is widely used in transactional businesses

and service industry applications of statistical process control. In the nonmanufacturing

environment, many quality characteristics can be observed on a conforming or noncon-

forming basis. Examples would include the number of employee paychecks that are in

error or distributed late during a pay period, the number of check requests that are not paid

within the standard accounting cycle, and the number of deliveries made by a supplier that

are not on time.

Many nonmanufacturing applications of the fraction nonconforming control chart will

involve the variable sample size case. For example, the total number of check requests during

an accounting cycle is most likely not constant, and since information about the timeliness of

processing for all check requests is generally available, we would calculate as the ratio of

all late checks to the total number of checks processed during the period.

As an illustration consider the purchase order data in Table 7.4. The sample sizes in

Table 7.4 are the actual number of purchase orders issued each week. It would be very

unusual for this to be exactly the same from week to week. Consequently, a fraction non-

conforming control chart with variable sample size was an ideal approach for this situation.

The use of this control chart was a key initial step in identifying many of the root causes of

the errors on purchase orders and in developing the corrective actions necessary to improve

the process.

7.2.4 The Operating-Characteristic Function and Average 
Run Length Calculations

The operating-characteristic (or OC) function of the fraction nonconforming control chart is a

graphical display of the probability of incorrectly accepting the hypothesis of statistical control

(i.e., a type II or b-error) against the process fraction nonconforming. The OC curve provides a

measure of the sensitivity of the control chart—that is, its ability to detect a shift in the process

fraction nonconforming from the nominal value to some other value p. The probability of type

II error for the fraction nonconforming control chart may be computed from

(7.15)

Since D is a binomial random variable with parameters n and p, the b-error defined in equa-

tion 7.15 can be obtained from the cumulative binomial distribution. Note that when the LCL

is negative, the second term on the right-hand side of equation 7.15 should be dropped.

β = <{ } − ≤{ }
= <{ } − ≤{   }

P p p P p p
P D n p P D p

ˆ ˆUCL LCL
UCL nLCL

p

p̂
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316 Chapter 7 ■ Control Charts for Attributes

Table 7.6 illustrates the calculations required to generate the OC curve for a control

chart for fraction nonconforming with parameters n = 50, LCL = 0.0303, and UCL = 0.3697.

Using these parameters, equation 7.15 becomes

However, since D must be an integer, we find that

The OC curve is plotted in Figure 7.11.

We may also calculate average run lengths (ARLs) for the fraction nonconforming con-

trol chart. Recall from Chapter 5 that for uncorrelated process data the ARL for any Shewhart

control chart can be written as

β = ≤{ } − ≤{ }P D p P D p18 1

β = < ( )( ){ } − ≤ ( )( ){ }
= <{ } − ≤{ }

P D p P D p

P D p P D p

50 0 3697 50 0 0303

18 49 52

. .

. .1

■ F I G U R E  7 . 1 1 Operating-

characteristic curve for the fraction non-

conforming control chart with ,

LCL = 0.0303, and UCL = 0.3697.

p = 0.20

■ TA B L E  7 . 6

Calculationsa for Constructing the OC Curve for a Control Chart for Fraction Nonconforming
with n = 50, LCL = 0.0303, and UCL = 0.3697

p P{D ≤ 18⎪p} P{D ≤ 1⎪p} b = P{D ≤ 18⎪p} – P{D ≤ 1⎪p}

0.01 1.0000 0.9106 0.0894

0.03 1.0000 0.5553 0.4447

0.05 1.0000 0.2794 0.7206

0.10 1.0000 0.0338 0.9662

0.15 0.9999 0.0029 0.9970

0.20 0.9975 0.0002 0.9973

0.25 0.9713 0.0000 0.9713

0.30 0.8594 0.0000 0.8594

0.35 0.6216 0.0000 0.6216

0.40 0.3356 0.0000 0.3356

0.45 0.1273 0.0000 0.1273

0.50 0.0325 0.0000 0.0325

0.55 0.0053 0.0000 0.0053

aThe probabilities in this table were found by evaluating the cumulative binomial distribution. For small p (p < 0.1,

say) the Poisson approximation could be used, and for larger values of p the normal approximation could be used.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p
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Thus, if the process is in control, ARL0 is

and if it is out of control, then

These probabilities (a, b) can be calculated directly from the binomial distribution or read

from an OC curve.

To illustrate, consider the control chart for fraction nonconforming used in the OC

curve calculations in Table 7.6. This chart has parameters n = 50, UCL = 0.3697, LCL =
0.0303, and the center line is . From Table 7.6 (or the OC curve in Fig. 7.11) we find

that if the process is in control with p = , the probability of a point plotting in control is

0.9973. Thus, in this case a = 1 − b = 0.0027, and the value of ARL0 is

Therefore, if the process is really in control, we will experience a false out-of-control signal

about every 370 samples. (This will be approximately true, in general, for any Shewhart 

control chart with three-sigma limits.) This in-control ARL0 is generally considered to be 

satisfactorily large. Now suppose that the process shifts out of control to p = 0.3. Table 7.6

indicates that if p = 0.3, then b = 0.8594. Therefore, the value of ARL1 is

and it will take about seven samples, on the average, to detect this shift with a point outside

of the control limits. If this is unsatisfactory, then action must be taken to reduce the out-of-

control ARL1. Increasing the sample size would result in a smaller value of b and a shorter

out-of-control ARL1. Another approach would be to reduce the interval between samples.

That is, if we are currently sampling every hour, it will take about seven hours, on the aver-

age, to detect the shift. If we take the sample every half hour, it will require only three and a

half hours, on the average, to detect the shift. Another approach is to use a control chart that

is more responsive to small shifts, such as the cumulative sum charts in Chapter 9.

7.3 Control Charts for Nonconformities (Defects)

A nonconforming item is a unit of product that does not satisfy one or more of the specifications

for that product. Each specific point at which a specification is not satisfied results in a defect or

nonconformity. Consequently, a nonconforming item will contain at least one nonconformity.

However, depending on their nature and severity, it is quite possible for a unit to contain several

ARL1 =
−

=
−

−1

1

1

1 0 8594
7

β .
~

ARL0 = = −1 1

0 0027
370

α .
~

p
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ARL1 =
−
1

1 β
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P
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2The a-risk for three-sigma limits is not equally allocated above the UCL and below the LCL, because the Poisson dis-

tribution is asymmetric. Some authors recommend the use of probability limits for this chart, particularly when c is small.

Control Chart for Nonconformities: Standard Given

(7.16)

UCL

Center line 

LCL

= +
=

= −

c c

c

c c

3

3

nonconformities and not be classified as nonconforming. As an example, suppose we are man-

ufacturing personal computers. Each unit could have one or more very minor flaws in the cabi-

net finish, and since these flaws do not seriously affect the unit’s functional operation, it could be

classified as conforming. However, if there are too many of these flaws, the personal computer

should be classified as nonconforming, since the flaws would be very noticeable to the customer

and might affect the sale of the unit. There are many practical situations in which we prefer to

work directly with the number of defects or nonconformities rather than the fraction noncon-

forming. These include the number of defective welds in 100 m of oil pipeline, the number of

broken rivets in an aircraft wing, the number of functional defects in an electronic logic device,

the number of errors on a document, the number of customers who elect to leave a service sys-

tem without completing their service request, and so forth.

It is possible to develop control charts for either the total number of nonconformities in

a unit or the average number of nonconformities per unit. These control charts usually assume

that the occurrence of nonconformities in samples of constant size is well modeled by the Poisson

distribution. Essentially, this requires that the number of opportunities or potential locations for

nonconformities be infinitely large and that the probability of occurrence of a nonconformity at

any location be small and constant. Furthermore, the inspection unit must be the same for each

sample. That is, each inspection unit must always represent an identical area of opportunity for

the occurrence of nonconformities. In addition, we can count nonconformities of several different

types on one unit, as long as the above conditions are satisfied for each class of nonconformity.

In most practical situations, these conditions will not be satisfied exactly. The number

of opportunities for the occurrence of nonconformities may be finite, or the probability of

occurrence of nonconformities may not be constant. As long as these departures from the

assumptions are not severe, the Poisson model will usually work reasonably well. There are

cases, however, in which the Poisson model is completely inappropriate. These situations 

are discussed in more detail at the end of Section 7.3.1.

7.3.1 Procedures with Constant Sample Size

Consider the occurrence of nonconformities in an inspection unit of product. In most cases,

the inspection unit will be a single unit of product, although this is not necessarily always so.

The inspection unit is simply an entity for which it is convenient to keep records. It could be

a group of 5 units of product, 10 units of product, and so on. Suppose that defects or non-

conformities occur in this inspection unit according to the Poisson distribution; that is,

where x is the number of nonconformities and c > 0 is the parameter of the Poisson distribu-

tion. From Section 3.2.3 we recall that both the mean and variance of the Poisson distribution

are the parameter c. Therefore, a control chart for defects or nonconformities, or c chart
with three-sigma limits would be defined as follows,2

p x
e c

x
x

c x

( ) = =
−

!
.0,  1,  2 ,   . .
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■ TA B L E  7 . 7

Data on the Number of Nonconformities in Samples of 100 Printed Circuit Boards

Number of Number of 
Sample Number Nonconformities Sample Number Nonconformities

1 21 14 19

2 24 15 10

3 16 16 17

4 12 17 13

5 15 18 22

6 5 19 18

7 28 20 39

8 20 21 30

9 31 22 24

10 25 23 16

11 20 24 19

12 24 25 17

13 16 26 15

7.3 Control Charts for Nonconformities (Defects) 319

Control Chart for Nonconformities: No Standard Given

(7.17)

UCL

Center line 

LCL

= +
=

= −

c c

c

c c

3

3

SOLUTION

Since the 26 samples contain 516 total nonconformities, we

estimate c by

Therefore, the trial control limits are given by

The control chart is shown in Figure 7.12. The number of

observed nonconformities from the preliminary samples is

UCL

Center line 

LCL

= + = + =
= =

= − = − =

c c

c

c c

3 19 85 3 19 85 33 22

19 85

3 19 85 3 19 85 6 48

. . .

.

. . .
c = =516

26
19 85.

EXAMPLE 7.3

Table 7.7 presents the number of nonconformities observed in

26 successive samples of 100 printed circuit boards. Note that,

for reasons of convenience, the inspection unit is defined as

100 boards. Set up a c chart for these data.

Nonconformities in Printed Circuit Boards

assuming that a standard value for c is available. Should these calculations yield a negative

value for the LCL, set LCL = 0.

If no standard is given, then c may be estimated as the observed average number of non-

conformities in a preliminary sample of inspection units—say, . In this case, the control chart

has parameters defined as follows.

c

When no standard is given, the control limits in equation 7.17 should be regarded as trial
control limits, and the preliminary samples examined for lack of control in the usual phase I

analysis. The control chart for nonconformities is also sometimes called the c chart.

(continued)
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■ F I G U R E  7 . 1 2 Control chart for nonconformities for

Example 7.3.

■ TA B L E  7 . 8

Additional Data for the Control Chart for Nonconformities, Example 7.3

Number of Number of 
Sample Number Nonconformities Sample Number Nonconformities

27 16 37 18

28 18 38 21

29 12 39 16

30 15 40 22

31 24 41 19

32 21 42 12

33 28 43 14

34 20 44 9

35 25 45 16

36 19 46 21

28 30 32 34 36 38 40 42 44 46
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■ F I G U R E  7 . 1 3 Continuation of the control

chart for nonconformities. Example 7.3.

number of nonconformities in sample 20 resulted from a temper-

ature control problem in the wave soldering machine, which was

subsequently repaired. Therefore, it seems reasonable to exclude

these two samples and revise the trial control limits. The estimate

of c is now computed as

and the revised control limits are

These become the standard values against which production in

the next period can be compared.

Twenty new samples, each consisting of one inspection 

unit (i.e., 100 boards), are subsequently collected. The number

of nonconformities in each sample is noted and recorded 

in Table 7.8. These points are plotted on the control chart in

Figure 7.13. No lack of control is indicated; however, the number

of nonconformities per board is still unacceptably high.

Further action is necessary to improve the process.

UCL

Center line 

LCL

= + = + =
= =

= − = − =

c c

c

c c

3 19 67 3 19 67 32 97

19 67

3 19 67 3 19 67 6 36

. . .

.

. . .

c = =472

24
19 67.

plotted on this chart. Two points plot outside the control limits:

samples 6 and 20. Investigation of sample 6 revealed that a

new inspector had examined the boards in this sample and that

he did not recognize several of the types of nonconformities

that could have been present. Furthermore, the unusually large
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7.3 Control Charts for Nonconformities (Defects) 321

Further Analysis of Nonconformities. Defect or nonconformity data are always

more informative than fraction nonconforming, because there will usually be several differ-

ent types of nonconformities. By analyzing the nonconformities by type, we can often gain

considerable insight into their cause. This can be of considerable assistance in developing the

out-of-control-action plans (OCAPs) that must accompany control charts.

For example, in the printed circuit board process, there are sixteen different types of

defects. Defect data for 500 boards are plotted on a Pareto chart in Figure 7.14. Note that over

60% of the total number of defects is due to two defect types: solder insufficiency and solder

cold joints. This points to further problems with the wave soldering process. If these problems

can be isolated and eliminated, there will be a dramatic increase in process yield. Notice that

the nonconformities follow the Pareto distribution; that is, most of the defects are attributable

to a few (in this case, two) defect types.

This process manufactures several different types of printed circuit boards.

Therefore, it may be helpful to examine the occurrence of defect type by type of printed

circuit board (part number). Table 7.9 presents this information. Note that all 40 solder

insufficiencies and all 20 solder cold joints occurred on the same part number: 0001285.

This implies that this particular type of board is very susceptible to problems in wave sol-

dering, and special attention must be directed toward improving this step of the process

for this part number.

Another useful technique for further analysis of nonconformities is the cause-and-
effect diagram discussed in Chapter 5. The cause-and-effect diagram is used to illustrate the

various sources of nonconformities in products and their interrelationships. It is useful in

focusing the attention of operators, manufacturing engineers, and managers on quality prob-

lems. Developing a good cause-and-effect diagram usually advances the level of technologi-

cal understanding of the process.

A cause-and-effect diagram for the printed circuit board assembly process is shown in

Figure 7.15. Since most of the defects in this example were solder related, the cause-and-

effect diagram could help choose the variables for a designed experiment to optimize the

Cum. Cum.
Freq. freq. Percentage percentage

Defect code

Sold. Insufficie **************************************** 40 40 40.82 40.82
Sold.cold joint ******************** 20 60 20.41 61.23
Sold. opens/dewe ******* 7 67 7.14 68.37
Comp. improper 1 ****** 6 73 6.12 74.49
Sold. splatter/w ***** 5 78 5.10 79.59
Tst. mark ec mark *** 3 81 3.06 82.65
Tst. mark white m *** 3 84 3.06 85.71
Raw cd shroud re *** 3 87 3.06 88.78
Comp. extra part ** 2 89 2.04 90.82
Comp. damaged ** 2 91 2.04 92.86
Comp. missing ** 2 93 2.04 94.90
Wire incorrect s * 1 94 1.02 95.92
Stamping oper id * 1 95 1.02 96.94
Stamping missing * 1 96 1.02 97.96
Sold. short * 1 97 1.02 98.98
Raw cd damaged * 1 98 1.02 100.00

1 10 20 30 40

Number of defects

■ F I G U R E  7 . 1 4 Pareto analysis of nonconformities for the printed circuit board process.
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322 Chapter 7 ■ Control Charts for Attributes

■ TA B L E  7 . 9

Table of Defects Classified by Part Number and Defect Code

Part  Number Defect
Frequency 
Percentage Component Code Raw Solder

Row Percentage Component Damaged Component Component Raw Card Card Solder Solder Cold
Column Percentage Missing (NO) Extra Part Improper I Shroud RE Damaged Short Opens/DEWE Joint

0001285 1 0 0 0 0 1 0 5 20

1.02 0.00 0.00 0.00 0.00 1.02 0.00 5.10 20.41

1.41 0.00 0.00 0.00 0.00 1.41 0.00 7.04 28.17

50.00 0.00 0.00 0.00 0.00 100.00 0.00 71.43 100.00

0001481 1 2 2 6 3 0 1 2 0

1.02 2.04 6.12 3.06 0.00 0.00 1.02 2.04 0.00

3.70 7.41 22.22 11.11 0.00 0.00 3.70 7.41 0.00

50.00 100.00 100.00 100.00 100.00 0.00 100.00 28.57 0.00

0006429 0 0 0 0 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 2 2 2 6 3 1 1 7 20

2.04 2.04 2.04 6.12 3.06 1.02 1.02 7.14 20.41

Part  Number Defect
Frequency 
Percentage Code Test Test Wire

Row Percentage Solder Solder Stamping Stamping Mark Mark Incorrect Good
Column Percentage Insufficiencies Splatter Missing Operator ID White M EC Mark 5 Unit(s) Total

0001285 40 0 0 0 2 1 1 0 71

40.82 0.00 0.00 0.00 2.04 1.02 1.02 0.00 72.45

56.32 0.00 0.00 0.00 2.82 1.41 1.41 0.00

100.00 0.00 0.00 0.00 66.67 33.33 100.00 0.00

0001481 0 5 1 1 1 2 0 0 27

0.00 5.10 1.02 1.02 1.02 2.04 0.00 0.00 27.55

0.00 18.52 3.70 3.70 3.70 7.41 0.00 0.00

0.00 100.00 100.00 100.00 33.33 66.67 0.00 0.00

0006429 0 0 0 0 0 0 0 0 0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 40 5 1 1 3 3 1 0 98

40.82 5.10 1.02 1.02 3.06 3.06 1.02 0.00 100.00
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7.3 Control Charts for Nonconformities (Defects) 323

wave soldering process. There are several ways to draw the diagram. This one focuses on the

three main generic sources of nonconformities: materials, operators, and equipment. Another

useful approach is to organize the diagram according to the flow of material through the

process.

Choice of Sample Size: The u Chart. Example 7.3 illustrates a control chart for

nonconformities with the sample size exactly equal to one inspection unit. The inspection unit

is chosen for operational or data-collection simplicity. However, there is no reason why the

sample size must be restricted to one inspection unit. In fact, we would often prefer to 

use several inspection units in the sample, thereby increasing the area of opportunity for the

occurrence of nonconformities. The sample size should be chosen according to statistical con-

siderations, such as specifying a sample size large enough to ensure a positive lower control

limit or to obtain a particular probability of detecting a process shift. Alternatively, economic

factors could enter into sample-size determination.

Suppose we decide to base the control chart on a sample size of n inspection units.

Note that n does not have to be an integer. To illustrate this, suppose that in Example 7.3

we were to specify a subgroup size of n = 2.5 inspection units. Then the sample size

becomes (2.5)(100) = 250 boards. There are two general approaches to constructing the

revised chart once a new sample size has been selected. One approach is simply to redefine

a new inspection unit that is equal to n times the old inspection unit. In this case, the cen-

ter line on the new control chart is and the control limits are located at ,

where is the observed mean number of nonconformities in the original inspection unit.

Suppose that in Example 7.3, after revising the trial control limits, we decided to use a sam-

ple size of n = 2.5 inspection units. Then the center line would have been located at =
(2.5)(19.67) = 49.18 and the control limits would have been 49.18 ± or LCL =
28.14 and UCL = 70.22.

The second approach involves setting up a control chart based on the average

number of nonconformities per inspection unit. If we find x total nonconformities in a

sample of n inspection units, then the average number of nonconformities per inspec-

tion unit is

3149.18

nc

c
nc ± 32ncnc

Raw
card

Solder
process

Inspection

Components Component
insertion

Defects in
printed

circuit board

Co
nt

ro
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Temperature

Flux

Te
m

pe
ra

tu
re

Ti
m

e

Moisture content
Shroud
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■ F I G U R E  7 . 1 5 Cause-and-effect diagram.
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324 Chapter 7 ■ Control Charts for Attributes

where represents the observed average number of nonconformities per unit in a pre-

liminary set of data. Control limits found from equation 7.19 would be regarded as trial

control limits. This per-unit chart often is called the control chart for nonconformities,
or u chart.

u

Note that x is a Poisson random variable; consequently, the parameters of the control chart for

the average number of nonconformities per unit are as follows,

Control Chart for Average Number of 
Nonconformities per Unit

(7.19)

UCL

Center line 

LCL

= +

=

= −

u
u

n

u

u
u

n

3

3

SOLUTION 

EXAMPLE 7.4 Control Charts in Supply Chain Operations

selected shipments are examined and the errors recorded. Data

for twenty weeks are shown in Table 7.10. Set up a u control

chart to monitor this process.

A supply chain engineering group monitors shipments of

materials through the company distribution network. Errors on

either the delivered material or the accompanying documenta-

tion are tracked on a weekly basis. Each week 50 randomly

Since the LCL < 0, we would set LCL = 0 for the u chart. The

control chart is shown in Figure 7.16. The preliminary data do

not exhibit lack of statistical control; therefore, the trial control

limits given here would be adopted for phase II monitoring of

future operations. Once again, note that, although the process

is in control, the average number of errors per shipment is

high. Action should be taken to improve the supply chain 

system.

From the data in Table 7.10, we estimate the number of errors

(nonconformities) per unit (shipment) to be:

Therefore, the parameters of the control chart are

UCL

Center line 

LCL

= + = + =

= =

= − = − = −

u
u

n

u

u
u

n

3 0 0740 3
0 0740

50
0 1894

1 93

3 0 0740 3
0 0740

50
0 0414

.
.

.

.

.
.

.

u
ui

i= = ==
∑

1

20

20

1 48

20
0 0740

.
.
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UCL = 0.1894

u = 0.074

■ F I G U R E  7 . 1 6 The control chart for nonconformi-

ties per unit from Minitab for Example 7.4.

Alternative Probability Models for Count Data. Most applications of the c
chart assume that the Poisson distribution is the correct probability model underlying the

process. However, it is not the only distribution that could be utilized as a model of “count”

or nonconformities per unit-type data. Various types of phenomena can produce distribu-

tions of defects that are not well modeled by the Poisson distribution. In the Poisson

■ TA B L E  7 . 1 0

Data on Number of Shipping Errors in a Supply Chain Network

Average Number of 
Sample Sample Total Number of Errors Errors (Nonconformities) 

Number (week), i Size, n (Nonconformities), xi per Unit, ui = xi/n

1 50 2 0.04

2 50 3 0.06

3 50 8 0.16

4 50 1 0.02

5 50 1 0.02

6 50 4 0.08

7 50 1 0.02

8 50 4 0.08

9 50 5 0.10

10 50 1 0.02

11 50 8 0.16

12 50 2 0.04

13 50 4 0.08

14 50 3 0.06

15 50 4 0.08

16 50 1 0.02

17 50 8 0.16

18 50 3 0.06

19 50 7 0.14

20 50 4 0.08

74 1.48
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326 Chapter 7 ■ Control Charts for Attributes

distribution, the mean and the variance are equal. When the sample data indicate that the

sample variance is substantially different from the mean, the Poisson assumption is likely

to be inappropriate.

The situation where the Poisson assumption is likely to be inappropriate is when non-

conformities tend to occur in clusters; that is, if there is one nonconformity in some part of

a product, then it is likely that there will be others. Note that there are at least two random

processes at work here: one generating the number and location of clusters, and the second

generating the number of nonconformities within each cluster. If the number of clusters has

a Poisson distribution and the number of nonconformities within each cluster has a common

distribution (say, f ), then the total number of nonconformities has a compound Poisson dis-
tribution. Many types of compound or generalized distributions could be used as a model for

count-type data. As an illustration, if the number of clusters has a Poisson distribution and the

number of nonconformities within each cluster is also Poisson, then Neyman’s type-A distri-

bution models the total number of nonconformities. Alternatively, if the cluster distribution is

gamma and the number of nonconformities within each cluster is Poisson, the negative bino-

mial distribution results. Johnson and Kotz (1969) give a good summary of these and also dis-

cuss other discrete distributions that could be useful in modeling count-type data.

Mixtures of various types of nonconformities can lead to situations in which the total

number of nonconformities is not adequately modeled by the Poisson distribution. Similar

situations occur when the count data have either too many or too few zeros. A good discus-

sion of this general problem is the paper by Jackson (1972). The use of the negative bino-

mial distribution to model count data in inspection units of varying size has been studied by

Sheaffer and Leavenworth (1976). The dissertation by Gardiner (1987) describes the use of

various discrete distributions to model the occurrence of defects in integrated circuits.

As we noted in Section 3.2.4, the geometric distribution can also be useful as a model for

count or “event” data. Kaminsky et al. (1992) have proposed control charts for counts based on

the geometric distribution. The probability model that they use for the geometric distribution is

where a is the known minimum possible number of events. Suppose that the data from the

process are available as a subgroup of size n, say x1, x2, . . . . xn. These observations are inde-

pendently and identically distributed observations from a geometric distribution when the

process is stable (in control). The two statistics that can be used to form a control chart are

the total number of events

and the average number of events

From Chapter 3, we know that the sum of independently and identically distributed geomet-

ric random variables is a negative binomial random variable. This would be useful informa-

tion in constructing OC curves or calculating ARLs for the control charts for T or .

The mean and variance of the total number of events T are

and

sT
2 =

n(1 − p)

p2

mT = n a
1 − p

p
+ ab

x

x =
x1 +  x2 + . . . +  xn

n

T = x1 + x2 + . . . + xn

p(x) = p(1 − p)x−a for x = a, a + 1, a + 2, . . . 
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7.3 Control Charts for Nonconformities (Defects) 327

and the mean and variance of the average number of events are

and

Consequently, the control charts can be constructed in the usual manner for Shewhart charts.

Kaminsky et al. (1992) refer to the control chart for the total number of events as a “g chart”

and the control chart for the average number of events as an “h chart.” The center lines and

control limits for each chart are shown in the following display.

sx
2 =

1 − p

np2

mx =
1 − p

p
+ a

g and h Control Charts, Standards Given

Total number of events chart, Average number of events chart,

g chart h chart

Upper control limit (UCL)

Center line (CL)

Lower control limit (LCL)
1 − p

p
+ a − L

B

1 − p

np2
na

1 − p
p

+ ab − L
B

n(1 − p)

p2

1 − p
p

+ ana
1 − p

p
+ ab

1 − p
p

+ a + L
B

1 − p

np2
na

1 − p
p

+ ab + L
B

n(1 − p)

p2

While we have assumed that a is known, in most situations the parameter p will likely be

unknown. The estimator for p is

where is the average of all of the count data. Suppose that there are m subgroups available,

each of size n, and let the total number of events in each subgroup be t1, t2, . . . , tm. The aver-

age number of events per subgroup is

Therefore,

and

1 − p̂

p̂2
= a

t

n
− ab a

t

n
− a + 1b

x =
t

n
=

1 − p̂

p̂
+ a

 t =
t1 + t2 + . . . + tm

m

x

p̂ =
1

x − a + 1
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328 Chapter 7 ■ Control Charts for Attributes

The center line and control limits for the g chart and the h chart based on an estimate of p are

shown below.

g and h Control Charts, No Standards Given

Total number of events chart, Average number of events chart,

g chart h chart

Upper control limit (UCL)

Center line (CL)

Lower control limit (LCL)
t

n
−

L

1nB
a

t
n

− aba
t

n
− a + 1b t − L

B
na

 t
n

− aba
 t
n

− a + 1b

t
n

 t 

 t
n

+
L

2nB
a

 t
n

− aba
 t
n

− a + 1bt + L
B

na
t 
n

− aba
t 
n

− a + 1b

rolls of cloth are shown in Table 7.11. Use these data to set up

a control chart for nonconformities per unit.

EXAMPLE 7.5

In a textile finishing plant, dyed cloth is inspected for the

occurrence of defects per 50 square meters. The data on ten

Constructing a u chart

7.3.2 Procedures with Variable Sample Size

Control charts for nonconformities are occasionally formed using 100% inspection of the

product. When this method of sampling is used, the number of inspection units in a sample

will usually not be constant. For example, the inspection of rolls of cloth or paper often leads

to a situation in which the size of the sample varies, because not all rolls are exactly the same

length or width. If a control chart for nonconformities (c chart) is used in this situation, both

the center line and the control limits will vary with the sample size. Such a control chart

would be very difficult to interpret. The correct procedure is to use a control chart for non-

conformities per unit (u chart). This chart will have a constant center line; however, the width

of the control limits will vary inversely with the square root of the sample size n.

■ TA B L E  7 . 1 1

Occurrence of Nonconformities in Dyed Cloth

Number of Number of
Roll Number of Total Number Inspection Nonconformities

Number Square Meters of Nonconformities Units in Roll, n per Inspection Unit

1 500 14 10.0 1.40

2 400 12 8.0 1.50

3 650 20 13.0 1.54

4 500 11 10.0 1.10

5 475 7 9.5 0.74

6 500 10 10.0 1.00

7 600 21 12.0 1.75

8 525 16 10.5 1.52

9 600 19 12.0 1.58

10 625 23 12.5 1.84

153 107.50
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■ F I G U R E  7 . 1 7 Computer-generated

(Minitab) control chart for Example 7.5.

SOLUTION

The center line of the chart should be the average number of

nonconformities per inspection unit—that is, the average

number of nonconformities per 50 square meters, computed as

Note that is the ratio of the total number of observed non-

conformities to the total number of inspection units.

u

u = =153

107 5
1 42

.
.

The control limits on this chart are computed from equa-

tion 7.19 with n replaced by ni. The width of the control lim-

its will vary inversely with ni, the number of inspection units

in the roll. The calculations for the control limits are displayed

in Table 7.12. Figure 7.17 plots the control chart constructed

by Minitab.

■ TA B L E  7 . 1 2

Calculation of Control Limits, Example 7.5

Roll 
Number, i ni UCL = ū + LCL = ū −

1 10.0 2.55 0.29

2 8.0 2.68 0.16

3 13.0 2.41 0.43

4 10.0 2.55 0.29

5 9.5 2.58 0.26

6 10.0 2.55 0.29

7 12.0 2.45 0.39

8 10.5 2.52 0.32

9 12.0 2.45 0.39

10 12.5 2.43 0.41

31u/ni31u/ni

As noted previously, the u chart should always be used when the sample size is vari-

able. The most common implementation involves variable control limits, as illustrated in

Example 7.5. There are, however, two other possible approaches:

1. Use control limits based on an average sample size.

n n mi
i

m
=

=
∑

1
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■ F I G U R E  7 . 1 8 Standardized control

chart for nonconformities per unit, Example 7.5.

3

2

1

0

–1

–2

–3
0 2 4 6 8 10

Subgroup

z-
sc

or
e

–3s

0

+3s

Class A Defects—Very Serious. The unit is either completely unfit for service, or

will fail in service in such a manner that cannot be easily corrected in the field, or

will cause personal injury or property damage.

Class B Defects—Serious. The unit will possibly suffer a Class A operating fail-

ure, or will certainly cause somewhat less serious operating problems, or will cer-

tainly have reduced life or increased maintenance cost.

Class C Defects—Moderately Serious. The unit will possibly fail in service, or

cause trouble that is less serious than operating failure, or possibly have reduced

life or increased maintenance costs, or have a major defect in finish, appearance, or

quality of work.

Class D Defects—Minor. The unit will not fail in service but has minor defects in

finish, appearance, or quality of work.

2. Use a standardized control chart (this is the preferred option). This second alternative

would involve plotting a standardized statistic

(7.20)

on a control chart with LCL = −3 and UCL = +3 and the center line at zero. This chart is appro-

priate if tests for runs and other pattern-recognition methods are to be used in conjunction with

the chart. Figure 7.18 shows the standardized version of the control chart in Example 7.5. This

standardized control chart could also be useful in the short production run situation (see

Chapter 10, Section 10.1).

7.3.3 Demerit Systems

With complex products such as automobiles, computers, or major appliances, we usually find

that many different types of nonconformities or defects can occur. Not all of these types of

defects are equally important. A unit of product having one very serious defect would proba-

bly be classified as nonconforming to requirements, but a unit having several minor defects

might not necessarily be nonconforming. In such situations, we need a method to classify

nonconformities or defects according to severity and to weight the various types of defects in

a reasonable manner. Demerit systems for attribute data can be of value in these situations.

One possible demerit scheme is defined as follows.

Z
u u

u

n

i
i

i

= −
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7.3 Control Charts for Nonconformities (Defects) 331

Let ciA, ciB, ciC, and ciD represent the number of Class A, Class B, Class C, and Class D

defects, respectively, in the ith inspection unit. We assume that each class of defect is inde-

pendent, and the occurrence of defects in each class is well modeled by a Poisson distribu-

tion. Then we define the number of demerits in the inspection unit as

(7.21)

The demerit weights of Class A—100, Class B—50, Class C—10, and Class D—1 are used

fairly widely in practice. However, any reasonable set of weights appropriate for a specific

problem may also be used.

Suppose that a sample of n inspection units is used. Then the number of demerits per unit is

(7.22)

where is the total number of demerits in all n inspection units. Since ui is a linear

combination of independent Poisson random variables, the statistics ui could be plotted on a

control chart with the following parameters:

(7.23)

where

(7.24)

and

(7.25)

In the preceding equations, , , , and represent the average number of Class A, Class

B, Class C, and Class D defects per unit. The values of , , , and are obtained from

the analysis of preliminary data, taken when the process is supposedly operating in control.

Standard values for uA, uB, uC, and uD may also be used, if they are available.

Jones, Woodall, and Conerly (1999) provide a very thorough discussion of demerit-

based control charts. They show how probability-based limits can be computed as alternatives

to the traditional three-sigma limits used above. They also show that, in general, the proba-

bility limits give superior performance; they are, however, more complicated to compute.

Many variations of this idea are possible. For example, we can classify nonconformi-

ties as either functional defects or appearance defects if a two-class system is preferred. It

is also fairly common practice to maintain separate control charts on each defect class rather

than combining them into one chart.

7.3.4 The Operating-Characteristic Function

The operating-characteristic (OC) curves for both the c chart and the u chart can be obtained

from the Poisson distribution. For the c chart, the OC curve plots the probability of type II

error b against the true mean number of defects c. The expression for b is

(7.26)β = <{ } − ≤{ }P x c P x cUCL LCL

uDuCuBuA

uDuCuBuA

σ̂u
u u u u

n
= ( ) + ( ) + ( ) +⎡
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where x is a Poisson random variable with parameter c. Note that if the LCL < 0 the second

term on the right-hand side of equation 7.26 should be dropped.

We will generate the OC curve for the c chart in Example 7.3. For this example, since

the LCL = 6.48 and the UCL = 33.22, equation 7.26 becomes

Since the number of nonconformities must be integer, this is equivalent to

These probabilities are evaluated in Table 7.13. The OC curve is shown in Figure 7.19.

For the u chart, we may generate the OC curve from

(7.27)

where �nLCL� denotes the smallest integer greater than or equal to nLCL and [nUCL] denotes

the largest integer less than or equal to nUCL. The limits on the summation in equation 7.26

follow from the fact that the total number of nonconformities observed in a sample of n
inspection units must be an integer. Note that n need not be an integer.

7.3.5 Dealing with Low Defect Levels

When defect levels or in general, count rates, in a process become very low—say, under 1,000

occurrences per million—there will be very long periods of time between the occurrence of

a nonconforming unit. In these situations, many samples will have zero defects, and a control

chart with the statistic consistently plotting at zero will be relatively uninformative. Thus,

β = <{ } − ≤{ }
= <{ } − ≤{ }
= ≤{ }

= ( )−

=

[ ]
∑

P x u P x u
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■ F I G U R E  7 . 1 9 OC curve of a c chart

with LCL = 6.48 and UCL = 33.22.

■ TA B L E  7 . 1 3  

Calculation of the OC Curve for a c Chart with UCL = 33.22 and
LCL = 6.48

c P {x ≤ 33|c} P {x ≤ 6|c} b = P{x ≤ 33|c} − P{x ≤ 6|c}

1 1.000 0.999 0.001

3 1.000 0.966 0.034

5 1.000 0.762 0.238

7 1.000 0.450 0.550

10 1.000 0.130 0.870

15 0.999 0.008 0.991

20 0.997 0.000 0.997

25 0.950 0.000 0.950

30 0.744 0.000 0.744

33 0.546 0.000 0.546

35 0.410 0.000 0.410

40 0.151 0.000 0.151

45 0.038 0.000 0.038

c07ControlChartsforAttributes.qxd  3/28/12  3:27 PM  Page 332



7.3 Control Charts for Nonconformities (Defects) 333

conventional c and u charts become ineffective as count rates are driven into the low parts per

million (ppm) range.

One way to deal with this problem is adopt a time between occurrence control chart,
which charts a new variable: the time between the successive occurrences of the count. The

time-between-events control chart has been very effective as a process-control procedure for

processes with low defect levels.

Suppose that defects or counts or “events” of interest occur according to a Poisson dis-

tribution. Then the probability distribution of the time between events is the exponential

distribution. Therefore, constructing a time-between-events control chart is essentially equiv-

alent to control charting an exponentially distributed variable. However, the exponential dis-

tribution is highly skewed, and as a result, the corresponding control chart would be very

asymmetric. Such a control chart would certainly look unusual, and might present some dif-

ficulties in interpretation for operating personnel.

Nelson (1994) has suggested solving this problem by transforming the exponential ran-

dom variable to a Weibull random variable such that the resulting Weibull distribution is well

approximated by the normal distribution. If y represents the original exponential random vari-

able, the appropriate transformation is

(7.28)

One would now construct a control chart on x, assuming that x follows a normal distribution.

x y y= =1 3 6 0 2777. .

SOLUTION 

Set up a time-between-events control chart for this process.

Clearly, time between failures is not normally distributed.

Table 7.14 also shows the values of the transformed time

between events, computed from equation 7.27. Figure 7.21

EXAMPLE 7.6

able to monitor. Table 7.14 shows the number of hours between

failures for the last twenty failures of this valve. Figure 7.20 is

a normal probability plot of the time between failures.

A chemical engineer wants to set up a control chart for moni-

toring the occurrence of failures of an important valve. She has

decided to use the number of hours between failures as the vari-

■ F I G U R E  7 . 2 0 Normal probability plot of

time between failures, Example 7.6.
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■ F I G U R E  7 . 2 1 Normal probability plot

for the transformed failure data.
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is a normal probability plot of the transformed time between

failures. Note that the plot indicates that the distribution 

of this transformed variable is well approximated by the 

normal.

(continued)
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334 Chapter 7 ■ Control Charts for Attributes

a different type of maintenance action), then we would expect

to see the mean time between failures get longer. This would

result in points plotting above the upper control limit on the

individuals control chart in Figure 7.22.

Figure 7.22 is a control chart for individuals and a moving

range control chart for the transformed time between failures.

Note that the control charts indicate a state of control, imply-

ing that the failure mechanism for this valve is constant. If a

process change is made that improves the failure rate (such as

14
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■ F I G U R E  7 . 2 2 Control charts for individuals and moving-range control chart for

the transformed time between failures, Example 7.6.

■ TA B L E  7 . 1 4  

Time Between Failure Data, Example 7.6

Time Between Transformed Value of Time
Failure Failures, y (hr) Between Failures, x = y0.2777

1 286 4.80986

2 948 6.70903

3 536 5.72650

4 124 3.81367

5 816 6.43541

6 729 6.23705

7 4 1.46958

8 143 3.96768

9 431 5.39007

10 8 1.78151

11 2,837 9.09619

12 596 5.89774

13 81 3.38833

14 227 4.51095

15 603 5.91690

16 492 5.59189

17 1,199 7.16124

18 1,214 7.18601

19 2,831 9.09083

20 96 3.55203
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7.4 Choice Between Attributes and Variables Control Charts 335

The previous example illustrated the use of the individuals control chart with time-

between-events data. In many cases, the CUSUM and EWMA control charts in Chapter 4

would be better alternatives, because they are more effective in detecting small shifts in

the mean.

Kittlitz (1999) has also investigated transforming the exponential distribution for

control charting purposes. He notes that a log transformation will stabilize the variance of

the exponential distribution, but produces a rather negatively skewed distribution. Kittlitz

suggests using the transformation x = y 0.25, noting that it is very similar to Nelson’s rec-

ommendation and it is also very easy to compute (simply push the square root key on the

calculator twice!).

7.3.6 Nonmanufacturing Applications

The c chart and u chart are widely used in transactional and service business applications of

statistical process control. In effect, we can treat errors in those environments the same as we

treat defects or nonconformities in the manufacturing world. To give just a few examples,

we can plot errors on engineering drawings, errors on plans and documents, errors on med-

ical records, errors on insurance claims, errors on loan applications and errors in computer

software as c or u charts. An example using u charts to monitor errors in computer software

during product development is given in Gardiner and Montgomery (1987).

7.4 Choice Between Attributes and Variables Control Charts

In many applications, the analyst will have to choose between using a variables control chart,

such as the and R charts, and an attributes control chart, such as the p chart. In some cases,

the choice will be clear-cut. For example, if the quality characteristic is the color of the item,

such as might be the case in carpet or cloth production, then attributes inspection would often

be preferred over an attempt to quantify the quality characteristic “color.” In other cases, the

choice will not be obvious, and the analyst must take several factors into account in choosing

between attributes and variables control charts.

Attributes control charts have the advantage that several quality characteristics can be

considered jointly and the unit classified as nonconforming if it fails to meet the specification

on any one characteristic. On the other hand, if the several quality characteristics are treated

as variables, then each one must be measured, and either a separate and R chart must be

maintained on each or some multivariate control technique that considers all the characteris-

tics must simultaneously be employed. There is an obvious simplicity associated with the

attributes chart in this case. Furthermore, expensive and time-consuming measurements may

sometimes be avoided by attributes inspection.

Variables control charts, in contrast, provide much more useful information about

process performance than do attributes control charts. Specific information about the process

mean and variability is obtained directly. In addition, when points plot out of control on vari-

ables control charts, usually much more information is provided relative to the potential cause
of that out-of-control signal. For a process capability study, variables control charts are almost

always preferable to attributes control charts. The exceptions to this are studies relative to non-

conformities produced by machines or operators in which there are a very limited number of

sources of nonconformities, or studies directly concerned with process yields and fallouts.

Perhaps the most important advantage of the and R control charts is that they often pro-

vide an indication of impending trouble and allow operating personnel to take corrective action

before any defectives are actually produced. Thus, and R charts are leading indicators of trou-

ble, whereas p charts (or c and u charts) will not react unless the process has already changed

x

x

x

x
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336 Chapter 7 ■ Control Charts for Attributes

so that more nonconforming units are being produced. This increased efficiency of the and R
charts is much more pronounced when p is small, but less so when p is close to 0.5.

To illustrate, consider the production process depicted in Figure 7.23. When the process

mean is at m1, few nonconforming units are produced. Suppose the process mean begins to

shift upward. By the time it has reached m2, the and R charts will have reacted to the change

in the mean by generating a strong nonrandom pattern and possibly several out-of-control

points. However, a p chart would not react until the mean had shifted all the way to m3, or

until the actual number of nonconforming units produced had increased. Thus, the and R
charts are more powerful control tools than the p chart.

For a specified level of protection against process shifts, variables control charts usually

require a much smaller sample size than does the corresponding attributes control chart. Thus,

although variables-type inspection is usually more expensive and time-consuming on a per unit

basis than attributes inspection, many fewer units must be examined. This is an important con-

sideration, particularly in cases where inspection is destructive (such as opening a can to mea-

sure the volume of product within or to test chemical properties of the product). The following

example demonstrates the economic advantage of variables control charts.

x

x

x

LSL 1µ 2µ 3µ USL

p chart reactsx, R chart reacts

■ F I G U R E  7 . 2 3 Why the

and R charts can warn of impend-

ing trouble.

x

SOLUTION

The sample size on the chart must be large enough for the

upper three-sigma control limit to be 52. This implies that

or n = 9. If a p chart is used, then we may find the required

sample size to give the same probability of detecting the shift

from equation 7.10—that is,

n = a
L

d  b 
2

p(1 − p)

50 +
3(2)

1n
= 52

x

EXAMPLE 7.7

The nominal value of the mean of a quality characteristic is 50,

and the standard deviation is 2. The process is controlled by an

chart. Specification limits on the process are established at 

± three-sigma, such that the lower specification limit is 44 and

the upper specification limit is 56. When the process is in con-

trol at the nominal level of 50, the fraction of nonconforming

product produced, assuming that the quality characteristic is

x

The Advantage of Variables Control Chart

normally distributed, is 0.0027. Suppose that the process mean

were to shift to 52. The fraction of nonconforming product pro-

duced following the shift is approximately 0.0228. Suppose that

we want the probability of detecting this shift on the first sub-

sequent sample to be 0.50. Find the appropriate sample size for

the chart and compare it to the sample size for a p chart that

has the same probability of detecting the shift.

x

where L = 3 is the width of the control limits, p = 0.0027 is the

in-control fraction nonconforming, and d = 0.0228 − 0.0027 =
0.0201 is the magnitude of the shift. Consequently, we find

or would be required for the p chart. Unless the cost

of measurements inspection is more than seven times as

costly as attributes inspection, the chart is less expensive to

operate.

x

n � 60

n = (3/0.0201)2(0.0027)(0.9973) = 59.98

Generally speaking, variables control charts are preferable to attributes. However, this

logic can be carried to an illogical extreme, as shown in Example 7.8.
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EXAMPLE 7.8

This example illustrates a misapplication of and R charts that

the author encountered in the electronics industry. A company

manufacturing a box-level product inspected a sample of the

production units several times each shift using attributes

x

A Misapplication of and R Chartsx

inspection. The output of each sample inspection was an esti-

mate of the process fraction nonconforming . The company

personnel were well aware that attributes data did not contain

as much information about the process as variables data, and
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■ F I G U R E  7 . 2 4 Fraction nonconforming control chart for Example 7.8.

(continued)
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were exploring ways to get more useful information about

their process. A consultant to the company (not the author)

had suggested that they could achieve this objective by con-

verting their fraction nonconforming data into and R charts.

To do so, each group of five successive values of was

treated as if it were a sample of five variables measurements;

then the average and range were computed as

and

and these values were plotted on and R charts. The consul-

tant claimed that this procedure would provide more informa-

tion than the fraction nonconforming control chart.

This suggestion was incorrect. If the inspection process

actually produces attributes data governed by the binomial

distribution with fixed n, then the sample fraction noncon-

forming contains all the information in the sample (this is an

application of the concept of minimal sufficient statistics) and

forming two new functions of will not provide any addi-

tional information.

To illustrate this idea, consider the control chart for frac-

tion nonconforming in Figure 7.24. This chart was produced

by drawing 100 samples (each of size 200) from a process for

which p = 0.05 and by using these data to compute the con-

trol limits. Then the sample draws were continued until sam-

ple 150, where the population fraction nonconforming was

p̂i

x

R = max(p̂i) − min(p̂i)

x =
1

5a
5

i=1

p̂i

p̂i

x

increased to p = 0.06. At each subsequent 50-sample interval,

the value of p was increased by 0.01. Note that the control

chart reacts to the shift in p at sample number 196. Figures

7.25 and 7.26 present the and R charts obtained by sub-

grouping the sample values of as suggested above. The first

twenty of those subgroups were used to compute the center

line and control limits on the and R charts. Note that the 

chart reacts to the shift in at about subgroup number 40.

(This would correspond to original samples 196–200.) This

result is to be expected, as the chart is really monitoring the

fraction nonconforming p. The R chart in Figure 7.26 is mis-

leading, however. One subgroup within the original set used to

construct the control limits is out of control. (This is a false

alarm, since p = 0.05 for all 100 original samples.)

Furthermore, the out-of-control points beginning at about sub-

group 40 do not contribute any additional useful information

about the process because when shifts from 0.05 to 0.06

(say), the standard deviation of p will automatically increase.

Therefore, in this case there is no added benefit to the user

from and R charts.

This is not to say that the conventional fraction noncon-

forming control chart based on the binomial probability distri-

bution is the right control chart for all fraction nonconforming

data, just as the c chart (based on the Poisson distribution) is

not always the right control chart for defect data. If the vari-

ability in from sample to sample is greater than that which

could plausibly be explained by the binomial model, then the

analyst should determine the correct underlying probability

model and base the control chart on that distribution.
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■ F I G U R E  7 - 2 5 chart for Example 7.8.x

■ F I G U R E  7 . 2 6 R chart for Example 7.8.
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7.5 Guidelines for Implementing Control Charts 339

7.5 Guidelines for Implementing Control Charts

Almost any process will benefit from SPC, including the use of control charts. In this section,

we present some general guidelines helpful in implementing control charts. Specifically, we

deal with the following:

1. Determining which process characteristics to control

2. Determining where the charts should be implemented in the process

3. Choosing the proper type of control charts

4. Taking actions to improve processes as the result of SPC/control chart analysis

5. Selecting data-collection systems and computer software

The guidelines are applicable to both variables and attributes control charts. Remember, con-

trol charts are not only for process surveillance; they should be used as an active, on-line

method for reduction of process variability.

Determining Which Characteristics to Control and Where to Put the Control
Charts. At the start of a control chart program, it is usually difficult to determine which

product or process characteristics should be controlled and at which points in the process to

apply control charts. Some useful guidelines follow.

1. At the beginning, control charts should be applied to any product characteristics or

manufacturing operations believed to be important. The charts will provide immediate

feedback as to whether they are actually needed.

2. The control charts found to be unnecessary should be removed, and others that engi-

neering and operator judgment indicates may be required should be added. More con-

trol charts will usually be employed until the process has stabilized.

3. Information on the number and types of control charts on the process should be kept

current. It is best to keep separate records on the variables and attributes charts. In gen-

eral, after the control charts are first installed, the number of control charts tends to

increase rather steadily. After that, the number will usually decrease. When the process

stabilizes, we typically find that it has the same number of charts from one year to the

next; however, they are not necessarily the same charts.

4. If control charts are being used effectively and if new knowledge is being gained about

the key process variables, we should find that the number of and R charts increases

and the number of attributes control charts decreases.

5. At the beginning of a control chart program there will usually be more attributes

control charts, which are applied to semifinished or finished units near the end of the

manufacturing process. As we learn more about the process, these charts will be

replaced with and R charts applied earlier in the process to the critical parameters

and operations that result in nonconformities in the finished product. Generally, the
earlier that process control can be established, the better. In a complex assembly

process, this may imply that process controls need to be implemented at the vendor

or supplier level.

6. Control charts are an on-line, process-monitoring procedure. They should be imple-

mented and maintained as close to the work center as possible, so that feedback will be

rapid. Furthermore, the process operators and process engineers should have direct

responsibility for collecting the process data, maintaining the charts, and interpreting the

results. The operators and engineers have the detailed knowledge of the process required

to correct process upsets and use the control charts to improve process performance.

x

x

c07ControlChartsforAttributes.qxd  3/28/12  3:27 PM  Page 339



340 Chapter 7 ■ Control Charts for Attributes

Microcomputers can speed up the feedback and should be an integral part of any mod-

ern, on-line, process-control procedure.

7. The out-of-control-action plan (OCAP) is a vital part of the control chart. Operating and

engineering personnel should strive to keep OCAPs up to date and valid.

Choosing the Proper Type of Control Chart.

A. and R (or and s) charts. Consider using variables control charts in these situations:

1. A new process is coming on stream, or a new product is being manufactured by an

existing process.

2. The process has been in operation for some time, but it is chronically in trouble or

unable to hold the specified tolerances.

3. The process is in trouble, and the control chart can be useful for diagnostic purposes

(troubleshooting).

4. Destructive testing (or other expensive testing procedures) is required.

5. It is desirable to reduce acceptance-sampling or other downstream testing to a min-

imum when the process can be operated in control.

6. Attributes control charts have been used, but the process is either out of control or in

control but the yield is unacceptable.

7. There are very tight specifications, overlapping assembly tolerances, or other diffi-

cult manufacturing problems.

8. The operator must decide whether or not to adjust the process, or when a setup must

be evaluated.

9. A change in product specifications is desired.

10. Process stability and capability must be continually demonstrated, such as in regu-

lated industries.

B. Attributes Charts ( p charts, c charts, and u charts). Consider using attributes control

charts in these situations:

1. Operators control the assignable causes, and it is necessary to reduce process fallout.

2. The process is a complex assembly operation, and product quality is measured in

terms of the occurrence of nonconformities, successful or unsuccessful product

function, and so forth. (Examples include computers, office automation equipment,

automobiles, and the major subsystems of these products.)

3. Process control is necessary, but measurement data cannot be obtained.

4. A historical summary of process performance is necessary. Attributes control charts,

such as p charts, c charts, and u charts, are very effective for summarizing informa-

tion about the process for management review.

5. Remember that attributes charts are generally inferior to charts for variables. Always

use and R or and s charts whenever possible.

C. Control Charts for Individuals. Consider using the control chart for individuals in con-

junction with a moving-range chart in these situations:

1. It is inconvenient or impossible to obtain more than one measurement per sample, or

repeat measurements will only differ by laboratory or analysis error. Examples often

occur in chemical processes.

xx

xx
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2. Automated testing and inspection technology allow measurement of every unit pro-

duced. In these cases, also consider the cumulative sum control chart and the expo-

nentially weighted moving average control chart discussed in Chapter 9.

3. The data become available very slowly, and waiting for a larger sample will be

impractical or make the control procedure too slow to react to problems. This often

happens in nonproduct situations; for example, accounting data may become avail-

able only monthly.

4. Generally, once we are in phase II, individuals charts have poor performance in shift

detection and can be very sensitive to departures from normality. Always use the

EWMA and CUSUM charts of Chapter 9 in phase II instead of individuals charts

whenever possible.

Actions Taken to Improve the Process. Process improvement is the primary

objective of statistical process control. The application of control charts will give infor-

mation on two key aspects of the process: statistical control and capability. Figure 7.27

shows the possible states in which the process may exist with respect to these two issues.

Technically speaking, the capability of a process cannot be adequately assessed until

statistical control has been established, but we will use a less precise definition of capa-

bility that is just a qualitative assessment of whether or not the level of nonconforming

units produced is low enough to warrant no immediate additional effort to further improve

the process.

Figure 7.27 gives the answers to two questions: “Is the process in control?” and “Is the

process capable?” (in the sense of the previous paragraph). Each of the four cells in the fig-

ure contains some recommended courses of action that depend on the answers to these two

questions. The box in the upper-left corner is the ideal state: The process is in statistical con-

trol and exhibits adequate capability for present business objectives. In this case, SPC meth-

ods are valuable for process monitoring and for warning against the occurrence of any new

assignable causes that could cause slippage in performance. The upper-right corner implies

that the process exhibits statistical control but has poor capability. Perhaps the PCR is lower

than the value required by the customer, or there is sufficient variability remaining to result

in excessive scrap or rework. In this case, SPC methods may be useful for process diagno-

sis and improvement, primarily through the recognition of patterns on the control chart, but

the control charts will not produce very many out-of-control signals. It will usually be nec-

essary to intervene actively in the process to improve it. Experimental design methods are

helpful in this regard [see Montgomery (2009)]. Usually, it is also helpful to reconsider the

SPC

SPC

YesIS
THE
PROCESS
IN
CONTROL?

No

SPC

Yes No
IS THE PROCESS CAPABLE?

SPC

Experimental design
Investigate specifications
Change process

Experimental design
Investigate specifications
Change process

■ F I G U R E  7 . 2 7 Actions taken to improve a process.
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specifications: They may have been set at levels tighter than necessary to achieve function or

performance from the part. As a last resort, we may have to consider changing the process—that

is, investigating or developing new technology that has less variability with respect to this qual-

ity characteristic than the existing process.

The lower two boxes in Figure 7.27 deal with the case of an out-of-control process. The

lower-right corner presents the case of a process that is out of control and not capable.

(Remember our nontechnical use of the term “capability.”) The actions recommended here 

are identical to those for the box in the upper-right corner, except that SPC would be expected

to yield fairly rapid results now, because the control charts should be identifying the presence

of assignable causes. The other methods of attack will warrant consideration and use in many

cases, however. Finally, the lower-left corner treats the case of a process that exhibits lack of

statistical control but does not produce a meaningful number of defectives because the spec-

ifications are very wide. SPC methods should still be used to establish control and reduce

variability in this case, for the following reasons:

1. Specifications can change without notice.

2. The customer may require both control and capability.

3. The fact that the process experiences assignable causes implies that unknown forces are

at work; these unknown forces could result in poor capability in the near future.

Selection of Data-Collection Systems and Computer Software. The past

few years have produced an explosion of quality control software and electronic data-

collection devices. Some SPC consultants have historically recommended against using

the computer, noting that it is unnecessary, since most applications of SPC in Japan

emphasized the manual use of control charts. If the Japanese were successful in the 1960s

and 1970s using manual control charting methods, then does the computer truly have a

useful role in SPC?

The answer to this question is yes, for several reasons:

1. Although it can be helpful to begin with manual methods of control charting at the

start of an SPC implementation, it is necessary to move successful applications to the

computer very soon. The computer is a great productivity improvement device. We

don’t drive cars with the passenger safety systems of the 1960s, and we don’t fly air-

planes with 1960s avionics technology. We shouldn’t use 1960s technology with con-

trol charts either.

2. The computer will make it possible for the SPC data to become part of the company-

wide enterprise databases, and in that form the data will be useful (and hence more

likely to be used) to everyone.

3. A computer-based SPC system can provide more information than any manual system.

It permits the user to monitor many quality characteristics and to provide automatic sig-

naling of assignable causes.

What type of software should be used? That is a difficult question to answer, because all

applications have unique requirements and the capability of the software is constantly chang-

ing. However, several features are necessary for successful results:

1. The software should be capable of stand-alone operation on a personal computer or on

a multiterminal local area network. SPC packages that are exclusively tied to a large

mainframe system may not be very useful because they often cannot produce control

charts and other routine reports in a timely manner.
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2. The system must be user friendly. If operating personnel are to use the system, it must

have limited options, be easy to use, provide adequate error correction opportunities,

and contain many on-line help features. It should ideally be possible to tailor or cus-

tomize the system for each application, although this installation activity may have to

be carried out by engineering/technical personnel.

3. The system should provide display of control charts for at least the last 25 samples.

Ideally, the length of record displayed should be controlled by the user. Printed output

should be immediately available on either a line printer or a plotter.

4. File storage should be sufficient to accommodate a reasonable amount of process

history. Editing and updating of files should be straightforward. Provisions to transfer

data to other storage media or to transfer the data to a master manufacturing data-

base are critical.

5. The system should be able to handle multiple files simultaneously. Only rarely does a

process have only one quality characteristic that needs to be examined.

6. The user should be able to calculate control limits from any subset of the data on the

file. The user should have the capability to input center lines and control limits

directly.

7. The system should be able to accept a variety of inputs, including manual data entry,

input from an electronic data-capture instrument, or input from another computer or

instrument controller. It is important to have the capability for real-time process moni-

toring, or to be able to transfer data from a real-time data acquisition system.

8. The system should support other statistical applications, including as a minimum his-

tograms and computation of process capability indices.

9. Service and support from the software supplier after purchase are always important 

factors in deciding which software package to use.

The purchase price of commercially available software varies widely. Obviously, the total

cost of software is very different from the purchase price. In many cases, a $500 SPC

package is really a $10,000 package when we take into account the total costs of making

the package work correctly in the intended application. It is also relatively easy to estab-

lish control charts with most of the popular spreadsheet software packages. However, it

may be difficult to integrate those spreadsheet control charts into the overall manufactur-

ing database or other business systems.

Important Terms and Concepts

Attribute data 

Average run length for attribute control charts

Cause-and-effect diagram 

Choice between attributes and variables data

Control chart for defects or nonconformities per 

unit or u chart 

Control chart for fraction nonconforming or p chart

Control chart for nonconformities or c chart 

Control chart for number nonconforming or np chart 

Defect 

Defective

Demerit systems for attribute data 

Design of attributes control charts

Fraction defective

Fraction nonconforming 

Nonconformity 

Operating characteristic curve for the c and u charts

Operating characteristic curve for the p chart

Pareto chart

Standardized control charts 

Time between occurrence control charts 

Variable sample size for attributes control chart
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Exercises

7.1. A financial services company mon-

itors loan applications. Every day

50 applications are assessed for the

accuracy of the information on the

form. Results for 20 days are

, where Di is the number

of loans on the ith day that are

determined to have at least one

error. What are the center line and

control limits on the fraction non-

conforming control chart?

7.2. Do points that plot below the lower control limit on

a fraction nonconforming control chart (assuming

that the LCL > 0) always mean that there has been 

an improvement in process quality? Discuss your

answer in the context of a specific situation.

7.3. Table 7E.1 Contains data on examination of med-

ical insurance claims. Every day 50 claims were

examined.

(a) Set up the fraction nonconforming control chart

for this process. Plot the preliminary data in

Table 7E.1 on the chart. Is the process in statisti-

cal control?

(b) Assume that assignable causes can be found for

any out-of-control points on this chart. What

center line and control limits should be used for

process monitoring in the next period?

7.4. The fraction nonconforming control chart in

Exercise 7.3 has an LCL of zero. Assume that the

revised control chart in part (b) of that exercise has a

reliable estimate of the process fraction nonconform-

ing.  What sample size should be used if you want to

ensure that the LCL > 0?

a
20

i=1

Di = 46

The Student Resource

Manual presents

comprehensive anno-

tated solutions to the

odd-numbered exer-

cises included in the

Answers to Selected

Exercises section in

the back of this book.

■ TA B L E  7 E . 1

Medical Insurance Claim Data for Exercise 7.3

Number Number 
Day Nonconforming Day Nonconforming

1 0 11 6

2 3 12 4

3 4 13 8

4 6 14 0

5 5 15 7

6 2 16 20

7 8 17 6

8 9 18 1

9 4 19 5

10 2 20 7 

■ TA B L E  7 E . 2

Loan Application Data for Exercise 7.5

Number of Number Number of Number 
Day Applications Late Day Applications Late

1 200 3 11 219 0

2 250 4 12 238 10

3 240 2 13 250 4

4 300 5 14 302 6

5 200 2 15 219 20

6 250 4 16 246 3

7 246 3 17 251 6

8 258 5 18 273 7

9 275 2 19 245 3

10 274 1 20 260 1 

7.5. The commercial loan operation of a financial institu-

tion has a standard for processing new loan applica-

tions in 24 hours. Table 7E.2 shows the number of

applications processed each day for the last 20 days

and the number of applications that required more

than 24 hours to complete.

(a) Set up the fraction nonconforming control chart

for this process. Use the variable-width control

limit approach. Plot the preliminary data in

Table 7E.2 on the chart. Is the process in statistical

control?

(b) Assume that assignable causes can be found for

any out-of-control points on this chart. What

center line should be used for process monitor-

ing in the next period, and how should the con-

trol limits be calculated?

7.6. Reconsider the loan application data in Table 7E.2.

Set up the fraction nonconforming control chart for

this process. Use the average sample size control limit

approach. Plot the preliminary data in Table 7E.2 on

the chart. Is the process in statistical control?

Compare this control chart to the one based on 

variable-width control limits in Exercise 7.5.

7.7. Reconsider the loan application data in Table 7E.2.

Set up the fraction nonconforming control chart 

for this process. Use the standardized control chart

approach. Plot the preliminary data in Table 7E.2 

on the chart. Is the process in statistical control?

Compare this control chart to the one based on 

variable-width control limits in Exercise 7.5.

7.8. Reconsider the insurance claim data in Table 7E.1. Set

up an np control chart for this data and plot the data

from Table 7E.1 on this chart. Compare this to the

fraction nonconforming control chart in Exercise 7.3.
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■ TA B L E  7 E . 3

Data for Exercise 7.9

Number of Number of
Sample Nonconforming Sample Nonconforming
Number Assemblies Number Assemblies

1 7 11 6

2 4 12 15

3 1 13 0

4 3 14 9

5 6 15 5

6 8 16 1

7 10 17 4

8 5 18 5

9 2 19 7

10 7 20 12

■ TA B L E  7 E . 4

Number of Nonconforming Switches for Exercise 7.10

Number of Number of
Sample Nonconforming Sample Nonconforming
Number Switches Number Switches

1 8 11 6

2 1 12 0

3 3 13 4

4 0 14 0

5 2 15 3

6 4 16 1

7 0 17 15

8 1 18 2

9 10 19 3

10 6 20 0

■ TA B L E  7 E . 5

Personal Computer Inspecting Results for Exercise 7.11

Units Nonconforming Fraction
Day Inspected Units Nonconforming

1 80 4 0.050

2 110 7 0.064

3 90 5 0.056

4 75 8 0.107

5 130 6 0.046

6 120 6 0.050

7 70 4 0.057

8 125 5 0.040

9 105 8 0.076

10 95 7 0.074

7.12. A process that produces titanium forgings for auto-

mobile turbocharger wheels is to be controlled

through use of a fraction nonconforming chart.

Initially, one sample of size 150 is taken each day

for 20 days, and the results shown in Table 7E.6

are observed.

(a) Establish a control chart to monitor future pro-

duction.

(b) What is the smallest sample size that could be

used for this process and still give a positive

lower control limit on the chart?

7.13. A process produces rubber belts in lots of size 2,500.

Inspection records on the last 20 lots reveal the data

in Table 7E.7.

(a) Compute trial control limits for a fraction non-

conforming control chart.

(b) If you wanted to set up a control chart for con-

trolling future production, how would you use

these data to obtain the center line and control

limits for the chart?

■ TA B L E  7 E . 6

Nonconforming Unit Data for Exercise 7.12

Nonconforming Nonconforming
Day Units Day Units

1 3 11 2

2 2 12 4

3 4 13 1

4 2 14 3

5 5 15 6

6 2 16 0

7 1 17 1

8 2 18 2

9 0 19 3

10 5 20 2

7.9. The data in Table 7E.3 give the number of noncon-

forming bearing and seal assemblies in samples of

size 100. Construct a fraction nonconforming control

chart for these data. If any points plot out of control,

assume that assignable causes can be found and

determine the revised control limits.

7.10. The number of nonconforming switches in samples

of size 150 are shown in Table 7E.4. Construct a

fraction nonconforming control chart for these data.

Does the process appear to be in control? If not,

assume that assignable causes can be found for all

points outside the control limits and calculate the

revised control limits.

7.11. The data in Table 7E.5 represent the results of

inspecting all units of a personal computer produced

for the past ten days. Does the process appear to be

in control?
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producing these diodes by taking samples of size 64

from each lot. If the nominal value of the fraction

nonconforming is p = 0.10, determine the parameters

of the appropriate control chart. To what level must

the fraction nonconforming increase to make the 

b-risk equal to 0.50? What is the minimum sample

size that would give a positive lower control limit for

this chart?

7.18. A control chart for the number of nonconforming

piston rings is maintained on a forging process with

np = 16.0. A sample of size 100 is taken each day and

analyzed.

(a) What is the probability that a shift in the process

average to np = 20.0 will be detected on the first

day following the shift? What is the probability

that the shift will be detected by at least the end

of the third day?

(b) Find the smallest sample size that will give a

positive lower control limit.

7.19. A control chart for the fraction nonconforming is to

be established using a center line of p = 0.10. What

sample size is required if we wish to detect a shift in

the process fraction nonconforming to 0.20 with

probability 0.50?

7.20. A process is controlled with a fraction nonconform-

ing control chart with three-sigma limits, n = 100,

UCL = 0.161, center line = 0.080, and LCL = 0.

(a) Find the equivalent control chart for the number

nonconforming.

(b) Use the Poisson approximation to the binomial

to find the probability of a type I error.

(c) Use the correct approximation to find the proba-

bility of a type II error if the process fraction

nonconforming shifts to 0.2.

(d) What is the probability of detecting the shift in

part (c) by at most the fourth sample after the

shift?

7.21. A process is being controlled with a fraction non-

conforming control chart. The process average has

been shown to be 0.07. Three-sigma control limits

are used, and the procedure calls for taking daily

samples of 400 items.

(a) Calculate the upper and lower control limits.

(b) If the process average should suddenly shift to

0.10, what is the probability that the shift would

be detected on the first subsequent sample?

(c) What is the probability that the shift in part (b)

would be detected on the first or second sample

taken after the shift?

7.22. In designing a fraction nonconforming chart with

center line at p = 0.20 and three-sigma control limits,

what is the sample size required to yield a positive

lower control limit? What is the value of n necessary

■ TA B L E  7 E . 7

Inspection Data for Exercise 7.13

Number of Number of 
Lot Nonconforming Lot Nonconforming

Number Belts Number Belts

1 230 11 456

2 435 12 394

3 221 13 285

4 346 14 331

5 230 15 198

6 327 16 414

7 285 17 131

8 311 18 269

9 342 19 221

10 308 20 407

7.14. Based on the data in Table 7E.8 if an np chart is to 

be established, what would you recommend as the 

center line and control limits? Assume that n = 500.

7.15. A control chart indicates that the current process

fraction nonconforming is 0.02. If 50 items are

inspected each day, what is the probability of detect-

ing a shift in the fraction nonconforming to 0.04 on

the first day after the shift? By the end of the third

day following the shift?

7.16. A company purchases a small metal bracket in con-

tainers of 5,000 each. Ten containers have arrived at

the unloading facility, and 250 brackets are selected

at random from each container. The fraction noncon-

forming in each sample are 0, 0, 0, 0.004, 0.008,

0.020, 0.004, 0, 0, and 0.008. Do the data from this

shipment indicate statistical control?

7.17. Diodes used on printed circuit boards are produced

in lots of size 1,000. We wish to control the process

■ TA B L E  7 E . 8

Data for Exercise 7.14

Number of 
Day Nonconforming Units

1 3

2 4

3 3

4 2

5 6

6 12

7 5

8 1

9 2

10 2
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(a) If three-sigma limits are used, find the sample

size for the control chart.

(b) Use the Poisson approximation to the binomial

to find the probability of type I error.

(c) Use the Poisson approximation to the binomial

to find the probability of type II error if the

process fraction defective is actually p = 0.20.

7.27. Consider the control chart designed in Exercise 7.25.

Find the average run length to detect a shift to a frac-

tion nonconforming of 0.15.

7.28. Consider the control chart in Exercise 7.26. Find the

average run length if the process fraction noncon-

forming shifts to 0.20.

7.29. A maintenance group improves the effectiveness 

of its repair work by monitoring the number of main-

tenance requests that require a second call to com-

plete the repair. Twenty weeks of data are shown in

Table 7E.10.

(a) Find trial control limits for this process.

(b) Design a control chart for controlling future 

production.

7.30. Analyze the data in Exercise 7.29 using an average

sample size.

7.31. Construct a standardized control chart for the data in

Exercise 7.29.

7.32. Continuation of Exercise 7.29. Note that in Exercise

7.29 there are only four different sample sizes; n = 100,

150, 200, and 250. Prepare a control chart that has a set

of limits for each possible sample size and show how

it could be used as an alternative to the variable-width

control limit method used in Exercise 7.29. How easy

would this method be to use in practice?

7.33. A process has an in-control fraction nonconform-

ing of p = 0.02. What sample size would be

required for the fraction nonconforming control

■ TA B L E  7 E . 9

Nonconforming Unit Data for Exercise 7.23

Sample Sample Number
Number Size Nonconforming

1 100 10

2 100 15

3 100 31

4 100 18

5 100 24

6 100 12

7 100 23

8 100 15

9 100 8

10 100 8

to give a probability of 0.50 of detecting a shift in the

process to 0.26?

7.23. A control chart is used to control the fraction non-

conforming for a plastic part manufactured in an

injection molding process. Ten subgroups yield the

data in Table 7E.9.

(a) Set up a control chart for the number noncon-

forming in samples of n = 100.

(b) For the chart established in part (a), what is the

probability of detecting a shift in the process

fraction nonconforming to 0.30 on the first 

sample after the shift has occurred?

7.24. A control chart for fraction nonconforming indicates

that the current process average is 0.03. The sample

size is constant at 200 units.

(a) Find the three-sigma control limits for the con-

trol chart.

(b) What is the probability that a shift in the process

average to 0.08 will be detected on the first sub-

sequent sample? What is the probability that this

shift will be detected at least by the fourth sam-

ple following the shift?

7.25. (a) A control chart for the number nonconforming is

to be established, based on samples of size 400.

To start the control chart, 30 samples were

selected and the number nonconforming in each

sample determined, yielding .

What are the parameters of the np chart?

(b) Suppose the process average fraction noncon-

forming shifted to 0.15. What is the probability

that the shift would be detected on the first sub-

sequent sample?

7.26. A fraction nonconforming control chart with center

line 0.10, UCL = 0.19, and LCL = 0.01 is used to

control a process.

Σ 30

i=1Di = 1,200

■ TA B L E  7 E . 1 0

Data for Exercise 7.29

Second Second
Total Visit Total Visit

Week Requests Required Week Requests Required

1 200 6 11 100 1

2 250 8 12 100 0

3 250 9 13 100 1

4 250 7 14 200 4

5 200 3 15 200 5

6 200 4 16 200 3

7 150 2 17 200 10

8 150 1 18 200 4

9 150 0 19 250 7

10 150 2 20 250 6

Exercises 347
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chart if it is desired to have a probability of at least

one nonconforming unit in the sample to be at

least 0.95?

7.34. A process has an in-control fraction nonconforming

of p = 0.01. What sample size would be required for

the fraction nonconforming control chart if it is

desired to have a probability of at least one noncon-

forming unit in the sample to be at least 0.9?

7.35. A process has an in-control fraction nonconforming

of p = 0.01. The sample size is n = 300. What is the

probability of detecting a shift to an out-of-control

fraction nonconforming of p = 0.05 on the first 

sample following the shift?

7.36. A banking center has instituted a process improve-

ment program to reduce and hopefully eliminate

errors in their check processing operations. The cur-

rent error rate is 0.01. The initial objective is to cut

the current error rate in half. What sample size would

be necessary to monitor this process with a fraction

nonconforming control chart that has a non-zero

LCL? If the error rate is reduced to the desired initial

target of 0.005, what is the probability of a sample

nonconforming from this improved process falling

below the LCL?

7.37. A fraction nonconforming control chart has center

line 0.01, UCL = 0.0399, LCL = 0, and n = 100. If

three-sigma limits are used, find the smallest sam-

ple size that would yield a positive lower control

limit.

7.38. Why is the np chart not appropriate with variable

sample size?

7.39. A fraction nonconforming control chart with n = 400

has the following parameters:

(a) Find the width of the control limits in standard

deviation units.

(b) What would be the corresponding parameters for

an equivalent control chart based on the number

nonconforming?

(c) What is the probability that a shift in the

process fraction nonconforming to 0.0300 will

be detected on the first sample following the

shift?

7.40. A fraction nonconforming control chart with n = 400

has the following parameters:

(a) Find the width of the control limits in standard

deviation units.

 LCL = 0.0038

 Center line = 0.0500

 UCL = 0.0962

 LCL = 0.0191

 Center line = 0.0500

 UCL = 0.0809

(b) Suppose the process fraction nonconforming

shifts to 0.15. What is the probability of detect-

ing the shift on the first subsequent sample?

7.41. A fraction nonconforming control chart is to be

established with a center line of 0.01 and two-sigma

control limits.

(a) How large should the sample size be if the lower

control limit is to be nonzero?

(b) How large should the sample size be if we wish

the probability of detecting a shift to 0.04 to be

0.50?

7.42. The following fraction nonconforming control chart

with n = 100 is used to control a process:

(a) Use the Poisson approximation to the binomial

to find the probability of a type I error.

(b) Use the Poisson approximation to the binomial

to find the probability of a type II error, if the

true process fraction nonconforming is 0.0600.

(c) Draw the OC curve for this control chart.

(d) Find the ARL when the process is in control and

the ARL when the process fraction nonconform-

ing is 0.0600.

7.43. A process that produces bearing housings is con-

trolled with a fraction nonconforming control chart,

using sample size n = 100 and a center line 

(a) Find the three-sigma limits for this chart.

(b) Analyze the ten new samples (n = 100) shown in

Table 7E.11 for statistical control. What conclu-

sions can you draw about the process now?

7.44. Consider an np chart with k-sigma control limits.

Derive a general formula for determining the mini-

mum sample size to ensure that the chart has a posi-

tive lower control limit.

7.45. Consider the fraction nonconforming control chart in

Exercise 7.12. Find the equivalent np chart.

7.46. Consider the fraction nonconforming control chart in

Exercise 7.13. Find the equivalent np chart.

7.47. Construct a standardized control chart for the data in

Exercise 7.11.

p = 0.02.

 LCL = 0.0050

 Center line = 0.0400

 UCL = 0.0750

■ TA B L E  7 E . 1 1

Data for Exercise 7.43, part (b)

Sample Number Sample Number
Number Nonconforming Number Nonconforming

1 5 6 1

2 2 7 2

3 3 8 6

4 8 9 3

5 4 10 4
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■ TA B L E  7 E . 1 2

Data for Exercise 7.48

Plate Number of Plate Number of
Number Nonconformities Number Nonconformities

1 1 14 0

2 0 15 2

3 4 16 1

4 3 17 3

5 1 18 5

6 2 19 4

7 5 20 6

8 0 21 3

9 2 22 1

10 1 23 0

11 1 24 2

12 0 25 4

13 8

■ TA B L E  7 E . 1 3

Data on Imperfections in Rolls of Paper

Total Total
Number Number of Number Number of
of Rolls Imper- of Rolls Imper-

Day Produced fections Day Produced fections

1 18 12 11 18 18

2 18 14 12 18 14

3 24 20 13 18 9

4 22 18 14 20 10

5 22 15 15 20 14

6 22 12 16 20 13

7 20 11 17 24 16

8 20 15 18 24 18

9 20 12 19 22 20

10 20 10 20 21 17

■ TA B L E  7 E . 1 4

Data on Nonconformities in Tape Decks

Deck Number of Deck Number of
Number Nonconformities Number Nonconformities

2412 0 2421 1

2413 1 2422 0

2414 1 2423 3

2415 0 2424 2

2416 2 2425 5

2417 1 2426 1

2418 1 2427 2

2419 3 2428 1

2420 2 2429 1

Exercises 349

7.48. Surface defects have been counted on 25 rectangular

steel plates, and the data are shown in Table 7E.12.

Set up a control chart for nonconformities using

these data. Does the process producing the plates

appear to be in statistical control?

7.49. A paper mill uses a control chart to monitor the

imperfection in finished rolls of paper. Production

output is inspected for 20 days, and the resulting data

are shown in Table 7E.13. Use these data to set up a

control chart for nonconformities per roll of paper.

Does the process appear to be in statistical control?

What center line and control limits would you rec-

ommend for controlling current production?

7.50. Continuation of Exercise 7.49. Consider the paper-

making process in Exercise 7.49. Set up a u chart

based on an average sample size to control this

process.

7.51. Continuation of Exercise 7.49. Consider the paper-

making process in Exercise 7.49. Set up a standard-

ized u chart for this process.

7.52. The number of nonconformities found on final

inspection of a tape deck is shown in Table 7E.14.

Can you conclude that the process is in statistical

control? What center line and control limits would

you recommend for controlling future production?

7.53. The data in Table 7E.15 represent the number of non-

conformities per 1,000 meters in telephone cable.

From analysis of these data, would you conclude that

the process is in statistical control? What control pro-

cedure would you recommend for future production?

7.54. Consider the data in Exercise 7.52. Suppose we wish

to define a new inspection unit of four tape decks.

(a) What are the center line and control limits for a

control chart for monitoring future production

based on the total number of defects in the new

inspection unit?

■ TA B L E  7 E . 1 5

Telephone Cable Data for Exercise 7.53

Sample Number of Sample Number of
Number Nonconformities Number Nonconformities

1 1 12 6

2 1 13 9

3 3 14 11

4 7 15 15

5 8 16 8

6 10 17 3

7 5 18 6

8 13 19 7

9 0 20 4

10 19 21 9

11 24 22 20
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■ TA B L E  7 E . 1 8

Audit Sampling Data for Exercise 7.64

Number of Number of
Account Posting Errors Account Posting Errors

1 0 14 0

2 2 15 2

3 1 16 1

4 4 17 4

5 0 18 6

6 1 19 1

7 3 20 1

8 2 21 3

9 0 22 4

10 1 23 1

11 0 24 0

12 0 25 1

13 2

(b) What are the center line and control limits for a

control chart for nonconformities per unit used

to monitor future production?

7.55. Consider the data in Exercise 7.53. Suppose a new

inspection unit is defined as 2,500 m of wire.

(a) What are the center line and control limits for a

control chart for monitoring future production

based on the total number of nonconformities in

the new inspection unit?

(b) What are the center line and control limits for a

control chart for average nonconformities per

unit used to monitor future production?

7.56. An automobile manufacturer wishes to control the

number of nonconformities in a subassembly area

producing manual transmissions. The inspection unit

is defined as four transmissions, and data from 16

samples (each of size 4) are shown in Table 7E.16.

(a) Set up a control chart for nonconformities per

unit.

(b) Do these data come from a controlled process? If

not, assume that assignable causes can be found

for all out-of-control points and calculate the

revised control chart parameters.

(c) Suppose the inspection unit is redefined as eight

transmissions. Design an appropriate control chart

for monitoring future production.

7.57. Find the three-sigma control limits for

(a) a c chart with process average equal to four non-

conformities.

(b) a u chart with c = 4 and n = 4.

7.58. Find 0.900 and 0.100 probability limits for a c chart

when the process average is equal to 16 nonconfor-

mities.

7.59. Find the three-sigma control limits for

(a) a c chart with process average equal to nine non-

conformities.

(b) a u chart with c = 16 and n = 4.

7.60. Find 0.980 and 0.020 probability limits for a control

chart for nonconformities per unit when u = 6.0 and

n = 3.

7.61. Find 0.975 and 0.025 probability limits for a control

chart for nonconformities when c = 7.6.

7.62. A control chart for nonconformities per unit uses

0.95 and 0.05 probability limits. The center line is at

u = 1.4. Determine the control limits if the sample

size is n = 10.

7.63. The number of workmanship nonconformities

observed in the final inspection of disk-drive assem-

blies has been tabulated as shown in Table 7E.17.

Does the process appear to be in control?

7.64. Most corporations use external accounting and audit-

ing firms for performing audits on their financial

records.  In medium to large businesses there may be

a very large number of accounts to audit, so auditors

often use a technique called audit sampling, in which

a random sample of accounts are selected for auditing

and the results used to draw conclusions about the

organization’s accounting practices. Table 7E.18 pre-

sents the results of an audit sampling process, in

which 25 accounts were randomly selected and the

■ TA B L E  7 E . 1 6

Data for Exercise 7.56

Sample Number of Sample Number of
Number Nonconformities Number Nonconformities

1 1 9 2

2 3 10 1

3 2 11 0

4 1 12 2

5 0 13 1

6 2 14 1

7 1 15 2

8 5 16 3

■ TA B L E  7 E . 1 7

Data for Exercise 7.63

Total Total
Number of Number of Number of Number of
Assemblies Imper- Assemblies Imper-

Day Inspected fections Day Inspected fections

1 2 10 6 4 24

2 4 30 7 2 15

3 2 18 8 4 26

4 1 10 9 3 21

5 3 20 10 1 8
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number of posting errors found. Set up a control

chart for nonconformities for this process. Is this

process in statistical control?

7.65. A metropolitan police agency is studying the inci-

dence of drivers operating their vehicles without the

minimum liability insurance required by law. The

data are collected from drivers who have been

stopped by an officer for a traffic law violation and a

traffic summons issued. Data from three shifts over a

ten-day period are shown in Table 7E.19.

(a) Set up a u-chart for these data. Plot the data from

Table E7.19 on the chart. Is the process in statis-

tical control?

(b) Are these data consistent with the hypothesis

that about 10% of drivers operate without proper

liability insurance coverage?

7.66. A control chart for nonconformities is to be con-

structed with c = 2.0, LCL = 0, and UCL such that

the probability of a point plotting outside control 

limits when c = 2.0 is only 0.005.

(a) Find the UCL.

(b) What is the type I error probability if the process

is assumed to be out of control only when two

consecutive points fall outside the control

limits?

7.67. A textile mill wishes to establish a control procedure

on flaws in towels it manufactures. Using an inspec-

tion unit of 50 units, past inspection data show that

100 previous inspection units had 850 total flaws.

What type of control chart is appropriate? Design the

control chart such that it has two-sided probability

control limits of a = 0.06, approximately. Give the

center line and control limits.

7.68. The manufacturer wishes to set up a control chart at

the final inspection station for a gas water heater.

Defects in workmanship and visual quality features

are checked in this inspection. For the past 22 work-

ing days, 176 water heaters were inspected and a

total of 924 nonconformities reported.

(a) What type of control chart would you recom-

mend here, and how would you use it?

(b) Using two water heaters as the inspection unit,

calculate the center line and control limits that

are consistent with the past 22 days of inspec-

tion data.

(c) What is the probability of type I error for the

control chart in part (b)?

7.69. Assembled portable television sets are subjected to a

final inspection for surface defects. A total procedure

is established based on the requirement that if the

average number of nonconformities per unit is 4.0,

the probability of concluding that the process is in

control will be 0.99. There is to be no lower control

limit. What is the appropriate type of control chart

and what is the required upper control limit?

7.70. A control chart is to be established on a process pro-

ducing refrigerators. The inspection unit is one refrig-

erator, and a common chart for nonconformities is 

to be used. As preliminary data, 16 nonconformities

were counted in inspecting 30 refrigerators.

■ TA B L E  7 E . 1 9

Data for Exercise 7.65

Number of Number of Drivers Number of Number of Drivers
Sample Citations Without Insurance Sample Citations Without Insurance

1 40 4 16 50 4

2 35 5 17 55 6

3 36 3 18 67 5

4 57 6 19 43 3

5 21 1 20 58 5

6 35 1 21 31 1

7 47 3 22 27 2

8 43 5 23 36 3

9 55 8 24 87 10

10 78 9 25 56 4

11 61 4 26 49 5

12 32 3 27 54 7

13 56 5 28 68 6

14 43 1 29 27 1

15 28 0 30 49 5
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(a) What are the three-sigma control limits?

(b) What is the a-risk for this control chart?

(c) What is the b-risk if the average number of

defects is actually 2 (i.e., if c = 2.0)?

(d) Find the average run length if the average num-

ber of defects is actually 2.

7.71. Consider the situation described in Exercise 7.70.

(a) Find two-sigma control limits and compare these

with the control limits found in part (a) of

Exercise 7.70.

(b) Find the a-risk for the control chart with two-

sigma control limits and compare with the

results of part (b) of Exercise 7.70.

(c) Find the b-risk for c = 2.0 for the chart with two-

sigma control limits and compare with the results

of part (c) of Exercise 7.70.

(d) Find the ARL if c = 2.0 and compare with the

ARL found in part (d) of Exercise 7.70.

7.72. A control chart for nonconformities is to be estab-

lished in conjunction with final inspection of a radio.

The inspection unit is to be a group of ten radios.

The average number of nonconformities per radio

has, in the past, been 0.5. Find three-sigma control

limits for a c chart based on this size inspection unit.

7.73. A control chart for nonconformities is maintained on

a process producing desk calculators. The inspection

unit is defined as two calculators. The average num-

ber of nonconformities per machine when the

process is in control is estimated to be two.

(a) Find the appropriate three-sigma control limits

for this size inspection unit.

(b) What is the probability of type I error for this

control chart?

7.74. A production line assembles electric clocks. The

average number of nonconformities per clock is esti-

mated to be 0.75. The quality engineer wishes to

establish a c chart for this operation, using an inspec-

tion unit of six clocks. Find the three-sigma limits for

this chart.

7.75. Suppose that we wish to design a control chart for

nonconformities per unit with L-sigma limits. Find

the minimum sample size that would result in a pos-

itive lower control limit for this chart.

7.76. Kittlitz (1999) presents data on homicides in Waco,

Texas, for the years 1980–1989 (data taken from the

Waco Tribune-Herald, December 29, 1989). There

were 29 homicides in 1989. Table 7E.20 gives the

dates of the 1989 homicides and the number of days

between each homicide.

The * refers to the fact that two homicides occurred

on June 16 and were determined to have occurred 

12 hours apart.

(a) Plot the days-between-homicides data on a normal

probability plot. Does the assumption of a normal

distribution seem reasonable for these data?

(b) Transform the data using the 0.2777 root of the

data. Plot the transformed data on a normal prob-

ability plot. Does this plot indicate that the trans-

formation has been successful in making the new

data more closely resemble data from a normal

distribution?

(c) Transform the data using the fourth root (0.25) of

the data. Plot the transformed data on a normal

probability plot. Does this plot indicate that the

transformation has been successful in making the

new data more closely resemble data from a nor-

mal distribution? Is the plot very different from

the one in part (b)?

(d) Construct an individuals control chart using the

transformed data from part (b).

(e) Construct an individuals control chart using the

transformed data from part (c). How similar is it

to the one you constructed in part (d)?

(f) Is the process stable? Provide a practical inter-

pretation of the control chart.

7.77. Suggest at least two nonmanufacturing scenarios in

which attributes control charts could be useful for

process monitoring.

7.78. What practical difficulties could be encountered in

monitoring time-between-events data?

7.79. A paper by R. N. Rodriguez (“Health Care

Applications of Statistical Process Control:

■ TA B L E  7 E . 2 0

Homicide Data from Waco, Texas, for Exercise 7.76

Days Days
Month Date Between Month Date Between

Jan. 20 July 8 2

Feb. 23 34 July 9 1

Feb. 25 2 July 26 17

March 5 8 Sep. 9 45

March 10 5 Sep. 22 13

April 4 25 Sep. 24 2

May 7 33 Oct. 1 7

May 24 17 Oct. 4 3

May 28 4 Oct. 8 4

June 7 10 Oct. 19 11

June 16* 9.25 Nov. 2 14

June 16* 0.50 Nov. 25 23

June 22* 5.25 Dec. 28 33

June 25 3 Dec. 29 1

July 6 11
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Examples Using the SAS® System,” SAS Users
Group International: Proceedings of the 21st
Annual Conference, 1996) illustrated several infor-

mative applications of control charts to the health

care environment. One of these showed how a con-

trol chart was employed to analyze the rate of CAT

scans performed each month at a clinic. The data

used in this example are shown in Table 7E.21.

NSCANB is the number of CAT scans performed

each month and MMSB is the number of members

enrolled in the health care plan each month, in units

of member months. DAYS is the number of days in

each month. The variable NYRSB converts MMSB

to units of thousand members per year, and is com-

puted as follows: NYRSB = MMSB(Days/30)/

12000. NYRSB represents the “area of opportu-

nity.” Construct an appropriate control chart to mon-

itor the rate at which CAT scans are performed at

this clinic.

7.80. A paper by R. N. Rodriguez (“Health Care

Applications of Statistical Process Control:

Examples Using the SAS® System,” SAS Users
Group International: Proceedings of the 21st Annual
Conference, 1996) illustrated several informative

applications of control charts to the health care envi-

ronment. One of these showed how a control chart

was employed to analyze the number of office visits

by health care plan members. The data for clinic E

are shown in Table 7E.22.

The variable NVISITE is the number of visits to

clinic E each month, and MMSE is the number of

members enrolled in the health care plan each month,

in units of member months. DAYS is the number of

days in each month. The variable NYRSE converts

MMSE to units of thousand members per year, and is

computed as follows: NYRSE = MMSE(Days/30)/

12000. NYRSE represents the “area of opportunity.”

The variable PHASE separates the data into two time

periods.

(a) Use the data from Phase 1 to construct a control

chart for monitoring the rate of office visits per-

formed at clinic E. Does this chart exhibit control?

(b) Plot the data from Phase 2 on the chart constructed

in part (a). Is there a difference in the two phases?

(c) Consider only the Phase 2 data. Do these data

exhibit control?

7.81. The data in Table 7E.23 are the number of information

errors found in customer records in a marketing com-

pany database. Five records were sampled each day.

(a) Set up a c chart for the total number of errors. Is

the process in control?

(b) Set up a t chart for the total number of errors,

assuming a geometric distribution with a = 1. Is

the process in control?

(c) Discuss the findings from parts (a) and (b). Is

the Poisson distribution a good model for the

customer error data? Is there evidence of this in

the data?

■ TA B L E  7 E . 2 1

Data for Exercise 7.79

Month NSCANB MMSB Days NYRSB

Jan. 94 50 26,838 31 2.31105

Feb. 94 44 26,903 28 2.09246

March 94 71 26,895 31 2.31596

Apr. 94 53 26,289 30 2.19075

May 94 53 26,149 31 2.25172

Jun. 94 40 26,185 30 2.18208

July 94 41 26,142 31 2.25112

Aug. 94 57 26,092 31 2.24681

Sept. 94 49 25,958 30 2.16317

Oct. 94 63 25,957 31 2.23519

Nov. 94 64 25,920 30 2.16000

Dec. 94 62 25,907 31 2.23088

Jan. 95 67 26,754 31 2.30382

Feb. 95 58 26,696 28 2.07636

March 95 89 26,565 31 2.28754

■ TA B L E  7 E . 2 2

Data for Exercise 7.80

Month Phase NVISITE NYRSE Days MMSE

Jan. 94 1 1,421 0.66099 31 7,676

Feb. 94 1 1,303 0.59718 28 7,678

Mar. 94 1 1,569 0.66219 31 7,690

Apr. 94 1 1,576 0.64608 30 7,753

May 94 1 1,567 0.66779 31 7,755

Jun. 94 1 1,450 0.65575 30 7,869

July 94 1 1,532 0.68105 31 7,909

Aug. 94 1 1,694 0.68820 31 7,992

Sep. 94 2 1,721 0.66717 30 8,006

Oct. 94 2 1,762 0.69612 31 8,084

Nov. 94 2 1,853 0.68233 30 8,188

Dec. 94 2 1,770 0.70809 31 8,223

Jan. 95 2 2,024 0.78215 31 9,083

Feb. 95 2 1,975 0.70684 28 9,088

Mar. 95 2 2,097 0.78947 31 9,168
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7.82. Kaminsky et al. (1992) present data on the number of

orders per truck at a distribution center. Some of

these data are shown in Table 7E.24.

(a) Set up a c chart for the number of orders per

truck. Is the process in control?

(b) Set up a t chart for the number of orders per

truck, assuming a geometric distribution with 

a = 1. Is the process in control?

(c) Discuss the findings from parts (a) and (b). Is the

Poisson distribution a good model for these data?

Is there evidence of this in the data?

■ TA B L E  7 E . 2 3  

Customer Error Data for Exercise 7.81

Day Record 1 Record 2 Record 3 Record 4 Record 5

1 8 7 1 11 17

2 11 1 11 2 9

3 1 1 8 2 5

4 3 2 5 1 4

5 3 2 13 6 5

6 6 3 3 3 1

7 8 8 2 1 5

8 4 10 2 6 4

9 1 6 1 3 2

10 15 1 3 2 8

11 1 7 13 5 1

12 6 7 9 3 1

13 7 6 3 3 1

14 2 9 3 8 7

15 6 14 7 1 8

16 2 9 4 2 1

17 11 1 1 3 2

18 5 5 19 1 3

19 6 15 5 6 6

20 2 7 9 2 8

21 7 5 6 14 10

22 4 3 8 1 2

23 4 1 4 20 5

24 15 2 7 10 17

25 2 15 3 11 2

■ TA B L E  7 E . 2 4  

Number of Orders per Truck for Exercise 7.82

No. of No. of No. of No. of 
Truck Orders Truck Orders Truck Orders Truck Orders

1 22 9 5 17 6 25 6

2 58 10 26 18 35 26 13

3 7 11 12 19 6 27 9

4 39 12 26 20 23 28 21

5 7 13 10 21 10 29 8

6 33 14 30 22 17 30 12

7 8 15 5 23 7 31 4

8 23 16 24 24 10 32 18
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In Chapter 6, we formally introduced the concept of process capability, or how the inherent

variability in a process compares with the specifications or requirements for the product.

Process capability analysis is an important tool in the DMAIC process, with application in

both the Analyze and Improve steps. This chapter provides more extensive discussion of

process capability, including several ways to study or analyze the capability of a process. We

believe that the control chart is a simple and effective process capability analysis technique.

We also extend the presentation of process capability ratios that we began in Chapter 6, show-

ing how to interpret these ratios and discussing their potential dangers. The chapter also con-

tains information on evaluating measurement system performance, illustrating graphical

methods, as well as techniques based on the analysis of variance. Measurement systems analysis

is used extensively in DMAIC, principally during the Measure step. We also discuss setting

specifications on individual discrete parts or components and estimating the natural tolerance

limits of a process.

After careful study of this chapter, you should be able to do the following:

1. Investigate and analyze process capability using control charts, histograms, and

probability plots

2. Understand the difference between process capability and process potential

3. Calculate and properly interpret process capability ratios

4. Understand the role of the normal distribution in interpreting most process capa-

bility ratios

5. Calculate confidence intervals on process capability ratios

6. Conduct and analyze a measurement systems capability (or gauge R & R)

experiment

7. Estimate the components of variability in a measurement system

8. Set specifications on components in a system involving interaction components

to ensure that overall system requirements are met

9. Estimate the natural limits of a process from a sample of data from that

process

8.1 Introduction

Statistical techniques can be helpful throughout the product cycle, including development

activities prior to manufacturing, in quantifying process variability, in analyzing this variabil-

ity relative to product requirements or specifications, and in assisting development and man-

ufacturing in eliminating or greatly reducing this variability. This general activity is called

process capability analysis.
Process capability refers to the uniformity of the process. Obviously, the variability of

critical-to-quality characteristics in the process is a measure of the uniformity of output. There

are two ways to think of this variability:

1. The natural or inherent variability in a critical-to-quality characteristic at a specified

time—that is, “instantaneous” variability

2. The variability in a critical-to-quality characteristic over time

We present methods for investigating and assessing both aspects of process capability.

Determining process capability is an important part of the DMAIC process. It is used pri-

marily in the Analyze step, but it also can be useful in other steps, such as Improve.
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It is customary to take the Six Sigma spread in the distribution of the product quality

characteristic as a measure of process capability. Figure 8.1 shows a process for which 

the quality characteristic has a normal distribution with mean m and standard deviation s.

The upper and lower natural tolerance limits of the process fall at m + 3s and m − 3s,

respectively—that is,

For a normal distribution, the natural tolerance limits include 99.73% of the variable, or

put another way, only 0.27% of the process output will fall outside the natural tolerance limits.

Two points should be remembered:

1. 0.27% outside the natural tolerances sounds small, but this corresponds to 2,700 non-

conforming parts per million.

2. If the distribution of process output is non-normal, then the percentage of output falling

outside m ± 3s may differ considerably from 0.27%.

We define process capability analysis as a formal study to estimate process capability. The

estimate of process capability may be in the form of a probability distribution having a spec-

ified shape, center (mean), and spread (standard deviation). For example, we may determine

that the process output is normally distributed with mean m = 1.0 cm and standard deviation

s = 0.001 cm. In this sense, a process capability analysis may be performed without regard
to specifications on the quality characteristic. Alternatively, we may express process capa-

bility as a percentage outside of specifications. However, specifications are not necessary to

process capability analysis.

A process capability study usually measures functional parameters or critical-to-

quality characteristics on the product, not the process itself. When the analyst can directly

observe the process and can control or monitor the data-collection activity, the study is a true

process capability study, because by controlling the data collection and knowing the time

sequence of the data, inferences can be made about the stability of the process over time.

However, when we have available only sample units of product, perhaps obtained from the

supplier, and there is no direct observation of the process or time history of production, then

the study is more properly called product characterization. In a product characterization

study we can only estimate the distribution of the product quality characteristic or the process

yield (fraction conforming to specifications); we can say nothing about the dynamic behavior

of the process or its state of statistical control. In order to make a reliable estimate of process

capability, the process must be in statistical control. Otherwise, the predictive inference about

process performance can be seriously in error. Data collected at different time periods could

lead to different conclusions.

UNTL

LNTL

= +
= −

μ σ
μ σ

3

3

0.00135 0.00135
0.9973

LNTL UNTL

Process mean

σ
μ

3 σ3

■ F I G U R E  8 . 1 Upper and lower natural tolerance

limits in the normal distribution.
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358 Chapter 8 ■ Process and Measurement System Capability Analysis

Process capability analysis is a vital part of an overall quality-improvement program.

Among the major uses of data from a process capability analysis are the following:

1. Predicting how well the process will hold the tolerances

2. Assisting product developers/designers in selecting or modifying a process

3. Assisting in establishing an interval between sampling for process monitoring

4. Specifying performance requirements for new equipment

5. Selecting between competing suppliers and other aspects of supply chain management

6. Planning the sequence of production processes when there is an interactive effect of

processes on tolerances

7. Reducing the variability in a process

Thus, process capability analysis is a technique that has application in many segments of the

product cycle, including product and process design, supply chain management, production

or manufacturing planning, and manufacturing.

Three primary techniques are used in process capability analysis: histograms or prob-
ability plots, control charts, and designed experiments. We will discuss and illustrate each

of these methods in the next three sections. We will also discuss the process capability ratio

(PCR) introduced in Chapter 6 and some useful variations of this ratio.

8.2 Process Capability Analysis Using a Histogram or a Probability Plot

8.2.1 Using the Histogram

The histogram can be helpful in estimating process capability. Alternatively, a stem-and-leaf

plot may be substituted for the histogram. At least 100 or more observations should be avail-

able for the histogram (or the stem-and-leaf plot) to be moderately stable so that a reasonably

reliable estimate of process capability may be obtained. If the quality engineer has access to

the process and can control the data-collection effort, the following steps should be followed

prior to data collection:

1. Choose the machine or machines to be used. If the results based on one (or a few)

machines are to be extended to a larger population of machines, the machine selected

should be representative of those in the population. Furthermore, if the machine has

multiple workstations or heads, it may be important to collect the data so that head-

to-head variability can be isolated. This may imply that designed experiments should be

used.

2. Select the process operating conditions. Carefully define conditions, such as cutting

speeds, feed rates, and temperatures, for future reference. It may be important to study

the effects of varying these factors on process capability.

3. Select a representative operator. In some studies, it may be important to estimate oper-
ator variability. In these cases, the operators should be selected at random from the pop-

ulation of operators.

4. Carefully monitor the data-collection process, and record the time order in which each

unit is produced.

The histogram, along with the sample average and sample standard deviation s,

provides information about process capability. You may wish to review the guidelines for

constructing histograms in Chapter 3.

x
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Furthermore, the shape of the histogram implies that the

distribution of bursting strength is approximately normal.

Thus, we can estimate that approximately 99.73% of the bot-

tles manufactured by this process will burst between 168 and

360 psi. Note that we can estimate process capability indepen-
dently of the specifications on bursting strength.

EXAMPLE 8.1

Figure 8.2 presents a histogram of the bursting strength of 100

glass containers. The data are shown in Table 8.1. What is the

capability of the process?

SOLUTION

Analysis of the 100 observations gives

Consequently, the process capability would be estimated as

or

264 06 3 32 02 264 96. . ~± ( ) − ±  psi

x s± 3

x s= =264 06 32 02. .

Estimating Process Capability with a Histogram

An advantage of using the histogram to estimate process capability is that it gives an

immediate, visual impression of process performance. It may also immediately show the rea-

son for poor process performance. For example, Figure 8.3a shows a process with adequate

potential capability, but the process target is poorly located, whereas Figure 8.3b shows a

process with poor capability resulting from excess variability. Histograms do not provide any 

information about the state of statistical control of the process. So conclusions about capability

based on the histogram depend on the assumption that the process is in control.
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■ F I G U R E  8 . 2 Histogram for the bursting-

strength data.

■ TA B L E  8 . 1

Bursting Strengths for 100 Glass Containers

265 197 346 280 265 200 221 265 261 278

205 286 317 242 254 235 176 262 248 250

263 274 242 260 281 246 248 271 260 265

307 243 258 321 294 328 263 245 274 270

220 231 276 228 223 296 231 301 337 298

268 267 300 250 260 276 334 280 250 257

260 281 208 299 308 264 280 274 278 210

234 265 187 258 235 269 265 253 254 280

299 214 264 267 283 235 272 287 274 269

215 318 271 293 277 290 283 258 275 251

σ
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σ

LSL USL
(a) (b)

LSL USL

■ F I G U R E  8 . 3 Some reasons for poor process capability. (a) Poor process centering. (b) Excess process

variability.
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8.2.2 Probability Plotting

Probability plotting is an alternative to the histogram that can be used to determine the shape, cen-

ter, and spread of the distribution. It has the advantage that it is unnecessary to divide the range

of the variable into class intervals, and it often produces reasonable results for moderately small

samples (which the histogram will not). Generally, a probability plot is a graph of the ranked data

versus the sample cumulative frequency on special paper with a vertical scale chosen so that the

cumulative distribution of the assumed type is a straight line. In Chapter 3 we discussed and illus-

trated normal probability plots. These plots are very useful in process capability studies.

To illustrate the use of a normal probability plot in a process capability study, consider

the following 20 observations on glass container bursting strength: 197, 200, 215, 221, 231,

242, 245, 258, 265, 265, 271, 275, 277, 278, 280, 283, 290, 301, 318, and 346. Figure 8.4 is

the normal probability plot of strength. Note that the data lie nearly along a straight line, imply-

ing that the distribution of bursting strength is normal. Recall from Chapter 4 that the mean of

the normal distribution is the 50th percentile, which we may estimate from Figure 8.4 as

approximately 265 psi, and the standard deviation of the distribution is the slope of the straight

line. It is convenient to estimate the standard deviation as the difference between the 84th and

the 50th percentiles. For the strength data shown above and using Figure 8.4, we find that

Note that and are not far from the sample average and stan-

dard deviation s = 32.02.

The normal probability plot can also be used to estimate process yields and fallouts. For

example, the specification on container strength is LSL = 200 psi. From Figure 8.4, we would

estimate that about 5% of the containers manufactured by this process would burst below this

limit. Since the probability plot provides no information about the state of statistical control

of the process, care should be taken in drawing these conclusions. If the process is not in con-

trol, these estimates may not be reliable.

Care should be exercised in using probability plots. If the data do not come from the

assumed distribution, inferences about process capability drawn from the plot may be seri-

ously in error. Figure 8.5 presents a normal probability plot of times to failure (in hours) of a

valve in a chemical plant. From examining this plot, we can see that the distribution of fail-

ure time is not normal.

An obvious disadvantage of probability plotting is that it is not an objective procedure.

It is possible for two analysts to arrive at different conclusions using the same data. For this

reason, it is often desirable to supplement probability plots with more formal statistically

x = 264.06ŝ = 33 psim̂ = 265 psi

σ̂ = − = − =84 298 265 33th percentile 50th percentile  psi  psi

■ F I G U R E  8 . 4 Normal probability plot of the container-

strength data.
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based goodness-of-fit tests. A good introduction to these tests is in Shapiro (1980). Augmenting

the interpretation of a normal probability plot with the Shapiro–Wilk test for normality can

make the procedure much more powerful and objective.

Choosing the distribution to fit the data is also an important step in probability plotting.

Sometimes we can use our knowledge of the physical phenomena or past experience to sug-

gest the choice of distribution. In other situations, the display in Figure 8.6 may be useful in

selecting a distribution that describes the data. This figure shows the regions in the b1, b2

plane for several standard probability distributions, where b1 and b2 are the measures of

skewness and kurtosis, respectively. To use Figure 8.6, calculate estimates of skewness and

kurtosis from the sample—say,

(8.1)

and

(8.2)

where

(8.3)

and plot the point ( ) on the graph. If the plotted point falls close to a point, line, or

region that corresponds to one of the distributions in the figure, then this distribution is a log-

ical choice to use as a model for the data. If the point falls in regions of the b1, b2 plane where

none of the distributions seems appropriate, other, more general probability distributions,

such as the Johnson or Pearson families of distributions, may be required. A note of caution
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■ F I G U R E  8 . 5 Normal probability plot of time to failure of a

valve.
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■ F I G U R E  8 . 6 Regions in the b1, b2 plane for various 

distributions. (From Statistical Models in Engineering by G. J. Hahn

and S. S. Shapiro, John Wiley: New York, 1967.)
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should be sounded here: The skewness and kurtosis statistics are not reliable unless they are

computed from very large samples. Procedures similar to that in Figure 8.6 for fitting these

distributions and graphs are in Hahn and Shapiro (1967).

8.3 Process Capability Ratios

8.3.1 Use and Interpretation of Cp

It is frequently convenient to have a simple, quantitative way to express process capability.

One way to do so is through the process capability ratio (PCR) Cp first introduced in

Chapter 6. Recall that

(8.4)

where USL and LSL are the upper and lower specification limits, respectively. Cp and other

process capability ratios are used extensively in industry. They are also widely misused. We

will point out some of the more common abuses of process capability ratios. An excellent

recent book on process capability ratios that is highly recommended is Kotz and Lovelace

(1998). There is also extensive technical literature on process capability analysis and process

capability ratios. The review paper by Kotz and Johnson (2002) and the bibliography (papers)

by Spiring, Leong, Cheng, and Yeung (2003) and Yum and Kim (2011) are excellent sources.

In a practical application, the process standard deviation s is almost always unknown

and must be replaced by an estimate s. To estimate s we typically use either the sample stan-
dard deviation s or (when variables control charts are used in the capability study). This

results in an estimate of Cp—say,

(8.5)

To illustrate the calculation of Cp, recall the semiconductor hard-bake process first ana-

lyzed in Example 6.1 using and R charts. The specifications on flow width are USL = 1.00

microns and LSL = 2.00 microns, and from the R chart we estimated . Thus,

our estimate of the PCR Cp is

In Chapter 6, we assumed that flow width is approximately normally distributed (a rea-

sonable assumption, based on the histogram in Fig. 8.7) and the cumulative normal distribution

table in the Appendix was used to estimate that the process produces approximately 350 ppm

(parts per million) defective. Please note that this conclusion depends on the assumption that the

process is in statistical control.

The PCR Cp in equation 8.4 has a useful practical interpretation—namely,

(8.6)P
Cp

=
⎛

⎝⎜
⎞

⎠⎟
1

100

ˆ
ˆ

. .

.
.Cp = − = −

( )
=USL LSL

6

2 00 1 00

6 0 1398
1 192

σ

s = R/d2 = 0.1398

x

ˆ
ˆ

Cp = −USL LSL

6σ
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Cp = −USL LSL
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c08ProcessandMeasurementSystemCapabilityAnalysis.qxd  3/28/12  8:14 PM  Page 362



0

5

10

15

Fr
eq

ue
nc

y
1.2

Flow width (microns)

1.3 1.4 1.5 1.6 1.7 1.8 1.9

■ F I G U R E  8 . 7 Histogram of flow width from

Example 6.1.

(LSL − m)/s = (200 − 264)/32 = −2 under the standard normal

distribution. The estimated fallout is about 2.28% defective, or

about 22,800 nonconforming containers per million. Note that

if the normal distribution were an inappropriate model for

strength, then this last calculation would have to be performed

using the appropriate probability distribution. This calculation

also assumes an in-control process.

EXAMPLE 8.2

Construct a one-sided process-capability ratio for the container

bursting-strength data in Example 8.1. Suppose that the lower

specification limit on bursting strength is 200 psi.

SOLUTION

We will use and s = 32 as estimates of m and s,

respectively, and the resulting estimate of the one-sided lower

process-capability ratio is

The fraction of defective containers produced by this

process is estimated by finding the area to the left of Z =

ˆ
ˆ

ˆ
.Cpl = − = −

( )
=μ

σ
LSL

3

264 200

3 32
0 67

x = 264

One-Sided Process-Capability Ratios

is the percentage of the specification band used up by the process. The hard-bake process uses

percent of the specification band.

Equations 8.4 and 8.5 assume that the process has both upper and lower specification

limits. For one-sided specifications, one-sided process-capability ratios are used. One-sided

PCRs are defined as follows.

(8.7)

(8.8)

Estimates and would be obtained by replacing m and s in equations 8.7 and 8.8

by estimates and , respectively.ŝm̂
ĈplĈpu

Cpl = − ( )LSL
lower specification only

μ
σ3

Cpu = − ( )USL
upper specification only

μ
σ3

P = ⎛
⎝

⎞
⎠ =1

1 192
100 83 89

.
.
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The process capability ratio is a measure of the ability of the process to manufacture

product that meets the specifications. Table 8.2 presents several values of the PCR Cp along

with the associated values of process fallout, expressed in defective parts or nonconforming

units of product per million (ppm). To illustrate the use of Table 8.2, notice that a PCR for a

normally distributed stable process of Cp = 1.00 implies a fallout rate of 2,700 ppm for two-

sided specifications, whereas a PCR of Cp = 1.50 for this process implies a fallout rate of 

4 ppm for one-sided specifications.

The ppm quantities in Table 8.2 were calculated using the following important
assumptions:

1. The quality characteristic has a normal distribution.

2. The process is in statistical control.

3. In the case of two-sided specifications, the process mean is centered between the

lower and upper specification limits.

These assumptions are absolutely critical to the accuracy and validity of the reported num-

bers, and if they are not valid, then the reported quantities may be seriously in error. For

example, Somerville and Montgomery (1996) report an extensive investigation of the errors

in using the normality assumption to make inferences about the ppm level of a process when

in fact the underlying distribution is non-normal. They investigated various non-normal dis-

tributions and observed that errors of several orders of magnitude can result in predicting ppm

by erroneously making the normality assumption. Even when using a t distribution with as

many as 30 degrees of freedom, substantial errors result. Thus even though a t distribution

■ TA B L E  8 . 2

Values of the Process Capability Ratio (Cp) and Associated Process
Fallout for a Normally Distributed Process (in Defective ppm) That
Is in Statistical Control

Process Fallout (in defective ppm)

PCR One-Sided Specifications Two-Sided Specifications

0.25 226,628 453,255

0.50 66,807 133,614

0.60 35,931 71,861

0.70 17,865 35,729

0.80 8,198 16,395

0.90 3,467 6,934

1.00 1,350 2,700

1.10 484 967

1.20 159 318

1.30 48 96

1.40 14 27

1.50 4 7

1.60 1 2

1.70 0.17 0.34

1.80 0.03 0.06

2.00 0.0009 0.0018
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with 30 degrees of freedom is symmetrical and almost visually indistinguishable from the

normal, the longer and heavier tails of the t distribution make a significant difference when

estimating the ppm. Consequently, symmetry in the distribution of process output alone is

insufficient to ensure that any PCR will provide a reliable prediction of process ppm. We will

discuss the non-normality issue in more detail in Section 8.3.3.

Stability or statistical control of the process is also essential to the correct interpretation

of any PCR. Unfortunately, it is fairly common practice to compute a PCR from a sample of

historical process data without any consideration of whether or not the process is in statistical

control. If the process is not in control, then of course its parameters are unstable, and the value

of these parameters in the future is uncertain. Thus the predictive aspects of the PCR regarding

process ppm performance are lost.

Finally, remember that what we actually observe in practice is an estimate of the PCR.

This estimate is subject to error in estimation, since it depends on sample statistics. English

and Taylor (1993) report that large errors in estimating PCRs from sample data can occur,

so the estimate one actually has at hand may not be very reliable. It is always a good idea to

report the estimate of any PCR in terms of a confidence interval. We will show how to do

this for some of the commonly used PCRs in Section 8.3.5.

Table 8.3 presents some recommended guidelines for minimum values of the PCR.

The bottle-strength characteristic is a parameter closely related to the safety of the prod-

uct; bottles with inadequate pressure strength may fail and injure consumers. This implies

that the PCR should be at least 1.45. Perhaps one way the PCR could be improved would

be by increasing the mean strength of the containers—say, by pouring more glass in the

mold.

We point out that the values in Table 8.3 are only minimums. In recent years, many com-

panies have adopted criteria for evaluating their processes that include process capability

objectives that are more stringent than those of Table 8.3. For example, a Six Sigma company

would require that when the process mean is in control, it will not be closer than six standard

deviations from the nearest specification limit. This, in effect, requires that the minimum

acceptable value of the process capability ratio will be at least 2.0.

8.3.2 Process Capability Ratio for an Off-Center Process

The process capability ratio Cp does not take into account where the process mean is located

relative to the specifications. Cp simply measures the spread of the specifications relative to

the Six Sigma spread in the process. For example, the top two normal distributions in Figure 8.8

both have Cp = 2.0, but the process in panel (b) of the figure clearly has lower capability than

the process in panel (a) because it is not operating at the midpoint of the interval between the

specifications.

■ TA B L E  8 . 3

Recommended Minimum Values of the Process Capability Ratio

Two-Sided One-Sided
Specifications Specifications

Existing processes 1.33 1.25

New processes 1.50 1.45

Safety, strength, or critical 1.50 1.45
parameter, existing process

Safety, strength, or critical 1.67 1.60
parameter, new process
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This situation may be more accurately reflected by defining a new process capability

ratio (PCR)—Cpk—that takes process centering into account. This quantity is

(8.9)

Note that Cpk is simply the one-sided PCR for the specification limit nearest to the process

average. For the process shown in Figure 8.8b, we would have

Generally, if Cp = Cpk, the process is centered at the midpoint of the specifications, and when

Cpk < Cp the process is off center.

The magnitude of Cpk relative to Cp is a direct measure of how off center the process is

operating. Several commonly encountered cases are illustrated in Figure 8.8. Note in panel

(c) of Figure 8.8 that Cpk = 1.0 while Cp = 2.0. One can use Table 8.2 to get a quick estimate

of potential improvement that would be possible by centering the process. If we take Cp = 1.0

in Table 8.2 and read the fallout from the one-sided specifications column, we can estimate

the actual fallout as 1,350 ppm. However, if we can center the process, then Cp = 2.0 can be

achieved, and Table 8.2 (using Cp = 2.0 and two-sided specifications) suggests that the potential

C C C

C C

C C

pk pu pl

pu pl

pu pl

= ( )
= = − = −⎛
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= = −
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= = −
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=
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C C Cpk pu pl= ( )min ,

σ

(a)

(b)

(c)

(d)

(e)
 = 2

σ  = 2

σ  = 2

σ  = 2

σ  = 2
LSL USL

38 44 50 56 62

38 44 50 56 62

38 44 50 56 62

38 44 50 56 62

38 44 50 56 62

Cp = 2.0
Cpk = 0

Cp = 2.0
Cpk = -0.5

Cp = 2.0
Cpk = 1.0

Cp = 2.0
Cpk = 1.5

Cp = 2.0
Cpk = 2.0
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■ F I G U R E  8 . 8 Relationship of Cp and Cpk.
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fallout is 0.0018 ppm, an improvement of several orders of magnitude in process perfor-

mance. Thus, we usually say that Cp measures potential capability in the process, whereas

Cpk measures actual capability.
Panel (d ) of Figure 8.8 illustrates the case in which the process mean is exactly equal

to one of the specification limits, leading to Cpk = 0. As panel (e) illustrates, when Cpk < 0 the

implication is that the process mean lies outside the specifications. Clearly, if Cpk < −1, the

entire process lies outside the specification limits. Some authors define Cpk to be nonnegative,

so that values less than zero are defined as zero.

Many quality-engineering authorities have advised against the routine use of process

capability ratios such as Cp and Cpk (or the others discussed later in this section) on the

grounds that they are an oversimplification of a complex phenomenon. Certainly, any statis-

tic that combines information about both location (the mean and process centering) and vari-

ability and that requires the assumption of normality for its meaningful interpretation is likely

to be misused (or abused). Furthermore, as we will see, point estimates of process capability

ratios are virtually useless if they are computed from small samples. Clearly, these ratios need

to be used and interpreted very carefully.

8.3.3 Normality and the Process Capability Ratio

An important assumption underlying our discussion of process capability and the ratios Cp

and Cpk is that their usual interpretation is based on a normal distribution of process output.

If the underlying distribution is non-normal, then as we previously cautioned, the statements

about expected process fallout attributed to a particular value of Cp or Cpk may be in error.

To illustrate this point, consider the data in Figure 8.9, which is a histogram of 80 mea-

surements of surface roughness on a machined part (measured in microinches). The upper

specification limit is at USL = 32 microinches. The sample average and standard deviation

are and S = 3.053, implying that , and Table 8.2 would suggest that the

fallout is less than one part per billion. However, since the histogram is highly skewed, we are

fairly certain that the distribution is non-normal. Thus, this estimate of capability is unlikely

to be correct.

One approach to dealing with this situation is to transform the data so that in the new,

transformed metric the data have a normal distribution appearance. There are various graph-

ical and analytical approaches to selecting a transformation. In this example, a reciprocal

transformation was used. Figure 8.10 presents a histogram of the reciprocal values x* = 1/x.

In the transformed scale, and s* = 0.0244, and the original upper specification

limit becomes 1/32 = 0.03125. This results in a value of , which implies that about

1,350 ppm are outside of specifications. This estimate of process performance is clearly much

more realistic than the one resulting from the usual “normal theory” assumption.

Ĉpl = 0.97

x* = 0.1025

Ĉpu = 2.35x = 10.44
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■ F I G U R E  8 . 9 Surface

roughness in microinches for a

machined part.

■ F I G U R E  8 . 1 0 Reciprocals of

surface roughness. (Adapted from data in

the “Statistics Corner” column in Quality
Progress, March 1989, with permission of

the American Society for Quality.)
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Other approaches have been considered in dealing with non-normal data. There have

been various attempts to extend the definitions of the standard capability indices to the case

of non-normal distributions. Luceño (1996) introduced the index Cpc, defined as

(8.10)

where the process target value . Luceño uses the second subscript in Cpc

to stand for confidence, and he stresses that the confidence intervals based on Cpc are reliable;

of course, this statement should be interpreted cautiously. The author has also used the con-

stant in the denominator, to make it equal to 6s when the underlying distrib-

ution is normal. We will give the confidence interval for Cpc in Section 8.3.5.

There have also been attempts to modify the usual capability indices so that they are

appropriate for two general families of distributions: the Pearson and Johnson families.

This would make PCRs broadly applicable for both normal and non-normal distributions.

Good discussions of these approaches are in Rodriguez (1992) and Kotz and Lovelace

(1998).

The general idea is to use appropriate quantiles of the process distribution—say,

x0.00135 and x0.99865—to define a quantile-based PCR—say,

(8.11)

Now since in the normal distribution x0.00135 = m − 3s and x0.99865 = m + 3s, we see that in

the case of a normal distribution Cp(q) reduces to Cp. Clements (1989) proposed a method

for determining the quantiles based on the Pearson family of distributions. In general, how-

ever, we could fit any distribution to the process data, determine its quantiles x0.99865 and

x0.00135, and apply equation 8.11. Refer to Kotz and Lovelace (1998) for more information.

8.3.4 More about Process Centering

The process capability ratio Cpk was initially developed because Cp does not adequately deal

with the case of a process with mean m that is not centered between the specification limits.

However, Cpk alone is still an inadequate measure of process centering. For example, consider

the two processes shown in Figure 8.11. Both processes A and B have Cpk = 1.0, yet their cen-

tering is clearly different. To characterize process centering satisfactorily, Cpk must be com-

pared to Cp. For process A, Cpk = Cp = 1.0, implying that the process is centered, whereas for

process B, Cp = 2.0 > Cpk = 1.0, implying that the process is off center. For any fixed value

of m in the interval from LSL to USL, Cpk depends inversely on s and becomes large as s

C q
x xp( ) = −

−
USL LSL

0 99865 0 00135. .

61�/2 = 7.52

T = 1
2(USL + LSL)

C

E X T
pc = −

−

USL LSL

6
2

π

σ

μLSL USL

A = 5

σB = 2.5

A = 50

μB = 57.5

A
B

30 40 T = 50 60 70
■ F I G U R E  8 . 1 1 Two

processes with Cpk = 1.0.
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approaches zero. This characteristic can make Cpk unsuitable as a measure of centering. That

is, a large value of Cpk does not really tell us anything about the location of the mean in the

interval from LSL to USL.

One way to address this difficulty is to use a process capability ratio that is a better indi-

cator of centering. PCR Cpm is one such ratio, where

(8.12)

and t is the square root of expected squared deviation from target ,

Thus, equation 8.12 can be written as

(8.13)

where

(8.14)

A logical way to estimate Cpm is by

(8.15)

where

(8.16)

Chan, Cheng, and Spiring (1988) discussed this ratio, various estimators of Cpm, and

their sampling properties. Boyles (1991) has provided a definitive analysis of Cpm and its use-

fulness in measuring process centering. He notes that both Cpk and Cpm coincide with Cp

when m = T and decrease as m moves away from T. However, Cpk < 0 for m > USL or m < LSL,

whereas Cpm approaches zero asymptotically as . Boyles also shows that the

Cpm of a process with is strictly bounded above by the Cp value of a process

with s = Δ. That is,

(8.17)

Thus, a necessary condition for Cpm ≥ 1 is

This statistic says that if the target value T is the midpoint of the specifications, a Cpm of one

or greater implies that the mean m lies within the middle third of the specification band. A

similar statement can be made for any value of Cpm. For instance, implies that

. Thus, a given value of Cpm places a constraint on the difference

between m and the target value T.

�(m − T)� < 1
8(USL − LSL)

Cpm ≥ 4
3

μ − < −( )T 1
6

USL LSL

Cpm <
USL − LSL

6�m − T�

�(m − T)� = ¢ > 0

�(m − T)� S q

V
x T

s
= −

ˆ
ˆ

C
C

V
pm

p=
+1

2

ξ μ
σ

= − T

Cp=
+1

2ξ
C

T
pm = −

+ −( )
USL LSL

6
2 2σ μ

τ

μ μ

σ μ

2 2

2 2

2 2

= −( )[ ]
= −( )[ ] + −( )

= + −( )

E x T

E x T

T

T = 1
2(USL + LSL)

Cpm = −USL LSL

6τ
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Pearn et al. (1992) proposed the process capability ratio

(8.18)

This is sometimes called a “third generation” process capability ratio, since it is constructed

from the “second generation” ratios Cpk and Cpm in the same way that they were generated

from the “first generation” ratio Cp. The motivation of this new ratio is increased sensitivity

to departures of the process mean m from the desired target T. For more details, see Kotz and

Lovelace (1998).

8.3.5 Confidence Intervals and Tests on Process Capability Ratios

Confidence Intervals on Process Capability Ratios. Much of the industrial use

of process capability ratios focuses on computing and interpreting the point estimate of the

desired quantity. It is easy to forget that or (for examples) are simply point estimates,

and, as such, are subject to statistical fluctuation. An alternative that should become standard

practice is to report confidence intervals for process capability ratios.
It is easy to find a confidence interval for the “first generation” ratio Cp. If we replace

s by s in the equation for Cp, we produce the usual point estimator . If the quality charac-

teristic follows a normal distribution, then a 100(1 − a)% CI on Cp is obtained from

(8.19)

or

(8.20)

where c2
1 − a/2,n − 1 and c2

a/2,n − 1 are the lower a/2 and upper a/2 percentage points of the

chi-square distribution with n − 1 degrees of freedom. These percentage points are tabulated

in Appendix Table III.
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If we use equation 8.17, this is equivalent to saying that the

process mean lies approximately within the middle half of the

specification range. Visual examination of Figure 8.11 reveals

this to be the case.

EXAMPLE 8.3

To illustrate the use of Cpm, consider the two processes A and B

in Figure 8.11. For process A we find that

since process A is centered at the target value T = 50. Note that

Cpm = Cpk for process A. Now consider process B:

C
C

pm
p=

+
=

+ ( )
=

1

2

1 3
0 63

2 2ξ
.

C
C

pm
p=

+
=

+
=

1

1 0

1 0
1 0

2ξ
.

.

Process Centering

c08ProcessandMeasurementSystemCapabilityAnalysis.qxd  3/28/12  8:14 PM  Page 370



approximately at the midpoint of the specification interval and

that the sample standard deviation s = 1.75. Find a 95% CI on Cp.

EXAMPLE 8.4

Suppose that a stable process has upper and lower specifica-

tions at USL = 62 and LSL = 38. A sample of size n = 20 

from this process reveals that the process mean is centered

A Confidence Interval in Cp

The confidence interval on Cp in Example 8.4 is relatively wide because the sample

standard deviation s exhibits considerable fluctuation in small to moderately large sam-

ples. This means, in effect, that confidence intervals on Cp based on small samples will be

wide.

Note also that the confidence interval uses s rather than to estimate s. This further

emphasizes that the process must be in statistical control for PCRs to have any real meaning.

If the process is not in control, s and could be very different, leading to very different 

values of the PCR.

For more complicated ratios such as Cpk and Cpm, various authors have developed

approximate confidence intervals; for example, see Zhang, Stenback, and Wardrop (1990),

Bissell (1990), Kushler and Hurley (1992), and Pearn et al. (1992). If the quality charac-

teristic is normally distributed, then an approximate 100(1 − a)% CI on Cpk is given as 

follows.

(8.21)

R/d2

R/d2
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ˆ
ˆ
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SOLUTION

A point estimate of Cp is

The 95% confidence interval on Cp is found from equation

8.20 as follows:

ˆ ˆ

.
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6
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where c2
0.975,19 = 8.91 and c2

0.025,19 = 32.85 were taken from

Appendix Table III.

Kotz and Lovelace (1998) give an extensive summary of confidence intervals for various

PCRs.
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EXAMPLE 8.5

A sample of size n = 20 from a stable process is used to esti-

mate Cpk, with the result that . Find an approximate

95% CI on Cpk.

Ĉpk = 1.33

A Confidence Interval on Cpk

SOLUTION

Using equation 8.21, an approximate 95% CI on Cpk is

This is an extremely wide confidence interval. Based on the 

sample data, the ratio Cpk could be less than 1 (a very bad situa-

tion), or it could be as large as 1.78 (a reasonably good situation).

Thus, we have learned very little about actual process capability,

because Cpk is very imprecisely estimated. The reason for this, of

course, is that a very small sample (n = 20) has been used.

or
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For non-normal data, the PCR Cpc developed by Luceño (1996) can be employed.

Recall that Cpc was defined in equation 8.10. Luceño developed the confidence interval for

Cpc as follows: First, evaluate , whose expected value is estimated by

leading to the estimator

A 100(1 − a)% CI for is given as

where
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■ TA B L E  8 . 4

Sample Size and Critical Value Determination for Testing 
H0: Cp = Cp0

(a) (b)
a = b = 0.10 a = b = 0.05

Sample Cp(High)/ Cp(High)/
Size, n Cp(Low) C/Cp(Low) Cp(Low) C/Cp(Low)

10 1.88 1.27 2.26 1.37

20 1.53 1.20 1.73 1.26

30 1.41 1.16 1.55 1.21

40 1.34 1.14 1.46 1.18

50 1.30 1.13 1.40 1.16

60 1.27 1.11 1.36 1.15

70 1.25 1.10 1.33 1.14

80 1.23 1.10 1.30 1.13

90 1.21 1.10 1.28 1.12

100 1.20 1.09 1.26 1.11

Source: Adapted from Kane (1986), with permission of the American Society for

Quality Control.

Therefore, a 100(1 − a)% confidence interval for Cpc is given by

(8.22)

ˆ ˆ

, ,

C

t s c n
C

C

t s c n
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n c
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pc

n c1 12 1 2 1+ ( )[ ] ≤ ≤
− ( )[ ]− −α α

Testing Hypotheses about PCRs. A practice that is becoming increasingly com-

mon in industry is to require a supplier to demonstrate process capability as part of the con-

tractual agreement. Thus, it is frequently necessary to demonstrate that the process capability

ratio Cp meets or exceeds some particular target value—say, Cp0. This problem may be for-

mulated as a hypothesis testing problem:

H C C

H C C

p p

p p

0 0

1 0

:

:

= ( )
≥ ( )

 or the process is not capable

 or the process is capable

EXAMPLE 8.6

A customer has told his supplier that, in order to qualify for

business with his company, the supplier must demonstrate

that his process capability exceeds Cp = 1.33. Thus, the sup-

plier is interested in establishing a procedure to test the

hypotheses

The supplier wants to be sure that if the process capability is

below 1.33 there will be a high probability of detecting this

(say, 0.90), whereas if the process capability exceeds 1.66

there will be a high probability of judging the process capable

(again, say, 0.90). This would imply that Cp(Low) = 1.33,

Cp(High) = 1.66, and a = b = 0.10. To find the sample size and

critical value for C from Table 8.4, compute

C

C
p

p

High

Low

( )
( )

= =1 66

1 33
1 25

.

.
.

H C

H C

p

p

0

1

1 33

1 33

: .

: .

=

>

Supplier Qualification

We would like to reject H0 (recall that in statistical hypothesis testing rejection of H0 is always

a strong conclusion), thereby demonstrating that the process is capable. We can formulate the

statistical test in terms of , so that we will reject H0 if exceeds a critical value C.

Kane (1986) has investigated this test, and provides a table of sample sizes and critical

values for C to assist in testing process capability. We may define Cp(High) as a process capa-

bility that we would like to accept with probability 1 − a and Cp(Low) as a process capa-

bility that we would like to reject with probability 1 − b. Table 8.4 gives values of

Cp(High)/Cp(Low) and C/Cp(Low) for varying sample sizes and a = b = 0.05 or a = b = 0.10.

Example 8.6 illustrates the use of this table.

ĈpĈp
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374 Chapter 8 ■ Process and Measurement System Capability Analysis

This example shows that, in order to demonstrate that process capability is at least equal

to 1.33, the observed sample will have to exceed 1.33 by a considerable amount. This illus-

trates that some common industrial practices may be questionable statistically. For example,

it is fairly common practice to accept the process as capable at the level Cp ≥ 1.33 if the sam-
ple based on a sample size of 30 ≤ n ≤ 50 parts. Clearly, this procedure does not

account for sampling variation in the estimate of s, and larger values of n and/or higher

acceptable values of may be necessary in practice.

Process Performance Indices. In 1991, the Automotive Industry Action Group

(AIAG) was formed and consists of representatives of the “big three” (Ford, General Motors,

and Chrysler) and the American Society for Quality Control (now the American Society for

Quality). One of their objectives was to standardize the reporting requirements from suppliers

and in general of their industry. The AIAG recommends using the process capability indices Cp

and Cpk when the process is in control, with the process standard deviation estimated by

. When the process is not in control, the AIAG recommends using process perfor-
mance indices Pp and Ppk, where, for example,

and s is the usual sample standard deviation . Even the

American National Standards Institute in ANSI Standard Z1 on Process Capability Analysis

(1996) states that Pp and Ppk should be used when the process is not in control.

Now it is clear that when the process is normally distributed and in control, is essentially

and is essentially because for a stable process the difference between s and

is minimal. However, please note that if the process is not in control, the indices Pp

and Ppk have no meaningful interpretation relative to process capability, because they cannot

predict process performance. Furthermore, their statistical properties are not determinable,

and so no valid inference can be made regarding their true (or population) values. Also, Pp and

Ppk provide no motivation or incentive to the companies that use them to bring their processes

into control.

Kotz and Lovelace (1998) strongly recommend against the use of Pp and Ppk, indicat-

ing that these indices are actually a step backward in quantifying process capability. They

refer to the mandated use of Pp and Ppk through quality standards or industry guidelines as

undiluted “statistical terrorism” (i.e., the use or misuse of statistical methods along with

threats and/or intimidation to achieve a business objective).

This author agrees completely with Kotz and Lovelace. The process performance

indices Pp and Ppk are actually more than a step backward. They are a waste of engineering
and management effort—they tell you nothing. Unless the process is stable (in control), no

index is going to carry useful predictive information about process capability or convey any

ŝ = R/d2

ĈpkP̂pkĈp

P̂p

s = 2 Σn
i=1(xi − x)2/ (n − 1)

P̂
sp = −USL LSL

6

ŝ = R/d2

Ĉp

Ĉp ≥ 1.33

Ĉp

from which we calculate

Thus, to demonstrate capability, the supplier must take a sam-

ple of n = 70 parts, and the sample process capability ratio 

must exceed C ≤ 1.46.

Ĉp

C Cp= ( ) = ( ) =Low 1 10 1 33 1 10 1 46. . . .

and enter the table value in panel (a) where a = b = 0.10. This

yields

and

C Cp Low( ) = 1 10.

n = 70
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information about future performance. Instead of imposing the use of meaningless indices,

organizations should devote effort to developing and implementing an effective process char-

acterization, control, and improvement plan. This is a much more reasonable and effective

approach to process improvement.

8.4 Process Capability Analysis Using a Control Chart

Histograms, probability plots, and process capability ratios summarize the performance of the

process. They do not necessarily display the potential capability of the process because they

do not address the issue of statistical control, or show systematic patterns in process output

that, if eliminated, would reduce the variability in the quality characteristic. Control charts are

very effective in this regard. The control chart should be regarded as the primary technique of

process capability analysis.

Both attributes and variables control charts can be used in process capability analysis.

The and R charts should be used whenever possible, because of the greater power and bet-

ter information they provide relative to attributes charts. However, both p charts and c (or u)

charts are useful in analyzing process capability. Techniques for constructing and using these

charts are given in Chapters 6 and 7. Remember that to use the p chart there must be specifi-

cations on the product characteristics. The and R charts allow us to study processes without

regard to specifications.

The and R control charts allow both the instantaneous variability (short-term process

capability) and variability across time (long-term process capability) to be analyzed. It is

particularly helpful if the data for a process capability study are collected in two to three

different time periods (such as different shifts, different days, etc.).

Table 8.5 presents the container bursting-strength data in 20 samples of five observa-

tions each. The calculations for the and R charts are summarized here:x

x

x

x

R Chart

Center line

UCL

LCL

= =
= = ( )( ) =

= = ( )( ) =

R

D R

D R

77 3

2 115 77 3 163 49

0 7 73 0

4

3

.

. . .

.

Figure 8.12 presents the and R charts for the 20 samples in Table 8.5. Both charts exhibit

statistical control. The process parameters may be estimated from the control chart as

ˆ .

ˆ
.

.
.
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σ

= =

= = =

x

R

d

264 06

77 3

2 326
33 23
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. . . .
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■ F I G U R E  8 . 1 2 and R charts for the bottle-strength

data.

x

Sample number

Sample number

200

160

120

80

40

0

UCL

CL

5 10 15 20

R

320
310
300
290
280
270
260
250
240
230
220
210
200

5 10 15 20

UCL

CL

LCL

x

■ TA B L E  8 . 5

Glass Container Strength Data (psi)

Sample Data R

1 265 205 263 307 220 252.0 102

2 268 260 234 299 215 255.2 84

3 197 286 274 243 231 246.2 89

4 267 281 265 214 318 269.0 104

5 346 317 242 258 276 287.8 104

6 300 208 187 264 271 246.0 113

7 280 242 260 321 228 266.2 93

8 250 299 258 267 293 273.4 49

9 265 254 281 294 223 263.4 71

10 260 308 235 283 277 272.6 73

11 200 235 246 328 296 261.0 128

12 276 264 269 235 290 266.8 55

13 221 176 248 263 231 227.8 87

14 334 280 265 272 283 286.8 69

15 265 262 271 245 301 268.8 56

16 280 274 253 287 258 270.4 34

17 261 248 260 274 337 276.0 89

18 250 278 254 274 275 266.2 28

19 278 250 265 270 298 272.2 48

20 257 210 280 269 251 253.4 70

R = 77.3x = 264.06

x
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Thus, the one-sided lower process capability ratio is estimated by

Clearly, since strength is a safety-related parameter, the process capability is inadequate.

This example illustrates a process that is in control but operating at an unacceptable

level. There is no evidence to indicate that the production of nonconforming units is

operator-controllable. Engineering and/or management intervention will be required

either to improve the process or to change the requirements if the quality problems with

the bottles are to be solved. The objective of these interventions is to increase the process

capability ratio to at least a minimum acceptable level. The control chart can be used as

a monitoring device or logbook to show the effect of changes in the process on process per-

formance.

Sometimes the process capability analysis indicates an out-of-control process. It is

unsafe to estimate process capability in such cases. The process must be stable in order to

produce a reliable estimate of process capability. When the process is out of control in the

early stages of process capability analysis, the first objective is finding and eliminating the

assignable causes in order to bring the process into an in-control state.

8.5 Process Capability Analysis Using Designed Experiments

A designed experiment is a systematic approach to varying the input controllable variables

in the process and analyzing the effects of these process variables on the output. Designed

experiments are also useful in discovering which set of process variables is influential on the

output, and at what levels these variables should be held to optimize process performance.

Thus, design of experiments is useful in more general problems than merely estimating

process capability. For an introduction to design of experiments, see Montgomery (2009).

Part V of this textbook provides more information on experimental design methods and on

their use in process improvement.

One of the major uses of designed experiments is in isolating and estimating the

sources of variability in a process. For example, consider a machine that fills bottles with a

soft-drink beverage. Each machine has a large number of filling heads that must be indepen-

dently adjusted. The quality characteristic measured is the syrup content (in degrees brix) of

the finished product. There can be variation in the observed brix (s2
B) because of machine vari-

ability (s2
M), head variability (s2

H), and analytical test variability (s2
A). The variability in the

observed brix value is

An experiment can be designed, involving sampling from several machines and several heads

on each machine, and making several analyses on each bottle, which would allow estimation

of the variances (s2
M), (s2

H), and (s2
A). Suppose that the results appear as in Figure 8.13. Since

a substantial portion of the total variability in observed brix is due to variability among heads,

this indicates that the process can perhaps best be improved by reducing the head-to-head

variability. This could be done by more careful setup or by more careful control of the oper-

ation of the machine.

σ σ σ σB M H A
2 2 2 2= + +

ˆ
ˆ

.

.
.Cpl = − = −

( )
=μ

σ
LSL

3

264 06 200

3 33 23
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8.6 Process Capability Analysis with Attribute Data

Often process performance is measured in terms of attribute data—that is, nonconforming

units or defectives, or nonconformities or defects. When a fraction nonconforming is the mea-

sure of performance, it is typical to use the parts per million (ppm) defective as a measure of

process capability. In some organizations, this ppm defective is converted to an equivalent

sigma level. For example, a process producing 2,700 ppm defective would be equivalent to a

three-sigma process (without the “usual” 1.5 s shift in the mean that many Six Sigma orga-

nizations employ in the calculations taken into account).

When dealing with nonconformities or defects, a defects per unit (DPU) statistic is

often used as a measure of capability, where

Here the unit is something that is delivered to a customer and can be evaluated or judged as

to its suitability. Some examples include:

1. An invoice

2. A shipment

3. A customer order

4. An enquiry or call

The defects or nonconformities are anything that does not meet the customer requirements,

such as:

1. An error on an invoice

2. An incorrect or incomplete shipment

3. An incorrect or incomplete customer order

4. A call that is not satisfactorily completed

DPU =
Total number of defects

Total number of units

■ F I G U R E  8 . 1 3 Sources of variability in

the bottling line example.

σ 2
M

σ 2
H

σ 2
A

Analytical test
variability

Observed
brix

Mean
brix

Head-to-head variability

Machine variability
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Obviously, these quantities are estimated from sample data. Large samples need to be used to

obtain reliable estimates.

The DPU measure does not directly take the complexity of the unit into account. A

widely used way to do this is the defect per million opportunities (DPMO) measure

Opportunities are the number of potential chances within a unit for a defect to occur. For

example, on a purchase order, the number of opportunities would be the number of fields in

which information is recorded times two, because each field can either be filled out incor-

rectly or blank (information is missing). It is important to be consistent about how opportu-

nities are defined, as a process may be artificially improved simply by increasing the number

of opportunities over time.

8.7 Gauge and Measurement System Capability Studies

8.7.1 Basic Concepts of Gauge Capability

Determining the capability of the measurement system is an important aspect of many quality

and process improvement activities. Generally, in any activity involving measurements, some

of the observed variability will be inherent in the units or items that are being measured, and

some of the variability will result from the measurement system that is used. The measure-

ment system will consist (minimally) of an instrument or gauge, and it often has other com-

ponents, such as the operator(s) that uses it and the conditions or different points in time under

which the instrument is used. There may also be other factors that impact measurement system

performance, such as setup or calibration activities. The purpose of most measurement systems

capability studies is to:

1. Determine how much of the total observed variability is due to the gauge or instrument

2. Isolate the components of variability in the measurement system

3. Assess whether the instrument or gauge is capable (that is, is it suitable for the intended

application)

Measurements are a significant component of any quality system. Measurement is an

integral component of the DMAIC problem-solving process, but it’s even more important

than that. An ineffective measurement system can dramatically impact business performance

because it leads to uninformed (and usually bad) decision making.

In this section we will introduce the two R’s of measurement systems capability:

repeatability (Do we get the same observed value if we measure the same unit several times

under identical conditions?), and reproducibility (How much difference in observed values

do we experience when units are measured under different conditions, such as different opera-

tors, time periods, and so forth?).

These quantities answer only indirectly the fundamental question: Is the system able to

distinguish between good and bad units? That is, what is the probability that a good unit is

judged to be defective and, conversely, that a bad unit is passed along to the customer as good?

These misclassification probabilities are fairly easy to calculate from the results of a standard

measurement systems capability study, and give reliable, useful, and easy-to-understand infor-

mation about measurement systems performance.

In addition to repeatability and reproducibility, there are other important aspects of

measurement systems capability. The linearity of a measurement system reflects the differ-

ences in observed accuracy and/or precision experienced over the range of measurements

made by the system. A simple linear regression model is often used to describe this feature.

DPMO =
Total number of defects

Number of units × Number of opportunities
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process operator who will actually take the measurements for

the control chart uses the instrument to measure each unit of

product twice. The data are shown in Table 8.6.

having no difficulty in making consistent measurements. Out-of-

control points on the R chart could indicate that the operator is

having difficulty using the instrument.

The standard deviation of measurement error, sGauge, can

be estimated as follows:

The distribution of measurement error is usually well approxi-

mated by the normal. Thus, is a good estimate of gauge

capability.

ŝGuage

ˆ
.

.
.σ Gauge = = =R

d2

1 0

1 128
0 887

EXAMPLE 8.7

An instrument is to be used as part of a proposed SPC imple-

mentation. The quality-improvement team involved in design-

ing the SPC system would like to get an assessment of gauge

capability. Twenty units of the product are obtained, and the

Measuring Gauge Capability

Problems with linearity are often the result of calibration and maintenance issues. Stability,
or different levels of variability in different operating regimes, can result from warm-up

effects, environmental factors, inconsistent operator performance, and inadequate standard

operating procedure. Bias reflects the difference between observed measurements and a

“true” value obtained from a master or gold standard, or from a different measurement tech-

nique known to produce accurate values.

It is very difficult to monitor, control, improve, or effectively manage a process with an

inadequate measurement system. It’s somewhat analogous to navigating a ship through fog

without radar—eventually you are going to hit the iceberg! Even if no catastrophe occurs, you

always are going to be wasting time and money looking for problems where none exist and

dealing with unhappy customers who received defective product. Because excessive mea-

surement variability becomes part of overall product variability, it also negatively impacts

many other process improvement activities, such as leading to larger sample sizes in com-

parative or observational studies, more replication in designed experiments aimed at process

improvement, and more extensive product testing.

To introduce some of the basic ideas of measurement systems analysis (MSA), consider

a simple but reasonable model for measurement system capability studies

(8.23)

where y is the total observed measurement, x is the true value of the measurement on a unit

of product, and e is the measurement error. We will assume that x and e are normally and inde-

pendently distributed random variables with means m and 0 and variances (s2
P) and (s2

Gauge),

respectively. The variance of the total observed measurement, y, is then

(8.24)

Control charts and other statistical methods can be used to separate these components of vari-

ance, as well as to give an assessment of gauge capability.

σ σ σTotal Gauge
2 2 2= +P

y x= + ε

SOLUTION

Figure 8.14 shows the and R charts for these data. Note that

the chart exhibits many out-of-control points. This is to be

expected, because in this situation the chart has an interpre-

tation that is somewhat different from the usual interpretation.

The chart in this example shows the discriminating power
of the instrument—literally, the ability of the gauge to distin-

guish between units of product. The R chart directly shows 

the magnitude of measurement error, or the gauge capability.

The R values represent the difference between measurements

made on the same unit using the same instrument. In this exam-

ple, the R chart is in control. This indicates that the operator is

x

x
x

x
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■ F I G U R E  8 . 1 4 Control

charts for the gauge capability analysis

in Example 8.7.

It is a fairly common (but not necessarily good) practice to compare the estimate of

gauge capability to the width of the specifications or the tolerance band (USL − LSL) for the

part that is being measured. The ratio of to the total tolerance band is often called the

precision-to-tolerance (P/T) ratio:

(8.25)

In equation 8.25, popular choices for the constant k are k = 5.15 and k = 6. The value k = 5.15

corresponds to the limiting value of the number of standard deviations between bounds of a

95% tolerance interval that contains at least 99% of a normal population, and k = 6 corre-

sponds to the number of standard deviations between the usual natural tolerance limits of a

normal population.

The part used in Example 8.7 has USL = 60 and LSL = 5. Therefore, taking k = 6 in

equation 8.25, an estimate of the P/T ratio is

P/T =
6(0.887)

60 − 5
=

5.32

55
= 0.097

P/T =
kŝGuage

USL − LSL

kŝGauge

■ TA B L E  8 . 6

Parts Measurement Data

MeasurementsPart 
Number 1 2 x̄ R

1 21 20 20.5 1

2 24 23 23.5 1

3 20 21 20.5 1

4 27 27 27.0 0

5 19 18 18.5 1

6 23 21 22.0 2

7 22 21 21.5 1

8 19 17 18.0 2

9 24 23 23.5 1

10 25 23 24.0 2

11 21 20 20.5 1

12 18 19 18.5 1

13 23 25 24.0 2

14 24 24 24.0 0

15 29 30 29.5 1

16 26 26 26.0 0

17 20 20 20.0 0

18 19 21 20.0 2

19 25 26 25.5 1

20 19 19 19.0 0

=
x = 22.3

–
R = 1.0
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382 Chapter 8 ■ Process and Measurement System Capability Analysis

Values of the estimated ratio P/T of 0.1 or less often are taken to imply adequate gauge capa-

bility. This is based on the generally used rule that requires a measurement device to be cali-

brated in units one-tenth as large as the accuracy required in the final measurement. However,

we should use caution in accepting this general rule of thumb in all cases. A gauge must be

sufficiently capable of measuring product accurately enough and precisely enough so that the

analyst can make the correct decision. This may not necessarily require that P/T ≤ 0.1.

We can use the data from the gauge capability experiment in Example 8.7 to estimate

the variance components in equation 8.24 associated with total observed variability. From 

the actual sample measurements in Table 8.6, we can calculate s = 3.17. This is an estimate

of the standard deviation of total variability, including both product variability and gauge
variability. Therefore,

Since from equation 8.24 we have

and because we have an estimate of , we can obtain an estimate of

s2
P as

Therefore, an estimate of the standard deviation of the product characteristic is

There are other measures of gauge capability that have been proposed. One of these is the

ratio of process (part) variability to total variability:

(8.26)

and another is the ratio of measurement system variability to total variability:

(8.27)

Obviously, rP = 1 − rM. For the situation in Example 8.7 we can calculate an estimate of rM

as follows:

Thus the variance of the measuring instrument contributes about 7.86% of the total observed

variance of the measurements.

Another measure of measurement system adequacy is defined by the AIAG (1995)

[note that there is also on updated edition of this manual, AIAG (2002)] as the signal-to-noise
ratio (SNR):

(8.28)SNR P

P

=
−
2

1

ρ
ρ

ˆ
ˆ

ˆ

.

.
.ρ

σ
σM = = =Gauge

Total

2

2

0 79

10 05
0 0786

ρ
σ
σM = Gauge

Total

2

2

ρ σ
σP

P=
2

2
Total

ˆ . .σ P = =9 26 3 04

ˆ ˆ ˆ . . .σ σ σP
2 2 2 10 05 0 79 9 26= − = − =Total Gauge

ŝ2
Gauge = (0.887)2 = 0.79

σ σ σTotal Gauge
2 2 2= +P

ˆ . .σ Total
2 = = ( ) =s2 2

3 17 10 05
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AIAG defined the SNR as the number of distinct levels or categories that can be reli-

ably obtained from the measurements. A value of 5 or greater is recommended, and a value

of less than 2 indicates inadequate gauge capability. For Example 8.7 we have , and

using we find that , so an estimate of the SNR
in equation 8.28 is

Therefore, the gauge in Example 8.7 would not meet the suggested requirement of an SNR of

at least 5. However, this requirement on the SNR is somewhat arbitrary. Another measure of

gauge capability is the discrimination ratio (DR)

(8.29)

Some authors have suggested that for a gauge to be capable the DR must exceed 4. This

is a very arbitrary requirement. For the situation in Example 8.7, we would calculate an estimate

of the discrimination ratio as

DR̂

Clearly by this measure, the gauge is capable.

Finally, in this section we have focused primarily on instrument or gauge precision, not

gauge accuracy. These two concepts are illustrated in Figure 8.15. In this figure, the bull’s-eye

of the target is considered to be the true value of the measured characteristic, or m the mean of

=
1 + �P

1 − �P
=

1 + 0.9214

1 − 0.9214
= 24.45

DR P

P

= +
−

1

1

ρ
ρ

SNR =
B

2�̂P

1 − �̂P

=
B

2(0.9214)

1 − 0.9214
= 4.84

�̂P = 1 − �̂M = 1 − 0.0786 = 0.9214�̂P = 1 − �̂M

�̂M = 0.0786

(a) (b)

(d)(c)

Accuracy

high

low

Precisionhigh low

■ F I G U R E  8 . 1 5 The concepts of accuracy and precision. 

(a) The gauge is accurate and precise. (b) The gauge is accurate but not

precise. (c) The gauge is not accurate but it is precise. (d) The gauge is

neither accurate nor precise.
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384 Chapter 8 ■ Process and Measurement System Capability Analysis

x in equation 8.23. Accuracy refers to the ability of the instrument to measure the true value

correctly on average, whereas precision is a measure of the inherent variability in the mea-

surement system. Evaluating the accuracy of a gauge or measurement system often requires

the use of a standard, for which the true value of the measured characteristic is known. Often

the accuracy feature of an instrument can be modified by making adjustments to the instrument

or by the use of a properly constructed calibration curve.

It is also possible to design measurement systems capability studies to investigate two

components of measurement error, commonly called the repeatability and the reproducibility
of the gauge. We define reproducibility as the variability due to different operators using the

gauge (or different time periods, or different environments, or in general, different conditions)

and repeatability as reflecting the basic inherent precision of the gauge itself. That is,

(8.30)

The experiment used to measure the components of s2
Gauge is usually called a gauge R

& R study, for the two components of s2
Gauge. We now show how to analyze gauge R & R

experiments.

8.7.2 The Analysis of Variance Method

An example of a gauge R & R study, taken from the paper by Houf and Berman (1988) is shown

in Table 8.7. The data are measurements on thermal impedance (in degrees C per Watt × 100)

on a power module for an induction motor starter. There are 10 parts, 3 operators, and 3 mea-

surements per part. The gauge R & R study is a designed experiment. Specifically, it is a facto-
rial experiment, so-called because each inspector or “operator” measures all of the parts.

The analysis of variance introduced in Chapter 9 can be extended to analyze the data

from a gauge R & R experiment and to estimate the appropriate components of measurement

systems variability. We give only an introduction to the procedure here; for more details, see

Montgomery (2009), Montgomery and Runger (1993a, 1993b), Borror, Montgomery, and

Runger (1997), Burdick and Larsen (1997), the review paper by Burdick, Borror, and

Montgomery (2003), the book by Burdick, Borror, and Montgomery (2005), and the supple-

mental text material for this chapter.

s2
Measurement Error = s2

Gauge = s2
Repeatability + s2

Reproducibility

■ TA B L E  8 . 7

Thermal Impedance Data (°C/W ¥ 100) for the Gauge R & R Experiment

Inspector 1 Inspector 2 Inspector 3Part
Number Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 37 38 37 41 41 40 41 42 41

2 42 41 43 42 42 42 43 42 43

3 30 31 31 31 31 31 29 30 28

4 42 43 42 43 43 43 42 42 42

5 28 30 29 29 30 29 31 29 29

6 42 42 43 45 45 45 44 46 45

7 25 26 27 28 28 30 29 27 27

8 40 40 40 43 42 42 43 43 41

9 25 25 25 27 29 28 26 26 26

10 35 34 34 35 35 34 35 34 35
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If there are a randomly selected parts and b randomly selected operators, and each oper-

ator measures every part n times, then the measurements (i = part, j = operator, k = measure-

ment) could be represented by the model

where the model parameters Pi, Oj, (PO)ij, and eijk are all independent random variables that

represent the effects of parts, operators, the interaction or joint effects of parts and operators,

and random error. This is a random effects model analysis of variance (ANOVA). It is also

sometimes called the standard model for a gauge R & R experiment. We assume that the ran-

dom variables Pi, Oj, (PO)ij, and eijk are normally distributed with mean zero and variances

given by V(Pi) = s2
P, V(Oj) = s2

O, V[(PO)ij] = s2
PO, and V(eijk) = s2. Therefore, the variance of

any observation is

(8.31)

and s2
P, s2

O, s2
PO, and s2 are the variance components. We want to estimate the variance

components.

Analysis of variance methods can be used to estimate the variance components. The

procedure involves partitioning the total variability in the measurements into the following

component parts:

(8.32)

where, as in Chapter 4, the notation SS represents a sum of squares. Although these sums of

squares could be computed manually,1 in practice we always use a computer software pack-

age to perform this task. Each sum of squares on the right-hand side of equation 8.32 is

divided by its degrees of freedom to produce mean squares:

We can show that the expected values of the mean squares are as follows:

E MS n bn

E MS n an

E MS n

P PO P

O PO O

PO PO

( ) = + +

( ) = + +

( ) = +

σ σ σ

σ σ σ

σ σ

2 2 2

2 2 2

2 2

MS
SS

p

MS
SS

o

MS
SS

p o

MS
SS

po n

P

O

PO
P O

E

=
−

=
−

=
−( ) −( )

=
−( )

×

Parts

Operators

Error

1

1

1 1

1

SS SS SS SS SSP OTotal Parts Operators Error= + + +×

V yijk P O PO( ) = + + +σ σ σ σ2 2 2 2

y P O PO

i p

j o

k n
ijk i j ij ijk= + + + ( ) +

=
=
=

⎧
⎨
⎪

⎩⎪
μ ε

1,  2,  . . . ,  

1,  2,  . . . ,  

1,  2,  . . . ,  

1The experimental structure here is that of a factorial design. See Chapter 13 and the supplemental text material for

more details about the analysis of variance, including computing.
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386 Chapter 8 ■ Process and Measurement System Capability Analysis

and

The variance components may be estimated by equating the calculated numerical values of

the mean squares from an analysis of the variance computer program to their expected values

and solving for the variance components. This yields

(8.33)

Table 8.8 shows the analysis of variance for this experiment. The computations were performed

using the Balanced ANOVA routine in Minitab. Based on the P-values, we conclude that the 

effect of parts is large, operators may have a small effect, and there is no significant part-operator

interaction. We may use equation 8.33 to estimate the variance components as follows:

 ŝ2
PO =

2.70 − 0.51

3
= 0.73

 ŝ2
O =

19.63 − 2.70

(10)(3)
= 0.56

ŝ2
P =

437.33 − 2.70

(3)(3)
= 48.29

ˆ

ˆ

ˆ

ˆ

σ

σ

σ

σ

2

2

2

2

=

= −

= −

= −

MS

MS MS

n
MS MS

pn

MS MS

on

E

PO
PO E

O
O PO

P
P PO

E MSE( ) = σ 2

■ TA B L E  8 . 8

ANOVA: Thermal Impedance versus Part Number, Operator

Factor Type Levels Values

Part Num random 10 1 2 3 4 5 6 7

8 9 10

Operator random 3 1 2 3

Analysis of Variance for Thermal

Source DF SS MS F P

Part Num 9 3,935.96 437.33 162.27 0.000

Operator 2 39.27 19.63 7.28 0.005

Part Num*Operator 18 48.51 2.70 5.27 0.000

Error 60 30.67 0.51

Total 89 4,054.40

Source Variance Error Expected Mean Square for Each 
component term Term (using unrestricted model)

1 Part Num 48.2926 3 (4) + 3(3) + 9(1)

2 Operator 0.5646 3 (4) + 3(3) + 30(2)

3 Part Num*Operator 0.7280 4 (4) + 3(3)

4 Error 0.5111 (4)
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and

Note that these estimates also appear at the bottom of the Minitab output.

Occasionally we will find that the estimate of one of the variance components will be

negative. This is certainly not reasonable, since by definition variances are nonnegative.

Unfortunately, negative estimates of variance components can result when we use the analysis

of variance method of estimation (this is considered one of its drawbacks). There are a variety

of ways to deal with this. One possibility is to assume that the negative estimate means that

the variance component is really zero and just set it to zero, leaving the other nonnegative esti-

mates unchanged. Another approach is to estimate the variance components with a method

that ensures nonnegative estimates. Finally, when negative estimates of variance components

occur, they are usually accompanied by nonsignificant model sources of variability. For

example, if is negative, it will usually be because the interaction source of variability is

nonsignificant. We should take this as evidence that s2
PO really is zero, that there is no inter-

action effect, and fit a reduced model of the form

that does not include the interaction term. This is a relatively easy approach and one that often

works nearly as well as more sophisticated methods.

Typically we think of s2 as the repeatability variance component, and the gauge repro-
ducibility as the sum of the operator and the part × operator variance components,

Therefore

and the estimate for our example is

The lower and upper specifications on this power module are LSL = 18 and USL = 58.

Therefore the P/T ratio for the gauge is estimated as

By the standard measures of gauge capability, this gauge would not be considered capable

because the estimate of the P/T ratio exceeds 0.10.

8.7.3 Confidence Intervals in Gauge R & R Studies

The gauge R & R study and the ANOVA procedure described in the previous section resulted

in point estimates of the experimental model variance components and for s2
Gauge,

s2
Repeatability, and s2

Reproducibility. It can be very informative to obtain confidence intervals 

P/T =
6ŝGauge

USL − LSL
=

6(1.34)

58 − 18
= 0.27

ˆ ˆ ˆ ˆ

. . .

.

σ σ σ σGauge
2 2 2= + +

= + +
=

2

0 51 0 56 0 73

1 80

O PO

σ σ σGauge
2

Reproducibility
2

Repeatability
2= +

σ σ σReproducibility
2 2 2= +O PO

y P Oijk i j ijk= + + +μ ε

ŝPO

ŝ2 = 0.51
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388 Chapter 8 ■ Process and Measurement System Capability Analysis

for gauge R & R studies. Confidence intervals in measurement systems capability studies

are discussed in Montgomery (2001), Montgomery and Runger (1993a, 1993b), Borror,

Montgomery, and Runger (1997), Burdick and Larsen (1997), the review paper by Burdick,

Borror, and Montgomery (2003) and the book by Burdick, Borror, and Montgomery (2005).

Among the different methods for obtaining these confidence intervals, the modified large

sample (MLS) method produces good results and is relatively easy to implement for the stan-

dard gauge capability experiment described in Section 8.7.2, where both parts and operators are

considered to be random factors. Other methods for constructing confidence intervals and com-

puter programs to implement these methods are in Burdick, Borror, and Montgomery (2005).

Table 8.9 contains the MLS confidence interval equations for the parameters that are

usually of interest in a measurement systems capability study. Definitions of the quantities

used in Table 8.9 are in Table 8.10. References for all of the confidence interval equations in

Table 8.9 are in Burdick, Borror, and Montgomery (2003). Note that the percentage point of

the F distribution defined in Table 8.10 as Fa,df,• = c2
a,df.

The last column in Table 8.9 contains the 95% confidence intervals for each parameter,

and the last column of Table 8.10 shows the numerical values of the quantities used in com-

puting the 95% confidence intervals. All of the confidence intervals in Table 8.9 are fairly

wide because there are only three operators, and this results in only two degrees of freedom

to estimate the operator effect. Therefore, this will have an impact on length of any confidence

interval for any parameter that is a function of s2
o. This suggests that to obtain narrower con-

fidence intervals in a gauge R & R study, it will be necessary to increase the number of oper-

ators. Since it is fairly standard practice to use only two or three operators in these studies,

this implies that one needs to carefully consider the consequences of applying a standard

design to estimate gauge capability.

8.7.4 False Defectives and Passed Defectives

In previous sections we have introduced several ways to summarize the capability of a gauge or

instrument, including the P/T ratio (equation 8.25), the signal-to-noise ratio SNR (equation 8.28),

■ TA B L E  8 . 9

100(1 - a)% MLS Confidence Intervals for the Standard Gauge R & R Experiment

Parameter Lower Bound Upper Bound Example 95% Interval

[22.69; 161.64]

[1.20; 27.02]

[24.48; 166.23]

[0.628; 0.991]

[0.009; 0.372]1− LP1− UPρm

U
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pL oP =
+

∗

∗ρp

σ̂ Total
2 +

V

pon
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UMσ̂ Gauge
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pn
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■ TA B L E  8 . 1 0

Definition of Terms in Table 8.9

Term Definition Value in Example

VLP 53,076.17

VUP 1,040,643.4

VLM 321.282

VUM 572,150.12

VLT 5,311,676.7

VUT 109,230,276

G1 0.5269

G2 0.7289

G3 0.4290

G4 0.2797

H1 2.3329

H2 38.4979

H3 1.1869

H4 0.4821

G13 −0.0236

H13 −0.1800

L* 0.5075

U* 31.6827

MS F MS

p n F MS F MS p F MS
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390 Chapter 8 ■ Process and Measurement System Capability Analysis

the discrimination ratio DR (equation 8.29), and rP and rM (equations 8.26 and 8.27). None of

these quantities really describe the capability of the gauge in any sense that is directly interpretable.

The effective capability of a measuring system is best described in terms of how well it discrimi-

nates between good and bad parts. Consider the model first proposed in equation 8.23:

where y is the total observed measurement, x is the true value of the measurement, and e is

the measurement error. The random variables x and e are normally and independently dis-

tributed random variables with means m and 0 and variances s2
P and s2

Gauge, respectively. The

joint probability density function of y and x, say f (y, x), is bivariate normal with mean vector

[m, m]′ and covariance matrix

A unit of product or part is in conformance to the specifications if

(8.34)

and the measurement system will “pass” a unit as a nondefective if

(8.35)

If equation 8.34 is true but equation 8.35 is false, a conforming part has been incorrectly

failed. Alternatively, if equation 8.34 is false but equation 8.35 is true, a nonconforming part

has been incorrectly passed. Sometimes this is called a missed fault. A very useful way to

describe the capability of a measurement system is in terms of producer’s risk and con-
sumer’s risk. The producer’s risk d is defined as the conditional probability that a measure-

ment system will fail a part when the part conforms to the specifications (this is also called a

false failure). The consumer’s risk b is defined as the conditional probability that a measure-

ment system will pass a part when the part does not conform to the specifications (this is the

missed fault described above).

Expressions are available for computing the two conditional probabilities:

(8.36)

and

(8.37)

where f (x) represents the marginal probability density function for x which is normal with

mean m and variance s2
p. Figure 8.16 shows the regions of false failures (FF) and missed faults

b =

�
LSL

−•

�
USL

LSL

f(y, x)dydx + �
•

USL

�
USL

LSL

f(y, x)dydx

1 − �
USL

LSL

f(x)dx

d =

�
USL  

LSL

�
LSL

−•

f(y, x)dydx + �
USL

LSL

�
•

USL

f(y, x)dydx

�
USL

LSL

f(x)dx

LSL £ y £ USL

LSL £ x £ USL

σ σ
σ σ
Total
2 2

2 2
P

P P

⎡

⎣
⎢

⎤

⎦
⎥

y = x + e

c08ProcessandMeasurementSystemCapabilityAnalysis.qxd  4/23/12  7:15 PM  Page 390



USL
X

LSL

USL

LSL

Y

MF

FF

FF

MF

■ F I G U R E  8 . 1 6 Missed fault (MF) and false

failures (FF) regions of a measurement system shown on a

bivariate normal distribution contour. [From Burdick,

Borror, and Montgomery (2003).]

(MF) on a density contour of the bivariate normal distribution. Thus, equations 8.36 and 8.37

can be used to compute d and b for given values of m, s2
P, s2

Total, LSL, and USL. The SAS

code to perform this computation is shown in Table 8.11.

In practice, we don’t know the true values of m, s2
P, and s2

Total. If one uses only point

estimates, the calculation does not account for the uncertainty in the estimates. It would be

very helpful to provide confidence intervals for these parameters in the calculation of d and

b. One way to do this is to compute d and b under different scenarios suggested by the con-

fidence intervals on the variance components. For example, a pessimistic scenario might con-

sider the worst possible performance for the measurement system, and the worst possible

capability for the manufacturing process. To do this, set s2
P equal to the upper bound of the

confidence interval for s2
P and solve for the value of s2

Total that provides the lower bound on

rP. Conversely, one might consider an optimistic scenario with the best possible performance

for the measurement system combined with the best process capability. For some other sug-

gestions, see Burdick, Borror, and Montgomery (2003).

Table 8.12 shows the calculation of the producer’s risk (d) and the consumer’s risk (b)

using equations 8.36 and 8.37 under the two scenarios discussed above. The scenario labeled

“Pessimistic” is computed assuming the worst possible performance for both the production

process and the measurement system. This is done by computing d and b using the upper

bound on s2
P and the lower bound on rP. We used the sample mean 35.8 for the value of m,

the computed confidence bounds in Table 8.10, and solved for s2
Total using the relationship

s2
Total = s2

P/rP. The SAS code shown in Table 8.11 was used to make this calculation. The 

scenario labeled “Optimistic” uses the best condition for both the process and the measure-

ment system. In particular, we use the lower bound of s2
P and the upper bound of rP. As with

the first scenario, we use the point estimate . Notice that the range for the producer’s

risk is from 0.002% to 15.2% and for the consumer’s risk is from 12.3% to 31.0%. Those are

very wide intervals, due mostly to the small number of operators used in this particular gauge

R & R experiment.

Burdick, Park, Montgomery, and Borror (2005) present another method for obtaining

confidence intervals for the misclassification rates d and b based on the generalized inference

approach. See Tsui and Weerahandi (1989) and Weerahandi (1993) for a discussion of general-

ized inference. This is a computer-intensive approach and requires specialized software. Refer

to Burdick, Borror, and Montgomery (2005).

m̂ = 35.8

8.7 Gauge and Measurement System Capability Studies 391
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8.7.5 Attribute Gauge Capability

In previous sections we have assumed that the measurements are numerical, such as phy-

sical dimensions, or properties that can be expressed on a numerical scale. There are many

situations where the output of a gauge is an attribute, such as pass/fail. Nominal or ordinal

data are also relatively common. Attribute gauge capabilities can be conducted in many of

these situations.

■ TA B L E  8 . 1 2

Measurement System Error Rates for Two Scenarios

Scenario s2
P rP d b

Pessimistic 161.64 0.628 15.2% 31.0%

Optimistic 22.69 0.991 0.002% 12.3%

■ TA B L E  8 . 1 1

SAS Code for Computing Measurement System Misclassification Probabilities d and b [From
Burdick, Borror, and Montgomery (2003)]

data misclass;
input mu lsl usl rhop gammap;
gammat=gammap/rhop;
cov=gammap;
corr=cov/(sqrt(gammap)*sqrt(gammat));
uslstdy=(usl-mu)/sqrt(gammat);
uslstdx=(usl-mu)/sqrt(gammap);
lslstdy=(lsl-mu)/sqrt(gammat);
lslstdx=(lsl-mu)/sqrt(gammap);

ff1=probbnrm(uslstdx, lslstdy, corr)-
probbnrm (lslstdx, lslstdy, corr);
ff2=probnorm(uslstdx)-probbnrm(uslstdx, uslstdy, corr);
mf1=probbnrm(lslstdx, uslstdy, corr)-
probbnrm(lslstdx, lslstdy, corr);

mf2=probnorm(uslstdy)-probbnrm(uslstdx, uslstdy, corr);
delta=(ff1+ff2)/(probnorm(uslstdx)-
probnorm(lslstdx));
beta=(mf1+mf2)/(1-(probnorm(uslstdx)-
probnorm(lslstdx));

keep mu lsl usl rhop gammap gammat delta beta;
datalines;
35.8 18 58 .628 161.64
;
proc print data=misclass;
run;

Note: In the input statement, rhop is rP and gammap is s2
P.
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A very common situation is to determine if operating personnel consistently make

the same decisions regarding the units that they are inspecting or analyzing. For example,

consider a bank that uses manual underwriting to analyze mortgage loan applications. Each

underwriter must use the information supplied by the applicant and other external information

such as credit history to classify the application into one of four categories; decline or do not

fund, fund-1, fund-2, and fund-3. The fund-2 and fund-3 categories are applicants who are con-

sidered low-risk loans while fund-1 is a higher-risk applicant. Suppose that 30 applications are

selected and evaluated by a panel of senior underwriters who arrive at a consensus evaluation

for each application, then three different underwriters (Sue, Fred, and John) are asked to eval-

uate each application twice. The applications are “blinded” (customer names, addresses, and

other identifying information removed) and the two evaluations are performed several days

apart. The data are shown in Table 8.13. The column labeled “classification” in this table is the

consensus decision reached by the panel of senior underwriters.

■ TA B L E  8 . 1 3

Loan Evaluation Data for Attribute Gauge Capability Analysis

Application Classification Sue1 Sue2 Fred1 Fred2 John1 John2

1 Fund-1 Fund-3 Fund-3 Fund-2 Fund-2 Fund-1 Fund-3

2 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-1

3 Fund-1 Fund-3 Fund-3 Fund-2 Fund-2 Fund-1 Fund-1

4 Fund-1 Fund-1 Fund-1 Fund-2 Fund-1 Fund-1 Fund-1

5 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1

6 Fund-3 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-1

7 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3

8 Fund-3 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-3

9 Fund-1 Fund-3 Fund-3 Fund-1 Fund-1 Fund-1 Fund-1

10 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1

11 Decline Decline Decline Fund-3 Fund-3 Decline Decline

12 Fund-2 Fund-3 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2

13 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1

14 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2

15 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1

16 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1

17 Fund-3 Decline Fund-3 Fund-1 Fund-1 Fund-3 Fund-3

18 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-3 Fund-1

19 Decline Fund-3 Fund-3 Fund-3 Decline Decline Decline

20 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1

21 Fund-2 Fund-2 Fund-2 Fund-1 Fund-2 Fund-2 Fund-1

22 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2

23 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1

24 Fund-3 Decline Fund-3 Fund-1 Fund-2 Fund-3 Fund-1

25 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3

26 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-1

27 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1 Fund-2 Fund-2

28 Decline Decline Decline Fund-3 Decline Decline Decline

29 Decline Decline Decline Fund-3 Decline Decline Fund-3

30 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2

8.7 Gauge and Measurement System Capability Studies 393
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The attribute gauge capability analysis in this situation would determine the proportion

of time that the underwriter agrees with him/herself in evaluating the loan application. This is

a measure of repeatability. We would also be interested in the proportion of time that the

underwriter agrees with the correct classification. This is a measure of bias.

Using Minitab to calculate the percentages of agreement (the Attribute Agreement

Analysis routine in Minitab v15) results in the output shown in Table 8.14. Notice that

Minitab also calculates and displays confidence intervals on the percent match. Figure 8.17

presents graphs of the confidence intervals for the percentages within underwriters (a mea-

sure of how well the underwriters agree with themselves across trials) and for the percentage

of times the underwriters agree with the standard (correct) answer. Generally, while there is

considerable subjectivity in interpreting the results of attribute gauge capability studies, there

is not great agreement in this study. More training may be needed to ensure that underwriters

produce more consistent and correct decision for mortgage loan applications.

Good references to other approaches for conducting attribute gauge capability stud-

ies are Boyles (2001), De Mast and Van Wieringen (2004, 2007), and Van Wieringen

(2003).

■ TA B L E  8 . 1 4

Minitab Attribute Agreement Analysis for the Loan Evaluation Data in Table 8.13

Attribute Agreement Analysis for Sue1, Sue2, Fred1, Fred2, John1, John2

Within Appraisers

Assessment Agreement
Appraiser # Inspected # Matched Percent 95% CI
Sue 30 23 76.67 (57.72, 90.07)
Fred 30 21 70.00 (50.60, 85.27)
John 30 18 60.00 (40.60, 77.34)

# Matched: Appraiser agrees with him/herself across trials.

Each Appraiser vs Standard

Assessment Agreement
Appraiser # Inspected # Matched Percent 95% CI
Sue 30 19 63.33 (43.86, 80.07)
Fred 30 17 56.67 (37.43, 74.54)
John 30 18 60.00 (40.60, 77.34)

# Matched: Appraiser’s assessment across trials agrees with the known 
standard.

Between Appraisers

Assessment Agreement
# Inspected # Matched Percent 95% CI

30 7 23.33 (9.93, 42.28)
# Matched: All appraisers’ assessments agree with each other.

All Appraisers vs Standard

Assessment Agreement
# Inspected # Matched Percent 95% CI

30 7 23.33 (9.93, 42.28)

# Matched: All appraisers’ assessments agree with the known standard.
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8.7.6 Comparing Customer and Supplier Measurement Systems

In customer–supplier relationships it is often very important for the two parties to be able to

reliably determine that the supplier’s product is within customer specifications. For the sup-

plier, its internal measurement systems are essential to effective process control and/or final

test and shipment. The customer must be able to verify the supplier’s claims regarding product

quality.  An essential component of the business relationship is the conformance of the two

measurement systems.  If the customer and supplier measurement systems are not in agree-

ment, then differences in opinion about product quality can occur and the decision to accept

or reject a shipment may become a basis for dispute between the two parties.  This endangers

the business relationship.

In many supply chains, it is common practice to compare the supplier and customer

measurements of a given quantitative product characteristic in a shipment of product using a

linear regression analysis technique. The general procedure is as follows.  Suppose that the

shipment consists of n units of product. The supplier measurements of the n units, say y1,

y2 . . . , yn, are regressed on the corresponding n customer measurements, x1,x2, . . . ,xn (or

vice versa), and then the usual R2 statistic is computed.  This is interpreted as the percentage

of variation in the supplier’s measurements that is explained by the variation in the cus-

tomer’s measurement.  It is used as a measure of the degree of conformance between the two

measurement systems. Frequently, a rule of thumb is that if the value of R2 is less than some

arbitrary value (say 80%), it is concluded that the two measurement systems are not in con-

formance. Nachtsheim and Becker (2011) show that the R2 statistic is never an appropriate

statistic for making this decision. They demonstrate that the R2 statistic can be arbitrarily
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■ F I G U R E  8 . 1 7 Confidence intervals for the attribute agreement analysis.
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small, even when the two measurement systems are in complete conformance. They provide

an example in which by changing the capability of the supplier’s production process, the R2

statistic will change from 19% to 98% even though the two measurement systems are exactly

the same (and therefore in complete conformance).

Nachtsheim and Becker (2011) show through a series of examples that:

1. The value of R2 depends directly on the standard deviation of the distribution of the

true product characteristics, the standard deviation of the supplier’s measurement

error distribution, and the standard deviation of the customer’s measurement error

distribution.

2. As the standard deviation of the supplier’s product quality characteristic approaches

zero, the value of R2 will approach the squared correlation between the supplier and

customer measurement errors. This means that if the supplier’s process distribution is

very tightly controlled (which is a good thing), R2 will approach the squared correla-

tion between the supplier and customer errors—which will generally be near zero. So

if a supplier’s process standard deviation is small (relative to the measurement error

distributions), the use of R2 as a guide to performance of the two measurement systems

will often lead to the erroneous conclusion that the measurement systems are not in

conformity.

3. As the standard deviation of the supplier’s product quality characteristic approaches

infinity (becomes very large, indicating a poorly controlled process with lots of 

variability), the value of R2 will approach unity. So if the supplier’s process distribution 

is not tightly controlled, one may conclude that the two measurement systems are in

conformance.

4. As either measurement error standard deviation increases (relative to the process distri-

bution), the value of R2 decreases.

5. As both measurement error standard deviations approach zero, the value of R2 will

approach unity.

Nachtsheim and Becker (2011) suggest that an appropriate approach for comparing measure-

ment systems can be based on one described by Hawkins (2002). The procedure they recom-

mend is as follows. Assume as we did previously that the n customer measurements are 

x1, x2, . . . , xn and the corresponding n supplier measurements are y1, y2 . . . , yn. Then

1. Compute the n sums and n differences:

Si = yi + xi, i = 1, 2, . . . , n

Di = yi − xi, i = 1, 2, . . . , n

2. Plot the values of Di on the y-axis versus the values of Si on the x axis. When the two

measurement systems are in conformance, this plot will be similar to the standard plot

of residuals against predicted values in a regression problem where the basic assump-

tions are met—that is, constant error variance, no outliers, no evidence of curvature,

and no slope. If this is the case, conformity of the measurement systems can be deter-

mined by using a paired t-test of the hypothesis H0: mD = 0; that is, the mean of the

differences is zero. If the differences are not approximately normally distributed,

either transformations or the sign test could be used instead of the t-test. Linear

regression methods can be used to check for each type of non-conformity and are

described in the next steps.

3. Check for non-constant variance. If the variances of x and y are constant, the vertical

range of the differences will be approximately constant for all values of the sum. If this
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is not the case, then unequal variance is indicated for at least one of the measurements.

A right-opening megaphone shape is frequently an indication that the variance of the

differences is increasing with the sum of the measurements.

4. Check for outliers. This is indicated by a large vertical deviation on the plot.

5. Check for linear trend: Regress the values of Di versus the values of Si and test for a

zero slope. If the slope is significantly different than zero, this suggests that the slope

between y and x is not equal to unity, so there is a relative bias between the two mea-

surement systems. The presence of bias would need to be resolved through linear 

calibration.

6. Check for curvature. The presence of curvature can usually be assessed visually. 

The presence of curvature implies bias that can only be resolved through nonlinear

calibration.

8.8 Setting Specification Limits on Discrete Components

It is often necessary to use information from a process capability study to set specifications

on discrete parts or components that interact with other components to form the final prod-

uct. This is particularly important in complex assemblies to prevent tolerance stack-up prob-
lems where there are many interacting dimensions. This section discusses some aspects of

setting specifications on components to ensure that the final product meets specifications.

Some of these concepts are an integral part of design for Six Sigma (DFSS).

8.8.1 Linear Combinations

In many cases, the dimension of an item is a linear combination of the dimensions of the

component parts. That is, if the dimensions of the components are x1, x2, . . . , xn, then the

dimension of the final assembly is

(8.38)

where the ac are constants.

If the xi are normally and independently distributed with mean mi and variance 

s2
i, then y is normally distributed with mean and variance .

Therefore, if mi and s2
i are known for each component, the fraction of assembled items falling

outside the specifications can be determined.

s2
y = Σ i

n=1 a2
i  s2

imy = Σ i
n=1 aimi

y a x a x a xn n= + + +1 1 2 2 L

assumed independent, because they are produced on different

machines. All lengths are in inches. Determine the proportion

of linkages that meet the customer specification on overall

length of 12 ± 0.10.

EXAMPLE 8.8

A linkage consists of four components as shown in Figure 8.18.

The lengths of x1, x2, x3, and x4 are known to be x1 ∼ N(2.0,

0.0004), x2 ∼ N(4.5, 0.0009), x3 ∼ N(3.0, 0.0004), and 

x4 ∼ N(2.5, 0.0001). The lengths of the components can be

Meeting Customer Specifications
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To find the fraction of linkages that are within specification,

we must evaluate

Therefore, we conclude that 98.172% of the assembled

linkages will fall within the specification limits. This is not a

Six Sigma product.
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SOLUTION

To find the fraction of linkages that fall within design specifi-

cation limits, note that y is normally distributed with mean

and variance

σ y
2 0 0004 0 0009 0 0004 0 0001 0 0018= + + + =. . . . .

μy = + + + =2 0 4 5 3 0 2 5 12 0. . . . .

x1 x2 x3 x4

y

■ F I G U R E  8 . 1 8 A linkage assembly

with four components.

assembly is

Suppose that the variances of the component lengths are all

equal—that is, s2
1 = s2

2 = s2
3 = s2 (say). Then

and the maximum possible value for the variance of the length

of any component is

Effectively, if s2 ≤ 0.000033 for each component, then the nat-

ural tolerance limits for the final assembly will be inside the

specification limits such that Cp = 2.0.

σ
σ

2
2

3

0 0001

3
0 000033= = =y .
.

σ σy
2 23=

2
0.0001=σ σ σ σy

2
1
2

2
2

3
2= + + ≤ (0.010)

1 = 1.00

x1 x2 x3

y

μ μ2 = 3.00 μ3 = 2.00

■ F I G U R E  8 . 1 9 Assembly for Example 8.9.

Sometimes it is necessary to determine specification limits on the individual compo-

nents of an assembly so that specification limits on the final assembly will be satisfied. This

is demonstrated in Example 8.9.

EXAMPLE 8.9

Consider the assembly shown in Figure 8.19. Suppose that the

specifications on this assembly are 6.00 ± 0.06 in. Let each

component x1, x2, and x3 be normally and independently dis-

tributed with means m1 = 1.00 in., m2 = 3.00 in., and m3 = 2.00 in.,

respectively. Suppose that we want the specification limits to

fall inside the natural tolerance limits of the process for the

final assembly so that Cp = 2.0, approximately, for the final

assembly. This is a Six Sigma product, resulting in about 3.4

defective assemblies per million.

The length of the final assembly is normally distributed.

Furthermore, if as a Six Sigma product, this implies that

the natural tolerance limits must be located at m ± 6sy.

Now my = m1 + m2 + m3 = 1.00 + 3.00 + 2.00 = 6.00, so the

process is centered at the nominal value. Therefore, the

maximum possible value of sy that would yield an accept-

able product is

That is, if sy ≤ 0.010, then the number of nonconforming

assemblies produced will be acceptable.

Now let us see how this affects the specifications on the

individual components. The variance of the length of the final

σ y = =
0 06 0 010.
6 .

Designing a Six Sigma Product
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This can be translated into specification limits on the

individual components. If we assume that the natural toler-

ance limits and the specification limits for the components

are to coincide exactly, then the specification limits for each

component are as follows:

which indicates that very few assemblies will have interfer-

ence. This is essentially a Six Sigma design.

In problems of this type, we occasionally define a mini-

mum clearance—say, C—such that

Thus, C becomes the natural tolerance for the assembly and

can be compared with the design specification. In our example,

if we establish a = 0.0001 (i.e., only 1 out of 10,000 assem-

blies or 100 ppm will have clearance less than or equal to C ),

then we have

C
Zy

y

−
= −

μ
σ 0 0001.

P Cclearance <{ } = α

EXAMPLE 8.10

A shaft is to be assembled into a bearing. The internal diame-

ter of the bearing is a normal random variable—say, x1—with

mean m1 = 1.500 in. and standard deviation s1 = 0.0020 in. The

external diameter of the shaft—say, x2—is normally distributed

with mean m2 = 1.480 in. and standard deviation s2 = 0.0040 in.

The assembly is shown in Figure 8.20.

When the two parts are assembled, interference will occur

if the shaft diameter is larger than the bearing diameter—that

is, if

Note that the distribution of y is normal with mean

and variance

Therefore, the probability of interference is

 4 ppm−( ) = ( )4 47 0 000004Φ . .

P P yinterference{ } = <{ } = −⎛
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=0
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0 00002
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.
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2
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0 0020 0 0040 0 00002= + = ( ) + ( ) =. . .

μ μ μy = − = − =1 2 1 500 1 480 0 020. . .

y x x= − <1 2 0

Assembly of a Shaft and a Bearing

It is possible to give a general solution to the problem in Example 8.9. Let the assem-

bly consist of n components having common variance s2. If the natural tolerances of the

assembly are defined so that no more than a% of the assemblies will fall outside these lim-

its, and 2W is the width of the specification limits, then

(8.39)

is the maximum possible value for the variance of the final assembly that will permit the nat-

ural tolerance limits and the specification limits to coincide. Consequently, the maximum per-

missible value of the variance for the individual components is

(8.40)σ
σ

2
2

∗
∗

= y

n

σ
α

y
W

Z
2

2

2

∗ =
⎛

⎝
⎜

⎞

⎠
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■ F I G U R E  8 . 2 0 Assembly of a shaft and

a bearing.

x2 x1
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8.8.2 Nonlinear Combinations

In some problems, the dimension of interest may be a nonlinear function of the n compo-

nent dimensions x1, x2, . . . xn—say,

(8.41)

In problems of this type, the usual approach is to approximate the nonlinear function g by a

linear function of the xi in the region of interest. If m1, m2, . . . mn are the nominal dimensions

associated with the components x1, x2, . . . xn, then by expanding the right-hand side of equa-

tion 8.41 in a Taylor series about m1, m2, . . . mn, we obtain

(8.42)

where R represents the higher-order terms. Neglecting the terms of higher order, we can apply

the expected value and variance operators to obtain

(8.43)

and

(8.44)

This procedure to find an approximate mean and variance of a nonlinear combination of ran-

dom variables is sometimes called the delta method. Equation 8.44 is often called the trans-
mission of error formula.

The following example illustrates how these results are useful in tolerance problems.
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or

C − = −0 020

0 00002
3 71

.

.
.

which implies that .

That is, only 1 out of 10,000 assemblies will have clearance

less than 0.0034 in.

C = 0.020 − (3.71)20.00002 = 0.0034

independently distributed with means equal to their nominal

values.

From Ohm’s law, we know that the voltage is

V IR=

EXAMPLE 8.11

Consider the simple DC circuit components shown in Fig-

ure 8.21. Suppose that the voltage across the points (a, b) is

required to be 100 ± 2 V. The specifications on the current and

the resistance in the circuit are shown in Figure 8.21. We assume

that the component random variables I and R are normally and

A Product with Nonlinear Dimensions
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and sR = 0.02. Note that sI and sR are the largest possible val-

ues of the component standard deviations consistent with the

natural tolerance limits falling inside or equal to the specifica-

tion limits.

Using these results, and if we assume that the voltage V is

approximately normally distributed, then

and

approximately. Thus . Therefore, the proba-

bility that the voltage will fall within the design specifications is

That is, only 84% of the observed output voltages will fall

within the design specifications. Note that the natural tolerance

limits or process capability for the output voltage is

or

In this problem the process capability ratio is

Note that, although the individual current and resistance

variations are not excessive relative to their specifications,

because of tolerance stack-up problems, they interact to produce

a circuit whose performance relative to the voltage specifica-

tions is very poor.

Cp = − = −
( )

=USL LSL
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6 1 41
0 47
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sV = 21.99 = 1.41

σ μ σ μ σV R I I R
2 2 2 2 2 2 2 2 2

4 0 33 25 0 02 1 99− + = ( ) ( ) + ( ) ( ) =~ . . .

μ μ μV I R− = ( )( ) =~ 25 4 100 V

Since this involves a nonlinear combination, we expand V in a

Taylor series about mean current mI and mean resistance mR,

yielding

neglecting the terms of higher order. Now the mean and vari-

ance of voltage are

and

approximately, where and are the variances of I and R,

respectively.

Now suppose that I and R are centered at their nominal

values and that the natural tolerance limits are defined so that

a = 0.0027 is the fraction of values of each component falling

outside these limits. Assume also that the specification limits

are exactly equal to the natural tolerance limits. For the cur-

rent I we have I = 25 ± 1 A. That is, 24 ≤ I ≤ 26 A correspond

to the natural tolerance limits and the specifications. Since

I ∼ N(25, s2
I), and since Za/2 = Z0.00135 = 3.00, we have

or sI = 0.33. For the resistance, we have R = 4 ± 0.06 ohm as

the specification limits and the natural tolerance limits. Thus,

4 06 4 00
3 00

. .
.

− =
σ R

26 25
3 00

− =
σ I

.

s2
Rs2

I

σ μ σ μ σV R I I R
2 2 2 2 2− +~

μ μ μV I R−~

V I RI R I R R I− + −( ) + −( )~ μ μ μ μ μ μ

8.9 Estimating the Natural Tolerance Limits of a Process

In many types of production processes, it is customary to think of the natural tolerance

limits as those limits that contain a certain fraction—say, 1 − a—of the distribution. In

this section we present some approaches to estimating the natural tolerance limits of a

process.

If the underlying distribution of the quality characteristic and its parameters are known—

say, on the basis of long experience—then the tolerance limits may be readily established. For

example, in Section 8.7, we studied several problems involving tolerances where the quality

characteristic was normally distributed with known mean m and known variance s2. If in this

■ F I G U R E  8 . 2 1
Electrical circuit for 

Example 8.11.

I

I = 25 ± 1
R = 4 ± 0.06

a R b

8.9 Estimating the Natural Tolerance Limits of a Process 401
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402 Chapter 8 ■ Process and Measurement System Capability Analysis

case we define the tolerance limits as those limits that contain 100(1 − a)% of the distribu-

tion of this quality characteristic, then these limits are simply m ± Za/2s. If a = 0.05 (say),

then the tolerance limits are given by m ± 1.96s.

In most practical problems, both the form of the distribution and its parameters will be

unknown. However, the parameters may usually be estimated from sample data. In certain

cases, then, it is possible to estimate the tolerance limits of the process by use of these sam-

ple statistics. We will discuss two procedures for estimating natural tolerance limits, one for

those situations in which the normality assumption is reasonable, and a nonparametric

approach useful in cases where the normality assumption is inappropriate.

The estimation of the natural tolerance limits of a process is an important problem with

many significant practical implications. As noted previously, unless the product specifications

exactly coincide with or exceed the natural tolerance limits of the process (PCR ≥ 1), an

extremely high percentage of the production will be outside specifications, resulting in a high

loss or rework rate.

8.9.1 Tolerance Limits Based on the Normal Distribution

Suppose a random variable x is normally distributed with mean m and variance s2, both

unknown. From a random sample of n observations, the sample mean and sample variance

s2 may be computed. A logical procedure for estimating the natural tolerance limits m ± Za/2s
is to replace m by and s by s, yielding

(8.45)

Since and s are only estimates and not the true parameter values, we cannot say that the

above interval always contains 100(1 − a)% of the distribution. However, one may determine

a constant K, such that in a large number of samples a fraction g of the intervals ± Ks will

include at least 100(1 − a)% of the distribution. Values of K for 2 ≤ n ≤ 1000, g = 0.90, 0.95,

0.99, and a = 0.10, 0.05, and 0.01 are given in Appendix Table VII.

x

x

x

x

The manufacturer of a solid-fuel rocket propellant is interested

in finding the tolerance limits of the process such that 95% of

the burning rates will lie within these limits with probability

0.99. It is known from previous experience that the burning

rate is normally distributed. A random sample of 25 observa-

tions shows that the sample mean and variance of burning rate

are = 40.75 and s2 = 1.87, respectively. Since a = 0.05,

g = 0.99, and n = 25, we find K = 2.972 from Appendix Table VII.

Therefore, the required tolerance limits are found as ±
2.972s = 40.75 ± (2.972)(1.37) = 40.75 ± 4.07 = [36.68, 44.82].

x

x

EXAMPLE 8.12 Constructing a Tolerance Interval

x Z s± α 2

We note that there is a fundamental difference between confidence limits and tolerance

limits. Confidence limits are used to provide an interval estimate of the parameter of a dis-

tribution, whereas tolerance limits are used to indicate the limits between which we can

expect to find a specified proportion of a population. Note that as n approaches infinity, the

length of a confidence interval approaches zero, while the tolerance limits approach the cor-

responding value for the population. Thus, in Appendix Table VII, as n approaches infinity for

a = 0.05, say, K approaches 1.96.
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It is also possible to specify one-sided tolerance limits based on the normal distribution.

That is, we may wish to state that with probability g at least 100(1 − a)% of the distribution

is greater than the lower tolerance limit − Ks or less than the upper tolerance limit + Ks.

Values of K for these one-sided tolerance limits for 2 ≤ n ≤ 1000, g = 0.90, 0.95, 0.99, and 

a = 0.10, 0.05, and 0.01 are given in Appendix Table VIII.

8.9.2 Nonparametric Tolerance Limits

It is possible to construct nonparametric (or distribution-free) tolerance limits that are valid

for any continuous probability distribution. These intervals are based on the distribution of the

extreme values (largest and smallest sample observation) in a sample from an arbitrary con-

tinuous distribution. For two-sided tolerance limits, the number of observations that must be

taken to ensure that with probability g at least 100(1 − a)% of the distribution will lie between

the largest and smallest observations obtained in the sample is

approximately. Thus, to be 99% certain that at least 95% of the population will be included

between the sample extreme values, we have a = 0.05, g = 0.99, and consequently,

For one-sided nonparametric tolerance limits such that with probability g at least

100(1 − a)% of the population exceeds the smallest sample value (or is less than the largest

sample value), we must take a sample of

observations. Thus, the upper nonparametric tolerance limit that contains at least 90% of the

population with probability at least 0.95 (a = 0.10 and g = 0.95) is the largest observation in

a sample of

observations.

In general, nonparametric tolerance limits have limited practical value, because to con-

struct suitable intervals that contain a relatively large fraction of the distribution with high

probability, large samples are required. In some cases, the sample sizes required may be so

large as to prohibit their use. If one can specify the form of the distribution, it is possible for

a given sample size to construct tolerance intervals that are narrower than those obtained from

the nonparametric approach.

Important Terms and Concepts
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ANOVA approach to a gauge R & R experiment

Components of gauge error

Components of measurement error

Confidence intervals for gauge R & R studies 

Confidence intervals on process capability ratios 

Consumer’s risk or missed fault for a gauge 

Control charts and process capability analysis

Delta method 
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Discrimination ratio (DR) for a gauge 

Estimating variance components

Factorial experiment 

Gauge R & R experiment 

Graphical methods for process capability analysis

Measurement systems capability analysis

Natural tolerance limits for a normal distribution 

Natural tolerance limits of a process 

Nonparametric tolerance limits 

Normal distribution and process capability ratios 

One-sided process-capability ratios 

PCR Cp

PCR Cpk

PCR Cpm

Precision and accuracy of a gauge 

Precision-to-tolerance (P/T) ratio 

Process capability 

Process capability analysis 

Process performance indices Pp and Ppk

Producer’s risk or false failure for a gauge 

Product characterization 

Random effects model ANOVA 

Signal-to-noise ratio (SNR) for a gauge 

Tolerance stack-up problems 

Transmission of error formula 

Exercises 

8.1. A process is in statistical control with

. Specifications

are at LSL = 16 and USL = 24.

(a) Estimate the process capability

with an appropriate process

capability ratio.

(b) Items that are produced below

the lower specification limit

must be scrapped, while items

that are above the upper speci-

fication limit can be reworked.

What proportion of the process

output is scrap, and what pro-

portion is rework?

(c) Suppose that scrap is four times as expensive as

rework. Does this suggest that moving the process

center could reduce overall costs?  What value of

the process target would you recommend?

8.2. A process is in statistical control with 

. Specifications are at LSL = 196 and

USL = 206.

(a) Estimate the process capability with an appro-

priate process capability ratio.

(b) What is the potential capability of this process?

(c) Items that are produced below the lower specifi-

cation limit must be scrapped, while items that

are above the upper specification limit can be

reworked.  What proportion of the process output

is scrap and what proportion is rework?

(d) Because scrap is more expensive than rework,

the process has been centered closer to the upper

specification limit. If scrap is twice as expensive

as rework, is the process mean at the best possible

location? What value of the process target would

you recommend?

and  s = 2.0

x = 202.5

x = 20 and s = 1.2

8.3. Consider the piston ring data in Table 6.3. Estimate

the process capability assuming that specifications

are 74.00 ± 0.035 mm.

8.4. Perform a process capability analysis using and 

R charts for the data in Exercise 6.7.

8.5. Estimate process capability using and R charts for

the power supply voltage data in Exercise 6.8. If

specifications are at 350 ± 5 V, calculate Cp, Cpk, and

Cpkm. Interpret these capability ratios.

8.6. Consider the hole diameter data in Exercise 6.9.

Estimate process capability using and R charts. If

specifications are at 0 ± 0.01, calculate Cp, Cpk, and

Cpkm. Interpret these ratios.

8.7. A process is in control with , and

n = 5. The process specifications are at 95 ± 10. The

quality characteristic has a normal distribution.

(a) Estimate the potential capability.

(b) Estimate the actual capability.

(c) How much could the fallout in the process be

reduced if the process were corrected to operate

at the nominal specification?

8.8. A process is in statistical control with and

. The control chart uses a sample size of

n = 4. Specifications are at 200 ± 8. The quality char-

acteristic is normally distributed.

(a) Estimate the potential capability of the process.

(b) Estimate the actual process capability.

(c) How much improvement could be made in

process performance if the mean could be cen-

tered at the nominal value?

8.9. A process is in statistical control with and

. The control chart uses a sample size of 

n = 2. Specifications are at 40 ± 5. The quality char-

acteristic is normally distributed.

R = 2.5

x = 39.7

R = 3.5

x = 199

x = 100, s = 1.05

x

x

x

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.
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Specifications are at 100 ± 10. Calculate Cp, Cpk, and

Cpm and interpret these ratios. Which process would

you prefer to use?

8.12. Suppose that 20 of the parts manufactured by the

processes in Exercise 8.11 were assembled so that

their dimensions were additive; that is,

x = x1 + x2 + . . . + x20

Specifications on x are 2,000 ± 200. Would you prefer

to produce the parts using process A or process B?

Why? Do the capability ratios computed in Exercise

8.11 provide any guidance for process selection?

8.13. The weights of nominal 1-kg containers of a concen-

trated chemical ingredient are shown in Table 8E.2.

Prepare a normal probability plot of the data and esti-

mate process capability. Does this conclusion depend

on process stability?

8.14. Consider the package weight data in Exercise 8.13.

Suppose there is a lower specification at 0.985 kg.

Calculate an appropriate process capability ratio 

for this material. What percentage of the packages

■ TA B L E  8 E . 2

Weights of Containers

0.9475 0.9775 0.9965 1.0075 1.0180

0.9705 0.9860 0.9975 1.0100 1.0200

0.9770 0.9960 1.0050 1.0175 1.0250

■ TA B L E  8 E . 1  

Process Data for Exercise 8.11

Process A Process B

=
xA = 100

=
xB = 105

–
S A = 3

–
S B = 1

■ TA B L E  8 E . 3

Cycle Time Data for Exercise 8.15

16.3 16.3 19.3 15.1 22.2

19.1 18.5 18.3 18.7 20.2

22.0 14.7 18.0 18.9 19.1

10.6 18.1 19.6 20.8 16.5

19.3 14.6 17.8 15.6 22.5

17.6 17.2 20.9 14.8 18.2

16.4 18.2 19.4 14.1 16.4

19.6 17.5 17.1 21.7 20.8

■ TA B L E  8 E . 4

Waiting Time Data for Exercise 8.16

9 1 4 1 2

8 8 11 2 4

6 2 2 2 1

3 3 7 3 6

2 5 10 1 3

5 7 3 2 7

8 8 3 3 5

1 8 4 5 7

produced by this process is estimated to be below

the specification limit?

8.15. Table 8E.3 presents data on the cycle time (in hours)

to process small loan applications. Prepare a normal

probability plot of these data.  The loan agency has a

promised decision time to potential customers of 

24 hours. Based on the data in the table and the normal

probability plot, what proportion of the customers

will experience longer waiting times?

8.16. Table 8E.4 presents data on the waiting time (in

minutes) to see a nurse or physician in a hospital

emergency department.The hospital has a policy of

seeing all patients initially within ten minutes of

arrival. 

(a) Prepare a normal probability plot of these data.

Does the normal distribution seem to be an

appropriate model for these data?

(b) Prepare a normal probability plot of the natural

logarithm of these data.  Does the normal distri-

bution seem to be an appropriate model for the

transformed data?

(c) Based on the data in Table 8E.4 and the normal

probability plots, what proportion of the patients

will not see a nurse or physician within ten min-

utes of arrival?

8.17. The height of the disk used in a computer disk drive

assembly is a critical quality characteristic. Table 8E.5

gives the heights (in mm) of 25 disks randomly

Exercises 405

(a) Estimate the potential capability of the process.

(b) Estimate the actual process capability.

(c) Calculate and compare the PCRs Cpkm and Cpkm.

(d) How much improvement could be made in

process performance if the mean could be cen-

tered at the nominal value?

8.10. A process is in control with and . The

process specifications are at 80 ± 8. The sample size

n = 5.

(a) Estimate the potential capability.

(b) Estimate the actual capability.

(c) How much could process fallout be reduced by

shifting the mean to the nominal dimension?

Assume that the quality characteristic is normally

distributed.

8.11. Consider the two processes shown in Table 8E.1 (the

sample size n = 5):

s = 2x = 75
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selected from the manufacturing process. Assume that

the process is in statistical control. Prepare a normal

probability plot of the disk height data and estimate

process capability.

8.18. The length of time required to reimburse employee

expense claims is a characteristic that can be used to

describe the performance of the process. Table 8E.6

gives the cycle times (in days) of 30 randomly

selected employee expense claims. Estimate the capa-

bility of this process. Do your conclusions depend on

statistical control of the process?

8.19. An electric utility tracks the response time to customer-

reported outages. The data in Table 8E.7 are a random

sample of 40 of the response times (in minutes) for one

operating division of this utility during a single month.

(a) Estimate the capability of the utility’s process for

responding to customer-reported outages.

(b) The utility wants to achieve a 90% response rate

in under two hours, as response to emergency

outages is an important measure of customer sat-

isfaction. What is the capability of the process

with respect to this objective?

8.20. Consider the hardness data in Exercise 6.62. Use a

probability plot to assess normality. Estimate process

capability.

8.21. The failure time in hours of ten LSI memory devices

follows: 1210, 1275, 1400, 1695, 1900, 2105, 2230,

2250, 2500, and 2625. Plot the data on normal prob-

ability paper and, if appropriate, estimate process

capability. Is it safe to estimate the proportion of cir-

cuits that fail below 1,200 h?

8.22. A normally distributed process has specifications of

LSL = 75 and USL = 85 on the output. A random

sample of 25 parts indicates that the process is cen-

tered at the middle of the specification band, and the

standard deviation is s = 1.5.

(a) Find a point estimate of Cp.

(b) Find a 95% confidence interval on Cp. Comment

on the width of this interval.

8.23. A company has been asked by an important customer

to demonstrate that its process capability ratio Cp

exceeds 1.33. It has taken a sample of 50 parts and

obtained the point estimate . Assume that the

quality characteristic follows a normal distribution.

Can the company demonstrate that Cp exceeds 1.33

at the 95% level of confidence? What level of confi-

dence would give a one-sided lower confidence limit

on Cp that exceeds 1.33?

8.24. Suppose that a quality characteristic has a normal

distribution with specification limits at USL = 100

and LSL = 90. A random sample of 30 parts results

in and s = 1.6.

(a) Calculate a point estimate of Cpk.

(b) Find a 95% confidence interval on Cpk.

8.25. The molecular weight of a particular polymer should

fall between 2,100 and 2,350. Fifty samples of this

material were analyzed with the results 

and s = 60. Assume that molecular weight is nor-

mally distributed.

(a) Calculate a point estimate of Cpk.

(b) Find a 95% confidence interval on Cpk.

8.26. A normally distributed quality characteristic has spec-

ification limits at LSL = 10 and USL = 20. A random

sample of size 50 results in and .

(a) Calculate a point estimate of .

(b) Find a 95% confidence interval on .

8.27. A normally distributed quality characteristic has

specification limits at LSL = 50 and USL = 60. A ran-

dom sample of size 35 results in and s = 0.9.

(a) Calculate a point estimate of .

(b) Find a 95% confidence interval on .

(c) Is this a -process?

8.28. Consider a simplified version of equation 8.19:
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x = 55.5

Cpk

Cpk

s = 1.2x = 16

x = 2,275

x = 97

Ĉp = 1.52

■ TA B L E  8 E . 6

Days to Par Expense Claims

5 5 16 17 14 12

8 13 6 12 11 10

18 18 13 12 19 14

17 16 11 22 13 16

10 18 12 12 12 14

■ TA B L E  8 E . 7

Response Time Data for Exercise 8.19

80 102 86 94 86 106 105 110 127 97

110 104 97 128 98 84 97 87 99 94

105 104 84 77 125 85 80 104 103 109

115 89 100 96 96 87 106 100 102 93

■ TA B L E  8 E . 5

Disk Height Data for Exercise 8.17

20.0106 20.0090 20.0067 19.9772 20.0001

19.9940 19.9876 20.0042 19.9986 19.9958

20.0075 20.0018 20.0059 19.9975 20.0089

20.0045 19.9891 19.9956 19.9884 20.0154

20.0056 19.9831 20.0040 20.0006 20.0047
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Note that this was obtained by assuming that the term

9n in equation 8.19 will probably be large. Rework

Exercise 8.24 using this equation and compare your

answer to the original answer obtained from equation

8.19. How good is the approximation suggested in

this problem?

8.29. An operator–instrument combination is known to

test parts with an average error of zero; however, the

standard deviation of measurement error is esti-

mated to be 3. Samples from a controlled process

were analyzed, and the total variability was esti-

mated to be . What is the true process standard

deviation?

8.30. Consider the situation in Example 8.7. A new gauge

is being evaluated for this process. The same opera-

tor measures the same 20 parts twice using the new

gauge and obtains the data shown in Table 8E.8.

(a) What can you say about the performance of the

new gauge relative to the old one?

(b) If specifications are at 25 ± 15, what is the P/T
ratio for the new gauge?

8.31. Ten parts are measured three times by the same oper-

ator in a gauge capability study. The data are shown

in Table 8E.9.

(a) Describe the measurement error that results from

the use of this gauge.

(b) Estimate total variability and product variability.

(c) What percentage of total variability is due to the

gauge?

(d) If specifications on the part are at 100 ± 15, find

the P/T ratio for this gauge. Comment on the

adequacy of the gauge.

8.32. In a study to isolate both gauge repeatability and

gauge reproducibility, two operators use the same

ŝ = 5

gauge to measure ten parts three times each. The data

are shown in Table 8E.10.

(a) Estimate gauge repeatability and reproducibility.

(b) Estimate the standard deviation of measurement

error.

(c) If the specifications are at 50 ± 10, what can you

say about gauge capability?

8.33. The data in Table 8E.11 were taken by one operator

during a gauge capability study.

(a) Estimate gauge capability.

(b) Does the control chart analysis of these data

indicate any potential problem in using the

gauge?

■ TA B L E  8 E . 1 0

Measurement Data for Exercise 8.32

Operator 1 Operator 2
Part Measurements Measurements

Number 1 2 3 1 2 3

1 50 49 50 50 48 51

2 52 52 51 51 51 51

3 53 50 50 54 52 51

4 49 51 50 48 50 51

5 48 49 48 48 49 48

6 52 50 50 52 50 50

7 51 51 51 51 50 50

8 52 50 49 53 48 50

9 50 51 50 51 48 49

10 47 46 49 46 47 48

■ TA B L E  8 E . 8

Measurement Data for Exercise 8.30

Part Measurements Part Measurements
Number 1 2 Number 1 2

1 19 23 11 20 25

2 22 28 12 16 15

3 19 24 13 25 24

4 28 23 14 24 22

5 16 19 15 31 27

6 20 19 16 24 23

7 21 24 17 20 24

8 17 15 18 17 19

9 24 26 19 25 23

10 25 23 20 17 16

■ TA B L E  8 E . 9

Measurement Data for Exercise 8.31

Part Measurements
Number 1 2 3

1 100 101 100

2 95 93 97

3 101 103 100

4 96 95 97

5 98 98 96

6 99 98 98

7 95 97 98

8 100 99 98

9 100 100 97

10 100 98 99
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408 Chapter 8 ■ Process and Measurement System Capability Analysis

8.34. A measurement systems experiment involving 20

parts, three operators, and two measurements per part

is shown in Table 8E.12.

(a) Estimate the repeatability and reproducibility of

the gauge.

(b) What is the estimate of total gauge variability?

(c) If the product specifications are at LSL = 6 and

USL = 60, what can you say about gauge capa-

bility?

8.35. Reconsider the gauge R & R experiment in Exercise

8.34. Calculate the quantities SNR and DR for this

gauge. Discuss what information these measures

provide about the capability of the gauge.

8.36. Three parts are assembled in series so that their crit-

ical dimensions x1, x2, and x3 add. The dimensions of

each part are normally distributed with the following

parameters: m1 = 100, s1 = 4, m2 = 75, s2 = 4, m3 = 75,

and s3 = 2. What is the probability that an assembly

chosen at random will have a combined dimension in

excess of 262?

8.37. Two parts are assembled as shown in the figure. The

distributions of x1 and x2 are normal, with m1 = 20,

s1 = 0.3, m2 = 19.6, and s2 = 0.4. The specifications

of the clearance between the mating parts are 0.5 ± 0.4.

What fraction of assemblies will fail to meet specifi-

cations if assembly is at random?

8.38. A product is packaged by filling a container com-

pletely full. This container is shaped as shown in the

figure. The process that produces these containers is

examined, and the following information collected

on the three critical dimensions:

Variable Mean Variance

L—Length 6.0 0.01

H—Height 3.0 0.01

W—Width 4.0 0.01

Assuming the variables to be independent, what are

approximate values for the mean and variance of

container volume?

8.39. A rectangular piece of metal of width W and length

L is cut from a plate of thickness T. If W, L, and T are

independent random variables with means and stan-

dard deviations as given here and the density of the

metal is 0.08 g/cm3, what would be the estimated

mean and standard deviation of the weights of pieces

produced by this process?

H

W

L

x1 x2

■ TA B L E  8 E . 1 2

Measurement Data for Exercise 8.34

Operator 1 Operator 2 Operator 3

Part Measurements Measurements Measurements

Number 1 2 1 2 1 2

1 21 20 20 20 19 21

2 24 23 24 24 23 24

3 20 21 19 21 20 22

4 27 27 28 26 27 28

5 19 18 19 18 18 21

6 23 21 24 21 23 22

7 22 21 22 24 22 20

8 19 17 18 20 19 18

9 24 23 25 23 24 24

10 25 23 26 25 24 25

11 21 20 20 20 21 20

12 18 19 17 19 18 19

13 23 25 25 25 25 25

14 24 24 23 25 24 25

15 29 30 30 28 31 30

16 26 26 25 26 25 27

17 20 20 19 20 20 20

18 19 21 19 19 21 23

19 25 26 25 24 25 25

20 19 19 18 17 19 17

■ TA B L E  8 E . 1 1

Measurement Data for Exercise 8.33

Part Measurements Part Measurements

Number 1 2 Number 1 2

1 20 20 9 20 20

2 19 20 10 23 22

3 21 21 11 28 22

4 24 20 12 19 25

5 21 21 13 21 20

6 25 26 14 20 21

7 18 17 15 18 18

8 16 15
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Standard 
Variable Mean Deviation

W 10 cm 0.2 cm

L 20 cm 0.3 cm

T 3 cm 0.1 cm

8.40. The surface tension of a chemical product, measured

on a coded scale, is given by the relationship

where x is a component of the product with proba-

bility distribution

Find the mean and variance of s.

8.41. Two resistors are connected to a battery as shown in

the figure. Find approximate expressions for the

mean and variance of the resulting current (I ). E, R1,

and R2 are random variables with means mE, mR1,

mR2, and variances s2
E, s2

R1, and s2
R2, respectively.

8.42. Two mating parts have critical dimensions x1 and x2

as shown in the figure. Assume that x1 and x2 are nor-

mally distributed with means m1 and m2 and standard

deviations s1 = 0.400 and s2 = 0.300. If it is desired

that the probability of a smaller clearance (i.e., x1 − x2)

than 0.09 should be 0.006, what distance between the

average dimension of the two parts (i.e., m1 − m2)

should be specified by the designer?

8.43. An assembly of two parts is formed by fitting a shaft

into a bearing. It is known that the inside diameters of

bearings are normally distributed with mean 2.010 cm

x1 x2

E

R2R1

f x x x( ) = −( ) ≤ ≤1
26

5 2 2 4

s x= +( )3 0 05
2

.

and standard deviation 0.002 cm, and that the outside

diameters of the shafts are normally distributed with

mean 2.004 cm and standard deviation 0.001 cm.

Determine the distribution of clearance between the

parts if random assembly is used. What is the proba-

bility that the clearance is positive?

8.44. We wish to estimate a two-sided natural tolerance

interval that will include 99% of the values of a ran-

dom variable with probability 0.80. If nothing is

known about the distribution of the random variable,

how large should the sample be?

8.45. A sample of ten items from a normal population had a

meanof300andastandarddeviationof10.Using these

data, estimate a value for the random variable such that

the probability is 0.95 that 90% of the measurements on

this random variable will lie below the value.

8.46. A sample of 25 measurements on a normally distrib-

uted quality characteristic has a mean of 85 and a stan-

dard deviation of 1. Using a confidence probability of

0.95, find a value such that 90% of the future measure-

ments on this quality characteristic will lie above it.

8.47. A sample of 20 measurements on a normally distrib-

uted quality characteristic had and s = 10.

Find an upper natural tolerance limit that has proba-

bility 0.90 of containing 95% of the distribution of

this quality characteristic.

8.48. How large a sample is required to obtain a natural

tolerance interval that has probability 0.90 of con-

taining 95% of the distribution? After the data are

collected, how would you construct the interval?

8.49. A random sample of n = 40 pipe sections resulted in

a mean wall thickness of 0.1264 in. and a standard

deviation of 0.0003 in. We assume that wall thick-

ness is normally distributed.

(a) Between what limits can we say with 95% confi-

dence that 95% of the wall thicknesses should fall?

(b) Construct a 95% confidence interval on the true

mean thickness. Explain the difference between

this interval and the one constructed in part (a).

8.50. Find the sample size required to construct an upper

nonparametric tolerance limit that contains at least

95% of the population with probability at least 0.95.

How would this limit actually be computed from

sample data?

x = 350

Exercises 409

c08ProcessandMeasurementSystemCapabilityAnalysis.qxd  3/28/12  8:15 PM  Page 409



c08ProcessandMeasurementSystemCapabilityAnalysis.qxd  3/28/12  8:15 PM  Page 410

This page is intentionally left blank



Other Statistical
Process-Monitoring
and Control
Techniques

Part 3 focused on the basic methods of statistical process control and capa-
bility analysis. Many of these techniques, such as the Shewhart control
charts, have been in use for well over 75 years. However, the increasing
emphasis on variability reduction, yield enhancement, and process improve-
ment along with the success of the basic methods has led to the develop-
ment of many new techniques for statistical process monitoring and control.
This part contains four chapters describing some of these techniques. Chapter 9
presents the cumulative sum (CUSUM) control chart and the exponentially
weighted moving average (EWMA) control chart. These procedures are not
really new, since they date from the 1950s, but they are generally consid-
ered somewhat more advanced techniques than the Shewhart charts. As we
will see, the CUSUM and the EWMA offer considerable performance improve-
ment relative to Shewhart charts. CUSUM and EWMA control charts are very
useful in phase II process-monitoring situations. Chapter 10 is a survey of
several univariate process control techniques, including methods for short
production runs and monitoring techniques suitable for processes in which
the data are autocorrelated. Chapter 11 is an introduction to multivariate
process monitoring and control, techniques that are applicable when two 
or more related process variables are of interest. Chapter 12 presents tech-
niques for process control by feedback adjustment. In these systems the
output quality characteristic of interest is influenced by a manipulatable
process variable, and we use the deviation of the current output from its
desired or target value to determine how much adjustment to make so that
the next observation will be on target. These feedback control schemes are

Other Statistical
Process-Monitoring
and Control
Techniques

PART 4PART 4
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also called engineering process control, and they are widely used in the
chemical and process industries.

Some of the topics presented in this part may require more statistical and
mathematical background than the material in Part 3. Two very useful refer-
ences to accompany this section are the panel discussion on statistical
process monitoring and control that appeared in the Journal of Quality
Technology in 1997 [see Montgomery and Woodall (1997)] and the paper on
research issues in SPC in the Journal of Quality Technology in 1999 [see
Woodall and Montgomery (1999)].

412 Part 4 ■ Other Statistical Process-Monitoring and Control Techniques
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9.1 THE CUMULATIVE SUM 
CONTROL CHART

9.1.1 Basic Principles: The CUSUM
Control Chart for Monitoring
the Process Mean

9.1.2 The Tabular or Algorithmic
CUSUM for Monitoring the
Process Mean

9.1.3 Recommendations for
CUSUM Design

9.1.4 The Standardized CUSUM
9.1.5 Improving CUSUM

Responsiveness for Large
Shifts

9.1.6 The Fast Initial Response or
Headstart Feature

9.1.7 One-Sided CUSUMs
9.1.8 A CUSUM for Monitoring

Process Variability
9.1.9 Rational Subgroups
9.1.10 CUSUMs for Other Sample

Statistics
9.1.11 The V-Mask Procedure
9.1.12 The Self-Starting CUSUM

9.2 THE EXPONENTIALLY WEIGHTED
MOVING AVERAGE CONTROL
CHART

9.2.1 The Exponentially Weighted
Moving Average Control
Chart for Monitoring the
Process Mean

9.2.2 Design of an EWMA Control
Chart

9.2.3 Robustness of the EWMA to
Non-normality

9.2.4 Rational Subgroups
9.2.5 Extensions of the EWMA

9.3 THE MOVING AVERAGE 
CONTROL CHART

Supplemental Material for Chapter 9

S9.1 The Markov Chain Approach
for Finding the ARL for
CUSUM and EWMA Control
Charts

S9.2 Integral Equation versus
Markov Chains for Finding
the ARL

99

CHAPTER OUTLINE

The supplemental material is on the textbook Website www.wiley.com/college/montgomery.
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414 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Chapters 5, 6, and 7 have concentrated on basic SPC methods. The control charts featured in

these chapters are predominantly Shewhart control charts. These charts are extremely use-

ful in phase I implementation of SPC, where the process is likely to be out of control and

experiencing assignable causes that result in large shifts in the monitored parameters.

Shewhart charts are also very useful in the diagnostic aspects of bringing an unruly process

into statistical control, because the patterns on these charts often provide guidance regarding

the nature of the assignable cause.

A major disadvantage of a Shewhart control chart is that it uses only the information

about the process contained in the last sample observation and it ignores any information

given by the entire sequence of points. This feature makes the Shewhart control chart rela-

tively insensitive to small process shifts, say, on the order of about 1.5s or less. This poten-

tially makes Shewhart control charts less useful in phase II monitoring problems, where the

process tends to operate in control, reliable estimates of the process parameters (such as the

mean and standard deviation) are available, and assignable causes do not typically result in

large process upsets or disturbances. Of course, other criteria, such as warning limits and

other sensitizing rules, can be applied to Shewhart control charts in phase II to improve

their performance against small shifts. However, the use of these procedures reduces the

simplicity and ease of interpretation of the Shewhart control chart, and as we have previ-

ously observed, they also dramatically reduce the average run length of the chart when the

process is actually in control. This can be very undesirable in phase II process monitoring.

Two very effective alternatives to the Shewhart control chart may be used when small

process shifts are of interest: the cumulative sum (CUSUM) control chart, and the expo-
nentially weighted moving average (EWMA) control chart. CUSUM and EWMA control

charts are excellent alternatives to the Shewhart control chart for phase II process monitoring

situations. Collectively, the CUSUM and EWMA control chart are sometimes called time-
weighted control charts. These control charts are the subject of this chapter.

After careful study of this chapter, you should be able to do the following:

1. Set up and use CUSUM control charts for monitoring the process mean

2. Design a CUSUM control chart for the mean to obtain specific ARL performance

3. Incorporate a fast initial response feature into the CUSUM control chart

4. Use a combined Shewhart–CUSUM monitoring scheme

5. Set up and use EWMA control charts for monitoring the process mean

6. Design an EWMA control chart for the mean to obtain specific ARL performance

7. Understand why the EWMA control chart is robust to the assumption of normality

8. Understand the performance advantage of CUSUM and EWMA control charts

relative to Shewhart control charts

9. Set up and use a control chart based on an ordinary (unweighted) moving average

9.1 The Cumulative Sum Control Chart

9.1.1 Basic Principles: The CUSUM Control Chart 
for Monitoring the Process Mean

Consider the data in Table 9.1, column (a). The first 20 of these observations were drawn at

random from a normal distribution with mean m = 10 and standard deviation s = 1. These

observations have been plotted on a Shewhart control chart in Figure 9.1. The center line and
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9.1 The Cumulative Sum Control Chart 415

■ TA B L E  9 . 1

Data for the CUSUM Example

Sample, i (a) xi (b) xi − 10 (c) Ci = (xi − 10) + Ci−1

1 9.45 −0.55 −0.55

2 7.99 −2.01 −2.56

3 9.29 −0.71 −3.27

4 11.66 1.66 −1.61

5 12.16 2.16 0.55

6 10.18 0.18 0.73

7 8.04 −1.96 −1.23

8 11.46 1.46 0.23

9 9.20 −0.80 −0.57

10 10.34 0.34 −0.23

11 9.03 −0.97 −1.20

12 11.47 1.47 0.27

13 10.51 0.51 0.78

14 9.40 −0.60 0.18

15 10.08 0.08 0.26

16 9.37 −0.63 −0.37

17 10.62 0.62 0.25

18 10.31 0.31 0.56

19 8.52 −1.48 −0.92

20 10.84 0.84 −0.08

21 10.90 0.90 0.82

22 9.33 −0.67 0.15

23 12.29 2.29 2.44

24 11.50 1.50 3.94

25 10.60 0.60 4.54

26 11.08 1.08 5.62

27 10.38 0.38 6.00

28 11.62 1.62 7.62

29 11.31 1.31 8.93

30 10.52 0.52 9.45

20

15

10

5

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Sample number

x

UCL = 13

LCL = 7

   = 10μ    = 11μ

CL =
10

■ F I G U R E  9 . 1 A Shewhart control chart for the

data in Table 9.1.
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416 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

three-sigma control limits on this chart are at

Note that all 20 observations plot in control.

The last 10 observations in column (a) of Table 9.1 were drawn from a normal distri-

bution with mean m = 11 and standard deviation s = 1. Consequently, we can think of these

last 10 observations as having been drawn from the process when it is out of control—that is,

after the process has experienced a shift in the mean of 1s. These last 10 observations are also

plotted on the control chart in Figure 9.1. None of these points plots outside the control

limits, so we have no strong evidence that the process is out of control. Note that there is an

indication of a shift in process level for the last 10 points, because all but one of the points

plot above the center line. However, if we rely on the traditional signal of an out-of-control

process, one or more points beyond a three-sigma control limit, then the Shewhart control

chart has failed to detect the shift.

The reason for this failure, of course, is the relatively small magnitude of the shift. The

Shewhart chart for averages is very effective if the magnitude of the shift is 1.5s to 2s or

larger. For smaller shifts, it is not as effective. The cumulative sum (or CUSUM) control chart

is a good alternative when small shifts are important.

The CUSUM chart directly incorporates all the information in the sequence of sample

values by plotting the cumulative sums of the deviations of the sample values from a target

value. For example, suppose that samples of size n ≥ 1 are collected, and is the average of

the jth sample. Then if m0 is the target for the process mean, the cumulative sum control chart

is formed by plotting the quantity

(9.1)

against the sample number i. Ci is called the cumulative sum up to and including the ith
sample. Because they combine information from several samples, cumulative sum charts are

more effective than Shewhart charts for detecting small process shifts. Furthermore, they are

particularly effective with samples of size n = 1. This makes the cumulative sum control chart

a good candidate for use in the chemical and process industries where rational subgroups are

frequently of size 1, and in discrete parts manufacturing with automatic measurement of each

part and on-line process monitoring directly at the work center.

Cumulative sum control charts were first proposed by Page (1954) and have been studied

by many authors; in particular, see Ewan (1963), Page (1961), Gan (1991), Lucas (1976, 1982),

Hawkins (1981, 1993a), and Woodall and Adams (1993). The book by Hawkins and Olwell

(1998) is highly recommended. In this section, we concentrate on the cumulative sum chart for

the process mean. It is possible to devise cumulative sum procedures for other variables, such

as Poisson and binomial variables for modeling nonconformities and fraction nonconforming.

We will show subsequently how the CUSUM can be used for monitoring process variability.

We note that if the process remains in control at the target value m0, the cumulative sum

defined in equation 9.1 is a random walk with mean zero. However, if the mean shifts upward

to some value m1 > m0, say, then an upward or positive drift will develop in the cumulative

sum Ci. Conversely, if the mean shifts downward to some m1 < m0, then a downward or neg-

ative drift in Ci will develop. Therefore, if a significant trend develops in the plotted points

either upward or downward, we should consider this as evidence that the process mean has

shifted, and a search for some assignable cause should be performed.

C xi j
j

i
= −( )

=
∑ μ0

1

xj

UCL

Center line

LCL

=
=
=

13

10

7
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This theory can be easily demonstrated by using the data in column (a) of Table 9.1

again. To apply the CUSUM in equation 9.1 to these observations, we would take = xi (since

our sample size is n = 1) and let the target value m0 = 10. Therefore, the CUSUM becomes

Column (b) of Table 9.1 contains the differences xi − 10, and the cumulative sums are computed

in column (c). The starting value for the CUSUM, C0, is taken to be zero. Figure 9.2 plots the

CUSUM from column (c) of Table 9.1. Note that for the first 20 observations where m = 10, the

CUSUM tends to drift slowly, in this case maintaining values near zero. However, in the last

10 observations, where the mean has shifted to m = 11, a strong upward trend develops.

Of course, the CUSUM plot in Figure 9.2 is not a control chart because it lacks statis-

tical control limits. There are two ways to represent CUSUMs: the tabular (or algorithmic)

CUSUM, and the V-mask form of the CUSUM. Of the two representations, the tabular

CUSUM is preferable. We now present the construction and use of the tabular CUSUM. We

will also briefly discuss the V-mask procedure and indicate why it is not the best representa-

tion of a CUSUM.

9.1.2 The Tabular or Algorithmic CUSUM for Monitoring the Process Mean

We now show how a tabular CUSUM may be constructed for monitoring the mean of a process.

CUSUMs may be constructed both for individual observations and for the averages of rational

subgroups. The case of individual observations occurs very often in practice, so that situation

will be treated first. Later we will see how to modify these results for rational subgroups.

Let xi be the ith observation on the process. When the process is in control, xi has a

normal distribution with mean m0 and standard deviation s. We assume that either s is

C x

x x

x C

i j
j

i

i j
j

i

i i

= −( )

= −( ) + −( )
= −( ) +

=

=

−

−

∑

∑

10

10 10

10

1

1

1

1

x
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
–4

–2

0

2

4

6

8

10

Ci

Sample number

   = 10μ    = 11μ

■ F I G U R E  9 . 2 Plot of the cumulative sum from

column (c) of Table 9.1.
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418 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

known or that a reliable estimate is available. These assumptions are very consistent with

phase II applications of SPC, the situation in which the CUSUM is most useful. Later we will

discuss monitoring s with a CUSUM.

Sometimes we think of m0 as a target value for the quality characteristic x. This view-

point is often taken in the chemical and process industries when the objective is to control x
(viscosity, say) to a particular target value (such as 2,000 centistokes at 100°C). If the process

drifts or shifts off this target value, the CUSUM will signal, and an adjustment is made to

some manipulatable variable (such as the catalyst feed rate) to bring the process back on tar-

get. Also, in some cases a signal from a CUSUM indicates the presence of an assignable cause

that must be investigated just as in the Shewhart chart case.

The tabular CUSUM works by accumulating derivations from m0 that are above target

with one statistic C+ and accumulating derivations from m0 that are below target with another

statistic C−. The statistics C+ and C− are called one-sided upper and lower CUSUMs,
respectively. They are computed as follows:

The Tabular CUSUM 

(9.3)

C C+ −= = 0.0 0where the starting values are 

C x K C

C K x C

i i i

i i i

+
−
+

−
−
−

= − +( ) +[ ]
= −( ) − +[ ]

max ,

max ,

0

0

0 1

0 1

μ

μ

(9.2)

In equations 9.2 and 9.3, K is usually called the reference value (or the allowance, or

the slack value), and it is often chosen about halfway between the target m0 and the out-of-

control value of the mean m1 that we are interested in detecting quickly.

Thus, if the shift is expressed in standard deviation units as m1 = m0 + ds (or d = |m1 −
m0|/s), then K is one-half the magnitude of the shift or

(9.4)

Note that C+
i and C−

i accumulate deviations from the target value m0 that are greater than K,

with both quantities reset to zero on becoming negative. If either C+
i or C−

i exceeds the deci-
sion interval H, the process is considered to be out of control.

We have briefly mentioned how to choose K, but how does one choose H? Actually, the

proper selection of these two parameters is quite important, as it has substantial impact on the

performance of the CUSUM. We will talk more about this later, but a reasonable value for H
is five times the process standard deviation s.

K = =
−δ σ

μ μ
2 2

1 0

EXAMPLE 9.1

Set up the tabular CUSUM using the data from Table 9.1.

A Tabular CUSUM 

1.0s = 1.0(1.0) = 1.0. Therefore, the out-of-control value of the

process mean is m1 = 10 + 1 = 11. We will use a tabular

CUSUM with K = 1–
2 (because the shift size is 1.0s and s = 1)

SOLUTION 

Recall that the target value is m0 = 10, the subgroup size is

n = 1, the process standard deviation is s = 1, and suppose that

the magnitude of the shift we are interested in detecting is
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9.1 The Cumulative Sum Control Chart 419

and

For period 2, we would use

and

Since x2 = 7.99, we obtain

C2 0 7 99 10 5 0 0
+ = − +[ ] =max , . .

C x C

x

2 2 1

2

0 9 5

0 9 5 0 05

− −= − +[ ]
= − +[ ]

max , .

max , . .

C x C

x

2 2 1

2

0 10 5

0 10 5 0

+ += − +[ ]
= − +[ ]

max , .

max , .

C1 0 9 5 9 45 0 0 05
− = − +[ ] =max , . . .

and H = 5 (because the recommended value of the decision

interval is H = 5s = 5(1) = 5).

Table 9.2 presents the tabular CUSUM scheme. To illus-

trate the calculations, consider period 1. The equations for C+
i

and C−
i are

and

since K = 0.5 and m0 = 10. Now x1 = 9.45, so since C+
0 =

C−
0 = 0,

C1 0 9 45 10 5 0 0
+ = − +[ ] =max , . .

C x C1 1 00 9 5− −= − +[ ]max , .

C x C1 1 00 10 5+ += − +[ ]max , .

(continued)

■ TA B L E  9 . 2

The Tabular CUSUM for Example 9.1

(a) (b)

Period i xi xi − 10.5 C+
i N+ 9.5 − xi C−

i N−

1 9.45 −1.05 0 0 0.05 0.05 1

2 7.99 −2.51 0 0 1.51 1.56 2

3 9.29 −1.21 0 0 0.21 1.77 3

4 11.66 1.16 1.16 1 −2.16 0 0

5 12.16 1.66 2.82 2 −2.66 0 0

6 10.18 −0.32 2.50 3 −0.68 0 0

7 8.04 −2.46 0.04 4 1.46 1.46 1

8 11.46 0.96 1.00 5 −1.96 0 0

9 9.20 −1.3 0 0 0.30 0.30 1

10 10.34 −0.16 0 0 −0.84 0 0

11 9.03 −1.47 0 0 0.47 0.47 1

12 11.47 0.97 0.97 1 −1.97 0 0

13 10.51 0.01 0.98 2 −1.01 0 0

14 9.40 −1.10 0 0 0.10 0.10 1

15 10.08 −0.42 0 0 −0.58 0 0

16 9.37 −1.13 0 0 0.13 0.13 1

17 10.62 0.12 0.12 1 −1.12 0 0

18 10.31 −0.19 0 0 −0.81 0 0

19 8.52 −1.98 0 0 0.98 0.98 1

20 10.84 0.34 0.34 1 −1.34 0 0

21 10.90 0.40 0.74 2 −1.40 0 0

22 9.33 −1.17 0 0 0.17 0.17 1

23 12.29 1.79 1.79 1 −2.79 0 0

24 11.50 1.00 2.79 2 −2.00 0 0

25 10.60 0.10 2.89 3 −1.10 0 0

26 11.08 0.58 3.47 4 −1.58 0 0

27 10.38 −0.12 3.35 5 −0.88 0 0

28 11.62 1.12 4.47 6 −2.12 0 0

29 11.31 0.81 5.28 7 −1.81 0 0

30 10.52 0.02 5.30 8 −1.02 0 0
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420 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

It is useful to present a graphical display for the tabular CUSUM. These charts are some-

times called CUSUM status charts. They are constructed by plotting C+
i and C−

i versus the

sample number. Figure 9.3a shows the CUSUM status chart for the data in Example 9.1. Each

vertical bar represents the value of C+
i and C−

i in period i. With the decision interval plotted on

the chart, the CUSUM status chart resembles a Shewhart control chart. We have also plotted

the observations xi for each period on the CUSUM status chart as the solid dots. This fre-

quently helps the user of the control chart to visualize the actual process performance that has

led to a particular value of the CUSUM. Some computer software packages have implemented

the CUSUM status chart. Figure 9.3b shows the Minitab version. In Minitab, the lower

CUSUM is defined as

This results in a lower CUSUM that is always ≤ 0 (it is the negative of the lower CUSUM value

from equation 9.3). Note in Figure 9.3b that the values of the lower CUSUM range from 0 to −5.

The action taken following an out-of-control signal on a CUSUM control scheme is

identical to that with any control chart; one should search for the assignable cause, take any

corrective action required, and then reinitialize the CUSUM at zero. The CUSUM is partic-

ularly helpful in determining when the assignable cause has occurred; as we noted in the pre-

vious example, just count backward from the out-of-control signal to the time period when

the CUSUM lifted above zero to find the first period following the process shift. The coun-

ters N+ and N− are used in this capacity.

In situations where an adjustment to some manipulatable variable is required in order

to bring the process back to the target value m0, it may be helpful to have an estimate of the

new process mean following the shift. This can be computed from

C x k Ci i i
−

−
−= − + +( )min ,0 0 1μ

(9.5)ˆ
,

,

μ
μ

μ
=

+ + >
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C H

i
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i
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if 

if 

To illustrate the use of equation 9.5, consider the CUSUM in period 29 with C+
29 = 5.28. From

equation 9.5, we would estimate the new process average as

ˆ

. .
.

.

μ μ= + +

= + +

=

+

+0
29

10 0 0 5
5 28

7

11 25

K
C

N

period at which C+
i > H = 5, we would conclude that the

process is out of control at that point. The tabular CUSUM also

indicates when the shift probably occurred. The counter N+

records the number of consecutive periods since the upper-side

CUSUM C+
i rose above the value of zero. Since N+ = 7 at

period 29, we would conclude that the process was last in con-

trol at period 29 − 7 = 22, so the shift likely occurred between

periods 22 and 23.

and

Panels (a) and (b) of Table 9.2 summarize the remaining cal-

culations. The quantities N+ and N− in Table 9.2 indicate the

number of consecutive periods that the CUSUMs C+
i or C−

i

have been nonzero.

The CUSUM calculations in Table 9.2 show that the upper-

side CUSUM at period 29 is C+
29 = 5.28. Since this is the first

C2 0 9 5 7 99 0 05 1 56
− = − +[ ] =max , . . . .
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So, for example, if the process characteristic is viscosity, then we would conclude that mean

viscosity has shifted from 10 to 11.25, and if the manipulatable variable that affects viscosity

is catalyst feed rate, then we would need to make an adjustment in catalyst feed rate that

would result in moving the viscosity down by 1.25 units.

Finally, we should note that runs tests, and other sensitizing rules such as the zone rules,

cannot be safely applied to the CUSUM, because successive values of C+
i and C−

i are not inde-

pendent. In fact, the CUSUM can be thought of as a weighted average, where the weights are

stochastic or random. For example, consider the CUSUM shown in Table 9.2. The CUSUM

at period 30 is C+
30 = 5.30. This can be thought of as a weighted average in which we give

equal weight to the last N+ = 8 observations and weight zero to all other observations.

9.1 The Cumulative Sum Control Chart 421
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■ F I G U R E  9 . 3 CUSUM status charts for Example 9.1. (a) Manual chart. (b) Minitab chart.
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422 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

9.1.3 Recommendations for CUSUM Design

The tabular CUSUM is designed by choosing values for the reference value K and the deci-

sion interval H. It is usually recommended that these parameters be selected to provide good

average run length performance. There have been many analytical studies of CUSUM ARL

performance. Based on these studies, we may give some general recommendations for select-

ing H and K.

Define H = hs and K = ks, where s is the standard deviation of the sample variable

used in forming the CUSUM. Using h = 4 or h = 5 and k = 1–
2 will generally provide a CUSUM

that has good ARL properties against a shift of about 1s in the process mean.

To illustrate how well the recommendations of h = 4 or h = 5 with k = 1–
2 work, consider

the two-sided average run lengths shown in Table 9.3. Note that a 1s shift would be detected

in either 8.38 samples (with k = 1–
2 and h = 4) or 10.4 samples (with k = 1–

2 and h = 5). By com-

parison, a Shewhart control chart for individual measurements would require 43.96 samples,

on the average, to detect this shift.

Note also from Table 9.3 that h = 4 results in an in-control ARL0 = 168 samples, whereas

h = 5 results in ARL0 = 465 samples. If we choose h = 4.77, this will provide a CUSUM with

ARL0 = 370 samples, which matches the ARL0 value for a Shewhart control chart with the

usual 3s limits.

Generally, we want to choose k relative to the size of the shift we want to detect; that is,

k = 1–
2d, where d is the size of the shift in standard deviation units. This approach comes very

close to minimizing the ARL1 value for detecting a shift of size d for fixed ARL0. As mentioned

earlier, a widely used value in practice is k = 1–
2. Then, once k is selected, you should choose h to

give the desired in-control ARL0 performance. Hawkins (1993a) gives a table of k values and

the corresponding h values that will achieve ARL0 = 370. These are reproduced in Table 9.4.

Several techniques can be used to calculate the ARL of a CUSUM. Vance (1986) provides

a very accurate computer program. A number of authors have used an approach to calculating

■ TA B L E  9 . 3

ARL Performance of the Tabular CUSUM with k = 1–
2 and h = 4 or 

h = 5

Shift in Mean (multiple of s) h = 4 h = 5

0 168 465

0.25 74.2 139

0.50 26.6 38.0

0.75 13.3 17.0

1.00 8.38 10.4

1.50 4.75 5.75

2.00 3.34 4.01

2.50 2.62 3.11

3.00 2.19 2.57

4.00 1.71 2.01

■ TA B L E  9 . 4

Values of k and the Corresponding Values of h That Give ARL0 = 370
for the Two-Sided Tabular CUSUM [from Hawkins (1993a)]

k 0.25 0.5 0.75 1.0 1.25 1.5

h 8.01 4.77 3.34 2.52 1.99 1.61
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ARLs due to Brook and Evans (1972) that is based on approximating transitions from the

in-control to the out-of-control state with a Markov chain.1 Hawkins (1992) has provided a

simple but very accurate ARL calculation procedure based on an approximating equation. His

approximation requires a table of constants to apply and is accurate to within 1%–3% of the

true ARL value. Woodall and Adams (1993) recommend the ARL approximation given by

Siegmund (1985) because of its simplicity. For a one-sided CUSUM (that is, C +
i or C −

i ) with

parameters h and k, Siegmund’s approximation is

(9.6)

for , where Δ = d* − k for the upper one-sided CUSUM C+
i , Δ = −d* − k for the lower

one-sided CUSUM C−
i , b = h + 1.166, and d* = (m1 − m0)/s. If Δ = 0, one can use ARL = b2.

The quantity d* represents the shift in the mean, in the units of s, for which the ARL

is to be calculated. Therefore, if d* = 0, we would calculate ARL0 from equation 9.6, whereas

if , we would calculate the value of ARL1 corresponding to a shift of size d*. To obtain

the ARL of the two-sided CUSUM from the ARLs of the two one-sided statistics—say, ARL+

and ARL−—use

(9.7)

To illustrate, consider the two-sided CUSUM with and h = 5. To find ARL0 we

would first calculate the ARL0 values for the two-sided schemes—say, ARL+
0 and ARL−

0. Set

d* = 0; then , b = h + 1.166 = 5 + 1.166 = 6.166, and from equa-

tion 9.6

By symmetry, we have ARL−
0 = ARL+

0 , and so from equation 9.7, the in-control ARL for the

two-sided CUSUM is

or

This is very close to the true ARL0 value of 465 shown in Table 9.3. If the mean shifts by 2s,

then d* = 2, Δ = 1.5 for the upper one-sided CUSUM, Δ = −2.5 for the lower one-sided

CUSUM, and from equations 9.6 and 9.7 we can calculate the approximate ARL1 of the two-

sided CUSUM as ARL1 = 3.89. The exact value shown in Table 9.3 is 4.01.

ARL0 = 469 1.
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1The Brook and Evans Markov chain approach is discussed in the supplemental text material for this chapter.

CUSUM ARLs can also be determined from integral equations. This approach is also discussed in the supplemental

material for this chapter.
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424 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

One could use Siegmund’s (1985) approximation and trial-and-error arithmetic to give a

control limit that would have any desired ARL. Alternatively, numerical root-finding methods

would also work well. Woodall and Adams (1993) give an excellent discussion of this approach.

9.1.4 The Standardized CUSUM 

Many users of the CUSUM prefer to standardize the variable xi before performing the calcu-

lations. Let

(9.8)

be the standardized value of xi. Then the standardized CUSUMs are defined as follows.

y
x

i
i= − μ

σ
0

The Standardized Two-Sided CUSUM 

(9.10)

C y k C

C k y C

i i i

i i i

+
−
+

−
−
−

= − +[ ]
= − − +[ ]

max ,

max ,

0

0

1

1

(9.9)

There are two advantages to standardizing the CUSUM. First, many CUSUM charts can now

have the same values of k and h, and the choices of these parameters are not scale dependent

(that is, they do not depend on s). Second, a standardized CUSUM leads naturally to a

CUSUM for controlling variability, as we will see in Section 9.1.8.

9.1.5 Improving CUSUM Responsiveness for Large Shifts

We have observed that the CUSUM control chart is very effective in detecting small shifts.

However, the CUSUM control chart is not as effective as the Shewhart chart in detecting large

shifts. An approach to improving the ability of the CUSUM control chart to detect large process

shifts is to use a combined CUSUM–Shewhart procedure for on-line control. Adding the

Shewhart control is a very simple modification of the cumulative sum control procedure. The

Shewhart control limits should be located approximately 3.5 standard deviations from the center

line or target value m0. An out-of-control signal on either (or both) charts constitutes an action

signal. Lucas (1982) gives a good discussion of this technique. Column (a) of Table 9.5 presents

the ARLs of the basic CUSUM with and h = 5. Column (b) of Table 9.5 presents the ARLs

of the CUSUM with Shewhart limits added to the individual measurements. As suggested

above, the Shewhart limits are at 3.5s. Note from examining these ARL values that the addition

of the Shewhart limits has improved the ability of the procedure to detect larger shifts and has

only slightly decreased the in-control ARL0. We conclude that a combined CUSUM–Shewhart

procedure is an effective way to improve CUSUM responsiveness to large shifts.

9.1.6 The Fast Initial Response or Headstart Feature

This procedure was devised by Lucas and Crosier (1982) to improve the sensitivity of a

CUSUM at process start-up. Increased sensitivity at process start-up would be desirable if the

corrective action did not reset the mean to the target value. The fast initial response (FIR)
or headstart essentially just sets the starting values C+

0 and C−
0 equal to some nonzero value,

typically H/2. This is called a 50% headstart.

To illustrate the headstart procedure, consider the data in Table 9.6. These data have

a target value of 100, K = 3, and H = 12. We will use a 50% headstart value of C +
0 = C −

0 =

k = 1
2
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H/2 = 6. The first ten samples are in control with mean equal to the target value of 100.

Since x1 = 102, the CUSUMs for the first period will be

Note that the starting CUSUM value is the headstart H/2 = 6. In addition, we see from panels

(a) and (b) of Table 9.6 that both CUSUMs decline rapidly to zero from the starting value.

In fact, from period 2 onward C+
1 is unaffected by the headstart, and from period 3 onward

C−
1 is unaffected by the headstart. This has occurred because the process is in control at the

target value of 100, and several consecutive observations near the target value were observed.

C x C

C

i

i

+ += − +[ ]
= − +[ ] =

=

= − +[ ] =

max ,

max ,

max ,

max

0 103

0 102 103 6 5

0 97 102 6 1

1 0

x C−− +[ ],0 97 1 0
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■ TA B L E  9 . 5

ARL Values for Some Modifications of the Basic CUSUM with k = 1–
2 and h = 5 (If subgroups of

size n > 1 are used, then )

(a) (b) (c) (d)
Shift in Mean Basic CUSUM–Shewhart CUSUM FIR CUSUM–Shewhart 
(multiple of s) CUSUM (Shewhart limits at 3.5s) with FIR (Shewhart limits at 3.5s)

0 465 391 430 360

0.25 139 130.9 122 113.9

0.50 38.0 37.20 28.7 28.1

0.75 17.0 16.80 11.2 11.2

1.00 10.4 10.20 6.35 6.32

1.50 5.75 5.58 3.37 3.37

2.00 4.01 3.77 2.36 2.36

2.50 3.11 2.77 1.86 1.86

3.00 2.57 2.10 1.54 1.54

4.00 2.01 1.34 1.16 1.16

s � s x � s/1n

■ TA B L E  9 . 6

A CUSUM with a Headstart, Process Mean Equal to 100

(a) (b)

Period i xi xi − 103 C+
i N+ 97 − xi C−

i N−

1 102 −1 5 1 −5 1 1

2 97 −6 0 0 0 1 2

3 104 1 1 1 −7 0 0

4 93 −6 0 0 4 4 1

5 100 −3 0 0 −3 1 2

6 105 2 2 1 −8 0 0

7 96 −7 0 0 1 1 1

8 98 −5 0 0 −1 0 0

9 105 2 2 1 −8 0 0

10 99 −4 0 0 −2 0 0
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426 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

Now suppose the process had been out of control at process start-up, with mean 105.

Table 9.7 presents the data that would have been produced by this process and the resulting

CUSUMs. Note that the third sample causes C+
3 to exceed the limit H = 12. If no headstart

had been used, we would have started with C+
0 = 0, and the CUSUM would not exceed H until

sample number 6.

This example demonstrates the benefits of a headstart. If the process starts in control at

the target value, the CUSUMs will quickly drop to zero and the headstart will have little effect

on the performance of the CUSUM procedure. Figure 9.4 illustrates this property of the head-

start using the data from Table 9.1. The CUSUM chart was produced using Minitab. However,

if the process starts at some level different from the target value, the headstart will allow the

CUSUM to detect it more quickly, resulting in shorter out-of-control ARL values.

Column (c) of Table 9.5 presents the ARL performance of the basic CUSUM with the

headstart or FIR feature. The ARLs were calculated using a 50% headstart. Note that the ARL

values for the FIR CUSUM are valid for the case when the process is out of control at the

time the CUSUMs are reset. When the process is in control, the headstart value quickly drops

■ TA B L E  9 . 7

A CUSUM with a Headstart, Process Mean Equal to 105

(a) (b)

Period i xi xi − 103 C+
i N+ 97 − xi C−

i N−

1 107 4 10 1 −10 0 0

2 102 −1 9 2 −5 0 0

3 109 6 15 3 −12 0 0

4 98 −5 10 4 −1 0 0

5 105 2 12 5 −8 0 0

6 110 7 19 6 −13 0 0

7 101 −2 17 7 −4 0 0

8 103 0 17 8 −6 0 0

9 110 7 24 9 −13 0 0

10 104 1 25 10 −7 0 0

–5

5
Upper CUSUM

Lower CUSUM

0

C
um

ul
at

iv
e 

su
m

0 10 20 30

Subgroup number

5

–5

■ F I G U R E  9 . 4 A Minitab CUSUM status chart for the data in Table 9.1 illustrating the fast

initial response or headstart feature.
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to zero. Thus, if the process is in control when the CUSUM is reset but shifts out of control

later, the more appropriate ARL for such a case should be read from column (a)—that is, the

CUSUM without the FIR feature.

9.1.7 One-Sided CUSUMs

We have focused primarily on the two-sided CUSUM. Note that the tabular procedure is con-

structed by running two one-sided procedures, C+
i and C−

i . There are situations in which only

a single one-sided CUSUM procedure is useful.

For example, consider a chemical process for which the critical quality characteristic is

the product viscosity. If viscosity drops below the target (m0 = 2,000 centistokes at 100°C,

say), there is no significant problem, but any increase in viscosity should be detected quickly.

A one-sided upper CUSUM would be an ideal process-monitoring scheme. Siegmund’s pro-

cedure (equation 9.6) could be used to calculate the ARLs for the one-sided scheme.

It is also possible to design CUSUMs that have different sensitivity on the upper and

lower side. This could be useful in situations where shifts in either direction are of interest,

but shifts above the target (say) are more critical than shifts below the target.

9.1.8 A CUSUM for Monitoring Process Variability

It is possible to construct CUSUM control charts for monitoring process variability. Since

CUSUMs are usually employed with individual observations, the procedure due to Hawkins

(1981) is potentially useful. As before, let xi be the normally distributed process measurement

with mean or target value m0 and standard deviation s. The standardized value of xi is yi =
(xi − m0)/s. Hawkins (1981, 1993a) suggests creating a new standardized quantity

9.1 The Cumulative Sum Control Chart 427

The Scale CUSUM 

(9.13)

S v k S

S k v S

i i i

i i i
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= − +[ ]
= − − +[ ]

max ,

max ,

0

0

1

1

(9.12)

where S +
0 = S−

0 = 0 (unless a FIR feature is used) and the values of k and h are selected as in

the CUSUM for controlling the process mean.

The interpretation of the scale CUSUM is similar to the interpretation of the CUSUM

for the mean. If the process standard deviation increases, the values of S +
i will increase and

eventually exceed h, whereas if the standard deviation decreases, the values of S−
i will increase

and eventually exceed h.

(9.11)v
y

i
i=

− 0 822

0 349

.

.

He suggests that the vi are sensitive to variance changes rather than mean changes. In fact, the

statistic vi is sensitive to both mean and variance changes. Since the in-control distribution of

vi is approximately N(0, 1), two one-sided standardized scale (i.e., standard deviation)

CUSUMs can be established as follows.
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Although one could maintain separate CUSUM status charts for the mean and stan-

dard deviation, Hawkins (1993a) suggests plotting them on the same graph. He also pro-

vides several excellent examples and further discussion of this procedure. Study of his exam-

ples will be of value in improving your ability to detect changes in process variability from

the scale CUSUM. If the scale CUSUM signals, one would suspect a change in variance, but

if both CUSUMs signal, one would suspect a shift in the mean.

9.1.9 Rational Subgroups

Although we have given the development of the tabular CUSUM for the case of individual

observations (n = 1), it is easily extended to the case of averages of rational subgroups where

the sample size n > 1. Simply replace xi by x̄i (the sample or subgroup average) in the above

formulas, and replace s with .

With Shewhart charts, the use of averages of rational subgroups substantially improves

control chart performance. However, this does not always happen with the CUSUM. If, for

example, you have a choice of taking a sample of size n = 1 every half hour or a sample con-

sisting of a rational subgroup of size n = 5 every 2.5 hours (not that both choices have the

same sampling intensity), the CUSUM will often work best with the choice of n = 1 every

half hour. For more discussion of this, see Hawkins and Olwell (1998). Only if there is some

significant economy of scale or some other valid reason for taking samples of size greater

than unity should one consider using n > 1 with the CUSUM.

One practical reason for using rational subgroups of size n > 1 is that we could now set

up a CUSUM on the sample variance and use it to monitor process variability. CUSUMs

for variances are discussed in detail by Hawkins and Olwell (1998); the paper by Chang and

Gan (1995) is also recommended. We assume that the observations are normally distributed

and that the in-control and out-of-control values are s 2
0 and s 2

1, respectively.

Let S2
i be the sample variance of the ith subgroup. The CUSUM for a normal variance is

(9.14)

where k = [2ln(s0/s1)s 2
0s 2

1/(s 2
0 − s 2

1)] with C−
0 = C+

0 = 0. A headstart or FIR feature can also

be used with this CUSUM. Hawkins and Olwell (1998) have a Website with software that

supports their book [(the CUSUM Website of the School of Statistics at the University of

Minnesota (www.stat.umn.edu)]. The software provided at this Website can be used for

designing this CUSUM—that is, obtaining the required value of H for a specified target value

of ARL0.

9.1.10 CUSUMs for Other Sample Statistics

We have concentrated on CUSUMs for sample averages. However, it is possible to develop

CUSUMs for other sample statistics such as the ranges and standard deviations of rational

subgroups, fractions nonconforming, and defects. These are well-developed procedures and

have proven optimality properties for detecting step changes in the parameters. Some of these

CUSUMs are discussed in the papers by Lowry, Champ, and Woodall (1995), Gan (1993),

Lucas (1985), and White, Keats, and Stanley (1997). The book by Hawkins and Olwell (1998)

is an excellent reference.

One variation of the CUSUM is extremely useful when working with count data and the

count rate is very low. In this case, it is frequently more effective to form a CUSUM using 

the time between events (TBE). The most common situation encountered in practice is to use

the TBE CUSUM to detect an increase in the count rate. This is equivalent to detecting a

decrease in the time between these events. When the number of counts is generated from a

C C S k

C C S k

i i i

i i i

−
−
−

+
−
+

= + −( )
= + +( )

max ,

max ,

0

0

1
2

1
2

sx = s/1n

(9.15)
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Poisson distribution, the time between these events will follow an exponential distribution. An

appropriate TBE CUSUM scheme is

(9.16)

where K is the reference value and Ti is the time that has elapsed since that last observed

count. Lucas (1985) and Bourke (1991) discuss the choice of K and H for this procedure.

Borror, Keats, and Montgomery (2003) have examined the robustness of the TBE CUSUM to

the exponential distribution and report that moderate departures from the exponential do not

affect its performance.

An alternative and very effective procedure would be to transform the time between

observed counts to an approximately normally distributed random variable, as discussed in

Section 7.3.5, and use the CUSUM for monitoring the mean of a normal distribution in

Section 9.1.2 instead of equation 9.16.

9.1.11 The V-Mask Procedure

An alternative procedure to the use of a tabular CUSUM is the V-mask control scheme pro-

posed by Barnard (1959). The V-mask is applied to successive values of the CUSUM statistic

where yi is the standardized observation yi = (xi − m0)/s. A typical V-mask is shown in 

Figure 9.5.

The decision procedure consists of placing the V-mask on the cumulative sum control

chart with the point O on the last value of Ci and the line OP parallel to the horizontal axis.

If all the previous cumulative sums, C1, C2, . . . , Ci lie within the two arms of the V-mask, the

process is in control. However, if any of the cumulative sums lie outside the arms of the mask,

the process is considered to be out of control. In actual use, the V-mask would be applied to

each new point on the CUSUM chart as soon as it was plotted, and the arms are assumed to

extend backward to the origin. The performance of the V-mask is determined by the lead dis-

tance d and the angle q shown in Figure 9.5.

The tabular CUSUM and the V-mask scheme are equivalent if

(9.17)

and

(9.18)

In these two equations, A is the horizontal distance on the V-mask plot between successive points

in terms of unit distance on the vertical scale. Refer to Figure 9.5. For example, to construct a

h A d dk= ( ) = tan θ

k A= tanθ

C y y Ci j
j

i

i i= = +
=

−∑
1

1

C K T Ci i i
−

−
−= − +[ ]max ,0 1
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3A

2A

1A

1 2 3 4 i

C
i

dO

U

L

P

θ

■ F I G U R E  9 . 5 A typical V-mask.
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430 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

V-mask equivalent to the tabular CUSUM scheme used in Example 9.1, where and h = 5,

we would select A = 1 (say), and then equations 9.17 and 9.18 would be solved as follows:

or

and

or

That is, the lead distance of the V-mask would be 10 horizontal plotting positions, and the

angle opening on the V-mask would be 26.57°.

Johnson (1961) [also see Johnson and Leone 1962a, 1962b, 1962c] has suggested a

method for designing the V-mask—that is, selecting d and q. He recommends the V-mask

parameters

(9.19)

and

(9.20)

where 2a is the greatest allowable probability of a signal when the process mean is on target

(a false alarm) and b is the probability of not detecting a shift of size d. If b is small, which

is usually the case, then

(9.21)

We strongly advise against using the V-mask procedure. Some of the disadvantages and

problems associated with this scheme are as follows:

1. The headstart feature, which is very useful in practice, cannot be implemented with the

V-mask.

2. It is sometimes difficult to determine how far backward the arms of the V-mask should

extend, thereby making interpretation difficult for the practitioner.

3. Perhaps the biggest problem with the V-mask is the ambiguity associated with a and b
in the Johnson design procedure.

Adams, Lowry, and Woodall (1992) point out that defining 2a as the probability of a false

alarm is incorrect. Essentially, 2a cannot be the probability of a false alarm on any single

sample, because this probability changes over time on the CUSUM, nor can 2a be the prob-

ability of eventually obtaining a false alarm (this probability is, of course, 1). In fact, 2a must

be the long-run proportion of observations resulting in false alarms. If this is so, then the in-

control ARL should be ARL0 = 1/(2a). However, Johnson’s design method produces values

of ARL0 that are substantially larger than 1/(2a).

d − − ( )~ ln
2

α
δ

d = ⎛
⎝

⎞
⎠

−⎛
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⎞
⎠⎟

2 1
2δ
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α
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⎝⎜

⎞
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d = 10

h dk

d
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Table 9.8 shows values of ARL0 for a V-mask scheme designed using Johnson’s

method. Note that the actual values of ARL0 are about five times the desired value used in the

design procedure. The schemes will also be much less sensitive to shifts in the process mean.

Consequently, the use of the V-mask scheme is not a good idea. Unfortunately, it is the default

CUSUM in some SPC software packages.

9.1.12 The Self-Starting CUSUM 

The CUSUM is typically used as a phase II procedure; that is, it is applied to monitor a

process that has already been through the phase I process and most of the large assignable

causes have been removed. In phase II, we typically assume that the process parameters are

reasonably well estimated. In practice, this turns out to be a fairly important assumption, as

using estimates of the parameters instead of the true values has an effect on the average run

length performance of the control chart [this was discussed in Chapter 4; also see the review

paper by Jensen et al. (2006)]. Control charts that are designed to detect small shifts are par-

ticularly sensitive to this assumption, including the CUSUM. A Shewhart control chart with

the Western Electric rules also would be very sensitive to the estimates of the process parame-

ters. One solution to this is to use a large sample of phase I data to estimate the parameters.

An alternative approach for the CUSUM is to use a self-starting CUSUM procedure due

to Hawkins (1987). The self-starting CUSUM for the mean of a normally distributed random

variable is easy to implement. It can be applied immediately without any need for a phase I

sample to estimate the process parameters, in this case the mean m and the variance s2.

Let be the average of the first n observations and let 

be the sum of squared deviations from the average of those observations. Convenient comput-

ing formulas to update these quantities after each new observation are

The sample variance of the first n observations is s2
n = wn/(n − 1). Standardize each succes-

sive new process observation using

Tn =
xn − xn−1

sn−1

wn = wn−1 +
(n − 1)(xn − xn−1)2

n
 

xn = xn−1 +
xn − xn−1

n
 

wn = a
n

i=1

(xi − xn)2

xn
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■ TA B L E  9 . 8

Actual Values of ARL0 for a V-Mask Scheme Designed Using
Johnson’s Method [Adapted from Table 2 in Woodall and Adams
(1993)]

Values of a [Desired Value of 
ARL0 = 1/(2a)]

Shift to Be Detected, d 0.00135 (370) 0.001 (500)

1.0 2,350.6 3,184.5

2.0 1,804.5 2,435.8

3.0 2,194.8 2,975.4
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for the case where n is greater than or equal to 3. If the observations are normally distributed,

the distribution of is a t distribution with n − 1 degrees of freedom. The cumula-

tive distribution of Tn is

where Fn is the cumulative t distribution with n − 1 degrees of freedom. It turns out that if the

tail area for any continuous random variable is converted to a normal ordinate, we obtain a

new random variable that is distributed exactly as a standard normal random variable. That is,

if Φ−1 is the inverse normal cumulative distribution, then the transformation

converts the CUSUM quantity Tn into a standard normal random variable. It turns out that the

values of Un are statistically independent (this isn’t obvious, because successive values of Un

share the same data points), so one can plot all values of Un for n ≥ 3 on a N(0, 1) CUSUM.

This nicely avoids the problem of using a large sample of phase I data to estimate the process

parameters for a conventional CUSUM.

To illustrate the procedure, consider the data from Table 9.1. The first eight of these

observations are shown in Table 9.9. The columns to the right of the data are the running aver-

age, the running sum of squared deviations from the average, the running standard deviation,

the standardized value of each observation, the t distribution value that corresponds to it, the

t distribution tail area, and finally the equivalent inverse normal value. The values of Un can

be handled as any data for a CUSUM. For example, they could be entered into a tabular

CUSUM and plotted on a CUSUM status chart.

There is a difference in practical usage of a self-starting CUSUM in comparison to an

ordinary CUSUM surrounding the out-of-control situation. In a standard or ordinary CUSUM,

the CUSUM moves upward indefinitely following an upward shift in the mean until the assign-

able cause is discovered. However, in a self-starting CUSUM the plotted statistic will begin

moving upward following the shift, but as the shifted values are entered into the calculations of

the running average and running standard deviation, they move the running mean closer to the

new shifted value of the mean and the running standard deviation gets larger. Consequently, if

the process is not adjusted and the CUSUM reset, the self-starting CUSUM will turn back

downward. Therefore, the users of a self-starting CUSUM should take investigative and correc-

tive action immediately following an out-of-control signal. When restarting, it is also necessary

to remove the out-of-control data from the running average and running standard deviation.

Outliers can also impact the self-starting CUSUM, principally by inflating the running standard

Un = Φ−1 3Fn−2(anTn) 4    where an =
A

n − 1

n

P(Tn £ t) = Fn−2 at
A

n − 1

n
b

A

n − 1

n
Tn

■ TA B L E  9 . 9

Calculations for a Self-Starting CUSUM 

n xn xn
– wn Sn Tn anTn Fn−2 (anTn) Un

1 9.45 9.45 0 — — — — —

2 7.99 8.72 1.07 1.03 — — — —

3 9.29 8.91 1.25 0.80 0.55 0.45 0.6346 0.34406

4 11.66 9.60 6.92 1.52 3.44 2.98 0.9517 1.66157

5 12.16 10.11 12.16 1.75 1.68 1.50 0.8847 1.19881

6 10.18 10.12 12.16 1.56 0.04 0.04 0.5152 0.03811

7 8.04 9.82 15.87 1.63 −1.33 −1.23 0.1324 −1.11512

8 11.46 10.03 18.22 1.62 1.01 0.94 0.8107 0.88048
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deviation. Maintaining a Shewhart control chart on the observations can give protection against

this problem. Refer to Hawkins and Olwell (1998) for more suggestions and discussion.

9.2 The Exponentially Weighted Moving Average Control Chart

The exponentially weighted moving average (EWMA) control chart is also a good alternative

to the Shewhart control chart when we are interested in detecting small shifts. The perfor-

mance of the EWMA control chart is approximately equivalent to that of the cumulative sum

control chart, and in some ways it is easier to set up and operate. As with the CUSUM, the

EWMA is typically used with individual observations, and so, consequently, we will discuss

that case first. We will also give the results for rational subgroups of size n > 1.

9.2.1 The Exponentially Weighted Moving Average Control Chart 
for Monitoring the Process Mean

The EWMA control chart was introduced by Roberts (1959). See also Crowder (1987a, 1989)

and Lucas and Saccucci (1990) for good discussions of the EWMA. The exponentially

weighted moving average is defined as

(9.22)

where 0 < l ≤ 1 is a constant and the starting value (required with the first sample at i = 1) is

the process target, so that

Sometimes the average of preliminary data is used as the starting value of the EWMA, so that

.

To demonstrate that the EWMA zi is a weighted average of all previous sample means,

we may substitute for zi–1 on the right-hand side of equation 9.22 to obtain

Continuing to substitute recursively for zi − j, j = 2, 3, . . . , t, we obtain

(9.23)

The weights l(1 − l) j decrease geometrically with the age of the sample mean. Furthermore,

the weights sum to unity, since

If l = 0.2, then the weight assigned to the current sample mean is 0.2 and the weights given

to the preceding means are 0.16, 0.128, 0.1024, and so forth. A comparison of these weights

with those of a five-period moving average is shown in Figure 9.6. Because these weights

decline geometrically when connected by a smooth curve, the EWMA is sometimes called a

geometric moving average (GMA). The EWMA is used extensively in time series modeling

and in forecasting [see Box, Jenkins, and Reinsel (1994) and Montgomery, Jennings, and

Kulachi (2008)]. Since the EWMA can be viewed as a weighted average of all past and current
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434 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

observations, it is very insensitive to the normality assumption. It is therefore an ideal control

chart to use with individual observations.

If the observations xi are independent random variables with variance s 2, then the vari-

ance of zi is

(9.24)

Therefore, the EWMA control chart would be constructed by plotting zi versus the sample num-

ber i (or time). The center line and control limits for the EWMA control chart are as follows.

σ σ λ
λ

λz
i

i

2 2 2

2
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−
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■ F I G U R E  9 . 6 Weights of past sample means.

The EWMA Control Chart

(9.26)
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(9.25)

In equations 9.25 and 9.26, the factor L is the width of the control limits. We will discuss the

choice of the parameters L and l shortly.

Note that the term [1 − (1 − l)2i] in equations 9.25 and 9.26 approaches unity as i gets

larger. This means that after the EWMA control chart has been running for several time 

periods, the control limits will approach steady-state values given by

(9.27)

and

(9.28)

However, we strongly recommend using the exact control limits in equations 9.25 and 9.26

for small values of i. This will greatly improve the performance of the control chart in detect-

ing an off-target process immediately after the EWMA is started up.

LCL = −
−( )μ σ λ

λ0
2

L

UCL = +
−( )μ σ λ

λ0
2

L
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9.2 The Exponentially Weighted Moving Average Control Chart 435

SOLUTION 

Recall that the target value of the mean is m0 = 10 and the stan-

dard deviation is s = 1. The calculations for the EWMA con-

trol chart are summarized in Table 9.10, and the control chart

(from Minitab) is shown in Figure 9.7.

EXAMPLE 9.2

Set up an EWMA control chart with l = 0.10 and L = 2.7 to the data in Table 9.1.

Constructing an EWMA Control Chart

To illustrate the calculations, consider the first observation,

x1 = 9.45. The first value of the EWMA is

z x z1 1 01

0 1 9 45 0 9 10

9 945

= + −( )
= ( ) + ( )
=

λ λ
. . .

.

9.50

9.75

10.00

10.25

10.50

10.75

E
W

M
A

3 6 9 12 15 18 21 24 27 30

Observation

9.38

10

10.62

■ F I G U R E  9 . 7 The EWMA control

chart for Example 9.2.
(continued)

■ TA B L E  9 . 1 0

EWMA Calculations for Example 9.2

Subgroup, i * = Beyond Limits xi EWMA, zi

1 9.45 9.945

2 7.99 9.7495

3 9.29 9.70355

4 11.66 9.8992

5 12.16 10.1253

6 10.18 10.1307

7 8.04 9.92167

8 11.46 10.0755

9 9.2 9.98796

10 10.34 10.0232

11 9.03 9.92384

12 11.47 10.0785

13 10.51 10.1216

14 9.4 10.0495

15 10.08 10.0525

Subgroup, i * = Beyond Limits xi EWMA, zi

16 9.37 9.98426

17 10.62 10.0478

18 10.31 10.074

19 8.52 9.91864

20 10.84 10.0108

21 10.9 10.0997

22 9.33 10.0227

23 12.29 10.2495

24 11.5 10.3745

25 10.6 10.3971

26 11.08 10.4654

27 10.38 10.4568

28 11.62 10.5731

29 11.31 10.6468*

30 10.52 10.6341*
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9.2.2 Design of an EWMA Control Chart

The EWMA control chart is very effective against small process shifts. The design parame-

ters of the chart are the multiple of sigma used in the control limits (L) and the value of l. It

is possible to choose these parameters to give ARL performance for the EWMA control chart

that closely approximates CUSUM ARL performance for detecting small shifts.

There have been several theoretical studies of the average run length properties of the

EWMA control chart. For example, see the papers by Crowder (1987a, 1989) and Lucas and

Saccucci (1990). These studies provide average run length tables or graphs for a range of values

of l and L. The average run length performance for several EWMA control schemes is shown in

Table 9.11. The optimal design procedure would consist of specifying the desired in-control and

out-of-control average run lengths and the magnitude of the process shift that is anticipated, and

then to select the combination of l and L that provide the desired ARL performance.

In general, we have found that values of l in the interval 0.05 ≤ l ≤ 0.25 work well in

practice, with l = 0.05, l = 0.10, and l = 0.20 being popular choices. A good rule of thumb

and

Note from Figure 9.7 that the control limits increase in width

as i increases from i = 1, 2, . . . , until they stabilize at the

steady-state values given by equations 9.27 and 9.28

and

The EWMA control chart in Figure 9.7 signals at observation

28, so we would conclude that the process is out of control.
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Therefore, z1 = 9.945 is the first value plotted on the control

chart in Figure 9.7. The second value of the EWMA is

The other values of the EWMA statistic are computed similarly.

The control limits in Figure 9.7 are found using equations

9.25 and 9.26. For period i = 1,

and

For period 2, the limits are
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is to use smaller values of l to detect smaller shifts. We have also found that L = 3 (the usual

three-sigma limits) works reasonably well, particularly with the larger value of l, although

when l is small—say, l ≤ 0.1—there is an advantage in reducing the width of the limits by

using a value of L between about 2.6 and 2.8. Recall that in Example 9.2, we used l = 0.1 and

L = 2.7. We would expect this choice of parameters to result in an in-control ARL of

ARL0 � 500 and an ARL for detecting a shift of one standard deviation in the mean of

ARL1 = 10.3. Thus this design is approximately equivalent to the CUSUM with h = 5 and k = 1–
2 .

Hunter (1989) has also studied the EWMA and suggested choosing l so that the weight

given to current and previous observations matches as closely as possible the weights given

to these observations by a Shewhart chart with the Western Electric rules. This results in a

recommended value of l = 0.4. If L = 3.054, then Table 9.11 indicates that this chart would

have ARL0 = 500 and for detecting a shift of one standard deviation in the process mean, the

ARL1 = 14.3.

There is one potential concern about an EWMA with a small value of l. If the value of

the EWMA is on one side of the center line when a shift in the mean in the opposite direc-

tion occurs, it could take the EWMA several periods to react to the shift, because the small l
does not weight the new data very heavily. This is called the inertia effect. It can reduce the

effectiveness of the EWMA in shift detection.

Woodall and Mahmoud (2005) have investigated the inertial properties of several dif-

ferent types of control charts. They define the signal resistance of a control chart to be the

largest standardized deviation of the sample mean from the target or in-control value not lead-

ing to an immediate out-of-control signal. For a Shewhart chart, the signal resistance is

, the multiplier used to obtain the control limits. Thus the signal resistance is con-

stant. For the EWMA control chart, the signal resistance is

where w is the value of the EWMA statistic. For the EWMA, the maximum value of the sig-

nal resistance averaged over all values of the EWMA statistic is , if the chart

has the asymptotic limits. These results apply for any sample size, as they are given in terms

of shifts expressed as multiples of the standard error.

L1(2 − l)/l

SR(EWMA) =
L 
A

l
2 − l − (1 − l)w

l

SR(x) = L
x
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■ TA B L E  9 . 1 1

Average Run Lengths for Several EWMA Control Schemes
[Adapted from Lucas and Saccucci (1990)]

Shift in Mean L = 3.054 2.998 2.962 2.814 2.615
(multiple of s) l = 0.40 0.25 0.20 0.10 0.05

0 500 500 500 500 500

0.25 224 170 150 106 84.1

0.50 71.2 48.2 41.8 31.3 28.8

0.75 28.4 20.1 18.2 15.9 16.4

1.00 14.3 11.1 10.5 10.3 11.4

1.50 5.9 5.5 5.5 6.1 7.1

2.00 3.5 3.6 3.7 4.4 5.2

2.50 2.5 2.7 2.9 3.4 4.2

3.00 2.0 2.3 2.4 2.9 3.5

4.00 1.4 1.7 1.9 2.2 2.7
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Clearly, the signal resistance of the EWMA control chart depends on the value chosen

for l, with smaller values leading to larger values of the maximum signal resistance. This is

in a sense unfortunate, because we almost always want to use the EWMA with a small value

of l as this results in good ARL performance in detecting small shifts. As we will see in

Section 9.2.3, small values of l are also desirable because they make the EWMA chart quite

insensitive to normality of the process data. Woodall and Mahmoud (2005) recommend

always using a Shewhart chart in conjunction with an EWMA (especially if l is small) as one

way to counteract the signal resistance.

Like the CUSUM, the EWMA performs well against small shifts but does not react to

large shifts as quickly as the Shewhart chart. A good way to further improve the sensitivity of

the procedure to large shifts without sacrificing the ability to detect small shifts quickly is to

combine a Shewhart chart with the EWMA. These combined Shewhart–EWMA control pro-

cedures are effective against both large and small shifts. When using such schemes, we have

found it helpful to use slightly wider than usual limits on the Shewhart chart (say, 3.25-sigma,

or even 3.5-sigma). It is also possible to plot both xi (or ) and the EWMA statistic zi on the

same control chart along with both the Shewhart and EWMA limits. This produces one chart

for the combined control procedure that operators quickly become adept at interpreting. When

the plots are computer generated, different colors or plotting symbols can be used for the two

sets of control limits and statistics.

9.2.3 Robustness of the EWMA to Non-normality

When discussing the Shewhart control chart for individuals in Chapter 6, we observed that

the individuals chart was very sensitive to non-normality in the sense that the actual in-

control ARL (ARL0) would be considerably less than the “advertised” or expected value

based on the assumption of a normal distribution. Borror, Montgomery, and Runger (1999)

compared the ARL performance of the Shewhart individuals chart and the EWMA control

chart for the case of non-normal distributions. Specifically, they used the gamma distribu-

tion to represent the case of skewed distributions and the t distribution to represent symmet-

ric distributions with heavier tails than the normal.

The ARL0 of the Shewhart individuals chart and several EWMA control charts for these

non-normal distributions are given in Tables 9.12 and 9.13. Two aspects of the information in

these tables are very striking. First, even moderately non-normal distributions have the effect

of greatly reducing the in-control ARL of the Shewhart individuals chart. This will, of course,

dramatically increase the rate of false alarms. Second, an EWMA with l = 0.05 or l = 0.10

and an appropriately chosen control limit will perform very well against both normal and

nonnormal distributions. With l = 0.05 and L = 2.492 the ARL0 for the EWMA is within

xi

■ TA B L E  9 . 1 2

In-Control ARLs for the EWMA and the Individuals Control
Charts for Various Gamma Distributions

EWMA Shewhart

l 0.05 0.1 0.2 1
L 2.492 2.703 2.86 3.00

Normal 370.4 370.8 370.5 370.4

Gam(4, 1) 372 341 259 97

Gam(3, 1) 372 332 238 85

Gam(2, 1) 372 315 208 71

Gam(1, 1) 369 274 163 55

Gam(0.5, 1) 357 229 131 45
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approximately 8% of the advertised normal theory in-control ARL0 of 370, except in the most

extreme cases. Furthermore, the shift detection properties of the EWMA are uniformly supe-

rior to the Shewhart chart for individuals.

Based on this information, we would recommend a properly designed EWMA as a con-

trol chart for individual measurements in a wide range of applications, particularly phase II

process monitoring. It is almost a perfectly nonparametric (distribution-free) procedure.

9.2.4 Rational Subgroups

The EWMA control chart is often used with individual measurements. However, if rational

subgroups of size n > 1 are taken, then simply replace xi with and s with in the

previous equations.

9.2.5 Extensions of the EWMA

There have been numerous extensions and variations of the basic EWMA control chart. In this

section, we describe a few of these procedures.

Fast Initial Response Feature. It is possible to add the fast initial response (FIR)

or headstart feature to the EWMA. As with the CUSUM, the advantage of the procedure

would be to more quickly detect a process that is off target at start-up.

Two approaches have been suggested. Rhoads, Montgomery, and Mastrangelo (1996)

set up two one-sided EWMA charts and start them off at values midway between the target

and the control limit. Both one-sided charts are assumed to have the time-varying limits (read-

ers are asked to develop a one-sided EWMA procedure in Exercise 9.39).

Steiner (1999) uses a single control chart but narrows the time-varying limits even fur-

ther for the first few sample points. He uses an exponentially decreasing adjustment to further

narrow the limits, so that the control limits are located a distance

around the target. The constants f and a are to be determined. Steiner suggests choosing

a so that the FIR has little effect after about 20 observations. This leads to choosing

± − −( )( ) −
− −( )[ ]⎧

⎨
⎩

⎫
⎬
⎭

+ −( )L f a t tσ λ
λ

λ1 1
2

1 1
1 1 2

sx = s/1nxi
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■ TA B L E  9 . 1 3

In-Control ARLs for the EWMA and the Individuals Control
Charts for Various t Distributions

EWMA Shewhart

l 0.05 0.1 0.2 1
L 2.492 2.703 2.86 3.00

Normal 370.4 370.8 370.5 370.4

t50 369 365 353 283

t40 369 363 348 266

t30 368 361 341 242

t20 367 355 325 204

t15 365 349 310 176

t10 361 335 280 137

t8 358 324 259 117

t6 351 305 229 96

t4 343 274 188 76
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440 Chapter 9 ■ Cumulative Sum and Exponentially Weighted Moving Average Control Charts

a = [−2/log(1 − f) − 1]/19. For example, if f = 0.5, then a = 0.3. The choice of f = 0.5 is

attractive because it mimics the 50% headstart often used with CUSUMs.

Both of these procedures perform very well in reducing the ARL to detect an off-target

process at start-up. The Steiner procedure is easier to implement in practice.

Monitoring Variability. MacGregor and Harris (1993) discuss the use of EWMA-

based statistics for monitoring the process standard deviation. Let xi be normally distributed

with mean m and standard deviation s. The exponentially weighted mean square error
(EWMS) is defined as

(9.29)

It can be shown that E(S2
i ) = s 2 (for large i) and if the observations are independent and nor-

mally distributed, then S2
i /s 2 has an approximate chi-square distribution with v = (2 − l)/l

degrees of freedom. Therefore, if s0 represents the in-control or target value of the process stan-

dard deviation, we could plot on an exponentially weighted root mean square (EWRMS)

control chart with control limits given by

(9.30)

and

(9.31)

MacGregor and Harris (1993) point out that the EWMS statistic can be sensitive to

shifts in both the process mean and the standard deviation. They suggest replacing m in equa-

tion 9.27 with an estimate at each point in time. A logical estimate of m turns out to be 

the ordinary EWMA zi. They derive control limits for the resulting exponentially weighted

moving variance (EWMV)

(9.32)

Another approach to monitoring the process standard deviation with an EWMA is in Crowder

and Hamilton (1992).

The EWMA for Poisson Data. Just as the CUSUM can be used as the basis of an

effective control chart for Poisson counts, so can a suitably designed EWMA. Borror, Champ,

and Rigdon (1998) describe the procedure, show how to design the control chart, and provide

an example. If xi is a count, then the basic EWMA recursion remains unchanged:

with z0 = m0 the in-control or target count rate. The control chart parameters are as follows:

(9.33)

where AU and AL are the upper and lower control limit factors. In many applications we would

choose AU = AL = A. Borror, Champ, and Rigdon (1998) give graphs of the ARL performance
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of the Poisson EWMA control chart as a function of l and A and for various in-control or

target count rates m0. Once m0 is determined and a value is specified for l, these charts can be

used to select the value of A that results in the desired in-control ARL0. The authors also show

that this control chart has considerably better ability to detect assignable causes than the

Shewhart c chart. The Poisson EWMA should be used much more widely in practice.

The EWMA as a Predictor of Process Level. Although we have discussed the

EWMA primarily as a statistical process-monitoring tool, it actually has a much broader inter-

pretation. From an SPC viewpoint, the EWMA is roughly equivalent to the CUSUM in its abil-

ity to monitor a process and detect the presence of assignable causes that result in a process

shift. However, the EWMA provides a forecast of where the process mean will be at the next

time period. That is, zi is actually a forecast of the value of the process mean m at time i + 1.

Thus, the EWMA could be used as the basis for a dynamic process-control algorithm.

In computer-integrated manufacturing where sensors are used to measure every unit

manufactured, a forecast of the process mean based on previous behavior would be very use-

ful. If the forecast of the mean is different from target by a critical amount, then either the

operator or some electromechanical control system can make the necessary process adjust-

ment. If the operator makes the adjustment, then he or she must exercise caution and not make

adjustments too frequently because this will actually cause process variability to increase. The

control limits on the EWMA chart can be used to signal when an adjustment is necessary, and

the difference between the target and the forecast of the mean mi+1 can be used to determine

how much adjustment is necessary.

The EWMA can be modified to enhance its ability to forecast the mean. Suppose that

the process mean trends or drifts steadily away from the target. The forecasting perfor-

mance of the EWMA can be improved in this case. First, note that the usual EWMA can be

written as

and if we view zi−1 as a forecast of the process mean in period i, we can think of xi − zi−1 as

the forecast error ei for period i. Therefore,

(9.34)

Thus, the EWMA for period i is equal to the EWMA for period i − 1 plus a fraction l of the

forecast error for the mean in period i. Now add a second term to this last equation to give

(9.35)

where l1 and l2 are constants that weight the error at time i and the sum of the errors accu-

mulated to time i. If we let ∇ei = ei − ei−1 be the first difference of the errors, then we can

arrive at a final modification of the EWMA:

(9.36)

Note that in this empirical control equation the EWMA in period i (which is the forecast of

the process mean in period i + 1) equals the current estimate of the mean (zi−1 estimates mi),

plus a term proportional to the error, plus a term related to the sum of the errors, plus a term

related to the first difference of the errors. These three terms can be thought of as propor-
tional, integral, and differential adjustments. The parameters l1, l2, and l3 would be cho-

sen to give the best forecasting performance.
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Because the EWMA statistic zi can be viewed as a forecast of the mean of the process

at time i + 1, we often plot the EWMA statistic one time period ahead. That is, we actually

plot zi at time period i + 1 on the control chart. This allows the analyst to visually see how

much difference there is between the current observation and the estimate of the current mean

of the process. In statistical process-control applications where the mean may “wander” over

time, this approach has considerable appeal.

9.3 The Moving Average Control Chart

Both the CUSUM and the EWMA are time-weighted control charts. The EWMA chart uses

a weighted average as the chart statistic. Occasionally, another type of time-weighted control

chart based on a simple, unweighted moving average may be of interest.

Suppose that individual observations have been collected, and let x1, x2, . . . denote

these observations. The moving average of span w at time i is defined as

(9.37)

That is, at time period i, the oldest observation in the moving average set is dropped and the

newest one added to the set. The variance of the moving average Mi is

(9.38)

Therefore, if m0 denotes the target value of the mean used as the center line of the control

chart, then the three-sigma control limits for Mi are

(9.39)

and

(9.40)

The control procedure would consist of calculating the new moving average Mi as each obser-

vation xi becomes available, plotting Mi on a control chart with upper and lower control lim-

its given by equations 9.39 and 9.40, and concluding that the process is out of control if Mi

exceeds the control limits. In general, the magnitude of the shift of interest and w are inversely

related; smaller shifts would be guarded against more effectively by longer-span moving aver-

ages, at the expense of quick response to large shifts.
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SOLUTION 

EXAMPLE 9.3 A Moving Average Control Chart

Set up a moving average control chart for the data in Table 9.1, using w = 5.

for periods i ≥ 5. For time periods i < 5 the average of the

observations for periods 1, 2, . . . , i is plotted. The values of

these moving averages are shown in Table 9.14.

The observations xi for periods 1 ≤ i ≤ 30 are shown in Table 9.14.

The statistic plotted on the moving average control chart will be

M
x x x

i
i i i= + + +− −1 4

5

L
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The control limits for the moving average control chart may

be easily obtained from equations 9.39 and 9.40. Since we

know that s = 1.0, then

and

LCL = − = − ( ) =μ σ
0

3
10

3 1 0

5
8 66

w

.
.

UCL = + = + ( ) =μ σ
0

3
10

3 1 0

5
11 34

w

.
.

The control limits for Mi apply for periods i ≥ 5. For peri-

ods 0 < i < 5, the control limits are given by . An

alternative procedure that avoids using special control limits

for periods i < w is to use an ordinary Shewhart chart until at

least w sample means have been obtained.

The moving average control chart is shown in Figure 9.8.

No points exceed the control limits. Note that for the initial

periods i < w the control limits are wider than their final steady-

state value. Moving averages that are less than w periods apart

are highly correlated, which often complicates interpreting pat-

terns on the control chart. This is easily seen by examining

Figure 9.8.

m0 ± 3s/1i

0 5 10 15 20 25 30

Observation

8.65836

10

11.3416

7

8

9

10

11

12

13

M
A

■ F I G U R E  9 . 8 Moving average control

chart with w = 5, Example 9.3.
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■ TA B L E  9 . 1 4

Moving Average Chart for Example 9.3

Observation, i xi Mi

1 9.45 9.45

2 7.99 8.72

3 9.29 8.91

4 11.66 9.5975

5 12.16 10.11

6 10.18 10.256

7 8.04 10.266

8 11.46 10.7

9 9.2 10.208

10 10.34 9.844

11 9.03 9.614

12 11.47 10.3

13 10.51 10.11

14 9.4 10.15

15 10.08 10.098

Observation, i xi Mi

16 9.37 10.166

17 10.62 9.996

18 10.31 9.956

19 8.52 9.78

20 10.84 9.932

21 10.9 10.238

22 9.33 9.98

23 12.29 10.376

24 11.5 10.972

25 10.6 10.924

26 11.08 10.96

27 10.38 11.17

28 11.62 11.036

29 11.31 10.998

30 10.52 10.982
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The moving average control chart is more effective than the Shewhart chart in detecting

small process shifts. However, it is generally not as effective against small shifts as either the

CUSUM or the EWMA. The moving average control chart is considered by some to be sim-

pler to implement than the CUSUM. This author prefers the EWMA to the moving average

control chart.

ARL calculations for the CUSUM

Average run length

Combined CUSUM–Shewhart procedures

CUSUM control chart

CUSUM status chart

Decision interval

Design of a CUSUM

Design of an EWMA control chart

EWMA control chart

Fast initial response (FIR) or headstart feature for a CUSUM

Fast initial response (FIR) or headstart feature for an

EWMA

Moving average control chart

One-sided CUSUMs

Poisson EWMA

Reference value

Robustness of the EWMA to normality

Scale CUSUM

Self-starting CUSUM

Signal resistance of a control chart

Standardized CUSUM

Tabular or algorithmic CUSUM

V-mask form of the CUSUM

Exercises

9.1. The data in Table 9E.1 represent

individual observations on molecu-

lar weight taken hourly from a

chemical process.

The target value of molecular

weight is 1,050 and the process

standard deviation is thought to

be about s = 25.

(a) Set up a tabular CUSUM for

the mean of this process.

Design the CUSUM to quickly

detect a shift of about 1.0s in

the process mean.

(b) Is the estimate of s used in part (a) of this prob-

lem reasonable?

9.2. Rework Exercise 9.1 using a standardized CUSUM.

9.3. (a) Add a headstart feature to the CUSUM in

Exercise 9.1.

(b) Use a combined Shewhart–CUSUM scheme on

the data in Exercise 9.1. Interpret the results of

both charts.

9.4. A machine is used to fill cans with motor oil additive.

A single sample can is selected every hour, and the

weight of the can is obtained. Since the filling process

is automated, it has very stable variability, and long

experience indicates that s = 0.05 oz. The individual

observations for 24 hours of operation are shown in

Table 9E.2.

(a) Assuming that the process target is 8.02 oz, set

up a tabular CUSUM for this process. Design the

CUSUM using the standardized values h = 4.77

and k = 1–
2.

(b) Does the value of s = 0.05 seem reasonable for

this process?

9.5. Rework Exercise 9.4 using the standardized CUSUM

parameters of h = 8.01 and k = 0.25. Compare the

results with those obtained previously in Exercise 9.4.

What can you say about the theoretical performance

of those two CUSUM schemes?

9.6. Reconsider the data in Exercise 9.4. Suppose the

data there represent observations taken immediately

after a process adjustment that was intended to reset

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

■ TA B L E  9 E . 1

Molecular Weight

Observation Observation 
Number x Number x

1 1,045 11 1,139

2 1,055 12 1,169

3 1,037 13 1,151

4 1,064 14 1,128

5 1,095 15 1,238

6 1,008 16 1,125

7 1,050 17 1,163

8 1,087 18 1,188

9 1,125 19 1,146

10 1,146 20 1,167

Important Terms and Concepts
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the process to a target of m0 = 8.00. Set up and apply

an FIR CUSUM to monitor this process.

9.7. The data in Table 9E.3 are temperature readings from

a chemical process in °C, taken every two minutes.

(Read the observations down, from left.)

The target value for the mean is m0 = 950.

(a) Estimate the process standard deviation.

(b) Set up and apply a tabular CUSUM for this

process, using standardized values h = 5 and k = 1–
2.

Interpret this chart.

9.8. Bath concentrations are measured hourly in a chem-

ical process. Data (in ppm) for the last 32 hours are

shown in Table 9E.4 (read down from left).

The process target is m0 = 175 ppm.

(a) Estimate the process standard deviation.

(b) Construct a tabular CUSUM for this process

using standardized values of h = 5 and k = 1–
2.

9.9. Viscosity measurements on a polymer are made every

10 minutes by an on-line viscometer. Thirty-six obser-

Exercises 445

■ TA B L E  9 E . 2

Fill Data for Exercise 9.4

Sample Sample 
Number x Number x

1 8.00 13 8.05

2 8.01 14 8.04

3 8.02 15 8.03

4 8.01 16 8.05

5 8.00 17 8.06

6 8.01 18 8.04

7 8.06 19 8.05

8 8.07 20 8.06

9 8.01 21 8.04

10 8.04 22 8.02

11 8.02 23 8.03

12 8.01 24 8.05

■ TA B L E  9 E . 4

Bath Concentration

160 186 190 206

158 195 189 210

150 179 185 216

151 184 182 212

153 175 181 211

154 192 180 202

158 186 183 205

162 197 186 197

■ TA B L E  9 E . 3

Chemical Process Temperature Data

953 985 949 937 959 948 958 952

945 973 941 946 939 937 955 931

972 955 966 954 948 955 947 928

945 950 966 935 958 927 941 937

975 948 934 941 963 940 938 950

970 957 937 933 973 962 945 970

959 940 946 960 949 963 963 933

973 933 952 968 942 943 967 960

940 965 935 959 965 950 969 934

936 973 941 956 962 938 981 927

vations are shown in Table 9E.5 (read down from left).

The target viscosity for this process is m0 = 3,200.

(a) Estimate the process standard deviation.

(b) Construct a tabular CUSUM for this process using

standardized values of h = 8.01 and k = 0.25.

(c) Discuss the choice of h and k in part (b) of this

problem on CUSUM performance.

9.10. Set up a tabular CUSUM scheme for the flow width

data used in Example 6.1 (see Tables 6.1 and 6.2).

When the procedure is applied to all 45 samples,

does the CUSUM react more quickly than the chart

to the shift in the process mean? Use s = 0.14 in set-

ting up the CUSUM, and design the procedure to

quickly detect a shift of about 1s.

9.11. Consider the loan processing cycle time data in

Exercise 8.15. Set up a CUSUM chart for monitoring

this process. Does the process seem to be in statisti-

cal control?

9.12. Consider the loan processing cycle time data in

Exercise 8.15. Set up an EWMA control chart for

monitoring this process using l = 0.1. Does the

process seem to be in statistical control?

9.13. Consider the hospital emergency room waiting time

data in Exercise 8.16. Set up a CUSUM chart for

monitoring this process. Does the process seem to be

in statistical control?

x

■ TA B L E  9 E . 5

Polymer Viscosity

3,169 3,205 3,185 3,188

3,173 3,203 3,187 3,183

3,162 3,209 3,192 3,175

3,154 3,208 3,199 3,174

3,139 3,211 3,197 3,171

3,145 3,214 3,193 3,180

3,160 3,215 3,190 3,179

3,172 3,209 3,183 3,175

3,175 3,203 3,197 3,174
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9.14. Consider the hospital emergency room waiting time

data in Exercise 8.16. Set up an EWMA control chart

using l = 0.2 for monitoring this process. Does the

process seem to be in statistical control?

9.15. Consider the “minute clinic” waiting time data in

Exercise 6.66. These data may not be normally dis-

tributed. Set up a CUSUM chart for monitoring this

process. Does the process seem to be in statistical

control?

9.16. Consider the “minute clinic” waiting time data in

Exercise 6.66. These data may not be normally dis-

tributed. Set up an EWMA control chart using l = 0.1

for monitoring this process. Does the process seem to

be in statistical control?

9.17. Consider the hospital emergency room waiting time

data in Exercise 8.16. Set up an EWMA control chart

using l = 0.1 for monitoring this process. Compare

this EWMA chart to the one from Exercise 9.14.

9.18. Consider the “minute clinic” waiting time data in

Exercise 6.66. Set up an EWMA control chart using

l = 0.4 for monitoring this process. Compare this

EWMA chart to the one from Exercise 9.16.

9.19. Apply the scale CUSUM discussed in Section 9.1.8

to the data in Exercise 9.1.

9.20. Apply the scale CUSUM discussed in Section 9.1.8

to the concentration data in Exercise 9.8.

9.21. Consider a standardized two-sided CUSUM with k =
0.2 and h = 8. Use Siegmund’s procedure to evaluate

the in-control ARL performance of this scheme. Find

ARL1 for d* = 0.5.

9.22. Consider the viscosity data in Exercise 9.9. Suppose

that the target value of viscosity is m0 = 3,150 and that

it is only important to detect disturbances in the process

that result in increased viscosity. Set up and apply an

appropriate one-sided CUSUM for this process.

9.23. Consider the velocity of light data introduced in

Exercises 6.59 and 6.60. Use only the 20 observa-

tions in Exercise 6.59 to set up a CUSUM with

target value 734.5. Plot all 40 observations from both

Exercises 6.59 and 6.60 on this CUSUM. What con-

clusions can you draw?

9.24. Rework Exercise 9.23 using an EWMA with l =
0.10.

9.25. Rework Exercise 9.1 using an EWMA control chart

with l = 0.1 and L = 2.7. Compare your results to

those obtained with the CUSUM.

9.26. Consider a process with m0 = 10 and s = 1. Set up the

following EWMA control charts:

(a) l = 0.1, L = 3

(b) l = 0.2, L = 3

(c) l = 0.4, L = 3

Discuss the effect of l on the behavior of the control

limits.

9.27. Reconsider the data in Exercise 9.4. Set up an

EWMA control chart with l = 0.2 and L = 3 for this

process. Interpret the results.

9.28. Reconstruct the control chart in Exercise 9.27 using

l = 0.1 and L = 2.7. Compare this chart with the one

constructed in Exercise 9.27.

9.29. Reconsider the data in Exercise 9.7. Apply an EWMA

control chart to these data using l = 0.1 and L = 2.7.

9.30. Reconstruct the control chart in Exercise 9.29 using

l = 0.4 and L = 3. Compare this chart to the one con-

structed in Exercise 9.21.

9.31. Reconsider the data in Exercise 9.8. Set up and apply

an EWMA control chart to these data using l = 0.05

and L = 2.6.

9.32. Reconsider the homicide data in Exercise 7.76. Set

up an EWMA control chart for this process with l =
0.1 and L = 2.7. Does potential non-normality in the

data pose a concern here?

9.33. Reconsider the data in Exercise 9.9. Set up and apply

an EWMA control chart to these data using l = 0.1

and L = 2.7.

9.34. Analyze the data in Exercise 9.1 using a moving aver-

age control chart with w = 6. Compare the results

obtained with the cumulative sum control chart in

Exercise 9.1.

9.35. Analyze the data in Exercise 9.4 using a moving aver-

age control chart with w = 5. Compare the results

obtained with the cumulative sum control chart in

Exercise 9.4.

9.36. Analyze the homicide data in Exercise 7.76 using a

moving average control chart with w = 5. Does poten-

tial non-normality in the data pose a concern here?

9.37. Show that if the process is in control at the level m, the

exponentially weighted moving average is an unbi-

ased estimator of the process mean.

9.38. Derive the variance of the exponentially weighted

moving average zi.

9.39. Equivalence of moving average and exponentially
weighted moving average control charts. Show

that if l = 2/(w + 1) for the EWMA control chart,

then this chart is equivalent to a w-period moving

average control chart in the sense that the control

limits are identical in the steady state.

9.40. Continuation of Exercise 9.39. Show that if l =
2/(w + 1), then the average “ages” of the data used in

computing the statistics zi and Mi are identical.

9.41. Show how to modify the control limits for the mov-

ing average control chart if rational subgroups of size

n > 1 are observed every period, and the objective of

the control chart is to monitor the process mean.

9.42. A Shewhart chart has center line at 10 with UCL =
16 and LCL = 4. Suppose you wish to supplement

this chart with an EWMA control chart using l = 0.1

x
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and the same control limit width in s-units as

employed on the chart. What are the values of the

steady-state upper and lower control limits on the

EWMA chart?

9.43. An EWMA control chart uses l = 0.4. How wide will

the limits be on the Shewhart control chart, expressed

as a multiple of the width of the steady-state EWMA

limits?

9.44. Consider the valve failure data in Example 7.6. Set

up a CUSUM chart for monitoring the time between

events using the transformed variable approach illus-

trated in that example. Use standardized values of 

h = 5 and k = 1–
2.

x
9.45. Consider the valve failure data in Example 7.6. Set up

a one-sided CUSUM chart for monitoring and detect-

ing an increase in failure rate of the valve. Assume

that the target value of the mean time between failures

is 700 hr.

9.46. Set up an appropriate EWMA control chart for the

valve failure data in Example 7.6. Use the trans-

formed variable approach illustrated in that example.

9.47. Discuss how you could set up one-sided EWMA

control charts.

Exercises 447
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Chapter Overview and Learning Objectives 449

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

The widespread successful use of the basic SPC methods described in Part 3 and the CUSUM

and EWMA control charts in the previous chapter have led to the development of many new

techniques and procedures over the past 20 years. This chapter is an overview of some of 

the more useful recent developments. We begin with a discussion of SPC methods for short

production runs and concentrate on how conventional control charts can be modified for this

situation. Although there are other techniques that can be applied to the short-run scenario,

this approach seems to be most widely used in practice. We then discuss modified and accep-

tance control charts. These techniques find some application in situations where process capa-

bility is high, such as the Six Sigma manufacturing environment. Multiple-stream processes

are encountered in many industries. An example is container filling on a multiple-head

machine. We present the group control chart (a classical method for the multiple-stream

process) and another procedure based on control charts for monitoring the specific types of

assignable causes associated with these systems. We also discuss techniques for monitoring

processes with autocorrelated data, a topic of considerable importance in the chemical and

process industries. Other chapter topics include a discussion of formal consideration of

process economics in designing a monitoring scheme, adaptive control charts in which the

sample size or time between samples (or both) may be modified based on the current value

of the sample statistic, the Cuscore monitoring procedure, changepoints as the framework for

a process-monitoring procedure, profile monitoring, the use of control charts in health care,

methods for tool wear, fill control problems, and control charts for sample statistics other than

the conventional ones considered in previous chapters. In many cases we give only a brief

summary of the topic and provide references to more complete descriptions.

After careful study of this chapter, you should be able to do the following:

1. Set up and use and R control charts for short production runs

2. Know how to calculate modified limits for the Shewhart control chart

3. Know how to set up and use an acceptance control chart

4. Use group control charts for multiple-stream processes, and understand the alter-

native procedures that are available

5. Understand the sources and effects of autocorrelation on standard control charts

6. Know how to use model-based residuals control charts for autocorrelated data

7. Know how to use the batch means control chart for autocorrelated data

x

x

10.10 CONTROL CHARTS IN HEALTH CARE
MONITORING AND PUBLIC HEALTH
SURVEILLANCE

10.11 OVERVIEW OF OTHER PROCEDURES
10.11.1 Tool Wear
10.11.2 Control Charts Based on

Other Sample Statistics
10.11.3 Fill Control Problems
10.11.4 Precontrol
10.11.5 Tolerance Interval Control

Charts
10.11.6 Monitoring Processes with

Censored Data

10.11.7 Monitoring Bernoulli
Processes

10.11.8 Nonparametric Control
Charts

Supplemental Material for Chapter 10

S10.1. Difference Control Charts
S10.2. Control Charts for Contrasts
S10.3. Run Sum and Zone Control

Charts
S10.4. More about Adaptive Control

Charts

The supplemental material is on the textbook Web site www.wiley.com/college/montgomery.
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8. Know what the Cuscore control chart can be used for

9. Know how changepoint methods relate to statistical process monitoring techniques

10. Understand the practical reason behind the use of adaptive control charts

11. Understand the basis of economic principles of control chart design

12. Know how control charts can be used for monitoring processes whose output is

a profile

10.1 Statistical Process Control for Short Production Runs

Statistical process-control methods have found wide application in almost every type of busi-

ness. Some of the most interesting applications occur in job-shop manufacturing systems, or

generally in any type of system characterized by short production runs. Some of the SPC

methods for these situations are straightforward adaptations of the standard concepts and

require no new methodology. In fact, Example 6.8 illustrated one of the basic techniques of

control charting used in the short-run environment—using deviation from the nominal dimen-

sion as the variable on the control chart. In this section, we present a summary of several tech-

niques that have proven successful in the short production run situation.

10.1.1 and R Charts for Short Production Runs

The simplest technique for using and R charts in the short production run situation was

introduced previously in Example 6.8; namely, use deviation from nominal instead of the

measured variable control chart. This is sometimes called the deviation from normal
(DNOM) control chart. To illustrate the procedure, consider the data in Table 10.1. The first

four samples represent hole diameters in a particular part (say, part A). Panel (a) of this table

shows the actual diameters in millimeters. For this part, the nominal diameter is TA = 50 mm.

Thus, if Mi represents the ith actual sample measurement in millimeters, then

would be the deviation from nominal. Panel (b) of Table 10.1 shows the deviations from nom-

inal xi, as well as the and R values for each sample. Now consider the last six samples inx

x M Ti i= − A

x

x

■ TA B L E  1 0 . 1

Data for Short-Run and R Charts (deviation from nominal approach)

(a) (b) 
Measurements Deviation from Nominal

Sample Part 
Number Number M1 M2 M3 x1 x2 x3 R

1 A 50 51 52 0 1 2 1.00 2

2 A 49 50 51 −1 0 1 0.00 2

3 A 48 49 52 −2 −1 2 −0.33 4

4 A 49 53 51 −1 3 1 1.00 4

5 B 24 27 26 −1 2 1 0.67 3

6 B 25 27 24 0 2 −1 0.33 3

7 B 27 26 23 2 1 −2 0.33 4

8 B 25 24 23 0 −1 −2 −1.00 2

9 B 24 25 25 −1 0 0 −0.33 1

10 B 26 24 25 1 −1 0 0.00 2

=x = 0.17
–
R = 2.7

x

x
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10.1 Statistical Process Control for Short Production Runs 451

Table 10.1. These hole diameters are from a different part number, B, for which the nominal

dimension is TB = 25 mm. Panel (b) of Table 10.1 presents the deviations from nominal and

the averages and ranges of the deviations from nominal for the part B data.

The control charts for and R using deviation from nominal are shown in Figure 10.1.

Note that control limits have been calculated using the data from all 10 samples. In practice,

we would recommend waiting until approximately 20 samples are available before calculat-

ing control limits. However, for purposes of illustration we have calculated the limits based

on 10 samples to show that, when using deviation from nominal as the variable on the chart,

it is not necessary to have a long production run for each part number. It is also customary to

use a dashed vertical line to separate different products or part numbers and to identify clearly

which section of the chart pertains to each part number, as shown in Figure 10.1.

Three important points should be made relative to the DNOM approach:

1. An assumption is that the process standard deviation is approximately the same for

all parts. If this assumption is invalid, use a standardized and R chart (see the next

subsection).

2. This procedure works best when the sample size is constant for all part numbers.

3. Deviation from nominal control charts have intuitive appeal when the nominal specifi-

cation is the desired target value for the process.

This last point deserves some additional discussion. In some situations the process should not

(or cannot) be centered at the nominal dimension. For example, when the part has one-sided

specifications, frequently a nominal dimension will not be specified. (For an example, see the

data on bottle bursting strength in Chapter 8.) In cases where either no nominal is given or a

nominal is not the desired process target, then in constructing the control chart, use the his-

torical process average ( ) instead of the nominal dimension. In some cases it will be neces-

sary to compare the historical average to a desired process target to determine whether the

x
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true process mean is different from the target. Standard hypothesis testing procedures can be

used to perform this task.

Standardized and R Charts. If the process standard deviations are different for

different part numbers, the deviation from nominal (or the deviation from process target) con-

trol charts described above will not work effectively. However, standardized and R charts
will handle this situation easily. Consider the jth part number. Let and Tj be the average

range and nominal value of x for this part number. Then for all the samples from this part

number, plot

(10.1)

on a standardized R chart with control limits at LCL = D3 and UCL = D4, and plot

(10.2)

on a standardized chart with control limits at LCL = − A2 and UCL = + A2. Note that the

center line of the standardized chart is zero because is the average of the original mea-

surements for subgroups of the jth part number. We point out that for this to be meaningful,

there must be some logical justification for “pooling” parts on the same chart.

The target values  
–
Rj and Tj for each part number can be determined by using specifica-

tions for Tj and taking 
–
Rj from prior history (often in the form of a control chart, or by con-

verting an estimate of s into 
–
Rj by the relationship 

–
Rj

∼− Sd2/c4). For new parts, it is a common

practice to utilize prior experience on similar parts to set the targets.

Farnum (1992) has presented a generalized approach to the DNOM procedure that can

incorporate a variety of assumptions about process variability. The standardized control chart

approach discussed above is a special case of his method. His method would allow construc-

tion of DNOM charts in the case where the coefficient of variation (s/m) is approximately

constant. This situation probably occurs fairly often in practice.

10.1.2 Attributes Control Charts for Short Production Runs

Dealing with attributes data in the short production run environment is extremely simple; the

proper method is to use a standardized control chart for the attribute of interest. This method

will allow different part numbers to be plotted on the same chart and will automatically com-

pensate for variable sample size.

Standardized control charts for attributes were discussed in Chapter 7. For convenience,

the relevant formulas are presented in Table 10.2. All standardized attributes control charts have

the center line at zero, and the upper and lower control limits are at +3 and −3, respectively.

10.1.3 Other Methods

A variety of other approaches can be applied to the short-run production environment. For

example, the CUSUM and EWMA control charts discussed in Chapter 9 have potential appli-

cation to short production runs, because they have shorter average run-length performance

than Shewhart-type charts, particularly in detecting small shifts. Since most production runs

in the short-run environment will not, by definition, consist of many units, the rapid shift

Mix
x

x
M T

Ri
s i j

j

=
−

R
R

Ri
s i

j

=

Rj

x

x
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10.1 Statistical Process Control for Short Production Runs 453

detection capability of those charts would be useful. Furthermore, CUSUM and EWMA con-

trol charts are very effective with subgroups of size 1, another potential advantage in the

short-run situation.

The “self-starting” version of the CUSUM [see Hawkins and Olwell, Chapter 9 (1998)]

is also a useful procedure for the short-run environment. The self-starting approach uses reg-

ular process measurements for both establishing or calibrating the CUSUM and for process

monitoring. Thus it avoids the phase I parameter estimation phase. It also produces the

Shewhart control statistics as a by-product of the process.

The number of subgroups used in calculating the trial control limits for Shewhart charts

impacts the false alarm rate of the chart; in particular, when a small number of subgroups are

used, the false alarm rate is inflated. Hillier (1969) studied this problem and presented a table

of factors to use in setting limits for and R charts based on a small number of subgroups for

the case of n = 5 [see also Wang and Hillier (1970)]. Quesenberry (1993) has investigated a

similar problem for both and individuals control charts. Since control limits in the short-run

environment will typically be calculated from a relatively small number of subgroups, these

papers present techniques of some interest.

Quesenberry (1991a, 1991b, 1991c) has presented procedures for short-run SPC using

a transformation that is different from the standardization approach discussed above. He

refers to these as Q-charts, and notes that they can be used for both short or long produc-

tion runs. The Q-chart idea was first suggested by Hawkins (1987). Del Castillo and

Montgomery (1994) have investigated the average run-length performance of the Q-chart for

variables and show that in some cases the average run length (ARL) performance is inade-

quate. They suggest some modifications to the Q-chart procedure and some alternate methods

based on the EWMA and a related technique called the Kalman filter that have better ARL

performance than the Q-chart. Crowder (1992) has also reported a short-run procedure based

on the Kalman filter. In a subsequent series of papers, Quesenberry (1995a, 1995b, 1995c)

reports some refinements to the use of Q-charts that also enhance their performance in detecting

process shifts. He also suggests that the probability that a shift is detected within a specified

number of samples following its occurrence is a more appropriate measure of the perfor-

mance of a short-run SPC procedure than its average run length. The interested reader should

refer to the July and October 1995 issues of the Journal of Quality Technology that contain

these papers and a discussion of Q-charts by several authorities. These papers and the discussion

include a number of useful additional references.

x

x

■ TA B L E  1 0 . 2

Standardized Attributes Control Charts Suitable for Short Production Runs

Target Standard Statistic to Plot 
Attribute Value Deviation on the Control Chart

p̂i p̄ Z
p p

p p n
i

i= −
−( )

ˆ

1

p p

n

1−( )

np̂i n ¯̄p Z
np np

np p
i

i= −
−( )

ˆ

1
np p1−( )

ci ¯̄c Z
c c

ci
i= −

c

ui ¯̄u Z
u u

u ni
i= −

u n

c10OtherUnivariateStatisticalProcess-MonitoringandControlTechniques.qxd  3/30/12  8:21 PM  Page 453



10.2 Modified and Acceptance Control Charts

In most situations in which control charts are used, the focus is on statistical monitoring or

control of the process, reduction of variability, and continuous process improvement. When

a high level of process capability has been achieved, it is sometimes useful to relax the level

of surveillance provided by the standard control chart. One method for doing this with

charts uses modified (or reject) control limits, and the second uses the acceptance 
control chart.

10.2.1 Modified Control Limits for the Chart

Modified control limits are generally used in situations where the natural variability or

“spread” of the process is considerably smaller than the spread in the specification limits; that

is, Cp or Cpk is much greater than 1. This situation occurs occasionally in practice. In fact, this

should be the natural eventual result of a successful variability reduction effort—reduction of

process variability with a corresponding increase in the process capability ratio. The Six

Sigma approach to variability reduction focuses on improving processes until the minimum

value of Cpk is 2.0.

Suppose, for example, that the specification limits on the fill volume of a carbonated

beverage container are LSL = 10.00 oz and USL = 10.20 oz, but as the result of a program of

engineering and operating refinements, the filling machine can operate with a standard devi-

ation of fill volume of approximately s = 0.01 oz. Therefore, the distance USL − LSL is

approximately 20-sigma, or much greater than the Six Sigma natural tolerance limits on the

process, and the process capability ratio is PCR = (USL − LSL)/6s = 0.20/[6(0.01)] = 3.33.

This is clearly a Six Sigma process.

In situations where six sigma is much smaller than the spread in the specifications

(USL–LSL), the process mean can sometimes be allowed to vary over an interval without

appreciably affecting the overall performance of the process.1 For example, see Figure 10.2.

When this situation occurs, we can use a modified control chart for instead of the usual 

chart. The modified control chart is concerned only with detecting whether the true process

mean m is located such that the process is producing a fraction nonconforming in excess of

some specified value d. In effect, m is allowed to vary over an interval—say, mL ≤ m ≤ mU—

where mL and mU are chosen as the smallest and largest permissible values of m, respectively,

consistent with producing a fraction nonconforming of at most d. We will assume that the

process variability s is in control. Good general discussions of the modified control chart are

in Hill (1956) and Duncan (1986). As noted in Duncan (1986), the procedure is sometimes

used when a process is subject to tool wear (see Section 10.7.1).

To specify the control limits for a modified chart, we will assume that the process out-

put is normally distributed. For the process fraction nonconforming to be less than d, we must

require that the true process mean is in the interval. Consequently, we see from Figure 10.3a
that we must have

and

μ σδU Z= −USL

μ σδL Z= +LSL

x

x
xx

x

x

1In the original Motorola definition of a Six Sigma process, the process mean was assumed to drift about, wander-

ing as far as 1.5s from the desired target. If this is the actual behavior of the process and this type of behavior is

acceptable, then modified control charts are a useful alternative to standard charts. There are also many cases where

the mean should not be allowed to vary even if Cp or Cpk is large. The conventional control charts should be used in

such situations.
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10.2 Modified and Acceptance Control Charts 455

where Zδ is the upper 100(1 − d ) percentage point of the standard normal distribution. Now

if we specify a type I error of a, the upper and lower control limits are

(10.3a)

and

(10.3b)

respectively. The control limits are shown on the distribution of in Figure 10.3b. Instead of

specifying a type I error, one may use the following:

(10.4a)

and

(10.4b)

Two-sigma limits are sometimes recommended for the modified control chart, based on an

argument that the tighter control limits afford better protection (smaller b-risk) against critical

shifts in the mean at little loss in the a-risk. A discussion of this subject is in Freund (1957).

Note that the modified control chart is equivalent to testing the hypothesis that the process

mean lies in the interval mL ≤ m ≤ mU.
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■ F I G U R E  1 0 . 2 A process with the spread

of the natural tolerance limits less than the spread of

the specification limits, or 6s < USL − LSL.

■ F I G U R E  1 0 . 3 Control limits on a modified

control chart. (a) Distribution of process output. 

(b) Distribution of the sample mean .x
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To design a modified control chart, we must have a good estimate of s available. If the

process variability shifts, then the modified control limits are not appropriate. Consequently,

an R or an s chart should always be used in conjunction with the modified control chart.

Furthermore, the initial estimate of s required to set up the modified control chart would 

usually be obtained from an R or an s chart.

SOLUTION 

Figure 10.4a shows this Six Sigma process and Figure 10.4b
illustrates the control limit calculation. Notice that we can use

equation (10.4) with Zd replaced by 4.5. Therefore, the upper

and lower control limits become

UCL USL= − −⎛
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⎞
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=

4 5
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EXAMPLE 10.1 A Control Chart for a Six Sigma Process

and

LCL LSL= + −⎛
⎝⎜

⎞
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= + −( )
=

4 5
3

4

8 4 5 1 5 2

14

.

. .

σ

Consider a normally distributed process with a target value of

the mean of 20 and standard deviation s = 2. The upper and

lower process specifications are at LSL = 8 and USL = 32, so

that if the process is centered at the target, Cp = Cpk = 2.0. This

is a process with Six Sigma capability. In a Six Sigma process

it is assumed that the mean may drift as much as 1.5 standard

deviations off target without causing serious problems. Set up

a control chart for monitoring the mean of this Six Sigma

process with a sample size of n = 4.

Process with
mean shifted

Process with
mean shifted

Process with
mean on target

(a) The “Six Sigma” process

σ

μ

 = 2

L = 17LSL = 8 USL = 32μU = 23μ

σ

 = 20
(TARGET)

4.5 σ4.5
σ1.5σ1.5

(b) Location of control limits

μL = 17LSL = 8 LCL = 14 USL = 32UCL = 26μU = 23μ = 20
(TARGET)

σ3 /√n = 3

σ σx =   /√n = 2/√4 = 1

σ3 /√n = 3 ■ F I G U R E  1 0 . 4 Control limits for a 

Six Sigma process.
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10.2 Modified and Acceptance Control Charts 457

10.2.2 Acceptance Control Charts

The second approach to using an chart to monitor the fraction of nonconforming units, or

the fraction of units exceeding specifications, is called the acceptance control chart. In the

modified control chart design of Section 10.2.1, the chart was based on a specified sample

size n, a process fraction nonconforming d, and type I error probability a. Thus, we inter-

pret d as a process fraction nonconforming that we will accept with probability 1 − a.

Freund (1957) developed the acceptance control chart to take into account both the risk

of rejecting a process operating at a satisfactory level (type I error or a-risk) and the risk

of accepting a process that is operating at an unsatisfactory level (type II error or b-risk).

There are two ways to design the control chart. In the first approach, we design the con-

trol chart based on a specified n and a process fraction nonconforming g that we would like

to reject with probability 1 − b. In this case, the control limits for the chart are

(10.5a)

and

(10.5b)

Note that when n, g, and 1 − b (or b) are specified, the control limits are inside the mL and mU

values that produce the fraction nonconforming g. In contrast, when n, d, and a are specified,

the lower control limit falls between mL and LSL and the upper control limit falls between mU

and USL.

It is also possible to choose a sample size for an acceptance control chart so that spec-

ified values of d, a, g, and b are obtained. By equating the upper control limits (say) for a

specified d and a (equation 10.3a) and a specified g and b (equation 10.5a), we obtain

Therefore, a sample size of

will yield the required values of d, a, g, and b. For example, if d = 0.01, a = 0.00135, g = 0.05,

and b = 0.20, we must use a sample of size

n
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on the acceptance control chart. Obviously, to use this approach, n must not be seriously

restricted by cost or other factors such as rational subgrouping considerations.

10.3 Control Charts for Multiple-Stream Processes

10.3.1 Multiple-Stream Processes

A multiple-stream process (MSP) is a process with data at a point in time consisting of mea-

surements from several individual sources or streams. When the process is in control, the

sources or streams are assumed to be identical. Another characteristic of the MSP is that we

can monitor and adjust each of the streams individually or in small groups.

The MSP occurs often in practice. For example, a machine may have several heads, with

each head producing (we hope) identical units of product. In such situations several possible

control procedures may be followed. One possibility is to use separate control charts on each

stream. This approach usually results in a prohibitively large number of control charts. If the

output streams are highly correlated—say, nearly perfectly correlated—then control charts on

only one stream may be adequate. The most common situation is that the streams are only

moderately correlated, so monitoring only one of the streams is not appropriate. There are at

least two types of situations involving the occurrence of assignable causes in the MSP.

1. The output of one stream (or a few streams) has shifted off target.

2. The output of all streams has shifted off target.

In the first case, we are trying to detect an assignable cause that affects only one stream (or

at most a few streams), whereas in the second, we are looking for an assignable cause that

impacts all streams (such as would result from a change in raw materials).

The standard control chart for the MSP is the group control chart, introduced by Boyd

(1950). We will also discuss other approaches to monitoring the MSP. Throughout this sec-

tion we assume that the process has s streams and that the output quality characteristic from

each stream is normally distributed.

10.3.2 Group Control Charts

The group control chart (GCC) was introduced by Boyd (1950) and remains the basic proce-

dure for monitoring an MSP. To illustrate the methods of construction and use, suppose that the

process has s = 6 streams and that each stream has the same target value and inherent variability.

Variables measurement is made on the items produced, and the distribution of the measurement

is well approximated by the normal. To establish a group control chart, the sampling is performed

as if separate control charts were to be set up on each stream. Suppose, for purposes of illustra-

tion, that a sample size of n = 4 is used. This means that 4 units will be taken from each of the 

s = 6 streams over a short period of time. This will be repeated until about 20 such groups of sam-

ples have been taken. At this point we would have 20 6 = 120 averages of n = 4 observations

each and 120 corresponding ranges. These averages and ranges would be averaged to produce a

grand average and an average range . The limits on the group control charts would be at

for the chart and at
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10.3 Control Charts for Multiple-Stream Processes 459

for the R chart, with A2 = 0.729, D3 = 0, and D4 = 2.282. Note that the sample size n = 4 deter-

mines the control chart constants.

When the group control chart is used to monitor the process, we plot only the largest

and smallest of the s = 6 means observed at any time period on the chart. If these means are

inside the control limits, then all other means will also lie inside the limits. Similarly, only the

largest range will be plotted on the range chart. Each plotted point is identified on the chart

by the number of the stream that produced it. The process is out of control if a point exceeds

a three-sigma limit. Runs tests cannot be applied to these charts, because the conventional

runs tests were not developed to test averages or ranges that are the extremes of a group of

averages or ranges.

It is useful to examine the stream numbers on the chart. In general, if a stream consis-

tently gives the largest (or smallest) value several times in a row, that may constitute evidence

that this stream is different from the others. If the process has s streams and if r is the num-

ber of consecutive times that a particular stream is the largest (or smallest) value, then the

one-sided in-control average run length for this event is given by Nelson (1986) as

(10.6)

if all streams are identical. To illustrate the use of this equation, if s = 6 and r = 4, then

That is, if the process is in control, we will expect to see the same stream producing an

extreme value on the group control chart four times in a row only once every 259 samples.

One way to select the value of r to detect the presence of one stream that is different

from the others is to use equation 10.6 to find an ARL that is roughly consistent with the ARL

of a conventional control chart. The ARL for an in-control process for a single point beyond

the upper control limit (say) is 740. Thus, using r = 4 for a six-stream process results in an

ARL that is too short and that will give too many false alarms. A better choice is r = 5, since

Thus, if we have six streams and if the same stream produces an extreme value on the control

chart in five consecutive samples, then we have strong evidence that this stream is different

from the others.

Using equation 10.6, we can generate some general guidelines for choosing r given the

number of streams s. Suitable pairs (s, r) would include (3, 7), (4, 6), (5–6, 5), and (7–10, 4).

All of these combinations would give reasonable values of the one-sided ARL when the

process is in control.

The two-sided in-control average run length ARL(2)0 is defined as the expected number

of trials until r consecutive largest or r consecutive smallest means come from the same

stream while the MSP is in control. Mortell and Runger (1995) and Nelson and Stephenson

(1996) used the Markov chain approach of Brook and Evans (1972) to compute ARL(2)0

numerically. A closed-form expression is not possible for ARL(2)0, but Nelson and Stephenson

(1996) give a lower bound on ARL(2)0 as

(10.7)

This approximation agrees closely with the numerical computations from the Markov chain

approach.
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There are some drawbacks connected with the GCC. These may be summarized as

follows:

1. At each point in time where samples are taken, all s streams must be sampled. When s
is small, this may be a satisfactory approach. However, some high-speed filling and

packaging machines may have 100 ≤ s ≤ 200 streams. The GCC is not practical for

these situations.

2. There is no information about nonextreme streams at each trial; thus, we cannot 

utilize past values to form an EWMA or a CUSUM statistic to improve on the GCC

performance.

3. The supplementary run tests fail if more than one stream shifts simultaneously (all up

or all down) to the same off-target level, because the shifted streams will most likely

alternate having the extreme value, and no single stream shift can be identified.

4. The selection of the run or pattern length r for a specific problem with s streams is a

discrete process, and the difference in ARL0 for r = r* or r = r* + 1 choice can be sub-

stantial, as observed by Mortell and Runger (1995). This problem is evident in the orig-

inal run rule devised by Nelson (1986), but can be alleviated somewhat by using the

modified run rules in Nelson and Stephenson (1996), which are based on an r − 1 out

of r in a row approach. In fact, it can be easily shown that the difference in the ARL0

between r = r* and r = r* + 1 choices equals sr*, which becomes very large for prob-

lems with large numbers of streams.

5. Although using an r − 1 out of r in a row run rule allows some flexibility in the choice

of the critical value r = r* and ARL0, it adds some complexity since it is no longer a

simple counting procedure.

10.3.3 Other Approaches

Mortell and Runger (1995) proposed the following model for the MSP to accommodate the

practical case of dependent (cross-correlated) streams:

(10.8)

where xtjk is the kth measurement on the jth stream at time t, At ~ N(0,s2
a) represents the dif-

ference of the mean over all the streams at time t from the MSP target m, and etjk is a N(0, s2) ran-

dom variable that represents the difference of the kth measurements on the jth stream from

the process mean over all streams at time t. In this representation of MSP data, the total vari-

ation is allocated into two sources: s2
a accounting for the variation over time common to all

streams, and s2 accounting for the variation between the streams at specific time t. From this

model, the cross-correlation between any pair of streams is given by r = s2
a/(s2

a + s2).

Mortell and Runger (1995) proposed monitoring the average at time t of the means across

all streams with an individuals control chart to detect an overall assignable cause. Also, they pro-

posed monitoring the range of the stream’s means at time t denoted by 

or the maximum residual at time t given by , with any individuals control chart to

detect a relative assignable cause affecting one or a few streams. These proposed control
charts on residuals are better than the GCC, especially when the variation in the process

means over time is greater than the between-stream variability (i.e., when sa > s). Mortell and

Runger compared the performance of these proposed charts with the runs test of the GCC by

Nelson (1986) using simulations of various MSPs and concluded that the CUSUM chart on the

range outperforms the Shewhart and EWMA on either the range or the maximum residual. On

the other hand, little difference in performance exists between the runs test of Nelson (1986)

and the proposed CUSUM chart, but it is preferred because of the flexibility in the choice of

in-control ARL.

max(xij) − xt

Rt = max(xtj) − min(xtj)

x Atjk t tjk= + +μ ε
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10.4 SPC with Autocorrelated Process Data 461

Runger, Alt, and Montgomery (1996a) related control charts for the MSP with corre-

lated data to principal components analysis. (See Chapter 11 for information on principal

components.) The first control chart monitors the major principal component variable, which

equals the mean of the streams at any time t. The second control chart is based on the

Hotelling T2 statistic (see Chapter 11) of the last p − 1 principal components, which is shown

to be equivalent to the s2 chart; thus it is sensitive to relative assignable causes that affect the

uniformity across the streams.

Lanning (1998) studied the use of “fractional” and “adaptive” sampling in the multiple-

stream process with a large number of identical and independent streams, where simultaneous

monitoring of all streams is impractical. In his procedures, only a fraction of the s streams is

sampled at each time period, and this fraction is increased when there are indications that an

out-of-control condition may be present. (Adaptive sampling schemes are introduced in

Section 10.5.) He used the average time to signal (ATS) to compare performance of the com-

peting charts, and focused on the scenarios where assignable causes tend to impact all or 

most of the process streams together. He concluded that the adaptive fraction approach gives

better ATS results than the fixed fraction scheme, and often yields satisfactory results com-

pared to a complete sampling situation. An application of his methodology to a multiple-head

filling machine with many filling valves is described in Lanning, Montgomery, and Runger

(2002–2003).

10.4 SPC with Autocorrelated Process Data

10.4.1 Sources and Effects of Autocorrelation in Process Data

The standard assumptions that are usually cited in justifying the use of control charts are that

the data generated by the process when it is in control are normally and independently dis-

tributed with mean m and standard deviation s. Both m and s are considered fixed and

unknown. An out-of-control condition is a change or shift in m or s (or both) to some different

value. Therefore, we could say that when the process is in control the quality characteristic at

time t, xt, is represented by the model

(10.9)

where et is normally and independently distributed with mean zero and standard deviation s.

This is often called the Shewhart process model.
When these assumptions are satisfied, one may apply conventional control charts and

draw conclusions about the state of statistical control of the process. Furthermore, the statis-

tical properties of the control chart, such as the false alarm rate with three-sigma control limits,

or the average run length, can be easily determined and used to provide guidance for chart

interpretation. Even in situations in which the normality assumption is violated to a slight or

moderate degree, these control charts will still work reasonably well.

The most important of the assumptions made concerning control charts is that of indepen-

dence of the observations, for conventional control charts do not work well if the quality char-

acteristic exhibits even low levels of correlation over time. Specifically, these control charts will

give misleading results in the form of too many false alarms if the data are positively correlated.

This point has been made by numerous authors, including Berthouex, Hunter, and Pallesen

(1978), Alwan and Roberts (1988), Montgomery and Friedman (1989), Alwan (1992), Harris

and Ross (1991), Montgomery and Mastrangelo (1991), and Maragah and Woodall (1992).

Unfortunately, the assumption of uncorrelated or independent observations is not even

approximately satisfied in some manufacturing processes. Examples include chemical processes

x tt t= + =μ ε 1 2, ,K
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where consecutive measurements on process or product characteristics are often highly cor-

related, or automated test and inspection procedures, where every quality characteristic is

measured on every unit in time order of production. An example of correlated process data

was given in Figure 5.6b. Basically, all manufacturing processes are driven by inertial ele-

ments, and when the interval between samples becomes small relative to these forces, the

observations on the process will be correlated over time.

It is easy to give an analytical demonstration of this phenomenon. Figure 10.5 shows a

simple system consisting of a tank with volume V, with the input and output material streams

having flow rate f. Let wt be the concentration of a certain material in the input stream at time

t and xt be the corresponding concentration in the output stream at time t. Assuming homo-

geneity within the tank, the relationship between xt and wt is

where T = V/f is often called the time constant of the system. If the input stream experiences

a step change of w0 at time t = 0 (say), then the output concentration at time t is

Now in practice, we do not observe xt continuously, but only at small, equally spaced inter-

vals of time Δt. In this case,

where a = 1 − e−Δt/T.
The properties of the output stream concentration xt depend on those of the input stream

concentration wt and the sampling interval Δt. If we assume that the wt are uncorrelated random

variables, then the correlation between successive values of xt (or the autocorrelation between

xt and xt − 1) is given by

Note that if Δt is much greater than T, r ∼− 0. That is, if the interval between samples Δt in the

output stream is long—much longer than the time constant T—the observations on output con-

centration will be uncorrelated. However, if Δt ≤ T, this will not be the case. For example, if

Clearly if we sample at least once per time constant there will be significant autocorrelation

present in the observations. For instance, sampling four times per time constant (Δt/T = 0.25)
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10.4 SPC with Autocorrelated Process Data 463

results in autocorrelation between xt and xt − 1 of r = 0.78. Autocorrelation between suc-

cessive observations as small as 0.25 can cause a substantial increase in the false alarm

rate of a control chart, so clearly this is an important issue to consider in control chart

implementation.

We can also give an empirical demonstration of this phenomena. Figure 10.6 is a plot of

1,000 observations on a process quality characteristic xt. Close examination of this plot will reveal

that the behavior of the variable is nonrandom in the sense that a value of xt that is above the

long-term average (about 66) tends to be followed by other values above the average, whereas

a value below the average tends to be followed by other similar values. This is also reflected in

Figure 10.7, a scatter plot of xt (the observation at time t) versus xt-1 (the observation one period

earlier). Note that the observations cluster around a straight line with a positive slope. That is, a

relatively low observation on x at time t − 1 tends to be followed by another low value at time t,
whereas a relatively large observation at time t − 1 tends to be followed by another large value at

time t. This type of behavior is indicative of positive autocorrelation in the observations.

It is also possible to measure the level of autocorrelation analytically. The autocorrela-

tion over a series of time-oriented observations (called a time series) is measured by the auto-
correlation function

where Cov(xt, xt-k) is the covariance of observations that are k time periods apart, and we have

assumed that the observations have constant variance given by V(xt). We usually estimate the

values of rk with the sample autocorrelation function:

(10.10)

As a general rule, we usually need to compute values of rk for a few values of k, k ≤ n/4. Many

software programs for statistical data analysis can perform these calculations.

The sample autocorrelation function for the data in Figure 10.6 is shown in Figure 10.8.

This sample autocorrelation function was constructed using Minitab. The dashed lines on the

graph are two standard deviation limits on the autocorrelation parameter rk at lag k. They are

useful in detecting non-zero autocorrelations; in effect, if a sample autocorrelation exceeds its
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two standard deviations limit, the corresponding autocorrelation parameter rk is likely non-

zero. Note that the autocorrelation at lag 1 is r1
∼− 0.7. This is certainly large enough to

severely distort control chart performance.

Figure 10.9 presents control charts for the data in Figure 10.6, constructed by Minitab.

Note that both the individuals chart and the EWMA exhibit many out-of-control points.
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10.4 SPC with Autocorrelated Process Data 465

Based on our previous discussion, we know that less frequent sampling can break up

the autocorrelation in process data. To illustrate, consider Figure 10.10a, which is a plot of

every tenth observation from Figure 10.6. The sample autocorrelation function, shown in

Figure 10.10b, indicates that there is very little autocorrelation at low lag. The control charts

in Figure 10.11 now indicate that the process is essentially stable. Clearly, then, one

approach to dealing with autocorrelation is simply to sample from the process data stream

less frequently. Although this seems to be an easy solution, on reconsideration it has some

disadvantages. For example, we are making very inefficient use of the available data.

Literally, in the above example, we are discarding 90% of the information! Also, since we

are only using every tenth observation, it may take much longer to detect a real process shift

than if we used all of the data.

Clearly, a better approach is needed. In the next two sections we present several

approaches to monitoring autocorrelated process data.

10.4.2 Model-Based Approaches

Time Series Models. An approach that has proved useful in dealing with auto-

correlated data is to directly model the correlative structure with an appropriate time
series model, use that model to remove the autocorrelation from the data, and apply con-

trol charts to the residuals. For example, suppose that we could model the quality charac-

teristic xt as

(10.11)

where x and f (− 1 < f < 1) are unknown constants, and et is normally and independently

distributed with mean zero and standard deviation s. Note how intuitive this model is from

x xt t t= + +−ξ φ ε1
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■ F I G U R E  1 0 . 1 0 Plots for every tenth observation from Figure 10.6.
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examining Figures 10.6, 10.7, and 10.8. Equation 10.11 is called a first-order autoregressive
model; the observations xt from such a model have mean x/(1 − f), standard deviation

s/(1 − f2)1/2, and the observations that are k periods apart (xt and xt − k) have correlation

coefficient fk. That is, the autocorrelation function should decay exponentially just as the

sample autocorrelation function did in Figure 10.8. Suppose that f̂ is an estimate of f,

obtained from analysis of sample data from the process, and x̂t is the fitted value of xt. Then

the residuals

are approximately normally and independently distributed with mean zero and constant

variance. Conventional control charts could now be applied to the sequence of residuals.

Points out of control or unusual patterns on such charts would indicate that the parameter

f or x had changed, implying that the original variable xt was out of control. For details of

identifying and fitting time series models such as this one, see Montgomery, Johnson, and

Gardiner (1990), Montgomery, Jennings, and Kulahci (2008), and Box, Jenkins, and

Reinsel (1994).

e x xt t t= − ˆ
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EXAMPLE 10.2

Figure 10.12 presents a control chart for individual measure-

ments applied to viscosity measurements from a chemical

process taken every hour. Note that many points are outside

the control limits on this chart. Because of the nature of the

production process, and the visual appearance of the viscosity

measurements in Figure 10.12, which appear to “drift” or

“wander” slowly over time, we would probably suspect that

viscosity is autocorrelated. Set up a control chart on the resid-

uals from an appropriate time series model for this process.

Control Charting Residuals

SOLUTION

The sample autocorrelation function for the viscosity data is

shown in Figure 10.13. Note that there is a strong positive cor-

relation at lag 1; that is, observations that are one period apart

are positively correlated with r1 = 0.88. This level of autocorre-

lation is sufficiently high to distort greatly the performance of a

Shewhart control chart. In particular, because we know that pos-

itive correlation greatly increases the frequence of false alarms,

we should be very suspicious about the out-of-control signals on

the control chart in Figure 10.12. Based on the behavior of the

sample autocorrelation function, it seems logical to use the first-

order autoregressive model to describe this process.

The parameters in the autoregressive model equation 10.11

may be estimated by the method of least squares—that is, by

choosing the values of x and f that minimize the sum of squared

errors et. Many statistics software packages have routines for fit-

ting these time series models. The fitted value of this model for

the viscosity data is

We may think of this as an alternative to the Shewhart model

for this process.

Figure 10.14 is an individuals control chart of the residuals

from the fitted first-order autoregressive model. Note that now
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■ F I G U R E  1 0 . 1 3 Sample autocorrelation function for the

viscosity data.

■ F I G U R E  1 0 . 1 2 Control chart for individuals applied to

viscosity.

no points are outside the control limits, although around period

90 two points are near the upper control limit. In contrast to the

control chart on the individual measurements on Figure 10.12,

we would conclude that this process is in a reasonable state of

statistical control.

■ F I G U R E  1 0 . 1 4 Control chart

for individuals applied to the residuals from

the model xt = 13.04 + 0.847xt−1.
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Other Time Series Models. The first-order autoregressive model used in the vis-

cosity example (equation 10.11) is not the only possible model for time-oriented data that

exhibit correlative structure. An obvious extension to equation 10.11 is

(10.12)

which is a second-order autoregressive model. In general, in autoregressive-type models, the

variable xt is directly dependent on previous observations xt − 1, xt − 2, and so forth. Another pos-

sibility is to model the dependency through the random component et. A simple way to do this is

(10.13)

This is called a first-order moving average model. In this model, the correlation between xt

and xt − 1 is r1 = − q/(1 + q2) and is zero at all other lags. Thus, the correlative structure in xt

only extends backward one time period.

Sometimes combinations of autoregressive and moving average terms are useful. A

first-order mixed model is

(10.14)

This model often occurs in the chemical and process industries. The reason is that if the

underlying process variable xt is first-order autoregressive and a random error component is

added to xt, the result is the mixed model in equation 10.14. In the chemical and process

industries first-order autoregressive process behavior is fairly common. Furthermore, the

quality characteristic is often measured in a laboratory (or by an on-line instrument) that has

measurement error, which we can usually think of as random or uncorrelated. The reported or

observed measurement then consists of an autoregressive component plus random variation,

so the mixed model in equation 10.14 is required as the process model.

We also encounter the first-order integrated moving average model

(10.15)

in some applications. Whereas the previous models are used to describe stationary behav-

ior (that is, xt wanders around a “fixed” mean), the model in equation 10.15 describes non-

stationary behavior (the variable xt “drifts” as if there is no fixed value of the process

mean). This model often arises in chemical and process plants when xt is an “uncontrolled”

process output—that is, when no control actions are taken to keep the variable close to a

target value.

The models we have been discussing in equations 10.11 through 10.15 are members

of a class of time series models called autoregressive integrated moving average
(ARIMA) models. Montgomery, Johnson, and Gardiner (1990), Montgomery, Jennings

and Kulahci (2008), and Box, Jenkins, and Reinsel (1994) discuss these models in detail.

Although these models appear very different than the Shewhart model (equation 9.9), they

are actually relatively similar and include the Shewhart model as a special case. Note that

if we let f = 0 in equation 10.11, the Shewhart model results. Similarly, if we let q = 0 in

equation 10.13, the Shewhart model results.

An Approximate EWMA Procedure for Correlated Data. The time series mod-

eling approach illustrated in the viscosity example can be awkward in practice. Typically, we

apply control charts to several process variables, and developing an explicit time series model

for each variable of interest is potentially time-consuming. Some authors have developed

automatic time series model building to partially alleviate this difficulty. [See Yourstone and

Montgomery (1989) and the references therein.] However, unless the time series model itself

is of intrinsic value in explaining process dynamics (as it sometimes is), this approach will

frequently require more effort than may be justified in practice.

x xt t t t= + −− −1 1ε θε

x xt t t t= + + −− −ξ φ ε θε1 1

xt t t= + − −μ ε θε 1

x x xt t t t= + + +− −ξ φ φ ε1 1 2 2
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10.4 SPC with Autocorrelated Process Data 469

Montgomery and Mastrangelo (1991) have suggested an approximate procedure based

on the EWMA. They utilize the fact that the EWMA can be used in certain situations where

the data are autocorrelated. Suppose that the process can be modeled by the integrated mov-

ing average model in equation 10.15. It can be easily shown that the EWMA with l = 1 − q is

the optimal one-step-ahead forecast for this process. That is, if x̂t+1 (t) is the forecast for the

observation in period t + 1 made at the end of period t, then

where zt = lxt + (1 − l)zt − 1 is the EWMA. The sequence of one-step-ahead prediction

errors

(10.16)

is independently and identically distributed with mean zero. Therefore, control charts could

be applied to these one-step-ahead prediction errors. The parameter l (or equivalently, q)

would be found by minimizing the sum of squares of the errors et.

Now suppose that the process is not modeled exactly by equation 10.15. In general, if

the observations from the process are positively autocorrelated and the process mean does not

drift too quickly, the EWMA with an appropriate value for l will provide an excellent one-

step-ahead predictor. The forecasting and time series analysis field has used this result for

many years; for examples, see Montgomery, Jennings, and Kulahci (2008). Consequently, we

would expect many processes that obey first-order dynamics (that is, they follow a slow

“drift”) to be well represented by the EWMA.

Consequently, under the conditions just described, we may use the EWMA as the

basis of a statistical process-monitoring procedure that is an approximation of the exact

time-series model approach. The procedure would consist of plotting one-step-ahead

EWMA prediction errors (or model residuals) on a control chart. This chart could be

accompanied by a run chart of the original observations on which the EWMA forecast is

superimposed. Our experience indicates that both charts are usually necessary, as opera-

tional personnel feel that the control chart of residuals sometimes does not provide a direct

frame of reference to the process. The run chart of original observations allows process

dynamics to be visualized.

Figure 10.15 is a graph of the sum of squares of the EWMA prediction errors versus l for

the viscosity data. The minimum squared prediction error occurs at l = 0.825. Figure 10.16 pre-

sents a control chart for individuals applied to the EWMA prediction errors. This chart is

slightly different from the control chart of the exact autoregressive model residuals shown in
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■ F I G U R E  1 0 . 1 5 Residual sum of squares versus l.
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470 Chapter 10 ■ Other Univariate Statistical Process-Monitoring and Control Techniques

Figure 10.14, but not significantly so. Both indicate a process that is reasonably stable, with a

period around t = 90 where an assignable cause may be present.

Montgomery and Mastrangelo (1991) point out that it is possible to combine informa-

tion about the state of statistical control and process dynamics on a single control chart.

Assume that the one-step-ahead prediction errors (or model residuals) et are normally distrib-

uted. Then the usual three-sigma control limits on the control chart on these errors satisfy the

following probability statement,

where s is the standard deviation of the errors or residuals et. We may rewrite this as

or

(10.17)

Equation 10.17 suggests that if the EWMA is a suitable one-step-ahead predictor, then one

could use zt as the center line on a control chart for period t + 1 with upper and lower control

limits at

(10.18a)

and

(10.18b)

and the observation xt + 1 would be compared to these limits to test for statistical control. We

can think of this as a moving center-line EWMA control chart. As mentioned above, in

many cases this would be preferable from an interpretation standpoint to a control chart of

residuals and a separate chart of the EWMA as it combines information about process dynamics

and statistical control on one chart.

Figure 10.17 is the moving center-line EWMA control chart for the viscosity data, with

l = 0.825. It conveys the same information about statistical control as the residual or EWMA

prediction error control chart in Figure 10.16, but operating personnel often feel more com-

fortable with this display.

LCLt tz+ = −1 3σ

UCLt tz+ = +1 3σ
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■ F I G U R E  1 0 . 1 6 EWMA prediction errors with l = 0.825 and Shewhart limits.
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10.4 SPC with Autocorrelated Process Data 471

Estimation and Monitoring of s . The standard deviation of the one-step-ahead

errors or model residuals s may be estimated in several ways. If l is chosen as suggested

above over a record of n observations, then dividing the sum of squared prediction errors for

the optimal l by n will produce an estimate of s2. This is the method used in many time-series

analysis computer programs.

Another approach is to compute the estimate of s as typically done in forecasting sys-

tems. The mean absolute deviation (MAD) could be used in this regard. The MAD is com-

puted by applying an EWMA to the absolute value of the prediction error

Since the MAD of a normal distribution is related to the standard deviation by s = 1.25D [see

Montgomery, Johnson, and Gardiner (1990)], we could estimate the standard deviation of the

prediction errors at time t by

(10.19)

Another approach is to directly calculate a smoothed variance

(10.20)

MacGregor and Harris (1993) discuss the use of exponentially weighted moving variance

estimates in monitoring the variability of a process. They show how to find control limits for

these quantities for both correlated and uncorrelated data.

The Sensitivity of Residual Control Charts. Several authors have pointed out

that residual control charts are not sensitive to small process shifts [see Wardell, Moskowitz,

and Plante (1994)]. To improve sensitivity, we would recommend using CUSUM or EWMA

control charts on residuals instead of Shewhart charts. Tseng and Adams (1994) note that

because the EWMA is not an optimal forecasting scheme for most processes [except the

model in equation 10.15, it will not completely account for the autocorrelation, and this

can affect the statistical performance of control charts based on EWMA residuals or pre-

diction errors. Montgomery and Mastrangelo (1991) suggest the use of supplementary

procedures called tracking signals combined with the control chart for residuals. There is
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■ F I G U R E  1 0 . 1 7 Moving center-line EWMA control chart applied to the viscosity data (l = 0.825).
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472 Chapter 10 ■ Other Univariate Statistical Process-Monitoring and Control Techniques

evidence that these supplementary procedures enhance considerably the performance of

residual control charts. Furthermore, Mastrangelo and Montgomery (1995) show that if an

appropriately designed tracking signal scheme is combined with the EWMA-based proce-

dure we have described, good in-control performance and adequate shift detection can be

achieved.

Other EWMA Control Charts for Autocorrelated Data. Lu and Reynolds

(1999a) give a very thorough study of applying the EWMA control chart to monitoring the

mean of an autocorrelated process. They consider the process to be modeled by a first-order

autoregressive process with added white noise (uncorrelated error). This is equivalent to the

first-order mixed model in equation 10.13. They provide charts for designing EWMA con-

trol charts for direct monitoring of the process variable that will give an in-control ARL

value of ARL0 = 370. They also present an extensive study of both the EWMA applied

directly to the data and the EWMA of the residuals. Some of their findings may be summa-

rized as follows:

1. When there is significant autocorrelation in process data and this autocorrelation is an

inherent part of the process, traditional methods of estimating process parameters and

constructing control charts should not be used. Instead, one should model the autocor-

relation so that reliable control charts can be constructed.

2. A large data set should be used in the process of fitting a model for the process obser-

vations and estimating the parameters of this model. If a control chart must be con-

structed using a small data set, then signals from this chart should be interpreted with

caution and the process of model fitting and parameter estimation should be repeated as

soon as additional data become available. That is, the control limits for the chart are rel-

atively sensitive to poor estimates of the process parameters.

3. For the low to moderate levels of correlation, a Shewhart chart of the observations will

be much better at detecting a shift in the process mean than a Shewhart chart of the

residuals. Unless interest is only in detecting large shifts, an EWMA chart will be better

than a Shewhart chart. An EWMA chart of the residuals will be better than an EWMA

chart of the observations for large shifts, and the EWMA of the observations will be a

little better for small shifts.

In a subsequent paper, Lu and Reynolds (1999b) present control charts for monitoring

both the mean and variance of autocorrelated process data. Several types of control charts and

combinations of control charts are studied. Some of these are control charts of the original

observations with control limits that are adjusted to account for the autocorrelation, and others

are control charts of residuals from a time-series model. Although there is no combination

that emerges as best overall, an EWMA control chart of the observations and a Shewhart chart

of residuals is a good combination for many practical situations.

Know Your Process! When autocorrelation is observed, we must be careful to

ensure that the autocorrelation is really an inherent part of the process and not the result of

some assignable cause. For example, consider the data in Figure 10.18a for which the sam-

ple autocorrelation function is shown in Figure 10.18b. The sample autocorrelation function

gives a clear indication of positive autocorrelation in the data. Closer inspection of the data,

however, reveals that there may have been an assignable cause around time t = 50 that resulted

in a shift in the mean from 100 to about 105, and another shift may have occurred around time

t = 100 resulting in a shift in the mean to about 95.

When these potential shifts are accounted for, the apparent autocorrelation may vanish.

For example, Figure 10.19 presents the sample autocorrelation functions for observations 
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10.4 SPC with Autocorrelated Process Data 473

x1 − x50, x51 − x100, and x101 − x150. There is no evidence of autocorrelation in any of the three

groups of data. Therefore, the autocorrelation in the original data is likely due to assignable

causes and is not an inherent characteristic of the process.

10.4.3 A Model-Free Approach

The Batch Means Control Chart. Runger and Willemain (1996) proposed a con-

trol chart based on unweighted batch means for monitoring autocorrelated process data. The

batch means approach has been used extensively in the analysis of the output from computer

simulation models, another area where highly autocorrelated data often occur. The

unweighted batch means (UBM) control chart breaks successive groups of sequential

observations into batches, with equal weights assigned to every point in the batch. Let the jth
unweighted batch mean be

(10.21)

The important implication of equation 10.21 is that although one has to determine an

appropriate batch size b, it is not necessary to construct an ARIMA model of the data. This

approach is quite standard in simulation output analysis, which also focuses on inference for

long time series with high autocorrelation.

Runger and Willemain (1996) showed that the batch means can be plotted and analyzed

on a standard individuals control chart. Distinct from residuals plots, UBM charts retain the
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■ F I G U R E  1 0 . 1 8 Data with apparent posi-

tive autocorrelation.
■ F I G U R E  1 0 . 1 9 Sample autocorrelation

functions after the process shifts are removed.
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reduced dramatically by the batch means approach. The 

control charts for the batch means are shown in Figure 10.21.

The general indication is that the process is stable.

EXAMPLE 10.3

Construct a batch means control chart using the data in Figure 10.6.

SOLUTION

In Figure 10.20a we give a plot of batch means computed

using b = 10. The sample autocorrelation function in 

Figure 10.20b indicates that the autocorrelation has been

A Batch Means Control Chart

basic simplicity of averaging observations to form a point in a control chart. With UBMs, the

control chart averaging is used to dilute the autocorrelation of the data.

Procedures for determining an appropriate batch size have been developed by

researchers in the simulation area. These procedures are empirical and do not depend on iden-

tifying and estimating a time series model. Of course, a time series model can guide the

process of selecting the batch size and also provide analytical insights.

Runger and Willemain (1996) provided a detailed analysis of batch sizes for AR(1)

models. They recommend that the batch size be selected so as to reduce the lag 1 autocorre-

lation of the batch means to approximately 0.10. They suggest starting with b = 1 and dou-

bling b until the lag 1 autocorrelation of the batch means is sufficiently small. This parallels

the logic of the Shewhart chart in that larger batches are more effective for detecting smaller

shifts; smaller batches respond more quickly to larger shifts.
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■ F I G U R E  1 0 . 2 0 The batch means procedure applied to the data from

Figure 10.6.
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10.4 SPC with Autocorrelated Process Data 475

The batch means procedure is extremely useful when data become available very often.

In many chemical and process plants, some process data are observed every few seconds.

Batch means clearly have great potential application in these situations. Also, note that batch

means are not the same as sampling periodically from the process, because the averaging pro-

cedure uses information from all observations in the batch.

Summary. Figure 10.22 presents some guidelines for using univariate control

charts to monitor processes with both correlated and uncorrelated data. The correlated data

branch of the flow chart assumes that the sample size is n = 1. Note that one of the options

in the autocorrelated data branch of the flow chart is a suggestion to eliminate the autocor-

relation by using an engineering controller. This option exists frequently in the process

industries, where the monitored output may be related to a manipulatable input variable,

and by making a series of adjustments to this input variable, we may be able to consistently

keep the output close to a desired target. These adjustments are usually made by some type

of engineering process-control system. We will briefly discuss these types of controllers in
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■ F I G U R E  1 0 . 2 1 Batch means control charts.
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Chapter 12. In cases where they can be successfully employed, the effect of keeping the

output at the desired target is often to eliminate (or greatly reduce) the autocorrelation in

the output.

Figure 10.23 summarizes some situations in which various procedures are useful for

process monitoring. On the left axis we find that as the interval between samples increases,

the Shewhart control chart becomes an appropriate choice because the larger sampling

interval usually negates the effects of autocorrelation. As the interval between samples gets

smaller, autocorrelation plays a much more important role, which leads to the ARIMA or

EWMA approach. On the right axis we find that as the cost of process adjustment increases,

we are driven to the Shewhart chart for process monitoring. On the other hand, if adjust-

ment cost is low, we are driven to some type of engineering process-control system, which

we will discuss in the next section. Finally, on the vertical axis, we see that as the variability

due to random causes or noise dominates any motion in the mean, the Shewhart chart

becomes more appropriate. However, if the motion in the mean is large relative to random
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c, u; time
between events

Large Small

p
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CUSUM
EWMA
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10.5 Adaptive Sampling Procedures 477

noise, we are driven once again to ARIMA- or EWMA-type procedures, or an engineering

controller.

10.5 Adaptive Sampling Procedures

Traditional SPC techniques usually employ samples of fixed size taken at a fixed sampling

interval. In practice, however, it is not uncommon to vary these design parameters on occa-

sion. For example, if the sample average i falls sufficiently close to the upper control limit

(say) on an chart, the control chart analyst may decide to take the next sample sooner than

he or she would ordinarily have, because the location of i on the chart could be an indication

of potential trouble with the process. In fact, some practitioners use warning limits in this

manner routinely.

A control chart in which either the sampling interval or the sample size (or both) can be

changed depending on the value of the sample statistic is called an adaptive SPC control
chart. The formal study of these procedures is fairly recent. For example, see Reynolds et al.

(1988) and Runger and Pignatiello (1991), who studied the variable sampling interval strategy

applied to the chart, and Prabhu, Montgomery, and Runger (1994), who evaluated the per-

formance of a combined adaptive procedure for the chart in which both the sampling interval

and the sample size depend on the current value of the sample average. These papers contain

many other useful references on the subject.

The general approach used by these authors is to divide the region between the upper

and lower control limits into zones, such that

If the sample statistic falls between − w and w, then the standard sampling interval (and pos-

sibly sample size) is used for the next sample. However, if w < i < UCL or if LCL < i < −wb,

then a shorter sampling interval (and possibly a larger sample size) is used for the next sam-

ple. It can be shown that these procedures greatly enhance control chart performance in that

they reduce the average time to signal (ATS) particularly for small process shifts, when com-

pared to an ordinary nonadaptive control chart that has a sample size and sampling interval

equal to the average of those quantities for the adaptive chart when the process is in control.

Prabhu, Montgomery, and Runger (1995) have given a FORTRAN program for evaluating the

ATS for several different adaptive versions of the chart.x

xx

LCL CL UCL≤ − ≤ ≤ ≤w w

x
x

x
x

x

ing this shift is 4.5 samples. Therefore, if samples are taken

every hour, it will take about 4.5 h to detect this shift on the

average. Can we improve the performance by using an adap-

tive control chart?

EXAMPLE 10.4

An engineer is currently monitoring a process with an chart

using a sample size of five, with samples taken every hour. He

is interested in detecting a shift of one standard deviation in the

mean. It is easy to show that the average run length for detect-

x

An x
_

Control Chart with a Variable Sampling Interval

SOLUTION

Suppose that we try to improve this performance with an adap-

tive control chart. We still want the sample size to be n = 5, but

the time between samples could be variable. Suppose that the

shortest time allowable between samples is 0.25 h to allow

time for analysis and charting, but we want the average time

between samples when the process is in control to still be one

hour. Then it can be shown [see Prabhu, Montgomery, and

Runger (1994), Table 7] that if we set the warning limit

(continued)
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478 Chapter 10 ■ Other Univariate Statistical Process-Monitoring and Control Techniques

Adaptive sampling procedures have considerable potential for application, if some

flexibility exists with respect to the frequency and size of samples. If only one chart param-

eter can be adapted, we have found that more improvement in performance usually results

from varying the sample size than from varying the sampling interval. The Supplemental

Text Material contains more information about adaptive control charting methods.

10.6 Economic Design of Control Charts

10.6.1 Designing a Control Chart

Control charts are widely used to establish and maintain statistical control of a process.

They are also effective devices for estimating process parameters, particularly in process

capability studies. The use of a control chart requires that the engineer or analyst select a

sample size, a sampling frequency or interval between samples, and the control limits for

the chart. Selection of these three parameters is usually called the design of the control

chart.

Traditionally, control charts have been designed with respect to statistical criteria only.

This usually involves selecting the sample size and control limits such that the average run

length of the chart to detect a particular shift in the quality characteristic and the average run

length of the procedure when the process is in control are equal to specified values. The 

frequency of sampling is rarely treated analytically, and usually the practitioner is advised 

to consider such factors as the production rate, the expected frequency of shifts to an out-of-

control state, and the possible consequences of such process shifts in selecting the sampling

interval. The use of statistical criteria and practical experience has led, in many cases, to gen-

eral guidelines for the design of control charts. Many of these guidelines, as well as the

approach used in developing them, have been discussed for specific types of control charts in

previous chapters.

The design of a control chart has economic consequences in that the costs of sampling

and testing, costs associated with investigating out-of-control signals and possibly correcting

assignable causes, and costs of allowing nonconforming units to reach the consumer are all

affected by the choice of the control chart parameters. Therefore, it is logical to consider the

design of a control chart from an economic viewpoint. In recent years, considerable research

has been devoted to economic models of control charts. This section will present several

and choose the shortest and longest times between

samples as t1 = 0.25 h and t2 = 1.75 h, respectively, the average

time to signal can be reduced to 2.26 h. In this scheme, if 

−0.67s ≤ ≤ 0.67s , the time until the next sample is 1.75 h,

whereas if the sample average 0.67s < < UCL = 3s or 

LCL = −3s < < −0.67 s , the next sample is taken at 0.25 h.

This adaptive scheme essentially reduces the ATS by 50%.

It is possible to do even better if one is willing to adapt both

the sample size and the sampling interval. This chart will

require that we plot a standardized value

z
x

n i
i

i= −
( )

μ
σ

0

0

xxx

xxx

xxx

w = 0.67sx where m0 and s0 are the in-control values of m and s, and n(i)
is the sample size taken at the ith sample. Now if we want the

average sample size to be five and the average interval between

samples to be 1 h when the process is in control but both

chart parameters can be variable, we have what Prabhu,

Montgomery, and Runger (1994) called the combined adap-

tive chart. If we use n1 = 3, n2 = 8, t1 = 0.25, t2 = 1.50, and 

w = 0.84, then the average time to signal for a one-sigma shift

in the mean is 1.72 h [see Prabhu, Montgomery, and Runger

(1994), Table 7]. In this scheme, if − 0.84 ≤ zi ≤ 0.84, use n1 = 3

and t2 = 1.5 h for the next sample, whereas if 0.84 < zi < 3 or if 

− 3 < zi < − 0.84, use n2 = 8 and t1 = 0.25 h for the next sample.

x
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10.6 Economic Design of Control Charts 479

models for the optimal economic design of control charts. Some of the practical implications

of these models will also be discussed.

10.6.2 Process Characteristics

To formulate an economic model for the design of a control chart, it is necessary to make 

certain assumptions about the behavior of the process. The assumptions summarized next are

relatively standard in that most economic models incorporate them to some degree. In later

sections we see how these assumptions are used in building specific models, and we discuss

their relative importance.

The process is assumed to be characterized by a single in-control state. For example, if

the process has one measurable quality characteristic, then the in-control state will correspond

to the mean of this quality characteristic when no assignable causes are present. Similarly,

when the quality characteristic is an attribute, the in-control state will be represented by the

fraction nonconforming (say) produced by the process when no assignable causes are present.

The process may have, in general, s ≥ 1 out-of-control states. Each out-of-control state is usually

associated with a particular type of assignable cause.

Determining the nature of the transitions between the in-control and out-of-control

states requires certain assumptions. It is customary to assume that assignable causes occur

during an interval of time according to a Poisson process. This implies that the length of time

the process remains in the in-control state, given that it begins in control, is an exponential

random variable. This assumption allows considerable simplification in the development of

economic models, and in some situations results in a Markov chain model structure. The

nature in which process shifts occur is sometimes called the process-failure mechanism.
This can be a very critical assumption. We also observe that the assumption of discrete states

and the nature of the failure mechanism imply that process transitions between states are

instantaneous. Processes that “drift” slowly from an in-control state—as, for example, in the

case of tool wear—have received little analytical attention.

It is also usually assumed that the process is not self-correcting. That is, once a

transition to an out-of-control state has occurred, the process can be returned to the 

in-control condition only by management intervention following an appropriate out-of-

control signal on the control chart. In some cases, however, transitions between different

out-of-control states are allowed, provided the transitions are always consistent with further

quality deterioration.

10.6.3 Cost Parameters

Three categories of costs are customarily considered in the economic design of control charts:

the costs of sampling and testing, the costs associated with investigating an out-of-control 

signal and with the repair or correction of any assignable causes found, and the costs associ-

ated with the production of nonconforming items.

The costs of sampling and testing include the out-of-pocket expenses of inspectors’ and

technicians’ salaries and wages, the costs of any necessary test equipment, and, in the case of

destructive testing, the unit costs of the items sampled. Usually, the cost of sampling and test-

ing is assumed to consist of both fixed and variable components—say, a1 and a2, respectively—

such that the total cost of sampling and testing is

a a n1 2+
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480 Chapter 10 ■ Other Univariate Statistical Process-Monitoring and Control Techniques

Because of the difficulty of obtaining and evaluating cost information, use of more complex

relationships is probably inappropriate.

The costs of investigating and possibly correcting the process following an out-of-

control signal have been treated in several ways. Some authors have suggested that the costs

of investigating false alarms will differ from the costs of correcting assignable causes; conse-

quently, these two situations must be represented in the model by different cost coefficients.

Furthermore, the cost of repairing or correcting the process could depend on the type of

assignable cause present. Thus, in models having s out-of-control states, s + 1 cost coeffi-

cients might be necessary to model the search and adjustment procedures associated with out-

of-control signals. Usually, these cost coefficients would be chosen so that larger process

shifts incurred larger costs of repair or adjustment. Other authors have argued that this level

of modeling detail is unnecessary because in many cases small shifts are difficult to find but

easy to correct, whereas large shifts are easy to find but difficult to correct. Hence, one loses

little accuracy by using a single cost coefficient to represent the average costs of investigat-

ing and possibly correcting out-of-control signals.

The costs associated with producing nonconforming items consist of typical failure
costs—that is, the costs of rework or scrap for internal failures, or replacement or repair

costs for units covered by warranties in the case of external failures. With external fail-

ures, there may also be secondary effects from the production of nonconforming items if

the customer’s dissatisfaction with the product causes an alteration in future purchases of

the product or other products manufactured by the company. Finally, there may be losses

resulting from product liability claims against the company. Most authors model these

costs with a single, average cost coefficient, expressed on either a per unit time or per item

basis.

Economic models are generally formulated using a total cost function, which expresses

the relationships between the control chart design parameters and the three types of costs dis-

cussed above. The production, monitoring, and adjustment process may be thought of as a

series of independent cycles over time. Each cycle begins with the production process in the

in-control state and continues until process monitoring via the control chart results in an out-

of-control signal. Following an adjustment in which the process is returned to the in-control

state, a new cycle begins. Let E(T) be the expected length (that is, the long-term average
length, or mean length) of a cycle, and let E(C) be the expected total cost incurred during a

cycle. Then the expected cost per unit time is

(10.22)

Optimization techniques are then applied to equation 10.22 to determine the economically

optimal control chart design. Minor variations in equation 10.22 have appeared in the litera-

ture. For example, some authors have elected to replace E(T) in equation 10.22 by the

expected number of units produced during the cycle, resulting in the expected cost expressed

on a per item rather than a per unit time basis. In other studies, a somewhat different defini-

tion of a cycle is used, depending on whether the process is shut down or allowed to continue

operation while out-of-control signals are investigated.

The general model structure in equation 10.22 has a disturbing appearance. Note that

C and T are dependent random variables, yet we have represented the expected value of their

ratio E(A) by the ratio of expectations E(C)/E(T). Now it is well known that the expected

value of a ratio is not equal to the ratio of expected values (even for independent random

variables), so some further explanation of the structure of equation 10.22 seems warranted.

The sequence of production–monitoring–adjustment, with accumulation of costs over the

cycle, can be represented by a particular type of stochastic process called a renewal reward

E A
E C

E T
( ) = ( )

( )
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10.6 Economic Design of Control Charts 481

process. Stochastic processes of this type have the property that their average time cost is

given by the ratio of the expected reward per cycle to the expected cycle length, as shown in

equation 10.22.

10.6.4 Early Work and Semieconomic Designs

A fundamental paper in the area of cost modeling of quality control systems was published

by Girshick and Rubin (1952). They consider a process model in which a machine produc-

ing items characterized by a measurable quality characteristic x can be in one of four

states. States 1 and 2 are production states, and, in state i, the output quality characteristic

is described by the probability density function fi(x), i = 1, 2. State 1 is the “in-control”

state. While in state 1, there is a constant probability of a shift state 2. The process is not

self-correcting; repair is necessary to return the process to state 1. States j = 3 and j = 4

are repair states, if we assume that the machine was previously in state j − 2. In state 

j = 3, 4, nj units of time are required for repair, where a time unit is defined as the time to

produce one unit of product. Girshick and Rubin treat both 100% inspection and periodic

inspection rules. The economic criterion is to maximize the expected income from the

process. The optimal control rules are difficult to derive, as they depend on the solution to

complex integral equations. Consequently, the model’s use in practice has been very 

limited.

Although it has had little or no practical application, Girshick and Rubin’s (1952) work

is of significant theoretical value. They were the first researchers to propose the expected cost

(or income) per unit time criterion (equation 10.22), and rigorously show its appropriateness

for this problem. Later analysts’ use of this criterion (equation 10.22) rests directly on its

development by Girshick and Rubin. Other researchers have investigated generalized formu-

lations of the Girshick–Rubin model, including Bather (1963), Ross (1971), Savage (1962),

and White (1974). Again, their results are primarily of theoretical interest, as they do not lead

to process control rules easily implemented by practitioners.

Economic design of conventional Shewhart control charts was investigated by several

early researchers. Most of their work could be classified as semieconomic design procedures,

in that either the proposed model did not consider all relevant costs or no formal optimization

techniques were applied to the cost function. Weiler (1952) suggested that for an chart, the

optimum sample size should minimize the total amount of inspection required to detect a

specified shift. If the shift is from an in-control state m0 to an out-of-control state m1 = m0 + ds,

then Weiler shows that the optimal sample size is

Note that Weiler did not formally consider costs; the implication is that minimizing total

inspection will minimize total costs.

Taylor (1965) has shown that control procedures based on taking a sample of constant size

at fixed intervals of time is nonoptimal. He suggests that sample size and sampling frequency

should be determined at each point in time based on the posterior probability that the process

n
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is in an out-of-control state. Dynamic programming-type methods are utilized extensively

in the development. In a subsequent paper, Taylor (1967) derives the optimal control rule

for a two-state process with a normally distributed quality characteristic. Although

Taylor’s work has indicated their nonoptimality, fixed sample size–fixed sampling interval

control rules are widely used in practice because of their administrative simplicity.

Consequently, most researchers have concentrated on the optimal economic design of such

procedures.

10.6.5 An Economic Model of the Control Chart

Much of the research in the development of economic models of control charts has been

devoted to the chart. The interest of analysts in this control chart follows directly from its

widespread use in practice. In this section, we discuss one of the economic models that has

been widely studied.

In 1956, Duncan proposed an economic model for the optimum economic design of the

control chart. His paper was the first to deal with a fully economic model of a Shewhart-

type control chart and to incorporate formal optimization methodology into determining the

control chart parameters. Duncan’s paper was the stimulus for much of the subsequent

research in this area.

Duncan drew on the earlier work of Girshick and Rubin (1952) in that he utilized a

design criterion that maximized the expected net income per unit of time from the process.

In the development of the cost model, Duncan assumed that the process is characterized by

an in-control state m0 and that a single assignable cause of magnitude d, which occurs at

random, results in a shift in the mean from m0 to either m0 + ds or m0 − ds. The process

is monitored by an chart with center line m0 and upper and lower control limits 

). Samples are to be taken at intervals of h hours. When one point exceeds the

control limits, a search for the assignable cause is initiated. During the search for the assign-

able cause, the process is allowed to continue in operation. Furthermore, it is assumed that

the cost of adjustment or repairs (if necessary) is not charged against the net income from

the process. The parameters m0, d, and s are assumed known, whereas n, k, and h are to be

determined.

The assignable cause is assumed to occur according to a Poisson process with an inten-

sity of l occurrences per hour. That is, assuming that the process begins in the in-control state,

the time interval that the process remains in control is an exponential random variable with

mean 1/l h. Therefore, given the occurrence of the assignable cause between the jth and ( j + 1)st

samples, the expected time of occurrence within this interval is

(10.23)

When the assignable cause occurs, the probability that it will be detected on any subsequent

sample is

(10.24)

where f(z) = (2p)−1/2 exp(−z2/2) is the standard normal density. The quantity 1 − b is the

power of the test, and b is the type II error probability. The probability of a false alarm is

(10.25)

A production cycle is defined as the interval of time from the start of production (the

process is assumed to start in the in-control state) following an adjustment to the detection
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and elimination of the assignable cause. The cycle consists of four periods: (1) the in-

control period, (2) the out-of-control period, (3) the time to take a sample and interpret the

results, and (4) the time to find the assignable cause. The expected length of the in-control

period is 1/l. Noting the number of samples required to produce an out-of-control signal

given that the process is actually out of control is a geometric random variable with mean

1/(1 − b), we conclude that the expected length of the out-of-control period is h/(1 − b) − τ.

The time required to take a sample and interpret the results is a constant g proportional to

the sample size, so that gn is the length of this segment of the cycle. The time required to

find the assignable cause following an action signal is a constant D. Therefore, the expected

length of a cycle is

(10.26)

The net income per hour of operation in the in-control state is V0, and the net income

per hour of operation in the out-of-control state is V1. The cost of taking a sample of size n is

assumed to be of the form a1 + a2n; that is, a1 and a2 represent, respectively, the fixed and

variable components of sampling cost. The expected number of samples taken within a cycle

is the expected cycle length divided by the interval between samples, or E(T)/h. The cost of

finding an assignable cause is a3, and the cost of investigating a false alarm is a′3. The

expected number of false alarms generated during a cycle is a times the expected number of

samples taken before the shift, or

(10.27)

Therefore, the expected net income per cycle is

(10.28)

The expected net income per hour is found by dividing the expected net income per cycle

(equation 10.28) by the expected cycle length (equation 10.26), resulting in

(10.29)

Let a4 = V0 − V1; that is, a4 represents the hourly penalty cost associated with production in

the out-of-control state. Then equation 10.29 may be rewritten as

(10.30)
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or

where

(10.31)

The expression E(L) represents the expected loss per hour incurred by the process. E(L) is a

function of the control chart parameters n, k, and h. Clearly, maximizing the expected net

income per hour is equivalent to minimizing E(L).

Duncan introduces several approximations to develop an optimization procedure for

this model.2 The optimization procedure suggested is based on solving numerical approxima-

tions to the system for first partial derivatives of E(L) with respect to n, k, and h. An iterative

procedure is required to solve for the optimal n and k. A closed-form solution for h is given

using the optimal values of n and k.

Several authors have reported optimization methods for Duncan’s model. Chiu and

Wetherill (1974) have developed a simple, approximate procedure for optimizing Duncan’s

model. Their procedure utilizes a constraint on the power of the test (1 − b). The recom-

mended values are either 1 − b = 0.90 or 1 − b = 0.95. Tables are provided to generate the

optimum design subject to this constraint. This procedure usually produces a design close to

the true optimum. We also note that E(L) could be easily minimized by using an uncon-

strained optimization or search technique coupled with a digital computer program for

repeated evaluations of the cost function. This is the approach to optimization most fre-

quently used. Montgomery (1982) has given an algorithm and a FORTRAN program for the

optimization of Duncan’s model.
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2Several numerical approximations are also introduced in the actual structure of the model. Approximations used are

for , and for the expected number of false alarms .ae−lh/(1 − e−lh) = a/lht = h/2 − lh2/12

EXAMPLE 10.5

A manufacturer produces nonreturnable glass bottles for pack-

aging a carbonated soft-drink beverage. The wall thickness of

the bottles is an important quality characteristic. If the wall is

too thin, internal pressure generated during filling will cause

the bottle to burst. The manufacturer has used and R charts 

for process surveillance for some time. These control charts

have been designed with respect to statistical criteria.

However, in an effort to reduce costs, the manufacturer wishes

to design an economically optimum chart for the process.

Analyze the situation and set up the control chart.

x
x

Economically Optimal Chartsx

estimated to be $0.10 per bottle, and it takes approximately 

1 min (0.0167h) to measure and record the wall thickness of a

bottle.

SOLUTION 

Based on an analysis of quality control technicians’ salaries

and the costs of test equipment, it is estimated that the fixed

cost of taking a sample is $1. The variable cost of sampling is
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value of the cost function equation 10.31. The corresponding

a-risk and power for each combination of n, k, and h are also

provided. The optimal control chart design may be found by

inspecting the values of the cost function to find the mini-

mum. From Figure 10.24, we note that the minimum cost is

$10.38 per hour, and the economically optimal chart would

use samples of size n = 5, the control limits would be located

at ± ks, with k = 2.99, and samples would be taken at inter-

vals of h = 0.76 h (approximately every 45 min). The a risk

for this control chart is a = 0.0028, and the power of the test

is 1 − b = 0.9308.

After studying the optimal chart design, the bottle manu-

facturer suspects that the penalty cost of operating out of con-

trol (a4) may not have been precisely estimated. At worst, a4

may have been underestimated by about 50%. Therefore, they

decide to rerun the computer program with a4 = $150 to inves-

tigate the effect of misspecifying this parameter. The results of

this additional run are shown in Figure 10.25. We see that the

optimal solution is now n = 5, k = 2.99, and h = 0.62, and the

cost per hour is $13.88. Note that the optimal sample size and

control limit width are unchanged. The primary effect of

increasing a4 by 50% is to reduce the optimal sampling fre-

quency from 0.76 h to 0.62 h (i.e., from 45 min to 37 min).

Based on this analysis, the manufacturer decides to adopt a

sampling frequency of 45 min because of its administrative

convenience.

x

x

n Optimum k Optimum h Alpha Power Cost
1 2.30 .45 .0214 .3821 14.71

2 2.51 .57 .0117 .6211 11.91

3 2.68 .66 .0074 .7835 10.90

4 2.84 .71 .0045 .8770 10.51

5 2.99 .76 .0028 .9308 10.38

6 3.13 .79 .0017 .9616 10.39

7 3.27 .82 .0011 .9784 10.48

8 3.40 .85 .0007 .9880 10.60

9 3.53 .87 .0004 .9932 10.75

10 3.66 .89 .0003 .9961 10.90

11 3.78 .92 .0002 .9978 11.06

12 3.90 .94 .0001 .9988 11.23

13 4.02 .96 .0001 .9993 11.39

14 4.14 .98 .0000 .9996 11.56

15 4.25 1.00 .0000 .9998 11.72

■ F I G U R E  1 0 . 2 4 Optimum solution to Example 10.5.

The process is subject to several different types of assign-

able causes. However, on the average, when the process goes

out of control, the magnitude of the shift is approximately two

standard deviations. Process shifts occur at random with a

frequency of about one every 20 h of operation. Thus, the

exponential distribution with parameter l = 0.05 is a reason-

able model of the run length in control. The average time

required to investigate an out-of-control signal is 1 h. The cost

of investigating an action signal that results in the elimination

of an assignable cause is $25, whereas the cost of investigating

a false alarm is $50.

The bottles are sold to a soft-drink bottler. If the walls are

too thin, an excessive number of bottles will burst when they

are filled. When this happens, the bottler’s standard practice is

to backcharge the manufacturer for the costs of cleanup and

lost production. Based on this practice, the manufacturer esti-

mates that the penalty cost of operating in the out-of-control

state for one hour is $100.

The expected cost per hour associated with the use of an

chart for this process is given by equation 10.31, with 

a1 = $1, a2 = $0.10, a3 = $25, a′3 = $50, a4 = $100, l = 0.05,

d = 2.0, g = 0.0167, and D = 1.0. Montgomery’s computer

program referenced earlier is used to optimize this problem.

The output from this program, using the values of the model

parameters given above, is shown in Figure 10.24. The pro-

gram calculates the optimal control limit width k and sam-

pling frequency h for several values of n and computes the

x

(continued)
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From analysis of numerical problems such as those in Example 10.5, it is possible to

draw several general conclusions about the optimum economic design of the control chart.

Some of these conclusions are illustrated next.

1. The optimum sample size is largely determined by the magnitude of the shift d. In gen-

eral, relatively large shifts—say, d ≥ 2—often result in relatively small optimum sam-

ple size—say, 2 ≤ n ≤ 10. Smaller shifts require much larger samples, with 1 ≤ d ≤ 2

frequently producing optimum sample sizes in the range 10 ≤ n ≤ 20. Very small

shifts—say, d ≤ 0.5—may require sample sizes as large as n ≥ 40.

2. The hourly penalty cost for production in the out-of-control state a4 mainly affects the

interval between samples h. Larger values of a4 imply smaller values of h (more fre-

quent sampling), and smaller values of a4 imply larger values of h (less frequent sam-

pling). The effect of increasing a4 is illustrated in Figures 10.24 and 10.25 for the data

in Example 10.5.

3. The costs associated with looking for assignable causes (a3 and a′3) mainly affect the

width of the control limits. They also have a slight effect on the sample size n.

Generally, as the cost of investigating action signals increases, the incidence of false

alarms is decreased (i.e., reduce a).

4. Variation in the costs of sampling affects all three design parameters. Increasing the

fixed cost of sampling increases the interval between samples. It also usually results in

slightly larger samples.

5. Changes in the mean number of occurrences of the assignable cause per hour primarily

affect the interval between samples.

6. The optimum economic design is relatively insensitive to errors in estimating the cost

coefficients. That is, the cost surface is relatively flat in the vicinity of the optimum. We

typically find that the cost surface is steeper near the origin, so that it would be prefer-

able to overestimate the optimum n slightly rather than underestimate it. The optimum

economic design is relatively sensitive to errors in estimating the magnitude of the shift

(d), the in-control state (m0), and the process standard deviation (s).

x

n Optimum k Optimum h Alpha Power Cost
1 2.31 .37 .0209 .3783 19.17
2 2.52 .46 .0117 .6211 15.71
3 2.68 .54 .0074 .7835 14.48
4 2.84 .58 .0045 .8770 14.01
5 2.99 .62 .0028 .9308 13.88
6 3.13 .65 .0017 .9616 13.91
7 3.27 .67 .0011 .9784 14.04
8 3.40 .69 .0007 .9880 14.21
9 3.53 .71 .0004 .9932 14.41

10 3.66 .73 .0003 .9961 14.62
11 3.78 .75 .0002 .9978 14.84
12 3.90 .77 .0001 .9988 15.06
13 4.02 .78 .0001 .9993 15.28
14 4.14 .80 .0000 .9996 15.50

■ F I G U R E  1 0 . 2 5 Optimum chart design for Example 10.5 with a4 = $150.x
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7. One should exercise caution in using arbitrarily designed control charts. Duncan

(1956) has compared the optimum economic design with the arbitrary design n = 5,

k = 3.00, and h = 1 for several sets of system parameters. Depending on the values of

the system parameters, very large economic penalties may result from the use of the

arbitrary design.

10.6.6 Other Work

The economic design of control charts is a rich area for research into the performance of con-

trol charts. Essentially, cost is simply another metric in which we can evaluate the performance

of a control scheme. There is substantial literature in this field; see the review papers by

Montgomery (1980), Svoboda (1991), Ho and Case (1994), and Keats et al. (1997) for discus-

sion of most of the key work. A particularly useful paper by Lorenzen and Vance (1986) gener-

alized Duncan’s original model so that it was directly applicable to most types of control charts.

Woodall (1986, 1987) has criticized the economic design of control charts, noting that

in many economic designs the type I error of the control chart is considerably higher than it

usually would be in a statistical design, and that this will lead to more false alarms—an unde-

sirable situation. The occurrence of excessive false alarms is always a problem, as managers

will be reluctant to shut down a process if the control scheme has a history of many false

alarms. Furthermore, if the type I error is high, then this could lead to excessive process

adjustment, which often increases the variability of the quality characteristic. Woodall also

notes that economic models assign a cost to passing defective items, which would include lia-

bility claims and customer dissatisfaction costs, among other components, and this is counter

to Deming’s philosophy that these costs cannot be measured and that customer satisfaction is

necessary to staying in business.

Some of these concerns can be overcome. An economic design should always be eval-

uated for statistical properties, such as type I and type II error probabilities, average run

lengths, and so forth. If any of these properties are at undesirable levels, this may indicate that

inappropriate costs have been assigned, or that a constrained solution is necessary. It is rec-

ommended to optimize the cost function with suitable constraints on type I error, type II error,

average run length, or other statistical properties. Saniga (1989) has reported such a study

relating to the joint economic statistical design of and R charts. Saniga uses constraints on

type I error, power, and the average time to signal for the charts. His economic statistical

designs have higher costs than the pure economic designs, but give superior protection over

a wider range of process shifts and also have statistical properties that are as good as control

charts designed entirely from statistical considerations. We strongly recommend that Saniga’s

approach be used in practice.

Saniga and Shirland (1977) and Chiu and Wetherill (1975) report that very few practi-

tioners have implemented economic models for the design of control charts. This is somewhat

surprising, as most quality engineers claim that a major objective in the use of statistical

process-control procedures is to reduce costs. There are at least two reasons for the lack of

practical implementation of this methodology. First, the mathematical models and their asso-

ciated optimization schemes are relatively complex and are often presented in a manner that is

difficult for the practitioner to understand and use. The availability of computer programs for

these models and the development of simplified optimization procedures and methods for han-

dling constraints is increasing. The availability of microcomputers and the ease with which

these applications may be implemented on them should alleviate this problem. A second problem

is the difficulty in estimating costs and other model parameters. Fortunately, costs do not have

to be estimated with high precision, although other model components, such as the magnitude

of the shift, require relatively accurate determination. Sensitivity analysis of the specific model

could help the practitioner decide which parameters are critical in the problem.

x

x
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10.7 Cuscore Charts

This book has focused on Shewhart control charts because of their widespread usefulness

in process monitoring (particularly in phase I), and other techniques such as the CUSUM

and EWMA control charts that also find important applications. The statistics plotted on

these control charts can all be developed from a very general procedure based on efficient

score statistics [due to Fisher (1925)]. This process results in what are called Cuscore sta-
tistics, and the corresponding control charts are called Cuscore control charts. A Cuscore

control chart can be devised to be sensitive to very specific types of departures from the

standard operating conditions for the process, or the in-control state. In this section, we

give an overview of Cuscore charts; for more details and some applications, see Box and

Ramirez (1992), Box and Luceño (1997), Ramirez (1998), Luceño (1999), and Runger and

Testik (2003).

The general form of the Cuscore statistic is

(10.32)Q e rt t= ∑ 0

(10.35)
r

e e
t

t t= −0

δ

r
e e x x

t
t t t t= − =

− − − −( ) =0 1
δ

μ μ δ
δ

where et0 are the residuals from an in-control model for the process and rt is a detector that

measures the rate of change of the in-control residuals when the process goes out of con-

trol. To illustrate the terminology, consider the Shewhart process model first given in

equation 10.9:

(10.33)

Assume that the process is in control. Once we observe the data for a particular period the

model error term et becomes a residual, say

The zero in the residual subscript indicates that it is a residual from the in-control process.

Now suppose that when the assignable cause occurs, it results in a step change of magnitude

d in the mean. Therefore, the new model is

(10.34)

and the new residuals are

In this example, the introduction of d into the signal produces a linear change in the residu-

als, and for linear models like this the detector is always of the form

e xt t= − −μ δ

xt t= + +μ δ ε

e xt t0 = − μ

xt t= +μ ε

Therefore, for the step change, the detector is
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10.7 Cuscore Charts 489

and the Cuscore statistic in equation 10.32 is

This is the familiar CUSUM statistic from Chapter 9. That is, the Cuscore chart for detecting

a step change in the process is the cumulative sum control chart.

It can be shown that if the assignable cause results in a single spike of magnitude d in

the process, the Cuscore control chart reduces to the Shewhart control chart. Furthermore, if

the assignable cause results in a level change that only lasts w periods, the Cuscore procedure

is the ordinary moving average control chart of span w described in Section 9.3. Finally, if the

assignable cause results in an exponential increase in the signal, the EWMA control chart

(with smoothing parameter exactly equal to the parameter in the exponential function) is the

Cuscore control chart.

Because they can be tuned to detect specific signals, Cuscore charts are most effec-

tively used as supplementary process monitoring devices in processes where, in addition to

the usual nonspecific types of disturbances, it is feared that a very specific type of problem

occasionally occurs. For example, consider a process in which a certain catalyst is employed.

Because the catalyst depletes with time, periodically new catalyst must be added to the

process. Let’s say this is usually done every week. However, in addition to the usual assign-

able causes that may occur, process engineering personnel are concerned that the catalyst

may begin to wear out earlier than expected. As the catalyst depletes, a very slow linear trend

will be observed in the process output, but if the catalyst is wearing out too soon, the slope

of this trend line will increase quickly. Now a drift or trend can be detected by the EWMA

chart that is used for general process monitoring, but a Cuscore designed to detect this

change in trend can be designed to augment the EWMA. The process model for the in-

control process is

and the residuals are

If the catalyst begins to wear out too soon, the slope changes, as in

and the new residuals are

The detector portion of the Cuscore is

Therefore, the Cuscore statistic for monitoring this process is

It is possible to obtain Cuscore statistics for monitoring processes and detecting almost any

type of signal in almost any type of noise (not just white noise, or uncorrelated observations,

as we have been illustrating here). For additional details and examples, see Box and Luceño

(1997).

Runger and Testik (2003) observe that a more familiar way to write the Cuscore sta-

tistic is

C C x k f t tt t t t= + − +( ) ( )[ ] =−max , , ; , , ,1 0 1 2μ δ τ    K

Q e r x t tt t t= = − −( )∑ ∑0 μ β

r
e e x t x t t

tt
t t t t= − =

− − − − − −( ) =0

δ
μ β μ β δ

δ

e x t tt t= − − −μ β δ

x t tt t= + + +μ β δ ε

e x tt t0 = − −μ β

x tt t= + +μ β ε

Q e r x xt t t t= = −( ) = −( )∑ ∑ ∑0 1μ μ
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490 Chapter 10 ■ Other Univariate Statistical Process-Monitoring and Control Techniques

where now m is the in-control mean of the observations, f(t,d,t) is the specific signal gener-

ated by the assignable cause which occurs at time t, d is a parameter that reflects the nature

and magnitude of the process shift, and kt is a reference value or handicap. The control chart

is obtained by plotting Ct versus t. A decision interval H is used to test for the presence of the

out-of-control signal in the data. Specifically, if Ct exceeds H the Cuscore chart signals. One

must specify H and kt to operationalize the chart. Usually the reference value is chosen pro-

portional to the signal value f(t,d,t), such as 0.5 f(t,d,t). To obtain the best performance with

a Cuscore control chart, the time that the assignable cause occurs, t, must be known. Luceño

(1999) used reinitialization and restart procedures with the Cuscore chart to overcome this

problem. He also studied the ARL and run-length distribution for a number of different forms

of the Cuscore chart.

Runger and Testik (2003) also discuss a competitor to the Cuscore chart based on a

generalized likelihood ratio (GLR) approach. This procedure is closely related to the

changepoint model discussed in the next section. The advantage of their GLR control chart

is that the procedure is very robust to the time that the assignable cause occurs. It also gen-

erally outperforms the Cuscore chart in detecting assignable causes. GLR control charts are

very computationally intensive because there are no simple recursive formulations available;

however, the increasing capability of desktop computers and the development of windowing

algorithms that work with a moving window of the most recent w observations will certainly

lead to increasing use of GLR-based process monitoring procedures.

10.8 The Changepoint Model for Process Monitoring

Control charts are used to monitor processes looking for assignable causes that result in

changes in the process output, such as sustained shifts in parameter values. Shewhart control

charts and EWMA and CUSUM control charts are widely used in practice for these types of

problems. There is another approach that can be useful for detecting process upsets: the

changepoint model. This approach focuses on finding the point in time where the underlying

model generating a series of observations has changed in some fashion. Most of the work on

changepoints has concentrated on detecting a sustained shift in the mean of the process, and

that is the case that we will discuss here.

Suppose that the output of a process is modeled by two normal distributions with the

same variance, say

(10.36)

The in-control distribution is N(m0,s2) up to a point in time t (called the changepoint),

beyond which the mean shifts to a new level m1 m0, and in subsequent periods the process

follows the N(m1,s2) distribution. There are two aspects of the changepoint approach to

process monitoring; determining if there has been a change in the process, and estimating t,

the time of the change. Hawkins, Qiu, and Kang (2003) is a very readable introduction to the

changepoint model, and they provide a list of useful references.

There are several important variations of the changepoint model for detecting sustained

shifts in the mean. The first of these is the case where all of the parameters in equation 10.36—

m0, m1, and s2—are known. The CUSUM chart is the appropriate procedure for this setting.

An EWMA would also be appropriate, as it can be designed to be approximately equivalent in

performance to the CUSUM. Another situation would be the case in which only some of the

parameters are known. Typically, we assume that m0 and s2 are known, but the out-of-control

value of the mean m1 is unknown. Our usual approach to this case is to design the CUSUM for a
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value of m1 that reflects the smallest value of the out-of-control mean that is thought to be likely

to occur. Likelihood ratio methods can also be used to address this case. Hawkins, Qiu, and

Kang (2003) point out that the “known” values of m0 and s2 are typically estimated from a

sequence of observations taken when the process is thought to be in control, or from a phase I

study. Errors in estimating these parameters are reflected in distortions in the average run

lengths of the control charts. Even relatively modest errors in estimating the unknown param-

eters (on the order of one standard error) can significantly impact the ARLs of the CUSUM and

EWMA control charts. Now this does not prevent the control chart from being useful, but it is

a cause of concern that the performance of the procedure cannot be characterized accurately.

The most interesting variation of the changepoint model occurs when none of the param-

eters is known. If there is a single changepoint, it turns out that the appropriate statistic for

this problem is the familiar two-sample t statistic for comparing two means, which can be

written as

(10.37)t
j n j

n

x x
jn

jn jn

jn

=
−( ) − *

σ̂

where is the average of the first j observations, is the average of the last n − j observations,

is the usual pooled estimate of variance, and 1 ≤ j ≤ n − 1. To test for a changepoint,

calculate the maximum absolute value of tjn over all 1 ≤ j ≤ n − 1 and compare to a critical

value, say hn. If the critical value is exceeded, then there has been a change in the process.

The j giving the maximum is the estimate of the changepoint t, and and are the esti-

mates of m0 and m1, respectively. Finding the appropriate critical value for this procedure hn

is not easy. Hawkins, Qiu, and Kang (2003) provide some references and guidance for the

phase I case (the length of the data is fixed at n). They also report the results of a study to

determine critical values appropriate for phase II (where n would increase without bound).

The critical values can be found from a table in their paper or computed from numerical

approximations that they provide.

The performance of the changepoint procedure is very good, comparing favorably to

the CUSUM. Specifically, it is slightly inferior to a CUSUM that is tuned perfectly to the

exact shift in mean that actually occurs, but nearly optimal for a wide range of shifts.

Because of this good performance, changepoint methods should be given wider attention in

process monitoring problems.

10.9 Profile Monitoring

A recent development of considerable practical value is methodology for profile monitoring.
Profiles occur when a critical-to-quality characteristic is functionally dependent on one or

more explanatory, or independent, variables. Thus, instead of observing a single measurement

on each unit or product, we observe a set of values over a range which, when plotted, takes the

shape of a curve. That is, there is a response variable y and one or more explanatory variables

x1, x2, . . . , xk and the situation is like regression analysis (refer to Chapter 3). Figure 10.26

provides three illustrations. In Figure 10.26a the torque produced by an automobile engine is

related to the engine speed in rpm. In Figure 10.26b the measured pressure for a mass flow

controller is expressed as a function of the set point x for flow. In Figure 10.26c the vertical

density of particle board is shown as a function of depth [from Walker and Wright (2002)].

x*jnxjn

s2ˆ jn

x*jnxjn
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Profiles can be thought of as multivariate vectors, but use of the standard multivariate charts

such as the ones we discuss in Chapter 11 is usually not appropriate. Profile monitoring has

extensive applications in calibration to ascertain performance of the measurement method and

to verify that it remained unchanged over time. It has also been used to determine optimum

calibration frequency and to avoid errors due to “overcalibration” [see Croarkin and Varner

(1982)]. Profiles occur in many other areas, such as performance testing where the response

is a performance curve over a range of an independent variable such as frequency or speed.

Jin and Shi (2001) refer to profiles as waveform signals and cite examples of force and torque

signals collected from online sensors. The review paper by Woodall, Spitzner, Montgomery,

and Gupta (2004) provides additional examples of profiles and discusses several monitoring

methods, in addition to identifying some weaknesses in existing methods and proposing

research directions. Other recent papers on various aspects of monitoring profiles are Gupta,

Montgomery, and Woodall (2006); Kim, Mahmoud, and Woodall (2003); Staudhammer,

Maness, and Kozak (2007); Wang and Tsung (2005); Woodall (2007); Zou, Zhang, and Wang

(2006); and Mahmoud, Parker, Woodall, and Hawkins (2007).

Most of the literature on profile monitoring deals with the phase II analysis of linear

profiles—that is, monitoring the process or product when the underlying in-control model

parameters are assumed to be known. Stover and Brill (1998) use the Hotelling T2 control

chart discussed in Chapter 11) and a univariate chart based on the first principal component

of the vectors of the estimated regression parameters to determine the response stability 

of a calibration instrument and the optimum calibration frequency. Kang and Albin (2000)

suggest using a Hotelling T2 control chart or a combination of an EWMA and R chart based

on residuals for monitoring phase II linear profiles. They recommend the use of similar

methods for phase I. Kim, Mahmoud, and Woodall (2003) propose transforming the x-values
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■ F I G U R E  1 0 . 2 6 Profile data. (a) Torque versus rpm. (b) Pressure versus flow. (c) Vertical density 

versus depth.
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10.9 Profile Monitoring 493

to achieve an average coded value of zero and then monitoring the intercept, slope, and

process standard deviation using three separate EWMA charts They conduct performance

studies and show their method to be superior to the multivariate T2 and EWMA–R charts of

Kang and Albin (2000).

For phase I analysis, Kim, Mahmoud, and Woodall (2003) suggest replacing the

EWMA charts with Shewhart charts. Mahmoud and Woodall (2004) propose the use of a

global F statistic based on an indicator variable technique to compare k regression lines in

conjunction with a control chart to monitor the error variance term. They compare various

phase I methods with their procedure based on the probability of a signal under various shifts

in the process parameters, and show that their method generally performs better than the T2

control chart of Stover and Brill (1998), the T 2 control chart of Kang and Albin (2000), and

the three Shewhart control charts of Kim, Mahmoud, and Woodall (2003).

We will show how simple Shewhart control charts can be used to conduct phase II mon-

itoring for a linear profile. The in-control model for the ith observation within the jth random

sample is assumed to be a simple linear regression model

where the errors eij are independent and identically distributed normal random variables with

mean zero and known variance s2. The regression coefficients, b0 and b1 and the error variance

s2 are assumed to be known. Notice that in the regression model the independent variable has

been subtracted from its mean—that is, . This technique makes the least squares

estimates of the regression coefficients independent so that they more easily can be monitored

individually using separate control charts. As new samples come available, the regression

model is fit to the data producing estimates of the model parameters for that sample. The con-

trol limits for the intercept, slope, and error variance computed from new samples of data are

as follows:

(10.38)

.

The control limits for monitoring the slope are

(10.39)

where Sxx is defined as [refer to Montgomery et al. (2001), pp. 15–17]. Finally,

the control limits for monitoring the error variance are

(10.40)

 LCL =
s2

n − 2
 c2

(1−a/2), (n−2),

 Center line = s2

 UCL =
s2

n − 2
 c2

a/2, (n−2)

Σn
i=1(xi − x)2

 LCL = b1 − Za/2B

s2

Sxx
,

 Center line = b1

 UCL = b1 + Za/2B

s2

Sxx

 LCL = b0 − Za/2B

s2

n

 Center line = b0

 UCL = b0 + Za/2B

s2

n

x¿i = xi − x

 = b0 + b1x¿i i = 1, 2, p , n

 yij = b0 + b1(x1 − x) + eij,
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where c2
a/2, (n − 2) and c2

(1 − a/2), (n − 2) are the upper and lower a/2 percentage points of the chi-

square distribution with n − 2 degrees of freedom [see Montgomery, Peck, and Vining (2006)

for details]. The value of aoverall is calculated using the equation aoverall = 1 − (1 − a)3 and the

in-control ARL is computed by taking the reciprocal of aoverall. The value of a can be chosen to

obtain a desired ARL value.

We will use the data presented in the NIST/SEMATECH e-Handbook of Statistical
Methods to illustrate the method. The dataset consists of line widths of photo masks ref-

erence standards on 10 units (40 measurements) used for monitoring linear calibration

profiles of an optical imaging system. The line widths are used to estimate the parame-

ters of the linear calibration profile, with a residual standard

deviation of 0.06826 micrometers. This is the phase I profile. A monitoring scheme is

established to monitor measurements on units for upper, middle, and lower end of the rel-

evant measurement range from the estimated phase I profile. The dataset is provided in

Table 10.3 and plotted in Figure 10.27. In the plot, the in-control line is the established

phase I profile. On careful observation of the measurements for the fourth sample,

the plotted values seem to be slightly offset from the in-control line. We employ both the

Shewhart control charts defined in equations 10.38, 10.39, and 10.40 to monitor the

phase II line-width data. The control charts are as shown in Figure 10.28. In the control

charts, the three horizontal lines indicate the upper control limit, the center line, and the

lower control limit, respectively. The numerical values for these quantities are (4.62,

4.49, 4.37), (1.01, 0.98, 0.94), and (0.0087, 0.0046, 0.002), respectively. To achieve the

overall in-control ARL of 200, the value of a for the control charts was adjusted to be

0.00167. Note that the measurements on the fourth day are out of control. The error vari-

ance values on the fifth and sixth days are below the lower control limit with the values

0.0018 and 0.0000, respectively.

yijˆ = 0.2817 +  +0.9767x¿i

■ TA B L E  1 0 . 3  

Line-Width Measurements

Day Position x y

1 L 0.76 1.12

1 M 3.29 3.49

1 U 8.89 9.11

2 L 0.76 0.99

2 M 3.29 3.53

2 U 8.89 8.89

3 L 0.76 1.05

3 M 3.29 3.46

3 U 8.89 9.02

4 L 0.76 0.76

4 M 3.29 3.75

4 U 8.89 9.3

5 L 0.76 0.96

5 M 3.29 3.53

5 U 8.89 9.05

6 L 0.76 1.03

6 M 3.29 3.52

6 U 8.89 9.02
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10.10 Control Charts in Health Care Monitoring and Public Health Surveillance

Control charts have many applications in health care and public health monitoring and sur-

veillance. Control charts can be used for monitoring hospital performance with respect to

patient infection rates, patient falls or accidents, emergency room waiting times, or surgical

outcomes for various types of procedures. There are also applications for monitoring poten-

tial outbreaks of infectious diseases, and even bioterrorism events. This is often called syn-
dromic surveillance, in which data are obtained from sources such as emergency room

records, over-the-counter drug and prescription sales, visits to physicians, and other sources,

in an attempt to supplement traditional sentinel surveillance for natural disease outbreaks or

bioterrorist attacks. An excellent review paper on control chart applications in public health

surveillance and health care monitoring is Woodall (2006). The book by Winkel and Zhang

(2007) is also recommended. The papers by Fienberg and Shmueli (2005), Buckeridge et al.

(2005), Fricker (2007), and Rolka et al. (2007) offer useful insight on syndromic surveillance.

Health Care Applications of Control Charts. There are some important differences

between the industrial and business settings where statistical process control and control charts

are traditionally applied and the health care and disease-monitoring environments. One of these

is data. Attribute data are much more widely encountered in the health care environment than in

the industrial and business world. For example, in surveillance for outbreaks of a particular

disease, the incidence rate, or number of cases in the population of interest per unit of time, is

typically monitored. Furthermore, disease outbreaks are very likely to be transitory, with more

gradual increases and decreases as opposed to the distinct shifts usually encountered in indus-

trial applications. In the health care and public health environment, one-sided methods tend to

be employed to allow a focus on detecting increases in rates, which are of primary concern. Two-

sided methods are more typically used in business and industry. Some of the techniques used in

health care monitoring and disease surveillance were developed independently of the industrial

statistical process-control field. There have been few comparative studies of the methods unique

to health care monitoring and disease surveillance and often the performance measures used are

different from those employed in industrial SPC. Often the data monitored in these environments

are nonstationary, or have some built-in patterns that are part of the process. An example would

be influenza outbreaks, which are largely confined to the winter and late spring months. In some

public health surveillance applications, the parameter estimates and measures of uncertainty 

are updated as new observations become available or the baseline performance is adjusted. These

are methods to account for the nonstationary nature of the monitored data.

Scan Methods. The public health surveillance community often uses scan statistic

methods instead of more conventional control charting methods such as the cumulative sum

or EWMA control chart. A scan statistic is a moving window approach that is similar to the

moving average control chart, discussed in Chapter 9 (see Section 9.3). A scan method sig-

nals an increase in a rate if the count of events in the most recent specified number of time

periods is unusually large. For example, a scan method would signal an increased rate at a

given time if m or more events of interest have occurred in the most recent n trials. A plot of the

scan statistic over time with an upper control limit could be considered as a control charting

technique, but this viewpoint is not usually taken in the health care or the disease surveillance

field. In general, there are no specific guidelines on the design of a scan method.

Scan methods were first applied to the surveillance of chronic diseases by the cancer sur-

veillance community and have more recently been adapted to the surveillance of infectious

diseases. Scan methods can be applied in either the temporal case, where only the times of inci-

dences are known, or in the spatial–temporal case, where both the times and locations of

incidences are known. Most of the work on scan-based methods has been for the phase I situation

in which a set of historical data is analyzed. Comprehensive reviews of many scan-based
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procedures are in Balakrishnan and Koutras (2002) and Glaz et al. (2001). Also see Kulldorff

(1997, 2001, 2003, 2005), Sonesson and Bock (2003), and Naus and Wallenstein (2006).

An important feature of health care monitoring is the human element of the process.

Differences among the people in the system are likely to be great, and these differences have

great potential impact on the outcomes. For example, when evaluating hospital performance

and physician care, we have to take into account that the patients will vary (from patient to

patient, from hospital to hospital, from physician to physician) with regard to their general

state of health and other demographics and factors. Risk-adjusted control charts can be

devised to deal with this situation. Grigg and Farewell (2004) give a review of risk-adjusted

monitoring. Grigg and Spiegelhalter (2007) recently proposed a risk-adjusted EWMA

method. Risk-adjusted control charts are also discussed by Winkel and Zhang (2007).

10.11 Overview of Other Procedures

There are many other process monitoring and control techniques in addition to those pre-

sented previously. This section gives a brief overview of some of these methods, along with

some basic references. The selection of topics is far from exhaustive but does reflect a collec-

tion of ideas that have found practical application.

10.11.1 Tool Wear

Many production processes are subject to tool wear. When tool wear occurs, we usually find

that the process variability at any one point in time is considerably less than the allowable

variability over the entire life of the tool. Furthermore, as the tool wears out, there will gen-

erally be an upward drift or trend in the mean caused by the worn tool producing larger

dimensions. In such cases, the distance between specification limits is generally much greater

than, say, 6s. Consequently, the modified control chart concept can be applied to the tool-

wear problem. The procedure is illustrated in Figure 10.29.

The initial setting for the tool is at some multiple of sx above the lower specification

limit—say, 3sx—and the maximum permissible process average is at the same multiple of sx

below the upper specification limit. If the rate of wear is known or can be estimated from the

data, we can construct a set of slanting control limits about the tool-wear trend line. If the

sample values of fall within these limits, the tool wear is in control. When the trend line exceeds

the maximum permissible process average, the process should be reset or the tool replaced.

x

Sample number

Lower
specification

limit

Upper
specification

limit

x

σ

σ

3  xσ

Distribution
of x

3  xσ

6 x

3 x

σ3 x

■ F I G U R E  1 0 . 2 9 Control chart for tool wear.
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Control charts for tool wear are discussed in more detail by Duncan (1986) and

Manuele (1945). The regression control chart [see Mandel (1969)] can also be adapted to the

tool-wear problem. Quesenberry (1988) points out that these approaches essentially assume

that resetting the process is expensive and that they attempt to minimize the number of adjust-

ments made to keep the parts within specifications rather than reducing overall variability.

Quesenberry develops a two-part tool-wear compensator that centers the process periodically

and protects against assignable causes, as well as adjusting for the estimated mean tool wear

since the previous adjustment.

10.11.2 Control Charts Based on Other Sample Statistics

Some authors have suggested the use of sample statistics other than the average and range (or

standard deviation) for construction of control charts. For example, Ferrell (1953) proposed that

subgroup midranges and ranges be used, with control limits determined by the median

midrange and the median range. The author noted that ease of computation would be a feature

of such control charts and that they would do a better job of detecting “outlier” points than con-

ventional control charts. The median has been used frequently instead of as a center line on

charts of individuals when the underlying distribution is skewed. Similarly, medians of R and s
have been proposed as the center lines of those charts so that the asymmetrical distribution of

these statistics will not influence the number of runs above and below the center line.

The recent interest in robust statistical methods has generated some application of these

ideas to control charts. Generally speaking, the presence of assignable causes produces out-

lier values that stretch or extend the control limits, thereby reducing the sensitivity of the con-

trol chart. One approach to this problem has been to develop control charts using statistics that

are themselves outlier-resistant. Examples include the median and midrange control charts

[see Clifford (1959)] and plotting subgroup boxplots [(see Iglewicz and Hoaglin (1987) and

White and Schroeder (1987)]. These procedures are typically not as effective in assignable-

cause or outlier detection as are conventional and R (or S) charts.

A better approach is to plot a sample statistic that is sensitive to assignable causes ( and

R or s), but to base the control limits on some outlier-resistant method. The paper by Ferrell

(1953) mentioned above is an example of this approach, as is plotting and R on charts with

control limits determined by the trimmed mean of the sample means and the trimmed mean

of the ranges, as suggested by Langenberg and Iglewicz (1986).

Rocke (1989) has reported that plotting an outlier-sensitive statistic on a control chart

with control limits determined using an outlier-resistant method works well in practice. The

suggested procedures in Ferrell (1953), Langenberg and Iglewicz (1986), and his own method

are very effective in detecting assignable causes. Interestingly enough, Rocke also notes that

the widely used two-stage method of setting control limits—wherein the initial limits are

treated as trial control limits, samples that plot outside these trial limits are then removed, and

a final set of limits is then calculated—performs nearly as well as the more complex robust

methods. In other words, the use of this two-stage method creates a robust control chart.

In addition to issues of robustness, other authors have suggested control charts for other

sample statistics for process-specific reasons. For example, when pairs of measurements are

made on each unit or when comparison with a standard unit is desired, one may plot the dif-

ference x1j − x2j on a difference control chart [see Grubbs (1946) and the supplemental text

material]. In some cases, the largest and smallest sample values may be of interest. These

charts have been developed by Howell (1949).

10.11.3 Fill Control Problems

Many products are filled on a high-speed, multiple-head circular filling machine that operates

continuously. It is not unusual to find machines in the beverage industry that have from 40 to

72 heads and operate at speeds of from 800 to 1,000 bottles per minute. In such cases, it is

x

x
x

x
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difficult to sample products from specific heads because there is no automatic method of iden-

tifying a filled container with its filling head. Furthermore, in addition to assignable causes

that affect all filling heads simultaneously, some assignable causes affect only certain heads.

Special sampling and control charting methods are needed for these types of fill control prob-

lems. Ott and Snee (1973) present some techniques useful for this problem, particularly for

filling machines with a moderate number of heads. Many of the methods described in Section

10.3 for multiple-stream processes are also useful in fill control problems.

10.11.4 Precontrol

Precontrol is a technique that is used to detect shifts or upsets in the process that may result

in the production of nonconforming units. The technique differs from statistical process con-

trol in that conventional control charts are designed to detect shifts in process parameters that

are statistically significant, and precontrol requires no plotting of graphs and no computa-

tions. Precontrol uses the normal distribution in determining changes in the process mean or

standard deviation that could result in increased production of nonconforming units. Only

three units are required to give control information.

To demonstrate the procedure, suppose that the quality characteristic is normally distrib-

uted and that the natural tolerance limits (m ± 3s) exactly coincide with the specification lim-

its. Furthermore, the process average m is halfway between the specifications, so that the

process is producing 0.27% fallout. Construct two precontrol limits (called upper and lower PC

lines), each of which is one-fourth the distance in from the modified limit, as in Figure 10.30.

Since the distribution of the quality characteristic is normal, approximately 86% of the process

output will lie inside the PC lines, and approximately 7% will lie in each of the regions

between the PC line and specification limit. This means that only about 1 item in 14 will fall

outside a PC line if the process mean and standard deviation are on the target values.

If the probability is 1 in 14 that one unit falls outside a PC line, the probability that two

consecutive units fall outside a PC line is . That is, if the

process is operating correctly, the probability of finding two consecutive units outside of a

given PC line is only about . When two such consecutive units are found, it is likely that

the process has shifted to an out-of-control state. Similarly, it is unlikely to find the first unit

beyond one PC line and the next beyond the other PC line. In this case, we suspect that

process variability has increased.

A set of rules follow that describe the operation of precontrol. These rules assume that

1% to 3% nonconforming production is acceptable and that the process capability ratio is at

least 1.15.

1. Start the process. If the first item is outside specifications, reset and start again.

2. If an item is inside specifications but outside a PC line, check the next item.

3. If the second item is outside the same PC line, reset the process.

1
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■ F I G U R E  1 0 . 3 0 Location of precontrol lines.
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4. If the second item is inside the PC line, continue. The process is reset only when two

consecutive items are outside a given PC line.

5. If one item is outside a PC line and the next item is outside the other PC line, the

process variability is out of control.

6. When five consecutive units are inside the PC lines, shift to frequency gauging.

7. When frequency gauging, do not adjust process until an item exceeds a PC line. Then

examine the next consecutive item, and proceed as in step 4.

8. When the process is reset, five consecutive items must fall inside the PC lines before

frequency gauging can be resumed.

9. If the operator samples from the process more than 25 times without having to reset the

process, reduce the gauging frequency so that more units are manufactured between

samples. If you must reset before 25 samples are taken, increase the gauging frequency.

An average of 25 samples to a reset indicates that the sampling frequency is satisfactory.

Precontrol is closely related to a technique called narrow-limit gauging (or compressed-
limit gauging), in which inspection procedures are determined using tightened limits located

so as to meet established risks of accepting nonconforming product. Narrow-limit gauging is

discussed in more general terms by Ott (1975).

Although precontrol has the advantage of simplicity, it should not be used indiscrimi-

nately. The procedure has serious drawbacks. First, because no control chart is usually con-

structed, all the aspects of pattern recognition associated with the control chart cannot be used.

Thus, the diagnostic information about the process contained in the pattern of points on the

control chart, along with the logbook aspect of the chart, is lost. Second, the small sample sizes

greatly reduce the ability of the procedure to detect even moderate-to-large shifts. Third, pre-

control does not provide information that is helpful in bringing the process into control or that

would be helpful in reducing variability (which is the goal of statistical process control).

Finally, the assumption of an in-control process and adequate process capability is extremely

important. Precontrol should only be considered in manufacturing processes where the process

capability ratio is much greater than one (perhaps at least two or three), and where a near-zero

defects environment has been achieved. Ledolter and Swersey (1997) in a comprehensive

analysis of precontrol also observe that its use will likely lead to unnecessary tampering with

the process; this can actually increase variability. This author believes that precontrol is a poor

substitute for standard control charts and would never recommend it in practice.

10.11.5 Tolerance Interval Control Charts

The usual intent of standard control limits for phase II control charts based on normal distri-

bution is that they contain six standard deviations of the distribution of the statistic that is

plotted on the chart. For the normal distribution, this is the familiar quantity 0.9973 =
1 − 2(0.00135), where 0.00135 is the probability outside each control limit or the area in the

tail of the distribution of the plotted statistic. Standard control limits do not satisfy this,

because while a normal distribution is assumed, many plotted statistics do not follow the normal

distribution. The sample range R and sample standard deviation s are good examples. The random

variables R and s have skewed distributions that lead to zero lower control limits when the

subgroup size is six or less for the R chart and five or less for the s chart. Using probability

limits would avoid this problem. However, there is another problem. The phase II control limits

also depend on the parameters of the distribution that are estimated using the data that was

collected and analyzed in phase I.

Hamada (2003) proposes the use of beta-content tolerance intervals as the basis for con-

trol limits to more precisely control the probability content of the control limits. He develops

these control limits for the , R, and s charts, and he provides tables of the constants necessaryx
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for their construction and use. His constants control the probability content in each tail at

0.000135, but the formulas provided allow different probability values and potentially differ-

ent probability contents in each tail. A useful benefit of his approach is that nonzero lower

control limits arise naturally for the R and s charts, affording an opportunity to detect down-

ward shifts in process variability more easily.

10.11.6 Monitoring Processes with Censored Data

There are many situations where a process is monitored and the data that are collected are

censored. For example, Steiner and MacKay (2000) describe manufacturing material used in

making automobile interiors. In this process, a vinyl outer layer is bonded to a foam backing;

to check the bond strength, a sample of the material is cut, and the force required to break the

bond is measured. A predetermined maximum force is applied, and most samples do not fail.

Therefore, the bond strength measurements are censored data.

When the censoring proportion is not large, say under 50%, it is fairly standard prac-

tice to ignore the censoring. When the censoring proportion is high, say above 95%, it is often

possible to use an np control chart to monitor the number of censored observations. However,

there are many situations where the proportion of censored observations is between 50% and

95% and these conventional approaches do not apply. Steiner and MacKay (2000) develop

conditional expected value (CEV) weight control charts for this problem. To develop the

charts, they assume that the measured quantity x is normally distributed with mean and stan-

dard deviation m and s, respectively. The censoring level is C; that is, the measurement value

is not observed exactly if x exceeds C. The probability of censoring is

where Φ is the standard normal cumulative distribution function and Q(C) is called the sur-
vivor function of the distribution. Their CEV control charts simply replace each censored

observation with its conditional expected value. Then the subgroup averages and standard

deviations are calculated and plotted in the usual manner. The conditional expected value of

a censored observation is

where f(zc) is the standard normal density function, and zc = (C − m)/s. Therefore, the actual

data used to construct the control charts is

The control limits for the CEV control charts depend on the sample size and the censoring pro-

portion pc. The relationship is complex, and does not lead to a simple rule such as the use of

three-sigma limits. Instead, graphs provided by Steiner and Mackay (2000) that are based on sim-

ulation must be used to determine the control limits. Furthermore, in application the mean and

standard deviation m and s must be estimated. This is done in phase I using preliminary process

data. An iterative maximum likelihood procedure is provided by the authors for doing this.

10.11.7 Monitoring Bernoulli Processes

In this section we consider monitoring a sequence of independent Bernoulli random variables—

. . . —where each observation is considered to be conforming or nonconforming and

can be coded as either 0 or 1. This is usually referred to as Bernoulli data. Monitoring and
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analysis of Bernoulli data are often performed using 100% inspection, where all units are con-

sidered, but that also occurs in interval sampling, where the units are inspected at scheduled 

periods. When the process is in control, there is a constant probability p of a nonconforming

item occurring. In most situations we are interested in detecting a sustained increase in p from

an in-control nonconforming rate, p0, to an out-of-control rate p1 that is greater than p0.

However, there are applications where one is interested in detecting decreases in p0. Szarka and

Woodall (2011) provide an in-depth review of methods for monitoring Bernoulli data, focus-

ing on the “high quality process” situation, where p0 is very small. They cite 112 references.

Typical “high quality” processes have rates of 1,000 ppm nonconforming to under 100 ppm

nonconforming (a Six Sigma process would have no more that 3.4 ppm nonconforming

according to the Motorola definition of a Six Sigma process), but in some applications a value

of p0 = 0.05 could be considered a small value. See Goh and Xie (1994).

Szarka and Woodall (2011) observe that the traditional Shewhart chart for fraction non-

conforming (the p chart or the np chart) are unlikely to be satisfactory. One significant prob-

lem is that the aggregation of data over time required for obtaining a subgroup of n > 1 items

results in a loss of information and unnecessary delays in detecting changes in the underlying

proportion. Calvin (1991) suggested control charting the number of conforming items that

were inspected between successive nonconforming items. This type of control chart is usu-

ally called the cumulative count of conforming (or CCC) control chart. Cumulative sum con-

trol charts or EWMA control charts could also be used with very high-quality Bernoulli data.

However, very large sample sizes may be necessary to estimate the in-control state p0 accu-

rately. Steiner and MacKay (2004) recommend identifying a continuous process or product

variable that is related to the production of nonconforming items and monitoring that variable

instead.  Szarka and Woodall (2011) recommend this approach as well, providing such a con-

tinuous variable can be identified. 

10.11.8 Nonparametric Control Charts

The performance of most control charts depends on the assumption of a particular probability

distribution, as a model for the process data. The normal distribution is usually assumed, and

almost all of the performance analysis reported in the literature assumes that the observations

are drawn from a normal distribution. However, much process data is not normally distrib-

uted, and so the robustness of control charts to this assumption has long been an issue in SPC.

The robustness of the Shewhart chart to normality has been studied very thoroughly (refer

to Section 6.2.5). Researchers have found that some control charts are significantly affected

by non-normality—for example, the Shewhart control chart for individuals.

Because non-normality can affect control chart performance, some authors have devel-

oped nonparametric control charts that do not depend on normality or any other specific dis-

tributional assumption. Most nonparametric statistical process-control (NSPC) techniques

depend on ranks. Procedures have been developed that are alternatives to many of the stan-

dard Shewhart charts, the CUSUM, and the EWMA. The empirical reference distribution

control charts of Willemain and Runger (1996), which are based on order statistics from a

large reference sample, are also a form of nonparametric control chart. There has also been

some work done on multivariate NSPC. A good review of much of the literature in this area

is in Chakraborti, Van Der Laan, and Bakir (2001). There is little evidence that these NSPC

techniques have gained any real acceptance in practice. As we have noted previously, a prop-

erly designed univariate (and as we will subsequently see, a multivariate) EWMA control

chart is very robust to the assumption of normality, and performs quite well for both heavy-

tailed symmetric distributions and skewed distributions. Because the univariate EWMA is

widely available in standard statistics packages, and the multivariate EWMA discussed in

Chapter 11 is also very easy to implement, these charts would seem to be good alternatives to

NSPC in many situations.

x
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Acceptance control charts

Adaptive (SPC) control charts

Autocorrelation function

Autoregressive integrated moving average (ARIMA) 

models

Autocorrelated process data

Average run length

Bernoulli processes

Changepoint model for process monitoring

Control charts on residuals

Cuscore statistics and control charts

Deviation from nominal (DNOM) control charts

Economic models of control charts

First-order autoregressive model

First-order integrated moving average model

First-order mixed model

First-order moving average model

Group control charts (GCC)

Health care applications of control charts

Impact of autocorrelation on control charts

Modified control charts

Multiple-stream processes

Positive autocorrelation

Profile monitoring

Sample autocorrelation function

Second-order autoregressive model

Shewhart process model

Standardized and R control charts

Time-series model

Unweighted batch means (UBM) control charts

x

Important Terms and Concepts

Exercises

10.1. Use the data in Table 10E.1 to set

up short-run and R charts using

the DNOM approach. The nominal

dimensions for each part are TA =
100, TB = 60, TC = 75, and TD = 50.

10.2. Use the data in Table 10E.2 to set

up appropriate short-run and R
charts, assuming that the standard

deviations of the measured charac-

teristic for each part type are not the

same. The normal dimensions for

each part are TA = 100, TB = 200,

and TC = 2000.

x

xThe Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

■ TA B L E  1 0 E . 1  

Data for Exercise 10.1

Sample Part
Number Type M1 M2 M3

1 A 105 102 103

2 A 101 98 100

3 A 103 100 99

4 A 101 104 97

5 A 106 102 100

6 B 57 60 59

7 B 61 64 63

8 B 60 58 62

9 C 73 75 77

10 C 78 75 76

11 C 77 75 74

12 C 75 72 79

13 C 74 75 77

14 C 73 76 75

15 D 50 51 49

16 D 46 50 50

17 D 51 46 50

18 D 49 50 53

19 D 50 52 51

20 D 53 51 50

■ TA B L E  1 0 E . 2

Data for Exercise 10.2

Sample Part
Number Type M1 M2 M3 M3

1 A 120 95 100 110

2 A 115 123 99 102

3 A 116 105 114 108

4 A 120 116 100 96

5 A 112 100 98 107

6 A 98 110 116 105

7 B 230 210 190 216

8 B 225 198 236 190

9 B 218 230 199 195

10 B 210 225 200 215

11 B 190 218 212 225

12 C 2,150 2,230 1,900 1,925

13 C 2,200 2,116 2,000 1,950

14 C 1,900 2,000 2,115 1,990

15 C 1,968 2,250 2,160 2,100

16 C 2,500 2,225 2,475 2,390

17 C 2,000 1,900 2,230 1,960

18 C 1,960 1,980 2,100 2,150

19 C 2,320 2,150 1,900 1,940

20 C 2,162 1,950 2,050 2,125
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■ TA B L E  1 0 E . 4

Data for Exercise 10.5

Head

Sample 1 2 3 4
Number R R R R

1 53 2 54 1 56 2 55 3

2 51 1 55 2 54 4 54 4

3 54 2 52 5 53 3 57 2

4 55 3 54 3 52 1 51 5

5 54 1 50 2 51 2 53 1

6 53 2 51 1 54 2 52 2

7 51 1 53 2 58 5 54 1

8 52 2 54 4 51 2 55 2

9 50 2 52 3 52 1 51 3

10 51 1 55 1 53 3 53 5

11 52 3 57 2 52 4 55 1

12 51 2 55 1 54 2 58 2

13 54 4 58 2 51 1 53 1

14 53 1 54 4 50 3 54 2

15 55 2 52 3 54 2 52 6

16 54 4 51 1 53 2 58 5

17 53 3 50 2 57 1 53 1

18 52 1 49 1 52 1 49 2

19 51 2 53 3 51 2 50 3

20 52 4 52 2 50 3 52 2

xxxx

■ TA B L E  1 0 E . 5

Data for Exercise 10.6

Head

Sample 1 2 3 4
Number R R R R

21 50 3 54 1 57 2 55 5

22 51 1 53 2 54 4 54 3

23 53 2 52 4 55 3 57 1

24 54 4 54 3 53 1 56 2

25 50 2 51 1 52 2 58 4

26 51 2 55 5 54 5 54 3

27 53 1 50 2 51 4 60 1

28 54 3 51 4 54 3 61 4

29 52 2 52 1 53 2 62 3

30 52 1 53 3 50 4 60 1

xxxx

■ TA B L E  1 0 E . 3  

Defect Data for Exercise 10.4

Total Total
Production Part Number Production Part Number

Day Number of Defects Day Number of Defects

245 1,261 16 251 4,610 10

1,261 10 4,610 0

1,261 15 1,261 20

246 1,261 8 1,261 21

1,261 11 252 1,261 15

1,385 24 1,261 8

1,385 21 1,261 10

247 1,385 28 1,130 64

1,385 35 1,130 75

1,261 10 1,130 53

248 1,261 8 253 1,055 16

8,611 47 1,055 15

8,611 45 1,055 10

249 8,611 53 254 1,055 12

8,611 41 8,611 47

1,385 21 8,611 60

250 1,385 25 255 8,611 51

1,385 29 8,611 57

1,385 30 4,610 0

4,610 6 4,610 4

4,610 8

10.3. Discuss how you would use a CUSUM in the short

production-run situation. What advantages would it

have relative to a Shewhart chart, such as a DNOM

version of the chart?

10.4. Printed circuit boards used in several different avion-

ics devices are 100% tested for defects. The batch

size for each board type is relatively small, and man-

agement wishes to establish SPC using a short-run

version of the c chart. Defect data from the last two

weeks of production are shown in Table 10E.3. What

chart would you recommend? Set up the chart and

examine the process for control.

10.5. A machine has four heads. Samples of n = 3 units are

selected from each head, and the and R values for

an important quality characteristic are computed. The

data are shown in Table 10E.4. Set up group control

charts for this process.

10.6. Consider the group control charts constructed in

Exercise 10.5. Suppose the next ten samples are in

Table 10E.5. Plot the new data on the control charts

and discuss your findings.

10.7. Reconsider the data in Exercises 10.5 and 10.6.

Suppose the process measurements are individual

data values, not subgroup averages.

(a) Use observations 1–20 in Exercise 10.5 to con-

struct appropriate group control charts.

x

x

(b) Plot observations 21–30 from Exercise 10.6 on

the charts from part (a). Discuss your findings.

(c) Using observations 1–20, construct an individ-

uals control chart using the average of the

readings on all four heads as an individual

measurement and an s control chart using the

individual measurements on each head.
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Discuss how these charts function relative to

the group control chart.

(d) Plot observations 21–30 on the control charts

from part (c). Discuss your findings.

10.8. The and R values for 20 samples of size 5 are shown

in Table 10E.6. Specifications on this product have

been established as 0.550 ± 0.02.

(a) Construct a modified control chart with three-

sigma limits, assuming that if the true process

fraction nonconforming is as large as 1%, the

process is unacceptable.

(b) Suppose that if the true process fraction noncon-

forming is as large as 1%, we would like an

acceptance control chart to detect this out-of-

control condition with probability 0.90.

Construct this acceptance control chart, and

compare it to the chart obtained in part (a).

10.9. A sample of five units is taken from a process every

half hour. It is known that the process standard devi-

ation is in control with s = 2.0. The values for the

last 20 samples are shown in Table 10E.7.

Specifications on the product are 40 ± 8.

(a) Set up a modified control chart on this process.

Use three-sigma limits on the chart and assume

that the largest fraction nonconforming that is

tolerable is 0.1%.

x

x

(b) Reconstruct the chart in part (a) using two-sigma

limits. Is there any difference in the analysis of

the data?

(c) Suppose that if the true process fraction noncon-

forming is 5%, we would like to detect this 

condition with probability 0.95. Construct the

corresponding acceptance control chart.

10.10. A manufacturing process operates with an in-control

fraction of nonconforming production of at most

0.1%, which management is willing to accept 95% of

the time; however, if the fraction nonconforming

increases to 2% or more, management wishes to

detect this shift with probability 0.90. Design an

appropriate acceptance control chart for this process.

10.11. Consider a modified control chart with center line at

m = 0, and s = 1.0 (known). If n = 5, the tolerable frac-

tion nonconforming is d = 0.00135, and the control

limits are at three-sigma, sketch the OC curve for the

chart. On the same set of axes, sketch the OC curve

corresponding to the chart with two-sigma limits.

10.12. Specifications on a bearing diameter are established

at 8.0 ± 0.01 cm. Samples of size n = 8 are used, and

a control chart for s shows statistical control, with the

best current estimate of the population standard devi-

ation S = 0.001. If the fraction of nonconforming

product that is barely acceptable is 0.135%, find the

three-sigma limits on the modified control chart for

this process.

10.13. An chart is to be designed for a quality characteristic

assumed to be normal with a standard deviation of 4.

Specifications on the product quality characteristics

are 50 ± 20. The control chart is to be designed so

that if the fraction nonconforming is 1%, the proba-

bility of a point falling inside the control limits will

be 0.995. The sample size is n = 4. What are the con-

trol limits and center line for the chart?

x

■ TA B L E  1 0 E . 6

Data for Exercise 10.8

Sample 
Number R

1 0.549 0.0025

2 0.548 0.0021

3 0.548 0.0023

4 0.551 0.0029

5 0.553 0.0018

6 0.552 0.0017

7 0.550 0.0020

8 0.551 0.0024

9 0.553 0.0022

10 0.556 0.0028

11 0.547 0.0020

12 0.545 0.0030

13 0.549 0.0031

14 0.552 0.0022

15 0.550 0.0023

16 0.548 0.0021

17 0.556 0.0019

18 0.546 0.0018

19 0.550 0.0021

20 0.551 0.0022

x

■ TA B L E  1 0 E . 7

Data for Exercise 10.9

Sample Sample
Number Number

1 41.5 11 40.6

2 42.7 12 39.4

3 40.5 13 38.6

4 39.8 14 42.5

5 41.6 15 41.8

6 44.7 16 40.7

7 39.6 17 42.8

8 40.2 18 43.4

9 41.4 19 42.0

10 43.9 20 41.9

xx
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■ TA B L E  1 0 E . 8

Molecular Weight Measurements on a Polymer

2,048 2,039 2,051 2,002 2,029

2,025 2,015 2,056 1,967 2,019

2,017 2,021 2,018 1,994 2,016

1,995 2,010 2,030 2,001 2,010

1,983 2,012 2,023 2,013 2,000

1,943 2,003 2,036 2,016 2,009

1,940 1,979 2,019 2,019 1,990

1,947 2,006 2,000 2,036 1,986

1,972 2,042 1,986 2,015 1,947

1,983 2,000 1,952 2,032 1,958

1,935 2,002 1,988 2,016 1,983

1,948 2,010 2,016 2,000 2,010

1,966 1,975 2,002 1,988 2,000

1,954 1,983 2,004 2,010 2,015

1,970 2,021 2,018 2,015 2,032

■ TA B L E  1 0 E . 9

Chemical Process Concentration Readings

204 190 208 207 200

202 196 209 204 202

201 199 209 201 202

202 203 206 197 207

197 199 200 189 206

201 207 203 189 211

198 204 202 196 205

188 207 195 193 210

195 209 196 193 210

189 205 203 198 198

195 202 196 194 194

192 200 197 198 192

196 208 197 199 189

194 214 203 204 188

196 205 205 200 189

199 211 194 203 194

197 212 199 200 194

197 214 201 197 198

192 210 198 196 196

195 208 202 202 200

10.14. An chart is to be established to control a quality

characteristic assumed to be normally distributed with

a standard deviation of 4. Specifications on the quality

characteristic are 800 ± 20. The control chart is to be

designed so that if the fraction nonconforming is 1%,

the probability of a point falling inside the control lim-

its will be 0.90. The sample size is n = 4. What are the

control limits and center line for the chart?

10.15. A normally distributed quality characteristic is con-

trolled by and R charts having the following para-

meters (n = 4, both charts are in control):

R Chart Chart

UCL = 18.795 UCL = 626.00

Center line = 8.236 Center line = 620.00

LCL = 0 LCL = 614.00

(a) What is the estimated standard deviation of the

quality characteristic x?

(b) If specifications are 610 ± 15, what is your esti-

mate of the fraction of nonconforming material

produced by this process when it is in control at

the given level?

(c) Suppose you wish to establish a modified chart

to substitute for the original chart. The process

mean is to be controlled so that the fraction non-

conforming is less than 0.005. The probability of

type I error is to be 0.01. What control limits do

you recommend?

10.16. The data in Table 10E.8 are molecular weight mea-

surements made every two hours on a polymer (read

down, then across from left to right).

x
x

x

x

x (a) Calculate the sample autocorrelation function

and provide an interpretation.

(b) Construct an individuals control chart with the

standard deviation estimated using the moving

range method. How would you interpret the

chart? Are you comfortable with this interpreta-

tion?

(c) Fit a first-order autoregressive model xt = x +
fxt−1 + et to the molecular weight data. Set up an

individuals control chart on the residuals from

this model. Interpret this control chart.

10.17. Consider the molecular weight data in Exercise 10.16.

Construct a CUSUM control chart on the residuals

from the model you fit to the data in part (c) of that

exercise.

10.18. Consider the molecular weight data in Exercise 10.16.

Construct an EWMA control chart on the residuals

from the model you fit to the data in part (c) of that

exercise.

10.19. Set up a moving center-line EWMA control chart for

the molecular weight data in Exercise 10.16.

Compare it to the residual control chart in Exercise

10.16, part (c).

10.20. The data shown in Table 10E.9 are concentration

readings from a chemical process, made every 30

minutes (read down, then across from left to right).

(a) Calculate the sample autocorrelation function

and provide an interpretation.

c10OtherUnivariateStatisticalProcess-MonitoringandControlTechniques.qxd  3/30/12  8:21 PM  Page 506



Exercises 507

(b) Construct an individuals control chart with the

standard deviation estimated using the moving

range method. Provide an interpretation of this

control chart.

(c) Fit a first-order autoregressive model xt = x +
fxt−1 + et to the data. Set up an individuals con-

trol chart on the residuals from this model.

Interpret this chart.

(d) Are the residuals from the model in part (c)

uncorrelated? Does this have any impact on

your interpretation of the control chart from

part (c)?

10.21. Consider the concentration data in Exercise 10.20.

Construct a CUSUM chart on the residuals from the

model you fit in part (c) of that exercise.

10.22. Consider the concentration data in Exercise 10.20.

Construct an EWMA control chart in the residuals

from the model you fit in part (c) of that exercise.

10.23. Set up a moving center line EWMA control chart

for the concentration data in Exercise 10.20.

Compare it to the residuals control chart in Exercise

10.20, part (c).

10.24. The data shown in Table 10E.10 are temperature

measurements made every 2 minutes on an interme-

diate chemical product (read down, then across from

left to right).

(a) Calculate the sample autocorrelation function.

Interpret the results that you have obtained.

(b) Construct an individuals control chart, using the

moving range method to estimate the standard

deviation. Interpret the results you have obtained.

(c) Fit a first-order autoregressive model xt = x +
fxt−1 + et to the temperature data. Set up an indi-

viduals control chart on the residuals from this

model. Compare this chart to the individuals

chart in the original data in part (a).

10.25. Consider the temperature data in Exercise 10.24. Set

up a CUSUM control chart on the residuals from the

model you fit to the data in part (c) of that exercise.

Compare it to the individuals chart you constructed

using the residuals.

10.26. Consider the temperature data in Exercise 10.24. Set

up an EWMA control chart on the residuals from the

model you fit to the data in part (c) of that exercise.

Compare it to the individuals chart you constructed

using the residuals.

10.27. Set up a moving center line EWMA control chart for

the temperature data in Exercise 10.24. Compare it to

the residuals control chart in Exercise 10.24, part (c).

10.28. (a) Discuss the use of the moving range method to

estimate the process standard deviation when the

data are positively autocorrelated.

(b) Discuss the use of the sample variance s2 with

positively autocorrelated data. Specifically, if the

observations at lag ri have autocorrelation ri, is

s2 still an unbiased estimator for s2?

(c) Does your answer in part (b) imply that s2 would

really be a good way (in practice) to estimate s2 in

constructing a control chart for autocorrelated data?

10.29. The viscosity of a chemical product is read every two

minutes. Some data from this process are shown in

Table 10E.11 (read down, then across from left to right).

(a) Is there a serious problem with autocorrelation in

these data?

(b) Set up a control chart for individuals with a mov-

ing range used to estimate process variability.

What conclusion can you draw from this chart?

(c) Design a CUSUM control scheme for this

process, assuming that the observations are

uncorrelated. How does the CUSUM perform?

(d) Set up an EWMA control chart with l = 0.15 for

the process. How does this chart perform?

(e) Set up a moving center line EWMA scheme for

these data.

(f) Suppose that a reasonable model for the viscosity

data is an AR (2) model. How could this model be

used to assist in the development of a statistical

process-control procedure for viscosity? Set up

an appropriate control chart, and use it to assess

the current state of statistical control.

10.30. An chart is used to maintain current control of a

process. A single assignable cause of magnitude 2s
x

■ TA B L E  1 0 E . 1 0

Temperature Measurements for Exercise 10.24

491 526 489 502 528

482 533 496 494 513

490 533 489 492 511

495 527 494 490 512

499 520 496 489 522

499 514 514 495 523

507 517 505 498 517

503 508 511 501 522

510 515 513 518 518

509 501 508 521 505

510 497 498 535 510

510 483 500 533 508

515 491 502 524 510

513 489 506 515 487

520 496 500 529 481

518 501 495 525 483

517 496 489 526 473

526 495 509 528 479

525 488 511 534 475

519 491 508 530 484
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■ TA B L E  1 0 E . 1 2

Tool Wear Data

Sample 
Number R

1 1.0020 0.0008

2 1.0022 0.0009

3 1.0025 0.0006

4 1.0028 0.0007

5 1.0029 0.0005

6 1.0032 0.0006

Tool Reset

7 1.0018 0.0005

8 1.0021 0.0006

9 1.0024 0.0005

10 1.0026 0.0008

11 1.0029 0.0005

12 1.0031 0.0007

x

occurs, and the time that the process remains in con-

trol is an exponential random variable with mean

100 h. Suppose that sampling costs are $0.50 per

sample and $0.10 per unit, it costs $5 to investigate a

false alarm, $2.50 to find the assignable cause, and

$100 is the penalty cost per hour to operate in the out-

of-control state. The time required to collect and

evaluate a sample is 0.05 h, and it takes 2 h to locate

the assignable cause. Assume that the process is

allowed to continue operating during searches for the

assignable cause.

(a) What is the cost associated with the arbitrary

control chart design n = 5, k = 3, and h = 1?

(b) Find the control chart design that minimizes the

cost function given by equation 10.31.

10.31. An chart is used to maintain current control of a

process. The cost parameters are a1 = $0.50, a2 =
$0.10, a3 = $25, a¢3 = $50, and a4 = $100. A single

assignable cause of magnitude d = 2 occurs, and the

duration of the process in control is an exponential

random variable with mean 100 h. Sampling and test-

ing require 0.05 h, and it takes 2 h to locate the

x

assignable cause. Assume that equation 10.31 is the

appropriate process model.

(a) Evaluate the cost of the arbitrary control chart

design n = 5, k = 3, and h = 1.

(b) Evaluate the cost of the arbitrary control chart

design n = 5, k = 3, and h = 0.5.

(c) Determine the economically optimum design.

10.32. Consider the cost information given in Exercise

10.30. Suppose that the process model represented by

equation 10.31 is appropriate. It requires 2 h to inves-

tigate a false alarm, the profit per hour of operating in

the in-control state is $500, and it costs $25 to elimi-

nate the assignable cause. Evaluate the cost of the

arbitrary control chart design n = 5, k = 3, and h = 1.

10.33. An chart is used to maintain current control of a

process. The cost parameters are a1 = $2, a2 = $0.50,

a3 = $50, a′3 = $75, and a4 = $200. A single assignable

cause occurs, with magnitude d = 1, and the run length

of the process in control is exponentially distributed

with mean 100 h. It requires 0.05 h to sample and test,

and 1 h to locate the assignable cause.

(a) Evaluate the cost of the arbitrary chart design 

n = 5, k = 3, and h = 0.5.

(b) Find the economically optimum design.

10.34. A control chart for tool wear. A sample of five units

of product is taken from a production process every

hour. The results in Table 10E.12 are obtained.

Assume that the specifications on this quality charac-

teristic are at 1.0015 and 1.0035. Set up the R chart

on this process. Set up a control chart to monitor the

tool wear.

x

x

■ TA B L E  1 0 E . 1 1

Chemical Product Viscosity

29.330 33.220 27.990 24.280

19.980 30.150 24.130 22.690

25.760 27.080 29.200 26.600

29.000 33.660 34.300 28.860

31.030 36.580 26.410 28.270

32.680 29.040 28.780 28.170

33.560 28.080 21.280 28.580

27.500 30.280 21.710 30.760

26.750 29.350 21.470 30.620

30.550 33.600 24.710 20.840

28.940 30.290 33.610 16.560

28.500 20.110 36.540 25.230

28.190 17.510 35.700 31.790

26.130 23.710 33.680 32.520

27.790 24.220 29.290 30.280

27.630 32.430 25.120 26.140

29.890 32.440 27.230 19.030

28.180 29.390 30.610 24.340

26.650 23.450 29.060 31.530

30.010 23.620 28.480 31.950

30.800 28.120 32.010 31.680

30.450 29.940 31.890 29.100

36.610 30.560 31.720 23.150

31.400 32.300 29.090 26.740

30.830 31.580 31.920 32.440
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509

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In previous chapters we have addressed process monitoring and control primarily from the

univariate perspective; that is, we have assumed that there is only one process output vari-

able or quality characteristic of interest. In practice, however, many if not most process

monitoring and control scenarios involve several related variables. Although applying uni-

variate control charts to each individual variable is a possible solution, we will see that this

is inefficient and can lead to erroneous conclusions. Multivariate methods that consider the

variables jointly are required.

This chapter presents control charts that can be regarded as the multivariate exten-

sions of some of the univariate charts of previous chapters. The Hotelling T2 chart is the

analog of the Shewhart chart. We will also discuss a multivariate version of the EWMA

control chart, and some methods for monitoring variability in the multivariate case. These

multivariate control charts work well when the number of process variables is not too

x
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large—say, ten or fewer. As the number of variables grows, however, traditional multivariate

control charts lose efficiency with regard to shift detection. A popular approach in these situ-

ations is to reduce the dimensionality of the problem. We show how this can be done with

principal components.

After careful study of this chapter, you should be able to do the following:

1. Understand why applying several univariate control charts simultaneously to

a set of related quality characteristics may be an unsatisfactory monitoring

procedure

2. Understand how the multivariate normal distribution is used as a model for mul-

tivariate process data

3. Know how to estimate the mean vector and covariance matrix from a sample of

multivariate observations

4. Know how to set up and use a chi-square control chart

5. Know how to set up and use the Hotelling T 2 control chart

6. Know how to set up and use the multivariate exponentially weighted moving

average (MEWMA) control chart

7. Know how to use multivariate control charts for individual observations

8. Know how to find the phase I and phase II limits for multivariate control

charts

9. Use control charts for monitoring multivariate variability

10. Understand the basis of the regression adjustment procedure and be able to apply

regression adjustment in process monitoring

11. Understand the basis of principal components and how to apply principal com-

ponents in process monitoring

11.1 The Multivariate Quality-Control Problem

There are many situations in which the simultaneous monitoring or control of two or more

related quality characteristics is necessary. For example, suppose that a bearing has both an

inner diameter (x1) and an outer diameter (x2) that together determine the usefulness of the

part. Suppose that x1 and x2 have independent normal distributions. Because both quality

characteristics are measurements, they could be monitored by applying the usual chart to

each characteristic, as illustrated in Figure 11.1. The process is considered to be in control

only if the sample means and fall within their respective control limits. This is equiva-

lent to the pair of means ( , ) plotting within the shaded region in Figure 11.2.

Monitoring these two quality characteristics independently can be very misleading. For

example, note from Figure 11.2 that one observation appears somewhat unusual with respect

to the others. That point would be inside the control limits on both of the univariate charts

for x1 and x2, yet when we examine the two variables simultaneously, the unusual behavior

of the point is fairly obvious. Furthermore, note that the probability that either or 

exceeds three-sigma control limits is 0.0027. However, the joint probability that both vari-

ables exceed their control limits simultaneously when they are both in control is

(0.0027)(0.0027) = 0.00000729, which is considerably smaller than 0.0027. Furthermore, the

probability that both and will simultaneously plot inside the control limits when the

process is really in control is (0.9973)(0.9973) = 0.99460729. Therefore, the use of two inde-

pendent charts has distorted the simultaneous monitoring of and , in that the type I error

and the probability of a point correctly plotting in control are not equal to their advertised 

x2x1x

x2x1

x2x1

x

x2x1

x2x1

x
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levels for the individual control charts. However, note that because the variables are indepen-

dent the univariate control chart limits could be adjusted to account for this.

This distortion in the process-monitoring procedure increases as the number of quality

characteristics increases. In general, if there are p statistically independent quality character-

istics for a particular product and if an chart with P{type I error} = a is maintained on each,

then the true probability of type I error for the joint control procedure is

(11.1)′ = − −( )α α1 1
p

x
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512 Chapter 11 ■ Multivariate Process Monitoring and Control

and the probability that all p means will simultaneously plot inside their control limits when

the process is in control is

(11.2)

Clearly, the distortion in the joint control procedure can be severe, even for moderate values

of p. Furthermore, if the p quality characteristics are not independent, which usually would

be the case if they relate to the same product, then equations 11.1 and 11.2 do not hold, and

we have no easy way even to measure the distortion in the joint control procedure.

Process-monitoring problems in which several related variables are of interest are

sometimes called multivariate quality-control (or process-monitoring) problems. The

original work in multivariate quality control was done by Hotelling (1947), who applied his

procedures to bombsight data during World War II. Subsequent papers dealing with control

procedures for several related variables include Hicks (1955), Jackson (1956, 1959, 1985),

Crosier (1988), Hawkins (1991, 1993b), Lowry et al. (1992), Lowry and Montgomery

(1995), Pignatiello and Runger (1990), Tracy, Young, and Mason (1992), Montgomery and

Wadsworth (1972), and Alt (1985). This subject is particularly important today, as auto-

matic inspection procedures make it relatively easy to measure many parameters on each

unit of product manufactured. For example, many chemical and process plants and semi-

conductor manufacturers routinely maintain manufacturing databases with process and

quality data on hundreds of variables. Often the total size of these databases is measured in

millions of individual records. Monitoring or analysis of these data with univariate SPC

procedures is often ineffective. The use of multivariate methods has increased greatly in

recent years for this reason.

11.2 Description of Multivariate Data

11.2.1 The Multivariate Normal Distribution

In univariate statistical quality control, we generally use the normal distribution to describe

the behavior of a continuous quality characteristic. The univariate normal probability density

function is

(11.3)

The mean of the normal distribution is m and the variance is s2. Note that (apart from the

minus sign) the term in the exponent of the normal distribution can be written as follows:

(11.4)

This quantity measures the squared standardized distance from x to the mean m, where by the

term “standardized” we mean that the distance is expressed in standard deviation units.

This same approach can be used in the multivariate normal distribution case. Suppose

that we have p variables, given by x1, x2, . . . , xp. Arrange these variables in a p-component

vector x′ = [x1, x2, . . . , xp]. Let m′ = [m1, m2, . . . , mp] be the vector of the means of the x’s, and

let the variances and covariances of the random variables in x be contained in a p × p covari-
ance matrix S. The main diagonal elements of Σ are the variances of the x’s, and the off-

diagonal elements are the covariances. Now the squared standardized (generalized) distance

from x to m is

(11.5)x x−( )′ −( )−∑ 1l l

x x−( )( ) −( )−
μ σ μ2 1

f x e x

x

( ) = −∞ < < ∞
− −⎛

⎝
⎞
⎠1

2
2

1

2

2

πσ

μ
σ

P p p
all  means plot in control{ } = −( )1 α
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The multivariate normal density function is obtained simply by replacing the standardized

distance in equation 11.4 by the multivariate generalized distance in equation 11.5 and 

changing the constant term to a more general form that makes the area under the

probability density function unity regardless of the value of p. Therefore, the multivariate
normal probability density function is

(11.6)

where − < xj < , j = 1, 2, . . . , p.

A multivariate normal distribution for p = 2 variables (called a bivariate normal) is
shown in Figure 11.3. Note that the density function is a surface. The correlation coefficient

between the two variables in this example is 0.8, and this causes the probability to concen-

trate closely along a line.

11.2.2 The Sample Mean Vector and Covariance Matrix

Suppose that we have a random sample from a multivariate normal distribution—say,

where the ith sample vector contains observations on each of the p variables xi1, xi2, . . . , xip.

Then the sample mean vector is

(11.7)

and the sample covariance matrix is

(11.8)

That is, the sample variances on the main diagonal of the matrix S are computed as

(11.9)

and the sample covariances are

(11.10)s
n

x x x xjk ij j ik k
i

n
=

−
−( ) −( )

=
∑1

1 1

s
n

x xj ij j
i

n
2 2

1

1

1
=

−
−( )

=
∑

S x x x x=
−

−( ) −( )′
=
∑1

1 1n i i
i

n

x x=
=
∑1

n i
i

n

1

x x x1 2, , ,K n

••

f epx
x M x M

( ) =
( )

− −( )′ −( )−
1

2
2 1 2

1

2

1

π

S

S

1/22�s2

f (x)

x2 x1

7.80

7.70

7.60
2.95

3.0

3.05
■ F I G U R E  1 1 . 3 A multivariate

normal distribution with p = 2 variables

(bivariate normal).
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514 Chapter 11 ■ Multivariate Process Monitoring and Control

We can show that the sample mean vector and sample covariance matrix are unbiased esti-

mators of the corresponding population quantities; that is,

11.3 The Hotelling T2 Control Chart

The most familiar multivariate process-monitoring and control procedure is the Hotelling T2

control chart for monitoring the mean vector of the process. It is a direct analog of the uni-

variate Shewhart chart. We present two versions of the Hotelling T2 chart: one for sub-

grouped data, and another for individual observations.

11.3.1 Subgrouped Data

Suppose that two quality characteristics x1 and x2 are jointly distributed according to the

bivariate normal distribution (see Fig. 11.3). Let m1 and m2 be the mean values of the quality

characteristics, and let s1 and s2 be the standard deviations of x1 and x2, respectively. The

covariance between x1 and x2 is denoted by s12. We assume that s1, s2, and s12 are known.

If and are the sample averages of the two quality characteristics computed from a sam-

ple of size n, then the statistic

x2x1

x

E Ex S( ) = ( ) =    and    l S

χ
σ σ σ

σ μ σ μ

σ μ μ

0
2

1
2

2
2

12
2 2

2
1 1

2

1
2

2 2

2

12 1 1 2 22

=
−

−( ) + −( )[
− −( ) −( )]

n
x x

x x

will have a chi-square distribution with 2 degrees of freedom. This equation can be used as the

basis of a control chart for the process means m1 and m2. If the process means remain at the val-

ues m1 and m2, then values of c2
0 should be less than the upper control limit UCL = c2

a, 2 where

c2
a, 2 is the upper a percentage point of the chi-square distribution with 2 degrees of freedom.

If at least one of the means shifts to some new (out-of-control) value, then the probability that

the statistic c2
0 exceeds the upper control limit increases.

The process-monitoring procedure may be represented graphically. Consider the case

in which the two random variables x1 and x2 are independent; that is, s12 = 0. If s12 = 0, then

equation 11.11 defines an ellipse centered at (m1, m2) with principal axes parallel to the ,

axes, as shown in Figure 11.4. Taking c2
0 in equation 11.11 equal to c2

a, 2 implies that

a pair of sample averages ( , ) yielding a value of c2
0 plotting inside the ellipse indicates

that the process is in control, whereas if the corresponding value of c2
0 plots outside the ellipse

the process is out of control. Figure 11.4 is often called a control ellipse.
In the case where the two quality characteristics are dependent, then , and the

corresponding control ellipse is shown in Figure 11.5. When the two variables are dependent,

the principal axes of the ellipse are no longer parallel to the , axes. Also, note that sam-

ple point number 11 plots outside the control ellipse, indicating that an assignable cause is

present, yet point 11 is inside the control limits on both of the individual control charts for 

and . Thus there is nothing apparently unusual about point 11 when the variables are viewed

individually, yet the customer who received that shipment of material would quite likely

observe very different performance in the product. It is nearly impossible to detect an assign-

able cause resulting in a point such as this one by maintaining individual control charts.

x2

x1

x2x1

s12 � 0

x1x2

x2x1

(11.11)
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516 Chapter 11 ■ Multivariate Process Monitoring and Control

Two disadvantages are associated with the control ellipse. The first is that the time

sequence of the plotted points is lost. This could be overcome by numbering the plotted points

or by using special plotting symbols to represent the most recent observations. The second

and more serious disadvantage is that it is difficult to construct the ellipse for more than two

quality characteristics. To avoid these difficulties, it is customary to plot the values of c2
0 com-

puted from equation 11.11 for each sample on a control chart with only an upper control limit

at c2
a,2, as shown in Figure 11.6. This control chart is usually called the chi-square control

chart. Note that the time sequence of the data is preserved by this control chart, so that runs or

other nonrandom patterns can be investigated. Furthermore, it has the additional advantage that

the “state” of the process is characterized by a single number (the value of the statistic c2
0). This

is particularly helpful when there are two or more quality characteristics of interest.

It is possible to extend these results to the case where p-related quality characteristics

are controlled jointly. It is assumed that the joint probability distribution of the p quality char-

acteristics is the p-variate normal distribution. The procedure requires computing the sample

mean for each of the p quality characteristics from a sample of size n. This set of quality char-

acteristic means is represented by the p × 1 vector

x =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x

x

xp

1

2

M

UCL = χα
2
,2

χ 02 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sample number
■ F I G U R E  1 1 . 6 A chi-square

control chart for p = 2 quality characteristics.

UCL = χα ,p
2

(11.13)

χ0
2 1= −( )′ −( )−n x x ll S (11.12)

where m′ = [m1, m2, . . . , mp] is the vector of in-control means for each quality characteristic

and S is the covariance matrix. The upper limit on the control chart is

Estimating m and S. In practice, it is usually necessary to estimate m and S from the

analysis of preliminary samples of size n, taken when the process is assumed to be in control.

The test statistic plotted on the chi-square control chart for each sample is
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Suppose that m such samples are available. The sample means and variances are calculated

from each sample as usual—that is,

(11.14)

(11.15)

where xijk is the ith observation on the jth quality characteristic in the kth sample. The covari-

ance between quality characteristic j and quality characteristic h in the kth sample is

(11.16)

The statistics , s2
jk, and sjhk are then averaged over all m samples to obtain

(11.17a)

(11.17b)

and

(11.17c)

The { j} are the elements of the vector , and the p × p average of sample covariance matri-

ces S is formed as

(11.18)

The average of the sample covariance matrices S is an unbiased estimate of S when the

process is in control.

The T2 Control Chart. Now suppose that S from equation 11.18 is used to estimate

Σ and that the vector is taken as the in-control value of the mean vector of the process. Ifx

S =
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T n2 1= −( )ʹ −( )−x x S x x (11.19)

In this form, the procedure is usually called the Hotelling T2 control chart. This is a direc-
tionally invariant control chart; that is, its ability to detect a shift in the mean vector only

depends on the magnitude of the shift, and not in its direction.

Alt (1985) has pointed out that in multivariate quality-control applications one must be

careful to select the control limits for Hotelling’s T2 statistic (equation 11.19) based on how

the chart is being used. Recall that there are two distinct phases of control chart usage. Phase I
is the use of the charts for establishing control—that is, testing whether the process was in

we replace m with and S with S in equation 11.12, the test statistic now becomesx
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518 Chapter 11 ■ Multivariate Process Monitoring and Control

control when the m preliminary subgroups were drawn and the sample statistics and S
computed. The objective in phase I is to obtain an in-control set of observations so that con-

trol limits can be established for phase II, which is the monitoring of future production. Phase

I analysis is sometimes called a retrospective analysis.
The phase I control limits for the T2 control chart are given by

x

In phase II, when the chart is used for monitoring future production, the control limits

are as follows:

Note that the UCL in equation 11.21 is just the UCL in equation 11.20 multiplied by 

(m + 1)/(m − 1).

When m and S are estimated from a large number of preliminary samples, it is custom-

ary to use UCL = c2
a, p as the upper control limit in both phase I and phase II. Retrospective

analysis of the preliminary samples to test for statistical control and establish control limits

also occurs in the univariate control chart setting. For the chart, it is typically assumed that

if we use m ≥ 20 or 25 preliminary samples, the distinction between phase I and phase II lim-

its is usually unnecessary, because the phase I and phase II limits will nearly coincide. In a

recent review paper, Jensen et al. (2006) point out that even larger sample sizes are required

to ensure that the phase II average run length (ARL) performance will actually be close to

the anticipated values. They recommend using as many phase I samples as possible to estimate

the phase II limits. With multivariate control charts, we must be very careful.

Lowry and Montgomery (1995) show that in many situations a large number of prelimi-

nary samples would be required before the exact phase II control limits are well approximated by

the chi-square limits. These authors present tables indicating the recommended minimum value

of m for sample sizes of n = 3, 5, and 10 and for p = 2, 3, 4, 5, 10, and 20 quality characteristics.

The recommended values of m are always greater than 20 preliminary samples, and often more

than 50 samples. Jensen et al. (2006) observe that these recommended sample sizes are probably

too small. Sample sizes of at least 200 are desirable when estimating the phase II limits.

x

UCL

LCL

= +( ) −( )
− − +

=

− − +
p m n

mn m p
F p mn m p

1 1

1

0

1α , ,

(11.21)

UCL

LCL

= −( ) −( )
− − +

=

− − +
p m n

mn m p
F p mn m p

1 1

1

0

1α , ,

(11.20)

ples, and on the basis of these data he concludes that

. Set up the T2 control chart.and s12 = 0.79

x1 = 115.59 psi, x2 = 1.06 (×  10−2) inch, s2
1 = 1.23, s2

2 = 0.83,

EXAMPLE 11.1 The T 2 Control Chart

The tensile strength and diameter of a textile fiber are two

important quality characteristics that are to be jointly con-

trolled. The quality engineer has decided to use n = 10 fiber

specimens in each sample. He has taken 20 preliminary sam- (continued)
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The statistic he will use for process-control purposes is The data used in this analysis and the summary statistics are in

Table 11.1, panels (a) and (b).

Figure 11.7 presents the Hotelling T2 control chart for this

example. We will consider this to be phase I, establishing sta-

tistical control in the preliminary samples, and calculate the

upper control limit from equation 11.20. If a = 0.001, then the

UCL is15

10

5

0
1 2 3 4 5 6 7 8 910 12 14 16 18 20

T
2

Sample number

UCL = 13.72

■ F I G U R E  1 1 . 7 The Hotelling T 2 control

chart for tensile strength and diameter, Example 11.1.

This control limit is shown on the chart in Figure 11.7.

Notice that no points exceed this limit, so we would conclude

that the process is in control. Phase II control limits could be

11.3 The Hotelling T2 Control Chart 519

■ TA B L E  1 1 . 1

Data for Example 11.1

(c)
Control

(a) (b) Chart 

Sample Means Variances and Covariances Statistics

Number k Tensile Strength (–x1k) Diameter (–x2k) s2
1k s2

2k s12k T2
k ⎪Sk⎪

1 115.25 1.04 1.25 0.87 0.80 2.16 0.45

2 115.91 1.06 1.26 0.85 0.81 2.14 0.41

3 115.05 1.09 1.30 0.90 0.82 6.77 0.50

4 116.21 1.05 1.02 0.85 0.81 8.29 0.21

5 115.90 1.07 1.16 0.73 0.80 1.89 0.21

6 115.55 1.06 1.01 0.80 0.76 0.03 0.23

7 114.98 1.05 1.25 0.78 0.75 7.54 0.41

8 115.25 1.10 1.40 0.83 0.80 3.01 0.52

9 116.15 1.09 1.19 0.87 0.83 5.92 0.35

10 115.92 1.05 1.17 0.86 0.95 2.41 0.10

11 115.75 0.99 1.45 0.79 0.78 1.13 0.54

12 114.90 1.06 1.24 0.82 0.81 9.96 0.36

13 116.01 1.05 1.26 0.55 0.72 3.86 0.17

14 115.83 1.07 1.17 0.76 0.75 1.11 0.33

15 115.29 1.11 1.23 0.89 0.82 2.56 0.42

16 115.63 1.04 1.24 0.91 0.83 0.08 0.44

17 115.47 1.03 1.20 0.95 0.70 0.19 0.65

18 115.58 1.05 1.18 0.83 0.79 0.00 0.36

19 115.72 1.06 1.31 0.89 0.76 0.35 0.59

20 115.40 1.04 1.29 0.85 0.68 0.62 0.63

Averages =x1 = 115.59 =x2 = 1.06 –s 2
1 = 1.23 –s 2

2 = 0.83 –s12 = 0.79
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520 Chapter 11 ■ Multivariate Process Monitoring and Control

The widespread interest in multivariate quality control has led to including the

Hotelling T2 control chart in some software packages. These programs should be used care-

fully, as they sometimes use an incorrect formula for calculating the control limit.

Specifically, some packages use:

This control limit is obviously incorrect. This is the correct critical region to use in multi-

variate statistical hypothesis testing on the mean vector m, where a sample of size m is taken

at random from a p-dimensional normal distribution, but it is not directly applicable to the

control chart for either phase I or phase II problems.

Interpretation of Out-of-Control Signals. One difficulty encountered with any

multivariate control chart is practical interpretation of an out-of-control signal. Specifically,

which of the p variables (or which subset of them) is responsible for the signal? This ques-

tion is not always easy to answer. The standard practice is to plot univariate charts on

the individual variables , , . . . , . However, this approach may not be successful, for rea-

sons discussed previously. Alt (1985) suggests using charts with Bonferroni-type control

limits [i.e., replace Za/2 in the chart control limit calculation with Za/(2p)]. This approach

reduces the number of false alarms associated with using many simultaneous univariate con-

trol charts. Hayter and Tsui (1994) extend this idea by giving a procedure for exact simulta-

neous confidence intervals. Their procedure can also be used in situations where the normal-

ity assumption is not valid. Jackson (1980) recommends using control charts based on the p
principal components (which are linear combinations of the original variables). Principal

components are discussed in Section 11.7. The disadvantage of this approach is that the prin-

cipal components do not always provide a clear interpretation of the situation with respect to

the original variables. However, they are often effective in diagnosing an out-of-control sig-

nal, particularly in cases where the principal components do have an interpretation in terms

of the original variables.

Another very useful approach to diagnosis of an out-of-control signal is to decompose

the T2 statistic into components that reflect the contribution of each individual variable. If T2

is the current value of the statistic, and T2
(i) is the value of the statistic for all process variables

except the ith one, then Runger, Alt, and Montgomery (1996b) show that

x
x

xpx2x1

x

UCL = −( )
− −

p m

m p
F p m p

1
α , ,

somewhat too small for phase II. The amount of data used here

to estimate the phase II limits is very small, and if subsequent

samples continue to exhibit control, the new data should be

used to revise the control limits.

calculated from equation 11.21. If a = 0.001, the upper control

limit is UCL = 15.16. If we had used the approximate chi-

square control limit, we would have obtained c2
0.001,2 = 13.816,

which is reasonably close to the correct limit for phase I but

d T Ti i= − ( )
2 2

(11.22)

is an indicator of the relative contribution of the ith variable to the overall statistic. When an

out-of-control signal is generated, we recommend computing the values of di (i = 1, 2, . . . , p)

and focusing attention on the variables for which di are relatively large. This procedure has

an additional advantage in that the calculations can be performed using standard software

packages.

c11MultivariateProcessMonitoringandControl.qxd  3/30/12  9:27 PM  Page 520



To illustrate this procedure, consider the following example from Runger, Alt, and

Montgomery (1996a). There are p = 3 quality characteristics, and the covariance matrix is

known. Assume that all three variables have been scaled as follows:

This scaling results in each process variable having mean zero and variance one. Therefore,

the covariance matrix S is in correlation form; that is, the main diagonal elements are all one

and the off-diagonal elements are the pairwise correlation between the process variables (the

x’s). In our example,

The in-control value of the process mean is m′ = [0, 0, 0]. Consider the following display:

Σ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 9 0 9

0 9 1 0 9

0 9 0 9 1

. .

. .

. .

y
x

m
ij

ij j

j

=
−

−( )
μ

σ1 2

Control Chart 
Observation Vector Statistic di = T2

- T2
(i)

y′ T2
0(= c2

0) d1 d2 d3

(2, 0, 0) 27.14 27.14 6.09 6.09

(1, 1, −1) 26.79 6.79 6.79 25.73

(1, −1, 0) 20.00 14.74 14.74 0

(0.5, 0.5, 1) 15.00 3.69 3.68 14.74

Since S is known, we can calculate the upper control limit for the chart from a chi-square dis-

tribution. We will choose c2
0.005,3 = 12.84 as the upper control limit. Clearly all four observa-

tion vectors in the above display would generate an out-of-control signal. Runger, Alt, and

Montgomery (1996b) suggest that an approximate cutoff for the magnitude of an individual

di is c2
a,1. Selecting a = 0.01, we would find c2

0.01,1 = 6.63, so any di exceeding this value

would be considered a large contributor. The decomposition statistics di computed above give

clear guidance regarding which variables in the observation vector have shifted.

Other diagnostics have been suggested in the literature. For example, Murphy (1987)

and Chua and Montgomery (1992) have developed procedures based on discriminant analy-

sis, a statistical procedure for classifying observations into groups. Tracy, Mason, and Young

(1996) also use decompositions of T2 for diagnostic purposes, but their procedure requires

more extensive computations and uses more elaborate decompositions than equation 11.22.

11.3.2 Individual Observations

In some industrial settings the subgroup size is naturally n = 1. This situation occurs fre-

quently in the chemical and process industries. Since these industries frequently have multi-

ple quality characteristics that must be monitored, multivariate control charts with n = 1

would be of interest there.

Suppose that m samples, each of size n = 1, are available and that p is the number of

quality characteristics observed in each sample. Let and S be the sample mean vector and

covariance matrix, respectively, of these observations. The Hotelling T2 statistic in equation

11.19 becomes

x

(11.23)T 2 1= −( )′ −( )−x x S x x
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The phase II control limits for this statistic are

When the number of preliminary samples m is large—say, m > 100—many practitioners use

an approximate control limit, either

(11.25)

or

(11.26)

For m > 100, equation 11.25 is a reasonable approximation. The chi-square limit in equation

11.26 is only appropriate if the covariance matrix is known, but it is widely used as an approx-

imation. Lowry and Montgomery (1995) show that the chi-square limit should be used with

caution. If p is large—say, p ≥ 10—then at least 250 samples must be taken (m ≥ 250) before

the chi-square upper control limit is a reasonable approximation to the correct value.

Tracy, Young, and Mason (1992) point out that if n = 1, the phase I limits should be

based on a beta distribution. This would lead to phase I limits defined as

UCL = χα ,p
2

UCL = −( )
− −

p m

m p
F p m p

1
α , ,

(11.27)

UCL

LCL

= −( )

=

− −( )
m

m p m p
1

0

2

2 1 2
βα , ,

where ba,p/2,(m − p −1)/2 is the upper a percentage point of a beta distribution with parameters

p/2 and (m − p − 1)/2. Approximations to the phase I limits based on the F and chi-square dis-

tributions are likely to be inaccurate.

A significant issue in the case of individual observations is estimating the covariance

matrix S. Sullivan and Woodall (1995) give an excellent discussion and analysis of this prob-

lem, and compare several estimators. Also see Vargas (2003) and Williams, Woodall, Birch,

and Sullivan (2006). One of these is the “usual” estimator obtained by simply pooling all m
observations—say,

Just as in the univariate case with n = 1, we would expect that S1 would be sensitive to outliers

or out-of-control observations in the original sample of n observations. The second estimator

[originally suggested by Holmes and Mergen (1993)] uses the difference between successive

pairs of observations:

(11.28)v x xi i i i m= − = −+1 1 2 1, , ,K

S x x xx1 =
−

−( ) −( )′
=
∑1

1 1m i i
i

m

(11.24)

UCL

LCL

= +( ) −( )
−

=

−
p m m

m mp
F p m p

1 1

0

2 α , ,
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Now arrange these vectors into a matrix V, where

The estimator for S is one-half the sample covariance matrix of these differences:

(11.29)

[Sullivan and Woodall (1995) originally denoted this estimator S5.]

Table 11.2 shows the example from Sullivan and Woodall (1995), in which they apply

the T2 chart procedure to the Holmes and Mergen (1993) data. There are 56 observations on

the composition of “grit,” where L, M, and S denote the percentages classified as large,

medium, and small, respectively. Only the first two components were used because all those

S
V V

2

1

2 1
= ′

−( )m

V

v

v

v

=

′
′

′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

1

2

1

M

m
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■ TA B L E  1 1 . 2

Example from Sullivan and Woodall (1995) Using the Data from Holmes and Mergen (1993) and the T2

Statistics Using Estimators S1 and S2

i L = xi,1 M = xi,2 S = xi,3 T 2
1,i T 2

2,i i L = xi,1 M = xi,2 S = xi,3 T 2
1,i T 2

2,i

1 5.4 93.6 1.0 4.496 6.439 29 7.4 83.6 9.0 1.594 3.261

2 3.2 92.6 4.2 1.739 4.227 30 6.8 84.8 8.4 0.912 1.743

3 5.2 91.7 3.1 1.460 2.200 31 6.3 87.1 6.6 0.110 0.266

4 3.5 86.9 9.6 4.933 7.643 32 6.1 87.2 6.7 0.077 0.166

5 2.9 90.4 6.7 2.690 5.565 33 6.6 87.3 6.1 0.255 0.564

6 4.6 92.1 3.3 1.272 2.258 34 6.2 84.8 9.0 1.358 2.069

7 4.4 91.5 4.1 0.797 1.676 35 6.5 87.4 6.1 0.203 0.448

8 5.0 90.3 4.7 0.337 0.645 36 6.0 86.8 7.2 0.193 0.317

9 8.4 85.1 6.5 2.088 4.797 37 4.8 88.8 6.4 0.297 0.590

10 4.2 89.7 6.1 0.666 1.471 38 4.9 89.8 5.3 0.197 0.464

11 3.8 92.5 3.7 1.368 3.057 39 5.8 86.9 7.3 0.242 0.353

12 4.3 91.8 3.9 0.951 1.986 40 7.2 83.8 9.0 1.494 2.928

13 3.7 91.7 4.6 1.105 2.688 41 5.6 89.2 5.2 0.136 0.198

14 3.8 90.3 5.9 1.019 2.317 42 6.9 84.5 8.6 1.079 2.062

15 2.6 94.5 2.9 3.099 7.262 43 7.4 84.4 8.2 1.096 2.477

16 2.7 94.5 2.8 3.036 7.025 44 8.9 84.3 6.8 2.854 6.666

17 7.9 88.7 3.4 3.803 6.189 45 10.9 82.2 6.9 7.677 17.666

18 6.6 84.6 8.8 1.167 1.997 46 8.2 89.8 2.0 6.677 10.321

19 4.0 90.7 5.3 0.751 1.824 47 6.7 90.4 2.9 2.708 3.869

20 2.5 90.2 7.3 3.966 7.811 48 5.9 90.1 4.0 0.888 1.235

21 3.8 92.7 3.5 1.486 3.247 49 8.7 83.6 7.7 2.424 5.914

22 2.8 91.5 5.7 2.357 5.403 50 6.4 88.0 5.6 0.261 0.470

23 2.9 91.8 5.3 2.094 4.959 51 8.4 84.7 6.9 1.995 4.731

24 3.3 90.6 6.1 1.721 3.800 52 9.6 80.6 9.8 4.732 11.259

25 7.2 87.3 5.5 0.914 1.791 53 5.1 93.0 1.9 2.891 4.303

26 7.3 79.0 13.7 9.226 14.372 54 5.0 91.4 3.6 0.989 1.609

27 7.0 82.6 10.4 2.940 4.904 55 5.0 86.2 8.8 1.770 2.495

28 6.0 83.5 10.5 3.310 4.771 56 5.9 87.2 6.9 0.102 0.166
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(a) T2 control chart using S1
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(b) T2 control chart using S2

T2
2T 2

1

■ F I G U R E  1 1 . 8 T 2 control charts for the data in Table 11.2.

percentages add to 100%. The mean vector for these data is . The two sam-

ple covariance matrices are

Figure 11.8 shows the T2 control charts from this example. Sullivan and Woodall (1995) used

simulation methods to find exact control limits for this data set (the false alarm probability is

0.155). Williams et al. (2006) observe that the asymptotic (large-sample) distribution of the

T2 statistic using S2 is c2
p. They also discuss approximating distributions. However, using

simulation to find control limits is a reasonable approach. Note that only the control chart in

Figure 11.8b is based on S2 signals. It turns out that if we consider only samples 1–24, the

sample mean vector is

and if we consider only the last 32 observations the sample mean vector is

These are statistically significantly different, whereas the “within” covariance matrices are

not significantly different. There is an apparent shift in the mean vector following sample 24,

and this was correctly detected by the control chart based on S2.

11.4 The Multivariate EWMA Control Chart

The chi-square and T 2 charts described in the previous section are Shewhart-type control

charts. That is, they use information only from the current sample, so consequently they are

relatively insensitive to small and moderate shifts in the mean vector. As we noted, the T 2

chart can be used in both phase I and phase II situations. Cumulative sum (CUSUM) and

EWMA control charts were developed to provide more sensitivity to small shifts in the uni-

variate case, and they can be extended to multivariate quality control problems.1 As in the uni-

variate case, the multivariate version of these charts are a phase II procedure.

Crosier (1988) and Pignatiello and Runger (1990) have proposed several multivariate

CUSUM procedures. Lowry et al. (1992) have developed a multivariate EWMA (MEWMA)

′ = [ ]−x25 56 6 77 86 3. , .

′ = [ ]x1-24 4 23 90 8. , .

S S1 2

3 770 5 495

5 495 13 53

1 562 2 093

2 093 6 721
=

−
−

⎡
⎣⎢

⎤
⎦⎥

=
−

−
⎡
⎣⎢

⎤
⎦⎥

. .

. .

. .

. .
  and  

x¿ = �5.682, 88.22�

1The supplementary material for this chapter discusses the multivariate CUSUM control chart.
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control chart. The MEWMA is a logical extension of the univariate EWMA and is defined as

follows:

■ TA B L E  1 1 . 3

Average Run Lengths (zero state) for the MEWMA Control Chart [from Prabhu and Runger (1997)]

l

p d 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.80

H = 7.35 8.64 9.65 10.08 10.31 10.44 10.52 10.58

2 0.0 199.93 199.98 199.91 199.82 199.83 200.16 200.04 200.20

0.5 26.61 28.07 35.17 44.10 53.82 64.07 74.50 95.88

1.0 11.23 10.15 10.20 11.36 13.26 15.88 19.24 28.65

1.5 7.14 6.11 5.49 5.48 5.78 6.36 7.25 10.28

2.0 5.28 4.42 3.78 3.56 3.53 3.62 3.84 4.79

3.0 3.56 2.93 2.42 2.20 2.05 1.95 1.90 1.91

H = 11.22 12.73 13.87 14.34 14.58 14.71 14.78 14.85

4 0.0 199.84 200.12 199.94 199.91 199.96 200.05 199.99 200.05

0.5 32.29 35.11 46.30 59.28 72.43 85.28 97.56 120.27

1.0 13.48 12.17 12.67 14.81 18.12 22.54 28.06 42.58

1.5 8.54 7.22 6.53 6.68 7.31 8.40 10.03 15.40

2.0 6.31 5.19 4.41 4.20 4.24 4.48 4.93 6.75

3.0 4.23 3.41 2.77 2.50 2.36 2.27 2.24 2.37

H = 14.60 16.27 17.51 18.01 18.26 18.39 18.47 18.54

6 0.0 200.11 200.03 200.11 200.18 199.81 200.01 199.87 200.17

0.5 36.39 40.38 54.71 70.30 85.10 99.01 111.65 133.91

1.0 15.08 13.66 14.63 17.71 22.27 28.22 35.44 53.51

1.5 9.54 8.01 7.32 7.65 8.60 10.20 12.53 20.05

2.0 7.05 5.74 4.88 4.68 4.80 5.20 5.89 8.60

3.0 4.72 3.76 3.03 2.72 2.58 2.51 2.51 2.77

H = 20.72 22.67 24.07 24.62 24.89 25.03 25.11 25.17

10 0.0 199.91 199.95 200.08 200.01 199.98 199.84 200.12 200.00

0.5 42.49 48.52 67.25 85.68 102.05 116.25 128.82 148.96

1.0 17.48 15.98 17.92 22.72 29.47 37.81 47.54 69.71

1.5 11.04 9.23 8.58 9.28 10.91 13.49 17.17 28.33

2.0 8.15 6.57 5.60 5.47 5.77 6.48 7.68 12.15

3.0 5.45 4.28 3.43 3.07 2.93 2.90 2.97 3.54

H = 27.82 30.03 31.59 32.19 32.48 32.63 32.71 32.79

15 0.0 199.95 199.89 200.08 200.03 199.96 199.91 199.93 200.16

0.5 48.20 56.19 78.41 98.54 115.36 129.36 141.10 159.55

1.0 19.77 18.28 21.40 28.06 36.96 47.44 59.03 83.86

1.5 12.46 10.41 9.89 11.08 13.53 17.26 22.38 37.07

2.0 9.20 7.36 6.32 6.30 6.84 7.97 9.80 16.36

3.0 6.16 4.78 3.80 3.43 3.29 3.31 3.49 4.49

Z x Zi i i= + −( ) −λ λ1 1 (11.30)
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where the covariance matrix is

(11.32)

which is analogous to the variance of the univariate EWMA.

Prabhu and Runger (1997) have provided a thorough analysis of the average run length

performance of the MEWMA control chart, using a modification of the Brook and Evans

(1972) Markov chain approach. They give tables and charts to guide selection of the upper

control limit—say, UCL = H—for the MEWMA. Tables 11.3 and 11.4 contain this informa-

tion. Table 11.3 contains ARL performance for MEWMA for various values of l for p = 2, 4,

6, 10, and 15 quality characteristics. The control limit H was chosen to give an in-control ARL0 =
200. The ARLs in this table are all zero-state ARLs; that is, we assume that the process is in con-

trol when the chart is initiated. The shift size is reported in terms of a quantity

(11.33)

usually called the noncentrality parameter. Basically, large values of d correspond to big-

ger shifts in the mean. The value d = 0 is the in-control state (this is true because the control

chart can be constructed using “standardized” data). Note that for a given shift size, ARLs

generally tend to increase as l increases, except for very large values of d (or large shifts).

δ = ′( )−1 1 2
Sl l

Zi

i=
−

− −( )[ ]λ
λ

λ
2

1 1
2 SS

Ti i ii

2 1= ′ −Z ZZS (11.31)

where 0 ≤ l ≤ 1 and Z0 = 0. The quantity plotted on the control chart is

■ TA B L E  1 1 . 4

Optimal MEWMA Control Charts [From Prabhu and Runger (1997)]

p = 4 p = 10 p = 20

d ARL0 = 500 1000 500 1000 500 1000

0.5 l 0.04 0.03 0.03 0.025 0.03 0.025

H 13.37 14.68 22.69 24.70 37.09 39.63

ARLmin 42.22 49.86 55.94 66.15 70.20 83.77

1.0 l 0.105 0.09 0.085 0.075 0.075 0.065

H 15.26 16.79 25.42 27.38 40.09 42.47

ARLmin 14.60 16.52 19.29 21.74 24.51 27.65

1.5 l 0.18 0.18 0.16 0.14 0.14 0.12

H 16.03 17.71 26.58 28.46 41.54 43.80

ARLmin 7.65 8.50 10.01 11.07 12.70 14.01

2.0 l 0.28 0.26 0.24 0.22 0.20 0.18

H 16.49 18.06 27.11 29.02 42.15 44.45

ARLmin 4.82 5.30 6.25 6.84 7.88 8.60

3.0 l 0.52 0.46 0.42 0.40 0.36 0.34

H 16.84 18.37 27.55 29.45 42.80 45.08

ARLmin 2.55 2.77 3.24 3.50 4.04 4.35

Note: ARL0 and ARLmin are zero-state average run lengths.
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Since the MEWMA with l = 1 is equivalent to the T 2 (or chi-square) control chart, the

MEWMA is more sensitive to smaller shifts. This is analogous to the univariate case. Because

the MEWMA is a directionally invariant procedure, all that we need to characterize its per-

formance for any shift in the mean vector is the corresponding value of d.

Table 11.4 presents “optimum” MEWMA chart designs for various shifts (d) and in-

control target values of ARL0 of either 500 or 1,000. ARLmin is the minimum value of ARL1

achieved for the value of l specified.

To illustrate the design of a MEWMA control chart, suppose that p = 6 and the covari-

ance matrix is

Note that S is in correlation form. Suppose that we are interested in a process shift from 

m′ = 0 to

This is essentially a one-sigma upward shift in all p = 6 variables. For this shift, d =
(m′S−1m)1/2 = 1.86. Table 11.3 suggests that l = 0.2 and H = 17.51 would give an in-control

ARL0 = 200 and the ARL1 would be between 4.88 and 7.32. It turns out that if the mean shifts

by any constant multiple—say, k—of the original vector m, then d changes to kd. Therefore,

ARL performance is easy to evaluate. For example, if k = 1.5, then the new d is d = 1.5(1.86) =
2.79, and the ARL1 would be between 3.03 and 4.88.

MEWMA control charts provide a very useful procedure. They are relatively easy to

apply and design rules for the chart are well documented. Molnau, Runger, Montgomery, et al.

(2001) give a computer program for calculating ARLs for the MEWMA. This could be a 

useful way to supplement the design information in the paper by Prabhu and Runger (1997).

Scranton et al. (1996) show how the ARL performance of the MEWMA control chart can be

further improved by applying it to only the important principal components of the monitored

variables. (Principal components are discussed in Section 11.7.1.) Reynolds and Cho (2006)

develop MEWMA procedures for simultaneous monitoring of the mean vector and covari-

ance matrix. Economic models of the MEWMA are discussed by Linderman and Love

(2000a, 2000b) and Molnau, Montgomery, and Runger (2001). MEWMA control charts, like

their univariate counterparts, are robust to the assumption of normality, if properly designed.

Stoumbos and Sullivan (2002) and Testik, Runger, and Borror (2003) report that small val-

ues of the parameter l result in a MEWMA that is very insensitive to the form of the under-

lying multivariate distribution of the process data. Small values of l also provide very good

performance in detecting small shifts, and they would seem to be a good general choice for

the MEWMA. A comprehensive discussion of design strategies for the MEWMA control

chart is in Testik and Borror (2004).

Hawkins, Choi, and Lee (2007) have recently proposed a modification of the MEWMA

control chart in which the use of a single smoothing constant l is generalized to a smooth-
ing matrix that has non-zero diagonal elements. The MEWMA scheme in equation 11.30

becomes 

Zi = Rxi + (I − R)Zi−1

′ = [ ]1,1,1,1,1,1l

=

⎡

⎣
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⎢
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The authors restrict the elements of R so that the diagonal elements are equal, and they also

suggest that the off-diagonals (say roff) be equal and smaller in magnitude than the diagonal

elements (say ron). They propose choosing roff = cron, with |c| < 1. Then the full smoothing
matrix MEWMA or FEWMA is characterized by the parameters l and c with the diagonal and

off-diagonal elements defined as

The FEWMA is not a directionally invariant procedure, as are the Hotelling T2 and MEWMA

control charts. That is, they are more sensitive to shifts in certain directions than in others.

The exact performance of the FEWMA depends on the covariance matrix of the process data

and the direction of the shift in the mean vector. There is a computer program to assist in

designing the FEWMA to obtain specific ARL performance (see www.stat.umn.edu/hawkins).

The authors show that the FEWMA can improve MEWMA performance particularly in cases

where the process starts up in an out-of-control state.

11.5 Regression Adjustment

The Hotelling T 2 (and chi-square) control chart is based on the general idea of testing the

hypothesis that the mean vector of a multivariate normal distribution is equal to a constant

vector against the alternative hypothesis that the mean vector is not equal to that constant. In

fact, it is an optimal test statistic for that hypothesis. However, it is not necessarily an optimal

control-charting procedure for detecting mean shifts. The MEWMA can be designed to have

faster detection capability (smaller values of the ARL1). Furthermore, the Hotelling T 2 is not

optimal for more structured shifts in the mean, such as shifts in only a few of the process vari-

ables. It also turns out that the Hotelling T 2, and any method that uses the quadratic form
structure of the Hotelling T 2 test statistic (such as the MEWMA), will be sensitive to shifts

in the variance as well as to shifts in the mean. Consequently, various researchers have

developed methods to monitor multivariate processes that do not depend on the Hotelling T 2

statistic.

Hawkins (1991) has developed a procedure called regression adjustment that is poten-

tially very useful. The scheme essentially consists of plotting univariate control charts of the

residuals from each variable obtained when that variable is regressed on all the others. Residual
control charts are very applicable to individual measurements, which occurs frequently in prac-

tice with multivariate data. Implementation is straightforward, since it requires only a least

squares regression computer program to process the data prior to constructing the control charts.

Hawkins shows that the ARL performance of this scheme is very competitive with other meth-

ods, but depends on the types of control charts applied to the residuals.

A very important application of regression adjustment occurs when the process has a dis-

tinct hierarchy of variables, such as a set of input process variables (say, the x’s) and a set of out-
put variables (say, the y’s). Sometimes we call this situation a cascade process [Hawkins

(1993b)]. Table 11.5 shows 40 observations from a cascade process, where there are nine input

variables and two output variables. We will demonstrate the regression adjustment approach using

only one of the output variables, y1. Figure 11.9 is a control chart for individuals and a moving

range control chart for the 40 observations on the output variable y1. Note that there are seven out-

of-control points on the individuals control chart. Using standard least squares regression tech-

niques, we can fit the following regression model for y1 to the process variables x1, x2, . . . , x9:

ˆ . . . . . . .

.

y x x x x x x x

x x
1 1 2 3 4 5 6 7

8 9

826 0 474 1 41 0 117 0 0824 2 39 1 30 2 18

2 98 113

= + + − − − − +
+ +

ron =
l

1 + (p + 1)c
 and roff =

cl
1 + (p − 1)c
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■ TA B L E  1 1 . 5

Cascade Process Data

Observation x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 Residuals y2

1 12.78 0.15 91 56 1.54 7.38 1.75 5.89 1.11 951.5 0.81498 87

2 14.97 0.1 90 49 1.54 7.14 1.71 5.91 1.109 952.2 −0.31685 88

3 15.43 0.07 90 41 1.47 7.33 1.64 5.92 1.104 952.3 −0.28369 86

4 14.95 0.12 89 43 1.54 7.21 1.93 5.71 1.103 951.8 −0.45924 89

5 16.17 0.1 83 42 1.67 7.23 1.86 5.63 1.103 952.3 −0.56512 86

6 17.25 0.07 84 54 1.49 7.15 1.68 5.8 1.099 952.2 −0.22592 91

7 16.57 0.12 89 61 1.64 7.23 1.82 5.88 1.096 950.2 −0.55431 99

8 19.31 0.08 99 60 1.46 7.74 1.69 6.13 1.092 950.5 −0.18874 100

9 18.75 0.04 99 52 1.89 7.57 2.02 6.27 1.084 950.6 0.15245 103

10 16.99 0.09 98 57 1.66 7.51 1.82 6.38 1.086 949.8 −0.33580 107

11 18.2 0.13 98 49 1.66 7.27 1.92 6.3 1.089 951.2 −0.85525 98

12 16.2 0.16 97 52 2.16 7.21 2.34 6.07 1.089 950.6 0.47027 96

13 14.72 0.12 82 61 1.49 7.33 1.72 6.01 1.092 948.9 −1.74107 93

14 14.42 0.13 81 63 1.16 7.5 1.5 6.11 1.094 951.7 0.62057 91

15 11.02 0.1 83 56 1.56 7.14 1.73 6.14 1.102 951.5 0.72583 91

16 9.82 0.1 86 53 1.26 7.32 1.54 6.15 1.112 951.3 −0.03421 93

17 11.41 0.12 87 49 1.29 7.22 1.57 6.13 1.114 952.9 0.28093 91

18 14.74 0.1 81 42 1.55 7.17 1.77 6.28 1.114 953.9 −1.87257 94

19 14.5 0.08 84 53 1.57 7.23 1.69 6.28 1.109 953.3 −0.20805 96

20 14.71 0.09 89 46 1.45 7.23 1.67 6.12 1.108 952.6 −0.66749 94

21 15.26 0.13 91 47 1.74 7.28 1.98 6.19 1.105 952.3 −0.75390 99

22 17.3 0.12 95 47 1.57 7.18 1.86 6.06 1.098 952.6 −0.03479 95

23 17.62 0.06 95 42 2.05 7.15 2.14 6.15 1.096 952.9 0.24439 92

24 18.21 0.06 93 41 1.46 7.28 1.61 6.11 1.096 953.9 0.67889 87

25 14.38 0.1 90 46 1.42 7.29 1.73 6.13 1.1 954.2 1.94313 89

26 12.13 0.14 87 50 1.76 7.21 1.9 6.31 1.112 951.9 −0.92344 98

27 12.72 0.1 90 47 1.52 7.25 1.79 6.25 1.112 952.3 −0.74707 95

28 17.42 0.1 89 51 1.33 7.38 1.51 6.01 1.111 953.7 −0.21053 88

29 17.63 0.11 87 45 1.51 7.42 1.68 6.11 1.103 954.7 0.66802 86

30 16.17 0.05 83 57 1.41 7.35 1.62 6.14 1.105 954.6 1.35076 84

31 16.88 0.16 86 58 2.1 7.15 2.28 6.42 1.105 954.8 0.61137 91

32 13.87 0.16 85 46 2.1 7.11 2.16 6.44 1.106 954.4 0.56960 92

33 14.56 0.05 84 41 1.34 7.14 1.51 6.24 1.113 955 −0.09131 88

34 15.35 0.12 83 40 1.52 7.08 1.81 6 1.114 956.5 1.03785 83

35 15.91 0.12 81 45 1.76 7.26 1.9 6.07 1.116 955.3 −0.07282 83

36 14.32 0.11 85 47 1.58 7.15 1.72 6.02 1.113 954.2 0.53440 86

37 15.43 0.13 86 43 1.46 7.15 1.73 6.11 1.115 955.4 0.16379 85

38 14.47 0.08 85 54 1.62 7.1 1.78 6.15 1.118 953.8 −0.37110 88

39 14.74 0.07 84 52 1.47 7.24 1.66 5.89 1.112 953.2 0.17177 83

40 16.28 0.13 86 49 1.72 7.05 1.89 5.91 1.109 954.2 0.47427 85

The residuals are found simply by subtracting the fitted value from this equation from each cor-

responding observation on y1. These residuals are shown in the next-to-last column of Table 11.5.

Figure 11.10 shows a control chart for individuals and a moving range control chart for

the 40 residuals from this procedure. Note that there is now only one out-of-control point on the

moving range chart, and the overall impression of process stability is rather different than was
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530 Chapter 11 ■ Multivariate Process Monitoring and Control

obtained from the control charts for y1 alone, without the effects of the process variables taken

into account.

Regression adjustment has another nice feature. If the proper set of variables is included

in the regression model, the residuals from the model will typically be uncorrelated, even

though the original variable of interest y1 exhibited correlation. To illustrate, Figure 11.11 is

the sample autocorrelation function for y1. Note that there is considerable autocorrelation at

low lags in this variable. This is very typical behavior for data from a chemical or process

plant. The sample autocorrelation function for the residuals is shown in Figure 11.12. There

is no evidence of autocorrelation in the residuals. Because of this nice feature, the regression
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■ F I G U R E  1 1 . 9 Individuals and moving range control charts for y1

from Table 11.5.
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■ F I G U R E  1 1 . 1 0 Individuals and moving range control charts for the

residuals of the regression on y1, Table 11.5.
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■ F I G U R E  1 1 . 1 1 Sample autocorrelation function for y1 from Table 11.5.
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adjustment procedure has many possible applications in chemical and process plants where

there are often cascade processes with several inputs but only a few outputs, and where many

of the variables are highly autocorrelated.

11.6 Control Charts for Monitoring Variability

Monitoring multivariate processes requires attention on two levels. It is important to monitor

the process mean vector m, and it is important to monitor process variability. Process variability

is summarized by the p × p covariance matrix S. The main diagonal elements of this matrix are

the variances of the individual process variables, and the off-diagonal elements are the covari-

ances. Alt (1985) gives a nice introduction to the problem and presents two useful procedures.

The first procedure is a direct extension of the univariate s2 control chart. The proce-

dure is equivalent to repeated tests of significance of the hypothesis that the process covari-

ance matrix is equal to a particular matrix of constants S. If this approach is used, the statis-

tic plotted on the control chart for the ith sample is
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■ F I G U R E  1 1 . 1 2 Sample autocorrelation function for the residuals

from the regression on y1, Table 11.5.

W pn pn n ni i i= − + ( ) − ( ) + ( )−ln ln A Atr 1S S (11.34)

where Ai = (n − 1)Si, Si is the sample covariance matrix for sample i, and tr is the trace oper-

ator. (The trace of a matrix is the sum of the main diagonal elements.) If the value of Wi plots

above the upper control limit UCL = c2
a,p(p + 1)/2, the process is out of control.

The second approach is based on the sample generalized variance, | S |. This statistic,

which is the determinant of the sample covariance matrix, is a widely used measure of

multivariate dispersion. Montgomery and Wadsworth (1972) used an asymptotic normal

approximation to develop a control chart for | S |. Another method would be to use the mean and

variance of | S |—that is, E(| S |) and V(| S |)—and the property that most of the probability dis-

tribution of | S | is contained in the interval . It can be shown that

(11.35)

and

where

b
n

n ip
i

p

1
1

1

1
=

−( )
−( )

=
∏

V b    S( ) = 2
2S

E b    S( ) = 1 S

E| S | ± 32V(| S |)
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Therefore, the parameters of the control chart for | S | would be

UCL   

CL   

LCL   

= +( )
=

= −( )

b b

b

b b

1 2
1 2

1

1 2
1 2

3

3

S

S

S
(11.36)

SOLUTION

Based on the 20 preliminary samples in Table 11.1, the sample

covariance matrix is

so

The constants b1 and b2 are (recall that n = 10)

Therefore, replacing | S | in equation 11.36 by | S |/b1 =
0.3968/0.8889 = 0.4464, we find that the control chart param-

eters are

Figure 11.13 presents the control chart. The values of | Si | for

each sample are shown in the last column of panel (c) of

Table 11.1.
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■ F I G U R E  1 1 . 1 3 A control chart for the sample

generalized variance, Example 11.2.
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UCL   = ( ) +( ) = [S b b b1 1 2
1 2

3 0 4464 0 8889. .

The lower control limit in equation 11.36 is replaced with zero if the calculated value is less

than zero.

In practice, S usually will be estimated by a sample covariance matrix S, based on the

analysis of preliminary samples. If this is the case, we should replace | S | in equation 11.36

by | S |/b1, since equation 11.35 has shown that | S |/b1 is an unbiased estimator of | S |.

Use the data in Example 11.1 and construct a control chart for the generalized variance.
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Although the sample generalized variance is a widely used measure of multivariate dis-

persion, remember that it is a relatively simplistic scalar representation of a complex multi-

variable problem, and it is easy to be fooled if all we look at is | S |. For example, consider

the three covariance matrices:

Now | S1 | = | S2 | = | S3 | = 1, yet the three matrices convey considerably different informa-

tion about process variability and the correlation between the two variables. It is probably a

good idea to use univariate control charts for variability in conjunction with the control chart

for | S |.

11.7 Latent Structure Methods

Conventional multivariate control-charting procedures are reasonably effective as long as p
(the number of process variables to be monitored) is not very large. However, as p increases,

the average run-length performance to detect a specified shift in the mean of these variables

for multivariate control charts also increases, because the shift is “diluted” in the p-dimensional

space of the process variables. To illustrate this, consider the ARLs of the MEWMA control

chart in Table 11.3. Suppose we choose l = 0.1 and the magnitude of the shift is d = 1.0. Now

in this table ARL0 = 200 regardless of p, the number of parameters. However, note that as p
increases, ARL1 also increases. For p = 2, ARL1 = 10.15; for p = 6, ARL1 = 13.66; and for

p = 15, ARL1 = 18.28. Consequently, other methods are sometimes useful for process moni-

toring, particularly in situations where it is suspected that the variability in the process is not

equally distributed among all p variables. That is, most of the “motion” of the process is in a

relatively small subset of the original process variables.

Methods for discovering the subdimensions in which the process moves about are

sometimes called latent structure methods because of the analogy with photographic film

on which a hidden or latent image is stored as a result of light interacting with the chemical

surface of the film. We will discuss two of these methods, devoting most of our attention to

the first one, called the method of principal components. We will also briefly discuss a sec-

ond method called partial least squares.

11.7.1 Principal Components

The principal components of a set of process variables x1, x2, . . . , xp are just a particular set

of linear combinations of these variables—say,

(11.37)

where the cij’s are constants to be determined. Geometrically, the principal component vari-

ables z1, z2, . . . , zp are the axes of a new coordinate system obtained by rotating the axes of

the original system (the x’s). The new axes represent the directions of maximum variability.

To illustrate, consider the two situations shown in Figure 11.14. In Figure 11.14a, there

are two original variables x1 and x2, and two principal components z1 and z2. Note that the

z c x c x c x

z c x c x c x

z c x c x c x

p p

p p

p p p pp p

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

= + + +
= + + +

= + + +

L

L

M

L

                     

S S S1 2 3

1 0

0 1

2 32 0 40

0 40 0 50

1 68 0 40

0 40 0 50
= ⎡

⎣⎢
⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

=
−

−
⎡
⎣⎢

⎤
⎦⎥

,
. .

. .
,

. .

. .
  and 

11.7 Latent Structure Methods 533

c11MultivariateProcessMonitoringandControl.qxd  3/30/12  9:27 PM  Page 533



534 Chapter 11 ■ Multivariate Process Monitoring and Control

first principal component z1 accounts for most of the variability in the two original variables.

Figure 11.14b illustrates three original process variables. Most of the variability or “motion”

in these two variables is in a plane, so only two principal components have been used to

describe them. In this picture, once again z1 accounts for most of the variability, but a non-

trivial amount is also accounted for by the second principal component z2. This is, in fact, the

basic intent of principal components: Find the new set of orthogonal directions that define the

maximum variability in the original data, and, hopefully, this will lead to a description of the

process requiring considerably fewer than the original p variables. The information contained

in the complete set of all p principal components is exactly equivalent to the information in

the complete set of all original process variables, but hopefully we can use far fewer than p
principal components to obtain a satisfactory description.

It turns out that finding the cij’s that define the principal components is fairly easy. Let

the random variables x1, x2, . . . , xp be represented by a vector x with covariance matrix S,

and let the eigenvalues of S be l1 ≥ l2 ≥ . . . ≥ lp ≥ 0. Then the constants cij are simply the

elements of the ith eigenvector associated with the eigenvalue li. Basically, if we let C be the

matrix whose columns are the eigenvectors, then

where Λ is a p × p diagonal matrix with main diagonal elements equal to the eigenvalues

l1 ≥ l2 ≥ . . . ≥ lp ≥ 0. Many software packages will compute eigenvalues and eigenvectors

and perform the principal components analysis.

The variance of the ith principal component is the ith eigenvalue li. Consequently, the

proportion of variability in the original data explained by the ith principal component is given

by the ratio

Therefore, one can easily see how much variability is explained by retaining just a few (say, r)

of the p principal components simply by computing the sum of the eigenvalues for those r
components and comparing that total to the sum of all p eigenvalues. It is a fairly typical

practice to compute principal components using variables that have been standardized so

that they have mean zero and unit variance. Then the covariance matrix S is in the form of

a correlation matrix. The reason for this is that the original process variables are often

expressed in different scales and as a result they can have very different magnitudes.

Consequently, a variable may seem to contribute a lot to the total variability of the system

just because its scale of measurement has larger magnitudes than the other variables.

Standardization solves this problem nicely.

λ
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■ F I G U R E  1 1 . 1 4 Principal components for p = 2 and p = 3 process variables.
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Once the principal components have been calculated and a subset of them selected, we

can obtain new principal component observations zij simply by substituting the original obser-

vations xij into the set of retained principal components. This gives, for example,

(11.38)

where we have retained the first r of the original p principal components. The zij’s are some-

times called the principal component scores.
We will illustrate this procedure by performing a principal components analysis (PCA)

using the data on the p = 4 variables x1, x2, x3, and x4 in Table 11.6, which are process variables

from a chemical process. The first 20 observations in the upper panel of this table are first
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■ TA B L E  1 1 . 6

Chemical Process Data

Original Data

Observation x1 x2 x3 x4 z1 z2

1 10 20.7 13.6 15.5 0.291681 −0.6034

2 10.5 19.9 18.1 14.8 0.294281 0.491533

3 9.7 20 16.1 16.5 0.197337 0.640937

4 9.8 20.2 19.1 17.1 0.839022 1.469579

5 11.7 21.5 19.8 18.3 3.204876 0.879172

6 11 20.9 10.3 13.8 0.203271 −2.29514

7 8.7 18.8 16.9 16.8 −0.99211 1.670464

8 9.5 19.3 15.3 12.2 −1.70241 −0.36089

9 10.1 19.4 16.2 15.8 −0.14246 0.560808

10 9.5 19.6 13.6 14.5 −0.99498 −0.31493

11 10.5 20.3 17 16.5 0.944697 0.504711

12 9.2 19 11.5 16.3 −1.2195 −0.09129

13 11.3 21.6 14 18.7 2.608666 −0.42176

14 10 19.8 14 15.9 −0.12378 −0.08767

15 8.5 19.2 17.4 15.8 −1.10423 1.472593

16 9.7 20.1 10 16.6 −0.27825 −0.94763

17 8.3 18.4 12.5 14.2 −2.65608 0.135288

18 11.9 21.8 14.1 16.2 2.36528 −1.30494

19 10.3 20.5 15.6 15.1 0.411311 −0.21893

20 8.9 19 8.5 14.7 −2.14662 −1.17849

New Data

Observation x1 x2 x3 x4 z1 z2

21 9.9 20 15.4 15.9 0.074196 0.239359

22 8.7 19 9.9 16.8 −1.51756 −0.21121

23 11.5 21.8 19.3 12.1 1.408476 −0.87591

24 15.9 24.6 14.7 15.3 6.298001 −3.67398

25 12.6 23.9 17.1 14.2 3.802025 −1.99584

26 14.9 25 16.3 16.6 6.490673 −2.73143

27 9.9 23.7 11.9 18.1 2.738829 −1.37617

28 12.8 26.3 13.5 13.7 4.958747 −3.94851

29 13.1 26.1 10.9 16.8 5.678092 −3.85838

30 9.8 25.8 14.8 15 3.369657 −2.10878
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plotted against each other in a pairwise manner in Figure 11.15. This display is usually called

a matrix of scatter plots, and it indicates that the first two variables are highly correlated,

whereas the other two variables exhibit only moderate correlation. The ellipses in Figure 11.15

are approximate 95% confidence contours based on the assumption of a normal distribution.

The sample covariance matrix of the first 20 observations on the x’s, in correlation form, is

Note that the correlation coefficient between x1 and x2 is 0.9302, which confirms the visual

impression obtained from the matrix of scatter plots.

Table 11.7 presents the results of a PCA (Minitab was used to perform the calculations)

on the first 20 observations, showing the eigenvalues and eigenvectors, as well as the per-

centage and the cumulative percentage of the variability explained by each principal compo-

nent. By using only the first two principal components, we can account for over 83% of the

variability in the original four variables. Generally, we will want to retain enough components

to explain a reasonable proportion of the total process variability, but there are no firm guidelines
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■ F I G U R E  1 1 . 1 5 Matrix of scatter plots for the first 20 observations on x1, x2, x3, and x4 from

Table 11.6.
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■ TA B L E  1 1 . 7

PCA for the First 20 Observations on x1, x2, x3, and x4 from
Table 11.6

Eigenvalue: 2.3181 1.0118 0.6088 0.0613

Percentage: 57.9516 25.2951 15.2206 1.5328

Cumulative Percentage: 57.9516 83.2466 98.4672 100.0000

Eigenvectors

x1 0.59410 −0.33393 0.25699 0.68519

x2 0.60704 −0.32960 0.08341 −0.71826

x3 0.28553 0.79369 0.53368 −0.06092

x4 0.44386 0.38717 −0.80137 0.10440

about how much variability needs to be explained in order to produce an effective process-

monitoring procedure.

The last two columns in Table 11.6 contain the calculated values of the principal com-

ponent scores zi1 and zi2 for the first 20 observations. Figure 11.16 is a scatter plot of these 

20 principal component scores, along with the approximate 95% confidence contour. Note

that all 20 scores for zi1 and zi2 are inside the ellipse. We typically regard this display as a

monitoring device or control chart for the principal component variables, and the ellipse is an

approximate control limit (obviously higher confidence level contours could be selected).

Generally, we are using the scores as an empirical reference distribution to establish a con-

trol region for the process. When future values of the variables x1, x2, . . . , xp are observed,

the scores would be computed for the two principal components z1 and z2 and these scores

plotted on the graph in Figure 11.16. As long as the scores remain inside the ellipse, there is

no evidence that the process mean has shifted. If subsequent scores plot outside the ellipse,

then there is some evidence that the process is out of control.

The lower panel of Table 11.6 contains 10 new observations on the process variables x1,

x2, . . . , xp that were not used in computing the principal components. The principal com-
ponent scores for these new observations are also shown in the table, and the scores are plot-

ted on the control chart in Figure 11.17. A different plotting symbol (×) has been used to assist
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■ F I G U R E  1 1 . 1 6 Scatter plot of the first

20 principal component scores zi1 and zi2 from Table

11.6, with 95% confidence ellipse.

■ F I G U R E  1 1 . 1 7 Principal components 

trajectory chart, showing the last 10 observations from

Table 11.6.
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in identifying the scores from the new points. Although the first few new scores are inside the

ellipse, it is clear that beginning with observation 24 or 25, there has been a shift in the

process. Control charts such as Figure 11.17 based on principal component scores are often

called principal component trajectory plots. Mastrangelo, Runger, and Montgomery (1996)

also give an example of this procedure.

If more than two principal components need to be retained, then pairwise scatter plots

of the principal component scores would be used analogously to Figure 11.17. However, if

more than r = 3 or 4 components are retained, interpretation and use of the charts becomes

cumbersome. Furthermore, interpretation of the principal components can be difficult,

because they are not the original set of process variables but instead linear combinations of

them. Sometimes principal components have a relatively simple interpretation, and that can

assist the analyst in using the trajectory chart. For instance, in our example the constants in

the first principal component are all about the same size and have the same sign, so the first

principal component can be thought of as an analog of the average of all p = 4 original vari-

ables. Similarly, the second component is roughly equivalent to the difference between the

averages of the first two and the last two process variables. It’s not always that easy.

A potentially useful alternative to the trajectory plot is to collect the r retained princi-

pal component scores into a vector and apply the MEWMA control chart to them. Practical

experience with this approach has been very promising, and the ARL of the MEWMA con-

trol chart to detect a shift will be much less using the set of retained principal components

than it would have been if all p original process variables were used. Scranton et al. (1996)

give more details of this technique.

Finally, note that control charts and trajectory plots based on PCA will be most effec-

tive in detecting shifts in the directions defined by the principal components. Shifts in other

directions, particularly directions orthogonal to the retained principal component directions,

may be very hard to detect. One possible solution to this would be to use a MEWMA control

chart to monitor all the remaining principal components zr+1, zr+2, . . . , zp.

11.7.2 Partial Least Squares

The method of partial least squares (PLS) is somewhat related to PCS, except that, like the

regression adjustment procedure, it classifies the variables into x’s (or inputs) and y’s (or out-

puts). The goal is to create a set of weighted averages of the x’s and y’s that can be used for

prediction of the y’s or linear combinations of the y’s. The procedure maximizes covariance

in the same fashion that the principal component directions maximize variance. Minitab has

some PLS capability.

The most common applications of partial least squares today are in the chemometrics
field, where there are often many variables, both process and response. Frank and Friedman

(1993) is a good survey of this field, written for statisticians and engineers. A potential con-

cern about applying PLS is that there has not been any extensive performance comparison of

PLS to other multivariate procedures. There is only anecdotal evidence about its performance

and its ability to detect process upsets relative to other approaches.

Important Terms and Concepts

Average run length (ARL)

Cascade process

Chi-square control chart

Control ellipse

Covariance matrix

Hotelling T2 control chart

Hotelling T2 subgrouped data control chart

Hotelling T2 individuals control chart

Latent structure methods

Matrix of scatter plots

Monitoring multivariate variability

Multivariate EWMA control chart
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Exercises

11.1. The data shown in Table 11E.1

come from a production process

with two observable quality

characteristics: x1 and x2. The

data are sample means of each

quality characteristic, based on

samples of size n = 25. Assume

that mean values of the quality

characteristics and the covari-

ance matrix were computed from

50 preliminary samples:

Construct a T 2 control chart

using these data. Use the phase II

limits.

11.2. A product has three quality characteristics. The nom-

inal values of these quality characteristics and their

x S= = ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

55

30

200 130

130 120
     

sample covariance matrix have been determined

from the analysis of 30 preliminary samples of size

n = 10 as follows:

The sample means for each quality characteristic for

15 additional samples of size n = 10 are shown in

Table 11E.2. Is the process in statistical control?

11.3. Reconsider the situation in Exercise 11.1. Suppose that

the sample mean vector and sample covariance matrix

provided were the actual population parameters. What

control limit would be appropriate for phase II for the

control chart? Apply this limit to the data and discuss

any differences in results that you find in comparison

to the original choice of control limit.
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⎢
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The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

■ TA B L E  1 1 E . 1

Data for Exercise 11.1

Sample
Number x1

_
x2
_

1 58 32

2 60 33

3 50 27

4 54 31

5 63 38

6 53 30

7 42 20

8 55 31

9 46 25

10 50 29

11 49 27

12 57 30

13 58 33

14 75 45

15 55 27

■ TA B L E  1 1 E . 2

Data for Exercise 11.2

Sample
Number x1

_
x2
_

x3
_

1 3.1 3.7 3.0

2 3.3 3.9 3.1

3 2.6 3.0 2.4

4 2.8 3.0 2.5

5 3.0 3.3 2.8

6 4.0 4.6 3.5

7 3.8 4.2 3.0

8 3.0 3.3 2.7

9 2.4 3.0 2.2

10 2.0 2.6 1.8

11 3.2 3.9 3.0

12 3.7 4.0 3.0

13 4.1 4.7 3.2

14 3.8 4.0 2.9

15 3.2 3.6 2.8

Multivariate normal distribution

Multivariate quality control process monitoring

Partial least squares (PLS)

Phase I control limits

Phase II control limits

Principal component scores

Principal components

Principal components analysis (PCA)

Regression adjustment

Residual control chart

Sample covariance matrix

Sample mean vector

Trajectory plots
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11.4. Reconsider the situation in Exercise 11.2. Suppose that

the sample mean vector and sample covariance matrix

provided were the actual population parameters. What

control limit would be appropriate for phase II of the

control chart? Apply this limit to the data and discuss

any differences in results that you find in comparison

to the original choice of control limit.

11.5. Consider a T2 control chart for monitoring p = 6

quality characteristics. Suppose that the subgroup

size is n = 3 and there are 30 preliminary samples

available to estimate the sample covariance matrix.

(a) Find the phase II control limits assuming that a =
0.005.

(b) Compare the control limits from part (a) to the

chi-square control limit. What is the magnitude

of the difference in the two control limits?

(c) How many preliminary samples would have to be

taken to ensure that the exact phase II control

limit is within 1% of the chi-square control limit?

11.6. Rework Exercise 11.5, assuming that the subgroup

size is n = 5.

11.7. Consider a T 2 control chart for monitoring p = 10

quality characteristics. Suppose that the subgroup

size is n = 3 and there are 25 preliminary samples

available to estimate the sample covariance matrix.

(a) Find the phase II control limits assuming that a =
0.005.

(b) Compare the control limits from part (a) to the

chi-square control limit. What is the magnitude

of the difference in the two control limits?

(c) How many preliminary samples would have to be

taken to ensure that the chi-square control limit is

within 1% of the exact phase II control limit?

11.8. Rework Exercise 11.7, assuming that the subgroup

size is n = 5.

11.9. Consider a T 2 control chart for monitoring p = 10

quality characteristics. Suppose that the subgroup

size is n = 3 and there are 25 preliminary samples

available to estimate the sample covariance matrix.

Calculate both the phase I and the phase II control

limits (use a = 0.01).

11.10. Suppose that we have p = 4 quality characteristics,

and in correlation form all four variables have variance

unity and all pairwise correlation coefficients are 0.7.

The in-control value of the process mean vector is 

m′ = [0, 0, 0, 0].

(a) Write out the covariance matrix Σ.

(b) What is the chi-square control limit for the chart,

assuming that a = 0.01?

(c) Suppose that a sample of observations results in

the standardized observation vector y′ = [3.5, 3.5,

3.5, 3.5]. Calculate the value of the T2 statistic. Is

an out-of-control signal generated?

(d) Calculate the diagnostic quantities di, i = 1, 2, 3, 4

from equation 11.22. Does this information assist in

identifying which process variables have shifted?

(e) Suppose that a sample of observations results in

the standardized observation vector y′ = [2.5, 2, −
1, 0]. Calculate the value of the T2 statistic. Is an

out-of-control signal generated?

(f) For the case in (e), calculate the diagnostic quan-

tities di, i = 1, 2, 3, 4 from equation 11.22. Does

this information assist in identifying which

process variables have shifted?

11.11. Suppose that we have p = 3 quality characteristics,

and in correlation form all three variables have vari-

ance unity and all pairwise correlation coefficients

are 0.8. The in-control value of the process mean vec-

tor is m′ = [0, 0, 0].

(a) Write out the covariance matrix S.

(b) What is the chi-square control limit for the chart,

assuming that a = 0.05?

(c) Suppose that a sample of observations results in

the standardized observation vector y′ = [1, 2, 0].

Calculate the value of the T2 statistic. Is an out-

of-control signal generated?

(d) Calculate the diagnostic quantities di, i = 1, 2, 3

from equation 11.22. Does this information assist

in identifying which process variables have shifted?

(e) Suppose that a sample of observations results in

the standardized observation vector y′ = [2, 2, 1].

Calculate the value of the T2 statistic. Is an out-

of-control signal generated?

(f) For the case in (e), calculate the diagnostic quan-

tities di, i = 1, 2, 3 from equation 11.22. Does this

information assist in identifying which process

variables have shifted?

11.12. Consider the first two process variables in Table 11.5.

Calculate an estimate of the sample covariance matrix

using both estimators S1 and S2 discussed in Section

11.3.2.

11.13. Consider the first three process variables in Table 11.5.

Calculate an estimate of the sample covariance matrix

using both estimators S1 and S2 discussed in Section

11.3.2.

11.14. Consider all 30 observations on the first two process

variables in Table 11.6. Calculate an estimate of the

sample covariance matrix using both estimators S1

and S2 discussed in Section 11.3.2. Are the estimates

very different? Discuss your findings.

11.15. Suppose that there are p = 4 quality characteristics,

and in correlation form all four variables have vari-

ance unity and all pairwise correlation coefficients

are 0.75. The in-control value of the process mean

vector is m′ = [0, 0, 0, 0], and we want to design a

MEWMA control chart to provide good protection
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against a shift to a new mean vector of y′ = [1, 1, 1, 1].

If an in-control ARL0 of 200 is satisfactory, what value

of l and what upper control limit should be used?

Approximately, what is the ARL1 for detecting the

shift in the mean vector?

11.16. Suppose that there are p = 4 quality characteristics,

and in correlation form all four variables have vari-

ance unity and that all pairwise correlation coeffi-

cients are 0.9. The in-control value of the process

mean vector is m′ = [0, 0, 0, 0], and we want to design

a MEWMA control chart to provide good protection

against a shift to a new mean vector of y′ = [1, 1, 1, 1].

Suppose that an in-control ARL0 of 500 is desired.

What value of l and what upper control limit would

you recommend? Approximately, what is the ARL1

for detecting the shift in the mean vector?

11.17. Suppose that there are p = 2 quality characteristics,

and in correlation form both variables have variance

unity and the correlation coefficient is 0.8. The in-

control value of the process mean vector is m′ = [0, 0],

and we want to design a MEWMA control chart to

provide good protection against a shift to a new mean

vector of y′ = [1, 1]. If an in-control ARL0 of 200 is

satisfactory, what value of l and what upper control

limit should be used? Approximately, what is the

ARL1 for detecting the shift in the mean vector?

11.18. Consider the cascade process data in Table 11.5.

(a) Set up an individuals control chart on y2.

(b) Fit a regression model to y2, and set up an indi-

viduals control chart on the residuals. Comment

on the differences between this chart and the one

in part (a).

(c) Calculate the sample autocorrelation functions

on y2 and on the residuals from the regression

model in part (b). Discuss your findings.

11.19. Consider the cascade process data in Table 11.5. In

fitting regression models to both y1 and y2 you will

find that not all of the process variables are required

to obtain a satisfactory regression model for the out-

put variables. Remove the nonsignificant variables

from these equations and obtain subset regression

models for both y1 and y2. Then construct individuals

control charts for both sets of residuals. Compare them

to the residual control charts in the text (Fig. 11.11)

and from Exercise 11.18. Are there any substantial

differences between the charts from the two different

approaches to fitting the regression models?

11.20. Continuation of Exercise 11.19. Using the residuals

from the regression models in Exercise 11.19, set up

EWMA control charts. Compare these EWMA con-

trol charts to the Shewhart charts for individuals con-

structed previously. What are the potential advantages

of the EWMA control chart in this situation?

11.21. Consider the p = 4 process variables in Table 11.6.

After applying the PCA procedure to the first 20

observations data (see Table 11.7), suppose that the

first three principal components are retained.

(a) Obtain the principal component scores. (Hint:

Remember that you must work in standardized

variables.)

(b) Construct an appropriate set of pairwise plots of

the principal component scores.

(c) Calculate the principal component scores for the

last 10 observations. Plot the scores on the charts

from part (b) and interpret the results.

11.22. Consider the p = 9 process variables in Table 11.5.

(a) Perform a PCA on the first 30 observations. Be

sure to work with the standardized variables.

(b) How much variability is explained if only the

first r = 3 principal components are retained?

(c) Construct an appropriate set of pairwise plots of

the first r = 3 principal component scores.

(d) Now consider the last 10 observations. Obtain

the principal component scores and plot them on

the chart in part (c). Does the process seem to be

in control?

Exercises 541
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Engineering
Process Control 
and SPC

12.1 PROCESS MONITORING AND
PROCESS REGULATION

12.2 PROCESS CONTROL BY FEEDBACK
ADJUSTMENT

12.2.1 A Simple Adjustment
Scheme: Integral Control

12.2.2 The Adjustment Chart
12.2.3 Variations of the Adjustment

Chart
12.2.4 Other Types of Feedback

Controllers
12.3 COMBINING SPC AND EPC

1212
CHAPTER OUTLINE

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Throughout this book we have stressed the importance of process control and variability

reduction as essential ingredients of modern business strategy. There are two statistically

based approaches for addressing this problem. The first of these is statistical process

monitoring by control charts, or statistical process control (SPC). The focus of SPC is on

identifying assignable causes so that they can be removed, thereby leading to permanent

process improvement or reduction in variability. The second approach is based on adjust-

ing the process using information about its current level or deviation from a desired target.

This approach is often called feedback adjustment, and it is a form of engineering
process control or EPC. Feedback adjustment regulates the process to account for sources

of variability that cannot be removed by the SPC approach.

This chapter introduces simple methods of feedback adjustment and shows how

these techniques can be easily implemented in processes where there is a manipulatable

variable that affects the process output. We also show how simple SPC schemes can be

combined or integrated with EPC.

After careful study of this chapter, you should be able to do the following:

1. Explain the origins of process monitoring and process adjustment

2. Explain the different statistical frameworks of SPC and EPC

3. Explain how an integral controller works

4. Understand how EPC transfers variability from the process output into a

manipulatable variable

542
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5. Set up and use a manual adjustment chart

6. Understand the basis of the bounded adjustment chart

7. Understand the basis of proportional integral (PI) and proportional integral

derivative (PID) controllers

8. Know how to combine SPC and EPC by applying a control chart to the output

quality characteristic

12.1 Process Monitoring and Process Regulation

Reduction of variability is an important part of improving process performance in all indus-

tries. Statistical process control is an effective tool for reduction of variability through the

ability of the control chart to detect assignable causes. When the assignable causes are

removed, process variability is reduced and process performance is improved.

SPC has had a long history of successful use in discrete parts manufacturing. In con-

tinuous processes, such as those found in the chemical and process industries, another

approach is often used to reduce variability. This approach is based on process compensa-
tion and regulation, in which some manipulatable process variable is adjusted with the

objective of keeping the process output on target (or equivalently, minimizing the variability

of the output around this target). These process compensation or regulation schemes are

widely known as engineering process control (EPC), stochastic control, or feedback or

feedforward control, depending on the nature of the adjustments.

SPC is always applied in a situation where we assume that it is possible to bring the

process into a state of statistical control. By “statistical control,” we mean that we observe

only stable random variation around the process target. Furthermore, SPC also assumes that

once the process is in this in-control state, it will tend to stay there for a relatively long

period of time without continual ongoing adjustment. Now certainly if we eliminate assign-

able causes, such as differences due to operators and variations in raw materials, it is often

possible to obtain this in-control state. However, in some industrial settings, despite our best

effort, the process may still have a tendency to drift or wander away from the target. This

may occur because of phenomena such as continuous variation in input materials or effects

of environmental or process variables, or it may be due entirely to unknown forces that

impact the process. Process regulation through EPC assumes that there is another variable

that can be adjusted to compensate for the drift in process output, and that a series of regular

adjustments to this manipulatable variable will keep the process output close to the desired

target.

There is considerable interest in combining or integrating SPC and EPC in an effort

to provide an improved procedure—that is, an enhancement to EPC that would enable

assignable-cause-type disturbances to be detected. For additional background and discus-

sion, see Box and Kramer (1992); MacGregor (1987); Vander Weil, Tucker, Faltin, and

Doganaksoy (1992); MacGregor and Harris (1990); Montgomery, Keats, Runger, and

Messina (1994); Box, Jenkins, and Reinsel (1994); Box and Luceño (1997); and Del Castillo

(2002).

It is natural to question the need for integrating EPC and SPC. Historically, these tech-

niques have developed in somewhat different environments. SPC is often part of an organiza-

tion’s strategic thrust to improve quality, and it is usually a top-down, management-driven,

high-visibility activity, with emphasis on people, methods, and procedures. EPC, on the other

hand, is more tactical in nature with its origins in the process-engineering organization, and

its primary focus is on the process. The statistical framework of SPC is similar to that of

hypothesis testing, whereas the statistical framework of EPC is parameter estimation—that

12.1 Process Monitoring and Process Regulation 543
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is, estimating how much disturbance there is in the system forcing the process off target and

then making an adjustment to cancel its effect. What these two procedures share is a common

objective: reduction of variability. EPC assumes that there is a specific dynamic model that

links the process input and output. If that model is correct, then the EPC process adjustment

rules will minimize variation around the output target. However, when certain types of exter-

nal disturbances or assignable causes occur that are outside the framework of this dynamic

model, then the compensation rules will not completely account for this upset. As a result,

variability will be increased. By applying SPC in a specific way, these assignable causes can

be detected and the combined EPC/SPC procedure will be more effective than EPC alone.

12.2 Process Control by Feedback Adjustment

12.2.1 A Simple Adjustment Scheme: Integral Control

In this section we consider a simple situation involving a process in which feedback adjustment

is appropriate and highly effective. The process output characteristic of interest at time period t
is yt, and we wish to keep yt as close as possible to a target T. This process has a manipulatable

variable x, and a change in x will produce all of its effect on y within one period—that is,

(12.1)

where g is a constant usually called the process gain. The gain is like a regression coefficient,

in that it relates the magnitude of a change in xt to a change in yt. Now, if no adjustment is

made, the process drifts away from the target according to

(12.2)

where Nt + 1 is a disturbance. The disturbance in equation 12.2 is usually represented by an

appropriate time-series model, often an autoregressive integrated moving average (ARIMA)

model of the type discussed in Chapter 10, Section 10.4. Such a model is required because

the uncontrolled output is usually autocorrelated (see the material in Section 10.4 about SPC

with autocorrelated data).

Suppose that the disturbance can be predicted adequately using an EWMA:

(12.3)

where et = Nt − N̂t is the prediction error at time period t and 0 < l ≤ 1 is the weighting factor

for the EWMA. This assumption is equivalent to assuming that the uncontrolled process is

drifting according to the integrated moving average model in equation 10.15 with parameter

q = 1 − l. At time t, the adjusted process is

This equation says that at time t + 1 the output deviation from target will depend on the dis-

turbance in period t + 1 plus the level xt to which we set the manipulatable variable in period t,
or the setpoint in period t. Obviously, we should set xt so as to exactly cancel out the disturbance.

However, we can’t do this, because Nt + 1 is unknown in period t. We can, however, forecast

Nt + 1 by N̂t + 1 using equation 12.3. Then we obtain

(12.4)

since et + 1 = Nt + 1 − N̂t + 1.

From equation 12.4, it is clear that if we set gxt = −N̂t + 1 or the setpoint xt = −(1/g) N̂t + 1,

then the adjustment should cancel out the disturbance, and in period t + 1 the output deviation

y T e N gxt t t t+ + +− = + +1 1 1
ˆ

y T N gxt t t+ +− = +1 1

ˆ ˆ ˆ

ˆ

N N N N

N e

t t t t

t t

+ = + −( )
= +

1 λ

λ

y T Nt t+ +− =1 1

y T gxt t+ − =1
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12.2 Process Control by Feedback Adjustment 545

from target should be yt + 1 − T = et + 1, where et + 1 is the prediction error in period t; that is,

et + 1 = Nt + 1 − N̂t + 1. The actual adjustment to the manipulatable variable made at time t is

(12.5)

Now the difference in the two EWMA predictions can be rewritten as

and since the actual error at time t, et, is simply the difference between the output and the target,

we can write

Therefore, the adjustment to be made to the manipulatable variable at time period t (equation

12.5) becomes

(12.6)

The actual setpoint for the manipulatable variable at the end of period t is simply the sum of

all the adjustments through time t, or

(12.7)

This type of process adjustment scheme is called integral control. It is a pure feed-

back control scheme that sets the level of the manipulatable variable equal to a weighted sum

of all current and previous process deviations from target. It can be shown that if the deter-

ministic part of the process model (equation 12.1) is correct, and if the disturbance Nt is pre-

dicted perfectly apart from random error by an EWMA, then this is an optimal control rule in

the sense that it minimizes the mean-square error of the process output deviations from the

target T. For an excellent discussion of this procedure, see Box (1991–1992) and Box and

Luceño (1997).
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and standard deviation of molecular weight for these 100

observations is and s = 19.4.

In this process, the drifting behavior of the molecular

weight is likely caused by unknown and uncontrollable distur-

bances in the incoming material feedstock and other inertial

forces, but it can be compensated for by making adjustments

to the setpoint of the catalyst feed rate x. A change in the set-

point of the feed rate will have all of its effect on molecular

weight within one period, so an integral control procedure

such as the one discussed previously will be appropriate.

x = 2,008

EXAMPLE 12.1

Figure 12.1 shows 100 observations on the number average

molecular weight of a polymer, taken every four hours. It is

desired to maintain the molecular weight as close as possible

to the target value T = 2,000. Note that, despite our best efforts

to bring the process into a state of statistical control, the molec-

ular weight tends to wander away from the target. Individuals

and moving range control charts are shown in Figure 12.2,

indicating the lack of statistical stability in the process. Note

that the engineers have used the target value T = 2,000 as the

center line for the individuals chart. The actual sample average

An Example of Integral Control

(continued)
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Consequently, the setpoint for catalyst feed rate at the end of

period t would be

or

The adjustment made to the catalyst feed rate is

Figure 12.3 plots the values of molecular weight after the

adjustments are made to the catalyst feed rate. Note that the

x x
g

y

y

y

t t t

t

t
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■ F I G U R E 1 2 . 1 Molecular weight of a polymer, target value 

T = 2,000 (uncontrolled process).

■ F I G U R E 1 2 . 2 Control charts for individuals and moving range applied to the

polymer molecular weight data.

Suppose that the gain in the system is 1.2:1; that is, an

increase in the feed rate of 1 unit increases the molecular

weight by 1.2 units. Now for our example, the adjusted process

would be

We will forecast the disturbances with an EWMA having 

l = 0.2. This is an arbitrary choice for l. It is possible to use

estimation techniques to obtain a precise value for l, but as we

will see, often a value for l between 0.2 and 0.4 works very

well. Now the one-period-ahead forecast for the disturbance 

Nt + 1 is

ˆ ˆ

ˆ . ˆ

. . ˆ

. . ˆ

N N e
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12.2 Process Control by Feedback Adjustment 547

Figure 12.5 shows individuals and moving range control

charts applied to the output deviation of the molecular weight

from the target value of 2,000. Note that now the process

appears to be in a state of statistical control. Figure 12.6 is a set

of similar control charts applied to the sequence of process

adjustments (that is, the change in the setpoint value for feed

rate).

process is much closer to the target value of 2,000. In fact, the

sample average molecular weight for the 100 observations is

now 2,001, and the sample standard deviation is 10.35. Thus,

the use of integral control has reduced process variability by

nearly 50%. Figure 12.4 shows the setpoint for the catalyst

feed rate used in each time period to keep the process close to

the target value of T = 2,000.
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■ F I G U R E 1 2 . 3 Values of molecular weight after adjustment.
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■ F I G U R E 1 2 . 4 The setpoint for catalyst feed rate.

48

28

8

–12

–32
0 20 40 60 80 100

–31.05

0

31.05

38.1605

11.6748

0
0 20 40 60 80 100

0

10

20

30

40

M
R

t
y t

 –
 2

0
0

0

Subgroup

■ F I G U R E 1 2 . 5 Individuals and moving range control charts applied to the 

output deviation of molecular weight from target, after integral control.

(continued)
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In the foregoing example, the value of l used in the EWMA was l = 0.2. An “optimal”

value for l could be obtained by finding the value of l that minimizes the sum of the squared

forecast errors for the process disturbance. To perform this calculation, you will need a record

of the process disturbances. Usually, you will have to construct this from past history. That is,

you will typically have a history of the actual output and a history of whatever adjustments

were made. The disturbance would be back-calculated from the historical deviation from 

target taken together with the adjustments. This will usually give you a disturbance series of

sufficient accuracy to calculate the correct value for l.

In some cases you may not be able to do this easily, and it may be necessary to choose

l arbitrarily. Figure 12.7 shows the effect of choosing l arbitrarily when the true optimum

value of l is l0. The vertical scale (s2
l /s2

l0
) shows how much the variance of the output is

inflated by choosing the arbitrary l instead of l0.

Consider the case in Figure 12.7 where l0 = 0. Now, since l in the EWMA is equal

to zero, this means that the process is in statistical control and it will not drift off target.

548 Chapter 12 ■ Engineering Process Control and SPC
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■ F I G U R E  1 2 . 7 Inflation in the variance of the adjusted

process arising from an arbitrary choice of l when the true value of l in

the disturbance is l0. [Adapted from Box (1991–1992), with permission.]

■ F I G U R E 1 2 . 6 Individuals and moving range control charts for the sequence of

adjustments to the catalyst feed rate.
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12.2 Process Control by Feedback Adjustment 549

Therefore, no adjustment to feed rate is necessary; see equation 12.6. Figure 12.7 shows very

clearly that in this case any adjustments to the catalyst feed rate would increase the variance

of the output. This is what Deming means by “tampering with the process.” The worst case

would occur with l = 1, where the output variance would be doubled. Of course, l = 1 implies

that we are making an adjustment that (apart from the gain g) is exactly equal to the current

deviation from target, something no rational control engineer would contemplate. Note, how-

ever, that a smaller value of l (l ≤ 0.2, say) would not inflate the variance very much.

Alternatively, if the true value of l0 driving the disturbance is not zero, meaning that the

process drifts off target yet no adjustment is made, the output process variance will increase

a lot. From the figure, we see that if you use a value of l in the 0.2–0.4 range, that almost no

matter what the true value of l0 is that drives the disturbances, the increase in output variance

will be at most about 5% over what the true minimum variance would be if l0 were known

exactly. Therefore, an educated guess about the value of l in the 0.2–0.4 range will often work

very well in practice.

We noted in Section 10.4 that one possible way to deal with autocorrelated data was to

use an engineering controller to remove the autocorrelation. We can demonstrate that in the

previous example.

Figure 12.8 is the sample autocorrelation function of the uncontrolled molecular weight

measurements from Figure 12.1. Obviously, the original unadjusted process observations

exhibit strong autocorrelation. Figure 12.9 is the sample autocorrelation function of the out-

put molecular weight deviations from target after the integral control adjustments. Note that

the output deviations from target are now uncorrelated.

Engineering controllers cannot always be used to eliminate autocorrelation. For exam-

ple, the process dynamics may not be understood well enough to implement an effective con-

troller. Also note that any engineering controller essentially transfers variability from one

part of the process to another. In our example, the integral controller transfers variability from

molecular weight into the catalyst feed rate. To see this, examine Figures 12.1, 12.3, and 12.4,

and note that the reduction in variability in the output molecular weight was achieved by

increasing the variability of the feed rate. There may be processes in which this is not always

an acceptable alternative.

12.2.2 The Adjustment Chart

The feedback adjustment scheme based on integral control that we described in the previous

section can be implemented so that the adjustments are made automatically. Usually this

involves some combination of sensors or measuring devices, a logic device or computer, and

actuators to physically make the adjustments to the manipulatable variable x. When EPC or
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■ F I G U R E  1 2 . 8 The sample autocorrelation

function for the uncontrolled molecular weight obser-

vations from Figure 12.1.

■ F I G U R E  1 2 . 9 The sample autocorrelation

function for the molecular weight variable after integral

control.
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feedback adjustment is implemented in this manner, it is often called automatic process 
control (APC).

In many processes, feedback adjustments can be made manually. Operating personnel

routinely observe the current output deviation from target, compute the amount of adjustment

to apply using equation 12.6, and then bring xt to its new setpoint. When adjustments are

made manually by operating personnel, a variation of Figure 12.3 called the manual adjust-
ment chart is very useful.

Figure 12.10 is the manual adjustment chart corresponding to Figure 12.3. Note that

there is now a second scale, called the adjustment scale, on the vertical axis. Note also that

the divisions on the adjustment scale are arranged so that one unit of adjustment exactly

equals six units on the molecular weight scale. Furthermore, the units on the adjustment scale

that correspond to molecular weight values above the target of 2,000 are negative, whereas the

units on the adjustment scale that correspond to molecular weight values below the target of

2,000 are positive. The reason for this is that the specific adjustment equation that is used for

the molecular weight variable is

or

That is, a six-unit change in molecular weight from its target of 2,000 corresponds to a one-
unit change in the catalyst feed rate. Furthermore, if the molecular weight is above the 

target, the catalyst feed rate must be reduced to drive molecular weight toward the target

value, whereas if the molecular weight is below the target, the catalyst feed rate must be

increased to drive molecular weight toward the target.

The adjustment chart is extremely easy for operating personnel to use. For example,

consider Figure 12.10 and, specifically, observation y13 as molecular weight. As soon as 

y13 = 2,006 is observed and plotted on the chart, the operator simply reads off the correspond-

ing value of −1 on the adjustment scale. This is the amount by which the operator should

change the current setting of the catalyst feed rate. That is, the operator should reduce the 

adjustment to catalyst feed rate (deviation of molecular weight from 2,000)= − 1
6

x x yt t t− = − −(                )−1
1
6

2,000
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■ F I G U R E  1 2 . 1 0 The adjustment chart for molecular weight.
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12.2 Process Control by Feedback Adjustment 551

catalyst feed rate by one unit. Now the next observation is y14 = 1,997. The operator plots this

point and observes that 1,997 on the molecular weight scale corresponds to +0.5 on the

adjustment scale. Thus, catalyst feed rate could now be increased by 0.5 unit.

This is a very simple and highly effective procedure. Manual adjustment charts were

first proposed by George Box and G. M. Jenkins [see Box, Jenkins, and Reinsel (1994);

Box (1991); and Box and Luceño (1997) for more background]. They are often called

Box–Jenkins adjustment charts.

12.2.3 Variations of the Adjustment Chart

The adjustment procedures in Sections 12.2.1 and 12.2.2 are very straightforward to imple-

ment, but they require that an adjustment be made to the process after each observation. In

feedback adjustment applications in the chemical and process industries, this is not usually a

serious issue because the major cost that must be managed is the cost of being off target, and

the adjustments themselves are made with either no or very little cost. Indeed, they are often

made automatically. However, situations can arise in which the cost or convenience of making

an adjustment is a concern. For example, in discrete parts manufacturing it may be necessary

to actually stop the process to make an adjustment. Consequently, it may be of interest to make

some modification to the feedback adjustment procedure so that less frequent adjustments

will be made.

There are several ways to do this. One of the simplest is the bounded adjustment chart,
a variation of the procedure in Section 12.2.2 in which an adjustment will be made only in peri-

ods for which the EWMA forecast is outside one of the bounds given by ±L. The boundary

value L is usually determined from engineering judgment, taking the costs of being off target

and the cost of making the adjustment into account. Box and Luceño (1997) discuss this situ-

ation in detail and, in particular, how costs can be used specifically for determining L.

We will use the data in Table 12.1 to illustrate the bounded adjustment chart. Column

1 of this table presents the unadjusted values of an important output characteristic from a

chemical process. The values are reported as deviations from the actual target, so the target

for this variable—say, yt—is zero. Figure 12.11 plots these output data, along with an EWMA

prediction made using l = 0.2. Note that the variable does not stay very close to the desired

target. The average of these 50 observations is 17.2, and the sum of the squared deviations

from target is 21,468. The standard deviation of these observations is approximately 11.6.

There is a manipulatable variable in this process, and the relationship between the out-

put and this variable is given by

That is, the process gain g = 0.8. The EWMA in Figure 12.11 uses l = 0.2. This value was

chosen arbitrarily, but remember from our discussion in Section 12.2.1 that the procedure is

relatively insensitive to this parameter.

Suppose that we decide to set L = 10. This means that we will only make an adjustment

to the process when the EWMA exceeds L = 10 or −L = −10. Economics and the ease of mak-

ing adjustments are typically factors in selecting L, but here we did it a slightly different way.

Note that the standard deviation of the unadjusted process is approximately 11.6, so the stan-

dard deviation of the EWMA in Figure 12.11 is approximately

Therefore, using L = 10 is roughly equivalent to using control limits on the EWMA that are

about 2.6sEWMA in width. (Recall from Chapter 9 that we often use control limits on an

EWMA that are slightly less than three-sigma.)

ˆ ˆ .
.

. .σ λ
λ

σEWMA unadjusted process=
−

=
−

=
2

0 2
2 0 2

11 6 3 87
.−

=

y T xt t− = 0 8.
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■ TA B L E  1 2 . 1

Chemical Process Data for the Bounded Adjustment Chart in Figure 12.12

Original Adjusted Cumulative 
Process Process Adjustment

Observation Output Output EWMA Adjustment or Setpoint

1 0 0 0 0

2 16 16 3.200 0

3 24 24 7.360 0

4 29 29 11.688 −7.250 −7.250

5 34 26.750 5.350 −7.250

6 24 16.750 7.630 −7.250

7 31 23.750 10.854 −5.938 −13.188

8 26 12.812 2.562 −13.188

9 38 24.812 7.013 −13.188

10 29 15.812 8.773 −13.188

11 25 11.812 9.381 −13.188

12 26 12.812 10.067 −3.203 −16.391

13 23 6.609 1.322 −16.391

14 34 17.609 4.579 −16.391

15 24 7.609 5.185 −16.391

16 14 −2.391 3.670 −16.391

17 41 24.609 7.858 −16.391

18 36 19.609 10.208 −4.904 −21.293

19 29 7.707 1.541 −21.293

20 13 −8.293 −0.425 −21.293

21 26 4.707 0.601 −21.293

22 12 −9.293 −1.378 −21.293

23 15 −6.293 −2.361 −21.293

24 34 12.707 0.653 −21.293

25 7 −14.293 −2.336 −21.293

26 20 −1.293 −2.128 −21.293

27 16 −5.293 −2.761 −21.293

28 7 −14.293 −5.067 −21.293

29 0 −21.293 −8.312 −21.293

30 8 −13.293 −9.308 −21.293

31 23 1.707 −7.105 −21.293

32 10 −11.293 −7.943 −21.293

33 12 −9.293 −8.213 −21.293

34 −2 −23.293 −11.229 5.823 −15.470

35 10 −5.470 −1.094 −15.470

36 28 12.530 1.631 −15.470

37 12 −3.470 0.611 −15.470

38 8 −7.470 −1.005 −15.470

39 11 −4.470 −1.698 −15.470

40 4 −11.470 −3.653 −15.470

41 9 −6.470 −4.216 − 15.470

42 15 −0.470 −3.467 −15.470

43 5 −10.470 −4.867 −15.470

44 13 −2.470 −4.388 −15.470

45 22 6.530 −2.204 −15.470

46 −9 −24.470 −6.657 −15.470

47 3 −12.470 −7.820 −15.470

48 12 −3.470 −6.950 −15.470

49 3 −12.470 −8.054 −15.470

50 12 −3.470 −7.137 −15.470
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12.2 Process Control by Feedback Adjustment 553

The computations for the EWMA are given in Table 12.1. Note that the EWMA is

started off at zero, and the first period in which it exceeds L = 10 is period 4. The output devi-

ation from target in period 4 is +29, so the adjustment would be calculated as usual in inte-

gral control as

or

That is, we would change the manipulatable variable from its previous setting in period 3 by

−7.250 units. The full effect of this adjustment then would be felt in the next period, 5. The

EWMA would be reset to zero at the end of period 4 and the forecasting procedure started

afresh. The next adjustment occurs in period 7, where an additional −5.938 units of adjust-

ment are made. The last column records the cumulative effect of all adjustments.

Note that only five adjustments are made over the 50 observations. Figure 12.12 is a

plot of the original unadjusted output variable, the adjusted output, the EWMA forecasts, and

the actual process adjustments. The variability in the adjusted output around the target has

been reduced considerably; the sum of squared deviations from target is 9,780, and the aver-

age deviation from target is 1.76. This is a reduction of over 50% in the output deviation from

the target, achieved with only five adjustments to the process.

Bounded adjustment charts are often very good substitutes for making an adjustment

every period. They usually result in slightly degraded performance when compared to the

“always adjust” scheme, but usually the degradation is small.

Another variation of the adjustment chart encountered in practice is the rounded
adjustment chart. This procedure is sometimes used to assist operating personnel in mak-

ing simple adjustments. The adjustment scale is “rounded” to perhaps four or five zones

on either side of the target, with each zone corresponding to adjustments that are easy to

make (such as change the manipulatable variable by 1 unit, 2 units, and so forth). Often

the central zone corresponds to making no adjustment. In this case, adjustments would not

necessarily be made every period. See Box and Luceño (1997) for more discussion of

these charts.
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■ F I G U R E  1 2 . 1 1 The unadjusted process data from Table 12.1 and an

EWMA with l = 0.2.
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12.2.4 Other Types of Feedback Controllers

We have considered a feedback controller for which the process adjustment rule is

(12.8)

where et is the output deviation from target and l is the EWMA parameter. By summing this

equation we arrived at

(12.9)

where xt is the level or setpoint of the manipulatable variable at time t. This is, of course, an

integral control adjustment rule.

Now suppose that to make reasonable adjustments to the process we feel it is necessary

to consider the last two errors, et and et −1. Suppose we write the adjustment equation in terms

of two constants, c1 and c2,

(12.10)

If this expression is summed, the setpoint becomes

(12.11)

where kP = −(c2/g) and kI = (c1 + c2)/g. Note that the setpoint control equation contains a term

calling for “proportional” control actions as well as the familiar integral action term. The two

constants kP and kI are the proportional and integral action parameters, respectively. This is a

discrete proportional integral (PI) control equation.

Now suppose that the adjustment depends on the last three errors:

(12.12)g x x c e c e c et t t t t−( ) = + +− − −1 1 2 1 3 2

x k e k et P t I i
i

t
= +

=
∑

1

g x x c e c et t t t−( ) = +− −1 1 2 1

x
g

et i
i

t
= −

=
∑λ

1

g x x et t t−( ) = −−1 λ
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■ F I G U R E  1 2 . 1 2 Bounded adjustment chart showing the original unadjusted output, the adjusted

output, the EWMA, and the actual process adjustments. The circled EWMAs indicate points where adjust-

ments are made.
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Summing this up leads to the discrete proportional integral derivative (PID) control
equation

(12.13)

These models are widely used in practice, particularly in the chemical and process industries.

Often two of the three terms will be used, such as PI or PID control. Choosing the constants

(the k’s or the c’s) is usually called tuning the controller.

12.3 Combining SPC and EPC

There is considerable confusion about process adjustment versus process monitoring.
Process adjustment or regulation has an important role in reduction of variability; the con-

trol chart is not always the best method for reducing variability around a target. In the chem-

ical and process industries, techniques such as the simple integral control rule illustrated in

Section 12.2.1 have been very effectively used for this purpose. In general, engineering con-

trol theory is based on the idea that if we can (1) predict the next observation on the process,

(2) have some other variable that we can manipulate in order to affect the process output, and

(3) know the effect of this manipulated variable so that we can determine how much control

action to apply, then we can make the adjustment in the manipulated variable at time t that

is most likely to produce an on-target value of the process output in period t + 1. Clearly, this

requires good knowledge of the relationship between the output or controlled variable and

the manipulated variable, as well as an understanding of process dynamics. We must also be

able to easily change the manipulated variable. In fact, if the cost of taking control action is

negligible, then the variability in the process output is minimized by taking control action

every period. Note that this is in sharp contrast with SPC, where “control action” or a

process adjustment is taken only when there is statistical evidence that the process is out of

control. This statistical evidence is usually a point outside the limits of a control chart.

There are many processes where some type of feedback-control scheme would be

preferable to a control chart. For example, consider the process of driving a car, with the

objective of keeping it in the center of the right-hand lane (or equivalently, minimizing vari-

ation around the center of the right-hand lane). The driver can easily see the road ahead, and

process adjustments (corrections to the steering wheel position) can be made at any time at

negligible cost. Consequently, if the driver knew the relationship between the output variable

(car position) and the manipulated variable (steering wheel adjustment), he would likely prefer

to use a feedback-control scheme to control car position, rather than a statistical control chart.

(Driving a car with a Shewhart control chart may be an interesting idea, but the author doesn’t

want to be in the car during the experiment.)

On the other hand, EPC makes no attempt to identify an assignable cause that may

impact the process. The elimination of assignable causes can result in significant process

improvement. All EPC schemes do is react to process upsets; they do not make any effort to

remove the assignable causes. Consequently, in processes where feedback control is used

there may be substantial improvement if control charts are also used for statistical process
monitoring (as opposed to control; the control actions are based on the engineering scheme).

Some authors refer to systems where both EPC and an SPC system for process monitoring

have been implemented as algorithmic SPC; see Vander Weil et al. (1992).

The control chart should be applied either to the control error (the difference between

the controlled variable and the target) or to the sequence of adjustments to the manipulated

variable. Combinations of these two basic approaches are also possible. For example, the

control error and the adjustments (or the output characteristic and the adjustable variable)

x k e k e k e et P t I i
i

t

D t t= + + −( )
=

−∑
1

1
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could be jointly monitored using a multivariate control chart. Points that lie outside the con-

trol limits on these charts would identify periods during which the control errors are large or

during which large changes to the manipulated variable are being made. These periods

would likely be good opportunities to search for assignable causes. Montgomery et al.

(1994) have demonstrated the effectiveness of such a system. Other very useful references

and discussion are in Del Castillo (2002). Figure 12.13 illustrates how such a combination

of EPC and statistical process monitoring might be employed.
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Modify control scheme

Engineering control
scheme

Process

Statistical process
monitoring

Make adjustment
to manipulated variable
xt so that yt + 1 will
be on the target value
T.

Compute y^t+1 and
observe difference
between yt+1 and the
desired target
for process output, T.

Observe difference
between yt and 
the desired target for
process output, T.

Remove
assignable
cause

Output variable, yt

If the control error
yt – T is outside control
limits, then look for assignable
cause.

■ F I G U R E  1 2 . 1 3 Engineering process control and statistical

process monitoring.

Figure 12.17 presents individuals and moving range con-

trol charts applied to the output molecular weight deviation

from the target value T = 2,000, after the integral control

adjustments. An out-of-control signal is generated at period 

t = 80, indicating that an assignable cause is present. An

EWMA or CUSUM control chart on the output deviation from

target would generally detect the assignable cause more

quickly. Figure 12.18 is an EWMA with l = 0.1, and it signals

the assignable cause at period t = 70.

Suppose that we detected and eliminated the assignable

cause at period t = 70. Figure 12.19 is the resulting sequence

of output molecular weight values. The sample average and

standard deviation are now and s = 10.8, so we see

that coupling a control chart on the output deviation from target

with the integral controller has improved the performance of

the process when assignable causes are present.

x = 1,998

EXAMPLE 12.2

Figure 12.14 shows the molecular weight measurements from

Figure 12.1 in Example 12.1, except that now an assignable

cause has impacted the process starting at period t = 60. The

effect of this assignable cause is to increase the molecular

weight by 25 units, and this results in adding variability to the

process; the sample average and standard deviation of molec-

ular weight are and s = 30.4 (compared to 

and s = 19.4 when there was no assignable cause present).

Figure 12.15 shows the molecular weight after adjustments to

the catalyst feed rate by the integral control rule in Example

12.1 are applied. Figure 12.16 shows the setpoints for feed

rate. Process performance has improved, as the sample aver-

age and standard deviation are now and s = 15.4.

Clearly the assignable cause is still adding to process vari-

ability, because when there was no assignable cause in the

system, and s = 10.35 after the adjustments.x = 2,001

x = 1,992

x = 2,008x = 2,019

Integrating SPC and EPC
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(continued)
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■ F I G U R E 1 2 . 1 4 Molecular

weight, with an assignable cause of

magnitude 25 at t = 60.

■ F I G U R E 1 2 . 1 5 Molecular

weight after integral control adjustments

to catalyst feed rate.

■ F I G U R E 1 2 . 1 6 Setpoint

values for catalyst feed rate, Example 12.2.

■ F I G U R E 1 2 . 1 7 Individuals and moving range control charts applied to the 

output deviation from target, Example 12.2.
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Automatic process control (APC)

Bounded adjustment chart

Engineering process control (EPC)

Exponentially weighted moving average (EWMA)

Integral control

Integrating SPC and EPC

Manipulatable process variable

Manual adjustment chart

Process adjustment versus process monitoring

Process gain

Proportional integral (PI) control

Proportional integral (PID) derivative control

Setpoint

Statistical process control (SPC)

Statistical process monitoring

Important Terms and Concepts

Exercises

12.3. Consider the data in Table 12.1. Construct a bounded

adjustment chart using l = 0.4 and L = 10. Compare

the performance of this chart to the one in Table 12.1

and Figure 12.12.

12.4. Consider the data in Table 12.1. Suppose that an

adjustment is made to the output variable after every

observation. Compare the performance of this chart

to the one in Table 12.1 and Figure 12.12.

12.5. The Variogram. Consider the variance of observa-

tions that are m periods apart; that is, Vm = V(yt+m − yt).

A graph of Vm/V1 versus m is called a variogram. 

12.1. If yt are the observations and zt is

the EWMA, show that the follow-

ing relationships are true.

(a) zt − zt−1 = l(yt − zt−1)

(b) et − (1 − l)et−1 = yt − yt−1

12.2. Consider the data in Table 12.1.

Construct a bounded adjustment

chart using l = 0.3 and L = 10.

Compare the performance of this

chart to the one in Table 12.1 and

Figure 12.12.

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

–28

–18

–8

2

12

0

–6.41102

6.41102

100806040200

Observation

zt

■ F I G U R E 1 2 . 1 8 EWMA

control chart with l = 0.1 applied to 

the output deviation from target,

Example 12.2.

1940
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1990
1980

1960

2030

■ F I G U R E 1 2 . 1 9 Molecular

weight after adjustments to catalyst feed

rate with the assignable cause removed

following period t = 70.
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Exercises 559

forecasting procedure will provide adequate one-

step-ahead predictions.

(b) How much reduction in variability around the

target does the integral controller achieve?

(c) Rework parts (a) and (b) assuming that l = 0.4.

What change does this make in the variability

around the target in comparison to that achieved

with l = 0.2?

12.7. Use the data in Exercise 12.6 to construct a bounded

adjustment chart. Use l = 0.2 and set L = 12. How

does the bounded adjustment chart perform relative

to the integral control adjustment procedure in part

(a) of Exercise 12.6?

12.8. Rework Exercise 12.7 using l = 0.4 and L = 15. What

differences in the results are obtained?

12.9. Consider the observations in Table 12E.2. The target

value for this process is 50.

(a) Set up an integral controller for this process.

Assume that the gain for the adjustment variable

It is a nice way to check a data series for nonstation-

ary (drifting mean) behavior. If a data series is com-

pletely uncorrelated (white noise), the variogram

will always produce a plot that stays near unity. If

the data series is autocorrelated but stationary, the

plot of the variogram will increase for a while, but

as m increases the plot of Vm/V1 will gradually sta-

bilize and not increase any further. The plot of

Vm/V1 versus m will increase without bound for

nonstationary data. Apply this technique to the data

in Table 12.1. Is there an indication of nonstationary

behavior? Calculate the sample autocorrelation

function for the data. Compare the interpretation of

both graphs.

12.6. Consider the observations shown in Table 12E.1. The

target value for this process is 200.

(a) Set up an integral controller for this process.

Assume that the gain for the adjustment variable

is g = 1.2 and assume that l = 0.2 in the EWMA

■ TA B L E  1 2 E . 1

Process Data for Exercise 12.6

Observation, Observation,
t yt t yt

1 215.8 26 171.9

2 195.8 27 170.4

3 191.3 28 169.4

4 185.3 29 170.9

5 216.0 30 157.2

6 176.9 31 172.4

7 176.0 32 160.7

8 162.6 33 145.6

9 187.5 34 159.9

10 180.5 35 148.6

11 174.5 36 151.1

12 151.6 37 162.1

13 174.3 38 160.0

14 166.5 39 132.9

15 157.3 40 152.8

16 166.6 41 143.7

17 160.6 42 152.3

18 155.6 43 111.3

19 152.5 44 143.6

20 164.9 45 129.9

21 159.0 46 122.9

22 174.2 47 126.2

23 143.6 48 133.2

24 163.1 49 145.0

25 189.7 50 129.5

■ TA B L E  1 2 E . 2

Process Data for Exercise 12.9

Observation, Observation,
t yt t yt

1 50 26 43

2 58 27 39

3 54 28 32

4 45 29 37

5 56 30 44

6 56 31 52

7 66 32 42

8 55 33 47

9 69 34 33

10 56 35 49

11 63 36 34

12 54 37 40

13 67 38 27

14 55 39 29

15 56 40 35

16 65 41 27

17 65 42 33

18 61 43 25

19 57 44 21

20 61 45 16

21 64 46 24

22 43 47 18

23 44 48 20

24 45 49 23

25 39 50 26
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560 Chapter 12 ■ Engineering Process Control and SPC

is g = 1.6, and assume that l = 0.2 in the EWMA

forecasting procedure will provide adequate one-

step-ahead predictions.

(b) How much reduction in variability around the

target does the integral controller achieve?

(c) Rework parts (a) and (b) assuming that l = 0.4.

What change does this make in the variability

around the target in comparison to that achieved

with l = 0.2?

12.10. Use the data in Exercise 12.9 to construct a bounded

adjustment chart. Use l = 0.2 and set L = 4. How

does the bounded adjustment chart perform relative

to the integral control adjustment procedure in part

(a) of Exercise 12.9?
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Process Design 
and Improvement
with Designed
Experiments

Quality and productivity improvement are most effective when they are an
integral part of the product realization process. In particular, the formal intro-
duction of experimental design methodology at the earliest stage of the
development cycle, where new products are designed, existing product
designs improved, and manufacturing processes optimized, is often the key to
overall product success. This principle has been established in many different
industries, including electronics and semiconductors, aerospace, automotive,
medical devices, food and pharmaceuticals, and the chemical and process
industries. Designed experiments play a crucial role in the DMAIC process,
mostly in the improve step. Statistical design of experiments often is cited as
the most important of the Six Sigma tool kit, and it is a critical part of design
for Six Sigma (DFSS). The effective use of sound statistical experimental design
methodology can lead to products that are easier to manufacture, have higher
reliability, and have enhanced field performance. Experimental design can also
greatly enhance process development and improvements activities. Designed
experiments, and how to use them in these types of applications, are the pri-
mary focus of this section.

Factorial and fractional factorial designs are introduced in Chapter 13
with particular emphasis on the two-level design system—that is, the 2k fac-
torial design and the fractions thereof. These designs are particularly useful
for screening the variables in a process to determine those that are most
important. Chapter 14 introduces response surface methods, a collection
of techniques useful for process and system optimization. This chapter also
discusses process robustness studies, an approach to reducing the 

Process Design 
and Improvement
with Designed
Experiments

PART 5PART 5
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variability in process or product performance by minimizing the effects on
the output transmitted by variables that are difficult to control during routine
process operation. Finally, we present an overview of evolutionary operation,
an experimental-design–based process-monitoring scheme.

Throughout Part 5 we use the analysis of variance as the basis for analyzing
data from designed experiments. It is possible to introduce experimental
design without using analysis of variance methods, but this author believes
that it is a mistake to do so, primarily because students will encounter the
analysis of variance in virtually every computer program they use, either in
the classroom, or in professional practice. We also illustrate software pack-
ages supporting designed experiments.

The material in this section is not a substitute for a full course in experimen-
tal design. Those interested in applying experimental design to process
improvement will need additional background, but this presentation illus-
trates some of the many applications of this powerful tool. In many industries,
the effective use of statistical experimental design is the key to higher yields,
reduced variability, reduced development lead times, better products, and
satisfied customers.

562 Part 5 ■ Process Design and Improvement with Designed Experiments
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Factorial and
Fractional Factorial
Experiments for
Process Design and
Improvement

13.1 WHAT IS EXPERIMENTAL DESIGN?
13.2 EXAMPLES OF DESIGNED

EXPERIMENTS IN PROCESS AND
PRODUCT IMPROVEMENT

13.3 GUIDELINES FOR DESIGNING
EXPERIMENTS

13.4 FACTORIAL EXPERIMENTS
13.4.1 An Example
13.4.2 Statistical Analysis
13.4.3 Residual Analysis

13.5 THE 2k FACTORIAL DESIGN
13.5.1 The 22 Design
13.5.2 The 2k Design for k ≥ 3

Factors
13.5.3 A Single Replicate of the 2k

Design
13.5.4 Addition of Center Points to

the 2k Design
13.5.5 Blocking and Confounding

in the 2k Design

13.6 FRACTIONAL REPLICATION 
OF THE 2k DESIGN

13.6.1 The One-Half Fraction of
the 2k Design

13.6.2 Smaller Fractions: The 2k-p

Fractional Factorial Design

Supplemental Material for Chapter 13

S13.1 Additional Discussion of
Guidelines for Planning
Experiments

S13.2 Using a t-Test for Detecting
Curvature

S13.3 Blocking in Designed
Experiments

S13.4 More about Expected Mean
Squares in the Analysis of
Variance

1313

CHAPTER OUTLINE

The supplemental material is on the textbook Website www.wiley.com/college/montgomery.
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564 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

Most experiments for process design and improvement involve several variables. Factorial

experimental designs, and their variations, are used in such situations. This chapter gives an

introduction to factorial designs, emphasizing their applications for process and quality

improvement. Designed experiments are widely used in the DMAIC process, and are an

extremely important in the improve step. They also play a leading role in design for Six Sigma

(DFSS). We concentrate on experimental designs where all the factors have two levels, and

show how fractional versions of these designs can be used with great effectiveness in indus-

trial experimentation. Important topics include the analysis of factorial experimental designs

and the use of graphical methods in interpretation of the results. Both the interaction graph

and a response surface plot are shown to be very useful in interpretation of results.

After careful study of this chapter, you should be able to do the following:

1. Explain how designed experiments can be used to improve product design and

improve process performance

2. Explain how designed experiments can be used to reduce the cycle time required

to develop new products and processes

3. Understand how main effects and interactions of factors can be estimated

4. Understand the factorial design concept

5. Know how to use the analysis of variance (ANOVA) to analyze data from facto-

rial designs

6. Know how residuals are used for model adequacy checking for factorial designs

7. Know how to use the 2k system of factorial designs

8. Know how to construct and interpret contour plots and response surface plots

9. Know how to add center points to a 2k factorial design to test for curvature and

provide an estimate of pure experimental error

10. Understand how the blocking principle can be used in a factorial design to elim-

inate the effects of a nuisance factor

11. Know how to use the 2k−p system of fractional factorial designs

13.1 What Is Experimental Design?

As indicated in Chapter 1, a designed experiment is a test or series of tests in which purpose-

ful changes are made to the input variables of a process so that we may observe and identify

corresponding changes in the output response. The process, as shown in Figure 13.1, can be

visualized as some combination of machines, methods, and people that transforms an input

material into an output product. This output product has one or more observable quality char-

acteristics or responses. Some of the process variables x1, x2, . . . , xp are controllable,
whereas others z1, z2, . . . , zq are uncontrollable (although they may be controllable for pur-

poses of the test). Sometimes these uncontrollable factors are called noise factors. The objec-

tives of the experiment may include

1. Determining which variables are most influential on the response, y.

2. Determining where to set the influential x’s so that y is near the nominal requirement.

3. Determining where to set the influential x’s so that variability in y is small.

4. Determining where to set the influential x’s so that the effects of the uncontrollable vari-

ables z are minimized.

Thus, experimental design methods may be used either in process development or process

troubleshooting to improve process performance or to obtain a process that is robust or

insensitive to external sources of variability.
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Input Output

z1

Process y

Controllable input
factors

Uncontrollable input
factors

z2 zq

x1 x2 xp

Statistical process-control methods and experimental design, two very powerful tools for

the improvement and optimization of processes, are closely interrelated. For example, if a

process is in statistical control but still has poor capability, then to improve process capability it

will be necessary to reduce variability. Designed experiments may offer a more effective way to

do this than SPC. Essentially, SPC is a passive statistical method: We watch the process and wait

for some information that will lead to a useful change. However, if the process is in control, pas-

sive observation may not produce much useful information. On the other hand, experimental

design is an active statistical method: We will actually perform a series of tests on the process

or system, making changes in the inputs and observing the corresponding changes in the outputs,

and this will produce information that can lead to process improvement.

Experimental design methods can also be very useful in establishing statistical control

of a process. For example, suppose that a control chart indicates that the process is out of con-

trol, and the process has many controllable input variables. Unless we know which input vari-

ables are the important ones, it may be very difficult to bring the process under control.

Experimental design methods can be used to identify these influential process variables.

Experimental design is a critically important engineering tool for improving a manufac-

turing process. It also has extensive application in the development of new processes.

Application of these techniques early in process development can result in

1. Improved yield

2. Reduced variability and closer conformance to the nominal

3. Reduced development time

4. Reduced overall costs

Experimental design methods can also play a major role in engineering design activi-

ties, where new products are developed and existing ones improved. Designed experiments

are widely used in design for Six Sigma (DFSS) activities. Some applications of statistical

experimental design in engineering design include:

1. Evaluation and comparison of basic design configurations.

2. Evaluation of material alternatives.

3. Determination of key product design parameters that impact performance.

Use of experimental design in these areas can result in improved manufacturability of the

product, enhanced field performance and reliability, lower product cost, and shorter product

development time.

In recent years, designed experiments have found extensive application in transactional

and service businesses, including e-commerce. Applications include Web page design, testing

for consumer preferences, and designing/improving service systems. Sometimes a computer

simulation model of the service system is developed and experiments are conducted on the

simulation model.

■ F I G U R E  1 3 . 1 General model of a process.
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566 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

13.2 Examples of Designed Experiments in Process and Product Improvement

In this section, we present several examples that illustrate the application of designed experiments

in improving process and product quality. In subsequent sections, we will demonstrate the statis-

tical methods used to analyze the data and draw conclusions from experiments such as these.

EXAMPLE 13.1 Characterizing a Process

An engineer has applied SPC to a process for soldering elec-

tronic components to printed circuit boards. Through the use of

u charts and Pareto analysis, he has established statistical control

of the flow solder process and has reduced the average number

of defective solder joints per board to around 1%. However,

since the average board contains over 2,000 solder joints, even

1% defective presents far too many solder joints requiring

rework. The engineer would like to reduce defect levels even

further; however, since the process is in statistical control, it is

not obvious what machine adjustments will be necessary.

The flow solder machine has several variables that can be

controlled. They include:

1. Solder temperature

2. Preheat temperature

3. Conveyor speed

4. Flux type

5. Flux specific gravity

6. Solder wave depth

7. Conveyor angle

In addition to these controllable factors, several others cannot

be easily controlled during routine manufacturing, although

they could be controlled for purposes of a test. They are:

1. Thickness of the printed circuit board

2. Types of components used on the board

3. Layout of the components on the board

4. Operator

5. Production rate

In this situation, the engineer is interested in characteriz-
ing the flow solder machine; that is, he wants to determine

which factors (both controllable and uncontrollable) affect the

occurrence of defects on the printed circuit boards. To accom-

plish this task he can design an experiment that will enable him

to estimate the magnitude and direction of the factor effects.

That is, how much does the response variable (defects per unit)

change when each factor is changed, and does changing the

factors together produce different results than are obtained

from individual factor adjustments? A factorial experiment

will be required to do this. Sometimes we call this kind of fac-

torial experiment a screening experiment.
The information from this screening or characterization

experiment will be used to identify the critical process fac-

tors and to determine the direction of adjustment for these

factors to further reduce the number of defects per unit. The

experiment may also provide information about which fac-

tors should be more carefully controlled during routine man-

ufacturing to prevent high defect levels and erratic process

performance. Thus, one result of the experiment could be the

application of control charts to one or more process vari-

ables (such as solder temperature) in addition to the u chart

on process output. Over time, if the process is sufficiently

improved, it may be possible to base most of the process-

control plan on controlling process input variables instead of

control charting the output.

EXAMPLE 13.2 Optimizing a Process

characterization experiment that the two most important

process variables that influence yield are operating temperature

and reaction time. The process currently runs at 155 F and 1.7 h

of reaction time, producing yields around 75%. Figure 13.2

shows a view of the time-temperature region from above. In this

graph the lines of constant yield are connected to form

response contours, and we have shown the contour lines for

60%, 70%, 80%, 90%, and 95% yield.

To locate the optimum, it is necessary to perform an exper-

iment that varies time and temperature together. This type of

°

In a characterization experiment, we are usually interested in

determining which process variables affect the response. A

logical next step is to optimize—that is, to determine the

region in the important factors that lead to the best possible

response. For example, if the response is yield, we will look for

a region of maximum yield, and if the response is variability in

a critical product dimension, we will look for a region of min-

imum variability.

Suppose we are interested in improving the yield of a

chemical process. Let’s say that we know from the results of a
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EXAMPLE 13.3 A Product Design Example

Designed experiments can often be applied in the product

design process. To illustrate, suppose that a group of engineers

is designing a door hinge for an automobile. The quality char-

acteristic of interest is the check effort, or the holding ability of

the door latch that prevents the door from swinging closed

when the vehicle is parked on a hill. The check mechanism

consists of a spring and a roller. When the door is opened, the

roller travels through an arc causing the leaf spring to be com-

pressed. To close the door, the spring must be forced aside,

which creates the check effort. The engineering team believes

the check effort is a function of the following factors:

1. Roller travel distance

2. Spring height pivot to base

3. Horizontal distance from pivot to spring

4. Free height of the reinforcement spring

5. Free height of the main spring

The engineers build a prototype hinge mechanism in which

all these factors can be varied over certain ranges. Once

appropriate levels for these five factors are identified, an

experiment can be designed consisting of various combina-

tions of the factor levels, and the prototype hinge can be

tested at these combinations. This will produce information

concerning which factors are most influential on latch check

effort, and through use of this information the design can be

improved.

EXAMPLE 13.4 Determining System and Component Tolerances

The Wheatstone bridge shown in Figure 13.3 is a device used

for measuring an unknown resistance, Y. The adjustable resis-

tor B is manipulated until a particular current flow is obtained

through the ammeter (usually X = 0). Then the unknown resis-

tance is calculated as

(13.1)

Y
BD

C

X

C E
A D C D B C B C D F B C= − +( ) + +( )[ ] +( ) + +( )[ ]

2

2

The engineer wants to design the circuit so that overall

gauge capability is good; that is, he would like the standard

deviation of measurement error to be small. He has decided

that A = 20 Ω, C = 2 Ω, D = 50 Ω, E = 1.5 Ω, and F = 2 Ω is

the best choice of the design parameters as far as gauge

capability is concerned, but the overall measurement error is

still too high. This is likely due to the tolerances that have

been specified on the circuit components. These tolerances

are ±1% for each resistor A, B, C, D, and F, and ±5% for the

experiment is called a factorial experiment; an example of a

factorial experiment with both time and temperature run at two

levels is shown in Figure 13.2. The responses observed at the

four corners of the square indicate that we should move in the

general direction of increased temperature and decreased reac-

tion time to increase yield. A few additional runs could be per-

formed in this direction, which would be sufficient to locate

the region of maximum yield. Once we are in the region of the

optimum, a more elaborate experiment could be performed to

give a very precise estimate of the optimum operating condi-

tion. This type of experiment, called a response surface exper-
iment, is discussed in Chapter 14.
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■ F I G U R E  1 3 . 2 Contour plot of yield as a function of reaction time

and reaction temperature, illustrating an optimization experiment.

(continued )
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13.3 Guidelines for Designing Experiments

Designed experiments are a powerful approach to improving a process. To use this approach,

it is necessary that everyone involved in the experiment have a clear idea in advance of the

objective of the experiment, exactly what factors are to be studied, how the experiment is to

be conducted, and at least a qualitative understanding of how the data will be analyzed.

Montgomery (2009) gives an outline of the recommended procedure, reproduced in Figure 13.4.

We now briefly amplify each point in this checklist.

1. Recognition of and statement of the problem. In practice, it is often difficult to

realize that a problem requiring formal designed experiments exists, so it may not be easy to

develop a clear and generally accepted statement of the problem. However, it is absolutely

essential to fully develop all ideas about the problem and about the specific objectives of the

experiment. Usually, it is important to solicit input from all concerned parties—engineering,

quality, marketing, customers, management, and operators (who usually have much insight

that is all too often ignored). A clear statement of the problem and the objectives of the exper-

iment often contributes substantially to better process understanding and eventual solution of

the problem.

power supply E. These tolerance bands can be used to define

appropriate factor levels, and an experiment can be per-

formed to determine which circuit components have the

most critical tolerances and how much they must be tight-

ened to produce adequate gauge capability. The information

from this experiment will result in a design specification that

tightens only the most critical tolerances the minimum

amount possible consistent with desired measurement capa-

bility. Consequently, a lower-cost design that is easier to

manufacture will be possible.

Notice that in this experiment it is unnecessary actually to

build hardware, since the response from the circuit can be cal-

culated via equation 13.1. The actual response variable for the

experiment should be the standard deviation of Y. However, an

equation for the transmitted variation in Y from the circuit can

be found using the methods of Section 8.6.2. Therefore, the

entire experiment can be performed using a computer model of

the Wheatstone bridge.

■ F I G U R E  1 3 . 3
A Wheatstone bridge.

Y A B

X

CD

F
E

Pre-experimental 1. Recognition of and statement of the problem

planning 2. Choice of factors and levels

3. Selection of the response variable

4. Choice of experimental design

5. Performing the experiment

6. Data analysis

7. Conclusions and recommendations

often done simultaneously,

or in reverse order[ ]

■ F I G U R E  1 3 . 4 Procedure for designing an experiment.
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2. Choice of factors and levels. The experimenter must choose the factors to be varied

in the experiment, the ranges over which these factors will be varied, and the specific levels at

which runs will be made. Process knowledge is required to do this. This process knowledge is

usually a combination of practical experience and theoretical understanding. It is important to

investigate all factors that may be of importance and to avoid being overly influenced by past

experience, particularly when we are in the early stages of experimentation or when the

process is not very mature. When the objective is factor screening or process characterization,

it is usually best to keep the number of factor levels low. (Most often two levels are used.) As

noted in Figure 13.4, steps 2 and 3 are often carried out simultaneously, or step 3 may be done

first in some applications.

3. Selection of the response variable. In selecting the response variable, the

experimenter should be certain that the variable really provides useful information about

the process under study. Most often the average or standard deviation (or both) of the mea-

sured characteristic will be the response variable. Multiple responses are not unusual.

Gauge capability is also an important factor. If gauge capability is poor, then only rela-

tively large factor effects will be detected by the experiment, or additional replication

will be required.

4. Choice of experimental design. If the first three steps are done correctly, this step

is relatively easy. Choice of design involves consideration of sample size (number of repli-

cates), selection of a suitable run order for the experimental trials, and whether or not block-

ing or other randomization restrictions are involved. This chapter and Chapter 14 illustrate

some of the more important types of experimental designs.

5. Performing the experiment. When running the experiment, it is vital to carefully

monitor the process to ensure that everything is being done according to plan. Errors in exper-

imental procedure at this stage will usually destroy experimental validity. Up-front planning is

crucial to success. It is easy to underestimate the logistical and planning aspects of running a

designed experiment in a complex manufacturing environment.

6. Data analysis. Statistical methods should be used to analyze the data so that results

and conclusions are objective rather than judgmental. If the experiment has been designed

correctly and if it has been performed according to the design, then the type of statistical

method required is not elaborate. Many excellent software packages are available to assist in

the data analysis, and simple graphical methods play an important role in data interpretation.

Residual analysis and model validity checking are also important.

7. Conclusions and recommendations. Once the data have been analyzed, the exper-

iment must draw practical conclusions about the results and recommend a course of action.

Graphical methods are often useful in this stage, particularly in presenting the results to oth-

ers. Follow-up runs and confirmation testing should also be performed to validate the conclu-

sions from the experiment.

Steps 1 to 3 are usually called pre-experimental planning. It is vital that these steps

be performed as well as possible if the experiment is to be successful. Coleman and

Montgomery (1993) discuss this in detail and offer more guidance in pre-experimental plan-

ning, including worksheets to assist the experimenter in obtaining and documenting the

required information. Section S13.1 of the supplemental text material contains additional use-

ful material on planning experiments.

Throughout this entire process, it is important to keep in mind that experimentation is

an important part of the learning process, where we tentatively formulate hypotheses about a

system, perform experiments to investigate these hypotheses, and on the basis of the results

formulate new hypotheses, and so on. This suggests that experimentation is iterative. It is

usually a major mistake to design a single, large comprehensive experiment at the start of a

13.3 Guidelines for Designing Experiments 569
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570 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

study. A successful experiment requires knowledge of the important factors, the ranges over

which these factors should be varied, the appropriate number of levels to use, and the proper

units of measurement for these variables. Generally, we do not know perfectly the answers to

these questions, but we learn about them as we go along. As an experimental program pro-

gresses, we often drop some variables, add others, change the region of exploration for some

factors, or add new response variables. Consequently, we usually experiment sequentially,
and as a general rule no more than about 25% of the available resources should be invested

in the first experiment. This will ensure that sufficient resources are available to accomplish

the final objective of the experiment.

13.4 Factorial Experiments

When there are several factors of interest in an experiment, a factorial design should be used.

In such designs, factors are varied together. Specifically, by a factorial experiment we mean

that in each complete trial or replicate of the experiment all possible combinations of the 

levels of the factors are investigated. Thus, if there are two factors A and B with a levels of

factor A and b levels of factor B, then each replicate contains all ab possible combinations.

The effect of a factor is defined as the change in response produced by a change in the

level of the factor. This is called a main effect because it refers to the primary factors in the

study. For example, consider the data in Figure 13.5. In this factorial design, both the factors

A and B have two levels, denoted by “−” and “+.” These two levels are called “low” and

“high,” respectively. The main effect of factor A is the difference between the average

response at the high level of A and the average response at the low level of A, or

That is, changing factor A from the low level (−) to the high level (+) causes an average

response increase of 20 units. Similarly, the main effect of B is

In some experiments, the difference in response between the levels of one factor is not

the same at all levels of the other factors. When this occurs, there is an interaction between

the factors. For example, consider the data in Figure 13.6. At the low level of factor B, the A
effect is

A = − =30 10 20

B y y
B B

= − = + − + =+ −
20 40

2

10 30

2
10

A y y
A A

= − = + − + =+ −
30 40

2

10 20

2
20

–

+

– +

Factor A

Fa
ct

or
 B

10 30

20 0

–

+

– +

Factor A

Fa
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■ F I G U R E  1 3 . 5 A factorial

experiment with two factors.

■ F I G U R E  1 3 . 6 A factorial

experiment with interaction.
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and at the high level of factor B, the A effect is

Since the effect of A depends on the level chosen for factor B, there is interaction between A
and B.

When an interaction is large, the corresponding main effects have little meaning. For

example, by using the data in Figure 13.6, we find the main effect of A as

and we would be tempted to conclude that there is no A effect. However, when we examine the

main effect of A at different levels of factor B, we see that this is not the case. The effect of fac-

tor A depends on the levels of factor B. Thus, knowledge of the AB interaction is more useful than

knowledge of the main effect. A significant interaction can mask the significance of main effects.

The concept of interaction can be illustrated graphically. Figure 13.7 plots the data in

Figure 13.5 against the levels of A for both levels of B. Note that the B− and B+ lines are roughly

parallel, indicating that factors A and B do not interact. Figure 13.8 plots the data in Figure 13.6.

In Figure 13.8, the B− and B+ lines are not parallel, indicating the interaction between factors A
and B. Such graphical displays are often useful in presenting the results of experiments.

An alternative to the factorial design that is (unfortunately) used in practice is to change

the factors one at a time rather than to vary them simultaneously. To illustrate the one-factor-

at-a-time procedure, consider the optimization experiment described earlier in Example 13.2.

The engineer is interested in finding the values of temperature and time that maximize yield.

Suppose that we fix temperature at 155°F (the current operating level) and perform five runs

at different levels of time—say, 0.5 h, 1.0 h, 1.5 h, 2.0 h, and 2.5 h. The results of this series

of runs are shown in Figure 13.9. This figure indicates that maximum yield is achieved at

about 1.7 h of reaction time. To optimize temperature, the engineer fixes time at 1.7 h (the

apparent optimum) and performs five runs at different temperatures—say, 140°F, 150°F, 160°F,

170°F, and 180°F. The results of this set of runs are plotted in Figure 13.10. Maximum yield

occurs at about 155°F. Therefore, we would conclude that running the process at 155°F and

1.7 h is the best set of operating conditions, resulting in yields around 75%.

Figure 13.11 displays the contour plot of yield as a function of temperature and time with

the one-factor-at-a-time experiment shown on the contours. Clearly, the one-factor-at-a-time

design has failed dramatically here, as the true optimum is at least 20 yield points higher and

occurs at much lower reaction times and higher temperatures. The failure to discover the

shorter reaction times is particularly important because it could have significant impact on pro-

duction volume or capacity, production planning, manufacturing cost, and total productivity.

The one-factor-at-a-time method has failed here because it fails to detect the interaction

between temperature and time. Factorial experiments are the only way to detect interactions.

A = + − + =30 0

2

10 20

2
0

A = − = −0 20 20
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■ F I G U R E  1 3 . 7 Factorial experiment,

no interaction.

■ F I G U R E  1 3 . 8 Factorial experiment

with interaction.
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572 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

Furthermore, the one-factor-at-a-time method is inefficient; it will require more experimenta-

tion than a factorial, and as we have just seen, there is no assurance that it will produce the

correct results. The experiment shown in Figure 13.2 (p. 563) that produced the information

pointing to the region of the optimum is a simple example of a factorial experiment.

13.4.1 An Example

Aircraft primer paints are applied to aluminum surfaces by two methods—dipping and spray-

ing. The purpose of the primer is to improve paint adhesion; some parts can be primed using

either application method. A team using the DMAIC approach has identified three different

primers that can be used with both application methods. Three specimens were painted with

each primer using each application method, a finish paint was applied, and the adhesion force

was measured. The 18 runs from this experiment were run in random order. The resulting data

are shown in Table 13.1. The circled numbers in the cells are the cell totals. The objective of

the experiment was to determine which combination of primer paint and application method

produced the highest adhesion force. It would be desirable if at least one of the primers pro-

duced high adhesion force regardless of application method, as this would add some flexibil-

ity to the manufacturing process.

13.4.2 Statistical Analysis

The analysis of variance (ANOVA) described in Chapter 4 can be extended to handle the two-

factor factorial experiment. Let the two factors be denoted A and B, with a levels of factor A and
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■ F I G U R E  1 3 . 1 0
Yield versus temperature with

reaction time constant at 1.7 h.

■ F I G U R E  1 3 . 1 1
Optimization experiment using the

one-factor-at-a-time method.
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■ TA B L E  1 3 . 1

Adhesion Force Data

Application Method

Primer Type Dipping Spraying yi..

1 4.0, 4.5, 4.3 5.4, 4.9, 5.6 28.7

2 5.6, 4.9, 5.4 5.8, 6.1, 6.3 34.1

3 3.8, 3.7, 4.0 5.5, 5.0, 5.0 27.0

y.j. 40.2 49.6 89.8 = y…

12.8

15.9

11.5

15.9

18.2

15.5

50

60

70

80
Yi

el
d 

(%
)

0.5 1.0 1.5 2.0 2.5

Time (hours)

■ F I G U R E  1 3 . 9 Yield

versus reaction time with temper-

ature constant at 155°F.
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■ TA B L E  1 3 . 2

Data for a Two-Factor Factorial Design

Factor B

1 2 … b

1 y111, y112, y121, y122, y1b1, y1b2,

… , y11n … , y12n … … , y1bn

2 y211, y212, y221, y222, y2b1, y2b2,

Factor A … , y21n … , y22n … … , y2bn

o o o o o

ya11, ya12, ya21, ya22, yab1, yab2,

a … , ya1n … , ya2n … … , yabn

b levels of B. If the experiment is replicated n times, the data layout will look like Table 13.2.

In general, the observation in the ijth cell in the kth replicate is yijk. In collecting the data, the

abn observations would be run in random order. Thus, like the single-factor experiment stud-

ied in Chapter 4, the two-factor factorial is a completely randomized design. Both factors

are assumed to be fixed effects.

The observations from a two-factor factorial experiment may be described by the

model

(13.2)

where m is the overall mean effect, ti is the effect of the ith level of factor A, bj is the effect

of the jth level of factor B, (tb )ij is the effect of the interaction between A and B, and eijk is

an NID(0, s 2) random error component. We are interested in testing the hypotheses of no sig-

nificant factor A effect, no significant factor B effect, and no significant AB interaction.

Let yi.. denote the total of the observations at the ith level of factor A, y.j. denote the total

of the observations at the jth level of factor B, yij. denote the total of the observations in the

ijth cell of Table 13.2, and denote the grand total of all the observations.

Define and as the corresponding row, column, cell, and grand averages—

that is,

(13.3)
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The analysis of variance decomposes the total corrected sum of squares

as follows:
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The corresponding degree of freedom decomposition is

(13.5)

This decomposition is usually summarized in an analysis of variance table such as the one

shown in Table 13.3.

To test for no row factor effects, no column factor effects, and no interaction effects, we

would divide the corresponding mean square by mean square error. Each of these ratios will

follow an F distribution, with numerator degrees of freedom equal to the number of degrees

of freedom for the numerator mean square and ab(n − 1) denominator degrees of freedom,

when the null hypothesis of no factor effect is true. We would reject the corresponding

abn a b a b ab n− = −( ) + −( ) + −( ) −( ) + −( )1 1 1 1 1 1

■ TA B L E  1 3 . 3

The ANOVA Table for a Two-Factor Factorial, Fixed Effects Model

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square F0

A SSA F
MS

MS
A

E
0 =MS

SS

aA
A=

−1
a −1

B SSB
F

MS

MS
B

E
0 =MS

SS

bB
B=

−1
b −1

Interaction SSAB
F

MS

MS
AB

E
0 =MS

SS

a bAB
AB=

−( ) −( )1 1
a b−( ) −( )1 1

Error SSE
MS

SS

ab nE
E=
−( )1

ab n −( )1

Total SST abn −1

(13.4)SS SS SS SS SST A B AB E= + + +

or symbolically,
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hypothesis if the computed F exceeded the tabular value at an appropriate significance level,

or alternatively if the P-value were smaller than the specified significance level.

The ANOVA is usually performed with computer software, although simple computing

formulas for the sums of squares may be obtained easily. The computing formulas for these

sums of squares follow.

(13.6)

Main effects

(13.7)

(13.8)

Interaction

(13.9)
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and

The P-values in this table were obtained from a calculator

(they can also be found using the Probability Distribution

function in the Calc menu in Minitab).

The ANOVA is summarized in Table 13.4. Note that the

P-values for both main effects are very small, indicating that

SS SS SS SS SSE T= − − −

= − − − =
primers methods interaction

10 72 4 58 4 91 0 24 0 99. . . . .

EXAMPLE 13.5

Use the ANOVA described above to analyze the aircraft primer paint experiment described in Section 13.4.1.

The Aircraft Primer Paint Problem

SOLUTION 

The sums of squares required are
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(continued )
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the analysis of variance from Minitab. Note the similarity of

this display to Table 13.4. Because the computer carries more

decimal places than we did in the manual calculations, the 

F-ratios in Tables 13.4 and 13.5 are slightly different. The 

P-value for each F-ratio is called “significance level” in

Table 13.5, and when a P-value is less than 0.001, Minitab

reports it as 0.000.

A graph of the adhesion force cell averages { } versus

the levels of primer type for each application method is

shown in Figure 13.12. This interaction graph was con-

structed by Minitab. The absence of interaction is evident in

the parallelism of the two lines. Furthermore, since a large

response indicates greater adhesion force, we conclude that

yij.

the type of primer used and the application method signifi-

cantly affect adhesion force. Since the P-value for the inter-

action effect F-ratio is relatively large, we would conclude

that there is no interaction between primer type and applica-

tion method. As an alternative to using the P-values, we

could compare the computed F-ratios to a 5% (say) upper

critical value of the F distribution. Since F0.05,2,12 = 3.89 and

F0.05,1,12 = 4.75, we conclude that primer type and applica-

tion method affect adhesion force. Furthermore, since 1.5 <
F0.05,2,12, there is no indication of interaction between these

factors.

In practice, ANOVA computations are performed on a

computer using a statistics software package. Table 13.5 is

■ TA B L E  1 3 . 4

ANOVA for Example 13.5

Sum of Degrees of 
Source of Variation Squares Freedom Mean Square F0 P-value

Primer types 4.58 2 2.290 27.93 1.93 × 10−4

Application methods 4.91 1 4.910 59.88 5.28 × 10−6

Interaction 0.24 2 0.120 1.46 0.269

Error 0.99 12 0.082

Total 10.72 17

■ TA B L E  1 3 . 5

ANOVA Output from Minitab, Example 13.5

Two-way ANOVA: Force versus Primer, Method 
Analysis of Variance for Force
Source DF SS MS F P
Primer 2 4.5811 2.2906 27.86 0.000
Method 1 4.9089 4.9089 59.70 0.000
Interaction 2 0.2411 0.1206 1.47 0.269
Error 12 0.9867 0.0822
Total 17 10.7178

Individual 95% CI
Primer Mean ------+---------+---------+---------+--------
1 4.78 (----*----)
2 5.68 (----*----)
3 4.50 (----*----)

------+---------+---------+---------+--------
4.50 5.00 5.50 6.00

Individual 95% CI
Method Mean ---------+---------+---------+---------+-----
Dip 4.467 (-----*-----)
Spray 5.511 (-----*-----)

---------+---------+---------+---------+-----
4.550 4.900 5.250 5.600

Confidence intervals on each mean calculated using MSE as an estimate of s2 and applying the standard confidence

interval procedure for the mean of a normal distribution with unknown variance.
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13.4.3 Residual Analysis

Just as in the single-factor experiments discussed in Chapter 4, the residuals from a factorial

experiment play an important role in assessing model adequacy. The residuals from a two-

factor factorial are

That is, the residuals are simply the difference between the observations and the correspond-

ing cell averages.

Table 13.6 presents the residuals for the aircraft primer paint data in Example 13.5. The

normal probability plot of these residuals is shown in Figure 13.13. This plot has tails that do

not fall exactly along a straight line passing through the center of the plot, indicating that

there may be some small problems with the normality assumption, but the departure from

normality is not serious. Figures 13.14 and 13.15 plot the residuals versus the levels of primer

types and application methods, respectively. There is some indication that primer type 3

e y y

y y

ijk ijk ijk

ijk ij

= −

= −

ˆ

.

13.4 Factorial Experiments 577

spraying is a superior application method and that primer

type 2 is most effective. Therefore, if we wish to operate the

process so as to attain maximum adhesion force, we should

use primer type 2 and spray all parts.

3.8
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spray
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■ F I G U R E  1 3 . 1 2 Graph of average adhe-

sion force versus primer types for Example 13.5.

■ TA B L E  1 3 . 6

Residuals for the Aircraft Primer Paint Experiment

Primer Type Application Method

Dipping Spraying

1 −0.26, 0.23, 0.03 0.10, −0.40, 0.30

2 0.30, −0.40, 0.10 −0.26, 0.03, 0.23

3 −0.03, −0.13, 0.16 0.34, −0.17, −0.17

■ F I G U R E  1 3 . 1 4 Plot of residuals versus

primer type.

■ F I G U R E  1 3 . 1 3 Normal probability plot

of the residuals from Example 13.5.
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578 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

results in slightly lower variability in adhesion force than the other two primers. The graph of

residuals versus fitted values in Figure 13.16 does not reveal any unusual or diagnostic pattern.

13.5 The 2k Factorial Design

Certain special types of factorial designs are very useful in process development and improve-

ment. One of these is a factorial design with k factors, each at two levels. Because each com-

plete replicate of the design has 2k runs, the arrangement is called a 2k factorial design. These

designs have a greatly simplified analysis, and they also form the basis of many other useful

designs.

13.5.1 The 22 Design

The simplest type of 2k design is the 22—that is, two factors A and B, each at two levels. We

usually think of these levels as the “low” or “−” and “high” or “+” levels of the factor. The

geometry of the 22 design is shown in Figure 13.17a. Note that the design can be represented

geometrically as a square with the 22 = 4 runs forming the corners of the square. Figure

13.17b shows the four runs in a tabular format often called the test matrix or the design
matrix. Each run of the test matrix is on the corners of the square and the − and + signs in

each row show the settings for the variables A and B for that run.

Another notation is used to represent the runs. In general, a run is represented by a

series of lowercase letters. If a letter is present, then the corresponding factor is set at the high

level in that run; if it is absent, the factor is run at its low level. For example, run a indicates
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Predicted values

■ F I G U R E  1 3 . 1 5 Plot of residuals versus

application method.

■ F I G U R E  1 3 . 1 6 Plot of residuals versus

predicted values.

■ F I G U R E  1 3 . 1 7 The 22 factorial

design.
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b abHigh
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(a) Design geometry
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(b) Test matrix
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that factor A is at the high level and factor B is at the low level. The run with both factors at

the low level is represented by (1). This notation is used throughout the family of 2k designs.

For example, the run in a 24 with A and C at the high level and B and D at the low level is

denoted by ac.

The effects of interest in the 22 design are the main effects A and B and the two-factor

interaction AB. Let the letters (1), a, b, and ab also represent the totals of all n observations

taken at these design points. It is easy to estimate the effects of these factors. To estimate the

main effect of A, we would average the observations on the right side of the square when A is
at the high level and subtract from this the average of the observations on the left side of the

square where A is at the low level, or

(13.11)

Similarly, the main effect of B is found by averaging the observations on the top of the square

where B is at the high level and subtracting the average of the observations on the bottom of

the square where B is at the low level:

(13.12)

Finally, the AB interaction is estimated by taking the difference in the diagonal averages in

Figure 13.17, or

(13.13)

The quantities in brackets in equations 13.11, 13.12, and 13.13 are called contrasts. For

example, the A contrast is

In these equations, the contrast coefficients are always either + 1 or − 1. A table of plus and

minus signs, such as Table 13.7, can be used to determine the sign on each run for a particular

Contrast A a ab b= + − − ( )1

AB
ab

n

a b

n

n
ab a b

= + ( ) − +

= + ( ) − −[ ]

1

2 2

1

2
1

B y y

b ab

n

a

n

n
b ab a

B B
= −

= + − + ( )

= + − − ( )[ ]

+ −

2

1

2

1

2
1

A y y

a ab

n

b

n

n
a ab b

A A
= −

= + − + ( )

= + − − ( )[ ]

+ −

2

1

2

1

2
1

13.5 The 2k Factorial Design 579

c13FactorialAndFractionalFactorialExperimentsForProcessDesignand Improvement.qxd  3/31/12  5:27 PM  Page 579



580 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

contrast. The column headings for the table are the main effects A and B, the AB interaction, and

I, which represents the total. The row headings are the runs. Note that the signs in the AB col-

umn are the product of signs from columns A and B. To generate a contrast from this table, mul-

tiply the signs in the appropriate column of Table 13.7 by the runs listed in the rows and add.

To obtain the sums of squares for A, B, and AB, we use the following result.

■ TA B L E  1 3 . 7

Signs for Effects in the 22 Design

Factorial Effect

Run I A B AB

1 (1) + − − +
2 a + + − −
3 b + − + −
4 ab + + + +

(13.14)SS
n

= ( )
( )∑

contrast

contrast coefficients

2

2

SS
a ab b

n

SS
b ab a

n

SS
ab a b

n

A

B

AB

=
+ − − ( )[ ]

=
+ − − ( )[ ]

=
+ ( ) − −[ ]

1

4

1

4

1

4

2

2

2

Therefore, the sums of squares for A, B, and AB are

The analysis of variance is completed by computing the total sum of squares SST (with 4n − 1

degrees of freedom) as usual, and obtaining the error sum of squares SSE [with 4(n − 1) degrees

of freedom] by subtraction.

EXAMPLE 13.6 The Router Experiment

assembly. The components are inserted into the board using

automatic equipment, and the variability in notch dimension

causes improper board registration. As a result, the auto-

insertion equipment does not work properly. How would you

improve this process?

A router is used to cut registration notches in printed circuit

boards. The average notch dimension is satisfactory, and the

process is in statistical control (see the and R control charts

in Figure 13.18), but there is too much variability in the

process. This excess variability leads to problems in board

x

(13.15)
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■ F I G U R E  1 3 . 1 8 and R control

charts on notch dimension, Example 13.6.

x

Using equations 13.11, 13.12, and 13.13, we can compute the

factor effect estimates as follows:

All the numerical effect estimates seem large. For example,

when we change factor A from the low level to the high level

(bit size from � to �), the average vibration level increases

by 16.64 cps.

The magnitude of these effects may be confirmed with the

analysis of variance, which is summarized in Table 13.9. The

sums of squares in this table for main effects and interaction

were computed using equation 13.15. The analysis of variance

confirms our conclusions that were obtained by initially exam-

ining the magnitude and direction of the factor effects; both bit

size and speed are important, and there is interaction between

two variables.

1
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SOLUTION 

Since the process is in statistical control, the quality improve-

ment team assigned to this project decided to use a designed

experiment to study the process. The team considered two

factors: bit size (A) and speed (B). Two levels were chosen for

each factor (bit size A at � and � and speed B at 40 rpm and

80 rpm), and a 22 design was set up. Since variation in notch

dimension was difficult to measure directly, the team decided

to measure it indirectly. Sixteen test boards were instru-

mented with accelerometers that allowed vibration on the 

(X, Y, Z) coordinate axes to be measured. The resultant vec-

tor of these three components was used as the response vari-

able. Since vibration at the surface of the board when it is cut

is directly related to variability in notch dimension, reducing

vibration levels will also reduce the variability in notch

dimension.

Four boards were tested at each of the four runs in the

experiment, and the resulting data are shown in Table 13.8.

1
8

1
16

■ TA B L E  1 3 . 9

Analysis of Variance for the Router Experiment

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0 P-value

Bit size (A) 1,107.226 1 1,107.226 185.25 1.17 × 10−8

Speed (B) 227.256 1 227.256 38.03 4.82 × 10−5

AB 303.631 1 303.631 50.80 1.20 × 10−5

Error 71.723 12 5.977

Total 1,709.836 15

■ TA B L E  1 3 . 8

Data from the Router Experiment

Factors

Run A B Vibration Total

1 (1) − − 18.2 18.9 12.9 14.4 64.4

2 a + − 27.2 24.0 22.4 22.5 96.1

3 b − + 15.9 14.5 15.1 14.2 59.7

4 ab + + 41.0 43.9 36.3 39.9 161.1
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582 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

Regression Model and Residual Analysis. It is easy to obtain the residuals from

a 2k design by fitting a regression model to the data. For the router experiment, the regres-

sion model is

where the factors A and B are represented by coded variables x1 and x2, and the AB interac-

tion is represented by the cross-product term in the model, x1x2. The low and high levels of

each factor are assigned the values xj = −1 and xj = +1, respectively. The coefficients b0, b1,

b2, and b12 are called regression coefficients, and e is a random error term, similar to the

error term in an analysis of variance model.

The fitted regression model is

where the estimate of the intercept is the grand average of all 16 observations ( ) and the

estimates of the other regression coefficients are one-half the effect estimate for the corre-

sponding factor. [Each regression coefficient estimate is one-half the effect estimate because

regression coefficients measure the effect of a unit change in xj on the mean of y, and the

effect estimate is based on a two-unit change (from −1 to +1).]

This model can be used to obtain the predicted values of vibration level at any point in

the region of experimentation, including the four points in the design. For example, consider

the point with the small bit (x1 = −1) and low speed (x2 = −1). The predicted vibration level is

The four residuals corresponding to the observations at this design point are found by taking

the difference between the actual observation and the predicted value as follows:

The residuals at the other three runs would be computed similarly.

Figures 13.19 and 13.20 present the normal probability plot and the plot of residuals

versus the fitted values, respectively. The normal probability plot is satisfactory, as is the plot

of residuals versus , although this latter plot does give some indication that there may be less

variability in the data at the point of lowest predicted vibration level.

Practical Interpretation of Example 13.6. Since both factors A (bit size) and B
(speed) have large, positive effects, we could reduce vibration levels by running both factors

ŷ
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at the low level. However, with both bit size and speed at low level, the production rate could

be unacceptably low. The AB interaction provides a solution to this potential dilemma. Fig-

ure 13.21 presents the two-factor AB interaction plot. Note that the large positive effect of

speed occurs primarily when bit size is at the high level. If we use the small bit, then either

speed level will provide lower vibration levels. If we run with speed high and use the small

bit, the production rate will be satisfactory.

When manufacturing implemented this set of operating conditions, the result was a dra-

matic reduction in variability in the registration notch dimension. The process remained 

in statistical control, as the control charts in Figure 13.22 imply, and the reduced variability

dramatically improved the performance of the auto-insertion process.

Analysis Procedure for Factorial Experiments. Table 13.10 summarizes the

sequence of steps that is usually employed to analyze factorial experiments. These steps were

followed in the analysis of the router experiment in Example 13.6. Recall that our first activ-

ity, after the experiment was run, was to estimate the effect of the factors bit size, speed, and

the two-factor interaction. The preliminary model that we used in the analysis was the two-

factor factorial model with interaction. Generally, in any factorial experiment with replica-

tion, we will almost always use the full factorial model as the preliminary model. We tested

for significance of factor effects by using the analysis of variance. Since the residual analysis

was satisfactory, and both main effects and the interaction term were significant, there was no

need to refine the model. Therefore, we were able to interpret the results in terms of the orig-

inal full factorial model, using the two-factor interaction graph in Figure 13.21. Sometimes

refining the model includes deleting terms from the final model that are not significant, or tak-

ing other actions that may be indicated from the residual analysis.

Several statistics software packages include special routines for the analysis of two-level

factorial designs. Many of these packages follow an analysis process similar to the one we have

outlined. We will illustrate this analysis procedure again several times in this chapter.

13.5.2 The 2k Design for k ≥≥ 3 Factors

The methods presented in the previous section for factorial designs with k = 2 factors each

at two levels can be easily extended to more than two factors. For example, consider k = 3

13.5 The 2k Factorial Design 583

■ F I G U R E  1 3 . 2 1 AB
interaction plot.

■ F I G U R E  1 3 . 2 2 and R charts for the router process after the experiment.x

13

44

– +

Bit size, A

Vi
br

at
io

n 
cp

s

B–

B+

B–

B+

0.24

0.25

0.26

0.27

UCL

LCL

UCL

0.06

0.04

0.02

Sample number Sample number

x

R

■ TA B L E  1 3 . 1 0

Analysis Procedure for Factorial Designs

1. Estimate the factor effects 4. Analyze residuals

2. Form preliminary model 5. Refine model, if necessary

3. Test for significance of factor effects 6. Interpret results
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factors, each at two levels. This design is a 23 factorial design, and it has eight factor-level

combinations. Geometrically, the design is a cube as shown in Figure 13.23a, with the eight

runs forming the corners of the cube. Figure 13.23b shows the test or design matrix. This

design allows three main effects to be estimated (A, B, and C) along with three two-factor

interactions (AB, AC, and BC) and a three-factor interaction (ABC). Thus, the full factorial

model could be written symbolically as

where m is an overall mean, e is a random error term assumed to be NID(0, s2), and

the uppercase letters represent the main effects and interactions of the factors (note

that we could have used Greek letters for the main effects and interactions, as in equa-

tion 13.2).

The main effects can be estimated easily. Remember that the lowercase letters (1), a, b,

ab, c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the design.

Referring to the cube in Figure 13.23, we would estimate the main effect of A by averaging the

four runs on the right side of the cube where A is at the high level and subtracting from that

quantity the average of the four runs on the left side of the cube where A is at the low level.

This gives

y A B C AB AC BC ABC= + + + + + + + +μ ε

+

–

C

c

bc abc

abb

a(1)

ac

A

B

– +

–

+

A B
–

+

–

+

–

+

–

+

–
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+

+
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(b) Test matrix(a) Design geometry

C
–

–

–

–

+

+

+

+

■ F I G U R E  1 3 . 2 3 The 23 factorial design.

(13.16)A y y
n

a ab ac abc b c bc
A A

= − = + + + − − − − ( )[ ]+ −
1

4
1

(13.17)B y y
n

b ab bc abc a c ac
B B

= − = + + + − − − − ( )[ ]+ −
1

4
1

In a similar manner, the effect of B is the average difference of the four runs in the back face

of the cube and the four in the front, or

and the effect of C is the average difference between the four runs in the top face of the cube

and the four in the bottom, or
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The top row of Figure 13.24 shows how the main effects of the three factors are computed.

Now consider the two-factor interaction AB. When C is at the low level, AB is simply

the average difference in the A effect at the two levels of B, or

Similarly, when C is at the high level, the AB interaction is

The AB interaction is the average of these two components, or

AB C
n

abc bc
n

ac c high( ) = −[ ] − −[ ]1

2

1

2

AB C
n

ab b
n

a low( ) = −[ ] − − ( )[ ]1

2

1

2
1
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■ F I G U R E  1 3 . 2 4 Geometric presentation of contrasts corresponding

to the main effects and interaction in the 23 design.
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Note that the AB interaction is simply the difference in averages on two diagonal planes in the

cube (refer to the left-most cube in the middle row of Figure 13.24).

Using a similar approach, we see from the middle row of Figure 13.24 that the AC and

BC interaction effect estimates are as follows:

AC
n

ac abc b a c ab bc

BC
n

bc abc a b c ab ac

= + ( ) + + − − − −[ ]

= + ( ) + + − − − −[ ]

1

4
1

1

4
1

(13.20)

(13.21)

The ABC interaction effect is the average difference between the AB interaction at the two lev-

els of C. Thus

or

ABC
n

abc bc ac c ab b a= −[ ] − −[ ] − −[ ] + − ( )[ ]{ }1

4
1

(13.22)ABC
n

abc bc ac c ab b a= − − + − + + − ( )[ ]1

4
1

This effect estimate is illustrated in the bottom row of Figure 13.24.

The quantities in brackets in equations 13.16 through 13.22 are contrasts in the eight

factor-level combinations. These contrasts can be obtained from a table of plus and minus

signs for the 23 design, shown in Table 13.11. Signs for the main effects (columns A, B, and C)

are obtained by associating a plus with the high level and a minus with the low level. Once

the signs for the main effects have been established, the signs for the remaining columns are

found by multiplying the appropriate preceding columns, row by row. For example, the signs

in column AB are the product of the signs in columns A and B.

■ TA B L E  1 3 . 1 1

Signs for Effects in the 23 Design

Treatment Factorial Effect

Combination I A B AB C AC BC ABC

(1) + − − + − + + −
a + + − − − − + +
b + − + − − + − +
ab + + + + − − − −
c + − − + + − − +
ac + + − − + + − −
bc + − + − + − + −
abc + + + + + + + +
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Table 13.11 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and minus

signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the

table are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an iden-
tity element.

4. The product of any two columns yields a column in the table; for example, A × B = AB,

and AB × ABC = A2B2C = C, since any column multiplied by itself is the identity column.

The estimate of any main effect or interaction is determined by multiplying the factor-

level combinations in the first column of the table by the signs in the corresponding main

effect or interaction column, adding the result to produce a contrast, and then dividing the

contrast by one-half the total number of runs in the experiment. Expressed mathematically,

13.5 The 2k Factorial Design 587

(13.23)Effect
Contrast= −n k

2
1

(13.24)SS
n k= ( )Contrast

2

2

The sum of squares for any effect is

EXAMPLE 13.7 A 23 Factorial Design

cates. Table 13.12 presents the observed surface-finish data 

for this experiment, and the design is shown graphically in 

Figure 13.25. Analyze and interpret the data from this experiment.

An experiment was performed to investigate the surface finish of

a metal part. The experiment is a 23 factorial design in the factors

feed rate (A), depth of cut (B), and tool angle (C), with n = 2 repli-

(continued )

■ TA B L E  1 3 . 1 2

Surface-Finish Data for Example 13.7

Design Factors

Run A B C Surface Finish Totals

1 (1) −1 −1 −1 9, 7 16

2 a 1 −1 −1 10, 12 22

3 b −1 1 −1 9, 11 20

4 ab 1 1 −1 12, 15 27

5 c −1 −1 1 11, 10 21

6 ac 1 −1 1 10, 13 23

7 bc −1 1 1 10, 8 18

8 abc 1 1 1 16, 14 30
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It is easy to verify that the other effect estimates and sums of

squares are

From examining the magnitude of the effects, feed rate (factor

A) is clearly dominant, followed by depth of cut (B) and the AB
interaction, although the interaction effect is relatively small.

The analysis of variance for the full factorial model is summa-

rized in Table 13.13. Based on the P-values, it is clear that the

feed rate (A) is highly significant.
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SOLUTION 

The main effects may be estimated using equations 13.16

through 13.22. The effect of A, for example, is

and the sum of squares for A is found using equation 13.24:

SS
nA

A
k= ( )

= ( )
( )

=

Contrast
2

2

2

27

2 8
45 5625.
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n
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= [ ] =
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4
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4 2
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1

8
27 3 375.

■ TA B L E  1 3 . 1 3

Analysis of Variance for the Surface-Finish Experiment

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0 P-value

A 45.5625 1 45.5625 18.69 2.54 × 10−3

B 10.5625 1 10.5625 4.33 0.07

C 3.0625 1 3.0625 1.26 0.29

AB 7.5625 1 7.5625 3.10 0.12

AC 0.0625 1 0.0625 0.03 0.88

BC 1.5625 1 1.5625 0.64 0.45

ABC 5.0625 1 5.0625 2.08 0.19

Error 19.5000 8 2.4375

Total 92.9375 15

■ F I G U R E  1 3 . 2 5 23 design for the surface-finish experiment

in Example 13.7 (the numbers in parentheses are the average responses at

each design point).
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13.5 The 2k Factorial Design 589

where is the coefficient estimate and s.e. ( ) is the estimated

standard error of the coefficient. For a 2k factorial design, the

estimated standard error of the coefficient is

We use the error or residual mean square from the analysis of

variance as the estimate . In our example,

as shown in Table 13.14. It is easy to verify that dividing any

coefficient estimate by its estimated standard error produces

the t-value for testing whether the corresponding regression

coefficient is zero.

The t-tests in Table 13.14 are equivalent to the ANOVA F-

tests in Table 13.13. You may have suspected this already, since

the P-values in the two tables are identical to two decimal

places. Furthermore, note that the square of any t-value in Table

13.14 produces the corresponding F-ratio value in Table 13.13.

s e. . ˆ .
. β( ) = ( ) =2 4375

2 2
0 390312

3

ŝ2

s e
n k. . ˆ ˆ

 β σ( ) =
2

2

b̂b̂Many computer programs analyze the 2k factorial design.

Table 13.14 is the output from Minitab. Although at first

glance the two tables seem somewhat different, they actually

provide the same information. The analysis of variance dis-

played in the lower portion of Table 13.14 presents F-ratios

computed on important groups of model terms: main effects,

two-way interactions, and the three-way interaction. The mean

square for each group of model terms was obtained by combin-

ing the sums of squares for each model component and divid-

ing by the number of degrees of freedom associated with that

group of model terms.

A t-test is used to test the significance of each individual

term in the model. These t-tests are shown in the upper portion

of Table 13.14. Note that a “coefficient estimate” is given for

each variable in the full factorial model. These are actually the

estimates of the coefficients in the regression model that would

be used to predict surface finish in terms of the variables in the

full factorial model. Each t-value is computed according to

t
s e

0 = ( )
ˆ

. . ˆ

β
β 

(continued )

■ TA B L E  1 3 . 1 4

Analysis of Variance from Minitab for the Surface-Finish Experiment

Factorial Design

Full Factorial Design
Factors: 3 Base Design: 3, 8
Runs: 16 Replicates: 2
Blocks: none Center pts (total): 0
All terms are free from aliasing

Fractional Factorial Fit: Finish versus A, B, C

Estimated Effects and Coefficients for Finish (coded units)
Term Effect Coef SE Coef T P
Constant 11.0625 0.3903 28.34 0.000
A 3.3750 1.6875 0.3903 4.32 0.003
B 1.6250 0.8125 0.3903 2.08 0.071
C 0.8750 0.4375 0.3903 1.12 0.295
A*B 1.3750 0.6875 0.3903 1.76 0.116
A*C 0.1250 0.0625 0.3903 0.16 0.877
B*C −0.6250 −0.3125 0.3903 −0.80 0.446
A*B*C 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Finish (coded units)
Source DF Seq SS Adj SS Adj MS F P
Main Effects 3 59.187 59.187 19.729 8.09 0.008
2-Way Interactions 3 9.187 9.187 3.062 1.26 0.352
3-Way Interactions 1 5.062 5.062 5.062 2.08 0.188
Residual Error 8 19.500 19.500 2.437
Pure Error 8 19.500 19.500 2.438
Total 15 92.937
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Finally, we can provide a practical interpretation of the

results of our experiment. Both main effects A and B are posi-

tive, and since small values of the surface finish response are

desirable, this would suggest that both A (feed rate) and B (depth

of cut) should be run at the low level. However, the model has

an interaction term, and the effect of this interaction should be

taken into account when drawing conclusions. We could do

this by examining an interaction plot, as in Example 13.6 (see

Figure 13.21). Alternatively, the cube plot of predicted

responses in Figure 13.26 can also be used for model interpreta-

tion. This figure indicates that the lowest values of predicted sur-

face finish will be obtained when A and B are at the low level.

Figure 13.26 shows the predicted values at each point in the

original experimental design.

The residuals can be obtained as the difference between the

observed and predicted values of surface finish at each design

point. For the point where all three factors A, B, and C are at

the low level, the observed values of surface finish are 9 and 7,

so the residuals are 9 − 9.25 = −0.25 and 7 − 9.25 = −2.25.

A normal probability plot of the residuals is shown in

Figure 13.27. Since the residuals lie approximately along a

straight line, we do not suspect any severe nonnormality in the

data. There are also no indications of outliers. It would also be

helpful to plot the residuals versus the predicted values and

against each of the factors A, B, and C. These plots do not indi-

cate any potential model problems.

In general, the square of a t random variable with v degrees of

freedom results in an F random variable with one numerator

degree of freedom and v denominator degrees of freedom. This

explains the equivalence of the two procedures used to conduct

the analysis of variance for the surface-finish experiment data.

Based on the ANOVA results, we conclude that the full fac-

torial model in all these factors is unnecessary, and that a

reduced model including fewer variables is more appropriate.

The main effects of A and B both have relatively small P-values

(< 0.10), and this AB interaction is the next most important

effect (P-value 0.12). The regression model that we would

use to represent this process is

where x1 represents factor A, x2 represents factor B, and x1x2

represents the AB interaction. The regression coefficients 

1, 2, and 12 are one-half the corresponding effect esti-

mates and 0 is the grand average. Thus

Note that we can read the values of 0, 1, 2, and 12 directly

from the “coefficient” column of Table 13.14.

This regression model can be used to predict surface finish

at any point in the original experimental region. For example,

consider the point where all three variables are at the low level.

At this point, x1 = x2 = −1, and the predicted value is
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■ F I G U R E  1 3 . 2 6 Predicted values of surface finish at

each point in the original design, Example 13.7.

■ F I G U R E  1 3 . 2 7 Normal prob-

ability plot of residuals, Example 13.7.

Some Comments on the Regression Model. In the two previous examples, we

used a regression model to summarize the results of the experiment. In general, a regression

model is an equation of the form

(13.25)

where y is the response variable, the x’s are a set of regressor or predictor variables, the b’s are

the regression coefficients, and e is an error term, assumed to be NID(0, s2). In our examples,

y = b0 + b1x1 + b2x2 + . . . bkxk + e
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we had k = 2 factors and the models had an interaction term, so the specific form of the regres-

sion model that we fit was

In general, the regression coefficients in these models are estimated using the method of least
squares; that is, the ’s are chosen so as to minimize the sum of the squares of the errors (the

e’s). Refer to Chapter 4 for an introduction to least squares regression. However, in the special

case of a 2k design, it is extremely easy to find the least squares estimates of the b’s. The least

squares estimate of any regression coefficient b is simply one-half of the corresponding fac-

tor effect estimate. Recall that we have used this result to obtain the regression models in

Examples 13.6 and 13.7. Also, please remember that this result only works for a 2k factorial

design, and it assumes that the x’s are coded variables over the range −1 ≤ x ≤ +1 that repre-

sent the design factors.

It is very useful to express the results of a designed experiment in terms of a model, which

will be a valuable aid in interpreting the experiment. Recall that we used the cube plot of predicted

values from the model in Figure 13.26 to find appropriate settings for feed rate and depth of cut in

Example 13.7. More general graphical displays can also be useful. For example, consider the

model for surface finish in terms of feed rate (x1) and depth of cut (x2) without the interaction term

Note that the model was obtained simply by deleting the interaction term from the original model.

This can only be done if the variables in the experimental design are orthogonal, as they are in a

2k design. Figure 13.28 plots the predicted value of surface finish ( ) in terms of the two process

variables x1 and x2. Figure 13.28a is a three-dimensional plot showing the plane of predicted

response values generated by the regression model. This type of display is called a response sur-
face plot, and the regression model used to generate the graph is often called a first-order
response surface model. The graph in Figure 13.28b is a two-dimensional contour plot obtained

by looking down on the three-dimensional response surface plot and connecting points of constant

surface finish (response) in the x1–x2 plane. The lines of constant response are straight lines

because the response surface is first order; that is, it contains only the main effects x1 and x2.

In Example 13.7, we actually fit a first-order model with interaction:

Figure 13.29a is the three-dimensional response surface plot for this model and Figure 13.29b is

the contour plot. Note that the effect of adding the interaction term to the model is to introduce

curvature into the response surface; in effect, the plane is “twisted” by the interaction effect.

Inspection of a response surface makes interpretation of the results of an experiment very

simple. For example, note from Figure 13.29 that if we wish to minimize the surface-finish

response, we need to run x1 and x2 at (or near) their low levels. We reached the same conclusion

by inspection of the cube plot in Figure 13.26. However, suppose we needed to obtain a particu-

lar value of surface finish, say 10.25 (the surface might need to be this rough so that a coating

will adhere properly). Figure 13.29b indicates that there are many combinations of x1 and x2 that

will allow the process to operate on the contour line . The experimenter might select a

set of operating conditions that maximized x1 subject to x1 and x2 giving a predicted response on

or near to the contour , as this would satisfy the surface-finish objective while simulta-

neously making the feed rate as large as possible, which would maximize the production rate.

Response surface models have many uses. In Chapter 14, we will give an overview of

some aspects of response surfaces and how they can be used for process improvement and

optimization. However, note how useful the response surface was, even in this simple example.

This is why we tell experimenters that the objective of every designed experiment is a
quantitative model of the process.

ŷ = 10.25

ŷ = 10.25

ˆ . . . .y x x x x= + + +11 0625 1 6875 0 8125 0 68751 2 1 2

ŷ

ˆ . . .y x x= + +11 0625 1 6875 0 81251 2

b̂

y x x x x= + + + +β β β β ε0 1 1 2 2 12 1 2

13.5 The 2k Factorial Design 591
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592 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

Projection of 2k Designs. Any 2k design will collapse or project into another two-

level factorial design in fewer variables if one or more of the original factors are dropped.

Usually this will provide additional insight into the remaining factors. For example, consider

the surface-finish experiment. Since factor C and all its interactions are negligible, we could

eliminate factor C from the design. The result is to collapse the cube in Figure 13.25 into a

square in the A-B plane; however, each of the four runs in the new design has four replicates.

In general, if we delete h factors so that r = k − h factors remain, the original 2k design with

n replicates will project into a 2r design with n2h replicates.

Other Methods for Judging the Significance of Effects. The analysis of vari-

ance is a formal way to determine which effects are nonzero. Two other methods are useful.

In the first method, we can calculate the standard errors of the effects and compare the mag-

nitude of the effects to their standard errors. The second method uses normal probability plots

to assess the importance of the effects.

The standard error of any effect estimate in a 2k design is given by

(13.26)

where is an estimate of the experimental error variance s2. We usually take the error (or

residual) mean square from the analysis of variance as the estimate of s2.

As an illustration for the surface-finish experiment, we find that MSE = ,

and the standard error of each effect is
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■ F I G U R E  1 3 . 2 9 (a) Response surface for

the model = 11.0625 + 1.6875x1 + 0.8125x2 +
0.6875x1x2. (b) The contour plot.

ŷ
■ F I G U R E  1 3 . 2 8 (a) Response surface 

for the model = 11.0625 + 1.6875x1 + 0.8125x2. 

(b) The contour plot.

ŷ
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Therefore, two standard deviation limits on the effect estimates are

These intervals are approximate 95% confidence intervals. They indicate that the two main

effects A and B are important but that the other effects are not, since the intervals for all

effects except A and B include zero. These conclusions are similar to those found in

Example 13.7.

Normal probability plots can also be used to judge the significance of effects. We will

illustrate that method in the next section.

13.5.3 A Single Replicate of the 2k Design

As the number of factors in a factorial experiment grows, the number of effects that can be

estimated also grows. For example, a 24 experiment has 4 main effects, 6 two-factor interac-

tions, 4 three-factor interactions, and 1 four-factor interaction, whereas a 26 experiment has 6

main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor interac-

tions, 6 five-factor interactions, and 1 six-factor interaction. In most situations the sparsity of
effects principle applies; that is, the system is usually dominated by the main effects and low-

order interactions. Three-factor and higher interactions are usually negligible. Therefore,

when the number of factors is moderately large—say, k ≥ 4 or 5—a common practice is to

run only a single replicate of the 2k design and then pool or combine the higher-order inter-

actions as an estimate of error.

A:   3.375 ± 1.56

B:   1.625 ± 1.56

C:   0.875 ± 1.56

AB:   1.375 ± 1.56

AC:   0.125 ± 1.56

BC: −0.625 ± 1.56

ABC:   1.125 ± 1.56

13.5 The 2k Factorial Design 593

EXAMPLE 13.8 Characterizing a Plasma Etching Process

An article in Solid State Technology (“Orthogonal Design for

Process Optimization and Its Application in Plasma Etching,”

May 1987, pp. 127–132) describes the application of factorial

designs in developing a nitride etch process on a single-wafer

plasma etcher. The process uses C2F6 as the reactant gas. It is

possible to vary the gas flow, the power applied to the cathode,

the pressure in the reactor chamber, and the spacing between

the anode and the cathode (gap). Several response variables

would usually be of interest in this process, but in this exam-

ple we will concentrate on etch rate for silicon nitride. Perform

an appropriate experiment to characterize the performance of

this etching process with respect to the four process variables.

SOLUTION

The authors used a single replicate of a 24 design to investigate

this process. Since it is unlikely that the three-factor and four-

factor interactions are significant, we will tentatively plan to

combine them as an estimate of error. The factor levels used in

the design are shown here:

Table 13.15 presents the data from the 16 runs of the 

24 design. The design is shown geometrically in Figure 13.30.

Table 13.16 is the table of plus and minus signs for the 

24 design. The signs in the columns of this table can be used to

Design Gap Pressure C2F6 Flow Power
Factor A B C D
Level (cm) (m Torr) (SCCM) (W)

Low (−) 0.80 450 125 275

High (+) 1.20 550 200 325

(continued)
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594 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

rate by 101.625 angstroms per minute. It is easy to verify that

the complete set of effect estimates is

A very helpful method in judging the significance of factors

in a 2k experiment is to construct a normal probability plot of

the effect estimates. If none of the effects is significant, then

the estimates will behave like a random sample drawn from a

normal distribution with zero mean, and the plotted effects will

lie approximately along a straight line. Those effects that do

not plot on the line are significant factors.

The normal probability plot of effect estimates from the

plasma etch experiment is shown in Figure 13.31. Clearly, the

main effects of A and D and the AD interaction are significant,

as they fall far from the line passing through the other points.

The analysis of variance summarized in Table 13.17 confirms
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■ F I G U R E  1 3 . 3 1
Normal probability plot of

effects, Example 13.8.

■ TA B L E  1 3 . 1 5

The 24 Design for the Plasma Etch Experiment

A B C D Etch Rate
Run (Gap) (Pressure) (C2F6 flow) (Power) (Å/min)

1 −1 −1 −1 −1 550

2 1 −1 −1 −1 669

3 −1 1 −1 −1 604

4 1 1 −1 −1 650

5 −1 −1 1 −1 633

6 1 −1 1 −1 642

7 −1 1 1 −1 601

8 1 1 1 −1 635

9 −1 −1 −1 1 1,037

10 1 −1 −1 1 749

11 −1 1 −1 1 1,052

12 1 1 −1 1 868

13 −1 −1 1 1 1,075

14 1 −1 1 1 860

15 −1 1 1 1 1,063

16 1 1 1 1 729

estimate the factor effects. To illustrate, the estimate of the

effect of gap on factor A is

Thus, the effect of increasing the gap between the anode and

the cathode from 0.80 cm to 1.20 cm is to decrease the etch

A a ab ac abc ad abd acd abcd b

c d bc bd cd bcd

= + + + + + + + − ( ) −[
− − − − − − ]

= + + + + + + + −[
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= −

1

8
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1

8
669 650 642 635 749 868 860 729 550
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■ F I G U R E  1 3 . 3 0 The 24 design for Example 13.8. The etch rate response is shown at

the corners of the cubes.

c13FactorialAndFractionalFactorialExperimentsForProcessDesignand Improvement.qxd  3/31/12  5:27 PM  Page 594



550

1075

E
tc

h 
ra

te
 (

Å
/m

in
)

D–
D–

D+

D+

–

Gap, A

+

■ F I G U R E  1 3 . 3 2 AD
interaction in the plasma etch

experiment.

these findings. Note that in the analysis of variance we have

pooled the three- and four-factor interactions to form the error

mean square. If the normal probability plot had indicated that

any of these interactions were important, they would not be

included in the error term.

Since A = −101.625, the effect of increasing the gap between

the cathode and anode is to decrease the etch rate. However,

D = 306.125, so applying higher power levels will increase the

etch rate. Figure 13.32 is a plot of the AD interaction. This plot

indicates that the effect of changing the gap width at low power

settings is small, but that increasing the gap at high power set-

tings dramatically reduces the etch rate. High etch rates are

obtained at high power settings and narrow gap widths.

(continued)
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■ TA B L E  1 3 . 1 7

Analysis of Variance for the Plasma Etch Experiment

Source of 
Variation Sum of Squares Degrees of Freedom Mean Square F0

A 41,310.563 1 41,310.563 20.28

B 10.563 1 10.563 < 1

C 217.563 1 217.563 < 1

D 374,850.063 1 374,850.063 183.99

AB 248.063 1 248.063 < 1

AC 2,475.063 1 2,475.063 1.21

AD 94,402.563 1 99,402.563 46.34

BC 7,700.063 1 7,700.063 3.78

BD 1.563 1 1.563 < 1

CD 18.063 1 18.063 < 1

Error 10,186.815 5 2,037.363

Total 531,420.938 15

■ TA B L E  1 3 . 1 6

Contrast Constants for the 24 Design

Run A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

1 (1) − − + − + + − − + + − + − − +
2 a + − − − − + + − − + + + + − −
3 b − + − − + − + − + − + + − + −
4 ab + + + − − − − − − − − + + + +
5 c − − + + − − + − + + − − + + −
6 ac + − − + + − − − − + + − − + +
7 bc − + − + − + − − + − + − + − +
8 abc + + + + + + + − − − − − − − −
9 d − − + − + + − + − − + − + + −

10 ad + − − − − + + + + − − − − + +
11 bd − + − − + − + + − + − − + − +
12 abd + + + − − − − + + + + − − − −
13 cd − − + + − − + + − − + + − − +
14 acd + − − + + − − + + − − + + − −
15 bcd − + − + − + − + − + − + − + −
16 abcd + + + + + + + + + + + + + + +
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596 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

13.5.4 Addition of Center Points to the 2k Design

A potential concern in the use of two-level factorial designs is the assumption of linearity in

the factor effects. Of course, perfect linearity is unnecessary, and the 2k system will work

quite well even when the linearity assumption holds only approximately. In fact, we have

already observed that when an interaction term is added to a main-effects model, curvature is

introduced into the response surface. Since a 2k design will support a main effects plus inter-

actions model, some protection against curvature is already inherent in the design.

In some systems or processes, it will be necessary to incorporate second-order effects
to obtain an adequate model. Consider the case of k = 2 factors. A model that includes second-

order effects is

The residuals at the other three runs—(A high, D low), (A low,

D high), and (A high, D high)—are obtained similarly. A nor-

mal probability plot of the residuals is shown in Figure 13.33.

The plot is satisfactory.

The regression model for this experiment is

For example, when both A and D are at the low level, the pre-

dicted value from this model is
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■ F I G U R E  1 3 . 3 3
Normal probability plot of residu-

als, Example 13.8.

The four residuals at this run are

e

e

e

e

1

2

3

4

550 597

604 597

633 597

601 597

47

7

36

4

= − =
= − =
= − =
= − =

−

(13.27)y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 12 1 2 11 1
2

22 2
2

where the coefficients b11 and b22 measure pure quadratic effects. Equation 13.27 is a 

second-order response surface model. This model cannot be fitted using a 22 design, because

to fit a quadratic model all factors must be run at at least three levels. It is important, however,

to be able to determine whether the pure quadratic terms in equation 13.27 are needed.

There is a method of adding one point to a 2k factorial design that will provide some

protection against pure quadratic effects (in the sense that one can test to determine if the

quadratic terms are necessary). Furthermore, if this point is replicated, then an independent

estimate of experimental error can be obtained. The method consists of adding center
points to the 2k design. These center points consist of nC replicates run at the point xi = 0

(i = 1, 2, . . . , k). One important reason for adding the replicate runs at the design center 

is that center points do not impact the usual effect estimates in a 2k design. We assume 

that the k factors are quantitative; otherwise, a “middle” or center level of the factor would

not exist.

To illustrate the approach, consider a 22 design with one observation at each of the

factorial points (−, −), (+, −), (−, +), and (+, +) and nC observations at the center points 
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(0, 0). Figure 13.34 illustrates the situation. Let be the average of the four runs at the

four factorial points, and let be the average of the nC runs at the center point. If the dif-

ference − is small, then the center points lie on or near the plane passing through the

factorial points, and there is no curvature. On the other hand, if − is large, then cur-

vature is present. A single-degree-of-freedom sum of squares for pure quadratic curvature

is given by

(13.28)

where, in general, nF is the number of factorial design points. This quantity may be compared

to the error mean square to test for curvature.1 More specifically, when points are added to

the center of the 2k design, then the model we may entertain is

where the bjj are pure quadratic effects. The test for curvature actually tests the hypotheses

Furthermore, if the factorial points in the design are unreplicated, we may use the nC center

points to construct an estimate of error with nC − 1 degrees of freedom.
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13.5 The 2k Factorial Design 597

1A t-test can also be used; see Section S13.2 of the supplemental text material for this chapter.
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■ F I G U R E  1 3 . 3 4 A 22 design with center points.
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598 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

center points have been added. Analyze the data and draw

conclusions.

■ TA B L E  1 3 . 1 8

The 24 Design for the Plasma Etch Experiment

A B C D Etch Rate
Run (Gap) (Pressure) (C2F6 flow) (Power) (Å/min)

1 −1 −1 −1 −1 550

2 1 −1 −1 −1 669

3 −1 1 −1 −1 604

4 1 1 −1 −1 650

5 −1 −1 1 −1 633

6 1 −1 1 −1 642

7 −1 1 1 −1 601

8 1 1 1 −1 635

9 −1 −1 −1 1 1,037

10 1 −1 −1 1 749

11 −1 1 −1 1 1,052

12 1 1 −1 1 868

13 −1 −1 1 1 1,075

14 1 −1 1 1 860

15 −1 1 1 1 1,063

16 1 1 1 1 729

17 0 0 0 0 706

18 0 0 0 0 764

19 0 0 0 0 780

20 0 0 0 0 761

SOLUTION

The average of the center points is and the aver-

age of the 16 factorial points is . The curvature

sum of squares is computed from equation 13.28 as

yF = 776.0625

yC = 752.75 This estimate of error has nC − 1 = 4 − 1 = 3 degrees of 

freedom.

The pure quadratic sum of squares and the estimate of error

may be incorporated into the analysis of variance for this

experimental design. We would still use a normal probability

plot of the effect estimates to preliminarily identify the impor-

tant factors. The construction of this plot would not be affected

by the addition of center points in the design, we would still

identify A (Gap), D (Power), and the AD interaction as the

most important effect.

Table 13.19 is the analysis of variance for this experiment

obtained from Minitab. In the analysis, we included all four

main effects and all six two-factor interactions in the model

(just as we did in Example 13.8; see also Table 13.17). Note

also that the pure quadratic sum of squares from equation 13.28

SS
n n y y

n n
F C F C

F C
pure quadratic =

−( )
+

= ( ) −( )
+

2 2
16 4 776 0625 752 75

16 4

. .

= 1,739.1

Furthermore, an estimate of experimental error can be obtained

by simply calculating the sample variance of the four center

points as follows:

ˆ

.

σ 2

2

17

20

752 75

3

3,122.7

3
1,040.92=

−( )
= ==

∑ yi
i

Table 13.18 presents a modified version of the original

unreplicated 24 design in Example 13.8 to which nC = 4

EXAMPLE 13.9 Adding Center Points to a 2k Design
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13.5.5 Blocking and Confounding in the 2k Design

It is often impossible to run all of the observations in a 2k factorial design under constant or

homogeneous conditions. For example, it might not be possible to conduct all the tests on one

shift or use material from a single batch. When this problem occurs, blocking is an excellent

technique for eliminating the unwanted variation that could be caused by the nonhomogeneous

conditions. If the design is replicated, and if the block is of sufficient size, then one approach

13.5 The 2k Factorial Design 599

form a residual sum of squares with 8 degrees of freedom. This 

residual sum of squares is used to test for pure quadratic cur-

vature with

The P-value in Table 13.19 associated with this F-ratio indi-

cates that there is no evidence of pure quadratic curvature.

The upper portion of Table 13.19 shows the regression

coefficient for each model effect, the corresponding t-value,

and the P-value. Clearly the main effects of A and D and the

AD interaction are the three largest effects.

F
MS

MS0

1,739

1,664
1 05= = =curvature

residual

.

is called the “curvature” sum of squares, and the estimate of

error calculated from the nC = 4 center points is called the

“pure error” sum of squares in Table 13.19. The “lack-of-fit”

sum of squares in Table 13.19 is actually the total of the sums

of squares for the three-factor and four-factor interactions. The

F-test for lack of fit is computed as

and is not significant, indicating that none of the higher-order

interaction terms is important. This computer program 

combines the pure error and lack-of-fit sum of squares to 

F
MS

MS0

2,037

1,041
1 96= = =lack of fit

pure error

.

■ TA B L E  1 3 . 1 9

Analysis of Variance Output from Minitab for Example 13.9

Estimated Effects and Coefficients for Etch Rate (coded units)
Term Effect Coef SE Coef T P
Constant 776.06 10.20 76.11 0.000
A -101.62 -50.81 10.20 -4.98 0.001
B -1.63 -0.81 10.20 -0.08 0.938
C 7.37 3.69 10.20 0.36 0.727
D 306.12 153.06 10.20 15.01 0.000
A*B -7.88 -3.94 10.20 -0.39 0.709
A*C -24.88 -12.44 10.20 -1.22 0.257
A*D -153.63 -76.81 10.20 -7.53 0.000
B*C -43.87 -21.94 10.20 -2.15 0.064
B*D -0.63 -0.31 10.20 -0.03 0.976
C*D -2.13 -1.06 10.20 -0.10 0.920
Ct Pt -23.31 22.80 -1.02 0.337

Analysis of Variance for Etch (coded units)
Source DF Seq SS Adj SS Adj MS F P
Main Effects 4 416,389 416,389 104,097 62.57 0.000
2-Way Interactions 6 104,845 104,845 17,474 10.50 0.002
Curvature 1 1,739 1,739 1,739 1.05 0.337
Residual Error 8 13,310 13,310 1,664

Lack of Fit 5 10,187 10,187 2,037 1.96 0.308
Pure Error 3 3,123 3,123 1,041

Total 19 536,283
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600 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

is to run each replicate in one block (set of homogeneous conditions). For example, consider

a 23 design that is to be replicated twice. Suppose that it takes about 1 h to complete each run.

Then by running the eight runs from replicate one on one day and the eight runs from the sec-

ond replicate on another day, any time effect, or difference between how the process works

on the two days, can be eliminated. Thus, the two days became the two blocks in the design.

The average difference between the responses on the two days is the block effect. For more

introductory material about blocking and how it is used to eliminate the effect of a nuisance

factor, see Section S13.3 of the supplemental material for this chapter.

Sometimes we cannot run a complete replicate of a factorial design under homogeneous

experimental conditions. Confounding is a design technique for running a factorial experiment

in blocks, where the block size is smaller than the number of runs in one complete replicate. The

technique causes certain interactions to be indistinguishable from or confounded with blocks.
We will illustrate confounding in the 2k factorial design in 2p blocks, where p < k.

Consider a 22 design. Suppose that each of the 22 = 4 runs require 4 h of laboratory

analysis. Thus, two days are required to perform the experiment. If days are considered as

blocks, then we must assign two of the four runs to each day.

Consider the design shown in Figure 13.35. Note that block 1 contains the runs (1) and

ab and that block 2 contains a and b. The contrasts for estimating the main effects A and B are

These contrasts are unaffected by blocking since in each contrast there is one plus and one

minus run from each block. That is, any difference between block 1 and block 2 will cancel

out. The contrast for the AB interaction is

Since the two runs with the plus sign, ab and (1), are in block 1 and the two with the minus

sign, a and b, are in block 2, the block effect and AB interaction are identical. That is, AB is
confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design,

shown in Table 13.7. From this table, we see that all runs that have a plus on AB are assigned

to block 1, and all runs that have a minus sign on AB are assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second exam-

ple, consider a 23 design, run in two blocks. Suppose we wish to confound the three-factor

interaction ABC with blocks. From the table of plus and minus signs, shown in Table 13.11,

we assign the runs that are minus on ABC to block 1 and those that are plus on ABC to block 2.

The resulting design is shown in Figure 13.36.

For more information on confounding, refer to Montgomery (2009, Chapter 7). This

book contains guidelines for selecting factors to confound with blocks so that main effects

Contrast AB ab a b= + ( ) − −1

Contrast

Contrast

A

B

ab a b

ab b a

= + − − ( )
= + − − ( )

1

1
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–
– +
(1)

A

a
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b

= Run in block 1
= Run in block 2

Geometric view

(a)

(1)

Assignment of the four
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ab

Block 1

a

b
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■ F I G U R E  1 3 . 3 5 A 22 design in two blocks.
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and low-order interactions are not confounded. In particular, the book contains a table of sug-

gested confounding schemes for designs with up to seven factors and a range of block sizes,

some as small as two runs.

13.6 Fractional Replication of the 2k Design

As the number of factors in a 2k design increases, the number of runs required increases

rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of freedom corre-

spond to main effects and 10 degrees of freedom correspond to two-factor interactions. If we

can assume that certain high-order interactions are negligible, then a fractional factorial

design involving fewer than the complete set of 2k runs can be used to obtain information on

the main effects and low-order interactions. In this section, we will introduce fractional repli-

cation of the 2k design. For a more complete treatment, see Montgomery (2009, Chapter 8).

13.6.1 The One-Half Fraction of the 2k Design

A one-half fraction of the 2k design contains 2k−1 runs and is often called a 2k−1 fractional fac-

torial design. As an example, consider the 23−1 design—that is, a one-half fraction of the 23.

The table of plus and minus signs for the 23 design is shown in Table 13.20. Suppose we select

the four runs a, b, c, and abc as our one-half fraction. These runs are shown in the top half of

Table 13.20. The design is shown geometrically in Figure 13.37a.

Note that the 23−1 design is formed by selecting only those runs that yield a plus on the

ABC effect. Thus, ABC is called the generator of this particular fraction. Furthermore, the

identity element I is also plus for the four runs, so we call

the defining relation for the design.

I ABC=

13.6 Fractional Replication of the 2k Design 601
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■ F I G U R E  1 3 . 3 6 The 23 design in two blocks with ABC confounded.

C 

B

A

The principal fraction, I = +ABC

(a)

a

b

abc

c

The alternate fraction, I = –ABC

(b)

ab

ac

bc

(1)

■ F I G U R E  1 3 . 3 7 The one-half fractions of the 23 design.
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The runs in the 23−1 designs yield 3 degrees of freedom associated with the main

effects. From Table 13.20, we obtain the estimates of the main effects as

It is also easy to verify that the estimates of the two-factor interactions are

Thus, the linear combination of observations in column A—say, [A]—estimates A +
BC. Similarly, [B] estimates B + AC, and [C] estimates C + AB. Two or more effects that have

this property are called aliases. In our 23−1 design, A and BC are aliases, B and AC are

aliases, and C and AB are aliases. Aliasing is the direct result of fractional replication. In

many practical situations, it will be possible to select the fraction so that the main effects and

low-order interactions of interest will be aliased with high-order interactions (which are

probably negligible).

The alias structure for this design is found by using the defining relation I = ABC.

Multiplying any effect by the defining relation yields the aliases for that effect. In our exam-

ple, the alias of A is

since A � I = A and A2 = I. The aliases of B and C are

B B ABC AB C AC= ⋅ = =2

A A ABC A BC BC= ⋅ = =2

BC a b c abc

AC a b c abc

AB a b c abc

= − − +[ ]

= − + − +[ ]

= − − + +[ ]

1

2

1

2

1

2

A a b c abc

B a b c abc

C a b c abc

= − − +[ ]

= − + − +[ ]

= − − + +[ ]

1

2

1

2

1

2

■ TA B L E  1 3 . 2 0

Plus and Minus Signs for the 23 Factorial Design

Factorial Effect

Run I A B C AB AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +

ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −
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and

Now suppose that we had chosen the other one-half fraction, that is, the runs in Table

13.20 associated with minus on ABC. This design is shown geometrically in Figure 13.37b.

The defining relation for this design is I = −ABC. The aliases are A = −BC, B = −AC, and

C = −AB. Thus, the effects A, B, and C with this particular fraction really estimate A − BC,

B − AC, and C − AB. In practice, it usually does not matter which one-half fraction we select.

The fraction with the plus sign in the defining relation is usually called the principal frac-
tion; the other fraction is usually called the alternate fraction.

Sometimes we use sequences of fractional factorial designs to estimate effects. For

example, suppose we had run the principal fraction of the 23−1 design. From this design we

have the following effect estimates:

Suppose we are willing to assume at this point that the two-factor interactions are negligible.

If they are, then the 23−1 design has produced estimates of the three main effects A, B, and C.

However, if after running the principal fraction we are uncertain about the interactions, it is

possible to estimate them by running the alternate fraction. The alternate fraction produces

the following effect estimates:

If we combine the estimates from the two fractions, we obtain the following:

A A BC

B B AC

C C AC

[ ]′ = −

[ ]′ = −

[ ]′ = −

A A BC

B B AC

C C AB

[ ] = +

[ ] = +

[ ] = +

C C ABC ABC AB.= ⋅ = =2
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Thus, by combining a sequence of two fractional factorial designs, we can isolate both the

main effects and the two-factor interactions. This property makes the fractional factorial

design highly useful in experimental problems because we can run sequences of small, effi-

cient experiments, combine information across several experiments, and take advantage of

learning about the process we are experimenting with as we go along.

A 2k−1 design may be constructed by writing down the treatment combinations for a full

factorial in k − 1 factors and then adding the kth factor by identifying its plus and minus lev-

els with the plus and minus signs of the highest-order interaction ± ABC . . . (K – 1).

Therefore, a 23−1 fractional factorial is obtained by writing down the full 22 factorial and then

i A= 1

2

1

2

1

2

A BC A BC BC

B AC B AC AC

C AB C AB AB

+ − −( )[ ] =

+ − −( )[ ] =

+ − −( )[ ] =

Effect, i

i B=

i C=
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equating factor C to the ± AB interaction. Thus, to generate the principal fraction, we would

use C = + AB as follows:

Full 22 23−1, I = ABC

A B A B C = AB

− − − − +
+ − + − −
− + − + −
+ + + + +

To generate the alternate fraction, we would equate the last column to C = −AB.

SOLUTION

This design would be constructed by writing down a 23 in the

factors A, B, and C and then setting D = ABC. The design and

the resulting etch rates are shown in Table 13.21. The design is

shown geometrically in Figure 13.38.

In this design, the main effects are aliased with the three-

factor interactions; note that the alias of A is

Similarly,

B ACD

C ABD

D ABC

=
=
=

A I A ABCD

A A BCD

A BCD

⋅ = ⋅

=
=

2

EXAMPLE 13.10

To illustrate the use of a one-half fraction, consider the plasma

etch experiment described in Example 13.8. Suppose we had

decided to use a 24−1 design with I = ABCD to investigate the 

four factors gap (A), pressure (B), C2F6 flow rate (C), and power

setting (D). Set up this design and analyze it using only the data

from the full factorial that corresponds to the runs in the fraction.

A One-Half Fraction for the Plasma Etch Experiment

bc = 601

(1) = 550

ab = 650

ac = 642

cd = 1075

ad = 749

bd = 1052

abcd = 729

+–
D

C 

B

A

■ F I G U R E  1 3 . 3 8 The 24−1 design

for Example 13.10.

■ TA B L E  1 3 . 2 1

The 24−1 Design with Defining Relation I � ABCD

Run A B C D � ABC Etch Rate

1 (1) − − − − 550

2 ad + − − + 749

3 bd − + − + 1,052

4 ab + + − − 650

5 cd − − + + 1,075

6 ac + − + − 642

7 bc − + + − 601

8 abcd + + + + 729
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Normal Probability Plots and Residuals. The normal probability plot is very useful

in assessing the significance of effects from a fractional factorial, especially when many effects

are to be estimated. Residuals can be obtained from a fractional factorial by the regression model

method shown previously. These residuals should be plotted against the predicted values, against

the levels of the factors, and on normal probability paper as we have discussed before, both to

assess the validity of the underlying model assumptions and to gain additional insight into the

experimental situation.

Projection of the 2k−1 Design. If one or more factors from a one-half fraction of a 2k

can be dropped, the design will project into a full factorial design. For example, Figure 13.39 pre-

sents a 23−1 design. Note that this design will project into a full factorial in any two of the three

original factors. Thus, if we think that at most two of the three factors are important, the 23−1 design

is an excellent design for identifying the significant factors. Sometimes experiments that seek to

identify a relatively few significant factors from a larger number of factors are called screening
experiments. This projection property is highly useful in factor screening because it allows negli-

gible factors to be eliminated, resulting in a stronger experiment in the active factors that remain.

In the 24−1 design used in the plasma etch experiment in Example 13.10, we found that

two of the four factors (B and C) could be dropped. If we eliminate these two factors, the

remaining columns in Table 13.21 form a 22 design in the factors A and D, with two replicates.

This design is shown in Figure 13.40.

Design Resolution. The concept of design resolution is a useful way to catalog fractional

factorial designs according to the alias patterns they produce. Designs of resolution III, IV, and V

are particularly important. The definitions of these terms and an example of each follow.

1. Resolution III designs. In these designs, no main effects are aliased with any other main

effect, but main effects are aliased with two-factor interactions and two-factor interactions

13.6 Fractional Replication of the 2k Design 605

and

Clearly, [A] and [D] are large, and if we believe that the three-

factor interactions are negligible, then the main effects A (gap)

and D (power setting) significantly affect the etch rate.

The interactions are estimated by forming the AB, AC, and

AD columns and adding them to the table. The signs in the AB
column are +, −, −, +, +, −, −, +, and this column produces the

estimate

D D ABC[ ] = + = 290 5.

The other columns produce

B B ACD

C C ABD

[ ] = + =

[ ] = + =

4 00

11 50

.

.

The two-factor interactions are aliased with each other. For

example, the alias of AB is CD:

The other aliases are

The estimates of the main effects (and their aliases) are found

using the four columns of signs in Table 13.21. For example,

from column A we obtain

AC BD

AD BC

=
=

AB I AB ABCD

AB A B CD

AB CD

⋅ = ⋅

=
=

2 2

A A BCD[ ] = + = − + −(                                1

4
550 749 1,052

= −
4

127 00.

+ − + − +                                                  )650 1,075 642 601 729

AB AB CD[ ] = + = − −(                             1

4
550 749 1,052

+ −+ − +                                                 )650 1,075 642 601 729

= −10 00.

From the AC and AD columns we find

The [AD] estimate is large; the most straightforward interpre-

tation of the results is that this is the A and D interaction. Thus,

the results obtained from the 24−1 design agree with the full

factorial results in Example 13.8.

AC AC BD

AD AD BD

[ ] = + = −

[ ] = + = −

25 50

197 50

.

.
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606 Chapter 13 ■ Factorial and Fractional Factorial Experiments for Process Design and Improvement

may be aliased with each other. The 23−1 design with I = ABC is of resolution III. We usu-

ally employ a subscript Roman numeral to indicate design resolution; thus, this one-half

fraction is a 23−1
III design.

2. Resolution IV designs. In these designs, no main effect is aliased with any other main

effect or two-factor interaction, but two-factor interactions are aliased with each other.

The 24−1 design with I = ABCD used in Example 13.10 is of resolution IV (24−1
IV ).

3. Resolution V designs. In these designs, no main effect or two-factor interaction is

aliased with any other main effect or two-factor interaction, but two-factor interactions

are aliased with three-factor interactions. A 25−1 design with I = ABCDE is of resolu-

tion V (25−1
V ).

Resolution III and IV designs are particularly useful in factor screening experiments.

The resolution IV design provides very good information about main effects and will provide

some information about two-factor interactions.

13.6.2 Smaller Fractions: The 2k−p Fractional Factorial Design

Although the 2k−1 design is valuable in reducing the number of runs required for an experi-

ment, we frequently find that smaller fractions will provide almost as much useful informa-

tion at even greater economy. In general, a 2k design may be run in a fraction called a 

2k−p fractional factorial design. Thus, a fraction is called a 2k−2 fractional factorial design, a

fraction is called a 2k−3 design, a fraction is called a 2k−4 design, and so on.

To illustrate a fraction, consider an experiment with six factors and suppose that the

engineer is interested primarily in main effects but would also like to get some information

about the two-factor interactions. A 26−1 design would require 32 runs and would have 

31 degrees of freedom for estimation of effects. Since there are only 6 main effects and 15 two-

factor interactions, the fraction is inefficient—it requires too many runs. Suppose we consider

a fraction, or a 26−2 design. This design contains 16 runs and with 15 degrees of freedom will

allow estimation of all six main effects, with some capability for examination of the two-

factor interactions. To generate this design we would write down a 24 design in the factors A,

B, C, and D, and then add two columns for E and F. Refer to Table 13.22. To find the new

columns, we would select the two design generators I = ABCE and I = BCDF. Thus, column

E would be found from E = ABC and column F would be F = BCD. Thus, columns ABCE and

BCDF are equal to the identity column. However, we know that the product of any two columns

1
4

1
2

1
4

1
16

1
8

1
4

1

2
p

b

a

c

A

B

C

abc

–1
–1 +1

(650, 642)

(749, 729)+1
(1052, 1075)

(550, 601)

A (gap)

D
 (

po
w

er
)

■ F I G U R E  1 3 . 3 9 Projection of a 23−1

design into three 22 designs.

■ F I G U R E  1 3 . 4 0 The 22

design obtained by dropping factors B
and C from the plasma etch experiment.
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in the table of plus and minus signs for a 2k is just another column in the table; therefore, the prod-

uct of ABCE and BCDF or ABCE (BCDF) = AB2C2DEF = ADEF is also an identity column.

Consequently, the complete defining relation for the 26−2 design is

To find the alias of any effect, simply multiply the effect by each word in the above defining

relation. The complete alias structure is shown here.

Note that this is a resolution IV design; the main effects are aliased with three-factor and

higher interactions, and two-factor interactions are aliased with each other. This design would

provide very good information on the main effects and give some idea about the strength of

the two-factor interactions.

Selection of Design Generators. In the foregoing example, we selected I = ABCD
and I = BCDF as the generators to construct the 26−2 fractional factorial design. This choice

is not arbitrary; some generators will produce designs with more attractive alias structures

than other generators. For a given number of factors and number of runs we wish to make, we

want to select the generators so that the design has the highest possible resolution.

Montgomery (2009) presents a set of designs of maximum resolution for 2k−p designs with 

p ≤ 10 factors. A portion of this table is reproduced in Table 13.23. In this table, each choice

A BCE DEF ABCDF

B ACE CDF ABDEF

C ABE BDF ACDEF

D BCF AEF ABCDE

E ABC ADF BCDEF

F BCD ADE ABCEF

ABD CDE ACF BEF

ACD BDE ABF CEF

AB CE ACDF BDEF

AC BE ABDF CDEF

AD EF BCDE ABCF

AE BC DF ABCDEF

AF DE BCEF ABCD

BD CF ACDE ABEF

BF CD ACEF ABDE

= = =
= = =
= = =
= = =
= = =
= = =
= = =
= = =

= = =
= = =
= = =
= = =
= = =
= = =
= = =

I ABCE BCDF ADEF= = =

13.6 Fractional Replication of the 2k Design 607

■ TA B L E  1 3 . 2 2

Construction of the 26−2 Design with Generators I � ABCE and I � BCDF

Run A B C D E � ABC F � BCD

1 − − − − − −
2 + − − − + −
3 − + − − + +
4 + + − − − +
5 − − + − + +
6 + − + − − +
7 − + + − − −
8 + + + − + −
9 − − − + − +

10 + − − + + +
11 − + − + + −
12 + + − + − −
13 − − + + + −
14 + − + + − −
15 − + + + − +
16 + + + + + +
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■ TA B L E  1 3 . 2 3

Selected 2k−p Fractional Factorial Designs (from Design and Analysis of Experiments, 7th ed., by D. C. Montgomery, John
Wiley, 2009)

Number of Number of Design Number of Number of Design
Factors, k Fraction Runs Generators Factors, k Fraction Runs Generators

3 23−1
III 4 C = ± AB J = ± BCEFG

4 24−1
IV 8 D = ± ABC 29−3

IV 64 G = ± ABCD

5 25−1
V 16 E = ± ABCD H = ± ACEF

25−2
III 8 D = ± AB J = ± CDEF

E = ± AC 29−4
IV 32 F = ± BCDE

6 26−1
VI 32 F = ± ABCDE G = ± ACDE

26−2
IV 16 E = ± ABC H = ± ABDE

F = ± BCD J = ± ABCE
26−3

III 8 D = ± AB 29−5
III 16 E = ± ABC

E = ± AC F = ± BCD
F = ± BC G = ± ACD

7 27−1
VIII 64 G = ± ABCDEF H = ± ABD
27−2

IV 32 F = ± ABCD J = ± ABCD
G = ± ABDE 10 210−3

V 128 H = ± ABCG
27−3

IV 16 E = ± ABC J = ± BCDE
F = ± BCD K = ± ACDF
G = ± ACD 210−4

IV 64 G = ± BCDF
27−4

III 8 D = ± AB H = ± ACDF
E = ± AC J = ± ABDE
F = ± BC K = ± ABCE
G = ± ABC 210−5

IV 32 F = ± ABCD

8 28−2
V 64 G = ± ABCD G = ± ABCE

H = ± ABEF H = ± ABDE
28−3

IV 32 F = ± ABC J = ± ACDE
G = ± ABD K = ± BCDE
H = ± BCDE 210−6

III 16 E = ± ABC
28−4

IV 16 E = ± BCD F = ± BCD
F = ± ACD G = ± ACD
G = ± ABC H = ± ABD
H = ± ABD J = ± ABCD

9 29−2
VI 128 H = ± ACDFG K = ± AB

of generator is shown with a ± sign. If all generators are selected with a positive sign (as

above), the principal fraction will result; selection of one or more negative signs for a set of

generators will produce an alternate fraction.

EXAMPLE 13.11

Parts manufactured in an injection-molding process are expe-

riencing excessive shrinkage, which is causing problems in

assembly operations upstream from the injection-molding

area. A quality-improvement team has decided to use a

designed experiment to study the injection-molding process so

that shrinkage can be reduced. The team decides to investigate 

seven factors: mold temperature (A), screw speed (B), holding

time (C), cycle time (D), moisture content (E), gate size (F),

and holding pressure (G). Each is examined at two levels, with

the objective of learning how each factor affects shrinkage, as

well as about how the factors interact. Set up an appropriate

16-run fractional factorial design.

A 27−3 Fractional Factorial Design
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screw speed is at the high level. With screw speed at the low

level, the process should operate with average shrinkage around

10%, regardless of the temperature level chosen.

Based on this initial analysis, the team decided to set both

mold temperature and screw speed at the low level. This set of

conditions will reduce mean parts shrinkage to around 10%.

However, the variability in shrinkage from part to part is still a

potential problem. In effect, the mean shrinkage can be

reduced effectively to nearly zero by appropriate modification

of the tool; but the part-to-part variability in shrinkage over a

production run could still cause problems in assembly, even if

the average shrinkage over the run were nearly zero. One way

to address this issue is to see whether any of the process vari-

ables affect variability in parts shrinkage.

SOLUTION

Table 13.23 indicates that the appropriate design is a 2IV
7−3

design, with generators I = ABCE, I = BCDF, and I = ACDG.

The design is shown in Table 13.24 and the alias structure for

the design is shown in Table 13.25. The last column of Table

13.24 gives the observed shrinkage ×10 for the test part pro-

duced at each of the 16 runs in the design.

A normal probability plot of the effect estimates from this

experiment is shown in Figure 13.41. The only large effects are

A = 13.8750 (mold temperature), B = 35.6250 (screw speed),

and the AB interaction (AB = 11.8750). In light of the alias rela-

tionships in Table 13.25, it seems reasonable to tentatively adopt

those conclusions. The AB interaction plot in Figure 13.42

shows that the process is very insensitive to temperature if screw

speed is at the low level, but is very temperature sensitive if

(continued)
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■ TA B L E  1 3 . 2 4

27−3
IV Design for the Injection-Molding Experiment, Example 13.11

Observed 
Run A B C D E (�ABC) F (�BCD) G (�ACD) Shrinkage (�10)

1 − − − − − − − 6

2 + − − − + − + 10

3 − + − − + + − 32

4 + + − − − + + 60

5 − − + − + + + 4

6 + − + − − + − 15

7 − + + − − − + 26

8 + + + − + − − 60

9 − − − + − + + 8

10 + − − + + + − 12

11 − + − + + − + 34

12 + + − + − − − 60

13 − − + + + − − 16

14 + − + + − − + 5

15 − + + + − + − 37

16 + + + + + + + 52

■ TA B L E  1 3 . 2 5

Aliases for the 27−3
IV Design Used in Example 13.11

A = BCE = DEF = CDG = BFG AB = CE = FG

B = ACE = CDF = DEG = AFG AC = BE = DG

C = ABE = BDF = ADG = EFG AD = EF = CF

D = BCF = AEF = ACG = BEG AE = BC = DF

E = ABC = ADF = BDG = CFG AF = DE = BG

F = BCD = ADE = ABG = CEG AG = CD = BF

G = ACD = BDE = ABF = CEF BD = CF = EG
ABD = CDE = ACF = BEF = BCG = AEG = DFG
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x = 31.50
R = 11

x = 56.00
R = 8

x = 10.00
R = 11

+

x = 11.00
R = 2

+–
x = 7.000

R = 2

Holding time
C–

Screw speed
B

Mold temp
A

+
x = 33.00

R = 2

x = 10.00
R = 12

x = 60.00
R = 0

4

60

S
hr

in
ka

ge
 %

 (
× 

1
0

)

– +

Mold temperature, A

B– B–

B+

B+

plained variability. Figure 13.44 indicates that there is a pat-
tern in that variability and that variability in parts shrinkage

may be smaller when holding time is at the low level. Note that

this analysis assumes that the model for the location effects is

a good one, and that it adequately models the mean of the

process over the factor space.

Figure 13.45 shows the data from this experiment projected

onto a cube in the factors A, B, and C. The average observed

shrinkage and the range of observed shrinkage are shown at each

corner of the cube. From inspection of this graph, we see that

running the process with screw speed (B) at the low level is the

key to reducing average parts shrinkage. If B is low, virtually any

combination of temperature (A) and holding time (C) will result

in low values of average parts shrinkage. However, from exam-

ining the ranges of the shrinkage values at each corner of the

cube, it is immediately clear that holding time (C) at the low

level is the only reasonable choice if we wish to keep the part-

to-part variability in shrinkage low during a production run.

Figure 13.43 presents the normal probability plot of the

residuals. This plot appears satisfactory. The plots of residuals

versus each variable were then constructed. One of these plots,

that for residuals versus factor C (holding time), is shown in

Figure 13.44. The plot reveals that there is much less scatter in

the residuals at low holding time than at high holding time.

Now the residuals were obtained by first fitting a model for

predicted shrinkage

where x1, x2, and x1x2 are coded variables that correspond to

the factors A, B, and the AB interaction, respectively. The resid-

uals are then

The regression model used to produce the residuals essen-

tially removes the location effects of A, B, and AB from the

data; the residuals therefore contain information about unex-

e y y= − ˆ
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■ F I G U R E  1 3 . 4 1 Normal prob-

ability plot of effects, Example 13.11.

■ F I G U R E  1 3 . 4 3
Normal probability plot of

residuals, Example 13.11.

■ F I G U R E  1 3 . 4 4
Residuals versus holding time

(C), Example 13.11.

■ F I G U R E  1 3 . 4 5 Average and range

of shrinkage in factors A, B, C, Example 13.11.

■ F I G U R E  1 3 . 4 2 AB or mold

temperature–screw speed interaction plot,

Example 13.11.
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2k factorial designs

2k−p fractional factorial designs

Aliasing

Analysis of variance (ANOVA)

Analysis procedure for factorial designs

Blocking

Center points in 2k and 2k−p factorial designs

Completely randomized design

Confounding

Contour plot

Controllable process variables

Curvature in the response function

Defining relation for a fractional factorial design

Factorial design

Fractional factorial design

Generators for a fractional factorial design

Guidelines for planning experiments

Interaction

Main effect of a factor

Normal probability plot of effects

Orthogonal design

Pre-experimental planning

Projection of 2k and 2k−p factorial designs

Regression model representation of experimental results

Residual analysis

Residuals

Resolution of a fractional factorial design

Response surface

Screening experiments

Sequential experimentation

Sparsity of effects principle

Two-factor interaction

Important Terms and Concepts

Exercises

Exercises 611

13.1. The following output was obtained

from a computer program that per-

formed a two-factor ANOVA on a

factorial experiment.

(a) Fill in the blanks in the ANOVA table. You can

use bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were

performed?

(d) What conclusions would you draw about this

experiment?

13.2. The following output was obtained from a computer

program that performed a two-factor ANOVA on a

factorial experiment.

(a) Fill in the blanks in the ANOVA table. You can

use bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were

performed?

(d) What conclusions would you draw about this

experiment?

13.3. An article in Industrial Quality Control (1956,

pp. 5–8) describes an experiment to investigate the

effect of glass type and phosphor type on the bright-

ness of a television tube. The response measured 

is the current necessary (in microamps) to obtain 

a specified brightness level. The data are shown in

Table 13E.1. Analyze the data and draw conclu-

sions.

Source SS DF MS F P

A 1 0.0002

B 180.378

Interaction 8.479 3 0.932

Error 158.797 8

Total 347.653 15

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

■ TA B L E  1 3 E . 1  

Data for Exercise 13.1

Phosphor Type

Glass Type 1 2 3

1 280 300 290

290 310 285

285 295 290

2 230 260 220

235 240 225

240 235 230

Source SS DF MS F P

A 0.322 1

B 80.554 40.2771

Interaction

Error 108.327 12

Total 231.551 17
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■ TA B L E  1 3 E . 3  

Taste-Test Experiment for
Exercise 13.6

Replicate
Treatment 
Combination I II

(1) 188 195

a 172 180

b 179 187

ab 185 178

c 175 180

ac 183 178

bc 190 180

abc 175 168

d 200 193

ad 170 178

bd 189 181

abd 183 188

cd 201 188

acd 181 173

bcd 189 182

abcd 178 182

13.4. A process engineer is trying to improve the life of a

cutting tool. He has run a 23 experiment using cutting

speed (A), metal hardness (B), and cutting angle (C)

as the factors. The data from two replicates are

shown in Table 13E.2.

(a) Do any of the three factors affect tool life?

(b) What combination of factor levels produces the

longest tool life?

(c) Is there a combination of cutting speed and cut-

ting angle that always gives good results regard-

less of metal hardness?

13.5. Find the residuals from the tool life experiment in

Exercise 13.4. Construct a normal probability plot of

the residuals. Plot the residuals versus the predicted

values. Comment on the plots.

13.6. Four factors are thought to possibly influence the

taste of a soft-drink beverage: type of sweetener (A),

ratio of syrup to water (B), carbonation level (C),

and temperature (D). Each factor can be run at two

levels, producing a 24 design. At each run in the

design, samples of the beverage are given to a test

panel consisting of 20 people. Each tester assigns a

point score from 1 to 10 to the beverage. Total score

is the response variable, and the objective is to find

a formulation that maximizes total score. Two repli-

cates of this design are run, and the results are

shown in Table 13E.3. Analyze the data and draw

conclusions.

13.7. Consider the experiment in Exercise 13.6. Plot the

residuals against the levels of factors A, B, C, and D.

Also construct a normal probability plot of the resid-

uals. Comment on these plots.

13.8. Find the standard error of the effects for the experi-

ment in Exercise 13.6. Using the standard errors as a

guide, what factors appear significant?

13.9. Suppose that only the data from replicate I in

Exercise 13.6 were available. Analyze the data and

draw appropriate conclusions.

13.10. Suppose that only one replicate of the 24 design in

Exercise 13.6 could be run, and we could only con-

duct eight tests each day. Set up a design that would

block out the day effect. Show specifically which

runs would be made on each day.

13.11. Show how a 25 experiment could be set up in two

blocks of 16 runs each. Specifically, which runs

would be made in each block?

13.12. R. D. Snee (“Experimenting with a Large Number of

Variables,” in Experiments in Industry: Design,
Analysis and Interpretation of Results, by R. D. Snee,

L. B. Hare, and J. B. Trout, eds., ASQC, 1985)

describes an experiment in which a 25−1 design with

I = ABCDE was used to investigate the effects of five

factors on the color of a chemical product. The factors

were A = solvent/reactant, B = catalyst/reactant, C =
temperature, D = reactant purity, and E = reactant pH.

The results obtained are as follows:

e

a

b

abe

c
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bce
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d
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bde

abd

cde

acd

bcd

abcde

=
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=
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−

=
=
=
=
=
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=
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2 51
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.

.
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.

.

           

■ TA B L E  1 3 E . 2  

Data for the Experiment in Exercise 13.2

Replicate

Run I II

(1) 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419
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Exercises 613

(a) Prepare a normal probability plot of the effects.

Which effects seem active? Fit a model using

these effects.

(b) Calculate the residuals for the model you fit in

part (a). Construct a normal probability plot of

the residuals and plot the residuals versus the fit-

ted values. Comment on the plots.

(c) If any factors are negligible, collapse the 25−1

design into a full factorial in the active factors.

Comment on the resulting design and interpret

the results.

13.13. An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research

Efficiency,” 1970, pp. 60–65) uses a 25−2 design to

investigate the effect of A = condensation temperature,

B = amount of material 1, C = solvent volume, D =
condensation time, and E = amount of material 2, on

yield. The results obtained are as follows:

(a) Verify that the design generators used were I =
ACE and I = BDE.

(b) Write down the complete defining relation and

the aliases from this design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that

the AB and AD interactions are available to use

as error.

(e) Plot the residuals versus the fitted values. Also

construct a normal probability plot of the residu-

als. Comment on the results.

13.14. A 24 factorial design has been run in a pilot plant to

investigate the effect of four factors on the molecular

weight of a polymer. The data from this experiment

are as follows (values are coded by dividing by 10).

(a) Construct a normal probability plot of the

effects. Which effects are active?

(b) Construct an appropriate model. Fit this model

and test for significant effects.
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(c) Analyze the residuals from this model by con-

structing a normal probability plot of the residu-

als and plotting the residuals versus the predicted

values of y.

13.15. Reconsider the data in Exercise 13.14. Suppose that

four center points were added to this experiment. The

molecular weights at the center point are 90, 87, 86,

and 93.

(a) Analyze the data as you did in Exercise 13.14,

but include a test for curvature.

(b) If curvature is significant in an experiment such as

this one, describe what strategy you would pursue

next to improve your model of the process.

13.16. Set up a 28−4 fractional factorial design. Verify that this

is a resolution IV design. Discuss the advantage of a

resolution IV design relative to one of lower 

resolution.

13.17. A 24−1 design has been used to investigate the effect

of four factors on the resistivity of a silicon wafer. The

data from this experiment are shown in Table 13E.4.

(a) Estimate the factor effects. Plot the effect esti-

mates on a normal probability scale.

(b) Identify a tentative model for this process. Fit the

model and test for curvature.

(c) Plot the residuals from the model in part (b) 

versus the predicted resistivity. Is there any indi-

cation on this plot of model inadequacy?

(d) Construct a normal probability plot of the resid-

uals. Is there any reason to doubt the validity of

the normality assumption?

13.18. An engineer has performed an experiment to study

the effect of four factors on the surface roughness of

a machined part. The factors (and their levels) are 

A = tool angle (12, 15), B = cutting fluid viscosity

(300, 400), C = feed rate (10, 15 in/min), and 

■ TA B L E  1 3 E . 4

Resistivity Experiment for Exercise 13.17.

Run A B C D Resistivity

1 − − − − 33.2

2 + − − + 4.6

3 − + − + 31.2

4 + + − − 9.6

5 − − + + 40.6

6 + − + − 162.4

7 − + + − 39.4

8 + + + + 158.6

9 0 0 0 0 63.4

10 0 0 0 0 62.6

11 0 0 0 0 58.7

12 0 0 0 0 60.9
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■ TA B L E  1 3 E . 6

Crack Experiment for Exercise 13.19

Treatment 
A B C D Combination I II

− − − − (1) 7.037 6.376

+ − − − a 14.707 15.219

− + − − b 11.635 12.089

+ + − − ab 17.273 17.815

− − + − c 10.403 10.151

+ − + − ac 4.368 4.098

− + + − bc 9.360 9.253

+ + + − abc 13.440 12.923

− − − + d 8.561 8.951

+ − − + ad 16.867 17.052

− + − + bd 13.876 13.658

+ + − + abd 19.824 19.639

− − + + cd 11.846 12.337

+ − + + acd 6.125 5.904

− + + + bcd 11.190 10.935

+ + + + abcd 15.653 15.053

Replicate

D = cutting fluid cooler used (no, yes). The data from

this experiment (with the factors coded to the usual

+1, −1 levels) are shown in Table 13E.5.

(a) Estimate the factor effects. Plot the effect esti-

mates on a normal probability plot and select a

tentative model.

(b) Fit the model identified in part (a) and analyze

the residuals. Is there any indication of model

inadequacy?

(c) Repeat the analysis from parts (a) and (b) using

1/y as the response variable. Is there an indica-

tion that the transformation has been useful?

(d) Fit the model in terms of the coded variables that

you think can be used to provide the best predic-

tions of the surface roughness. Convert this predic-

tion equation into a model in the natural variables.

13.19. A nickel–titanium alloy is used to make components

for jet turbine aircraft engines. Cracking is a poten-

tially serious problem in the final part because it can

lead to nonrecoverable failure. A test is run at the parts

producer to determine the effect of four factors on

cracks. The four factors are pouring temperature (A),

titanium content (B), heat treatment method (C), and

amount of grain refiner used (D). Two replicates of

a 24 design are run, and the length of crack (in mm

× 10−2) induced in a sample coupon subjected to a

standard test is measured. The data are shown in

Table 13E.6.

(a) Estimate the factor effects. Which factor effects

appear to be large?

(b) Conduct an analysis of variance. Do any of the

factors affect cracking? Use a = 0.05.

(c) Write down a regression model that can be used

to predict crack length as a function of the signif-

icant main effects and interactions you have

identified in part (b).

(d) Analyze the residuals from this experiment.

(e) Is there an indication that any of the factors affect

the variability in cracking?

(f) What recommendations would you make regard-

ing process operations? Use interaction and/or

main effect plots to assist in drawing conclusions.

13.20. Continuation of Exercise 13.19. One of the vari-

ables in the experiment described in Exercise 13.19,

heat treatment method (C), is a categorical variable.

Assume that the remaining factors are continuous.

(a) Write two regression models for predicting crack

length, one for each level of the heat treatment

method variable. What differences, if any, do you

notice in these two equations?

(b) Generate appropriate response surface contour

plots for the two regression models in part (a).

(c) What set of conditions would you recommend

for the factors A, B, and D if you use heat treat-

ment method C = +?

(d) Repeat part (c), assuming that you wish to use

heat treatment method C = −.

13.21. Reconsider the crack experiment from Exercise 13.19.

Suppose that the two crack-length measurements

were made on two cracks that formed in the same test

■ TA B L E  1 3 E . 5

Surface Roughness Experiment for Exercise 13.18

Surface 
Run A B C D Roughness

1 − − − − 0.00340

2 + − − − 0.00362

3 − + − − 0.00301

4 + + − − 0.00182

5 − − + − 0.00280

6 + − + − 0.00290

7 − + + − 0.00252

8 + + + − 0.00160

9 − − − + 0.00336

10 + − − + 0.00344

11 − + − + 0.00308

12 + + − + 0.00184

13 − − + + 0.00269

14 + − + + 0.00284

15 − + + + 0.00253

16 + + + + 0.00163
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Exercises 615

coupon at each set of test conditions. Are the two

observations replicates? How do you think this data

should be analyzed?

13.22. An article by L. B. Hare (“In the Soup: A Case Study

to Identify Contributors to Filling Variability.”

Journal of Quality Technology, vol. 20, pp. 36–43)

describes a factorial experiment used to study the fill-

ing variability of dry soup mix packages. The factors

are A = number of mixing ports through which the

vegetable oil was added (1, 2), B = temperature sur-

rounding the mixer (cooled, ambient), C = mixing

time (60, 80 sec), D = batch weight (1,500, 2,000 lb),

and E = number of days of delay between mixing and

packaging (1, 7). Between 125 and 150 packages of

soup were sampled over an eight-hour period for each

run in the design, and the standard deviation of pack-

age weight was used as the response variable. The

design and resulting data are shown in Table 13E.7.

(a) What is the generator for this design?

(b) What is the resolution of this design?

(c) Estimate the factor effects. Which effects are

large?

(d) Does a residual analysis indicate any problems

with the underlying assumptions?

(e) Draw conclusions about this filling process.

13.23. An article in Quality Progress (May 2011, pp. 42– 48)

describes the use of factorial experiments to improve

a silver powder production process. This product is

used in conductive pastes to manufacture a wide 

variety of products ranging from silicon wafers to

elastic membrane switches. Powder density (g/cm2)

and surface area (cm2/g) are the two critical charac-

teristics of this product. The experiments involved

three factors: reaction temperature, ammonium per-

centage, and stirring rate. Each of these factors had

two levels, and the design was replicated twice. The

design is shown in Table 13E.8.

(a) Analyze the density response. Are any interac-

tions significant? Draw appropriate conclusions

about the effects of the significant factors on the

response.

(b) Prepare appropriate residual plots and comment

on model adequacy.

(c) Construct appropriate plots to aid in practical

interpretation of the density response.

(d) Analyze the surface area response. Are any inter-

actions significant? Draw appropriate conclu-

sions about the effects of the significant factors

on the response.

(e) Prepare appropriate residual plots and comment

on model adequacy.

(f) Construct appropriate plots to aid in practical

interpretation of the surface area response.

13.24. Continuation of Exercise 13.23. Suppose that the

specifications require that the surface area must 

be between 0.3 and 0.6 cm2/g and that density must

be less than 14 g/cm3. Find a set of operating condi-

tions that will result in a product that meets these

requirements.

■ TA B L E  1 3 E . 7

Soup-Filling Experiment for Exercise 13.22

A B C D E v

Std Mixer Batch Std
Order Ports Temp Time Weight Delay Dev

1 − − − − − 1.13

2 + − − − + 1.25

3 − + − − + 0.97

4 + + − − − 1.70

5 − − + − + 1.47

6 + − + − − 1.28

7 − + + − − 1.18

8 + + + − + 0.98

9 − − − + + 0.78

10 + − − + − 1.36

11 − + − + − 1.85

12 + + − + + 0.62

13 − − + + − 1.09

14 + − + + + 1.10

15 − + + + + 0.76

16 + + + + − 2.10

■ TA B L E  1 3 E . 8

Silver Powder Experiment from Exercise 13.23

Stir Rate Temperature Surface
Ammonium (%) (RPM) (�C) Density Area

2 100 8 14.68 0.40

2 100 8 15.18 0.43

30 100 8 15.12 0.42

30 100 8 17.48 0.41

2 150 8 7.54 0.69

2 150 8 6.66 0.67

30 150 8 12.46 0.52

30 150 8 12.62 0.36

2 100 40 10.95 0.58

2 100 40 17.68 0.43

30 100 40 12.65 0.57

30 100 40 15.96 0.54

2 150 40 8.03 0.68

2 150 40 8.84 0.75

30 150 40 14.96 0.41

30 150 40 14.96 0.41
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13.25. An article in Biotechnology Progress (2001, Vol. 17,

pp. 366–368) described an experiment to investigate

nisin extraction in aqueous two-phase solutions. A

two-factor factorial experiment was conducted using

factors A = concentration of PEG and B = concentra-

tion of Na2SO4. Data similar to that reported in the

paper is shown in Table 13E.9.

(a) Analyze the extraction response. Draw appropri-

ate conclusions about the effects of the signifi-

cant factors on the response.

(b) Prepare appropriate residual plots and comment

on model adequacy.

(c) Construct contour plots to aid in practical inter-

pretation of the density response.

■ TA B L E  1 3 E . 9

Nisin Extraction Experiment from Exercise 13.25

A B Extraction (%)

13 11 62.9

13 11 65.4

15 11 76.1

15 11 72.3

13 13 87.5

13 13 84.2

15 13 102.3

15 13 105.6
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Process Optimization
with Designed
Experiments

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

In Chapter 13, we focused on factorial and fractional factorial designs. These designs are

very useful for factor screening—that is, identifying the most important factors that

affect the performance of a process. Sometimes this is called process characterization.
Once the appropriate subset of process variables is identified, the next step is usually

process optimization, or finding the set of operating conditions for the process variables

that result in the best process performance. This chapter gives a brief account of how

designed experiments can be used in process optimization.

We discuss and illustrate response surface methodology, an approach to optimiza-

tion developed in the early 1950s and initially applied in the chemical and process indus-

tries. This is probably the most widely used and successful optimization technique based

on designed experiments. Then we discuss how designed experiments can be used in

process robustness studies. These are activities in which process engineering personnel try

to reduce the variability in the output of a process by setting controllable factors to levels

that minimize the variability transmitted into the responses of interest by other factors that

14.3 EVOLUTIONARY OPERATION

Supplemental Material for Chapter 14

S14.1 Response Surface Designs
S14.2 More about Robust Design 

and Process Robustness
Studies
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are difficult to control during routine operation. We also present an example of evolutionary
operation, an approach to maintaining optimum performance that is, in effect, an on-line or

in-process application of the factorial design concepts of Chapter 13.

After careful study of this chapter, you should be able to do the following:

1. Know how to use the response surface approach to optimizing processes

2. Know how to apply the method of steepest ascent

3. Know how to analyze a second-order response surface model

4. Know how to determine optimum operating conditions for a process

5. Know how to set up and conduct an experiment using a central composite design

6. Understand the difference between controllable process variables and noise

variables

7. Understand the advantages of a combined array design for a process robustness

study

8. Know how to use the response model approach to conduct a process robustness

study

9. Know how evolutionary operation (EVOP) is used to maintain a process that is

subject to drift near its optimum operating conditions

14.1 Response Surface Methods and Designs

Response surface methodology (RSM) is a collection of mathematical and statistical tech-

niques that are useful for modeling and analysis in applications where a response of interest

is influenced by several variables and the objective is to optimize this response. The general

RSM approach was developed in the early 1950s and was initially applied in the chemical

industry with considerable success. Over the past 20 years RSM has found extensive applica-

tion in a wide variety of industrial settings, far beyond its origins in chemical processes,

including semiconductor and electronics manufacturing, machining, metal cutting, and join-

ing processes, among many others. Many statistics software packages have included the

experimental designs and optimization techniques that make up the basics of RSM as stan-

dard features. For a recent comprehensive presentation of RSM, see Myers, Montgomery, and

Anderson-Cook (2009).

To illustrate the general idea of RSM, suppose that a chemical engineer wishes to find

the levels of reaction temperature (x1) and reaction time (x2) that maximize the yield (y) of a

process. The process yield is a function of the levels of temperature and time—say,

where e represents the noise or error observed in the response y. If we denote the expected

value of the response by E(y) = f (x1, x2), then the surface represented by

is called a response surface. Recall that we introduced the idea of a response surface in

Chapter 13, where we presented an example of a response surface generated from a model

that arose from a factorial design.

We may represent the response surface graphically as shown in Figure 14.1, where E(y)

is plotted versus the levels of x1 and x2. Note that the response is represented as a surface plot

in three-dimensional space. To help visualize the shape of a response surface, we often plot

E y f x x( ) = ( )1 2,

y f x x= ( ) +1 2, ε
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14.1 Response Surface Methods and Designs 619

the contours of the response surface as shown in Figure 14.2. In the contour plot, lines of con-

stant response are drawn in the x1, x2 plane. Each contour corresponds to a particular height

of the response surface. The contour plot is helpful in studying the levels of x1, x2 that result

in changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the inde-

pendent variables is unknown. Thus, the first step in RSM is to find a suitable approximation

for the true relationship between y and the independent variables. Usually, a low-order poly-

nomial in some region of the independent variables is employed. If the response is well mod-

eled by a linear function of the independent variables, then the approximating function is the

first-order model

(14.1)

If there is curvature in the system, then a polynomial of higher degree must be used, such as

the second-order model

(14.2)

Many RSM problems utilize one or both of these approximating polynomials. Of course, it is

unlikely that a polynomial model will be a reasonable approximation of the true functional

relationship over the entire space of the independent variables, but for a relatively small

region they usually work quite well.

The method of least squares (see Chapter 4) is used to estimate the parameters in the

approximating polynomials. That is, the estimates of the b’s in equations 14.1 and 14.2 are

those values of the parameters that minimize the sum of squares of the model errors. The

response surface analysis is then done in terms of the fitted surface. If the fitted surface is an

adequate approximation of the true response function, then analysis of the fitted surface will

be approximately equivalent to analysis of the actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface

that is remote from the optimum, such as the current operating conditions in Figure 14.2, there

is little curvature in the system and the first-order model will be appropriate. Our objective here

is to lead the experimenter rapidly and efficiently to the general vicinity of the optimum. Once

the region of the optimum has been found, a more elaborate model such as the second-order

model may be employed, and an analysis may be performed to locate the optimum. From

y x x x xi i
i

k

ii i
i

k

ij i j

k

i j
= + + + +

= = < =
∑ ∑ ∑∑β β β β ε0

1

2

1 2

1 2y x x xk k= + + + +β β β β ε0 1 2  . . .

■ F I G U R E  1 4 . 1 A three-dimensional response

surface showing the expected yield as a function of reac-

tion temperature and reaction time.

■ F I G U R E  1 4 . 2 A contour plot of the

yield response surface in Figure 14.1.
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Figure 14.2, we see that the analysis of a response surface can be thought of as “climbing a

hill,” where the top of the hill represents the point of maximum response. If the true optimum

is a point of minimum response, then we may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for

the system or to determine a region of the factor space in which operating specifications are

satisfied. Also, note that the word “optimum” in RSM is used in a special sense. The “hill

climbing” procedures of RSM guarantee convergence to a local optimum only.

14.1.1 The Method of Steepest Ascent

Frequently, the initial estimate of the optimum operating conditions for the system will be far

away from the actual optimum. In such circumstances, the objective of the experimenter is to

move rapidly to the general vicinity of the optimum. We wish to use a simple and economically

efficient experimental procedure. When we are remote from the optimum, we usually assume that

a first-order model is an adequate approximation to the true surface in a small region of the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path

of steepest ascent—that is, in the direction of the maximum increase in the response. Of

course, if minimization is desired, then we would call this procedure the method of steepest
descent. The fitted first-order model is

(14.3)

and the first-order response surface—that is, the contours of ŷ—is a series of parallel straight

lines such as shown in Figure 14.3. The direction of steepest ascent is the direction in which ŷ
increases most rapidly. This direction is normal to the fitted response surface contours. We usu-

ally take as the path of steepest ascent the line through the center of the region of interest and

normal to the fitted surface contours. Thus, the steps along the path are proportional to the mag-

nitudes of the regression coefficients {b̂i}. The experimenter determines the actual amount of

movement along this path based on process knowledge or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in

response is observed or until the desired response region is reached. Then a new first-order

model may be fitted, a new direction of steepest ascent determined, and, if necessary, further

experiments conducted in that direction until the experimenter feels that the process is near

the optimum.

ˆ ˆ ˆy xi i
i

k
= +

=
∑β β0

1
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■ F I G U R E  1 4 . 3 First-order response surface and

path of steepest ascent.
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14.1 Response Surface Methods and Designs 621

Figure 14.4 shows the contour plot from this model, over

the original region of experimentation—that is, for gaps

between 0.8 and 1.2 cm and power between 275 and 325 W.

Note that within the original region of experimentation, the

maximum etch rate that can be obtained is approximately 

980 Å/m. The engineers would like to run this process at an

etch rate of 1,100–1,150 Å/m. Use the method of steepest

ascent to move away from the original region of experimenta-

tion to increase the etch rate.

EXAMPLE 14.1

In Example 13.8, we described an experiment on a plasma

etching process in which four factors were investigated to

study their effect on the etch rate in a semiconductor water-

etching application. We found that two of the four factors, the

gap (x1) and the power (x4), significantly affected etch rate.

Recall from that example that if we fit a model using only

these main effects we obtain

as a prediction equation for the etch rate.

ˆ . . .y x x= − +776 0625 50 8125 153 06251 4

An Application of Steepest Ascent

SOLUTION

From examining the plot in Figure 14.4 (or the fitted model) 

we see that to move away from the design center—the point 

(x1 = 0, x2 = 0)—along the path of steepest ascent, we would

move –50.8125 units in the x1 direction for every 153.0625

units in the x4 direction. Thus the path of steepest ascent passes

through the point (x1 = 0, x2 = 0) and has slope 153.0625/

(−50.8125) −3. The engineer decides to use 25 W of power

as the basic step size. Now, 25 W of power is equivalent to a

step in the coded variable x4 of Δx4 = 1. Therefore, the steps

along the path of steepest ascent are Δx4 = 1 and Δx1 = Δx4/

(−3) = −0.33. A change of Δx1 = −0.33 in the coded variable x1

is equivalent to about −0.067 cm in the original variable gap.

�

Therefore, the engineer will move along the path of steepest

ascent by increasing power by 25 W and decreasing gap by 

−0.067 cm. An actual observation on etch rate will be obtained

by running the process at each point.

Figure 14.4 shows three points along this path of steepest

ascent and the etch rates actually observed from the process at

those points. At points A, B, and C, the observed etch rates

increase steadily. At point C, the observed etch rate is 1,163

Å/m. Therefore, the steepest ascent procedure would terminate

in the vicinity of power = 375 W and gap = 0.8 cm with an

observed etch rate of 1,163 Å/m. This region is very close to

the desired operating region for the process.
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■ F I G U R E  1 4 . 4 Steepest ascent experiment for

Example 14.1.
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14.1.2 Analysis of a Second-Order Response Surface

When the experimenter is relatively close to the optimum, a second-order model is usually

required to approximate the response because of curvature in the true response surface. The

fitted second-order response surface model is

where b̂ denotes the least squares estimate of b. In the next example, we illustrate how a fit-

ted second-order model can be used to find the optimum operating conditions for a process,

and how to describe the behavior of the response function.

ˆ ˆ ˆ ˆ ˆy x x x xi i
i

k
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i

k

ij i j
i j

k
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1

2

1
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EXAMPLE 14.2

Recall that in applying the method of steepest ascent to the

plasma etching process in Example 14.1 we had found a

region near gap = 0.8 cm and power = 375 W, which would

apparently give etch rates near the desired target of between

1100 and 1150 Å/m. The experimenters decided to explore

this region more closely by running an experiment that would

support a second-order response surface model. Table 14.1

and Figure 14.5 show the experimental design, centered at 

gap = 0.8 cm and power = 375 W, which consists of a 22 fac-

torial design with four center points and four runs located

along the coordinate axes called axial runs. The resulting

design is called a central composite design, and it is widely

used in practice for fitting second-order response surfaces.

Two response variables were measured during this phase

of the study: etch rate (in Å/m) and etch uniformity (this is the

standard deviation of the thickness of the layer of material

applied to the surface of the wafer after it has been etched to

a particular average thickness). Determine optimal operating

conditions for this process.

Continuation of Example 14.1

x4

+2

(0, 1.414)

(1, 1)(–1, 1)

(–1.414,0)

–2

(–1, –1) (1, –1)

(0, 0)

(1.414, 0)

+2 x1

(0, –1.414)

–2

■ F I G U R E  1 4 . 5 Central composite

design in the coded variables for Example 14.2.

■ TA B L E  1 4 . 1

Central Composite Design of Example 14.2

Gap Power Coded Variables Etch Rate Uniformity
Observation (cm) (W) x1 x4 y1(Å/m) y2(Å/m)

1 0.600 350.0 −1.000 −1.000 1,054.0 79.6

2 1.000 350.0 1.000 −1.000 936.0 81.3

3 0.600 400.0 −1.000 1.000 1,179.0 78.5

4 1.000 400.0 1.000 1.000 1,417.0 97.7

5 0.517 375.0 −1.414 0.000 1,049.0 76.4

6 1.083 375.0 1.414 0.000 1,287.0 88.1

7 0.800 339.6 0.000 −1.414 927.0 78.5

8 0.800 410.4 0.000 1.414 1,345.0 92.3

9 0.800 375.0 0.000 0.000 1,151.0 90.1

10 0.800 375.0 0.000 0.000 1,150.0 88.3

11 0.800 375.0 0.000 0.000 1,177.0 88.6

12 0.800 375.0 0.000 0.000 1,196.0 90.1
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14.1 Response Surface Methods and Designs 623

SOLUTION

Minitab can be used to analyze the data from this experiment.

The Minitab output is in Table 14.2.

The second-order model fit to the etch rate response is

However, we note from the t-test statistics in Table 14.2 that

the quadratic terms x2
1 and x2

4 are not statistically significant.

Therefore, the experimenters decided to model etch rate with a

first-order model with interaction:

Figure 14.6 shows the contours of constant etch rate from this

model. There are obviously many combinations of x1 (gap) and

x4 (power) that will give an etch rate in the desired range of

1,100–1,150 Å/m.

The second-order model for uniformity is

Table 14.2 gives the t-statistics for each model term. Since all

terms are significant, the experimenters decided to use the qua-

dratic model for uniformity. Figure 14.7 gives the contour plot

and response surface for uniformity.

As in most response surface problems, the experimenter

in this example had conflicting objectives regarding the two

responses. One objective was to keep the etch rate within the

acceptable range of 1,100 ≤ y1 ≤ 1,150 but to simultaneously

minimize the uniformity. Specifically, the uniformity must

not exceed y2 = 80, or many of the wafers will be defective

in subsequent processing operations. When there are only a

few independent variables, an easy way to solve this prob-

lem is to overlay the response surfaces to find the optimum.

Figure 14.8 presents the overlay plot of both responses, with

ˆ . . . . . .y x x x x x x2 1 4 1
2

4
2

1 489 275 4 681 4 352 3 400 1 825 4 375= + + − − +

ˆ . .y x x x x1 1 14 451,155.7 7 1 149 87 9= + + +

. x x1 489 00+

ˆ . . . .y x x x x1 1 4 1
2

4
21,168.50 57 07 149 64 1 62 17 63+ += − −

the contours of = 100, = 150, and = 80 shown. The

shaded areas on this plot identify infeasible combinations of

gap and power. The graph indicates that several combina-

tions of gap and power should result in acceptable process

performance.
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■ F I G U R E  1 4 . 6 Contours of constant predicted

etch rate, Example 14.2.
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■ F I G U R E  1 4 . 7 Plots of the uniformity response,

Example 14.2.

(b) Three-dimensional response surface
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■ F I G U R E  1 4 . 8 Overlay of the etch rate

and uniformity response surfaces in Example 14.2

showing the region of the optimum (unshaded region).
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■ TA B L E  1 4 . 2  

Minitab Analysis of the Central Composite Design in Example 14.2

Response Surface Regression: Etch Rate versus A, B
The analysis was done using coded units.

Estimated Regression Coefficients for Etch Rate

Term Coef SE Coef T P

Constant 1,168.50 17.59 66.417 0.000

A 57.07 12.44 4.588 0.004

B 149.64 12.44 12.029 0.000

A*A -1.62 13.91 -0.117 0.911

B*B -17.63 13.91 -1.267 0.252

A*B 89.00 17.59 5.059 0.002

S = 35.19 R-Sq = 97.0% R-Sq(adj) = 94.5%

Analysis of Variance for Etch Rate

Source DF Seq SS Adj SS Adj MS F P

Regression 5 238,898 238,898 47,780 38.59 0.000

Linear 2 205,202 205,202 102,601 82.87 0.000

Square 2 2,012 2,012 1,006 0.81 0.487

Interaction 1 31,684 31,684 31,684 25.59 0.002

Residual Error 6 7,429 7,429 1,238

Lack-of-Fit 3 5,952 5,952 1,984 4.03 0.141

Pure Error 3 1,477 1,477 492

Total 11 246,327

Response Surface Regression: Uniformity versus A, B
The analysis was done using coded units.

Estimated Regression Coefficients for Uniformity

Term Coef SE Coef T P

Constant 89.275 0.5688 156.963 0.000

A 4.681 0.4022 11.639 0.000

B 4.352 0.4022 10.821 0.000

A*A -3.400 0.4496 -7.561 0.000

B*B -1.825 0.4496 -4.059 0.007

A*B 4.375 0.5688 7.692 0.000

S = 1.138 R - Sq = 98.4% R - Sq(adj) = 97.1%

Analysis of Variance for Uniformity

Source DF Seq SS Adj SS Adj MS F P

Regression 5 486.085 486.085 97.217 75.13 0.000

Linear 2 326.799 326.799 163.399 126.28 0.000

Square 2 82.724 82.724 41.362 31.97 0.001

Interaction 1 76.563 76.563 76.563 59.17 0.000

Residual Error 6 7.764 7.764 1.294

Lack-of-Fit 3 4.996 4.996 1.665 1.81 0.320

Pure Error 3 2.768 2.768 0.923

Total 11 493.849
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14.1 Response Surface Methods and Designs 625

Example 14.2 illustrates the use of a central composite design (CCD) for fitting a 

second-order response surface model. These designs are widely used in practice because they

are relatively efficient with respect to the number of runs required. In general, a CCD in k fac-

tors requires 2k factorial runs, 2k axial runs, and at least one center point (3 to 5 center points

are typically used). Designs for k = 2 and k = 3 factors are shown in Figure 14.9.

The central composite design may be made rotatable design by proper choice of the

axial spacing a in Figure 14.9. If the design is rotatable, the standard deviation of predicted

response is constant at all points that are the same distance from the center of the design.

For rotatability, choose a = (F )1/4, where F is the number of points in the factorial part of

the design (usually F = 2k). For the case of k = 2 factors, a = (22)1/4 = 1.414, as was used in

the design in Example 14.2. Figure 14.10 presents a contour plot and a surface plot of the

standard deviation of prediction for the quadratic model used for the uniformity response.

Note that the contours are concentric circles, implying that uniformity is predicted with

equal precision for all points that are the same distance from the center of the design. Also,

note that the precision of response estimation decreases with increasing distance from the

design center.

The central composite design is the most widely used design for fitting a second-

order response surface model. However, there are many other useful designs. Section S14.1

of the supplemental material for this chapter contains more details of designs for fitting

response surfaces.

ŷ
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(α, 0) x1(0, 0)
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■ F I G U R E  1 4 . 9 Central composite designs for k = 2 and k = 3.

■ F I G U R E  1 4 . 1 0 Plots of constant standard deviation of predicted uniformity (y2), Example 14.2.
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14.2 Process Robustness Studies

14.2.1 Background

In Chapters 13 and 14, we have emphasized the importance of using statistically designed

experiments for process design, development, and improvement. Over the past 30 years, engi-

neers and scientists have become increasingly aware of the benefits of using designed exper-

iments, and as a consequence there have been many new application areas. One of the most

important of these is in process robustness studies, where the focus is on the following:

1. Designing processes so that the manufactured product will be as close as possible to the

desired target specifications even though some process variables (such as temperature),

environmental factors (such as relative humidity), or raw material characteristics are

impossible to control precisely.

2. Determining the operating conditions for a process so that critical product characteris-

tics are as close as possible to the desired target value and the variability around this tar-

get is minimized. Examples of this type of problem occur frequently. For instance, in

semiconductor manufacturing we would like the oxide thickness on a wafer to be as

close as possible to the target mean thickness, and we would also like the variability in

thickness across the wafer (a measure of uniformity) to be as small as possible.

In the early 1980s, a Japanese engineer, Genichi Taguchi, introduced an approach to

solving these types of problems, which he referred to as the robust parameter design (RPD)
problem [see Taguchi and Wu (1980), Taguchi (1986)]. His approach was based on classifying

the variables in a process as either control (or controllable) variables and noise (or uncon-
trollable) variables, and then finding the settings for the controllable variables that minimized

the variability transmitted to the response from the uncontrollable variables. We make the

assumption that although the noise factors are uncontrollable in the full-scale system, they can

be controlled for purposes of an experiment. Refer to Figure 13.1 for a graphical view of con-

trollable and uncontrollable variables in the general context of a designed experiment.

Taguchi introduced some novel statistical methods and some variations on established

techniques as part of his RPD procedure. He made use of highly fractionated factorial designs

and other types of fractional designs obtained from orthogonal arrays. His methodology gen-

erated considerable debate and controversy. Part of the controversy arose because Taguchi’s

methodology was advocated in the West initially (and primarily) by consultants, and the

underlying statistical science had not been adequately peer reviewed. By the late 1980s, the

results of a very thorough and comprehensive peer review indicated that although Taguchi’s

engineering concepts and the overall objective of RPD were well founded, there were sub-

stantial problems with his experimental strategy and methods of data analysis. For specific

details of these issues, see Box, Bisgaard, and Fung (1988); Hunter (1985, 1987);

Montgomery (1999); Myers, Montgomery, and Anderson-Cook (2009); and Pignatiello and

Ramberg (1991). Many of these concerns are also summarized in the extensive panel discussion

in the May 1992 issue of Technometrics [see Nair (1992)]. Section S14.2 of the supplemental

material for this chapter also discusses and illustrates many of the problems underlying

Taguchi’s technical methods.

Taguchi’s methodology for the RPD problem revolves around the use of an orthogonal

design for the controllable factors that is “crossed” with a separate orthogonal design for the

noise factors. Table 14.3 presents an example from Byrne and Taguchi (1987) that involved

the development of a method to assemble an elastometric connector to a nylon tube that

would deliver the required pull-off force. There are four controllable factors, each at three 

levels (A = interference, B = connector wall thickness, C = insertion depth, D = percent adhe-

sive), and three noise or uncontrollable factors, each at two levels (E = conditioning time,

626 Chapter 14 ■ Process Optimization with Designed Experiments

c14ProcessOptimizationwithDesignedExperiments.qxd  4/12/12  5:17 PM  Page 626



14.2 Process Robustness Studies 627

F = conditioning temperature, G = conditioning relative humidity). Panel (a) of Table 14.3

contains the design for the controllable factors. Note that the design is a three-level fractional

factorial; specifically, it is a 34−2 design. Taguchi calls this the inner array design. Panel (b)

of Table 14.3 contains a 23 design for the noise factors, which Taguchi calls the outer array
design. Each run in the inner array is performed for all treatment combinations in the outer

array, producing the 72 observations on pull-off force shown in the table. This type of design

is called a crossed array design.
Taguchi suggested that we summarize the data from a crossed array experiment with

two statistics: the average of each observation in the inner array across all runs in the outer

array, and a summary statistic that attempted to combine information about the mean and vari-

ance, called the signal-to-noise ratio. These signal-to-noise ratios are purportedly defined so

that a maximum value of the ratio minimizes variability transmitted from the noise variables.

Then an analysis is performed to determine which settings of the controllable factors result in

(1) the mean as close as possible to the desired target and (2) a maximum value of the signal-

to-noise ratio.

Examination of Table 14.3 reveals a major problem with the Taguchi design strategy;

namely, the crossed array approach will lead to a very large experiment. In our example,

there are only seven factors, yet the design has 72 runs. Furthermore, the inner array design

is a 34−2 resolution III design [see Montgomery (2009), Chapter 9, for discussion of this

design], so in spite of the large number of runs, we cannot obtain any information about

interactions among the controllable variables. Indeed, even information about the main

effects is potentially tainted, because the main effects are heavily aliased with the two-

factor interactions. It also turns out that the Taguchi signal-to-noise ratios are problematic;

maximizing the ratio does not necessarily minimize variability. Refer to the supplemental

text material for more details.

An important point about the crossed array design is that it does provide information

about controllable factor × noise factor interactions. These interactions are crucial to the solution

of an RPD problem. For example, consider the two-factor interaction graphs in Figure 14.11,

where x is the controllable factor and z is the noise factor. In Figure 14.11a, there is no x × z
interaction; therefore, there is no setting for the controllable variable x that will affect the

■ TA B L E  1 4 . 3

Taguchi Parameter Design with Both Inner and Outer Arrays [Byrne and Taguchi (1987)]

(b) Outer Array

E 1 1 1 1 2 2 2 2

F 1 1 2 2 1 1 2 2

G 1 2 1 2 1 2 1 2

(a) Inner Array

Run A B C D

1 1 1 1 1 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1

2 1 2 2 2 15.0 16.2 19.4 19.2 19.7 19.8 24.2 21.9

3 1 3 3 3 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4

4 2 1 2 3 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7

5 2 2 3 1 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3

6 2 3 1 2 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7

7 3 1 3 2 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6

8 3 2 1 3 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.2

9 3 3 2 1 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6
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variability transmitted to the response by the variability in z. However, in Figure 14.11b there

is a strong x × z interaction. Note that when x is set to its low level there is much less vari-

ability in the response variable than when x is at the high level. Thus, unless there is at least

one controllable factor × noise factor interaction, there is no robust design problem. As we

will see in the next section, focusing on identifying and modeling these interactions is one of

the keys to a more efficient and effective approach to investigating process robustness.

14.2.2 The Response Surface Approach to Process Robustness Studies

As noted in the previous section, interactions between controllable and noise factors are the

key to a process robustness study. Therefore, it is logical to utilize a model for the response

that includes both controllable and noise factors and their interactions. To illustrate, suppose

that we have two controllable factors x1 and x2 and a single noise factor z1. We assume that

both control and noise factors are expressed as the usual coded variables; that is, they are cen-

tered at zero and have lower and upper limits at ±1. If we wish to consider a first-order model

involving the controllable variables, then a logical model is

(14.4)

Note that this model has the main effects of both controllable factors, the main effect of the

noise variable, and both interactions between the controllable and noise variables. This type of

model incorporating both controllable and noise variables is often called a response model.
Unless at least one of the regression coefficients d11 and d21 is nonzero, there will be no robust

design problem.

An important advantage of the response model approach is that both the controllable

factors and the noise factors can be placed in a single experimental design; that is, the inner

and outer array structure of the Taguchi approach can be avoided. We usually call the design

containing both controllable and noise factors a combined array design.
As mentioned previously, we assume that noise variables are random variables,

although they are controllable for purposes of an experiment. Specifically, we assume that the

noise variables are expressed in coded units, that they have expected value zero, variance s2
z,

and that if there are several noise variables, they have zero covariances. Under these assump-

tions, it is easy to find a model for the mean response just by taking the expected value of y
in equation 14.4. This yields

where the z subscript on the expectation operator is a reminder to take the expected value with

respect to both random variables in equation 14.4, z1 and e. To find a model for the variance

of the response y, first rewrite equation 14.4 as follows:

y x x x x x x z= + + + + + +( ) +β β β β γ δ δ ε0 1 1 2 2 12 1 2 1 11 1 22 2 1

E y x x x xz ( ) = + + +β β β β0 1 1 2 2 12 1 2

y x x x x z x z x z= + + + + + + +β β β β γ δ δ ε0 1 1 2 2 12 1 2 1 1 11 1 1 21 2 1

628 Chapter 14 ■ Process Optimization with Designed Experiments

■ F I G U R E  1 4 . 1 1 The role of the control × noise interaction in robust design.
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14.2 Process Robustness Studies 629

Now the variance of y can be obtained by applying the variance operator across this last

expression. The resulting variance model is

Once again, we have used the z subscript on the variance operator as a reminder that both z1

and e are random variables.

We have derived simple models for the mean and variance of the response variable of

interest. Note the following:

1. The mean and variance models involve only the controllable variables. This means

that we can potentially set the controllable variables to achieve a target value of the

mean and minimize the variability transmitted by the noise variable.

2. Although the variance model involves only the controllable variables, it also involves

the interaction regression coefficients between the controllable and noise variables.

This is how the noise variable influences the response.

3. The variance model is a quadratic function of the controllable variables.

4. The variance model (apart from s2) is simply the square of the slope of the fitted

response model in the direction of the noise variable.

To use these models operationally, we would:

1. Perform an experiment and fit an appropriate response model such as equation 14.4.

2. Replace the unknown regression coefficients in the mean and variance models with

their least squares estimates from the response model and replace s2 in the variance

model by the residual mean square found when fitting the response model.

3. Simultaneously optimize the mean and variance models. Often this can be done graph-

ically. For more discussion of other optimization methods, refer to Myers, Montgomery,

and Anderson-Cook (2009).

It is very easy to generalize these results. Suppose that there are k controllable variables

x′ = [x1, x2, . . . , xk], and r noise variables z′ = [z1, z2, . . . , zr]. We will write the general

response model involving these variables as

(14.5)

where f(x) is the portion of the model that involves only the controllable variables and h(x, z)

are the terms involving the main effects of the noise factors and the interactions between the

controllable and noise factors. Typically, the structure for h(x, z) is

The structure for f (x) will depend on what type of model for the controllable variables the

experimenter thinks is appropriate. The logical choices are the first-order model with interac-

tion and the second-order model. If we assume that the noise variables have mean zero, vari-

ance s2
z, and zero covariances, and that the noise variables and the random errors e have zero

covariances, then the mean model for the response is simply

(14.6)E y fz x, z x( )[ ] = ( )

( )h zi x zi
i

r

ij i j
j

r

i

k
x, z = +

= ==
∑ ∑∑ δ

1 11
γ

y f ( )( ) hx,  xz x z= + ( ) +, ε

V y x xz z( ) = + +( ) +σ γ δ δ σ2
1 11 1 22 2

2 2
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To find the variance model, we will use the transmission of error approach from Section 

8.7.2. This involves first expanding equation 14.5 around z = 0 in a first-order Taylor series:

where R is the remainder. If we ignore the remainder and apply the variance operator to this

last expression, the variance model for the response is

(14.7)

Myers, Montgomery, and Anderson-Cook (2009) give a slightly more general form for equa-

tion 14.7 based on applying a conditional variance operator directly to the response model in

equation 14.5.

V y
h

zz z
ii

r
x,z
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the controllable variables x1, x2, and x3 are pressure, concen-

tration, and stirring rate, respectively. The experimenters con-

ducted the (unreplicated) 24 design shown in Table 14.4. Since

both the controllable factors and the noise factor are in the

same design, the 24 factorial design used in this experiment is

an example of a combined array design. We want to deter-

mine operating conditions that maximize the filtration rate and

minimize the variability transmitted from the noise variable

temperature.

EXAMPLE 14.3

To illustrate a process robustness study, consider an experi-

ment [described in detail in Montgomery (2009)] in which

four factors were studied in a 24 factorial design to investigate

their effect on the filtration rate of a chemical product. We will

assume that factor A, temperature, is hard to control in the full-

scale process but it can be controlled during the experiment

(which was performed in a pilot plant). The other three factors—

pressure (B), concentration (C), and stirring rate (D)—are

easy to control. Thus the noise factor z1 is temperature and 

Robust Design

Run
Filtration

Rate

■ TA B L E  1 4 . 4

Pilot Plant Filtration Rate Experiment

Factor

Number A B C D Run Label (gal/h)

1 − − − − (1) 45

2 + − − − a 71

3 − + − − b 48

4 + + − − ab 65

5 − − + − c 68

6 + − + − ac 60

7 − + + − bc 80

8 + + + − abc 65

9 − − − + d 43

10 + − − + ad 100

11 − + − + bd 45

12 + + − + abd 104

13 − − + + cd 75

14 + − + + acd 86

15 − + + + bcd 70

16 + + + + abcd 96

c14ProcessOptimizationwithDesignedExperiments.qxd  4/12/12  5:17 PM  Page 630



14.2 Process Robustness Studies 631

SOLUTION

Using the methods for analyzing a 2k factorial design from

Chapter 13, the response model is
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■ F I G U R E  1 4 . 1 2 Contours of

constant mean filtration rate, Example 

14.3, with z1 = temperature = 0.

ˆ . . . .

. .

. . . . . .

y z z x x

x z x z

z x x x z x z

x, 1 1 2 3

2 1 3 1

1 2 3 2 1 3 1

70 06 21 625
2

9 875
2

14 625
2

18 125
2

16 625
2

70 06 10 81 4 94 7 31 9 06 8 31

( ) = + ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ + ⎛

⎝
⎞
⎠

− ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

= + + + − +

Using equations 14.6 and 14.7, we can find the mean and vari-

ance models as

and

respectively. Now assume that the low and high levels of the

noise variable temperature have been run at one standard devi-

ation either side of its typical or average value, so that s2
z = 1,

and use (this is the residual mean square obtained

by fitting the response model). Therefore, the variance model

becomes

Figure 14.12 presents a contour plot of the response con-

tours from the mean model. To construct this plot, we held the

x x2
2

3
282 08 69 06+ +. .

V y z x x x xz x, 1 2 3 2 3136 42 195 88 179 66 150 58( )[ ] = − + −. . . .

ŝ = 19.51

V y z x x

x x x

x x x

z z

z

x, 1
2

2 3
2 2

2
2
2

3
2

2

3 2 3
2

10 81 9 06 8 31

116 91 82 08 69 06 195 88

179 66 150 58

( )[ ] = − +( ) +

= +( + −

+ − ) +

σ σ

σ

σ

. . .

. . . .

. .

E y z x xz x, 1 2 370 06 4 94 7 31( )[ ] = + +. . .

noise factor (temperature) at zero and the nonsignificant con-

trollable factor (pressure) at zero. Note that mean filtration rate

increases as both concentration and stirring rate increase. The

square root of Vz[y(x, z)] is plotted in Figure 14.13. Note that

both a contour plot and a three-dimensional response surface

plot are given. This plot was also constructed by setting the noise

factor temperature and the nonsignificant controllable factor to

zero.

Suppose that the experimenter wants to maintain mean fil-

tration rate above 75 and minimize the variability around this

value. Figure 14.14 shows an overlay plot of the contours of

mean filtration rate and the square root of Vz[y(x, z)] as a func-

tion of concentration and stirring rate, the significant control-

lable variables. To achieve the desired objectives, it will be

necessary to hold concentration at the high level and stirring

rate very near the middle level.

■ F I G U R E  1 4 . 1 3 Contour plot and response surface of for

Example 14.3, with z1 = temperature = 0.

2Vz 3y(x, z) 4

(continued)
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632 Chapter 14 ■ Process Optimization with Designed Experiments

Example 14.3 illustrates the use of a first-order model with interaction as the model for

the controllable factors, f (x). In Example 14.4, we present a second-order model.

■ F I G U R E  1 4 . 1 4 Overlay

plot of mean and standard deviation for

filtration rate, Example 14.4, with z1 =

temperature = 0.
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 c
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■ F I G U R E  1 4 . 1 5 The Modified 

central composite design in Example 14.4.

■ TA B L E  1 4 . 5

The Modified Central Composite Design for the Process
Robustness Study in Example 14.4

Run x1 x2 z y

1 −1.00 −1.00 −1.00 73.93

2 1.00 −1.00 −1.00 81.99

3 −1.00 1.00 −1.00 77.03

4 1.00 1.00 −1.00 99.29

5 −1.00 −1.00 1.00 70.21

6 1.00 −1.00 1.00 97.72

7 −1.00 1.00 1.00 83.20

8 1.00 1.00 1.00 125.50

9 −1.68 0.00 0.00 64.75

10 1.68 0.00 0.00 102.90

11 0.00 −1.68 0.00 70.20

12 0.00 1.68 0.00 100.30

13 0.00 0.00 0.00 100.50

14 0.00 0.00 0.00 100.00

15 0.00 0.00 0.00 98.86

16 0.00 0.00 0.00 103.90

experiment that was performed, and Figure 14.15 gives a

graphical view of the design. Note that the experimental

design is a “modified” central composite design in which the

axial runs in the z direction have been eliminated. It is pos-

sible to delete these runs because no quadratic term (z2) in

the noise variable is included in the model. The objective is

to find operating conditions that give a mean response

between 90 and 100, while making the variability transmitted

from the noise variable as small as possible.

EXAMPLE 14.4

A process robustness study was conducted in a semiconduc-

tor manufacturing plant involving two controllable variables

x1 and x2 and a single noise factor z. Table 14.5 shows the

Robust Manufacturing
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14.2 Process Robustness Studies 633
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(a) Contour plot

(b) Response surface plot
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■ F I G U R E  1 4 . 1 6 Plots of the mean model,

Example 14.4.

■ F I G U R E  1 4 . 1 7 Plots of the standard deviation of 

the response , Example 14.4.2Vz 3y(x, z) 4

Using equation 14.5, the response model for this process

robustness study is

The least squares fit is

Therefore, from equation 14.6, the mean model is

x x+ 3 62 1 2.

E y x x x xz x, z( )[ ] = + + − −100 63 12 04 8 19 6 11 5 611 2 1
2

2
2. . . . .

ˆ . . . .
. . .

y x x x x
z x z x z

x, z( ) = + + − −
+ + +

100 63 12.04 8 19 6 11 5 61
5 55 4 94 2 55

1 2 1
2

2
2

1 2+ 3.62x1x2

γ

y f h
x x x x x x z

x,z x x,z( ) = ( ) + ( ) +

= + + + + + +

ε

β β β β β β0 1 1 2 2 11 1
2

22 2
2

12 1 2 1
 δ x z+ 11   1 x z+ +δ ε21 2

Using equation 14.7, the variance model is

We will assume (as in the previous example) that s2
z = 1 and

since the residual mean square from fitting the response model

is MSE = 3.73, we will use . Therefore, the

variance model is

Figures 14.16 and 14.17 show response surface contour plots

and three-dimensional surface plots of the mean model and the 

standard deviation , respectively.2Vz 3y(x, z) 4

V y x xz x,z( )[ ] = + +( ) +5 55 4 94 2 55 3 731 2
2

. . . .

ŝ2 = MSE = 3.73

V y
h

z

x x

z z

z

x,z
x,z( )[ ] = ∂ ( )

∂
⎛
⎝⎜

⎞
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+

= + +( ) +

σ σ

σ σ

2
2

2

2
1 2

2 25 55 4 94 2 55. . .

(continued)

SOLUTION
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14.3 Evolutionary Operation

Most process-monitoring techniques measure one or more output quality characteristics, and

if these quality characteristics are satisfactory, no modification of the process is made.

However, in some situations where there is a strong relationship between one or more con-
trollable process variables and the observed quality characteristic or response variable,
other process-monitoring methods can sometimes be employed. For example, suppose that a

chemical engineer wishes to maximize the yield of the process. The yield is a function of two

controllable process variables, temperature (x1) and time (x2)—say,

where e is a random error component. The chemical engineer has found a set of operating

conditions or levels for x1 and x2 that maximizes yield and provides acceptable values for all

other quality characteristics. This process optimization may have been done using RSM; how-

ever, even if the plant operates continuously at these levels, it will eventually “drift” away

from the optimum as a result of variations in the incoming raw materials, environmental

changes, operating personnel, and the like.

A method is needed for continuous operation and monitoring of a process with the goal

of moving the operating conditions toward the optimum or following a “drift.” The method

should not require large or sudden changes in operating conditions that might 

disrupt production. Evolutionary operation (EVOP) was proposed by Box (1957) as such

an operating procedure. It is designed as a method of routine plant operation that is carried

out by operating personnel with minimum assistance from the quality or manufacturing 

engineering staff. EVOP makes use of principles of experimental design, which usually is

y f x x= ( ) +1 2, ε

634 Chapter 14 ■ Process Optimization with Designed Experiments

■ F I G U R E  1 4 . 1 8 Overlay of

the mean and standard deviation con-

tours, Example 14.4.

–0.50

–1.00

0.00

0.50

1.00

0.50 1.000.00
x1

–0.50–1.00

x 2

Std dev = 4

Mean = 100

Mean = 90

deviation of 4. The unshaded region of this plot indicates oper-

ating conditions on x1 and x2, where the requirements for the

mean response are satisfied and the response standard devia-

tion does not exceed 4.

The objective of the experimenters in this process robust-

ness study was to find a set of operating conditions that would

result in a mean response between 90 and 100 with low vari-

ability. Figure 14.18 is an overlay of the contours 90 and 100

from the mean model with the contour of constant standard
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14.3 Evolutionary Operation 635

considered to be an off-line quality-engineering method. Thus, EVOP is an on-line application

of designed experiments.

EVOP consists of systematically introducing small changes in the levels of the

process operating variables. The procedure requires that each independent process vari-

able be assigned a “high” and a “low” level. The changes in the variables are assumed to

be small enough so that serious disturbances in product quality will not occur, yet large

enough so that potential improvements in process performance will eventually be discov-

ered. For two variables x1 and x2, the four possible combinations of high and low levels

are shown in Figure 14.19. This arrangement of points is the 22 factorial design intro-

duced in Chapter 13. We have also included a point at the center of the design. Typically,

the 22 design would be centered about the best current estimate of the optimum operating

conditions.

The points in the 22 design are numbered 1, 2, 3, 4, and 5. Let y1, y2, y3, y4, and y5 be

the observed values of the dependent or response variable corresponding to these points. After

one observation has been run at each point in the design, an EVOP cycle is said to have been

completed. Recall that the main effect of a factor is defined as the average change in response

produced by a change from the low level to the high level of the factor. Thus, the effect of 

x1 is the average difference between the responses on the right-hand side of the design in 

Figure 14.19 and the responses on the left-hand side, or

(14.8)

Similarly, the effect of x2 is found by computing the average difference in the responses on

the top of the design in Figure 14.19 and the responses on the bottom—that is,

(14.9)

If the change from the low to the high level of x1 produces an effect that is different at the two

levels of x2, then there is interaction between x1 and x2. The interaction effect is

(14.10)x x y y y y1 2 2 3 4 5
1
2

× = + − −[ ]interaction

x y y y y

y y y y

2 3 5 2 4

3 5 2 4

1
2

1
2

effect = +( ) − +( )[ ]
= + − −[ ]

x y y y y

y y y y

1 3 4 2 5

3 4 2 5

1
2

1
2

effect = +( ) − +( )[ ]
= + − −[ ]

High

Low

HighLow

x2

y5

y2 y4

y3

y1

(1)

(5)

(2)

(3)

(4)

x1 ■ F I G U R E  1 4 . 1 9 22 factorial

design.
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or simply the average difference between the diagonal totals in Figure 14.19. After n cycles,

there will be n observations at each of the five design points. The effects of x1, x2, and their

interaction are then computed by replacing the individual observations yi, in equations 14.8,

14.9, and 14.10 by the averages of the n observations at each point.

After several cycles have been completed, one or more process variables, or their

interaction, may appear to have a significant effect on the response variable y. When this

occurs, a decision may be made to change the basic operating conditions to improve the

process output. When improved conditions are detected, an EVOP phase is said to have

been completed.

In testing the significance of process variables and interactions, an estimate of experi-

mental error is required. This is calculated from the cycle data. By comparing the response at

the center point with the 2k points in the factorial portion, we may check on the presence of

curvature in the response function; that is, if the process is really centered at the maximum

(say), then the response at the center should be significantly greater than the responses at the

2k peripheral points.

In theory, EVOP can be applied to an arbitrary number of process variables. In practice,

only two or three variables are usually considered at a time. Example 14.5 shows the proce-

dure for two variables. Box and Draper (1969) give a discussion of the three-variable case,

including necessary forms and worksheets. EVOP calculations can be easily performed in 

statistical software packages for factorial designs.

yi

636 Chapter 14 ■ Process Optimization with Designed Experiments

EXAMPLE 14.5

Consider a chemical process whose yield is a function of tem-

perature (x1) and pressure (x2). The current operating condi-

tions are x1 = 250°F and x2 = 145 psi. The EVOP procedure

uses the 22 design plus the center point shown in Figure 14.20.

The cycle is completed by running each design point in

numerical order (1, 2, 3, 4, 5). The yields in the first cycle are

shown in Figure 14.20. Set up the EVOP procedure.

Two-Variable EVOP

84.2 84.5

84.3 84.9

84.5

(1)

(5)

(2)

(3)

(4)

245 250 255

x 2
(p

si
)

x1(°F)

150

145

140

■ F I G U R E  1 4 . 2 0 22 design for

Example 14.5.

The results of a third cycle are shown in Table 14.8. The

effect of pressure now exceeds its error limit, and the temper-

ature effect is equal to the error limit. A change in operating

conditions is now probably justified.

In light of the results, it seems reasonable to begin a new

EVOP phase about point (3). Thus, x1 = 225°F and x2 = 150 psi

would become the center of the 22 design in the second phase.

An important aspect of EVOP is feeding the information

generated back to the process operators and supervisors. This

is accomplished by a prominently displayed EVOP informa-

tion board. The information board for this example at the end

of cycle three is shown in Table 14.9.

SOLUTION

The yields from the first cycle are entered in the EVOP cal-

culation sheet shown in Table 14.6. At the end of the first

cycle, no estimate of the standard deviation can be made.

The calculation of the main effects of temperature and pres-

sure and their interaction are shown in the bottom half of

Table 14.6.

A second cycle is then run, and the yield data are entered

in another EVOP calculation sheet shown in Table 14.7. At

the end of the second cycle, the experimental error can be

estimated and the estimates of the effects compared to

approximate 95% (two standard deviation) limits. Note that

the range refers to the range of the differences in row (iv);

thus, the range is +1.0 − (−1.0) = 2.0. Since none of the

effects in Table 14.7 exceeds their error limits, the true effect

is probably zero, and no changes in operating conditions are

contemplated.
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14.3 Evolutionary Operation 637

New average 
new sum 

S
S

n
=

−1

■ TA B L E  1 4 . 6

EVOP Calculation Sheet—Example 14.5, n = 1

Cycle: n = 1 Phase 1

Response: Yield Date: 6-14-07

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum Previous sum S =
(ii) Previous cycle average Previous average S =
(iii) New observations 84.5 84.2 84.9 84.5 84.3 New S = range × f5,n =
(iv) Differences [(ii) − (iii)] Range of (iv) =
(v) New sums [(i) + (iii)] 84.5 84.2 84.9 84.5 84.3 New sum S =
(vi) New averages [ ȳi = (v)/n] 84.5 84.2 84.9 84.5 84.3

Calculation of 
Calculation of Effects Error Limits

For change in mean
1 78.

n
S =Change-in-mean effect = + + + −( ) = −1

5
4 0 022 3 4 5 1y y y y y .

T P y y y y× = + − −( ) = interaction effect 1
2

0 152 3 4 5 .

For new effects
2

n
S =Pressure effect = + − −( ) =1

2
0 253 5 2 4y y y y .

For new average
2

n
S =Temperature effect = + − −( ) =1

2
0 453 4 2 5y y y y .

=
−

=New sum S

n 1
0 60.

■ TA B L E  1 4 . 7

EVOP Calculation Sheet—Example 14.5, n = 2

Cycle: n = 2 Phase 1

Response: Yield Date: 6-14-07

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum 84.5 84.2 84.9 84.5 84.3 Previous sum S =
(ii) Previous cycle average 84.5 84.2 84.9 84.5 84.3 Previous average S =
(iii) New observations 84.9 84.6 85.9 83.5 84.0 New S = range × f5,n = 0.60

(iv) Differences [(ii) − (iii)] −0.4 −0.4 −1.0 +1.0 0.3 Range of (iv) = 2.0

(v) New sums [(i) + (iii)] 169.4 168.8 170.8 168.0 168.3 New sum S = 0.60

(vi) New averages [ ȳi = (v)/n] 84.70 84.40 85.40 84.00 84.15 New average S

T P y y y y× = + − −( ) = interaction effect 1
2 0 832 3 4 5 .

For new effects
2

0 85
n

S = .Pressure effect = + − −( ) =1
2

0 583 5 2 4y y y y .

For new average
2

0 85
n

S = .Temperature effect = + − −( ) =1
2 0 433 4 2 5y y y y .

5 3

2 4

1

5 3

2 4

1

For change in mean
1 78

0 76
.

.
n

S =Change-in-mean effect = + + + −( ) = −1
5

4 0 172 3 4 5 1y y y y y .

(continued)
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638 Chapter 14 ■ Process Optimization with Designed Experiments

■ TA B L E  1 4 . 9

EVOP Information Board—Cycle Three

Effects with 
95% Error Limits Error Limits for Averages: ±±  0.67

Temperature 0.67 ±0.67

Pressure 0.87 ±0.67

T × P 0.64 ±0.67

Change in mean 0.07 ±0.60

Standard deviation: 0.58

Response: Percentage yield
Requirement: Maximize

P
re

ss
ur

e 150

145

140
245 250 255

84:50

84:80

85:80

84:27 84:30

Temperature

=
−

=New sum S

n 1
0 58.

■ TA B L E  1 4 . 8

EVOP Calculation Sheet—Example 14.5, n = 3

Cycle: n = 3 Phase 1

Response: Yield Date: 6-14-07

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum 169.4 168.8 170.8 168.0 168.3 Previous sum S = 0.60

(ii) Previous cycle average 84.70 84.40 85.40 84.00 84.15 Previous average S = 0.60

(iii) New observations 85.0 84.0 86.6 84.9 85.2 New S = range × f5,n = 0.56

(iv) Differences [(ii) − (iii)] −0.30 +0.40 −1.20 −0.90 −1.05 Range of (iv) = 1.60

(v) New sums [(i) + (iii)] 254.4 252.8 257.4 252.9 253.5 New sum S = 1.16

(vi) New averages[ ȳ = (v)/n] 84.80 84.27 85.80 84.30 84.50 New average S

Calculation of 
Calculation of Effects Error Limits

For change in mean
1 78

0 60
.

.
n

S == + + + −( ) = −1
5

4 0 072 3 4 5 1y y y y y .Change-in-mean effect

T P y y y y× = + − −( ) = interaction effect 1
2

0 642 3 4 5 .

For new effects
2

0 67
n

S = .Pressure effect = + − −( ) =1
2

0 873 5 2 4y y y y .

For new average
2

0 67
n

S = .Temperature effect = + − −( ) =1
2 0 673 4 2 5y y y y .

5 3

2 4

1
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Important Terms and Concepts 639

Most of the quantities on the EVOP calculation sheet follow directly from the analysis

of the 2k factorial design. For example, the variance of any effect such as 1⁄2

is simply

where s2 is the variance of the observations (y). Thus, two standard deviation (corresponding

to approximately 95%) error limits on any effect would be . The variance of the

change in mean is

Thus, two standard deviation error limits on the CIM are

For more information on the 2k factorial design, see Chapter 13 and Montgomery (2009).

The standard deviation s is estimated by the range method. Let yi(n) denote the obser-

vation at the ith design point in cycle n, and the corresponding average of yi(n) after n
cycles. The quantities in row (iv) of the EVOP calculation sheet are the differences

. The variance of these differences is 

The range of the differences—say, RD—is related to the estimate of the distribution of the dif-

ferences by . Now , so

can be used to estimate the standard deviation of the observations, where k denotes the num-

ber of points used in the design. For a 22 with one center point we have k = 5, and for a 23

with one center point we have k = 9. Values of fk,n are given in Table 14.10.

ˆ ,σ = −( ) = ( ) ≡n

n

R

d
f R SD
k n D

1

2

RD/d2 = ŝ2n/ (n − 1)ŝD = RD/d2

V 3yi(n) − yi(n − 1) 4 � s2 3n/(n − 1) 4 .yi(n) − yi(n − 1)

yi(n)

±2s2(20/25)n = ±1.78s/2n.

V V y y y y y

ny y

CIM( ) = + + + −( )⎡
⎣⎢

⎤
⎦⎥

= +( ) =

1

5
4

1

25
4 16

20

25

2 3 4 5 1

2 2
2

σ σ σ

±2s/1n

V y y y y

n

y y y y

y

1

2

1

4

1

4
4

3 5 2 4
2 2 2 2

2
2

3 5 2 4
+ − −( )⎡

⎣⎢
⎤
⎦⎥

= + + +( )
= ( ) =

σ σ σ σ

σ σ

(y3 + y5 − y2 − y4)

Central composite design

Combined array design

Contour plot

Controllable variable

Crossed array design

Evolutionary operation (EVOP)

EVOP cycle

EVOP phase

First-order model

Inner array design

Method of steepest ascent

Noise variable

Outer array design

Path of steepest ascent

Important Terms and Concepts

■ TA B L E  1 4 . 1 0

Values of fk,n

n = 2 3 4 5 6 7 8 9 10

k = 5 0.30 0.35 0.37 0.38 0.39 0.40 0.40 0.40 0.41

9 0.24 0.27 0.29 0.30 0.31 0.31 0.31 0.32 0.32

10 0.23 0.26 0.28 0.29 0.30 0.30 0.30 0.31 0.31
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640 Chapter 14 ■ Process Optimization with Designed Experiments

Exercises

14.6. A second-order response surface model in two vari-

ables is

(a) Generate a two-dimensional contour plot for this

model over the region −2 ≤ xi ≤ +2, i = 1, 2, and

select the values of x1 and x2 that maximize .

(b) Find the two equations given by

Show that the solution to these equations for the

optimum conditions x1 and x2 are the same as

those found graphically in part (a).

14.7. An article in Rubber Chemistry and Technology (Vol.

47, 1974, pp. 825–836) describes an experiment that

studies the relationship of the Mooney viscosity of

rubber to several variables, including silica filler

(parts per hundred) and oil filler (parts per hundred).

Some of the data from this experiment are shown in

Table 14E.2, where

x x1 2
60

15
21

1 5= − = −silica        oil
.

∂
∂

∂
∂

ˆ ˆy
x

y
x1 2

= 0   and = 0 

ŷ

ˆ . . .

. .

y x x x

x x x

= + + −

− +

69 0 1 6 1 1 1

1 2 0 3

1 2 1
2

2
2

1 2

14.1. Discuss why a central composite

design would almost always be

preferable to a 3k factorial design

for fitting a second-order response

surface model.

14.2. Sometimes experimenters prefer to

use a spherical central composite

design in which the axial distance

is , where k is the number

of design factors. Is the spherical

design similar to the rotatable

design? Are there cases where the

spherical design is also rotatable?

14.3. Consider the first-order model

(a) Sketch the contours of constant predicted

response over the range –1 ≤ xi ≤ +1, i = 1, 2.

(b) Find the direction of steepest ascent.

14.4. Consider the first-order model

where −1 ≤ xi ≤ +1, i = 1, 2, 3. Find the direction of

steepest ascent.

14.5. An experiment was run to study the effect of two 

factors—time and temperature—on the inorganic

impurity levels in paper pulp. The results of this

experiment are shown in Table 14E.1.

(a) What type of experimental design has been used

in this study? Is the design rotatable?

(b) Fit a quadratic model to the response, using the

method of least squares.

(c) Construct the fitted impurity response surface.

What values of x1 and x2 would you recommend

if you wanted to minimize the impurity level?

(d) Suppose that

where temperature is in °C and time is in hours.

Find the optimum operating conditions in

terms of the natural variables temperature and

time.

x x1 2
750

50
30

15= − = −temp        time

ŷ x x x= + − +50 2 15 31 2 3

ŷ x x= + +75 10 61 2

a = 1k

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book

Process robustness study

Response model

Response surface

Response surface methodology (RSM)

Robust parameter design (RPD)

Rotatable design

Second-order model

Sequential experimentation

Taylor series

Transmission of error

■ TA B L E  1 4 E . 1

The Experiment for 
Exercise 14.5

x1 x2 y

−1 −1 210

1 −1 95

−1 1 218

1 1 100

−1.5 0 225

1.5 0 50

0 −1.5 175

0 1.5 180

0 0 145

0 0 175

0 0 158

0 0 166
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(a) What type of experimental design has been used?

Is it rotatable?

(b) Fit a quadratic model to these data. What values

of x1 and x2 will maximize the Mooney viscosity?

14.8. In their book Empirical Model Building and
Response Surfaces (John Wiley, New York; 1987),

G. E. P. Box and N. R. Draper describe an experiment

with three factors. The data shown in Table 14E.3 are

a variation of the original experiment on p. 247 of

their book. Suppose that these data were collected in

a semiconductor manufacturing process.

(a) The response y1 is the average of three readings

on resistivity for a single wafer. Fit a quadratic

model to this response.

(b) The response y2 is the standard deviation of the

three resistivity measurements. Fit a first-order

model to this response.

(c) Where would you recommend that we set x1, x2,

and x3 if the objective is to hold mean resistivity

at 500 and minimize the standard deviation?

14.9. An article by J. J. Pignatiello, Jr., and J. S. Ramberg

in the Journal of Quality Technology (Vol. 17, 1985,

pp. 198–206) describes the use of a replicated frac-

tional factorial to investigate the effect of five factors

on the free height of leaf springs used in an automo-

tive application. The factors are A = furnace temper-

ature, B = heating time, C = transfer time, D = hold

down time, and E = quench oil temperature. The data

are shown in Table 14E.4.

(a) Write out the alias structure for this design. What

is the resolution of this design?

■ TA B L E  1 4 E . 2

The Viscosity Experiment for
Exercise 14.7

Coded Levels

x1 x2 y

−1 −1 13.71

1 −1 14.15

−1 1 12.87

1 1 13.53

−1.4 0 12.99

1.4 0 13.89

0 −1.4 14.16

0 1.4 12.90

0 0 13.75

0 0 13.66

0 0 13.86

0 0 13.63

0 0 13.74

■ TA B L E  1 4 E . 3

The Experiment for Exercise 14.8

x1 x2 x3 y1 y2

−1 −1 −1 24.00 12.49

0 −1 −1 120.33 8.39

1 −1 −1 213.67 42.83

−1 0 −1 86.00 3.46

0 0 −1 136.63 80.41

1 0 −1 340.67 16.17

−1 1 −1 112.33 27.57

0 1 −1 256.33 4.62

1 1 −1 271.67 23.63

−1 −1 0 81.00 0.00

0 −1 0 101.67 17.67

1 −1 0 357.00 32.91

−1 0 0 171.33 15.01

0 0 0 372.00 0.00

1 0 0 501.67 92.50

−1 1 0 264.00 63.50

0 1 0 427.00 88.61

1 1 0 730.67 21.08

−1 −1 1 220.67 133.82

0 −1 1 239.67 23.46

1 −1 1 422.00 18.52

−1 0 1 199.00 29.44

0 0 1 485.33 44.67

1 0 1 673.67 158.21

−1 1 1 176.67 55.51

0 1 1 501.00 138.94

1 1 1 1,010.00 142.45

■ TA B L E  1 4 E . 4

The Spring Experiment for Exercise 14.9

A B C D E

− − − − − 7.78, 7.78, 7.81

+ − − + − 8.15, 8.18, 7.88

− + − + − 7.50, 7.56, 7.50

+ + − − − 7.59, 7.56, 7.75

− − + + − 7.54, 8.00, 7.88

+ − + − − 7.69, 8.09, 8.06

− + + − − 7.56, 7.52, 7.44

+ + + + − 7.56, 7.81, 7.69

− − − − + 7.50, 7.25, 7.12

+ − − + + 7.88, 7.88, 7.44

− + − + + 7.50, 7.56, 7.50

+ + − − + 7.63, 7.75, 7.56

− − + + + 7.32, 7.44, 7.44

+ − + − + 7.56, 7.69, 7.62

− + + − + 7.18, 7.18, 7.25

+ + + + + 7.81, 7.50, 7.59
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function of three variables x1, x2, and x3. Large

values of y (yield in grams) are desirable. Fit a

second-order model and analyze the fitted surface.

Under what set of conditions is maximum growth

achieved?

14.13. The data in Table 14E.6 were collected by a chemical

engineer. The response y is filtration time, x1 is tem-

perature, and x2 is pressure. Fit a second-order model.

(a) What operating conditions would you recom-

mend if the objective is to minimize the filtration

time?

(b) What operating conditions would you recom-

mend if the objective is to operate the process at

a mean filtration rate very close to 46?

14.14. Reconsider the crystal growth experiment from

Exercise 14.12. Suppose that x3 = z is now a noise

variable, and that the modified experimental design

shown in Table 14E.7 has been conducted. The

experimenters want the growth rate to be as large as

possible, but they also want the variability transmit-

ted from z to be small. Under what set of conditions

is growth greater than 90 with minimum variability

achieved?

14.15. An article in Quality Progress (“For Starbucks, It’s in

the Bag,” March 2011, pp. 18–23) describes using a

central composite design to improve the packaging of

one-pound coffee. The objective is to produce an air-

tight seal that is easy to open without damaging the

top of the coffee bag. The experimenters studied three

factors—x1 = plastic viscosity (300–400 centipoise),

x2 = clamp pressure (170–190 psi), and x3 = plate gap

(−3, +3 mm)—and two responses, y1 = tear and 

y2 = leakage. The design is shown in Table 14E.8.

(b) Analyze the data. What factors influence mean

free height?

(c) Calculate the range and standard deviation of

free height for each run. Is there any indication

that any of these factors affects variability in free

height?

(d) Analyze the residuals from this experiment and

comment on your findings.

(e) Is this the best possible design for five factors in

16 runs? Specifically, can you find a fractional

design for five factors in 16 runs with higher res-

olution than this one?

14.10. Consider the leaf spring experiment in Exercise 14.9.

Suppose that factor E (quench oil temperature) is

very difficult to control during manufacturing. We

want to have the mean spring height as close to 7.50

as possible with minimum variability. Where would

you set factors A, B, C, and D to reduce variability in

free height as much as possible regardless of the

quench oil temperature used?

14.11. Consider the leaf spring experiment in Exercise 14.9.

Rework this problem, assuming that factors A, B, and

C are easy to control but factors D and E are hard to

control.

14.12. The data shown in the Table 14E.5 were collected

in an experiment to optimize crystal growth as a

■ TA B L E  1 4 E . 5

Crystal Growth Experiment for
Exercise 14.12

x1 x2 x3 y

−1 −1 −1 66

−1 −1 1 70

−1 1 −1 78

−1 1 1 60

1 −1 −1 80

1 −1 1 70

1 1 −1 100

1 1 1 75

−1.682 0 0 65

1.682 0 0 82

0 −1.682 0 68

0 1.682 0 63

0 0 −1.682 100

0 0 1.682 80

0 0 0 83

0 0 0 90

0 0 0 87

0 0 0 88

0 0 0 91

0 0 0 85

■ TA B L E  1 4 E . 6

Chemical Process Experiment
for Exercise 14.13

x1 x2 y

−1 −1 54

−1 1 45

1 −1 32

1 1 47

−1.414 0 50

1.414 0 53

0 −1.414 47

0 1.414 51

0 0 41

0 0 39

0 0 44

0 0 42

0 0 40
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(a) Build a second-order model for the tear response.

(b) Build a second-order model for the leakage

response.

(c) Analyze the residuals for both models. Do trans-

formations seem necessary for either response?

If so, refit the models in the transformed metric.

(d) Construct response surface plots and contour

plots for both responses. Provide interpretations

for the fitted surfaces.

(e) What conditions would you recommend for

process operation to minimize leakage and keep

tear below 0.75?

14.16. Box and Liu (1999) describe an experiment flying

paper helicopters where the objective is to maximize

flight time. They used the central composite design

shown in Table 14E.9. Each run involved a single

helicopter made to the following specifications:

x1 = wing area (in2),−1 = 11.80 and +1 = 13.00; 

x2 = wing-length-to-width ratio, −1 = 2.25 and +1 =
2.78; x3 = base width (in), −1 = 1.00 and +1 = 1.50;

and x4 = base length (in), −1 = 1.50 and +1 = 2.50.

Each helicopter was flown four times, and the aver-

age flight time and the standard deviation of flight

time were recorded.

(a) Fit a second-order model to the average flight-

time response.

(b) Fit a second-order model to the standard devia-

tion of flight-time response.

(c) Analyze the residuals for both models from 

parts (a) and (b). Are transformations on the

response(s) necessary? If so, fit the appropriate

models.

(d) What design would you recommend to maxi-

mize the flight time?

(e) What design would you recommend to maxi-

mize the flight time while simultaneously

minimizing the standard deviation of flight

time?

14.17. An article in the Journal of Chromatography A

(“Optimization of the Capillary Electrophoresis

Separation of Ranitidine and Related Compounds,”

Vol. 766, pp. 245–254) describes an experiment to

optimize the production of ranitidine, a compound

that is the primary active ingredient of Zantac, a

pharmaceutical product used to treat ulcers, gastroe-

sophageal reflux disease (a condition in which back-

ward flow of acid from the stomach causes heartburn

and injury of the esophagus), and other conditions

where the stomach produces too much acid, such as

Zollinger-Ellison syndrome. The authors used three

factors (x1 = pH of the buffer solution, x2 = the elec-

trophoresis voltage, and the concentration of one

component of the buffer solution) in a central com-

posite design. The response is chromatographic

■ TA B L E  1 4 E . 7

Crystal Growth Experiment for
Exercise 14.14

x1 x2 z y

−1 −1 −1 66

−1 −1 1 70

−1 1 −1 78

−1 1 1 60

1 −1 −1 80

1 −1 1 70

1 1 −1 100

1 1 1 75

−1.682 0 0 65

1.682 0 0 82

0 −1.682 0 68

0 1.682 0 63

0 0 0 83

0 0 0 90

0 0 0 87

0 0 0 88

0 0 0 91

0 0 0 85

■ TA B L E  1 4 E . 8

The Coffee Bag Experiment in Exercise 14.15

Run Viscosity Pressure Plate Gap Tear Leakage

Center 350 180 0 0 0.15

Axial 350 170 0 0 0.5

Factorial 319 186 1.8 0.45 0.15

Factorial 380 174 1.8 0.85 0.05

Center 350 180 0 0.35 0.15

Axial 300 180 0 0.3 0.45

Axial 400 180 0 0.7 0.25

Axial 350 190 0 1.9 0

Center 350 180 0 0.25 0.05

Factorial 319 186 −1.8 0.1 0.35

Factorial 380 186 −1.8 0.15 0.4

Axial 350 180 3 3.9 0

Factorial 380 174 −1.8 0 0.45

Center 350 180 0 0.55 0.2

Axial 350 180 −3 0 1

Factorial 319 174 −1.8 0.05 0.2

Factorial 319 174 1.8 0.4 0.25

Factorial 380 186 1.8 4.3 0.05

Center 350 180 0 0 0

The tear response was measured on a scale from 0–9

(good to bad), and leakage was proportion failing.

Each run used a sample of 20 bags for response

measurement.
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644 Chapter 14 ■ Process Optimization with Designed Experiments

(e) What conditions would you recommend using to

minimize CEF?

14.18. An article in the Electronic Journal of Biotechnology
(“Optimization of Medium Composition for

Transglutaminase Production by a Brazilian Soil

Streptomyces sp.,”) describes the use of designed

experiments to improve the medium for cells used 

in a new microbial source of transglutaminase

(MTGase), an enzyme that catalyzes an acyl transfer

reaction using peptide-bond glutamine residues as

acyl donors and some primary amines as acceptors.

Reactions catalyzed by MTGase can be used in 

food processing. The article describes two phases 

of experimentation: screening with a fractional 

factorial, and optimization. We will use only the 

exponential function (CEF), which should be mini-

mized. Table 14E.10 shows the design.

(a) Fit a second-order model to the CEF response.

Analyze the residuals from this model. Does it

seem that all model terms are necessary?

(b) Reduce the model from part (a) as necessary. Did

model reduction improve the fit?

(c) Does transformation of the CEF response seem

like a useful idea? What aspect of either the data

or the residual analysis suggests that transforma-

tion would be helpful?

(d) Fit a second-order model to the transformed CEF

response. Analyze the residuals from this model.

Does it seem that all model terms are necessary?

What would you choose as the final model?

■ TA B L E  1 4 E . 9

The Paper Helicopter Experiment

Std Order Run Order Wing Area Wing Ratio Base Width Base Length Avg. Flight Time Std. Dev Flight Time

1 9 −1 −1 −1 −1 3.67 0.052

2 21 1 −1 −1 −1 3.69 0.052

3 14 −1 1 −1 −1 3.74 0.055

4 4 1 1 −1 −1 3.7 0.062

5 2 −1 −1 1 −1 3.72 0.052

6 19 1 −1 1 −1 3.55 0.065

7 22 −1 1 1 −1 3.97 0.052

8 25 1 1 1 −1 3.77 0.098

9 27 −1 −1 −1 −1 3.5 0.079

10 13 1 −1 −1 1 3.73 0.072

11 20 −1 1 −1 1 3.58 0.083

12 6 1 1 −1 1 3.63 0.132

13 12 −1 −1 1 1 3.44 0.058

14 17 1 −1 1 1 3.55 0.049

15 26 −1 1 1 1 3.7 0.081

16 1 1 1 1 1 3.62 0.051

17 8 −2 0 0 0 3.61 0.129

18 15 2 0 0 0 3.64 0.085

19 7 0 −2 0 0 3.55 0.1

20 5 0 2 0 0 3.73 0.063

21 29 0 0 −2 0 3.61 0.051

22 28 0 0 2 0 3.6 0.095

23 16 0 0 0 −2 3.8 0.049

24 18 0 0 0 2 3.6 0.055

25 24 0 0 0 0 3.77 0.032

26 10 0 0 0 0 3.75 0.055

27 23 0 0 0 0 3.7 0.072

28 11 0 0 0 0 3.68 0.055

29 3 0 0 0 0 3.69 0.078

30 30 0 0 0 0 3.66 0.058
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What effect does including the interaction terms

between the noise variables have on the variance model?

14.20. Consider the response model in equation 14.5. Suppose

that in the response model we allow for a complete 

second-order model in the noise factors so that

What effect does this have on the variance model?

h z x z

z z z

i i
i

r

ij i j
j

r

i

k

ij i j
j

r

i
i i

i

r

x,z( ) = +

+ +

= ==

=< =

∑ ∑∑

∑∑ ∑

γ δ

λ θ

1 11

2

2

1

optimization experiment. The design was a central

composite design in four factors: x1 = KH2PO4,

x2 = MgSO47H2O, x3 = soybean flower, and 

x4 = peptone. MTGase activity is the response, which

should be maximized. Table 14E.11 contains the

design and the response data.

(a) Fit a second-order model to the MTGase activity

response.

(b) Analyze the residuals from this model.

(c) Recommend operating conditions that maximize

MTGase activity.

14.19. Consider the response model in equation 14.5 and

the transmission of error approach to finding the

variance model (equation 14.7). Suppose that in the

response model we use

z zij i j
j

r

i
+

=<
∑∑ λ

2

h z x zi i
i

r

ij i j
j

r

i

k
x,z( ) = +

= ==
∑ ∑∑γ δ

1 11

■ TA B L E  1 4 E . 1 1

The MTGase Optimization Experiment for Exercise 14.18

Standard MTGase 
Order x1 x2 x3 x4 Activity

1 −1 −1 −1 −1 0.87

2 1 −1 −1 −1 0.74

3 −1 1 −1 −1 0.51

4 1 1 −1 −1 0.99

5 −1 −1 1 −1 0.67

6 1 −1 1 −1 0.72

7 −1 1 1 −1 0.81

8 1 1 1 −1 1.01

9 −1 −1 −1 1 1.33

10 1 −1 −1 1 0.7

11 −1 1 −1 1 0.82

12 1 1 −1 1 0.78

13 −1 −1 1 1 0.36

14 1 −1 1 1 0.23

15 −1 1 1 1 0.21

16 1 1 1 1 0.44

17 −2 0 0 0 0.56

18 2 0 0 0 0.49

19 0 −2 0 0 0.57

20 0 2 0 0 0.81

21 0 0 −2 0 0.9

22 0 0 2 0 0.65

23 0 0 0 −2 0.91

24 0 0 0 2 0.49

25 0 0 0 0 1.43

26 0 0 0 0 1.17

27 0 0 0 0 1.5

■ TA B L E  1 4 E . 1 0

The Ranitidine Separation Experiment

Standard
Order x1 x2 x3 CEF

1 −1 −1 −1 17.3

2 1 −1 −1 45.5

3 −1 1 −1 10.3

4 1 1 −1 11,757.1

5 −1 −1 1 16.942

6 1 −1 1 25.4

7 −1 1 1 31,697.2

8 1 1 1 12,039.2

9 −1.68 0 0 7.5

10 1.68 0 0 6.3

11 0 −1.68 0 11.1

12 0 1.68 0 6.664

13 0 0 −1.68 16,548.7

14 0 0 1.68 26,351.8

15 0 0 0 9.9

16 0 0 0 9.6

17 0 0 0 8.9

18 0 0 0 8.8

19 0 0 0 8.013

20 0 0 0 8.059
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Acceptance 
Sampling

Inspection of raw materials, semifinished products, or finished products is
one aspect of quality assurance. When inspection is for the purpose of accep-
tance or rejection of a product, based on adherence to a standard, the type
of inspection procedure employed is usually called acceptance sampling.
This section presents two chapters that deal with the design and use of sam-
pling plans, schemes, and systems. The primary focus is on lot-by-lot accep-
tance sampling.

Chapter 15 presents lot-by-lot acceptance-sampling plans for attributes.
Included in the chapter is a discussion of MIL STD 105E and its civilian coun-
terpart, ANSI/ASQC Z1.4. Variables sampling plans are presented in Chapter
16, including MIL STD 414 and its civilian counterpart, ANSI/ASQC Z1.9, along
with a survey of several additional topics in acceptance sampling, including
chain-sampling plans, sampling plans for continuous production, and skip-lot
sampling plans.

The underlying philosophy here is that acceptance sampling is not a substi-
tute for adequate process monitoring and control and use of other statistical
methods to drive variability reduction. The successful use of these tech-
niques at the early stages of manufacturing, including the supplier or supplier
base, can greatly reduce and in some cases eliminate the need for extensive
sampling inspection.

Acceptance 
Sampling

PART 6PART 6
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1515
15.1 THE ACCEPTANCE-SAMPLING

PROBLEM
15.1.1 Advantages and

Disadvantages of Sampling
15.1.2 Types of Sampling Plans
15.1.3 Lot Formation
15.1.4 Random Sampling
15.1.5 Guidelines for Using

Acceptance Sampling
15.2 SINGLE-SAMPLING PLANS FOR

ATTRIBUTES
15.2.1 Definition of a Single-

Sampling Plan
15.2.2 The OC Curve
15.2.3 Designing a Single-Sampling

Plan with a Specified OC
Curve

15.2.4 Rectifying Inspection
15.3 DOUBLE, MULTIPLE, AND

SEQUENTIAL SAMPLING
15.3.1 Double-Sampling Plans

15.3.2 Multiple-Sampling Plans
15.3.3 Sequential-Sampling 

Plans
15.4 MILITARY STANDARD 105E

(ANSI/ASQC Z1.4, ISO 2859)
15.4.1 Description of the Standard
15.4.2 Procedure
15.4.3 Discussion

15.5 THE DODGE–ROMIG SAMPLING 
PLANS

15.5.1 AOQL Plans
15.5.2 LTPD Plans
15.5.3 Estimation of Process 

Average

Supplemental Material for Chapter 15

S15.1 A Lot Sensitive Compliance
(LTPD) Sampling Plan

S15.2 Consideration of Inspection
Error

CHAPTER OUTLINE

The supplemental material is on the textbook Website www.wiley.com/college/montgomery.

CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This chapter presents lot-by-lot acceptance-sampling plans for attributes. Key topics

include the design and operation of single-sampling plans, the use of the operating charac-

teristic curve, and the concepts of rectifying inspection, average outgoing quality, and aver-

age total inspection. Similar concepts are briefly introduced for types of sampling plans

Lot-by-Lot Acceptance
Sampling for
Attributes

649
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650 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

where more than one sample may be taken to determine the disposition of a lot (double, mul-

tiple, and sequential sampling). Two systems of standard sampling plans are also 

presented: the military standard plans known as MIL STD 105E and the Dodge–Romig plans.

These plans are designed around different philosophies: MIL STD 105E has an acceptable

quality level focus, whereas the Dodge–Romig plans are oriented around either the lot toler-

ance percent defective or the average outgoing quality limit perspective.

After careful study of this chapter, you should be able to do the following:

1. Understand the role of acceptance sampling in modern quality control systems

2. Understand the advantages and disadvantages of sampling

3. Understand the difference between attributes and variables sampling plans, and

the major types of acceptance-sampling procedures

4. Know how single-, double-, and sequential-sampling plans are used

5. Understand the importance of random sampling

6. Know how to determine the OC curve for a single-sampling plan for attributes

7. Understand the effects of the sampling plan parameters on sampling plan per-

formance

8. Know how to design single-sampling, double-sampling, and sequential-sampling

plans for attributes

9. Know how rectifying inspection is used

10. Understand the structure and use of MIL STD 105E and its civilian counterpart

plans

11. Understand the structure and use of the Dodge–Romig system of sampling plans

15.1 The Acceptance-Sampling Problem

As we observed in Chapter 1, acceptance sampling is concerned with inspection and decision

making regarding products, one of the oldest aspects of quality assurance. In the 1930s and

1940s, acceptance sampling was one of the major components of the field of statistical quality

control, and was used primarily for incoming or receiving inspection. In more recent years, it

has become typical to work with suppliers to improve their process performance through the

use of SPC and designed experiments, and not to rely as much on acceptance sampling as a

primary quality assurance tool.

A typical application of acceptance sampling is as follows: A company receives a ship-

ment of product from a supplier. This product is often a component or raw material used in

the company’s manufacturing process. A sample is taken from the lot, and some quality char-

acteristic of the units in the sample is inspected. On the basis of the information in this sam-

ple, a decision is made regarding lot disposition. Usually, this decision is either to accept or

to reject the lot. Sometimes we refer to this decision as lot sentencing. Accepted lots are put

into production; rejected lots may be returned to the supplier or may be subjected to some

other lot disposition action.
Although it is customary to think of acceptance sampling as a receiving inspection

activity, there are other uses of sampling methods. For example, frequently a manufacturer

will sample and inspect its own product at various stages of production. Lots that are accepted

are sent forward for further processing, and rejected lots may be reworked or scrapped.

Three aspects of sampling are important:

1. It is the purpose of acceptance sampling to sentence lots, not to estimate the lot quality.

Most acceptance-sampling plans are not designed for estimation purposes.
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2. Acceptance-sampling plans do not provide any direct form of quality control.

Acceptance sampling simply accepts and rejects lots. Even if all lots are of the same

quality, sampling will accept some lots and reject others, the accepted lots being no

better than the rejected ones. Process controls are used to control and systematically

improve quality, but acceptance sampling is not.

3. The most effective use of acceptance sampling is not to “inspect quality into the prod-

uct,” but rather as an audit tool to ensure that the output of a process conforms to

requirements.

Generally, there are three approaches to lot sentencing: (1) accept with no inspection;

(2) 100% inspection—that is, inspect every item in the lot, removing all defective1 units

found (defectives may be returned to the supplier, reworked, replaced with known good

items, or discarded); and (3) acceptance sampling. The no-inspection alternative is useful in

situations where either the supplier’s process is so good that defective units are almost never

encountered or where there is no economic justification to look for defective units. For

example, if the supplier’s process capability ratio is 3 or 4, acceptance sampling is unlikely

to discover any defective units. We generally use 100% inspection in situations where the

component is extremely critical and passing any defectives would result in an unacceptably

high failure cost at subsequent stages, or where the supplier’s process capability is inade-

quate to meet specifications. Acceptance sampling is most likely to be useful in the following

situations:

1. When testing is destructive

2. When the cost of 100% inspection is extremely high

3. When 100% inspection is not technologically feasible or would require so much calendar

time that production scheduling would be seriously impacted

4. When there are many items to be inspected and the inspection error rate is sufficiently

high that 100% inspection might cause a higher percentage of defective units to be

passed than would occur with the use of a sampling plan

5. When the supplier has an excellent quality history, and some reduction in inspection

from 100% is desired, but the supplier’s process capability is sufficiently low as to make

no inspection an unsatisfactory alternative

6. When there are potentially serious product liability risks, and although the supplier’s

process is satisfactory, a program for continuously monitoring the product is necessary

15.1.1 Advantages and Disadvantages of Sampling

When acceptance sampling is contrasted with 100% inspection, it has the following advantages:

1. It is usually less expensive because there is less inspection.

2. There is less handling of the product, hence reduced damage.

3. It is applicable to destructive testing.

4. Fewer personnel are involved in inspection activities.

5. It often greatly reduces the amount of inspection error.

6. The rejection of entire lots as opposed to the simple return of defectives often provides

a stronger motivation to the supplier for quality improvements.

15.1 The Acceptance-Sampling Problem 651

1In previous chapters, the terms “nonconforming” and “nonconformity” were used instead of defective and defect.

This is because the popular meanings of “defective” and “defect” differ from their technical meanings and have caused

considerable misunderstanding, particularly in product liability litigation. In the field of sampling inspection, however,

“defective” and “defect” continue to be used in their technical sense—that is, nonconformance to requirements.
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652 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Acceptance sampling also has several disadvantages, however. These include the fol-

lowing:

1. There are risks of accepting “bad” lots and rejecting “good” lots.

2. Less information is usually generated about the product or about the process that man-

ufactured the product.

3. Acceptance sampling requires planning and documentation of the acceptance-sampling

procedure whereas 100% inspection does not.

Although this last point is often mentioned as a disadvantage of acceptance sampling, proper

design of an acceptance-sampling plan usually requires study of the actual level of quality

required by the consumer. This resulting knowledge is often a useful input into the overall

quality planning and engineering process. Thus, in many applications, it may not be a signif-

icant disadvantage.

We have pointed out that acceptance sampling is a middle ground between the extremes

of 100% inspection and no inspection. It often provides a methodology for moving between

these extremes as sufficient information is obtained on the control of the manufacturing process

that produces the product. Although there is no direct control of quality in the application of an

acceptance-sampling plan to an isolated lot, when that plan is applied to a stream of lots from a

supplier, it becomes a means of providing protection for both the producer of the lot and the con-

sumer. It also provides for an accumulation of quality history regarding the process that pro-

duces the lot, and it may provide feedback that is useful in process control, such as determining

when process controls at the supplier’s plant are not adequate. Finally, it may place economic

or psychological pressure on the supplier to improve the production process.

15.1.2 Types of Sampling Plans

There are a number of different ways to classify acceptance-sampling plans. One major clas-

sification is by variables and attributes. Variables, of course, are quality characteristics that

are measured on a numerical scale. Attributes are quality characteristics that are expressed

on a “go, no-go” basis. This chapter deals with lot-by-lot acceptance-sampling plans for

attributes. Variables-sampling plans are the subject of Chapter 16, along with a brief discus-

sion of several special acceptance-sampling procedures.

A single-sampling plan is a lot-sentencing procedure in which one sample of n units

is selected at random from the lot, and the disposition of the lot is determined based on the

information contained in that sample. For example, a single-sampling plan for attributes

would consist of a sample size n and an acceptance number c. The procedure would operate

as follows: Select n items at random from the lot. If there are c or fewer defectives in the sam-

ple, accept the lot, and if there are more than c defective items in the sample, reject the lot.

We investigate this type of sampling plan extensively in Section 15.2.

Double-sampling plans are somewhat more complicated. Following an initial sample,

a decision based on the information in that sample is made either to (1) accept the lot,

(2) reject the lot, or (3) take a second sample. If the second sample is taken, the information

from both the first and second sample is combined in order to reach a decision whether to

accept or reject the lot. Double-sampling plans are discussed in Section 15.3.

A multiple-sampling plan is an extension of the double-sampling concept, in that

more than two samples may be required in order to reach a decision regarding the disposition

of the lot. Sample sizes in multiple sampling are usually smaller than they are in either single

or double sampling. The ultimate extension of multiple sampling is sequential sampling, in

which units are selected from the lot one at a time, and following inspection of each unit, a

decision is made either to accept the lot, reject the lot, or select another unit. Multiple- and

sequential-sampling plans are also discussed in Section 15.3.
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Single-, double-, multiple-, and sequential-sampling plans can be designed so that they

produce equivalent results. That is, these procedures can be designed so that a lot of specified

quality has exactly the same probability of acceptance under all four types of sampling plans.

Consequently, when selecting the type of sampling procedure, one must consider factors such

as the administrative efficiency, the type of information produced by the plan, the average

amount of inspection required by the procedure, and the impact that a given procedure may

have on the material flow in the manufacturing organization. These issues are discussed in

more detail in Section 15.3.

15.1.3 Lot Formation

How the lot is formed can influence the effectiveness of the acceptance-sampling plan. There

are a number of important considerations in forming lots for inspection. Some of these are as

follows:

1. Lots should be homogeneous. The units in the lot should be produced by the same

machines, the same operators, and from common raw materials, at approximately the

same time. When lots are nonhomogeneous, such as when the output of two different

production lines is mixed, the acceptance-sampling scheme may not function as effec-

tively as it could. Nonhomogeneous lots also make it more difficult to take corrective

action to eliminate the source of defective products.

2. Larger lots are preferred over smaller ones. It is usually more economically efficient

to inspect large lots than small ones.

3. Lots should be conformable to the materials-handling systems used in both the
supplier and consumer facilities. In addition, the items in the lots should be packaged

so as to minimize shipping and handling risks, and so as to make selection of the units

in the sample relatively easy.

15.1.4 Random Sampling

The units selected for inspection from the lot should be chosen at random, and they should be

representative of all the items in the lot. The random-sampling concept is extremely impor-

tant in acceptance sampling. Unless random samples are used, bias will be introduced. For

example, the supplier may ensure that the units packaged on the top of the lot are of extremely

good quality, knowing that the inspector will select the sample from the top layer. “Salting”

a lot in this manner is not a common practice, but if it occurs and nonrandom-sampling meth-

ods are used, the effectiveness of the inspection process is destroyed.

The technique often suggested for drawing a random sample is to first assign a number

to each item in the lot. Then n random numbers are drawn, where the range of these numbers

is from 1 to the maximum number of units in the lot. This sequence of random numbers deter-

mines which units in the lot will constitute the sample. If products have serial or other code

numbers, these numbers can be used to avoid the process of actually assigning numbers to

each unit. Another possibility would be to use a three-digit random number to represent the

length, width, and depth in a container.

In situations where we cannot assign a number to each unit, utilize serial or code num-

bers, or randomly determine the location of the sample unit, some other technique must be

employed to ensure that the sample is random or representative. Sometimes the inspector may

stratify the lot. This consists of dividing the lot into strata or layers and then subdividing each

strata into cubes, as shown in Figure 15.1. Units are then selected from within each cube.

Although this stratification of the lot is usually an imaginary activity performed by the inspector

and does not necessarily ensure random samples, at least it ensures that units are selected

from all locations in the lot.

15.1 The Acceptance-Sampling Problem 653
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654 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

We cannot overemphasize the importance of random sampling. If judgment methods

are used to select the sample, the statistical basis of the acceptance-sampling procedure is lost.

15.1.5 Guidelines for Using Acceptance Sampling

An acceptance-sampling plan is a statement of the sample size to be used and the associated

acceptance or rejection criteria for sentencing individual lots. A sampling scheme is defined

as a set of procedures consisting of acceptance-sampling plans in which lot sizes, sample

sizes, and acceptance or rejection criteria along with the amount of 100% inspection and sam-

pling are related. Finally, a sampling system is a unified collection of one or more acceptance-

sampling schemes. In this chapter, we see examples of sampling plans, sampling schemes,

and sampling systems.

The major types of acceptance-sampling procedures and their applications are shown in

Table 15.1. In general, the selection of an acceptance-sampling procedure depends on both

the objective of the sampling organization and the history of the organization whose product is

sampled. Furthermore, the application of sampling methodology is not static; that is, there is

a natural evolution from one level of sampling effort to another. For example, if we are deal-

ing with a supplier who enjoys an excellent quality history, we might begin with an attributes

sampling plan. As our experience with the supplier grows, and its good-quality reputation is

proved by the results of our sampling activities, we might transition to a sampling procedure

that requires much less inspection, such as skip-lot sampling. Finally, after extensive experi-

ence with the supplier, and if its process capability is extremely good, we might stop all

acceptance-sampling activities on the product. In another situation, where we have little

knowledge of or experience with the supplier’s quality-assurance efforts, we might begin with

attributes sampling using a plan that ensures that the quality of accepted lots is no worse than

■ F I G U R E  1 5 . 1 Stratifying a lot.

Stratum 1

Stratum 2

Stratum 3

Cube 1

■ TA B L E  1 5 . 1

Acceptance-Sampling Procedures

Objective Attributes Procedure Variables Procedure

Ensure quality levels Select plan for specific OC curve Select plan for specific OC curve
for consumer/producer

Maintain quality at a target AQL system; MIL STD 105E, AQL system; MIL STD 414,
ANSI/ASQC Z1.4 ANSI/ASQC Z1.9

Ensure average outgoing AOQL system; Dodge–Romig AOQL system
quality level plans

Reduce inspection, with small Chain sampling Narrow-limit gauging
sample sizes, good-quality history

Reduce inspection after Skip-lot sampling; double sampling Skip-lot sampling; double 
good-quality history sampling

Ensure quality no worse than target LTPD plan; Dodge–Romig plans LTPD plan; hypothesis testing
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a specified target value. If this plan proves successful, and if the supplier’s performance is 

satisfactory, we might transition from attributes to variables inspection, particularly as we

learn more about the nature of the supplier’s process. Finally, we might use the information

gathered in variables sampling plans in conjunction with efforts aimed directly at the supplier’s

manufacturing facility to assist in the installation of process controls. A successful program

of process controls at the supplier level might improve the supplier’s process capability to the

point where inspection could be discontinued.

These examples illustrate that there is a life cycle of application of acceptance-sampling

techniques. This was also reflected in the phase diagram, Figure 1.7, which presented the per-

centage of application of various quality-assurance techniques as a function of the maturity

of the business organization. Typically, we find that organizations with relatively new quality-

assurance efforts place a great deal of reliance on acceptance sampling. As their maturity

grows and the quality organization develops, they begin to rely less on acceptance sampling

and more on statistical process control and experimental design.

Manufacturers try to improve the quality of their products by reducing the number of

suppliers from whom they buy their components, and by working more closely with the ones

they retain. Once again, the key tool in this effort to improve quality is statistical process

control. Acceptance sampling can be an important ingredient of any quality-assurance pro-

gram; however, remember that it is an activity that you try to avoid doing. It is much more

cost effective to use statistically based process monitoring at the appropriate stage of the

manufacturing process. Sampling methods can in some cases be a tool that you employ

along the road to that ultimate goal.

15.2 Single-Sampling Plans for Attributes

15.2.1 Definition of a Single-Sampling Plan

Suppose that a lot of size N has been submitted for inspection. A single-sampling plan is
defined by the sample size n and the acceptance number c. Thus, if the lot size is N = 10,000,

then the sampling plan

means that from a lot of size 10,000 a random sample of n = 89 units is inspected and the number

of nonconforming or defective items d observed. If the number of observed defectives d is less

than or equal to c = 2, the lot will be accepted. If the number of observed defectives d is greater

than 2, the lot will be rejected. Since the quality characteristic inspected is an attribute, each

unit in the sample is judged to be either conforming or nonconforming. One or several attrib-

utes can be inspected in the same sample; generally, a unit that is nonconforming to specifica-

tions on one or more attributes is said to be a defective unit. This procedure is called a 

single-sampling plan because the lot is sentenced based on the information contained in one

sample of size n.

15.2.2 The OC Curve

An important measure of the performance of an acceptance-sampling plan is the operating-
characteristic (OC) curve. This curve plots the probability of accepting the lot versus the lot

fraction defective. Thus, the OC curve displays the discriminatory power of the sampling

plan; that is, it shows the probability that a lot submitted with a certain fraction defective will

be either accepted or rejected. The OC curve of the sampling plan n = 89, c = 2 is shown in

n

c

=
=

89

2
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656 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Figure 15.2. It is easy to demonstrate how the points on this curve are obtained. Suppose that

the lot size N is large (theoretically infinite). Under this condition, the distribution of the number

of defectives d in a random sample of n items is binomial with parameters n and p, where p
is the fraction of defective items in the lot. An equivalent way to conceptualize this is to draw

lots of N items at random from a theoretically infinite process, and then to draw random sam-

ples of n from these lots. Sampling from the lot in this manner is the equivalent of sampling

directly from the process. The probability of observing exactly d defectives is

(15.1)

The probability of acceptance is simply the probability that d is less than or equal to c, or

P d f d
n

d n d
p pd n d defectives

!{ } = ( ) =
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1
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For example, if the lot fraction defective is p = 0.01, n = 89, and c = 2, then

The OC curve is developed by evaluating equation 15.2 for various values of p. Table 15.2

displays the calculated value of several points on the curve.

The OC curve shows the discriminatory power of the sampling plan. For example, in

the sampling plan n = 89, c = 2, if the lots are 2% defective, the probability of acceptance is

approximately 0.74. This means that if 100 lots from a process that manufactures 2% defec-

tive product are submitted to this sampling plan, we will expect to accept 74 of the lots and

reject 26 of them.

Effect of n and c on OC Curves. A sampling plan that discriminated perfectly

between good and bad lots would have an OC curve that looks like Figure 15.3. The OC curve

runs horizontally at a probability of acceptance Pa = 1.00 until a level of lot quality that is

considered “bad” is reached, at which point the curve drops vertically to a probability of

acceptance Pa = 0.00, and then the curve runs horizontally again for all lot fraction defectives
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■ F I G U R E  1 5 . 2 OC curve of the 

single-sampling plan n = 89, c = 2.
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greater than the undesirable level. If such a sampling plan could be employed, all lots of “bad”

quality would be rejected, and all lots of “good” quality would be accepted.

Unfortunately, the ideal OC curve in Figure 15.3 can almost never be obtained in prac-

tice. In theory, it could be realized by 100% inspection, if the inspection were error-free. The

ideal OC curve shape can be approached, however, by increasing the sample size. Figure 15.4

shows that the OC curve becomes more like the idealized OC curve shape as the sample size

increases. (Note that the acceptance number c is kept proportional to n.) Thus, the precision

with which a sampling plan differentiates between good and bad lots increases with the size of

the sample. The greater is the slope of the OC curve, the greater is the discriminatory power.

Figure 15.5 shows how the OC curve changes as the acceptance number changes.

Generally, changing the acceptance number does not dramatically change the slope of the OC

curve. As the acceptance number is decreased, the OC curve is shifted to the left. Plans with

smaller values of c provide discrimination at lower levels of lot fraction defective than do

plans with larger values of c.

Specific Points on the OC Curve. Frequently, the quality engineer’s interest

focuses on certain points on the OC curve. The supplier or consumer is usually interested in

knowing what level of lot or process quality would yield a high probability of acceptance. For

example, the supplier might be interested in the 0.95 probability of acceptance point. This

would indicate the level of process fallout that could be experienced and still have a 95%

chance that the lots would be accepted. Conversely, the consumer might be interested in the

other end of the OC curve; that is, what level of lot or process quality will yield a low prob-

ability of acceptance?

15.2 Single-Sampling Plans for Attributes 657
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Probabilities of Acceptance for the Single-Sampling
Plan n = 89, c = 2

Fraction Defective, p Probability of Acceptance, Pa
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■ F I G U R E  1 5 . 3 Ideal OC

curve.

■ F I G U R E  1 5 . 5 The effect of chang-

ing the acceptance number on the OC curve.

■ F I G U R E  1 5 . 4 OC curves for dif-

ferent sample sizes.
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A consumer often establishes a sampling plan for a continuing supply of components

or raw material with reference to an acceptable quality level (AQL). The AQL represents the

poorest level of quality for the supplier’s process that the consumer would consider to be

acceptable as a process average. Note that the AQL is a property of the supplier’s manufac-

turing process; it is not a property of the sampling plan. The consumer will often design the

sampling procedure so that the OC curve gives a high probability of acceptance at the AQL.

Furthermore, the AQL is not usually intended to be a specification on the product, nor is it a

target value for the supplier’s production process. It is simply a standard against which to

judge the lots. It is hoped that the supplier’s process will operate at a fallout level that is con-

siderably better than the AQL.

The consumer will also be interested in the other end of the OC curve—that is, in the

protection that is obtained for individual lots of poor quality. In such a situation, the consumer

may establish a lot tolerance percent defective (LTPD). The LTPD is the poorest level of

quality that the consumer is willing to accept in an individual lot. Note that the lot tolerance

percent defective is not a characteristic of the sampling plan, but is a level of lot quality spec-

ified by the consumer. Alternate names for the LTPD are the rejectable quality level (RQL)
and the limiting quality level (LQL). It is possible to design acceptance-sampling plans that

give specified probabilities of acceptance at the LTPD point. Subsequently, we will see how

to design sampling plans that have specified performance at the AQL and LTPD points.

Type-A and Type-B OC Curves. The OC curves that were constructed in the pre-

vious examples are called type-B OC curves. In the construction of the OC curve it was

assumed that the samples came from a large lot or that we were sampling from a stream of

lots selected at random from a process. In this situation, the binomial distribution is the

exact probability distribution for calculating the probability of lot acceptance. Such an OC

curve is referred to as a type-B OC curve.

The type-A OC curve is used to calculate probabilities of acceptance for an isolated lot

of finite size. Suppose that the lot size is N, the sample size is n, and the acceptance number

is c. The exact sampling distribution of the number of defective items in the sample is the

hypergeometric distribution.
Figure 15.6 shows the type-A OC curve for a single-sampling plan with n = 50, c = 1,

where the lot size is N = 500. The probabilities of acceptance defining the OC curve were cal-

culated using the hypergeometric distribution. Also shown on this graph is the type-A OC

curve for N = 2000, n = 50, and c = 1. Note that the two OC curves are very similar. Generally,

as the size of the lot increases, the lot size has a decreasing impact on the OC curve. In fact,

if the lot size is at least ten times the sample size (n/N ≤ 0.10), the type-A and type-B OC

curves are virtually indistinguishable. As an illustration, the type-B OC curve for the sam-

pling plan n = 50, c = 1 is also shown in Figure 15.6. Note that it is identical to the type-A

OC curve based on a lot size of N = 2000.
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■ F I G U R E  1 5 . 6 Type-A and type-B

OC curves.
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The type-A OC curve will always lie below the type-B OC curve; that is, if a type-B

OC curve is used as an approximation for a type-A curve, the probabilities of acceptance cal-

culated for the type-B curve will always be higher than they would have been if the type-A

curve had been used instead. However, this difference is only significant when the lot size is

small relative to the sample size. Unless otherwise stated, all discussion of OC curves in this

text is in terms of the type-B OC curve.

Other Aspects of OC Curve Behavior. Two approaches to designing sampling

plans that are encountered in practice have certain implications for the behavior of the OC

curve. Since not all of these implications are positive, it is worthwhile to briefly mention these

two approaches to sampling plan design. These approaches are the use of sampling plans with

zero acceptance numbers (c = 0) and the use of sample sizes that are a fixed percentage of the

lot size.

Figure 15.7 shows several OC curves for acceptance-sampling plans with c = 0. By

comparing Figure 15.7 with Figure 15.5, it is easy to see that plans with zero acceptance num-

bers have OC curves that have a very different shape than the OC curves of sampling plans

for which c > 0. Generally, sampling plans with c = 0 have OC curves that are convex through-

out their range. As a result of this shape, the probability of acceptance begins to drop very

rapidly, even for small values of the lot fraction defective. This is extremely hard on the sup-

plier, and in some circumstances it may be extremely uneconomical for the consumer. For

example, consider the sampling plans in Figure 15.5. Suppose the acceptable quality level is

1%. This implies that we would like to accept lots that are 1% defective or better. Note that

if sampling plan n = 89, c = 1 is used, the probability of lot acceptance at the AQL is about

0.78. On the other hand, if the plan n = 89, c = 0 is used, the probability of acceptance at the

AQL is approximately 0.41. That is, nearly 60% of the lots of AQL quality will be rejected if

we use an acceptance number of zero. If rejected lots are returned to the supplier, then a large

number of lots will be unnecessarily returned, perhaps creating production delays at the con-

sumer’s manufacturing site. If the consumer screens or 100% inspects all rejected lots, a large

number of lots that are of acceptable quality will be screened. This is, at best, an inefficient

use of sampling resources. In Chapter 16, we suggest an alternative approach to using zero

acceptance numbers called chain-sampling plans. Under certain circumstances, chain sam-

pling works considerably better than acceptance-sampling plans with c = 0. Also refer to

Section S15.1 of the supplemental material for a discussion of lot-sensitive compliance sam-
pling, another technique that utilizes zero acceptance numbers.

Figure 15.8 presents the OC curves for sampling plans in which the sample size is a

fixed percentage of the lot size. The principal disadvantage of this approach is that the different
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sample sizes offer different levels of protection. It is illogical for the level of protection that

the consumer enjoys for a critical part or component to vary as the size of the lot varies.

Although sampling procedures such as this one were in wide use before the statistical princi-

ples of acceptance sampling were generally known, their use has (unfortunately) not entirely

disappeared.

15.2.3 Designing a Single-Sampling Plan with a Specified OC Curve

A common approach to the design of an acceptance-sampling plan is to require that the OC

curve pass through two designated points. Note that one point is not enough to fully specify

the sampling plan; however, two points are sufficient. In general, it does not matter which two

points are specified.

Suppose that we wish to construct a sampling plan such that the probability of accep-

tance is 1 − a for lots with fraction defective p1, and the probability of acceptance is b for lots

with fraction defective p2. Assuming that binomial sampling (with type-B OC curves) is

appropriate, we see that the sample size n and acceptance number c are the solution to

(15.3)
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Equation 15.3 was obtained by writing out the two points on the OC curve using the binomial

distribution. The two simultaneous equations in equation 15.3 are nonlinear, and there is no

simple, direct solution.

The nomograph in Figure 15.9 can be used for solving these equations. The procedure

for using the nomograph is very simple. Two lines are drawn on the nomograph, one con-

necting p1 and 1 − a, and the other connecting p2 and b. The intersection of these two lines

gives the region of the nomograph in which the desired sampling plan is located. To illustrate

the use of the nomograph, suppose we wish to construct a sampling plan for which p1 = 0.01,

a = 0.05, p2 = 0.06, and b = 0.10. Locating the intersection of the lines connecting (p1 = 0.01,

1 − a = 0.95) and (p2 = 0.06, b = 0.10) on the nomograph indicates that the plan n = 89,

c = 2 is very close to passing through these two points on the OC curve. Obviously, since n
and c must be integers, this procedure will actually produce several plans that have OC curves

that pass close to the desired points. For instance, if the first line is followed either to the 

c-line just above the intersection point or to the c-line just below it, and the alternate sample

sizes are read from the chart, this will produce two plans that pass almost exactly through 

the p1, 1 − a point, but may deviate somewhat from the p2, b point. A similar procedure could

be followed with the p2, b-line. The result of following both of these lines would be four plans

that pass approximately through the two points specified on the OC curve.

In addition to the graphical procedure that we have described for designing sampling

plans with specified OC curves, tabular procedures are also available for the same purpose.

Duncan (1986) gives a good description of these techniques.

Although any two points on the OC curve could be used to define the sampling plan, it 

is customary in many industries to use the AQL and LTPD points for this purpose. When the

levels of lot quality specified are p1 = AQL and p2 = LTPD, the corresponding points on the OC

curve are usually referred to as the producer’s risk point and the consumer’s risk point, respec-

tively. Thus, a would be called the producer’s risk and b would be called the consumer’s risk.
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15.2.4 Rectifying Inspection

Acceptance-sampling programs usually require corrective action when lots are rejected. This

generally takes the form of 100% inspection or screening of rejected lots, with all discovered

defective items either removed for subsequent rework or return to the supplier, or replaced

from a stock of known good items. Such sampling programs are called rectifying inspection
programs because the inspection activity affects the final quality of the outgoing product.

This is illustrated in Figure 15.10. Suppose that incoming lots to the inspection activity have

fraction defective p0. Some of these lots will be accepted, and others will be rejected. The

rejected lots will be screened, and their final fraction defective will be zero. However,

accepted lots have fraction defective p0. Consequently, the outgoing lots from the inspection

activity are a mixture of lots with fraction defective p0 and fraction defective zero, so the aver-

age fraction defective in the stream of outgoing lots is p1, which is less than p0. Thus, a rec-

tifying inspection program serves to “correct” lot quality.

Rectifying inspection programs are used in situations where the manufacturer wishes to

know the average level of quality that is likely to result at a given stage of the manufacturing
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662 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

operations. Thus, rectifying inspection programs are used either at receiving inspection, in-

process inspection of semifinished products, or at final inspection of finished goods. The

objective of in-plant usage is to give assurance regarding the average quality of material used

in the next stage of the manufacturing operations.

Rejected lots may be handled in a number of ways. The best approach is to return

rejected lots to the supplier, and require it to perform the screening and rework activities. This

has the psychological effect of making the supplier responsible for poor quality and may exert

pressure on the supplier to improve its manufacturing processes or to install better process

controls. However, in many situations, because the components or raw materials are required

in order to meet production schedules, screening and rework take place at the consumer level.

This is not the most desirable situation.

Average outgoing quality is widely used for the evaluation of a rectifying sampling

plan. The average outgoing quality is the quality in the lot that results from the application of

rectifying inspection. It is the average value of lot quality that would be obtained over a long

sequence of lots from a process with fraction defective p. It is simple to develop a formula for

average outgoing quality (AOQ). Assume that the lot size is N and that all discovered defec-

tives are replaced with good units. Then in lots of size N, we have

1. n items in the sample that, after inspection, contain no defectives, because all discov-

ered defectives are replaced.

2. N − n items that, if the lot is rejected, also contain no defectives.

3. N − n items that, if the lot is accepted, contain p(N − n) defectives.

Thus, lots in the outgoing stage of inspection have an expected number of defective units

equal to Pap(N − n), which we may express as an average fraction defective, called the average
outgoing quality or

(15.4)AOQ = −( )P p N n

N
a

To illustrate the use of equation 15.4, suppose that N = 10,000, n = 89, and c = 2, and

that the incoming lots are of quality p = 0.01. Now at p = 0.01, we have Pa = 0.9397, and the

AOQ is

That is, the average outgoing quality is 0.93% defective. Note that as the lot size N becomes

large relative to the sample size n, we may write equation 15.4 as

AOQ = −( )

= ( )( ) −( )

=

P p N n

N
a

0 9397 0 01 10 000 89

10 000

0 0093

. . ,

,

.

(15.5)AOQ −~ P pa

Average outgoing quality will vary as the fraction defective of the incoming lots varies.

The curve that plots average outgoing quality against incoming lot quality is called an AOQ
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curve. The AOQ curve for the sampling plan n = 89, c = 2 is shown in Figure 15.11. From exam-

ining this curve we note that when the incoming quality is very good, the average outgoing

quality is also very good. In contrast, when the incoming lot quality is very bad, most of the

lots are rejected and screened, which leads to a very good level of quality in the outgoing lots.

In between these extremes, the AOQ curve rises, passes through a maximum, and descends. The

maximum ordinate on the AOQ curve represents the worst possible average quality that would

result from the rectifying inspection program, and this point is called the average outgoing
quality limit (AOQL). From examining Figure 15.11, the AOQL is seen to be approximately

0.0155. That is, no matter how bad the fraction defective is in the incoming lots, the outgoing

lots will never have a worse quality level on the average than 1.55% defective. Let us empha-

size that this AOQL is an average level of quality, across a large stream of lots. It does not give

assurance that an isolated lot will have quality no worse than 1.55% defective.

Another important measure relative to rectifying inspection is the total amount of

inspection required by the sampling program. If the lots contain no defective items, no lots

will be rejected, and the amount of inspection per lot will be the sample size n. If the items are

all defective, every lot will be submitted to 100% inspection, and the amount of inspection per

lot will be the lot size N. If the lot quality is 0 < p < 1, the average amount of inspection per

lot will vary between the sample size n and the lot size N. If the lot is of quality p and the

probability of lot acceptance is Pa, then the average total inspection per lot will be
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(15.6)ATI = + −( ) −( )n P N na1

To illustrate the use of equation 15.6, consider our previous example with N = 10,000, n = 89,

c = 2, and p = 0.01. Then, since Pa = 0.9397, we have

ATI = + −( ) −( )
= + −( ) −( )
=

n P N na1

89 1 0 9397 10 000 89

687

. ,
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664 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Remember that this is an average number of units inspected over many lots with fraction

defective p = 0.01.

It is possible to draw a curve of average total inspection as a function of lot quality.

Average total inspection curves for the sampling plan n = 89, c = 2, for lot sizes of 1,000,

5,000, and 10,000, are shown in Figure 15.12.

The AOQL of a rectifying inspection plan is a very important characteristic. It is possi-

ble to design rectifying inspection programs that have specified values of AOQL. However,

specification of the AOQL is not sufficient to determine a unique sampling plan. Therefore,

it is relatively common practice to choose the sampling plan that has a specified AOQL and,

in addition yields a minimum ATI at a particular level of lot quality. The level of lot quality

usually chosen is the most likely level of incoming lot quality, which is generally called the

process average. The procedure for generating these plans is relatively straightforward and is

illustrated in Duncan (1986). Generally, it is unnecessary to go through this procedure,

because tables of sampling plans that minimize ATI for a given AOQL and a specified process

average p have been developed by Dodge and Romig. We describe the use of these tables in

Section 15.5.

It is also possible to design a rectifying inspection program that gives a specified level

of protection at the LTPD point and that minimizes the average total inspection for a speci-

fied process average p. The Dodge–Romig sampling inspection tables also provide these

LTPD plans. Section 15.5 discusses the use of the Dodge–Romig tables to find plans that offer

specified LTPD protection.

15.3 Double, Multiple, and Sequential Sampling

A number of extensions of single-sampling plans for attributes are useful. These include double-
sampling plans, multiple-sampling plans, and sequential-sampling plans. This section

discusses the design and application of these sampling plans.
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2Some authors prefer the notation n1, Ac1, Re1, n2, Ac2, Re2 = Ac2 + 1. Since the rejection number on the first sam-

ple Re1 is not necessarily equal to Re2, this gives some additional flexibility in designing double-sampling plans. MIL

STD 105E and ANSI/ASQC Z1.4 currently use this notation. However, because assuming that Re1 = Re2 does not

significantly affect the plans obtained, we have chosen to discuss this slightly simpler system.

15.3.1 Double-Sampling Plans

A double-sampling plan is a procedure in which, under certain circumstances, a second sample is

required before the lot can be sentenced. A double-sampling plan is defined by four parameters2:

n1 = sample size on the first sample

c1 = acceptance number of the first sample

n2 = sample size on the second sample

c2 = acceptance number for both sample

As an example, suppose n1 = 50, c1 = 1, n2 = 100, and c2 = 3. Thus, a random sample of n1 = 50

items is selected from the lot, and the number of defectives in the sample, d1, is observed. If

d1 ≤ c1 = 1, the lot is accepted on the first sample. If d1 > c2 = 3, the lot is rejected on the first

sample. If c1 < d1 ≤ c2, a second random sample of size n2 = 100 is drawn from the lot, and the

number of defectives in this second sample, d2, is observed. Now the combined number of

observed defectives from both the first and second sample, d1 + d2, is used to determine the lot

sentence. If d1 + d2 ≤ c2 = 3, the lot is accepted. However, if d1 + d2 > c2 = 3, the lot is rejected.

The operation of this double-sampling plan is illustrated graphically in Figure 15.13.

The principal advantage of a double-sampling plan with respect to single sampling is that it

may reduce the total amount of required inspection. Suppose that the first sample taken under a

double-sampling plan is smaller than the sample that would be required using a single-sampling

plan that offers the consumer the same protection. In all cases, then, in which a lot is accepted or

rejected on the first sample, the cost of inspection will be lower for double sampling than it would

be for single sampling. It is also possible to reject a lot without complete inspection of the second

sample. (This is called curtailment on the second sample.) Consequently, the use of double sam-

pling can often result in lower total inspection costs. Furthermore, in some situations, a double-

sampling plan has the psychological advantage of giving a lot a second chance. This may have

some appeal to the supplier. However, there is no real advantage to double sampling in this regard,

because single- and double-sampling plans can be chosen so that they have the same OC curves.

Thus, both plans would offer the same risks of accepting or rejecting lots of specified quality.
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666 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Double sampling has two potential disadvantages. First, unless curtailment is used on the

second sample, under some circumstances double sampling may require more total inspection

than would be required in a single-sampling plan that offers the same protection. Thus, unless

double sampling is used carefully, its potential economic advantage may be lost. The second dis-

advantage of double sampling is that it is administratively more complex, which may increase the

opportunity for the occurrence of inspection errors. Furthermore, there may be problems in stor-

ing and handling raw materials or component parts for which one sample has been taken, but that

are awaiting a second sample before a final lot dispositioning decision can be made.

The OC Curve. The performance of a double-sampling plan can be conveniently

summarized by means of its operating-characteristic (OC) curve. The OC curve for a double-

sampling plan is somewhat more involved than the OC curve for single sampling. In this 

section, we describe the construction of type-B OC curves for double sampling. A double-

sampling plan has a primary OC curve that gives the probability of acceptance as a function of

lot or process quality. It also has supplementary OC curves that show the probability of lot accep-

tance and rejection on the first sample. The OC curve for the probability of rejection on the first

sample is simply the OC curve for the single-sampling plan n = n1 and c = c2. Primary and sup-

plementary OC curves for the plan n1 = 50, c1 = 1, n2 = 100, c2 = 3 are shown in Figure 15.14.

We now illustrate the computation of the OC curve for the plan n1 = 50, c1 = 1, n2 = 100,

c2 = 3. If Pa denotes the probability of acceptance on the combined samples, and PI
a and PII

a

denote the probability of acceptance on the first and second samples, respectively, then

PI
a is just the probability that we will observe d1 ≤ c1 = 1 defectives out of a random sample

of n1 = 50 items. Thus

If p = 0.05 is the fraction defective in the incoming lot, then

To obtain the probability of acceptance on the second sample, we must list the number of

ways the second sample can be obtained. A second sample is drawn only if there are two or

three defectives on the first sample—that is, if c1 < d1 ≤ c2.
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(15.7)
ASN = + +( ) −( )

= + −( )
n P n n P

n n P

1 1 2

1 2

1

1

Ι Ι

Ι

1. d1 = 2 and d2 = 0 or 1; that is, we find two defectives on the first sample and one or less

defectives on the second sample. The probability of this is

2. d1 = 3 and d2 = 0; that is, we find three defectives on the first sample and no defectives

on the second sample. The probability of this is

Thus, the probability of acceptance on the second sample is

The probability of acceptance of a lot that has fraction defective p = 0.05 is therefore

Other points on the OC curve are calculated similarly.

The Average Sample Number Curve. The average sample number curve of a

double-sampling plan is also usually of interest to the quality engineer. In single sampling,

the size of the sample inspected from the lot is always constant, whereas in double sam-

pling the size of the sample selected depends on whether or not the second sample is nec-

essary. The probability of drawing a second sample varies with the fraction defective in

the incoming lot. With complete inspection of the second sample, the average sample size

in double sampling is equal to the size of the first sample times the probability that there

will only be one sample, plus the size of the combined samples times the probability that

a second sample will be necessary. Therefore, a general formula for the average sample

number in double sampling, if we assume complete inspection of the second sample, is
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where PI is the probability of making a lot-dispositioning decision on the first sample. This is

PI = P{lot is accepted on the first sample} + P{lot is rejected on the first sample} 

If equation 15.7 is evaluated for various values of lot fraction defective p, the plot of ASN ver-

sus p is called an average sample number curve.
In practice, inspection of the second sample is usually terminated and the lot rejected

as soon as the number of observed defective items in the combined sample exceeds the sec-

ond acceptance number c2. This is referred to as curtailment of the second sample. The use

of curtailed inspection lowers the average sample number required in double sampling. It is
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not recommended that curtailment be used in single sampling, or in the first sample of

double sampling, because it is usually desirable to have complete inspection of a fixed sample

size in order to secure an unbiased estimate of the quality of the material supplied by the sup-

plier. If curtailed inspection is used in single sampling or on the first sample of double sam-

pling, the estimate of lot or process fallout obtained from these data is biased. For instance,

suppose that the acceptance number is 1. If the first two items in the sample are defective, and

the inspection process is curtailed, the estimate of lot or process fraction defective is 100%.

Based on this information, even nonstatistically trained managers or engineers will be very

reluctant to believe that the lot is really 100% defective.

The ASN curve formula for a double-sampling plan with curtailment on the second

sample is

(15.8)
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■ F I G U R E  1 5 . 1 5 Average sample

number curves for single and double sampling.

In equation 15.8, P(n1, j) is the probability of observing exactly j defectives in a sample of size n1,

PL(n2, c2 − j) is the probability of observing c2 − j or fewer defectives in a sample of size n2,

and PM(n2 + 1, c2 − j + 2) is the probability of observing c2 − j + 2 defectives in a sample of

size n2 + 1.

Figure 15.15 compares the average sample number curves for complete and curtailed

inspection for the double-sampling plan n1 = 60, c1 = 2, n2 = 120, c3 = 3, and the average sample

number that would be used in single-sampling with n = 89, c = 2. Obviously, the sample size

in the single-sampling plan is always constant. This double-sampling plan has been selected

because it has an OC curve that is nearly identical to the OC curve for the single-sampling

plan; that is, both plans offer equivalent protection to the producer and the consumer. Note

from inspection of Figure 15.15 that the ASN curve for double sampling without curtailment on

the second sample is not lower than the sample size used in single sampling throughout the entire

range of lot fraction defective. If lots are of very good quality, they will usually be accepted on

the first sample, whereas if lots are of very bad quality, they will usually be rejected on the

first sample. This gives an ASN for double sampling that is smaller than the sample size used
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(15.9)AOQ =
−( ) + − −( )[ ]P N n P N n n p

N

a a
Ι ΙΙ

1 1 2

(15.10)ATI = + +( ) + −( )n P n n P N Pa a a1 1 2 1Ι ΙΙ

assuming that all defective items discovered, either in sampling or 100% inspection, are

replaced with good ones. The average total inspection curve is given by

in single sampling for lots that are either very good or very bad. However, if lots are of inter-

mediate quality, the second sample will be required in a large number of cases before a lot

disposition decision can be made. In this range of lot quality, the ASN performance of double

sampling is worse than single sampling.

This example points out that it is important to use double sampling very carefully. Unless

care is exercised to ensure that lot or process quality is in the range where double sampling is most

effective, then the economic advantages of double sampling relative to single sampling may be

lost. It is a good idea to maintain a running estimate of the supplier’s lot or process fallout, so that

if it shifts into a range where double sampling is not economically effective, a change to single

sampling (or some other appropriate strategy) can be made. Another way to do this would be to

record the proportion of times that the second sample is required in order to make a decision.

Figure 15.15 also shows the ASN curve using curtailment on the second sample. Note

that if curtailment is used, the average sample number curve for double sampling always lies

below the sample size used in single sampling.

Designing Double-Sampling Plans with Specified p1,1 - a, p2, and b. It is

often necessary to be able to design a double-sampling plan that has a specified OC curve.

Let (p1, 1 − a) and (p2, b) be the two points of interest on the OC curve. If, in addition, we

impose another relationship on the parameters of the sampling plan, then a simple procedure

can be used to obtain such plans. The most common constraint is to require that n2 is a mul-

tiple of n1. Refer to Duncan (1986) for a discussion of these techniques.

Rectifying Inspection. When rectifying inspection is performed with double sam-

pling, the AOQ curve is given by

Remember that Pa = PI
a + PII

a is the probability of final lot acceptance and that the acceptance

probabilities depend on the level of lot or process quality p.

15.3.2 Multiple-Sampling Plans

A multiple-sampling plan is an extension of double sampling in that more than two samples can

be required to sentence a lot. An example of a multiple-sampling plan with five stages follows.

Cumulative Sample Size Acceptance Number Rejection Number

20 0 3

40 1 4

60 3 5

80 5 7

100 8 9
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670 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

This plan will operate as follows: If, at the completion of any stage of sampling, the number

of defective items is less than or equal to the acceptance number, the lot is accepted. If, during

any stage, the number of defective items equals or exceeds the rejection number, the lot is

rejected; otherwise, the next sample is taken. The multiple-sampling procedure continues until

the fifth sample is taken, at which time a lot disposition decision must be made. The first sample

is usually inspected 100%, although subsequent samples are usually subject to curtailment.

The construction of OC curves for multiple sampling is a straightforward extension of

the approach used in double sampling. Similarly, it is also possible to compute the average

sample number curve of multiple-sampling plans. One may also design a multiple-sampling

plan for specified values of p1, 1 − a, p2, and b. For an extensive discussion of these tech-

niques, see Duncan (1986).

The principal advantage of multiple-sampling plans is that the samples required at each

stage are usually smaller than those in single or-double sampling; thus, some economic effi-

ciency is connected with the use of the procedure. However, multiple sampling is much more

complex to administer.

15.3.3 Sequential-Sampling Plans

Sequential sampling is an extension of the double-sampling and multiple-sampling con-

cept. In sequential sampling, we take a sequence of samples from the lot and allow the num-

ber of samples to be determined entirely by the results of the sampling process. In practice,

sequential sampling can theoretically continue indefinitely, until the lot is inspected 100%.

In practice, sequential sampling plans are usually truncated after the number inspected is

equal to three times the number that would have been inspected using a corresponding single-

sampling plan. If the sample size selected at each stage is greater than one, the process is

usually called group sequential sampling. If the sample size inspected at each stage is 1, the

procedure is usually called item-by-item sequential sampling.
Item-by-item sequential sampling is based on the sequential probability ratio test

(SPRT), developed by Wald (1947). The operation of an item-by-item sequential-sampling

plan is illustrated in Figure 15.16. The cumulative observed number of defectives is plotted

on the chart. For each point, the abscissa is the total number of items selected up to that time,

and the ordinate is the total number of observed defectives. If the plotted points stay within

the boundaries of the acceptance and rejection lines, another sample must be drawn. As soon

as a point falls on or above the upper line, the lot is rejected. When a sample point falls on or

below the lower line, the lot is accepted. The equations for the two limit lines for specified

values of p1, 1 − a, p2, and b are

(15.11a)

(15.11b)

where

(15.12)

(15.13)

(15.14)

(15.15)s p p k= −( ) −( )[ ]log 1 11 2

k
p p

p p
=

−( )
−( )log 2 1

1 2

1

1

h k2
1= −⎛

⎝⎜
⎞
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log
β

α

h k1
1= −⎛

⎝⎜
⎞
⎠⎟

log
α

β

X h snR = + ( )2         rejection line

X h snA = − + ( )1       acceptance line

c15LotbyLotAcceptanceSamplingforAttributes.qxd  4/12/12  6:24 PM  Page 670



To illustrate the use of these equations, suppose we wish to find a sequential-sampling

plan for which p1 = 0.01, a = 0.05, p2 = 0.06, and b = 0.10. Thus,

Therefore, the limit lines are

and

Instead of using a graph to determine the lot disposition, the sequential-sampling plan 

can be displayed in a table such as Table 15.3. The entries in the table are found by substituting

values of n into the equations for the acceptance and rejection lines and calculating accep-

tance and rejection numbers. For example, the calculations for n = 45 are

X n

X n

A

R

= − +

− + ( )
= +

+ ( )

1 22 0 028

1 22 0 028 45

1 57 0 028

1 0 028 45

. .

. .

. .

.

= = 0.04      (accept)

= .57 = 2.83         (reject)

X nR = +1 57 0 028. .        (reject)

X nA = − +1 22 0 028. .       (accept)

k
p p

p p

h k

h k
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=
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( )( )
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⎝
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=
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672 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Acceptance and rejection numbers must be integers, so the acceptance number is the next

integer less than or equal to XA, and the rejection number is the next integer greater than or

equal to XR. Thus, for n = 45, the acceptance number is 0 and the rejection number 

is 3. Note that the lot cannot be accepted until at least 44 units have been tested. Table 15.3

shows only the first 46 units. Usually, the plan would be truncated after the inspection of 267

units, which is three times the sample size required for an equivalent single-sampling plan.

The OC Curve and ASN Curve for Sequential Sampling. The OC curve for

sequential sampling can be easily obtained. Two points on the curve are (p1, 1 − a) and (p2, b).

A third point, near the middle of the curve, is p = s and Pa = h2/(h1 + h2).

The average sample number taken under sequential-sampling is

(15.16)

where

A

B

=
−

= −

log

log

β
α
β

α

1
1

ASN = ⎛
⎝

⎞
⎠ + −( )P

A

C
P

B

Ca a1

■ TA B L E  1 5 . 3

Item-by-Item Sequential-Sampling Plan p1 = 0.01, a = 0.05, p2 = 0.06, b = 0.10 (first 46 units only)

Number of Items Acceptance Rejection Number of Items Acceptance Rejection 
Inspected, n Number Number Inspected, n Number Number

1 a b 24 a 3

2 a 2 25 a 3

3 a 2 26 a 3

4 a 2 27 a 3

5 a 2 28 a 3

6 a 2 29 a 3

7 a 2 30 a 3

8 a 2 31 a 3

9 a 2 32 a 3

10 a 2 33 a 3

11 a 2 34 a 3

12 a 2 35 a 3

13 a 2 36 a 3

14 a 2 37 a 3

15 a 2 38 a 3

16 a 3 39 a 3

17 a 3 40 a 3

18 a 3 41 a 3

19 a 3 42 a 3

20 a 3 43 a 3

21 a 3 44 0 3

22 a 3 45 0 3

23 a 3 46 0 3

“a” means acceptance not possible.

“b” means rejection not possible.
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and

Rectifying Inspection. The average outgoing quality (AOQ) for sequential sam-

pling is given approximately by

(15.17)

The average total inspection is also easily obtained. Note that the amount of sampling is A/C
when a lot is accepted and N when it is rejected. Therefore, the average total inspection is

(15.18)

15.4 Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859)

15.4.1 Description of the Standard

Standard sampling procedures for inspection by attributes were developed during World War

II. MIL STD 105E is the most widely used acceptance-sampling system for attributes in the

world today. The original version of the standard, MIL STD 105A, was issued in 1950. Since

then, there have been four revisions; the latest version, MIL STD 105E, was issued in 1989.

The sampling plans discussed in previous sections of this chapter are individual-sampling

plans. A sampling scheme is an overall strategy specifying the way in which sampling plans are

to be used. MIL STD 105E is a collection of sampling schemes; therefore, it is an acceptance-

sampling system. Our discussion will focus primarily on MIL STD 105E; however, there is a

derivative civilian standard, ANSI/ASQC Z1.4, which is quite similar to the military standard. The

standard was also adopted by the International Organization for Standardization as ISO 2859.

The standard provides for three types of sampling: single sampling, double sampling,

and multiple sampling. For each type of sampling plan, a provision is made for either normal

inspection, tightened inspection, or reduced inspection. Normal inspection is used at the start

of the inspection activity. Tightened inspection is instituted when the supplier’s recent qual-

ity history has deteriorated. Acceptance requirements for lots under tightened inspection are

more stringent than under normal inspection. Reduced inspection is instituted when the sup-

plier’s recent quality history has been exceptionally good. The sample size generally used

under reduced inspection is less than that under normal inspection.

The primary focal point of MIL STD 105E is the acceptable quality level (AQL). The

standard is indexed with respect to a series of AQLs. When the standard is used for percent

defective plans, the AQLs range from 0.10% to 10%. For defects-per-units plans, there are an

additional ten AQLs running up to 1,000 defects per 100 units. It should be noted that for the

smaller AQL levels, the same sampling plan can be used to control either a fraction defective

or a number of defects per unit. The AQLs are arranged in a progression, each AQL being

approximately 1.585 times the preceding one.

The AQL is generally specified in the contract or by the authority responsible for sam-

pling. Different AQLs may be designated for different types of defects. For example, the stan-

dard differentiates critical defects, major defects, and minor defects. It is relatively common

practice to choose an AQL of 1% for major defects and an AQL of 2.5% for minor defects.

No critical defects would be acceptable.

The sample size used in MIL STD 105E is determined by the lot size and by the choice

of inspection level. Three general levels of inspection are provided. Level II is designated as

ATI = ⎛
⎝

⎞
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674 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

normal. Level I requires about one-half the amount of inspection as Level II and may be used

when less discrimination is needed. Level III requires about twice as much inspection as

Level II and should be used when more discrimination is needed. There are also four special

inspection levels: S-1, S-2, S-3, and S-4. The special inspection levels use very small sam-

ples, and should be employed only when the small sample sizes are necessary and when

greater sampling risks can or must be tolerated.

For a specified AQL and inspection level and a given lot size, MIL STD 105E pro-

vides a normal sampling plan that is to be used as long as the supplier is producing the

product at AQL quality or better. It also provides a procedure for switching to tightened and

reduced inspection whenever there is an indication that the supplier’s quality has changed.

The switching procedures between normal, tightened, and reduced inspection are illustrated

in Figure 15.17 and are described next.

1. Normal to tightened. When normal inspection is in effect, tightened inspection is

instituted when two out of five consecutive lots have been rejected on original sub-

mission.

2. Tightened to normal. When tightened inspection is in effect, normal inspection is

instituted when five consecutive lots or batches are accepted on original inspection.

3. Normal to reduced. When normal inspection is in effect, reduced inspection is insti-

tuted provided all four of the following conditions are satisfied:

a. The preceding ten lots have been on normal inspection, and none of the lots has

been rejected on original inspection.

b. The total number of defectives in the samples from the preceding ten lots is less

than or equal to the applicable limit number specified in the standard.

c. Production is at a steady rate; that is, no difficulty such as machine breakdowns,

material shortages, or other problems have recently occurred.

d. Reduced inspection is considered desirable by the authority responsible for

sampling.

• Production steady
• 10 consecutive

lots accepted
• Approved by

responsible authority

• Lot rejected
• Irregular

production
• A lot meets neither

the accept nor the
reject criteria

• Other conditions
warrant return to
normal inspection

Reduced Normal Tightened

5 consecutive
lots

accepted

2 out of 5
consecutive lots

rejected

10 consecutive
lots remain

on tightened
inspection

"Or" conditions

"And" conditions Start

Discontinue
inspection

■ F I G U R E  1 5 . 1 7 Switching rules for normal, tightened, and reduced inspection, MIL STD 105E.
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4. Reduced to normal. When reduced inspection is in effect, normal inspection is insti-

tuted when any of the following four conditions occur:

a. A lot or batch is rejected.

b. When the sampling procedure terminates with neither acceptance nor rejection cri-

teria having been met, the lot or batch will be accepted, but normal inspection is

reinstituted starting with the next lot.

c. Production is irregular or delayed.

d. Other conditions warrant that normal inspection be instituted.

5. Discontinuance of inspection. In the event that ten consecutive lots remain on tightened

inspection, inspection under the provision of MIL STD 105E should be terminated, and

action should be taken at the supplier level to improve the quality of submitted lots.

15.4.2 Procedure

A step-by-step procedure for using MIL STD 105E is as follows:

1. Choose the AQL.

2. Choose the inspection level.

3. Determine the lot size.

4. Find the appropriate sample size code letter from Table 15.4.

5. Determine the appropriate type of sampling plan to use (single, double, multiple).

6. Enter the appropriate table to find the type of plan to be used.

7. Determine the corresponding normal and reduced inspection plans to be used when

required.

Table 15.4 presents the sample size code letters for MIL STD 105E. Tables 15.5, 15.6, and

15.7 present the single-sampling plans for normal inspection, tightened inspection, and

reduced inspection, respectively. The standard also contains tables for double-sampling plans

and multiple-sampling plans for normal, tightened, and reduced inspection.

15.4 Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) 675

■ TA B L E  1 5 . 4

Sample Size Code Letters (MIL STD 105E, Table 1)

Special Inspection Levels General Inspection Levels

Lot or Batch Size S-1 S-2 S-3 S-4 I II III

2 to 8 A A A A A A B

9 to 15 A A A A A B C

16 to 25 A A B B B C D

26 to 50 A B B C C D E

51 to 90 B B C C C E F

91 to 150 B B C D D F G

151 to 280 B C D E E G H

281 to 500 B C D E F H J

501 to 1,200 C C E F G J K

1,201 to 3,200 C D E G H K L

3,201 to 10,000 C D F G J L M

10,001 to 35,000 C D F H K M N

35,001 to 150,000 D E G J L N P

150,001 to 500,000 D E G J M P Q

500,001 and over D E H K N Q R
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15.4 Military Standard 105E (ANSI/ASQC Z1.4, ISO 2859) 679

To illustrate the use of MIL STD 105E, suppose that a product is submitted in lots of

size N = 2,000. The acceptable quality level is 0.65%. We will use the standard to generate

normal, tightened, and reduced single-sampling plans for this situation. For lots of size 2,000

under general inspection level II, Table 15.4 indicates that the appropriate sample size code

letter is K. Therefore, from Table 15.5, for single-sampling plans under normal inspection,

the normal inspection plan is n = 125, c = 2. Table 15.6 indicates that the corresponding

tightened inspection plan is n = 125, c = 1. Note that in switching from normal to tightened

inspection, the sample size remains the same, but the acceptance number is reduced by one.

This general strategy is used throughout MIL STD 105E for a transition to tightened inspec-

tion. If the normal inspection acceptance number is 1, 2, or 3, the acceptance number for the

corresponding tightened inspection plan is reduced by one. If the normal inspection accep-

tance number is 5, 7, 10, or 14, the reduction in acceptance number for tightened inspection

is two. For a normal acceptance number of 21, the reduction is three. Table 15.7 indicates that

under reduced inspection, the sample size for this example would be n = 50, the acceptance

number would be c = 1, and the rejection number would be r = 3. Thus, if two defectives

were encountered, the lot would be accepted, but the next lot would be inspected under normal

inspection.

In examining the tables, note that if a vertical arrow is encountered, the first sampling

plan above or below the arrow should be used. When this occurs, the sample size code letter

and the sample size change. For example, if a single-sampling plan is indexed by an AQL of

1.5% and a sample size code letter of F, the code letter changes to G and the sample size

changes from 20 to 32.

15.4.3 Discussion

MIL STD 105E presents the OC curves for single-sampling plans. These are all type-B OC

curves. The OC curves for the matching double- and multiple-sampling plans are roughly

comparable with those for the corresponding single-sampling plans. Figure 15.18 presents an

example of these curves for code letter K. The OC curves presented in the standard are for the

initial sampling plan only. They are not the OC curves for the overall inspection program,3

including shifts to and from tightened or reduced inspection.

Average sample number curves for double and multiple sampling are given, assum-

ing that no curtailment is used. These curves are useful in evaluating the average sample

sizes that may be expected to occur under the various sampling plans for a given lot or

process quality.

There are several points about MIL STD 105E that should be emphasized. These

include the following. First, MIL STD 105E is AQL oriented. It focuses attention on the pro-

ducer’s risk end of the OC curve. The only control over the discriminatory power of the sam-

pling plan (i.e., the steepness of the OC curve) is through the choice of inspection level.

Second, the sample sizes selected for use in MIL STD 105E are 2, 3, 5, 8, 13, 20, 32,

50, 80, 125, 200, 315, 500, 800, 1,250, and 2,000. Thus, not all sample sizes are possible.

Note that there are some rather significant gaps, such as between 125 and 200, and between

200 and 315.

Third, the sample sizes in MIL STD 105E are related to the lot sizes. To see the nature

of this relationship, calculate the midpoint of each lot size range, and plot the logarithm of

the sample size for that lot size range against the logarithm of the lot size range midpoint.

Such a plot will follow roughly a straight line up to n = 80, and thereafter another straight

3ANSI/ASQC Z1.4 presents the scheme performance of the standard, giving scheme OC curves and the correspond-

ing percentage points.
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680 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

line with a shallower slope. Thus, the sample size will increase as the lot size increases.

However, the ratio of sample size to lot size will decrease rapidly. This gives significant

economy in inspection costs per unit when the supplier submits large lots. For a given AQL,

the effect of this increase in sample size as the lot size increases is to increase the proba-

bility of acceptance for submitted lots of AQL quality. The probability of acceptance at a

given AQL will vary with increasing sample size from about 0.91 to about 0.99. This fea-

ture of the standard was and still is subject to some controversy. The argument in favor of

the approach in MIL STD 105E is that rejection of a large lot has more serious conse-

quences for the supplier than rejection of a small lot, and if the probability of acceptance

at the AQL increases with sample size, this reduces the risk of false rejection of a large lot.

Furthermore, the large sample also gives a more discriminating OC curve, which means

that the protection that the consumer receives against accepting an isolated bad lot will also

be increased.

Fourth, the switching rules from normal to tightened inspection and from tightened to

normal inspection are also subject to some criticism. In particular, some engineers dislike the

switching rules because there is often a considerable amount of misswitching from normal to

tightened or normal to reduced inspection when the process is actually producing lots of AQL

quality. Also, there is a significant probability that production would even be discontinued,

even though there has been no actual quality deterioration.
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Fifth, a flagrant and common abuse of MIL STD 105E is failure to use the switching

rules at all. When this is done, it results in ineffective and deceptive inspection and a substan-

tial increase in the consumer’s risk. It is not recommended that MIL STD 105E be imple-

mented without use of the switching rules from normal to tightened and normal to reduced

inspection.

A civilian standard, ANSI/ASQC Z1.4 or ISO 2859, is the counterpart of MIL STD

105E. It seems appropriate to conclude our discussion of MIL STD 105E with a comparison

of the military and civilian standards. ANSI/ASQC Z1.4 was adopted in 1981 and differs from

MIL STD 105E in the following five ways:

1. The terminology “nonconformity,” “nonconformance,” and “percent nonconforming”

is used.

2. The switching rules were changed slightly to provide an option for reduced inspection

without the use of limit numbers.

3. Several tables that show measures of scheme performance (including the switching

rules) were introduced. Some of these performance measures include AOQL, limiting

quality for which Pa = 0.10 and Pa = 0.05, ASN, and operating-characteristic curves.

4. A section was added describing proper use of individual sampling plans when extracted

from the system.

5. A figure illustrating the switching rules was added.

These revisions modernize the terminology and emphasize the system concept of the civilian

standard. All tables, numbers, and procedures used in MIL STD 105E are retained in

ANSI/ASQC Z1.4 and ISO 2859.

15.5 The Dodge–Romig Sampling Plans

H. F. Dodge and H. G. Romig (1959) developed a set of sampling inspection tables for lot-by-

lot inspection of product by attributes using two types of sampling plans: plans for lot toler-

ance percent defective (LTPD) protection and plans that provide a specified average outgoing

quality limit (AOQL). For each of these approaches to sampling plan design, there are tables

for single and double sampling.

Sampling plans that emphasize LTPD protection, such as the Dodge–Romig plans, are

often preferred to AQL-oriented sampling plans, such as those in MIL STD 105E, particularly

for critical components and parts. Many manufacturers believe that they have relied too much

on AQLs in the past, and they are now emphasizing other measures of performance, such as

defective parts per million (ppm). Consider the following:

AQL Defective Parts per Million

10% 100,000

1% 10,000

0.1% 1,000

0.01% 100

0.001% 10

0.0001% 1

Thus, even very small AQLs imply large numbers of defective ppm. In complex prod-

ucts, the effect of this can be devastating. For example, suppose that a printed circuit

15.5 The Dodge–Romig Sampling Plans 681
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board contains 100 elements, each manufactured by a process operating at 0.5% defec-

tive. If the AQLs for these elements are 0.5% and if all elements on the printed circuit

board must operate for the card to function properly, then the probability that a board

works is

Thus, there is an obvious need for sampling plans that emphasize LTPD protection, even

when the process average fallout is low. The Dodge–Romig plans are often useful in these

situations.

The Dodge–Romig AOQL plans are designed so that the average total inspection for a

given AOQL and a specified process average p will be minimized. Similarly, the LTPD plans

are designed so that the average total inspection is a minimum. This makes the Dodge–Romig

plans very useful for in-plant inspection of semifinished product.

The Dodge–Romig plans apply only to programs that submit rejected lots to 100%

inspection. Unless rectifying inspection is used, the AOQL concept is meaningless.

Furthermore, to use the plans, we must know the process average—that is, the average frac-

tion nonconforming of the incoming product. When a supplier is relatively new, we usually

do not know its process fallout. Sometimes this may be estimated from a preliminary sam-

ple or from data provided by the supplier. Alternatively, the largest possible process average

in the table can be used until enough information has been generated to provide a more accu-

rate estimate of the supplier’s process fallout. Obtaining a more accurate estimate of the

incoming fraction nonconforming or process average will allow a more appropriate sam-

pling plan to be adopted. It is not uncommon to find that sampling inspection begins with

one plan, and after sufficient information is generated to reestimate the supplier’s process

fallout, a new plan is adopted. We discuss estimation of the process average in more detail

in Section 15.5.3.

15.5.1 AOQL Plans

The Dodge–Romig (1959) tables give AOQL sampling plans for AOQL values of 0.1%,

0.25%, 0.5%, 0.75%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, 7%, and 10%. For each of these

AOQL values, six classes of values for the process average are specified. Tables are pro-

vided for both single and double sampling. These plans have been designed so that 

the average total inspection at the given AOQL and process average is approximately a

minimum.

An example of the Dodge–Romig sampling plans is shown in Table 15.8.4 To illustrate

the use of the Dodge–Romig AOQL tables, suppose that we are inspecting LSI memory ele-

ments for a personal computer and that the elements are shipped in lots of size N = 5,000. The

supplier’s process average fallout is 1% nonconforming. We wish to find a single-sampling

plan with an AOQL = 3%. From Table 15.8, we find that the plan is

Table 15.8 also indicates that the LTPD for this sampling plan is 10.3%. This is the point on the

OC curve for which Pa = 0.10. Therefore, the sampling plan n = 65, c = 3 gives an AOQL of

3% nonconforming and provides assurance that 90% of incoming lots that are as bad as 10.3%

defective will be rejected. Assuming that incoming quality is equal to the process average and

n c= =65 3      

P function properly( ) = ( ) =0 995 0 6058100. .

4Tables 15.8 and 15.9 are adapted from H. F. Dodge and H. G. Romig, Sampling Inspection Tables, Single and
Double Sampling, 2nd ed., John Wiley, New York, 1959, with the permission of the publisher.

c15LotbyLotAcceptanceSamplingforAttributes.qxd  4/12/12  6:24 PM  Page 682



■
T

A
B

L
E

 
1

5
.
8

D
od

ge
–R

om
ig

 I
ns

pe
ct

io
n 

Ta
bl

e 
fo

r 
Si

ng
le

-S
am

pl
in

g 
P

la
ns

 f
or

 A
O

Q
L

 =
3.

0%

P
ro

ce
ss

 A
ve

ra
ge

0–
0.

06
%

0.
07

–0
.6

0%
0.

61
–1

.2
0%

1.
21

–1
.8

0%
1.

81
–2

.4
0%

2.
41

–3
.0

0%

LT
P

D
LT

P
D

LT
P

D
LT

P
D

LT
P

D
LT

P
D

L
ot

 S
iz

e
n

c
%

n
c

%
n

c
%

n
c

%
n

c
%

n
c

%

1
–
1
0

A
ll

0
—

A
ll

0
—

A
ll

0
—

A
ll

0
—

A
ll

0
—

A
ll

0
—

1
1
–
5
0

1
0

0
1
9
.0

1
0

0
1
9
.0

1
0

0
1
9
.0

1
0

0
1
9
.0

1
0

0
1
9
.0

1
0

0
1
9
.0

5
1
–
1
0
0

1
1

0
1
8
.0

1
1

0
1
8
.0

1
1

0
1
8
.0

1
1

0
1
8
.0

1
1

0
1
8
.0

2
2

1
1
6
.4

1
0
1
–
2
0
0

1
2

0
1
7
.0

1
2

0
1
7
.0

1
2

0
1
7
.0

2
5

1
1
5
.1

2
5

1
1
5
.1

2
5

1
1
5
.1

2
0
1
–
3
0
0

1
2

0
1
7
.0

1
2

0
1
7
.0

2
6

1
1
4
.6

2
6

1
1
4
.6

2
6

1
1
4
.6

4
0

2
1
2
.8

3
0
1
–
4
0
0

1
2

0
1
7
.1

1
2

0
1
7
.1

2
6

1
1
4
.7

2
6

1
1
4
.7

4
1

2
1
2
.7

4
1

2
1
2
.7

4
0
1
–
5
0
0

1
2

0
1
7
.2

2
7

1
1
4
.1

2
7

1
1
4
.1

4
2

2
1
2
.4

4
2

2
1
2
.4

4
2

2
1
2
.4

5
0
1
–
6
0
0

1
2

0
1
7
.3

2
7

1
1
4
.2

2
7

1
1
4
.2

4
2

2
1
2
.4

4
2

2
1
2
.4

6
0

3
1
0
.8

6
0
1
–
8
0
0

1
2

0
1
7
.3

2
7

1
1
4
.2

2
7

1
1
4
.2

4
3

2
1
2
.1

6
0

3
1
0
.9

6
0

3
1
0
.9

8
0
1
–
1
0
0
0

1
2

0
1
7
.4

2
7

1
1
4
.2

4
4

2
1
1
.8

4
4

2
1
1
.8

6
0

3
1
1
.0

8
0

4
9
.8

1
,0

0
1
–
2
,0

0
0

1
2

0
1
7
.5

2
8

1
1
3
.8

4
5

2
1
1
.7

6
5

3
1
0
.2

8
0

4
9
.8

1
0
0

5
9
.1

2
,0

0
1
–
3
,0

0
0

1
2

0
1
7
.5

2
8

1
1
3
.8

4
5

2
1
1
.7

6
5

3
1
0
.2

1
0
0

5
9
.1

1
4
0

7
8
.2

3
,0

0
1
–
4
,0

0
0

1
2

0
1
7
.5

2
8

1
1
3
.8

6
5

3
1
0
.3

8
5

4
9
.5

1
2
5

6
8
.4

1
6
5

8
7
.8

4
,0

0
1
–
5
,0

0
0

2
8

1
1
3
.8

2
8

1
1
3
.8

6
5

3
1
0
.3

8
5

4
9
.5

1
2
5

6
8
.4

2
1
0

1
0

7
.4

5
,0

0
1
–
7
,0

0
0

2
8

1
1
3
.8

4
5

2
1
1
.8

6
5

3
1
0
.3

1
0
5

5
8
.8

1
4
5

7
8
.1

2
3
5

1
1

7
.1

7
,0

0
1
–
1
0
,0

0
0

2
8

1
1
3
.9

4
6

2
1
1
.6

6
5

3
1
0
.3

1
0
5

5
8
.8

1
7
0

8
7
.6

2
8
0

1
3

6
.8

1
0
,0

0
1
–
2
0
,0

0
0

2
8

1
1
3
.9

4
6

2
1
1
.7

8
5

4
9
.5

1
2
5

6
8
.4

2
1
5

1
0

7
.2

3
8
0

1
7

6
.2

2
0
,0

0
1
–
5
0
,0

0
0

2
8

1
1
3
.9

6
5

3
1
0
.3

1
0
5

5
8
.8

1
7
0

8
7
.6

3
1
0

1
4

6
.5

5
6
0

2
4

5
.7

5
0
,0

0
1
–
1
0
0
,0

0
0

2
8

1
1
3
.9

6
5

3
1
0
.3

1
2
5

6
8
.4

2
1
5

1
0

7
.2

3
8
5

1
7

6
.2

6
9
0

2
9

5
.4

683

c15LotbyLotAcceptanceSamplingforAttributes.qxd  4/12/12  6:24 PM  Page 683



■
T

A
B

L
E

 
1

5
.
9

D
od

ge
–R

om
ig

 S
in

gl
e-

Sa
m

pl
in

g 
Ta

bl
e 

fo
r 

L
ot

 T
ol

er
an

ce
 P

er
ce

nt
 D

ef
ec

ti
ve

 (
LT

P
D

) 
= 

1.
0%

P
ro

ce
ss

 A
ve

ra
ge

0–
0.

01
%

0.
01

1%
–0

.1
0%

0.
11

–0
.2

0%
0.

21
–0

.3
0%

0.
31

–0
.4

0%
0.

41
–0

.5
0%

A
O

Q
L

A
O

Q
L

A
O

Q
L

A
O

Q
L

A
O

Q
L

A
O

Q
L

L
ot

 S
iz

e
n

c
%

n
c

%
n

c
%

n
c

%
n

c
%

n
c

%

1
–
1
2
0

A
ll

0
0

A
ll

0
0

A
ll

0
0

A
ll

0
0

A
ll

0
0

A
ll

0
0

1
2
1
–
1
5
0

1
2
0

0
0
.0

6
1
2
0

0
0
.0

6
1
2
0

0
0
.0

6
1
2
0

0
0
.0

6
1
2
0

0
0
.0

6
1
2
0

0
0
.0

6

1
5
1
–
2
0
0

1
4
0

0
0
.0

8
1
4
0

0
0
.0

8
1
4
0

0
0
.0

8
1
4
0

0
0
.0

8
1
4
0

0
0
.0

8
1
4
0

0
0
.0

8

2
0
1
–
3
0
0

1
6
5

0
0
.1

0
1
6
5

0
0
.1

0
1
6
5

0
0
.1

0
1
6
5

0
0
.1

0
1
6
5

0
0
.1

0
1
6
5

0
0
.1

0

3
0
1
–
4
0
0

1
7
5

0
0
.1

2
1
7
5

0
0
.1

2
1
7
5

0
0
.1

2
1
7
5

0
0
.1

2
1
7
5

0
0
.1

2
1
7
5

0
0
.1

2

4
0
1
–
5
0
0

1
8
0

0
0
.1

3
1
8
0

0
0
.1

3
1
8
0

0
0
.1

3
1
8
0

0
0
.1

3
1
8
0

0
0
.1

3
1
8
0

0
0
.1

3

5
0
1
–
6
0
0

1
9
0

0
0
.1

3
1
9
0

0
0
.1

3
1
9
0

0
0
.1

3
1
9
0

0
0
.1

3
1
9
0

0
0
.1

3
3
0
5

1
0
.1

4

6
0
1
–
8
0
0

2
0
0

0
0
.1

4
2
0
0

0
0
.1

4
2
0
0

0
0
.1

4
3
3
0

1
0
.1

5
3
3
0

1
0
.1

5
3
3
0

1
0
.1

5

8
0
1
–
1
0
0
0

2
0
5

0
0
.1

4
2
0
5

0
0
.1

4
2
0
5

0
0
.1

4
3
3
5

1
0
.1

7
3
3
5

1
0
.1

7
3
3
5

1
0
.1

7

1
,0

0
1
–
2
,0

0
0

2
2
0

0
0
.1

5
2
2
0

0
0
.1

5
3
6
0

1
0
.1

9
4
9
0

2
0
.2

1
4
9
0

2
0
.2

1
6
1
0

3
0
.2

2

2
,0

0
1
–
3
,0

0
0

2
2
0

0
0
.1

5
3
7
5

1
0
.2

0
5
0
5

2
0
.2

3
6
3
0

3
0
.2

4
7
4
5

4
0
.2

6
8
7
0

5
0
.2

6

3
,0

0
1
–
4
,0

0
0

2
2
5

0
0
.1

5
3
8
0

1
0
.2

0
5
1
0

2
0
.2

3
6
4
5

3
0
.2

5
8
8
0

5
0
.2

8
1
,0

0
0

6
0
.2

9

4
,0

0
1
–
5
,0

0
0

2
2
5

0
0
.1

6
3
8
0

1
0
.2

0
5
2
0

2
0
.2

4
7
7
0

4
0
.2

8
8
9
5

5
0
.2

9
1
,1

2
0

7
0
.3

1

5
,0

0
1
–
7
,0

0
0

2
3
0

0
0
.1

6
3
8
5

1
0
.2

1
6
5
5

3
0
.2

7
7
8
0

4
0
.2

9
1
,0

2
0

6
0
.3

2
1
,2

6
0

8
0
.3

4

7
,0

0
1
–
1
0
,0

0
0

2
3
0

0
0
.1

6
5
2
0

2
0
.2

5
6
6
0

3
0
.2

8
9
1
0

5
0
.3

2
1
,1

5
0

7
0
.3

4
1
,5

0
0

1
0

0
.3

7

1
0
,0

0
1
–
2
0
,0

0
0

3
9
0

1
0
.2

1
5
2
5

2
0
.2

6
7
8
5

4
0
.3

1
1
,0

4
0

6
0
.3

5
1
,4

0
0

9
0
.3

9
1
,9

8
0

1
4

0
.4

3

2
0
,0

0
1
–
5
0
,0

0
0

3
9
0

1
0
.2

1
5
3
0

2
0
.2

6
9
2
0

5
0
.3

4
1
,3

0
0

8
0
.3

9
1
,8

9
0

1
3

0
.4

4
2
,5

7
0

1
9

0
.4

8

5
0
,0

0
1
–
1
0
0
,0

0
0

3
9
0

1
0
.2

1
6
7
0

3
0
.2

9
1
,0

4
0

6
0
.3

6
1
,4

2
0

9
0
.4

1
2
,1

2
0

1
5

0
.4

7
3
,1

5
0

2
3

0
.5

0

684

c15LotbyLotAcceptanceSamplingforAttributes.qxd  4/12/12  6:24 PM  Page 684



that the probability of lot acceptance at this level of quality is Pa = 0.9957, we find that the aver-

age total inspection for this plan is

Thus, we will inspect approximately 86 units, on the average, in order to sentence a lot.

15.5.2 LTPD Plans

The Dodge–Romig LTPD tables are designed so that the probability of lot acceptance at the

LTPD is 0.1. Tables are provided for LTPD values of 0.5%, 1%, 2%, 3%, 4%, 5%, 7%, and

10%. Table 15.9 for an LTPD of 1% is representative of these Dodge–Romig tables.

To illustrate the use of these tables, suppose that LSI memory elements for a personal

computer are shipped from the supplier in lots of size N = 5,000. The supplier’s process aver-

age fallout is 0.25% nonconforming, and we wish to use a single-sampling plan with an LTPD

of 1%. From inspection of Table 15.9, the sampling plan that should be used is

If we assume that rejected lots are screened 100% and that defective items are replaced with

good ones, the AOQL for this plan is approximately 0.28%.

Note from inspection of the Dodge–Romig LTPD tables that values of the process

average cover the interval from zero to one-half the LTPD. Provision for larger process aver-

ages is unnecessary, since 100% inspection is more economically efficient than inspection

sampling when the process average exceeds one-half the desired LTPD.

15.5.3 Estimation of Process Average

As we have observed, selection of a Dodge–Romig plan depends on knowledge of the sup-

plier’s process average fallout or percent nonconforming. An estimate of the process average

can be obtained using a fraction defective control chart, based on the first 25 lots submitted

by the supplier. If double sampling is used, only the results from the first sample should be

included in the computations. Any lot fraction defective that exceeds the upper control limit

will be discarded, provided it has an assignable cause, and a new process average is calcu-

lated. Until results from 25 lots have been accumulated, the recommended procedure is to use

the largest process average in the appropriate table.

n c= =770 4      

ATI = + −( ) −( )
= 65 + (1 − 0.9957)(5,000 − 65) = 86.22

n P N na1

Important Terms and Concepts 685

100% inspection

Acceptable quality level (AQL)

Acceptance-sampling plan

ANSI/ASQC Z1.4, ISO 2859

AOQL plans

Attributes data

Average outgoing quality

Average outgoing quality limit

Average sample number curve

Average total inspection

Dodge–Romig sampling plans

Double-sampling plan

Ideal OC curve

Lot disposition actions

Lot sentencing

Lot tolerance percent defective (LTPD)

LTPD plans

MIL STD 105E

Multiple-sampling plan

Normal, tightened, and reduced inspection

Operating-characteristic (OC) curve

Random sampling

Rectifying inspection

Sample size code letters

Important Terms and Concepts
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686 Chapter 15 ■ Lot-by-Lot Acceptance Sampling for Attributes

Sequential-sampling plan

Single-sampling plan

Switching rules in MIL STD 105E

Type-A and Type-B OC curves

Variables data

Exercises

15.8. Find a single-sampling plan for which p1 = 0.01, a =
0.05, p2 = 0.10, and b = 0.10.

15.9. Find a single-sampling plan for which p1 = 0.05, a =
0.05, p2 = 0.15, and b = 0.10.

15.10. Find a single-sampling plan for which p1 = 0.02, a =
0.01, p2 = 0.06, and b = 0.10.

15.11. A company uses the following acceptance-sampling

procedure. A sample equal to 10% of the lot is taken.

If 2% or less of the items in the sample are defective,

the lot is accepted; otherwise, it is rejected. If sub-

mitted lots vary in size from 5,000 to 10,000 units,

what can you say about the protection by this plan?

If 0.05 is the desired LTPD, does this scheme offer

reasonable protection to the consumer?

15.12. A company uses a sample size equal to the square

root of the lot size. If 1% or less of the items in the

sample are defective, the lot is accepted; otherwise, it

is rejected. Submitted lots vary in size from 1,000 to

5,000 units. Comment on the effectiveness of this

procedure.

15.13. Consider the single-sampling plan found in Exercise

15.8. Suppose that lots of N = 2,000 are submitted.

Draw the ATI curve for this plan. Draw the AOQ

curve and find the AOQL.

15.14. Suppose that a single-sampling plan with n = 150 

and c = 2 is being used for receiving inspection

where the supplier ships the product in lots of size 

N = 3,000.

(a) Draw the OC curve for this plan.

(b) Draw the AOQ curve and find the AOQL.

(c) Draw the ATI curve for this plan.

15.15. Suppose that a supplier ships components in lots of

size 5,000. A single-sampling plan with n = 50 and 

c = 2 is being used for receiving inspection. Rejected

lots are screened, and all defective items are

reworked and returned to the lot.

(a) Draw the OC curve for this plan.

(b) Find the level of lot quality that will be rejected

90% of the time.

(c) Management has objected to the use of the above

sampling procedure and wants to use a plan with

an acceptance number c = 0, arguing that this is

more consistent with their zero-defects program.

What do you think of this?

(d) Design a single-sampling plan with c = 0 that

will give a 0.90 probability of rejection of lots

15.1. An accounting firm uses sam-

pling methods in its client audit-

ing processes. Accounts of a 

particular type are grouped

together in a batch size of 25.

The auditor is concerned about

erroneous accounts escaping the

auditing process. Sampling and

auditing the accounts is time

consuming and very expensive,

and a random sample of size n = 5

is about the largest sample that

can practically be used.

Suppose that the batch of accounts contains one erro-

neous account. What is the probability that the sample

that is selected contains the erroneous account?

15.2. Reconsider the situation described in Exercise 15.1.

Suppose that the batch of accounts contains two erro-

neous accounts. What is the probability that the ran-

dom sample of size n = 5 that is selected contains at

least one of the two erroneous accounts?

15.3. Reconsider the situation described in Exercise 15.1.

How many erroneous accounts must be in the batch

of accounts for a random sample of size n = 5 to have

a probability of at least 0.50 containing the erroneous

account?

15.4. Hospital personnel routinely examine patient records

for error, such as incomplete insurance information,

on incomplete patient history, or missing/incomplete

medical records. On average, about 250 new patients

are admitted each day. Historically, about 5% of these

records have contained errors. If a random sample of

50 new patient records is checked each day, what is

the probability that this sample will contain at least

one patient record with missing information?

15.5. Draw the type-B OC curve for the single-sampling

plan n = 50, c = 1.

15.6. Draw the type-B OC curve for the single-sampling

plan n = 100, c = 2.

15.7. Suppose that a product is shipped in lots of size 

N = 5,000. The receiving inspection procedure used is

single sampling with n = 50 and c = 1.

(a) Draw the type-A OC curve for the plan.

(b) Draw the type-B OC curve for this plan and com-

pare it to the type-A OC curve found in part (a).

(c) Which curve is appropriate for this situation?

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.
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having the quality level found in part (b). Note

that the two plans are now matched at the LTPD

point. Draw the OC curve for this plan and com-

pare it to the one for n = 50, c = 2 in part (a).

(e) Suppose that incoming lots are 0.5% noncon-

forming. What is the probability of rejecting

these lots under both plans? Calculate the ATI at

this point for both plans. Which plan do you pre-

fer? Why?

15.16. Draw the primary and supplementary OC curves for

a double-sampling plan with n1 = 50, c1 = 2, n2 =
100, and c2 = 6. If the incoming lots have fraction

nonconforming p = 0.05, what is the probability of

acceptance on the first sample? What is the proba-

bility of final acceptance? Calculate the probability

of rejection on the first sample.

15.17. (a) Derive an item-by-item sequential-sampling plan

for which p1 = 0.01, a = 0.05, p2 = 0.10, and 

b = 0.10.

(b) Draw the OC curve for this plan.

14.18. (a) Derive an item-by-item sequential-sampling plan

for which p1 = 0.02, a = 0.05, p2 = 0.15, and 

b = 0.10.

(b) Draw the OC curve for this plan.

15.19. Consider rectifying inspection for single sampling.

Develop an AOQ equation assuming that all defec-

tive items are removed but not replaced with good

ones.

15.20. A supplier ships a component in lots of size N =
3,000. The AQL has been established for this prod-

uct at 1%. Find the normal, tightened, and reduced

single-sampling plans for this situation from MIL

STD 105E, assuming that general inspection level II

is appropriate.

15.21. Repeat Exercise 15.20, using general inspection level

I. Discuss the differences in the various sampling

plans.

15.22. A product is supplied in lots of size N = 10,000.

The AQL has been specified at 0.10%. Find the

normal, tightened, and reduced single-sampling

plans from MIL STD 105E, assuming general

inspection level II.

15.23. MIL STD 105E is being used to inspect incoming

lots of size N = 5,000. Single sampling, general

inspection level II, and an AQL of 0.65% are being

used.

(a) Find the normal, tightened, and reduced inspec-

tion plans.

(b) Draw the OC curves of the normal, tightened,

and reduced inspection plans on the same graph.

15.24. A product is shipped in lots of size N = 2,000. Find a

Dodge–Romig single-sampling plan for which the

LTPD = 1%, assuming that the process average is

0.25% defective. Draw the OC curve and the ATI

curve for this plan. What is the AOQL for this sam-

pling plan?

15.25. We wish to find a single-sampling plan for a situation

where lots are shipped from a supplier. The sup-

plier’s process operates at a fallout level of 0.50%

defective. We want the AOQL from the inspection

activity to be 3%.

(a) Find the appropriate Dodge–Romig plan.

(b) Draw the OC curve and the ATI curve for this

plan. How much inspection will be necessary, on

the average, if the supplier’s process operates

close to the average fallout level?

(c) What is the LTPD protection for this plan?

15.26. A supplier ships a product in lots of size N = 8,000.

We wish to have an AOQL of 3%, and we are going

to use single sampling. We do not know the sup-

plier’s process fallout but suspect that it is at most 1%

defective.

(a) Find the appropriate Dodge–Romig plan.

(b) Find the ATI for this plan, assuming that incom-

ing lots are 1% defective.

(c) Suppose that our estimate of the supplier’s

process average is incorrect and that it is really

0.25% defective. What sampling plan should we

have used? What reduction in ATI would have

been realized if we had used the correct plan?

Exercises 687
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CHAPTER OVERVIEW AND LEARNING OBJECTIVES

This chapter summarizes several useful acceptance-sampling techniques, including 

variables-sampling plans, which can be used as alternatives to attribute plans when mea-

surement data are available. We also briefly discuss chain sampling, continuous sampling,

and skip-lot sampling.

After careful study of this chapter, you should be able to do the following:

1. Understand the difference between attributes- and variables-sampling plans

2. Understand the advantages and disadvantages of variables sampling

3. Understand the two major types of variables-sampling plans
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16.1 Acceptance Sampling by Variables 689

4. Know how to design a variables-sampling plan with a specified OC

5. Understand the structure and use of MIL STD 414 and its civilian counterpart plans

6. Understand the differences between the MIL STD 414 and ANSI/ASQC Z1.9

sampling plans

7. Understand how chain-sampling plans are designed and used

8. Understand how continuous-sampling plans are designed and used

9. Understand how skip-lot sampling plans are designed and used

16.1 Acceptance Sampling by Variables

16.1.1 Advantages and Disadvantages of Variables Sampling

The primary advantage of variables-sampling plans is that the same operating-characteristic

curve can be obtained with a smaller sample size than would be required by an attributes-

sampling plan. Thus, a variables acceptance-sampling plan that has the same protection as an

attributes acceptance-sampling plan would require less sampling. The measurements data

required by a variables-sampling plan would probably cost more per observation than the

collection of attributes data. However, the reduction in sample size obtained may more than

offset this increased cost. For example, suppose that an attributes-sampling plan requires a

sample of size 100 items, but the equivalent variables-sampling plan requires a sample size of

only 65. If the cost of measurement data is less than 1.61 times the cost of measuring the

observations on an attributes scale, the variables-sampling plan will be more economically

efficient, considering sampling costs only. When destructive testing is employed, variables

sampling is particularly useful in reducing the costs of inspection.

A second advantage is that measurement data usually provide more information about

the manufacturing process or the lot than do attributes data. Generally, numerical measure-

ments of quality characteristics are more useful than simple classification of the item as

defective or nondefective.

A final point to be emphasized is that when acceptable quality levels are very small, the

sample sizes required by attributes-sampling plans are very large. Under these circumstances,

there may be significant advantages in switching to variables measurement. Thus, as many

manufacturers begin to emphasize allowable numbers of defective parts per million, variables

sampling becomes very attractive.

Variables-sampling plans have several disadvantages. Perhaps the primary disadvantage

is that the distribution of the quality characteristic must be known. Furthermore, most standard

variables acceptance-sampling plans assume that the distribution of the quality characteristic

is normal. If the distribution of the quality characteristic is not normal, and a plan based on the

normal assumption is employed, serious departures from the advertised risks of accepting or

rejecting lots of given quality may be experienced. We discuss this point more completely in

Section 16.1.3. The second disadvantage of variables sampling is that a separate sampling plan

must be employed for each quality characteristic that is being inspected. For example, if an

item is inspected for four quality characteristics, it is necessary to have four separate variables

inspection-sampling plans; under attributes sampling, one attributes-sampling plan could be

employed. Finally, it is possible that the use of a variables-sampling plan will lead to rejection

of a lot even though the actual sample inspected does not contain any defective items. Although

this does not happen very often, when it does occur it usually causes considerable unhappiness

in both the suppliers’ and the consumers’ organizations, particularly if rejection of the lot has

caused a manufacturing facility to shut down or operate on a reduced production schedule.
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690 Chapter 16 ■ Other Acceptance-Sampling Techniques

16.1.2 Types of Sampling Plans Available

There are two general types of variables-sampling procedures: plans that control the lot or

process fraction defective (or nonconforming) and plans that control a lot or process parame-

ter (usually the mean). Sections 16.2 and 16.3 present variables sampling plans to control the

process fraction defective. Variables sampling plans for the process mean are presented in

Section 16.4.

Consider a variables sampling plan to control the lot or process fraction nonconform-

ing. Since the quality characteristic is a variable, there will exist either a lower specification

limit (LSL), an upper specification limit (USL), or both that define the acceptable values of

this parameter. Figure 16.1 illustrates the situation in which the quality characteristic x is nor-

mally distributed and there is a lower specification limit on this parameter. The symbol p rep-

resents the fraction defective in the lot. Note that the fraction defective is a function of the lot

or process mean μ and the lot or process standard deviation σ.

Suppose that the standard deviation σ is known. Under this condition, we may wish to

sample from the lot to determine whether or not the value of the mean is such that the frac-

tion defective p is acceptable. As described next, we may organize the calculations in the vari-

ables sampling plan in two ways.

Procedure 1. Take a random sample of n items from the lot and compute the statistic

(16.1)

Note that ZLSL in equation 16.1 simply expresses the distance between the sample

average and the lower specification limit in standard deviation units. The larger is the

value of ZLSL, the farther the sample average is from the lower specification limit, and

consequently, the smaller is the lot fraction defective p. If there is a critical value of p of

interest that should not be exceeded with stated probability, we can translate this value

of p into a critical distance—say, k—for ZLSL. Thus, if ZLSL ≥ k, we would accept the

lot because the sample data imply that the lot mean is sufficiently far above the LSL to

ensure that the lot fraction nonconforming is satisfactory. However, if ZLSL < k, the mean

is too close to the LSL, and the lot should be rejected.

Procedure 2. Take a random sample of n items from the lot and compute ZLSL using

equation 16.1. Use ZLSL to estimate the fraction defective of the lot or process as 

the area under the standard normal curve below ZLSL. (Actually, using 

as a standard normal variable is slightly better, because it gives a bet-

ter estimate of p.) Let be the estimate of p so obtained. If the estimate exceeds a

specified maximum value M, reject the lot; otherwise, accept it.

The two procedures can be designed so that they give equivalent results. When there is

only a single specification limit (LSL or USL), either procedure may be used. Obviously, in

the case of an upper specification limit, we would compute

(16.2)Z
x

USL
USL= −

σ

p̂p̂
ZLSL 1n/ (n − 1)

QLSL =

x
x

Z
x

LSL
LSL= −

σ

LSL μ

σ

x

p
■ F I G U R E  1 6 . 1 Relationship

of the lot or process fraction defective 

p to the mean and standard deviation of

a normal distribution.
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instead of using equation 16.1. When there are both lower and upper specifications, the M
method, Procedure 2, should be used.

When the standard deviation σ is unknown, it is estimated by the sample standard

deviation s, and σ in equations 16.1 and 16.2 is replaced by s. It is also possible to design

plans based on the sample range R instead of s. However, these plans are not discussed in this

chapter because using the sample standard deviation will lead to smaller sample sizes. Plans

based on R were once in wide use because R is easier to compute by hand than is s, but com-

putation is not a problem today.

16.1.3 Caution in the Use of Variables Sampling

We have remarked that the distribution of the quality characteristic must be of known form to

use variables sampling. Furthermore, the usual assumption is that the parameter of interest

follows the normal distribution. This assumption is critical because all variables-sampling

plans require that there be some method of converting a sample mean and standard deviation

into a lot or process fraction defective. If the parameter of interest is not normally distributed,

estimates of the fraction defective based on the sample mean and sample standard deviation

will not be the same as if the parameter were normally distributed. The difference between

these estimated fraction defectives may be large when we are dealing with very small fractions

defective. For example, if the mean of a normal distribution lies three standard deviations

below a single upper specification limit, the lot will contain no more than 0.135% defective.

On the other hand, if the quality characteristic in the lot or process is very nonnormal, and the

mean lies three standard deviations below the specification limit, it is entirely possible that

1% or more of the items in the lot might be defective.

It is possible to use variables-sampling plans when the parameter of interest does not

have a normal distribution. Provided that the form of the distribution is known, or that there

is a method of determining the fraction defective from the sample average and sample stan-

dard deviation (or other appropriate sample statistics), it is possible to devise a procedure for

applying a variables-sampling plan. For example, Duncan (1986) presents a procedure for

using a variables-sampling plan when the distribution of the quality characteristic can be

described by a Pearson type III distribution. A general discussion of variables sampling in the

nonnormal case is, however, beyond the scope of this book.

16.2 Designing a Variables-Sampling Plan with a Specified OC Curve

It is easy to design a variables-sampling plan using Procedure 1, the k-method, that has a spec-

ified OC curve. Let (p1, 1 − α), (p2, β) be the two points on the OC curve of interest. Note

that p1 and p2 may be the levels of lot or process fraction nonconforming that correspond to

acceptable and rejectable levels of quality, respectively.

The nomograph shown in Figure 16.2 enables the quality engineer to find the required

sample size n and the critical value k to meet a set of given conditions p1, 1 − α, p2, β for both

the σ known and the σ unknown cases. The nomograph contains separate scales for sample

size for these two cases. The greater uncertainty in the case where the standard deviation is

unknown requires a larger sample size than does the σ known case, but the same value of k
is used. In addition, for a given sampling plan, the probability of acceptance for any value of

fraction defective can be found from the nomograph. By plotting several of these points, the

quality engineer may construct an operating-characteristic curve of the sampling plan. The

use of this nomograph is illustrated in the following example.

16.2 Designing a Variables-Sampling Plan with a Specified OC Curve 691
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■ F I G U R E  1 6 . 2 Nomograph for designing variables sampling plans.

the lot with probability 0.95 (p1 = 0.01, 1 − α = 0.95), whereas

if 6% or more of the bottles burst below this limit, the bottler

would like to reject the lot with probability 0.90 (p2 = 0.06,

β = 0.10). Find the sampling plan.

EXAMPLE 16.1

A soft-drink bottler buys nonreturnable bottles from a sup-

plier. The bottler has established a lower specification on 

the bursting strength of the bottles at 225 psi. If 1% or less of

the bottles burst below this limit, the bottler wishes to accept

A Variables Sampling Plan

SOLUTION

To find the sampling plan, draw a line connecting the point

0.01 on the fraction defective scale in Figure 16.2 to the point

0.95 on the probability of acceptance scale. Then draw a simi-

lar line connecting the points p2 = 0.06 and Pa = 0.10. At the

intersection of these lines, we read k = 1.9. Suppose that σ is

unknown. Following the curved line from the intersection

point to the upper sample size scale gives n = 40. Therefore,

the procedure is to take a random sample of n = 40 bottles,

observe the bursting strengths, compute and s, then calculate

Z
x

SLSL
LSL= −

x

and accept the lot if

If σ is known, drop vertically from the intersection point to the

σ-known scale. This would indicate a sample size of n = 15.

Thus, if the standard deviation is known, a considerable reduc-

tion in sample size is possible.

Z kLSL ≥ = 1 9.
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It is also possible to design a variables acceptance-sampling plan from the nomograph

using Procedure 2 (the M-method). To do so, an additional step is necessary. Figure 16.3 pre-

sents a chart for determining the maximum allowable fraction defective M. Once the values

of n and k have been determined for the appropriate sampling plan from Figure 16.2, a value

of M can be read directly from Figure 16.3. To use Procedure 2, it is necessary to convert the

value of ZLSL or ZUSL into an estimated fraction defective. Figure 16.4 can be used for this

purpose. The following example illustrates how a single-sampling plan for variables with a

one-sided specification limit using Procedure 2 can be designed.

EXAMPLE 16.2

Consider the situation described in Example 16.1. Design a

sampling plan using Procedure 2.

Variables Sampling with a One-Sided Specification

SOLUTION

Since we know that n = 40 and k = 1.9, we enter Figure 16.3

with n = 40 and abscissa value

This indicates that M = 0.030. Now suppose that a sample of

n = 40 is taken, and we observe and s = 15. The value

of ZLSL is

Z
x

sLSL
LSL= − = − =255 225

15
2

x = 255

1
1

2

1
1 9 40

39
2

0 35

−
−( ) =

−
=

k n

n
.

.

From Figure 16.4 we read . Since is less

than M = 0.030, we will accept the lot.
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■ F I G U R E  1 6 . 3 Chart for determining the maximum

allowable fraction defective M. (From A. J. Duncan, Quality
Control and Industrial Statistics, 5th ed., Irwin, Homewood, IL.,

1986, with the permission of the publisher.)

■ F I G U R E  1 6 . 4 Chart for determining from 

Z. (From A. J. Duncan, Quality Control and Industrial Statistics,
5th ed., Irwin, Homewood, IL., 1986, with the permission of the

publisher.)

p̂
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694 Chapter 16 ■ Other Acceptance-Sampling Techniques

When there are double-specification limits, Procedure 2 can be used directly. We begin by

first obtaining the sample size n and the critical value k for a single-limit plan that has the

same values of p1, p2, α, and β as the desired double-specification-limit plan. Then the value

of M is obtained directly from Figure 16.3. Now in the operation of the acceptance-sampling

plan, we compute ZLSL and ZUSL and, from Figure 16.4, find the corresponding fraction

defective estimates—say, and . Then, if , the lot will be accepted;

otherwise, it will be rejected.

It is also possible to use Procedure 1 for double-sided specification limits. However, the

procedure must be modified extensively. Details of the modifications are in Duncan (1986).

16.3 MIL STD 414 (ANSI/ASQC Z1.9)

16.3.1 General Description of the Standard

MIL STD 414 is a lot-by-lot acceptance-sampling plan for variables. The standard was intro-

duced in 1957. The focal point of this standard is the acceptable quality level (AQL), which

ranges from 0.04% to 15%. There are five general levels of inspection, and level IV is desig-

nated as “normal.” Inspection level V gives a steeper OC curve than level IV. When reduced

sampling costs are necessary and when greater risks can or must be tolerated, lower inspec-

tion levels can be used. As with the attributes standard, MIL STD 105E, sample-size code let-

ters are used, but the same code letter does not imply the same sample size in both standards.

In addition, the lot-size classes are different in both standards. Sample sizes are a function of

the lot size and the inspection level. Provision is made for normal, tightened, and reduced

inspection. All the sampling plans and procedures in the standard assume that the quality

characteristic of interest is normally distributed.

Figure 16.5 presents the organization of the standard. Note that acceptance-sampling

plans can be designed for cases where the lot or process variability is either known or

unknown, and where there are either single-specification limits or double-specification limits

on the quality characteristic. In the case of single-specification limits, either Procedure 1 or

Procedure 2 may be used. If there are double-specification limits, then Procedure 2 must be

used. If the process or lot variability is known and stable, the variability-known plans are the

most economically efficient. When lot or process variability is unknown, either the standard

deviation or the range of the sample may be used in operating the sampling plan. The range

method requires a larger sample size, and we do not generally recommend its use.

MIL STD 414 is divided into four sections. Section A is a general description of the

sampling plans, including definitions, sample-size code letters, and OC curves for the various

p̂LSL + p̂USL £ Mp̂USLp̂LSL

Procedure 1
(k-method)

Procedure 2
(M-method)

Variability
unknown—

standard deviation
method

Variability
unknown—

range method

Variability
known

Single-sided
specification

limits

Double-sided
specification

limits

Procedure 2
(M-method)

■ F I G U R E  1 6 . 5 Organization of MIL STD 414.
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sampling plans. Section B of the standard gives variables-sampling plans based on the sam-

ple standard deviation for the case in which the process or lot variability is unknown. Section C

presents variables sampling plans based on the sample range method. Section D gives

variables-sampling plans for the case where the process standard deviation is known.

16.3.2 Use of the Tables

Two typical tables from MIL STD 414 are reproduced as Tables 16.1 and 16.2. The follow-

ing example illustrates the use of these tables.

tles are shipped in lots of size 100,000. Find a variables sam-

pling plan that uses Procedure 1 from MIL STD 414. Assume

that the lot standard deviation is unknown.

EXAMPLE 16.3

Consider the soft-drink bottler in the previous two examples

who is purchasing bottles from a supplier. The lower specifi-

cation limit on bursting strength is 225 psi. Suppose that the

AQL at this specification limit is 1%. Let us suppose that bot-

Using MIL STD 414

SOLUTION

From Table 16.1, if we use inspection level IV, the sample size

code letter is O. From Table 16.2 we find that sample size

code letter O implies a sample size of n = 100. For an accept-

able quality level of 1%, on normal inspection, the value of k
is 2.00. If tightened inspection is employed, the appropriate

value of k is 2.14. Note that normal and tightened inspection

use the same tables. The AQL values for normal inspection are

indexed at the top of the table, and the AQL values for tight-

ened inspection are indexed from the bottom of the table.

■ TA B L E  1 6 . 1

Sample-Size Code Letters (MIL STD 414, Table A.2)

Inspection Levels

Lot Size I II III IV V

3 to 8 B B B B C

9 to 15 B B B B D

16 to 25 B B B C E

26 to 40 B B B D F

41 to 65 B B C E G

66 to 110 B B D F H

111 to 180 B C E G I

181 to 300 B D F H J

301 to 500 C E G I K

501 to 800 D F H J L

801 to 1,300 E G I K L

1,301 to 3,200 F H J L M

3,201 to 8,000 G I L M N

8,001 to 22,000 H J M N O

22,001 to 110,000 I K N O P

110,001 to 550,000 I K O P Q

550,001 and over I K P Q Q

16.3 MIL STD 414 (ANSI/ASQC Z1.9) 695
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16.3 MIL STD 414 (ANSI/ASQC Z1.9) 697

MIL STD 414 contains a provision for a shift to tightened or reduced inspection when

this is warranted. The process average is used as the basis for determining when such a shift

is made. The process average is taken as the average of the sample estimates of percent defec-

tive computed for lots submitted on original inspection. Usually, the process average is com-

puted using information from the preceding ten lots. Full details of the switching procedures

are described in the standard and in a technical memorandum on MIL STD 414, published by

the United States Department of the Navy, Bureau of Ordnance.

Estimation of the fraction defective is required in using Procedure 2 of MIL STD 414.

It is also required in implementing the switching rules between normal, tightened, and

reduced inspection. In the standard, three tables are provided for estimating the fraction

defective.

When starting to use MIL STD 414, one can choose between the known standard devi-

ation and unknown standard deviation procedures. When there is no basis for knowledge of

σ, obviously the unknown standard deviation plan must be used. However, it is a good idea

to maintain either an R or s chart on the results of each lot so that some information on the

state of statistical control of the scatter in the manufacturing process can be collected. If this

control chart indicates statistical control, it will be possible to switch to a known σ plan. Such

a switch will reduce the required sample size. Even if the process were not perfectly con-

trolled, the control chart could provide information leading to a conservative estimate of σ for

use in a known σ plan. When a known σ plan is used, it is also necessary to maintain a con-

trol chart on either R or s as a continuous check on the assumption of stable and known

process variability.

MIL STD 414 contains a special procedure for application of mixed variables/attributes

acceptance-sampling plans. If the lot does not meet the acceptability criterion of the variables

plan, an attributes single-sampling plan, using tightened inspection and the same AQL, is

obtained from MIL STD 105E. A lot can be accepted by either of the plans in sequence but

must be rejected by both the variables and attributes plan.

16.3.3 Discussion of MIL STD 414 and ANSI/ASQC Z1.9

In 1980, the American National Standards Institute and the American Society for Quality

Control released an updated civilian version of MIL STD 414 known as ANSI/ASQC Z1.9. MIL

STD 414 was originally structured to give protection essentially equivalent to that provided by

MIL STD 105A (1950). When MIL STD 105D was adopted in 1963, this new standard con-

tained substantially revised tables and procedures that led to differences in protection between

it and MIL STD 414. Consequently, it is not possible to move directly from an attributes-

sampling plan in the current MIL STD 105E to a corresponding variables-sampling plan in MIL

STD 414 if the assurance of continued protection is desired for certain lot sizes and AQLs.

The civilian counterpart of MIL STD 414, ANSI/ASQC Z1.9, restores this original

match. That is, ANSI/ASQC Z1.9 is directly compatible with MIL STD 105E (and its equiv-

alent civilian counterpart ANSI/ASQC Z1.4). This equivalence was obtained by incorporat-

ing the following revisions in ANSI/ASQC Z1.9:

1. Lot-size ranges were adjusted to correspond to MIL STD 105D.

2. The code letters assigned to the various lot-size ranges were arranged to make protec-

tion equal to that of MIL STD 105E.

3. AQLs of 0.04, 0.065, and 15 were deleted.

4. The original inspection levels I, II, III, IV, and V were relabeled S3, S4, I, II, and III, respec-

tively.

5. The original switching rules were replaced by those of MIL STD 105E, with slight 

revisions.
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698 Chapter 16 ■ Other Acceptance-Sampling Techniques

In addition, to modernize terminology, the term “nonconformity” was substituted for defect,

“nonconformance” was substituted for defective, and “percent nonconforming” was substi-

tuted for percent defective. The operating-characteristic curves were recomputed and replot-

ted, and a number of editorial changes were made to the descriptive material of the standard

to match MIL STD 105E as closely as possible. Finally, an appendix was included showing

the match between ANSI/ASQC Z1.9, MIL STD 105E, and the corresponding civilian ver-

sion ANSI Z1.4. This appendix also provided selected percentage points from the OC curves

of these standards and their differences.

As of this writing, the Department of Defense has not officially adopted ANSI/ASQC

Z1.9 and continues to use MIL STD 414. Both standards will probably be used for the imme-

diate future. The principal advantage of the ANSI/ASQC Z1.9 standard is that it is possible

to start inspection by using an attributes-sampling scheme from MIL STD 105E or

ANSI/ASQC Z1.4, collect sufficient information to use variables inspection, and then switch

to the variables scheme, while maintaining the same AQL-code letter combination. It would

then be possible to switch back to the attributes scheme if the assumption of the variables

scheme appeared not to be satisfied. It is also possible to take advantage of the information

gained in coordinated attributes and variables inspection to move in a logical manner from

inspection sampling to statistical process control.

As in MIL STD 414, ANSI/ASQC Z1.9 assumes that the quality characteristic is nor-

mally distributed. This is an important assumption that we have commented on previously.

We have suggested that a test for normality should be incorporated as part of the standard.

One way this can be done is to plot a control chart for and S (or and R) from the variables

data from each lot. After a sufficient number of observations have been obtained, a test for

normality can be employed by plotting the individual measurements on normal probability

paper or by conducting one of the specialized statistical tests for normality. It is recommended

that a relatively large sample size be used in this statistical test. At least 100 observations

should be collected before the test for normality is made, and it is our belief that the sample

size should increase inversely with AQL. If the assumption of normality is badly violated,

either a special variables sampling procedure must be developed, or we must return to attrib-

utes inspection.

An additional advantage of applying a control chart to the result of each lot is that if the

process variability has been in control for at least 30 samples, it will be possible to switch to

a known standard deviation plan, thereby allowing a substantial reduction in sample size.

Although this can be instituted in any combined program of attributes and variables inspec-

tion, it is easy to do so using the ANSI/ASQC standards, because of the design equivalence

between the attributes and variables procedures.

16.4 Other Variables Sampling Procedures

16.4.1 Sampling by Variables to Give Assurance Regarding 
the Lot or Process Mean

Variables-sampling plans can also be used to give assurance regarding the average qual-

ity of a material, instead of the fraction defective. Sampling plans such as this are most

likely to be employed in the sampling of bulk materials that come in bags, drums, or other

containers. However, they can also be applied to discrete parts and to other variables,

such as energy loss in power transformers. The general approach employed in this type

of variables sampling is statistical hypothesis testing. We now present an example of the

procedure.

xx
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We may also design variables acceptance-sampling procedures such as this one for the

case where the standard deviation is unknown. Similarly, we may derive lot-by-lot variables

acceptance-sampling plans to give assurance regarding the standard deviation of a lot or

process. The standard techniques of statistical hypothesis testing on means and variances can

be used to obtain sampling procedures that have specified OC curves. For an extensive dis-

cussion of designing these procedures, refer to Montgomery and Runger (2011).

16.4.2 Sequential Sampling by Variables

Just as sequential sampling proves useful in attributes inspection, it can also be applied in

variables inspection. The usual assumptions are that the quality characteristic is normally dis-

tributed and that the standard deviation of the lot or process is known. The item-by-item

sequential sampling plan by variables plots the cumulative sum of the measurements on the

quality characteristic. Limit lines for accepting the lot, rejecting the lot, and continuing sam-

pling are constructed much as they are in the case of attributes inspection. Duncan (1986) pro-

vides a good discussion of the design of these plans.

16.5 Chain Sampling

For situations in which testing is destructive or very expensive, sampling plans with small

sample sizes are usually selected. These small-sample-size plans often have acceptance num-

bers of zero. Plans with zero acceptance numbers are often undesirable, however, in that their

OC curves are convex throughout. This means that the probability of lot acceptance begins to

drop very rapidly as the lot fraction defective becomes greater than zero. This is often unfair

to the producer, and in situations where rectifying inspection is used, it can require the con-

sumer to screen a large number of lots that are essentially of acceptable quality. Figures 15.5

have a mean emission level of 0.3 ppm a 0.95 probability of

acceptance, and lots that have a mean emission level of 0.4

ppm a 0.10 probability of acceptance. The largest probable

value of the standard deviation of emission level is known

from past experience to be σ = 0.10 ppm.

EXAMPLE 16.4

A manufacturer of wood paneling samples the substrate

blanks bought from an offshore supplier to determine their

formaldehyde emission level. As long as the mean emission

level is less than 0.3 ppm, the lot is satisfactory. We want to

design a variables-sampling procedure that will give lots that

Sampling to Provide Assurance Regarding Average Quality

SOLUTION

Let be the value of the sample average above which the lot

will be accepted. Then, we know that

is distributed as a standard normal variable. If lots of this type

have a 0.95 probability of acceptance, then

x

n
A − = +0 30

0 10
1 645

.

.
.

x

n

x

n
A A− = −0 30 0 30

0 10

. .

.σ

xA Similarly, if lots that have a mean emission level of 0.40 ppm

are to have a 0.10 probability of acceptance, then

These two equations may be solved for n and , giving n = 9

and . It is also possible to design the sampling plan

using an OC curve method.

xA = 0.356

xA

x

n
A − = −0 40

0 10
1 282

.

.
.
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700 Chapter 16 ■ Other Acceptance-Sampling Techniques

and 15.7 in Chapter 15 present OC curves of sampling plans that have acceptance numbers of

zero and acceptance numbers that are greater than zero.

Dodge (1955) suggested an alternate procedure, known as chain sampling, that might

be a substitute for ordinary single-sampling plans with zero acceptance numbers in certain

circumstances. Chain-sampling plans make use of the cumulative results of several preceding

lots. The general procedure is as follows:

1. For each lot, select the sample of size n and observe the number of defectives.

2. If the sample has zero defectives, accept the lot; if the sample has two or more defec-

tives, reject the lot; and if the sample has one defective, accept the lot provided there

have been no defectives in the previous i lots.

Thus, for a chain-sampling plan given by n = 5, i = 3, a lot would be accepted if there were

no defectives in the sample of five, or if there were one defective in the sample of five and no

defectives had been observed in the samples from the previous three lots. This type of plan is

known as a ChSP-1 plan.

The effect of chain sampling is to alter the shape of the OC curve near the origin so that

it has a more desirable shape; that is, it is more difficult to reject lots with very small fraction

defectives with a ChSP-1 plan than it is with ordinary single sampling. Figure 16.6 shows 

OC curves for ChSP-1 plans with n = 5, c = 0, and i = 1, 2, 3, and 5. The curve for i = 1 is

dotted, and it is not a preferred choice. In practice, values of i usually vary between three and

five, since the OC curves of such plans approximate the single-sampling plan OC curve. The

points on the OC curve of a ChSP-1 plan are given by the equation

(16.3)

where P(0, n) and P(1, n) are the probabilities of obtaining 0 and 1 defectives, respectively,

out of a random sample of size n. To illustrate the computations, consider the ChSP-1 plan

with n = 5, c = 0, and i = 3. For p = 0.10, we have
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■ F I G U R E  1 6 . 6 OC curves for

ChSP-1 plan with n = 5, c = 0, and i = 1, 2,

3, 5. (Reproduced with permission from H.

F. Dodge. “Chain Sampling Inspection

Plans,” Industrial Quality Control, Vol. 11,

No. 4, 1955.)
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and

The proper use of chain sampling requires that the following conditions be met:

1. The lot should be one of a series in a continuing stream of lots, from a process in which

there is repetitive production under the same conditions, and in which the lots of prod-

ucts are offered for acceptance in substantially the order of production.

2. Lots should usually be expected to be of essentially the same quality.

3. The sampling agency should have no reason to believe that the current lot is of poorer

quality than those immediately preceding.

4. There should be a good record of quality performance on the part of the supplier.

5. The sampling agency must have confidence in the supplier, in that the supplier will not

take advantage of its good record and occasionally send a bad lot when such a lot would

have the best chance of acceptance.

16.6 Continuous Sampling

All the sampling plans discussed previously are lot-by-lot plans. With these plans, there is an

explicit assumption that the product is formed into lots, and the purpose of the sampling plan is

to sentence the individual lots. However, many manufacturing operations, particularly complex

assembly processes, do not result in the natural formation of lots. For example, manufacturing

of many electronics products, such as personal computers, is performed on a conveyorized

assembly line.

When production is continuous, two approaches may be used to form lots. The first pro-

cedure allows the accumulation of production at given points in the assembly process. This

has the disadvantage of creating in-process inventory at various points, which requires

additional space, may constitute a safety hazard, and is a generally inefficient approach to

managing an assembly line. The second procedure arbitrarily marks off a given segment of

production as a “lot.” The disadvantage of this approach is that if a lot is ultimately rejected

and 100% inspection of the lot is subsequently required, it may be necessary to recall products

from manufacturing operations that are further downstream. This may require disassembly or

at least partial destruction of semifinished items.

For these reasons, special sampling plans for continuous production have been devel-

oped. Continuous-sampling plans consist of alternating sequences of sampling inspection

and screening (100% inspection). The plans usually begin with 100% inspection, and when a

stated number of units is found to be free of defects (the number of units i is usually called

the clearance number), sampling inspection is instituted. Sampling inspection continues

until a specified number of defective units is found, at which time 100% inspection is

resumed. Continuous-sampling plans are rectifying inspection plans, in that the quality of the

product is improved by the partial screening.

16.6.1 CSP-1

Continuous-sampling plans were first proposed by Harold F. Dodge (1943). Dodge’s initial

plan is called CSP-1. At the start of the plan, all units are inspected 100%. As soon as the

P P n P n P na
i= ( ) + ( ) ( )[ ]

= + ( )( )
=

0 1 0
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702 Chapter 16 ■ Other Acceptance-Sampling Techniques

clearance number has been reached—that is, as soon as i consecutive units of product are

found to be free of defects—100% inspection is discontinued, and only a fraction (f ) of the

units are inspected. These sample units are selected one at a time at random from the flow of

production. If a sample unit is found to be defective, 100% inspection is resumed. All defec-

tive units found are either reworked or replaced with good ones. The procedure for CSP-1 is

shown in Figure 16.7.

A CSP-1 plan has an overall AOQL. The value of the AOQL depends on the values of

the clearance number i and the sampling fraction f. The same AOQL can be obtained by dif-

ferent combinations of i and f. Table 16.3 presents various values of i and f for CSP-1 that will

lead to a stipulated AOQL. Note in the table that an AOQL of 0.79% could be obtained using

a sampling plan with i = 59 and , or with i = 113 and .

The choice of i and f is usually based on practical considerations in the manufactur-

ing process. For example, i and f may be influenced by the workload of the inspectors and

operators in the system. It is a fairly common practice to use quality-assurance inspectors

to do the sampling inspection, and place the burden of 100% inspection on manufacturing.

As a general rule, however, it is not a good idea to choose values of f smaller than 

because the protection against bad quality in a continuous run of production then becomes

very poor.

The average number of units inspected in a 100% screening sequence following the

occurrence of a defect is equal to

(16.4)u
q

pq

i

i= −1

1
200

f = 1
7f = 1

3

Start

100% of the
items are inspected.

Have i consecutive
units been
defect free?

Inspect a fraction
f of the units

selected in a random
manner.

Has a defect
been found? NoYes

Yes

No

■ F I G U R E  1 6 . 7 Procedure for CSP-1 plans.
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where q = 1 − p, and p is the fraction defective produced when the process is operating in con-

trol. The average number of units passed under the sampling inspection procedure before a

defective unit is found is

(16.5)

The average fraction of total manufactured units inspected in the long run is

(16.6)

The average fraction of manufactured units passed under the sampling procedure is

(16.7)

When Pa is plotted as a function of p, we obtain an operating-characteristic curve for a

continuous-sampling plan. Note that whereas an OC curve for a lot-by-lot acceptance-

sampling plan gives the percentage of lots that would be passed under sampling inspection,

the OC curve for a continuous-sampling plan gives the percentage of units passed under sam-

pling inspection. Graphs of operating-characteristic curves for several values of f and i for

CSP-1 plans are shown in Figure 16.8. Note that for moderate-to-small values of f, i has much

more effect on the shape of the curve than does f.

P
v

u va =
+

AFI = +
+

u fv

u v

v
fp

= 1

■ TA B L E  1 6 . 3

Values of i for CSP-1 Plans

AOQL (%)

f 0.018 0.033 0.046 0.074 0.113 0.143 0.198 0.33 0.53 0.79 1.22 1.90 2.90 4.94 7.12 11.46
1/2 1,540 840 600 375 245 194 140 84 53 36 23 15 10 6 5 3

1/3 2,550 1,390 1,000 620 405 321 232 140 87 59 38 25 16 10 7 5

1/4 3,340 1,820 1,310 810 530 420 303 182 113 76 49 32 21 13 9 6

1/5 3,960 2,160 1,550 965 630 498 360 217 135 91 58 38 25 15 11 7

1/7 4,950 2,700 1,940 1,205 790 623 450 270 168 113 73 47 31 18 13 8

1/10 6,050 3,300 2,370 1,470 965 762 550 335 207 138 89 57 38 22 16 10

1/15 7,390 4,030 2,890 1,800 1,180 930 672 410 255 170 108 70 46 27 19 12

1/25 9,110 4,970 3,570 2,215 1,450 1,147 828 500 315 210 134 86 57 33 23 14

1/50 11,730 6,400 4,590 2,855 1,870 1,477 1,067 640 400 270 175 110 72 42 29 18

1/100 14,320 7,810 5,600 3,485 2,305 1,820 1,302 790 500 330 215 135 89 52 36 22

1/200 17,420 9,500 6,810 4,235 2,760 2,178 1,583 950 590 400 255 165 106 62 43 26
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various continuous sampling plans,

CSP-1. (Adapted with permission

from A. J. Duncan, Quality Control
and Industrial Statistics, 5th ed.,

Irwin, Homewood, IL, 1986.)
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704 Chapter 16 ■ Other Acceptance-Sampling Techniques

16.6.2 Other Continuous-Sampling Plans

There have been a number of variations of the original Dodge CSP-1 plan. One variation was

designed to meet the objection that the occurrence of a single isolated defective unit sometimes

does not warrant return to 100% inspection. This is particularly true when dealing with minor

defects. To meet this objection, Dodge and Torrey (1951) proposed CSP-2 and CSP-3. Under

CSP-2, 100% inspection will not be reinstated when production is under sampling inspection

until two defective sample units have been found within a space of K sample units of each other.

It is common practice to choose K equal to the clearance number i. CSP-2 plans are indexed by

specific AOQLs that may be obtained by different combinations of i and f. CSP-3 is very similar

to CSP-2, but is designed to give additional protection against spotty production. It requires that

after a defective unit has been found in sampling inspection, the immediately following four

units should be inspected. If any of these four units is defective, 100% inspection is immediately

reinstituted. If no defectives are found, the plan continues as under CSP-2.

Another common objection to continuous-sampling plans is the abrupt transition

between sampling inspection and 100% inspection. Lieberman and Solomon (1955) have

designed multilevel continuous-sampling plans to overcome this objection. Multilevel

continuous-sampling plans begin with 100% inspection, as does CSP-1, and then switch to

inspecting a fraction f of the production as soon as the clearance number i has been reached.

However, when under sampling inspection at rate f, a run of i consecutive sample units is

found free of defects, then sampling continues at the rate f 2. If a further run of i consecutive

units is found to be free of defects, then sampling may continue at the rate f 3. This reduction

in sampling frequency may be continued as far as the sampling agency wishes. If at any time

sampling inspection reveals a defective unit, return is immediately made to the next lower

level of sampling. This type of multilevel continuous-sampling plan greatly reduces the

inspection effort when the manufacturing process is operating very well, and increases it during

periods of poor production. This transition in inspection intensity is also accomplished without

abrupt changes in the inspection load.

Much of the work on continuous-sampling plans has been incorporated into MIL STD

1235C. The standard provides for five different types of continuous-sampling plans. Tables to

assist the analyst in designing sampling plans are presented in the standard. CSP-1 and CSP-2 are

a part of MIL STD 1235C. In addition, there are two other single-level continuous-sampling

procedures: CSP-F and CSP-V. The fifth plan in the standard is CSP-T, a multilevel continuous-

sampling plan.

The sampling plans in MIL STD 1235C are indexed by sampling-frequency code letter

and AOQL. They are also indexed by the AQLs of MIL STD 105E. This aspect of MIL STD

1235C has sparked considerable controversy. CSP plans are not AQL plans and do not have

AQLs naturally associated with them. MIL STD 105E, which does focus on the AQL, is

designed for manufacturing situations in which lotting is a natural aspect of production, and pro-

vides a set of decision rules for sentencing lots so that certain AQL protection is obtained. CSP

plans are designed for situations in which production is continuous and lotting is not a natural

aspect of the manufacturing situations. In MIL STD 1235C, the sampling plan tables are foot-

noted and indicate that the AQLs have no meaning relative to the plan and are only an index.

16.7 Skip-Lot Sampling Plans

This section describes the development and evaluation of a system of lot-by-lot inspection

plans in which a provision is made for inspecting only some fraction of the submitted lots.

These plans are known as skip-lot sampling plans. Generally speaking, skip-lot sampling

plans should be used only when the quality of the submitted product is good as demonstrated

by the supplier’s quality history.
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Dodge (1956) initially presented skip-lot sampling plans as an extension of CSP-type

continuous-sampling plans. In effect, a skip-lot sampling plan is the application of continu-

ous sampling to lots rather than to individual units of production on an assembly line. The

version of skip-lot sampling initially proposed by Dodge required a single determination or

analysis to ascertain the lot’s acceptability or unacceptability. These plans are called SkSP-1.

Skip-lot sampling plans designated SkSP-2 follow the next logical step; that is, each lot to be

sentenced is sampled according to a particular attribute lot inspection plan. Perry (1973) gives

a good discussion of these plans.

A skip-lot sampling plan of type SkSP-2 uses a specified lot-inspection plan called the

“reference-sampling plan,” together with the following rules:

1. Begin with normal inspection, using the reference plan. At this stage of operation, every

lot is inspected.

2. When i consecutive lots are accepted on normal inspection, switch to skipping inspec-

tion. In skipping inspection, a fraction f of the lots is inspected.

3. When a lot is rejected on skipping inspection, return to normal inspection.

The parameters f and i are the parameters of the skip-lot sampling plan SkSP-2. In gen-

eral, the clearance number i is a positive integer, and the sampling fraction f lies in the interval

0 < f < 1. When the sampling fraction f = 1, the skip-lot sampling plan reduces to the original

reference-sampling plan. Let P denote the probability of acceptance of a lot from the reference-

sampling plan. Then, Pa( f, i) is the probability of acceptance for the skip-lot sampling plan

SkSP-2, where

(16.8)

It can be shown that for f2 < f1, a given value of the clearance number i, and a specified

reference-sampling plan,

(16.9)

Furthermore, for integer clearance numbers i < j, a fixed value of f, and a given reference-

sampling plan,

(16.10)

These properties of a skip-lot sampling plan are shown in Figures 16.9 and 16.10 for the

reference-sampling plan n = 20, c = 1. The OC curve of the reference-sampling plan is also

shown on these graphs.

A very important property of a skip-lot sampling plan is the average amount of inspec-

tion required. In general, skip-lot sampling plans are used where it is necessary to reduce the

average amount of inspection required. The average sample number of a skip-lot sampling

plan is

(16.11)

where F is the average fraction of submitted lots that are sampled and ASN(R) is the average

sample number of the reference-sampling plan. It can be shown that

(16.12)

Thus, since 0 < F < 1, it follows that

(16.13)ASN ASNSkSP R( ) < ( )

F
f

f P fi=
−( ) +1

ASN ASNSkSP R F( ) = ( )

P f j P f ia a, ,( ) ≤ ( )

P f i P f ia a1 2, ,( ) ≤ ( )

P f i
fP f P

f f Pa

i

i,( ) =
+ −( )
+ −( )

1

1
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706 Chapter 16 ■ Other Acceptance-Sampling Techniques

Therefore, skip-lot sampling yields a reduction in the average sample number (ASN). For

situations in which the quality of incoming lots is very high, this reduction in inspection effort

can be significant.

To illustrate the average sample number behavior of a skip-lot sampling plan, consider

a reference-sampling plan of n = 20 and c = 1. Since the average sample number for a single-

sampling plan is ASN = n, we have

Figure 16.11 presents the ASN curve for the reference-sampling plan n = 20, c = 1, and

the following skip-lot sampling plans:

From examining Figure 16.11, we note that for small values of incoming-lot fraction defec-

tive, the reductions in average sample number are very substantial for the skip-lot sampling

plans evaluated. If the incoming lot quality is very good, consistently close to zero fraction

nonconforming, say, then a small value of f, perhaps or , could be used. If incoming quality

is slightly worse, then an appropriate value of f might be .

Skip-lot sampling plans are an effective acceptance-sampling procedure and may be

useful as a system of reduced inspection. Their effectiveness is partially good when the quality

of submitted lots is very good. However, one should be careful to use skip-lot sampling plans

only for situations in which there is a sufficient history of supplier quality to ensure that the

quality of submitted lots is very good. Furthermore, if the supplier’s process is highly erratic

and there is a great deal of variability from lot to lot, skip-lot sampling plans are inappropri-

ate. They seem to work best when the supplier’s processes are in a state of statistical control

and when the process capability is adequate to ensure virtually defect-free production.
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■ F I G U R E  1 6 . 9 OC curves for SkSP-2 skip-lot plans:

single-sampling reference plan, same f, different i. (From 

R. L. Perry, “Skip-Lot Sampling Plans,” Journal of Quality
Technology, Vol. 5, 1973, with permission of the American

Society for Quality Control.)

■ F I G U R E  1 6 . 1 0 OC curves for SkSP-2 skip-lot

plans: single-sampling reference plan, same i, different f. (From

R. L. Perry, “Skip-Lot Sampling Plans,” Journal of Quality
Technology, Vol. 5, 1973, with permission of the American

Society for Quality Control.)
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■ F I G U R E  1 6 . 1 1 Average sample number

(ASN) curves for SkSP 2 skip-lot plans with single-

sampling reference plan. (From R. L. Perry, “Skip-Lot

Sampling Plans,” Journal of Quality Technology, Vol. 5,

1973, with permission of the American Society for

Quality Control.)

Exercises

16.2. A belt that is used in a drive mechanism in a copier

machine is required to have a minimum tensile

strength of LSL = 150 lb. It is known from long

experience that σ = 5 lb for this particular belt. Find

a variables sampling plan so that p1 = 0.005, p2 =
0.02, α = 0.05, and β = 0.10. Assume that Procedure

1 is to be used.

16.3. Describe how rectifying inspection can be used with

variables sampling. What are the appropriate equa-

tions for the AOQ and the ATI, assuming single

sampling and requiring that all defective items

found in either sampling or 100% inspection are

replaced by good ones?

16.4. An inspector for a military agency desires a 

variables sampling plan for use with an AQL of

1.5%, assuming that lots are of size 7,000. If the

standard deviation of the lot or process is unknown,

derive a sampling plan using Procedure 1 from MIL

STD 414.

16.1. The density of a plastic part used in

a cellular telephone is required to

be at least 0.70 g/cm3. The parts are

supplied in large lots, and a vari-

ables sampling plan is to be used to

sentence the lots. It is desired to

have p1 = 0.02, p2 = 0.10, α = 0.10,

and β = 0.05. The variability of the

manufacturing process is unknown

but will be estimated by the sample

standard deviation.

(a) Find an appropriate variables sampling plan,

using Procedure 1.

(b) Suppose that a sample of the appropriate size

was taken, and , s = 1.05 × 10−2. Should

the lot be accepted or rejected?

(c) Sketch the OC curve for this sampling plan. Find

the probability of accepting lots that are 5%

defective.

x = 0.73

The Student

Resource Manual

presents compre-

hensive annotated

solutions to the

odd-numbered

exercises included

in the Answers to

Selected Exercises

section in the

back of this book.

Acceptable quality level (AQL)

ANSI/ASQC Z1.9

Average outgoing quality limit (AOQL)

Average sample number (ASN)

Chain sampling

Clearance number

Continuous sampling plans

MIL STD 414

Normal distribution in variables sampling

Normal, tightened, and reduced inspection

Operating-characteristic (OC) curve

Sample-size code letters

Skip-lot sampling plans

Switching between normal, tightened, and reduced inspection

Variables data

Zero-acceptance-number plans

Exercises 707
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708 Chapter 16 ■ Other Acceptance-Sampling Techniques

(d) Using the 1% nonconforming as an AQL, find an

attributes-sampling plan from MIL STD 105E.

Compare the sample sizes and the protection

obtained from this plan with the plans derived in

parts (a), (b), and (c).

16.10. Consider a single-sampling plan with n = 25, c = 0.

Draw the OC curve for this plan. Now consider

chain-sampling plans with n = 25, c = 0, and i = 1, 2,

5, 7. Sketch the OC curves for these chain-sampling

plans on the same axis. Discuss the behavior of chain

sampling in this situation compared to the conven-

tional single-sampling plan with c = 0.

16.11. An electronics manufacturer buys memory devices in

lots of 30,000 from a supplier. The supplier has a long

record of good quality performance, with an average

fraction defective of approximately 0.10%. The qual-

ity engineering department has suggested using a con-

ventional acceptance-sampling plan with n = 32, c = 0.

(a) Draw the OC curve of this sampling plan.

(b) If lots are of a quality that is near the supplier’s

long-term process average, what is the average

total inspection at that level of quality?

(c) Consider a chain-sampling plan with n = 32, c = 0,

and i = 3. Contrast the performance of this plan

with the conventional sampling plan with n = 32,

c = 0.

(d) How would the performance of this chain-sampling

plan change if we substituted i = 4 in part (c)?

16.12. A ChSP-1 plan has n = 4, c = 0, and i = 3. Draw the

OC curve for this plan.

16.13. A chain-sampling plan is used for the inspection of

lots of size N = 500. The sample size is n = 6. If the

sample contains no defectives, the lot is accepted. If

one defective is found, the lot is accepted provided

that the samples from the four previous lots are free

of defectives. Determine the probability of accep-

tance of a lot that is 2% defective.

16.14. Suppose that a manufacturing process operates in

continuous production, such that continuous sam-

pling plans could be applied. Determine three differ-

ent CSP-1 sampling plans that could be used for an

AOQL of 0.198%.

16.15. For the sampling plans developed in Exercise 16.14,

compare the plans’ performance in terms of average

fraction inspected, given that the process is in control

at an average fallout level of 0.15%. Compare the

plans in terms of their operating-characteristic curves.

16.16. Suppose that CSP-1 is used for a manufacturing

process where it is desired to maintain an AOQL of

1.90%. Specify two CSP-1 plans that would meet

this AOQL target.

16.17. Compare the plans developed in Exercise 16.16 

in terms of average fraction inspected and their

operating-characteristic curves. Which plan would

you prefer if p = 0.0375?

16.5. How does the sample size found in Exercise 16.4

compare with what would have been used under MIL

STD 105E?

16.6. A lot of 500 items is submitted for inspection.

Suppose that we wish to find a plan from MIL STD

414, using inspection level II. If the AQL is 4%, find

the Procedure 1 sampling plan from the standard.

16.7. A soft-drink bottler purchases nonreturnable glass

bottles from a supplier. The lower specification on

bursting strength in the bottles is 225 psi. The bottler

wishes to use variables sampling to sentence the lots

and has decided to use an AQL of 1%. Find an appro-

priate set of normal and tightened sampling plans

from the standard. Suppose that a lot is submitted,

and the sample results yield

Determine the disposition of the lot using Procedure

1. The lot size is N = 100,000.

16.8. A chemical ingredient is packed in metal containers.

A large shipment of these containers has been deliv-

ered to a manufacturing facility. The mean bulk den-

sity of this ingredient should not be less than 0.15

g/cm3. Suppose that lots of this quality are to have a

0.95 probability of acceptance. If the mean bulk den-

sity is as low as 0.1450, the probability of acceptance

of the lot should be 0.10. Suppose we know that the

standard deviation of bulk density is approximately

0.005 g/cm3. Obtain a variables-sampling plan that

could be used to sentence the lots.

16.9. A standard of 0.3 ppm has been established for

formaldehyde emission levels in wood products.

Suppose that the standard deviation of emissions

in an individual board is σ = 0.10 ppm. Any lot

that contains 1% of its items above 0.3 ppm is

considered acceptable. Any lot that has 8% or

more of its items above 0.3 ppm is considered

unacceptable. Good lots are to be accepted with

probability 0.95, and bad lots are to be rejected

with probability 0.90.

(a) Derive a variables-sampling plan for this situa-

tion.

(b) Using the 1% nonconformance level as an AQL,

and assuming that lots consist of 5,000 panels,

find an appropriate set of sampling plans from

MIL STD 414, assuming σ is unknown. Compare

the sample sizes and the protection that both pro-

ducer and consumer obtain from this plan with

the plan derived in part (a).

(c) Find an attributes sampling plan that has the

same OC curve as the variables sampling plan

derived in part (a). Compare the sample sizes

required for equivalent protection. Under what

circumstances would variables sampling be more

economically efficient?

s = 10x = 255
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■ A P P E N D I X  I

Summary of Common Probability Distributions Often Used in Statistical Quality Control

Name Probability Distribution Mean Variance
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■ A P P E N D I X  I I

Cumulative Standard Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 z

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.0

0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.1

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.2

0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.3

0.4 0.65542 0.65910 0.62276 0.66640 0.67003 0.4

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.5

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.6

0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.7

0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.8

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.9

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 1.0

1.1 0.86433 0.86650 0.86864 0.87076 0.87285 1.1

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 1.2

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 1.3

1.4 0.91924 0.92073 0.92219 0.92364 0.92506 1.4

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 1.5

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 1.6

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 1.7

1.8 0.96407 0.96485 0.96562 0.96637 0.96711 1.8

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 1.9

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 2.0

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 2.1

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 2.2

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 2.3

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 2.4

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 2.5

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 2.6

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 2.7

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 2.8

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 2.9

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 3.0

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 3.1

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 3.2

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 3.3

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 3.4

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 3.5

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 3.6

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 3.7

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 3.8

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 3.9

0 z

Φ z e du
z u( ) = −∞

−∫
1

2

2 2

π

(continued)
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Cumulative Standard Normal Distribution (continued)

z 0.05 0.06 0.07 0.08 0.09 z

0.0 0.51994 0.52392 0.52790 0.53188 0.53586 0.0

0.1 0.55962 0.56356 0.56749 0.57142 0.57534 0.1

0.2 0.59871 0.60257 0.60642 0.61026 0.61409 0.2

0.3 0.63683 0.64058 0.64431 0.64803 0.65173 0.3

0.4 0.67364 0.67724 0.68082 0.68438 0.68793 0.4

0.5 0.70884 0.71226 0.71566 0.71904 0.72240 0.5

0.6 0.74215 0.74537 0.74857 0.75175 0.75490 0.6

0.7 0.77337 0.77637 0.77935 0.78230 0.78523 0.7

0.8 0.80234 0.80510 0.80785 0.81057 0.81327 0.8

0.9 0.82894 0.83147 0.83397 0.83646 0.83891 0.9

1.0 0.85314 0.85543 0.85769 0.85993 0.86214 1.0

1.1 0.87493 0.87697 0.87900 0.88100 0.88297 1.1

1.2 0.89435 0.89616 0.89796 0.89973 0.90147 1.2

1.3 0.91149 0.91308 0.91465 0.91621 0.91773 1.3

1.4 0.92647 0.92785 0.92922 0.93056 0.93189 1.4

1.5 0.93943 0.94062 0.94179 0.94295 0.94408 1.5

1.6 0.95053 0.95154 0.95254 0.95352 0.95448 1.6

1.7 0.95994 0.96080 0.96164 0.96246 0.96327 1.7

1.8 0.96784 0.96856 0.96926 0.96995 0.97062 1.8

1.9 0.97441 0.97500 0.97558 0.97615 0.97670 1.9

2.0 0.97982 0.98030 0.98077 0.98124 0.98169 2.0

2.1 0.98422 0.98461 0.98500 0.98537 0.98574 2.1

2.2 0.98778 0.98809 0.98840 0.98870 0.98899 2.2

2.3 0.99061 0.99086 0.99111 0.99134 0.99158 2.3

2.4 0.99286 0.99305 0.99324 0.99343 0.99361 2.4

2.5 0.99461 0.99477 0.99492 0.99506 0.99520 2.5

2.6 0.99598 0.99609 0.99621 0.99632 0.99643 2.6

2.7 0.99702 0.99711 0.99720 0.99728 0.99736 2.7

2.8 0.99781 0.99788 0.99795 0.99801 0.99807 2.8

2.9 0.99841 0.99846 0.99851 0.99856 0.99861 2.9

3.0 0.99886 0.99889 0.99893 0.99897 0.99900 3.0

3.1 0.99918 0.99921 0.99924 0.99926 0.99929 3.1

3.2 0.99942 0.99944 0.99946 0.99948 0.99950 3.2

3.3 0.99960 0.99961 0.99962 0.99964 0.99965 3.3

3.4 0.99972 0.99973 0.99974 0.99975 0.99976 3.4

3.5 0.99981 0.99981 0.99982 0.99983 0.99983 3.5

3.6 0.99987 0.99987 0.99988 0.99988 0.99989 3.6

3.7 0.99991 0.99992 0.99992 0.99992 0.99992 3.7

3.8 0.99994 0.99994 0.99995 0.99995 0.99995 3.8

3.9 0.99996 0.99996 0.99996 0.99997 0.99997 3.9

Φ z e du
z u( ) = −∞

−∫
1

2

2 2

π
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■ A P P E N D I X  I I I

Percentage Points of the χχ2 Distribution

aa
v 0.995 0.990 0.975 0.950 0.500 0.050 0.025 0.010 0.005

1 0.00 + 0.00 + 0.00 + 0.00 + 0.45 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 1.39 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 2.37 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 3.36 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 4.35 11.07 12.38 15.09 16.75

6 0.68 0.87 1.24 1.64 5.35 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 6.35 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 7.34 15.51 17.53 20.09 21.96

9 1.73 2.09 2.70 3.33 8.34 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 9.34 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 10.34 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 11.34 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 12.34 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 13.34 23.68 26.12 29.14 31.32

15 4.60 5.23 6.27 7.26 14.34 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 15.34 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 16.34 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 17.34 28.87 31.53 34.81 37.16

19 6.884 7.63 8.91 10.12 18.34 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 19.34 31.41 34.17 37.57 40.00

25 10.52 11.52 13.12 14.61 24.34 37.65 40.65 44.31 46.93

30 13.79 14.95 16.79 18.49 29.34 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 39.34 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 49.33 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 59.33 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 69.33 90.53 95.02 100.42 104.22

80 51.17 53.54 57.15 60.39 79.33 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 89.33 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 99.33 124.34 129.56 135.81 140.17

v = degrees of freedom

Source: Adapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., by E. S. Pearson and H. O. Hartley,

Cambridge University Press, Cambridge, 1966.

α

χ2
, α ν
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■ A P P E N D I X  I V

Percentage Points of the t Distribution

αα
v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.727 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.263 0.711 1.415 1.895 2.365 2.998 3.49 4.019 4.785 5.408

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.20 2.718 3.106 3.497 4.025 4.437

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.992

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

q 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

v = degrees of freedom

Source: Adapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., by E. S. Pearson and H. O. Hartley,

Cambridge University Press, Cambridge, 1966.

0 t  

α

, α ν
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■ A P P E N D I X  V

Percentage Points of the F Distribution

F0.25, v1, v2

Degrees of freedom for the numerator (v1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 qq

1 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.80 9.85

2 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.47 3.48

3 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.46 2.46 2.47 2.47 2.47 2.47 2.47 2.47

4 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08

5 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87 1.87

6 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74

7 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.70 1.69 1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65 1.65

8 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58

9 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53 1.53

10 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.49 1.48

11 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.46 1.45

12 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.43 1.42

13 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40

14 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.39 1.38

15 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.37 1.36

16 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34

17 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33

18 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32

19 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.30

20 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.29

21 1.40 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28

22 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28

23 1.39 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28 1.27

24 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.28 1.26

25 1.39 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.27 1.25

26 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.35 1.34 1.32 1.31 1.30 1.29 1.28 1.26 1.25

27 1.38 1.46 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.33 1.32 1.31 1.30 1.28 1.27 1.26 1.24

28 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.25 1.24

29 1.38 1.45 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.32 1.31 1.30 1.29 1.27 1.26 1.25 1.23

30 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.24 1.23

40 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.31 1.30 1.28 1.26 1.25 1.24 1.22 1.21 1.19

60 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.17 1.15

120 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.13 1.10

q 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.08 1.00

Note: F0.75, v1, v2
= 1/F0.25, v2, v1

.

Source: Adapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge, 1966.
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■ A P P E N D I X  V

Percentage Points of the F Distribution (Continued)

F0.10, v1, v2

Degrees of freedom for the numerator (n1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 qq

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.78 1.75 1.72

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

q 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00

Note: F0.90, v1, v2
= 1/F0.10, v2, v1

.
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■ A P P E N D I X  V

(Continued)

F0.05, v1, v2

Degrees of freedom for the numerator (v1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 qq

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25

q 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Note: F0.95, v1, v2
= 1/F0.05, v2, v1
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■ A P P E N D I X  V

Percentage Points of the F Distribution (Continued)

F0.025, v1, v2

Degrees of freedom for the numerator (v1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 qq

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001.0 1006.0 1010.0 1014.0 1018.0

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31

q 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00

Note: F0.975, v1, v2
= 1/F0.025, v2, v1
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■ A P P E N D I X  V

(Continued)

F0.01, v1, v2

Degrees of freedom for the numerator (v1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 qq

1 4052.0 4999.5 5403.0 5625.0 5764.0 5859.0 5928.0 5982.0 6022.0 6056.0 6106.0 6157.0 6209.0 6235.0 6261.0 6287.0 6313.0 6339.0 6366.0

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.59

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

q 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Note: F0.99, v1, v2
= 1/F0.01, v2, v1
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■ A P P E N D I X  V I

Factors for Constructing Variables Control Charts

Chart for Averages Chart for Standard Deviations Chart for Ranges

Observations Factors for Factors for Factors for 

in Control Limits Center Line Factors for Control Limits Center Line Factors for Control Limits

Sample, n A A2 A3 c4 1/c4 B3 B4 B5 B6 d2 1/d2 d3 D1 D2 D3 D4

2 2.121 1.880 2.659 0.7979 1.2533 0 3.267 0 2.606 1.128 0.8865 0.853 0 3.686 0 3.267

3 1.732 1.023 1.954 0.8862 1.1284 0 2.568 0 2.276 1.693 0.5907 0.888 0 4.358 0 2.574

4 1.500 0.729 1.628 0.9213 1.0854 0 2.266 0 2.088 2.059 0.4857 0.880 0 4.698 0 2.282

5 1.342 0.577 1.427 0.9400 1.0638 0 2.089 0 1.964 2.326 0.4299 0.864 0 4.918 0 2.114

6 1.225 0.483 1.287 0.9515 1.0510 0.030 1.970 0.029 1.874 2.534 0.3946 0.848 0 5.078 0 2.004

7 1.134 0.419 1.182 0.9594 1.0423 0.118 1.882 0.113 1.806 2.704 0.3698 0.833 0.204 5.204 0.076 1.924

8 1.061 0.373 1.099 0.9650 1.0363 0.185 1.815 0.179 1.751 2.847 0.3512 0.820 0.388 5.306 0.136 1.864

9 1.000 0.337 1.032 0.9693 1.0317 0.239 1.761 0.232 1.707 2.970 0.3367 0.808 0.547 5.393 0.184 1.816

10 0.949 0.308 0.975 0.9727 1.0281 0.284 1.716 0.276 1.669 3.078 0.3249 0.797 0.687 5.469 0.223 1.777

11 0.905 0.285 0.927 0.9754 1.0252 0.321 1.679 0.313 1.637 3.173 0.3152 0.787 0.811 5.535 0.256 1.744

12 0.866 0.266 0.886 0.9776 1.0229 0.354 1.646 0.346 1.610 3.258 0.3069 0.778 0.922 5.594 0.283 1.717

13 0.832 0.249 0.850 0.9794 1.0210 0.382 1.618 0.374 1.585 3.336 0.2998 0.770 1.025 5.647 0.307 1.693

14 0.802 0.235 0.817 0.9810 1.0194 0.406 1.594 0.399 1.563 3.407 0.2935 0.763 1.118 5.696 0.328 1.672

15 0.775 0.223 0.789 0.9823 1.0180 0.428 1.572 0.421 1.544 3.472 0.2880 0.756 1.203 5.741 0.347 1.653

16 0.750 0.212 0.763 0.9835 1.0168 0.448 1.552 0.440 1.526 3.532 0.2831 0.750 1.282 5.782 0.363 1.637

17 0.728 0.203 0.739 0.9845 1.0157 0.466 1.534 0.458 1.511 3.588 0.2787 0.744 1.356 5.820 0.378 1.622

18 0.707 0.194 0.718 0.9854 1.0148 0.482 1.518 0.475 1.496 3.640 0.2747 0.739 1.424 5.856 0.391 1.608

19 0.688 0.187 0.698 0.9862 1.0140 0.497 1.503 0.490 1.483 3.689 0.2711 0.734 1.487 5.891 0.403 1.597

20 0.671 0.180 0.680 0.9869 1.0133 0.510 1.490 0.504 1.470 3.735 0.2677 0.729 1.549 5.921 0.415 1.585

21 0.655 0.173 0.663 0.9876 1.0126 0.523 1.477 0.516 1.459 3.778 0.2647 0.724 1.605 5.951 0.425 1.575

22 0.640 0.167 0.647 0.9882 1.0119 0.534 1.466 0.528 1.448 3.819 0.2618 0.720 1.659 5.979 0.434 1.566

23 0.626 0.162 0.633 0.9887 1.0114 0.545 1.455 0.539 1.438 3.858 0.2592 0.716 1.710 6.006 0.443 1.557

24 0.612 0.157 0.619 0.9892 1.0109 0.555 1.445 0.549 1.429 3.895 0.2567 0.712 1.759 6.031 0.451 1.548

25 0.600 0.153 0.606 0.9896 1.0105 0.565 1.435 0.559 1.420 3.931 0.2544 0.708 1.806 6.056 0.459 1.541

For n > 25.
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■ A P P E N D I X  V I I

Factors for Two-Sided Normal Tolerance Limits

90% Confidence 95% Confidence 99% Confidence
That Percentage of That Percentage of That Percentage of
Population Between Population Between Population Between

Limits Is Limits Is Limits Is

n 90% 95% 99% 90% 95% 99% 90% 95% 99%

2 15.98 18.80 24.17 32.02 37.67 48.43 160.2 188.5 242.3

3 5.847 6.919 8.974 8.380 9.916 12.86 18.93 22.40 29.06

4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.15 14.53

5 3.494 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.26

6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301

7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.448 7.187

8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468

9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.829 3.379 4.433 3.582 4.265 5.594

11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308

12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079

13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893

14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737

15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605

16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492

17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393

18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307

19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230

20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161

21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100

22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044

23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993

24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947

25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904

26 2.065 2.460 3.232 2.193 2.612 3.432 2.469 2.941 3.865

27 2.054 2.447 3.215 2.178 2.595 3.409 2.446 2.914 3.828

28 2.044 2.435 3.199 2.164 2.579 3.388 2.424 2.888 3.794

29 2.034 2.424 3.184 2.152 2.554 3.368 2.404 2.864 3.763

30 2.025 2.413 3.170 2.140 2.549 3.350 2.385 2.841 3.733

35 1.988 2.368 3.112 2.090 2.490 3.272 2.306 2.748 3.611

40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518

50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385

60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293

80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096

200 1.764 2.102 2.762 1.798 2.143 2.816 1.865 2.222 2.921

500 1.717 2.046 2.689 1.737 2.070 2.721 1.777 2.117 2.783

1000 1.695 2.019 2.654 1.709 2.036 2.676 1.736 2.068 2.718

q 1.645 1.960 2.576 1.645 1.960 2.576 1.645 1.960 2.576
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■ A P P E N D I X  V I I I

Factors for One-Sided Normal Tolerance Limits

90% Confidence 95% Confidence 99% Confidence
That Percentage of That Percentage of That Percentage of
Population Below Population Below Population Below
(Above) Limits Is (Above) Limits Is (Above) Limits Is

n 90% 95% 99% 90% 95% 99% 90% 95% 99%

3 4.258 5.310 7.340 6.158 7.655 10.552

4 3.187 3.957 5.437 4.163 5.145 7.042

5 2.742 3.400 4.666 3.407 4.202 5.741

6 2.494 3.091 4.242 3.006 3.707 5.062 4.408 5.409 7.334

7 2.333 2.894 3.972 2.755 3.399 4.641 3.856 4.730 6.411

8 2.219 2.755 3.783 2.582 3.188 4.353 3.496 4.287 5.811

9 2.133 2.649 3.641 2.454 3.031 4.143 3.242 3.971 5.389

10 2.065 2.568 3.532 2.355 2.911 3.981 3.048 3.739 5.075

11 2.012 2.503 3.444 2.275 2.815 3.852 2.897 3.557 4.828

12 1.966 2.448 3.371 2.210 2.736 3.747 2.773 3.410 4.633

13 1.928 2.403 3.310 2.155 2.670 3.659 2.677 3.290 4.472

14 1.895 2.363 3.257 2.108 2.614 3.585 2.592 3.189 4.336

15 1.866 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.224

16 1.842 2.299 3.172 2.032 2.523 3.463 2.458 3.028 4.124

17 1.820 2.272 3.136 2.001 2.486 3.415 2.405 2.962 4.038

18 1.800 2.249 3.106 1.974 2.453 3.370 2.357 2.906 3.961

19 1.781 2.228 3.078 1.949 2.423 3.331 2.315 2.855 3.893

20 1.765 2.208 3.052 1.926 2.396 3.295 2.275 2.807 3.832

21 1.750 2.190 3.028 1.905 2.371 3.262 2.241 2.768 3.776

22 1.736 2.174 3.007 1.887 2.350 3.233 2.208 2.729 3.727

23 1.724 2.159 2.987 1.869 2.329 3.206 2.179 2.693 3.680

24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.663 3.638

25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.632 3.601

30 1.657 2.080 2.884 1.778 2.220 3.064 2.029 2.516 3.446

35 1.623 2.041 2.833 1.732 2.166 2.994 1.957 2.431 3.334

40 1.598 2.010 2.793 1.697 2.126 2.941 1.902 2.365 3.250

45 1.577 1.986 2.762 1.669 2.092 2.897 1.857 2.313 3.181

50 1.560 1.965 2.735 1.646 2.065 2.863 1.821 2.296 3.124
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739

Answers to
Selected Exercises

CHAPTER 3
3.1. (a) = 16.029. (b) s = 0.0202.

3.5. (a) = 952.9. (b) s = 3.7.

3.7. (a) = 121.25. (b) s = 22.63.

3.15. Both the normal and lognormal distributions

appear to be reasonable models for the 

data.

3.17. The lognormal distribution appears to be a

reasonable model for the concentration 

data.

3.23. (a) = 89.476. (b) s = 4.158.

3.27. sample space: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

3.29. (a) 0.0196. (b) 0.0198. 

(c) Cutting occurrence rate reduces

probability from 0.0198 to 0.0100.

3.31. (a) k = 0.05. (b) m = 1.867, = 0.615. 

(c)

3.33. (a) Approximately 11.8%. (b) Decrease profit

by $5.90/calculator.

3.35. Decision rule means 22% of samples will

have one or more nonconforming units.

3.37. 0.921

3.43. (a) 0.633. (b) 0.659. Approximation is not

satisfactory.

(c) n/N = 0.033. Approximation is satisfactory.

(d) n = 11

x. ; =1 000 3

F x x x( ) . ; . ;= = ={0 383 1 0 750 2
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p x
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x x

x x

x x

x

( )

/ ; / ;

/ ; / ;

/ ; / ;

/ ; / ;

/ ; / ;

/ ; ;

=

= =
= =
= =
= =
= =
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⎧

⎨

⎪
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⎩
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⎪
⎪
⎪

1 36 2 2 36 3

3 36 4 4 36 5

5 36 6 6 36 7

5 36 8 4 36 9

3 36 10 2 36 11

1 36 12 0  otherwise

x

x

x

x

3.45. Pr{x = 0} = 0.364, Pr{x ≥ 2 }= 0.264

3.47. Pr{x ≥ 1} = 0.00001

3.49. m = 1/p

3.51. Pr{x ≤ 35} = 0.159. Number failing

minimum spec is 7950.

Pr{x > 48} = 0.055. Number failing

maximum spec is 2750.

3.53. Process is centered at target, so shifting

process mean in either direction increases

nonconformities. Process variance 

must be reduced to 0.0152 to have at least

999 of 1000 conform to specification.

3.55. Pr{x > 1000} = 0.0021

3.57. If c2 > c1 + 0.0620, then choose process 1.

CHAPTER 4
4.1. (a) P = 0.0060

(b) P = 0.0629

(c) P = 0.0404

(d) P = 0.0629

4.3. (a) P = 0.0094

(b) P = 0.0233

(c) P = 0.0146

(d) P = 0.0322

4.5. (a) 0.01 < P < 0.025

(b) 0.025 < P < 0.25

(c) 0.025 < P < 0.05

(d) 0.005 < P < 0.001

4.7. (a) Z0 = 6.78. Reject H0. 

(b) P = 0. (c) 8.249 ≤ m ≤ 8.251.

4.9. (a) t0 = 1.952. Reject H0. 

(b) 25.06 ≤ m ≤ 26.94.

4.11. (a) t0 = –3.089. Reject H0. 

(b) 13.39216 ≤ m ≤ 13.40020.
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4.13. n = 246

4.15. (a) t0 = −6.971. Reject H0. 

(b) 9.727 ≤ m ≤ 10.792

(c) = 14.970. Do not reject H0. 

(d) 0.738 ≤ s ≤ 1.546

(e) s ≤ 1.436

4.17. (a) t0 = 0.11. Do not reject H0. 

(c) −0.127 ≤ (m1 − m2) ≤ 0.141

(d) F0 = 0.8464. Do not reject H0. 

(e) 0.165 ≤ ≤ 4.821

(f) 0.007 ≤ s2 ≤ 0.065

4.19. (a) t0 = −0.77. Do not reject H0. 

(b) −6.7 ≤ (m1 − m2) ≤ 3.1.

(c) 0.21 ≤ ≤ 3.34 

4.21. (a) Z0 = 4.0387. Reject H0. 

(b) P = 0.00006. 

(c) p ≤ 0.155.

4.23. (a) F0 = 1.0987. Do not reject H0. 

(b) t0 = 1.461. Do not reject H0.

4.25. t0 = –1.10. There is no difference between

mean measurements.

4.27. (a) = 42.75. Do not reject H0. 

(b) 1.14 ≤ s ≤ 2.19.

4.29.
4.33. Z0 = 0.3162. Do not reject H0.

4.35. (a) F0 = 3.59, P = 0.053. 

4.37. (a) F0 = 1.87, P = 0.214. 

4.39. (a) F0 = 1.45, P = 0.258.

4.41. (a) F0 = 30.85, P 0.000.

4.53. Z = 4.1667, P = 0.000031

4.55. (a) 0.01 < P < 0.025

(b) 0.01 < P < 0.025

(c) 0.01 < P < 0.005

(d) 0.025 < P < 0.05

4.57. (a) Two-sided

(b) No

(c) (0.28212, 0.37121)

(d) P = 0.313/2 = 0.1565

4.61. Error DF = 12, MSFactor = 18.30,

MSError = 1.67, F = 10.96, 0.00094

CHAPTER 5
5.17. Pattern is random.

5.19. There is a nonrandom, cyclic pattern.

�

n = 3 (Za/2 + Zb)s/d 42

χ 0
2

s2
1/s2

2

s2
1/s2

2

χ 0
2

740 Answers to Selected Exercises

5.21. Points 17, 18, 19, and 20 are outside lower

1-sigma area.

5.23. Points 16, 17, and 18 are 2 of 3 beyond 2

sigma of centerline. Points 5, 6, 7, 8, and 9

are of 5 at 1 sigma or beyond of centerline.

CHAPTER 6
6.1. (a) chart: CL = 0.5138, UCL = 0.5507,

LCL = 0.4769

R chart: CL = 0.0506, LCL = 0,

UCL = 0.0842

(b) = 0.5138, = 0.0246

6.3. Yes

6.7. (a) Samples 12 and 15 exceed UCL. 

(b) = 0.00050.

6.9. (a) chart: CL = 10.9, UCL = 47.53,

LCL = –25.73

R chart: CL = 63.5, UCL = 134.4, LCL = 0

Process is in statistical control.

(b) x = 27.3. (c) = 1.22.

6.11. (a) chart: CL = −0.003, UCL = 1.037,

LCL = −1.043

s chart: CL = 1.066, UCL = 1.830,

LCL = 0.302

(b) R chart: CL = 3.2, UCL = 5.686,

LCL = 0.714

(c) s2 chart: CL = 1.136, UCL = 2.542,

LCL = 0.033

6.13. chart: CL = 10.33, UCL = 14.73,

LCL = 5.92

s chart: CL = 2.703, UCL = 6.125, LCL = 0

6.15. (a) chart: CL = 74.00118, UCL =
74.01458, LCL = 73.98777

R chart: CL = 0.02324, UCL = 0.04914,

LCL = 0 (b) No. (c) = 1.668.

6.17. chart: CL = 80, UCL = 89.49, LCL = 70.51

s chart: CL = 9.727, UCL = 16.69, LCL = 2.76

6.19. (a) chart: CL = 20, UCL = 22.34,

LCL = 17.66

s chart: CL = 1.44, UCL = 3.26, LCL = 0

(b) LNTL = 15.3, UNTL = 24.7

(c) = 0.85

(d) = 0.0275, = 0.00069,

Total = 2.949%

(e) = 0.00523, = 0.00523,

Total = 1.046%

p̂scrapp̂ rework

p̂ scrapp̂ rework

ĈP

x

x
ĈP

x

x

x
ĈPs

x

p
x

ŝm̂

x
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6.21. (a) chart: CL = 79.53, UCL = 84.58,

LCL = 74.49

R chart: CL = 8.75, UCL = 18.49, LCL = 0

Process is in statistical control.

(b) Several subgroups exceed UCL on R chart.

6.23. (a) chart: CL = 34.00, UCL = 37.50,

LCL = 30.50

R chart: CL = 3.42, UCL = 8.81, LCL = 0

(b) Detect shift more quickly.

(c) chart: CL = 34.00, UCL = 36.14,

LCL = 31.86

R chart: CL = 5.75, UCL = 10.72,

LCL = 0.78

6.25. (a) chart: CL = 223, UCL = 237.37,

LCL = 208.63

R chart: CL = 34.29, UCL = 65.97, LCL = 2.61

(b) 

(c) = 0.92. (d) = 0.00578

6.27. (a) 

(b) chart: UCL = 22.14, LCL = 17.86

s chart: UCL = 3.13, LCL = 0

(c) 

6.31.
6.33. (a) chart: UCL = 22.63, LCL = 17.37

R chart: UCL = 9.64, LCL = 0

(b) . (c) . 

(d) 

6.35. The process continues to be in a state of

statistical control.

6.37. (a) chart: CL = 449.68, UCL = 462.22,

LCL = 437.15

s chart: CL = 17.44, UCL = 7.70, LCL = 0

6.39.

6.41. (a) 

(b)

6.43. (a) Recalculating limits without samples 1,

12, and 13:

chart: CL = 1.45, UCL = 5.46, LCL = (2.57

R chart: CL = 6.95, UCL = 14.71, LCL = 0

(b) Samples 1, 12, 13, 16, 17, 18, and 20 are

out-of-control, for a total 7 of the 25 samples,

with runs of points both above and below the

centerline. This suggests that the process is

inherently unstable, and that the sources of

variation need to be identified and removed.

x

x

ˆ .p = 0 0195

17.49; R = 4.8, UCLR = 10.152, LCLR = 0

x x x= = =20 26 23 03. , . ,UCL LCL

Pr{ } .detecting shift on 1st sample = 0 37

x

Pr{ } .not detect = 0 05938

ˆ .CP = 0 85ˆ .σ x = 1 96

x

ˆ .CP = 0 8338

Pr{ } .in control = 0 57926

x

ˆ .σ x = 1 60

p̂ĈP

ˆ ; ˆ .μ σ= =223 12 68x

x

x

x

x
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6.45. (a) 

(b) 

(c) 

(d) To minimize fraction nonconforming the

mean should be located at the nominal

dimension (440) for a constant variance.

6.47. (a) . 

(b) .

6.49. ARL1 = 2.992.

6.51. (a) .
(b) .

6.53. (a) x Rx x= = =90 91 676 88 324, . , . ;UCL LCL

UCL LCLx x= =209 8 190 2. , .

CL UCL LCLs s s= = =9 213 20 88 0. , . ,

UCL LCLx x= =111 228 88 772. , .

UCL LCLx x= =108 92,

  Ĉp = 0.751; p̂= 0.0537

m̂ = 429.0, ŝx = 17.758

R = 45.0, UCLR = 90.18, LCLR = 0

.

(b) . 

(c) 

6.55.

6.57. (a) . (b) . 

(c) . 

(d) .

6.59. (a) 

(b) .

(c) .

(d)

(e) = 1.

6.61.
. Assumption of normally

distributed coffee can weights is valid. 

%underfilled = 0.0003%.

6.63. (a) Viscosity measurements appear to follow

a normal distribution.

(b) The process appears to be in statistical

control, with no out-of-control points, runs,

trends, or other patterns.

(c)

6.65. (a) The process is in statistical control. The

normality assumption is reasonable.

(b) It is clear that the process is out of 

control during this period of operation. 

(c) The process has been returned to a state

of statistical control.

6.69. The measurements are approximately

normally distributed. The out-of-control

.= 148 158MR2

ˆ . ; ˆ . ;μ σ= =2928 9 131 346  x

MR2 = 0.02375

x x= =16 1052 0 021055. ; ˆ . ;  σ

Pr{ }detect by 3rd sample

Pr{ } .detect on 1st sample = 0 9920

ˆ .p = 0 1006

UNTL LNTL= =711 48 700 52. , .

m̂= 706.00; ŝx = 1.827.

UCL LCLx x= =362 576 357 424. , .

Pr{ } .not detect on 1st sample = 0 5000

ˆ .CP = 0 667α = 0 0026.

Pr{ } .detect shift on 1st sample = 0 1587

s = 1.419, UCLs = 2.671, LCLs = 0.167.

ˆ .σ x = 1 479

R R R= = =4 7 696 0 304, . , .UCL LCL
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signal on the moving range chart indicates

a significantly large difference between

successive measurements (7 and 8).

Consider the process to be in a state of

statistical process control.

6.71. (a) The data are not normally distributed. The

distribution of the natural-log transformed

uniformity measurements is approximately

normally distributed.

(b) chart: CL = 2.653, UCL = 3.586,

LCL = 1.720

R chart: CL = 0.351, UCL = 1.146, LCL = 0

6.73. x chart: = 16.11, UCLx = 16.17, LCLx = 16.04

MR chart: = 0.02365, UCLMR2 =
0.07726, LCLMR2 = 0

6.75. x chart: = 2929, UCLx = 3338, LCLx = 2520

MR chart: = 153.7, UCLMR2 = 502.2,

LCLMR2 = 0

6.77. (a) = 1.157. (b) = 1.682. (c) = 1.137

(d) = 1.210, = 1.262, ...,

= 1.406, = 1.435

6.79. (a) chart: CL = 11.76, UCL = 11.79,

LCL = 11.72

R chart (within): CL = 0.06109,

UCL = 0.1292, LCL = 0

(c) I chart: CL = 11.76, UCL = 11.87,

LCL = 11.65

MR2 chart (between): CL = 0.04161,

UCL = 0.1360, LCL = 0

6.81. (b) R chart (within): CL = 0.06725,

UCL = 0.1480, LCL = 0

(c) I chart: CL = 2.074, UCL = 2.1956,

LCL = 1.989

MR2 chart (between): CL = 0.03210,

UCL = 0.1049, LCL = 0

(d) Need lot average, moving range between

lot averages, and range within a lot.

I chart: CL = 2.0735, UCL = 2.1956,

LCL = 1.9515

MR2 chart (between): CL = 0.0459,

UCL = 0.15, LCL = 0

R chart (within): CL = 0.0906,

UCL = 0.1706, LCL = 0

CHAPTER 7
7.1. CL = 0.046, LCL = 0, UCL = 0.1343

7.9. = 0.0585, UCL = 0.1289, LCL = 0. 

Sample 12 exceeds UCL.

P

x

σ̂ x, span 20σ̂ x, span 19

σ̂ x, span 4σ̂ x, span 3

σ̂ xσ̂ xσ̂ x

MR2

x

MR2
x

x
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Without sample 12: = 0.0537, UCL =
0.1213, LCL = 0.

7.11. For n = 80, UCLi = 0.1397, LCLi = 0.

Process is in statistical control.

7.13. (a) = 0.1228, UCL = 0.1425, LCL = 0.1031

(b) Data should not be used since many

subgroups are out of control.

7.15. Pr{detect shift on 1st sample} = 0.278,

Pr{detect shift by 3rd sample} = 0.624

7.17. = 0.10, UCL = 0.2125, LCL = 0

p = 0.212 to make b = 0.50. n ≥ 82 to give

positive LCL.

7.19. n = 81

7.21. (a) = 0.07, UCL = 0.108, LCL = 0.032

(b) Pr{detect shift on 1st sample} = 0.297

(c) Pr{detect shift on 1st or 2nd sample} =
0.506

7.23. (a) Less sample 3: n = 14.78, UCL =
27.421, LCL = 4.13

(b) Pr{detect shift on 1st sample} = 0.813

7.25. (a) n = 40, UCL = 58, LCL = 22. 

(b) Pr{detect shift on 1st sample} = 0.583.

7.27. ARL1 = 1.715 � 2

7.29. (a) CL = = 0.0221

for n = 100: UCL = 0.0622, LCL = 0

for n = 150: UCL = 0.0581, LCL = 0

for n = 200: UCL = 0.0533, LCL = 0

for n = 250: UCL = 0.0500, LCL = 0

(b)

7.31.

7.39. (a) L = 2.83. (b) n = 20, UCL = 32.36,

LCL = 7.64.

(c) Pr{detect shift on 1st sample} = 0.0895.

7.41. (a) n � 397. (b) n = 44.

7.43. (a) = 0.02, UCL = 0.062, LCL = 0. 

(b) Process has shifted to = 0.038.

7.45. = 2.505, UCL = 7.213, LCL = 0

7.47.

7.49. Variable u:

Averaged u: CL = 0.701, UCL = 1.249,

LCL = 0.1527

3 0 7007. in

LCL −=3 0 7007 0 7007. ; .i in

CL UCL= = +0 7007 0 7007. ; .i

Z p ni i i= −( ˆ . ) . /0 06 0 0564

np

P

P

P

Z p ni i i= −( ˆ . ) . /0 0221 0 0216

ni−. ( . )0 0221 1 0 0221

Z pi i= −( ˆ . )0 0221

P

P

P

p

P

P
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7.51.

7.53. = 8.59, UCL = 17.384, LCL = 0. Process is

not in statistical control.

7.55. (a) c chart: CL = 15.43, UCL = 27.21,

LCL = 3.65

(b) u chart: CL = 15.42, UCL = 27.20,

LCL = 3.64

7.57. (a) c chart: CL = 4, UCL = 10, LCL = 0

(b) u chart: CL = 1, UCL = 2.5, LCL = 0

7.59. (a) c chart: CL = 9, UCL = 18, LCL = 0

(b) u chart: CL = 4, UCL = 7, LCL = 1

7.61. = 7.6, UCL = 13.00, LCL = 2.20

7.63.

7.67. = 8.5, UCL = 13.98, LCL = 3.02

7.69. = 4, UCL = 9

7.71. (a) = 0.533, UCL = 2.723, LCL = 0. 

(b) � = 0.017.

(c) b = 0.5414. (d) ARL1 = 2.18 � 2.

7.73. (a) = 4, UCL = 10, LCL = 0. (b) � = 0.03.

7.75.

7.79. The variable NYRSB can be thought of as an

“inspection unit,” representing an identical

“area of opportunity” for each “sample.” The

“process characteristic” to be controlled is

the rate of CAT scans. A u chart which

monitors the average number of CAT scans

per NYRSB is appropriate.

CHAPTER 8
8.3. = 1.17, = 1.13

8.5. = 5.48, = 4.34, = 0.43

8.7. (a) = 2.98. (b) = 1.49. 

(c) = 0.000004, = 0.000000.

8.9. (a) . (b) . 

(c) .ˆ .Cpkm = 0 70

ˆ .Cpk = 0 71ˆ .Cp = 0 75

p̂potential
p̂actual

ĈpkĈp

ĈpkmĈpkĈp

ĈpkĈp

n L c> 2 /

c

c

u

c

ni i= −7 3 7 /LCL

u ni i= = +7 7 3 7; / ;UCL

c

c

Z u ni i i= −( . ) . /0 7007 0 7007
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8.17.

8.19. (a) . (b) ,

.

8.21. No. Data is not normally distributed.

8.23. 1.26 ≤ Cp, a = 0.12

8.25. (a) = 0.42

(b) 0.2957 ≤ Cpk ≤ 0.5443

8.29. = 4

8.31. (a) R chart indicates operator has no

difficulty making consistent measurements.

(b) = 4.717, = 1.695. (c) 62.5%.

(d) P/T = 0.272.

8.33. (a) . (b) R chart indicates

operator has difficulty using gage.

8.37. = 0.4330

8.39. = 48, = 0.04252

8.41.

8.43. C � N(0.006, 0.000005). Pr{positive

clearance} = 0.9964.

8.45. UTL = 323.55

8.47. UTL = 372.08

8.49. (a) 0.1257 ≤ x ≤ 0.1271. (b) 0.1263 ≤ ≤
0.1265.

CHAPTER 9
9.1. (a) K = 12.5, H = 125. Process is out of

control on upper side after observation 7.

(b) = 34.43

9.3. (a) K = 12.5, H = 62.5. Process is out of

control on upper side after observation 7.

(b) Process is out of control on lower side at

sample 6 and upper at sample 15.

9.5. Process is in control. ARL0 = 370.84

9.7. (a) = 12.16. (b) Process is out of control

on upper side after reading 2.

9.9. (a) = 5.95. (b) Process is out of control on

lower side at start, then upper after

observation 9.

9.19. Process is out of control on upper side after

observation 7.

9.21. ARL0 = 215.23, ARL1 = 25.02

σ̂

σ̂

σ̂

x

σ σR R
2 2

1 2) +( )

σ σ μ μ μ μ μI E R R E R R
2 2 2 2 2

1 2 1 2
≅ + + +( )( ) ( )

μ μ μ μI E R R≅ +( )
1 2

σ̂ Weightμ̂Weight

p̂

6 8 154ˆ .σ gage =

σ̂ product
2σ̂ total

2

σ̂ process

Ĉpk

ˆ .p = 0 041047

Cpu = 0 58.6 73 2ˆ .σ =
6 0 05514ˆ .σ =

(d) , 0.02382

8.11. Process A: = 1.045,

= 0.001726

Process B: = 3.133, = 1.566,ĈpkĈp

p̂

ˆ ˆ ˆC C Cp pk pm= =

p̂Potential =ˆ .pActual = 0 025348

8.13. 6 0 1350ˆ .σ =

= 0.652, = 0.001726p̂Ĉpm
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9.23. K = 54.35, H = 543.5. Process is out of

control virtually from the first sample.

9.25. EWMA chart: CL = 1050, UCL = 1065.49,

LCL = 1034.51.

Process exceeds upper control limit at

sample 10.

9.27. EWMA chart: CL = 8.02, UCL = 8.07,

LCL = 7.97. Process is in control.

9.31. EWMA chart: CL = 175, UCL = 177.3,

LCL = 172.70.

Process is out of control.

9.33. EWMA chart: CL = 950, UCL = 957.53,

LCL = 942.47.

Process is out of control at samples 8, 12,

and 13.

9.35. MA chart: CL = 8.02, UCL = 8.087, LCL =
7.953. Process is in control.

9.43. k = 0.5L

CHAPTER 10
10.1. chart: CL = 0.55, UCL = 4.44, LCL = –3.34

R chart: CL = 3.8, UCL = 9.78, LCL = 0

10.5. chart: CL = 52.988, UCL = 55.379, LCL =
50.596

R chart: CL = 2.338, UCL = 6.017, LCL = 0

10.7. (a) chart: CL = 52.988, UCL = 56.159,

LCL = 47.248

R chart: CL = 2.158, UCL = 7.050, LCL = 0

(c) chart: CL = 52.988, UCL = 56.159,

LCL = 49.816

s chart: CL = 1.948, UCL = 4.415, LCL = 0

10.9. (a) UCL = 44.503, LCL = 35.497

(b) UCL = 43.609, LCL = 36.391

(c) UCL = 43.239, LCL = 36.761

10.13. chart: CL = 50, UCL = 65.848, LCL =
34.152

10.15. (a) = 4.000. (b) = 0.1056. (c) UCL =
619.35, LCL = 600.65.

10.17. m0 = 0, d = 1s, k = 0.5, h = 5, UCL = 97.9,

LCL = (97.9, no FIR.

No observations exceed the control limit.

10.19. a = 0.1, l = 0.9238, = 15.93.

Observation 16 exceeds UCL. 

10.21. m0 = 0, d= 1s, k = 0.5, h = 5, UCL = 22.79,

LCL = (22.79, no FIR. 

No observations exceed the control limits.

10.23. a = 0.1, l = 0.7055, = 3.227.

Observations 8, 56 and 90 exceed control limits. 

σ̂

p̂σ̂

x

x

x

x

x
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10.25. m0 = 0, d = 1s, k = 0.5, h = 5, UCL = 36.69,

LCL = (36.69, no FIR.

No observations exceed the control limit.

10.27. a = 0.1, l = 0.9206, = 5.0975.

Several observations exceed the control limits.

10.29. (a) r1 = 0.49

(b) I chart: CL = 28.57, UCL = 37.11,

LCL = 20.03

(c) m0 = 28.569, d = 1s, k = 0.5, h = 5,

UCL = 14.24, LCL = (14.24, no FIR.

Several observations are out of control on

both lower and upper sides.

(d) EWMA chart: � = 0.15, L = 2.7, CL =
28.569, UCL = 30.759, LCL = 26.380

(e) Moving CL EWMA chart: a = 0.1, l =
0.150, = 2.85.

A few observations are beyond the lower

control limit.

(f ) x = 20.5017, f1 = 0.7193, f2 = –0.4349.

Set up an I and MR chart for residuals.

I chart: CL = –0.04, UCL = 9.60, LCL =
–9.68

10.31. (a) E(L) = $4.12/hr. (b) E(L) = $4.98/hr.

(c) n = 5, kopt = 3.080, hopt = 1.368, a =
0.00207, 1 − b = 0.918, E(L) = $4.01392/hr

10.33. (a) E(L) = $16.17/hr. (b) E(L) = $10.39762/hr.

CHAPTER 11
11.1. UCLPhase 2 = 14.186, LCLPhase 2 = 0

11.3. UCLPhase 2 = 13.186

11.5. (a) UCLPhase 2 = 23.882, LCLPhase 2 = 0. 

(b) UCLchi-square = 18.548.

11.7. (a) UCLPhase 2 = 39.326. 

(b) UCLchi-square = 25.188. (c) m = 988.

11.9. Assume a = 0.01. UCLPhase 1 = 32.638,

UCLPhase 2 = 35.360

11.11.
(a)

(b) UCLchi-square = 7.815.

(c) T2 = 11.154. (d) d1 = 0.043, d2 = 8.376,

d3 = 6.154.

(e) T2 = 6.538. (f ) d1 = 1.538, d2 = 1.538,

d3 = 2.094.

11.13.
ΣΣ =

−
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 440 0 016 5 395

0 016 0 001 0 014

5 395 0 014 27 599

. . .

. . .

. . .

ΣΣ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 8 0 8

0 8 1 0 8

0 8 0 8 1

. .

. .

. .

σ̂
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11.15. l = 0.1 with UCL = H = 12.73, ARL1 is

between 7.22 and 12.17.

11.17. l = 0.2 with UCL = H = 9.65. ARL1 is

between 5.49 and 10.20.

11.19. Significant variables for y1 are x1, x3, x4, x8,

and x9. 

Control limits for y1 model I chart: CL = 0,

UCL = 2.105, LCL = –2.105

Control limits for y1 model MR chart: CL =
0.791, UCL = 2.586, LCL = 0

Significant variables for y2 are x1, x3, x4, x8,

and x9.

Control limits for y2 model I chart: CL = 0,

UCL = 6.52, LCL = –6.52

Control limits for y2 model MR chart: CL =
2.45, UCL = 8.02, LCL = 0

11.21. (a) z1 = {0.29168, 0.29428, 0.19734,

0.83902, 3.20488, 0.20327, –0.99211,

–1.70241, –0.14246, –0.99498, 0.94470,

–1.21950, 2.60867, –0.12378, –1.10423,

–0.27825, –2.65608, 2.36528, 0.41131,

–2.14662}

CHAPTER 12
12.3. Process is adjusted at observations 3, 4, 7,

and 29.

12.5. m = 1, Var1 = 147.11, Var1/Var1 = 1.000

m = 2, Var2 = 175.72, Var2/Var1 = 1.195

m = 3, Var3 = 147.47, Var3/Var1 = 1.002

m = 4, Var4 = 179.02, Var4/Var1 = 1.217

m = 5, Var5 = 136.60, Var5/Var1 = 0.929, . . .

Variogram stabilizes near 1.5

r1 = 0.44, r2 = 0.33, r3 = 0.44, r4 = 0.32, r5 =
0.30, . . .

Sample ACF slowly decays.

12.7. In each control scheme, adjustments are made

after each observation following observation

2. There is no difference in results; variance

for each procedure is the same.

12.9. (b) Average is closer to target (44.4 vs. 46.262),

and variance is smaller (223.51 vs. 78.32).

(c) Average is closer to target (47.833) and

variance is smaller (56.40).

CHAPTER 13
13.1. MSA = 0.322, SSInteraction = 42.348, DFA = 2,

DEInteraction = 2, MSInteraction = 21.174, MSF =
9.027, FA = 0.036, P = 0.853, FB = 4.462,

P = 0.036, FAB = 2.346, P = 0.138
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13.3. Glass effect: F0 = 273.79, P value = 0.000

Phosphor effect: F0 = 8.84, P value = 0.004

Glass � Phosphor interaction: F0 = 1.26, P
value = 0.318

13.5. Normality assumption is reasonable.

Constant variance assumption is reasonable.

13.7. Plots of residuals versus factors A and C show

unequal scatter. Residuals versus predicted

indicates that variance not constant. Residuals

are approximately normally distributed.

13.9. Largest effect is factor A.

13.11. Block 1: (1), ab, ac, bc, ad, bd, cd, ae, be,

ce, de, abcd, abce, abde, acde, bcde
Block 2: a, b, c, d, e, abc, abd, acd, bcd, abe,

ace, bce, ade, bde, cde, abcde

13.13. (b) I = ACE = BDE = ABCD, A = CE = BCD =
ABDE, B = DE = ACD = ABCE, C = AE =
ABD = BCDE, D = BE = ABC =ACDE, E =
AC = BD = BCDE, AB = CD = ADE = BCE,
AD = BC = ABE = CDE
(c) A = –1.525, B = –5.175, C = 2.275,

D = –0.675, E = 2.275, AB = 1.825,

AD = –1.275

(d) With only main effect B: F0 = 8.88,

P value = 0.025.

(e) Residuals plots are satisfactory.

13.15. (a) Main Effects: F0 = 1.70, P value = 0.234

2-Way Interactions: F0 = 0.46, P value = 0.822

Curvature: F0 = 16.60, P value = 0.004

Lack of fit: F0 = 0.25, P value = 0.915

13.17. (a) A = 47.7, B = –0.50, C = 80.6, D = –2.40,

AB = 1.10, AC = 72.80, AD = –2.00

(b) Model with C, AC, A:

Main Effects: F0 = 1710.43, P value = 0.000

2-Way Interactions: F0 = 2066.89, P value =
0.000

Curvature: F0 = 1.11, P value = 0.327

CHAPTER 14
14.3. (b) 

14.5. (a) CCD with k = 2 and � = 1.5. The design

is not rotatable.

(b) 

(c) x1 = +1.5, x2 = –0.22

(d) Temp = 825, Time = 26.7

14.7. (a) CCD with k = 2 and � = 1.4. The design

is rotatable.

x x x x− + −10 855 6 923 0 7501
2

2
2

1 2. . .

y x x= − +160 868 58 294 2 4121 2. . .

¢x = 1, ¢x2 = 0.6
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(b) 

From the plots and the optimizer, setting x1

in a range from 0 to +1.4 and setting x2

between –1 and –1.4 will maximize

viscosity.

14.9. (a) The design is resolution IV with A = BCD,
B = ACD, C = ABD, D = ABC, E = ABCDE,
AB = CD, AC = BD, AD = BC, AE = BCDE,
BE = ACDE, CE = ABDE, DE = ABCE, ABE
= CDE, ACE = BDE, ADE = BCE.
(b) Factors A, B, D, E and interaction BE

affect mean free height.

(c) Factors A, B, D and interactions CE and

ADE affect standard deviation of free height.

(e) A 25-1, resolution V design can be

generated with E = � ABCD.

14.11. Mean Free Height = 7.63 + 0.12A – 0.081B

Variance of Free Height = (0.046)2 + (–0.12

+ 0.077B)2 + 0.02

One solution with mean Free Height � 7.50

and minimum standard deviation of Free

Height is A = –0.42 and B = 0.99.

14.13. (a) Recommended operating conditions are

temperature = +1.4109 and pressure =
(1.4142, to achieve predicted filtration time

of 36.7.

(b) Recommended operating conditions are

temperature = +1.3415 and pressure =
(0.0785, to achieve predicted filtration time

of 46.0.

CHAPTER 15
15.5. Two points on OC curve are Pa{p = 0.007} =

0.95190 and Pa{p = 0.080} = 0.08271.

15.7. (a) Two points on OC curve are Pa{d = 35} =
0.95271 and Pa{d = 375} = 0.10133.

(b) Two points on OC curve are Pa{p =
0.0070} = 0.9519 and Pa{p = 0.0750} =
0.1025.

(c) Difference in curves is small. Either is

appropriate.

15.9. n = 80, c = 7

15.11. Different sample sizes offer different levels

of protection. Consumer is protected from an

LTPD = 0.05 by Pa{N = 5000} = 0.00046 or

Pa{N = 10,000} = 0.00000, but pays for high

probability of rejecting acceptable lots (i.e.,

x x x x− − +0 125 0 079 0 0551
2

2
2

1 2. . .

y x x= + −13 727 0 298 0 4071 2. . .
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for p = 0.025, Pa{N = 5000} = 0.294 while

Pa{N = 10,000} = 0.182).

15.13. AOQL = 0.0234

15.15. (a) Two points on OC curve are 

Pa{p = 0.016}= 0.95397 and Pa{p = 0.105}=
0.09255.

(b) p = 0.103

(d) n = 20, c = 0. This OC curve is much

steeper. 

(e) For c = 2, Pr{reject} = 0.00206, ATI = 60.

For c = 0, Pr{reject} = 0.09539, ATI = 495

15.17. (a) Constants for limit lines are: k = 1.0414,

h1= 0.9389, h2 = 1.2054, and s = 0.0397.

(b) Three points on OC curve are Pa{p1 =
0.01} = 1 – � = 0.95, Pa{p2 = 0.10} = � =
0.10, and Pa{p = s = 0.0397} = 0.5621.

15.19. AOQ = [Pa � p � (N – n)] / [N – Pa � (n p) –

(1 – Pa) � (N p)]

15.21. Normal: sample size code letter = H, n = 50,

Ac = 1, Re = 2

Tightened: sample size code letter = J, n =
80, Ac = 1, Re = 2

Reduced: sample size code letter = H, n = 20,

Ac = 0, Re = 2

15.23. (a) Sample size code letter = L

Normal: n = 200, Ac = 3, Re = 4

Tightened: n = 200, Ac = 2, Re = 3

Reduced: n = 80, Ac = 1, Re = 4

15.25. (a) Minimum cost sampling effort that meets

quality requirements is 50,001 ≤ N ≤
100,000, n = 65, c = 3. (b) ATI = 82

CHAPTER 16
16.1. (a) n = 35, k = 1.7. (b) ZLSL = 2.857 > 1.7, so

accept lot.

(c) From nomograph, Pa{p = 0.05} � 0.38

16.3. AOQ = Pa � p � (N – n) / N, → ATI = n +
(1 – Pa) � (N – n)

16.5. From MIL-STD-105E, n = 200 for normal

and tightened and n = 80 for reduced.

Sample sizes required by MIL-STD-414 are

considerably smaller than those for MIL-

STD-105E.

16.7. Assume inspection level IV. Sample size

code letter = O, n = 100, knormal = 2.00,

ktightened = 2.14. ZLSL = 3.000 > 2.00, so

accept lot.

16.9. (a) From nomograph for variables: n = 30,

k = 1.8
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(b) Assume inspection level IV. Sample size

code letter = M

Normal: n = 50, M = 1.00

Tightened: n = 50, M = 1.71

Reduced: n = 20, M = 4.09

s known permits smaller sample sizes than s
unknown.

(c) From nomograph for attributes: n = 60,

c = 2

Variables sampling is more economic when

s is known.

(d) Assume inspection level II. Sample size

code letter = L

Normal: n = 200, Ac = 5, Re = 6

Tightened: n = 200, Ac = 3, Re = 4

Reduced: n = 80, Ac = 2, Re = 5

Much larger samples are required for this

plan than others.

16.11. (a) Three points on OC curve are Pa{p =
0.001} = 0.9685, Pa{p = 0.015} = 0.9531,

and Pa{p = 0.070} = 0.0981.

Answers to Selected Exercises 747

(b) ATI = 976

(c) Pa{p = 0.001} = 0.9967, ATI = 131

(d) Pa{p = 0.001} = 0.9958, ATI = 158

16.13. i = 4, Pa{p = 0.02} = 0.9526

16.15. For f = 1/2, i = 140: u = 155.915,

v = 1333.3, AFI = 0.5523, Pa{p = 0.0015} =
0.8953

For f = 1/10, i = 550: u = 855.530,

v = 6666.7, AFI = 0.2024, Pa{p = 0.0015} =
0.8863

For f = 1/100, i = 1302: u = 4040.00,

v = 66666.7, AFI = 0.0666, Pa{p = 0.0015} =
0.9429

16.17. For f = 1/5, i = 38: AFI = 0.5165,

Pa{p = 0.0375} = 0.6043

For f = 1/25, i = 86: AFI = 0.5272,

Pa{p = 0.0375} = 0.4925
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Index
Average sample number in skip-lot sampling, 706

Average time to signal (ATS), 200, 258

Average total inspection (ATI), 663

B

Batch means control charts, 473

Bernoulli distribution, 113

Bernoulli random variable, 113

Bernoulli trials, 81, 113

Between/within control charts, 278, 279

Between-sample variability, 246, 278

Binomial approximation to the hypergeometric, 100

Binomial distribution, 78, 81, 299, 710

Bins in a histogram, 70

Black Belts, 29, 49

Blocking, 599

Bounded adjustment chart, 551

Box and whisker plot, 75

Box plot, 75

C

c chart, 318

Capability of a process, 54

Cascade process, 528

Cause-and-effect diagram, 210, 321

Center line on a control chart, 190

Center points in 2k designs, 596

Central composite design, 622, 625

Central limit theorem, 89

Central tendency, 78

Chain sampling plans, 659, 699

Chance causes of variation, 189

Changepoint model, 490

Changing sample sizes on a control chart, 258

Check sheet, 207

Chi-square control chart, 516

Chi-square distribution, 111

Choice between attribute and variables control charts, 335

Choosing the proper type of control chart to use, 340

Class intervals in a histogram, 70

Combined array design, 628

Combined CUSUM-Shewhart control chart, 424

Combining engineering control with SPC, 555

Common cause, 55

Comparing customer and supplier measurement

systems, 395

Completely randomized experimental design, 149, 573

Compound Poisson distribution, 326

Concurrent engineering, 9

Confidence coefficient, 120

Confidence interval, 55, 118, 120

Confidence intervals in gauge RR experiments, 387

Confidence intervals on process capability ratios, 370

22 factorial design, 578

23 factorial design, 58

A

Acceptable quality level (AQL), 658

Acceptance control charts, 457

Acceptance sampling, 13, 15, 649, 651

Action limits, 198, also see control limits

Action to improve a process, 341

Actual capability, 367

Adaptive response to signals, 205

Adaptive sampling control charts, 477

Adjusted R2, 166

Adjustment chart, 549, 551

Advantages of variables control charts, 336

Aesthetics, 5

Algorithmic SPC, 555

Aliases, 602

Allocation of sampling effort, 199, 247

Alternate fraction, 603

Alternative hypothesis, 117

Analysis of variance (ANOVA), 146, 149

Analysis procedure for factorial experiments, 583

Analyze phase in DMAIC, 49, 55

ANOVA for a factorial, 572

ANOVA F-test, 152

ANOVA partition of the total sum of squares, 150

ANOVA table, 152

AOQL sampling plans, 682

Appraisal costs, 39

Assignable cause, 55, 190

Assumptions in process capability analysis, 364

Attentiveness, 6

Attribute agreement analysis, 394

Attribute gauge capability, 392

Attributes control charts, 195, 297

Attributes data, 8, 185, 297, 378, 392

Attributes sampling plans, 652, 655, 673, 779, 681

Autocorrelated process data, 196, 461

Autocorrelation function, 463

Automatic process control, 550

Autoregressive integrated moving average (ARIMA)

model, 468

Average outgoing quality limit (AOQL), 663, 682

Average outgoing quality, 662

Average run length (ARL), 199, 256, 453, 459, 518

Average run length for the control chart, 257

Average run length for the CUSUM, 433

Average run length for the fraction nonconforming

control chart, 317

Average run lengths for individual and moving range

control charts, 270

Average sample number curve, 667, 672

x
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Deming’s 14 points, 18

Deming’s obstacles to success, 21

Deming’s seven deadly diseases of management, 20

Descriptive statistics, 65

Design for six sigma (DFSS), 32, 33

Design generator, 601, 607

Design matrix, 578, 584

Design of experiments, 13, 14, 219, 564, 617

Design resolution, 605

Designed experiments and process capability analysis, 377

Designing double-sampling plans, 669

Designing single-sampling plans for attributes 660

Designing single-sampling plans for variables, 691

Determining where to put control charts, 339

Determining which characteristics to control in a

process, 339

Deviation from nominal control charts, 450

Dimensions of quality, 4

Discrete probability distributions, 77, 80

Discrimination ratio, 383

DMAIC, 48, 57, 214

Dodge-Romig sampling plans, 681

Double-sampling plan, 652, 664, 666

Durability, 5

E

Economic design of control charts, 478, 482

Effect of n and c on OC curves, 656

Eigenvalues, 534

Eigenvector, 533

Empirical reference distribution, 537

Engineering (process) control, 15, 196, 542

Erlang distribution, 710

Error mean square, 151

Estimate of a parameter, 115

Estimating natural tolerance limits, 401, 402, 403

Estimating process capability using a control chart, 241

Evolutionary operation (EVOP), 634

EWMA as a predictor of process level, 441

EWMA control chart for autocorrelated data, 468, 472

EWMA design, 436

EWMA for monitoring process variability, 440

EWMA for Poisson data, 440

Exponential distribution, 92, 710

Exponentially weighted moving average (EWMA)

control chart, 414, 433, 434

External failure costs, 40

Extra sum of squares method, 167

F

Factor screening, 617

Factorial design, 14, 219

Factorial experiments, 570, 578, 583

Failure modes and effects analysis (FMEA), 55

Failure rate, 92

False alarms on control charts, 200

Fast initial response CUSUM, 424

Fast initial response feature for the EWMA, 439

F-distribution, 111

Features, 5

Feedback control, 15

Fill control, 498

750 Index

Confidence intervals on regression coefficients, 169

Confidence intervals on the mean response, 169

Confidence limits versus tolerance limits, 402

Confirmation experiment, 56

Conformance to standards, 5

Confounding, 599, 600

Consumer’s risk, 390

Continuous probability distributions, 77, 78

Continuous sampling, 701

Contour plot, 591

Contrasts, 579

Control chart, 13, 55, 189, 190, 414

Control chart for a Six Sigma process, 456

Control chart for fraction nonconforming (p-chart), 298

Control chart for individual measurements, 267

Control chart performance, 191

Control charts and health care, 496

Control charts and hypothesis testing, 191

Control charts and process capability analysis, 375

Control charts based on standard values, 250, 300

Control charts for Bernoulli processes, 501

Control charts for censored data, 501

Control charts for nonconformities, 317, 318

Control charts for short production runs, 450, 452

Control charts for tool wear, 497

Control charts on residuals, 460, 465, 471, 528

Control ellipse, 514

Control limits, 197

Control phase of DMAIC, 49, 57

Controllable process variables, 564, 626

Cook’s D statistic, 174

Correlation and causality, 213

Cost of poor quality, 38

Cost parameters in control chart design, 479

Covariance matrix, 512

Cp, 242, 362

Cpk, 366

Critical region of a statistical test, 118

Critical-to-quality characteristics (CTQ), 8, 54

Crossed array design, 627

Cumulative frequency plot, 72

Cumulative normal distribution, 87

Cumulative sum (CUSUM) control chart, 414

Cuscore control charts, 488

CUSUM design, 422

CUSUM status chart, 420

Cyclic patterns on control charts, 204, 252

D

Data transformation, 155, 333

Decision interval on a CUSUM, 418

Defect concentration diagram, 212

Defects, 9, 317

Defects per million opportunities (DPMO), 379

Define phase of DMAIC, 49, 52

Defining relation, 602, 607

Degrees of freedom in ANOVA, 151

Degrees of freedom, 111, 112, 151

Delta method, 400

Demerit systems, 330

Demerits, 115

Deming philosophy, 18
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K

Key process input variables (KPIV), 54

Key process output variables (KPOV), 54

Kurtosis, 361

L

Lack of memory property of the exponential

distribution, 93

Lack of memory property of the geometric distribution, 85

Latent structure, 533

Lean, 32

Least squares normal equations, 158

Legal aspects of quality, 44

Level of significance of a statistical test, 212

Leverage, 174

Liability exposure from poor quality, 44

Linear combinations of normal random variables, 89

Linear regression model, 156

Linear statistical model for ANOVA, 148

Little’s law, 34

Logistic regression models, 230

Lognormal distribution, 90

Lot disposition, 650

Lot formation for sampling, 653

Lot sentencing, 650

Lot tolerance percent defective (LTPD), 658

Lot-sensitive compliance sampling, 659

Low count rates, 332

Lower control limit, 190, 197

LTPD plans, 685

M

Magnificent seven, 188, 207

Main effect, 570, 579, 584

Malcolm Baldrige National Quality Award, 26

Management-controllable problems, 304

Manual adjustment chart, 550

Marginal plot, 70

Master Black Belts, 29, 49

Matrix of scatter plots, 536

Mean of a distribution, 78

Mean squares, 151

Mean time to failure, 93

Mean vector, 512

Measure phase of DMAIC, 49, 54

Median of a distribution, 79

Method of least squares, 157

Method of steepest ascent, 620

Military Standard 105E, 673, 679

Military Standard 414, 694, 697

Minimum variance estimator, 116

Mistake-proofing a process, 56

Mixture patterns on control charts, 252

Mode of a distribution, 79

Model adequacy checking, 154, 171

Model for a control chart, 193

Modified box plot, 75

Modified control charts, 253, 454

Moving average control chart, 442

Moving centerline EWMA control chart, 470

Moving range as an estimate of process standard

deviation, 268, 274

Index 751

Financial systems integration, 50

First quartile, 70

First-order autoregressive model, 466

First-order integrated moving average model, 468

First-order mixed model, 468

First-order model, 619

First-order moving average model, 468

Fitness for use, 6

Fixed effects ANOVA model, 149

Flowcharts, 221

Fraction nonconforming, 297

Fractional factorial designs, 219, 601, 606

G

Gamma distribution, 93, 710

Gauge accuracy, 383

Gauge capability, 379, 382

Gauge precision, 383

Gauge R&R experiments, 384, 385, 387. 395

Gauge repeatability and reproducibility (R&R), 54

Generalized linear models, 230

Geometric distribution, 84, 85, 200, 326, 710

Geometric moving average, see exponentially weighted

moving average

Goodness of fit, 99

Graduated response to control chart signals, 205

Green Belts, 29

Group control charts, 458

Guidelines for designing experiments, 568

H

Hat matrix in regression, 172

Headstart on a CUSUM, 424

Hidden factory, 42

Histogram, 70, 71, 358

Hotelling T2 control chart, 517, 521

Hypergeometric distribution, 80, 658, 710

Hypothesis testing, 5, 117

I

Implementing SPC, 213

Improve phase of DMAIC, 49, 56

Incoming inspection, 15

In-control process, 189, 190

Inertia effect in the EWMA, 437

Influence diagnostics in regression, 174

Inner array design, 627

Integral control, 545

Interaction, 570, 579, 585

Internal failure costs, 41

Interpretation of and R control charts, 251

Interpretation of a confidence interval, 120

Interpretation of individual and moving range control

charts, 269

Interpretation of points on the control chart for fraction

nonconforming, 309

Interpretation of signals on multivariate control charts, 520

Interquartile range, 70

ISO 9000, 24

J

Juran trilogy, 22

Just-in-time, 34

x
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P

Paired t-test, 142

Parameter estimation, 117

Parameters of a distribution, 11

Pareto chart, 208, 321

Partial F-test, 168

Partial least squares, 533, 538

Pascal distribution, 85

Path of steepest ascent, 620

Patterns on control charts, 203, 239, 252

Perceived quality, 5

Percentiles, 69

Performance, 4

Phase I application of and R control charts, 238

Phase I control chart usage, 206, 238, 301, 518

Phase II control chart usage, 206, 243, 518

Phase of EVOP, 636

Pilot test, 56

Plan-do-check-act (PDCA) cycle, 21

Point estimation, 115

Poisson approximation to the binomial, 100

Poisson distribution, 83, 100, 114, 318, 710

Pooled estimate of error, 137

Population, 76

Population mean, 115

Population proportions, 128, 145

Population variance, 115

Post-ANOVA comparison of means, 154

Potential capability, 367

Power of a statistical test, 118, 130, 132

Precision to tolerance (P/T) ratio, 381

Precontrol, 499

Prediction interval, 117

Prediction of new observations with a regression 

model, 170, 173

Predictor variables, 156

Pre-experimental planning, 569

PRESS, 171, 173

Prevention costs, 38

Principal component scores, 535

Principal components, 533, 535

Principal fraction, 603

Probability distributions, 65, 76, 77

Probability limits on a control chart, 198, 250

Probability models and control charts for count data, 325

Probability plots, 97, 360

Process, 13

Process capability, 127, 194, 356, 367

Process capability analysis with attribute data, 378

Process capability analysis, 186, 356, 375, 377, 378

Process capability ratio, 242, 362, 363, 366, 369, 370

Process characterization, 617

Process control plan, 57

Process cycle efficiency, 34

Process cycle time, 34

Process disturbance, 544

Process failure mechanism, 479

Process gain, 544

Process monitoring, 14

Process performance indices, 374

Process robustness studies, 617, 626

Producer’s risk, 390

x
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Moving range control chart, 268

Multiple linear regression, 156

Multiple stream processes, 458, 460

Multiple-sampling plan, 652, 664, 669

Multivariate control charts, 514, 516, 520, 521,

524, 531, 533

Multivariate EWMA control chart, 524, 527

Multivariate normal distribution, 512

Multivariate quality control, 510, 512, 531, 533

N

Narrow-limit gauging, 500

Natural tolerance limits of a process, 245, 357, 401

Negative binomial distribution, 84, 326, 710

Noise variables, 564, 626

Nominal dimension, 9

Noncentrality parameter, 526

Nonconforming products, 9

Nonconformities (defects), 317

Nonconformity, 9

Nonlinear combinations, 400

Nonnormality and the and R control charts, 254

Nonnormality and the individual and moving range

control charts, 271

Nonparametric control charts, 502

Nonparametric tolerance limits, 403

Non-value-added work activity, 219

Normal approximation to the binomial, 101

Normal approximation to the Poisson, 101

Normal distribution, 86, 710

Normal probability plot of effects, 594

Normal probability plots, 97

Normal-theory tolerance limits, 402

np (number nonconforming) control chart, 309

Null hypothesis, 117

O

Off-line quality control, 15

One-half fraction, 601

One-sample t-test, 122

One-sample Z-test, 118

One-sided alternative hypothesis, 119

One-sided confidence interval, 120

One-sided CUSUM, 423, 427

One-sided process capability ratios, 363

On-line (in-process) quality control, 15

Operating characteristic curves for c and u charts, 331

Operating characteristic curves for control charts, 254

Operating characteristic curves for the fraction

nonconforming control chart, 315

Operating characteristic curves, 131

Operating characteristic for a single sampling

(attributes) plan, 655

Operation process charts, 219, 222

Operator-controllable problems, 304

Ordered stem-and-leaf plot, 68

Orthogonal design, 591

Outer array design, 627

Outgoing inspection, 15

Out-of-control action plan (OCAP), 194, 321

Out-of-control process, 189, 190

Over-the-wall approach to product design, 9

x
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Residuals, 155

Resolution III designs, 605

Resolution IV designs, 606

Resolution V designs, 606

Response model, 728

Response optimization, 618

Response surface, 618

Response surface methodology, 617, 618, 628

Response surface plot, 591

Responsiveness, 5

Revision of center lines and control limits, 243

Risk priority number (RPN), 56

Robust parameter design, 626

Robust process, 564

Robustness to nonnormality of the EWMA, 438

Rotatable design, 625

Rounded adjustment chart, 553

Run chart, 70

Runs on control charts, 203

S

s control chart, 235, 236, 259

Sample, 68, 76, 110, 650

Sample autocorrelation function, 463

Sample average or mean, 73, 115

Sample covariance matrix, 513

Sample fraction defective, 83

Sample fraction nonconforming, 83, 299

Sample mean vector, 513

Sample median, 68

Sample range, 116

Sample size for statistical tests, 130, 132

Sample size on control charts, 199, 307, 323

Sample standard deviation, 74

Sample variance, 73, 115

Sampling distribution, 110

Scale CUSUM, 427

Scale parameter of the Weibull distribution, 95

Scaled residuals, 171

Scan statistics, 496

Scatter diagram, 212

Screening lots, 661

Second-order autoregressive model, 468

Second-order effects, 596

Second-order model, 619

Second-order response surface model, 596

Self-starting CUSUM, 431

Semieconomic design of control charts, 481

Sensitizing rules for control charts, 205

Sequential experimentation, 619

Sequential sampling, 664, 699

Serviceability, 5

Setpoint, 544, 545

Setting specification limits, 397

Shape parameter of the Weibull distribution, 95

Shewhart control chart, 185, 193, 414

Shewhart cycle, 21

Shewhart process model, 461

Signal resistance of a control chart, 437

Signal-to-noise ratios, 382, 627

Simple linear regression, 156

Simulation of process operations, 229

Index 753

Product characterization, 357

Professionalism, 6

Profile monitoring, 491

Project champion, 29, 49

Project charter, 52

Projection of 2k designs, 592, 605

Properties of least squares estimators, 160

Proportional integral (PI) control, 554

Proportional integral derivative (PID) control, 555

P-value, 121, 124, 126

Q

Q-charts, 453

Quality, 4, 6

Quality (business) improvement projects, 49, 51

Quality assurance, 17, 24, 46

Quality audits, 24, 37

Quality characteristics, 8

Quality control and improvement, 17, 24, 46

Quality costs, 38, 41, 43

Quality engineering, 8, 16

Quality improvement, 7, 45

Quality is free, 23

Quality management, 17, 45

Quality of conformance, 6

Quality of design, 6

Quality planning, 17, 46

Quality systems and standards, 23

Quartiles, 70

R

R (range) chart, 201, 235

R2, 165

R2 for prediction, 173

Random effects model analysis of variance (ANOVA), 385

Random sample, 110, 653

Random variable, 76

Randomization, 147

Range method for estimating the standard deviation, 116

Rational subgroups, 201, 202, 246, 278

Rational subgroups and the CUSUM, 428

Rational subgroups and the EWMA, 439

Rectifying inspection, 16, 661, 669

Reduction of variability, 7

Reduction of waste, 7

Reference distribution for a statistical test, 119

Reference value on a CUSUM, 418

Regression adjustment, 528

Regression analysis, 55

Regression coefficients, 156

Regression control chart, 253

Regression model for a factorial experiment, 582, 590

Regressor variables, 156

Relative range, 116

Relative range statistic, 237

Reliability, 4

Reliability engineering, 92

Repeatability, 379, 384, 387

Replicates, 147

Reproducibility, 379, 384, 387

Residual analysis, 577

Residual plots, 155, 171
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Trajectory plots, 538

Transforming data, 229, 367

Treatments, 147

Trends on control charts, 252

Trial control limits, 238

Two-sample t-test, 136, 139

Two-sample Z-test, 133

Two-sided confidence interval, 120

Two-sided statistical test, 119

Type A OC curve, 658

Type B OC curve, 658

Type I error, 118

Type II error, 118, 130

U

u chart, 323

Unbiased estimator, 116

Uncontrollable process variables, 564

Uncorrelated process data, 196

Uniform distribution, 78, 710

Upper control limit, 190, 197

V

Value engineering, 23

Value opportunity of projects, 50

Value stream mapping, 219, 227, 228

Value-added work activity, 219

Variability, 6, 7, 8, 16

Variable sample size, 198

Variable sample size control charts for count 

data, 328

Variable sample size on the and s control charts, 263

Variable sample size on the control chart for fraction

nonconforming, 310

Variable sampling interval, 198

Variable width limits on control charts, 310

Variables control charts, 185, 194, 195, 234

Variables data, 8

Variables sampling plans, 652, 688, 689, 694, 698

Variance components, 385

Variance of a distribution, 79

Variogram, 558

Verification of assumptions, 98

V-mask CUSUM, 417, 429

Voice of the customer, 32

W

Warning limits, 198

Waste, 8

Weak conclusions in hypothesis testing, 118

Weibull distribution, 95, 710

Western Electric rules, 204

White noise, 196

Within-sample variability, 246, 278

X

control chart, 201, 235, 236

Z

Zero defects, 23

Zone rules, 204

x

x
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Single replicate of a 2k design, 593

Single sample t-test, 123

Single-sampling plan, 652, 65

SIPOC diagram, 53

Six Sigma, 28, 30

Six Sigma organization, 32, 49

Six Sigma products, 398

Six Sigma quality, 29

Skewness, 361

Skip-lot sampling plans, 704

Span of a moving range, 274

Sparsity of effects principle, 593

Specification limits, 9, 245

Specifications, 9

Standard deviation of a distribution, 79

Standard error of a regression coefficient, 166

Standard errors of effects in 2k designs, 592

Standard normal distribution, 87

Standardization, 87

Standardized and R charts, 452

Standardized control charts, 313

Standardized CUSUM, 424

Stationary process data, 196

Statistic, 110

Statistical inference, 65, 117

Statistical methods, 8, 12

Statistical process control (SPC), 13, 185, 187, 188, 213

Statistical tests on variances of two normal 

distributions, 143

Statistics, 65, 67

Stem-and-leaf display, 68

Stratification on a control chart, 253

Strict liability, 44

Strong conclusions in hypothesis testing, 118

Studentized residuals, 172

Supplier audits, 37

Supplier qualification, 37

Supply chain management, 36, 45

Switching rules in MIL STD 105E, 674

T

Tabular CUSUM, 417

t-distribution, 112

Test for significance of regression, 163

Test matrix, 578, 584

Test statistic, 118, 123

Tests on groups of regression coefficients, 167

Tests on individual regression coefficients, 166

Third quartile, 70

Three-sigma control limits, 192, 198

Tier chart, 245

Time between event (occurrence) control charts, 333

Time constant of a process, 462

Time series models, 465, 468

Time series plot, 70

Time-between-events CUSUM, 428

Tolerance diagram, 218, 245

Tolerance interval control charts, 500

Tollgates, 49

Total quality management (TQM), 23

Tracking signals, 471

x
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Are process data
autocorrelated?

NO YES

Variables or attributes? Is there an adjustment
variable?

Variables Attributes

Sample size Data type

n > 1 n = 1

Shift size Shift size

Large Small

x, R
x, S

CUSUM
EWMA

Fit ARIMA; apply
standard control
charts (EWMA,

CUSUM, x, MR) to
either residuals or

original data
or

use moving centerline
EWMA

or
use a model-free

approach

Use feedback
control
with an

adjustment
chart

or
another EPC
procedure

or
EPC/SPC

Large Small

x (Individuals)
MR

CUSUM
EWMA

Fraction Defects (counts)

Shift size Shift size

Large Small

p

np

CUSUM
EWMA
using p

Large Small

c

u

CUSUM
EWMA using

c, u; time
between events

YESNO

Guide to Univariate Process Monitoring and Control

• Identify and/or
   validate the
   business
   improvement
   opportunity
• Define critical
   customer
   requirements
• Document (map)
   processes
• Establish project
   charter, build
   team

Objectives

Define
Opportunities

Define

Measure
Performance

Measure

Analyze
Opportunity

Analyze

Improve
Performance

Improve

Control
Performance

Control

Objectives

• Determine what
   to measure
• Manage
   measurement
   data collection
• Develop and
   validate
   measurement
   systems
• Determine sigma
   performance
   level

Objectives

• Analyze data to
   understand reasons
   for variation and
   identify potential
   root causes
• Determine process
   capability, throughput,
   cycle time
• Formulate,
   investigate, and
   verify root cause
   hypotheses 

Objectives

• Generate and
   quantify
   potential solutions
• Evaluate and
   select final
   solution
• Verify and gain
   approval for
   final solution

Objectives

• Develop
   ongoing process
   management
   plans
• Mistake-proof
   process
• Monitor and
   control critical
   process
   characteristics
• Develop out-of-
   control action
   plans

The DMAIC Process
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Design of Experiments (DOX)

Useful in process development and
troubleshooting
Identifies magnitude and direction of
important process variable effects
Greatly reduces the number of runs required
with a process experiment
Identifies interaction among process
variables
Useful in engineering design and
development
Focuses on optimizing system performance

•

•

•

•

•

•

The shape shows the nature of the distribution
of the data
The central tendency (average) and variability
are easily seen
Specification limits can be used to display the
capability of the process

•

•

•

Identifies the relationship between two
variables
A positive, negative, or no relationship can
be easily detected

•

•

Simplifies data collection and analysis
Spots problem areas by frequency of location,
type, or cause

•
•

All contributing factors and their relationships
are displayed
Identifies problem areas where data can be
collected and analyzed

•

•

Identifies most significant problems to be
worked first
Historically 80% of the problems are due to
20% of the factors
Shows the vital few

Pareto Diagram

Control Chart

Process Flow Diagram

Quality Improvement Tools

•

•

•

Helps reduce variability
Monitors performance over time
Allows process corrections to prevent
rejections
Trends and out-of-control conditions are
immediately detected

•
•
•

•

Expresses detailed knowledge of the process
Identifies process flow and interaction among
the process steps
Identifies potential control points

•
•

•
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